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energy spectrum of closed string solutions moving in some deformed backgrounds
that preserve integrability. On the gauge theory side, the thesis explores various
formal problems arising in the computation of two- and three-point functions by
means of the algebraic Bethe Ansatz and the quantum inverse scattering method.

The thesis contains numerous results on integrability of the AdS/CFT corre-
spondence. It is written in a self-contained and pedagogical manner, and it includes
general discussions and detailed presentations on the use of integrable systems
techniques and its application to the problems under study.
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Abstract

The AdS/CFT correspondence states that the strong-coupling limit of
four-dimensional Yang–Mills theory with N ¼ 4 supersymmetry can be identified
with the weak-coupling limit of type IIB supersymmetric string theory compactified
in AdS5 � S5 and vice versa. This correspondence can be broadened to other
backgrounds like AdS4 � CP

3 and AdS3 � S3 �M4. As it relates theories at weak
and strong coupling, it allows us to access the non-perturbative regime of gauge
theories and string theories. However, its proof requires to face extremely complex
problems, e.g., computing the complete spectrum of conformal dimensions of a
gauge theory or quantizing type IIB string theory in a curved background.

Symmetries are a powerful way to simplify computations on any theory; the
most typical example of them in AdS/CFT is the exact conformal symmetry of both
the type IIB string theory in AdS5 � S5 and the N ¼ 4 supersymmetric Yang–Mills
theory, which completely fixes the functional form of the two- and three-point
correlation functions. Another important simplification is the appearance of an
integrable structure in the correspondence. The discovery of integrability in both
theories gave rise to an exhaustive exploration of the planar spectrum of anomalous
dimensions of gauge-invariant operators and the spectrum of energies of semi-
classical strings in AdS5 � S5. Techniques based on integrability reported important
successes and even the possibility of interpolating between strong and weak
regimes in some particular cases.

In this dissertation, we will present some computations made in both sides of the
AdS/CFT holographic correspondence, the string theory side and the field theory
side, using the integrability of both theories as starting point and method to simplify
these computations.

Regarding the string theory side, this thesis is focused on the computation of the
energy spectrum of closed spinning strings in some deformed AdS3 � S3 back-
grounds. In particular, we are going to focus on the deformation provided by the
mixing of R-R (Ramond–Ramond) and NS-NS (Neveu-Schwarz–Neveu-Schwarz)
fluxes and the so-called g-deformation. These computations are made using the
classical integrability of these two deformed string theories, which is provided by
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the presence of a set of conserved quantities called “deformed Uhlenbeck con-
stants.” The existence of these Uhlenbeck constants is central for the method used
to derive the dispersion relations.

Regarding the gauge theory side, we are interested in the computation of two-
and three-point correlation functions. At weak coupling, these correlation functions
can be obtained through perturbative methods, but it is also possible to use tech-
niques derived from the integrable structure of the theory. For that purpose, instead
of using directly the field theory formulation, we are going to use the isomorphism
between gauge-invariant single-trace operators in N ¼ 4 supersymmetric Yang–
Mills theory and states of a PSUð2; 2j4Þ invariant spin chain. Concerning the
two-point function, a computation of correlation functions involving different
operators and a different number of excitations is performed using the algebraic
Bethe Ansatz and the quantum inverse scattering method. These results are com-
pared with computations done with the coordinate Bethe Ansatz and with
Zamolodchikov-Faddeev operators. Concerning the three-point functions, we will
explore the novel construction given by the hexagon framework. In particular, we
are going to start from the already proposed hexagon form factor and rewrite it in a
language more resembling of the algebraic Bethe Ansatz. This involves the con-
struction of an invariant vertex using Zamolodchikov-Faddeev operators, which is
checked to provide the correct results for some simple cases.
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Chapter 1
Integrability in the AdS/CFT
Correspondence

For ’tis your thoughts that now must deck our kings,
Carry them here and there, jumping o’er times,
Turning th’ accomplishment of many years
Into an hour-glass: for the which supply,
Admit me chorus to this history;
Who prologue-like your humble patience pray,
Gently to hear, kindly to judge, our play.

William Shakespeare, Henry V

1.1 The AdS/CFT Conjecture

Since the AdS/CFT correspondence was conjectured [1–3] there has been a huge de-
velopment in this field. The basic idea of this conjecture is that a (type IIB super)string
theory where the strings propagate on an Ad S5 × S5 background is partnered with
a particular Conformal Field Theory (CFT) defined at the (conformal) boundary of
the Ad S5 space, being this boundary flat four-dimensional spacetime while the S5

part becomes a symmetry of the theory.
The particular CFT involved in this duality is N = 4 Super Yang–Mills (SYM)

with gauge group SU (Nc) in four-dimensional flat spacetime. Let us dissect the
characteristics of this theory. A gauge theory is a theory akin to Quantum Electro-
dynamics or Quantum Chromodynamics, whose gauge groups are U (1) and SU (3)
respectively. In the literature a gauge theory with gauge group SU (Nc) and Nc > 1
is called a Yang–Mills theory. The particular theory we are interested in contains
only gauge bosons, massless particles with spin 1, and no matter. In particular it
contains N 2

c − 1 gauge bosons, as they have to transform in the adjoint represen-
tation of the gauge group. However, we want to we want to enlarge the Poincaré
symmetry with supersymmetry, in fact we need to add four supersymmetries to the
theory, as the N = 4 in front indicates. Supersymmetry generators relate bosonic
and fermionic field by decreasing (or rising in the case of conjugate generators)

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 Integrability in the AdS/CFT Correspondence

the spin of the particles. Applied once to one component of a spin-1 field, like a
gauge boson, they generate four different spin- 12 fermions usually called gauginos
(actually it only generate one of the two components of a Weyl fermion). When we
apply them twice we obtain six different spin-0 fields (Lorentz scalars), as the SUSY
generators anticommute. Applying three supersymmetric generators we obtain the
other component of the gauginos. Finally, applying the four generators gives us the
other component of the gauge boson in four dimensions. All these fields transform in
the adjoint representation of the gauge group, as supersymmetry cannot modify the
representation of the fields under the gauge group. These new fields inherit an index
coming from the supersymmetric generators that relate them to the gauge boson. This
index can be understood as coming from an additional symmetry of the Lagrangian
called R-symmetry, which in this case is SU (4) because we haveN = 4. According
to the R-symmetry the content of the theory can be divided into a vector gauge field
Aa

μ that transform as a scalar under such R-symmetry, four Weyl spinors λa,A
α that

transform as a vector and six real scalars φa,AB that transform as the second rank
complex self dual representation. Sometimes will be useful to use the fact that the
last representation is isomorphic to the vector representation of SO(6), as it will
simplify some computations. All these new fields can be conveniently organized in
what is called a vector multiplet of N = 4 supersymmetry. For some computations
it is more interesting to organize it in one vector multiplet and three chiral multi-
plets of N = 1 supersymmetry or one vector multiplet and one chiral multiplet of
N = 2 supersymmetry [4]. Supersymmetry also completely fixes the Lagrangian of
the theory to

SSYM =
∫

d4x Tr

{
(Dμφ

AB)(Dμφ̄AB) − i

2
(λαA←→

/D αα̇λ̄α̇
A) − 1

4
Fμν Fμν

− gλαA[λB
α , φ̄AB] − gλ̄α̇A[λ̄α̇

B,φAB] + 2g2[φAB,φC D][φ̄AB, φ̄C D]
}

, (1.1.1)

where the covariant derivative is defined as Dμ = ∂μ + ig[Aμ, ·] and Tr is a trace
over the indices of the gauge group, usually denoted as color indices. It can be
checked that the matter content of this theory makes the one-loop β-funcion of the
theory vanish by using the well known formula for the beta functions of Yang–Mills
theories [5]

β(gY M) =
(
11

3
Cgauge bosons − 1

6
Creal scalars − 1

3
CWeyl fermions

)
g3Y M

16π2
. (1.1.2)

Here C denotes the quadratic Cassimir associated to the representation, which in this
case is Nc for all of them because all fields transforms in the adjoint representation.
This computation can be extended to higher loops, giving a vanishing of theβ-funcion
for two and three-loop [6–8]. Even more, using light-cone gauge it was argued that
the β-function should be zero to all loops [9, 10], implying that conformal symmetry
is not broken when the theory is quantized and the associated Ward identities are
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not anomalous. Actually the conformal symmetry and the supersymmetry combine
into a larger symmetry called superconformal symmetry, which in the case at hand
is realized by the supergroup P SU (2, 2|4). The generating functional of correlation
functions involving the local operatorO is obtained through the standardpath-integral
method

ZC FT,O[J ] =
∫

D[fields]e−SSYM+∫
d4xO(x)J (x). (1.1.3)

There are several observables of interest on this theory. The ones we are going to
focus more during this thesis are single trace operators. These operator are formed
by a string of product of fields (usually scalar fields or covariant derivatives of them)
where the color indices are traced to make the operator gauge invariant. Operators
formed by more than one trace are also relevant but we will focus in the limit of a
large number of colors, where their contribution will prove to be negligible.

Type IIB string theory is a chiral superstring theory in 10 dimensions with
N = (2, 0) supersymmetry. Although there is nomanifestly Lorentz-invariant action
for this theory [11], one canwrite down its equations ofmotion, symmetries and trans-
formation rules. As we did for the field theory, we should comment the features of
this theory. First of all, to cancel the Weyl anomaly that a string theory presents, it
has to be formulated on a background spacetime with 26 dimensions if it contains
only bosonic strings while it only needs 10 dimensions if we include supersymme-
try. Type II indicates that the theory has two supersymmetries in the ten-dimensional
sense, while the B label indicates that we are choosing them in a chiral (parity vio-
lating) way, as we haveN = 2 supersymmetry for left modes and no SUSY for right
modes. Together with type IIA string theory, related with type IIB by T-duality, they
are the only two string theories with two supersymmetries in ten dimensions. String
theories have two important parameters: the string tension, which is the coefficient
multiplying the string action, and the string coupling constant, which is actually not
a coupling constant but a vacuum expectation value of a field called dilaton. As a
background where to formulate this theory in, we need a maximally supersymmetric
ten-dimensional background that fulfils some conditions from the low energy limit of
the theory. In addition to the flat ten-dimensional Minkowski space, type IIB super-
gravity admits another maximally supersymmetric solution, which is product of the
five-dimensional Anti-de-Sitter space Ad S5 and the five-sphere S5. This solution is
supported by a self-dual Ramond-Ramond five-form flux, whose presence precludes
the usage of the standard Neveu-Schwarz-Ramond approach in a straightforward
way to build up the action. This will make us look for alternative approaches.

One of the cornerstones of the AdS/CFT correspondence is the so-called Planar
Limit of a gauge theory, that is, the limit where the range of the gauge group Nc is
very large. This limit was first described in [12] and so it is also sometimes called
’t Hooft Limit. The idea behind it is that we can classify Feynmann diagrams of
an SU (Nc) gauge theory by their topology, so the dependence of the diagrams on
the Yang–Mills coupling constant gY M and the number of colors Nc is given by
g2(P−V )

Y M N F−L . In this formula P is the number of propagators, V is the number
of vertices, L is the number of quark loops and F is the number of faces, which
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is equal to the sum of quark1 loops L and index loops I . Using Euler’s Theorem
F − P + V = χ = 2 − 2H , where χ is the Euler characteristic and H counts the
number of “holes” of the surfaces (H = 0 for the sphere, H = 1 for the torus, etc),
the prefactor can be rewritten as (g2Y M Nc)

P−V N 2−2H−L
c . As a consequence, diagrams

with no quark loops and planar topology, that is diagrams with H = 0 or without
self-intersections, dominate at large Nc. The immediate corolary is that a quarkless
theory, which means L = 0 for every diagram, with a large number of colors it is
more naturally described as a perturbation theory in the combination λ = g2Y M Nc,
called ’t Hooft coupling constant, than in the usual Yang–Mills coupling constant
gY M . This can be seen as the gauge theory turning into surfaces, which remind of
the genus expansion in string theory generated by joining and splitting of string.
This suggest a possible relationship between both theories, in which gauge theory
diagrams would triangulate the worldsheet of an effective string [13]. The AdS/CFT
correspondence is a concrete realization of this connection.

The original Maldacena’s argument involve some elements from string theory
known as branes. String theory is not only a theory of strings, extended objects also
appear non-perturbatively in the theory. One example are the D-branes, which appear
in the study of open string as surfaces where the endpoints of such strings have to
lay (the D comes from “Dirichlet boundary conditions”). Maldacena considered a
string theory with Nc D3-branes from two points of view

• On the one hand, this theory has closed strings, which propagate in the bulk of
spacetime and can be described by a supergravity theory (usual Einstein gravity
with supersymmetry) coupled to the massive modes of the string; open strings,
whose endpoints are constrained to move only in the surface of the D3-branes
and so we can use the label of the branes in which they end as “gauge” indices
(Chan–Paton indices), giving us an N = 4 SYM-like theory as we can prove
that such labels transform in a representation of U (Nc); and interactions between
open and closed strings. In the low energy limit α′ → 0 massive string modes
drop out, the interaction between open and closed strings vanishes and only the
SU (Nc) ⊂ U (Nc) subgroup contributes, allowing us to understand the theory as
two decoupled systems: SU (Nc) N = 4 SYM and free gravity.

• On the other hand, the metric of a solution of ten-dimensional supergravity corre-
sponding to a stack of Nc coincident D3-branes (the supergravity solution can be
trusted only if gstrNc > 1) is

ds2 = −dt2 + dx2
1 + dx2

2 + dx2
3√

H
+ √

H
(
dr2 + r2d�2

5

)
, (1.1.4)

where d�2
5 is the element of solid angle of S5. The function H is called warp

factor and is given by

1By quark here we mean matter in the fundamental representation. Matter in other representations
has to be treated in a different way.
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H = H(r) = 1 + L4

r4
= 1 + 4πgstrNcα

′2

r4
. (1.1.5)

It is easy to see that this metric reduces to flat Minkovski far from the origin and
to the Poincaré patch of AdS near the origin after the transformation z = L

r .

Therefore, far from the origin we will have ten-dimensional Minkovski free gravity
and four-dimensional N = 4 SYM (as endpoints of open strings are constrained to
live in the D3-brane, so they only have four dimensions to propagate); while at the
origin we can have states of arbitrary high energy with the condition that their energy
is low enough far from it, so we have the full IIB string theory living in Ad S5 × S5.
As both are two limits of the same brane setting, they should be equivalent.

We can classify different versions of the AdS/CFT duality depending on their
range of validity:

• The weakest version: the duality is only valid in the planar limit and large ’t Hooft
coupling regime λ = g2Y M Nc � 1 of the CFT side. This parameter region maps
to the supergravity approximation (the limit where the string coupling constant
gstr → 0) of the string theory with a restriction over the string coupling constant
gstrNc � 1.2

• A stronger version will be to move away from the low energy limit, which means
including α′ corrections to the string theory without adding interaction, that is,
maintaining gstr → 0 limit. In the gauge theory this corresponds to taking into
account all λ corrections while remaining in the planar limit. The precise relation
between the string tension and the ’t Hooft coupling is controled by theAdS radius:
λR4 = α′.

• The strongest version would be a duality between the two full theories, that is, for
any values of gstr and Nc (or gY M and Nc).

In a more formal way, the AdS/CFT duality relates the string partition function
with sources φ for the string vertex operators fixed to value J at the boundary of the
AdS space to the CFT partition function with sources J for local operators (operators
composed from the fundamental fields all residing at a common point in spacetime)

Zstr

[
φ|∂ Ad S = J

]
= ZC FT [J ] . (1.1.6)

As λ is the natural expansion parameter of the SYM theory, the weakest AdS/CFT
correspondence relates the weak-coupling limit of the string theory with the strongly
coupled limit of the SYM theory. In the sameway,we can examine theweak-coupling
limit of the SYM theory, but we will find that the dual string theory will be a strongly
coupled one. This makes the correspondence a strong/weak duality. The different
regimes of the theories are represented in Fig. 1.1: Classical gauge theory, where

2The previous restriction on the ’t Hooft coupling appeas as consequence of this restriction and of

the following relation between coupling constants
g2Y M
gstr

= const., where the precise constant depends
on the normalization of the actions. The two main choices are 1, which is used for example in [14],
and 4π, which can be found in [15].
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Fig. 1.1 Map of the parameter space of N = 4 SYM

we work at weak ’t Hooft coupling (which maps to strong α′) λ � 1 and general
value of the number of colors Nc; the planar limit where we perform calculations
in the limit Nc → ∞; and the free classical string limit, where we work around the
point λ = ∞ and gstr = α′2

R4Nc
� 1. In the classical gauge theory limit we can obtain

more accurate estimations by the usual procedure of pertubative gauge theory. In the
planar limit we can do the same by taking non-planar Feynman graphs into account.
In the classical strings limit we can perform two different expansions, an expansion
in λ by adding quantum corrections to the worldsheet sigma model, or an expansion
in gstr by adding handles to the string worldsheet.

1.2 Some Methods for Solving the Theory

Solving the theory requires to compute all its observables. Some of the most impor-
tant observables on a gauge theory there are the scaling dimensions (the sum of
the constituents classical dimensions plus quantum corrections from interactions
between them), scattering amplitudes, structure constants, expectations values of
Wilson loops, etc. One of the most powerful tools to perform these computations are
the symmetries of the theory. For example, conformal invariance heavily restricts the
functional form of correlation functions. In the case of the two-point functions it is
restricted to3

3Additional tensor structures can appear if the operators have indices. These structures are also
fully constrained by conformal symmetry.
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〈O1(x1)O2(x2)〉 =
√N1N2δ�1,�2

|x1 − x2|�1+�2
, (1.2.1)

which is completely fixed up to two constants: the scaling dimension �i , which is
characterized by how the operator transforms under a spacetime dilatation; and the
normalization Ni , which can be set to one in general. When we move to the case of
three-point functions, conformal symmetry restrict them to have the form

〈O1(x1)O2(x2)O3(x3)〉 =
√N1N2N3C123

|x12|�1+�2−�3 |x13|�1−�2+�3 |x23|−�1+�2+�3
, (1.2.2)

where xi j = xi − x j and C123 are called structure constants. Again the correlation
function is completely constrained when the values of the structure constants and
the scaling dimensions are known. However conformal invariance is not enough to
completely constrain the functional form of the four-point functions

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = F1234

( |x12| |x34|
|x13| |x24| ,

|x14| |x23|
|x13| |x24|

) ∏
1≤i< j≤4

1

|xi j |�i +� j −
∑

k �k
3

,

where F is an arbitrary function. The quantities |x12| |x34|
|x13| |x24| and |x14| |x23|

|x13| |x24| are usually
referred in the literature as conformal cross-ratios (sometimes they are also referred
as double ratios, anharmonic ratios or simply as ratios).

Another way to simplify our computation of observables is to use the Operator
Product Expansion (OPE). The idea behind this expansion is that the product of
two operators can be approximated as a series of local operators in the limit of the
positions of two operator insertions approaching one another4

Oi (x)O j (y) =
∑

k

Ck
i j (x − y)Ok(y) . (1.2.3)

The Ck
i j (x − y) functions are also called structure constants and they are not the

same as the C123 constants from the three-point functions, although they are related.
Note that this is an operator statement, meaning that it only holds inside a general
expectation value as long as the distance between x and y is small compared with the
distance to any other operator insertion. Despite not being any apparent expansion
parameter in this series, the structure constants depend on the distance |x − y| raised
to the scaling dimension of the operator they go with, hence the dimension of the
heavier operator involved controls the accuracy of the OPE. Such accuracy can be
arbitrarily controlled and the expression is exact at finite separation, instead of only
asymptotic, when applied to a conformal field theory likeN = 4 SYM. Performing

4Actually, the operator in the right hand side can be inserted in any point on the line zλ = λx +
(1 − λ)y, λ ∈ R. Although different points result in a different choices of the structure constants
Ck

i j (x − y), they depend only on the difference x − y regardless of this choice. The choice of this

insertion point depends on the author. For example [16] chooses λ = 1
2 while [17] chooses λ = 0,

being this last one the most common choice in string theory textbooks and articles.
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several expansions we can write all correlation functions involving n local operators
in terms of correlation functions involving only two or three operators.5

Another very powerful method that has been widely used in the recent years and
allows us to perform exact computations of some particular quantities in supersym-
metric field theories is the supersymmetric localization. This method was already
known in the context of cohomology theory and topological field theories (see the
Duistermaat–Heckman [19] and Atiyah–Bott–Berline–Vergne [20, 21] formulae)
but it was the computation of partition functions onN = 2 supersymmetric theories
made Pestun [22] what brought the current attention to this method. The main idea is
the following: If our action is invariant under a fermionic symmetry generated by the
supercharge Q, we can try to construct a functional V such that QV has a definite
positive bosonic part and is Q invariant (Q(QV ) = 0). If we add this extra QV term
to the partition function in the following way

Z(t) =
∫

D�e−S[�]−t QV , (1.2.4)

we can prove that such partition function is independent of the parameter t as

d Z(t)

dt
=

∫
D�e−S[�]−t QV (−QV ) = −

∫
D�Q(e−S[�]−t QV V ) = 0 , (1.2.5)

as long as themeasure is Q-invariant, i.e. if the fermionic symmetric is not anomalous.
This implies that vacuum expectation values of operators depend only on the Q-
cohomology6 of the operator and they are independent of the inclusion of the extra
QV term. Therefore, we can perform all our computations in the large t limit, where
the path integral is given by the saddle point approximation QV |bos [�0] = 0, as
other configurations are going to be suppressed because QV is definite positive.
Keeping up to quadratic expansion around this fixed point we get

Z(t → ∞) =
∫

QV |bos [�0]=0
D�0e−S[�0] 1

SDet(QV [�0]quad) . (1.2.6)

With proper treatment if bosonic zero modes are present. The power of this method
relies on the fact that the partition function is independent of t , hence the saddle point
“approximation” has to be exact.

5This is not completely true if we are working on the planar limit of the theory, as higher-point
functions of single trace operators in general need information about multi-trace operators even
in this limit. However there are certain limits where these contributions are suppressed and the
OPE expansion can be performed only with single trace operators. We refer to [18] for a complete
discussion.
6As the square of a fermionic operator vanishes, we can define cohomology classes associated to
such operator in a similar way as we do for exterior derivatives in a smooth manifold.
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In this thesis we mostly will make use of a fourth tool at our disposal, the integra-
bility of both the classical string theory and the N = 4 SYM gauge theory, whose
implications are going to be explained in the following two sections.

1.3 Integrability on the CFT Side

In [23] Minahan and Zarembo showed that the N = 4 SYM one-loop dilatation
operator (that is, the first quantum correction of the operator associated with the
spacetime dilatation symmetry,which encodes the scaling dimensions of all operators
of the theory) for scalar operators in the planar limit is isomorphic to the Hamiltonian
of an SO(6) spin chain. The main idea behind this isomorphism comes from writing
the operators in a basis of single trace operators made of products of scalar fields

O(ψ) = ψi1,...,iL Tr{φi1 . . . φiL } , (1.3.1)

where φi is a generic scalar i = 1, . . . , 6. Therefore each operatorO(ψ) is associated
with an SO(6) tensor with L indices ψi1,...,iL . These tensors form a linear space
H = ⊗L

l=1 Vl with Vl = R
6, which can be understood as a lattice with L sites

whose ends are identified and each lattice site host a six-dimensional real vector.
Therefore it can be regarded as the Hilbert space of a spin system.7

Composite operators have to be renormalized due to the emergence of UV diver-
gences in the loop integrals of Feynman diagrams. Renormalized operators in general
are linear combinations of bare operators, so we can write

OA
ren = Z A

B(λ,�)OB , (1.3.2)

where the renormalization factor Z A
B depends on theUV cutoff� and on the ’t Hooft

coupling λ in the large Nc limit. By standard arguments, the matrix of anomalous
dimensions can be computed as

� = d ln Z

d ln�
, (1.3.3)

whose eigenvalues determine the anomalous dimensions of the (multiplicatively
renormalizable) operators on our theory. After computing and adding the only three
possible kinds of diagrams that contribute at one-loop in the planar limit8 (gluon
exchange, �4 interaction and self-energy corrections) the renormalization factor
reads

7Notice that this is not the usual SU (2) spin with Vl = C
2, but a more general degree of freedom. In

particular, the usual spin chain can be obtained as a restriction of this one because SU (2) ⊂ SO(6).
8As we commented above, the non-planar graphs are suppressed by a factor of 1/N 2

c . However we
also need the length of the operator L to be L � Nc to suppress the non-planar contributions, as
there are L! tree level diagrams of which only L are planar.
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Z ... jl jl+1...

...il il+1...
= I + λ

16π2
ln�

(
δil il+1δ

jl jl+1 + 2δ jl
il
δ

jl+1
il+1

− 2δ jl+1
il

δ
jl
il+1

)
(1.3.4)

= I + λ

16π2
ln�(K + 2I − 2P) , (1.3.5)

for each link of the lattice. The total Z factor is the product over all links. The
operators K and P are called trace operator and permutation operator respectively,
acting on a two sites space as

K (φa ⊗ φb) = δab

∑
i

(φi ⊗ φi )K , (1.3.6)

P (φa ⊗ φb) = (φb ⊗ φa)P . (1.3.7)

With the expression for the renormalization factor we can compute the matrix of
anomalous dimensions

� = λ

16π2

L∑
i=1

(Kl,l+1 + 2 − 2Pl,l+1) , (1.3.8)

which can be interpreted as the local Hamiltonian of an SO(6) spin chain. Hence the
isomorphism of states can be generalized to an isomorphism between the anomalous
dimensions and the spectrum of the spin chain hamiltonian. It is important to point
out that this Hamiltonian is known to be integrable [24, 25], so it can be diagonalized
using Bethe Ansatz techniques (either the coordinate or the algebraic version, both
ansätze will be reviewed in Chap.5).

The isomorphism between the dilatation operator and a Hamiltonian was later
expanded to the full P SU (2, 2|4) superconformal symmetry at one-loop [26, 27]. It
was also proven to be generalizable to two-loops in the planar limit [28], although
non-planar corrections were proven to be non-integrable. This last development
prompted people to think about the existence of a Hamiltonian that captures the
full non-perturbative planar structure of the dilatation operator. A proposal for the
SU (2) sector appeared [21] based on the integrability of the theory, field theory con-
siderations and comparisons with string theory results. This proposal together with
similar arguments for the SU (1|1) and SL(2) sectors lead to a more general hypoth-
esis for the full P SU (2, 2|4) spin chain describing planarN = 4 Super Yang–Mills
Theory (asymptotically) to arbitrary loop order was proposed in [30]. However this
description breaks down at some point due to finite size corrections9 so more sophis-
ticated machinery were developed. The corrections to a two-dimensional quantum
field theory defined on a cylinder due to virtual particles circulating around it were

9The spin chain Hamiltonian associated to N = 4 SYM at K -loops has interactions involving, at
most, up to the K th nearest neighbour. Hence, we expect the description to break down when the
loop order is greater than the length of the spin chain, and finite size or wrapping corrections have
to be included. Note that this also imply that the Hamiltonian associated to the dilatation operator
beyond one-loop has long-range interactions.
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first investigated by Lüscher in [31], where he wrote the leading correction. We refer
to [32] for a detailed description of the Lüscher correction and subsequent gener-
alizations. Regarding integrable theories an alternative technique had been devel-
oped called Thermodynamical Bethe Ansatz [33], where finite length corrections
are related to finite temperature corrections through a double Wick rotation. State of
the art techniques applied to AdS/CFT include the Thermodynamical Bethe ansatz
[34–37], the Hirota dynamics or Y-system [37–39], and the Quantum Spectral Curve
[40]. These examples are all upgrades of the usual Bethe ansätze that are able to deal
with long-range interactions, wrapping effects, or both. In part III of this thesis we
are going to make an extensive use of these isomorphisms.

1.4 Integrability on the String Theory Side

Before starting this section, we should present the concept of BPS states. BPS
(Bogomol’nyi–Prasad–Sommerfield) states are very particular states on a supersym-
metric theory.10 In non-supersymmetric field theories we can distinguish between
massive and massless representations of Poincaré symmetry. As these representa-
tions are different, we conclude that massless particles cannot transform in massive
particles through quantum corrections due to the lack of degrees of freedom to trans-
formone representation into the other (although it can happen through othermethods,
like the Higgs mechanism). Something similar happens when we have a theory with
more than one supersymmetry. In that case we are allowed to add central charges
(operators that commute with all the other symmetry generators) to the commutation
relation between fermionic generators of the superalgebra with different R-matrix
indices. Schematically

{Q A, Q B} = 2Z AB (1.4.1)

When the central charges are non-zero, they impose a lower bound to the mass of
massive particles, called BPS bound. When this bound is saturated, supersymmetry
is enhanced in a similar way as in the case of massless particles in Poincaré algebra,
and the representation is “shortened” (the number of degrees of freedom is reduced).
Applying the same reasoning used for massless and massive representations we can
show that states saturating the BPS bound are protected from quantum corrections
(either perturbative or non-perturbative). ForN = 2 this bound is easily computable
to be M ≥ √

2|Z | because only one central charge Z AB ∝ ZεAB can be added. The
N = 4 case is more complex as we can add several central charges (and we can
subclassify representations by how much are shortened, e.g. 1

2 -BPS,
1
4 -BPS, etc).

As the action for the Ad S5 × S5 superstring has a complex structure, people have
tried to bypass this difficulty by considering special limits involving other parameters
apart from the ’t Hooft coupling λ to simplify computations. As BPS states are

10The concept of BPS bound also appear in other contexts, e.g. electromagnetism with particles
charged electrically and magnetically.
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protected against quantum corrections, they are a good candidate for that intent. The
two main approaches are

• The BMN limit: in [41] Berenstein, Maldacena and Nastase considered the case
of near-BPS states, which they proved to be related to near point-like strings
rotating along the great circle of S5 with large angular momentum. If J/

√
λ is

kept finite, one obtains a string theory in a pp-wave background and it is possible
to analytically compute the dispersion relation

E − J =
√
1 + 2πgstrNcn2

J 2
, (1.4.2)

where their normalization of the action forces the AdS radius (or the relation
between the ’t Hooft coupling and the string tension) to satisfy R4 = 2πgstrNcα

′2.
One of the most important advantages of this limit is the possibility to identify
the unique state with vanishing light-cone Hamiltonian with the chiral primary
operator of N = 4 SYM,

1√
J N J/2

c

Tr[Z J ] ←→ |0, p+〉l.c. (1.4.3)

where Z = φ5 + iφ6 is a complex scalar. The energy of the state can be identified
with the conformal dimension of the operator, as both are protected from correc-
tions.
Luckily the identification does not end with the ground state. If we move to the
case of modes with � − J = E − J = 1, on the string theory side new states can
be constructed by applying one of the sixteen (eight bosonic and eight fermionic)
the zero momentum oscillators, to the light-cone vacuum (because the total light-
cone energy is equal to the total number of oscillator that are acting, as they are
massive modes), while on the field theory side we have the possibility of adding
four possible scalars (the scalars that do not form the complex scalar Z ), the four
possible R4 derivatives and the eight components with J = 1

2 of the sixteen com-
ponent gaugino. As we have the same number of possibilities in both sides it is
very tempting to identify both of them, but to do that we have to prove that 1.
adding more fields is an operation equivalent to adding excitations and 2. that the
dispersion relation is equal to the conformal dimensions.
The first part is easily proven, as each time we act with a rotation of S5 that does
not commute with the SO(2) ⊂ SO(6) symmetry singled out by the Z operator
we modify the chiral primary into

1√
J

∑
l

Tr[Zlφr Z J−l ]√
J N (J+1)/2

c

= Tr[φr Z J ]
N (J+1)/2

c

, (1.4.4)

where φr is a real scalar that does not form part of Z and the equality comes from
the cyclicity of the trace. If we apply another time a rotation of the same kind we
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can change the Z operators that were left unchanged by the first rotation or we
can apply it to the same operator as the first rotation. However, this second case
is subleading in a 1

J expansion and can be neglected in the large J limit we are
considering. A similar scenario can be proven for other transformations.
The second part is a little bit more tricky to prove. We can compute the one-
loop correction to the dilatation operator (as described in the previous section)
and compare it with the expansion of the BMN dispersion relation E − J ≈ 1 +
2πgstrNcn2

J 2 + · · · , which they agree when we write gstrNc = √
λ and identify n

J with
the momentum of the excitations. The details of the computation can be found
in [41], together with a very incomplete Hamiltonian realization of the dilatation
operator that, although it reproduces the full BMN dispersion relation, leaves out
many diagrams and operators.
After stating these two points we can say that the “string of Z operators” becomes
the physical string and a correspondence between the energies of the string states
and scaling dimensions of N = 4 SYM can be established in the near-BPS limit.

• The GKP string: the opposite case is to investigate strings far from the BPS states.
A very important result was found in [42] by Gubser, Klebanov and Polyakov,
where they considered strings with large spin in Ad S5. On the one hand, they
found that the dispersion relation of these kind of string can be written as

E − S = f (λ) ln S + · · · (1.4.5)

where f (λ) = b0
√

λ + b1 + b2√
λ

+ · · · . On the other hand, they found that the
conformal dimension of twist two operators (operators formed by a high number
of derivatives and two scalars) have the same expression but with f (λ) = a1λ +
a2λ

2 + · · · . As the expression are the same up to the f (λ) function, it was proposed
that they might represent different asymptotics of the same function. This means
that we can identify the GKP strings with twist two operators.

These results helped to later discover a map between classical string solutions and
Riemann surfaces (finite gap equations) [43]. The structure of cuts connecting the
sheets composing these Riemann surfaces bear some resemblance with the strings
of solutions of the Bethe equations in the scaling limit, which lead to the proposal of
a quantum string Bethe ansatz in [44]. However it was shown a discrepancy between
the BMN scaling and four-loop perturbation theory in the field theory side (while
integrability persists) [45]. This discrepancywas later explained by using the freedom
of adding an scalar phase (dressing phase) to the S-matrix.

Similar expansions can be expected for other semiclassical string states. In par-
ticular, multispin string states (with at least one large angular momentum in S5) have
regular expansion in λ

J 2 while the quantum superstring sigma model corrections are
suppressed in the limit J → ∞ with λ

J 2 constant. The first step to test the non-BPS
sector of AdS/CFT was made with the construction of solutions with one spin S
and one angular momentum J [46], which can be obtained by boosting the center
of mass of the string rotating in Ad S5 along a circle of S5. Solutions with two and
three angular momenta were constructed in [47, 48] respectively. The possibility of
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truly testing the non-BPS sector of AdS/CFT by comparing the λ
J 2 � 1 limit of the

dispersion relation/conformal dimension was successfully accomplished in [49–51]
among others. In part II of this thesis we are going to focus mainly in these kind of
string states.

In addition, the world-sheet sigmamodel on Ad S5 × S5 background supported by
a self-dual Ramond-Ramond five-form flux was proven to be classically integrable
by the explicit construction of its Lax connection [52–54]. Later on, the exact S-
matrix for the world-sheet excitations of this theory was found in [55] using that,
in the uniform light-cone gauge, the symmetry breaks down to P SU (2|2)2 and can
be centrally extended by relaxing the level-matching condition.11 This S-matrix was
shown to be equivalent to the N = 4 SYM S-matrix up to some twists [56].

1.5 Outline of the Thesis

The rest of this thesis is divided in three well differentiated parts. The first part of this
thesis is devoted to the string theory side of the duality and it contains chapters two
to four. In the second chapter we present an introduction to string theory where we
explain the construction of bosonic string theories, both from the Polyakov action and
from the Principal Chiral Model over a symmetric coset, using the last as an example
to introduce the concept of classical integrability and the toolbox it provides. After
doing so, we will move to the construction of supersymmetric string theories, mostly
usingWess–Zumino–Wittenmodels over semi-symmetric cosets. In the third chapter
we use classical integrability to study a deformation of the Ad S3 × S3 background
by the presence of both R-R and NS-NS fluxes. In particular, the key ingredient
is the rewriting of the string Lagrangian for spinning strings in Ad S5 × S5 as the
integrable Neumann-Rosochatius model, developed in [57]. This will allow us to
write analytical expressions for the dispersion relations for spinning strings as a
series in inverse powers of the total angular momentum. In the fourth chapter we
apply the rewriting of the stringLagrangian in Ad S5 × S5 as aNeumann-Rosochatius
model to study spinning strings in η-deformed Ad S3 × S3 space.

The second part of this thesis is centered around the spin chain interpretation
of the field theory side of the duality and it contains chapters five to seven. In the
fifth chapter we present the main computational methods we are going to use: the
Coordinate Bethe Ansatz and the Algebraic Bethe Ansatz. Some problems arising
from the different normalization of the states obtained from both methods are also
discussed. We dedicate a section to the Beisert-Dippel-Staudacher (BDS) spin chain
[21], an all-loop ansatz for the spin chain picture of N = 4 SYM. We end this
chapter by presenting the bootstrap program and discussing the Smirnov’s form
factors axioms [58]. The sixth chapter is focused on the computation of two-point

11We have to relax the level-matching condition because, although a multiparticle state would fulfil
it, arbitrary pairs of particles forming this state do not necessarily obey it, therefore the two particle
S-matrix needs to be computed without imposing this condition.
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correlation functions. In particularwewill present computations of form factors using
theAlgebraic BetheAnsatz for theHeisenberg spin chain and for the BDS spin chain.
The seventh chapter is instead focused on three-point functions. We first describe the
Tailoring method [59–63] and a proposal for an all-loop generalization, called the
hexagon form factor [64]. After it we are able to present an “algebraic version” of
the hexagon proposal that gives an explanation to some of its characteristics.

We conclude this thesis with the third and last part. This part contains a summary
and conclusions and two appendices with some details on our computations.
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Part I
Integrability on the String Theory Side



Chapter 2
Strings in Coset Spaces

The motivation of formal string theory is to understand the truly
fundamental ideas in string theory which is assumed by the
practitioners to be the theory explaining or predicting
everything in the Universe that may be explained or predicted.
How may someone say that the motivation is similar to that of
mathematicians?
Lubos Motls, Formal string theory is physics, not mathematics

In this chapter we will present a review of semi-classical string theory and classical
integrability, together with the tools we are going to use for the rest of this part. In the
first section we introduce the basis of classical bosonic string theory and Polyakov
action, mostly following [1], and an alternative construction using the Principal Chi-
ral Model, following [2] for the description of the models involved and [3] for the
construction of the bosonic string theory. The Principal Chiral Model Lagrangian
will be used as an example to introduce the concept of classical integrability and
the tools it provides. After it, the Wess-Zumino-Witten model is presented both as
a way to include a B-field in the Polyakov action and as prerequisite for the exten-
sion of the method to supersymmetric theories. We end this section by constructing
a bosonic string theory as a Principal Chiral Model over a symmetric coset. The
second section is completely devoted to the construction of supersymmetric string
theories, mostly following [1, 4, 5] for some specific parts. First we will review the
concepts of Neveu-Schwarz-Ramond superstring, Green–Schwarz superstring and
the rewriting of the last one as a coset model. Before building the coset models
explicitly we will present the superconformal algebra PSU (n, n|2n), needed in the
construction of supersymmetric AdSm × Sn backgrounds, and the concept of semi-
symmetric spaces. After that we will construct a Wess-Zumino-Witten model on a
semi-symmetric space, presenting some of the characteristics like the construction
of the Lax and the κ-symmetry. Following [1, 4] we will do it for the two cases we
are interested in: the AdS5 × S5 and the AdS3 × S3 × T 4 backgrounds.

© Springer International Publishing AG, part of Springer Nature 2018
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2.1 Principal Chiral Model

We are going to start this section describing the basic concepts of a bosonic string
theory. However, our end goal is to construct a supersymmetric string theory, so it
will be more useful to write the theory as a coset sigma model. The bosonic version
of this construction is presented it at the end of the section. Before doing so, we are
going to introduce a σ-model called Principal Chiral Model (PCM) to stablish some
characteristics and to see how integrability arises.

2.1.1 Basic Concepts. The Polyakov Action

As the action of a relativistic particle can be written as the length of its trajectory
or world-line, we can directly generalize it to write the action of a relativistic string
as the area of the world-sheet swept out by the string. This action, written using an
auxiliary field hαβ that can be interpreted as a metric for the world-sheet, is called
the Polyakov action,

SP = −T

2

∫
S
d2σ

√−hhαβGμν(X)∂αX
μ∂βX

ν , (2.1.1)

where σα = (τ ,σ) are the two coordinates of the world-sheet (chosen such that τ1 <

τ < τ2 and 0 ≤ σ < l), Xμ(τ ,σ) are the embeddings functions, h = det hαβ , Gμν is
the metric of the space-time and T is a constant called string tension. This action is
not only invariant under re-parametrization of theworld-sheet but alsoWeyl invariant
(invariant under re-scaling of the auxiliary field). These two invariances allowus to fix
the auxiliary field to hαβ = ηαβ = diag(−1, 1), a choice called conformal gauge, but
with the equations of motion for this metric as extra constraints.1 Such constrains are
related with the energy-momentum tensor of the world-sheet theory, defined through
the world-sheet metric

Tαβ = 4π√−h

δSP
δhαβ

= −Gμν(X)

α′

(
∂αX

μ∂βX
ν − 1

2
hαβh

γδ∂γX
μ∂δX

ν

)
, (2.1.3)

1Let us analyse the case of a massive relativistic particle to clarify this point. The action is given by

S = 1

2

∫ s1

s0
e
(
e−2 ẋμ ẋμ − m2

)
dτ , (2.1.2)

where the dot represent the derivative with respect to τ . The reparametrization invariance can be
used to fix e = 1/m. However the equation of motion we obtain, ẍμ = 0, wrongly includes time-
like and light-like lines as solutions. This problem can be solved if we support it with the equation
of motion for e, which reads ẋ2 + 1 = 0 after the “gauge-fixing” e = 1/m, so only the space-like
lines are selected.
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where α′ = 1
2πT is called Regge slope. In particular, the diffeomorphism invariance

imply that the energy-momentum tensor is conserved, the Weyl invariance requires
it tracelessness hαβTαβ = 0 and re-parametrization invariance requires to fix it to
zero Tαβ = 0. These last conditions are usually called Virasoro constrains because,
together with energy-momentum conservation, give rise to an infinite number of
conserved charges which form a Virasoro algebra.

2.1.2 PCM Lagrangian and Integrability

Let us consider a field g(σ, τ ) periodic in σ that takes values over a Lie group G. We
define the Lagrangian density of the PCM as

L = 1

4a2
√−hhαβTr

{
(g−1∂αg)(g−1∂βg)

}
, (2.1.4)

where hαβ is a metric and a is a coupling constant. There are some similarities
between this Lagrangian and Polyakov action regarding the treatment of hαβ which
we can use to impose conformal gauge

√−hhαβ = ηαβ without further discussion.
The domain of the coordinates is chosen as 0 < τ < T and 0 ≤ σ < l, so g(σ +
l, τ ) = g(σ, τ ).

The Lagrangian is more conveniently written in term of left-invariant and right-
invariant currents2

j Lα = g−1∂αg , j Rα = (∂αg)g−1 , (2.1.5)

which are respectively the Noether currents associated to the transformation of the
field by the right and left multiplication by a constant element of the group. Note that
because g is defined over a Lie group, the currents are defined over the corresponding
Lie algebra. The Lagrangian can be written now as

L = 1

4a2
Tr

{
j Lα j L ,α

}
= 1

4a2
Tr

{
j Rα j R,α

}
, (2.1.6)

where we have used the cyclicity of the trace to get the second Lagrangian. The
equations of motion associated to the first Lagrangian are

∂α j
L ,α = 0 . (2.1.7)

2The definition of left and right currents depends on the authors. This is because some authors
define left-invariant and right-invariant currents (for example [7]) and other authors define Noether
currents corresponding to multiplications of g by a constant element of the group from the left and
from the right (for example [8]). This gives opposite definitions of these currents and create some
confusions. Sometimes the definition of the left-invariant current has an extra global minus sign
(for example [4]).
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These equations can be supported with an equation reflecting the fact that the current
is exact

∂α j
L
β + ∂β j

L
α + [ j Lα , j Lβ ] = 0 , (2.1.8)

with similar equations for the right current.
One can define now a new current, called Lax connection, that contains both

equations at the same time

Lα(z) = jα + zεαβ

√−hhβγ jγ
1 − z2

, (2.1.9)

where z is a real parameter called spectral parameter and the current used can be
either the left or the right current.3 This new current can actually be viewed as a flat
connection ∂αLβ + ∂βLα + [Lα, Lβ] = Fαβ = 0 and this flatness for all values of
the spectral parameter implies both the equation of motion and the flatness of the
original current jα.

This flatness equation, usually called zero curvature equation in the literature, can
be seen as the compatibility condition of the linear problem

{
Dσ�(τ ,σ, z) = (∂σ − Lσ)�(τ ,σ, z) = 0
Dτ�(τ ,σ, z) = (∂τ − Lτ )�(τ ,σ, z) = 0

. (2.1.11)

Solving this linear system will give us information about the solution of the
Lagrangian [9, 10]. The function�(τ ,σ, z), called classical wave function, is deter-
mined up to a constant, usually fixed to �(0, 0, z) = 1.

Let us now prove that the existence of this connection implies the (classical)
integrability of the Lagrangian. Its flatness allow us to define a well behaved parallel
transport

Uγ(τ2,σ2; τ1,σ1) = P exp

[∫
γ

dσαLα(τ ,σ, z)

]
, (2.1.12)

where γ is a path from (τ1,σ1) to (τ2,σ2) and P stands for an ordering of the points
along the path of integration such that the points closer to (τ2,σ2) stand to the left
of those closer to (τ1,σ1). Using the Baker-Cambell-Hausdorff formula and Stoke’s
theorem we can prove that

Uδ(τ1,σ1; τ2,σ2)Uγ(τ2,σ2; τ1,σ1) = exp

[
−1

2

∫
γ+δ

dσαβFαβ

]
, (2.1.13)

3The Lax connection of a system is not unique. Given an arbitrary matrix f (τ ,σ, z), the flatness
condition is invariant under the gauge transformation

Lα → L ′
α = f Lα f −1 + (∂α f ) f −1 . (2.1.10)

If we choose the particular case f (τ ,σ, z) ∝ g(τ ,σ) we can relate the Lax connection written in
the left and in the right currents.
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therefore the vanishing of the curvature implies that the parallel transport defined by
the Lax connection is independent of the path. This parallel transport can be used to
compute the wave function as �(τ ,σ, z) = Uγ(τ ,σ; 0, 0).

We will be particularly interested in the path given by constant τ and σ varying
from 0 to l. The parallel transport for this path,

T (τ , z) = P exp
∫ l

0
dσLσ(τ ,σ, z) , (2.1.14)

is called monodromy matrix. The τ evolution of the monodromy matrix can be
computed in the following way

∂τT (τ , z) =
∫ l

0
d�

[
P exp

∫ l

�

dσLσ(τ ,σ, z)

]
∂τ Lσ(τ , �, z)

[
P exp

∫ �

0
dσLσ(τ ,σ, z)

]

=
∫ l

0
d� [...](∂σLτ + [Lσ, Lτ ]

)[...] =
∫ l

0
d� ∂σ

([...]Lτ [...]
)

= [Lτ (τ , 0, z), T (τ , z)] , (2.1.15)

where we have used the vanishing of the curvature and periodicity of the Lax con-
nection in the σ coordinate. From here it is obvious that the trace of the monodromy
matrix T =Tr (T ), called transfer matrix, is independent of the τ coordinate on-
shell. Therefore if we expand this trace on inverse powers of the spectral parameter
we get an infinite set of charges that are conserved (we will prove later that they
Poisson-commute), proving the integrability of the Lagrangian. This formalism can
be generalized to non-periodic solutions with σ ∈ (−∞,∞) tought the definition of
the monodromy matrix present some subtleties when we take the limit in which the
endpoints go to infinity [10, 11].

To end this section we are going to define the concept of R-matrix.Although it is a
useful concept in classical integrability, it is not as useful as in quantum integrability,
where it will become the central element of the formalism. At the level of the Poisson
Brackets of the Lax operators, we assume the existence of a matrix r12(z, z′) such
that

{
Lσ,1(τ ,σ, z) ⊗

,
Lσ,2(τ ,σ′, z′)

}
= [

r12(z, z
′), Lσ,1(τ ,σ, z) + Lσ,2(τ ,σ′, z′)

]
δ(σ − σ′) ,

(2.1.16)
this is an equation on g ⊗ g, with g a Lie algebra, where the subindices 1 and 2
labels the factor of the algebra in which the matrices act. This is the definition of
the classical R-matrix, which is a g ⊗ g-valued function. The Jacobi identity of the
Poisson brackets implies the following property

[r12(u), r13(u + v)] + [r12(u), r23(v)] + [r13(u + v), r23(v)] = 0 , (2.1.17)

called Classical Yang-Baxter Equation (CYBE). This equation has been studied in
detail, see for example [12], and two of its most important properties are: 1. If r(u)
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is a nondenerate solution of the CYBE meromorphic around u = 0, then it can be
extended meromorphically to the whole complex plane having only simple poles.
2. The set of these poles is a discrete subgroup of C relative to the addition and it
allows to classify the R-matrices into three different categories: rational R-matrices
(when the rank of this subgroup is zero), trigonometric R-matrices (when its rank is
1) and elliptic R-matrices (when it has rank 2, which only exists for g = sl(n)).

From the definition of the R-matrix we can find the Poisson brackets between
transport matrices, called fundamental Sklyanin relation [9]

{
U1(τ1,σ1; τ2,σ2; z) ⊗

,
U2(τ1,σ1; τ2,σ2; z′)

}
=

= [
r12(z, z

′),U1(τ1,σ1; τ2,σ2; z)U2(τ1,σ1; τ2,σ2; z′)
]

.

(2.1.18)

From here we can prove that the traces of powers of the monodromy matrix generate
Poisson-commuting quantities,4 a statement equivalent to the one obtained from the
expansion of the transfer matrix.

2.1.3 WZW Models

The PCM is enough for writing bosonic string theories as sigma models. But to write
supersymmetric string theories or to write a bosonic string theory with a B-field we
need a further extension of the PCM called Wess-Zumino-Witten models.

To understand what we want to accomplish first we have to write the world-
sheet in euclidean light-cone coordinates z = τ + iσ (usually called holomorphic
coordinate) and z̄ = τ − iσ (usually called anti-holomorphic coordinate). In this
new coordinates, conservation of left and right currents can be written as

∂z jz̄ + ∂z̄ jz = ∂ j̄ + ∂̄ j = 0 . (2.1.19)

The idea behind the extension is to enhance the symmetry of the model to make
both components separately conserved ∂ j̄ = ∂̄ j = 0. This enhancement is done in
a non-obvious way by adding a Wess-Zumino term

S = S0 − ki

24π

∫
B
d3y εαβγTr

{
(g̃−1∂αg̃)(g̃−1∂βg̃)(g̃−1∂γg̃)

}
, (2.1.20)

where B is a 3-dimensional manifold whose boundary is the compactification of our
original space and g̃ is the extension of our original field g(z, z̄) to this manifold.
Although this extension is not unique and a potential ambiguity in the definition of
this term can arise, the difference between two choices gives k times a topological

4To prove this statement we should use the property Tr12{A ⊗ B} = Tr(A)Tr(B).
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quantity defined modulo 2πi (πi if our group is SO(3)). Therefore a well defined
path integral needs k to be integer (or an even integer for SO(3)).

If we derive now the equations of motion for this action we get

(
1 + a2k

4π

)
∂ j̄ +

(
1 − a2k

4π

)
∂̄ j = 0 , (2.1.21)

thus the choice a2 = 4π/k selects the anti-holomorphicity of the anti-holomorphic
current as the equations of motion. That is, it reduces the equations of motion to
∂ j̄ = 0. Furthermore, as jα is a conserved current, it also imposes ∂̄ j = 0. The
equations of motion can then be solved by choosing g(z, z̄) = f (z) f̄ (z̄) for arbitrary
functions f (z) and f̄ (z̄), similarly to a free-field theory.

It is very important to notices that the originalG left × Gright symmetry of the PCM
is now enhanced to a local G(z) × G(z̄) symmetry.5

2.1.4 Bosonic String Theory as a Coset Model

We are going to move now to the construction of a PCM-like Lagrangian on a
coset G/H . The coset is realized by imposing the equivalence relation g(τ ,σ) ≡
g(τ ,σ)h(τ ,σ), where h(τ ,σ) ∈ H . In this construction the fields h(τ ,σ) will enter
in the action in a similar way to gauge fields. As in Sect. 2.1.2, it is better to write
everything in terms of the currents instead of the fields. The equivalence relation
between fields maps into the decomposition of the currents into a direct sum of the
two algebras g−1∂αg ∈ g = h ⊕ f where h is the algebra associated to the group H
and f is the orthogonal complement to h in g. Hence dividing the current into Aα ∈ h
and Kα ∈ f, they transform under the equivalence relation as

g(σα) ≡ g(σα)h(σα) =⇒
{
Aα ≡ h−1Aαh + h−1∂αh
Kα ≡ h−1Kαh

, (2.1.22)

where we have assumed that the algebra we are using is simple, so h−1∂αh ∈ h.
This transformation property imply that the Aα field can be understood as a gauge
field as it has the same transformation properties as one, while Kα only undergoes
a similarity transformation. Thus a Lagrangian of the Principal Chiral Model on the
coset G/H can be written as a gauge invariant Lagrangian

L = −1

4
Tr

{
KαK

α
}

, (2.1.23)

5Which one acts on the left and on the right depends on if we are working with the left or the right
invariant current. In particular, for the left invariant current we have G left(z) × Gright(z̄).
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whose equations of motion are DαK α = 0, where we define the covariant derivative
as Dα = ∂α + [Aα, ·].

In principle, having a simple algebra ensures that [h, h] ⊂ h and [h, f] ⊂ f, so the
equations of motion are well defined. Nevertheless it is interesting to also impose
[f, f] ⊂ h. This extra restriction allows us to introduce a Z2 symmetry that acts as
�(h) = h and �(f) = −f. These kinds of cosets are called symmetric cosets. The
reason to impose the last condition is related to the flatness condition of Kα and, by
extension as we saw in the last section, to the integrability of the Lagrangian.

Because G/H is a symmetric coset, the flatness condition can be broken into

Fαβ + DαKβ − DβKα + [Kα, Kβ] = 0 =⇒
{
Fαβ + [Kα, Kβ] = 0
DαKβ − DβKα = 0

, (2.1.24)

where Fαβ is the field strength associated to Aα. The equations of motion and the
flatness of the current can be cast into the following Lax connection

Lα = Aα + z2 + 1

z2 − 1
Kα + 2z

z2 − 1
εαβK

β , (2.1.25)

whose existence implies the integrability of the system.

2.2 Supersymmetric String and Semi-symmetric Coset
Model

In this section we will discuss how to construct a supersymmetric string theory.
First we present the most important characteristic of two different approaches to
the construction, the Neveu-Schwarz-Ramond superstring and the Green–Schwarz
superstring. Of those approaches we are going to choose the second one as our
approach to supersymmetric strings, as this one can be constructed using cosetmodels
in a similarway as the bosonic stringLagrangian in Sect. 2.1.4. But before proceeding
to the actual construction, we will study the supersymmetric algebra psu(n, n|2n)

as we are going to use it as the algebra of the currents over which we are going to
quotient. Finally, we will take all the elements together to present the construction
of the GS action.

2.2.1 NSR and GS String Theories

There are two ways to introduce supersymmetry in a string theory: the Neveu-
Schwarz-Ramond superstring (NSR) and the Green-Schwarz superstring (GS). Both
theories should give the same physical results and have supersymmetry both in the
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world-sheet and in the space-time. The only difference between them is which of
those two supersymmetries is explicit.

• NSR superstring introduces the supersymmetry in the world-sheet. It does that
by introducing Grassmann superspace coordinates θA

α , where A = 1, 2 count two
different components. These coordinates should be spinors under the usualClifford
algebra in the conformal gauge, so we can define the matrices

{ρα, ρβ} = −2ηαβ . (2.2.1)

We can generalize now our space-time coordinates to superfields, assuming that
its fermionic components are Majorana (real) fermions

Y μ(τ ,σ, θ) = Xμ(τ ,σ) + θ̄ψμ(τ ,σ) + 1

2
θθ̄Bμ(τ ,σ) , (2.2.2)

where spinor indices are omitted. Because our action should be invariant under the
supersymmetric charges QA = ∂

∂θ̄A + i(ραθ)A∂α, we have not only to generalize
our coordinates but also our derivatives to a covariant derivative.We can check that
DA = ∂

∂θ̄A − i(ραθ)A∂α indeed satisfy {DA, QB} = 0. Therefore we can choose
our action as

SRNS = iT

4

∫
d2σ d2θ D̄Y μDYμ , (2.2.3)

where

DY μ = ψμ + θBμ − iραθ∂αX
μ + i

2
θ̄θρα∂αψμ ,

D̄Y μ = ψ̄μ + Bμθ̄ + i∂αX
μθ̄ρα − i

2
θ̄θρα∂αψμ .

Expanding the derivatives and the fields and using that
∫
d2θ θ̄θ = −2i is the only

non-vanishing integral of Grassmann coordinates, gives us

SRNS = −T

4

∫
d2σ

(
∂αX

μ∂αXμ − iψ̄ρα∂αψμ − BμBμ

)
, (2.2.4)

wherewe can see that Bμ is an auxiliary fieldwhose field equations imply Bμ = 0.6

This formalism has some problems: first of all, the two components of fermions
ψ+ and ψ− can be made independently periodic (called Ramond boundary condi-
tions) or antiperiodic (called Neveu-Schwarz boundary conditions) in the sigma

6Actually things are more complex because the auxiliary field that is the world-sheet metric hαβ

also needs to be supersymetrized. Hence we don’t work with it, but with the zweibein eα
a defined

as eα
a e

β
b ηab = hαβ and their supersymmetric partner, a Majorana spinor-vector called gravitino.

However, at the end we can gauge away these fields and fix a superconformal gauge where we put
the gravitino to zero and the zweibein to identity.
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coordinate, but we cannot have all four combinations at the same time. We have to
project out some of them, this process is called the GSO (Gliozzi–Scherk–Olive)
projection. Secondly, we are interested in backgrounds like AdS5 × S5, which has
a five-form (Ramond) flux, but the Ramond-Ramond vertex needed to construct it
is non-local in terms of world-sheet fields [13], so it is unclear how to couple it to
the string world-sheet. Because of these problems we are going to work with the
other formalism.

• GS superstring instead introduces the supersymmetry directly in the space-time.
Constructing the GS action for arbitrary backgrounds is difficult because the full
structure of the superfields has to be determined from the bosonic solution, some-
thing not generally known. However, inspired from formulations like [14], where
the authors constructed the flat space GS action as a WZW-type non-linear sigma
model on the Poincaré group quotient by SO(1, 9) (as this quotient is isomorphic
to Minkovski space), other constructions have been developed. In particular, some
recently found relations between bosonic sectors and full supersymmetric cosets
theories are

AdS5 × S5 ∼= PSU (2, 2|4)
SO(4, 1) × SO(5)

,

AdS4 × CP
3 ∼= OSP(2, 2|6)

SO(3, 1) ×U (3)
,

AdS3 × S3 × S3 × S1 ∼= D(2, 1;α)2

SL(2) × SU (2)2
×U (1) ,

AdS3 × S3 × T 4 ∼= PSU (1, 1|2)2
SL(2) × SU (2)

×U (1)4 .

In this thesis we are going to be mostly interested in the first and the last one.

2.2.2 Superconformal Algebra

Before writing the coset for supersymmetric theories in AdSm × Sm , we should
understand first the psu(n, n|2n) algebras with n ∈ N. This includes the superal-
gebras psu(1, 1|2) and psu(2, 2|4), which we will use for the construction of the
AdS3 × S3 × T 4 and AdS5 × S5 backgrounds respectively.

The matrix representation of the superalgebra gl(n, n|2n) is spanned by 4n × 4n
matrices with vanishing supertrace. If we write them in terms of 2n × 2n blocks

M =
(
a θ
η b

)
, (2.2.5)

then we can restrict the algebra to sl(n, n|2n) by imposing STr M = Tr a − Tr b =
0. There is an obvious Z2 grading where a and b are even and θ and η are odd.
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This symmetry will mix with another Z2 symmetry when defining the coset. By
the fundamental theorem of finitely generated abelian groups they will give either
Z2 ⊗ Z2 or Z4. As we will see, the later one is the correct.

We can further reduce the superalgebra to su(n, n|2n) by imposing the additional
constrain

M†H + HM = 0 , (2.2.6)

where

H =
(

� 0
0 I2n

)
and � =

(
In 0
0 −In

)
. (2.2.7)

Note that apart from the obvious su(n, n) ⊕ su(2n) bosonic subalgebras there is
an additional u(1) subalgebra coming from the identity, which is supertraceless in
this case. We can quotient the algebra by this generator7 to get the psu(n, n|2n)

superalgebra.
Despite the similarities, the explicit construction of the Z4 action is going to be

different for n = 1 and n = 2. Let us first consider the case of the su(2, 2|4) algebra.
The outer automorphism group Out(sl(2, 2|4)) contains a finite subgroup isomorph
to the Klein group Z2 × Z2 with generators

M →
(
b η
θ a

)
, M → −Mst =

(−at ηt

−θt −bt

)
,

where st denote the supertranspose. Although the second one seems to be of order
four, in fact it is of order two in the group of outer automorphism as it squares to
the grading transformation we have defined before, which is an inner automorphism.
Actually the M → −Mst transformation is the one that generates the Z4 structure
we talked about. However, it proves more convenient to work instead with the auto-
morphism

M → �(M) = −���Mst���−1 = −
(

� 0
0 �

)
Mst

(
� 0
0 �

)
, (2.2.8)

which conserves the commutator but not the product nor the hermitian conjugation

�([M1, M2]) = [�(M1),�(M2)] , (2.2.9)

�(M1M2) = −�(M2)�(M1) , (2.2.10)

�(M)† = ϒ�(M†)ϒ−1 = −(ϒH)�(M)(ϒH)−1 , (2.2.11)

where ϒ =
(
I4 0
0 −I4

)
is called hypercharge. This allows us to split the algebra into

four separated graded spaces

7Sadly this quotient has no realization in terms of 4n × 4n matrices.
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g = g(0) ⊕ g(1) ⊕ g(2) ⊕ g(3) , g(k) = {
M ∈ g : �(M) = i kM

}
, (2.2.12)

with the property
[g(k), g(l)] ⊂ g(k+l) mod 4 . (2.2.13)

The coset G/G(0), obtained when we mod out the group associated to the bosonic
algebra g(0), is then called a semi-symmetric superspace. The semi-symmetric spaces
can be considered a supersymmetric generalization of the symmetric spaces we have
used to construct the bosonic string theories. Therefore it is natural to try to write
the supersymmetric string theories with them as a building block.

In the case of the AdS3 × S3 × T 4 background we are going to make use of
having two copies of psu(1, 1|2) to construct the automorphism as an operation
that interchanges the two copies and whose square is (−I)F where F is the grading
operator (+1 for odd generators and 0 for even ones). In particular we can choose

�(gBL ,R) = gBR,L , �(gFL ,R) = ∓gFR,L , (2.2.14)

as the Z4 transformation. Similarly this transformation allow us to define an splitting
of the algebra and to construct a semi-symmetric coset.

2.2.3 Green–Schwarz String as a Coset Model

In this section we are going to see how to construct the Green–Schwarz action for
AdS5 × S5 and AdS3 × S3 × T 4 backgrounds using the superalgebras presented in
the previous section.

AdS5 × S5 GS Action

As we have seen just discussed, we can write the psu(2, 2|4) superalgebra as a direct
sum of four subalgebras defined by how they transform under the Z4 symmetry. This
property can be directly applied to the construction of invariant currents

jα = g−1∂g = j (0)α + j (1)α + j (2)α + j (3)α , (2.2.15)

but we have still to quotient this algebra by the subgroup generated by the subalegra
invariant by the � automorphism. Taking this quotient is equivalent to treating the
current j (0) as a gauge degree of freedom in the same way as we have done in
Sect. 2.1.4. This is because applying a transformation by one element of this subgroup
transforms the current j (0) as a gauge field and acts as a similarity transformation on
the rest of the currents.

The coset action we are going to work with is an extension of the already studied
one8

8We have left a general γαβ = √−hhαβ metric instead of directly choosing the conformal gauge
γαβ = ηαβ because later we are going to consider a symmetry transformation with δγ �= 0.
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S = −
√

λ

4π

∫
d2σ

[
γαβ STr

(
j (2)α j (2)β

)
+ κεαβ STr

(
j (1)α j (3)β

)]
, (2.2.16)

formed by a kinetic term,which is equivalent to the bosonic cosetmodelwe presented
above, and aWess-Zumino term formed only of fermionic currents. Obviously it has
the right symmetry, is � invariant and it depends only on the PSU (2, 2|4) subgroup
although it might seem to depend on the full SU (2, 2|4) as j (2) contains the identity.
The decoupling of the u(1) subalgebra can be proven using the the supertracesness
of the identity and of the rest of components of j (2), which we are going to call j̃ (2).
The factor j (2)α j (2)β can be decomposed in a factor proportional to the identity, other

proportional to j̃ (2) and a third one proportional to j̃ (2)α j̃ (2)β , of which only the last
one can contribute as the supertrace make the first two vanish.

Note also that, naïvely, the second term of the action does not seem like a WZ
term. This is because the invariant three-form

�3 = STr( j (2) ∧ j (3) ∧ j (3) − j (2) ∧ j (1) ∧ j (1)) = 1

2
d STr( j (1) ∧ j (3)) , (2.2.17)

is an exact form, proving that the second term in the action is indeed a WZ term.
If we define the current

�α = g
[
γαβ j (2)β − κ

2
εαβ

(
j (1)β − j (3)β

)]
, (2.2.18)

we can express the conserved currents associated to the global PSU (2, 2|4) sym-
metry and the equations of motion in a compact way,

Jα =
√

λ

2π
g�αg−1 =⇒ ∂α J

α = 0 , (2.2.19)

∂α�α − [ jα,�α] = 0 . (2.2.20)

The three components of the last equation (as the (0)th component vanishes identi-
cally) can be separated into

γαβ∂α j
(2)
β − γαβ[ j (0)α , j (2)β ] + κ

2
εαβ

(
[ j (1)α , j (1)β ] − [ j (3)α , j (3)β ]

)
= 0 , (2.2.21)

γαβ[ j (3)α , j (2)β ] + κεαβ[ j (2)α , j (3)β ] = −2Pαβ
− [ j (2)α , j (3)β ] = 0 , (2.2.22)

γαβ[ j (1)α , j (2)β ] − κεαβ[ j (2)α , j (1)β ] = −2Pαβ
+ [ j (2)α , j (1)β ] = 0 , (2.2.23)

where in the last two equationswe have introduced the “projections” Pαβ
± = γαβ±κεαβ

2 .
We put the word projections between quotations because those operators are orthog-
onal projectors only when κ = ±1.
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The Lax connection for this Lagrangian is given by

Lα = j (0)α + 1

2

(
z2 + 1

z2

)
j (2)α − 1

2κ

(
z2 − 1

z2

)
γαβεβμ j (2)μ + z j (1)α + 1

z
j (3)α ,

(2.2.24)
proving that it is indeed an integrable Lagrangian.

Finally, the equations of motion for the world-sheet metric give the stress energy
tensor

Tαβ = STr{ j (2)α j (2)β } − γαβγγδSTr{ j (2)γ j (2)δ } , (2.2.25)

which imposes the Virasoro constraints when set to zero.

Kappa Symmetry in AdS5 × S5

We have built the Lagrangian with an explicit invariance under global left
PSU (2, 2|4) transformation. In this paragraph we are going to see a remaining
symmetry generated by right multiplication by a local fermionic element ε(τ ,σ) ∈
psu(2, 2|4) called κ-symmetry. Because we are interested on the coset model we
will allow to have a compensating element h ∈ SO(1, 4) × SO(5), that is

geε(τ ,σ) = g′h . (2.2.26)

However the superstring action in general is not invariant under this transformation.
Hence some restriction has to be imposed on ε. We can split ε into the part that
transforms in g(1) and g(3) under the� transformation ε = ε(1) + ε(3). Then the trans-
formation of the current, that is, δε j = −dε + [ j, ε] can be divided into the different
four components of the algebra as

δε j
(1) = dε(1) + [ j (0), ε(1)] + [ j (2), ε(3)] , (2.2.27)

δε j
(3) = dε(3) + [ j (2), ε(1)] + [ j (0), ε(3)] , (2.2.28)

δε j
(2) = [ j (1), ε(1)] + [ j (3), ε(3)] , (2.2.29)

δε j
(0) = [ j (3), ε(1)] + [ j (1), ε(3)] , (2.2.30)

and the same can be done to the variation of the Lagrangian density,

−2

g
δεL = δγαβ STr

(
j (2)α j (2)β

)
− 4 STr

(
Pαβ

+ [ j (1)β , j (2)α ]ε(1) + Pαβ
− [ j (3)β , j (2)α ]ε(3)

)
,

(2.2.31)

where we have used the flatness condition of j (1) and j (3) to simplify the expression.
To reduce this expression even further in order to find the variation of the metric, we
choose the following ansatz for the ε functions
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ε(1) = j (2)α,−κ(1),α
+ + κ(1),α

+ j (2)α,− ,

ε(3) = j (2)α,−κ(3),α
+ + κ(3),α

+ j (2)α,− , (2.2.32)

where we have written K α± = Pαβ
± Kβ . These expressions have indeed the right trans-

formation properties

�
(
ε(n)

) = �
(
j (2)α,−κ(n),α

+ + κ(n),α
+ j (2)α,−

)
=

= −�
(
κ(n),α

+
)

�
(
j (2)α,−

)
− �

(
j (2)α,−

)
�

(
κ(n),α

+
)

=
= −i nκ(n),α

+ (− j (2)α,−) − (− j (2)α,−)i nκ(n),α
+ = i nε(n) ,

(2.2.33)

and, after some computations the variation of the metric can be written as [4]

δγαβ = 1

2
Tr

(
[κ(1),α

+ , j (1),β− ] + [κ(3),α
+ , j (3),β− ]

)
. (2.2.34)

Wemust note that to get this result we had to assume that Pαβ
± are projectors, therefore

this κ-symmetry only exists if κ = ±1. Now the important question is how many
fermionic degrees of freedom can we “gauged away” using it. It can be checked that
the answer is 16 real fermions [4], leaving 16 physical fermionic degrees of freedom
of the original 32.

AdS3 × S3 × T 4 GS Action

The construction of the action for the AdS3 × S3 × T 4 background is very similar
to the one we have already described for AdS5 × S5. Consequently we will only
point out the differences between both constructions. The most important difference
is the definition of the currents, which boils down to the different definition of the
� transformation and the Z4 grading. In this case we can define the currents on the
different symmetry subalgebras as

j (0) = j evenL + j evenR

2
, j (2) = j evenL − j evenR

2
, (2.2.35)

j (1) = joddL + joddR

2
, j (3) = joddL − joddR

2
, (2.2.36)

where L and R refers to each of the copies of PSU (1, 1|2), not to left and right
invariant currents. The Lagrangian, the equations of motion, and the Virasoro con-
strains remain the same. However the construction of the κ-symmetry needs some
modifications. For example the ansatz (2.2.32) for ε(1) and ε(3) has to be modified to

ε(1) = j (2)α,− j (2)β,−καβ + j (2)α,−καβ j (2)β,− + καβ j (2)α,− j (2)β,− − 1

8
STr(� j (2)α,− j (2)β,−)καβ .

(2.2.37)
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AdS3 × S3 × T 4 GS Action with Mixed Flux

In contrast to the AdS5 × S5 background, we are allowed to add an extra WZ term
to the coset construction of AdS3 × S3 × T 4. In particular the new action reads9

S = 1

2

∫
M=∂B

STr { j2 ∧ ∗ j2 + κ j1 ∧ j3}+

+ q
∫
B

(
2

3
j2 ∧ j2 ∧ j2 + j1 ∧ j3 ∧ j2 + j3 ∧ j1 ∧ j2

)
, (2.2.38)

where κ and q are coupling constants that have to be fixed. The requirements to fix
these constants are to preserve conformal invariance, integrability and κ symmetry
of the theory.

Inspired from the other Lax connections we have written, we make the ansatz

L = j0 + α1 j2 + α2 ∗ j2 + β1 j1 + β2 j3 , (2.2.39)

and impose its flatness dL + L ∧ L = 0. The equations obtained in this way have
no solutions unless the coupling constants are related as

κ2 = 1 − q2 , (2.2.40)

but we cannot fix all the constants of the ansatz. This is not a problem because one
of them can adopt the role of the spectral parameter. After choosing a convenient
parametrization, the Lax connection can be written as 10

L(z) = j0 + κ
z2 + 1

z2 − 1
j2 +

(
q − 2κz

z2 − 1

)
∗ j2+

+
(
z + κ

1 − q

)√
κ(1 − q)

z2 − 1
j1 +

(
z − κ

1 + q

) √
κ(1 + q)

z2 − 1
j3 .

(2.2.41)

The conformal invariance and the kappa symmetry of the action can be proved
expanding around a fixed classical background [1].

9All the expressions of this subsection are written in the language of differential form to make the
expressions more readable and compact.
10A different normalization for this Lax connection more fitted for the algebraic curve construction
was presented in [15], which recovers the Noether currents for large values of the spectral parameter.
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Chapter 3
Flux-Deformed Neumann–Rosochatius
System

One should try to formulate even familiar things in as many
different ways as possible.

M. Kac, Some Stochastic Problems in Physics and Mathematics
[1]

While the use of integrability is widely developed on N = 4 SYM theory and
AdS5 × S5, integrability methods are potentially applicable to other AdSn back-
grounds with RR flux and consequently to their dual CFTs. For instance one of the
manifestations of the integrability in the case of the AdS5/CFT4 correspondence that
can be generalized is the identification of the Lagrangian describing closed strings
rotating in AdS5 × S5 with the Neumann and the Neumann–Rosochatius integrable
systems. This identification is relevant as it provides a method to compute an ana-
lytical expression (at least for the large spin limit) for the dispersion relations and
their one-loop correction, a quantity easily comparable with the anomalous scaling
dimensions of operator to perform a check of the duality.

This chapter is divided into four sections. In the first section we will present
the Neumann system and the Neumann–Rosochatius systems. We will prove the
integrability of these systems and how the string Lagrangian in AdS5 × S5 reduces
to them when the closed spinning string ansatz is chosen. This section will be mostly
based on references [2, 3]. In the second section we will introduce a subsector of
the case of interest for us, as we will study the Lagrangian for strings moving in
R × S3 with R-R and NS-NS three-form flux. We will prove that this Lagrangian
can be identified with a deformation of the Neumann–Rosochatius Lagrangian when
we substitute the closed spinning string anstaz. We will also prove that this system
is integrable by computing the deformed version of the integrals of motion, called
Uhlenbeck constants. Once the general equations are presented, we will compute the
solutions of the equations of motion for the case of constant radii (a proper definition
of these radii will be presented later). For this case we can construct the dispersion
relation as a series in inverse powers of the total angular momentum. We will also

© Springer International Publishing AG, part of Springer Nature 2018
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be able to build the exact dispersion relation for some particular simple limits. After
that we will make use of the deformed Uhlenbeck constants to compute more general
solutions, which we are going to call elliptic strings, given that they are described by
Jacobi Elliptic functions. Finally we will examine in detail the limit of pure NS-NS
flux, where the problem simplifies because the coset model becomes a pure WZW
model. In this case the Elliptic functions degenerate to trigonometric ones, and an
exact dispersion relation can be constructed. In the third section the case of strings
moving only in AdS3 space with R-R and NS-NS three-form flux will be studied.
Most of the methods developed in the previous section can be applied to this problem
as the AdS space can be formally treated as an analytical continuation of the sphere.
In section four, we will address the full problem of strings moving in AdS3 × S3

with R-R and NS-NS three-form flux. In this section we take the tools developed
in the previous two sections and put them together to describe the full Lagrangian.
While we mostly follow the same steps as the two previous sections, we are not
going to present the general elliptic solution, only their pure NS-NS limit. This is
because the full solution is not very enlightening as some of the relations involving
winding numbers and angular momenta are very difficult to invert in order to obtain
the dispersion relation. We end this chapter changing our focus from the spinning
string ansatz to its natural counterpart, the pulsating string ansatz. This ansatz is
defined with the same structure as the spinning string but with the roles of τ and σ
exchanged. The results presented in Sects. 2, 3 and 4 are extracted from references
[4, 5]. The results presented in the last section are published in [6].

3.1 Neumann–Rosochatius Systems in AdS5 × S5

Let us consider the bosonic part of the classical closed string propagating in the
AdS5 × S5 space-time. In the conformal gauge the Polyakov action can be written
as

S = −
√

λ

4π

∫
d2σ

{[
−1

2
∂αXM∂a XM + 1

2
�(XM XM − 1)

]
+

+
[
−1

2
ηMN∂αYM∂αYN + 1

2
�̃(ηMNYMYN + 1)

]}
, (3.1.1)

where the first bracket correspond to the S5 part and the second one to the AdS5
part with metric ηMN = diag(−1,+1,+1,+1,+1,−1). Throughout the rest of this
chapter we are going to use three different parametrizations of the AdS5 × S5 back-
ground

• The first one is the R
6 × R

(2,4) embedding we have already used to formu-
late the Lagrangian: XM , M = 1, . . . , 6 and YM , M = 0, . . . , 5 with the con-
strains XM XM = 1 andηMNYMYN = −1.These constrains are implemented using
Lagrange multipliers.
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• The second one is the angle parametrization,which can be related to the embedding
coordinates as

X1 + i X2 = sin γ cosψ eiϕ1 , X3 + i X4 = sin γ sinψ eiϕ2 , X5 + i X6 = cos γ eiϕ3 ,

Y1 + iY2 = sinh ρ cos θ eiφ1 , Y3 + iY4 = sinh ρ sin θ eiφ2 , Y5 + iY0 = cosh ρ eit .

This parametrization does not need to impose any constrain, so a Lagrange mul-
tiplier is not needed.

• Throughout this chapter we will mostly use this third parametrization, as it is
adapted to the spinning string ansatz we will consider below

X1 + i X2 = r1e
iϕ1 , X3 + i X4 = r2e

iϕ2 , X5 + i X6 = r3e
iϕ3 , (3.1.2)

Y1 + iY2 = z1e
iφ1 , Y3 + iY4 = z2e

iφ2 , Y5 + iY0 = z0e
it , (3.1.3)

with the constrains r21 + r22 + r23 = 1 and z21 + z22 − z20 = −1 imposed through a
Lagrange multiplier.

Both metrics have three commuting translational isometries which give rise to six
global commuting integrals of motion: three spins Ji , i = 1, 2, 3 from the sphere
and two spins Sj , j = 1, 2 and the energy E from the AdS space. In the embedding
coordinates those are defined as

Ji = J2i−1,2i = √
λ

∫ 2π

0

dσ

2π

(
X2i−1 Ẋ2i − X2i Ẋ2i−1

)
, (3.1.4)

Sj = S2 j−1,2 j = √
λ

∫ 2π

0

dσ

2π

(
Y2 j−1Ẏ2 j − Y2 j Ẏ2 j−1

)
, (3.1.5)

E = S5,0 = √
λ

∫ 2π

0

dσ

2π

(
Y5Ẏ0 − Y0Ẏ5

)
, (3.1.6)

where the dot denotes derivative with respect to τ and, for convenience, we have set
the domain of the σ coordinate to [0, 2π). Index i runs from 1 to 3 and index j can
take values 1 and 2.

Let us focus for themoment only on the sphere and set the AdS to a trivial solution
Y1 = Y2 = Y3 = Y4 = 0, Y5 + iY0 = eiκτ . We are interested in the periodic motion
with three non-vanishing spins, so it is natural to choose the ansatz

X1 + i X2 = r1(σ)eiϕ1(σ,τ ) , X3 + i X4 = r2(σ)eiϕ2(σ,τ ) , X5 + i X6 = r3(σ)eiϕ3(σ,τ ) .

(3.1.7)
While the constrain on the radii remains unchanged

3∑
i=1

r2i (σ) = 1 , (3.1.8)

the angular momenta can be simplified to
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Ji = √
λ

∫ 2π

0

dσ

2π
r2i (σ)ϕ̇i (σ, τ ) , (3.1.9)

and the energy can be written as

E2 = λκ2 = λ
[
(∂τ XM)2 + (∂σXM)2

] = λ

3∑
i=1

(
r ′2
i + r2i ϕ̇

2
i + r2i ϕ

′2
i

)
, (3.1.10)

where the prime denotes derivative with respect to σ and the second equality comes
from one of the Virasoro constrains. The other Virasoro constrain becomes

0 = ∂τ XM∂σXM = ẊM X ′
M = 2

3∑
i=1

r2i ϕ̇iϕ
′
i . (3.1.11)

We cannot go much further without giving a more specific ansatz for the ϕ vari-
ables. In the rest of this section three different ansätze are examined, giving rise to
three different integrable systems.

3.1.1 Neumann System

The most simple ansatz we can choose for ϕ is to assume independence of the σ
variable, making the periodicity condition of the embedding coordinates easier to
implement, and linear in the τ variable. This means

ϕi (τ ,σ) = ωiτ . (3.1.12)

Thus the periodicity constrain reads now ri (σ + 2π) = ri (σ). This ansatz also sim-
plifies the expression of the spins, being now

Ji = √
λωi

∫ 2π

0

dσ

2π
r2i (σ) . (3.1.13)

Therefore the constraints on the radii can also be rewritten as a condition over the
spins and the ω’s,

J1
ω1

+ J2
ω2

+ J3
ω3

= √
λ . (3.1.14)

Substituting this ansatz into the Lagrangian (3.1.1) we get

L = 1

2

3∑
i=1

(r ′2
i − ω2

i r
2
i ) + 1

2
�

(
3∑

i=1

r2i − 1

)
. (3.1.15)
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This is the Lagrangian of a n = 3 dimensional harmonic oscillator constrained to
remain on an unit 2-sphere. This is a special case of the Neumann system [7], which
is known to be integrable [8]. The integrals of motion are given by the so called
Uhlenbeck constants,

I Ni = r2i +
∑
j �=i

(rir ′
j − r ′

i r j )
2

ω2
i − ω2

j

, (3.1.16)

but not all of them are independent, being related by I N1 + I N2 + I N3 = 1. The Hamil-
tonian can be written as a function of these conserved quantities as

H = 1

2

3∑
i=1

ω2
i I

N
i . (3.1.17)

This Lagrangian can be explicitly solved, but we are not going to do that here.
Instead we are going to find the solutions for a more general ansatz which includes
this one as a particular case. More results about the Neumann system can be found
in [2, 9].

3.1.2 Rosochatius System

The second ansatz is, in some way, opposite to the previous one: we are going to
assume independence of the τ variable but general behaviour on the σ coordinate.
This means

ϕi (τ ,σ) = αi (σ) , (3.1.18)

so the whole Lagrangian is independent of the τ variable. However the periodicity
constraint now is more involved because we have to impose not only ri (σ + 2π) =
ri (σ) but also ∫ 2π

0

dσ

2π
α′
i (σ) = αi (2π) − αi (0) = 2πmi , (3.1.19)

where the mi can be interpreted as winding numbers. Substituting this ansatz into
the Lagrangian we get

L = 1

2

3∑
i=1

(r ′2
i + r2i α

′2
i ) + 1

2
�

(
3∑

i=1

r2i − 1

)
, (3.1.20)

which depends on αi (σ) only through its derivative. This means that there are con-
served quantities associated to shifts of these functions and we can get rid of them
in the Lagrangian. The equations of motion for these functions are
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(
r2i α

′
i

)′ = 0 =⇒ α′
i = vi

r2i
, (3.1.21)

where vi are the three integrals of motion from the shifts of the angles. We can
substitute these equations of motion back into the Lagrangian

L = 1

2

3∑
i=1

(
r ′2
i − v2

i

r2i

)
+ 1

2
�

(
3∑

i=1

r2i − 1

)
, (3.1.22)

which is a particular case of the Rosochatius system in a 2-sphere. This system was
shown to be integrable by Rosochatius [10], while the Lax pair was computed in
[11]. We can write its integrals of motion as

I Ri =
∑
j �=i

[
(rir

′
j − r ′

i r j )
2 + v2

i

r2i
r2j + v2

j

r2j
r2i

]
, (3.1.23)

which are very reminiscent of the Uhlenbeck integrals.
There are some similarities between the Rosochatius system and the Neumann

system, as pointed out by [12]. Thus we may think about an ansatz that incorporated
both systems. That is what we are going to present next.

3.1.3 Neumann–Rosochatius System

The last ansatz we are going to study is the mixture of both previous ansätze;

ϕi (τ ,σ) = ωiτ + αi (σ) . (3.1.24)

In consequence we have to impose the same periodicity condition as the Rosochatius
system

∫ 2π

0

dσ

2π
α′
i (σ) = 2πmi , ri (σ + 2π) = ri (σ) .

Substituting this ansatz into the Lagrangian we get

L = 1

2

3∑
i=1

(r ′2
i + r2i α

′2
i − ω2

i r
2
i ) + 1

2
�

(
3∑

i=1

r2i − 1

)
, (3.1.25)

which again depends on αi (σ) only through its derivative. Repeating the same steps
as before we can rewrite it as
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L = 1

2

3∑
i=1

(
r ′2
i − ω2

i r
2
i − v2

i

r2i

)
+ 1

2
�

(
3∑

i=1

r2i − 1

)
, (3.1.26)

which describes the so called Neumann–Rosochatius integrable system, studied,
among others, in [13]. This system is also integrable, being the integrals of motion
a deformation of the original Uhlenbeck constants

I N R
i = r2i +

∑
j �=i

1

ω2
i − ω2

j

[
(rir

′
j − r ′

i r j )
2 + v2

i

r2i
r2j + v2

j

r2j
r2i

]
, (3.1.27)

with the same constraint as the original ones I N R
1 + I N R

2 + I N R
3 = 1. Furthermore

the Hamiltonian of the Neumann–Rosochatius system,

H = 1

2

2∑
i=1

[
r ′2
i + r2i α

′2
i + r2i ω

2
i

]
, (3.1.28)

can be written in terms of the Uhlenbeck constants and the integrals of motion vi ,

H = 1

2

2∑
i=1

[
ω2
i I

N R
i + v2

i

]
. (3.1.29)

Now we are going to analyse the solutions of this Lagrangian with constant radii.
To do that it is better to look at the equations of motion that follow from (3.1.26)
instead of the Uhlenbeck constants. These equations of motion read

r ′′
i = −ω2

i ri + v2
i

r3i
− �ri , (3.1.30)

while the constraints from the Lagrange multiplier impose

� =
3∑
j=1

r ′2
j − ω2

j r
2
j + v2

j

r2j
,

3∑
j=1

r2j = 1 . (3.1.31)

We can see that indeed ri = ai = const. and � = const. are a solution. This imposes
that the derivatives of the angles αi also become constant and thus

αi = miσ + α(0)
i , (3.1.32)

where the integration constantsα(0)
i can be set to zero through a rotation, and the con-

stants mi must be integers in order to satisfy the closed string periodicity condition.
After some algebra we can write the relations
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ω2
i = m2

i − � , vi = a2i mi , (3.1.33)

3∑
j=1

a2jω jm j = 0 , κ2 = 2

⎛
⎝ 3∑

j=1

a2jω
2
j

⎞
⎠ + � , (3.1.34)

which, in terms of the spins and the energy, read

E2 = 2
√

λ

⎛
⎝ 3∑

j=1

Jj
√
m2

j − �2

⎞
⎠ + λ� , (3.1.35)

1 =
3∑
j=1

Jj√
m2

j − �
, (3.1.36)

0 =
3∑
j=1

m j Jj . (3.1.37)

But the solution to these equations cannot be written down explicitly for generic
values of the spins. However we can expand them for large total spin J = ∑3

j=1 Jj
obtaining

� = − J 2

λ
+

3∑
j=1

m2
j

J j
J

+ · · · , E2 = J 2 +
3∑
j=1

λm2
j

J j
J

+ · · · , (3.1.38)

where
∑3

j=1 m j Jj = 0 has still to be imposed. Luckily some particular cases can be
solved analytically. Those are the case where two of the spin vanish, which gives the
trivial point-like string rotating in S1 with

E = J1 = √
λω1 , (3.1.39)

and the case of one vanishing spin with opposite windings m1 = −m2 = m, which
imposes J1 = J2 = J

2 , and has an energy

E =
√
J 2 + λm2 . (3.1.40)

These results can be generalized to solutions dynamical in the full AdS5 × S5[3].
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3.2 The Flux-Deformed Neumann–Rosochatius. Spinning
Strings in R× S3

Now we will move our attention to closed spinning string solutions in AdS3 × S3 ×
T 4 withNS-NS three-form flux. The solutions that wewill studywill have no dynam-
ics along the torus and thus we will not include these directions in what follows. As
we said in the previous chapter, the AdS3 × S3 background admits a NS-NS B-field.
This B-field is of the form

btφ = q sinh2 ρ , bφ1φ2 = −q cos2 θ , (3.2.1)

where 0 ≤ q ≤ 1. The presence of this B-field can be related to the additional WZ
term that, as explained in Sect. 2.2.3, can be included in the action for the AdS3 ×
S3 × T 4 background. The value q = 0 would correspond to not adding this extra
WZ term, so the theory only has R-R flux and can be formulated in terms of a pure
Metsaev–Tseytlin action as for the case of the AdS5 × S5 background. In this limit
of vanishing NS-NS flux the sigma model for closed strings rotating in AdS3 × S3

becomes the Neumann–Rosochatius integrable system presented in the previous
section. On the other hand the value q = 1 would correspond to pure NS-NS flux,
as the usual WZ term has a prefactor

√
1 − q2 to maintain the conformal invariance

and integrability of the action, it cancels in this limit. Such limit can be described
purely as a supersymmetric WZW model, so some simplifications are expected.

For themoment we are going to restrict our computations to the case of rotation on
S3, so that we will take Y1 = Y2 = 0 and Y3 + iY0 = eiw0τ for the AdS coordinates.
For the coordinates along S3 wewill choose again the ansatzwhere theϕi coordinates
have dynamics both in σ and τ ,

X1 + i X2 = r1(σ) eiω1τ+iα1(σ) , X3 + i X4 = r2(σ) eiω2τ+iα2(σ) , (3.2.2)

where the functions ri (σ) must satisfy

r21 + r22 = 1 , (3.2.3)

and the periodicity constraints are the same as in the undeformed N-R system,

ri (σ + 2π) = ri (σ) , αi (σ + 2π) = αi (σ) + 2πm̄i . (3.2.4)

The bar over the winding numbers is added to distinguish them from the undeformed
ones, as they will have an extra contribution coming from the presence of the flux.
When we enter this ansatz in the Polyakov action with a B-field term

S =
√

λ

4π

∫
d2σ

[√−hhabGMN∂a X
M∂bX

N − εabBMN∂a X
M∂bX

N
]
, (3.2.5)
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we find the lagrangian

LS3 =
√

λ

2π

⎧⎨
⎩

2∑
i=1

1

2

[
(r ′
i )
2 + r2i (α′

i )
2 − r2i ω2

i
] − �

2
(r21 + r22 − 1) + qr22 (ω1α

′
2 − ω2α

′
1)

⎫⎬
⎭ ,

(3.2.6)
wherewe have chosen the conformal gauge. Thefirst piece in (3.2.6) is theNeumann–
Rosochatius integrable system from Eq. (3.1.26). The presence of the non-vanishing
flux introduces the last term in the Lagrangian.1

The equations of motion for the αi variables can be written compactly using the
cyclicity of the Lagrangian on them

α′
i = vi + qr22 εi jω j

r2i
, i = 1, 2 , (3.2.7)

where ε12 = +1 (we assume summation on j). The variation of the Lagrangian with
respect to the radial coordinates gives us

r ′′
1 = −r1ω

2
1 + r1α

′2
1 − �r1 , (3.2.8)

r ′′
2 = −r2ω

2
2 + r2α

′2
2 − �r2 + 2qr2(ω1α

′
2 − ω2α

′
1) . (3.2.9)

To these equations we have to add the Virasoro constraints,

2∑
i=1

(
r ′2
i + r2i (α

′2
i + ω2

i )
) = w2

0 , (3.2.10)

2∑
i=1

r2i ωiα
′
i = 0 , (3.2.11)

In terms of the integrals vi the second Virasoro constraint can be rewritten as

ω1v1 + ω2v2 = 0 . (3.2.12)

The energy and the angular momenta of the string are given by

E = √
λ w0 , (3.2.13)

J1 = √
λ

∫ 2π

0

dσ

2π

(
r21ω1 − qr22α

′
2

)
, (3.2.14)

J2 = √
λ

∫ 2π

0

dσ

2π

(
r22ω2 + qr22α

′
1

)
. (3.2.15)

1Note that in theWZWmodel limitq = 1 theLagrangian simplifies greatly becausewe can complete
squares. We will find further evidence on this simplification below.
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3.2.1 Constant Radii Solutions

A simple solution to the equations of motion can be obtained if we take the radii ri
to be constant, ri = ai . As in the undeformed case, the derivatives of the angles αi

become constant and thus
αi = m̄iσ + α(0)

i , (3.2.16)

while the windings get deformed to

m̄i ≡ vi + qa22εi jω j

a2i
. (3.2.17)

The integration constants α(0)
i can be set to zero through a rotation, and the constants

m̄i must be integers in order to satisfy the closed string periodicity condition. The
equations of motion for ri reduce now to

ω2
1 − m̄2

1 + � = 0 , (3.2.18)

ω2
2 − m̄2

2 − 2q(ω1m̄2 − ω2m̄1) + � = 0 , (3.2.19)

and thus we conclude that the Lagrange multiplier � is constant on this solution.
The Virasoro constraints can then be written as

2∑
i=1

a2i
(
m̄2

i + ω2
i

) = w2
0 , (3.2.20)

m̄1 J1 + m̄2 J2 = 0 . (3.2.21)

We will now find the energy as a function of the angular momenta and the integer
winding numbers m̄i . In order to do this we will first use Eqs. (3.2.3) and (3.2.11) to
write the radii as functions of ωi and m̄i ,

a21 = ω2m̄2

ω2m̄2 − ω1m̄1
, a22 = ω1m̄1

ω1m̄1 − ω2m̄2
. (3.2.22)

With these relations at hand and the definitions (3.2.13)–(3.2.15), together with
(3.2.20), we find

E2 = (J1 + √
λqa22m̄2)

2

a21
+ (J2 − √

λqa22m̄1)
2

a22
+ λ

(
a21m̄

2
1 + a22m̄

2
2

)
, (3.2.23)

or after some immediate algebra,
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E2 = (J1 + J2)
2 + J1 J2

(1 − w)2

w
− 2

√
λqm̄1(J1w + J2)

+ λ
(
m̄1m̄2 − q2m̄2

1w
) m̄1 − m̄2w

m̄2 − m̄1w
, (3.2.24)

where we have made use of (3.2.21) and we have introduced w ≡ ω1/ω2. Now we
need to write the ratio w as a function of the windings m̄i and the angular momenta
Ji . This can be done by adding Eqs. (3.2.14) and (3.2.15), subtracting Eqs. (3.2.19)
from (3.2.18), and solving the resulting system of equations,

[
m̄1 J − √

λqm̄1(m̄1 − m̄2)
]
w − m̄2 J − √

λ(m̄1 − m̄2)ω1 = 0 , (3.2.25)

ω2
1 − m̄2

1 − ω2
1

w2
+ m̄2

2 + 2qm̄2ω1 − 2qm̄1
ω1

w
= 0 , (3.2.26)

where J ≡ J1 + J2 is the total angular momentum. When we eliminate ω1 in these
expressions we are left with a quartic equation in w

(m̄1w − m̄2)
2
[
1 −

(
1 −

√
λ

J
q(m̄1 − m̄2)

)2
w2

]

+ λ

J 2
w2(m̄1 + m̄2)(m̄1 − m̄2)

3(1 − q2) = 0 . (3.2.27)

Rather than trying to solve this equation explicitly, we can write the solution as a
power series expansion in large J/

√
λ. Out of the four different solutions to (3.2.27),

the only one with a well-defined expansion2 is

w = 1 +
√

λ

J
q(m̄1 − m̄2) + λ

2J 2
(m̄1 − m̄2)

(
m̄1 + m̄2 + q2(m̄1 − 3m̄2)

) + · · ·
(3.2.28)

which implies that

ω1 = J√
λ

+
√

λ

2J
m̄1(m̄1 + m̄2)(1 − q2)

[
1 −

√
λ

J
qm̄2 + · · ·

]
, (3.2.29)

ω2 = J√
λ

− q(m̄1 − m̄2) +
√

λ

2J
m̄2(m̄1 + m̄2)(1 − q2)

[
1 −

√
λ

J
q(m̄1 + m̄2) + · · ·

]
.

(3.2.30)

Note that theO(
√

λ/J ) terms and the subsequent corrections in (3.2.29) and (3.2.30)
are dressed with a common factor of m̄1 + m̄2 that vanishes for equal angular

2Two of the expansions will give us ωi ∼ O(1) and, because also a2i ∼ O(1), this gives us that
J1 + J2 ∼ O(1) too instead of the expected J . The third and fourth expansions will be given by
w = 1 + · · · and w = −1 + · · · , the first one will be well defined when J1, J2 ≥ 0, which also
imply m1 ≥ 0 ≥ m2 or m2 ≥ 0 ≥ m1, and the second one will be well defined when J1 and J2 are
one positive and the other negative.
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momenta. We can easily prove the existence of this factor if we set m̄1 = −m̄2 ≡ m
in Eq. (3.2.27), which reduces to

(1 + w)2
[
(J − 2

√
λqm)2w2 − J 2

] = 0 , (3.2.31)

whose only well-defined solution is

w = J

J − 2
√

λqm
, (3.2.32)

and therefore we can calculate the frequencies ω1 and ω2 exactly,

ω1 = J√
λ

, ω2 = J√
λ

− 2qm . (3.2.33)

Substituting these values into relation (3.2.24) we find

E2 = J 2 − 2
√

λqmJ + λm2 = (J − √
λqm)2 + (1 − q2)λm2 , (3.2.34)

which is an exact expression as the ratio w is exact. This dispersion relation is a
generalization of the expression of circular string solutions with two equal angular
momenta we have already seen (3.1.40). It can be compared with the one obtained
in [14] via the deformation the original bosonic currents, coinciding both.

An identical reasoning can be employed to prove the existence of the global factor
1 − q2. If we substitute the value q = 1, which corresponds to the pure NS-NS flux,
in the Eq. (3.2.27) we can solve it to get

ω1 = J√
λ

+
√

λm̄1(m̄1 + m̄2)J

(J + √
λm̄2)2

(1 − q) + · · · ,

ω2 = J√
λ

− (m̄1 − m̄2) + (J 2 − λm̄1m̄2)(m̄1 − m̄2) + √
λm̄2 J (3m̄1 − m̄2)

(J + √
λm̄2)2

(1 − q) + · · · .

Substituting into Eq. (3.2.24) and performing some algebra, the expression for the
energy reduces to

E = J − √
λm̄1 , (3.2.35)

when we write the angular momenta J1 and J2 in terms of the total momentum J .
If we substitute the general value of w from Eq. (3.2.28) in relation (3.2.24) we

find

E2 = J 2 − 2
√

λqm̄1 J + λ

J

[
(m̄2

1 J1 + m̄2
2 J2)(1 − q2) + q2m̄2

1 J
] + · · · . (3.2.36)

When the flux vanishes this expression becomes the expansion for the energy in
the Neumann–Rosochatius system describing closed string solutions rotating with
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two different angular momenta (3.1.38). We must note that the subleading terms not
included in (3.2.36) contain a common factor of m̄1 + m̄2. We can check that indeed
at the particular case of m̄1 = −m̄2 relation (3.2.36) simplifies to the correct one.
Similarly happens with (1 − q2) factors.

3.2.2 Non-constant Radii Computations. Elliptic Strings

To study the solutions with non-constant radii it will prove more convenient not
to work with the equations of motion but with the integrals of motion. We have
already seen that integrability of the Neumann–Rosochatius system follows from
the existence of a set of integrals of motion in involution, the Uhlenbeck constants.
In the case of a closed string rotating in S3 there are only two integrals I N R

1 and
I N R
2 , but as they must satisfy the constraint I N R

1 + I N R
2 = 1, we are left with a single

independent constant. As we saw before this constant is given by

I N R
1 = r21 + 1

ω2
1 − ω2

2

[
(r1r

′
2 − r ′

1r2)
2 + v2

1

r21
r22 + v2

2

r22
r21

]
. (3.2.37)

When the NS-NS three-form is turned on the Uhlenbeck constants should be
deformed in some way. In order to find this deformation we will assume that the
extended constant can be written as

Ī1 = r21 + 1

ω2
1 − ω2

2

[
(r1r

′
2 − r ′

1r2)
2 + v2

1

r21
r22 + v2

2

r22
r21 + 2 f

]
, (3.2.38)

where f = f (r1, r2, q). This function can be determined if we impose that Ī ′
1 = 0.

After some immediate algebra we find that

f ′ + (q2ω2
2 + 2qω2v1)r ′

1

r31
+ q2(ω2

1 − ω2
2)r1r

′
1 = 0 , (3.2.39)

where we have used the constraint (3.2.3) together with

r1r
′
1 + r2r

′
2 = 0 , r1r

′′
1 + (r ′

1)
2 + r2r

′′
2 + (r ′

2)
2 = 0 , (3.2.40)

and the equations of motion (3.2.7), (3.2.8) and (3.2.9). As all three terms in relation
(3.2.39) are total derivatives, integration is immediate and we readily conclude that
the deformation of the Uhlenbeck constant is given by

Ī1 = r21 (1 − q2) + 1

ω2
1 − ω2

2

[
(r1r

′
2 − r ′

1r2)
2 + (v1 + qω2)

2

r21
r22 + v2

2

r22
r21

]
. (3.2.41)
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The Hamiltonian including the contribution from the NS-NS flux can also be written
now using the deformed Uhlenbeck constants and the integrals of motion vi ,

HS3 = 1

2

2∑
i=1

[
ω2
i Īi + v2

i

] + 1

2
q2(ω2

1 − ω2
2) − qω1v2 . (3.2.42)

A convenient way to proceed is to change variables to an ellipsoidal coordinate
[2, 9]. The ellipsoidal coordinate ζ is defined as the root of the equation

r21
ζ − ω2

1

+ r22
ζ − ω2

2

= 0 . (3.2.43)

If we choose the angular frequencies such that ω1 < ω2 the range of the ellipsoidal
coordinate is ω2

1 ≤ ζ ≤ ω2
2. Using that

(r1r
′
2 − r2r

′
1)

2 = ζ ′2

4(ω2
1 − ζ)(ζ − ω2

2)
, (3.2.44)

and solving for ζ ′2 in the deformed Uhlenbeck constant (3.2.41) we conclude that

ζ ′2 = −4P3(ζ) , (3.2.45)

where P3(ζ) is the third order polynomial

P3(ζ) = (1 − q2)(ζ − ω2
1)

2(ζ − ω2
2) + (ζ − ω2

1)(ζ − ω2
2)(ω

2
1 − ω2

2) Ī1

+ (ζ − ω2
1)

2v2
2 + (ζ − ω2

2)
2(v1 + qω2)

2 = (1 − q2)

3∏
i=1

(ζ − ζi ) . (3.2.46)

This polynomial defines an elliptic curve s2 + P3(ζ) = 0. In fact if we change vari-
ables to

ζ = ζ3 + (ζ2 − ζ3)η
2 , (3.2.47)

Eq. (3.2.45) becomes the differential equation for the Jacobian elliptic sine,3

η′2 = (1 − q2)(ζ3 − ζ1)(1 − η2)(1 − κη2) , (3.2.48)

where the elliptic modulus is given by κ = (ζ2 − ζ3)/(ζ1 − ζ3). The solution is thus

η(σ) = sn
(
σ
√

(1 − q2)(ζ3 − ζ1) − σ0,κ
)
, (3.2.49)

3All the Jacobi elliptic functions and elliptic integrals in this thesis are written following the con-
vention from [15]. This implies, for example, that dn2(x,κ) + κ sn2(x,κ) = 1.
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with σ0 an integration constant that can be set to zero by performing a rotation.
Therefore we conclude that

r21 (σ) = ζ3 − ω2
1

ω2
2 − ω2

1

+ ζ2 − ζ3

ω2
2 − ω2

1

sn2
(
σ
√

(1 − q2)(ζ3 − ζ1),κ
)
. (3.2.50)

We must note that we need to order the roots in a particular way. We need ζ1 < ζ3 to
make sure that the argument of the elliptic sine is real. We also need ζ2 < ζ3 to have
κ > 0, together with ζ1 < ζ2 to keep κ < 1.4 Furthermore, imposing that (3.2.50)
must have codomain between 0 and 1 demands ω2

1 ≤ ζ2,3 ≤ ω2
2. Note that this last

restriction does not apply to ζ1. The periodicity condition on the radial coordinates
implies that

π
√

(1 − q2)(ζ3 − ζ1) = nK(κ) , (3.2.51)

where we have used that 2K(κ) is the period of the square of the Jacobi sine, with
K(κ) being the complete elliptic integral of first kind and n an integer number.5

We also want to comment that our solution is of circular type. An exception could
happen in the absence of R-R flux and setting the vi integrals to zero. This choice of
parameters corresponds to solutions of circular type when I1 is taken as negative, or
solutions of folded6 type when I1 is positive [2].

Wemust note that there are important cases where this solution can be reduced to a
simpler one. They correspond to the choices of parameters thatmake the discriminant
of P3(ζ) equal to zero. Our hierarchy of roots implies that there are only three cases
able to fulfil this condition. The first corresponds to solutions with constant radii,
where ζ2 = ζ3. These solutions were first constructed in [14] and later on recovered
by deriving the corresponding finite-gap equations in [16] or by solving the equations
of motion for the flux-deformed Neumann–Rosochatius system in [4]. The second
case corresponds to the limit κ = 1, which is obtained when ζ1 = ζ2. These are the
giant magnons analyzed in [17] for the v2 = 0 case and in [18] for general values
of v2 (giant magnon solutions were also constructed in [14, 16]). The third case
corresponds to setting ζ1 = ζ2 = ζ3 and cannot be obtained unless we have equal
angular frequencies, ω1 = ω2.

4Although the Jacobi elliptic functions are defined for any real valued elliptic parameter κ, they can
be re-expressed as Jacobi elliptic functions with elliptic parameter in the interval [0; 1], which we
are going to denominate as their fundamental domain. These two choices are made to restrict our
solution to this fundamental domain.
5There are four cases inwhichwe have to alter this periodicity condition.When either v1 + qω2 = 0
or v2 = 0 the condition becomes π

2

√
(1 − q2)(ζ3 − ζ1) = nK(κ) because of a change of branch in

the square root in (3.2.50) that increase the periodicity to 4K(κ), the periodicity of the Jacobi sine.
The two remaining cases correspond to the limit ζ3 → ζ2, which is the constant radii case, and to
the limit κ → 1, where the periodicity of the elliptic sine becomes infinite. In both cases there is
no periodicity condition. We will discuss these two limits later in this section.
6We call a solution folded if XM (σ, τ ) = XM (2π − σ, τ ), that is, the string is the same if it is
traversed forward and backward.
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Going back to the general case, we can use now Eq. (3.2.50) to write the winding
numbers m̄i in terms of the integration constants vi and the angular frequencies ωi .
From the periodicity condition on α1,

2πm̄1 =
∫ 2π

0
α′
1dσ =

∫ 2π

0

(
v1

r21
+ qω2

r22
r21

)
dσ , (3.2.52)

we can write
m̄1 + qω2

v1 + qω2
=
∫ 2π

0

dσ

2π

1

r21
. (3.2.53)

Inserting (3.2.50) in this expression and performing the integration we find

m̄1 + qω2 = (v1 + qω2)(ω
2
2 − ω2

1)

(ζ3 − ω2
1)K(κ)

�

(
ζ3 − ζ2

ζ3 − ω2
1

,κ

)
, (3.2.54)

where �(a, b) is the complete elliptic integral of third kind. In a similar way, from
the periodicity condition for α2,

2πm̄2 =
∫ 2π

0
α′
2dσ =

∫ 2π

0

(
v2

r22
− qω1

)
dσ , (3.2.55)

we find that
m̄2 + qω1

v2
=
∫ 2π

0

dσ

2π

1

r22
, (3.2.56)

that we can integrate to get

m̄2 + qω1 = v2(ω
2
2 − ω2

1)

(ω2
2 − ζ1)K(κ)

�

(
− ζ3 − ζ2

ω2
2 − ζ3

,κ

)
. (3.2.57)

We can perform an identical computation to obtain the angular momenta. From
Eq. (3.2.14) we get

J1√
λ

+ qv2 − q2ω1 = ω1(1 − q2)

∫ 2π

0

dσ

2π
r21 , (3.2.58)

and therefore

J1√
λ

= ω1(1 − q2)

ω2
2 − ω2

1

[
ζ3 − ω2

1 − (ζ3 − ζ1)

(
1 − E(κ)

K(κ)

)]
− qv2 + q2ω1 . (3.2.59)

withE(κ) the complete elliptic integral of the second kind.As before, (3.2.15) implies
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J2√
λ

+ qv1 − qm̄1 = ω2(1 − q2)

∫ 2π

0

dσ

2π
r22 , (3.2.60)

and thus after integration we conclude that

J2√
λ

= ω2(1 − q2)

ω2
2 − ω2

1

[
ω2
2 − ζ3 + (ζ3 − ζ1)

(
1 − E(κ)

K(κ)

)]
− qv1 + qm̄1 . (3.2.61)

These expressions for the angular momenta can be used to rewrite the first Virasoro
constraint (3.2.11) as

ω2 J1 + ω1 J2 = √
λ (ω1ω2 + qω1m̄1) . (3.2.62)

We could now employ these relations to write the energy in terms of the winding
numbers m̄i and the angular momenta Ji . However the resulting expression is rather
lengthy and cumbersome. Instead in the following subsection we will focus on the
analysis of the above solutions in the limit of pure NS-NS flux.

We must stress that the expressions we have obtained have to be modified in the
giant magnon solution and other cases where the periodicity condition cannot be
imposed or the string does not close. Therefore factors

√
(1 − q2)(ζ3 − ζ1)/nK(κ),

which had been cancelled in the expressions we have obtained for the angular
momenta and windings, do not cancel anymore.

Solutions with Pure NS-NS Flux

The cubic term in the polynomial P3(ζ) is dressed with a factor 1 − q2. Therefore
in the case of pure NS-NS three-form flux the degree of the polynomial reduces to
two and the solution can be written using trigonometric functions. In this limit7

ζ ′2 = −4P2(ζ) , (3.2.63)

with P2(ζ) the second order polynomial

P2(ζ) = (ζ − ω2
1)(ζ − ω2

2)(ω
2
1 − ω2

2) Ī1 + (ζ − ω2
1)

2v2
2

+ (ζ − ω2
2)

2(v1 + ω2)
2 = ω2(ζ − ζ̃1)(ζ − ζ̃2) , (3.2.64)

where ω2 is
ω2 = (ω2

1 − ω2
2) Ī1 + (v1 + ω2)

2 + v2
2 . (3.2.65)

The solution to Eq. (3.2.63) is given by

ζ(σ) = ζ̃2 + (ζ̃1 − ζ̃2) sin
2(ωσ) , (3.2.66)

7We can also take the limit directly in Eq. (3.2.49) if we note that ζ1 goes to minus infinity when
we set q = 1. In this limit the elliptic modulus vanishes but the factor (1 − q2)ζ1 in the argument
of the elliptic sine remains finite and we just need to recall that sn(x, 0) = sin x .
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where we have set to zero the integration constant associated to translations of σ.
Therefore

r21 (σ) = ζ̃2 − ω2
1

ω2
2 − ω2

1

+ ζ̃1 − ζ̃2

ω2
2 − ω2

1

sin2(ωσ) . (3.2.67)

Periodicity of the radial coordinates implies that ω must be a half-integer number.8

The relation between the winding numbers m̄i , the constants vi and the frequencies
ωi is now rather simple. The periodicity condition for the angles implies

m̄1 + ω2 = (v1 + ω2)(ω
2
1 − ω2

2)√
(ω2

1 − ζ̃1)(ω
2
1 − ζ̃2)

= ω(v1 + ω2)(ω
2
1 − ω2

2)√
P2(ω2

1)

= ω sgn(v1 + ω2) ,

(3.2.68)

m̄2 + ω1 = v2(ω
2
1 − ω2

2)√
(ω2

2 − ζ̃1)(ω
2
2 − ζ̃2)

= ωv2(ω
2
1 − ω2

2)√
P2(ω2

2)

= ω sgn(v2) . (3.2.69)

From the definition of the angular momenta we find

J1√
λ

= ω1 − v2 ,
J2√
λ

= m̄1 − v1 . (3.2.70)

We can now write the energy as a function of the winding numbers and the angular
momenta. A convenient way to do this is recalling the relation between the energy
and the Uhlenbeck constant. If we assume that both v1 + ω2 and v2 are positive (the
extension to the other possible signs of v1 + ω2 and v2 is immediate) andwe combine
Eqs. (3.2.42) and (3.2.65) we can write

E2 = λ
(
ω2 + ω2

1 − ω2
2 − 2v1ω2 − 2v2ω1

)
, (3.2.71)

and thus using relations (3.2.68)–(3.2.70) we can write it in terms of windings and
angular momenta

E2 = λm̄2
1 + (

2
√

λJ1 − λ(ω − m̄2)
)
(ω − m̄2) + 2

√
λJ2(ω − m̄1) . (3.2.72)

Now we can use the Virasoro constraint (3.2.11) to express it only in terms of the
total angular momentum J = J1 + J2, as it allow us to write

8An important exception to this condition happens when ω = J + m̄2, which is a solution even if
it is not a half-integer. This value corresponds to the case of constant radii we have already seen in
the previous subsection,

Ī1 = −
∣∣∣∣∣
2(v1 + ω2)v2

ω2
2 − ω2

1

∣∣∣∣∣ , J1 = m̄2 J

m̄2 − m̄1
, J2 = m̄1 J

m̄1 − m̄2
, E = J − √

λm̄1 .
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J1 = (J − √
λω)(ω − m̄2)

m̄1 − m̄2
, J2 = J (m̄1 − ω) + √

λω(ω − m̄2)

m̄1 − m̄2
. (3.2.73)

Replacing these expressions in (3.2.72) we obtain the energy as a function of the
winding numbers and the total momentum,

E2 = λ
(
m̄2

1 − m̄2
2 + 4ωm̄2 − 3ω2

) − 2
√

λJ (m̄1 + m̄2 − 2ω) . (3.2.74)

3.3 Spinning Strings in AdS3

Before moving to the full AdS3 × S3 we are going to take a look to the case with no
dynamics in the sphere. We can describe these configurations with the ansatz

Y3 + iY0 = z0(σ) eiw0τ+iβ0(σ) , Y1 + iY2 = z1(σ) eiw1τ+iβ1(σ) , (3.3.1)

together with the periodicity conditions

za(σ + 2π) = za(σ) , βa(σ + 2π) = βa(σ) + 2πk̄a , (3.3.2)

with a = 0, 1. Note however that the time direction has to be single-valued so we
need to exclude windings along the time coordinate. Therefore we must take k̄0 = 0.
When we substitute this ansatz in the Polyakov action in the conformal gauge we
obtain

LAdS3 =
√

λ

4π

[
gab

(
z′az′b + zazaβ

′2
b − zazaw

2
b

)
− �̃

2

(
gabzazb + 1

)
− 2qz21(w0β

′
1 − w1β

′
0)
]

,

(3.3.3)
wherewehave chosen g = diag(−1, 1) and �̃ is aLagrangemultiplier. The equations
of motion for za are

z′′
0 = z0β

′2
0 − z0w

2
0 − �̃z0 , (3.3.4)

z′′
1 = z1β

′2
1 − z1w

2
1 − �̃z1 − 2qz1(w0β

′
1 − w1β

′
0) , (3.3.5)

and the equations for the angular functions are

β′
a = ua + qz21εabwb

gaaz2a
, (3.3.6)

where ua are some integration constants analogous to the vi we have defined for the
spherical case. To these equations we need to add the AdS constraint

− z20 + z21 = −1 , (3.3.7)
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together with the Virasoro constraints

z′2
0 + z20(β

′2
0 + w2

0) = z′2
1 + z21(β

′2
1 + w2

1) (3.3.8)

z21w1β
′
1 = z20w0β

′
0 . (3.3.9)

The spin and the energy in this case are given by

E = √
λ

∫ 2π

0

dσ

2π
(z20w0 + qz21β

′
1) , (3.3.10)

S = √
λ

∫ 2π

0

dσ

2π
(z21w1 − qz21β

′
0) . (3.3.11)

3.3.1 Constant Radii Solutions

As before, we can start by looking at solutions where the string radii are taken as
constant, za = ba . In this case the periodicity condition on β0 and the fact that the
time coordinate is single-valued imply

β′
0 = 0 , (3.3.12)

and thus the equations of motion reduce to

w2
1 − k̄21 − w2

0 + 2qw0k̄1 = 0 . (3.3.13)

where we have used that β′
1 = k̄1. The Virasoro constraints become then

b21(w
2
1 + k̄21) = b20w

2
0 (3.3.14)

k̄1S = 0 . (3.3.15)

Therefore there are only two kinds of solutions: those with no spin and those with no
winding. However both of them are inconsistent. The first one gives a pure imaginary
value of the energy and the second one imposes the constraint b0 = b1, which is
inconsistent with the AdS constraint b21 + 1 = b20.

3.3.2 Non-constant Radii Computations. Elliptic Strings

Despite the fact that there are no consistent constant radii solutions, there exist
consistent elliptic solutions. As in the previous section, in order to construct general
solutions for strings rotating in AdS3 it will be convenient to introduce an analytical
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continuation of the ellipsoidal coordinates. The definition of this coordinate μ can
be directly borrowed from the definition for the sphere with a change of sign,

z21
μ − w2

1

− z20
μ − w2

0

= 0 . (3.3.16)

If we order the frequencies such that w1 > w0, the range of the ellipsoidal coor-
dinate will be w2

1 ≤ μ. Now we can again make use of the Uhlenbeck constants
to obtain a first order differential equation for this coordinate. In the case of the
(analytically-continued to AdS3) Neumann–Rosochatius system the (analytically-
continued) Uhlenbeck integrals satisfy the constraint F1 − F0 = −1, and thus we
are again left with a single independent constant. To obtain the deformation of, say,
F1 by the NS–NS flux we can proceed in the same way as in the previous section.
After some immediate algebra we conclude that

F̄1 = z21(1 − q2) + 1

w2
1 − w2

0

[
(z1z

′
0 − z′

1z0)
2 + (u0 + qw1)

2

z20
z21 + u21

z21
z20

]
.

(3.3.17)
The Hamiltonian can also be written now using the deformed Uhlenbeck constants
and the integrals of motion ua ,

H = 1

2

1∑
a=0

[
gaaw

2
a F̄a − u2a

] + qu1w0 . (3.3.18)

Now we need to note that

(z1z
′
0 − z0z

′
1)

2 = μ′2

4(μ − w2
1)(μ − w2

0)
. (3.3.19)

When we solve for μ′2 in the deformed integral of motion we find that

μ′2 = −4Q3(μ) , (3.3.20)

where Q3(μ) is the third order polynomial,

Q3(μ) = (1 − q2)(μ − w2
1)

2(μ − w2
0) + (μ − w2

1)(μ − w2
0)(w

2
0 − w2

1)F̄1

+ (μ − w2
1)

2(u0 + qw1)
2 + (μ − w2

0)
2u21 = (1 − q2)

3∏
i=1

(μ − μi ) .

(3.3.21)

This equation nearly identical to the spherical one, so we can write
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z20(σ) = μ3 − w2
0

w2
1 − w2

0

+ μ2 − μ3

w2
1 − w2

0

sn2
(
σ
√

(1 − q2)(μ3 − μ1), ν
)
, (3.3.22)

where the elliptic modulus is ν = (μ3 − μ2)/(μ3 − μ1). As in the case of strings
rotating in S3, we must perform now an analysis of the roots of the polynomial. We
need to choose μ3 > μ1 to make sure that the argument of the elliptic sine is real,
and μ3 > μ2 to have ν > 0, together with μ2 > μ1 to keep ν < 1. Furthermore we
have to impose z20 ≥ 1 which constrains μ2 and μ3 to be greater or equal than w2

1.
This last restriction does not apply to μ1. Note that this hierarchy of roots implies
that not all possible combinations of the parameters ui , wi and F̄1 are allowed.

As in the previous section, there are three possible cases where this general solu-
tion is simplified as a consequence of the vanishing discriminant of Q3(μ). The first
one is the constant radii case, where μ2 = μ3. However this limit is not well defined
becausewe have proven that there is no consistent constant radii solution. The second
case corresponds to the limit κ = 1 and it is obtained when μ1 = μ2. In this case
there is no periodicity condition because the elliptic sine has infinite period and thus
the string does not close. The third case corresponds to μ1 = μ2 = μ3 and requires
setting w1 = w0.

The periodicity condition on the radial coordinates now implies that

π
√

(1 − q2)(μ3 − μ1) = n′K(ν) , (3.3.23)

with n′ an integer number.9 From the periodicity condition on β1,

2πk̄1 =
∫ 2π

0
β′
1dσ =

∫ 2π

0

(
u1
z21

+ qw0

)
dσ , (3.3.24)

we can write
k̄1 − qw0

u1
=
∫ 2π

0

dσ

2π

1

z21
. (3.3.25)

Performing the integration we find

k̄1 − qw0 = u1(w2
1 − w2

0)

(μ3 − w2
1)K(ν)

�

(
μ3 − μ2

μ3 − w2
1

, ν

)
. (3.3.26)

The periodicity condition for β0 implies that

2πk̄0 =
∫ 2π

0
β′
0dσ =

∫ 2π

0

(
−u0
z20

+ qw1
z21
z20

)
dσ . (3.3.27)

9Again there are four different cases where this condition must be modified. When u0 + qw1 = 0
or u1 = 0 the periodicity condition becomes π

2

√
(1 − q2)(μ3 − μ1) = n′ K(ν) because of a change

of branch in the square root in (3.3.22). The other two cases are the degenerate limits where there
is no periodicity.
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Nowwemust remember thatwe areworking in AdS3 instead of its universal covering.
The time coordinate should therefore be single-valued, and thus we have to exclude
windings along the time direction. When we set k̄0 = 0 Eq. (3.3.27) becomes

qw1

u0 + qw1
=
∫ 2π

0

dσ

2π

1

z20
, (3.3.28)

that can be integrated

qw1 = (u0 + qw1)(w
2
1 − w2

0)

(μ3 − w2
0)K(ν)

�

(
μ3 − μ2

μ3 − w2
0

, ν

)
. (3.3.29)

In the same way we can perform an identical computation to obtain the energy and
the spin. From Eq. (3.3.10) we get

E√
λ

+ qu1 − q2w0 = (1 − q2)w0

∫ 2π

0

dσ

2π
z20 , (3.3.30)

and thus

E√
λ

= q2w0 − qu1 + (1 − q2)w0

w2
1 − w2

0

[
μ3 − w2

0 − (μ3 − μ1)

(
1 − E(ν)

K(ν)

)]
.

(3.3.31)
Repeating the same steps with (3.3.11) we obtain an expression for the spin,

S√
λ

− qu0 = (1 − q2)w1

∫ 2π

0

dσ

2π
z21 , (3.3.32)

and thus

S√
λ

= qu0 + (1 − q2)w1

w2
1 − w2

0

[
μ3 − w2

1 − (μ3 − μ1)

(
1 − E(ν)

K(ν)

)]
. (3.3.33)

These expressions for the energy and the spin can be used to rewrite the first Virasoro
constraint (3.3.9) as

w1E − w0S = √
λw0w1 . (3.3.34)

which is already a very closed expression. However we need a relation involving
only E , S and k̄1. This relation can be readily found from the above equations but
it is again a lengthy and complicated expression and we will not present it here. We
will consider instead in the following subsection the limit of pure NS–NS flux of
these solutions.

As happened in the spherical case, factors
√

(1 − q2)(μ3 − μ1)/nK(ν) do not
cancel anymore in the expressions for the energy, the spin and the winding number
for the giant magnon and non-periodic solutions.
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Solutions with Pure NS–NS Flux

As in the case of strings rotating in S3 in the limit of pure NS-NS three-form flux, the
above solutions also can be written in terms of trigonometric functions in the same
limit. Now (3.3.20) reduces to

μ′2 = −4Q2(μ) , (3.3.35)

with Q2(μ) the second order polynomial

Q2(μ) = (μ − w2
1)(μ − w2

0)(w
2
0 − w2

1)F̄1 + (μ − w2
0)

2u21
+ (μ − w2

1)
2(u0 + w1)

2 = ω′2(μ − μ̃1)(μ − μ̃2) , (3.3.36)

where ω′2 is
ω′2 = (w2

0 − w2
1)F̄1 + (u0 + w1)

2 + u21 . (3.3.37)

Thus we conclude that

z20(σ) = μ̃2 − w2
0

w2
1 − w2

0

+ μ̃1 − μ̃2

w2
1 − w2

0

sin2(ω′σ) . (3.3.38)

The periodicity condition on the radial coordinates implies now that ω′ should be a
half-integer number. The frequencies wa and the integration constants ua are related
to the energy, the spin and the winding number k̄1 by

w1 = ω′ sgn (u0 + w1) , ω′ = (k̄1 − w0) sgn(u1) (3.3.39)

S = √
λu0 , E = √

λ(w0 − u1) = w0

w1
S + √

λw0 . (3.3.40)

Recalling now the Virasoro condition (3.3.8) the spin can be written as

S = √
λ

(k̄1 − ω′)2ω′

2k̄1(2ω′ − k̄1)
, (3.3.41)

while the energy is given by

E = √
λ
k̄31 − 3k̄21ω

′ + k̄1ω′2 + ω′3

2k̄1(k̄1 − 2ω′)
. (3.3.42)

We must note that we still have to impose a restriction on the parameters. This
restriction comes from imposing that the discriminant of Q2(μ)must be positive and
taking the region of the parameter space with the correct hierarchy of roots. This
condition can be written as

|2(u0 + w1)u1| ≤ ∣∣F̄1(w
2
1 − w2

0)
∣∣ = ∣∣ω′2 − (u0 + w1)

2 − u21
∣∣ . (3.3.43)
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The inequality is saturated in the cases that would correspond to constant radii.
However in this point our equations become not well defined as a consequence of
these solutions being inconsistent.

3.4 Spinning Strings in AdS3 × S3

Wewill now extend the previous analysis to the case where the string can rotate both
in AdS3 and S3, again with no dynamics along T 4. Therefore the string solutions
that we are going to consider will have one spin S in AdS3 and two angular momenta
J1 and J2 in S3. We can describe these configurations by a combination of the two
previous ansätze (3.2.2) and (3.3.1), with the same periodicity conditions. When we
substitute this ansatz in the Polyakov action in the conformal gauge we obtain the
Lagrangian

L = LS3 + L AdS3 (3.4.1)

where LS3 is the Lagrangian (3.2.6) and L AdS3 is the Lagrangian (3.3.3), that is,
the pieces of the Lagrangian describing motion along AdS3 and S3 are decoupled.
This implies that the equations of motion are not modified and are given directly
by expressions (3.2.7)–(3.2.9) and (3.3.4)–(3.3.6). The Virasoro constraints do get
modified, and therefore are responsible for the coupling between the AdS3 and the
S3 systems,

z′2
0 + z20(β

′2
0 + w2

0) = z′2
1 + z21(β

′2
1 + w2

1) +
2∑

i=1

(
r ′2
i + r2i (α

′2
i + ω2

i )
)

(3.4.2)

z21w1β
′
1 +

2∑
i=1

r2i ωiα
′
i = z20w0β

′
0 . (3.4.3)

The angular momenta are defined again as in Eqs. (3.2.14) and (3.2.15), the spin is
defined as in Eq. (3.3.11) and the energy is defined as in Eq. (3.3.10).

3.4.1 Constant Radii Solutions

As before a simple solution to these equations can be found when the string radii are
taken as constant, ri = ai and za = ba . In this case the periodicity condition on β0

and the fact that the time coordinate is single-valued implies

β′
0 = 0 . (3.4.4)

Furthermore the angles can be easily integrated again,
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β′
1 = k̄1 , α′

i = m̄i , i = 1, 2 , (3.4.5)

and thus the equations of motion reduce to

w2
1 − k̄21 − w2

0 + 2qw0k̄1 = 0 , (3.4.6)

(ω2
2 − ω2

1) − (m̄2
2 − m̄2

1) − 2q(ω1m̄2 − ω2m̄1) = 0 . (3.4.7)

The Virasoro constraints become then

b21(w
2
1 + k̄21) +

2∑
i=1

a2i (ω
2
i + m̄2

i ) = b20w
2
0 , (3.4.8)

k̄1S + m̄1 J1 + m̄2 J2 = 0 . (3.4.9)

Using the definitions of the energy and the spin, Eqs. (3.3.10) and (3.3.11), together
with the constraint (3.3.7), we can write

E± = √
λ w0 ± S(w0 − qk̄1)√

w2
0 + k̄2 − 2qk̄w0

. (3.4.10)

The plus sign corresponds to the case where w0 and w1 are chosen to have equal
signs, while the minus sign corresponds to the choice of opposite signs. We can use
now this expression to write the energy as a function of the spin, the two angular
momenta and the winding numbers k̄1 and m̄i . As in the previous section we can take
the second Virasoro constraint together with the condition that a21 + a22 = 1 to find
that

a21 = k̄1S + √
λω2m̄2√

λ(ω2m̄2 − ω1m̄1)
, a22 = k̄1S + √

λω1m̄1√
λ(ω1m̄1 − ω2m̄2)

. (3.4.11)

Taking these relations into account when adding the angular momenta (3.2.14) and
(3.2.15) we find a relation between the frequencies ω1 and ω2,

[
k̄1S + m̄1 J − √

λqm̄1(m̄1 − m̄2)
] ω1

ω2
− (k̄1S + m̄2 J )

− √
λ(m̄1 − m̄2)ω1 − qk̄1S(m̄1 − m̄2)

ω2
= 0 , (3.4.12)

which extends expression (3.2.25) to the case of spin in AdS3. Combining now
Eq. (3.4.7) with (3.4.12) we can solve for ω1. The result is again a quartic equation,

[
(ω1 + qm̄2)

2 − (m̄2
1 − m̄2

2)(1 − q2)
][

λ(m̄1 − m̄2)ω
2
1 + 2

√
λ(m̄2 J + k̄1S)ω1

− (
(m̄1 + m̄2)J + 2k̄1S

)
J
]

− (m̄1 + m̄2)(m̄1 J + k̄1S)2(1 − q2) = 0 . (3.4.13)
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Once we have found the solution to this equation, we can read ω2 from (3.4.12) and
use then the first Virasoro constraint to calculate w0. But before writing the resulting
equation let us first take into account that

b21w
2
1 + b21 k̄

2
1 − b20w

2
0 = b21(2k̄

2
1 − 2qw0k̄1) − w2

0 = 2k̄1S(k̄1 − qw0)√
λ(w2

0 + k̄21 − 2qk̄1w0)
− w2

0 ,

(3.4.14)
where we have made use of (3.4.6). The Virasoro constraint becomes thus a sixth-
grade equation for w0,

4k̄21S
2(k̄1 − qw0)

2

λ(w2
0 − 2qk̄1w0 + k̄21)

= (
w2

0 − a21(ω
2
1 + m̄2

1) − a22(ω
2
2 + m̄2

2)
)2

. (3.4.15)

The solution to this equation provides w0, and thus the energy, as a function of
the spin, the angular momenta, and the winding numbers k̄1 and m̄i . However
Eqs. (3.4.13) and (3.4.15) are difficult to solve exactly. As in previous sections,
instead of trying to find an exact solution we can write the solution in the limit
Ji/

√
λ ∼ S/

√
λ � 1. Out of the four different solutions to (3.4.13), the only one

with a well-defined limit is

ω1 = J√
λ

+
√

λ

2J 2
(m̄1 + m̄2)(m̄1 J + k̄1S)(1 − q2)

[
1 −

√
λ

J
qm̄2 + · · ·

]
.

(3.4.16)
Using now relation (3.4.12) we find10

ω2 = J√
λ

− q(m̄1 − m̄2) +
√

λ

2J 2
(m̄1 + m̄2)(1 − q2)

×
[
m̄2 J + k̄1S −

√
λ

J
qm̄2(m̄1 J + m̄2 J + 2k̄1S) + · · ·

]
. (3.4.17)

Next we can calculate the radii a1 and a2 using (3.4.11), and solve Eq. (3.4.15) to get

w0,+ = J√
λ

− q

(
m̄1 + 2

k̄1S

J

)
+

√
λ

2J 2
(m̄2

1 J1 + m̄2
2 J2 + 2k̄21S)(1 − q2)

−
√

λ

J 3
2q2k̄1S(m̄1 J + k̄1S) + · · · , (3.4.18)

w0,− = J√
λ

− qm̄1 +
√

λ

2J 2
(m̄2

1 J1 + m̄2
2 J2 − 2k̄21S)(1 − q2) + · · · , (3.4.19)

10Note that, as in the case of rotation just in the sphere, the O(
√

λ/J ) terms and the subsequent
corrections in the expansions for ω1 and ω2 are again proportional to m̄1 + m̄2. We can prove the
existence of this factor as in the previous section by setting m̄1 = −m̄2 in Eq. (3.4.13).
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where as in Eq. (3.4.10) the plus or minus subindices refer respectively to the cases
where w0 and w1 are chosen with identical or opposite signs. These expressions can
now be substituted in relation (3.4.10) to obtain

E+ = J + S − √
λq

(
m̄1 + 2

k̄1S

J

)
+ λ

2J 2
(m̄2

1 J1 + m̄2
2 J2 + k̄21S)(1 − q2)

− λ

J 3
2q2k̄1S(m̄ J + k̄1S) + · · · , (3.4.20)

E− = J − S − √
λqm̄1 + λ

2J 2
(m̄2

1 J1 + m̄2
2 J2 − k̄21S)(1 − q2) + · · · . (3.4.21)

In the absence of flux the expression for E+ reduces to the expansion for the energy
in the Neumann–Rosochatius system for a closed circular string of constant radius
rotating with one spin in AdS3 and two different angular momenta in S3 [3].

As in the previous section, we can now consider the limit of pure NS-NS flux. In
this case the above expressions simplify greatly, and we get

E+ = S +
√

(J − √
λm̄1)2 − 4

√
λk̄1S , (3.4.22)

E− = J − S − √
λm̄1 . (3.4.23)

3.4.2 Non-constant Radii Computations with Pure NS–NS
Flux

Nowwe will consider the case where the string is allowed to rotate both in AdS3 and
S3 with non-constant radii. We will restrict the analysis to the limit of pure NS-NS
flux.11 In this case the second Virasoro constraint can be rewritten as

ω2 J1 + ω1 J2 + w1E − w0S = √
λ (ω1ω2 + w0w1 + qω1m̄1) . (3.4.24)

As the pieces in the Lagrangian describing motion in AdS3 and S3 are decoupled
the Eqs. (3.2.68), (3.2.69), (3.3.39) and (3.3.40) are still applicable. We only have to
substitute them in the more general Virasoro constraints,

z′2
0 + z20(β

′2
0 + w2

0) = z′2
1 + z21(β

′2
1 + w2

1) +
2∑

i=1

(
r ′2
i + r2i (α

′2
i + ω2

i )
)
, (3.4.25)

z21w1β
′
1 +

2∑
i=1

r2i ωiα
′
i = z20w0β

′
0 . (3.4.26)

11Solutions in AdS3 × S3 were analyzed for the case where u2 = v2 = 0 in the limit κ = ν = 1 in
[17].
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With this relation and the equations ofmotion (3.2.68), (3.2.69), (3.3.39) and (3.3.40)
it is immediate to write the angular momenta and the energy as functions of ω, ω′,
the winding numbers m̄1, m̄2, and k̄1, and the spin S and the total angular momentum
J . In the case where w0 + k̄1 = −w1 = −ω′ we conclude that

J1 = [ − k̄21(
√

λω′ + 2S) + 2k̄1
(√

λω′2 + 2ω′S + (m̄2 − ω)(
√

λω − J )
)

(3.4.27)

+ ω′(√λ(m̄2
1 − m̄2

2 − ω′2 + ω2) − 2(m̄1 − m̄2)J
)]

/
(
2(m̄1 − m̄2)(k̄ − 2ω′)

)
,

J2 = [
k̄21(

√
λω′ + 2S) − 2k̄1

(√
λω′2 + 2ω′S − m̄1 J + ω(

√
λm̄2 − √

λω + J )
)

(3.4.28)

− ω′(√λ(m̄2
1 − m̄2

2 − ω′2 + ω2) + 2(m̄1 − m̄2)J
)]

/
(
2(m̄1 − m̄2)(k̄1 − 2ω′)

)
,

E = [√
λ
(
k̄21 + m̄2

1 − (m̄2 − 3ω)(m̄2 − ω)
) − 2k̄1(2

√
λω′ + S) (3.4.29)

+ ω′(3
√

λω′ + 4S) − 2J (m̄1 + m̄2 − 2ω)
]
/
(
2(k̄1 − 2ω′)

)
.

If we choose w0 + k̄1 = w1 = ω′ we find

J1 = [ − k̄21(
√

λω′ + 2S) + 2k̄1(−
√

λω′2 − 2ω′S + (m̄2 − ω)(
√

λω − J )) (3.4.30)

+ ω′(√λ(m̄2
1 − m̄2

2 − ω′2 + 4m̄2ω − 3ω2) − 2(m̄1 + m̄2 − 2ω
)
J )
]
/
(
2k̄1(m̄1 − m̄2)

)
,

J2 = [
k̄21(

√
λω′ + 2S) + 2k̄1

(√
λω′2 + 2ω′S + m̄1 J − ω(m̄2 − ω + J )

)
(3.4.31)

− ω′(√λ(m̄2
1 − m̄2

2 − ω′2 + 4m̄2ω − 3ω2) − 2(m̄1 + m̄2 − 2ω)J
)]

/
(
2k̄1(m̄1 − m̄2)

)
,

E = [√
λ
(
k̄21 + m̄2

1 − (m̄2 − 3ω)(m̄2 − ω) − ω′2) − 2k̄1S (3.4.32)

− 2J (m̄1 + m̄2 − 2ω)
]
/
(
2k̄1

)
.

When we take the limit k̄1 → 0, S → 0 and
√

λω′ → E we recover the expressions
from Sect. 3.2.2 in both cases. In a similar way when we set to zero the angular
momenta, the winding numbers m̄i and ω we recover the analysis in Sect. 3.3.2.
We can also reproduce the solutions of constant radii from the previous subsection
to check if the expressions are consistent. In this case, when w0 + k̄1 = −w1 the
angular momenta are given by

J1 = k̄1S + m̄2 J

m̄2 − m̄1
, J2 = k̄1S + m̄1 J

m̄1 − m̄2
, (3.4.33)

and the energy reduces to

E = −S ± (J − √
λm̄1) . (3.4.34)

In the case where w0 + k̄1 = w1 the angular momenta are

J1 = k̄1S + m̄2 J

m̄2 − m̄1
, J2 = k̄1S + m̄1 J

m̄1 − m̄2
, (3.4.35)
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and the energy becomes

E = S ±
√

(J − λm̄1)2 − 4
√

λk̄1S . (3.4.36)

3.5 Pulsating Strings Ansatz

Throughout this chapter we have been working with the spinning string ansatz.
Another interesting and useful ansatz is the so called pulsating string ansatz [19].
This ansatz is exactly the same as the spinning string one but with the roles of τ and
σ reversed, that is

Y3 + iY0 = z0(τ )eiβ0(τ ) , Y1 + iY2 = z1(τ )ei(β1(τ )+k1σ) , (3.5.1)

X1 + i X2 = r1(τ ) ei(α1(τ )+m1σ) , X3 + i X4 = r2(τ ) ei(α2(τ )+m2σ) . (3.5.2)

Note that there is no σ dependence on Y3 + iY0 as the time has to be single valued.
Additional solutions have been studied before [20, 21].

We can take advantage of the similarities between both ansätze and follow the
same steps as before. When we enter this ansatz in the world-sheet action in the
conformal gauge the Lagrangian for the sphere reads12

LS3 =
√

λ

2π

⎡
⎣ 2∑
i=1

1

2

[
ṙ2i + r2i (α̇i )

2 − r2i m
2
i
] + �

2
(r21 + r22 − 1) − qr22 (m1α̇2 − m2α̇1)

⎤
⎦ ,

(3.5.3)
while for the AdS part

LAdS3 =
√

λ

2π

[
2∑

i=1

gi i

2

[
ż2i + z2i (β̇i )

2 − z2i k
2
i

] + �̃

2
(z20 − z21 − 1) − qz21k1β̇0

]
.

(3.5.4)
Supported with the Virasoro constraints

z21k1β̇1 +
∑
i

r2i α̇imi = z20k0β̇0 , HS3 + HAdS3 = 0 . (3.5.5)

In the same spirit we can define deformed Uhlembeck constants to reduce the
equations of motion of this Lagrangian to first order differential equations. The
computation can be done by taking the undeformed Uhlembeck constant and adding
deformation terms f (mi , vi , q, r1) and g(k1, ui , q, z1), respectively.After some alge-
bra we obtain

12Note the changes of sign of the flux terms, as we are working here with τ derivatives instead of
σ derivatives.
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Ĩ1 = r21 (1 − q2) + 1

m2
1 − m2

2

[
(r1ṙ2 − ṙ1r2)

2 + (v1 − qm2)
2 r

2
2

r21
+ v22

r21
r22

]
,

(3.5.6)

F̃1 = z21(1 − q2) + 1

k21

[
(z1 ż0 − ż1z0)

2 + (u0 − qk1)
2 z

2
1

z20
+ u21

z20
z21

]
, (3.5.7)

where ui = β̇i z2i and vi = α̇i r2i . To simplify our equations we can change to the
ellipsoidal coordinates

r21
ζ − m2

1

+ r22
ζ − m2

2

= 0 ,
z21

μ − k21
− z20

μ
= 0 ,

which gives us

−ζ̇2

4
= P3(ζ) = (1 − q2)(ζ − m2

1)
2(ζ − m2

2) − Ĩ1(m
2
2 − m2

1)(ζ − m2
1)(ζ − m2

2)

+ (v1 − qm2)
2(ζ − m2

2)
2 + v22(ζ − m2

1)
2 = (1 − q2)

3∏
i=1

(ζ − ζi ) , (3.5.8)

−μ̇2

4
= Q3(μ) = (1 − q2)μ(μ − k21)

2 − k21 F̃1μ(μ − k21) + (u0 − qk1)
2(μ − k21)

2 + u21μ
2

= (1 − q2)
3∏

i=1

(μ − μi ) . (3.5.9)

By looking at the results we have obtained it is obvious that the pulsating string
ansatz can be treated as the spinning string ansatz just by changing σ ↔ τ , ki ↔ wi ,
q → −q and mi ↔ ωi . However here is where the similarities end, because the
periodicity in the variable σ constrains in different ways in the two cases. While
in the spinning string these constraints have to be imposed, in the pulsating string
they are directly fulfilled (provided that m1, m2 and k1 are integers). Furthermore
the radial functions ri and zi are trivially periodic, so the restrictions equivalent to
ζ3 − ζ1 > 0 andμ3 − μ1 > 0 for spinning strings, described in Sects. 3.2.2 and 3.3.2,
no longer apply. This difference gives rise to a richer set of solutions.

Another important difference with the spinning string is that the conserved quan-
tities now take the very simple form

E = −√
λu0 , S = √

λu1 , J1 = √
λv1 , J2 = √

λv2 . (3.5.10)

However, we are not going to explore the most general solution but only two
particular cases: AdS3 × S1, that is, a case where nearly all the dynamics of the
sphere is frozen; and S3 × R, the opposite case, where nearly all the dynamics of the
AdS3 is frozen.
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3.5.1 Pulsating String in AdS3 × S1

The first of the particular cases we are going to study is the AdS3 × S1 space. To
restrict our ansatz to this space we are going to fix r1 = α1 = m1 = m2 = 0, r2 = 1
and α2 = ωτ while the degrees of freedom of the AdS3 will remain unconstrained.
Madacena and Ooguri [20] have already studied the AdS3 × M background, with
M a compact space, in a setting that corresponds to our limit q → 1. Their idea was
to study this background, using the SL(2) WZW model underlying it, as it enables
computations in theAdS/CFT correspondence beyond the gravity approximation and
provides an understanding of string theory on a curved space-time with non-trivial
g00 component.

Under the restrictions we are considering, the Virasoro constraints read

z21k1β̇1 +
∑
i

r2i α̇imi = z20k0β̇0 =⇒ u1 = 0 , (3.5.11)

HS3 + HAdS3 =
√

λ

4π

⎡
⎣(ω2) +

∑
i

gi i (ż
2
i + z2i β̇

2
i + z2i k

2
i )

⎤
⎦ = 0 =⇒ k21 F̃1 = u20 − ω2 .

(3.5.12)

The first of the Virasoro constraints imposes that u1 = 0 while the second one will
be useful to find the dispersion relation of our solution.

Because u1 = 0 the cubic equation Q3(μ) = 0 is easier to solve as one of the roots
can be found by direct inspection (μ = k21). The other roots then are easily obtained

μ =
(1 − q2) f 21 − (u0 − qk1)2 ±

√
((1 − q2) f 21 − (u0 − qk1)2)2 + 4(1 − q2)(u0 − qk1)2k21

2(1 − q2)
,

where

f 21 = k21 + k21 F̃1

1 − q2
. (3.5.13)

Solving the differential equation (3.5.9) is exactly the same as in the spinning string
case 13

13Our solution is a periodic solution in τ , usually called “short string”. This solution can be shifted in
τ and continued analytically by n = √

(1 − q2)(μ3 − μ1) → in into a solution that comes from the
boundary, contracts to zero and expands again, with no periodicity. These are called “long strings”.

To unify our notation with the notation from [20]
μ3−k21
k21

= cosh ρ0 for short strings and to sinh ρ0

for long strings.
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z20 = μ3

k21
+ k21 − μ3

k21
sn2

(
τ

√
(1 − q2)(μ3 − μ1), ν

)
, (3.5.14)

z21 = μ3 − k21
k21

cn2
(
τ

√
(1 − q2)(μ3 − μ1), ν

) = cosh2 ρ0 cn
2(τ

√
(1 − q2)(μ3 − μ1), ν

)
,

where ν = μ3−k21
μ3−μ1

. It is also interesting to analyse the behaviour of the time coordinate.
To do that we use

β̇0 = ṫ = u0 + qz21k1
g00z20

= u0 − qk1
−z20

+ qk1 , (3.5.15)

which we can integrate to

t = qk1τ −
∫ τ

0
dτ ′ u0 − qk1

z20(τ
′)

= −qk1τ + T (τ ) (3.5.16)

= qk1τ − (u0 − qk1)
�
(
tanh2(ρ0),Am[τ√(1 − q2)(μ3 − μ1), ν], ν

)

cosh2(ρ0)
√
1 − ν sn2(τ

√
(1 − q2)(μ3 − μ1), ν)

×

× dn(τ
√

(1 − q2)(μ3 − μ1), ν) . (3.5.17)

For later comparisons it is more interesting to write this coordinate as

sc(t, ν) = sc(T (τ ), ν)dn(qk1τ , ν) + sc(qk1τ , ν)dn(T (τ ), ν)

1 − sc(T (τ ), ν)sc(qk1τ , ν)dn(T (τ ), ν)dn(qk1τ , ν)
, (3.5.18)

where we have used the property

sc(x + y) = sc(x)dn(y) + sc(y)dn(x)

1 − sc(x)sc(y)dn(x)dn(y)
.

These expressions are not very illuminating at first sight. However taking the limit
q = 1, where u0 + k1 = ± cosh ρ0, we have

tan(t) = tan(k1τ ) ∓ tan(nτ ) cosh(ρ0)

1 ± tan(k1τ ) tan(nτ ) cosh(ρ0)
, (3.5.19)

which is equivalent to Eq. (34) of [20].14

Now we have all the elements to calculate the dispersion relation. To do that we
set the argument of the elliptic sine to nτ and extract from there the energy,

14Note that there is a typo in Eq. (34) in that article. This can easily be seen as it is inconsistent with
Eq. (44) in the same article. It can be seen that the analytically continued version of this equation is
indeed equivalent to Eq. (44).
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n =
√

(1 − q2)(μ3 − μ1) =⇒ n4 = ((1 − q2) f 21 − (u0 + qk1)
2)2 + 4(1 − q2)(u0 + qk1)

2k21 .

If we now substitute the value of f1 and the value of F̃1 found in the Virasoro
constraint and solve the quadratic equation we get

4k21(u0 + qk1)
2 − 4qkq(k

2
1 − ω2)(u0 + qk1) + (k21 − ω2)2 − n4 = 0 ,

u0 + qk1 = k21 − ω2

2k1

[
q ±

√
q2 − 1 + n4

(k21 − ω2)2

]
= − E√

λ
+ qk1 ,

E = qk1
√

λ + √
λ

ω2 − k21
2k1

[
q ∓

√
q2 − 1 + n4

(k21 − ω2)2

]
.

Where the upper sign correspond to our solution and the lower sign correspond to
the analytic continuation of our solution found by performing the change n → in,
which is also a solution. Note that this dispersion relation in the limit q = 1 reduces
to

E = k1
√

λ

2
+ (ω2 ∓ n2)

√
λ

2k1
,

which corresponds to the dispersion relations in [20].15 The upper sign corresponds
to “short strings” and the lower sing to “long strings” in that reference.

One interesting result is that the energy of our string is real only if n is above
a particular value, that is, if n4 ≥ n4min = (1 − q2)(k21 − HS3)

2, which also implies
that the maximum radius of the string has to have a minimum ρ0 ≥ ρ0,min . Note that
these restrictions disappear when q = 1.

3.5.2 The Pulsating S3 × R solution

In this section we are going to study the solution when we set z1 = β1 = k1 = 0,
z0 = 1 andβ0 = u0τ and the degrees of freedomof the sphere remains unconstrained.
For this ansatz the constrains from the Virasoro conditions can be written as

z21k1β̇1 +
∑
i

r2i α̇imi = z20k0β̇0 =⇒
∑

mivi = 0 , (3.5.20)

HS3 + HAdS3 =
√

λ

4π

[∑
i

ṙ2i + r2i α̇
2
i + r2i m

2
i ) + u20

]
= 0 =⇒ (3.5.21)

=⇒ (m2
2 − m2

1) Ĩ1 = m2
2(1 − q2) + v2

1 + (v2 − qm1)
2 − u20 . (3.5.22)

15Note that Eq. (33) has a factor of two dividing −kα2 missing, as can be seen by multiplying
Eq. (32) by two.
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The solution to the differential equation given by the Uhlenbeck constant reads now

r21 (σ) = ζ3 − ω2
1

ω2
2 − ω2

1

+ ζ2 − ζ3

ω2
2 − ω2

1

sn2
(

τ
√

(1 − q2)(ζ3 − ζ1),
ζ3 − ζ2

ζ3 − ζ1

)
. (3.5.23)

As we did in the previous section, we can set the argument of the elliptic sine to nτ
and use the Virasoro constraints to find the dispersion relation. However, this is very
difficult to do in the general case but we can look at two particular configurations:
v2 = 0 ↔ J2 = 0 and v1 = qm2 ↔ J1 = √

λqm2. For the first configuration the
dispersion relation reads

− E2

λ
= −u20 = m2

2 − 2m2v1q ±
√
n4 − 4m2

2(1 − q2)(v1 − qm2)2 , (3.5.24)

where we have set m1 = 0 as a consequence of the first Virasoro constraint. While
for the second one we get

− E2

λ
= −u20 = m2

2 + q2m2
1 + (m2

2 − m2
1)(1 − q2) ±

√
n4 − 4q2m2

1(m
2
1 − m2

2)(1 − q2) ,

(3.5.25)
where we have set v2 = −qm1 again from the Virasoro constraint.
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Chapter 4
η-Deformed Neumann–Rosochatius
System

-What makes you think that the theory will still be integrable?
-Unlimited optimism
M. Staudacher, replying to A. A. Migdal at the Itzykson Meeting
2007 [1]

In this chapter we are going to present other possible way of deforming the AdS3 ×
S3 background that does not break the integrability of the string Lagrangian. This
deformation can be classified among the Yang-Baxter sigma models. These kind of
models were first proposed by Klimčík in [1], and later developed in [2, 3], as a
way to construct integrable deformations of the PCM using classical R-matrices that
solve the modified classical Yang-Baxter equation. This method has been extended
to bosonic coset models [4] and, in particular, to the AdS5 × S5 string action [5, 6].
In recent years there has been a great interest in these kind of deformations and they
have been studied, among others, in [7–14].

In the first section we will review the construction and integrability of one par-
ticular deformation of the AdS5 × S5 string action called η-deformation, obtained
by using a Drinfeld-Jimbo R-matrix. In that presentation we will mostly follow
[15, 16]. In the second section we will truncate the (AdS5 × S5)η Lagrangian to a
(AdS3 × S3)η Lagrangian. With that simplification we will be able to construct an
easier-to-handle deformed Uhlenbeck constant which will allow us to construct the
solutions to the equations of motion. Additional solutions corresponding to other
string configurations in the full (AdS5 × S5)η background have been studied before
using diverse approaches in references [17–26]. Although we will be able to find
the dispersion relation as a series in inverse powers of the total angular momentum,
the dispersion relation for the elliptic string will be lengthy, complicated and not
very illuminating. Instead we will dedicate the last part of the section to some par-
ticular limits where solutions are easier to construct. The results obtained for these
limits from the point of view of the deformed Uhlenbeck constant are compared in
Appendix A with results obtained directly from the Lagrangian for the same limits.
The results of this last section were published in [27].

© Springer International Publishing AG, part of Springer Nature 2018
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4.1 Neumann System in η-Deformed AdS5 × S5

There are two known classes of integrable deformations of the AdS5 × S5. On one
handwe have deformations that can be conveniently described in terms of the original
theory, where the deformation parameter only appears as integrable quasi-periodic
boundary conditions for the world-sheet fields. Examples of these deformations are
orbifolding (like the one studied in [28]) and TsT deformations, obtained by the
successive application of a T-duality, a shift and another T-duality (examples of
this deformation are [29] or [30]). On the other hand we have deformations of the
underlying symmetry algebra in the sense of quantum groups [31–33]. That is the
case of the η-deformation we will present here, where we deform the underlying

psu(2|2) to psu(2|2)q with q = exp
[
− 2η

g(1+η2)

]
.

The action for the superstring on the deformed AdS5 × S5 depending on the real
deformation parameter η is given by1

S = ρ(1 + η2)

4

∫
d2σ(ηαβ − εαβ) STr

[
d̃( jα)

1

1 − ηRg ◦ d
( jβ)

]
, (4.1.1)

where we have chosen the conformal gauge, j is the left invariant current, ρ is a
coupling constant, ετσ = +1 and operators d and d̃ are defined as linear combinations
of projections over the different components of the Z4 decomposition of the algebra

d = P1 + 2

1 − η2
P2 − P3 ,

d̃ = −P1 + 2

1 − η2
P2 + P3 .

The action of the operator Rg on the algebra is given by

Rg ◦ (M) = Ad−1
g ◦R ◦ Adg ◦(M) = g−1R(gMg−1)g (4.1.2)

where we used the same g that defines the current and R(M) = STr2{r(1 ⊗ M)} is a
linear operator obtained by applying a supertrace (over the second space) to a classical
R-matrix. If this R-matrix satisfy the modified classical Yang-Baxter equation [34],
this operator also satisfy them2

[R(X), R(Y )] − R([R(X),Y ] + [X, R(Y )]) = [X,Y ] . (4.1.3)

1We have chosen to follow the normalization of [15] instead of the one used in [5].
2The MCYBE written in [34] and the one written in [2] differ by a sign in the right-hand side. We
have chosen the sign convention of the later.
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There are several choices for this operator, each of which generates a different defor-
mation. For a classification of these operators and models we refer to [35]. We will
be interested in the deformation generated by

R(M)i j = −i ε̂i j Mi j , where ε̂i j =
⎧⎨
⎩
1 if i < j
0 if i = j
−1 if i > j

, (4.1.4)

which is a particular case of a Drinfeld-Jimbo R-matrix.
From now on we will focus on the bosonic sector of the theory. The Lagrangian

with the fermionic degrees of freedom switched off simplifies to

L = −ρ
√
1 + κ2

2
(ηαβ − εαβ) STr

[
j (2)α

1

1 − κRg ◦ P2
jβ

]
, (4.1.5)

where j (2)α = P2 jα and

κ = 2η

1 − η2
, (4.1.6)

it is a convenient rewriting of the deformation parameter. Let us choose the ansatz
that gave us the Neumann Lagrangian in the previous chapter,

X1 + i X2 = r1(σ) eiω1τ , X3 + i X4 = r2(σ) eiω2τ , X5 + i X6 = r3(σ) eiω3τ .

(4.1.7)
After some algebra, which can be checked in [5] and [16], the Lagrangian acquires
the form

L = −ρ
√
1 + κ2

2

[
(r ′
1r2 − r1r

′
2)

2

(r21 + r22 )(1 + κ2r22 (r21 + r22 ))
+ 2κω1r1r2(r1r

′
2 − r2r

′
1)

1 + κ2r22 (r21 + r22 )

+ r ′2
3

(r21 + r22 )(1 + κ2(r21 + r22 ))
+ 2κω3r3r

′
3

1 + κ2(r21 + r22 )
− ω2

1r
2
1

1 + κ2r22 (r21 + r22 )
− ω2

2r
2
2−

− ω2
3r

2
3

1 + κ2(r21 + r22 )

]
− �

2
(r21 + r22 + r23 − 1) . (4.1.8)

The Lax connection for the bosonic Lagrangian is constructed in the following
way [5]

Lα = ηαβ + εαβ

2

[
−

(
1

1 + κRg ◦ P2
jα

)(0)

−
√
1 + κ2

λ

(
1

1 + κRg ◦ P2
jα

)(2)
]

+ ηαβ − εαβ

2

[
−

(
1

1 − κRg ◦ P2
jα

)(0)

− λ
√
1 + κ2

(
1

1 − κRg ◦ P2
jα

)(2)
]

.

(4.1.9)
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Using the Lax formalism we have explained in Sect. 2.1.2, we can generate integrals
of motion. However these integrals of motion are not the direct generalization of the
Uhlenbeck but a linear combination of them. In [16] these generalized Uhlenbeck
constants were untangled using that they should be a deformation of the original ones

I j = I Nj + O(κ) .

Ageneralization of theseUhlenbeck integral to a η-deformedNeumann–Rosochatius
was later presented in [36].

4.2 η-Deformed Neumann–Rosochatius System. Spinning
Strings in η-Deformed R × S3

Wewill nowmove to the case of a spinning string in the η-deformation of AdS5 × S5

with the more general ansatz that gave us the Neumann–Rosochatius Lagrangian in
the previous chapter

X2 j−1 + i X2 j = r j (σ)eiω j τ+iα j (σ) , (4.2.1)

which gives us the following Lagrangian for the sphere component, the η-
deformed Neumann–Rosochatius system3

L =
√

λ

2π

[
(r1r

′
2 − r ′

1r2)
2

(r21 + r22 )[1 + κ2(r21 + r22 )r22 ] + r ′2
3

(r21 + r22 )[1 + κ2(r21 + r22 )]

+ r21 (α′2
1 − ω2

1)

1 + κ2(r21 + r22 )r22
+ r22 (α′2

2 − ω2
2) + r23 (α′2

3 − ω2
3)

1 + κ2(r21 + r22 )
+ 2κω1r1r2(r1r

′
2 − r2r

′
1)

1 + κ2(r21 + r22 )r22

+ 2κω3r3r
′
3

1 + κ2(r21 + r22 )
− �

2
(r21 + r22 + r23 − 1)

]
, (4.2.2)

where, for convenience, we have defined λ = ρ2π2(1 + κ
2). It is immediate to write

down the complete equations ofmotion for the radial and angular coordinates coming
from this Lagrangian. However in this chapter we will only be interested in the case

3Note that we can use the constraint r21 + r22 + r23 = 1 to bring the first term in (4.2.2) to the form

(r1r ′
2 − r ′

1r2)
2

(r21 + r22 )[1 + κ2(r21 + r22 )r22 ] = r ′2
1 + r ′2

2 + r ′2
3

1 + κ2(r21 + r22 )r22
− r ′2

3

(r21 + r22 )[1 + κ2(r21 + r22 )r22 ] .

Furthermore the term before the Lagrange multiplier is just a total derivative,

2κω3r3r ′
3

1 + κ2(r21 + r22 )
= −ω3

κ

[
ln(1 + κ

2(r21 + r22 ))
]′

.
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of a string spinning on an η-deformed three-sphere. Therefore, rather than presenting
the general set of equations we will focus on how we should perform a consistent
reduction to capture the dynamics on a deformed three-sphere. We can clarify this
by inspecting the equation of motion for r3, which is given by

[
r ′
3

(r21 + r22 )(1 + κ2(r21 + r22 ))

]′
= �r3 + r3(α′2

3 − ω2
3)

1 + κ2(r21 + r22 )
, (4.2.3)

We see that r3 = 0 is a solution independently of the behaviour of the other two
coordinates. This means that setting r3 = 0 is a consistent truncation from the η-
deformed five-sphere to an η-deformed three-sphere.4 The Lagrangian simplifies
to

L =
√

λ

2π

[
r ′2
1 + r ′2

2 + r21 (α
′2
1 − ω2

1)

1 + κ2r22
+ r22 (α

′2
2 − ω2

2) − �

2
(r21 + r22 − 1)

]
. (4.2.4)

The equations of motion for the radial coordinates are given by

r ′′
1

1 + κ2r22
+ 2κ

2 r1r
′2
1

(1 + κ2r22 )2
= r1(α

′2
1 − ω2

1)

1 + κ2r22
+ �r1 , (4.2.5)

r ′′
2

1 + κ2r22
− 2κ

2 r2r
′2
2

(1 + κ2r22 )2
= r2(α

′2
2 − ω2

2) − κ
2r2

r ′2
1 + r ′2

2 + r21 (α′2
1 − ω2

1)

(1 + κ2r22 )2
+ �r1 ,

(4.2.6)

and for the angular functions we find

α′
1 = v1

r21
(1 + κ

2r22 (r
2
1 + r22 )) , α′

2 = v2

r22
. (4.2.7)

The Virasoro constraints become

4However this is not the only reduction that we can perform to obtain a consistent truncation from
the S5η to S3η . For instance, from the equation of motion for r1,

r ′′
1

r
= κ

2 2(r
2
1 + r22 )r ′

1r2r
′
2 + r1r ′2

1 r
2
2 + 2r ′

1r
3
2 r

′
2 − r1r22 xr

′2
2

r2

− 4κω1
r1r2r ′

2

r2
+ �r1 + r1(α′2

1 − ω2
1)

r

(
1 − κ

2 r
2
1 r

2
2

r

)
,

with r = 1 + κ
2r22 (r21 + r22 ), we conclude that the choice r1 = 0 provides indeed another possible

truncation. When we set r1 = 0 the Lagrangian becomes

L = 1

2

[
r ′2
3

r22 (1 + κ2r22 )
+ r22 (α′2

2 − ω2
2) + r23 (α′2

3 − ω2
3)

1 + κ2r22

]
+ �

2
(r22 + r23 − 1) ,

which can be easily seen to be equivalent to the one for the r3 = 0 truncation.
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r ′2
1 + r ′2

2 + r21 (α
′2
1 + ω2

1)

1 + κ2r22
+ r22 (α

′2
2 + ω2

2) = w2
0 , (4.2.8)

r21α
′
1ω1

1 + κ2r22
+ r22α

′
2ω2 = 0 , (4.2.9)

and the energy and the angular momenta are given now by

E = √
λw0 , J1 = √

λ

∫
dσ

2π

r21ω1

1 + κ2r22
, J2 = √

λ

∫
dσ

2π
r22ω2 . (4.2.10)

We can exhibit that integrability remains a symmetry of the system after the η-
deformation if we construct a deformation of theUhlenbeck constants Ĩi by imposing
that they should be constants of motion of the new Lagrangian. To find this defor-
mation we are going to assume that

Ĩ1 = 1

ω2
1 − ω2

2

[
f (r1, r2)[r ′2

1 + r ′2
2 ] + v2

1r
2
2

r21
+ v2

2r
2
1

r22
+ h(r1, r2)

]
, (4.2.11)

and impose that Ĩ ′
1 = 0. By doing this we find that

− 2κ
2 f

(
r1r ′3

1

1 + κ2r22
+ r1r ′

1r
′2
2

1 + κ2r22

)
+ f ′r ′2

1 + f ′r ′2
2 = 0 , (4.2.12)

where we havemade use of the equations of motion (4.2.5) and (4.2.6).We can easily
integrate this relation to get

f (r2) = A

1 + κ2r22
, (4.2.13)

where A is an integration constant that we will set to 1. We can proceed in the same
way to obtain the function h. We finally conclude that5

Ĩ1 = 1

ω2
1 − ω2

2

[
r ′2
1 + r ′2

2 + r21ω
2
1

1 + κ2r22
− r21ω

2
2 + (1 + κ

2)
v2
1r

2
2

r21
+ v2

2r
2
1

r22

]
. (4.2.14)

We will now focus on the construction of general solutions of the η-deformed
Neumann–Rosochatius system. In order to do so we will introduce an ellipsoidal
coordinate defined as the root of the equation

r21
ζ − ω2

1

+ r22
ζ − ω2

2

= 0 . (4.2.15)

5The Uhlenbeck constants for the (AdS5 × S5)η Neumann–Rosochatius system were constructed
using the Lax representation in [36]. Some immediate algebra shows that those more general
constants reduce to the one we present in here along the r3 = 0 truncation.
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If we assume that ω1 < ω2, then the ellipsoidal coordinate will vary from ω2
1 to ω2

2.
When we replace the radial coordinates by the ellipsoidal one in the equations of
motion we are left with a second-order differential equation for ζ. Following the
strategy used in the previous chapter, we can more conveniently reduce the problem
to the study of a first-order equation by writing the Uhlenbeck constant in terms of
the ellipsoidal coordinate. We find that

ζ ′2 = −4P4(ζ) , (4.2.16)

where P4(ζ) is the fourth-order polynomial

P4(ζ) = − κ
2ω2

2

(ω2
1 − ω2

2)
2
(ζ − ω2

1)
2(ζ − ω2

2)
2 + (

ω2
1 − (1 + κ

2)ω2
2 + κ

2ζ
)[
Ĩ1(ζ − ω2

1)(ζ − ω2
2)

+ (1 + κ
2)v21

ω2
1 − ω2

2

(ζ − ω2
2)

2 + v22

ω2
1 − ω2

2

(ζ − ω2
1)

2
]

+ (ζ − ω2
1)

2(ζ − ω2
2) =

= − κ
2ω2

2

(ω2
1 − ω2

2)
2

4∏
i=1

(ζ − ζi ) . (4.2.17)

We can solve this equation if we change variables to

η2 = ζ − ζ4

ζ3 − ζ4
, (4.2.18)

which transforms equation (4.2.16) into

η′2 = κ
2ω2

2ζ
2
34

(ω2
1 − ω2

2)
2
(η2 − 1)(η2 − η2

1)(η
2 − η2

2) , (4.2.19)

where we have defined ζi j = ζi − ζ j and η2
i = ζi4/ζ34. The solution to this equation

is

η(σ) =
−i sn

[
η1

√
(1 − η2

2)
(
± iκω2ζ34(σ−σ0)

ω2
1−ω2

2

)
,

(1−η2
1 )η

2
2

(1−η2
2 )η

2
1

]

√
1 − 1

η2
2

− sn2
[
η1

√
(1 − η2

2)
(
± iκω2ζ34(σ−σ0)

ω2
1−ω2

2

)
,

(1−η2
1)η

2
2

(1−η2
2)η

2
1

] , (4.2.20)

where σ0 is an integration constant that we can set to zero by performing a rotation.
Therefore we conclude that6

6We should note that this solution is well defined not only for real values of the parameter κ, but
also for purely imaginary values of this parameter (although an analytical continuation of the ri
coordinates may be needed for that). If we define κ = iκ̂ we have
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r21 (σ) = ω2
1 − ζ4

ω2
1 − ω2

2

− ζ34

ω2
1 − ω2

2

ζ24 sn2
[
±κω2

√
ζ14ζ23σ

ω2
1−ω2

2
, ν

]

ζ23 + ζ24 sn2
[
±κω2

√
ζ14ζ23σ

ω2
1−ω2

2
, ν

] . (4.2.21)

where ν = ζ13ζ24
ζ14ζ23

. Now we could use this expression to write the energy as a func-
tion of the winding numbers and the angular momenta. However, the first step in
this direction, which is finding the winding numbers and the momenta in terms of
the integration constants vi and the angular frequencies ωi , already leads to com-
plicated integrals. Instead of following this path, which leads to cumbersome and
non-illuminating expressions, in what follows we will analyse the problem in several
interesting regimes of κ.

But before we move to the study of the fate of equation (4.2.21) for some limiting
values of the deformation parameter, we will consider the case where the radii are
taken to be constant. When we set to zero the derivatives in the equations of motion
and solve for the Lagrange multiplier we find that

α′2
1 − ω2

1

1 + κ2r22
= α′2

2 − ω2
2 − κ

2 r
2
1 (α

′2
1 − ω2

1)

(1 + κ2r22 )
2

. (4.2.22)

We can rewrite this expression as7

1 + κ
2r22 = ±

√
(1 + κ2)

m2
1 − ω2

1

m2
2 − ω2

2

, (4.2.23)

where we have used the constraint r21 + r22 = 1 and the fact that mi = α′
i because

the winding velocities are constant when the radii are constant. However
solving exactly this equation together with the Virasoro constraint leads to an
algebraic equation of sixth degree. Instead of trying to solve the problem directly,
we can write the solution as a power series expansion in inverse powers of the total
angular momentum. We get8

r21 = km2

km2 − m1
+ λ

2J2
km1m2(m1 + m2)(m1 − m2)

3(m2
1 − 2km1m2 + m2

2)

(km1 − m2)
2(m1 − km2)

4 + . . . ,

(4.2.24)

r21 (σ) = ω2
1 − ζ4

ω2
1 − ω2

2

+ ζ34

ω2
1 − ω2

2

ζ24 sc2
[
± κ̂ω2

√
ζ14ζ23σ

ω2
1−ω2

2
,− ζ12ζ34

ζ14ζ23

]

ζ23 − ζ24 sc2
[
± κ̂ω2

√
ζ14ζ23σ

ω2
1−ω2

2
,− ζ12ζ34

ζ14ζ23

] .

7It is immediate to see that in the limit κ → i the solution reduces to r1 = 0, r2 = 1, together with
either zero total angular momentum or zero winding m2 because of the Virasoro constraint (4.2.9).
8There is an additional possible expansion, depending on the choice of signs of thewinding numbers.
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r22 = m1

m1 − km2
− λ

2J2
km1m2(m1 + m2)(m1 − m2)

3(m2
1 − 2km1m2 + m2

2)

(km1 − m2)
2(m1 − km2)

4 + . . . ,

(4.2.25)

for the radial coordinates, and

ω1 = J√
λ

km1 − m2

m1 − m2
+

√
λ

2J

km1(m1 + m2)(m1 − m2)
2(m2

1 − 2km1m2 + m2
2)

(km1 − m2)
2(m1 − km2)

2 + . . . ,

(4.2.26)

ω2 = J√
λ

m1 − km2

m1 − m2
+

√
λ

2J

km2(m1 + m2)(m1 − m2)
2(m2

1 − 2km1m2 + m2
2)

(km1 − m2)
2(m1 − km2)

2 + . . . ,

(4.2.27)

for the angular frequencies, where we have introduced k = √
1 + κ2. Using now

Eq. (4.2.8) it is immediate to write the dispersion relation,

E2 = J 2 (m2
1 − 2km1m2 + m2

2)

(m1 − m2)2
+ λ

m1m2(m2
1 − 2km1m2 + m2

2)

(km1 − m2)(km2 − m1)
+ . . . .

(4.2.28)

4.3 Limiting Cases of the η-Deformed N-R System

In this section we are going to see how the solution we have found in the previ-
ous section behave in some particular limits of the deformation parameter from the
Uhlenbeck constant point of view. Upon inspection of the polynomial (4.2.17) it
is clear that the limits κ = ∞ and κ = i simplify the evaluation of the roots. The
backgrounds obtained from taking these limits have been studied in [37, 38]. In
the case κ = ∞ the deformed ten-dimensional metric is T-dual to de Sitter space
times the hyperboloid, dS5 × H 5, which can also be understood as a flipped double
Wick rotation of AdS5 × S5. On the other hand, in the limit κ = i9 the deformed
ten-dimensional metric turns into a pp-wave type background. We will also analyse
these limits from the point of view of the Lagrangian formalism in AppendixA,
where some relations between these limits are more transparent.

We will first focus on the κ → ∞ limit and the case where v2 = ω1 = 0. We can
see that the four roots, as series on κ, behave in the following way

9From an algebraic point of view, the κ = i limit behaves in the same way as the limit of pure NS-
NS flux in the analysis of the deformation by flux of the Neumann–Rosochatius system presented
in the previous chapter.
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ζ1 = −v21κ
2 −

[
v21 + ω2

2(1 − Ĩ1)
]

+ ω2
2(1 − Ĩ1)

v21κ2
+ . . . , ζ4 = ω2

2 ,

ζ2 = ω2
2 + ω4

2( Ĩ1 − 1)

v21κ2
+ ω4

2( Ĩ1 − 1)( Ĩ1ω
2
2 − 2ω2

2 − v21)

v41κ4
+ . . . , ζ3 = ω2

2(1 + κ
2)

κ2 ,

Actually the series for the two first solutions come from the solution to a quadratic
equation

ζ1,2 =
Ĩ1ω2

2 − v2
1(1 + κ

2) ±
√

[ Ĩ1ω2
2 − v2

1(1 + κ2)]2 + 4v2
1ω

2
2(1 + κ2)

2
. (4.3.1)

Therefore in the κ → ∞ limit one of the roots goes to −∞ and the degree of our
polynomial is reduced to 3. In order to take the limit at the level of the solution, we
are going to rewrite the solution in a way that simplifies taking ζ1 → −∞. Using
the properties of the elliptic functions (4.2.21) can be recast into

r21 (σ) = ω2
1 − ζ4

ω2
1 − ω2

2

− ζ14

ω2
1 − ω2

2

ζ24 sn2
[
±κω2

√
ζ34ζ21σ

ω2
1−ω2

2
, ν

ν−1

]

ζ13 + ζ34 sn2
[
±κω2

√
ζ34ζ21σ

ω2
1−ω2

2
, ν

ν−1

] , (4.3.2)

which, after taking ω1 = 0 and ζ1 → −∞, becomes

r21 (σ) = ζ4

ω2
2

+ ζ34

ω2
2

sn2
[
±κω2

√
ζ24ζ21σ

ω2
2

,
ζ34

ζ24

]
+ . . . , (4.3.3)

and substituting explicitly the remaining roots we arrive to

r21 (σ) = 1 + 1

κ2
sn2

[
±κ

√
ω2
2( Ĩ1 − 1)σ,

v2
1

ω2
2( Ĩ1 − 1)

]
+ . . . . (4.3.4)

The second interesting κ → ∞ limit is the ω2 = v1 = v2 = 0 case. In this limit
the roots become

ζ1 = −∞ , ζ2 = 0 , ζ3 = ω2
1

1 − Ĩ1

1 + κ2 Ĩ1
, ζ4 = ω2

1 . (4.3.5)

and thus the degree of the polynomial is reduced again from four to three. The general
solution, after a reordering of the roots in a similar way as in the previous case, is
given by10

10A similar result was obtained for the pulsating string ansatz in [23].
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r22 (t) = ζ2

ω2
1

+ ζ4 − ζ2

ω2
1

sn2
(√

(ζ2 − ζ3)(1 + κ2 Ĩ1)σ,
ζ2 − ζ4

ζ2 − ζ3

)

= sn2
(√

−ω2
1(1 − Ĩ1)σ,

1 + κ
2 Ĩ1

1 − Ĩ1

)

= 1 − Ĩ1

1 + κ2 Ĩ1
sn2

(√
−ω2

1(1 + κ2 Ĩ1)σ,
1 − Ĩ1

1 + κ2 Ĩ1

)
. (4.3.6)

where, in the last line, we havemade use of the relation
√
m sn(u,m) =sn(

√
mu, 1

m ).
We can see that our solution presents four different regimes. The first one appears in
the region Ĩ1 ≥ 1, where we have to analytically continue the r2 coordinate to ir2.
The same happens with the Ĩ1 < −1

κ
2 regime, while the region 0 < Ĩ1 < 1 requires the

continuation of the r1 coordinate instead. Finally, the solutions is circular for values−1
κ

2 < Ĩ1 < 0. Notice that this last region completely disappears in theκ → ∞ limit,
which is agreement with the transformation of the sphere into the hyperbolic plane
for κ → ∞ showed in [37].

To conclude our analysis we are going to study the κ → i limit. In this limit the
contribution from v1 is negligible and ω1 becomes a shift in the Uhlenbeck constant.
Therefore ω2 and v2 are the only important free parameters. First we are going to
consider the case v2 = 0, where the roots behave like

ζ1 = 0 + O(κ − i) , ζ2 = 0 + O(κ − i) , (4.3.7)

ζ3 = Ĩ1ω
2
2 , ζ4 = ω2

2 . (4.3.8)

Substituting and performing some manipulations we arrive to the solution

r21 = Ĩ1

1 − ( Ĩ1 − 1) cosh2
(√

ω2
2 Ĩ1σ

) . (4.3.9)

The other limit, ω2 = 0, is characterized by the roots

ζ1 ≈ ζ2 = ω2
1 + O(κ − i) , (4.3.10)

ζ3 = v2
2ω

2
1

v2
2 + ω2

1( Ĩ1 − 1)
, ζ4 = −∞ , (4.3.11)

where we have kept ω1 
= 0 to simplify our computations, as the Uhlenbeck con-
stant has to be modified when both ωi vanish. Substituting and performing some
manipulations we arrive to the solution

r21 = ω2
1 − ζ

ω2
1

= ω2
1(1 − Ĩ1)

v2
2 + ω2

1( Ĩ1 − 1)
sech2

[(
1 − Ĩ1

)
σ
]

. (4.3.12)
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Now we can eliminate the ω1 factor by the redefinition v2 = ṽ2ω1. This happens,
as we said, because the term encoding the dependence with ω2

1 in the Uhlenbeck
becomes a constant in the κ = i limit, making it a dummy variable.

Although the solutions for v2 = 0 and ω2 = 0 seem completely different, they
are deeply related. This relation is not explicit from the Uhlenbeck constant, but it
is evident when we write the Lagrangian systems associated to both limits. We will
explore this direction in AppendixA.
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Part II
Integrability on the Field Theory Side. Spin

Chains



Chapter 5
Introduction: The Two Bethe Ansätze

Quantum Mechanical Spin. What is it? And don’t give me any of
that bullshit about Pauli Matrices, Fermi-Dirac and
Bose-Einstein statistics, etc. Any Monkey can do the Math but
what does the math mean? I mean, WHAT IS SPIN REALLY?!!

Abstruse Goose 342, Moment of Clarity(?) - part 2

In this chapter we are going to review two techniques to perform computations in
quantum theories in general, and spin chains and theories in a lattice in particular: the
Coordinate Bethe Ansatz (CBA) and the Algebraic Bethe Ansatz (ABA). Although
in the recent years there has been a boom of new and powerful methods, like the
Analytic Bethe Ansatz [1], Off-diagonal Bethe Ansatz [2], Separation of Variables
(SoV) [3]. The two Bethe Ansätze we are going to focus on are the cornerstones of
quantum integrability and still very powerful by themselves.

This chapter is divided in five sections. In the first one we will introduce the CBA.
In particular we are going to present it by solving the Heisenberg Hamiltonian. For
this section we will mostly follow [4]. In the second section we will present the
second of the ansätze, the ABA. We will construct it from first principles as a lattice
version of the Lax formalism presented in Sect. 2.1.2. After that we will specify the
particular case of the Heisenberg Hamiltonian and explicitly solve it. The last part
of this section is devoted to understanding the relation between operators in both
ansätze and how to compute scalar products in the ABA. For this section we will
mostly follow Refs. [5–7]. The third section deals with the scalar products in both the
CBAand theABA.Wewill present the computation of the same correlation functions
in both formalisms and compare the different normalizations. For this section wewill
mostly follow [8]. After that we will present the so-called BDS spin chain, a spin
chain hamiltonian that reproduces N = 4 SYM at all loops up to the length of the

© Springer International Publishing AG, part of Springer Nature 2018
J. M. Nieto, Spinning Strings and Correlation Functions in the AdS/CFT
Correspondence, Springer Theses, https://doi.org/10.1007/978-3-319-96020-3_5
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chain, as it does not take into account wrapping effects. In the last section we will
present the details of the bootstrap program and the form factor axioms. For this
section we will follow Refs. [4, 9].

5.1 Coordinate Bethe Ansatz

Let us consider the spin 1
2 Heisenberg Hamiltonian on a chain of length L . Our

Hilbert space will be L copies of the Hilbert space of a spin 1
2 particle, that is,

(
C

2
)L

and the Hamiltonian will be given by

H = J
L∑

l=1

(σx
l σx

l+1 + σ
y
l σ

y
l+1 + σz

l σ
z
l+1) (5.1.1)

= J
L∑

l=1

[2(σ+
l σ−

l+1 + σ−
l σ+

l+1) + σz
l σ

z
l+1] , (5.1.2)

where J < 0 is a coupling constant1 and the σi are the Pauli matrices. The subindices
indicate in which chain site the Pauli matrices act non-trivially, that is,

σi
l =

(l−1) times
︷ ︸︸ ︷
I ⊗ · · · ⊗ I ⊗σi ⊗ I ⊗ · · · ⊗ I . (5.1.3)

We also want to impose periodic boundary conditions, which means σi
L+1 = σi

1.
A generalization of thisHamiltonian is the so-calledXYZ spin chainHamiltonian,

where each of the three terms of theHamiltonian have different couplings.We recover
the Heisenberg Hamiltonian by putting Jx = Jy = Jz and hence it is usually called
the XXX spin chain. Another case of interest is the XXZ spin chain where Jx =
Jy = J �= Jz = J�.

This particular Hamiltonian is relevant for us because, by using the isomorphism
between anomalous dimensions of single-trace operators and spin chains, it corre-
sponds to the restriction to the scalar SU (2) ⊂ SO(6) sector of the matrix of anoma-
lous dimensions/spin chain Hamiltonian presented in Eq. (1.3.8). The isomorphism
works in the following way: each operator is build out from a single trace of products
of two complex scalars and is mapped to a spin chain state. One of these complex
scalars is interpreted as the spin up (usually identified with the complex scalar Z ),
while the other as the spin down (usually identified with the complex scalar X ).

1This is called the ferromagnetic Heisenberg Hamiltonian because, as we will show, its ground state
is a saturated state with all spins aligned. When J > 0 the behaviour changes radically. This other
regime is called antiferromagnetic or Néel phase. The Hilbert space can be constructed in a similar
way as the one we are going to present but starting from the state given by a chain with alternated
spins called “Néel state” [10], although it is not the ground state (this happens because because it
minimizes the expectation of 〈sz

nsz
n+1〉 but it does not minimize it for the other two components).
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This restriction to the SU (2) subgroup is consistent because it is a closed sector at
one-loop.2

There are two obvious symmetries on this Hamiltonian. The first one is the shift
operator U = e−i p, which shifts the states on the chain one lattice position to the
right. It is immediate to prove that [H, U ] = 0 from the form of the Hamiltonian
and its periodicity. Note that periodicity also imposes U L = e−i pL = I. The second
symmetry is the total spin in one direction, which we are going to choose as the z
direction [H, sz] = 0, where the total spin sz is computed as the sum of the individual
spins of each lattice site, sz = ∑L

l=1
σz

l
2 . The existence of these two symmetries

implies that we can classify the eigenstates of the Hamiltonian by the total spin in
the z direction and the total momentum.

Also, the second writing of the Hamiltonian (5.1.2) hints us two of its eigenstates,
the one with all spins up in the z direction and the one with all spins down. These
two states are annihilated by the σ+

j and σ−
j operators respectively for every value of

the lattice coordinate j . This imply that, when we apply the Hamiltonian operator to
these states, the two first terms of every addend in the sum vanish, leaving only the
contribution of

∑
j σz

jσ
z
j+1, of which they are already an eigenstate. We are going to

take the first one as our reference state for our construction of the Hilbert space as it
is a ground state. We can see that

H |0〉 = H |↑↑ . . . ↑〉 = J L

4
|↑↑ . . . ↑〉 , (5.1.4)

while if one of the spins if flipped two of the contributions pick the opposite sign and
the energy grows. The following construction can be done in a symmetrical way if
we choose |↓↓ . . . ↓〉 as our reference state.

If we have only one spin flipped down we can write an ansatz for the eigenvector
of the form

|P〉(1) =
L∑

x=1

ψP(x) |x〉 , (5.1.5)

where the subindex indicates the number of spins down and |x〉 = σ−
x |0〉 is the state

with all spins up except for the one at lattice site x . Translational invariance tells us
that we should choose

ψ(x) = Aei Px , (5.1.6)

where A = 1 is a normalization constant3 and P = 2πk
L with k ∈ ZL because of

periodicity. Therefore there are L states in the Hilbert space of one spin down, as

2A closed sector is a subgroup of the full P SU (2, 2|4) spin chain such that the operator mixing can
only occur between operators inside said subgroup. We will talk a little more in depth about it in
Sect. 5.4.
3There are two usual normalizations of these states, either A = 1 or A = 1√

L
. We are going to

choose the first one for simplicity even though the states are not properly normalized in that way. A
third less usual normalization, but useful in the AdS/CFT context, is A = 1√

L N (L+M)/2
c

, where Nc is
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expected. These states are usually called one magnon states, as they are constructed
by one excitation that takes the shape of a “spin wave”. The energy of these states is

H |P〉(1) = 1

4
[J L − 4J (1 − cos P)] |P〉(1) = (E0 + E(P)) |P〉(1) , (5.1.7)

which we have separated it into the energy of the ground state E0 and the energy of
the excitation E(P).

In principle we can repeat part of the strategy for the case of two spins flipped
down

|P〉(2) =
L∑

x,y=1
x<y

ψP(x, y) |x, y〉 , (5.1.8)

where |x, y〉 = σ−
x σ−

y |0〉. Translational invariance implies in this case that
ψP(x, y) = ψP(y, x + L), but it doesn’t provide enough information to find the
eigenvector. However, Bethe [12] proposed the product of plane-waves as ansatz

ψP(x, y) = A12ei(p1x+p2 y) + A21ei(p1 y+p2x) , (5.1.9)

which solves the condition of being an eigenstate if x + 1 �= y. Translational invari-
ance transforms into the condition P = p1 + p2 and the periodicity condition now
reads

A21

A12
= eip2L = 1

eip1L
= S12 = 1

S21
=⇒

{
eip1L S12 = 1
eip2L S21 = 1

. (5.1.10)

The physical interpretation of this equation is that the total phase shift undergone by
a spin wave after traveling around the closed chain, which should be trivial, is given
by a kinematical factor (like in the case of onemagnon) and a phase shift produced by
the interchange of the two spin waves, which we are going to call S-matrix (although
in this cases it is only a number, not a matrix). But we still have to fix the value of
this S-matrix. To do so we have to impose the eigenstate condition for x + 1 = y,
which gives us

S12 = 1 − 2eip2 + ei(p1+p2)

1 − 2eip1 + ei(p1+p2)
. (5.1.11)

Joining this result with the periodicity condition we obtain the equation

eip2L = 1 − 2eip2 + ei(p1+p2)

1 − 2eip1 + ei(p1+p2)
, (5.1.12)

the range of the gauge group and M the number of flipped spins. This last one is used, for example,
in [11].
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which is called in the literature the Bethe Ansatz Equation. It is important to notice
here that there are two kinds of solutions to these equations, something already
noticed byBethe in his original article, namely, one set of solutionswith realmomenta
and other set of solutions with complex conjugated momenta, which can be under-
stood as a bound state of the magnons. We should remark that these equations do not
fix the overall normalization of the state, which we choose A12 = 1 for convenience,
as explained in a previous footnote. The last computation remaining is the energy of
these states. After some algebra we can check that

H |P〉(2) = 1

4
[J L − 4J (1 − cos p1) − 4J (1 − cos p2)] |P〉(2)

= (E0 + E(p1) + E(p2)) |P〉(2) , (5.1.13)

that is, the total energy of the two particle excitation is just like the two particles
were completely independent. This is already a sign of the underlying integrability
of the model, but we still have to present the tools to prove it.

Moving now to the case of three magnons, we can again write the eigenfunction
as a sum over the possible positions of the spins down weighted with a wave function

|P〉(3) =
L∑

x,y,z=1
x<y<z

ψP(x, y, z) |x, y, z〉 , (5.1.14)

for which Bethe proposed again a plane-wave ansatz,

ψP(x, y, z) =
∑

σ∈S3

Aσei(pσ(1)x+pσ(2) y+pσ(3)z) , (5.1.15)

where translational invariance imposes P = p1 + p2 + p3 and the periodicity con-
dition imposes

eip1L = A123

A132
= A132

A321
,

eip2L = A231

A312
= A213

A132
, (5.1.16)

eip3L = A312

A123
= A321

A213
,

which determines all the coefficients up to one of them, which depends on the nor-
malizationwe choose. These equations hide themost important condition of quantum
integrability, the factorized scattering and the Yang–Baxter equation. We will talk
more about it in the next section. For themomentwe are going to define the S-matrices
as the quotient of two prefactors with one of the indices fixed, that is
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S12 = A213

A123
= A321

A312
, S13 = A312

A132
= A231

A213
, S23 = A321

A231
= A132

A123
. (5.1.17)

Hence the Bethe ansatz equations can be written now

eipl L =
3∏

k=1
k �=l

Skl , (5.1.18)

where the form of the S-matrices is fixed again by imposing the eigenstate condition
when two magnons are not separated and the third is well separated

Si j = 1 − 2eip j + ei(pi +p j )

1 − 2eipi + ei(pi +p j )
, (5.1.19)

which is the same as in the case of two magnons. The energy can be obtained from
the eigenstate condition with all magnons well separated. We get

E = E0 +
3∑

l=1

E(pl) , (5.1.20)

so again it is the sum of the contribution of each individual magnon.
From the case of three magnons it is easy to see how to generalize the formalism

to an arbitrary number of magnons M . The most important formulas are

ψP(x1, x2, . . . , xM) =
∑

σ∈SM

Aσei
∑M

j=1 pσ( j)x j , (5.1.21)

eipl L =
M∏

k=1
k �=l

Skl where Si j = 1 − 2eip j + ei(pi +p j )

1 − 2eipi + ei(pi +p j )
, (5.1.22)

E = E0 +
M∑

l=1

E(pl) . (5.1.23)

As we can see they are a direct generalization of the formulas for three magnons.4

This construction can easily be generalized to groups with higher rank. In partic-
ular a general construction for the SU (N ) spin chain Hamiltonian can be found, for
example, in Chap. 1.1 of [14].

We want to end this section by recalling that we will be interested in the case of
spin chains representingN = 4 supersymmetric Yang-Mills operators. These kinds

4This method can be directly applied in other models like XXZ spin chain or the Lieb-Liniger
model (bosonic particles in a 1-dimensional box with delta interactions) [13]. However it needs
some modification to solve the XYZ spin chain.
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of spin chains should correspond to single-trance operators, so a more restrictive
periodicity condition has to be imposed as traces are cyclic. In particular cyclicity of
the trace implies that the shift operator we presented above should be trivial, which
imposes a zero total momentum condition over the spin chain,

U−1 = ei P =
M∏

i=1

eip j = ei
∑M

j=1 p j = 1 ⇐⇒ P =
M∑

j=1

p j = 0 . (5.1.24)

5.2 Algebraic Bethe Ansatz

5.2.1 Lax Formalism in the Lattice and the ABA

We are going to start this section by writing lattice versions of the Lax formalism
whose classical versions we have already presented in Sect. 2.1.2. First of all, we are
going to present a lattice equivalent of the infinitesimal parallel transport, that is, the
space component of the linearized equations for the classical wave function (2.1.11),

φn+1 = Ln,a(λ)φn , (5.2.1)

where φn ∈ Hn ⊗ V is a vector from the tensor product of the Hilbert space of site
n (usually called “physical space”) and an auxiliary space V , and Ln,a(λ) is the Lax
operator acting on Hn ⊗ V with spectral parameter λ. Hence the definition of the
monodromy matrix is also the lattice version of Eq. (2.1.14),5

Ta(λ) = L L ,a(λ)L L−1,a(λ) . . . L1,a(λ) . (5.2.2)

Actually, this is not the most general monodromy matrix we can write as we can
add a set of extra degrees of freedom in two ways: first, by adding a set of fixed
parameters to each of the arguments of the Lax operator which are usually called
inhomogeneities, introduced in the following way

Ta(λ, {ξ}) = L L ,a(λ − ξL)L L−1,a(λ − ξL−1) . . . L1,a(λ − ξ1) ; (5.2.3)

second, by adding a twist matrix K ∈ sl(2), which amount to twist the periodic
boundary conditions,

Ta,K (λ) = K L L ,a(λ)L L−1,a(λ) . . . L1,a(λ) , (5.2.4)

5There are two ways of ordering the Lax operators inside the monodromy matrix, which are equiv-
alent for closed periodic chains. We are going to use the most common in the literature, which can
be found in [4, 5, 13] among other. The opposite ordering, Ta(λ) = L1,a(λ)L2,a(λ) . . . L L ,a(λ),
can be found, for example, in [15].
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although in principle we could have written a more general expression with left and
right twists,

Ta,K1|K2(λ) = K1L L ,a(λ)L L−1,a(λ) . . . L1,a(λ)K2 . (5.2.5)

The left and right twists can be related so we have to care only about having a twist
in one of the ends [16]. Most of the time we will set these inhomogeneities to the
same value and the twists to identity. The transfer matrix is defined as the trace of
the monodromy matrix T (λ) = Tra (Ta(λ)). To prove that it actually generates a
tower of conserved operators we have to introduce the R-matrix.

If we have now twoLax operators that act in the sameHilbert space but in different
auxiliary space, their commutation rule is given by

Ra1a2(λ − μ)Ln,a1(λ)Ln,a2(μ) = Ln,a2(μ)Ln,a1(λ)Ra1a2(λ − μ) , (5.2.6)

which is the quantum version of the definition of the R-matrix (2.1.16). Indeed, there
exists a quantum deformation parameter � such that the the first non-trivial term
of the expansion of the R-matrix around � = 0 can be identified as the classical
R-matrix,6 R = I + �r + . . . , so we can recover the classical R-matrix from the
quantum one [22]. There is a nice and very useful graphical representation of this
formula and the following ones. If we represent the real space by vertical lines and
the auxiliary space by horizontal lines, the pictorial representation of the L and R
matrices take the form displayed in Fig. 5.1. Figure 5.2 represents the RLL equation
using this identification. This pictorial representation also highlights the application
of the Bethe Ansatz to solve problems involving Temperley-Lieb algebras (see, for
example, [23] for an introduction to TL algebras and [24] for its relation with XXZ
spin chains), either using the coordinate version [25] or the algebraic version [26].

Successive applications of the commutation relation (5.2.6) can be used to con-
struct the commutation relation for the monodromy matrix

Ra1a2(λ − μ)Ta1(λ)Ta2(μ) = Ta2(μ)Ta1(λ)Ra1a2(λ − μ) , (5.2.7)

usually called RTT relation (sometimes also called FRT exchange relation [27]).
This relation is the quantum version of Eq. (2.1.18) and from it we can prove the
commutativity of the transfer matrices

[T (λ), T (μ)] = 0 . (5.2.8)

Hence we can start constructing conserved quantities as, for example, logarithmic
derivatives of the transfer matrix at some particular value of the spectral parameter.
Using its pictorial representation, Fig. 5.3, the RTT relation is very easy to prove
from the RLL relation.

6R-matrices that fulfil this property are called quasi-classical [17]. Examples of not quasi-classical
solutions can be found in [18–21].
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Fig. 5.1 Pictorial representation of the Rmatrix and the Lmatrix.We have represented the auxiliary
spaces in black and the physical spaces in gray

Fig. 5.2 Pictorial representation of the RLL equation

Fig. 5.3 Pictorial representation of the RTT equation (or, as referred in [5] “Train argument”)

Coming back to the R-matrix, we want to highlight that it fulfils the Yang–Baxter
equation

Ra1a2(u − v)Ra1a3(u)Ra2a3(v) = Ra2a3(v)Ra1a3(u)Ra1a2(u − v) , (5.2.9)

which, after performing the expansion in the quantum deformation parameter � we
commented before, gives us the classical Yang–Baxter equation (2.1.17)

[r12(u), r13(u + v)] + [r12(u), r23(v)] + [r13(u + v), r23(v)] = 0 . (5.2.10)

The Yang–Baxter equation is represented in Fig. 5.4.
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Fig. 5.4 Pictorial representation of the Yang–Baxter or RRR equation

5.2.2 Solving the Heisenberg Spin Chain with ABA

Now let us present the particular R-matrix, Lax operator and auxiliary space which
we are going to use to describe the XXX Heisenberg spin chain7

Ln,a(λ − ξ) = (λ − ξn) In,a + iPn,a , (5.2.11)

Ra,b = λIa,b + iPa,b , (5.2.12)

where P is the permutation operator P(a ⊗ b)P = b ⊗ a, λ ∈ C is the spectral
parameter andwe have chosen V ∼= Hn

∼= C
2. This is a particular case of the 6-vertex

model, originally introduced by Pauling [28] to account for the residual entropy of
water ice. The 6-vertex model allow us to solve also the XXZ spin chain, however
the XYZ spin chain requires the more general 8-vertex model. For our particular case
we are going to set all inhomogeneities to ξ = i

2 , as this particular value will allow
us to write

Ln,a(λ − i

2
) = λ(In ⊗ Ia) + i

∑

j

(s j
n ⊗ σ j

a ) , (5.2.13)

where s j = 1
2σ

j is the 1
2 representation of the spin operators. At this point it is

important to make a comment about the notation, because some authors use as R-
matrix what we call Ř = PR or has the spectral parameter shifted.8

By direct observation it is evident that the point λ = i
2 is a very particular point,

because it simplifies the Lax operator but it does not make it the identity. We will
use that in our advantage. If we compute the transfer matrix at that point we get,

T
(

i

2

)
= i LTra

{
PL ,aPL−1,a . . .P1,a

}
. (5.2.14)

Using now that Pn,aPm,a = Pm,nPn,a = Pn,mPn,a and Tra {Pi,a} = I, we conclude
that

T
(

i

2

)
= i LP1,2P2,3 . . .PL−1,L = i LU = i Le−i P , (5.2.15)

7In this choice the quantum deformation parameter � is hidden in a re-scaling of the λ and ξ.
8An easy way to distinguish which of the notations an author used is to compute the value of R or
R
λ in the limit λ → ∞, depending on which is finite. An example of the second case can be found
in [6, 29], where Ln,a(λ) = Ra,b = (

λ − i
2

)
I + P and inhomogeneities set to zero.
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where U and P are the shift operator and momentum operator introduced in the
previous section. Therefore T

(
i
2

)
is a conserved charge, as we expected. To compute

the second conserved charge one derivative of T is needed. Using that d Ln,a

dλ
= In,a ,

we get

dT
dλ

∣∣∣∣
λ= i

2

= i L−1
L∑

j=1

Tra
{
PL ,a . . .P j+1,aP j−1,a . . .P1,a

}
, (5.2.16)

dT
dλ

T −1(λ)

∣∣
∣∣
λ= i

2

∝
L∑

j=1

P j, j+1 ∝
L∑

j=1

�s j · �s j+1 ∝ H , (5.2.17)

which is the Hamiltonian of the XXX spin chain. Furthermore, we can also check
that the parallel transport (suitably rescaled) implies the classical spin Hamiltonian

φn+1 = Lnφn

λ
=⇒ φ′(x) = is(x)φ(x)

λ
. (5.2.18)

Now that the equivalence between working with this Lax operator and with the
XXX spin chain is proven, we have to find a way to construct the states and compute
its energy. To do that, a look at the monodromy matrix as a matrix on the auxiliary
space is needed

Ta(λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
, (5.2.19)

where all four operators act on the tensor product of Hilbert spaces of all sites of the
chain. In terms of these operators, the transfer matrix reads T (λ) = A(λ) + D(λ).
If we compute the action of these four operators over the reference state we have
defined in the previous section, |0〉 = |↑↑ . . . ↑〉, we get

A(λ) |0〉 = a(λ) |0〉 =
∞∏

n=1

(λ + i − ξn) |0〉 =
(

λ + i

2

)L

|0〉 , B(λ) |0〉 �= 0 ,

(5.2.20)

D(λ) |0〉 = d(λ) |0〉 =
∞∏

n=1

(λ − ξn) |0〉 =
(

λ − i

2

)L

|0〉 , C(λ) |0〉 = 0 .

(5.2.21)

This suggests us that the C operator might be used as an annihilation operator and
the B operator might be used as a creation operator.

Before seeing if this assumption is correct, we have to write the commutation
relations between the operators of the monodromy matrix. Those are obtained from
the RTT relation (5.2.7). The six interesting for us at this moment are



104 5 Introduction: The Two Bethe Ansätze

[B(λ), B(μ)] = 0 , (5.2.22)

A(λ)B(μ) = f (μ,λ)B(μ)A(λ) + g(λ,μ)B(λ)A(μ) , (5.2.23)

D(λ)B(μ) = f (λ,μ)B(μ)D(λ) + g(μ,λ)B(λ)D(μ) , (5.2.24)

C(μ)A(λ) = f (μ,λ)A(λ)C(μ) + g(λ,μ)A(μ)C(λ) , (5.2.25)

C(μ)D(λ) = f (λ,μ)D(λ)C(μ) + g(μ,λ)D(μ)C(λ) , (5.2.26)

[C(λ), B(μ)] = g(λ,μ) [A(λ)D(μ) − A(μ)D(λ)] , (5.2.27)

where, for convenience, we have introduce the functions

f (λ,μ) = λ − μ + i

λ − μ
, g(λ,μ) = i

λ − μ
, (5.2.28)

f (μ,λ) = λ − μ − i

λ − μ
, g(μ,λ) = −i

λ − μ
. (5.2.29)

The complete list of commutation relations can be found, for example, in Sect. 2.2
of [15] for the XXX spin chain or in Chap. VII of [13] for a general 6-vertex R-
matrix. The first relation tells us that the ordering of the operators defining the state
is irrelevant. The second and the third one tell us how the transfer matrix commutes
with the B operator, giving us two kind of terms: a “wanted” termwhere the operators
conserve their arguments, and an “unwanted” term where they exchange them. For
our states to be eigenstates of the transfer matrix we have to impose the cancellation
of these unwanted terms. The fourth and the fifth one are the same but with the C
operator instead of the B operator. We will comment about the sixth one in the next
section as it will be used for computing scalar products.

Applying now the transfer matrix A(μ) + D(μ) to a general state

|λ1 . . . λM〉 =
M∏

i=1

B(λi ) |0〉 , (5.2.30)

and taking into account these commutation relations, the wanted term and the
unwanted term involving the transfer matrix with argument λ1 (that is, the term
obtained by commutating in an unwanted way A + D with the first B operator but
in a wanted way with the rest of the operators) read

T (μ) |λ1 . . . λM 〉 =

=
⎡

⎣
(

μ + i

2

)L M∏

i=1

λi − μ + i

λi − μ
+
(

μ − i

2

)L M∏

i=1

λi − μ − i

λi − μ

⎤

⎦ |λ1 . . . λM 〉 +

+
⎡

⎣
(

λ1 + i

2

)L M∏

i=1

λi − λ1 + i

λi − λ1
+
(

λ1 − i

2

)L M∏

i=1

λi − λ1 − i

λi − λ1

⎤

⎦ |μλ2 . . . λM 〉 + . . .

(5.2.31)
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It is immediate to see that no other term involving the state |μλ2 . . . λM〉 can appear.
To compute the rest of the unwanted terms we can use the reordering symmetry of
the B operators that allows us to put any factor we want the first. Hence all factors in
front of the unwanted states have the same structure.9 We can rewrite the vanishing
of the unwanted terms as

(
λ j + i

2

λ j − i
2

)L

=
M∏

i=1
i �= j

λi − λ j + i

λi − λ j − i
. (5.2.32)

Note that the equations we are getting here are exactly the condition for the cancel-
lation of the poles of the eigenvalues of the monodromy matrix, which is the first
line of (5.2.31).

The question that arises now is the meaning of the arguments λi , which from now
on we are going to call rapidities. To see their meaning we are going to compute the
eigenvalue of the shift operator U = e−i P = i−LT

(
i
2

)
,

U |λ1 . . . λM 〉 =
M∏

i=1

λi + i
2

λi − i
2

|λ1 . . . λM〉 . (5.2.33)

As this has to hold for any number of operators, rapidity and momentum can be
directly related,

p j = 1

i
ln

(
λ j − i/2

λ j + i/2

)
, (5.2.34)

which gives p ∈ [0, 2π] for real rapidity. If we substitute this relation in the eigenvec-
tor condition, Eq. (5.2.32), we see that it is the same as the Bethe Ansatz Equations
(5.1.22) we have obtained in the previous section. We can also compute the spectrum
of the Hamiltonian using the eigenvalue of the transfer matrix, and in the same way
it is also additive

H |λ1 . . . λM〉 =
M∑

i=1

−2J

λ2
i + 1/4

|λ1 . . . λM〉 . (5.2.35)

If we substitute now the rapidity with the momentum, we get the same answer as for
the coordinate Bethe ansatz, E(p) = 4J (cos p − 1).

However we still have to prove that the B operator is an operator that flips the spin
of the reference state. The easiest way to do that is to find the spin operator in the
monodromy matrix. In particular it doesn’t appear in the expansion around λ = i

2

9This structure is not easy to see if we compute the coefficients by brute force using only com-
mutation relations. Terms involving the state |λ1μλ3 . . .λM 〉 can appear from wanted-unwanted-
wanted-...-wanted or from unwanted-unwanted-wanted-...-wanted sequences and we have to sum
both contributions to get the same answer. So for the state with λi substituted by μ we have to sum
2i−1 terms, making it more difficult to get the general formula via this procedure.
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but in the expansion around λ → ∞,

Ta(λ) = λL

(
I + �s · �σa

λ
+ . . .

)
, (5.2.36)

where �s = ∑L
j=1 �s j = ∑L

j=1
�σ j

2 and the following terms are related with the non-
zero levels of the Yangian symmetry [30].10 Taking RTT relations (5.2.7) in the limit
λ → ∞ we get

[
1

2
�σa + �s, Ta(μ)

]
= 0 =⇒

{
sz B(μ) = B(μ)(sz − 1)
[s+, B(μ)] = A(μ) − D(μ)

, (5.2.37)

which implies that the B operators turns down one spin.
There is also a pictorial way to interpret the state, but we are not going to talk

about it here as it is more complex than the ones we have presented before. Instead
we refer to Fig. 7 of [33].

In the same way we have constructed the states from products of B operators, the
reference state and the Bethe ansatz equations, the dual states can be constructedwith
the dual reference state 〈↑↑ . . . ↑| and products of C operators. It can be checked
that the eigenvector condition gives the same BAE.

In the same way we could have started with the vacuum with all spins pointing
down

∣
∣0′〉 = |↓↓ . . . ↓〉 and applied products of C(ui ) operators. In a spin chain

of finite length there is an isomorphism between both constructions and it can
be shown the equivalente

∏N
i=1 B(ui ) |0〉 ≡ ∏L−N

i=1 C(vi )
∣∣0′〉. The precise relation

between both sets of rapidities can be found, for example, in [34].

5.2.3 The Inverse Scattering Problem and Scalar Products

Wehave seen in the previous section that we can compute quantities like themomenta
and the spectra both in the ABA and the CBA and that we get the same answers. But
there is still one last thing to do: compute the relations between the entries of the
monodromy matrix (the building blocks of the ABA) and the local spin operators
(directly implemented in the CBA). This is the last step of the construction of states

10It was shown independently byDrinfeld [31] and Jimbo [32] that theYang–Baxter equation (5.2.9)
and the RTT relations (5.2.7) are related to the Hopf algebra structures and to the deformations of
universal enveloping Lie algebras. The R-matrix and the Lax matrix appear as representations of
some universal object called universal R-matrix.
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and correlation functions we have presented, sometimes called quantum inverse
scattering method (QISM) for historical reasons relatedwith classical integrability.11

The relation we are looking for was found in [36] using the method of factorizing
F-matrices for the case of the general XXZ inhomogeneous spin chain and later in
[37] for the XYZ homogeneous spin chain using the properties of the R-matrix and
the monodromy matrix. The solution for the inhomogeneous spin chain is

σ+
k =

k−1∏

i=1

(A + D)(ξi ) C(ξk)

L∏

i=k+1

(A + D)(ξi ) , (5.2.38)

σ−
k =

k−1∏

i=1

(A + D)(ξi ) B(ξk)

L∏

i=k+1

(A + D)(ξi ) , (5.2.39)

σz
k =

k−1∏

i=1

(A + D)(ξi ) (A − D)(ξk)

L∏

i=k+1

(A + D)(ξi ) , (5.2.40)

where k is a given site of the spin chain. Instead of the Pauli matrices we can write
the solution in a compact way in terms of the elementary operators Ei j

k , which act
on site k as the 2 × 2 matrices (Ei j )ab = δi

aδ
j
b [38],

Ei j
k =

k−1∏

i=1

(A + D)(ξi ) [Ta(ξk)]i j

L∏

i=k+1

(A + D)(ξi ) . (5.2.41)

As we will show in the next section and mainly in the next chapter, these expressions
will allow us to calculate expectation values of local operators by means of the
Yang–Baxter algebra. A more detailed explanation of the quantum inverse scattering
problem can be found in [38], with an emphasis of its generalization to fundamental
and fused lattice models.

Apart form the explicit form of the operators, we need a method to compute the
scalar products of states. For the case of the CBA it is easy to do that because we
already have an explicit form of the wave function. Therefore we are going to focus
in the computation for the ABA. There is a large amount of literature devoted to this
kind of computation (see, for example, [39] and references therein).

The scalar products we are going to be interested in are defined as

SN ({μ j }, {λk}) = 〈0|
N∏

j=1

C(μ j )

N∏

k=1

B(λk)|0〉 , (5.2.42)

11In classical integrability the direct problem consist on computing a kind of action-angle variables
from the initial conditions and time-evolve them. The inverse problem consist on getting back from
this new variables to the original ones. The reader interested in the topic is refereed to [35].
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where the set of rapidities {λk} is a solution to the Bethe equations (we are going
to denote it as “on-shell Bethe vector”) and {μ j } is an arbitrary set of parameters
(“off-shell Bethe vector”). These scalar products can be constructed as a ratio of two
determinants,12

SN ({μ j }, {λk}) = det T

det V
, (5.2.43)

where T and V are M × M matrices given by

Tab = ∂τ (μb, {λ})
∂λa

, τ (μ, {λ}) = a(μ)

M∏

k=1

λk − μ + i

λk − μ
+ d(μ)

M∏

k=1

λk − μ − i

λk − μ
,

Vab = 1

μb − λa
, det V =

∏
a<b (λa − λb)

∏
j<k (μk − μ j )

∏M
a,k=1 (μk − λa)

. (5.2.44)

An equivalent expression holds if we put the set of C operators on-shell and the set
of B operators off-shell.

If we take the limit μa → λa in these expressions we recover the Gaudin formula
for the square of the norm of a Bethe state [39, 41],

SN ({λk}, {λk}) = i N
∏

j �=k

λ j − λk + i

λ j − λk
det�′({λk}) ,

�′
ab({λk}) = − ∂

∂λb

ln

⎛

⎝a(λa)

d(λa)

∏

c �=a

λa − λc + i

λa − λc − i

⎞

⎠ . (5.2.45)

This way of calculating scalar products is valid for the case of a finite spin chain.
The generalization of these expressions to the thermodynamical limit of very long
chains can be found, for example, in Ref. [42].

We must note that there is a more general expression for computing the scalar
product of two off-shell states [39]. However, we are not going to explicitly write it
here nor use it as it cannot be written as a determinant, only as a sum over partitions,
making it more difficult to handle.

To end this section we are going to propose a way of simplifying a little bit the
computation of the scalar products. To do that we need the following property of the
R and L matrices: the Yang–Baxter and RLL equations define these matrices up to
an scalar factor, therefore we can change our normalization choice without changing
the underlying physics. One good choice is to make, which we are going to use for
the rest of this thesis

Ln,a(λ − ξn) = λ − ξn

λ + i
2

In,a + i

λ + i
2

Pn,a . (5.2.46)

12N. A. Slavnov proved this formula by induction in [40]. There are other ways to prove it, like the
use of the F-basis [36] or by direct application of Eq. (5.2.27).
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This choice makes the eigenvalues of the A and D operators on the reference state

a(λ) = 1 and d(λ) =
(

λ− i
2

λ+ i
2

)L
. Hence we only have to care about one of the factors

and the periodicity condition simplifies to
∏

μ∈{λ} d(μ) = 1.

5.3 Normalization Issues

States in the algebraic and the coordinate Bethe ansatz are normalized differently.
As a consequence, any correlation function evaluated using the ABAwill differ from
the corresponding CBA computation by some global factor. We will see that this
global factor is going to arise from the states not being properly normalized and an
extra global phase.

The simplest correlation function that exhibits this issue is
〈
λ
∣∣σ+

k σ−
l

∣∣λ
〉
. In the

CBA this correlation function is given by eip(l−k). In order to approach the calculation
of this correlator in the ABA we just need to write the spin operators in terms of
elements of the monodromy matrix,

〈
λ
∣∣
∣σ+

k σ−
l

∣∣
∣λ
〉
=
〈
0
∣∣
∣C(λ) (A + D)k−1 B(ξ) (A + D)L−k+l−1 C(ξ) (A + D)L−l B(λ)

∣∣
∣ 0
〉

= e−i p(L−l+k−1)
〈
0
∣∣
∣C(λ) B(ξ) (A + D)L−k+l−1 C(ξ) B(λ)

∣∣
∣ 0
〉

.

(5.3.1)

From the commutation relation (5.2.27) we find that

〈0| C(λ) B(ξ) = i
d(λ)

λ − ξ
〈0| , (5.3.2)

with an identical result for C(ξ) B(λ) |0〉. Recalling that the Bethe ansatz equation
for a single-magnon state, which the normalization presented in Eq. (5.2.46), reads
d(λ) = 1 we conclude that

〈
λ
∣∣σ+

k σ−
l

∣∣λ
〉 = i2eip(l−k+1)

(λ − ξ)2
. (5.3.3)

We can try to solve the disagreement with the CBA dividing this result by the norm
of the state. This can be easily computed using the Gaudin formula (5.2.45),

〈λ|λ〉 = i
∂d

∂λ
= i2L

λ2 − ξ2
. (5.3.4)

Therefore
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〈
λ
∣∣σ+

k σ−
l

∣∣λ
〉

〈λ|λ〉 = eip(l−k)

L

(
λ + ξ

λ − ξ
eip

)
= eip(l−k)

L
, (5.3.5)

which is the result in the CBA provided we divide by the norm of the state in there.
Thus we conclude that indeed both ansätze were not properly normalized.

However we will see that the procedure of dividing the correlation function by the
norm of the states is not enough to cure the disagreement for general cases. We can
easily exhibit that dividing by the norm is not enough if, for instance, we calculate
the form factor

〈
0
∣∣σ+

k

∣∣λ
〉
and divide by

√〈λ|λ〉,
〈
0
∣∣σ+

k

∣∣λ
〉

√〈λ|λ〉 = eipk

√
L

√
λ + ξ

λ − ξ
= eip(k− 1

2 )

√
L

. (5.3.6)

The reason for the additional 1/2 factor is that besides the different normalization
there is also an additional phase which depends on the rapidity (See Ref. [15] for a
discussion on this point).

In order to fix the normalization of states in the ABA with respect to the normal-
ization of states in the CBA we will go back to the definition of the transfer matrix,
Eq. (5.2.3), and apply it to the ground state,

Ln,a |↑〉n =
(
1 i

λ−ξ+i s−
n

0 λ−ξ+i
λ−ξ

)

|↑〉n+1 . (5.3.7)

If we focus on the operator B(λ), we can write13

B(λ) = i

λ + ξ

[

s−
1 + s−

2

(
λ − ξ

λ + ξ

)
+ s−

3

(
λ − ξ

λ + ξ

)2

+ . . .

]

|0〉

= i

λ + ξ

L∑

n=1

s−
n

(
λ − ξ

λ + ξ

)n−1

|0〉 = i

λ − ξ

L∑

n=1

s−
n eipn |0〉 . (5.3.8)

Therefore states with a single magnon in the ABA, |λ〉a, relate to states in the CBA
through

B(λ) |0〉 = |λ〉a = i

λ − ξ
|λ〉c . (5.3.9)

When we repeat this with the state a 〈λ| we conclude that

a 〈λ| = i
d(λ)

λ + ξ
c〈λ| , (5.3.10)

13The operator B(λ), when not applied over the vacuum, has extra terms which are schematically of
the form (s−)n+1(s+)n with 1 ≤ n ≤ L − 1, a combination of rising and lowering operators applied
all at different sites in the lattice with always one more lowering operator than raising operators.
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because for bra states

n〈↑| Ln,a = n+1〈↑|
(

λ−ξ+i
λ−ξ

0
i

λ−ξ+i s+
n 1

)

, (5.3.11)

and therefore14

〈0| C(λ) = 〈0| i

λ + ξ

[

s+
1

(
λ − ξ

λ + ξ

)L−1
+ s+

2

(
λ − ξ

λ + ξ

)L−2
+ s+

3

(
λ − ξ

λ + ξ

)L−3
+ · · ·

]

= 〈0| i d(λ)

λ + ξ

L∑

n=1

s+
n

(
λ − ξ

λ + ξ

)−n
= 〈0| i d(λ)

λ + ξ

L∑

n=1

s+
n e−i pn . (5.3.12)

An identical discussion holds in the case of states with more than one magnon, so in
general we conclude that

|λ1,λ2, . . . ,λN 〉a =
N∏

j=1

i

(λ j − ξ)

∏

i< j

λ j − λi + i

λ j − λi
|λ1,λ2, . . . ,λN 〉c , (5.3.13)

〈λ1,λ2, . . . ,λN |a =
N∏

j=1

i
d(λ j )

(λ j + ξ)

∏

i< j

λ j − λi − i

λ j − λi
〈λ1,λ2, . . . ,λN |c . (5.3.14)

The first factor can be removed by an appropriate normalization of the states, and thus
there will only remain a shift in the position of the coordinates by − 1

2 . The second
factor is related to the fact that CBA states are not symmetric if we interchange two
magnons. In fact theypickup aphasewhich is equal to the S-matrix.On the other hand
ABA states are symmetric under exchange of two magnons. Therefore if we want to
obtain the same result from theCBAand theABAwewill have to normalize carefully
the states. This can be done if we choose the phase in such a way that the correla-

tion functions have the structure
√∏

μi <μ j
Si j · {term symmetric in the rapidities},

for reasons we will explain later.15 Despite being a very ad hoc solution, we are
going to keep this idea in mind.

An alternative argument can be obtained if instead of using B-states to define the
excitations we use Z-states, where16

14Extra terms of the C(λ) operator will have the same structure than the one for the B(λ) operator
but with one more rising operator than lowering operators, (s−)n(s+)n+1.
15Actually there is more freedom in this choice. If we write the S-matrix as S(u, v) = h(u,v)

h(v,u)
, we

can use instead the product
∏

i< j h(μi ,μ j ). Although the easiest choice is h(u, v) = f (u, v), this
function can be redefined by a multiplication by a function symmetric in u and v. In particular
ĥ(u, v) = h(u,v)√

h(u,v)h(v,u)
= √

S(u, v) is another possible choice. We want to thank I. Kostov for
pointing us this fact.
16Here we are going to follow the definition given in [5]. However a different definition was used
in [43].
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Z(λ) = B(λ)A−1(λ) . (5.3.15)

In fact it is natural to use these states because theygenerate aZamolodchikov-Faddeev
algebra [6], that is, the operators commute up to an S-matrix,

Z(λ)Z(μ) = Z(μ)Z(λ)Sμλ = Z(μ)Z(λ)
μ − λ − i

μ − λ + i
. (5.3.16)

Later we will define the Zamolodchikov-Faddeev algebra in more detail, but for the
moment we are going to use this definition as the SU (2) sector does not have any
index structure. Note that in this way states in the ABA will have the same behavior
under the exchange of two magnon states in the CBA.

In order to be able to work with Z -states wewill have first to calculate the commu-
tation relation between the operator A−1 and the B operator. To find this commutator
we will start by taking the commutation relations between A and B,

A(λ)B(μ) =
(
1 − i

λ − μ

)
B(μ)A(λ) + i

λ − μ
B(λ)A(μ) ,

B(μ)A(λ) =
(
1 + i

λ − μ

)
A(λ)B(μ) − i

λ − μ
A(μ)B(λ) .

Now if we left and right-multiply both expressions by A−1(λ), and commute a factor
A(μ)B(λ) arising in the second equation, we obtain

B(μ)A−1(λ) = λ − μ − i

λ − μ
A−1(λ)B(μ) + i

λ − μ
A−1(λ)B(λ)A(μ)A−1(λ) ,

A−1(λ)B(μ) = λ − μ

λ − μ − i
B(μ)A−1(λ) − i

λ − μ − i
A−1(λ)B(λ)A(μ)A−1(λ) .

We also need the action of A−1 over the vacuum state, which can be easily proven
to be trivial. We thus conclude that there is a relationship between the Z -states and
the B-states,

A−1(λ)
∏

i

B(μi ) |0〉 =
∏

i

λ − μ

λ − μ − i

∏

i

B(μi ) |0〉 , (5.3.17)

where we have used that if we have two magnons with the same rapidity the state
must vanish. Therefore

R
[
∏

i

Z(μi ) |0〉
]

=
∏

i< j

μ j − μi

μ j − μi + i

∏

i

B(μi ) |0〉 , (5.3.18)
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where R denotes just an ordering operator in the rapidities. Hence using the
Zamolodchikov-Faddeev states instead of the usual magnon states introduces a phase
shift. In fact this phase is the factor we wanted to introduce ad hoc.

However there could still be a problem if the norm of our states behaves in the
same way. We can exclude this possibility if we introduce the operators F(λ) =
d(λ) D−1(λ) C(λ). To prove that this is the adequate operator we need in order to
define the correct left-state, we first have to calculate the commutation relations of
D with C . Using the same procedure as before we find that

D−1(λ)C(μ) = μ − λ − i

μ − λ
C(μ)D−1(λ) − i

λ − μ
D−1(λ)D(μ)C(λ)D−1(λ) ,

C(μ)D−1(λ) = μ − λ

μ − λ − i
D−1(λ)C(μ) − i

μ − λ − i
D−1(λ)D(μ)C(λ)D−1(λ) .

With these equations at hand we can easily prove that F generates a Zamolodchikov-
Faddeev algebra, F(λ)F(μ) = F(μ)F(λ)Sμλ, and also that

〈0| F(μ)F(λ) = μ − λ

μ − λ − i
〈0| C(λ)C(μ) , (5.3.19)

so that

〈0 |F(μ)F(λ)Z(λ)Z(μ)| 0〉 = (μ − λ)2
〈0 |C(μ)C(λ)B(λ)B(μ)| 0〉

(μ − λ − i)(μ − λ + i)
, (5.3.20)

which is indeed symmetric under exchange of λ and μ as we wanted.17

5.4 BDS Spin Chain

In the introduction Sect. 1.3 we presented the equivalence between the dilatation
operator at one-loop and the Heisenberg spin Hamiltonian.We canmake the exercise
of computing higher-loop order planar diagrams and try to map the new dilatation
operator to another spin chain. The two-loop calculation of the dilatation operator for
the SU (2) sector was performed in [45] by computing only the flavour-permutation
diagrams and determining the term proportional to the identity by imposing the
vanishing of the contribution for the ground state, as it corresponds to a BPS state.
This contribution can be written in terms of the permutation operator we defined in
Sect. 5.2.2

17Although it is very similar to the Zamolodchikov-Faddeev, in reality it is more similar to the
algebra proposed by [44] based on the Yangian double of SU (2). The difference between both
algebras is the commutation relation of the annihilation operators with the creation operators.
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D4 ∝ −4I + 6P −
L∑

k=1

(
Pk,k+1Pk+1,k+2 + Pk+1,k+2Pk,k+1

)
, (5.4.1)

so already at two-loops we have interactions beyond nearest-neighbours. One of the
first things that can be shown is that at a given loop order K the relevant Feynman dia-
grams can only generate permutation structures involving n ≤ K nearest-neighbour,
as each nearest-neighbour permutation is associated with a least one loop in the
underlying Feynman graph.

As we commented before, we were able to perform the analysis of the SU (2)
sector at one-loop because it is what is called closed sector, that is, there is no
mixing with other sectors. The two-loop computation proved that it is also closed at
this level. In fact the SU (2) sector is closed at all loops.18

The first attempt to construct a long-range spin chain to model the all-loop dilata-
tion operator was [46], where it was found that, up to three-loop order, the dilatation
operator in the SU (2) sector may be constructed from the conserved charges of the
Inozemtsevmodel [47, 48]. This proposal lead to an extension to all-loop order made
byBeisert, Dippel and Staudacher [49],who proposed to extend the three-loop SU (2)
Bethe ansatz in a way that matches the prediction of the string sigma model and with
the BMN dispersion relation (1.4.2). This would mean modifying the SU (2) Bethe
Ansatz equations in the following way

eipk L =
(

x+(λk)

x−(λk)

)L

=
M∏

l=1
l �=k

λk − λl + i

λk − λl − i
, (5.4.2)

where

λ = 1

2
cot

p

2

√
1 + 16g2 sin2

p

2
, λ = x + g2

x
, x±(λ) = x(λ ± i/2) . (5.4.3)

All the conserved quantities associated with this spin chain can be written in the form

qr = g2
M∑

i=1

(
i

(x+
i )r−1

− i

(x−
i )r−1

)
, (5.4.4)

being the only exception the momentum, defined above. In particular, the energy is
given by

18This is a consequence of the commutation of the dilatation operator with the Lorentz and R-
symmetry generators, so mixing can only appear between operators with the same R-charges,
Lorentz charges and bare dimensions. Examples of other closed sectors are the SU (2|3) sector
formed by three types of scalars and two types of fermions, and the SU (1, 1) = SL(2) sector
formed by one type of scalar field and covariant derivatives with one type of polarization. The
SO(6) sector we presented in the introduction is only closed at one-loop.
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E = g2
M∑

i=1

(
i

(x+
i )

− i

(x−
i )

)
=

M∑

i=1

(√
1 + 16g2 sin2

pk

2
− 1

)
. (5.4.5)

Those equations were obtained by redefining the coupling constant and the charges
of the Inozemtsev spin chain, therefore this has to be a long-range spin chain by
definition (that is, the Hamiltonian should involve interactions beyond first nearest
neighbours). Interestingly this homogeneous long-range spin chain can bemapped to
a short-range inhomogeneous spin chain up to wrapping corrections. The basic idea
is that the left hand side of equation (5.4.2) can be expanded as a polynomial and the
first L-th terms can be absorbed into the degrees of freedom of the inhomogeneities,
therefore being equivalent up to wrapping order. Hence we can rewrite the Bethe
equations in the following way

L∏

n=1

λ + i − ξn

λ − ξn
=

M∏

l=1
l �=k

λk − λl + i

λk − λl − i
, (5.4.6)

where the inhomogeneities have to be chosen in the following way

ξn = i

2
+ √

2g cos

(
(2n − 1)π

2L

)
. (5.4.7)

Because an inhomogeneous spin chain is easier to handle than a long-range one, we
are going to use this second realization in our following computations.

Shortly after this, Beisert and Staudacher [50] conjectured the SU (1|1) symmetric
S-matrix for the SU (2|1) spin chain19 sector at all loops, and, from the consistency
relations which the nested Bethe ansatz has to satisfy, they conjectured the full
P SU (2, 2|4) Bethe ansatz at all loops. However there is still an element missing
because BMN scaling breaks down at the four-loop order. This is because the S-
matrix is fixed by symmetry and Yang–Baxter up to an scalar factor. The element
missing is the so called dressing phase [51–53]. However we are not going to include
it in our computations.

5.5 The Bootstrap Program. Form Factors

The bootstrap program is a non-perturbative method to construct a quantum field
theory in 1 + 1 dimensions, not from a Lagrangian, but from the symmetries of the
theory and a set of properties we assume the theory fulfils. It can be summed up in
three steps.

19This is because the excitations of a SU (N ) spin chain over the vacuum have a residual SU (N − 1)
symmetry from fixing the vacuum state.
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1. Computing the S-matrix: for that we have to assume unitarity, crossing, an under-
lying symmetry (model dependent), fulfilling of the Yang–Baxter equation (if the
theory is integrable) andmaximal analyticity (sometimes calledLandau property).
The last one means that the two-particle S-matrix is an meromorphic function in
the physical plane (usually called s-plane, where s = (p1 + p2)

2 is the only inde-
pendent Mandelstam variable in 1 + 1 dim., which we are going to analytically
continue to the complex plane) that only has poles and cuts of physical origin. In
particular there has to be two cuts (−∞, 0) and (4m2,∞) with m the mass of the
lightest particle in the theory, so the S-matrix has to be analytic in the segment
[0, 4m2] except for single poles associated to bound states.

2. Computing the generalized form factors: form factors are matrix elements of
local operator evaluated between two asymptotic states, one incoming and one
outgoing. We will talk more about them below.

3. Computing the Wightman functions: they can be computed from form factors
by inserting a complete set of intermediate states. In particular, the two-point
function for a Hermitian operator O(x) is given by

〈0 |O(x)O(0)| 0〉 =
∞∑

n=0

1

n!
∫

dθ1

4π
. . .

dθn

4π
| 〈0 |O(0)| θ1, . . . , θn〉 |2e−i x

∑
pi .

(5.5.1)

And, by the Wightman Reconstruction Theorem, there have to exists a (Wightman)
QFT for which these functions are Wightman distributions [54]. This program has
already been accomplished for some models like the Sine-Gordon model [55, 56],
the Thirring model [57, 58] and the SU(N) Lieb-Lininger model [9]. Concerning the
N = 4 SYM, the first step is already completed. Nowadays we are in the second
step of the program, as we are trying to understand the structure of the form factors
of the theory [59–62].

For local operators, the generalized form factors are defined as

FO
α1...αn

(θ1, . . . , θn) = 〈0 |O(0)| θ1, . . . , θn〉inα1...αn
, (5.5.2)

where αi are possible quantum numbers, and θi are the rapidity variables, defined
as p0 = m sinh θ and p1 = m cosh θ. Therefore if we want a well defined “in” state
we will have to order the rapidities as θ1 > θ2 > · · · > θn . In the same way we can
define form factors using out states,

F̃α1...αn
O (θ1, . . . , θn) = out

α1...αn
〈θ1, . . . , θn |O(0)| 0〉 , (5.5.3)

where the rapidities have to be ordered in the opposite way, that is, θ1 < θ2 < · · · <

θn . These two choices are consistent as the fastest particle starts at the left, interacts
with every other particle, and ends at the right. We will define our form factors
using the in-states because we will see we can write F̃ as a function of F . Maximal
analiticity (taking into account that the segment [0, 4m2] in s has the segment [0, 2πi]
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as image in θ) and LSZ assumptions impose the following constraints to the form
factors:

1. Watson’s equations [63]: they impose the transformation under the permutation
of two variables (giving us how to analytically continue to other orderings of the
rapidities)

FO
...αi αi+1...

(. . . , θi , θi+1, . . . ) =
∑

βi ,βi+1

S
βi βi+1
αi ,αi+1 (θi , θi+1)FO

...βi+1βi ...
(. . . , θi+1, θi , . . . ) .

(5.5.4)
2. Crossing relation; also known as deformed cyclicity. Crossing defines how to

transform an outgoing particle into an ingoing particle

FO
α1...αn

(θ1, θ2, . . . , θn + 2πi) = FO
αnα1...αn−1

(θn, θ1, . . . , θn−1) . (5.5.5)

This equation is a consequence of the mapping between the Mandelstam variable
s and the rapidity θ, as the second one covers two times the first one, so θ maps
to s + 0i while θ + 2πi maps to s − i0.
It is interesting to use both axioms at the same time to write a tensor-valued
Riemann-Hilbert problem,

FO
α1...αn

(θ1, θ2, . . . , θn + 2πi) = FO
β1...βn

(θ1, θ2, . . . , θn)

× Sβnβn−1
αn−1τ1

(θn−1, θn)Sτ1βn−2
αn−2τ2

(θn−2, θn) . . . Sτn−2β1
α1αn

(θ1, θn) . (5.5.6)

where summation over repeated indices is assumed.
3. Decoupling condition or particle-antiparticle poles. This kind of poles appear

when we have a particle-antiparticle pair with opposite momenta, so α2 = ᾱ1

and θ1 = θ2 + iπ. These poles have residue

Resθ1−θ2=iπ FO
α1ᾱ1...αn

(θ1, θ2, . . . , θn) =
= 2i Ĉ1(δ

β3
α3

. . . δβn
αn

− σO
1̄ Sβnγ1

αnα1
Sβn−1γ2

αn−1γ1
. . . Sβ3ᾱ1

α3γn−2
)FO

β3...βn
(θ3, . . . , θn), (5.5.7)

where Ĉ is the charge conjugation transformation and σO
1̄
takes into account the

statistics of the operator with respect to excitation 1̄.
4. Bound state poles. For models with bound states there are additional poles on the

S-matrix with residue Resθ1−θ2=iθ312
S

α′
1α

′
2

α1α2 = �α3
α1α2

�
α′
1α

′
2

α3 . It is sufficient to indicate
these poles in the strip 0 < Im θ < π because the first two axioms can be used
to obtain the rest of them. Then the form factors should have simple poles at this
bound states with residue

Resθi −θi+1=iθbi,i+1
FO

...αi αi+1...
(. . . , θi , θi+1, . . . ) = �αb

αi αi+1
FO

...αb...
(. . . , θbi,i+1, . . . ) .

(5.5.8)
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Note that form factors containing bound states are secondary objects as they
can be obtained as residues of form factors of the main particles of our theory.
Therefore we do not need to compute them.

Finally, not as an axiom but as a consequence of its analytical properties, form
factors of general kind (that is, where the operator is evaluated between non-trivial
in and out states) can be written as an usual form factor as

F
α′

m ,...,α′
1

α1,...,αn (O|θ′
m, . . . , θ′

1|θ1, . . . , θn)

=
m∏

j=1

Cα′
j α

′′
j FO

α′′
m ,...,α′′

1 ,α1,...,αn
(θ′

m − iπ, . . . , θ′
1 − iπ, θ1, . . . , θn)

=
m∏

j=1

Cα′
j α

′′
j FO

α1,...,αn ,α′′
m ,...,α′′

1
(θ1, . . . , θn, θ

′
m + iπ, . . . , θ′

1 + iπ).

This relation provides another way of writing the crossing condition where the cross-
ing is more explicit,

out
ᾱ1

〈p1 |O(0)| p2, . . . , pn〉inα2...αn
=

= Ĉ1σ
O
1 FO

α1...αn
(θ1 + iπ, θ2, . . . , θn) = FO

α2...αnα1
(θ2, . . . , θn, θ1 − iπ)Ĉ1 .

(5.5.9)

A convenient way to construct states that obey these four axioms is to use creation
and annihilationoperators that satisfy theZamolodchikov-Faddeev algebra,20 defined
in the following way

A†
i (u)A†

j (v) = Skl
i j (u, v)A†

l (v)A†
k(u) ,

Ai (u)A j (v) = Si j
kl (u, v)Al(v)Ak(u) ,

Ai (u)A†
j (v) = Sli

jk(v, u)A†
l (v)Ak(u) + δi

jδ(u − v) . (5.5.10)

This set of operators will automatically assure the fulfilling of the first, third and
fourth axioms because they are properties implemented directly by the presence of
the S-matrix. The second axiom comes from the writing of out-states as a function
of in-states, so it is also fulfilled.

We want to end this section by pointing out one of the most important properties
of having form factors that satisfy this set of axioms: the local commutative theorem.
This theorem [67] assures us that two local operators will commute on a space-like
interval if their form factors satisfy these axioms.

20We have already presented the ZF algebra for the SU (2) spin chain in Eq. (5.3.16). However in
this case we need the ZF algebra for a larger group so we have to care about the index structure of
the operators and of the S-matrix. A particular index structure is not widely accepted, so we find
several different choices in the literature [64–66]. Throughout this thesis we are going to follow the
same definition as [67], as it will prove useful later.



References 119

References

1. N.Y. Reshetikhin, A method of functional equations in the theory of exactly solvable quantum
systems. Lett. Math. Phys. 7, 205–213 (1983)

2. Y. Wang, W.-L. Yang, J. Cao, K. Shi, Off-Diagonal Bethe Ansatz for Exactly Solvable Models
(Springer, Berlin, 2015)

3. E.K. Sklyanin, Separation of variables. New trends. Progr. Theor. Phys. Suppl. 118, 35–60
(1995)

4. C. Gómez, G. Sierra, M. Ruiz-Altaba, Quantum Groups in Two-dimensional Physics (Cam-
bridge University Press, Cambridge, 2011)

5. L.D. Faddeev, Algebraic aspects of Bethe-ansatz. Int. J. Mod. Phys. A 10, 1845–1878 (1995)
6. L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in Relativistic Grav-

itation and Gravitational Radiation. Proceedings, School of Physics, Les Houches, France,
September 26–October 6, 1995 (1996), pp. 149–219

7. R.I. Nepomechie, A spin chain primer. Int. J. Mod. Phys. B 13, 2973–2985 (1999)
8. R. Hernández, J.M. Nieto, Correlation Functions and the Algebraic Bethe Ansatz in the

AdS/CFT Correspondence (2014). ArXiv e-prints, arXiv:1403.6651
9. H.M. Babujian, A. Foerster, M. Karowski, The form factor program: a review and new results

- the nested SU (N ) off-shell Bethe ansatz. SIGMA 2, 082 (2006)
10. M. Karbach, K. Hu, G. Muller, Introduction to the Bethe ansatz II. Comput. Phys. 12(6), 565

(1998)
11. D. Berenstein, J. Maldacena, H. Nastase, Strings in flat space and pp waves from N = 4

superYang-Mills. JHEP 04, 013 (2002)
12. H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der lineare Atomkette.

Zeitschrift für Physik 71, 205–226 (1931)
13. V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Cor-

relation Functions (Cambridge University Press, Cambridge, 1993)
14. D. Volin, Quantum integrability and functional equations: applications to the spectral problem

of AdS/CFT and two-dimensional sigma models. J. Phys. A 44, 124003 (2011)
15. J. Escobedo, N. Gromov, A. Sever, P. Vieira, Tailoring three-point functions and integrability.

JHEP, 09, 028 (2011)
16. Y. Jiang, S. Komatsu, I. Kostov, D. Serban, The hexagon in the mirror: the three-point function

in the SoV representation. J. Phys. A 49, 174007 (2016)
17. M. Jimbo, Introduction to the Yang-Baxter equation. Int. J. Mod. Phys. A4, 3759–3777 (1989)
18. H. Au-Yang, B.M. McCoy, J.H.H. Perk, S. Tang, M.-L. Yan, Commuting transfer matrices in

the chiral Potts models: solutions of star-triangle equations with genus>1. Phys. Lett. A 123,
219–223 (1987)

19. R.J. Baxter, J.H.H. Perk, H. Au-Yang, New solutions of the star-triangle relations for the chiral
potts model. Phys. Lett. A 128, 138–142 (1988)

20. V.A. Fateev, A.B. Zamolodchikov, Self-dual solutions of the star-triangle relations in ZN-
models. Phys. Lett. A 92, 37–39 (1982)

21. M. Kashiwara, T. Miwa, A class of elliptic solutions to the star-triangle relation. Nucl. Phys.
B 275, 121–134 (1986)

22. B.A. Kupershmidt, What a classical r-matrix really is. J. Nonlinear Math. Phys. 6, 448–488
(1999)

23. S. Abramsky, Temperley-Lieb algebra: from knot theory to logic and computation via quantum
mechanics, inChapman and Hall/CRC Applied Mathematics and Nonlinear Science (Chapman
and Hall/CRC, 2007), pp. 515–558

24. P.P. Kulish, On spin systems related to the Temperley-Lieb algebra. J. Phys. A, 36, L489–L493
(2003)

25. R.C.T.Ghiotto,A.L.Malvezzi, Bethe ansatz solutions forTemperley-Lieb quantumspin chains.
Int. J. Mod. Phys. A 15, 3395–3425 (2000)

26. R.I. Nepomechie, R.A. Pimenta, Algebraic Bethe ansatz for the Temperley-Lieb spin-1 chain.
Nucl. Phys. B 910, pp. 885–909 (2016)

http://arxiv.org/abs/1403.6651


120 5 Introduction: The Two Bethe Ansätze

27. A. Arnaudon, N. Crampe, A. Doikou, L. Frappat, E. Ragoucy, Analytical Bethe ansatz for
closed and open gl(N )-spin chains in any representation. J. Stat. Mech. 0502, P02007 (2005)

28. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of
atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)

29. A. Zabrodin, Quantum spin chains and integrable many-body systems of classical mechanics,
in Nonlinear Mathematical Physics and Natural Hazards: Proceedings, International School
and Workshop, Sofia, Bulgaria, November 28–December 2, 2013, vol. 163 (2015), pp. 29–48

30. D. Bernard, An introduction to Yangian symmetries. Int. J. Mod. Phys. B 7, 3517–3530 (1993)
31. V.G. Drinfeld, Hopf algebras and the quantumYang-Baxter equation, in Yang-Baxter Equation

in Integrable Systems (World Scientific Pub. Co. Pte. Lt., 1990), pp. 264–268
32. M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys.

10, 63–69 (1985)
33. O. Foda, Y. Jiang, I. Kostov, D. Serban, A tree-level 3-point function in the su(3)-sector of

planar N = 4 SYM. JHEP 10, 138 (2013)
34. N. Gromov, F. Levkovich-Maslyuk, G. Sizov, New construction of eigenstates and separation

of variables for SU(N) quantum spin chains. JHEP 09, 111 (2017)
35. A. Das, Integrable Models (World Scientific Pub. Co. Inc., 1989)
36. N. Kitanine, J.M. Maillet, V. Terras, Form factors of the XXZ Heisenberg finite chain. Nucl.

Phys. B 554, 647–678 (1999)
37. F. Göhmann, V.E. Korepin, Solution of the quantum inverse problem. J. Phys. A 33, 1199–1220

(2000)
38. J.M.Maillet, V. Terras, On the quantum inverse scattering problem.Nucl. Phys. B 575, 627–644

(2000)
39. V.E. Korepin, Calculation of norms of Bethe wave functions. Commun. Math. Phys. 86, 391–

418 (1982)
40. N.A. Slavnov, Calculation of scalar products of wave functions and form factors in the frame-

work of the algebraic Bethe ansatz. Theor. Math. Phys. 79, 502–508 (1989)
41. M. Gaudin, B.M. McCoy, T.T. Wu, Normalization sum for the Bethe’s hypothesis wave func-

tions of the Heisenberg-Ising chain. Phys. Rev. D 23, 417–419 (1981)
42. N. Kitanine, K.K. Kozlowski, J.M. Maillet, N.A. Slavnov, V. Terras, On the thermodynamic

limit of form factors in the massless XXZ Heisenberg chain. J. Math. Phys. 50, 095209 (2009)
43. P.P. Kulish, Representation of the Zamolodchikov-Faddeev algebra. J. Sov. Math. 24, 208–215

(1984)
44. A.A. Hutsalyuk, A.N. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, Current presentation

for the super-Yangian double DY (gl(m|n)) and Bethe vectors. Russ. Math. Surv. 72, 33–99
(2017)

45. D.J. Gross, A. Mikhailov, R. Roiban, A calculation of the plane wave string hamiltonian from
N = 4 super-Yang-Mills theory. JHEP 05, 025 (2003)

46. D. Serban, M. Staudacher, Planar N = 4 gauge theory and the Inozemtsev long range spin
chain. JHEP 06, 001 (2004)

47. V.I. Inozemtsev, On the connection between the one-dimensional S = 1/2 Heisenberg chain
and Haldane-Shastry model. J. Stat. Phys. 59, 1143–1155 (1990)

48. V.I. Inozemtsev, Integrable Heisenberg-van Vleck chains with variable range exchange. Phys.
Part. Nucl. 34, 166–193 (2002)

49. N. Beisert, V. Dippel, M. Staudacher, A novel long range spin chain and planar N = 4 super
Yang-Mills. JHEP 07, 075 (2004)

50. N.Beisert,M. Staudacher, Long-range P SU (2, 2|4)Bethe ansätze for gauge theory and strings.
Nucl. Phys. B 727, 1–62 (2005)

51. N. Beisert, R. Hernández, E. López, A crossing-symmetric phase for Ad S5 × S5 strings. JHEP
11, 070 (2006)

52. N. Beisert, B. Eden, M. Staudacher, Transcendentality and crossing. J. Stat. Mech 01, 01021
(2007)

53. P. Vieira, D. Volin, Review of AdS/CFT integrability, Chap. III.3: the dressing factor. Lett.
Math. Phys. 99, 231–253 (2011)



References 121

54. R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and All That (Princeton University
Press, Princeton, 1989)

55. H. Babujian, A. Fring, M. Karowski, A. Zapletal, Exact form factors in integrable quantum
field theories: the sine-Gordon model. Nucl. Phys. B 538, 535–586 (1999)

56. H. Babujian, M. Karowski, Exact form factors in integrable quantum field theories: the sine-
Gordon model (II). Nucl. Phys. B 620, 407–455 (2002)

57. A. Nakayashiki, Y. Takeyama, On Form Factors of SU(2) Invariant Thirring Model (2002),
pp. 357–390. ArXiv e-prints, arXiv:math-ph/0105040

58. Y. Takeyama, Form factors of SU (N ) invariant Thirring model. Publ. Res. Inst. Math. Sci.
Kyoto 39, 59–116 (2003)

59. T.Klose, T.McLoughlin,Worldsheet form factors inAdS/CFT. Phys. Rev.D 87, 026004 (2013)
60. T. Klose, T. McLoughlin, Comments on world-sheet form factors in AdS/CFT. J. Phys. A 47,

055401 (2014)
61. L.V. Bork, On form factors in N = 4 SYM theory and polytopes. JHEP 12, 111 (2014)
62. Z. Bajnok, R.A. Janik, A. Wereszczynski, HHL correlators, orbit averaging and form factors.

JHEP 09, 050 (2014)
63. K.M.Watson, Some general relations between the photoproduction and scattering of π mesons.

Phys. Rev. 95, 228–236 (1954)
64. V. Caudrelier, M. Mintchev, E. Ragoucy, The quantum nonlinear Schrödinger model with

point-like defect. J. Phys. A 37, 367–375 (2004)
65. P.P. Kulish, Finite-dimensional Zamolodchikov-Faddeev algebra and q-oscillators. Phys. Lett.

A 161, 50–52 (1991)
66. B. Doyon, Integrability. Course on Integrability (London Taught Course Center, 2012)
67. F.A. Smirnov,Form-Factors in Completely Integrable Models of Quantum Field Theory (World

Scientific Pub. Co. Inc., 1992)

http://arxiv.org/abs/math-ph/0105040


Chapter 6
Two-Points Functions and ABA

Taking this point of view, there is a possibility afforded of a
satisfactory, that is, of a useful theory [...], never coming into
opposition with the reality, and it will only depend on national
treatment to bring it so far into harmony with action, that
between theory and practice there shall no longer be that absurd
difference which an unreasonable theory, in defiance of common
sense, has often produced, but which, just as often,
narrow-mindedness and ignorance have used as a pretext for
giving way to their natural incapacity

Carl Von Clausewitz, On War [1], Book II, Chapter II

In this chapter we are going to apply the inverse scattering techniques presented in
the previous chapter to compute correlation functions in general and form factors in
particular. This will provide an understanding of generic correlation functions which
could be employed to shed some light on the spectrum of correlation functions in
the AdS/CFT correspondence.

The ABA and the solution to the inverse scattering problem were first used in
[2] to evaluate three-point functions of scalar operators in N = 4 SYM as inner
products of Bethe states. This lead to the later expressions of structure constants in
terms of some elegant determinant expressions and integrals [3–13, 15–17, 33]. We
will review some of these works in the following chapter.

Wewill consider here the case of correlation functions with spin operators located
at non-adjacent sites in the SU (2) sector ofN = 4 SYM. In the first section we will
present how computations of spin operators are related to scalar products of one on-
shell Bethe state with one off-shell Bethe state. As an example we will compute the
correlation function

〈
λ
∣∣σ+

k

∣∣μ1μ2
〉
. In the second section we will move to the slightly

more difficult computation of correlation functions involving two spin operators.
This will require some care because some apparent singularities have to be removed
for the homogeneous spin chain case, but the final answer has to be finite. Our
method to obtain a finite answer consists on rewriting the problem in a recursive
way. This approach will be the central part of this chapter. The following section will

© Springer International Publishing AG, part of Springer Nature 2018
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be dedicated to the application of this method to the case of three spin operators. In
the fourth section we will repeat the same computation but in the BDS spin chain
presented in Sect. 5.4 by using its inhomogeneous short-range spin representation.
The results presented in this chapter are contained in [18].

6.1 Correlation Functions Involving One Operator

We are going to begin the evaluation of correlation functions of spin operators by
explicitly computing the case of the three-magnon form factor

〈
λ
∣∣σ+

k

∣∣μ1μ2
〉
. At the

end of the section we will explain the extension to form factors with n − 1 outgoing
magnons and n ingoing magnons, as it is a generalization of the computation below.
Using relation (5.2.38) we can bring the problem to a computation in the ABA,

〈
λ
∣∣σ+

k

∣∣μ1μ2
〉a = 〈

0
∣∣C(λ) (A + D)k−1(ξ)C(ξ) (A + D)L−k(ξ) B(μ1) B(μ2)

∣∣ 0
〉

= e−i[(p1+p2)·(L−k)+pλ(k−1)] 〈0 |C(λ)C(ξ) B(μ1) B(μ2)| 0〉 .

(6.1.1)

Note that although λ satisfies the Bethe equations for a single-magnon state, the pair
{λ, ξ} does not define a Bethe state. Therefore to find this form factor we need to
calculate the scalar product of an arbitrary vector with a Bethe state. This can be
done following the recipe we stated in Sect. 5.2.3. The first step is to write (recall
that ξ = i/2 for the Heisenberg chain)

τ (ξ, {μ1,μ2}) = μ1 − ξ + i

μ1 − ξ

μ2 − ξ + i

μ2 − ξ
= μ1 + ξ

μ1 − ξ

μ2 + ξ

μ2 − ξ
,

τ (λ, {μ1,μ2}) = μ1 − λ + 2ξ

μ1 − λ

μ2 − λ + 2ξ

μ2 − λ
+ d(λ)

μ1 − λ − 2ξ

μ1 − λ

μ2 − λ − 2ξ

μ2 − λ
,

(6.1.2)

so that the T and V matrices are given by

T11 = −2ξ

(μ1 − ξ)2
μ2 + ξ

μ2 − ξ
, T21 = μ1 + ξ

μ1 − ξ

−2ξ

(μ2 − ξ)2
,

T12 = −2ξ

(μ1 − λ)2

μ2 − λ + 2ξ

μ2 − λ
+ 2ξ

(μ1 − λ)2

μ2 − λ − 2ξ

μ2 − λ
,

T22 = μ1 − λ + 2ξ

μ1 − λ

−2ξ

(μ2 − λ)2
+ μ1 − λ − 2ξ

μ1 − λ

2ξ

(μ2 − λ)2
,

1

det V
= (μ1 − ξ)(μ1 − λ)(μ2 − ξ)(μ2 − λ)

(λ − ξ)(μ1 − μ2)
, (6.1.3)

where we have used that d(ξ) = 0 and that for a single-magnon the Bethe ansatz
equations imply d(λ) = 1. After some immediate algebra the form factor becomes
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〈
λ
∣∣σ+

k

∣∣μ1μ2
〉a = 16ξ3 ei(p1+p2−pλ)k

(λ + ξ)(μ1 − μ2)

[
μ2 + ξ

(μ1 − ξ)(μ2 − λ)
− μ1 + ξ

(μ2 − ξ)(μ1 − λ)

]
.

(6.1.4)
Now if we want to read this result in the normalization of the CBA we need to recall
the discussion in Sect. 5.3. In the case at hand

〈
λ
∣∣σ+

k

∣∣μ1μ2
〉a = i d(λ)

λ + ξ

μ2 − μ1 + i

μ1 − μ2

1

(μ1 − ξ)(μ2 − ξ)

〈
λ
∣∣σ+

k

∣∣μ1μ2
〉c

. (6.1.5)

Therefore

〈
λ
∣∣σ+

k

∣∣μ1μ2
〉c = ei(p1+p2−pλ)k −2

μ2 − μ1 + i

[
μ2
2 − ξ2

(μ2 − λ)
− μ2

1 − ξ2

(μ1 − λ)

]
. (6.1.6)

Now we have to divide by the norm of the states in both cases, which can be easily
calculated using the Gaudin formula (5.2.45). In the ABA,

〈μ1,μ2|μ1, μ2〉a = 16ξ4L2
[
(μ2 − μ1)

2 − 4ξ2
]

(μ2 − μ1)2
(
μ21 − ξ2

) (
μ22 − ξ2

)

⎛

⎝1 − 2

L
·

(
μ21 + μ22 − 2ξ2

)

[
(μ2 − μ1)2 − 4ξ2

]

⎞

⎠ . (6.1.7)

Recalling again Sect. 5.3, states in the CBA and the ABA are related through

〈μ1,μ2|μ1,μ2〉a =
(

μ2 − μ1 + i

μ1 − μ2

)(
μ2 − μ1 − i

μ1 − μ2

) 〈μ1,μ2|μ1,μ2〉c(
μ2
1 − ξ2

) (
μ2
2 − ξ2

) ,

(6.1.8)
and thus we conclude that

〈μ1,μ2|μ1,μ2〉c = 16ξ4L2

(

1 − 2

L
·

(
μ2
1 + μ2

2 − 2ξ2
)

[
(μ2 − μ1)2 − 4ξ2

]

)

. (6.1.9)

Therefore at leading order the norm contributes with a factor
√
L for each magnon

and it does not contain any momentum dependence. The properly normalized form
factor will be

〈
λ
∣∣σ+

k

∣∣μ1μ2
〉c

√〈λ|λ〉c 〈μ1,μ2|μ1,μ2〉c
= ei(p1+p2−pλ)k

√
L3

2

μ2 − μ1 + i

[
μ2
2 − ξ2

(μ2 − λ)
− μ2

1 − ξ2

(μ1 − λ)

]

×
(

1 − 2

L
·

(
μ2
1 + μ2

2 − 2ξ2
)

[
(μ2 − μ1)2 − 4ξ2

]

)−1/2

. (6.1.10)

At this point there are two important points we should stress. The first one is that
the form factor in the CBA agrees with the computation in the ABA when using
Zamolodchikov-Faddeev states if we also perform the change k → k − 1

2 and we
include a global minus sign. The second one is that our expression for

〈
λ
∣∣σ+

k

∣∣μ1μ2
〉
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(regardless of whether it is the algebraic or the coordinate one), conveniently normal-
ized, is valid to all orders in L provided that we use an expression for the rapidities
valid to all orders in L . We can thus write the rapidities in terms of the momenta,
μ = − 1

2 cot
( p
2

)
and expand in the length of the chain. In the single-magnon state

the momentum is quantized as

pλ = 2πnλ

L
. (6.1.11)

In the two-magnon state the solution to the Bethe equations can be expanded as

p1 = 2πn1
L

+ 4π

L2

n1n2
n1 − n2

+ O (
L−3

)
, p2 = 2πn2

L
− 4π

L2

n1n2
n2 − n1

+ O (
L−3

)
.

(6.1.12)
We conclude that for the case of k = 1

〈
λ
∣∣σ+

k=1

∣∣μ1μ2
〉c = 1√

L3

2nλ(n1 + n2 − nλ)

(nλ − n1)(nλ − n2)

{
1 + 1

L (n1 − n2)2

[
(n21 + n22)

+ 4n21n
2
2

(nλ − n1)(nλ − n2)
+ 2iπ(n1 − n2)(n

2
1 − n22 + n1n2 − nλ(n1 − n2))

]
+ . . .

}
.

(6.1.13)

The leading order term in this expression is the three-particle form factor obtained
in [19] using the CBA with one particle of momentum pλ and two external particles
of momenta p1 and p2. In order to obtain the subleading term we need to take into
account the O(L−3) contributions to p1 and p2.

We can get a more compact result, valid to all orders in L , if we take into account
the trace condition (5.1.24). Then in the two-magnon state we have μ1 = −μ2, and
the Bethe equations can be solved analytically,1

μ1 = −μ2 = −1

2
cot

(
n π

L − 1

)
, n ∈ Z . (6.1.14)

Substituting we obtain

〈
λ
∣∣σ+

k

∣∣μ,−μ
〉c

√〈λ|λ〉c 〈μ,−μ|μ,−μ〉c = e−i pλk

L
√

(L − 1)

2μ(μ + ξ)

μ2 − λ2

= e−2πinλk/L
cot

(
n π
L−1

)

L
√

(L − 1)

2
[
cot

(
n π
L−1

) − i
]

cot2
(

n π
L−1

) − cot2
( nλ π

L

) , (6.1.15)

where n and nλ are integer numbers.

1We impose the trace condition on the two-magnon state rather than on both states, because in this
later case the correlation function becomes zero. From the CFT point of view this happens because
the one-excitation state is not a new primary operator but a descendent of the vacuum.
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The same computation can be carried out for the operatorσ+
k evaluated on on-shell

Bethe states with higher number of magnons. First of all, the left and right (A + D)n

factors act in a known way over the states, as they are Bethe states. Hence the only
difficult step is to compute the scalar product between an on-shell state, {μ}, and
an off-shell state, {{λ}, ξ}, using Eq. (5.2.43). A detailed computation of these form
factors can be found in Sect. 3.1.6 of [20].

Of course, the computation of correlation functions of the operator σ−
k can be

obtained as the conjugate of the computation we have presented in this section. The
way of proceeding for the σz

k operator is a little bit different, but in the following
sectionwe are going to talk about the operatorsσ+

k σ−
k andσ−

k σ+
k that can be evaluated

in a similar way to this one.

6.2 Correlation Functions Involving Two Operators

In the previous section we have described how the ABA can be employed to calculate
correlation functions for one spin operator. However there seems to be problemswith
thismethodwhenwewant to perform computations involving two ormore operators.
This is because most correlation functions have the general form

〈
0
∣∣. . .C(ξ)(A + D)n(ξ) . . .

∣∣ 0
〉

.

Therefore, according to the algebra (5.2.27), whenever we try to commute the (A +
D) operators with the C operator a divergence should appear. In this section we are
going to show that actually there are no divergences at all. We will describe how to
deal with these apparent divergences. We will first show how to proceed in the most
simple case, that is, when we only have the operator C at the left of the (A + D)n

factor. Later on we will extend the computation to more general correlation functions
involving additional factors.

6.2.1 Evaluation of 〈{μ}|σ+
k σ−

k |{λ}〉 (in an Easy Way)

Weare going to start by evaluating the correlation function 〈{μ}|σ+
k σ−

k |{λ}〉. By using
Eq. (5.2.41) we can write

σ+
k σ−

k =
(
1 0
0 0

)

k

= (A + D)k−1(ξ)A(ξ)(A + D)L−k(ξ) . (6.2.1)

As in the previous section, the action of the (A + D)n factors over the Bethe states
are known to give exponential of the momenta,
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〈{μ} ∣∣σ+
k σ−

k

∣∣ {λ}〉 = 〈{μ} |A(ξ)| {λ}〉 ei
∑

i pμi (k−1)−i
∑

i pλi (L−k) . (6.2.2)

Now we can apply the commutation relation (5.2.23) to move the A(ξ) operator
all the way to the right (similarly, we can do it by moving it to the left). Using the
reordering symmetry of the B operators as we did previously to compute Eq. (5.2.31)
we can write

A(ξ) |{λ}〉 =
M∏

i=1

ξ − λi − i

ξ − λi
|{λ}〉 +

M∑

i=1

i

ξ − λi

∏

j �=i

λi − λ j − i

λi − λ j

∣∣∣{λ̂i }, ξ
〉
, (6.2.3)

where {λ̂i } means that the rapidity λi is missing from the set {λ}. If we now apply
this expression to the bra state 〈{μ}|, the first term of the sum will involve the scalar
product between both on-shell states, which means that it will only contribute when
{λ} = {μ}. The rest of the terms will involve the computation of off-shell-on-shell
scalar products. The final answer is then

〈
{μ}

∣∣∣σ+
k σ−

k

∣∣∣ {λ}
〉
= 〈{μ}|{λ}〉

M∏

i=1

ξ − λi − i

ξ − λi
+

M∑

i=1

i
〈
{μ}

∣∣∣{λ̂i }, ξ
〉

ξ − λi

∏

j �=i

λi − λ j − i

λi − λ j
. (6.2.4)

Although at first sight it seems that we can use Eq. (5.2.43) to compute it, there
are some subtleties. To get a better understanding of this formula and some of the
difficulties related with its explicit computation, we are going to see some particular
cases of a low number of magnons. The most trivial case is the empty case {λ} =
{μ} = ∅, which reads

〈
0
∣∣σ+

k σ−
k

∣∣ 0
〉 = 〈0 |A(ξ)| 0〉 = a(ξ) = 1 . (6.2.5)

Which trivially agrees with the result we get using CBA. The first non-trivial case is
the one with a single magnon, which reads

〈
μ
∣∣σ+

k σ−
k

∣∣λ
〉 = 〈μ |A(ξ)| λ〉 eipμ(k−1)−i pλ(L−k) =

= e−i pμ(k−1)−i pλ(L−k)

[
λ + ξ

λ − ξ

i

μ − λ
[d(λ) − d(μ)] + i

ξ − λ

i

μ − ξ
[d(ξ) − d(μ)]

]
.

(6.2.6)

If we impose now the Bethe equations d(λ) = eipλL = d(μ) = eipμL = 1, we find
two well differentiated cases: either λ �= μ and everything but the last term cancels,
or λ = μ and the first term becomes the norm of the state. So the final answer can
be written as

〈
μ
∣∣σ+

k σ−
k

∣∣λ
〉 =

{ −ei(pλ−pμ)k

(λ+ξ)(μ−ξ)
if λ �= μ

L
(λ+ξ)(μ−ξ)

(
1 − 1

L

)
if λ = μ

. (6.2.7)
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The second one is easily comparable with the CBA, because the result can be
expressed as

〈
λ
∣∣σ+

k σ−
k

∣∣λ
〉 = 〈λ|λ〉 (1 − 1

L

)
, which agrees with the CBA. In the

same way, after properly normalizing, we obtain that the case λ �= μ is equal to
ei(pλ−pμ)(k− 1

2 ), which is the same expression that can be obtained using the CBA up
to the already expected shift of half a lattice spacing.

Although the one-magnon case has no problems, the case
〈
λ1λ2

∣∣σ+
k σ−

k

∣∣λ1λ2
〉

already contains some subtleties that will be present for all cases with higher number
of magnons. In particular this computation will involve the calculation of the correla-
tion functions 〈λ1ξ|λ1λ2〉 and 〈ξλ2|λ1λ2〉 which apparently diverge when computed
using the Slavnov determinant (5.2.43). This apparent divergence appears because
this scalar product has already been simplified using the Bethe equations. Therefore
to find the correct answer we have to compute first 〈μ1μ2|λ1λ2〉 as off-shell rapidi-
ties and, without imposing the Bethe equations, take the limits μi −→ {λ1, ξ} and
μi −→ {ξ,λ2} respectively.2

6.2.2 Evaluation of 〈0|σ+
k σ−

l |0〉 (in a Non-easy Way)

Now we are going to repeat the computation from the previous section but instead
of using the definition of σ+

k σ−
k we are going to use the definition of σ+

k and σ−
k

separately. The computation is going to be longer and more cumbersome, but it has
two advantages with respect to the previous one: first, it can be generalized to the
computation of correlation functions of σ+

k σ−
l , that is, where the two operators are

not placed in the same site, which cannot be done with the procedure presented
in the previous section; and second, it is going to lighten us the way to compute
the correlation function of σ+

k σ+
l operator. As we only want to present the basic

computations and the procedure to remove the apparent singularities, we are going
to focus mainly on the easiest correlation function to compute 〈0|σ+

k σ−
l |0〉.

Again, the starting point in the ABA are the relations between local spin operators
in the CBA and the elements of the monodromy matrix. If we recall that (A +
D)(ξi ) |0〉 = |0〉 for the Heisenberg chain, we will need to evaluate

〈0|σ+
k σ−

l |0〉 = 〈0|C(ξ)(A + D)L+l−k−1(ξ)B(ξ)|0〉 . (6.2.8)

In order to evaluate this correlation function we have to commute the operators
(A + D)withC or B using Eq. (5.2.27). However, although it seems that when trying
to commute (A + D)n we should obtain a pole of order n because of the divergence
of the commutation relations when the two rapidities are equal, the residue turns out
to be zero for all n and the expression is finite. In order to understand this cancellation
some care will be needed. Let us first introduce some notation. We will define

2We want to thank N. A. Slavnov for discussions about this subject.
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F L
n (α, δ) = 〈0 |C(ξ + α)O(δ)| 0〉 ,

F L
n+1(α, δ) = lim

β→α
〈0 |C(ξ + α)(A + D)(ξ + β)O(δ)| 0〉 = lim

β→α
f Ln+1(α,β, δ) ,

(6.2.9)

whereO(δ) denotes any operator. The reason for the subindex n is that in all the cases
that we will consider thatO(δ) includes a factor (A + D)n . Then using (5.2.25) and
(5.2.26) we can write

F L
n+1(α, δ) = [

1 + d(ξ + α)
]F L

n (α, δ) + lim
β→α

i

β − α

{[
d(ξ + β) − 1

]F L
n (α, δ)

− [
d(ξ + α) − 1

]F L
n (β, δ)

}
. (6.2.10)

Now if we expand in a Taylor series we find that all terms of order 1/(β − α) cancel
themselves. Therefore we can safely take the limit β → α to get

F L
n+1(α, δ) =

[

1 + d(ξ + α) + i
∂d

∂λ

∣∣∣∣
ξ+α

]

F L
n (α, δ) + i

[
1 − d(ξ + α)

]∂F L
n (α, δ)

∂α
. (6.2.11)

We should stress that in this expression the derivative in α must be understood with
respect to the argument of theC operator. As a consequence it does not act on the rest
of the operators. Thiswill introduce some subtleties in the next step of the calculation.
The idea now is to use (6.2.11) as a recurrence equation to find 〈0|σ+

k σ−
l |0〉. However

this is not straightforward, as it requires information on correlation functions of the
form

〈0 |C(ξ + α)(A + D)(ξ + δ) . . .| 0〉 , (6.2.12)

but returns instead information about correlators of the form

〈0 |C(ξ + α)(A + D)(ξ + α)(A + D)(ξ + δ) . . .| 0〉 . (6.2.13)

We must note also that the argument of the first (A + D) factor in (6.2.13) depends
on α and thus in order to find the correct correlation function we should take the
derivative with respect to α in f Ln+1(α,β, δ), and then take the limit β → α, instead
of taking directly the derivative in F L

n+1(α, δ). Therefore using (6.2.10),

lim
β→α

∂ f Ln+1(α, β, δ)

∂α
= [

1 + d(ξ + α)
]∂F L

n (α, δ)

∂α
+ lim

β→α

i

β − α

{
[
d(ξ + β) − 1

]∂F L
n (α, δ)

∂α

− ∂d(ξ + α)

∂α
F L
n (β, δ) + 1

(β − α)2

[[
d(ξ + β) − 1

]F L
n (α, δ)

−[
d(ξ + α) − 1

]F L
n (β, δ)

]}
. (6.2.14)

The remaining piece of the calculation is similar to the previous one. In this case
after a series expansion we find a pole of order two and a pole of order one, but they
cancel themselves. The final result is
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lim
β→α

∂ f Ln+1(α,β, δ)

∂α
= [

1 + d(ξ + α)
]∂F L

n (α, δ)

∂α
+ i

2

∂2d

∂α2
F L

n (α, δ)

+ i

2

[
1 − d(ξ + α)

]∂2F L
n (α, δ)

∂α2
. (6.2.15)

So far we have proven that when we have one derivative and we commute one
(A + D) factor we get another derivative over the correlation function. In general if
we have m derivatives we get

lim
β→α

∂m f Ln+1(α,β, δ)

∂αm
= [

1 + d(ξ + α)
]∂mF L

n (α, δ)

∂αm
+ i

m + 1

∂m+1d

∂αm+1
F L

n (α, δ)

+ i

m + 1

[
1 − d(ξ + α)

]∂m+1F L
n (α, δ)

∂αm+1
, (6.2.16)

that can be easily proved if we assume that the left-hand side of the equation has no
poles. Under this assumption, when we expand in a Taylor series we only need to
track the terms without a factor β − α,

lim
β→α

∂m f Ln+1(α,β, δ)

∂αm
= [

1 + d(ξ + α)
]∂mF L

n (α, δ)

∂αm

+ lim
β→α

∂m

∂αm

{
i

β − α

[(
d(ξ + β) − 1

)
F L

n (α, δ) −
(
d(ξ + α) − 1

)
F L

n (β, δ)
]}

.

(6.2.17)

The second term on the right hand side of this expression can be written as

lim
β→α

∑

j

(
m

j

)
i

(β − α) j+1 ( j + 1)
·
[

∂ j+1d

∂α j+1

∂m− jF L
n

∂αm− j
− ∂m− j (d − 1)

∂αm− j

∂ j+1F L
n

∂α j+1

]
(β − α) j+1 + . . . ,

where the dots stand for terms proportional to positive powers of (β − α). Now it
is clear that the terms in j are canceled by the terms in m − j − 1. Therefore the
only term surviving is the one with j = m, which does not have a partner. This is
expression (6.2.16).

Let us summarize our results up to this point. We have obtained a complete set of
recurrence equations,

F L
n+1(α) =

[

1 + d(ξ + α) + i
∂d

∂λ

∣∣∣∣
ξ+α

]

F L
n (α) + i

[
1 − d(ξ + α)

]DF L
n (α) ,

DmF L
n+1(α) = [

1 + d(ξ + α)
]DmF L

n (α) + i

m + 1

∂m+1d

∂αm+1
F L

n (α)

+ i

m + 1

[
1 − d(ξ + α)

]Dm+1F L
n (α) ,
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DmF L
0 (α) = ∂mF L

0 (α)

∂αm
, with F(α) = lim

δ→α
F(α, δ) , (6.2.18)

where D is just a convenient notation to refer both to the derivative and the limit,

DmF(α) = lim
δ→α
β→α

∂m f (α,β, δ)

∂αm
. (6.2.19)

Now we are ready to calculate the correlation function provided a starting condi-
tion is given. In our case, using Eq. (5.2.27),3

F L
0 (α) = 〈0 |C(ξ)B(ξ + α)| 0〉 = − i

α

αL

(α + i)L
, (6.2.20)

which takes values F1
0 (0) = 1 and F L>1

0 = 0.
In order to find the only non-vanishing correlation function, which we know

from CBA arguments and the previous subsection to be 〈0|σ+
k σ−

k |0〉 = 1, we have
to calculate F L

L−1(0). Because F L
0 (0) has a zero of order L − 1, the only terms that

can contribute are those which involve a number of derivatives of F L
0 (α) greater

than or equal to L − 1 (other possible terms will require many more derivatives). In
Appendix B we will construct the correlation function F L

n (α) in full generality, but
in this case it is easy to see that

F L
L−1(α) = i L−1

(L − 1)!
∂L−1F L

0 (α)

∂αL−1
+ · · · = i L−1

(L − 1)! · i (L − 1)!
i L

+ O (α) .

(6.2.21)
In the limit α → 0 we conclude that the value of this correlation function is one, as
expected from the CBA.

As we can see, the computations using this technique are longer. However it is
“worth” the effort as we can prove thatF L

n (α) = 0 for 0 ≤ n < L − 1, which cannot
be computed using the procedure from the previous section and agrees with the result
〈0|σ+

k σ−
l |0〉 = 0 when k �= l obtained using the CBA.

6.2.3 Evaluation of 〈0|σ+
k σ+

l |μ1μ2〉

Wewill nowevaluate the correlation function 〈0|σ+
k σ+

l |μ1μ2〉. Using relation (5.2.38)
we can bring again the problem to the ABA,

〈0|σ+
k σ+

l |μ1μ2〉 =
〈
0
∣∣∣(A + D)k−1(ξ)C(ξ)(A + D)n(ξ)C(ξ)(A + D)L−l (ξ)

∣∣∣μ1μ2
〉

, (6.2.22)

3It is important to stress here that this “norm” cannot be computed using the Gaudin determi-
nant (5.2.45) because it assumes the fulfilling of the Bethe equation and |ξ〉 is not a Bethe state.
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where n = L + l − k − 1. The first factor (A + D) acts trivially on the vacuum.
On the contrary, the last factor (A + D) acts on the two magnon state |μ1μ2〉 =
B(μ1) B(μ2) |0〉 and provides a factor e−i(p1+p2)·(L−l) = ei(p1+p2)l , where in the last
equality we have used the periodicity condition for the Bethe roots. The contribution
from the remaining factors can be obtained in a similarway to the previous correlation
function. To continue with the notation introduced in that case, now we will name
correlation functions with n inner factors of (A + D) by GL

n (α),

GL
n (α) = 〈0 |C(ξ + α)On(δ)C(ξ)B(μ1)B(μ2)| 0〉 . (6.2.23)

Aswewill show, the problem can again be solved as a recurrence and thus the starting
point will be to find the initial correlator

GL
0 (α) = 〈0 |C(ξ + α)C(ξ) B(μ1) B(μ2)| 0〉 , lim

α→0
GL
0 (α) = 〈0|σ+

1 σ+
L |μ1μ2〉 ,

(6.2.24)
which is the product of a on-shell Bethe state with an off-shell Bethe state. As
described in Sect. 5.3 we can write

〈0 |C(ξ + α)C(ξ) B(μ1) B(μ2)| 0〉 = det T

det V
. (6.2.25)

Now the functions τ (ξ) and τ (ξ + α) are

τ (ξ, {μ1, μ2}) = μ1 − ξ + i

μ1 − ξ

μ2 − ξ + i

μ2 − ξ
= μ1 + ξ

μ1 − ξ

μ2 + ξ

μ2 − ξ
,

τ (ξ + α, {μ1, μ2}) = μ1 + ξ − α

μ1 − ξ − α

μ2 + ξ − α

μ2 − ξ − α
+ αL

(i + α)L

μ1 − 3ξ − α

μ1 − ξ − α

μ2 − 3ξ − α

μ2 − ξ − α
,

(6.2.26)

and thus the matrices T and V become

T11 = −2ξ

(μ1 − ξ)2
μ2 + ξ

μ2 − ξ
, T21 = ∂τ (ξ, {μ1,μ2})

∂μ2

= μ1 + ξ

μ1 − ξ

−2ξ

(μ2 − ξ)2
,

T12 = −2ξ

(μ1 − ξ − α)2

μ2 + ξ − α

μ2 − ξ − α
+ αL

(i + α)L

2ξ

(μ1 − ξ − α)2

μ2 − 3ξ − α

μ2 − ξ − α
,

T22 = μ1 + ξ − α

μ1 − ξ − α

−2ξ

(μ2 − ξ − α)2
+ αL

(i + α)L

μ1 − 3ξ − α

μ1 − ξ − α

2ξ

(μ2 − ξ − α)2
,

1

det V
= (μ1 − ξ)(μ1 − ξ − α)(μ2 − ξ)(μ2 − ξ − α)

α(μ1 − μ2)
. (6.2.27)

After some algebra we can easily organize GL
0 (α) as an expansion in α,
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GL
0 (α) = (

A0 + αA1 + α2A2 + . . .
) + αL−1

(
BL−1 + αBL + α2BL+1 + . . .

)

+ α2L−1
(
C2L−1 + αC2L + α2C2L+1 + . . .

)
, (6.2.28)

with Aq and BL+q−1 given by4

Aq = 1

μ1 − μ2

μ+
1 μ+

2

μ−
1 μ−

2

[
1

(μ−
1 )q

(μ2 − μ1 + i)

μ−
1 μ+

2

+ 1

(μ−
2 )q

(μ2 − μ1 − i)

μ+
1 μ−

2

]
,

BL+q−1 =
q∑

j=0

i j
(
L + j − 1

j

)
βq− j , (6.2.29)

where we have defined

β0 = BL−1 = 1
i L

1
μ−
1 μ−

2

1
μ1−μ2

(
μ+
2 μ−−−

1 − μ+
1 μ−−−

2

)
,

βq = 1
i L

1
μ1−μ2

1
μ−
1 μ−

2

(
μ+
2 μ−−−

1 −μ+
2 μ−

2
(μ−

2 )q
− μ+

1 μ−−−
2 −μ+

1 μ−
1

(μ−
1 )q

)
, (6.2.30)

with μ
j
i = μi + jξ and Bq = Cp = 0 for q < L − 1 and p < 2L − 1 respectively.

The next step is to find the general form of the correlation function GL
n (α). Using the

recurrence equations (6.2.18) the first terms can be easily calculated for a general
value of α,

GL
1 (α) =

[
1 + d + i

∂d

∂λ

]
GL
0 (α) + i

[
1 − d

]∂GL
0 (α)

∂λ
,

GL
2 (α) =

[

1 + 2d + 2i
∂d

∂λ
+ 2id

∂d

∂λ
+ d2 −

(
∂d

∂λ

)2

− 1

2

∂2d

∂λ2
+ d

2

∂2d

∂λ2

]

GL
0 (α)

+
[
2i − 2id2 − ∂d

∂λ
+ d

∂d

∂λ

]
∂GL

0 (α)

∂λ
− (1 − d)2

2

∂2GL
0 (α)

∂λ2
, (6.2.31)

where d = d(ξ + α) and ∂d
∂λ

= ∂d
∂λ

∣∣
ξ+α

. If we take now the limit α → 0, all the d
and derivatives of d disappear, unless it is a derivative of d of order greater or equal
to L . The computation of GL

n (0) with arbitrary n is a little bit more involved. We
have collected all details in Appendix B. We find

GL
n (0) =

n∑

q=0

(
n

q

)
iqDq

q! GL
0 (α)

∣∣∣∣
α=0

+ θ(n − L)GL
n−L(0) , (6.2.32)

where θ(x) is the Heaviside step function. If we use now expansion (6.2.28) and
perform the derivatives we can write

4Because of periodicity it is unnecessary to write the explicit expression for C .
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GL
n (0) =

n∑

q=0

(
n

q

)
iq

(
Aq + Bq + Cq

) + θ(n − L)GL
n−L(0) . (6.2.33)

Now we are finally ready to evaluate 〈0|σ+
k σ+

l |μ1μ2〉 for different values of n.
The Case n < L − 1

We will first consider the case where n < L − 1, which corresponds to l < k. From
(6.2.33) it is clear that when n < L − 1 the only contribution is from the Aq terms,
that can be easily summed,

n∑

q=0

(
n

q

)
iq Aq = 1

μ1 − μ2

μ+
1 μ+

2

μ−
1 μ−

2

[(
μ+
1

μ−
1

)n
(μ2 − μ1 + i)

μ−
1 μ+

2

+
(

μ+
2

μ−
2

)n
(μ2 − μ1 − i)

μ+
1 μ−

2

]

. (6.2.34)

Recalling now that the rapidities parametrize the momenta, μ+
i /μ−

i = e−i pi ,
Eq. (6.2.22) can be written as

〈
0
∣∣σ+

k σ+
l

∣∣μ1μ2
〉 = 1

μ1 − μ2

μ2 − μ1 + i

μ−
1 μ−

2

[
eip1(k−L)+i p2l + eip2(k−L)+i p1l S21

]
,

(6.2.35)
where we have inserted the S-matrix,

S21 = μ2 − μ1 − i

μ2 − μ1 + i
, (6.2.36)

and we have taken into account that n = L + l − k − 1. Using now the Bethe equa-
tions e−i p1L = eip2L = S21, we find

〈
0
∣∣σ+

k σ+
l

∣∣μ1μ2
〉 = 1

μ1 − μ2

μ2 − μ1 + i

μ−
1 μ−

2

[
ei(p1k+p2l)S21 + ei(p2k+p1l)

]
. (6.2.37)

Note that although this result is only true as long as l < k, we already find that it
corresponds to what we should have obtained from the CBA up to the factor in front
of the bracket. At the end of this section we will see how the normalization proposed
in Sect. 5.3 allows to get rid of this factor.

The Case n = L − 1

Our next step is the calculation of GL
L−1(0), which must be identically zero, because

it corresponds to the case where both operators are located at the same site, k = l. If
we take Eq. (6.2.33), we find that this correlation function can be written as

GL
L−1(0) = i L−1BL−1 +

L−1∑

q=0

(
n

q

)
iq Aq . (6.2.38)
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The second term is already known from the previous calculation. Therefore we only
have to substitute the special value we are interested in and make use of the Bethe
equations to get

L−1∑

q=0

(
L − 1

q

)
iq Aq = − 2

μ−
1 μ−

2

. (6.2.39)

On the other hand

i L−1BL−1 = i

μ1 − μ2

1

μ−
1 μ−

2

(
μ+
1 μ−−−

2 − μ−−−
1 μ+

2

) = 2

μ−
1 μ−

2

. (6.2.40)

Therefore GL
L−1(0) = 0, as we expected from the CBA.

The Case n > L − 1

The last correlation functions that we will evaluate will be those with L − 1 < n <

2L − 1. Obviously, because of periodicity of the spin chain, we expect that GL
n+L(0)

should equal GL
n (0). In order to prove this we will first show that the contribution

from the B terms is going to be
(n−L
q+1

)
i L+qβq . Next we will prove that this coefficient

cancels
∑n

q=0

(n
q

)
iq Aq , and thus we will conclude that GL

n+L(0) = GL
n (0). Let us see

how it goes.
Recalling the expression for Bq in (6.2.29) and performing the sum we find

n∑

q=L−1

(
n

q

)
iq Bq=

n−L+1∑

s=0

s∑

t=0

( n
s+L−1

)(L+t−1
t

)
i s+t+L−1βs−t . (6.2.41)

In order to obtain the coefficient of a particular βq we have to set s − t = q in the
previous expression. For instance, the coefficient of βq is

i L+q−1
n−L−q+1∑

r=0

(
n

L + r + q − 1

)(
L + r − 1

r

)
(−1)r , (6.2.42)

where we have taken r = s − q because all terms with s < q do not contribute to
βq . We can rewrite the sum and the binomial coefficients in a way that will allow us
to use the definition of the hypergeometric function,

n!
(L − 1)!

n−L−q+1∑

r=0

(L + r − 1)!
(L + r + q − 1)!

(
n − L − q + 1

r

)
(−1)r

= 2F1 (L , q − 1 + L − n; L + q; 1) n! = (n − L)!
(q − 1)! , (6.2.43)

where in the last equality we have used Kummer’s first formula,
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2F1

(
1

2
+ m − q,−n; 2m + 1; 1

)
= �(2m + 1)�

(
m + 1

2 + q + n
)

�
(
m + 1

2 + q
)
�(2m + 1 + n)

. (6.2.44)

Therefore there is no contribution from β0. But the rest of the coefficients will con-
tribute with

(n−L
q−1

)
i L+q−1. Now if we use that

∑

α

(
K − L

α

)
iα

(μ−)α
=

(
μ+

μ−

)K−L

, (6.2.45)

together with μ+
1 μ−−−

2 − μ+
1 μ−

1 = μ+
1 (μ2 − μ1 − i), we find that

∑n−L
q=0

(n−L
q

)
i L+qβq

= 1
μ−
1 μ−

2

−1
μ1−μ2

[(
μ+
1

μ−
1

)n−L+1
(μ2 − μ1 − i) +

(
μ+
2

μ−
2

)n−L+1
(μ2 − μ1 + i)

]

.

(6.2.46)

If we now remove the−L factor by extracting a Smatrix, expression (6.2.46) cancels
exactly the contribution from the sum of the A’s in (6.2.34). Finally we conclude that

〈
0
∣∣∣σ+

k σ+
l

∣∣∣μ1μ2
〉

= ei(p1+p2)l

μ1−μ2
1

μ−
1 μ−

2

[
eip1(k−l) (μ2 − μ1 + i) + eip2(k−l) (μ2 − μ1 − i)

]

= 1
μ1−μ2

μ2−μ1+i
μ−
1 μ−

2

[
ei(p1k+p2l) + ei(p2k+p1l) S21

]
, (6.2.47)

which agrees with (6.2.37), but with k and l exchanged because now we are in the
case k < l.

Normalization of the Correlation Function

We should now properly normalize the above correlation functions. Following the
discussion in Sect. 5.3,

〈
0
∣∣σ+

k σ+
l

∣∣μ1μ2
〉ZF = −1

μ−
1 μ−

2

[
ei(p1k+p2l) + ei(p2k+p1l)S21

]
, (6.2.48)

On the other hand, the norm of the states in the ABA is given by (6.1.7), while

〈μ1,μ2|μ1,μ2〉ZF = 16ξ4L2

(
μ2
1 − ξ2

) (
μ2
2 − ξ2

)

(

1 − 2

L
·

(
μ2
1 + μ2

2 − 2ξ2
)

[
(μ2 − μ1)2 − 4ξ2

]

)

.

(6.2.49)
Therefore, we conclude that



138 6 Two-Points Functions and ABA

( 〈
0
∣∣σ+

k σ+
l

∣∣μ1μ2
〉

√〈μ1,μ2|μ1,μ2〉

)ZF

= eip1(k− 1
2 )+i p2(l− 1

2 ) + eip2(k− 1
2 )+i p1(l− 1

2 )S21
L

×
(

1 − 2

L
·

(
μ2
1 + μ2

2 − 2ξ2
)

[
(μ2 − μ1)2 − 4ξ2

]

)−1/2

. (6.2.50)

Now, as in the case of the form factor calculated in the previous section, we can
take into account the trace condition (5.1.24). When we replace the rapidities from
Eq. (6.1.14) in these expressions, after some immediate algebra we obtain

L

(〈
0
∣∣σ+

k σ+
l

∣∣μ,−μ
〉

√〈μ,−μ|μ,−μ〉

)ZF

= 2

√
L

L − 1
cos

(
(2|l − k| − 1)πn

L − 1

)
, (6.2.51)

with |l − k| ≤ L − 1. This result extends the analysis in reference [2], where this
correlation function was calculated for the cases l − k = 1 and l − k = 2 (we have
written the factor L on the left hand side of (6.2.51) to follow conventions in there).

Higher Number of Magnons

The method we have presented can still be applied to evaluate correlation functions
with more than 2 magnons. The next easiest case is the correlation function with
1+3 magnons, that is,

〈
λ
∣∣σ+

k σ+
l

∣∣μ1μ2μ3
〉
. However we will see that this computation

requires information about the
〈
0
∣∣σ+

k σ+
l σ+

m

∣∣μ1μ2μ3
〉
correlation function. Hence we

are going to begin the computation here by proving that statement and leave the full
computation for the next subsection.

We will start by using relation (5.2.38) on
〈
λ
∣∣σ+

k σ+
l

∣∣μ1μ2μ3
〉
,

〈λ|σ+
k σ+

l |μ1μ2μ3〉 =
〈
0
∣∣C(λ)(A + D)k−1(ξ)C(ξ)(A + D)n(ξ)C(ξ)(A + D)L−l(ξ)

∣∣μ1μ2μ3
〉

,

(6.2.52)

where as before n = L + l − k − 1. The factor (A + D)k−1 acts on C(λ) to give
e−i pλ(k−1), and the factor (A + D)L−l acts on the three-magnon state to give
e−i(p1+p2+p3)·(L−l) = ei(p1+p2+p3)l , where in the last equality we have used the peri-
odicity condition for the Bethe roots. Therefore our main problem will be to find the
correlation function

HL
n (α) = 〈

0
∣∣C(λ)C(ξ + α)(A + D)n(ξ)C(ξ)B(μ1)B(μ2)B(μ3)

∣∣ 0
〉

. (6.2.53)

Following the procedure that we have developed in the previous section this can be
done by relating HL

n+1(α) toHL
n (α). In order to do this let us start by introducing

HL
n+1(λ,α, δ) = lim

β→α
〈0 |C(λ)C(ξ + α)(A + D)(ξ + β)O(δ)| 0〉 . (6.2.54)
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Nowwe just need to apply the commutation relations (5.2.25) and (5.2.26) two times
in each step to get

HL
n+1(λ, α, δ) = lim

β→α

{[
1 + d(ξ + β)

]HL
n (λ, α, δ)

− i

λ − ξ − β

[
(d(ξ + β) − 1)HL

n (λ,α, δ) − (d(λ) − 1)HL
n (ξ + β, α, δ)

]

− i

α − β

[
(d(ξ + β) − 1)HL

n (λ, α, δ) − (d(ξ + α) − 1)HL
n (λ,β, δ)

]

+ i

α − β

i

λ − ξ − β

[
(d(ξ + β) + 1)HL

n (λ,α, δ) − (d(λ) + 1)HL
n (ξ + β,α, δ)

]

− i

α − β

i

λ − ξ − α

[
(d(ξ + α) + 1)HL

n (λ,β, δ) − (d(λ) + 1)HL
n (ξ + β,α, δ)

] }
. (6.2.55)

Taking the limit and applying the Bethe equation for the rapidity λ we obtain

HL
n+1(λ,α, δ) =

(
1 + d + i∂d + ∂d − i(d − 1)

λ − ξ − α
+ d + 1

(λ − ξ − α)2

)
HL

n (λ,α, δ)

+
[
i(1 − d) − d + 1

λ − ξ − α

]∂HL
n (λ,α, δ)

∂α
− 2

(λ − ξ − α)2
HL

n (ξ + α,α, δ) ,

(6.2.56)

where again d = d(ξ + α) and ∂d = ∂d
∂λ

∣∣
ξ+α

. The next step of the calculation is
a little bit more involved than in the previous cases because according to (6.2.56)
information about both functionsHL

n (λ,α, δ) andHL
n+1(ξ + α,α, δ) is now needed.

This will turn the computation slightlymore difficult but still manageable. For conve-
nience in the expressions below we will defineHL

n+1(α + ξ,α, δ) = ĤL
n+1(α,α, δ).

This function Ĥ has a nice interpretation because

〈
0
∣∣∣σ+

k σ+
k+1σ

+
k+n+2

∣∣∣μ1μ2μ3
〉
=

〈
0
∣∣∣C(ξ)C(ξ)(A + D)n(ξ)C(ξ)(A + D)L−n−k−2(ξ)

∣∣∣μ1μ2μ3
〉

= ĤL
n e

i(p1+p2+p3)(n+k+2) . (6.2.57)

This proves our previous statement. When computing correlation functions having
a magnon in the bra state some terms will have those magnons changed into an
inhomogeneity as a consequence of the commutation relations, whichmakes difficult
to perform computations.

We could think that, as form factors should satisfy the axioms presented in
Sect. 5.5, the crossing transformation will simplify these kind of computations as
shown in Eq. (5.5.9). However, this is not possible for our computation because the
crossing condition requires to know the particle-antiparticle transformation, which
is hidden in the perturbative expansion.5

5From the point of view of the AdS/CFT correspondence, this can be seen as the degeneration of
the torus that uniformized the magnon dispersion relation at weak-coupling when one of the periods
becomes infinitely large, thus forbidding us the access to the crossing transformation.
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6.3
〈
λ

∣∣σ+
k σ+

l

∣∣ μ1μ2μ3
〉
and Correlation Functions

Involving Three Operators

Extracting information about correlation functions becomes a challenge as the num-
ber of magnons increases. The method that we have developed along these sections
can however still applied to evaluate correlations functions involving any number of
magnons but it might require to trade higher number of magnons by higher number
of operators, as seen in the previous section. In this section we are going to compute
the correlation function

〈
0
∣∣σ+

k σ+
k+1σ

+
k+n+2

∣∣μ1μ2μ3
〉
and, with this information, finish

the computation of
〈
λ
∣∣σ+

k σ+
l

∣∣μ1μ2μ3
〉
.

Our starting point is thus to find the recursive equation for Ĥ. This can be obtained
setting λ = ξ + β in expression (6.2.55) and taking the limit β → α,

ĤL
n+1(α, α, δ) = lim

β→α

1

β − α

[
(1 + d)

∂ĤL
n (λ, α, δ)

∂λ

∣∣∣∣∣
λ=α

− (1 + d)
∂ĤL

n (α, λ, δ)

∂λ

∣∣∣∣∣
λ=α

]

+ (
1 + d + 2i∂d − 1

2
∂2d

) ĤL
n (α, α, δ) + [

2i(1 − d) + ∂d
] ∂ĤL

n (λ, α, δ)

∂λ

∣∣∣∣∣
λ=α

+ 1 + d

2

∂2ĤL
n (λ, α, δ)

∂λ2

∣∣∣∣∣
λ=α

− (1 + d)
∂2ĤL

n (λ1,λ2, δ)

∂λ1∂λ2

∣∣∣∣∣λ1=α
λ2=α

. (6.3.1)

Note that although the first term in this expression seems divergent, it vanishes
because of the commutation of the C operators, which makes the two derivatives
equal. However, this method of calculating recursively Ĥ(α,α, δ) is going to create
more problem than it solves, because it will imply calculating the recurrence equation
of derivative of Ĥ(λ,μ) with respect to either the first or the second argument.
Therefore we are going to give the recursion relation of Ĥ(β,α, δ) but without
taking the limit β → α. To obtain this recurrence relation we only need to substitute
λ = ξ + β in Eq. (6.2.56), but without imposing d(λ) = 1, as now it is not a solution
of the BAE,

ĤL
n+1(β,α, δ) =

(
1 + d + i∂d + ∂d − i(d − 1)

β − α
+ d + 1

(β − α)2

)
ĤL

n (β, α, δ)

+
[
i(1 − d) − d + 1

β − α

]∂ĤL
n (β, α, δ)

∂α
+

[
i(d ′ − 1)

β − α
− d ′ + 1

(β − α)2

]
lim

γ→α
ĤL

n (γ, α, δ) , (6.3.2)

where d ′ = d(ξ + β). Note that if we take β → α Eq. (6.3.2) gives (6.3.1). Now in
the recurrence relation we need to include limβ→α ĤL

n (β,α, δ), but this quantity is
obviously known once we know ĤL

n (β,α, δ).
We also need a recurrence equation for the derivatives. For the case of Hn we

have
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DnHL
m+1(λ,α, δ) = (1 + d)DnHL

m − i

λ − ξ − α

[
(d − 1)DnHL

m

]

+ i

n + 1
(∂n+1d)HL

m + (1 − d)
i

n + 1
Dn+1HL

m

+
n∑

k=0

k+1∑

l=0

n!
(n − k)!(k + 1 − l)!

1

(λ − ξ − α)l+1

[
∂k+1−l(d + 1)Dn−kHL

m

−(d(λ) + 1)Dn−k
1 Dk+1−l

2 ĤL
m

]

−
n∑

k=0

n−k∑

l=0

n!
(k + 1)!(n − l − k)!

1

(λ − ξ − α)l+1

[
∂n−k−l(d + 1)Dk+1HL

m

−(d(λ) + 1)Dn−k−l
1 Dk+1

2 ĤL
m

]
. (6.3.3)

The last two sums cancel themselves except for the terms with k = n. Therefore

DnHL
m+1(λ,α, δ) = (1 + d)DnHL

m − i

λ − ξ − α
(d − 1)DnHL

m

+ i

n + 1
(∂n+1d)HL

m + (1 − d)
i

n + 1
Dn+1HL

m

+
n+1∑

l=0

n!
(n + 1 − l)!

1

(λ − ξ − α)l+1

[
∂n+1−l(d + 1)HL

m − 2Dn+1−lĤL
m

]

− 1

n + 1

1

(λ − ξ − α)

[
(d + 1)Dn+1HL

m − 2Dn+1ĤL
m

]
, (6.3.4)

where we have used that d(λ) = 1. In a similar way we can obtain an expression for
the derivatives of Ĥ,

DnĤL
m+1(β, α, δ) = (1 + d)DnĤL

m − i

β − α
(d − 1)DnĤL

m

+ i

n + 1
(∂n+1d)ĤL

m + (1 − d)
i

n + 1
Dn+1ĤL

m + i

β − α
(d ′ − 1) lim

γ→α

∂nĤL
n (γ, α, δ)

∂αn

+
n+1∑

l=0

n!
(n + 1 − l)!

1

(β − α)l+1

[

∂n+1−l (d + 1)ĤL
m − (d ′ + 1) lim

γ→α

∂n+1−lĤL
m (γ, α, δ)

∂αn+1−l

]

− 1

n + 1

1

(β − α)

[

(d + 1)Dn+1ĤL
m − (d ′ + 1) lim

γ→α

∂n+1ĤL
m (γ, α, δ)

∂αn+1

]

. (6.3.5)

At this point the problem is, at least formally, solved.We have found the recursion
relation for Ĥ and its derivatives, with 〈0 |C(ξ + β)C(ξ + α)(ξ)C(ξ)| μ1μ2μ3〉 =
ĤL

0 (β,α) as the initial condition. These functions can then be substituted in the
recursion relation for H and thus we can obtain the desired correlation function.
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However, we are not going to present the general form for the correlation function
HL

n as function of HL
0 , ĤL

0 and their derivatives because, although straightforward,
it becomes rather lengthy. This is because when we substitute the expression for the
derivatives the recursion relations turn to depend on all theHi with 0 ≤ i ≤ n, even
after taking the limit α → 0. Instead we can present the case of correlation functions
with n small, to exhibit the nested procedure needed to write the result in terms of
the initial functionsHL

0 and ĤL
0 . In particular we are going to consider the first three

functions, with n = 1, n = 2 and n = 3. Thus we can safely assume that n < L − 1
so that all the d and ∂kd factors can be set to zero in the limit α → 0. The first of
these correlation functions is given by

HL
1 = (

1 + ic(λ) + c(λ)2
)HL

0 + (
i − c(λ)

) ∂HL
0 (λ,α)

∂α

∣∣∣∣
α=0

− 2c(λ)2 ĤL
0 ,

(6.3.6)
where for convenience we have defined c(λ) = 1/(λ − ξ). For simplicity, if no argu-
ments of this functions are given, HL(λ, 0) and ĤL(0, 0) must be understood. The
last step of the computation reduces to calculating some initial conditions, which
now are

HL
0 (λ,α) = 〈0 |C(λ)C(ξ + α)C(ξ)B(μ1)B(μ2)B(μ3)| 0〉 , (6.3.7)

ĤL
0 (α,β) = HL

0 (ξ + α,β) . (6.3.8)

These functions can be easily computed using Eq. (5.2.44). Howeverwe are not going
to present the explicit expression for these scalar products because of its length and
becausewewant to show theway to solve the recurrence relation rather than obtaining
the explicit value of the correlation function.

The functional dependence of H1 on H0 is repeated for a given value of n and
the lower correlator. That is, in the limit α → 0 the recurrence relation for HL

n+1 is
given by

HL
n+1 = (

1 + ic(λ) + c(λ)2
)HL

n + (
i − c(λ)

)DHL
n − 2c(λ)2Ĥn . (6.3.9)

Therefore for the second correlation function we have

HL
2 = (

1 + ic(λ) + c(λ)2
)HL

1 + (
i − c(λ)

)DHL
1 − 2c(λ)2Ĥ1 . (6.3.10)

As we already know HL
1 , it only remains to find the other two functions entering

(6.3.10). This can be done using the previously obtained equations. We get

DHL
1 = c(λ)3HL

0 + (1 + ic(λ))
∂HL

0 (λ, α)

∂α

∣∣∣∣∣
α=0

+ i(1 + ic(λ))

2

∂2HL
0 (λ,α)

∂α2

∣∣∣∣∣
α=0

− 2c(λ)3ĤL
0 − 2c(λ)2

∂ĤL
0 (0, α)

∂α

∣∣∣∣∣
α=0

, (6.3.11)
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ĤL
1 (β, 0) =

(
1 + i

β
+ 1

β2

)
ĤL

0 (β, 0) +
[
i − 1

β

] ∂ĤL
0 (β, α)

∂α

∣∣∣∣∣
α=0

−
[
i

β
+ 1

β2

]
ĤL

0 , (6.3.12)

ĤL
1 = ĤL

0 + 2i
∂ĤL

0 (0, α)

∂α

∣∣∣∣∣
α=0

+ 1

2

∂2ĤL
0 (0, α)

∂α2

∣∣∣∣∣
α=0

− ∂2ĤL
0 (α, β)

∂α∂β

∣∣∣∣∣α=0
β=0

, (6.3.13)

which reduce again to some dependence on the initial conditions we have described
before.

An identical computation can be done forHL
3 ,

HL
3 = (

1 + ic(λ) + c(λ)2
)HL

2 + (
i − c(λ)

)DHL
2 − 2c(λ)2Ĥ2 . (6.3.14)

Now, besides HL
2 , that has been calculated just above this lines, we need

DHL
2 = c(λ)3HL

1 + (1 + ic(λ))DHL
1 + i(1 + ic(λ))

2
D2HL

1

− 2c(λ)2
(
c(λ)ĤL

1 + DĤL
1

)
, (6.3.15)

D2HL
1 = 2c(λ)4HL

0 + (1 + ic(λ))
∂2HL

0 (λ, α)

∂α2

∣∣∣∣∣
α=0

+ i(1 + ic(λ))

3

∂3HL
0 (λ,α)

∂α3

∣∣∣∣∣
α=0

− 4c(λ)4ĤL
0 − 4c(λ)3

∂ĤL
0 (0, α)

∂α

∣∣∣∣∣
α=0

− 2c(λ)2
∂2ĤL

0 (0, α)

∂α2

∣∣∣∣∣
α=0

, (6.3.16)

DĤL
1 = ∂ĤL

0 (0, α)

∂α

∣∣∣∣∣
α=0

+ i

2

∂2ĤL
0 (0, α)

∂α2

∣∣∣∣∣
α=0

+ i
∂2ĤL

0 (α, β)

∂α∂β

∣∣∣∣∣α=0
β=0

+ 1

3!
∂3ĤL

0 (0, α)

∂α3

∣∣∣∣∣
α=0

− 1

2

∂3ĤL
0 (α, β)

∂α∂β2

∣∣∣∣∣α=0
β=0

, (6.3.17)

ĤL
2 = ĤL

0 + 4i
∂ĤL

0 (0, α)

∂α

∣∣∣∣∣
α=0

− 4
∂2ĤL

0 (α, β)

∂α∂β

∣∣∣∣∣α=0
β=0

+ i

2

∂3ĤL
0 (0, α)

∂α3

∣∣∣∣∣
α=0

− 3i

2

∂3ĤL
0 (α, β)

∂α∂β2

∣∣∣∣∣α=0
β=0

− 1

3!
∂4ĤL

0 (α, β)

∂α∂β3

∣∣∣∣∣α=0
β=0

+ 1

2!2
∂4ĤL

0 (α, β)

∂α2∂β2

∣∣∣∣∣α=0
β=0

. (6.3.18)

The cases with higher values of n can be obtained along similar lines.
To conclude our analysis we will brief comment on the calculation of correlation

functions
〈
0
∣∣σ+

k σ+
l σ+

m

∣∣ {μ}〉, with general values of k, l and m. The initial condition
we would obtain from the determinant expression of the on-shell-off-shell scalar
product (5.2.43) would be

〈
0
∣∣σ+

l−1σ
+
l σ+

l+1

∣∣ {μ}〉. With the procedure explained in this
section we can separate the lattice point in which the second and the third operator
act, obtaining

〈
0
∣∣σ+

l−1σ
+
l σ+

m

∣∣ {μ}〉. Note that in this case the value of n in ĤL
n will be

proportional to the separationbetween l andm.However it still remains to separate the
first and second operator. This last step can be solved using the tools from Sect. 6.2.3,
as now the problem only involves commuting a set of monodromy matrices through
the first C operator.
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6.4 The Long-Range Bethe Ansatz

In this section we are going to apply the method that we have developed along
this paper to the long-range BDS spin chain [29]. This can be done quite easily
because in most of our previous expressions we have kept general the homogeneous
point. As we saw in Sect. 5.4, the long-range BDS spin chain can be mapped into an
inhomogeneous short-range spin chain, with the inhomogeneities located at

ξn = i

2
+ √

2g cos

(
(2n − 1)π

2L

)
≡ ξ + gκn . (6.4.1)

Therefore it is rather simple to extend all computations above to the inhomogeneous
short-range version of the long-range BDS Bethe ansatz. Let us start with the com-
putations done in Sect. 5.3 for the XXX spin chain. The normalization factor for the
operator B(λ) is straightforward to compute given the expressions from that section,

B(λ) =
L∑

n=1

is−
n

λ − ξn

(
n∏

l=1

λ − ξl

λ − ξl + i

)

+ . . . . (6.4.2)

We conclude therefore that in the inhomogeneous Bethe ansatz the difference in
normalization between the ABA and the CBA depends on the site where the spin
operator acts. An analogous result follows for the operator C(λ).

Another example of computation that we can readily extend to the BDS Bethe
ansatz is the calculation of scalar products. This is immediate because the solution
to the inverse scattering problem in expressions (5.2.38)–(5.2.40) is valid for an
inhomogeneous spin chain. Furthermore Eqs. (5.2.43) and (5.2.44) can be directly
used without modifications. An immediate example is the calculation of the form
factor of the single-magnon state,

〈
0
∣∣σ+

k

∣∣λ
〉 = i

λ − ξ − gκk

k∏

j=1

λ − ξ − gκ j

λ + ξ − gκ j
, (6.4.3)

which as in the case of the homogeneous spin chain should also be divided by the
norm

√〈λ|λ〉 =
√

i
∂d

∂λ
= i

√√√√d(λ)

L∑

m=1

1

(λ − ξ − gκm)(λ + ξ − gκm)
. (6.4.4)

The limit g → 0 reduces to the result in Sect. 5.3. In an identical way we can extend
the analysis to the correlation functions obtained in Sect. 6.2. For instance,
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〈
0
∣∣σ+

k σ+
k+1

∣∣μ1μ2
〉
Z =

[
μ1 + ξ − gκk

μ1 − ξ − gκk+1

μ2 + ξ − gκk+1

μ2 − ξ − gκk
− (μ2 ↔ μ1)

]

× 1
[
g(κk+1 − κk)(μ1 − μ2)

]
k∏

j=1

μ1 − ξ − gκ j

μ1 + ξ − gκ j

μ2 − ξ − gκ j

μ2 + ξ − gκ j
. (6.4.5)

The norm is now given by

√〈μ1μ2|μ1μ2〉Z = 2

(μ2 − μ1)2 − 4ξ2

∑

j

[
1

(μ1 − gκ j )
2 − 4ξ2

+ 1

(μ2 − gκ j )
2 − 4ξ2

]

−
∑

j

∑

k

1
[
(μ1 − gκ j )

2 − 4ξ2
][

(μ2 − gκk )2 − 4ξ2
] . (6.4.6)

We should stress that an important difference when comparing with the homo-
geneous XXX Heisenberg spin chain in the previous sections is that because all the
inhomogeneities are different the commutation of factors (A + D) does not lead now
to any of the apparent divergences we had to deal with in previous sections. Therefore
we do not have to make use of the procedure we have developed along this chapter.
For instance, the correlation function

〈
0
∣∣σ+

k σ+
k+2

∣∣μ1μ2
〉
can be calculated by direct

use of the commutation relations (5.2.27),

〈
0
∣∣σ+

k σ+
k+2

∣∣μ1μ2
〉 = 〈0 |C(ξk)(A + D)(ξk+1)C(ξk+2)B(μ1)B(μ2)| 0〉 p(k + 2)

=
[
ξk − ξk+1 + i

ξk − ξk+1
GL
0 (k, k + 2) + i

ξk+1 − ξk
GL
0 (k + 1, k + 2)

]
eiP (k+2) =

(6.4.7)

=
[
GL
0 (k, k + 2) + i

ξk+1 − ξk

[GL
0 (k+, k + 2) − GL

0 (k, k + 2)
]]

eiP (k+2) ,

(6.4.8)

where the correlation function GL
0 (k, l) = 〈0|C(ξk)C(ξl)|μ1μ2〉 can be computed

using expressions (5.2.43) and (5.2.44) for the scalar product. The factor eiP (k+2),
given by

eiP (l) =
l∏

j=1

μ1 − ξ − gκ j

μ1 + ξ − gκ j

μ2 − ξ − gκ j

μ2 + ξ − gκ j
, (6.4.9)

collects the contribution from the momenta, as it is easy to see that in the limit g → 0
becomes the ei(pμ1+pμ2 )l factor.Wecan in fact extend rather easily expression (6.4.8) to
the case where the spin operators are located at arbitrary sites, 〈0|σ+

k σ+
l |μ1μ2〉. As all

factors (A + D) have different arguments, they can be trivially commuted. Therefore
the correlation function must be invariant under exchange of the inhomogeneities,
except for the factors coming from the correlators GL

0 (k, l). We find
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〈
0
∣∣σ+

k σ+
l

∣∣μ1μ2
〉 = 〈0 |C(ξk)

l−1∏

j=k+1

(A + D)(ξ j )C(ξl)B(μ1)B(μ2) |0〉 eiP (l) =

=
⎡

⎣
l−1∏

j=k+1

ξk − ξ j + i

ξk − ξ j
GL
0 (k, l) + −i

ξk − ξk+1

l−1∏

j=k+2

ξk+1 − ξ j + i

ξk+1 − ξ j
GL
0 (k + 1, l)

+
(

ξk+2 − ξk+1 + i

ξk+2 − ξk+1

) −i

ξk − ξk+2

l−1∏

j=k+3

ξk+2 − ξ j + i

ξk+2 − ξ j
GL
0 (k + 2, l) + . . .

⎤

⎦ eiP (l) ,

(6.4.10)

or using the recursion relations

〈
0
∣∣σ+

k σ+
l

∣∣μ1μ2
〉 =

[
l−1∏

m=k+1

ξk − ξm + i

ξk − ξm
GL
0 (k, l) +

+
l−1∑

m=k+1

(
m−1∏

n=k+1

ξk − ξn + i

ξk − ξn

)
−i

ξk − ξm

(
l−1∏

n=k+1

ξm − ξn + i

ξm − ξn

)

GL
0 (m, l)

]

eiP (l) .

(6.4.11)

This correlation function is the all-loop generalization of the one computed in
Sect. 6.2.3. This computation was simpler than the one for the one-loop case because
we did not have to remove the apparent singularities from the commutation rela-
tions, as the remaining loop corrections separate the inhomogeneities of the spin
chain between themselves and from the XXX point. The one-loop results can be
recovered by taking the g → 0 limit, transforming this equation into Eq. (6.2.32)
after properly dealing with the residues.

A similar discussion holds in the case of higher order correlation functions, involv-
ing a larger number of magnons, but we will not present the resulting expressions in
here.
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Chapter 7
Tailoring and Hexagon Form Factors

I adhered scrupulously to the precept of that brilliant theoretical
physicist L. Boltzmann, according to whom matters of elegance
ought to be left to the tailor and to the cobbler.

Albert Einstein The Special and the General Theory-A Clear
Explanation that Anyone Can understand [1]

In the remainder of this part we are going to focus on the study of three-point
correlation functions. The first section will be devoted to the weak-coupling method
for computing three-point functions using the spin chain language called Tailoring
[3]. The main idea behind this method is to “cut” the operators/spin chains in two,
perform some operation to one of the halves (“flip”) and compute scalar products
between two half spin chains from different operators (“sew”). A proposal for an
all-loop version of the tailoring method, called hexagon proposal [2–5], will be
presented in the second section. In the last section, a rewriting of this proposal using
the Zamolodchikov-Faddeev algebra [6] will be presented. The results presented in
the last section will be collected in [7].

7.1 Tailoring Method

The tailoringmethodwas proposed in a series of four papers [3, 8–10] as amethod for
computing the structure constantsCi jk defined as the non-trivial part of the correlation
function of three local operators

〈Oi (xi )O j (x j )Ok(xk)
〉 =

√NiN jNkCi jk

|xi j |�i+� j−�k |x jk |−�i+� j+�k |xki |�i−� j+�k
. (7.1.1)
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The structure constants in the planar limit have a perturbative expansion in the ’t
Hooft coupling of the form

NcCi jk = c(0)
i jk + λc(1)

i jk + λ2c(2)
i jk + · · · , (7.1.2)

where Nc is the number of colors. Here we are only going to discuss the zeroth-
order term c(0)

i jk in the SU (2) sector for non-extremal cases, that is, when all bridges

li j = Li+L j−Lk

2 are strictly positive,1 as was proposed in [3]. Each operator is a single
trace operator made out of products of two complex scalar and is mapped to a spin
chain state. As explained in previous chapters, in the SU (2) sector these scalars are
usually denoted Z and X , we are going to consider the first one as the vacuum and
the second one as the excitation. It is important to notice that the only setup of three
operators that is fully contained in the sector we are interested in is the following
one: O1 is formed by Z and X fields, O2 is formed by Z̄ and X̄ fields and O3 is
formed by Z and X̄ fields. The scalar products of spin chains are defined by the basic
rules 〈Z |Z〉 = 〈

Z̄ |Z̄ 〉 = 〈Z X |Z X〉 = 1 and
〈
Z̄ |Z 〉 = 〈Z X |X Z〉 = 0. This will have

important consequences when we proceed to compute scalar products in the SU (2)
sector.

The method to construct the zeroth-order term of the structure constant can be
summarised in the following steps:

1. Fixed a cyclic ordering of the three closed chains, we will break the spin chain
associated to operator Oi into left and right open subchains of lengths li j =
Li+L j−Lk

2 and lik = Li−L j+Lk

2 . We will do similarly to the other two. We will
express the closed chain state as an entangled state of the left an right subchains.
This step is called cutting, as the basic idea is to divide a generic state with M
magnons into a left subchain of length l and a right subchain of length L − l.
The original state can be represented as an entangled state in the tensor product
of both subchains,

|�〉 =
min{M,l}∑

k=0

∑

1≤n1<···<nk≤l
l<nk+1<···<nM

ψ(n1, . . . , nM ) |n1, . . . , nk 〉 ⊗ ∣∣nk+1 − l, . . . , nM − l
〉
.

Here the first sum represents how to distribute the magnons between left and right
chains and has

( L
M

)
terms. A Bethe state has the property that, after breaking it, the

subchain states still have the same Bethe state form. This is a consequence of the
Bethe states being the eigenstates of a local Hamiltonian, so magnons propagate
in a local way and do not know what happens far away. Hence a Bethe states

1These lengths li j are usually called bridges and count the number of Wick contractions between
operatorOi andO j . We must impose this positivity condition because the operator mixing between
single-trace operators and double-trace operators is suppressed by a color factor 1

Nc
(and there-

fore does not need to be considered) when the bridge lengths are non-vanishing. These operators
are called non-extremal, in contraposition with extremal operators, characterized by having one
vanishing bridge length.
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breaks in two as
|{ui }〉 =

∑

α∪ᾱ={ui }
H(α, ᾱ) |α〉l ⊗ |ᾱ〉r , (7.1.3)

where the sum is over all 2M possible ways of splitting the rapidities into two
groups α and ᾱ. This is a simplification with respect to the general case as 2M <( L
M

)
if L � M . The splitting factor H(α, ᾱ) depend on the normalization of the

states. In particular, with the choices commented on Sect. 5.3, we have

H c(α, ᾱ) = aᾱ
l

d ᾱ
l

f αᾱ f ᾱᾱ
< f αα

<

f {u}{u}
<

, H a = f αᾱdα
L−la

ᾱ
l , (7.1.4)

where, using the notation from the previous chapter, c and a mean the normaliza-
tion from the CBA andABA respectively andwe have used the following notation
to simplify the different kinds of products

Fα =
∏

u j∈α

F(u j ) Fαᾱ =
∏

ui∈α
v j∈ᾱ

F(ui − v j ) , Fαα
< =

∏

ui ,u j∈α
i< j

F(ui − u j ) .

(7.1.5)

The subindex in the a and d means the length of the chain in which they are
defined.

2. We will perform a Wick contraction of the left subchain associated with the
operator Oi with the flipped version of the right subchain associated with the
operator Oi−1. The idea behind the flipping operation is to transform a ket into a
bra state in such way that the Wick contraction of two ket states gives the same
answer as the scalar product of the flipped state with the other ket remaining
unchanged. Of course the result should not depend on which of the two subchains
we choose to flip. To be consistent we choose to always flip the right subchain.
This process is not the usual conjugation, as this one flips the order of the field
and their charges while the flipping operator should only do the first operation.
For example, in the SU (2) fields language they act as

† operation: eiφ |X ZX Z Z〉 → 〈X ZX Z Z | e−iφ ,

F operation: eiφ |X ZX Z Z〉 → 〈
Z̄ Z̄ X̄ Z̄ X̄

∣∣ e+iφ .

If we rewrite the action in the space basis we have

† operation: φ(n1, . . . , nM ) |n1, . . . , nM 〉 → φ†(n1, . . . , nM ) 〈n1, . . . , nM | ,

F operation: φ(n1, . . . , nM ) |n1, . . . , nM 〉 →
→ φ(n1, . . . , nM ) 〈L + 1 − nM , . . . , L + 1 − n1| Ĉ ,
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where Ĉ stands for charge conjugation. For a Bethe state with two magnons the
flipping operation will act as

F |{u1, u2}〉c = F
L∑

x,y=1
x<y

(
ei(p1x+p2 y) + S21e

i(p1 y+p2x)
) |x, y〉

= ei(L+1)(p1+p2)S21
c
〈{u∗

1, u
∗
2}
∣∣ Ĉ , (7.1.6)

so applied to the split chain we are interested in we have

(I ⊗ F) |{ui }〉c =
∑

α∪ᾱ={ui }

aᾱ
L

d ᾱ
L

gᾱ− i
2

gᾱ+ i
2

f αᾱ f ᾱᾱ
> f αα

<

f {u}{u}
<

|α〉cl ⊗ c
r

〈
ᾱ∗∣∣ Ĉ , (7.1.7)

where we have used that S21 = f21
f12
. We refer to [3] for the algebraic version.

3. Now we only have to compute the scalar products (sewing). This procedure has
already been already explained in Sect. 5.2.3. In the general case this computation
would imply computing three off-shell-off-shell scalar products. However only
very particular configurations contribute when we cut and sew operators O2 and
O3 because of the way these operators are constructed. In particular only the
partition defined by ᾱ3 = α2 = ∅ has a non-vanishing contribution, being that of
O1 the only non-trivial cut. Also the contractions betweenO2 andO3 are trivial, as
we simply contract vacuum fields, being the contractions withO1 the non-trivial
ones.

4. Finally we will divide by the norm of the three original spin chain. We can then
write the three-point function as

c(0)123 =
√

L1L2L3
N1N2N3

a{v}
L2

d{v}
L2

f {v}{v}
>

f {v}{v}
< f {u}{u}

>

∑

α∪ᾱ={ui }

aᾱ
L1+1

dᾱ
L1+1

f αᾱ f ᾱᾱ
> f αα

<

(〈{v∗}|α〉 〈ᾱ∗|{w}〉)co ,

(7.1.8)
where {u}, {v} and {w} are the rapidities of the first, second and third operators
respectively.
Luckily this generic formula can be simplified if any of the operators is a BPS
operator. All these simplification are detailed in [3].

Although we are not going to present generalizations of this method here, it has
been also applied successfully to larger groups like SU (3) [8], non-compact spin
chains [11] and supersymmetric spin chains [12].

7.2 BKV Hexagon

The main idea behind the hexagon proposal [2] is to consider the pair of pants,
which represent the three-string interaction/three-point correlation function, as two
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hexagonal fundamental polygons stitched together at three of the sides. There are
several similarities with the tailoring procedure we have presented in the previous
section and, indeed, it is an all-loop generalization of it. This conjecture has been
checked in numerous papers like [13–15], where an agreement has been shown
with other computation methods. The only exception is the supersymmetric case,
where further signs had to be included when gluing the hexagon forms factor to
find the correct result [16]. Interesting generalizations of the conjecture to four-point
functions were proposed by an extension of the hexagon proposal [3] and by using
the operator product expansion [4]. A generalization involvingWilson loops has been
also proposed [17]. The regularization of divergences appearing when gluing back
the hexagons is still not fully understood, although is already solved for the case of
two mirror magnons [5].

When we cut the pair of pants into two hexagons we also cut each closed string
into two open strings, which will carry some of the excitations of the closed string.
Because an excitation can end up on either half after cutting, we should sum over
all such possibilities with some weight, as we did in the cutting step of the tailoring
method. With this cut we have also created three new segments (the pants’ seams).
To stitch back we should sum over all possible states living on them, which involves
integrating over the rapidities of any number of mirror excitations and bound states
of them.

This method reduces the computation of three-point functions to that of form
factors of hexagon operators and the following sewing. These form factors in general
depend on the physical rapidities of the three operators and on the mirror rapidities
of the virtual particles. However this can be simplified by making use of mirror
transformations, whichmap excitations on one edge of the hexagon to a neighbouring
one [2]. Themirror transformation,whichweare going to represent by aγ superindex,
is defined as the transformation that swaps the roles of space and time, therefore

E(uγ) = i p̃(u) , p(uγ) = i Ẽ(u) , (7.2.1)

where the energy Ẽ and the momentum p̃ are real. Note that two subsequent appli-
cations of this mirror transformations, a 2γ transformation, gives a crossing trans-
formation. By sequential use of such transformations any generic hexagon can be
related to one with all excitations in a single physical edge. This particular form
factor is called canonical hexagon and is denoted by

hA1 Ȧ1,...,AM ȦM (u1, . . . , uM) , (7.2.2)

where Ai Ȧi are SU (2|2)2 bifundamental indices2 parametrizing the polarization of
the i th excitation χAi Ȧi (u). The reason behind this symmetry is explained below.

Combining symmetry argument and bootstrap considerations, a conjecture for the
N -magnon hexagon amplitude was proposed [2],

2We will sometimes use a and α instead of A when we want to differentiate between bosonic an
fermionic indices.
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hA1 Ȧ1,...,AM ȦM = (−1)F
∏

i< j

hi j
〈
χ ȦM
M . . . χ Ȧ1

1

∣∣S ∣∣χA1
1 . . . χAM

M

〉
, (7.2.3)

where F accommodates the grading, χA is a state in the fundamental SU (2|2) mul-
tiplet and S is Beisert SU (2|2)matrix [18] with dressing phase set to one. The scalar
factor hi j = h(ui , u j ) can be constrained by crossing symmetry to be

h12 = x−
1 − x−

2

x−
1 − x+

2

1 − 1
x−
1 x+

2

1 − 1
x+
1 x+

2

1

σ12
, (7.2.4)

where x± = x
(
u ± i

2

)
are shifted Zhukowsky variables (already introduced in

Sect. 5.4 with a different normalization), defined as x + 1
x = 4πu√

λ
, and σ12 is (half)

the BES dressing phase [19].
An equivalent way of thinking about the hexagon form factor is by introducing a

vertex 〈h| which can be contracted with three spin-chain states.3 For example, for a
single magnon on the first spin chain

hAȦ = 〈h|
(∣∣∣χAȦ

〉

1
⊗ |0〉2 ⊗ |0〉3

)
. (7.2.5)

We are going to use an invariant notation where each state is thought as being made
out of excitations on top of the same BMN Z-vacuum, that is, we will not add the
rotations and translations of having the operators at different points and R-charge
conservation. We will talk about this transformation below.

7.2.1 Symmetry of the Hexagon Form Factor. Twisted
Translation

To start working we will have to define the vacuum for the three-point functions. For
the two-point function the vacuum is defined as

〈
Tr[Z L(0)]Tr[Z̄ L(∞)]〉 , (7.2.6)

which breaks the PSU (2, 2|4) down to PSU (2|2)2, so the excitations over the
vacuum form a multiplet of the last. For three-point functions, the “vacuum” config-
uration is provided by the 1/2-BPS operators

Oi = Tr[(Yi · �)Li (xi )] , (7.2.7)

3The explicit expression for this vertex has not been explicitly computed previously, being that the
aim of this chapter.
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where Yi ’s are the SO(6) polarization (null complex vectors in 6-dimensions). We
can use the R-symmetry to align all the polarizations along a particular U (1) direc-
tion, and conformal symmetry to put the three operators in a line. Therefore we will
only have to worry about operators of the form

〈
Tr[ZL1(0)]Tr[ZL2(0, 1, 0, 0)]Tr[ZL3(∞)]〉 , (7.2.8)

where Z is called twisted-translated scalar, defined by

Z(0, a, 0, 0) = eTa Z(0)e−Ta = (z + κ2a2 Z̄ + κaY − κaȲ )(0, a, 0, 0) , (7.2.9)

where κ is a quantity with mass dimension 1, and

T = −iεαα̇P
α̇α + κεȧa R

aȧ , (7.2.10)

is the twisted translation operator. This choice of vacuum further breaks the symmetry
to the diagonal part of the PSU (2|2)2. In particular only the generators

La
b =Lα

β + L̇ α̇
β̇

, Qα
a =Qα

a + iκεαβ̇εaḃ Ṡ
ḃ
β̇

,

Ra
b =Rα

β + Ṙα̇
β̇

, Sa
α =Sα

a + i

κ
εαβ̇εaḃ Q̇

ḃ
β̇

, (7.2.11)

commute with the twisted translation T. Dotted and undotted generators and indices
represent the two different PSU (2|2).

Non-BPS three-point functions are obtained by performing the twisted translation
to the non-BPS operators constructed on the Z-vacuum at the origin,

Oi (a) = eTaOi (0)e
−Ta . (7.2.12)

Therefore the symmetry group of each state on each side of the hexagon is the
usual PSU (2|2)2 � R

3 we are familiar with [18], and the intersection of the three
symmetry groups is a single PSU (2|2)D (actually it can be centrally extended to
PSU (2|2)D � R).

Let us examine a little bit more this PSU (2|2)D subgroup and how it acts on the
PSU (2|2)2 magnons χAi Ȧi (u). The generators defined in Eq. (7.2.11) act exactly in
the same way as the usual PSU (2|2) generators over the left part of the magnon,
thus we can identify both quantum numbers. The only thing preventing a direct
identification is that the generators act in a non-standard way over the right part
of the magnon since the roles of Q’s and S’s are exchanged. Luckily, it can be
checked that the quantum numbers agree with the ones with crossed rapidity u−2γ

[2]. Therefore each magnon transforms in the tensor representation of PSU (2|2)D ,

VD(p,κe−i p/2) ⊗ VD(p−2γ,κe−i p−2γ/2) =⇒ χAȦ(u) ≡ χA(u)χ Ȧ(u−2γ) . (7.2.13)
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This gives us a recipe on how to analytically continue magnon excitations under

a crossing transformation
[
χAḂ(u)

]2γ = −χB Ȧ(u2γ). Another interesting way of

understanding the origin of crossing is from a change of frames that modifies which
operator is inserted at the origin [3].

7.2.2 Hexagon Form Factors for 1 and 2 Particles from
Symmetry

To compute simple hexagon form factorswe are going tomake use of the PSU (2|2)D
invariance. To do that first we will centrally extend PSU (2|2)D to PSU (2|2)D � R.
Such central extension can be defined from the central extension PSU (2|2)2 � R

3

as
P = P − κ2K . (7.2.14)

This central element will appear in the anticommutators {Q,Q} ∼ {S,S} ∼ P. We
can enforce the diagonal PSU (2|2) symmetry by imposing that the hexagon vertex
is killed by the central element,

〈h |P| ψ〉 = 0 , (7.2.15)

for a generic spin chain state |ψ〉. However there is a mild non-locality in the chain
of fundamentals used for describing the state. This can be addressed in various ways
but we are going to choose the twisted notation of [20], also called spin chain frame.
In this picture our previous equation is equivalent to

0 = gα(1 − eip)
〈
h|Z+ψ

〉− gκ2

α
(1 − e−i p)

〈
h|Z−ψ

〉
, (7.2.16)

where p stands for the total momentum of the state, Z± creates or destroys one
vacuum site in the chain, and α is a parameter common to the left and right repre-
sentations. If we assume that the Z maker is diagonalized by the vertex, such that
〈h|Znψ〉 = zn 〈h|ψ〉, this eigenvalue can be fixed to

z2 = −κ2

α2
e−i p . (7.2.17)

The PSU (2|2)D can be seen as the supersymmetrization of the O(3)Lorentz ×
O(3)R-charge group that preserves 3 points in space-time and 3 (generic) null vectors
in R-charge space. Using this O(3) × O(3) symmetry we can fix the one particle
hexagon form factors to

haȧ = 〈
h|�aȧ

〉 = Ñεaȧ , hαα̇ = 〈
h|Dαα̇

〉 = Nεαα̇ . (7.2.18)
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Ifwe choose the normalization in such away that Ñ = 1 and use that 〈h| is annihilated
by the right action of the supercharges, we can relate N and Ñ imposing

0 =
〈
h
∣∣∣Qα

a

∣∣∣�bβ̇
〉
≡
〈
h
∣∣∣Qα

a

∣∣∣φbψβ̇
〉

, (7.2.19)

which gives

N = κ(x− − x+)

γγ̇
, (7.2.20)

where γ and γ̇ are free parameters associated to relative normalization between
boson and fermions in the left/right multiplet, as in [20]. For unitary representations
|γ| = √

i(x− − x+) and thus |N | = |κ| = 1 by a proper choice of the phases.
The same analysis can be applied to two magnon form factors. By the O(3) ×

O(3) symmetry and the equations

0 =
〈
h
∣∣∣Qα

a

∣∣∣�bċ
1 �

cβ̇
2

〉
=
〈
h
∣∣∣Sa

α

∣∣∣�bċ
1 �

cβ̇
2

〉
, (7.2.21)

the form factors take the form

〈
h|�aȧ

1 �bḃ
2

〉
= h12A12ε

aḃεbȧ + 1

2
(h12A12 − h12B12)ε

abεȧḃ , (7.2.22)
〈
h|�aȧ

1 Dββ̇
2

〉
= h12N2G12ε

aȧεββ̇ ,
〈
h|Dαα̇

1 �bḃ
2

〉
= h12N1L12ε

αα̇εbḃ , (7.2.23)
〈
h|Dαα̇

1 Dββ̇
2

〉
= −h12N1N2D12ε

αβ̇εβα̇ − 1

2
(h12N1N2D12 − h12N1N2E12)ε

αβεα̇β̇ ,

(7.2.24)
〈
h|�aα̇

1 �
bβ̇
2

〉
= −1

2
h12N1N2z

−1C12ε
abεα̇β̇ ,

〈
h|�aα̇

1 �
βḃ
2

〉
= −h12N1H12ε

aḃεβα̇ ,

(7.2.25)
〈
h|�αȧ

1 �
bβ̇
2

〉
= h12N2K12ε

bȧεαβ̇ ,
〈
h|�αȧ

1 �
βḃ
2

〉
= −1

2
zh12F12ε

ȧḃεαβ , (7.2.26)

where A12, . . . , L12 are the elements of the Beisert S-matrix [20] with the dressing
phase set to 1. N and z are defined as in the 1 magnon case, but with p = p1 + p2. It
is important to emphasize that the conjecture proposed (7.2.3) is in agreement with
the symmetry considerations we have presented, as

hAȦ,B Ḃ
12 = h12(−1) ḟ1 f2 SAB

CD(1, 2)hDȦ
1 hC Ḃ

2 = h12(−1) ḟ1 f2 Ṡ Ȧ Ḃ
Ċ Ḋ(1, 2)hḊA

1 hĊ B
2 ,

(7.2.27)
which is related with the fact that only the diagonal part of PSU (2|2)2 is involved.

We want to end this section proving that this form factor indeed fulfils the Wat-
son equation (5.5.4) and the decoupling condition (5.5.7). The Watson equation is
satisfied because the hexagon vertex 〈h| is preserved by the action of the S-matrix
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〈
h
∣∣∣
(
Si i+1 − I

)∣∣∣ . . . χAi Ȧi
i χ

Ai+1 Ȧi+1
i+1 . . .

〉
= 0 , (7.2.28)

with S = S0(−1)ḞS Ṡ(−1)F the SU (2|2)2 S-matrix. Because the S-matrix is given
by a left and right S-matrices, we can use Yang-Baxter and unitarity to cancel them.
The scalar factor S0 is compensated by the quotient

hi,i+1

hi+1,i
= x+

1 − x−
2

x−
1 − x+

2

1 − 1/x−
1 x

+
2

1 − 1/x+
1 x

−
2

1

σ2
12

. (7.2.29)

The decoupling condition (5.5.7) is easily implemented and almost immediately
satisfied as the ansatz is written in terms of the S-matrix

S ∣∣χA
1 χB

2 {χ j }rest
〉
pole (12) ∝ Srest

∏

rest

S2 jS1 j

∣∣{χ j }rest ⊗ 121
〉

, (7.2.30)

where the equation holds at the level of the pole in the (12) channel and |121〉 is
Beisert’s singlet [20] built out of the particle-antiparticle pair (12). This condition
is the same as Janik’s crossing equation for the S-matrix [21] as derived by Beisert
in [20], except that the scalar factor in there should now be replaced by h12. Thus
the decoupling condition for this ansatz boils down to the crossing equation,

h(u2γ1 , u2)h(u1, u2) = x−
1 − x−

2

x−
1 − x+

2

1 − 1/x+
1 x

−
2

1 − 1/x+
1 x

+
2

, (7.2.31)

which is fulfilled by our choice of h12 factor.

7.2.3 Gluing the Hexagons

As happens in the cutting of operators in the tailoring procedure, when cutting the
pair of pants into two hexagons we should keep record of the structure of the Bethe
wave function. This means that, when we construct the three-point function from
the hexagon form factor, for each physical operator we have to sum over all possible
bipartite partitions of the set of magnons with some weight. The function w(α, ᾱ)

that weights each term can be understood as the product of two pieces. First, the
piece that takes into account the propagation of magnons to the second hexagon and
the interaction with all the magnons of the first hexagon

w1(α, ᾱ) =
∏

u j∈ᾱ

eip(u j )l
∏

ui∈α

S(u j , ui ) . (7.2.32)

Secondly, a part that for the three-point function is only a (−1) factor for eachmagnon
in the second hexagon
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w2(α, ᾱ)) = (−1)|ᾱ| . (7.2.33)

This (originally mysterious) sign was understood in the nearly simultaneous articles
[3, 22] and takes into account the explicit dependence of the hexagon form factors on
the coordinates of the operator insertions. Hence we can write the complete weight
as

w(α, ᾱ) = w1(α, ᾱ)w2(α, ᾱ) = (−1)|ᾱ| ∏

u j∈ᾱ

eip(u j )l
∏

ui∈α

S(u j , ui ) . (7.2.34)

Using this weights, the asymptotic three-point function is written as

C ∝
∑

α∪ᾱ={u}
β∪β̄={v}
γ∪γ̄={w}

w(α, ᾱ)w(β, β̄)w(γ, γ̄)h(α|β|γ)h(γ̄|β̄|ᾱ) . (7.2.35)

This formula is only asymptotic as it does not include magnons in the mirror chanels
(the “seams”). It can be systematically improved to incorporate finite-size corrections
by adding them, with the leading correction corresponding to having a single particle
passing through one of the threemirror channels (see Refs. [2, 5] for amore complete
explanation of this subject).

7.3 The Algebraic Hexagon

In this section we are going to try to give a motivation for the origin of the matrix
elements that appear inside the hexagon form factors. To do that we are going to
rewrite the proposal in a way more inspired by the ABA by using Zamolodchikov-
Faddeev (ZF) operators as building blocks. Firstwe are going to define theZFalgebra,
which allows us to directly write form factors that fulfil the Watson equation (5.5.4)
by construction, together with the Fock space that we are going to use throughout this
section; after that we will construct the Wick-contracting vertex taking inspiration
from how the identity operator is constructed. With these tools at hand we can then
check our proposal for some simple examples. Finally we will try to generalize this
version of the proposal to more general hexagons and compute the weights in front
of the hexagon form factors.

7.3.1 The Algebraic Hexagon Recipe

Constructing the State

The first step will be the construction of the Fock space. For the moment we will
consider only the case of canonical hexagons (7.2.2). Therefore we will put exci-
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tations only on one of the edges. In consequence we can define the Fock Space as
F = ⊕∞

n=0Hn where4

H0 =
{
|0〉 such that AAȦ(u) |0〉 = 0

}
≡ C , (7.3.1)

H1 =
{
A†

AȦ
(u) |0〉 = ∣∣χAȦ(u)

〉}
}

, (7.3.2)

HN =

⎧
⎪⎨

⎪⎩

N−→∏

i=1

A†
Ai Ȧi

(ui ) |0〉 = ∣∣χA1 Ȧ1
(u1)χA2 Ȧ2

(u2) . . . χAN ȦN
(uN )

〉

⎫
⎪⎬

⎪⎭
. (7.3.3)

Instead of this Fock space, we are going to construct an equivalent one that will
simplify our computations. The way we are going to proceed is by breaking the
original generators into generators of the left and right SU (2|2) representations,5

A†
A(u) and A†

Ȧ
(u). This will imply also breaking the original vacuum hexagon into

two hexagons, (⊗6 |0〉) ⊗ (⊗6 |0〉).6 We are going to define these operators in a way
that they form a ZF algebra with the Beiser SU (2|2) S-matrix as defined in [6]

A†
i (u)A†

j (v) = Skli j (u, v)A†
l (v)A†

k(u) ,

Ai (u)A j (v) = Si jkl (u, v)Al(v)Ak(u) ,

Ai (u)A†
j (v) = Slijk(v, u)A†

l (v)Ak(u) + δijδ(u − v) . (7.3.4)

Where the indices i and j are both dotted or undotted. This imposes the same
Zamolodchikov-Faddeev algebra to both SU (2|2) generators. We do not have to
worry about the commutation between dotted and undotted operators as they are
applied to different vacua.

However, the naïve construction has a problem as it has two degrees of freedom
for each onewe originally had. This is easily seenwhenwe compute the commutation
relation of our original operators in terms of this separated construction,

AAȦ(u)A†
B Ḃ

(v) ∝ AA(u)AȦ(u)A†
B(v)A†

Ḃ
(v) = · · · + δA

Bδ Ȧ
Ḃ [δ(u − v)]2 . (7.3.5)

We get two delta functions instead of only one as an indication that we have to kill
one of the degrees of freedom as theywill generate δ(0) terms. A similar problemwas
encounter by [23] although in that case is a consequence of boundary states living

4Actually we should write ⊗6 |0〉 and specify in which of the vacuums we apply our operators.
However, as we are going to work mostly with the canonical hexagon, all operators will be applied
to the same edge. Hence, instead of writing the whole vacuum hexagon, we are going to write only
the edge in which all operators will act and drop the label on the operators to alleviate notation.
5One way to formally do this breaking is to introduce two non-dynamical fields χA and χ Ȧ with a
coupling with the original operators given by exp

[
χA(u) ⊗ χ Ȧ(u) ⊗ ZAȦ(u)

]
.

6Of which we are only going to conserve the two edges on which the operators are going to act,
|0〉L ⊗ |0〉R , to alleviate notation.
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in an infinite volume. Our way to solve the problem is to divide the form factors by
the square root of the norm of the state and perform some regularization. The way
we are going to proceed is to multiply the operators by an smearing function and
regularize both in the same way

A†
AȦ

(u) = lim
ε→0

∫
dθ dθ′ρε(u − θ)ρε(u − θ′)A†

A(θ)A
†
Ȧ
(θ′) , (7.3.6)

with ρε(θ) = 1
ε
if |θ| < ε.

This decomposition generates also another problem: if both algebras transform in
a representation of SU (2|2), the generator A†

AȦ
(u) do not transform in SU (2|2)D . A

solution to that problem has been already commented at the end of Sect. 7.2.1, where
it was suggest to change the rapidity from the generator of dotted indices from θ′ to
θ′−2γ .

There is still one last step in the construction of the Fock space. Because our
generators form a ZF algebra, they do not commute and the ordering in which we
apply them is important. Our choice is going to be from left to right. To sum up,

H̃0 = {|0〉L ⊗ |0〉R} ≡ C , (7.3.7)

H̃1 =
{
lim
ε→0

∫
dθ dθ′ρε(u − θ)ρε(u − θ′)A†A(θ)A†

Ȧ
(θ′) |0〉R = ∣∣χAȦ(u)

〉}
, (7.3.8)

H̃N =
{

lim{εi }→0

∫ (∏

i

dθi dθ′
i ρεi (ui − θi )ρεi (ui − θ′

i )

) N−→∏

i=1

A†Ai
(θi ) |0〉L ⊗

N−→∏

i=1

A†
Ȧi

(
θ
′−2γ
i

)
|0〉R

=
∣∣∣χA1 Ȧ1

(u1)χA2 Ȧ2
(u2) · · · χAN ȦN

(uN )
〉 }

, (7.3.9)

and F̃ = ⊕∞
n=0H̃n .

We have to define also other kinds of operators, which we are going to call
“Cartan Generating Functions”. These will be a Yangian current associated to the
Cartan elements of the algebra. We will assume that they behave like

HAȦ(u)A†
B Ḃ

(v) = SCĊ,DḊ
AȦ,B Ḃ

(u, v)A†
DḊ

(v)HCĊ(u) , (7.3.10)
[
HAȦ(u), HBḂ(v)

] = 0 , (7.3.11)

HAȦ(u) |0〉 = eip(u)l |0〉 , (7.3.12)

where l will depend on the edge of the hexagon we are applying the operator to, and
p(u) is the momentum associated with the magnon.

Construction of the Vertex

Now that we have defined the Fock space we can start thinking about the vertex we
are going to apply to a state to obtain the hexagon amplitude. To do that first we are
going to construct the identity operator, as both will have similarities.

Identity Operator First we can see that the identity operator can be constructed
using the ZF operators we have defined in the previous section as



162 7 Tailoring and Hexagon Form Factors

Iundotted = (1)〈0| expBF
[∫

dx

2πi
A†

A(x) ⊗ AA(x)

]
|0〉(2) , (7.3.13)

Idotted = (1)〈0| expBF
[∫

dx

2πi
A†

Ȧ
(x) ⊗ AȦ(x)

]
|0〉(2) , (7.3.14)

where expBF means the exponential defined as its formal series arranged in the
following way: the terms on the left side of the tensor product are ordered from
left to right, and the terms on the right side of the tensor product are ordered from
right to left. It is easy to check that the operators defined in this way are SU (2|2)L
and SU (2|2)R invariant, respectively. Expanding the exponential and applying the
definition of the ZF algebra we can see that the first non-trivial case,

AA(x)AB(y) ⊗ A†
B(y)A†

A(x) = SAB
CD(x, y)AD(y)AC (x) ⊗ A†

B(y)A†
A(x)

= AD(y)AC (x) ⊗ A†
C(x)A†

D(y) , (7.3.15)

is invariant, and so it is well defined. The same happens for dotted indices. The
generalization to higher terms of the expansion is trivial. Note that the choice of the
ZF algebra commented in the footnote of Sect. 5.5 is important here: If we choose
A†
i (u)A†

j (v) = Slki j (u, v)A†
l (v)A†

k(u) instead (note the different ordering of upper
indices in the S-matrix) we cannot write it as an exponential because the invariant
combination is A†

A(x)A
†
B(y) ⊗ A†

A(y)A
†
B(x), where operators in each side of the

tensor product are not the same.
We still have to prove that this is the identity operator. For the cases of 0 and 1

(tensor products of) ZF operators it is trivial to prove. The first non trivial case is
again the one with two operators, which we are going to prove it only for the dotted
identity, as the undotted one is proven in exactly the same way

1

2
〈AȦ(x)AḂ(y)A†

U̇
(u)A†

V̇
(v)〉 ⊗ A†

Ḃ
(y)A†

Ȧ
(x) =

1

2

[
S ȦḂ
U̇ V̇ (u, y)δ(y − v)δ(x − u) + δ Ḃ

U̇δ Ȧ
V̇ δ(y − u)δ(x − v)

]
A†
Ḃ
(y)A†

Ȧ
(x) =

1

2

[
S ȦḂ
U̇ V̇ (u, y)A†

Ḃ
(v)A†

Ȧ
(u) + A†

U̇
(u)A†

V̇
(v)
]

= A†
U̇
(u)A†

V̇
(v) .

The case of higher terms in the expansion is similarly proven.

Constructing the Vertex We are going to construct a vertex that contracts a dot-
ted index and an undotted index with an ε symbol. Drawing inspiration from the
construction of this identity operators, the vertex that gives the correct result is7

〈H| = (L)〈0| ⊗ R 〈0| expBF
[∫

C∞

dx

2πi
εAḂ

(
AA(x) ⊗ AḂ(x−2γ)

)]
. (7.3.16)

7Note that, as p(u−2γ) = −p(u), the interpretation of this vertex as a boundary operator becomes
very appealing.
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Where

εAḂ =
(

εaḃ 0
0 εαβ̇

)
. (7.3.17)

First we are going to prove that it indeed acts on a general product of A†
Ȧ
operators

in the form

〈H|
N−→∏

i=1

A†
Ȧi

(u−2γ
i ) |0〉(R) = (L)〈0|

N−→∏

i=1

ABi (ui )εBi Ȧi
, (7.3.18)

and the same for undotted

〈H|
N−→∏

i=1

A†
Bi

(ui ) |0〉(L) = (R)〈0|
N−→∏

i=1

AȦi (u−2γ
i )εBi Ȧi

. (7.3.19)

The proof is very similar to the one for the identity operator. For the case of 0 and
1 operators the proof is trivial. The first non-trivial case is again the one with two
operators, being the rest an easy generalization of this one. We are also going to do
it for one combination, because the rest of the combination can be done exactly in
the same way.

〈
H
∣∣∣A†

U̇
(u−2γ)A†

V̇
(v−2γ )

∣∣∣ 0
〉

(R)
=
∫∫

dx

2πi

dy

2πi
〈AȦ(x−2γ)AḂ (y−2γ)A†

U̇
(u−2γ)A†

V̇
(v−2γ )〉

× (L)〈0| AB (y)AA(x)εAȦεB Ḃ .

The first factor is a scalar product that can be computed using the Zamolodchikov-
Faddeev algebra. The final result is

〈AȦ(x)AḂ (y)A†
U̇

(u)A†
V̇

(v)〉 = S ȦḂ
U̇ V̇

(u, y)δ(y − v)δ(x − u) + δ Ḃ
U̇

δ Ȧ
V̇

δ(y − u)δ(x − v) .

Where we have not added the −2γ over the rapidities to alleviate notation. At this
point we cannot do further unless we define a relation between the S-matrices of the
two SU (2|2) factors, which we are going to fix to be

SCD
AB (u, v)εC ȦεDḂ = SĊ Ḋ

ȦḂ
(u−2γ, v−2γ)εAĊεBḊ . (7.3.20)

The reasoning behind this definition is that the contraction of a state with this vertex
〈H| should be independent of on which set of operators (dotted or undotted) we act
on first. This can also be related with the fact that we are selecting the diagonal part
of the SU (2|2)2 group of both generators. With this relationship at hand, the term
with the S-matrix inverts the ordering of the dotted operators which gives the final
result
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〈H| A†
U̇
(u−2γ)A†

V̇
(v−2γ) |0〉(R) = 1

2
〈0|
(
S ȦḂ
U̇ V̇ (v−2γ, u−2γ)AB(v)AA(u)εAȦεB Ḃ+

AB(u)AA(v)εAV̇ εBU̇

)
= 1

2
〈0| 2AB(u)AA(v)εBU̇ εAV̇ , (7.3.21)

The transformation of undotted creation operators into dotted annihilation operators
is proven in a similar way.

The invariance of this vertex with respect to the PSU (2|2)D group can be derived
in a similar way we did for the identity operator, because one of the the SU (2|2)
component can be related to the opposite components via a −2γ transformation,
which is a particle-antiparticle transformation, replacing the operator A†

i (x) by an
annihilation operator of the other component does not alter the invariance properties
of the vertex.

Computing Simple Examples and Checking the Proposal

To alleviate notation, from now on all the rapidities associated to an operator with
dotted indices will be understood to be transformed by −2γ.

Let us first check that the ε symbol is our metric, as we intended. We need to
check that 〈

H|χA1 Ȧ1
(u1)

〉 = εA1 Ȧ1
. (7.3.22)

If we substitute directly the ZF operators without the smearing we get the right
answer multiplied by a delta evaluated at zero

〈H| A†
A(u)A†

Ȧ
(u) |0〉L ⊗ |0〉R = 〈0| AḂ(u)A†

Ȧ
(u)εAḂ |0〉 =

〈0|
(
SḊḂ
ȦĊ (u, u)A†

Ḋ
(u)AĊ(u) + δ Ḃ

Ȧδ(0−2γ)
)

εAḂ |0〉 = δ(0)δ Ḃ
ȦεAḂ = δ(0)εAȦ ,

(7.3.23)

where the first term in the second line is canceled because the right (left) vacuum is
annihilated by the A (A†) operators. If instead we choose to act with the proposed
vertex on the dotted one the steps are the same mutatis mutandis, giving exactly the
same answer.

If we introduce the smearing functions and divide by the square root of the norm,
we can carry out the following regularization

εAȦ
∫
dθ dθ′ρε(u − θ)ρε(u − θ′)√〈u|u〉 = εAȦ

∫
dθρε(u − θ)2

√∫
dθρ∗

ε (u − θ)ρε(u − θ)
∫
dθ′ρ∗

ε (u − θ′)ρε(u − θ′)

= εAȦ
∫
dθρε(u − θ)2

∫
dθρ∗

ε (u − θ)ρε(u − θ)
= 1/ε

1/ε
εAȦ = εAȦ , (7.3.24)

which eliminates the δ(0) multiplying the form factor.
The case of two magnons is a little more involved
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〈H| A†
A(θ)A

†
B(φ)A†

Ȧ
(θ′)A†

Ḃ
(φ′) |0〉L ⊗ |0〉R =

〈0| AĊ(θ)AḊ(φ)A†
Ȧ
(θ′)A†

Ḃ
(φ′) |0〉 εAĊεBḊ =

〈0| AĊ(θ)
[
A†
Ḟ
(θ′)SḊḞ

ȦĠ (θ′,φ)AĠ(φ) + δ(φ − θ′)δ Ḋ
Ȧ

]
A†
Ḃ
(φ′) |0〉 εAĊεBḊ =

〈0|
{[

δĊ
Ḟ
δ(θ − θ′) + A†A

]
SḞ Ḋ
ȦĠ (θ′,φ)

[
δĠ
Ḃ
δ(φ − φ′) + A†A

]
+

+δ(φ − θ′)δ Ḋ
Ȧ

[
δ(θ − φ′)δĊ

Ḃ
+ A†A

]}
|0〉 εAĊεBḊ =

{
[δ(θ − θ′)δ(φ − φ′)]SĊ Ḋ

ȦḂ
(θ,φ) + [δ(φ − θ′)δ(θ − φ′)]δ Ḋ

Ȧ δĊ
Ḃ

}
εAĊεBḊ . (7.3.25)

Before we perform the integration with the smearing functions we are going to take
a look at this structure. We can identify two terms, a term that is going to give us the
desired result and a second term that can be considered a disconnected contribution.
This last term, after the regularization, would be multiplied by ε2[δ(u − v)]2. This
factor does not contribute as no two rapidities are equal in a general on-shell state.8

However it is important to talk about it because, by transferring excitations from a
different edge, we could end with excitations with the same rapidity.

If we repeat the same regularization procedure as before, we can see that the final
result is SĊ Ḋ

ȦḂ
(u, v). It is the same that [2] obtained but with a different ordering of the

indices of the S-matrix as a consequence of our different definitions of the S-matrix.
Let us move now to the case of three magnons. After applying the same kind

of commutation relation the final expression for the three magnons form factor is,
schematically

(
SĠ Ḟ
ḂĊ

(φ,χ)SḢ Ẋ
ȦḞ (θ,χ)SŻẎ

Ḣ Ġ(θ,φ)δ(θ − θ′)δ(φ − φ′)δ(χ − χ′)+
SS × δ(θ − θ′)δ(φ − χ′)δ(χ − φ′) + SS × δ(θ − φ′)δ(φ − θ′)δ(χ − χ′)+
δδδ × δ(θ − χ′)δ(φ − φ′)δ(χ − θ′) + Sδ × δ(φ − θ′)δ(χ − φ′)δ(θ − χ′)+
Sδ × δ(θ − φ′)δ(φ − χ′)δ(χ − θ′)

)
εAŻ εBẎ εC Ẋ . (7.3.26)

Here we can identify three different kinds of terms: the first kind (black term) is
the term we want and, as in the other two cases, is the same that the authors of [2]
obtained but with a different definition of the indices of the S-matrix. The second
kind of terms (dark gray terms) will be proportional to the square of a delta function
of two rapidities times ε2, making these factors irrelevant unless two rapidities are
the same, as happens in the case of two magnons. Terms of the third kind (light gray
terms) are a little different from the dark gray terms but their regularization will be
very similar, giving us at the end a factor ε3δ(u − v)δ(v − w)δ(w − u).

8A couples of reasons for that statement are that equal rapidities do not yield proper Bethe wave-
functions [24] and that strings (in the thermodynamical limit the solutions of the Bethe equation
cluster around lines called strings) with two equal rapidities have noweight in equilibrium problems
[25]. Appart from that, ZF operators with equal rapidities behave like fermionic operators if the
S-matrix behaves like SCD

AB (u, u) = −δCAδDB , which is our case.
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Fig. 7.1 Reordering of the rapidities of one of the 4-magnons diagrams to explicitly show that it
is non-connected. This reordering is accomplished by including two S-matrices (one with dotted
indices and one with undotted indices) and using Yang-Baxter equation and Eq. (7.3.20). Other
diagrams may require more than one reordering to show explicit disconnectedness

Note that we can also classify the terms we have obtained by the number of S-
matrices they contain: one term with no S-matrix, two with one S-matrix, two with
two S-matrices and one with three S-matrices. This sequence can be generalized to
any number of magnons, and it matches the sequence of theMahonian numbers [26].

If we move now to the case of four magnons we will find a similar situation:
one contribution which is equal to the one obtained by [2], and contributions that
after integration will have from two to four delta functions. It might seems that some
of these contributions are not disconnected, but it can be shown that they actually
are disconnected after a reordering of the rapidities of the diagram by including
S-matrices, see Fig. 7.1.

Therefore we have a method to compute the canonical hexagon form factor just
by defining a Fock space and a “boundary operator”.

7.3.2 Generalizations of the Recipe. Computations for
Non-canonical Hexagons

Now that we have a formal recipe for computing the canonical hexagon, in this
subsection we are going to deal with the generalization of the framework. The first
part of the subsection will be an explanation on how to deal with a hexagon with
excitations applied to all of the edges. The second part will deal with the cutting of
the pant into two hexagons.

Transforming a General Hexagon into the Canonical Hexagon

We will first explain the recipe for computing non-canonical hexagons, that is,
hexagons with excitations in all six edges.

An operator that transfers excitations from the physical sides of the hexagon
(which are the third and the fifth if we count the canonical one as the first side) to
the canonical side can be constructed in a similar way as we construct the identity
operator,
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O−2γ = down,left〈0| exp
[
−
∫

AB Ȧ(x2γ) ⊗ A†
AḂ

(x)
dx

2πi

]
|0〉up , (7.3.27)

O−4γ = down,right〈0| exp
[∫

AAḂ(x4γ) ⊗ A†
AḂ

(x)
dx

2πi

]
|0〉up , (7.3.28)

where the choice of indices comes from the properties of our representation

of PSU (2|2)D , Eq. (7.2.13), which imply that
(
χAḂ(u)

)2γ = −χB Ȧ(u2γ) as we

explained in Sect. 7.2.1. We refer to [2] for a more detailed explanation.
We also have to add excitations on the three mirror sides of the hexagon. However

the transformation of the indices is more involved in this case. Despite that problem,
we can still add some operators to take that effect into account because, in the final
formula, we have to sum over all possible excitations in themirror edges (and over all
possible number of excitations and integrate over all possible rapidities). Therefore
we can forget about the transformation and directly put the sum over the already
transformed indices,

O−(2n+1)γ = I +
∑

A, Ȧ

∫
du μ(u) A†

AȦ
(u−(2n+1)γ) +

(∑
A, Ȧ

∫
du μ(u) A†

AȦ
(u−(2n+1)γ)

)2

2!

+ · · · = exp

⎡

⎣
∑

A, Ȧ

∫
du μ(u) A†

AȦ
(u−(2n+1)γ)

⎤

⎦ , (7.3.29)

whereμ is ameasure.Obviously,whenwe take into account all of the transformations,
we have to add them as

〈H|O−5γO−4γO−3γO−2γO−γ , (7.3.30)

because, as we have already stated, the order in which we move the excitations is
important.

Computations with Two Hexagons. The Drinfeld Coproduct

In this part of the subsection we are going to see how to deal at the same time with the
two hexagons we get when we cut the pair of pants and how to compute the weights
for each of the partitions of the excitations. To do it we are going to start with some
definitions.

The coproduct (or comultiplication) is an operation defined in a Hopf algebra H
such that � : H → H ⊗ H . The physical meaning of this operation is the construc-
tion of two-particle operators from one-particle operators. One of themain properties
we would like our coproduct to have is called co-associativity, defined as

(� ⊗ I)� = (I ⊗ �)� , (7.3.31)

which physically means that the three-particle operators are well defined. This rela-
tion still leaves space for some twisting of a given coproduct by an algebra automor-
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phism ω : H → H as

�(ω)(a) = (ω ⊗ ω)�(ω−1(a)) . (7.3.32)

In particular, we are interested in the so-called Drinfeld coproduct. A definition
of this coproduct in the Yangian double of gl(m|n) that can be found, for example,
in Eq. (3.5) of [27]9

�(D)(Fi (z)) = Fi (z) ⊗ I + Hi (z) ⊗ Fi (z) , (7.3.33)

where Fi (z) are some creation operators that commute up to an S-matrix, with
commutation relations

Hi (u)Fi (v) = u − v + c[i+1]
u − v − c[i+1]

Fi (v)Hi (u) , (7.3.34)

as we can see, they commute up to a canonical S-matrix.
We can take this definition of coproduct and apply it to our original creation

operators A†
AȦ

(u) in the SU (2|2)2 bifundamental representation10

�A†
AḂ

(u) = I ⊗ A†
AḂ

(u) + A†
AḂ

(u) ⊗ HAḂ(u) . (7.3.35)

If we do that we get that the coproduct of two creation operators is, schematically,

�(A†
1A

†
2) = I ⊗ A†

1A
†
2 + A†

1A
†
2 ⊗ H1H2 + A†

1 ⊗ H1A
†
2 + A†

2 ⊗ A†
1H2 . (7.3.36)

We recall here that our Cartan generating functions act on the vacuum hexagon in the
following way Hi (u) |0〉 = eip(u)l |0〉. Therefore if we commute H1A2 = S12A2H1

and use the previous fact, we get the w1 part of the weight (7.2.35).
One way to get the missing signs is to add by hand a minus sign to the second

factor of the coproduct

�(D,−)(A†
AȦ

(u)) = A†
AȦ

(u) ⊗ I − HAȦ(u) ⊗ A†
AȦ

(u) . (7.3.37)

We can check that this choice reproduces the weights (7.2.35) from [2]. However
this “twisting” completely breaks the co-associativity property of the coproduct. It

9The operators they propose do not exactly form a ZF algebra because the commutation relations
with the annihilation operators Ei (z) are no exactly the correct ones, as they have an extra Cartan
generating function. Note that their definition of Cartan generating function is different from ours,
being the equivalence between notations Hi (u) = k+

i+1(u)[k+
i (u)]−1. However the algebra gener-

ated by
(
H−1
i (u)Ei (u), Fj (v)

)
actually form a ZF algebra. The same happens with the algebra

generated by
(
Ei (u), Fj (v)H−1

j (v)
)
.

10Note that this coproduct only works for the canonical S-matrix. A coproduct for the Beisert
S-matrix would need more structure.
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would be interesting to see if a twisting by an automorphism given by Eq. (7.3.32)
can be used to obtain this sign and the conformal cross ratios in the hexagonalization
proposal presented in [3, 22].

Now we have all the tools we need to give a final construction of the complete
hexagon vertex. Adding all the constructions from last two sections in top of our
canonical hexagon, we can write

〈h| = 〈H|O−5γ
⊗

(
O−4γ

hex. 1 ⊗ O−4γ
hex. 2

)
O−3γ

⊗
(
O−2γ

hex. 1 ⊗ O−2γ
hex. 2

)
O−γ

⊗ �(D,−) (7.3.38)

where we have to modify the operators for odd γ translations. We still do not know
how to modify the operators for −γ and −5γ because of the mixing between the
two hexagons, but the one for −3γ is related only with its counterpart in the other
hexagon, so we can write it as

O−3γ
⊗ = exp

⎡

⎣
∑

A, Ȧ

∫
du μ(u) A†

AȦ
(u−3γ) ⊗ A†

AȦ
(u−3γ)

⎤

⎦ (7.3.39)

where each of the operators act in a different hexagon.
Then we conclude that the vertex 〈h| provides us equivalent results as the vertex

defined in [2], both for hexagons in the canonical configuration (as we have proved
in the previous section) and general hexagons (except for the problems to define
the operators O−5γ

⊗ and O−γ
⊗ ). Therefore we can consider 〈h| as a rewriting of the

original proposal as a sum of products of Zamolodchikov-Faddeev operators, so it
can be considered as an “algebraic hexagon proposal”.

References

1. J. Escobedo, N. Gromov, A. Sever, P. Vieira, Tailoring three-point functions and integrability.
JHEP 09, 028 (2011)

2. B. Basso, S. Komatsu, P. Vieira, Structure constants and integrable bootstrap in planar N=4
SYM theory (2015). ArXiv e-prints, 1505.06745

3. T. Fleury, S. Komatsu, Hexagonalization of correlation functions. JHEP 01, 130 (2017)
4. B. Basso, F. Coronado, S. Komatsu, H.T. Lam, P. Vieira, D. Liang Zhong, Asymptotic four

point functions (2017). ArXiv e-prints, 1701.04462
5. B. Basso, V. Goncalves, S. Komatsu, Structure constants at wrapping order. JHEP 05, 124

(2017)
6. G. Arutyunov, S. Frolov, M. Zamaklar, The Zamolodchikov-Faddeev Algebra for AdS5 × S5

superstring. JHEP 04, 002 (2007)
7. D. Serban, I. Kostov, J .M. Nieto (2018). To appear
8. J. Escobedo, N. Gromov, A. Sever, P. Vieira, Tailoring three-point functions and integrability

II. Weak/strong coupling match. JHEP 09, 029 (2011)
9. N. Gromov, A. Sever, P. Vieira, Tailoring three-point functions and integrability III. Classical

tunneling. JHEP 07, 044 (2012)
10. N. Gromov, P. Vieira, Tailoring Three-Point Functions and Integrability IV. Theta-morphism.

JHEP 04, 068 (2012)



170 7 Tailoring and Hexagon Form Factors

11. P. Vieira, T. Wang, Tailoring non-compact spin chains. JHEP 10, 35 (2014)
12. J. Caetano, T. Fleury, Three-point functions and SU (1|1) spin chains. JHEP 09, 173 (2014)
13. B. Basso, V. Goncalves, S. Komatsu, P. Vieira, Gluing hexagons at three loops. Nucl. Phys. B

907, 695–716 (2016)
14. B. Eden, A. Sfondrini, Three-point functions in N = 4 SYM: the hexagon proposal at three

loops. JHEP 02, 165 (2016)
15. Y. Jiang, S. Komatsu, I. Kostov, D. Serban, Clustering and the three-point function. J. Phys. A

49, 454003 (2016)
16. J. Caetano, T. Fleury, Fermionic correlators from integrability. JHEP 09, 010 (2016)
17. M. Kim, N. Kiryu, Structure constants of operators on the Wilson loop from integrability at

weak coupling (2017). ArXiv e-prints, 1706.02989
18. N. Beisert, The su(2|2) dynamic S-matrix. Adv. Theor. Math. Phys. 12(5), 948–979 (2008)
19. N. Beisert, B. Eden, M. Staudacher, Transcendentality and crossing. J. Stat. Mech 01, 01021

(2007)
20. N. Beisert, The analytic Bethe ansatz for a chain with centrally extended symmetry. J. Stat.

Mech. 0701, P01017 (2007)
21. R.A. Janik, The AdS5 × S5 superstring worldsheet S matrix and crossing symmetry. Phys.

Rev. D 73, 086006 (2006)
22. B. Eden, A. Sfondrini, Tessellating cushions: four-point functions in N=4 SYM. JHEP 10, 098

(2016)
23. A. LeClair, G. Mussardo, H. Saleur, S. Skorik, Boundary energy and boundary states in inte-

grable quantum field theories. Nucl. Phys. B 453, 581–618 (1995)
24. J.-S. Caux, J. Mossel, I.P. Castillo, The two-spinon transverse structure factor of the gapped

Heisenberg antiferromagnetic chain. J. Stat. Mech 2008, P08006 (2008)
25. P. Calabrese, P.L. Doussal, Interaction quench in a Lieb-Liniger model and the KPZ equation

with flat initial conditions. J. Stat. Mech 2014, P05004 (2014)
26. N.J.A. Sloane, Triangle of Mahonian numbers T(n,k), in The on-line Encyclopedia of Integer

Sequences (2009)
27. A.A. Hutsalyuk, A.N. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, Current presentation

for the super-Yangian double DY (gl(m|n)) and Bethe vectors. Russ. Math. Surv. 72, 33–99
(2017)

28. A. Einstein, Relativity: The Special and the General Theory A Clear Explanation that Anyone
Can Understand (Wings Books, 1988)



Part III
Conclusions and Appendices



Chapter 8
Summary and Conclusions

The practical implications of these results are completely
unknown, but are discussed at length anyway.
C. Bowers, Calculating the Velocity of Darkness and its Possible
Relevance to Lawn Maintenance, Journal of Irreproducible
Results, 1995

The bulk of this thesis, formed byPart I andPart II, is divided in two halves that collect
the results obtained in both sides of the AdS/CFT conjecture duringmy Ph.D. degree.
The first half presents the computation of dispersion relations in different deformed
backgrounds of AdS3 × S3, which is interesting as its dual has to be a CFT in two
dimensions, so it would have the full Virasoro symmetry. The second half presents
different methods of computing of two and three-point correlation function inN = 4
SYM. The method for computing two-point function was obtained from the direct
application of the QISM for the ABA, while the method for three-point functions is
an alternative rewriting of the successful hexagon proposal.

In Part II of thesis we have studied closed string solutions rotating and pulsating
in AdS3 × S3 × T 4 with NS-NS and R-R three-form flux. The corresponding string
sigmamodels are equivalent to a deformedNeumann-Rosochatius integrable system.
This background was chosen because it was already known to be integrable [6] but
the dispersion relation of spinning string had not been analysed. We have considered
five different cases: strings rotating in R × S3, in AdS3 and in the full AdS3 ×
S3, and strings pulsating in AdS3 × S1 and in R × S3. The equations of motion
can be integrated and expressed in terms of Jacobi elliptic functions, reducing to
trigonometric functions in the limit of pure NS-NS flux, that is, the limit q = 1. With
this solution of the equations of motion we were able to compute the classical energy
as a function of the angular momenta and the windings as either a power series in
the total angular momentum J√

λ
or as a power series around the pure NS-NS point

q = 1.
The simplification in the limit of pure NS-NS flux is an appealing result present

both in the case of constant radii and elliptic solutions. From our point of view it
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appears as a consequence of the degeneration of the elliptic curve governing the
dynamics of the problem. The deep reason behind this simplification is the equiv-
alence of the Lagrangian with a WZW model in the pure NS-NS flux limit. This
limit was explored using conformal field theory techniques in some particular cases,
see for example [2] for the AdS3 × M sector. It would be interesting to see if these
approaches can be used to get information on the neighbour of q = 1.

Another important question is the study of the conditions of stability of our solu-
tions and to find the spectrum of excited string states. It would also be interesting to
address the question of the spectrum of small quadratic fluctuations around the solu-
tions we have constructed, as done for the AdS5 × S5 spinning string [3–5] and the
AdS3 × S3 × T 4 with R-R flux [6, 7]. These quadratic fluctuations of the Lagrangian
can be computed by substituting the parametrization (3.1.2) by

X2 j−1 + i X2 j = (r j + r̃ j + iρ j )e
iϕ j (8.1)

and similarly for the AdS coordinates. The coordinates r̃ j and ρ j will represent the
two different kind of fluctuations we can have, and r j are fixed to the solutions we
already have obtained inChap.3.With this information a comparisonà laHernández-
López [8] can be carried out between string theory and Bethe Ansatz predictions for
general values of the mixing parameter q. This comparison was already performed in
the pure R-R limit [7], where a mismatch was found between both predictions. This
mismatch was proposed to be caused by the Lüscher corrections involving massless
particles. The computation of the one-loop correction for general values of q might
shed some light on these corrections.

We also studied closed string solutions rotating in η-deformed R × S3. This
second background was chosen because it was already studied for the simplest
of the ansatz, presented in Eq. (3.1.12), so the deformed Uhlenbeck constants for
the Neumann model were known. We studied the string sigma model for the more
general asantz (3.1.24), which in this background reduces to a deformation of the
Neumann-Rosochatius system different from the one obtained for the flux-deformed
Lagrangian. Thankfully the method used in the flux-deformed case can be applied
in the same way, so we were able to compute the classical energy as a power series
in the total angular momentum for the constant radii case.

In this case simplifications where found in the κ = 2η
1−η2 → ∞ and κ = i limits,

where we can find analytical expressions for the dispersion relation. It would be
interesting a deeper study of these limits. Similarly to the case of the flux deformation,
we could compute quadratic fluctuations in this background using the same strategy.

Another possibleway to continue thiswork is to apply resurgencemethods. Resur-
gence theory deal with the summation of the asymptotic series involved in pertur-
bation theory and it is a window to non-perturbative physics. Resurgence tools have
already been applied to the Principal Chiral Model and the η-deformed Principal
Chiral Model for some particular groups [9, 10], so it would be interesting to see
if they can be applied to the backgrounds studied in this thesis: the flux-deformed
AdS3 × S3 background and the (AdS3 × S3)η background.
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The two studied deformations are very different. The flux deformation only
appears in the B-field, leaving the background geometry unchanged, while the η-
deformation only affects the geometry and do not have contribution to the B-field
(for the AdS3 × S3 case, as the contribution is a total derivative and, hence, trivial
to the equations of motion. In contrats, the complete η-deformed AdS5 × S5 back-
ground has a non-trivial contribution to the B-field). Therefore it would be interesting
to apply our method to a deformation that affects both. An interesting example would
be the Lunin-Maldacena background [11], which is dual to the Leigh-Strassler defor-
mation of N = 4 SYM, whose geometry is a deformation of the AdS5 × S5 space
and has B-field, both of which survive when we truncate the space to R × S3 or
AdS3 × S3. This background has been partialy analysed in [12], but a computation
of the Uhlenbeck constants and the dispersion relation of general spinning strings
has not been carried out. It would also be interesting to extend the computation to
general Yang-Baxter sigma models.

In Part III of this thesis we have studied two-point and three-point correlation
functions using the spin chain interpretation of the N = 4 Supersymmetric Yang-
Mills theory. Concerning the two-point correlation functions we have presented a
systematic approach to the case of spin operators located at arbitrary sites of the
spin chain. This is done both at the one-loop level, as the problem amounts to the
calculation using the XXX spin chain, and at the all-loop level without including
wrapping effects, as the BDS spin chain can bemapped to an inhomogeneous version
of the XXX spin chain. We have found that the general case of correlation functions
in a homogeneous chain is much more involved than in the BDS spin chain. This is
because one needs to face apparent singular behaviour of the algebra of the elements
of the monodromy matrix. The approach we used to deal with this problem was to
show that the residue arising each time we commute the operators vanishes.

Our computations using the ABA are compared with results obtained using the
CBA, taking special care with the normalization of the states. A good procedure
to handle this is the use of Zamolodchikov-Faddeev operators instead of the usual
monodromymatrix operators, which makes the agreement with the CBA immediate.
The use of Zamolodchikov-Faddeev operators also allows the direct implementation
ofSmirnov’s form factor axioms.An interesting continuationof ourwork in this paper
would be to understand what other constraints are imposed by the remaining axioms
in Smirnov’s form factor program [13]. In particular it would be very interesting to
understand the behavior under crossing transformations of form factors evaluated
using algebraic Bethe ansatz techniques. The crossing transformation corresponds
to a shift in the rapidity by half the imaginary period of the torus that uniformizes the
magnon dispersion relation in the AdS/CFT correspondence [14]. However at weak
coupling one of the periods of the rapidity torus becomes infinitely large and thus
both periodicity and the crossing transformation become invisible. In order to be able
to impose periodicity most likely the dressing phase factor needs to be included. A
natural question is therefore the extension of the method that we have developed in
this paper to include the dressing phase factor. The extension of Smirnov’s program
for relativistic integrable theories to worldsheet form factors for AdS5 × S5 strings
was discussed in [15, 16].
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Another interesting extension of our work is the analysis of the thermodynamical
limit where both the number of magnons and the number of sites are large and
comparable. In this limit the determinant expressions for the scalar product of Bethe
states can be expressed as contour integrals. We hope our method can be combined
with the semiclassical analysis of contour integrals in [17–19].

Concerning the three-point correlation functions we have presented a review of
the Tailoring method and of the hexagon framework as an introduction for our pro-
posal. This proposal can be considered as a rewriting of the original hexagon form
factor in the language similar to the ABA. This is done by first identifying our Fock
space and identity operator. The information obtained from it allows to construct
an expression for the hexagon vertex 〈h| for a canonical hexagon presented in [20]
but not explicitly constructed. After this construction we have checked some simple
hexagon form factor, confirming that both proposals generate the same result for one
and two excitations, although at two excitations we can already see a non-connected
contribution that can be safely removed. However for four excitations or more the
structure becomes more involved and some non-connected contributions disguise as
connected ones. A recipe is given to safely decouple them and the form factors agree
with the original “coordinate” ones.

After confirming the agreement between both techniques, we propose generaliza-
tions of the hexagon vertex. First we show how it can be generalized to non-canonical
hexagons via the introduction of operators that transport the excitations around the
hexagon using mirror transformations. The second generalization we propose is the
explicit computation of the weight factors that have to be added when summing over
the different distribution of excitations between two hexagons when the pair of pants
is cut.

One possible continuation of this work would be a better understanding of the
weight factors. Here we have proposed its appearance from the presence of Cartan
generating functions in the coproduct, which explains them up to a sign for the
three-point functions and up to the conformal cross ratios for the hexagonalization
proposal. The sign can easily be included, although this modified coproduct breaks
the co-associativity property, which implies that we no longer have a Hopf algebra.
It would be interesting to see if a twisting of the coproduct can reproduce the terms
related with the cross ratios of the operators, explained for the original proposal in
[21, 22]. Another interesting possibility would be the study of the symmetry of the
〈h| vertex. Our writing of the vertex in terms of ZF operators suggest that the explicit
PSU (2|2)D symmetry might be uplifted to a Yangian one.

Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of
the beginning.
–Sir Winston Churchill, just after the second battle of El Alamein
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Appendix A
Analysis of the κ → ∞ and κ → i
Lagrangians

In this Appendix we will analyse the solutions that we have constructed in Sect. 4.3
in the cases where κ → ∞ and κ → i by performing the corresponding limit at the
level of the Lagrangian. In order to deal with this problem it will be useful to think
of the change of variables that brings the kinetic term in the deformed Lagrangian to
canonical form, which is given by r2 = sn

(
φ,−κ

2
)
. In the variableφ the Lagrangian

is given by

L= 1

2

⎡

⎣φ′2 − ω2
2sn

2
(
φ,−κ

2
)
− v22

sn2
(
φ,−κ

2
) −

ω2
1

(
1 + 1

κ
2

)

1 + κ
2sn2

(
φ,−κ

2
) − (1 + κ

2)v21

cn2
(
φ,−κ

2
)

⎤

⎦ .

(A.1)

In the limit κ → i the change of variables reduces to r2 = tanh φ, together with
r1 = sechφ, and thus the Lagrangian becomes

Li = 1

2

[
φ′2 − v2

2

sinh2 φ
+ ω2

2

cosh2 φ

]
, (A.2)

where we have shifted the Lagrangian by a constant to rewrite the term associated
with v2

2 with a hyperbolic secant instead of a hyperbolic cotangent. To find the limit
κ → ∞ we need to transform the elliptic sine because its fundamental domain is
defined when the elliptic modulus is between 0 and 1

sn(φ,−κ
2) =

sd
(√

1 + κ
2φ, κ

2

1+κ
2

)

√
1 + κ

2
≈ sinh(κφ)

κ

. (A.3)

Therefore the change of variables is given by κ r2 = sinhκφ = sinh φ̃, which leads
to1

1The extra term (v21 + κ
2v21) accompanying ω2

2 comes from the expansion of the Jacobi cosine.
Also, although not obvious, taking this limit implicitly assumes r2 � O(κ−1). That is the reason
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L∞ = 1

2κ
2

[
φ̃′2 − (

ω2
2 + v2

1 + κ
2v2

1

)
sinh2 φ̃ − κ

4v2
2

sinh2 φ̃
− (1 + κ

2)ω2
1

cosh2 φ̃

]
. (A.4)

Both cases lead then to the same kind of Lagrangian, although with different coeffi-
cients in front of the terms in the potential. In what follows we will treat both of them
simultaneously. However, even in these limiting cases the Lagrangian is not easy to
handle unless some additional simplifications are performed. There simplifications
will come from the choices of physical parameters entering the problem. We will
first consider the easiest choice of parameters on the Lagrangian, which is that where
only the potential with the square of the hyperbolic sine survives. Then

L = 1

2κ
2

[
φ′2 − α2 sinh2 φ

]
, (A.5)

with α a constant which will depend on which of the two limits we are taking. The
equation of motion is then

φ′′ = −α sinh φ cosh φ , (A.6)

and can be solved in terms of the Jacobi amplitude,

φ = ±i am

(√
α2 + c σ,

α2

α2 + c

)
, (A.7)

where c is a constant that has to be fixed using periodicity of ri (we have made use of
our freedom in the choice of σ to eliminate an additional integration constant). Note
that in general depending on the sign of α2 + c we will have two different solutions.

We will now focus on the limit κ → ∞. In this case the solutions are given by

y22 = −r22 = 1

κ
2
sn2

(√
α2 + c σ,

α2

α2 + c

)
, when α2 + c > 0 , (A.8)

ỹ22 = +r22 = 1

κ
2
sc2

(√
−(α2 + c) σ,

c

α2 + c

)
, when α2 + c < 0 . (A.9)

Relation (A.8) corresponds to Eq. (4.3.4) once we set α2 + c = κ
2ω2

2( Ĩ1 − 1). Note
that in both cases we have to analytically continue to hyperbolic space. This is in
agreement with the results obtained in [1], where in the limit κ → ∞ the deformed
sphere becomes a hyperboloid.Wemust however stress that the periodicity condition
for each solution is different. This is because the real periodicity of the sn2 function
is given by 2K(m) while its imaginary periodicity is 2iK(1 − m), where K (x) is
the elliptic integral of first kind. Furthermore, the presence of the Jacobi sc function
in the case where α2 + c < 0 leads to a divergence when evaluating the angular

why the 1 − r22 factor dividing the kinetic term disappears as, by direct substitution of the change
of variables, it is subleading in κ

−2. This will have important consequences in our analysis.
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momentum, so from now on we will only consider the case where α2 + c > 0. The
periodicity condition implies

n

π
K

(
α2

α2 + c

)
=

√
α2 + c . (A.10)

In general this equation has no analytical solution. However, as α2 grows like κ
2 we

can assume that c/α2 is small enough to perform a series expansion in both sides of
the equality. Then if we recall now that

K [1 − x] � − log(x)

2
+ 2 log(2) , (A.11)

we find
c � nα

π
W

(
16απ e−2απ/n/n

) ≡ nα

π
W̄ , (A.12)

whereW (x) is the LambertW function. In fact, it is easy to check that our assumption
becomes true very fast, because when n = 10 andα2 = 200 we already have c/α2 ≈
0.0014. Now, as we have set v2 = ω1 = 0 to bring the Lagrangian to the form (A.5),
we have J1 = m2 = 0 and thereforewe only need to compute the angularmomentum,

J2 =
∫

dσ

2π
y22ω2 = ω2

κ
2

α2 + c

α2

[
1 − E

(
α2

α2 + c

)/
K

(
α2

α2 + c

)]
, (A.13)

and the winding,

m1=
∫

dσ

2π

v1(1 − κ
2y22 )

y21
= v1

⎡

⎣1 + κ
2

κ
2

�
(
− 1

κ
2 ,

α2

α2+c

)

K
(

α2

α2+c

) − 1

⎤

⎦ , (A.14)

where we have used the periodicity condition to simplify the expressions. If we take
now the large α2 limit, we conclude that

J2 = J = ω2

κ
2

+ · · · (A.15)

where we have used that the first elliptic integral diverges at 1 while the second
elliptic integral goes to 1. The winding can also be expanded as

m1 = 3v1
2κ

2
+ · · · (A.16)

The only thing left is to find the dispersion relation,
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E2 =
∫

dσ

2π

(
y′2
1 − y′2

2

1 − κ
2y22

+ v2
1(1 − κ

2y22 )

y21
− y22ω

2
2

)

= α2

⎡

⎣1 − (1 + κ
2)α2 + c

κ
2α2

�
(
−1, α2

α2+c

)

K
(

α2

α2+c

)

⎤

⎦ + m1v1 − Jω2 , (A.17)

that can be easily expanded to find

E2 ≈ − α2

2κ
2

+ m1v1 − Jω2 = −2κ
4m2

1

9
+ 4κ

2m2
1

9
− 3κ2 J 2

2
. (A.18)

It is interesting to notice that the energy we have obtained is purely imaginary. This is
again a consequence of how the space is deformed by the κ parameter. In particular
it can be shown [1] that the AdS5 space becomes a dS5 space in the κ → ∞ limit.
In particular the time coordinate is analytically continued (making gtt > 0), which
explains the wrong sign of the square of the energy.

We will next move to the choice of parameters tat brings the Lagrangian to the
form

L̃ = 1

2κ
2

[
φ′2 − α2

cosh2 φ

]
. (A.19)

Instead of writing the equations of motion for this Lagrangian and trying to integrate
them it is more convenient to write the Hamiltonian associated to it,

H = φ′2 + α2

cosh2 φ
, (A.20)

and make use that is is a conserved quantity to directly integrate it. We conclude that

arcsinhφ =
√

|α2 − H |
H

sinh(
√
Hσ) = κr2 . (A.21)

However we can see that this solution is not the same as the one we obtained
by analysing the roots of the quartic polynomial, Eq. (4.3.6). The reason for this
mismatch is that, as we have previously discussed, the Lagrangian we have written
implicitly ignores the 1

1−r22
term in the kinetic energy as it is subleading in κ. If we

restore it the modified Hamiltonian reads

H = φ′2

1 − 1
κ

2 sinh2 φ
+ α2

cosh2 φ
, (A.22)

which can be integrated to obtain

arcsinh(φ) = ±κ sn

(√
H − α2

κ
2

σ,− Hκ
2

H − α2

)

= κr2 (A.23)
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In fact the solution (A.21) can be recovered from this one by taking the κ → ∞
limit after using the transformation sn(u,m) = 1√

m
sn

(√
mu, 1

m

)
.

From the point of viewof theUhlenbeck constant andEq. (4.3.6), ignoring the 1
1−r22

term in the kinetic energy can be understood as explicitly taking the limit ζ3 � ζ4,
giving us

ζ(σ) = ζ3 tanh2[ñ(σ − σ0)]
1 + tanh2[ñ(σ − σ0)] = ζ3 sinh

2[ñ(σ − σ0)] , (A.24)

with ñ =
√

ω2
1(1 + κ

2 Ĩ1). In both interpretationswecanmatch the solutions obtained
from theUhlenbeck constants and the solutions obtained from the equation ofmotion
by identifying H = ω2

1(1 + κ
2 Ĩ1) and α2 = (1 + κ

2)ω2
1.

We can now easily find the solutions to the equations of motion for the κ → i ,
v2 = 0 limit. To do that we only have to use the transformation r1 = sechφ in the
solution (A.21) and use that sech[arcsinh(x)] = 1√

1+x2
. With that we find

r21 = 1

1 + |α2−H |
H sinh2[√H(σ − σ0)]

= 1

1 − |α2−H |
H cosh2[√H(σ − σ0)]

= H

H − |α2 − H | cosh2[√H(σ − σ0)]
,

(A.25)

where we have used a redefinition of σ0 by a iπ
2 shift from the first to the second

line. We can see that this solution can be related with Eq. (4.3.9) if we perform the
substitution α2 = ω2

2 and H = Ĩ1ω2
2. Note that for the formula to have the correct

sign we need Ĩ1 ≤ 1, which is equivalent to the condition that the roots of the elliptic
curve have to be ω2

1 ≤ ζi ≤ ω2
2.

To end this appendix we want to address a third simplified Lagrangian. This has
the form

L̂ = 1

2κ
2

[
φ′2 − β2

sinh2 φ

]
. (A.26)

So it is obvious that we can get all the solutions for this Lagrangian from the solutions
of Lagrangian (A.19) after substituting φL̂ = φL̃ + iπ

2 and β2 = −α2. Let us exam
one of the solutions, the limit κ = i and ω2 = 0. If we choose the solution with the
hyperbolic cosine we get

r1 = sech

(
φ ± iπ

2

)
= ∓icsch(φ) = ∓

√
−H

H + β2
sech(

√
Hσ) , (A.27)

which can be proven to be equivalent to Eq. (4.3.12) with the identification β2 = −v2
2

and H = 1 − Ĩ1.
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General Form ofF L
n

In this appendix we are going to obtain the general expression of the function F L
n

discussed in Sects. 6.2.2 and 6.2.3 . All along the calculation the limit α → 0 will
be assumed. Using the first recurrence relation in (6.2.18) and setting both d and ∂d

∂λ
to zero we find

F L
n = F L

0 + iDF L
0 + iDF L

1 + · · · + iDF L
n−1 . (B.1)

If we assume that n < L − 1, the second recurrence equation gives

DF L
n =

(
n

0

)
DF L

0 +
(
n

1

)
iD2

2! F L
0 + · · · =

n∑

j=0

(
n

j

)
i jD j+1

( j + 1)!F
L
0 . (B.2)

Therefore we need to sum the series

n−1∑

j=0

iDF L
j =

n−1∑

j=0

j∑

k=0

(
j

k

)
i k+1Dk+1

(k + 1)! F
L
0 . (B.3)

As a first step, we can commute the two sums as
∑n−1

j=0

∑ j
k=0 = ∑n−1

k=1

∑n−1
j=k +

∑n−1
j=0 δk,0, because the j only appears in the limit of the sum and in the binomial

coefficient, so is easy to perform first the sum over j . The second sum is easy
to perform because we only have to calculate

∑n−1
j=0

( j
0

) = (n
1

)
. The sum over j of

the other term can be evaluated using the properties of the binomial coefficients∑n−1
j=k

( j
k

) = (n−1+1
k+1

)
. Then the whole sum can be rewritten as

F L
n = F L

0 +
n∑

k=1

(
n

k

)
i kDk

k! F L
0 =

n∑

k=0

(
n

k

)
i kDk

k! F L
0 . (B.4)
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This equation is true ∀n < L − 1. If we want to calculate it for n ≥ L − 1 we have
to take into account derivatives of d of order greater or equal to L , which can be done
independently of the calculation we have already done, because

DL+α−1F L
j+1 = i

L + α
F L

j

∂L+αd

∂λL+α
+ · · · ,

where the dots stand for the part that we have already taken into account. Therefore
the d-contribution to DF L

M will be of the form

iDF L
M =

M−L+2∑

j=1

M+2−L− j∑

k=0

i L+k−1

(L + k − 1)!
(

M − j

L + k − 2

)
DL+k−1F L

j

=
M−L+2∑

j=1

M+2−L− j∑

k=0

i L+k

(L + k)!
(

M − j

L + k − 2

)
∂L+kd

∂λL+k
F L

j−1 ,

and the derivative of d can be calculated using Leibniz’s rule,

∂L+kd

∂λL+k

∣
∣∣∣
ξ

=
L+k∑

j=0

(
L + k

j

)
∂ j (λ − ξ)L

∂λ j

∂L+k− j (λ + ξ)−L

∂λL+k− j
,

because we are going to evalute it at λ = ξ, the only non-zero contribution is that of
L derivatives in the first term, so that j = L and

∂L+kd

∂λL+k

∣
∣∣∣
ξ

=
(
L + k

L

)
∂L(λ − ξ)L

∂λL

∂k(λ + ξ)−L

∂λk
= (L + k)!

k!
(L + k − 1)!

(L − 1)!
(−1)k

i L+k
.

If we substitute that we obtain

iDF L
M =

M−L+2∑

j=1

M+2−L− j∑

k=0

(
M − j

L + k − 2

)
(−1)k(L + k − 1)!

(L − 1)!k! F L
j−1 .

If we perform the sum in k we have

m+2∑

k=0

(−1)k
(

L + m

L + k − 2

)(
L + k − 1

k

)
= (L + m)!

(L − 1)!
m+2∑

k=0

(L + k − 1)!
(L + k − 2)!

(−1)k

(m − k + 2)!k!

= (L + m)!
(L − 1)!(m + 2)!

m+2∑

k=0

[
(−1)k(L − 1)

(
m + 2

k

)
+ (−1)kk

(
m + 2

k

)]
,

wherem = M − L − j . Properties of the binomial coefficients say that the first sum
is zero (unless there is a single term, that is, ifm + 2 = 0) and the second sum is also
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zero (except if there are two terms, so that m + 2 = 1). Then the total contribution
of this terms will be

n−1∑

M=L−1

iDF L
M =

n−1∑

M=L−1

M−L+2∑

j=1

(M − j)!
(L − 1)!(M − L − j + 2)!

× [
(L − 1)δM−L− j+2,0 − (M − L − j + 2)δM−L− j+2,1)

]F L
j−1 , (B.5)

which telescopes, so that
n−1∑

M=L−1

iDF L
M = F L

n−L . (B.6)

Therefore, the most general form of the correlation function F L
n is

F L
n =

n∑

k=0

(
n

k

)
i kDk

k! F L
0 + θ(n − L)F L

n−L . (B.7)

where θ(x) is the Heaviside step function, with θ(x) = 0 if x < 0 and θ(x) = 1 if
x ≥ 0.
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