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Supervisor’s Foreword

From our earliest observations of lightning to the most recent achievements in
nanoelectronics, electrical phenomena have been transformative to human life.
This is not surprising, given that the fundamental physics behind electromagnetics
is closely related to the very nature and properties of matter itself. Although the
effects of the electric field force were known to the ancient Egyptians, Arabs, and
Greeks, it was not until the eighteenth and nineteenth centuries before such phe-
nomena were investigated using scientific methods and mathematical techniques.
Early on, the groundbreaking work of Franklin, Volta, Ampère, Faraday, and
Maxwell paved the way for the discovery of the electric charge in 1896 by J. J.
Thomson. Later, the realization that the electric field is directly related to the guided
motion of individual particles led to the development of the Drude model for
conductivity in 1900 and the understanding that free electrons scatter from positive
ions in metal lattice sites, much like steel balls in a pinball machine. This led to the
expectation that conductivity should be directly proportional to the average distance
an electron travels between collisions with an ion. However, a few decades later,
quantum mechanics showed that due to the wave-particle duality of matter, electrons
actually diffract from positive ions in an ideal crystal and collisions occur only when
impurities (or lattice defects) are present.

The above led Philip Anderson in 1958 to argue that electron localization in a
lattice potential is possible, given a critical level of disorder. In this case, the
scattering or the resistance in the crystal increases and the traveling wave-particle
experiences a transition from an extended to a localized state.

The resulting (now standard) approach to the Anderson localization problem,
called scaling theory, has proved widely successful for both 1D and 3D systems.
However, in the critical 2D case, scaling theory predicts that all energy states are
localized for any (nonzero) amount of disorder. Since metallic behavior has been
both numerically predicted and experimentally observed for various 2D systems,
including electron gases, cold atoms, and photonic lattices, this immediately leads to
an interesting conundrum known as the Anderson 2D localization problem. With the
recent discovery of graphene and other two-dimensional materials, the resolution of
this contradiction is more pressing than ever.
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Eva Kostadinova chose to conduct her doctoral research at this intersection of
fundamental physics. The Anderson 2D localization problem has been left unsolved
for over 50 years at least in part due to the need to master material across multiple
disciplines before one can even consider approaching it. In order to accomplish the
research that ended up comprising her dissertation, Eva had to first become familiar
with a number of diverse research areas crossing physics, mathematics, and statis-
tics. Most students, once aware of the magnitude of such an endeavor, would have
redirected their research toward a less demanding problem. Eva instead simply
began working with Dr. Constanze Liaw (then in the Department of Mathematics
at Baylor and now at the University of Delaware) to discover how a spectral method
Dr. Liaw had recently developed might be repurposed to provide data on the
problem. Along the way, she also introduced herself to Dr. Mandy Hering (Baylor
Department of Statistical Science) who provided the statistical analysis she needed to
help with the numerical work involved.

In her dissertation, Eva argues that this novel mathematical technique, the spectral
approach, provides a possible solution to the Anderson localization problem. The
spectral approach predicts the existence of extended states in 2D crystals with
nonzero disorder, in qualitative agreement with existing experimental results.
Although recognized among mathematicians, this method is little known to the
physics community. The present work offers the first attempt to provide physical
interpretation of the spectral approach and explores its application to transport
problems in various 2D-disordered lattices.

This interdisciplinary work provides important new insights in the transport
behavior of 2D materials by building a bridge between semiclassical physics,
materials science, and mathematics. The result is a valuable study that leads us
ever closer to a solution of the Anderson 2D localization problem.

Center for Astrophysics,
Space Physics & Engineering Research
and Department of Physics
Baylor University
Waco, TX, USA

Dr. Truell Hyde

viii Supervisor’s Foreword



Acknowledgments

This work was supported by the Simons Foundation/NSF/DMS (Simons Foundation
grant number 426258 and NSF/DMS grant number 1700204, Constanze Liaw) and
NASA/NSF (NASA grant number 1571701 and NSF grant numbers 1414523,
1740203, and 1262031, Lorin Matthews and Truell Hyde).

The author gratefully acknowledges the contribution of Dr. Amanda Hering, who
provided valuable advice on the statistical analysis of our data.

ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Spectral Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Delocalization in 2D Lattices of Various Geometries . . . . . . . . . . . . . 43

5 Transport in the Two-Dimensional Honeycomb Lattice with
Substitutional Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Transport in 2D Complex Plasma Crystals . . . . . . . . . . . . . . . . . . . . 73

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Appendix A: Basic Materials Science Terms . . . . . . . . . . . . . . . . . . . . . . 91

Appendix B: Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 95

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xi



Parts of this thesis have been published in the following journal articles:

1. Kostadinova, E. G., Liaw, C. D., Matthews, L. S., & Hyde, T. W. (2016).
Physical interpretation of the spectral approach to delocalization in infinite
disordered systems. Materials Research Express, 3(12), 125904.

2. Kostadinova, E. G., Busse, K., Ellis, N., Padgett, J., Liaw, C. D., Matthews, L. S.,
& Hyde, T. W. (2017). Delocalization in infinite disordered two-dimensional
lattices of different geometry. Physical Review B, 96(23), 235408.

3. Kostadinova, E. G., Guyton, F., Cameron, A., Busse, K., Liaw, C., Matthews,
L. S., & Hyde, T. W. (2018). Transport properties of disordered two-dimensional
complex plasma crystal. Contributions to Plasma Physics, 58(2–3), 209–216.

xiii



Chapter 1
Introduction

In condensed matter physics, a crystal without impurities is often described by the
one-electron model (Fig. 1.1), where the transport properties of the material are
studied using the energy spectrum of a single electron moving under the influence of
a periodic array of atoms [1]. Neglecting interaction between electrons, the
one-electron Hamiltonian is given by

H0 � K þ V0, ð1:1Þ

whereK is the kinetic energy of the particle andV0 is the periodic potential function of
the lattice. Throughout this work, we take K � � Δ, where Δ is the discrete
Laplacian1 on the Hilbert space ℋ. A crucial assumption of the one-electron model
is that themedium is infinite in space, which allows for the use of statistical mechanics
without considerations of finite size and boundary effects. However, a common
practice is to approximate the infinite system by a finite one, where one examines
the dependence of relevant properties on system size. Such methods are incomplete
without a proper scaling approach, which extends the finite volume back to infinity
and recovers the properties of the extended system. A primary goal of this book is to
point out possible issues related to scaling and propose an alternative approach to
transport problems, which does not require finite-size approximations.

The one-electron model has shown remarkable success in the theoretical analysis
of basic transport features in unperturbed lattices. However, ‘real’ crystals (such as
those produced in a laboratory or semiconductor manufacturing facility) are charac-
terized by a variety of imperfections, which interact with the traveling electron and
affect significantly the transport properties of the material. As lattice disorder
increases to a critical value, the electron wave-particle may experience a transition
from an extended to a localized state; this is an example of a metal-to-insulator

1The discrete Laplacian is the analogue of the continuous Laplacian on a graph or a discrete grid.
Here, it represents the energy transfer term (nearest neighbor interaction) of the Hamiltonian.

© Springer Nature Switzerland AG 2018
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transition (MIT) in the medium (see Fig. 1.2). In 1958 P.W. Anderson [2] proposed
that at zero temperature2 the quantum-mechanical motion of a wave-particle may
come to a halt due to sufficiently large spatial disorder within the system. This
phenomenon is now known as Anderson localization. Due to its wide applicability,
the subject of Anderson localization and the related transport problems arising from
it has grown into a rich field in both physics and mathematics.

Most of the numerical results presented in this work examine transport problems
in the static-lattice, zero-temperature limit, which is the case originally considered by
the Anderson model. The importance of studying transport in this regime is best
summarized by David Thouless (winner of the 2016 Nobel Prize for physics) [3]:

“This restriction is made not because we think that effects of dynamics and correlations are
unimportant but because we believe that a thorough understanding of the restricted problem
is necessary before real progress can be made with the more general problem.”

It has been shown that various aspects of the static scenario can be incorporated
into a class of perturbation problems described by the so-called Anderson-type
Hamiltonians (first introduced in [4]). In general, the Anderson-type Hamiltonian
on the Hilbert space ℋ can be defined as a self-adjoint linear operator of the form

HE ¼ H0 þ V E, ð1:2Þ

where H0 is the Hamiltonian of the unperturbed crystal as given in Eq. (1.1) and VE is
a distribution of random variables, representing the disorder within the system. To

Fig. 1.1 In the one-electron model, the transport behavior of the system is described by the energy
spectrum of a single electron moving through a periodic array of identical atoms. Despite its success
in describing some important features of conductivity, the one-electron model does not account for
the effects produced by lattice impurities

2The zero-temperature approximation is an important limitation of the Anderson model as it
neglects the contact of the system with any external thermal bath. Since thermal fluctuations
often play important role in real experiments, they should be accounted for in a comprehensive
theory of transport.
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model different (but related) transport problems, once can vary the choice of
distribution type in the perturbative term VE. Anderson-type Hamiltonians possess
properties required by the spectral approach, which is the focus of this work. Here
we introduce the spectral method by considering the discrete random Schrödinger
operator (see Eq. (1.3)), which is an important special case of an Anderson-type
Hamiltonian with wide application in condensed matter physics.

Examination of a realistic transport problem in a disordered system should
account for both static effects (such as zero-temperature interactions with hot solid
and topological disorder) and dynamical phenomena (such as random lattice exci-
tations and stochastic processes). In Chaps. 3–5, we investigate numerically the
static-lattice problem for various infinite disordered lattices. The dynamical aspects
of disorder are briefly discussed in Chap. 6 in the context of travelling lattice waves
in a 2D complex plasma crystal. There, the numerical simulations carried out for a
(realistic) semi-classical dust crystal are compared against the predictions for a
(theoretical) static case scenario. This allows for determination of the regime

Fig. 1.2 A simplified illustration of a metal-to-insulator transition (MIT) caused by critical amount
of disorder in the system. In the quantum regime, an electron wave-particle traveling through a
disordered medium is scattered from successive lattice defects. Consider two waves following the
same path through the crystal but wave I (blue arrows) travels in the clockwise direction, while
wave II (red arrows) propagates counterclockwise. Upon return to the initial point A, the two paths
interfere constructively, which increases the probability for the electron to be found on lattice site
A. Such constructive interference of multiple wave paths can lead to spatial localization of the
electron

1 Introduction 3



where the spectral analysis of the idealized system is a good approximation for the
realistic one. A future goal of our research will be to use these results to fully adapt
the spectral approach to the time-dependent scenario.

1.1 Formulation of the Transport Problem

The static lattice, zero temperature transport problem, where a charge carrier is
travelling through a disordered medium is where we begin. For simplicity, we
consider the 2D separable Hilbert space ℋ ¼ l2(ℤ2) of square summable sequences
on the square3 lattice ℤ2. In this case, the discrete random Schrödinger operator is
given by the self-adjoint Hamiltonian HE

HE ¼ �Δþ
X

i2ℤ2

Eiδi δih j ð1:3Þ

where Δ is the discrete Laplacian in 2D, δif gi2ℤ2 are the standard orthonormal base
vectors of the Hilbert space ℋ (namely, δn(m) ¼ δnm, where δnm is the Kronecker
delta), and Eif gi2ℤ2 is a set of random variables on a probability space (Ω, P). The
random variables Ei are independent identically distributed (i.i.d.) in the interval
[�W/2,W/2] with probability density χ. In this work, we examine three choices for
χ: uniform, Gaussian, and bimodal distributions, which can be used to model various
lattice defects.

The discrete random Schrödinger operator in Eq. (1.3) describes a 2D arrange-
ment of atoms located at the integer points of the square lattice ℤ2. The perturbative
part of the operator assigns a random amount of energy Ei from the interval [�W/2,
W/2] according to the prescribed probability distribution χ. Thus, the amount of
disorder in the system can be varied either by changing the magnitude of W or by
choice of distribution type. Except for degenerate cases, the perturbative term in
Eq. (1.3) is non-compact almost surely,4 which indicates that the spectra of HE

cannot be easily studied using the results from classical perturbation theory [5]. A
more adequate treatment of problems involving non-compact operators can be found
in spectral theory.

In Chap. 3, we present a general introduction of the spectral approach, which does
not require the choice of Kronecker delta functions as the base vectors for the Hilbert
space. However, in this study, we use δif gi2ℤ2 for two main reasons: computational
simplicity and ability to compare our approach with some of the most fundamental
works in the field. The base vector δi assumes the value 1 in the ith entry and 0 in all
other entries. This corresponds to the tight-binding approximation, where the

3The same analysis can easily be generalized to any dimension and lattice geometry.
4Note that in probability theory an event happens almost surely if it happens with probability 1. In
this book, we use the two phrases interchangeably.
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wavefunction is expanded as a sum over orthogonalized atomic wave amplitudes. In
this approximation, the Schrödinger equation becomes a matrix equation for the
amplitudes. Combined with the (common) assumption that there is only one atomic
orbital at each lattice site, the tight-binding model facilitates the computation of a
transport problem on a larger lattice. The single-orbital and tight-binding approxi-
mations were used both by Anderson in his original paper on localization [2] and
Abrahams et al. in the development of scaling theory [6], which motivates us to
introduce the innovative spectral approach using the same assumptions. However,
the generalized definition of the spectral method can be used with a different choice
of base vectors, which allows for analysis of physical systems with long-range
interaction in the potential. An example of such a system is the complex plasma
crystal (discussed in Chap. 6).

In the static lattice case, one is interested in the amount of disorder that triggers a
phase transition from an extended to a localized state in the crystal. These two phase
states correspond to distinct modes of charge transport: tunneling and hopping. In the
unperturbed periodic crystal, quantum mechanical tunneling from one site to another
spreads the eigenstates over the entire system, which corresponds to delocalization in
the form of metallic conductivity. As the amount of disorder passes the critical value,
transport of electrons may only occur through hopping from one localized state to
another with the help of energy transfer from the phonon system. This regime
corresponds to exponential localization in the form of hopping conductivity. The
transition from one phase state to the other may not occur at a single critical value of
the disorder. Instead, it has been suggested that there exists a transition region of
disordered values, where the energy states of the Hamiltonian are neither extended,
nor exponentially localized. This topic will be further discussed in Chap. 3.

1.2 Nature of Disorder

In condensed matter, disordered materials are sometimes defined as crystals with lack
of long-range order in their atomic distributions [7]. Thus, a broader definition of
lattice perturbation is the absence of periodicity in the crystalline structure. Most of
this work focuses on short-range (or local) disorder for which lattice site interaction is
limited to the nearest neighbor (i.e., the tight-binding approximation). Short-range
impurities often occur as localized neutral scatterers, randomly distributed through-
out the crystal. In contrast, long-range disorder is usually represented by charged
impurities for which the interaction decreases according to a shielded Coulomb law.
In Chap. 6, we discuss the 2D dusty plasma crystal, where both short-range and long-
range disorder effects can be observed. Specifically, we will examine a 2D complex
plasma crystal formed by negatively charged micron-sized particles suspended in
low-density plasma gas. The interplay between the Coulomb repulsion among the
particles and the external radial confinement in the system naturally introduces both
Coulomb defects (i.e., a charge gradient throughout the crystal) and geometrical
lattice imperfections (such as defect lines and domains of various orientation).

1.2 Nature of Disorder 5



Before we can provide an adequate discussion of the dynamics in realistic
systems, such as the complex plasma crystal, we need a thorough understanding of
the local and global transport phenomena characteristic of the time-independent,
“frozen” lattice. One advantage of this case is that in the static lattice approximation,
the hot solid type disorder can be distinguished from the topological disorder. The
former describes a periodic lattice in which some atoms are shifted from their regular
position due to a mechanical defect (static positional disorder shown in Fig. 1.3a) or
replaced by a different type of atom through doping (substitutional disorder shown in
Fig. 1.3b). The Anderson localization problem (see Chap. 4) is useful in modeling
positional defects, while the quantum percolation model (see Chap. 5) is often
applied in the study of doping.

In the case of a topologically disordered system, long-range order in the atomic
distribution is completely broken, i.e. uniform periodicity cannot be assumed
throughout the lattice. However, short-range order is preserved in the sense that
the number of nearest neighbors (for the corresponding unperturbed lattice) remain
intact although bond lengths and angles can fluctuate. Crystals exhibiting this type of
perturbation present significant challenges to all scaling models relying on periodic
boundary conditions. Topological disorder can be represented by a system whose
domains exhibit various orientations with respect to a primitive axis (see Fig. 1.3c).
In this paper, such lattice imperfections are studied with the help of numerical
simulations of dust lattice waves in the complex plasma crystal. A second mecha-
nism for accomplishing topological disorder is to introduce a high density of
dislocations into a solid, which is the description of a liquid used in the dislocation
theory of melting. In a future work, we will examine this case using the solid-to-
liquid phase transition in a complex plasma crystal.

A third, usually neglected problem, is the stochastic-type disorder, where time-
dependent fluctuations contribute to the transport properties of the material. Sto-
chastic processes are often considered “noise”, which is subtracted or averaged
depending on the length and time scales of the examined system. Nevertheless,
there are cases where the accuracy of experimental results is sensitive to the constant

Fig. 1.3 Examples of (a) positional, (b) substitutional, and (c) topological disorder on the 2D
honeycomb lattice. The red numbers in part (a) provide the number of nearest neighbors for the
corresponding cell. The red dots in part (b) represent the dopant atoms. In part (c), the different
shades of the cells indicate various spatial orientation

6 1 Introduction



interaction with the environment. Self-organization and stability of crystal structures
is dependent on the interplay between initial conditions (which are deterministic)
and randomness in the system (in the sense of stochastic behavior). The effect of
stochastic processes in various systems requires deep understanding of deterministic
chaos theory and examination of complex dynamical systems. The spectral method
presented in this work (Chap. 3) relies on a decomposition of the measure5 in the
examined Hilbert space. The analogous approach to the case of stochastic processes
is called the Lévy-Itō decomposition. Another future goal of our research is to
develop a spectral approach to the analysis of random processes and apply it in the
study of thermal and charge fluctuations in the complex plasma crystal.

The above definitions of disorder are all motivated by physical application. In the
case where the Schrödinger equation assumes a matrix form, a mathematical dis-
tinction should be made between diagonal and off-diagonal types of disorder. The
former, describes perturbation of the on-site parameters, such as fluctuation of lattice
site ground state energy. This type of disorder will be considered in Chap. 3, where
we introduce the spectral approach. Alternatively, a defect can be represented by an
off-diagonal fluctuation, to describe, for example, changes in the hopping potential
between two neighboring sites. In the present work, we assume that the interaction
potential is constant and normalize it to unity.

1.3 Relevance to Physical Systems

Since the discovery of the electric charge, the question of conductivity in various
materials has been a topic of research for mathematicians, physicists, and engineers.
Only a few decades ago, the theory of electron transport in disordered materials
relied on the classical Drude model, in which free electrons were assumed to scatter
off lattice site impurities in proportion to the mean free path. It was later recognized
by P. W. Anderson, that the quantum-mechanical wave character of electrons
introduces essential modifications to this simplistic ballistic picture. The implemen-
tation of quantum mechanics into the classical theory paved the way for the
development of the semiconductor industry, which is the backbone of modern
technology. In a semiconductor crystal, both the concentration and type of lattice
impurity determines conductivity. In the low concentration limit, isolated impurities
produce discrete bound energy states located between the valence and conduction
bands. Due to Coulomb repulsion, such discrete intermediate levels have slightly
different energies from one another. In this case, electron excitation, relaxation, or
trapping can be achieved only upon interaction with the phonon system when
external energy is supplied. This mode of transport is referred to as hopping
conductivity, or localization. As the concentration of impurities increases, isolated
intermediate states form a continuous band, where the electrons move freely from

5See Appendix B for a definition of measure.
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one state to another. This provides an alternative mode of transport in the system,
which corresponds to metallic conductivity. It was argued by Mott [8] that the
passage from a discrete to a continuous spectrum of the impurity levels constitutes
a simple example of a metal-to-insulator transition (MIT).6

The subject of Anderson localization and related transport problems has grown
into a rich field of research for both physicists [9–12] and mathematicians [13–
17]. Anderson localization is currently well understood for the 1D [18–20] and 3D
[21–26] cases, where the problem has been studied in both quantum mechanical
[10, 21, 24, 27–29] and classical [30–36] systems. However, as mentioned in the
previous section, the existence of extended states in the critical 2D case is still a topic
of heated debate due to a disagreement between the theoretical predictions of scaling
theory (see Sect. 2.4) and experimental observation. This issue was limited to the
theoretical realm before the discovery of graphene in 2004 [37, 38]. Graphene is the
world’s first truly two-dimensional material making it an ideal candidate for the
development of flexible and durable semi-transparent technology, improved energy
storage units, high-efficiency solar panels, and water purification systems. However,
the realization of such applications is extremely sensitive to a proper understanding
of conductivity in this 2D material.

According to scaling theory [6], all energy states are localized in a 2D crystal for
any (nonzero) amount of disorder, i.e. an Anderson-type MIT should not occur. For
the case of a 2D carbon lattice in the tight-binding limit, it was established numer-
ically that the energy states are localized with large localization length (in the range
of several hundred nanometers to microns) [39–41]. In contrast, analytical calcula-
tions by Lherbier et al. [42] indicated the existence of minimum conductivity in
graphene characterized by short-range interactions. Further evidence for delocaliza-
tion was analytically obtained for a single graphene sheet with long-range interac-
tions [43] or off-diagonal disorder [44].

A crossover from extended to localized states has been experimentally
established for graphene doped with hydrogen [45]. The origins of this transition
remain unclear. One possible explanation is that doped graphene exhibits a locali-
zation length longer than the size of current numerical simulations, which leads to
the “apparent” existence of delocalized states [46–48]. The other major hypothesis,
which will be the one examined in this work, is that scaling theory does not yield
reliable results for all dimensions and system sizes [49, 50], and that its limitations
come to play in the critical 2D case.

Apart from classical semiconductors, there is a variety of other disordered
systems (such as isotropic mixtures and substitutional alloys), where adequate
analysis of transport phenomena is important. Of special interest is the case of
semiconducting glasses, which form domains of various orientation upon

6Note that in this description the unperturbed crystal is an isolator and the impurities act to facilitate
transport. Alternatively, one can consider a conducting regular lattice with impurities acting as
(almost) perfect barriers that impede transport. In this work, we focus on the second formulation of
the problem.
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crystallization. The structure of such materials exhibits only local symmetry,
presenting a significant challenge to any scaling approach to conductivity. A second
important class of problems is related to electron transport in amorphous elementary
materials forming disordered rings and chains of atoms [51]. The study of conduc-
tivity in such non-crystalline systems requires consideration of nonlinear interactions
and the dynamical aspects of disorder. One interesting representative phenomenon is
the crossover from a crystalline to an amorphous solid and its dependence on the
impurity concentration. In this problem, the non-crystalline system may be viewed
as a limiting case of an ordered lattice, where a high concentration of random defects
causes a phase transition to an amorphous solid. A proper theory of conductivity
must account for such transition.

The class of Anderson-type problems is not limited solely to electron transport in
materials. In fact, the original work by P. W. Anderson was motivated by the
magnetic resonance experiments of Feher [52], which showed anomalously long
relaxation times of electron spins in doped semiconductors. Since then, numerous
techniques and results from the analysis of electron transport have been applied to
the study of spin waves in disordered systems. The connection between the two
phenomena is apparent from the Schrödinger equation for the tight-binding model,
which is analogous to the equations for the spin waves. Such analogy can be further
extended to the classical realm, where the Anderson localization and related trans-
port problems can be studied using electromagnetic or sound wave equations.
Diffusion of both quantum mechanical and classical waves through a disordered
medium obeys Ohms law, where the conductance/transmission decreases linearly
with system size [35]. Once the amount of scattering from defects passes a critical
value, Anderson localization brings classical diffusion to a complete halt. In this
case, the transmission coefficient in the localized regime decreases exponentially,
which can be easily detected in a macroscopic experiment. The topic of wave
transport in classical systems will be further examined in Chap. 6.

Finally, transport in real materials depends on the interplay between the interac-
tion with impurities and the correlations among electrons. Strongly correlated
systems (SCSs) are systems that cannot be effectively described by the physics of
free-particle ensembles. They exhibit anomalous (often technologically useful)
collective behavior, which is a result of the strong interactions among the entities
involved [53, 54]. As in the case of the crystalline-to-amorphous phase transition, a
comprehensive theory of the simpler non-correlated problem represents a valuable
step toward better understanding of the more complex case, where strong correla-
tions cannot be neglected.
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Chapter 2
Theoretical Background

2.1 Localization Criteria

In his original paper on localization [1], Anderson considered a very general case of
a 3D lattice space, where sites j can be distributed either regularly or randomly.
Lattice site energies Ej are stochastic variables randomly selected from a probability
distribution P(E)dE where the width of the distributionW is used to vary the amount
of disorder in the system. The hopping energy between neighboring lattice states is
represented by an interaction matrix element Vjk(rjk), which can also be chosen to
vary randomly according to a predetermined probability distribution. The basic
approach to analyzing transport in this setup is to place a single entity, for instance,
the spin of an electron, on site n at time t ¼ 0 and study the time evolution of its
wavefunction.

The Anderson theorem states that if Vjk(rjk) falls off at large distances faster than
1/r3 and if the average value of V is less than a certain critical Vc~W, then transport
comes to a halt.

In other words, localization occurs when the hopping matrix element provides
only short-range interaction and when the magnitude of the hopping energy is on the
order of the variation in lattice site energies. If these conditions are satisfied, the
amplitude of the wavefunction around site n falls off rapidly with distance as t!1,
whereas the amplitude located on site n itself remains finite. The Anderson theorem
leaves two regions of uncertainty; namely, the case where Vjk(rjk) falls off as 1/r

3 and
the regime where V~W (also called the high-concentration limit). Due to its general
formulation, this criterion for the metal-to-insulator transition was not originally well
understood. This led to a series of simplifications and special cases that were later
introduced.

An important addition to the theory of localization is the idea of a minimum
conductivity, originally suggested by Mott [2–4]. He argued that the mean free path
l between successive interactions with impurities in a material cannot be smaller than
the lattice constant a. Thus, the value of the conductivity of a metal has its minimum

© Springer Nature Switzerland AG 2018
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when l � a. Since the wavelength λ of electrons at the Fermi surface is on the order
of 2πa, this provides a requirement for extended states to exist, which is given by

l � a or l � λ=2π ¼ 1=k, ð2:1Þ

where k is the wave vector. Similar reasoning was independently developed by Ioffe
and Regel [5], who argued that localization is expected to occur for kl � 1. The
physical interpretation of this criterion comes from the realization that below kl ¼ 1,
the electric field cannot perform even a single oscillation before it is scattered again
by successive impurities. Thus, in this limit, the wave collapses into a localized state.
It is important to note the subtle difference between the Mott and Ioffe-Regel criteria,
which is apparent from the sign of the two inequalities. Mott identifies the critical
value of the mean free path above which extended states exist in any dimension,
whereas Ioffe and Regel discuss the regime, where delocalization cannot occur.
Technically, Mott’s minimum conductivity disagrees with scaling theory (see Sect.
2.4), which predicts that in the critical 2D case true metallic conductivity does not
exist. On the contrary, the Ioffe-Regel criterion does not deal with extended states
and is, thus, still widely used in localization problems, especially in those related to
localization in the classical regime.

One of the first measures of localization employed numerically was given by Bell,
Dean and Hibbins-Butler [6, 7], who studied the propagation of atomic vibrations in
vitreous silica, germania, and beryllium fluoride. Bell et al. pointed out that the
spatial extent of modes, which largely determines the thermal conductivity of a glass,
can be considered analogous to the spatial extension of electron states, which
influences the electrical conductivity in a crystalline solid. Therefore, they examined
the transport properties of the normal modes in various spectral bands of chalcogen-
ide glasses. As a measure of localization, Bell et al. introduced a parameter NEFF(ω),
which is a rough estimate of the number of atoms effectively participating in a
normal mode with frequency ω. The definition of NEFF(ω) is related to the energy-
moments of a normal mode, given by

Mn � Mn ωð Þ ¼
XN

i¼1
Eið Þn, ð2:2Þ

where Ei(ω) ¼ mi j ri j 2 is the mean kinetic energy of the ith atom (with mass mi and
real vector displacement amplitude ri), which participates in a normal mode with
frequency ω. In particular, M0 ¼ N, where N is the total number of atoms in the
vibrating system whileM1 is proportional to the total vibrational energy of the mode
in question. The parameter NEFF(ω) is then defined as

NEFF ωð Þ ¼ M1ð Þ2=M2: ð2:3Þ

In other words, NEFF(ω) is the ratio of the total mean vibrational kinetic energy
squared to the sum of the squared mean kinetic energies of the participating atoms.
Therefore, NEFF(ω) lies between N (the limiting case where all atoms vibrate with
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equal amplitude, which corresponds to pure translational motion) and 1 (the limiting
case where only one atom participates in the mode, i.e. the vibration is localized). If
NEFF(ω) is normalized by the number of atoms in the system N, one obtains the so
called ‘participation ratio’

p ωð Þ ¼ NEFF ωð Þ=N ¼ M1ð Þ2= NM2ð Þ: ð2:4Þ

One way to distinguish the localized from the delocalized regime in the system is
to calculate the dependence of the participation ratio on system size.

Bell et al. aimed to provide an experimentally measurable distinction between the
localized and delocalized regimes thus quantifying the concept of degree of local-
ization. The Bell et al. criterion states that if p(ω) tends to a constant value as
N ! 1, the vibrational mode is extended, while if p(ω) tends to zero, the vibration
stays localized.

Arguably, the most important contribution of this criterion is that it provided the
first suggestion that conductivity can be studied using scaling techniques.

Some of the first numerical experiments explicitly using a scaling criterion for
localization were conducted by Edwards and Thouless [8] in 1972. Edwards and
Thouless pointed out that the energy of a localized state in a large system should be
insensitive to the boundary conditions, provided the center of localization is not
located near a boundary. In contrast, any change in the boundary conditions should
affect significantly the energy spectrum of an extended wave. Therefore, one can
compute the energy states for a given system using one set of boundary conditions,
then repeat the calculation using another set of boundary condition and then examine
the energy shift ΔE between corresponding levels (as derived from the two calcu-
lations) to determine the transport regime of the examined system. Specifically,
Edwards and Thouless assumed periodic boundary conditions in their first calcula-
tion and then repeated the calculations using anti-periodicity across one of the
borders. In the localized regime, ΔE should be exponentially small, while in the
extended states regime, the energy differences should be comparable to the spacing
between levels, roughly given by η ¼ W/N, where W is the width of the energy
fluctuations (introduced in the Anderson theorem above) and N is the number of
atoms in the system.

Since the electron wavefunction in the disordered lattice can be localized in an
area with more than one atom, the spatial extent of the localization must be
determined by increasing the system size to infinity or letting N!1. The Edwards
and Thouless criterion states that if the ratio ΔE/η tends to a constant as N ! 1,
then the system is in the delocalized regime, while if ΔE/η decreases with system size,
the system is in the localized regime.

Numerically, the size of a system may be increased by stacking identical d-
dimensional cubes of N sites each assuming periodic boundary conditions. The
resulting system consists of N energy bands of width dΔE, where d is the dimen-
sionality of the system. For the case when unit cell cubes are not identical but
randomly chosen from a predetermined distribution, the strength of the coupling

2.1 Localization Criteria 15



(or hopping energy) between states on neighboring cubes is given by the quantity
V ¼ (1/2)ΔE. The quantity of interest in this model is the ratio of the available
hopping energy to the mean spacing between energy levels

V

η
¼ NΔE

2W
: ð2:5Þ

Note that the numerical factor of 1/2 has been neglected in the Edwards and
Thouless criteria given above.

2.2 Anderson Model

The Anderson localization problem examines the propagation of a mobile entity
through a d-dimensional disordered lattice. As a representative example, we consider
an electron traveling in the 3D lattice, where each site j is randomly assigned energy
Ej from a probability distribution P(E)dE with a characteristic width which deter-
mines the degree of disorder in the system. Assume that the energies Ej are
independent and identically distributed (i.i.d.) random variables and let Vjk(rjk) be
the hopping energy between neighboring states. Assuming only one orbital per
lattice site, the electron wavefunction can be expanded as a sum over orthogonalized
atomic wavefunctions. In this approximation, the probability amplitude aj that the
electron is found at the site j satisfies the time-dependent Schrödinger equation of the
form

i _a j ¼ E ja j þ
X

k 6¼j
V jkak ð2:6Þ

with the Hamiltonian at site j given by:

H j ¼ E j þ
X

k 6¼j
V jk: ð2:7Þ

(In Eq. 2.7, the energies are measured in frequency units therefore, h ¼ 1.) If the
probability distribution |aj(0)|

2 at t ¼ 0 is known to be appreciable over a specific
range of energies Ej or spatial coordinates rj, the salient question becomes how
rapidly (if at all) this distribution diffuses away from that region. The time evolution
of the amplitude can be determined using the Laplace transform of Eq. (2.6)

i sf j sð Þ � a j 0ð Þ� � ¼ E jf j þ
X
k 6¼j

V jkf k , ð2:8Þ

where
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f j sð Þ ¼
Z 1

0
e�sta j tð Þdt ð2:9Þ

is the Laplace transform of aj(t). The variable s is an arbitrary complex variable with
either positive or zero real part. The behavior of fj as s ! 0+ is equivalent to the
behavior of aj as t ! 1. For simplicity, we assume a0(0) ¼ 1 for j ¼ 0, i.e. the
electron wavefunction is initially localized (with probability 1) at a single atom at the
origin. Solving (2.8) for fj(s) yields

f j sð Þ ¼ iδ0 j
is� E j

þ
X
k 6¼j

V jkf k sð Þ
is� E j

, ð2:10Þ

where aj(0) ¼ δ0j. Equation (2.10) not involving f0(s) can be solved for fj(s) in terms
of f0(s) using an iterative approach, which gives

f j sð Þ ¼ V j0f 0 sð Þ
is� E j

þ
X
k 6¼j

V jk

is� E j

Vk0f 0 sð Þ
is� Ek

þ � � � ð2:11Þ

Thus, the zeroth equation becomes

f 0 sð Þ ¼ i

is� E0
þ

X
k 6¼ 0
l 6¼ k

V0k

is� E0

Vk0

is� Ek
þ

X
l 6¼ 0
l 6¼ k

Vkl

is� Ek

Vl0

is� El
þ � � �

266664
377775f 0 sð Þ

ð2:12Þ

or

f 0 sð Þ ¼ i

is� E0
1þ

X
k

Vk0ð Þ2
is� Ek

þ
X
k, l

V0kVklVl0

is� Ekð Þ is� Elð Þ þ � � �
" #

f 0 sð Þ
( )

ð2:13Þ

In both (2.12) and (2.13), the expression i
is�E0

is the Laplace transform of e�iE0t,

which represents a plane wave of energy E0. Terms within the curly brackets in
Eq. (2.13) represent the evolution operator for a pure discrete spectrum in time-
dependent perturbation theory. The perturbed energy as t ! 1 can be defined as

Vc 0ð Þ ¼
X
k 6¼0

V0kð Þ2
is� Ek

þ
X
k, l

V0kVklV l0

is� Ekð Þ is� Elð Þ þ � � � : ð2:14Þ
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In many cases, the first term in Eq. (2.14) is a good approximation for the value of
Vc. In this approximation, the perturbed energy can be rewritten as

Vc 0ð Þ �
X
k 6¼0

V0kð Þ2
is� Ek

¼
X
k

V0kð Þ2 Ek

s2 þ Ek
2 �

is

s2 þ Ek
2

� �
: ð2:15Þ

In the limit s ! 0, the first term on the right-hand side is the second-order
perturbation �ΔE(2) of the initial energy E0

lim
s!0

X
k

V0kð Þ2 Ek

s2 þ Ek
2

� �
¼ �

X
k

V0kð Þ2 1
Ek

� �
¼ �ΔE 2ð Þ: ð2:16Þ

The second term on the right-hand side of Eq. (2.15) can be written as

lim
s!0

�
X

k
V0kð Þ2 is

s2 þ Ek
2

� �
¼ �i

X
k
V0kð Þ2δ Ekð Þ

� is
X

k,Ek 6¼0

V0kð Þ2
Ek

2 ¼ � i

τ
� isK, ð2:17Þ

where ∑k(V0k)
2δ(Ek) ¼ 1/τ and

P
k,Ek 6¼0

V0kð Þ2
Ek

2 ¼ K. Equation (2.13) now becomes

f 0 sð Þ ¼ i

is 1þ Kð Þ þ i
τ

� �� E0 � ΔE 2ð Þ� � : ð2:18Þ

When τ is finite, the K term is indeterminate, and the solution is

f 0 sð Þ ¼ 1

sþ 1
τ

� �þ i E0 � ΔE 2ð Þ� � : ð2:19Þ

Taking the inverse Laplace transform of Eq. (2.19) gives

lim
t!1 a0 tð Þ ¼ e�

t
τe�i E0�ΔE 2ð Þð Þt: ð2:20Þ

Equation (2.20) represents a state of perturbed energy E0 � ΔE(2) decaying at a
rate e�

t
τ, i.e. a delocalized state. For the case where τ is infinite, the constant K is

preserved and the solution becomes

f 0 sð Þ ¼ 1

s 1þ Kð Þ þ i E0 � ΔE 2ð Þ� � : ð2:21Þ

The inverse Laplace transform of Eq. (2.21) has the form
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lim
t!1 a0 tð Þ ¼ 1

1þ K
e�

i E0�ΔE 2ð Þð Þt
1þKð Þ : ð2:22Þ

This represents a localized state of (the same) perturbed energy which does not
decay, having a finite amplitude a0(t ! 1) reduced from unity by the ratio
1/(1 + K ). The parameter K measures the spread of the initial state due to virtual
transitions.

The technique suggested by Anderson to tackle the above was to study the infinite
series expansion of the perturbed energy Vc(s) by treating Vc(s) as a probability
variable. Once the arbitrary energy of the initial atom j ¼ 0 is determined, the
investigation of the probability distribution for Vc resolves itself into three parts:
(1) Study the first term in Eq. (2.14), (2) Discuss the convergence of the series of
higher order perturbations, and (3) Decide whether this kind of convergence in a
probability sense is meaningful, and whether the choice of arbitrary energy is
correct.

In the above analysis, we saw that the important quantity for accomplishing step
1 is to determine the imaginary part1 of Vc given by

Im Vcð Þ ¼ �s
X
k

V0kð Þ2
s2 þ Ek

2 ¼ �sX sð Þ: ð2:23Þ

In the limit where s! 0, a finite value of the quantity X(s) implies localization. In
the analysis of the X(s) series, one runs into the issue of repeated indices, which can
be eliminated in a self-consistent way by including the perturbed energy Vc(k) in the
energy denominator for atom k. This means that the “propagator” for state k is given
by

ek ¼ 1
is� Ek � Vc kð Þ ð2:24Þ

with a (first-order) perturbed energy given by

Vc 0ð Þ ¼
X
k 6¼0

V0kð Þ2
is� Ek � Vc kð Þ ¼

X
k 6¼0

V0kð Þ2
ek

: ð2:25Þ

Assuming the V0k terms have the same order of magnitude and that the Ek terms
are of order W (the characteristic width of the probability distribution of the on-site
energies) the series in Eq. (2.25) converges only if V0k � W.

In summary, the Anderson method uses perturbation theory to calculate the time
evolution of the electron wavefunction. Series expansion of the perturbed energies

1Remember that the real part of Vc is the ordinary second order energy perturbation and the
imaginary part is the one that gave rise to the localized solution.
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given in Eq. (2.14) therefore is an indication of the transport regime in the system. A
converging series corresponds to a regime where the electron wavefunction may
decrease but does not go to zero with time, i.e. the particle remains localized,
whereas a diverging series indicates that the system is in the extended regime.
There are two important limitations to the Anderson model. First, the use of
perturbation theory implies that the series expansion method is only valid for
impurity bands in the low-concentration limit and with low-energy tail. Thus, such
reasoning does not apply to highly disordered systems. Second, the calculation does
not account for contact with any external thermal reservoir, which is an important
restriction for both relaxation and transport processes.

2.3 Edwards and Thouless Model

In 1972, Edwards and Thouless [8] conducted numerical simulations where the
Anderson localization is examined using a scaling criterion. In their formulation of
the problem, the hopping amplitude Vij between neighboring sites is assumed
constant while the on-site energies are allowed to vary. The resulting equation for
the amplitudes ai associated with an eigenstate of energy E is

Eai ¼ �V
X

l
aiþl þ Eiai ð2:26Þ

with the Hamiltonian at site i given by

Hi ¼ �ZV þ Ei: ð2:27Þ

Here, the constant hopping amplitude is normalized to unity and the displacement
vector/ranges over the Z nearest neighbors. Thus, the first term in the Hamiltonian is
the discrete Laplacian, or the graph representation of the kinetic energy term.2 The
on-site energies Ei are independent identically distributed (i.i.d.) variables selected
from the interval �1

2W ; 12W
� �

, where W represents the amount of disorder in the
system as defined earlier. In other words, the energy band is given by:

�1
2
W � ZV < E <

1
2
W þ ZV : ð2:28Þ

2The Hamiltonian in Eq. (2.27) can be rewritten in the more general operator form of Eq. (1.3) from
Chap. 1. The formulation of the problem presented in this section involves a discrete random
Schrödinger operator. Thus, in Chap. 3, we provide a physical interpretation of the spectral
approach through a comparison with the Edwards and Thouless model.
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Using this approach, Edwards and Thouless examined the dependence of con-
ductivity on the amount of disorder W in the limit of increasing number of lattice
sites N. As discussed in Sect. 2.1, Edwards and Thouless argued that in the localized
regime, the energy eigenvalues for a wave-particle in the bulk of the crystal are not
(appreciably) affected by a change at the boundary, which is not the case in the
extended state regime. Specifically, if the ratio ΔE/η3 decreases as N ! 1, the
system is in the localized regime.

To obtain the shiftΔE, David and Thouless calculated the energy levels once with
periodic and again with antiperiodic boundary conditions. For a periodic system of
period L, they assumed the following solution of the Schrödinger equation

ψ k rð Þ ¼ ϕ rð ÞeiKx, ð2:29Þ

where ϕ(r) is a function having the same periodicity as the crystal and K is the
reciprocal lattice vector. For this general form of the wavefunction, the amplitude
changes by a factor of exp(iKL) when the coordinate x is increased by amount L.
Thus, if K is an integer multiple of 2π/L, the solution is periodic and if K is an integer
multiple of π/L, the solution becomes antiperiodic. The change from periodic to
antiperiodic boundary conditions is equivalent to adding the term

hKbpx
m

þ h2K2

2m
ð2:30Þ

to the Hamiltonian for the periodic system. In the operator formulation of the
problem, the momentum operator bpx must be replaced by the corresponding
difference operator

�bpx �ij as required by the tight-binding approximation. With

this substitution, perturbation theory gives an energy shift of the form

ΔEα ¼ h2K2

m2

X
β 6¼α

�bpx�αβ��� ���2
Eα � Eβ

þ h2K2

2m
: ð2:31Þ

This energy shift deviates from zero only if the fluctuations in the summation
term on the right are appreciable. In the localized regime, the fluctuations are small
and ΔEα is close to zero (except for exponentially small terms). In the delocalized
regime, assuming

�bpx�αβ does not depend strongly on the energy difference Eα � Eβ,

the mean square value of the matrix element
�bpx�ij can be taken from the Kubo-

Greenwood formula for the electrical conductivity of a cube of side L given by

3Remember that ΔE is the energy shift (the difference between corresponding energy
levels calculated with two different boundary conditions) and η is the energy spacing (roughly
given by W/N ).
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σ ¼ 2πe2hL3

m2

�bpx�αβ��� ���2
avg

D Eð Þ½ �2, ð2:32Þ

where D(E) is the density of states per unit volume at the Fermi surface. In the case,
where the energy levels, Eα and Eβ, are uncorrelated, the geometric mean of the
energy shift is given by

ΔEα ¼ πh2K2L3D Eð Þ
m2

�bpx�αβ��� ���2
avg

¼ σhK2L3

2e2
η, ð2:33Þ

where η ¼ 1/L3D(E) is the spacing between energy levels. Thus, for a 3D cubic
lattice, the ratio of interest in Edwards and Thouless’s criterion for localization
becomes

ΔEα

η
¼ σhK2L3

2e2
: ð2:34Þ

In terms of the mean free path l, the conductivity can be expressed as σ ¼ (e2k2λ)/
(3πh) so that Eq. (2.34) becomes

ΔEα

η
¼ k2K2L3λ

6π2
: ð2:35Þ

In the two-dimensional case, similar reasoning gives

ΔEα

η
¼ kK2L2λ

4π2
: ð2:36Þ

Assuming KL ¼ 2, the general form of Eq. (2.34) becomes

ΔEα

η
¼ 2σhLd�2

e2
, ð2:37Þ

where d is the dimensionality of the system.
Edward and Thouless studied the Anderson localization in the two-dimensional

square and the three-dimensional diamond lattices using equations (2.36) and (2.35),
respectively. Their numerical simulations, together with later work by Thouless [9],
predicted that exponential localization should occur for W�6 for the 2D case and for
W�15 in the 3D case. They also established that in the 3D diamond lattice, the
calculated energy states corresponding to disorder 5�W�15 are neither extended,
nor exponentially localized. Similar conclusion was reached in a further study by Last
and Thouless [10], which suggested that themetal-to-insulator transition is not abrupt.
Instead, there is a transitional interval of disorder values, in which the wave function

22 2 Theoretical Background



decays according to a power law or slower. Thouless argued that similar phenomenon
occurs in 2D but the effect is less prominent [9].

2.4 Scaling Theory

In 1979 Abrahams et al. [11] introduced the scaling theory of localization, which
examines how, close to the mobility edge, the conductivity depends on system size.
In this approach, transport is studied with the help of a generalized dimensionless
parameter, called the “Thouless number”, which is the scale-dependent version of
Eq. (2.37)

g Lð Þ ¼ ΔEα Lð Þ
η Lð Þ ¼ 2hG Lð Þ

e2
, ð2:38Þ

where L is the side of a small finite hypercube andG(L )¼ σLd � 2 is the conductance
in the limit L 	 l (i.e. the cube size is much larger than the mean free path). The
conductance G is assumed independent of the conductivity σ and only a function of
system size. In the case where L	 l, the phase relationships for arbitrary integration
of the Schrödinger equation across the cube are as random as the phase relationships
across different cubes. In this limit, the Thouless number g(L ) represents the change
of energy levels when two hypercubes are fitted together.

The major assumption here is that the conductance of a hypercube of size 2L
depends on a single parameter, namely, the conductance of the hypercube of size
L from which the larger one was built, i.e. g(2L ) ¼ f(g(L )) (as shown in Fig. 2.1).

To obtain the conductivity of a larger crystal, one combines bd hypercubes into
blocks of side bL and computes the new value of g(bL) ¼ f(b, g(L )). As the size of
the system is extended to infinity by successive stacking of blocks, the scaled
expression becomes

β g Lð Þð Þ ¼ d ln g Lð Þ
d ln L

: ð2:39Þ

Employing the above, Abrahams et al. used perturbation theory in g to obtain the
asymptotes of β and a plot of β as a function of lng. They established that there is no
real transition from a localized to extended states for either one-dimensional or
two-dimensional systems. In the 2D case, the calculation predicted that instead of
a sharp mobility edge, there is a universal crossover from logarithmic to exponential
decay induced by increasing amount of disorder.

While it is natural to assume that any amount of disorder in a one-dimensional
system (with only nearest neighbor interactions) will localize all possible energy
states, such conclusion remains controversial for the two-dimensional case, where
the function β exhibits critical behavior. As a result, the existence of extended states
for infinite disordered systems has remained a topic of debate for the past several
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decades primarily due to the argument that the scaling approach is limited due to the
use of boundary conditions and perturbation theory.

Throughout the 1980s, key aspects of scaling theory were confirmed numerically.
Those include the explicit derivation of the scaling function β(g(L )) for arbitrary
dimension d [12] and the dependence of the dimensionless conductance g(L ) of
system size [13]. Experimental evidence in support of these numerical calculations
was initially obtained using thin metallic films [14] and 2D electron systems
fabricated on semiconductor surfaces [15].

However, later studies demonstrated the existence a transition between the
metallic and conducting phases in two-dimensional systems close to zero tempera-
ture using disordered fermion thin films [16, 17]. The emergence of metallic
behavior in the strongly coupled regime (where Coulomb interaction energy is
much larger than the Fermi energy) was established in 2D systems characterized
by large electron density [18–21]. In the finite-temperature limit, metal-to-insulator
transition was shown for 2D system of charged traps [22] and electron structures in
silicon [23].

In the next chapter, we introduce a new mathematical technique, called the
spectral approach, which examines transport in disordered systems without the use
of scaling arguments. Thus, we expect that this new method can contribute to the
study of the Anderson localization in the critical two-dimensional case.
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Chapter 3
Spectral Approach

3.1 Essence of the Spectral Method

In Chap. 2, we reviewed several theoretical formulations of the Anderson-type
transport problem. Here we classify the various localization criteria in three broad
categories: dynamical, statistical, and spectral. In the dynamical formulation of the
problem, localization of the traveling electron is represented by an exponential decay
of the corresponding wave function, satisfying the time-dependent Schrödinger
equation. In the statistical case, one is interested in the energy eigenvalues of the
system’s Hamiltonian, which is represented by a finite-sized random matrix. In this
formulation, localization occurs when the computed eigenvalues are discrete and
infinitely close to one another. As the dynamical and statistical formulations have
clear interpretations in the language of quantum mechanics, they are often applied as
localization criteria by both physicists [1–4] and mathematicians [5–7].

In contrast, the spectral formulation, which is well-known to mathematicians [8–
11], has not yet been implemented by the physics community. In this approach the
spectrum of the Hamiltonian is decomposed in a singular part corresponding to
localization and an absolutely continuous part indicating the existence of scattering
states (or delocalization). In 2013 Liaw [12] developed a mathematical technique,
suited for detection of delocalization in infinite disordered systems of any dimension
and geometry. Her spectral model has been well explained in the language of
mathematics but has yet to be understood physically and applied to natural-world
problems.

The primary goal of this chapter is to provide a brief mathematical formulation
and a physical interpretation of this new approach to transport problems. We also
discuss its applicability to physical experiments. A major advantage of the spectral
model is that, unlike the dynamical and statistical formulations, it avoids issues
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“Physical interpretation of the spectral approach to delocalization in infinite disordered
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related to the use of periodic boundary conditions and finite-size scaling. Thus, we
expect that spectral theory will contribute to the analysis of the critical 2D Anderson
localization case, where previous experimental results [13–16] have shown disagree-
ment with scaling theory predictions [17].

It is important to note that the discussion in this chapter does not aim to contradict
scaling theory. Rather, our goal is to introduce an alternative mathematical approach
to Anderson-type transport problems that provides additional insight into the theory
while improving agreement between numerical and experimental results.

3.1.1 Cyclic Subspaces and Equivalence Classes

Consider the Hilbert spaceℋ and let the operator bA be a linear transformation on that
space. The operator bA has a cyclic vector f in the Hilbert space if the linear span (set

of all linear combinations) of the vectors f ; bA f ; bA2 f ; . . .
n o

is dense in ℋ. Equiv-

alently, f is a cyclic vector for the operator bA if the set of all vectors of the form
p
�bA� f , where p varies over all polynomials, is dense inℋ. In other words, when f is

cyclic for bA, one can generate the subspace S � span f ; bA f ; bA2 f ; . . .
n o

, such that

every point in the Hilbert space, h 2ℋ, is either contained in the subspace S or is its
limiting point. If the operator bA is a finite Hermitian matrix, then a necessary and
sufficient condition that bA has a cyclic vector is that its eigenvalues are distinct. In
contrast, if they are not distinct, nothing is sufficient to make any vector f cyclic for
the operator bA. In the context of quantum mechanics, one can employ similar
reasoning and use cyclicity to study the spectrum of a given operator, such as the
Hamiltonian.

For example, consider the (time-independent) Hamiltonian bH on the Hilbert space
ℋ, represented by a finite-dimensional discrete operator, whose spectrum consists
of a finite number of eigenvalues λi. If bH only has nondegenerate eigenvalues, i.e.
λi 6¼ λj when i 6¼ j, then the eigenvector-eigenvalue equation is given by

bHvi ¼ λivi, ð3:1Þ

where vi is the only eigenstate corresponding to the eigenvalue λi. Thus, if the value
of the energy in the quantum system is measured to be λi, then the corresponding
state vi is assumed to be known. Physically, nondegenerate (or distinct) eigenvalues
indicate lack of overlap among the possible energy states. In other words, the
electron wave function can only assume quantized states, as in the case of a particle
trapped in a simple harmonic oscillator or an infinite potential well. Based on the
above definitions, we expect that in these cases, all vectors in the Hilbert space
(representing the possible states of the quantum system) are cyclic for the examined
Hamiltonian.

On the other hand, if bH has degenerate eigenvalues, then the measurement of a
specific energy λi can be associated with several possible states of the quantum
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system. In this case, no vector in the Hilbert space is cyclic for the examined
Hamiltonian.

3.1.2 Spectral Decomposition of Normal Operators

To analyze transport in a periodic structure, such as a d-dimensional lattice Γ, it is
convenient to let the separable Hilbert space ℋ be the set of square summable
sequences l2(Γ) defined on the d-dimensional space. In this space, the time-indepen-
dent Hamiltonian characterized by a spectrum of discrete eigenvalues, yields possi-
ble states of the quantum system that either correspond to eigenvectors or a linear
combination of them. Therefore, the Hamiltonian can easily be diagonalized by a
change of basis1

H ¼ U�1DU, where D ¼
λ1 � � � 0
⋮ ⋱ ⋮
0 � � � λn

0@ 1A, ð3:2Þ

where U is the unitary matrix that contains the orthonormalized eigenvectors in its
columns. In operator theory, the generalization of this procedure to a larger class of
operators is called the Spectral Theorem. Broadly speaking, the Spectral Theorem
provides the conditions under which a general operator or a matrix can be diagonal-
ized. Specifically, it identifies a class of linear operators that can be modeled by
multiplication operators.2

Now consider diagonalization of the general Hamiltonian H acting on a vector
v 2 l2(Γ). If H is linear, then we must also have Hv 2 l2(Γ). According to the Spectral
Theorem, when H is self-adjoint and cyclic, a unitary operator U exists so that

H ¼ U�1MξU, ð3:3Þ

where Mξf(ξ) = ξf(ξ) is the multiplication by the independent variable on another
square-integrable Hilbert space L2(μ). The new space L2(μ) stands for the square-
integrable functions with respect to a measure μ

1For notational simplicity, in the following sections we omit the hats on top of the operators and we
denote vectors with ordinary letters instead of bold ones.
2In operator theory, a multiplication operator is an operator T defined on some vector space of
functions and whose value at a function f is given by a fixed function h(ξ). That is, when T acts on f,
the result is h(ξ)f(ξ):

T fð Þ ξð Þ ¼ h ξð Þf ξð Þ

for all f in the function space and all ξ in the domain of f (which is the same as the domain of h). In
Eq. (3.6) we encounter a multiplication operator for which h(ξ) = ξ.
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L2 μð Þ ¼ f : ℝ ! ℝj
Z
ℝ
f ξð Þj j2dμ ξð Þ < 1

� �
: ð3:4Þ

This new space L2(μ) can be decomposed into two orthogonal Hilbert spaces, L2(μac)
and L2(μsing), where the spectral measure μ is decomposed into an absolutely
continuous part and a singular part

dμ ¼ dμac þ dμsing, ð3:5Þ

where

1. dμac—the absolutely continuous part of the spectrum of H, which corresponds to
the scattering states of the system (or the conducting band of a semiconductor).
By the RAGE Theorem [11], the existence of dμac 6¼ 0 means that there is
delocalization in terms of transport.

2. dμsing—the singular part of the spectrum of H that represents “everything else”,
including the discrete eigenvalues, where the eigenvalues are included as Dirac δ
point masses. For example, if H only has one eigenvalue at λ, then μ equals a
Dirac δ mass at λ:

Z
ℝ
fdμ ¼

Z
ℝ
f δλdξ ¼ f λð Þ: ð3:6Þ

It is important to note that the singular part of the spectrum dμsing also contains very
poorly behaved pieces, called the singular continuous part.3 Here, the space L2(μ)
(on which H acts by Mξ) can be decomposed into two orthogonal Hilbert spaces:

L2 μð Þ ¼ L2 μacð Þ
M

L2 μsing
� �

: ð3:7Þ

Thus, in this case the Hamiltonian has a part Hac that comes from L2(μac) and a part
Hsing that comes from L2(μsing).

In the general formulation of a transport problem, the spectrum of the Hamilto-
nian operator is not limited to a collection of discrete eigenvalues. Instead, since the
spectrum can also include an absolutely continuous part, the Spectral Theorem
should be employed to map the action of the operator from the square summable
Hilbert space to the square-integrable Hilbert space whose measure accounts for all
possible solutions. (Naturally, continuous solutions require an integrable space and
cannot be contained in a summable one.)

3It is not known what physical property/state corresponds to the singular continuous part (see p. 23
of [18]). We saw a hint for a possible answer in Edwards and Thouless’model, where it was pointed
out that there are solutions to the problem corresponding to an intermediate region in which the
particle states are neither localized, nor describable in terms of weakly coupled plane waves [19–
21]. However, these “intermediate” states found in theory have not yet been observed experimen-
tally or given a solid physical interpretation.
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3.1.3 Extended States Conjecture and the Distance Formula

In this work, we are mostly interested in applying the spectral approach to the special
case of a two-dimensional disordered lattice. However, the mathematical technique
is not limited by dimension or geometry. In the general introduction of the method
presented below, v0 and v1 are any two (different) vectors in the Hilbert space of
interest. Later, (in all numerical simulations) we chose v0 = δ0 and v1 = δ1, where
δ0 and δ1 are the standard basis vectors of the integer lattice under consideration.

The method we introduce in this section relies on the connection between
cyclicity and spectral decomposition. The following theorems hold.

Theorem 1 [10]: For any vector v0 in the lattice space, v0 is cyclic for the singular
part (HE)sing with probability 1.

Theorem 2 [12]: If one shows that v0 is not cyclic for HE with non-zero probabil-
ity, then almost surely4

HEð Þsing 6¼ HE: ð3:8Þ

In other words, if Eq. (3.8) holds, the spectrum of HE is not limited to the singular
part but also includes an absolutely continuous part, which corresponds to the
existence of extended states.

Essence of the Spectral Method: For a system described by an Anderson-type
Hamiltonian

1. Chose a random vector, say v0, corresponding to the initial state of the quantum
mechanical system in the space, and generate the sequence {v0,HEv0, (HE)

2v0, � � �,
(HE)

nv0} where n 2 {0, 1, 2, . . .} is the number of iterations of HE and is used as a
timestep. Physically, this sequence represents the time-evolution of energy in the
lattice.

2. Apply a Gram-Schmidt orthogonalization process (without normalization) to the
members of the sequence and denote the new sequence {m0,m1,m2, . . .,mn}.

3. Calculate the distance from another vector from the same Hilbert space, say v1
and decompose it into a projection along sequence {m0,m1,m2, . . .,mN} and an
orthogonal component

v1 ¼
XN
n¼0

mnjv1h i mnj i þ v1ð Þ⊥ ð3:9Þ

By the Pythagorean Theorem, we can rewrite Eq. (3.9) in terms of probability
amplitudes

4Note that in probability theory an event happens almost surely if it happens with probability 1. In
this paper, we use the two phrases interchangeably.
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v1k k2 ¼ 1 ¼
XN
n¼0

mnjv1h i mnj i þ v1ð Þ⊥
�����

�����
2

¼
XN
n¼0

mnjv1h i mnj i
�����

�����
2

þ v1ð Þ⊥
�� ��2, ð3:10Þ

where k � k2 is the Euclidean norm and h�| �i is the inner product in the space. Solving
for (v1)⊥ gives

v1ð Þ⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XN

n¼0
mnjv1h i mnj i

��� ���2r
, ð3:11Þ

4. Define the distance parameter in the spectral approach as

Dn
E,W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Xn

k¼0

mkjv1h i2
mkk k22

,

s
ð3:12Þ

where
XN

n¼0
mnjv1h i mnj i

��� ���2 � Xn

k¼0
mkjv1h i2= mkk k22 as the sequence {m0,m1,

m2, . . .,mn} is orthogonal. It can be shown [12, 22] that extended states exist with
probability 1 if

lim
n!1Dn

E,W > 0: ð3:13Þ

3.2 Simplified Numerical Model (“Toy Model”)

3.2.1 Application to the Discrete Random Schrödinger
Operator

Consider the discrete random Schrödinger operator,5 which is a special case of the
Anderson-type Hamiltonian

5The discrete Random Schrödinger operator on the 2D honeycomb lattice was introduced in
Eq. (1.3) in Chap. 1.

32 3 Spectral Approach



HE ¼ �Δþ
X
i2Γ

Eiδi δih j, ð3:14Þ

whereΔ is the discrete Laplacian, δi are the standard basis vectors of the space Γ, and
the Ei are random variables selected from the interval (�W/2,W/2) according to a
prescribed probability distribution function χ. For any vector δi 2 l2(Γ), say δ0, one
can prove the existence of extended states by showing that δ0 is noncyclic for the
given HE. To accomplish this numerically, we fix the dimension d in Eq. (3.14) and
we let Δ ¼ � ZV. Here Z is the number of nearest neighbors and is thus determined
by the geometry of the lattice. The hopping potential V is taken to be unity. Next, for
a given value of the disorderW, we generate one realization of the random variables
Ei according to the chosen probability distribution χ. For the Anderson localization
problem, the variables Ei are independent identically distributed (i.i.d.) according to
the uniform distribution

χ τð Þ ¼ 0, τ =2 �W=2;W=2ð Þ
1=W , τ 2 �W=2;W=2ð Þ

�
: ð3:15Þ

In other words, the random variables are uniformly distributed, so that Ei takes
each value in (�W/2,W/2) with equal probability. Here we have

Z W=2

0
χ Eð ÞdE ¼ 1

2
: ð3:16Þ

Throughout this chapter and in Chap. 4, the assumed distribution will be the one
in Eq. (3.15). In Chap. 5, we will examine various choice for χ corresponds to
modeling different transport problems, which are related to the Anderson
localization.

The next step in the numerical calculation is to fix a random vector δ0 in the d-
dimensional space and generate the sequence {δ0,Hδ0,H

2δ0, . . .H
nδ0}, where

n 2 {0, 1, 2, . . .} is the number of iterations of the Hamiltonian and is used as a
timestep. Here one iteration of the Hamiltonian corresponds to the time needed for
the energy of the particle in the initial state to propagate to its nearest neighbors; thus,
the plot Dn

E,W vs. n is analogous to determining the evolution of the distance value
over time. Figure 3.1 shows an (intuitive) visual representation of this process on the
two-dimensional triangular lattice.

The Gram-Schmidt orthogonalization process (without normalization) is then
applied to the members of the sequence and the resulting subspace is denoted by
{m0,m1,m2, . . .,mn}. The distance from any other general vector δ1 in the chosen
space to the n-dimensional orthogonal subspace {m0,m1,m2, . . .,mn} is then numer-
ically calculated using Eq. (3.12). Once the distance values at each timestep are
generated for one realization of the random variables Ei 2 (�W/2,W/2), the same
process is repeated for several other realizations of the on-site energies (keeping the
same W ). This step is adopted to eliminate possible numerical errors introduced by
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the random generator. Finally, the discrete time evolution of the averaged Dn
E,W

values is plotted and various methods are employed to establish whether the distance
parameter limits to a positive nontrivial value at infinity.

It is important to keep in mind that the requirement for delocalization given by the
spectral approach is Dn

E,W > 0 at n ¼ 1. The case where Dn
E,W � 0 does not

necessarily prove localization. However, it is reasonable to expect that this case
indicates the lack of extended states.

3.2.2 Preliminary Results in 2D and 3D

Although the spectral approach can be applied to infinite disordered systems of any
dimension or geometry, here we report preliminary results for the 2D square and 3D
diamond lattices, which were the ones examined by Edwards and Thouless [19]. We

Fig. 3.1 Visual representation of the first three iterations of the Hamiltonian on a triangular lattice.
In each picture, the shaded area indicates the number of particles which have potentially been
affected by the corresponding iteration of the Hamiltonian. The small hexagons show possible
energy transfer to the nearest neighbors and the enlarged dots connected with arrows indicate one
possible path for propagation. The particle in (a) is in some initial energy state. After one iteration of
the Hamiltonian (b), energy has been transferred to its nearest neighbors. In the second iteration (c),
the nearest neighbors (the vertices of the shaded hexagon in (b)) can also transfer energy to their
nearest neighbors, including back to the original particle. A subsequent iteration is shown in (d)
(reprinted with permission)
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used the raw data from the 2D and 3D numerical simulations conducted by Liaw
et al. [12, 22] to obtain discrete time evolution plots of the distance D for various
values of the disorderW. In this section, we define weak disorder asW < 1, medium
disorder as 1 � W � 5, and strong disorder as W > 5. (Similar definitions can be
found in [23, 24].) The number of iterations of the Hamiltonian in the numerical
calculation is represented by a discrete timestep n 2 {0, 1, 2, . . .}. Thus, the plot of
Dn

E,W vs. n represents a time evolution of the distance parameter.
In the 2D case, the examined range of disorder was W ¼ 0.1, 0.2, . . ., 1.2 with

four realizations for eachW and n ¼ 4500 timesteps. Figure 3.2a shows the plots the
(averaged) distance parameter for each disorder value along with corresponding
log-log plots (Fig. 3.2b). As can be seen from the graphs, the distance parameter does
not rapidly tend to zero for W � 0.6, implying the existence of extended states. For
0.8 � W, the slope of the lines gradually increases and it becomes less obvious
whether Dn

E,W will cross the zero axis at infinity. For W � 0.9, the slopes of the lines
become even greater, suggesting that transition to localization may have occurred.
These trends can also be seen in the log-log plots (Fig. 3.2b), where the large slope of
the lines for W > 0.6 implies faster decay of the distance vector towards zero.

Another feature of Fig. 3.2 is an observed gap between the limiting values of D as
the disorder increases fromW¼ 0.3 toW¼ 0.4, fromW¼ 0.6 toW¼ 0.7, and from
W ¼ 0.8 to W ¼ 0.9, which may imply some type of splitting in the allowed energy
states of the system. This phenomenon will be examined in detail in a future paper.

In the 3D case, the simulations were carried over a wide range of W values. This
time, however, the used timestep was n ¼ 500 due to data requirement restrictions.
Figure 3.3 shows distance time evolution plots and log-log plots for the three types
of disorder: weak, medium, and strong. The total variation of the disorder ranged
from W ¼ 0.1 to W ¼ 40 in different steps. For small and medium disorder
(Fig. 3.3a–d) it seems that the distance tends to nonzero values and the
corresponding log-log plots have constant slopes, implying no significant decrease
of D over time.

Fig. 3.2 (a) Time evolution plot of Dn
E,W for the 2D weak disorder case. (b) Corresponding

log-log plot (reprinted with permission)
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For large disorder, Fig. 3.3e, f show that for W � 10 the distance lines approach
the horizontal axis rapidly and the slopes of the corresponding log-log plots become
increasingly negative. In this case, the model gives inconclusive results, i.e. a
crossover to localization may have occurred. The graphs also indicate that the
transition point distinguishing extended from localized states occurs in the interval
5 � W � 15.

Our preliminary results for the 2D square lattice disagree with the numerical
simulations of David and Thouless by an order of 10 (see last paragraph of Sect. 2.3)
In the 3D diamond lattice case, we confirm their prediction that the transition point
occurs in the range 5 � W � 15.

Fig. 3.3 Time evolution plot of D for a 3D case with: (a) weak disorder, (c) medium disorder, and
(e) strong disorder. The plots in (b), (d), and (f) show the corresponding log-log plots (reprinted
with permission)
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3.3 Physical Interpretation

As we mentioned earlier, the spectral approach to transport problems involving
Anderson-type Hamiltonians is well known and accepted in the mathematical com-
munity. However, the techniques of spectral theory are often neglected in favor of
more “traditional” methods, such as the perturbative approach in Kubo-Greenwood
(KG) theory [25, 26] and the recursive Green’s function technique (RGT) [27, 28]. In
this section, we provide a discussion of the spectral approach through a comparison
with the well-known Edwards and Thouless model. The discussion aims to create an
initial physics intuition, which will help researchers apply the spectral method to
their numerical and experimental studies. A comprehensive interpretation of the
mathematics will hopefully be obtained once the spectral techniques becomes a
common tool for the analysis of transport problems in the physics community.

3.3.1 Band Structure and the Spectrum of the Hamiltonian

As previously mentioned, in this book we apply the spectral technique (Sect. 3.1) to
the discrete random Schrodinger operator (Eq. 1.3) in the tight binding approxima-
tion, which allows us to make a comparison with the model developed by David and
Thouless (Sect. 2.3). The formulation of the Anderson localization problem in both
cases assumes constant (and normalized to unity) hopping amplitudes V and random
on-site energies Ei distributed uniformly in an interval of disorder (�W/2,W/2).
Thus, one can study how the transport properties in the system change as the
width of the disorder interval is varied. The key distinction between the spectral
techniques and the methods discussed in Chap. 2 is the transport regime of interest.
Historically, scientists have been interested in the critical amount of system disorder
that will yield localization. Thus, the common numerical techniques used in the
physics community start with finite systems and examine how conductivity behaves
as the size of the simulation is increased. Although these methods are successful in
establishing exponential localization, they may not be fully suitable for establishing
the existence of extended states. In contrast, the spectral approach is designed to
study delocalization in an infinite system, which makes it appropriate for investigat-
ing the critical Anderson 2D case.

As noted before, Edwards and Thouless examine the ratio of the energy shift ΔE
to the energy spacing η ¼ W/N of a large (or infinite) system created by stacking
together identical d-dimensional cubes of side N. The transition towards exponential
localization occurs when the ratio ΔE/η ¼ NΔE/W goes to zero as the system size
increases, i.e. the energy shift is expected to be exponentially small. This definition
makes sense when one recognizes that NΔE represents N energy bands of width ΔE.
Thus, as the system size increases, the energy band is represented by narrow discrete
energy levels and transport is only allowed through hopping. In the delocalized
regime, the ratio ΔE/η approaches a constant value for the scaled system, which
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implies a large value of ΔE. In this case, the spectrum consists of broad (possibly
overlapping) energy bands, allowing for metallic transport. Figure 3.4 gives a
simplified picture of the metal-to-insulator transition.

The band structure of a given system provides a visual representation of the
spectrum of possible energies. Thus, one can see the parallel between the above
discussion and the spectral approach, where the existence of extended states corre-
sponds to the presence of an absolutely continuous part in the spectrum of the
Hamiltonian.

From the perspective of spectral theory, Edwards and Thouless’s model examines
the singular spectrum of the Hamiltonian (which includes the discrete eigenvalues
and the poorly behaved pieces that are neither discrete, nor continuous). In this
sense, the limit where the width of the energy bands ΔE becomes exponentially
small corresponds to the limit where the spectrum of energy eigenvalues becomes
discrete.6 Mathematically, this corresponds to a pure point spectrum of the Hamil-
tonian (i.e., only discrete eigenvalues or poorly behaved pieces that are neither
discrete nor continuous). In the case of a pure point spectrum, the random nature
of the system ensures non-degeneracy of the eigenvalues with probability one. For
example, even if two eigenvalues λ1 and λ2 are equal for a given realization of the
random variables Ei, the effect of slightly changing just one of these random variables
will split λ1 and λ2 into distinct eigenvalues. In such a system, by the Kolmogorov
zero-one law, all eigenvalues are distinct.

In the spectral model, extended states exist with probability 1 when the spectrum
of the Hamiltonian is not limited to its singular component, but also has a continuous
part. This is a strong definition of transport called dynamical delocalization [11]. In
this regime, the energy bands already overlap by a non-trivial amount, which
indicates some degeneracy. Thus, the effect of slightly changing the random

Fig. 3.4 Visual representation of the metal-to-insulator transition in terms of energy band structure
(reprinted with permission)

6It is known that even if the energy bands are narrow, they can still have internal structure.
However, Edwards and Thouless’ model cannot distinguish structure inside the bands. Thus, for
the purpose of their simulation, each band behaved as a discrete energy value.
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variables induces a “wiggling” of the band edges, but does not change the
overlapping property. In this sense, degeneracy (i.e. overlap) of the absolutely
continuous spectrum is somewhat more stable than is the pure point spectrum case.

3.3.2 Bounded Operators and the Hilbert Space

Although both Edwards and Thouless’s model and the spectral approach employ the
same form of the Hamiltonian, the two techniques make different assumptions on the
corresponding domain in the Hilbert space. However, Edwards and Thouless use an
unbounded Hamiltonian, which requires the application of boundary conditions to
the wavefunction. In contrast, the spectral approach starts with a bounded HE, which
can be applied to the Schrӧdinger equation without the assumption of boundary
conditions. Thus, an important distinction between the two treatments is in the
domain of the applied operator. However, Edwards and Thouless use an unbounded
Hamiltonian, which requires the application of boundary conditions to the
wavefunction. In contrast, the spectral approach starts with a bounded HE, which
can be applied to the Schrӧdinger equation without the assumption of boundary
conditions. Thus, an important distinction between the two treatments is in the
domain of the applied operator.

A subtle but crucial step in the analysis of a quantum mechanical transport
problem is the choice of restrictions on the Hamiltonian operator and the Hilbert
space. Many physical problems are defined by a time-evolution differential equa-
tions for which the Hamiltonian is not necessarily self-adjoint (for example, there is
no self-adjoint momentum operator for a particle moving on a half-line). Thus, it is a
common practice in the physics community to define an unbounded Hamiltonian H
and then attempt to find self-adjoint extensions of H, corresponding to boundary
conditions or conditions at infinity. Although this approach is standard in the
formulation of quantum mechanics and quantum field theory, the assumption of
unbounded Hamiltonian is not necessarily defined on the entire Hilbert space ℋ.
Instead, such operator is restricted to the dense subspaces of ℋ. Although this
approach is successful in solving some problems in quantum mechanics, it causes
incompleteness in the theory as important physical properties of the self-adjoint
operators (representing the observables in quantum mechanics) are sensitive to the
choice of the domain. Thus, the restriction of the domain of H to the dense subspaces
of ℋ can cause loss of information about the transport behavior of the system [29].

The algebras of bounded operators has been shown to form an equivalent treat-
ment of quantum mechanics [30] and quantum field theory [31]. Here we avoid the
(rather unphysical) application of boundary conditions using an Anderson-type
bounded Hamiltonian operator, which is defined on the entire Hilbert space. Thus,
we expect that the proposed spectral approach accounts for wavefunction solutions
that are omitted by scaling theory due to the restricted domain of the unbounded
Hamiltonian used there.
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3.4 Scope and Limitations of the Spectral Analysis

The spectral method is designed to test for the existence of extended states in infinite
disordered lattices of any dimension or geometry. Thus, it is applicable to a variety
of physical systems and mathematical problems. In the application chapters of this
work, we use the spectral method in the analysis of the following transport problems:
(1) Anderson localization in 2D lattices of various geometries (Chap. 4), (2) Quan-
tum percolation and binary alloy problems (Chap. 5), and (3) Lattice wave transport
in a complex plasma crystal (Chap. 6). Our goal is to show that the spectral method
can be adapted to both the quantum and classical regimes, where Anderson-type
Hamiltonians are relevant.

In all numerical simulations, we use the discrete random Schrödinger operator,
where the Laplacian is a constant hopping potential V ranging over the Z nearest
neighbors (i.e.,Δ¼ ZV) and the on-site energies Ei are uncorrelated (since δi assumes
the value 1 in the ith entry and zero in all other entries). However, the spectral
approach can be applied to a more general form of the Anderson-type Hamiltonian,
where the Laplacian involves more neighbors and the on-site energies are correlated,
i.e. the δi are not Kronecker delta functions but general vectors vi in the space Γ.

The suggested spectral approach relies on the limiting value of the distance
parameter Dn

E,W as time go to infinity. However, in all 2D simulations, the chosen
number of iterations of the Hamiltonian is n ¼ 4500. Thus, the numerical experi-
ments may be limited by the length of the computation.
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Chapter 4
Delocalization in 2D Lattices of Various
Geometries

4.1 Transport in the Honeycomb, Triangular, and Square
Lattices

We applied the spectral approach to the cases of 2D honeycomb, triangular, and
square lattices (Fig. 4.1) using the discrete random Schrödinger operator HE given in
Eq. (1.3). Of course, ℤ2 is now replaced by the honeycomb/triangular lattice. Each
simulation was run for n ¼ 4500 iterations of the Hamiltonian. The difference in
geometry was reflected in the Laplacian, which has the form Δ ¼ � ZV, where Z is
the number of nearest neighbors. The hopping potential V was taken to be unity.
Thus, the results from the numerical simulations are in units of V. For each lattice
geometry, we considered disorders W ¼ 0.10 : 0.05 : 1.20. To facilitate the
discussion, in this work, we divide this range of values into small (W < 0.60),
medium (0.60 � W � 0.90), and large (W > 0.90) disorder. This convention is
specific for our study and will be used throughout this chapter. In all 2D simulations
we used timestep n ¼ 4500.

To minimize numerical error and ensure randomness of the assigned values of Ei,
five realizations were generated for each W and the resulting distances averaged at
each iteration. Figure 4.2 shows the distance-time evolution of the (averaged) values
of D obtained for each geometry. A qualitative examination of the plots indicates
that for all three lattices the distance values for small disorder (W < 0.60) quickly
flatten out and appear as horizontal lines at n ¼ 4500.

This chapter published as: E. G. Kostadinova, K. Busse, N. Ellis, J. Padgett, C. D. Liaw, L. S.
Matthews, & T. W. Hyde (2017). Delocalization in infinite disordered 2D lattices of different
geometry. ArXiv preprint: 1706.02800. (recommended for publication in Phys. Rev. B)
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The corresponding log-log plots for these disorder values (see Fig. 4.3) are
straight lines, suggesting that the distances are exponentially1 decreasing towards
finite nonzero values. According to the spectral approach, such behavior corresponds
to the existence of extended states with probability 1.

As the amount of disorder is increased, the distance plots exhibit greater negative
slopes and a quantitative analysis is needed to determine the transition from
delocalized to localized states. In this analysis, the transition point represents the
critical value of disorder for which the spectral approach can no longer show the
existence of extended states with probability 1.

We emphasize that this transition point does not necessarily indicate a sharp
metal-to-insulator transition; rather, it corresponds to the critical amount of disorder
that marks the onset of the phase transition in the system. It has been previously
argued by Thouless and Last [1] that (in both 2D and 3D) there is a transition interval
of disorder values (Wmin,Wmax) (rather than a single point) for which the behavior of
the wavefunction is characteristic of neither extended states nor exponential decay.
Here we identify an analog of the lower bound Wmin for such an interval. The upper
bound is the critical amount of disorder above which the wavefunction decays
exponentially and is the quantity commonly studied in the literature [2–4]. The
intermediate region Wmin < W < Wmax, where the wavefunction may decay follow-
ing a power law or logarithmically, is of significance for 2D materials, such as
graphene.

As mentioned at the beginning of this section, we generated and averaged five
different realizations for each examined disorder value. In each set of five realiza-
tions, the standard deviation from the mean value was used as error estimate in the
quantitative analysis of the data. Figure 4.4 shows distance plots of the average values
of Dhc (solid lines) together with the corresponding error estimates (shaded regions)

Fig. 4.1 Honeycomb (a), triangular (b), and square (c) lattice geometry. Notice that the triangular
symmetry is obtained by placing a lattice point at the center of each hexagon in the honeycomb
lattice (reprinted with permission)

1Note that in the spectral approach an exponential decay of the distance plots to a finite nonzero
value corresponds to delocalization. This should not be confused with the exponential decay of the
electron wavefunction in scaling theory, which corresponds to localization. The D value is a
mathematical construct that is used to test for cyclicity, not a physical wavefunction.
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for three disorder values for the honeycomb geometry. Small error estimates corre-
spond to a small spread of D and higher certainty in the limiting distance value,
whereas increasing error estimates indicate significant fluctuations in D and less
certainty in the limiting value. As expected, the spread of the random realizations
increases with increasing disorder, which indicates an onset of a transition in the
limiting behavior of the distance values.
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Fig. 4.2 Distance time evolution plots for the honeycomb (a), triangular (b), and square (c) lattices
with disorder W ¼ 0.10 : 0.05 : 1.20 (reprinted with permission)
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4.2 Orthogonality Check

It is known that in many instances Gram-Schmidt instability may occur in the
algorithm we use to orthogonalize the sequence {δ0,Hδ0,H

2δ0, . . .H
nδ0}, which

could cast doubt on the validity of our distance calculations. As discussed in [5],
an a posteriori orthogonality check can be employed to test the accuracy of the
results. The Krylov subspace was generated for a smaller problem (n ¼ 250) and its

Fig. 4.3 Log-log plots for the honeycomb (a), triangular (b), and square (c) lattices. For clarity of
presentation, each graph displays only characteristic trends of the log-log plots for small disorder
(W ¼ 0.25,0.35,0.45), medium disorder (W ¼ 0.65,0.75,0.85), and large disorder
(W ¼ 1.00,1.10,1.20). In each plot, the dashed, dash-dotted, and dotted lines represent the fit to a
nonlinear regression model (see Sect. 4.2) (reprinted with permission)
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vectors stored as columns of a matrix K. The quantity Q ¼ kKTK � Ik1 should
deviate from zero in proportion to any loss of orthogonality and can be used as a
check for the instability in the calculation. Since we expect the Gram-Schmidt
instability to increase with increasing disorder, we applied the orthogonality check
to the critical values of disorder W below which we claim delocalization with
probability 1 for each geometry. In Table 4.1, we present the infinity-norm of the
square matrix K for the critical values Wc ¼ 0.70 (in the honeycomb and triangular
lattices) and Wc ¼ 0.95 (in the square lattice). As shown, the Krylov vectors in all
three cases are in fact quite close to orthogonal indicating that the observed delo-
calization cannot be attributed to the instability of the Gram-Schmidt procedure.

4.3 Equation Fitting

For a given disorder, extended states exist if the corresponding distance parameter
D approaches a nonzero value at infinity. As we need to extrapolate the limiting
behavior for n ! 1, we fit the data using an equation of the form

D ¼ mn�α þ b, ð4:1Þ

where the exponent term indicates how rapidly D tends to a finite value and
b corresponds to the limiting value ofD as n!1. We applied a nonlinear regression
model to Eq. (4.1) and performed hierarchical clustering of the resulting values for b,
which allowed us to distinguish the delocalized regime for each geometry.

Fig. 4.4 Error estimates for
small, medium, and large
disorder values in the
honeycomb lattice. The line
gives the average distance at
each iteration, while the
shaded area indicates the
standard deviation of the
five realizations (reprinted
with permission)

Table 4.1 Orthogonality check results for the critical values of disorder in the honeycomb,
triangular, and square lattices (reprinted with permission)

Geometry Honeycomb Triangular Square

Wc 0.70 0.70 0.95

Q 3.3632e�12 7.8317e�13 0a

aCalculations in the orthogonality check are made using 64-bit precision. Thus, we expect that the
value of Q for the square lattice is on the order of 10�64 or smaller
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Figure 4.2 shows that the values ofD are rapidly changing for n< 1000; accordingly,
the data fit was performed using a nonlinear regressionmodel for Eq. (4.1) with aweight
function handle w ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4500� n
p

. To further reduce data fluctuations, separate fits
were generated for each of thefive realizations of each considereddisorder.The resulting
values for bwere then averaged and the standard deviation from themeanwas used as an
error estimate. Representativefits for small (W< 0.60), medium (0.60�W� 0.90), and
large (W> 0.90) disorder are shown in Fig. 4.3. The extrapolated values of b as n!1
are provided in Table 4.2. For all considered cases, the root mean squared error2 from
the fit equation was consistently small (~10�6 � 10�5), which indicates a good

Table 4.2 Equation parameters yielding the best fit for various amounts of disorder in the 2D
honeycomb, triangular, and square lattices (reprinted with permission). Here R¼ (D(4500)� b)/bD
(4500) measures the relative contribution of the exponential term at n ¼ 4500

W

Honeycomb Triangular Square

b(�10�3) R(%) b(�10�3) R(%) b(�10�3) R(%)

0.10 900 � 2 1 � 0 986 � 3 1 � 0 886 � 0.1 0

0.15 897 � 8 1 � 1 984 � 8 1 � 1 886 � 0.3 0

0.20 885 � 10 3 � 1 986 � 10 1 � 1 885 � 0.1 0

0.25 877 � 15 3 � 2 978 � 10 2 � 1 884 � 1 0

0.30 871 � 21 4 � 2 978 � 13 2 � 1 884 � 0.5 0

0.35 839 � 35 7 � 4 967 � 21 3 � 2 882 � 0.5 0

0.40 850 � 34 6 � 4 957 � 15 4 � 2 881 � 0.6 0

0.45 825 � 56 8 � 6 968 � 13 2 � 1 878 � 1 0

0.50 833 � 42 7 � 5 957 � 29 3 � 3 876 � 2 0

0.55 756 � 63 15 � 7 933 � 32 6 � 3 873 � 1 1 � 0

0.60 700 � 55 21 � 6 952 � 22 3 � 2 866 � 7 1 � 1

0.65 745 � 49 16 � 6 922 � 56 6 � 6 864 � 4 1 � 1

0.70 756 � 87 14 � 10 908 � 84 7 � 9 844 � 30 4 � 3

0.75 585 � 76 33 � 9 850 � 58 13 � 6 854 � 4 2 � 1

0.80 483 � 57 44 � 7 830 � 35 15 � 4 850 � 7 2 � 1

0.85 517 � 72 40 � 8 867 � 76 11 � 8 842 � 15 3 � 2

0.90 641 � 110 25 � 13 839 � 84 13 � 9 825 � 21 5 � 2

0.95 486 � 149 42 � 18 831 � 162 14 � 17 833 � 6 4 � 1

1.00 246 � 67 71 � 8 765 � 87 21 � 9 771 � 81 11 � 9

1.05 265 � 198 68 � 24 803 � 130 16 � 14 780 � 63 9 � 7

1.10 344 � 239 59 � 29 828 � 68 14 � 7 806 � 4 6 � 1

1.15 173 � 107 91 � 18 735 � 85 23 � 9 763 � 53 11 � 6

1.20 155 � 179 81 � 22 801 � 102 16 � 10 737 � 67 13 � 8

2Note that there are two distinct errors in the discussion. The error estimates obtained from the
spread of the random realizations for each disorder (the ones shown in Tables I and II) indicate the
certainty with which we can determine the limiting behavior of the distance values. The root mean
squared error shows the goodness of the fit.
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agreement with the weighted regression model. Examination of the column
containing the values of b for the honeycomb lattice indicates that these values
experience a sharp drop when the disorder increases from W ¼ 0.70 to W ¼ 0.75
(highlighted in Table 4.2). This suggests the existence of two regions of disorder,
where the distance values have distinct limiting behavior. The first region corresponds
to the delocalized regime and W ¼ 0.75 marks the onset of the phase transition to a
different transport behavior. Such sharp drops in the distance values are not as
obvious for the triangular and the square lattice. However, regions corresponding to
distinct behavior of the b values can be identified for all three geometries using a
hierarchical clustering analysis introduced in the following section.

The second value in Table 4.2 is the ratio R ¼ (D(4500) � b)/D(4500), which
quantifies the contribution of the exponential term in Eq. (4.1) to the value of D at
n¼ 4500. Although the spectral model identifies the existence of extended states for
any nonzero limiting value of D (i.e. the exact magnitude of D as n ! 1 is
irrelevant), the simulations are finite (n ¼ 4500) and the value of R gives a good
idea of how rapidly the distance D approaches the limiting value. Small R indicates
rapid decay of D to its limiting value b, whereas increasing R suggests that the
contribution of the exponential term is still significant after 4500 iterations. In the
range of disorders for which R is large, the number of iterations may not be sufficient
to extrapolate the limiting behavior of D at infinity. For both the honeycomb and the
triangular lattice, R increases with increasing disorder and we can again identify the
emergence of two regions (corresponding to smaller R and larger R), where the rate
of decay ofD is different. In the square lattice case, the ratio remains small for almost
all values of disorder considered, suggesting that the transition point for this geom-
etry will be apparent if higher disorder values are included. In the next section, we
identify the regions of distinct behavior of R using hierarchical clustering.

4.4 Cluster Analysis

Since every finite numerical simulation has limitations, a nonzero positive value for
b is not the only criterion used in our analysis. Here, we claim the existence of
extended states if, in addition to limn ! 1b > 0, the following two trends in the
distance plots are observed: (1) consistency in the b values, and (2) consistency in
the R values. For each geometry, we identify the region where extended states exist
using hierarchical clustering of the values of b and R together with the corresponding
error estimates (from Table 4.2). The clustering algorithm uses a Euclidean metric
and Ward’s minimum variance method.

The results for each geometry are represented by the dendrograms in Fig. 4.5.
Dendrograms can be interpreted in two distinct ways: in terms of large-scale groups
and in terms of variation among individual branches. The plots in Fig. 4.5 show the
existence of two large-scale clusters for both b and R in each geometry case, which
indicates that all examined 2D lattices experience a transition from one transport
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regime to another as disorder increases. The left cluster in each dendrogram for
b (Fig. 4.5a–c) groups together limiting distance values that exhibit small variation
with increasing disorder and therefore correspond to the regime where extended
states exist. The right clusters mark the formation of a second group of b values
which exhibit distinctly different behavior from the first one. Data points within
the second cluster correspond to values of disorder which trigger the onset of a
phase transition towards different transport behavior. The dendrograms for
R (Fig. 4.5c, d, e) confirm the trends established for the b values.

Comparison between Fig. 4.5a and Fig. 4.5b indicates key similarities between
the triangular and the hexagonal lattices. In both cases, the left cluster includes all
points in the range 1–13 (corresponding to 0.10 � W � 0.70) and the first point
included in the right cluster is point 14 (W ¼ 0.75). In addition, each main cluster of
both lattices has two sub-clusters, which group together similar disorder values.
Thus, we conclude that in the honeycomb and triangular cases, extended states exist
for W � 0.70. In contrast, the transition in the square lattice begins with point
19 (W ¼ 1.00), i.e. extended states in this geometry exist for W � 0.95. However,
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Fig. 4.5 Dendrograms for the b and R values in the honeycomb, triangular, and square lattices.
Each ordinal number on the horizontal axis corresponds to a given level of disorder, i.e. 1 ¼ 0.10,
2 ¼ 0.15, etc. The height of each branch point (or clade) on the vertical axis represents the
dissimilarity between clusters connected by that point. The dissimilarity criterion in Ward’s method
is the total within-cluster error sum of squares, which increases as we move up the tree (reprinted
with permission)
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since the right cluster in Fig. 4.5c consists of only four points, more data should be
generated to confirm the transition point of the square lattice. In our previous work
[6] (discussed in Chap. 3), we showed delocalization for W � 0.60 in the square
lattice. This result was obtained with a less robust method for data fit. The weaker
method was compensated for by including a worst-case analysis argument. Alto-
gether, this resulted in less resolution for the value of critical disorder. Here, we
have improved on this result by generating more data and refining the fitting
criteria.

It is interesting to note that for the honeycomb lattice there is an obvious
dissimilarity between the two transport regimes (represented by the difference in
cluster heights), which suggests an abrupt phase transition. In contrast, for the
triangular case the heights of the two clusters are similar and for the square case,
the right cluster is slightly lower than the left one. This indicates a more gradual
transition in those two geometries. Such trends in the dendrograms suggest that the
“sharpness” of the transition between transport regimes is affected by the number of
nearest neighbors, which varies in each geometry.

A limitation of the current analysis is the number of realizations generated and
averaged for each disorder value. Based on our previous work, we expect five
realizations to be sufficient to identify the global regions of distinct transport
behavior, i.e. to distinguish between localized and extended states. However, it is
possible that occasionally, the randomly generated five realizations may not be
‘representative’ of the true behavior of the corresponding distance value. From
both Table 4.1 and Fig. 4.5 we see that in the square lattice, W ¼ 1.10 (point 21)
fall in the left cluster even though it is expected to appear in the right one. We assume
that these ‘outliers’ result from the small number of realizations and do not affect
significantly the group behavior of the clusters. Notice that the spectral method was
inconclusive for those values since they are considered to lie past the transition
points for that geometry.

4.5 Comparison Between the Honeycomb
and the Triangular Lattices

In Sect. 4.3 we demonstrated that the honeycomb and triangular lattices experience
onset of a phase transition for similar amounts of disorder. This phenomenon arises
due to planar duality between the two geometries. Let Λ be a planar honeycomb
graph in 2D space. The planar dual Λ∗ of the honeycomb lattice is the graph
constructed by placing a vertex at the center of every face of Λ. Connecting only
pairs of vertices corresponding to adjacent faces shows that the dual of the honey-
comb lattice is the triangular lattice (Fig. 4.6a).
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In the Anderson localization problem, one can reflect the amount of disorder by
either varying the on-site energies while keeping the hopping integral constant, or by
fixing the on-site energies and allowing the hopping potential to vary. In a topolog-
ical representation of a lattice, the lattice sites correspond to vertices and the hopping
integrals—to bonds (or edges). Since every edge of the honeycomb lattice is crossed
by a unique edge of the triangular lattice, there is a one-to-one correspondence
between the bonds of the two. Thus, if an edge in the real lattice is open (closed),
then the dual edge that crosses it, can also be defined as open (closed). It is
reasonable to expect that the resulting transport problem in dual space will produce
similar results, up to a transformation. The precise transition points and local
behavior of the honeycomb and the triangular lattice differ due to the different
number of nearest neighbors. However, the behavior of the two lattices in the
extended states regime should be highly similar based on the following argument.

Graphically, an extended state can be represented by a cluster of open paths
connecting the origin to infinity, while a localized state corresponds to a finite cluster
of open paths or a loop. Figure 4.6b shows a finite cluster of open paths (solid green
arrows) starting from the origin O. The cluster is finite because it is surrounded by
closed edges (light solid green lines), i.e. transitions that are not allowed. Each
closed edge is crossed by a unique edge of the dual lattice (red dashed lines). It has
been proven [7] that if a finite open cluster contains the origin, then the
corresponding edges of the dual form a closed loop, which also contain the origin.
Conversely, if a closed loop in the dual contains the origin, then the corresponding
open cluster (containing the origin) is finite. Thus, the existence of an infinite path
from the origin to infinity in the real lattice occurs when the closed loop of the dual
lattice stretches to infinity. From this discussion, it is reasonable to conclude that the
delocalization properties of a honeycomb lattice can be examined with the help of a
system with triangular symmetry and vice versa.

Fig. 4.6 (a) The triangular lattice can be constructed as a dual of the honeycomb lattice. (b) If a
finite open path in the honeycomb lattice (indicated by arrows) contains the origin O, then there
exists a closed loop of closed edges (dashed lines) that also contains the origin. Here the lighter lines
between points represent closed edges where transitions are not allowed (reprinted with permission)
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Chapter 5
Transport in the Two-Dimensional
Honeycomb Lattice with Substitutional
Disorder

According to the well-established scaling theory [1], in a 2D crystal (characterized
by an Anderson-type Hamiltonian), all energy states are either exponentially or
logarithmically localized for any nonzero amount of disorder, i.e. there is no real
metal-to-insulator transition (MIT) in this case. Nevertheless, MIT has been exper-
imentally observed for graphene sheets doped with NO2 [2], hydrogen [3], and
boron [4]. It can be argued [5–7] that the “apparent” existence of extended states in
doped graphene results from the long localization length of the material, which is
often longer than the size of the experiment. Another explanation is that the finite-
size scaling methods, which are often adopted in the analysis of 2D transport
problems, impose restrictions on the Hilbert space that exclude information on the
existence of some extended states.

The spectral approach used here has previously shown [8–10] that extended states
exist in 2D systems, where the random variables (representing disorder) are chosen
from a square probability distribution. This choice corresponds to the classical zero-
temperature Anderson localization problem (first introduced in Anderson [11]).
Here, we extend this study to the case of quantum percolation, which aim to
model substitutional doping on the 2D honeycomb lattice. Our results confirm that
the metal-to-insulator transition in this case should occur for doping �0.3%, which
was experimentally observed in [3].

5.1 Discrete Percolation

Percolation theory is a simple (not exactly solved) probabilistic model for studying
phase transitions in disordered media. Mathematically, it describes the behavior of
connected clusters in a random topological space. Percolation was first introduced by
Broadbent and Hammersley [12], who analyzed how the random properties of a
porous medium influence the transport of a fluid moving through it. Since then,
percolation theory has become a powerful tool in the study of conductivity in various
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materials. It has been shown [13, 14] that the Anderson localization belongs to the
same universality class as the quantum percolation, which allows us to make
parallels between the two problems.

The setup in the classical regime is as follows. Consider the d-dimensional integer
lattice (d � 1), which is the graph of the d-dimensional set of integers ℤd. Each
element of this lattice is a vertex and any two neighboring vertices are connected by a
bond (or edge). A path is a finite or infinite alternating sequence (z1,e1,z2,e2,. . .) of
vertices zi and edges ei such that zi 6¼ zj and ei 6¼ ej whenever i 6¼ j and such that ei is
the bond between the neighbors zi and zi+1 for all i. The length of a path is the number
of bonds it contains (Fig. 5.1).

In the site percolation problem, all bonds are considered open, while the vertices
are, independently of each other, chosen to be open with probability p and closed
with probability 1 � p1. An open cluster is a set of open vertices. In the case of an
infinite size lattice, one is interested in the probability that there exists an open cluster
C(0) from the origin to infinity, i.e. the probability that the system percolates. The
percolation probability (or percolation function) θ( p) has limiting values θ( p¼ 0)¼ 0
(all vertices closed) and θ( p ¼ 1) ¼ 1 (all vertices open). Therefore, there exists a
critical occupation probability pc at which the system undergoes a phase transition.
The precise value of pc is dependent on the local structure of the graph (i.e. it’s
geometry) and the type of problem considered (bond or site). However, the global
behavior in the subcritical and supercritical phase is dependent only on the dimen-
sionality of the system, which is called the universality principle in percolation [15].

In 2D, exact results have been obtained for the square lattice bond percolation
[16] and for the triangular lattice site percolation [17]. Values of pc for other 2D

Fig. 5.1 Visual representation of basic definitions in the discrete percolation problem on the 2D
square lattice

1Alternatively, one can consider all vertices to be open and let the bonds be open or closed with a
certain probability. This setup is called a bond percolation problem.
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geometries and higher dimensions have been obtained only numerically. Table 5.1
gives a summary of theoretical and numerical results in 1D, 2D, and 3D lattices of
various geometry. Note that, in each case, the value of pc decreases as the number of
nearest neighbors Z increases, which is to be expected in the classical regime since a
higher Z corresponds to more available paths. In the next section, we will see that this
is not necessarily the case in the quantum regime, where quantum interference plays
an important role. There are two important directions of study related to the critical
phase: (1) investigate the properties of a system as p approaches pc from above and
below, and (2) study the effect of varying system parameters (such as dimension,
size, and geometry) for a system at p ¼ pc.

It is expected [15] that around the critical point p ¼ pc many functions of interest
exhibit power law behavior, whose critical exponents do not depend on the local
properties of the lattice (by the universality principle). Thus, one can assume that a
comparison of lattices with same dimension but different geometries will yield
identical (or very close) critical exponents.

It is expected that in the critical phase, the probability of the existence of an open
path from the origin to some distance r decreases polynomially as r�α. Smirnov et al.
[28, 29] showed that the critical exponent for the site percolation problem on the
square 2D lattice is given by α ¼ 5/48 � 0.104. By the universality principle, this
result should hold for all other 2D lattices. However, this conjecture is not yet proven
rigorously.

5.2 Formulation of the Transport Problem

Consider the 2D honeycomb lattice Λ, which is the graph G¼ (V, E) of the 2D set of
vertices (or sites) V connected by edges (or bonds) E. Bonds represent the graph
distance between pairs of nearest neighbors (vertices located at a Euclidean distance
1 apart from each other).

Table 5.1 List of critical values pc (and respective references) for various lattice dimensions and
geometries. Here Z stands for number of nearest neighbors. Note that, in cases where pc is obtained
numerically (and not proven analytically), there may be multiple, slightly different results for the
critical probabilities throughout the literature. Thus, the list of studies referenced here should not be
considered exhaustive

Lattice type Z Site percolation Bond percolation

1D 2 1 1

2D honeycomb 3 0.6962 [18] 0.6527 [19]

2D square 4 0.5927 [20] 0.5 [16]

2D triangular 6 0.5 [17] 0.3473 [19]

3D diamond 4 0.43 [21] 0.388 [22]

3D simple cubic 6 0.3116 [23] 0.2488 [24]

3D BCC 8 0.246 [25] 0.1803 [26]

3D FCC 12 0.198 [27] 0.120 [26]
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For the case examined here, one is interested in the critical amount of substitu-
tional disorder (or doping) sufficient to induce a phase transition in the transport
properties of the 2D honeycomb crystal. In the tight-binding approximation, the
single-electron, noninteracting Hamiltonian on the 2D honeycomb lattice Λ has the
form

H ¼
X

i:j 2 Λ
i 6¼ j

ij iVij jh j þ
X
i2Λ

ij iEi ih j, ð5:1Þ

where |ni are the standard basis vectors of the 2D space Λ and Vij is the hopping
potential between nearest neighbors. For any function of the vertices f : V! R taking
values in the 2D set of all integers ℤ2, the (discrete) Laplacian acting on f is given by

Δ f ¼
X
eij¼1

f við Þ � f v j

� �� �
, ð5:2Þ

where eij is the edge between vertices vi and vj and the sum is over the nearest
neighbors of vertex vi. Thus, we see that the discrete Laplacian Δ is the graph
representation of the hopping potential term in Eq. (5.1).

The on-site energies E¼ {Ei}i 2 Λ form a set of independent variables chosen from
an interval [a, b] according to a prescribed probability density distribution χ(E). The
probability that Ei is selected from any subinterval [a

0
, b

0
] 2 [a, b] is given by the area

under the curve between the points a0 and b0, that is,

A ¼
Z b0

a0
χ Eð ÞdE: ð5:3Þ

We assume that the on-site energies in the unperturbed crystal are zero and that
the hopping potential is a constant (here Vij ¼ V ¼ 1). Then, assigning the variables
{Ei} to the crystal sites corresponds to introducing impurities into the system. For this
setup, the level of disorder can be varied by changing the width of the interval [a, b]
or by altering the shape of χ(E). In the case, where there is only one atomic orbital per
lattice site, the probability distribution of possible energy states in a single-species
crystal at zero temperature can be represented by Gaussian function (Fig. 5.2a). In
the presence of impurities, the shape of the distribution may change with the width of
the peak broadening with increasing disorder.

In our previous work [8, 9], discussed in Chap. 3 and 4, we examined the
Anderson localization problem, where the {Ei} are identically distributed in the
interval of allowed energies (i.e. each value is equally probable to occur) using the
square probability distribution
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χ Eð Þ ¼ 0, E=2 a; b½ �
1=W , E 2 a; b½ �

�
: ð5:4Þ

In our numerical simulations, the area A defined in (5.3) is normalized to unity,
i.e. every lattice site considered is assigned an energy value from the prescribed χ(E).
Thus, for the distribution in (5.4), the level of disorder can be increased by increasing
the width of the interval [a, b], which is the common way to vary disorder in the
Anderson localization problem. An important feature of this type of defect is
randomness, such as random spacing of impurities or random arrangement of
electronic/nuclear spins [11]. Although related, the Anderson-type defect is different
from the substitutional disorder discussed here.

In the case of two-species mixtures, one can use the bimodal distribution (Fig.
5.2b), where the A-type atoms have a characteristic energy EA (equal to the mean of
the first peak) and B-type atoms have characteristic energy EB (equal to the mean of
the second peak). In the limit where EB� EA!1, one atomic species acts like as an
open state, while the other atomic species acts like a perfect barrier. This scenario is
modeled by the percolation problem.

5.2.1 Binary Alloy Model of Doping

Consider a 2D crystal composed of type A atoms with (most probable) energy EA and
type B atoms with (most probable) energy EB, where EA 6¼ EB. The distribution of
allowed energy states for such a system is a mixture of the form

Fig. 5.2 Graphs of a Gaussian distribution (a), bimodal distribution (b), and the modified bimodal
distribution discussed in the text (c)
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χ Eið Þ ¼ pδ Ei � EAð Þ þ 1� pð Þδ Ei � EBð Þ, ð5:5Þ

where δ(Ei � EA) and δ(Ei � EB) are the unimodal probability distributions of the A-
atoms and the B-atoms, respectively, and p is the mixing parameter. Here we
consider a mixture of two Gaussian peaks

δ Ei � EAð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ21

p e
� Ei�EA

2σ2
1

� 	2

ð5:6aÞ

and

δ Ei � EBð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ22

p e
� Ei�EB

2σ2
2

� 	2

: ð5:6bÞ

In this case, the mixing parameter p corresponds to the concentration of A-atoms,
while (1 � p) is the concentration of B-atoms. For appropriate choices of mixing
parameter p and characteristic energies EA and EB, the binary alloy formulation can
be used to represent a doped crystal with substitutional disorder. Assuming the same
standard deviations σ1 ¼ σ2¼ σ for each distribution, one can vary both the width of
the Gaussian peaks and the mixing parameter p until a critical behavior is observed.

5.2.2 Quantum Percolation Problem

As in the classical case, one can define a quantum site percolation problem. The key
difference is that transport behavior in the quantum regime is influenced by scatter-
ing from defects and quantum interference, which can lead to localization of the
quantum wave-particle even if all lattice sites are assumed open (in this limit, the
quantum percolation becomes equivalent to the Anderson localization problem).
Thus, transport in the quantum site percolation problem depends on two parameters:
the concentration of open sites and the amount of lattice disorder.

The probability distribution for the quantum site-percolation problem can be
obtained from Eq. (5.5) in the limit EB !1 [30, 31], which gives a single Gaussian
distribution function

χ Eið Þ ¼ pδ Eið Þ ¼ p
1ffiffiffiffiffiffiffiffiffiffi
2πσ21

p e
� Ei�EA

2σ2
1

� 	2

: ð5:7Þ

Without loss of generality, one can further choose EA ¼ 0, which centers the peak
at the origin. In this formulation of the problem, the A-type atoms are open
(or perfect acceptors), while the B-type atoms are closed (perfect barriers). Thus,
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the electron moves only on a random assembly of A-atoms and the existence of
extended or localized states is dependent on the variation of the concentration
parameter p.

However, in a quantum mechanical system, there is a finite probability for
tunneling to each lattice site and one cannot assume the existence of perfect barriers.
Instead, the characteristic energy EB should be represented by a high (but still finite)
number. It is known [32] that when EB � EA > 2ZV (where Z is the number of
nearest neighbors and V is the hopping potential), the spectrum of the Hamiltonian
given in (5.1) splits into two sub-bands centered approximately around EA and EB.
For the 2D honeycomb lattice used in our simulations, we let Z¼ 3 and V¼ 1. Thus,
a choice of EB� EA¼ 100 ensures that the two bands are separate and far apart from
one another, yet a finite distance away. In other words, lattice sites with energy EB

are unfavorable to occupy but do not represent forbidden states.

5.2.3 Relation Between Quantum Percolation and Anderson
Localization

Let the critical probability in the percolation problem be denoted pc in the classical
regime and pq in the quantum regime. Unlike the classical percolation problem, the
quantum case accounts for the effect of quantum interference. As the particle passes
along different routes in the disordered medium, it accumulates different phases.
Interference of such phases can stop diffusion of the particle’s wave function to a
halt. It has been shown [13, 14] that the quantum percolation and the Anderson
localization models belong to the same universality class of transport problems. In
the subcritical phase of the quantum percolation problem (i.e. p < pq), it is known
that θ( p) ¼ 0 and C(0) is finite with probability 1. This corresponds to exponential
localization with a localization length proportional to the size of the finite cluster. In
the supercritical phase (i.e. p > pq), θ( p) > 0 and there is a nonzero probability that
C(0) is infinite, which implies the existence of transport. Around the critical point
p ¼ pc many functions of interest exhibit power law behavior, which is also
characteristic for the transition region in the Anderson model. Although the corre-
spondence between the critical amount of disorder Wc in the Anderson localization
and the critical probability value pq in the quantum percolation is not trivial, it can be
expected that one is a function of the other (due to the equivalency of the two
transport problems). Thus, it is not surprising that the question of whether a 2D
system can percolate for pq < 1 has caused a decades-long debate closely related to
the disagreement on the existence of extended states for nonzero disorder in the 2D
Anderson problem.

For a 2D lattice of any geometry, it has been shown [14, 31, 33, 34] that the graph
of θ( p) is flat in the subcritical phase and at the critical point, i.e. for p� pq. It is also
expected that the phase transition from a finite to infinite cluster size in 2D has no
jump discontinuities, although the shape of the graph of θ( p) in the region pq< p< 1
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is still conjectural. The main source of disagreement is the exact value of pq. Earlier
numerical studies [34–36] based on finite-size scaling predicted that in the 2D
scenario, the system can percolate only if all states are open, i.e. at pq ¼ 1. Later it
was suggested [31] that percolation occurs for p< 1 but only at energies sufficiently
far away from the band center (E¼ 0). Although the states near the center of the band
were characterized by weaker than power-law localization, no clear evidence for
crossover to percolation was established. Theoretical support for these results came
from the scaling theory of localization [1]. Another part of the physics community
argued that the 2D lattice can percolate for pq < 1 at all energies [37–40]. Neverthe-
less, different values of the critical pq were obtained using different techniques.
Table 5.2 presents a variety of pq values obtained for the square lattice, which is the
most studied two-dimensional geometry. In the honeycomb case examined here,
most robust results are calculated for the classical percolation problem. In the
quantum regime, it was suggested that the value of the percolation threshold varies
with system size [45].

The primary question is whether there exists a value of pq < 1 that yields a
nonzero probability function θ( p). If one shows that pq ¼ 1, the graph of θ( p)
becomes a flat line with a jump discontinuity at the critical point (as shown by the
blue line in Fig. 5.3). In contrast, for the case where pq < 1, one needs to further

Table 5.2 List of various results for the critical probability value pq in the 2D quantum site
percolation problem on the square lattice

Authors Method pq
Odagaki et al. [41] Green’s function method 0.59

Koslowski and von Niessen [42] Thouless-Edwards-Licciardello method 0.70

Srivastava and Chaturvedi [40] Method of equations of motion 0.73

Daboul et al. [39] Series expansion methods 0.74

Odagaki and Chang [43] Real-space renormalization group method 0.87

Raghavan [44] Mapping a 2D system into a one-dimensional system 0.95

Fig. 5.3 The graph of θ( p)
vs. p according to scaling
theory (blue line) and
according to the spectral
approach (red line). Note
that below the critical point
pq, the function θ( p) ¼ 0,
while above the critical
point pd, the function
θ( p) ¼ 1. The shape of the
graph in the transition
region pq < p < pd is still
conjectural
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investigate the shape of the graph in the supercritical regime. Numerical studies
yielding pq < 1 often do not provide rigorous predictions regarding the shape of the
graph in the transition region, which makes them hard to apply to physical systems.
Note that the existence of pq< 1 does not imply transport with probability 1; rather it
suggests that in the interval pq < p < 1, the function θ( p) is increasing (probably)
continuously from θ( pq) ¼ 0 to θ( p) ¼ 1. Thus, one cannot conclude with high
certainty that the 2D system truly percolates in the supercritical regime.

The application of the spectral approach to the 2D quantum percolation problem
provides an important improvement on this issue. In our previous work [8–10], we
have shown the existence of extended states in a 2D infinite lattice with nonzero
Anderson-type disorder. Similarly, the work presented in this chapter indicates that a
2D quantum system percolates for pq < 1. However, unlike most methods previ-
ously mentioned, the spectral approach is designed to show the existence of
extended states (or percolation) with probability 1. In other words, it identifies the
critical value of p above which θ( p) ¼ 1 (where the graph becomes a flat line).
We call this value pd, where d stands for delocalization. Note that pq and pd do not
necessarily coincide as illustrated by the red line in Fig. 5.3.

5.3 Distribution of Variables

As mentioned in the previous sections, we applied the spectral method to the
Hamiltonian in Eq. (5.1). In all simulations presented here, we assume Δ ¼ ZV
(i.e. constant hopping potential over the nearest neighbors) and let {δi}i 2 Λ be the
standard basis vectors of the honeycomb lattice.2 With this assumption, we recover
the discrete random Schrödinger operator in Eq. (1.3), which is repeated below for
convenience

HE ¼ �ZVþ
X

i2Λ Eiδi δih j: ð5:8Þ

The numerical analysis starts by generating one realization of the random vari-
ables Ei according to the prescribed probability distribution χ(E). Next, we fix a
random base vector δ0 and generate the sequence {δ0,Hδ0,H

2δ0, . . .H
nδ0}, where

n¼ 4500 corresponds to the number of iterations of the Hamiltonian and is used as a
timestep. Then the sequence is orthogonalized and the distance value D at each
timestep n is obtained using the distance formula (given by Eq. (3.12) in Chap. 3).
Finally, we analyze the graph of D vs. n to determine the limiting behavior of D as
n ! 1.

2Note that the spectral approach only requires that v0 and v1 are any two (different) vectors in the
Hilbert space of interest. The choice v0 ¼ δ0 and v1 ¼ δ1 ensures faster computation times and is not
related to the generality of the spectral method.
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The use of the modified bimodal distribution allows for introduction of two
distinct types of defects: positional and substitutional. The positional disorder is
controlled by the values of the mean energy EB and the variance σ2 of the Gaussian
peak, while doping is achieved by variation of the concentration3 nD of B-type lattice
sites of energy EB. In this section, we motivate the choice of EB, σ

2, and nD for the
present simulations. First, we perform a spectral analysis of the honeycomb lattice
where the on-site energies are assigned from a single Gaussian peak with fixed
variance but changing mean energy EA. Then, we center the Gaussian peak at EA¼ 0
and alter its variance. Finally, for a given Gaussian distribution, we vary the
concentration of lattice sites with energy EB.

In this work, we model substitutional disorder using a modified bimodal distri-
bution, in which one peak is a Gaussian centered at EA ¼ 0 and the other peak is
(approximately) a delta function located at EB ¼ 100. Here the delta function
represents the dopant atoms characterized by a substantially higher average energy
EB. Since the introduction of substitutional disorder in a material is usually a
controlled process, we do not consider a spread of possible energies for the B-type
atoms. In other words, the defect is produced by a careful substitution of an A-type
atom with a B-type atom, whose energy is controlled.

In Sect. 5.2, we argued that the chosen energy difference EB � EA ¼ 100 is
sufficient to represent a quantum percolation problem, where the B-type atoms are
unfavorable but not forbidden lattice sites. To ensure that the choice EA ¼ 0 is
appropriate, we applied the spectral approach to a normal distribution (single
Gaussian peak) of fixed variance σ2 ¼ 0.4 with mean values changing in the range
EA ¼ 0 : 10 : 100. Figure 5.4 shows representative Dhc-value

4 plots for simulations
with EA ¼ 0 : 20 : 100.

We see that for a fixed variance, the limiting behavior of Dhc does not change
appreciably as one increases the mean value for the normal distribution. Specifically,
even for the two extremes of the examined interval (EA¼ 0 and EA¼ 100, marked in
Fig. 5.4 with a solid red and black dotted line, respectively), the behavior of the
distance parameters follows a very similar trend. This indicates that the spectral
analysis is not affected by a change of the mean in the normal distribution. Thus, we
conclude that, without loss of generality, the Gaussian peak in the modified bimodal
distribution can be centered at EA ¼ 0. This approach is in agreement with other
numerical simulations [30, 31], where a Gaussian distribution was used to model
quantum percolation. This also makes sense in terms of probability theory, where the
mean represents the most probable (or expected) value, which in this setup can be
interpreted as the average ground state energy of the atoms in the unperturbed
crystal.

To evaluate how changing the variance σ2 influences the transport behavior of a
system, we performed a spectral analysis of a system characterized by a Gaussian

3Here nD stands for the concentration of the B-type doping material and is equal to the probability
for a closed state 1 � p in the quantum percolation problem.
4Here the subscript hc in Dhc stands for honeycomb.
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distribution withEA¼ 0 and σ2¼ 0.05:0.05:0.50. The distance plots in Fig. 5.5a show
that for a fixed mean, as the variance increases, the slope of the Dhc-plots becomes
increasingly negative. In the spectral approach, delocalization is established if Dhc

approaches a nonzero positive value as n ! 1. Thus, as the slope of the Dhc-plots

Fig. 5.4 Distance time evolution plots for the Hamiltonian in Eq. (5.8), where the random variables
are assigned according to a Gaussian distribution with fixed variance σ2 ¼ 0.04 and changing mean
values EA. The Dhc-values for EA ¼ 0 and EA ¼ 100 are denoted in solid red and dotted black lines,
respectively

Fig. 5.5 Distance time evolution plots (a) and the corresponding log-log plots (b) for the Hamil-
tonian in Eq. (5.8), where the random variables are assigned according to a Gaussian distribution
with fixed mean EA ¼ 0 and variance σ2 ¼ 0.05 : 0.05 : 0.50
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increases, the probability thatDhc(1)> 0 decreases. Since the numerical simulations
are finite (n¼ 4500), the existence of extended states is most probable if a given plot
decays exponentially.

In Fig. 5.5b, we see that for σ2 � 0.15 the log-log Dhc-plots are straight lines with
almost no slope, which indicates exponential decay, while for σ2 > 0.15, the
negative slope of the lines monotonically increases with increasing σ2. We can
conclude that for a Gaussian distribution with a fixed mean EA ¼ 0, changes in the
variance significantly affect the behavior of the distance parameter.

This is to be expected since, physically, the variance quantifies the deviation from
the mean and can be interpreted as a type of disorder in the system. Note, however,
that in this case, the spread of the Gaussian function represents a defect characteristic
of the un-doped crystal and is thus related to the Anderson-type disorder. Although
the focus of this work is substitutional defect, a realistic model of disorder in the
crystal needs to account for lattice imperfections in the unperturbed crystal. Thus, it
is useful to assume a value for σ2 that contributes to the total effect of impurities but
does not dominate it. Since the normal distribution models a type of defect, which is
similar to the Anderson-type disorder, we can get an estimate for the appropriate
value of σ2 through a comparison with our previous study [9], where we have
established that for the 2D honeycomb lattice with Anderson-type disorder
(i.e. square distribution), extended states exist for W � 0.75.

An approximate relationship between the width of the square distribution W and
the variance of the normal distribution σ2 is presented in Fig. 5.6. Since�95% of the
normal distribution area falls within distance 2σ from the mean, one can approximate
the Gaussian by a square distribution with width W ¼ 4σ (light pink square in
Fig. 5.6) or W2 ¼ 16σ2. Therefore, the critical value W � 0.75 approximately
corresponds to σ2 � 0.035. The same calculation, performed with a square of
width 2σ (light blue square in Fig. 5.7) yields σ2 � 0.14. Clearly, the pink square
overestimates and the blue square underestimates the actual area of the Gaussian.
Thus, it is appropriate to choose the variance from the range 0.035 < σ2 < 0.14. In
the next section we choose EA ¼ 0 and σ2 ¼ 0.05 for the Gaussian peak of the
modified bimodal distribution.

Fig. 5.6 Visual
representation of the
connection between W of
the square distribution and σ
of the Gaussian distributions
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5.4 2D Honeycomb Lattice with Substitutional Disorder

Consider the modified bimodal distribution consisting of a Gaussian peak (with
mean EA ¼ 0 and variance σ2 ¼ 0.05) and a delta function at EB ¼ 100. Define
nG ¼ p as the concentration of lattice sites with energy Ei selected from the Gaussian
peak and nD ¼ 1 � p as the concentration of lattice sites with energy EB ¼ 100. In
each numerical simulation, we first assigned all lattice sites energies from the normal
distribution, which models a single-species crystal with small lattice imperfections
(represented by the width of the Gaussian peak). Then, we simulate substitutional
disorder by (randomly) assigning the energy EB to a fraction of the lattice sites
determined by the value nD. In this study, the examined concentration of doping
varied from nD ¼ 0 to nD ¼ 32%. To minimize numerical error, for each nD, we
generated 30 realizations of the on-site energies and averaged the resulting distance
values. Figure 5.7 provides the time evolution plots of the (averaged) Dhc values in
the range nD(%) ¼ 1 : 1 : 32. As the amount of disorder increases, data fluctuations
become prominent even for values of the disorder as small as 2% (bright red line on
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Fig. 5.7 Distance time evolution plots for doping in the range nD(%) ¼ 1 : 1 : 15 (a) and
nD(%) ¼ 1 : 1 : 32 (b)
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Fig. 5.7a). The sudden drops observed in the time evolution of some Dhc values
indicate that the 30 realizations for the corresponding nD varied significantly in their
limiting behavior.

An increasing dissimilarity among the various realizations for a given nD is
proportional to an increasing uncertainty in the existence of extended states. The
plot of the 30 realizations for nD¼ 2% (Fig. 5.8a) shows that severalDhc values drop
rapidly to zero, in which case the spectral approach cannot establish the existence of
extended states with probability 1. In Fig. 5.8b, we see that the number of realiza-
tions that drop to zero N0 increases with increasing doping value. As the plot of nD
vs. N0 indicates that no realizations for nD(%) ¼ 0 : 0.1 : 0.8 fall to zero, we expect
that this is the appropriate range of doping where the spectral approach can establish
delocalization with probability 1.

Note that, even for the cases where all realizations of a given nD have a positive
value at the last timestep of the simulation, i.e. Dhc(4500) > 0, we still need to
extrapolate the limiting behavior of the distance parameter as n ! 1 to prove that
extended states exist. To determine the limiting values of Dhc at infinity, we fit the
data using the equation

Fig. 5.8 (a) Distance time evolution plots of the 30 realizations for the case nD ¼ 2%. (b) Number
of realizations that dropped to zero for each examined doping value
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Dhc ¼ mn�α þ b, ð5:9Þ

where the first term shows how rapidly Dhc approaches a limiting value b as n!1.
Since all plots exhibit small fluctuations in the first thousand timesteps, we applied a
nonlinear regression model to Eq. (5.9) using a weight function of the form
w ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4500� n

p
. In this way, the initial data fluctuations are minimized and the

fitting results reflect more accurately the plots’ behavior at large values of n.
In Fig. 5.9a, we show the distance plots and the corresponding log-log plots for

the 2D honeycomb lattice with doping nD(%) ¼ 0 : 0.1 : 0.8. As expected, the Dhc

plots acquire greater negative slopes as the concentration of B-type atoms increases.
For each doping concentration, we performed individual regression analysis to each
of the 30 realizations. To evaluate the contribution of the exponential term in
Eq. (5.9), we define the parameter

R ¼ Dhc 4500ð Þ � b

Dhc 4500ð Þ , ð5:10Þ

where Dhc(4500) is the distance value at n ¼ 4500. The averaged values b and R are
given in Table 5.3. The provided error estimate is the standard deviation from the

Fig. 5.9 Distance time evolution plots (a) and the corresponding log-log plots (b) for the 2D
honeycomb lattice with substitutional disorder in the range nD(%) ¼ 0 : 0.1 : 0.8. The data shown is
the average of 30 realizations for each value of nD
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mean in each group of 30 realizations. For all considered cases the root mean squared
error from the fit equation was ~10�5 and the R-squared value was �97%, which
indicates a good agreement with the weighted regression model. The nonlinear fits
for each doping concentration are represented by black dashed lines in Fig. 5.9b.
Table 5.3 shows that as doping concentration increases, the values of b decrease and
the R contribution becomes more significant. For nD ¼ 0.3 (shaded area in
Table 5.3), the standard deviation from the mean increases about five times for
both b and R, which suggests a transition in the behavior of the Dhc plots.

To confirm the existence of a transition point in the range nD(%) ¼ 0 : 0.1 : 0.8,
we study the dissimilarity among the averaged b and R values using a hierarchical
clustering algorithm based on Ward’s minimum variance method. The dendrogram
in Fig. 5.10 shows the existence of two distinct clusters, corresponding to two
different regimes in the limiting behavior of the distance plots. As expected, the
transition between the two clusters occurs as one increases the doping from
nD ¼ 0.2% to nD ¼ 0.3%. Thus, we conclude that nD ¼ 0.3% is the critical

Table 5.3 Equation parameters yielding best fits for various doping concentrations. The shaded
area highlights the parameters for the critical value nD ¼ 0.3%

nD(%) b(�10�3) R(%)

0 985 � 9 1 � 1

0.1 955 � 74 4 � 7

0.2 944 � 22 5 � 2

0.3 921 � 103 7 � 10

0.4 926 � 37 7 � 4

0.5 918 � 61 7 � 6

0.6 914 � 57 7 � 6

0.7 881 � 66 11 � 7

0.8 881 � 78 10 � 8

Fig. 5.10 Dendrograms for the averaged values of b, D(4500), and R for doping in the range
nD(%)¼ 0 : 0.1 : 0.8. The transition point between the two clusters is nD¼ 0.3%, in agreement with
experimental results
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concentration of doping for which the spectral approach can no longer establish the
existence of delocalization with probability 1. This agrees with the experiment by
Bostwick et al. [3], who studied graphene samples doped with hydrogen.

Bibliography

1. E. Abrahams, P. Anderson, D. Licciardello, T. Ramakrishnan, Scaling theory of localization.
Phys. Rev. Lett. 42(10) (1979)

2. S.Y. Zhou, D.A. Siegel, A.V. Fedorov, A. Lanzara, Metal to insulator transition in epitaxial
graphene induced by molecular doping. Phys. Rev. Lett. 101(8), 086402 (2008)

3. A. Bostwick et al., Quasiparticle transformation during a metal-insulator transition in graphene.
Phys. Rev. Lett. 103(5), 056404 (2009)

4. S. Agnoli, M. Favaro, Doping graphene with boron: a review of synthesis methods, physico-
chemical characterization, and emerging applications. J. Mater. Chem. A 4(14), 5002–5025
(2016)

5. I. Amanatidis, S.N. Evangelou, Quantum chaos in weakly disordered graphene. Phys. Rev. B 79
(20), 205420 (2009)

6. J.E. Barrios-Vargas, G.G. Naumis, Critical wavefunctions in disordered graphene. J. Phys.
Condens. Matter 24(25), 255305 (2012)

7. E. Amanatidis, I. Kleftogiannis, D.E. Katsanos, S.N. Evangelou, Critical level statistics for
weakly disordered graphene. J. Phys. Condens. Matter 26(15), 155601 (2014)

8. E.G. Kostadinova, C.D. Liaw, L.S. Matthews, T.W. Hyde, Physical interpretation of the
spectral approach to delocalization in infinite disordered systems. Mater. Res. Express 3(12),
125904 (2016)

9. E.G. Kostadinova et al., Delocalization in infinite disordered 2D lattices of different geometry.
Phys. Rev. B 96, 235408 (2017)

10. C. Liaw, Approach to the extended states conjecture. J. Stat. Phys. 153(6), 1022–1038 (2013)
11. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492 (1958)
12. S.R. Broadbent, J.M. Hammersley, Percolation processes: I. Crystals and mazes. Math. Proc.

Camb. Philos. Soc. 53(3), 629–641 (1957)
13. A. Mookerjee, T. Saha-Dasgupta, I. Dasgupta, Quantum transmittance through random media,

in Quantum and semi-classical percolation and breakdown in disordered solids, ed. by B. K.
Chakrabarti, K. K. Bardhan, A. K. Sen (Eds), (Springer, Berlin/Heidelberg, 2009), pp. 1–25

14. Y. Meir, A. Aharony, A.B. Harris, Delocalization transition in two-dimensional quantum
percolation. EPL Europhys. Lett. 10(3), 275 (1989)

15. G. Grimmett, Percolation and disordered systems, in Lectures on probability theory and
statistics, ed. by P. Bernard (Ed), (Springer, Berlin/Heidelberg, 1997), pp. 153–300

16. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2.
Commun. Math. Phys. 74(1), 41–59 (1980)

17. J.C. Wierman, M.J. Appel, Infinite AB percolation clusters exist on the triangular lattice.
J. Phys. Math. Gen. 20(9), 2533 (1987)

18. Z.V. Djordjevic, H.E. Stanley, A. Margolina, Site percolation threshold for honeycomb and
square lattices. J. Phys. Math. Gen. 15(8), L405 (1982)

19. M.F. Sykes, J.W. Essam, Exact critical percolation probabilities for site and bond problems in
two dimensions. J. Math. Phys. 5(8), 1117–1127 (1964)

20. J.L. Jacobsen, Critical points of Potts and O(N) models from eigenvalue identities in periodic
Temperley–Lieb algebras. J. Phys. Math. Theor. 48(45), 454003 (2015)

21. X. Xu, J. Wang, J.-P. Lv, Y. Deng, Simultaneous analysis of three-dimensional percolation
models. Front. Phys. 9(1), 113–119 (2014)

Bibliography 71



22. M.F. Sykes, J.W. Essam, Critical percolation probabilities by series methods. Phys. Rev. 133
(1A), A310–A315 (1964)

23. M. Acharyya, D. Stauffer, Effects of boundary conditions on the critical spanning probability.
Int. J. Mod. Phys. C 09(04), 643–647 (1998)

24. J. Wang, Z. Zhou, W. Zhang, T.M. Garoni, Y. Deng, Bond and site percolation in three
dimensions. Phys. Rev. E 87(5), 052107 (2013)

25. C.D. Lorenz, R.M. Ziff, Universality of the excess number of clusters and the crossing
probability function in three-dimensional percolation. J. Phys. Math. Gen. 31(40), 8147 (1998)

26. C.D. Lorenz, R.M. Ziff, Precise determination of the bond percolation thresholds and finite-size
scaling corrections for the sc, fcc, and bcc lattices. Phys. Rev. E 57(1), 230–236 (1998)

27. M.F. Sykes, D.S. Gaunt, J.W. Essam, The percolation probability for the site problem on the
face-centred cubic lattice. J. Phys. Math. Gen. 9(5), L43 (1976)

28. S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling
limits. Comptes Rendus Académie Sci. Ser. Math. 333(3), 239–244 (2001)

29. S. Smirnov, W. Werner, Critical exponents for two-dimensional percolation. Math. Res. Lett. 8,
729–744 (2001)

30. G. Schubert, H. Fehske, Dynamical aspects of two-dimensional quantum percolation. Phys.
Rev. B 77(24), 245130 (2008)

31. M.F. Islam, H. Nakanishi, Localization-delocalization transition in a two-dimensional quantum
percolation model. Phys. Rev. E 77(6), 061109 (2008)

32. S. Kirkpatrick, T.P. Eggarter, Localized states of a binary alloy. Phys. Rev. B 6(10), 3598–3609
(1972)

33. Y. Shapir, A. Aharony, A.B. Harris, Localization and quantum percolation. Phys. Rev. Lett. 49
(7), 486–489 (1982)

34. C.M. Soukoulis, G.S. Grest, Localization in two-dimensional quantum percolation. Phys. Rev.
B 44(9), 4685–4688 (1991)

35. Y. Avishai, J.M. Luck, Quantum percolation and ballistic conductance on a lattice of wires.
Phys. Rev. B 45(3), 1074–1095 (1992)

36. A. Mookerjee, I. Dasgupta, T. Saha, Quantum percolation. Int. J. Mod. Phys. B 09(23),
2989–3024 (1995)

37. H.N. Nazareno, P.E. de Brito, E.S. Rodrigues, Quantum percolation in a two-dimensional finite
binary alloy: Interplay between the strength of disorder and alloy composition. Phys. Rev. B 66
(1), 012205 (2002)

38. A. Eilmes, R. A. Römer, M. Schreiber, Exponents of the localization lengths in the bipartite
Anderson model with off-diagonal disorder. Phys. B Condens. Matter 296(1–3), 46–51 (2001)

39. D. Daboul, I. Chang, A. Aharony, Series expansion study of quantum percolation on the square
lattice. Eur. Phys. J. B Condens. Matter Complex Syst. 16(2), 303–316 (2000)

40. V. Srivastava, M. Chaturvedi, New scaling results in quantum percolation. Phys. Rev. B 30(4),
2238–2240 (1984)

41. T. Odagaki, N. Ogita, H. Matsuda, Quantal percolation problems. J. Phys. C Solid State Phys.
13(2), 189 (1980)

42. T. Koslowski, W. von Niessen, Mobility edges for the quantum percolation problem in two and
three dimensions. Phys. Rev. B 42(16), 10342–10347 (1990)

43. T. Odagaki, K.C. Chang, Real-space renormalization-group analysis of quantum percolation.
Phys. Rev. B 30(3), 1612–1614 (1984)

44. R. Raghavan, Study of localization in site-dilute systems by tridiagonalization. Phys. Rev. B 29
(2), 748–754 (1984)

45. C.M. Chandrashekar, T. Busch, Quantum percolation and transition point of a directed discrete-
time quantum walk. Sci. Rep. 4, 6583 (2014)

72 5 Transport in the Two-Dimensional Honeycomb Lattice with Substitutional Disorder



Chapter 6
Transport in 2D Complex Plasma Crystals

6.1 Complex Plasma Preliminaries

Plasma is a state of matter consisting of charged and neutral particles which exhibit
collective behavior.1 Plasma in the form of ionized gas can be found in numerous
astrophysical objects, including stellar interiors and atmospheres, gaseous nebulae,
and protoplanetary discs. Examples of plasma in the Solar System are the Earth’s
ionosphere, the Van Allen radiation belts, and the solar wind. On Earth, artificially
produced plasma has numerous technological applications such as neon lights,
plasma televisions, rocket propulsion, plasma etching, fusion energy research, etc.
In laboratory conditions, plasmas are often produced using a low-pressure gas
discharge (passing of strong electric currents through a neutral gas), resulting in a
mixture of electrons, positively charged ions, and neutral atoms. Electrons in low-
pressure gas discharge plasmas acquire high temperature and mobility (on the order
of 105 � 106K), while ion and neutral atoms are often assumed to have room
temperature (�300 K). However, due to their small mass, electrons do not transfer
much of their thermal energy as heat to the heavier plasma components or to the
enclosing walls. Thus, this type of plasma is characterized as ‘low-temperature
plasma’.

In this chapter, we focus on the special case of laboratory complex plasma
systems, which have attracted great attention in the past few decades. Complex
(or dusty) plasmas are plasmas containing micron-sized solid or liquid particles
(commonly referred to as dust) [1–4]. Upon interaction with the ionized environ-
ment, the macroscopic particles can acquire negative or positive charge depending

This chapter published as: Kostadinova, F. Guyton, A. Cameron, K. Busse, Liaw, C. D., Matthews,
L. S., & Hyde, T. W. (2017). Transport properties of disordered 2D complex plasma crystal
(recommended for publication in Contrib. To Plasma Phys.)
1The term ‘collective behavior’ implies that the dynamics of the plasma system is influenced not
only by local interactions but also by the state of the plasma in remote regions. In other words,
collective behavior necessarily implies the presence of long-range interactions.
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on the charging mechanisms operating the plasmas. Dusty plasmas are characteristic
of various space environments, such as protoplanetary discs, planetary rings, comet
tails, interplanetary and interstellar clouds, and the Earth’s atmosphere [5–7]
(Fig. 6.1). Dust grains in ionized gas also form in the vicinity of artificial satellites
and space stations [8, 9].

In chemically reactive plasmas on Earth, solid particles often form naturally
within reactors; however, dust can also be injected into an experimental setup for
dedicated study [10, 11]. The term ‘complex plasma’ is currently used to designate
dusty plasmas that are specially prepared for investigation in the laboratory [12].

The dust grains used in controlled experiments can be non-conducting (dielectric)
or conducting and be monodisperse or polydisperse (i.e., have size/shape distribu-
tion). The macroscopic particles acquire electrons and ions from the ionized gas,
allowing them to be trapped by internal or external electric fields. In terrestrial
experiments, the ionized environment is typically radio frequency (RF) or direct

Fig. 6.1 Astrophysical dusty plasmas. (a) Edge-on view of protoplanetary disk. Credit: D. Padgett
(IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA, (b) Comet ISON Credit:
NASA, ESA, and the Hubble Heritage Team (STScI/AURA) (c) Noctilucent clouds. Credit: John
Boardman (d) Plumes of Enceladus Credit: NASA/JPL

74 6 Transport in 2D Complex Plasma Crystals



current (DC) discharge plasma, where the primary dust-charging mechanism is the
collection of electrons and ions. The net charge on the dust particles is negative due
to the high electron thermal speed. The resulting intergrain force is dominated by the
repulsive Yukawa (Debye-Hückel) potential given by

V rð Þ ¼ q

4πε0r

� �
e�

r
λD , ð6:1Þ

where r is the distance from a particle with charge q, λD is the scale length over
which a charged grain is shielded by the plasma (called the Debye length), and ε0 is
the permittivity of free space.

In terrestrial experiments, dust particles are levitated against gravity with the help
of external electric field. The grains can also be constrained in the radial direction by
an inwardly-directed confinement force provided by an external potential. In such
conditions, complex plasmas self-organize into dust liquids, 2D and 3D dust crystal
lattices and 1D field-aligned dust chains. This feature allows researchers to examine
a variety of collective phenomena, including structure formation, self-organization,
phase transitions, waves, and instabilities). The first experimentally realized crystal-
line complex plasma structure is the two-dimensional dust crystal (Fig. 6.2), which is
the focus of this chapter [13, 14].

A variety of processes in complex plasma crystals have already been shown to be
analogous to those found in other strongly correlated Yukawa systems (for instance,
Wigner crystallization in 2D, quantum dot excitation, and excitonic condensation in
symmetric electron-hole bilayers [15–19]). In this chapter, the dust crystal is pro-
posed to be a toy model ‘toy’ model environment for the study of fundamental
problems in transport theory.

Fig. 6.2 Horizontal dust plasma crystal formed above the lower electrode of a GEC RF cell. Dust
particles float at an equilibrium height where the gravitational force is balanced by electrostatic
force due to external electric field. The confinement in the horizontal direction is provided by an
inwardly directed force created by a ‘cut-out’ plate placed on the lower electrode. Image source:
Center for Astrophysics, Space Physics, and Engineering Research, Waco, TX
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6.2 Two-Dimensional Dust Crystal Analogue

As discussed in the previous chapters, the proper utilization of two-dimensional
materials (such as graphene) relies on adequate understanding of conductivity in 2D
disordered crystals. A useful tool in the study of transport problems is the use of 2D
toy systems, or analogues, exhibiting similar properties to graphene (and graphene-
like materials). These realizations of ‘artificial graphene’ are artificially prepared
hexagonal or hexagonal-like lattices, designed to study the tunneling of electrons,
atoms, and waves under controlled system conditions [20]. Previously, artificial
graphene has been realized using ultracold atoms in optical traps [21], molecules
assembled on metal surfaces [22], optical [23] and microwave [24] photonic crystals,
and nanopatterned semiconductor surfaces [25]. Key advantages of graphene ana-
logues include [20]: (1) control over a wide range of system parameters, (2) precise
tunability of crystal disorder, (3) long length and time scales, and (4) interplay
between transport and many-body effects. While the atomic and molecular lattices
offer great tunability of system parameters and are characterized by longer time
scales, they are effectively disorder free. Photonic crystals provide similar advan-
tages with the added control over disorder but fail to exhibit long-distance interac-
tions or many-body effects. These can be investigated using semiconductor
analogues, which, however, do not allow for precise control over system parameters
and disorder.

In Sect. 4.5, we argued that the disordered triangular and honeycomb lattice
exhibit similar transport behavior due to planar duality. This indicates that a system
characterized by triangular symmetry is a good candidate for a graphene analogue. In
this chapter, we investigate numerically the transport properties of graphene-like
lattices using a 2D complex plasma crystal as macroscopic analogue. Since electron-
electron interaction in graphene has been shown to be very weak [26], many aspects
of transport in the material can be studied with the help of a classical systems of
similar geometry, such as the complex plasma crystal.

The 2D dust crystal consists of mutually-interacting micron-sized solid particles
arranged in a single-layered triangular lattice that can be easily driven by external
forces (Fig. 6.3). The average kinetic energy of the dust particles is determined by
the balance of driving forces and dissipation. 2D complex plasma crystals have been
previously used for the experimental study of condensed matter phenomena (such as
crystallization [3, 27], melting [28, 29], dislocations in crystals [30, 31], solitons
[32], etc.) at the kinetic level.

6.3 Transport in the Classical Regime

In the classical regime, Anderson-type problems can be studied using waves prop-
agating in diffusive matter. Diffusion of both electron and electromagnetic waves
through disordered medium obey Ohms law, where the conductance/transmission of
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the wave decreases linearly with the system length [33]. Experimental evidence for
Anderson localization effects has been observed using both electromagnetic [33–40]
and acoustic waves [41–45] showing that the Anderson model can be effectively
studied in the classical regime. These experiments examine propagation of waves in
a media with controlled number of random or ordered scattering centers and use the
(modified) Ioffee-Regel criterion [46] for localization.

Both electromagnetic and acoustic waves can be induced in 2D complex plasma
crystals, which makes them an ideal candidate for the study of Anderson-type
problems. Here we consider the diffusion of coplanar lattice waves in a 2D disor-
dered dust crystal in the regime where Hamiltonian interactions can be decoupled
from non-Hamiltonian effects. In this case, the Hamiltonian part is represented by
the wave interaction with hot-solid and topological defects in a system, while the
non-Hamiltonian part arises as a long distance many-body effect, possibly resulting
from the dust lattice coupling with the plasma environment. In our simulations, we
introduce a coplanar wave excitation in the bulk of the crystal and record its space-
time evolution. The data is then analyzed using the spectral approach, which can
determine whether the wave reaches the exterior of the crystal or becomes localized
due to spatial defects. Of specific interest is the case where long-distance lattice
excitations are observed even when the spectral method does not indicate delocal-
ization of the initial perturbation. In the decoupled Hamiltonian regime, such long-
distance interactions can be contributed to the interaction with the plasma gas.

A common approach to the dynamics of a non-Hamiltonian problem is to assume
that the system of interest is small and coupled to a much larger (but finite) volume,
which acts like a thermal bath [47]. In this approximation, the time evolution is
governed by a unitary transformation generated by a global Hamiltonian of the form

H ¼ HS þHB þHSB ð6:2Þ

Fig. 6.3 Top view of a
single-layer complex plasma
crystal. The red lines on the
figure highlight the
hexagonal symmetry of a
single crystal cell. (Image
source: Center for
Astrophysics, Space
Physics, and Engineering
Research, Waco, TX)
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where HS, HB, and HSB are the Hamiltonians of the system, i.e., the bath, and the
system-bath interaction, respectively. We introduce three important simplifications
to this problem: (1) weak system-bath coupling, (2) fast bath dynamics (i.e.HB¼ 0),
and (3) an initially uncorrelated system and bath (i.e. HSB ¼ 0 at t ¼ 0). When all
three approximations are satisfied, the time evolution of the density matrix for the
system state ρS(t) is reduced to a differential equation of the form

d

dt
ρS tð Þ ¼ � i

h
HS; ρS tð Þ½ � þℒDρS tð Þ, ð6:3Þ

where ℒD is the generator of dissipative dynamics. Thus, transport in the open
system can be approximated by transport in the closed system (first term of Eq. (6.3))
plus dissipation to the environment.

Here we examine a classical analogue of the quantum open system problem using
a 2D dust crystal in contact with a plasma gas environment. The internal coupling
between pairs of dust grains within the crystal is dominated by the repulsive screened
Coulomb force, which is in general much larger than the averaged interaction with the
plasma flow. In Earth-based experiments, dust structures are levitated against gravity
with the help of a vertical electric field. At the same time, the ion flow from the bulk is
known to produce a variety of effects such as wakefield focusing, shadowing forces,
and dipole polarization of the grains. In most cases, such effects have not been shown
to contribute appreciably to the interparticle potential in the horizontal plane. Thus,
for the case of a 2D dusty plasma crystal, the in-plane system-bath coupling can be
considered weak (when compared with the intergrain potential), which satisfies
approximation (1). The requirement of fast bath dynamics given in (2) is easily met
in our simulations, since the time scales of the dust lattice waves are considerably
larger than the frequencies of plasma oscillations. Finally, the assumption in (3) can
be (approximately) achieved in both numerical and experimental setups if the 2D
crystal is in effective equilibrium at t¼ 0. Here, we define effective equilibrium with
the environment as the state in which the velocity fluctuations of the dust grains are
much smaller than the propagation velocity of the dust lattice wave.

With the above assumptions satisfied, we argue that transport phenomena in our
simulations can be decoupled into two distinct contributions: a Hamiltonian inter-
action (modeled by an Anderson-type problem) and a non-Hamiltonian effect
(resulting from the time-dependent interaction with the environment). In this anal-
ysis, the spectral theory will be employed to determine the contribution from the
Anderson-type problem. The following section gives a brief overview of the logic
behind the spectral approach to transport in 2D systems.

6.4 Numerical Simulations of Dust Particle Dynamics

To generate the complex plasma crystal, a self-consistent N-body code Box_Tree
was employed. This code provides a user-specified coordinate system, dust particle
size, charge, and density, Debye length, external potential, and interparticle forces.
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This code has been used extensively to model the dynamics of charged dust in
astrophysical environments [48–52] and in a GEC RF reference cell in Earth-based
experiments [53–55]. Box_Tree also allows for control over confining potentials in
the radial and vertical directions, gravity, ion drag, neutral gas drag, and thermo-
phoretic forces.

6.4.1 Dust Crystal Formation and Defect Types

In this study, we consider a two-dimensional crystal consisting of 104 identical
spherical grains suspended in weakly ionized plasma gas. The numerically generated
dust structure was obtained using system parameters that correspond to experimen-
tally achievable conditions (see Table 6.1). To ensure that the examined crystal is
approximately two-dimensional, we require that the dust grains are in effective
equilibrium (i.e. have small average thermal velocities in each direction) and that
the vertical extent of the structures is smaller than the average interparticle separa-
tion. Starting from initial random positions, the particles were allowed to approach
equilibrium by including the effects of a drag force. At equilibrium, the average
thermal velocity of the particles in the crystal were ~10�8 ms�1 in the X and
Y directions and ~10�16 ms�1 in the Z direction indicating that the chosen crystal
equilibrium is (effectively) static. These velocities are several orders of magnitude
smaller than the thermal fluctuations usually observed in experimental conditions
(�10�4 ms�1 [4]). However, in experiments where the dust grains only move
distances smaller than the interparticle separation and have velocities randomly
fluctuating in all directions, the damping due to thermal effects has small effect on
lattice propagation in the strongly coupled system [56]. Thus, we expect that the
main results from the presented study should be experimentally observable even in
the presence of larger thermal velocities.

Figure 6.4 shows the spatial extent of the dusty structure in the horizontal
direction. The observed radial symmetry is a result of the confinement force, applied
in the horizontal direction (column five in Table 6.1). The crystal is levitated at a
vertical position of�5 mm and has average interparticle spacing of�300 μm, which
agrees with experimentally obtained values [4]. The vertical spread of the crystal is
less than the particle radius of r ¼ 5 μm. Thus, we conclude that the numerically
generated complex plasma structure in our simulations is two-dimensional.

To evaluate the amount of lattice defect in the dusty crystal, we employ a
crystallinity code, which calculates the true number of nearest neighbors for each
dust grain. This information is then used to determine the defect fraction D (defined

Table 6.1 Systems parameters used to generate dust crystal at stable equilibrium (reprinted with
permission)

Size [N] Mass [kg] Charge [C] Radius [m] Conf. [Hz] Defect [%]

103 8.18 � 10�13 �2.45 � 10�15 5 � 10�6 5.4 � 103 5.3
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as the ratio of particles with nearest neighbors different than 6) and the complex
bond-order parameter

G6 ið Þ ¼ 1
6

XNNi

l¼1
ei6Θi lð Þ, ð6:4Þ

where, NNi is the number of nearest neighbors of the ith particle and Θi(l ) is the
angle of the lth nearest-neighbor bond measured with respect to the X-axis. The
determination of the bond order in the crystallinity code relies on the Delaunay
triangulation algorithm. Thus, when the code is applied to dust fluid structures with
badly defined primitive cells, the Delaunay triangulation function returns an error
due to ‘insufficient number of unique points’. In other words, in these structures, the
function encounters numerous points laying on the same line, in which case, the
triangulation does not exist. In this way, we can distinguish between strongly
coupled and weakly coupled realizations of the dust structure.

The crystallinity code was also used to distinguish between the two main varia-
tions of spatial disorder (as defined by Thouless [57]): the hot solid type, and the
topological disorder. In the static lattice approximation, the hot solid type disorder
occurs when atoms are shifted from their regular position in the periodic lattice due
to mechanical defect (static positional disorder) or due to the presence of another
particle species (substitutional disorder). The examined hot solid type disorder in
these simulations is mechanical. Figure 6.5a shows positions of various mechanical
defects within the crystal, where in this case the definition of mechanical disorder
coincides with the defect fraction D. For the lattice used in this study, we found that
D ¼ 5.3%.

In the case of a topologically disordered system, the long-range symmetry in the
atomic distribution is completely broken, i.e. uniform periodicity cannot be assumed
throughout the lattice. Topological disorder can be represented by a system whose
domains exhibit various orientation with respect to the X-axis (ranging from �π to π
in radians). Figure 6.5b shows the formation of characteristic domains throughout

Fig. 6.4 Spatial extent of
the numerically generated
dust crystal in the horizontal
direction (reprinted with
permission)
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the dust structure. In areas where the cell orientation is the same, the color is uniform,
whereas areas with changing cell orientation are characterized by color gradient.

6.4.2 Crystal Perturbation

After the crystal has reached equilibrium, the drag force is turned off and a lattice
perturbation is induced by an in-plane Gaussian kick of a single particle. Variation of
the kick strength, duration, and direction with respect to the X-axis allow for control
over the frequency of the propagating lattice wave.

The lattice perturbation in our simulations is induced by an in-plane Gaussian
kick of a single particle. Variation of the kick strength, duration, and direction with
respect to the X-axis allow for control over the frequency of the propagating lattice
wave. The magnitude of the perturbation can also be modified using the kick
strength or the number of particles initially perturbed. The simulation additionally
allows for wave excitation in various areas of the crystal, which can be used to study
transport within a specific domain and interaction with the boundary. This paper
shows two perturbations of different strength, which were induced in the center of
the crystal. In each case, we generated a Gaussian kick at an angle of 0.1336 rad
(with respect to the X-axis) and a kick duration of 0.04 s. The initial acceleration
given to the perturbed particle was 0.016 ms�2 in case 1 and 0.030 ms�2 in case 2.
(Note that in all Figures the two cases are labeled 16 � 0.016 ms�2 and
30 � 0.030 ms�2.) The total simulation time was 5 s with an output timestep of
�17 μs (i.t. total number of timesteps n ¼ 300). Figure 6.6 shows maps of the
particle trajectories up to the final timestep of the simulation. The trajectory maps in
3a and 3b indicate that in both cases particle excitation was not directly proportional

Fig. 6.5 Lattice disorder in the form of mechanical hot solid type defect (a) and topological defect
(b). The positions of the dust grains are marked by dots, with triangles marking particles with
NN ¼ 5 and circles marking particles with NN ¼ 7 (reprinted with permission)
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to distance from the kicked particle. Specifically, a comparison between Fig. 6.5a,b
and Fig. 6.6a,b shows that the grains around defects were displaced more than the
grains located in regions of higher crystallinity. This result makes sense as
(by definition) particles located near mechanical defects will be shifted from their
regular position and will therefore occupy additional unstable energy states.

Figure 6.6c,d show enlarged maps of the region around the perturbed particle. The
small motion of particles at a distance ~10 mm from the perturbed particle suggests
that the initial wave perturbation did not spread considerably in the 2D plane.
However, the excitation was ‘felt’ by particles far away from the center of the crystal.
In Fig. 6.7, we present various plots of the total kinetic energy as a function of time
and distance from the perturbed particle. The energy plots further suggest that the
initial perturbation was damped out at a radial distance of ~1mm from the center. This

Fig. 6.6 Final movie frames for two different crystal perturbations. Parts (a, b) show the extent of
the perturbation throughout the crystal. Parts (c, d) are zoomed-in images of the lattice center, where
the perturbation was induced. In all images, the trajectory of the perturbed particle is marked in red
(reprinted with permission)
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indicates that excitation around defects may contribute to long-range interactions. In
the following section, we examine this assertion by using the spectral approach.

6.5 Spectral Analysis

The sequence {v0,HEv0, (HE)
2v0, . . ., (HE)

nv0} represents the dynamical evolution of
the perturbed system. In the present case, the vector v0 corresponds to the initial
kinetic energy of the crystal right after the Gaussian kick. Each successive term
represents the spread of the energy to the nearest neighbors. The numerical equiv-
alent to the operator sequence is given by

v0;HEv0; HEð Þ2v0; . . . ; HEð Þnv0
n o

! KE1;KE2;KE3; . . . ;KEnf g ð6:5Þ

where, KEn is the total kinetic energy of the crystal at timestep n. The distance values
for the two kicks are calculated using an orthogonalization procedure similar to the
one employed in the previous chapters. Figure 6.8 shows a plot of the distance values
at each iteration n. In both cases, the distance value limits to zero with time.
According to the criterion given in Eq. (3.13), we cannot conclude that the pertur-
bations reached the exterior of the crystal by the nearest-neighbor interaction. Thus,

Fig. 6.7 Plots of the total kinetic energy as a function of time and radial distance from the perturbed
particle for the two kicks (reprinted with permission)
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we expect that the observed excitations in our simulations do not result from the
classical Anderson-type transport. Instead, they can be contributed to a long-distance
interaction.
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Chapter 7
Conclusions

In this work we introduced the innovative spectral approach to delocalization in
infinite disordered lattices. In the first three chapters, we reviewed the major theo-
retical and experimental developments related to the Anderson-type transport prob-
lems and discussed their relevance to physical systems. Then the mathematical
formulation of the spectral method was provided together with a physical interpre-
tation in the context of the classical model of Edward and Thouless. The spectral
approach is an important contribution to localization theory because it can be applied
to infinite systems of any dimension or geometry without the use of periodic
boundary conditions or finite-size scaling. Our preliminary numerical simulations
showed that delocalization, in the form of extended states, exists for W � 0.6 in the
2D square lattice and for W � 5 in the 3D diamond lattice. Since these results are
based on conservative assumptions, the precise transition points for both cases may
occur for higher values of the system disorder W. Specifically, in Chap. 4, we
improved on our predictions for the square lattice case.

Identifying precise values of the disorder at the transition points in both 2D and
3D cases is beyond the scope of this work. However, it is important to emphasize
that the spectral method and the analysis presented here can be used to define the
critical value of W for which extended states seize to exist with probability 1. In
contrast, the dynamical approach of scaling theory aims to identify the critical point
where transition to pure localization occurs. As the two points do not necessarily
coincide, one can speak of a transition region of disorder values, where the energy
states are neither extended, nor exponentially localized. Mathematically, such solu-
tions correspond to the (poorly behaved) singular-continuous pieces in the spectrum
of the Hamiltonian. Thus, the proposed spectral method can be combined with the
techniques developed in scaling theory in the study of the transition region. The
possible connection between the singular-continuous part of the energy spectrum
and wave-particle duality makes the transition region an interesting subject for both
mathematicians and theoretical physicists.

The spectral method can be further employed in material science where accurate
results in 1D and 2D disordered systems are crucial for the study of quasi-1D
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graphene nanotubes and graphene sheets. Currently, both localization and transport
have been shown to exist in graphene-based materials for weak disorder [1–4]. The
transition from localized to extended states is still highly debated on theoretical
grounds and there is disagreement on the value of the minimal conductivity
[5]. Additionally, the localization lengths in graphene have been shown to be
independent of system size for various strengths of the disorder [6], which contra-
dicts the predictions of scaling theory [7]. Detailed numerical and experimental
study employing the spectral approach can greatly contribute to such problems
allowing for more accurate predictions related to the behavior of graphene-based
materials.

In Chap. 4, we applied the spectral approach to delocalization in the 2D honey-
comb, triangular, and square lattices. Our numerical simulations established that, in
contrast to the predictions of scaling theory, extended states exist for nonzero
disorder in all three lattices. The spectral approach, combined with nonlinear regres-
sion fitting and hierarchical clustering analysis indicates that delocalization occurs
for W � 0.75 in the honeycomb and triangular lattices, and W � 0.95 in the square
lattice. These results confirm that the existence of metal-to-insulator transition in 2D
is characteristic of the dimension and is independent of the types of geometries
considered here. We also showed that the spectral model correctly predicts the
similarity in the transport properties of the honeycomb and the triangular lattices,
which is to be expected from planar duality. This justifies the application of the
spectral model to systems with triangular symmetries, which are commonly used as
analogues to honeycomb lattices, such as graphene. We also observed that the
abruptness of the transition from one transport regime to another is dependent on
the lattice geometry.

The main goal of Chap. 4 was to identify the delocalization regime for the three
2D lattices, which was obtained by examining the two main clusters in each
dendrogram in Fig. 4.5. However, the analysis can be extended by considering the
substructure of the two main clusters in each geometry. Smaller clusters allow us to
identify sub-regimes within the global transport behavior. In our future work, we
will include more data points and consider greater values of the disorder, which will
improve the accuracy of the statistical analysis and allow us to recognize a rich
substructure of transport properties.

In Chap. 5, we used the spectral theory to establish the existence of extended
states in a 2D honeycomb lattice with substitutional disorder. The examined trans-
port problem is modeled by an Anderson-type Hamiltonian, where the hopping
potential is represented by a constant nearest-neighbor interaction (tight-binding
approximation) and on-site energies are random variables assigned according to a
predetermined probability distribution χ.

To model doping, we assumed a (modified) bimodal distribution consisting of a
Gaussian peak and a Delta-type peak. The variables assigned from the Gaussian
peak represent the fluctuations in the on-site energies of an unperturbed crustal.
Physically, such fluctuations occur due to spatial lattice defects. Preliminary analysis
of various normal distributions suggested that it is reasonable to use a Gaussian peak
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with mean EA ¼ 0 and variance σ2 ¼ 0.05. In all numerical simulations, we used a
Delta peak at EB � 100 to represent the approximate energy of the doping atoms.

The defect concentration was varied between nD ¼ 0% and nD ¼ 32%. For
nD � 0.9%, the spectral approach did not predict the existence of extended states
with probability 1. Thus, we conclude that in this range the transport behavior of the
system has transitioned into the localized regime. We applied a linear regression
model and hierarchical clustering for small concentrations of the doping
(nD � 0.8%). The results indicate the existence of a transition point in the transport
behavior of the system for 0.2 % < nD < 0.3%, which agrees with previous
experimental results [8].

The most important limitation of the work presented in Chaps. 3–5 is the finite
character of the numerical simulations. The results from the present analysis can be
improved by increasing the number of timesteps n, and the number of realizations of
random energies for each value of the disorder. This will yield better estimates for
the errors in the parameters b and R, used to determine the existence of transitions in
the transport behavior of the system. A future goal of our research is to also optimize
the choice of probability distribution χ so that the spectral method can be used to
model doping of different 2D materials with both atoms and molecules.

In Chap. 6, we presented a numerical study of in-plane dust lattice wave diffusion
in a 2D disordered complex plasma crystal. We argue that the transport observed in
the dust crystal can be decomposed into an Anderson-type wave delocalization and a
long-distance interaction resulting from coupling to the plasma environment. Two
examples were provided where a localized lattice perturbation was shown to induce
long-distance excitations around lattice defects. In our future work, we will extend
these numerical simulations to allow examination of various system regimes and
types of perturbations. In this way, the contribution of the long-distance terms will be
quantified using the thermodynamics of non-Hamiltonian systems. Finally, all
numerical results will be compared to laboratory experiments employing perturba-
tions through a complex plasma crystal.
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Appendix A: Basic Materials Science Terms

Bravais lattice—An infinite array of discrete points in three-dimensional space
generated by a set of discrete transformation operations described by:
R ¼ n1a1 + n2a2 + n3a3, where ni are any integers and ai are the primitive vectors,
which lie in different directions and span the lattice. This discrete set of vectors must
be closed under vector addition and subtraction. In physics, the Bravais lattice is
usually used to model a periodic crystal structure. The Bravais lattice can be divided
in Wigner-Seitz cells.

Wigner-Seitz cell—An example of a primitive cell, which is a unit cell containing
exactly one lattice point. It represents the collection of points in space that are closer
to that lattice point than to any other lattice point. Thus, the Wigner-Seitz cell is
related to the notion of a neighborhood from topology. It can be mathematically
shown that this cell spans the entire direct space without leaving any gaps or holes. It
can be constructed by first picking a lattice point. After a point is chosen, lines are
drawn to all nearby (closest) lattice points. At the midpoint of each line, another line
is drawn normal to each of the first set of lines. The cell is the area enclosed by these
lines (as shown in the shaded area in Fig. A.1).

Reciprocal pace—In materials science, the reciprocal space (or reciprocal lattice)
is the Fourier transform of another lattice (called the direct lattice). The direct lattice
exists in real space, while the reciprocal lattice exists in momentum space (some-
times called K-space). The reciprocal lattice of the reciprocal lattice is the original
direct lattice.

Brillouin zone—A uniquely defined primitive cell in reciprocal space. It is the
equivalent of the Wigner-Seitz cell for the reciprocal space. The importance of the
Brillouin zone stems from the Bloch wave description of waves in a periodic
medium, in which it is found that the solutions can be completely characterized by
their behavior in a single Brillouin zone.

Fermi energy—In quantum mechanics, the Fermi energy is the energy difference
between the highest and lowest occupied single-particle states in a quantum system
of non-interacting fermions at absolute zero temperature. In a Fermi gas
(an ensemble of large number of fermions), the lowest occupied state is taken to
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have zero kinetic energy, whereas in a metal, the lowest occupied state is typically
taken to mean the bottom of the conduction band.

Fermi level—At absolute zero there is no thermal energy, so electrons fill the
band starting from the bottom with a sharp cutoff at the highest occupied energy
level. This energy defines the Fermi energy. At finite temperatures, there is no
sharply defined ‘most energetic electron’ because thermal energy is continuously
exciting electrons within the band. The best that can be done is to define the energy
level with a 50% probability of occupation, and set this as the Fermi level.

Comparison Between Fermi Energy and Fermi Level

1. The Fermi energy is only defined at absolute zero, while the Fermi level is defined
for any temperature.

2. The Fermi energy is an energy difference (usually corresponding to a kinetic
energy), whereas the Fermi level is a total energy level including kinetic energy
and potential energy.

3. The Fermi energy can only be defined for non-interacting fermions (where the
potential energy or band edge is a static, well defined quantity), whereas the
Fermi level (the electrochemical potential of an electron) remains well defined
even in complex interacting systems, at thermodynamic equilibrium.

Fermi surface—An abstract boundary in reciprocal space useful for studying the
properties of the material. At absolute zero temperature, the Fermi surface represents
a sphere of radius pF, which is obtained from the Fermi energy. A deformation of the
Fermi sphere corresponds to a change in the properties of the material. Fermi
surfaces are only defined for metals, i.e. when the Fermi level is in the band gap
(there is no Fermi surface for insulators and semiconductors).

Fermi liquid—A theoretical model of interacting fermions that describes the
normal state of most metals at sufficiently low temperatures. The interaction between
the particles of the many-body system does not need to be small.

Dirac point—The Dirac points in graphene are six locations in momentum space,
on the edge of the Brillouin zone, divided into two non-equivalent sets of three points.

Fig. A.1 Example of a
Wigner-Seitz cell
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The two sets are labeled K and K0. (I assume) the Dirac crossing energy is the energy
at the Dirac points (also called Dirac points).

Quasiparticle—In physics, quasiparticles and collective excitations (which are
closely related) are emergent phenomena that occur when a microscopically com-
plicated system such as a solid behaves as if it contained different weakly interacting
particles in free space. For example, as an electron travels through a semiconductor,
its motion is disturbed in a complex way by its interactions with all of the other
electrons and nuclei; however it approximately behaves like an electron with a
different mass (effective mass) traveling unperturbed through free space. This
“electron” with a different mass is called an “electron quasiparticle”. In another
example, the aggregate motion of electrons in the valence band of a semiconductor
or a hole band in a metal is the same as if the material instead contained positively
charged quasiparticles called holes. Other quasiparticles or collective excitations
include phonons (particles derived from the vibrations of atoms in a solid), plasmons
(particles derived from plasma oscillations), and many others. These particles are
typically called “quasiparticles” if they are related to fermions, and called “collective
excitations” if they are related to bosons, although the precise distinction is not
universally agreed upon. Thus, electrons and holes are typically called “quasiparti-
cles”, while phonons and plasmons are typically called “collective excitations”.

Annealing—In metallurgy and materials science, annealing is a heat treatment
that alters the physical and sometimes chemical properties of a material to increase
its ductility (ability to deform under tensile stress) and reduce its hardness, making it
more workable. It involves heating a material to above its recrystallization temper-
ature, maintaining a suitable temperature, and then cooling. In annealing, atoms
migrate in the crystal lattice and the number of dislocations decreases, leading to the
change in ductility and hardness.

A substitutionally disordered system is one in which more than one atom is
randomly distributed on an otherwise periodic lattice with translational invariance.
To this category belong disordered alloys, mixed crystals and doped
semiconductors.

A positionally disordered system is one in which the atomic positions are
randomly distributed. In this category are classified liquid metals, some molecular
liquids and amorphous metals.

A topologically disordered system, which was originally proposed to apply to
amorphous semiconductors. In this kind of disordered system, the long-range order
in the atomic distribution is completely broken while the short-range order (hereafter
referred to as SRO) is maintained in the sense that the coordination number of each
atom remains the same as in the case of a corresponding ordered crystal, although
bond lengths and angles in a disordered system fluctuate. Essentially, this type of
disorder is considered to belong to the category of positional disorder. However,
since networks formed by the covalent bonds are regarded as playing a significant
role in determining various physical properties of amorphous semiconductors, this
type of disorder is distinguished from the more general “positional disorder” and is
specifically called ‘topological disorder’.
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Appendix B: Mathematical Preliminaries

Kindergarten Math

Informally, a set is a collection of objects. A space is a set with some added structure,
i.e. members of a given space obey certain rules specific for that space. A vector
space is a set, whose members are closed under finite vector addition (adding any
finite number of members of the set will give a value that is also a member of the set)
and scalar multiplication (multiplying any member of the set by a scalar will give a
value that is also a member of the set). The real vector (or coordinate) space of n-
dimensions is denoted as ℝn.

A function is a relation between a set of inputs and a set of outputs permissible for
that function. The set of inputs (called the domain of the function) contains values for
which the function is defined. To each member of the domain the function assigns an
output value from the set of outputs. The set of outputs is called the image (or range)
of the function. A function space is a set of functions of a given type, which relate a
set X to a set Y, denoted by X ! Y.

Broadly speaking, a map (or mapping) is a synonym for a function.1 A map
f : X ! Y from a set X to a set Y is a function f such that for every x 2 X, there is a
unique object f(x) 2 Y. An operator is a mapping from one vector space to another.
In physics, an operator is a function from a space of physical states to another space
of physical states. A linear operator is a mapping f from one vector space to another
f : X ! Y that satisfies the following conditions

1. Additivity: f(x + y) ¼ f(x) + f(y) for any two vectors x,y 2 X;
2. Homogeneity: f(αx) ¼ αf(x) for any scalar α.

1In category theory, a map is a morphism, which is a structure preserving operation that generalizes
the idea of a function.
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A transformation is a function that maps a set X onto itself, i.e. f : X ! X. The
definition of a linear transformation is a linear mapping from one vector space to
itself and satisfies the above definition.

Measure Theory

Measure theory is the study of measures. In mathematical analysis, a measure on a
set is a systematic way to assign a number to each suitable subset of that set,
intuitively interpreted as its size. Informally, a measure is a generalization of the
concepts of length, area, and volume. Measures have the property of being monotone
in the sense that if C is a subset of B, which is a subset of A, the measure of C is less
than or equal to the measure of B and the measure of B is less than or equal to the
measure of A (Fig. B.1).

Only nonnegative measures can be related to size/volume of the corresponding
subsets. Thus, for any subsetM� X (M is contained in or equal to X), we would like
to have μ(M ) � 0. In general, there can be subsets for which trying to assign size/
volume leads to a contradiction. For instance, in Fig. B.2, μ({A,B})¼ 2 is a counting
measure, which gives the number of members in (or the cardinality of) the subset {A,
B}. Such measure is defined for all subsets of X, including subsets containing only
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Fig. B.2 Consider the set X, which contains the points A, B, and C, i.e. X ¼ {A,B,C}. Define a, b,
and c as the distances connecting the points A, B, and C. For a given subset of X, say {A,B}, the
measure μ({A,B}) ¼ 2 tells us that {A,B} consists of two members, whereas μ(X) ¼ 3 tells us that
X consists of three members. These (counting) measures are nonnegative and obviously correspond
to size

96 Appendix B: Mathematical Preliminaries



one point. However, if the measure is defined as the distance between two points,2

then μ({A,B}) ¼ c. In this case, subsets consisting of one point cannot be assigned a
meaningful size and are thus non-measurable.

Problems related to non-measurable subsets are avoided by restricting the suitable
sets. This is accomplished using a sigma algebra Σ, which is the collection of all
measurable subsets for a given measure on a set.

By definition [186] a sigma algebra Σ satisfies the following conditions

1. The empty set is in Σ;
2. If a subsetM is an element of Σ, then the complement of X andM (all the elements

in X that are not contained in M ) is also contained in Σ, i.e. if M 2 Σ, then
X ∖ M 2 Σ;

3. For any collection of countable number of sets in Σ, their union must also be in Σ.

When the above three axioms are satisfied, the collection Σ of subsets of X is
called a sigma algebra (σ-algebra) on the set X and the pair (X,Σ) is called a
measurable space (assigning a measure to any subset in the space won’t lead to a
contradiction).

Formally [186], a measure space is described by the triple (X,Σ, μ), where X is a
set, Σ is the sigma algebra of measurable sets, and μ is a function that assigns
nonnegative values to the subsets in Σ, i.e. μ : Σ ! [0,1]. Additional requirements
on μ are:

1. The measure of the empty set is zero, i.e. μ(∅) ¼ 0;
2. The measure of the union of any given number of disjoint3 sets in Σ should be the

sum of their measures. In mathematical notation, μ [n2ℕEnð Þ ¼
X1

n¼0
μ Enð Þ,

where hEnin 2 ℕ is a disjoint sequence of members in Σ and ℕ is the set of natural
numbers.

In probability theory, the measure is chosen in such a way that μ(X) ¼ 1 (the set
X is measurable as it is the compliment of the empty set ∅) and the measurable
subsets (the subsets of X that form the σ-algebra) are interpreted as events which can
be assigned probabilities.

2Such choice of measure coincides with the notion of a metric in this specific example. However, a
measure should not be confused with a metric on a given set. Intuitively, a measure on a set X is a
function that assigns size/volume to its subsets, whereas a metric on X is a function that defines
distances among the elements in the set. (See Sect. 1.2 for a formal definition of a metric space.)
3A sequence hEnin 2 ℕ is disjoint if no point belongs to more than one En.
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Point-Set Topology

Broadly speaking, topology studies properties of spatial objects that are preserved
under continuous deformations. The objects of topology can be geometrical curves
and surfaces, phase spaces, space-time continuum, symmetry groups, etc. If one
object can be continuously stretched to form another (without the use of tearing or
gluing), the two objects are said to have the same topological properties (Fig. B.3).

Point-set topology (or general topology) investigates the properties of topological
spaces through the study of open sets. Open sets generalize the idea of an open
interval in the real line, i.e. a set is open if it does not contain any of its boundary
points (Fig. B.4). The most general definition of open sets in topological spaces is
fairly abstract and hard to visualize. Thus, we will start by introducing open sets in
metric spaces.

By definition [187], ametric space is the ordered pair (X, ρ), where X is a set and ρ
is a function called a metric on the set. Applying ρ to any two members of the set
returns a real value that corresponds to the distance between them,
i.e. ρ : X � X ! R. Additional requirements on ρ are:

1. Positivity: ρ(A,B) � 0 (with ρ(A,B) ¼ 0 for A ¼ B);
2. Symmetry: ρ(A,B) ¼ ρ(B,A); and
3. Triangle inequality: ρ(A,C) � ρ(A,B) + ρ(B,C).

In a metric space X, define the E-ball (E> 0) about a point x2 X to be the collection
of all points y located a distance smaller than E away from x, i.e. BE(x)¼ {y 2 X| ρ(x,
y)< E} (Fig. B.4b). Any subsetM of X is said to be open if, for each point x2M, there
exists an E-ball about x that is completely contained in M.

Fig. B.3 A famous joke in
topology says that a
topologist is someone who
cannot distinguish between
a coffee cup and a donut.
The picture on the left shows
that a donut can be stretched
into a coffee cup (and vice
versa), which makes the two
topologically equivalent
objects (Picture found on the
web)

0 1

a) b)Fig. B.4 Examples of open
sets in metric spaces: (a) the
open interval (0, 1); (b) the
E-ball around the point x 2 X
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Although the spaces of interest in this paper are all metric spaces, open sets can be
more generally defined as subsets in topological spaces. Any object in topology is
described by a topological space, which can be viewed as a set of points and
neighborhoods (around these points) related by certain axioms. Formally [187], a
topological space is the ordered pair (X, T ), where X is a set of points and T is a
collection of open subsets of X that obey the following properties

1. The (trivial) subsets X and the empty set ∅ are open, i.e. X, ∅ 2 T.
2. The intersection of any collection of open sets is open, i.e. if A,B 2 T, then

A \ B 2 T.
3. The union of any collection of open sets is open, i.e. if A,B 2 T, then A [ B 2 T.

When the above requirements are fulfilled, T is a topology on the set X. Open sets
in topological spaces are used to define nearness/distinguishability among points in
space even if the metric is not well defined. This is achieved with the use of
neighborhoods. Technically, a set N is a neighborhood of a point x 2 X if there is
an open set M such that x 2 M and M � N (M is a subset of N).

The functions (or transformations) in topology are those that operate on open
sets and return images that are also open sets. Although such functions (called
open maps) do not have to be continuous, the continuous open maps are the ones
of greatest interest in topology. A map f between two topological spaces f : X ! Y
is said to be continuous at a point x 2 X if, given any neighborhood M of f(x) 2 Y,
there is a neighborhood N of x in X such that f(N) � M (applying f to any point in
the neighborhood of x returns a value that is contained in the neighborhood of the
image of x) [187].

For a given topological space X, any set that can be formed from open
(or closed) subsets through countable4 union and countable intersection is called
a Borel set [188]. An example of a Borel set is the set of all real numbers ℝ, which
can be used to describe d-dimensional (finite or infinite) systems of countable
lattice points (see next section on Group Theory). The collection of all Borel sets
for a given topological space forms the Borel sigma algebra ℬ with a Borel
measure ν defined on all open sets. In other words, for every topological space
X one can construct a Borel σ-algebra ℬ, which is the σ-algebra generated by all
open sets in the space. To any Borel σ-algebra one can associate a corresponding
Borel measure ν, which (if compatible with the topology T of the set X) makes the
topological space (X,ℬ, ν) measurable.

In measure theory, any measure defined on the open sets of the topological space,
must also be defined on all Borel sets of that space. In probability theory, any given
probability measure of the Borel σ-algebra is equivalent to a corresponding proba-
bility distribution of a given real random variable defined on the probability space.

4Here “countable” is used in the sense of either finite or countably infinite.
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Group Theory

In abstract algebra, group theory is the study of abstract and physical systems in
which symmetry is present. The systems of interest in group theory are represented
by the algebraic structures known as groups. A group is a finite or an infinite
collection of elements together with a rule (called the group operation) that combines
any two elements to form a third element in a way that satisfies a certain set of rules.
Formally [189], a group G is a set equipped with an operation assigning to every
(ordered) pair of elements, a third element, satisfying the following rules

1. Closure: If f, g 2 G, then h ¼ fg 2 G;
2. Associativity: If f, g, h 2 G, then f(gh) ¼ ( fg)h;
3. Identity property: There is an identity element, e, such that for all f 2 G,

ef ¼ fe ¼ f;
4. Inverse property: Every element f 2 G has an inverse f�1, such that ff�1 ¼ f�1

f ¼ e.

An important technique in group theory is representing the elements of a given
group as linear transformations of vector spaces. A representation of a group G is a
mapping D of the elements of G onto a set of linear operators with the following
properties

1. The representation of the identity e is the identity operator I in the space on which
the linear operators act, i.e. D(e) ¼ I;

2. The representation of the multiplication of elements in the group is the natural
multiplication in the linear space on which the linear operators act, i.e. if g1,
g2 2 G, then D(g1, g2) ¼ D(g1)D(g2).

A representation is unitary if every D(gi) is unitary. If G is a finite group with
identity e and with group composition (g1, g2)! g1, g2, then a linear representation
L of the group G in a given vector space V is a homomorphism on the vector space
that preserves the linear structure. The regular representation of a group is the linear
representation that satisfiesD g1ð Þ g2j i ¼ g1g2j i, i.e. a linear representation generated
when G acts on itself by translation. If you take the elements of a group and use them
to form an orthonormal basis for a vector space, you.

An Abelian group is one in which the multiplication law is commutative,
i.e. g1g2 ¼ g2g1. An n-dimensional free Abelian group is an Abelian group with a
basis, which makes it very similar to a vector space. Thus, a representation of a
crystal lattice as a free Abelian group allows us to reduce many group-theoretic
problems to problems in linear algebra. The group of all integers ℤ is an example of a
free Abelian group with the basis {1} and the addition as the group operation. A
lattice in the n-dimensional real space ℝn is a subgroup of ℝn, which is isomorphic5

5In group theory, isomorphism is a one-to-one mapping of one group to another that preserves the
multiplication law. In more general sense, isomorphism is a mathematical operation that admits an
inverse.
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to ℤn and which spans the real vector space ℝn, i.e. the lattice is generated from all
linear combinations with integer coefficients of the basis vectors of ℝn. The
d-dimensional integer lattice has a natural basis consisting of the positive integer
unit vectors, but it can have many other bases as well. The two-dimensional integer
lattice is a free Abelian group with vector addition as the group operation and a basis
{(0, 1), (1, 0)}.

A symmetry group of an object is the group of all transformations under which the
object is invariant with composition as the group operation. In mathematics, physics
and chemistry, a space group is the symmetry group of a configuration in space. Let
a group G act on a set X. The orbit of an element x 2 X is the set of elements in X to
which the element x can be moved by the group action. The orbit of x is denoted by
G. x.

Probability Theory

Probability theory is the branch of mathematics concerned with the analysis of
random phenomena. In probability theory, a probability space (also called a prob-
ability triple) is a mathematical construct that models a real-world process in which
the possible states of the system under consideration occur randomly. Each proba-
bility space (Ω,ℱ,P) consists of the following components:

1. Sample space Ω, which is the nonempty set of all possible outcomes.
2. Event space ℱ, which is a collection of events (subsets) of the sample space Ω,

where each event is a set containing zero or more outcomes.
3. Probability function P, which assigns probabilities to the events in the event

space ℱ.

An outcome ω is the result of a single execution of the model. Since individual
outcomes might be of little practical use, more complex events are used to charac-
terize given sets of outcomes. The collection of all such events is a σ-algebra ℱ.
Finally, there is a need to specify each event's likelihood of happening. This is done
using the probability measure function P.

Once the probability space is established, the model can be executed resulting in
an outcome ω from the sample space Ω. All the events in ℱ that contain the selected
outcome ω are said to “have occurred”. The selection is performed in such a way that
if the experiment were to be repeated an infinite number of times (i.e. infinite number
of outcomes), the relative frequencies of occurrence of each of the events would
coincide with the probabilities prescribed by the function P. (See Fig. B.5 for a
simplified example.)

The probability space (Ω,ℱ,P) is a type of a measure space where the measure is
probability measure function and the measure of the whole set equals unit.
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Conclusion: Based on the above definitions, we see that a transport problem in a
(finite or infinite) d-dimensional lattice can be modeled with the help of a probability
space Ω ¼ (ℝ,ℬ, ν), where ℝ is the set of all real numbers, ℬ is the Borel sigma
algebra on ℝ, and ν is the Borel probability measure.

Fig. B.5 Consider a container with four green balls and five red balls inside, i.e. sample space
Ω ¼ {g1, g2, g3,g4, r1, r2, r3, r4, r5}. Let us assume that an execution of the model amounts to
drawing a single ball out of this container. Consider the subset of green balls A ¼ {g1, g2, g3,g4}
and the subset of red balls B ¼ {r1, r2, r3, r4, r5}. Subset A represents the event of drawing a green
ball and it contains four outcomes. Similarly, subset B represents the event of drawing a red ball and
it contains five outcomes. The two subsets A and B form the event space ℱ of the given problem,
i.e. ℱ ¼ {A,B}. If we draw a green (red) ball, event A (B) is said to have occurred. The probability
measure for event A is P(A) ¼ 4/9, whereas the probability measure for event B is P(B) ¼ 5/9.
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