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Preface

As essential organic molecules of life, proteins have received the attentions of

chemists since the beginning of synthetic organic chemistry. Today, chemical

protein synthesis is not only a pursuit of pure science but also provides useful

molecules with applications to biochemistry research and drug development. Syn-

thetic chemistry enables a level of control of protein composition beyond that

attainable by protein expression. Chemistry also holds promise for tuning the

properties of a protein molecule at atomic resolution and thus can provide otherwise

elusive insights into protein structure and function. For these reasons, chemical

protein synthesis has been intensively explored in the field of chemical biology and

its application has demonstrated the importance of modern synthetic chemistry to

cutting-edge research in biomedicine.

The present and next issues of Topics in Current Chemistry collect a represen-
tative number of review chapters surveying some of the current research trends and

technology levels in this important field. The chapters presented in the following

pages are authored by some of the pioneers and active researchers in the field from

different countries. These chapters reflect many of the important issues in the area,

namely, development of novel chemical methods for the ligation of peptide seg-

ments, total and semi-synthesis of important protein targets, and application of

state-of-the-art methods to solve problems in biochemistry research or drug devel-

opment. I hope that the readers find the two issues to be an interesting read. I would

like to thank all the authors for their excellent contributions. I would also like to

thank Arun Manoj Jayaraman for the help given to me in handling the manuscripts.

Beijing, China Lei Liu
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Chemical Protein Synthesis with the KAHA

Ligation

Florian Rohrbacher, Thomas G. Wucherpfennig, and Jeffrey W. Bode

Abstract Since the first report of the chemoselective amide bond forming reaction

between α-ketoacids and hydroxylamines in 2006, the KAHA (α-ketoacid-hydrox-
ylamine) ligation has advanced to a useful tool for the routine synthesis of small to

medium sized proteins and cyclic peptides. In this chapter we introduce the concept

of KAHA ligation starting with the synthesis and properties of hydroxylamines and

α-ketoacids, methods for their incorporation into peptides, and give an insight into

the mechanism of the KAHA ligation. We cover important improvements including

sequential ligations with 5-oxaproline, traceless synthesis of peptide α-ketoacids
and show their application in chemical protein synthesis and cyclic peptide synthe-

sis. Recent developments of the KAT (potassium acyl trifluoroborate) ligation and

its application as fast and chemoselective bioconjugation method are described and

an outlook on ongoing work and possible future developments is given at the end of

the chapter.
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1 Introduction

1.1 Overview of Chemical Ligations for Protein Synthesis

The ability to synthesize biologically active proteins chemically in a controlled way

and with defined sequences is one of the greatest achievements of synthetic

chemistry in the last 20 years [1]. Essential for further progress was the develop-

ment of the solid-phase peptide synthesis technique developed by Merrifield in

1963, as this method established a very general and scalable synthesis of peptides

[2]. Despite tremendous improvements over the last five decades, the size of

peptides obtained by SPPS is commonly limited to 40–60 amino acid residues,

considerably smaller than average eukaryotic proteins consisting of around

360 amino acid residues [3]. In addition to fragment couplings of fully protected

peptide segments, the most widely used approach to overcome this restriction is to

assemble the final protein from multiple, easy to access peptide building blocks by

chemical ligation methods (Scheme 1) [4, 5]. The best implementations use

completely unprotected peptide segments, work at suitably low substrate concen-

trations, and give natural amide bonds at the ligation site.

2 F. Rohrbacher et al.



Amilestone was the development of the native chemical ligation (NCL) by Kent

and coworkers in 1994, as discussed in great detail in other sections of this book

[6]. In brief, NCL exploits the chemoselective reaction of C-terminal peptide

thioesters and peptides with N-terminal thiols such as cysteine to yield a natural

amide bond [7]. Initial limitations included the requirement for relatively rare

cysteine residues [8] at the ligation site and challenges to synthesize C-terminal

peptide thioesters, but significant improvements by numerous research groups

rendered NCL a robust and reliable method to synthesize proteins chemically

[9–16].

Another relatively new chemical ligation method using different functional

groups is the serine/threonine ligation (STL) introduced by Li in 2013 [17], and

based on elegant prior art by Tam [18]. C-terminal peptide salicylaldehyde esters

react with N-terminal serine or threonine residues, yielding a cyclic N,O
benzylidene acetal intermediate which can be directly cleaved to yield a natural

amide bond at the ligation site. Current limitation of this coupling include limited

scope for the C-terminal residue bearing the salicylaldehyde ester, the requirement

of relatively high substrate concentrations, and the use of organic solvents which

may limit solubility and biocompatibility [19].

A third ligation method using distinct and orthogonal functional groups is the

α-ketoacid-hydroxylamine (KAHA) ligation developed by Bode and coworkers in

2006 [20, 21], described in more detail in the following sections.

1.2 KAHA Ligation

As the name suggests, the α-ketoacid-hydroxylamine ligation employs C-terminal

peptide α-ketoacids and N-terminal peptide hydroxylamines or derivatives which

react chemoselectively to give an amide bond at the ligation site (Scheme 2). This

reaction does not need any reagents or catalysts, and proceeds at slightly elevated

temperatures in mixtures of water and organic solvent without the formation of

problematic byproducts [22]. The mildly acidic reactions typically increase the
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solubility of protein fragments and deter the hydrolysis of sensitive functional

groups.

1.2.1 Types of KAHA Ligation

Over the years, different monomers and synthetic approaches for peptide hydrox-

ylamines and peptide α-ketoacids have been developed (Scheme 3). The different

synthetic routes to peptide α-ketoacids are discussed in Sect. 2. Regarding the

different hydroxylamine derivatives evaluated for KAHA ligation, differences
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were found not only in terms of stability and reactivity – they also seem to operate

under different reaction mechanisms, leading to sometimes unexpected outcomes

as discussed in Sects. 1.2.2 and 4.2.1. Based on the molecular structure and reaction

mechanism, the ligation reactions are divided into two categories: type I ligation

with free peptide hydroxylamines discussed in Sect. 4.1 and type II with

O-substituted hydroxylamines discussed in Sect. 4.2.

1.2.2 Mechanism

Type I

In order to identify the mechanism of type I ligations, we have extensively studied

the reaction of 18O labeled hydroxylamines and α-ketoacids [23, 24]. To our

surprise, we found that the oxygen atom of the newly formed amide originates

from the hydroxylamine. This can be explained by the initial formation of nitrones –

which are observable intermediates of the reaction – and subsequent attack of the

carboxylate to give an α-lactone. The α-lactone can rearrange to an α-oxaziridinyl
acid which undergoes decarboxylation to afford the final amide product.

This pathway is also supported by the observation that the potassium salt of the

α-oxaziridinyl acid can be independently prepared and isolated, and cleanly carbox-
ylates to give an amide upon addition of 1 equiv. of TFA (Scheme 4).

Type II

In contrast to type I ligations, KAHA ligation with O-substituted peptide hydrox-

ylamines in 18O labeled water leads to incorporation of 18O into the product.

Although we have not fully elucidated the mechanism of type II ligations, the

most likely pathway involves the formation of an iminium which dehydrates to a

nitrilium. As with the Ritter reaction, addition of water gives the amide product. In

prior studies this pathway has been proposed by Sucheck for type I reactions [25]

(Scheme 5).

The proposed pathway of type II ligations is supported by the surprising outcome

of reactions with the cyclic hydroxylamine 5-oxaproline. The major product of this
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reaction is the ester and not the expected amide [26, 27]. Most likely, the alcohol –

which is released upon decarboxylation – can intercept the intermediate nitrilium in

an intramolecular addition. The resulting cyclic imino ether is hydrolyzed under

acidic conditions to give the ester. As expected, 18O is incorporated into both the

ester and amide products if the KAHA ligation with 5-oxaproline is carried out in
18O-labeled water (Scheme 6).

2 α-Ketoacids

2.1 General Properties of α-Keto Acids

α-Ketoacids have been known for a long time; the first example, pyruvic acid, was

prepared by Berzelius in 1835 [28, 29]. They play an important role in the

metabolism of amino acids and are found as synthetic intermediates in prokaryotic

and eukaryotic cells [30]. Because of their highly electrophilic carbonyl group,

simple α-ketoacids are prone to nucleophilic attack, resulting in polymerization,

cyclization, or other addition products [31]. Depending on the pH value, simple
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α-ketoacids are also prone to form hydrates or enolates, resulting in epimerization

of stereogenic centers in the β position [32].

In contrast, we have found that peptide α-ketoacids are remarkably stable and

tolerate unprotected amino acid side chains. They do not epimerize in aqueous

solutions under acidic conditions, rendering them stable towards standard peptide

handling and purification methods, including reverse phase HPLC and lyophiliza-

tion (Scheme 7).

2.2 Synthesis of Peptide α-Ketoacids

2.2.1 Phosphorus Ylides

The first method to synthesize peptide α-ketoacids was developed by Wasserman

and coworkers and is based on stable phosphorus ylides, which were oxidized to

form acyl cyanides which undergo in situ hydrolysis (Scheme 8). In our hands this

method delivered the desired products but suffered from long reaction times for the

coupling of the phosphonium salt, resulting in epimerization of the neighboring

stereocenter [33]. Additionally, the oxidation required the use of toxic ozone gas,

very long reaction times (4–6 h), low temperatures (�78�C), and the use of inert

organic solvents in which the solubility of the peptides was found to be problematic.

2.2.2 Sulfur Ylides

In seeking suitable alternatives for the phosphonium ylides, we investigated the

sulfur ylide analogues (Scheme 9) [34]. We were pleased to find that the coupling
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reaction of carboxylic acid and sulfonium salt readily proceeded quickly and in an

epimerization-free manner.

During optimization studies, we found that solid Oxone, a cheap commercially

available mixed salt containing potassium peroxymonosulfate, conveniently oxi-

dizes sulfur ylides to the corresponding α-ketoacid with short reaction times

(5–30 min) in mixtures of organic solvents and water, improving the solubility of

the peptide substrates significantly. In further studies we confirmed that this rela-

tively mild method tolerates all unprotected amino acid residues except for the

oxidation-prone, sulfur-containing cysteine and methionine residues Tryptophan

residues were also sometimes problematic. Despite this limitation, the sulfurylide

approach offered powerful and convenient access to most classes of α-ketoacids.

2.3 Solid Supported Linker for Peptide Sulfur-Ylide
Synthesis

In order to simplify the preparation of C-terminal peptide α-ketoacids, we sought to
develop a version of the sulfur ylide suitable for synthesis on a solid phase. A solid

supported reagent would render the preparation of the peptide sulfurylides in a

transparent process simply by using a suitable resin at the beginning of the

synthesis. To achieve this, a suitable linker with a carboxylic acid was attached to

the thiolane ring and immobilized on Rink amide polystyrene resin by regular

amide coupling (Scheme 10) [35]. After alkylation on a solid phase a solid

supported version of the sulfonium salt is obtained, ready for coupling with

standard Fmoc-amino acids (Fmoc ¼ 9-fluorenylmethyl carbamate) to give the

corresponding solid supported sulfur ylides, which are generally stable and

storable.

To illustrate the versatility of this protocol, the synthesis of a 31-mer peptide

α-keto acid required for the synthesis of Pup protein is shown in Scheme 11

[36, 37]. The first amino acid residue was coupled under standard SPPS conditions
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and the peptide chain extended with an automated peptide synthesizer. Cleavage

under standard conditions using triisopropyl silane and water as scavenger and

purification by HPLC gave the pure Pup (2–32) sulfur ylide, which could be

oxidized with Oxone under mild conditions to give 61% yield of Pub (2–32)

α-ketoacids after purification.
The described protocol is quite general and over the years we have evaluated

numerous C-terminal residues suited well as C-terminal peptide α-keto acids

(Scheme 12), in terms both of preparation and of performance in KAHA ligations.

C-terminal peptide α-ketoacids up to 48 residues in length have been prepared by

oxidation of the corresponding sulfurylide.

2.4 Protecting Groups for C-Terminal α-Ketoacids

Despite its great success, the sulfurylide protocol for synthesizing peptide

α-ketoacids has two major limitations. First, although the oxidation conditions are

fairly mild and are tolerated by most unprotected functionalities, they are incom-

patible with cysteine, methionine, and tryptophan residues present in the peptide

segment, as these form oxidation products. Second, the oxidation protocol requires

an additional manipulation and purification step at the late stage of the synthesis.

This reduces the overall yield and decreases its attractiveness for certain applica-

tions, such as the preparation of cyclic peptides.

Unprotected α-ketoacids and simple derivatives such as α-ketoesters are unsta-
ble in the conditions used during SPPS, especially the basic conditions used for

removal of N-terminal Fmoc-protection. We envisioned developing a protected

α-ketoacid monomer which would fulfill several requirements: (1) it must be stable

to all conditions used in SPPS; (2) it should give the peptide α-ketoacid directly

without further manipulation under standard acidic cleavage conditions from the

solid support; (3) the α-ketoacid must not undergo epimerization at any point during

the synthesis, especially upon resin cleavage [38, 39].
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The third requirement of epimerization-free cleavage was found to be the most

challenging. Simple masking of the keto group of the α-ketoacid as acyclic

dimethyl acetal was feasible, but partial epimerization upon cleavage was observed

in some cases. To avoid this, we postulated that a change in deprotection mecha-

nism might help. For example, an electron-donating aromatic substituent could

facilitate the cleavage and therefore avoid epimerization (Scheme 13).

The synthesis of the simplest implementation of this design, a mono- or di-para-
methoxybenzyl acetal, could not be achieved. After considerable experimentation,

we found that a cyclic acetal derived from 1-(4-methoxyphenyl)-2,2-

dimethylpropane-1,3-diol gave the protected α-ketoacid monomer in good yield,

and deprotection occurred under standard acidic resin cleavage conditions in an

epimerization-free manner to give peptide α-ketoacids directly (Scheme 14). Thiol

scavengers such as 2,20-(ethylenedioxy) diethanethiol (DODT) or 1,2-ethanedithiol
have to be used in the cleavage cocktail, as the frequently used triisopropyl silane

leads to reduction side products of the α-ketoacid. For simplification of the immo-

bilization of the protected α-ketoacid monomer on a solid phase, a suitable Wang-

type linker was attached to the protected α-ketoacid monomer. The protected
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α-ketoacid monomer with the linker can be loaded onto a variety of resins under

standard coupling conditions to provide a stable and storable resin ready for use in

SPPS synthesis.

To demonstrate its utility, the synthesis of a bifunctional peptide fragment

required for the synthesis of SUMO3 protein bearing an N-terminal protected

oxaproline residue and a C-terminal α-ketoacid is shown in Scheme 15. Starting

from the protected α-ketoacid resin, the peptide chain was elongated by automated

Fmoc-SPPS under standard conditions. After the synthesis was complete, the

peptide was cleaved off the resin using 2.5% DODT in TFA and the desired peptide

α-ketoacid directly obtained after purification by HPLC without additional manip-

ulation steps. Notably, the sequence contains a cysteine and methionine, which

would be incompatible with the previous oxidative strategy.
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3 Hydroxylamines

3.1 Overview

During our ongoing efforts to identify and synthesize peptide hydroxylamines, we

have observed notable differences in both reactivity and stability of diversely

substituted hydroxylamines (Scheme 16). Whereas, for example, OBz peptide-

hydroxylamines show good reactivity, they are not sufficiently stable under ligation

and SPPS conditions. On the other hand, O-alkyl peptide-hydroxylamines are very

stable, but show poor reactivity in the KAHA ligation. So far we have identified two

main classes of hydroxylamines, which are both stable and reactive enough for

protein synthesis: O-unsubstituted hydroxylamines (type I ligations) and the cyclic

hydroxylamine 5-oxaproline (type II ligations). In order to render these peptide-

hydroxylamines suitable for Fmoc-SPPS, we have developed suitable protecting

groups and synthesis strategies. In the following sections this is discussed in detail.

3.2 O-Unsubstituted Peptide Hydroxylamines

3.2.1 On-Resin Synthesis by Nucleophilic Substitution

As shown in Scheme 17, hydroxylamine-functionalized peptides can be prepared

on-resin by coupling the free N-terminus with bromoacetic acid and subsequent

nucleophilic displacement by an O-acetal protected hydroxylamine [40].

Upon acidic cleavage from the resin and simultaneous removal of the protecting

groups, a peptide with an N-terminal hydroxylamine glycine was obtained.
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3.2.2 Nitrone-Protected N-Hydroxy Aminoacid Building Blocks

The method described in the previous section allows the synthesis of peptide

hydroxylamines with an N-terminal glycine. As it is desirable to introduce other

functionalized N-hydroxyl aminoacids, we have developed a method to prepare

nitrone-protected N-hydroxy aminoacid building blocks amenable to direct incor-

poration into peptides by standard Fmoc SPPS without the loss of stereochemical

integrity (Scheme 18) [41]. By following a modification of the procedure reported

by Fukuyama [42], O-protected aminoacids were alkylated in good yields to afford

the cyanomethyl amines. Following a one-pot oxidation to the corresponding

nitrones and subsequent hydrolysis with hydroxylamine hydrochloride, the free

N-hydroxylamino acids were obtained. In order to render these building blocks

compatible with Fmoc SPPS, the hydroxylamine needs to be protected with a

suitable protecting group. We found that the corresponding benzylidene nitrones

were bench stable and could be incorporated by standard couplings.

The hydroxylamines were converted to the benzylidene nitrones with benzalde-

hyde, followed by removal of the allyl ester. Using standard coupling reagents, the
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N-benzylidene amino acid nitrones were coupled onto the resin-bound protected

peptide. The peptide can be cleaved by anhydrous TFA without removal of the

nitrone protecting group. To remove the nitrone protecting group, the benzaldehyde

must be scavenged from the reaction mixture to avoid reattachment. This can be

realized by treatment of the peptide with 10% aqueous TFA and repeated, passing

through a short column of C18 silica gel and a resin-bond hydroxylamine to afford

the unprotected peptide with an N-terminal free hydroxyl amine. The main disad-

vantage of this method is the poor stability of most N-terminal peptide hydroxyl-

amines. In many cases they undergo oxidation to the corresponding oxime,

particularly the hydroxylamines of less hindered amino acid residues.

3.2.3 In Situ Preparation of Peptides with N-Terminal

Nitrone-Protected N-Hydroxy Aminoacids

Many procedures for the preparation of hydroxylamines rely on the oxidation of

imines to nitrones, which can be hydrolyzed to liberate a free hydroxylamine. To

combine the imine formation and subsequent oxidation in a single reagent, we

developed an N-sulfonyloxaziridine-based reagent featuring an aldehyde in prox-

imity to the reactive oxaziridine moiety (Scheme 19) [43]. Upon reaction with the

free N-terminus of a peptide, the intermediately formed imine is oxidized to the

nitrone, which can be hydrolyzed on-resin by treatment with hydroxylamine hydro-

chloride and imidazole in NMP. The resulting N-hydroxy amine peptide can

undergo on-resin ligations or can be cleaved from the resin [44].

3.2.4 Synthesis of β-Peptides with Isoxazolidin-5-One Building Blocks

An alternative approach to the synthesis and incorporation of β3-N-hydroxyl amino

acids is shown in Scheme 20 and relies on the synthesis of substituted

isoaxazolidin-5-one monomers, which can be regarded as activated β3-aminoacids
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[45]. Simple mixing of a primary amine with the isoaxazolidin-5-one monomer in

the presence of DMAP results in the formation of an amide bond to afford N-(Boc)-
N-hydroxy β3-peptides. Subsequent removal of the Boc protecting group with 50%

TFA liberates the free N-hydroxy β3-peptide.
The synthesis of these monomers is achieved by a (2+3) cycloaddition between

protected acrylates and nitrones, which are formed in situ by a D-gulose-derived

hydroxylamine and aldehydes (Scheme 21). The product of the cycloaddition can

be purified to >99:1 dr by recrystallization. Subsequent oxidative decarboxylation

with H2O2 under mildly basic conditions and acidic cleavage of the chiral auxiliary

affords the enantiopure isoxazolidin-5-one monomers, which are N-Boc protected

with Boc2O and used for incorporation into peptides in solution or on-resin [46].

3.3 O-Substituted Hydroxylamines

3.3.1 OBz Hydroxylamines

Based on initial observations by Gambarjan [47], and further improvement by

Ganem [48], Phanstiel developed a direct method for the synthesis of OBz

substituted hydroxylamines starting from the free amines (Scheme 22) [49]. The

amines were allowed to react with benzoyl peroxide in a biphasic solvent system

buffered at pH 10.5 to afford the corresponding OBz derivatives. While this method

is convenient for simple amines, it is not possible to prepare OBz α-aminoacids

with this method. Phanstiel demonstrated that OBz hydroxylamines can undergo
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KAHA ligation with phenylpyruvic acid affording N-acetyl phenethylamine under

neutral aqueous conditions at 40�C (Scheme 23) [50].

3.3.2 O-Aryl Hydroxylamines

For simple substrates, Phanstiel showed that O-aryl substituted hydroxylamines

undergo KAHA ligation (Scheme 24). Interestingly, this reaction proceeds in high

yields, even in neutral buffered conditions [51]. Preliminary biological studies

showed that O-4-nitrophenyl hydroxylamine had no toxic effect on Chinese ham-

ster ovary cells after incubation at 100 μM concentration for 48 h at 37�C,
demonstrating the potential of the KAHA ligation for biological applications.

3.3.3 Cyclic Hydroxylamines

As part of further efforts to identify chemically stable yet highly reactive hydrox-

ylamines, we found that the cyclic hydroxylamine shown in Scheme 25 perfectly

met both our requirements for handling and reactivity in the KAHA ligation [36,

37]. This building block, Boc (X)-5-oxaproline, can be synthesized in a similar

fashion to that described in Sect. 3.2.4 for the synthesis of the isoxazolidin-5-one

monomers, by a variation of the method reported by Vasella in 1981 [52]. The

nitrone formed by the gulose-derived hydroxylamine and ethyl glyoxylate reacts in

a (3+2) cycloaddition with ethylene to afford the desired cyclic product as a single

diastereomer after recrystallization. After cleavage of the chiral auxiliary and N-
Boc protection, the ethyl ester was hydrolyzed with LiOH to afford the enantiopure
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Boc-5-oxaproline monomer. This building block can be incorporated into a peptide

chain by standard coupling reagents as shown in Scheme 26. Using an analogous

route starting from tert-butyl glyoxylate, Fmoc- (S)-5-oxaproline can also be

prepared.

4 Ligations/Protein Synthesis

4.1 Ligations with Type I Hydroxylamines

The original version of the KAHA ligation reported in 2006 mostly employed

unsubstituted hydroxylamines as ligation partners. Advantageously, multiple syn-

thetic routes towards unsubstituted hydroxylamine peptides existed (see Sect. 3)

and an amide bond with a natural amino acid residue at the ligation site was

obtained. However, in the context of peptide purification and ligation, the

unsubstituted hydroxylamines are often sensitive towards oxidation, yielding

unreactive oximes. Additionally, type I ligations are sometimes slowed by the

presence of water and generally require organic solvents, which is disadvantageous

for solubility for many peptide fragments.
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Despite these limitations, the KAHA ligation with unsubstituted hydroxylamine

has been successfully employed to synthesize human GLP-1 (7–21) protein as

depicted in Scheme 27 [40].

The synthesis involved a two-fragment, one-ligation strategy by combining

Fragment 1 GLP-1 (7–21), obtained via oxidation of the corresponding peptide

sulfur ylide, and the N-terminal glycine hydroxylamine Fragment 2 GLP-1 (22–36),

prepared by the method described in Sect. 3.2.1. The ligation was performed in a

mixture of 3:1 DMA/DMSO containing 2 equiv. of oxalic acid at 60�C with a

minimal excess of the hydroxylamine fragment (1.05 equiv.) at a peptide fragment

concentration of 10 mM. After purification by HPLC, the ligation product GLP-1

(7–36) was obtained in 51% yield.

4.2 Ligations with 5-Oxaproline

Ligations with 5-oxaproline as hydroxylamine component were found to react at

comparable rates to the previously used unsubstituted hydroxylamines while offer-

ing much higher stability under the reaction conditions. This results in a higher

overall performance and ease of implementation in comparison with previous

cases. However, the amino acid residue at the ligation site is a non-canonical

homoserine residue, but if the ligation site is chosen properly (e.g., mutation of

serine, threonine, methionine, or asparagine residue to homoserine), the impact of

this rather conservative mutation on structure or function is small [38, 39].

4.2.1 Formation and Rearrangement of Depsipeptides

During studies in dipeptide model systems, it was found that ligations with

5-oxaproline give unexpectedly the depsipeptide with an ester linkage rather than

the anticipated amide (Scheme 28, see also mechanism in the section “Type II”)

[26, 27]. Conveniently, these depsipeptides are readily rearranged to the amides in

basic buffers. They might also offer an advantage in terms of handling, as
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depsipeptides are in general more polar and more soluble than their amide

counterparts [53].

4.2.2 Two-Segment Ligations with 5-Oxaproline

As a representative example for a two-segment, one-ligation strategy employing

5-oxaproline, the synthesis of Pup (2–63) protein is shown in Scheme 29. The two

fragments were reacted at a concentration of 20 mM in 6:4 DMSO:H2O at 60�C and

the depsiprotein was obtained in 58% yield after purification. Subsequent O to

N acyl shift in pH 9.5 NH4HCO3 buffer and removal of the volatile buffer by

lyophilization gave the desired Pup (2–63) protein in 99% yield.
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Scheme 29 Synthesis of Pup (2–63) by a two-segment ligation
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4.2.3 Multi-Segment Ligations

As the protein segment size is limited by SPPS, larger protein targets have to be

assembled from more than two segments in multi-segment ligations. The bifunc-

tional internal segments have both a N-terminal hydroxylamine and a C-terminal

α-ketoacid. In order to prevent possible side reactions such as cyclization or

oligomerization, one of these functionalities has to be temporarily blocked. Con-

veniently, this is realized by a base labile Fmoc-protection of the hydroxylamine.

UFM-1

One of the first examples of a multi-segment KAHA ligation is the synthesis of the

important modifier protein UFM1 [54, 55]. In this three-segment, two-ligation

strategy (Scheme 30), the N-terminal 5-oxaproline residue of the bifunctional

internal segment 2 UFM1 (29–61) is protected by an Fmoc group to avoid side

reactions. Segments 2 UFM1 (30–60) and segment 3 UFM1 (62–83) were reacted

in 9:1 DMSO:H2O and the depsiprotein was obtained in 46% yield after purification

by HPLC. As expected, the carbamate-protected 5-oxaproline residue remained

intact and unreactive during the ligation. Subsequent O to N acyl shift in a mixture

of 1:1 CH3CN and aqueous carbonate buffer at pH 9.5 followed by Fmoc-

deprotection with 5% Et2NH in DMSO gave UFM1 (30–83) in 80% yield over

two steps. The second ligation between segment 1 UFM1 (2–29) and segment 2 + 3
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UFM1 (30–83) in 3:1 DMSO:H2O gave the depsiprotein UFM1 (2–83) in 50%

yield after purification by HPLC. The O to N acyl shift gave the final UFM1 (2–83)

protein in 67% yield. This synthesis demonstrates the practicability of the tempo-

rary protection of 5-oxaproline residues required for sequential ligations.

SUMO3

The synthesis of the small ubiquitin-like protein SUMO3 is the first example of

protein synthesis using the protected α-ketoacid monomer exemplified in Sect. 2.4

[38, 39]. This was necessary because of the presence of the oxidation sensitive

residues Met43 and Cys47, which prevented the use of the oxidation strategy

illustrated in Sect. 2.3. The assembly of SUMO3 (2–92) protein was performed

following a three-segment, two-ligation strategy outlined in Scheme 31. The first

ligation between N-terminal Fmoc-protected segment 2 SUMO3 (30–52) and

segment 3 SUMO3 (53–92) in a mixture of 7:3 NMP:H2O gave the depsiprotein

SUMO3 (30–92) in 28% isolated yield. It should be noted that performing the

ligation in the commonly used solvent DMSO resulted in significant amounts of

byproducts arising from oxidation of cysteine and methionine residues. The Fmoc-

deprotection and O to N acyl shift were performed in a one-pot fashion to give

SUMO3 (30–92) in 47% overall yield. Notably, the Fmoc-deprotection had to be
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Scheme 31 Synthesis of SUMO3 by a three-segment sequential ligation
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performed under dilute conditions (<1 mM) to avoid trapping of the formed

dibenzofulvene by cysteine residues. Because of the basic conditions and the

presence of free cysteine residues, the O to N acyl shift has to be conducted in

the presence of a reducing agent (TCEP) to avoid the formation of disulfide adducts.

The second ligation between segment 1 SUMO3 (2–29) and segment 2+3 SUMO3

(30–92) proceeded readily within 7 h, despite the increased steric demand of the

valine α-ketoacid, and gave the depsiprotein SUMO3 (2–92) in 23% yield. The final

O to N acyl shift delivered SUMO3 (2–92) in 87% yield. Remarkably, it was

demonstrated in subsequent studies that the two introduced homoserine mutations

(Q30T§ and S53T§) do not affect the bioactivity of the synthetic SUMO3 protein.

Biochemical assays demonstrated that the synthetic SUMO3 protein is readily

recognized by the SUMOylation enzymes and transferred on a substrate protein.

4.3 Peptide Macrocycles

4.3.1 Macrocyclizations with Free Hydroxylamines: Synthesis

of Epi-Aza-Surfactin

Surfactin is a principle member of the lipopeptide family and a powerful antibiotic.

It features an ester linked β-hydroxy fatty acid in the macrocycle. We were

interested in the epi-aza-isomer of surfactin and envisioned a cyclization of the

peptide at the fatty acid residue using our isoxazolidin-5-one monomers (see

Sect. 3.2.4) [46]. As depicted in Scheme 32, the linear peptide was assembled by

Fmoc SPPS starting from the sulfur ylide linker (see Sect. 2.3). In the final step we

coupled the fatty acid isoxazolidin-5-one monomer in the presence of DMAP onto

the resin. After cleavage with TFA we obtained the C-terminal sulfur ylide with

N-terminal hydroxylamine. Since the free hydroxylamine is not stable during the

oxidation of the sulfur ylide to the α-ketoacid, it was converted into the benzylidene
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nitrone with benzaldehyde. Subsequent oxidation with DMDO afforded the peptide

α-ketoacid with an N-terminal benzylidene nitrone. This linear precursor peptide

was warmed to 45�C for 48 h in 50:1 DMF/H2O in the presence of 0.1 M oxalic

acid. Under these conditions, the nitrone protecting group was slowly hydrolyzed

and the free hydroxylamine continuously liberated, resulting in low concentration

of the active linear precursor and smooth cyclization.

4.3.2 Synthesis of Natural Products with Nitrone-Protected Monomers

For the synthesis of cyclic peptides consisting solely of α-amino acids, we have

developed a method based on the incorporation of nitrone-protected hydroxylamine

amino acid monomers (see Sect. 3.2.2) [44]. The linear peptides were assembled by

Fmoc SPPS and the terminal nitrone-protected N-hydroxy aminoacid was coupled

with standard reagents (Scheme 33). Using an anhydrous deprotection cocktail with

TFA, the nitrone protecting group remains intact and the sulfur ylide could be

oxidized with DMDO to the peptide α-ketoacid. Warming this linear precursor

peptide to 40�C in 50:1 DMF/H2O in the presence of 0.1 M oxalic acid led to

hydrolysis of the nitrone protecting group followed by cyclization of the peptide.

Using this method, five macrocyclic peptide natural products were prepared in

isolated yields of 7–22%.
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4.3.3 General and Efficient Synthesis of Macrocyclic Peptides

with 5-Oxaproline

The methods for peptide macrocyclization described above required oxidation of

the sulfur ylide in solution to afford the C-terminal α-ketoacid. This necessitated an
additional manual step and a suitably protected hydroxylamine. To reduce the

number of manual steps and to facilitate the synthesis process, we utilized both

protected α-ketoacid resins (see Sect. 2.4) and 5-oxaproline (see Sect. 3.3.3) into an
efficient method for peptide cyclization. Using this approach, we prepared a library

of 24 cyclic peptides (8–20 residues) by parallel peptide synthesis. Starting from

protected α-ketoacid resins, the linear peptide, including the N-terminal

5-oxaproline residue, is assembled by automated Fmoc SPPS as shown in

Scheme 34. After cleavage with TFA, the crude linear peptides are cyclized for

18 h at 50�C followed by a one-pot addition of ammonia to convert the cyclic

depsipeptides into cyclic peptides. If the O to N acyl shift is not performed, the

cyclic depsipeptides can be isolated. These conditions proved to be general for all

24 cyclic peptides synthesized. As a comparison, we prepared the same library by

cyclization of sidechain-protected linear peptides in solution with HATU. We

found that the KAHA cyclization leads to cyclic peptides of a considerable higher

crude purity (54% for KAHA vs 33% for standard cyclization). The KAHA

cyclization approach also needs significantly less time for the library synthesis

and opens the possibility of preliminary biological screenings without purification.
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5 Potassium Acyltrifluoroborate (KAT) Ligation

In addition to α-ketoacids, we have recently identified potassium acyl trifluor-

oborates (KATs) as a new class of reaction partners which react chemoselectively

with hydroxylamines to afford amides (Scheme 35) [56, 57]. The reaction is

extremely fast under aqueous conditions, with a second-order rate constant of

20 M�1s�1. The high rate constant makes this reaction particularly interesting as

a tool for bioconjugation with precious starting materials where a 1:1 stoichiometry

is desirable.

Unfortunately, poor synthetic access has limited the application and further

exploration of acyl trifluoroborates. To overcome this problem, we have recently

reported a reagent for the one-step conversion of aryl- and heteroarylhalides into

acyltrifluoroborates as shown in Scheme 36 [58, 59]. Adding butyl lithium to a

mixture of the thioformamide-derived reagent and an arylhalide followed by

quenching the reaction with aqueous KF allows the preparation of a variety of

substituted aromatic acyl trifluoroborates. Sensitive functional groups such as

esters, nitriles, and nitro groups are also tolerated.

The KAT ligation proceeds fast at room temperature even under diluted condi-

tions (100 μM) with a 1:1 stoichiometry of hydroxylamine and KAT (Scheme 37).

This was, for example, demonstrated for the conjugation of an unprotected

31-residue peptide with a PEG 20,000 reagent as shown in Scheme 37 [60].

Replacing the fluorine of potassium acyl trifluoroborates with suitable ligands

can modulate the reactivity of acyl boron compounds. MIDA (N-methylimino-

diacetyl) boronates, which can be prepared in one step starting from acyl trifluor-

oborates, react chemoselectively and fast with the very stable O-Me substituted

hydroxylamines, which have been shown to be unreactive towards α-ketoacids and
acyl trifluoroborates (Scheme 38) [61].
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Scheme 36 One-step preparation of potassium acyltrifluoroborates
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6 Outlook

Despite the success of the KAHA ligation in the total synthesis of proteins and the

synthesis of cyclic peptides, there is still space for further improvement of the

existing method. The following sections give a perspective on the possible future

development of the KAHA ligation.

6.1 Development of New Cyclic Hydroxylamines

One of the current limitations of the KAHA ligation with 5-oxaproline lies in the

formation of an unnatural homoserine residue. Although we have shown that the

biological activity of proteins with several homoserine mutations remains

unaltered, it would be desirable to develop cyclic monomers that would form

natural amino acids such as serine or aspartic acid by changing the ring-size or
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the substituents at the ring as shown in Scheme 39. Besides creating natural amino

acids residues, it would be highly desirable to introduce selectively functional

groups with orthogonal reactivity such as aldehydes at the ligation site. This

would open an avenue for site-selective conjugation reactions.

6.2 Orthogonally Protected α-Ketoacids

The synthesis of large proteins typically involves sequential segment ligations. To

achieve this, either the N-terminus (hydroxylamine) or the C-terminus (α-ketoacid)
has to be protected. As described in Sect. 4.2.3, Fmoc-5-oxaproline can be used as a

temporarily protected hydroxylamine at the N-terminus, allowing sequential liga-

tions in the C-to-N direction. For the C-terminus the sulfur ylide can be regarded as

a temporary protecting group, which can be removed under oxidative conditions.

This oxidation, however, is not compatible with cysteine, methionine, and trypto-

phan. An alternative strategy to protect orthogonally the α-ketoacid is therefore

desired to increase further the flexibility in possible ligation strategies (Scheme 40).

6.3 Kinetically Controlled Ligations

A notorious problem of protein synthesis by ligation in general is the loss of

material with each purification step by HPLC. To increase the overall yield it is

therefore highly desirable to avoid any unnecessary purification steps. Kinetically

controlled KAHA ligations (Scheme 41) would allow a second subsequent ligation

in the same vial and without prior purification. This could be realized by using two

distinctively-substituted hydroxylamines differing in their reactivity towards

α-ketoacids. The first rapid KAHA ligation would occur between a peptide with a
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very reactive N-terminal hydroxylamine and a bifunctional peptide with C-terminal

α-ketoacid and a less reactive N-terminal hydroxylamine. Subsequent addition of

another peptide with C-terminal α-ketoacid would lead to a second, slower, KAHA
ligation, affording a large unprotected peptide consisting of three peptide fragments

without the need for intermediate purification steps.
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6.4 Combining KAHA Ligation and Native Chemical
Ligation

The native chemical ligation has proved to be a very powerful method in a great

number of examples. Despite its undoubted success, the synthesis of peptide

thioesters and the low natural abundance of cysteine remain the bottleneck. By

developing conditions that allow the orthogonal use of the KAHA ligation and the

NCL, the individual strengths of each ligation method could be combined and

individual drawbacks could be reduced. This orthogonal combination of two

powerful ligation methods would open an avenue for chemical protein synthesis

and bioconjugation.

6.5 Summary

In summary, the KAHA ligation is maturing into a powerful and versatile compan-

ion to native chemical ligation for chemical protein synthesis. The initially esoteric

reaction partners – C-terminal peptide α-ketoacids and N-terminal peptide hydrox-

ylamines – can now be accessed by simple, traceless methods which are fully

compatible with standard practices and reagents for Fmoc-SPPS. Further develop-

ments, including the design of new cyclic hydroxylamine monomers for the incor-

poration of natural and unnatural residues into the ligation site, improved methods

for multi-segment ligation, and combination with NCL promise that the next few

years will see further growth of this method into a user-friendly approach to the

preparation of small and medium-sized proteins. The unique reaction mechanism

has inspired new variants, including the KAT ligation, which promise to simplify

further the coupling of large segments and eventually folded protein domains.
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N-Sulfanylethylanilide Peptides, Based
on N�S Acyl Transfer Chemistry

Akira Otaka, Kohei Sato, and Akira Shigenaga

Abstract Native chemical ligation (NCL), which features the use of peptide

thioesters, is among the most reliable ligation protocols in chemical

protein synthesis. Thioesters have conventionally been synthesized using tert-
butyloxycarbonyl (Boc)-based solid-phase peptide synthesis (SPPS); however, the

increasing use of 9-fluorenylmethyloxycarbonyl (Fmoc) SPPS requires an efficient

preparative protocol for thioesters which is fully compatible with Fmoc chemistry.

We have addressed this issue by mimicking the naturally occurring thioester-

forming step seen in intein-mediated protein splicing of the intein�extein system,

using an appropriate chemical device to induce N�S acyl transfer reaction,

avoiding the problems associated with Fmoc strategies. We have developed

N-sulfanylethylanilide (SEAlide) peptides, which can be synthesized by standard

Fmoc SPPS and converted to the corresponding thioesters through treatment under

acidic conditions. Extensive examination of SEAlide peptides showed that the

amide-type SEAlide peptides can be directly and efficiently involved in NCL via

thioester species in the presence of phosphate salts, even under neutral conditions.

The presence or absence of phosphate salts provided kinetically controllable

chemoselectivity in NCL for SEAlide peptides. This allowed SEAlide peptides to

be used in both one-pot/N�to�C-directed sequential NCL under kinetically con-

trolled conditions, and the convergent coupling of large peptide fragments, which

facilitated the chemical synthesis of proteins over about 100 residues. The use of

SEAlide peptides, enabling sequential NCL operated under kinetically controlled

conditions, and the convergent coupling, were used for the total chemical synthesis

of a 162-residue monoglycosylated GM2-activator protein (GM2AP) analog.
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Abbreviations

Ac Acetyl

Acm Acetamidemethyl

Ar Aryl

Boc tert-Butoxycarbonyl
Bu Butyl

DMF Dimethylformamide

Fmoc 9-Fluorenylmethyloxycarbonyl

GM2 Ganglioside GM2

GM2AP GM2-activator protein

GM3 Ganglioside GM3

Gn Guanidine

hANP Human atrial natriuretic peptide

HEPPS 3-[4-(2-Hydroxyethyl)piperazin-1-yl]propane-1-sulfonic acid

HexA β-Hexosaminidase A

HSPro Sulfanylproline

KCL Kinetically controlled NCL

MBom 4 Methoxybenzyloxymethyl

Me Methyl

MPAA (4-Carboxymethyl)thiophenol

NCL Native chemical ligation
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OTf Trifluoromethanesulfonate

Ph Phenyl

rt Room temperature

SEAlide N-Acyl-N-sulfanylethylaniline
SPPS Solid-phase peptide synthesis

t-Bu tert-Butyl
TCEP Tris(2-carboxyethyl)phosphine (TCEP)

TFA Trifluoroacetic acid

Thz 1,3-Thiazolidine-4-carbonyl

Tr Triphenylmethyl (trityl)

One letter or three letters abbreviations for amino acids are used

as follows:

A (Ala) Alanine

C (Cys) Cysteine

D (Asp) Aspartic acid

E (Glu) Glutamic acid

F (Phe) Phenylalanine

G (Gly) Glycine

H (His) Histidine

I (Ile) Isoleucine

K (Lys) Lysine

L (Leu) Leucine

M (Met) Methionine

N (Asn) Asparagine

P (Pro) Proline

Q (Gln) Glutamine

R (Arg) Arginine

S (Ser) Serine

T (Thr) Threonine

V (Val) Valine

W (Trp) Tryptophan

Y (Tyr) Tyrosine

1 Introduction

The chemical synthesis of proteins up to about 150 residues is now achievable

because of the development of fragment ligation protocols. Among such ligation

protocols, native chemical ligation (NCL), developed by Kent and co-workers, has

been receiving increasing attention as an indispensable synthetic platform applica-

ble to a wide variety of proteins (Scheme 1) [1–5].
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The most striking characteristic of NCL is that the chemoselective reaction of

peptide thioesters 1 with N-terminal cysteinyl peptides 2 occurs between the

thioester moiety and the sulfanyl group of the cysteine to afford native peptides/

proteins 4 via intermediary S-acyl peptides 3. The NCL protocol, which is widely

used in protein chemistry, requires thioesters 1 as essential synthetic intermediates,

and therefore a broad range of synthetic procedures for thioesters have been

investigated. Originally, thioesters were prepared using Boc-based SPPS of

thioester-linked C-terminal amino acids [6–10]; however, the increasing popularity

of Fmoc SPPS for peptide synthesis has prompted the development of Fmoc SPPS-

compatible synthetic methods for thioesters. A serious limitation of the use of Fmoc

SPPS is that the thioester linkage for attachment of the C-terminal amino acids on

the solid support is highly susceptible to the base treatment required for Fmoc

removal, resulting in side reactions such as decomposition of the thioester linkage

and epimerization of the C-terminal amino acids (Fig. 1).

In this context, considerable efforts have been made by many research groups,

including ours, to develop methodologies for the preparation of peptide thioesters

which are fully compatible with Fmoc protocols [11]. For literature about Fmoc-

based synthesis of peptide thioesters using safety-catch type linker and related

system, see [12–22]; for literature about Fmoc-based synthesis of peptide thioesters

using O–S acyl transfer reaction, see [23–27]; for literature about Fmoc-based

synthesis of peptide thioesters using miscellaneous protocols, see [28–33]. In this

account, we present our work on this important issue. We have developed an

artificial “chemical device” which facilitates the Fmoc-based synthesis of

Scheme 1 NCL reaction

mechanism of NCL

Fig. 1 Thioester synthesis by Boc SPPS, and problems encountered in Fmoc-based thioester

synthesis
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thioesters. The device has been proven to function as a useful platform for one-pot/

N�to�C-directed sequential NCL using more than one thioester fragment, and has

been used in chemical protein synthesis.

2 Development of N�S Acyl Transfer Device for Thioester

Synthesis with Practical Applications in Peptide/Protein

Synthesis

2.1 Naturally Occurring Thioester Formation:
Intein�Extein System

One rational way of preparing thioesters using Fmoc protocols is to mimic the N�S

acyl transfer step seen in intein-mediated protein splicing of the intein�extein

system [34–39] using an appropriate chemical device (Fig. 2).

The use of a chemical device to induce N�S acyl transfer enables Fmoc-based

elongation of peptide chains to be performed on C-terminal amino acids linked on

resins via amide bonds, followed by N�S acyl transfer; this process should be free

from reported side reactions (for literature about Fmoc-based synthesis of peptide

thioesters using N–S acyl transfer reaction except for the use of N-acyl-N-
sulfanylethyl type linker, see [40–62]). The intein�extein system functions as a

self-editing machine for proteins in low organisms (Scheme 2). Extein fragments

(N- and C-extein) split by intein are ligated to give a mature extein sequence 10 by

the action of intein, and then the intein itself is cut from the precursor protein 5. In

intein-mediated protein splicing, sequentially occurring N�S, S�S, and S�N acyl

transfers (5 to 6, 6 to 7, and 9 to 10, respectively) are key steps. Chemical bases

involved in such acyl transfer steps have provided useful insights for developing a

wide variety of chemical methodologies for peptide/protein chemistry. In particu-

lar, because the first N�S acyl transfer serves as a naturally occurring thioester

formation step, mimicking this step using an artificial chemical device provides a

method for solving the problems encountered in Fmoc-based thioester synthesis.

Fig. 2 Concept of peptide

thioester synthesis mediated

by N–S acyl transfer
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2.2 Chemistry Seen in Naturally Occurring Thioester
Formation

Ground-state destabilization of the peptide bond has been reported to be responsible

for the N�S acyl transfer involved in intein-mediating protein splicing, as shown in

Fig. 3. An elegant 13C and 15N NMR spectroscopic study of the amide bond located

at the N-extein�intein junction (Xaa-Cys) showed that the amide bond was twisted,

its planarity disappeared, and it became susceptible to nucleophilic attack by the

sulfanyl group of the cysteine residue located at the junction [39, 63]. Twisting of

the amide bond followed by nucleophilic attack by the neighboring functional

group leads to naturally occurring thioester formation. We attempted to develop a

methodology for producing peptide thioesters, based on ground-state destabiliza-

tion of the amide bond, by mimicking the N�S acyl transfer step in the

intein�extein system.

Scheme 2 Mechanism of intein-mediated protein splicing
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2.3 Peptidyloxazolidinone as Thioester Precursor

Various synthetic protocols for the conversion of amide-type peptides synthesized

by Fmoc protocols to the corresponding thioester-type peptides have been studied

using the N�S acyl transfer reaction. Generally, the stability of the amide bond is

attributable to the planar double-bond character resulting from the n! π* interac-

tion between the electron-filled non-bonding nitrogen orbital and the anti-bonding

carbonyl orbital. As mentioned above, the N�S acyl transfer observed in the

intein�extein system is attributable to the disappearance of the planar character

of the amide bond involved. On the assumption that inhibition of delocalization of

the nitrogen lone pair electrons and appropriate positioning of a sulfanyl group

should result in the desired N�S acyl transfer through disappearance of amide bond

planarity, we initially used an S-protected-cysteine-derived peptidyloxazolidinone

system, in which delocalization of the nitrogen lone pair electrons toward the

exo-amide linkage is inhibited by the electron-withdrawing ring carbonyl group;

such an exo-peptide bond is twisted and susceptible to nucleophilic attack by the

sulfanyl group, leading to the formation of peptide thioesters (Fig. 4) [42]. Based on

this idea, we attempted to develop an Fmoc SPPS-compatible synthetic protocol for

a thioester precursor. The use of an oxazolidinone system under Fmoc conditions

afforded a peptidyloxazolidinone derivative as a thioester precursor, which was

then converted to a peptide thioester under neutral conditions. However, some

decomposition of the peptide�oxazolidinone linkage and epimerization of the

C-terminal amino acids were seen during peptide chain elongation because of

over activation of the exo-carbonyl group by the oxazolidinone ring.

Fig. 3 Ground-state

destabilization of peptide

bond between N-extein and

intein

Fig. 4 Synthesis of peptide

thioesters using

peptidyloxazolidinone

system as amide-activating

device
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2.4 N-Sulfanylethylaniline Linker as Alternative
to Oxazolidinone

We assumed that the over activation in the oxazolidinone system was attributable to

the electron-withdrawing ring carbonyl, as an adjacent two sp2 atom system, so we

thought that the use of a carbon double-bond as a weaker electron-withdrawing sp2

atom system should result in the development of a chemical device fully compatible

with Fmoc chemistry. On the basis of this assumption, we examined the feasibility

of using an N-sulfanylethylaniline linker as a device for inducing N�S acyl transfer

for thioester synthesis (Fig. 5) [64]. Although the less reactive nucleophilic nature

of the N-alkylaniline moiety of the N-sulfanylethylaniline linker 11 caused concern
about the difficulty of attaching the C-terminal Fmoc amino acids to the linker,

Fmoc amino acids without acid-sensitive protecting groups such as t-Bu or Tr were
coupled by the reaction of Fmoc amino acid chlorides with sodium anilide 12 to

afford the desired N-Fmoc amino acyl-N-sulfanylethylaniline linker 13 (Scheme 3).

The chlorides were prepared by standard treatment of amino acid derivatives with

SOCl2. Exploration of solutions to the incompatibility of this SOCl2-mediated

protocol with amino acid derivatives with acid-labile protection identified a

POCl3�Et3N system as reagents for coupling with the sodium anilide 12

[65]. Except in the case of His(Tr), the use of SOCl2 or the POCl3�Et3N system

was free from epimerization. In terms of incorporation of a histidine derivative,

4-methoxybenzyloxymethyl-protection (Fmoc-His(MBom)-OH) proved to be suit-

able [66]. We denote the resulting N-acyl-N-sulfanylethylaniline derivative 13,

“i.e., the N-sulfanylethylanilide,” by “SEAlide” in our research.

Fig. 5 Activation of

peptide bond in

peptidyloxazolidinone and

SEAlide systems is

achieved by presence of

consecutive sp2 atom

adjacent to peptide bond

Scheme 3 General scheme

for synthesis of N-Fmoc

amino acyl-N-
sulfanylethylaniline linker

for preparation of SEAlide

peptide
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2.5 Initial Observation on of SEAlide Peptide

As shown in Fig. 6, standard Fmoc SPPS on the Fmoc amino acid-incorporated

SEAlide-linked resin 14 followed by treatment with TFA-based reagent cocktail

efficiently gave amide-type SEAlide peptides 15. During the chain elongation step

in Fmoc protocols, decomposition of the anilide linkage and epimerization of the

C-terminal amino acids, partly seen in the case of the oxazolidinone system, were

not observed. Furthermore, the reaction of the protected peptide on the

sulfanylethylaniline linker with a deprotecting agent consisting of TFA and scav-

engers, under standard deprotecting conditions (room temperature and 1�2 h),

scarcely gave thioester-type SEAlide peptides. Preliminary examination of the

N�S acyltransfer-mediated conversion of the amide-type SEAlide peptide 15

obtained to thioester-type SEAlide peptide 16 showed that this conversion occurred

under acidic conditions such as 4 M HCl in DMF, but apparently not under neutral

to slightly basic conditions (Fig. 6) [64]. At this stage, it seemed reasonable to

conclude that the amide-type SEAlide peptides, synthesized by Fmoc chemistry,

could be converted to the corresponding thioester-type SEAlide peptides only under

acidic conditions (4 M HCl in DMF); the resulting thioesters could then be

subjected to NCL with cysteinyl peptides to yield ligated peptides, although the

acidic conversion would be accompanied by partial epimerization of the chiral

C-terminal amino acids.

2.6 Attempted Sequential NCL Using SEAlide Peptides

The chemical synthesis of proteins over 100 amino acid residues generally requires

sequential NCL protocols featuring more than one NCL coupling [67–72]. The

successful use of SEAlide peptides as thioester precursors would enable the use of

SEAlide peptides in sequential NCL protocols involving two or more thioester

fragments. Stepwise coupling of thioesters requires N-terminal cysteinyl thioester

(or thioester precursor) fragments. The minimal requirement of such fragments for

use in sequential NCL is that the cysteinyl residue in the N-terminal cysteinyl

thioester reacts intermolecularly with the thioester moiety in the coupling partner,

Fig. 6 Synthesis of

SEAlide peptide by

standard Fmoc chemistry

and conversion to

corresponding thioester

under acidic conditions
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but not intramolecularly, to yield a two-fragment-ligated product. Such requirements

are achieved by using either kinetically controlled NCL (KCL) [73–75], thioester

precursors [71, 72], or N- and/or S-protected N-terminal cysteinyl thioester fragments

[67–70]. The first two methods allow us to achieve N�to�C-directed sequential

NCL; C�to�N-directed NCL can be performed using N- and/or S-protected

thioester fragments. In view of our initial observation that only acidic treatment

enabled the conversion of amide-type SEAlide peptides as thioester precursors to

the corresponding thioesters, we planned to use the N-terminal cysteinyl SEAlide

peptides 18 in N�to�C-directed sequential NCL, as shown in Scheme 4.

We anticipated that the sequential NCL would proceed via the following reac-

tions. (1) The first NCL of thioesters 17 as N-terminal fragments with the cysteinyl

SEAlide peptides 18 would afford ligated amide-type SEAlide peptides19. (2) The

resulting amide linkage in the SEAlide could be converted to the corresponding

thioester linkage under acidic conditions. (3) The second NCL, of thioester-type

SEAlide peptides 20 with N-terminal cysteinyl peptides 21, should afford three-

fragment ligated peptides 22. Here, the use of N-terminal cysteinyl SEAlide

peptides as substituents for C-terminal fragments 21 in step (3) would allow the

sequence of reactions to be performed iteratively. Based on these assumptions, we

undertook the N�to�C-directed sequential ligation using cysteinyl SEAlide pep-

tides 18. The first NCL under normal neutral NCL conditions in the presence of

phosphate salts proceeded to yield a desired ligated peptide 19; however, contrary

to our initial expectation, a non-negligible amount of cyclic peptide 23, resulting

from intramolecular NCL of the cysteinyl SEAlide peptide 18, was observed

(Fig. 7).

Scheme 4 Envisioned

N�to�C-directed

sequential NCL using

SEAlide peptide
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2.7 SEAlide Peptides Function as Thioesters in the Presence
of Phosphate Salts

This finding contradicted earlier predictions that amide-type SEAlide peptides

could be transformed into “NCL-active” thioesters under acidic conditions. Incu-

bation of the SEAlide peptide without N-terminal cysteine in a neutral buffer did

not afford a detectable amount of the corresponding thioester.

We hypothesized that the divergence of the experimental results could be

attributable to the presence or absence of an N-terminal cysteinyl moiety in the

reaction mixture. The small amount of thioester 25 formed in the equilibrium

between amide 24 and thioester 25 under neutral conditions was consumed by

NCL with the N-terminal cysteinyl moiety to give the NCL product (Fig. 8a).

Fig. 7 Unexpected

formation of cyclic peptide

during NCL of thioester

with N-terminal cysteinyl

SEAlide peptide under

standard NCL conditions

a

b

c

Fig. 8 Effect of phosphate

salts on SEAlide peptide.

(a) Amide-type SEAlide

peptide can participate in

NCL even under neutral

conditions in the presence

of phosphate salts. (b)

Phosphate salts can catalyze

N�S acyl transfer. (c)

Plausible involvement of

phosphate salts as an

acid�base catalyst
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Ligation of model SEAlide peptides with cysteinyl peptides under neutral condi-

tions in the presence of phosphate salts went almost to completion within 12–24 h to

yield the desired ligated peptides, without the accompanying epimerized products.

It is worth noting that NCL involving SEAlide peptides proceeds efficiently in the

presence of acid�base catalysts such as phosphate to yield the NCL product, but

not in the absence of phosphate. A plausible explanation for the effect of phosphate

salts is that phosphate salts function as acid�base catalysts for proton transfer in the

N�S acyl transfer, causing a decrease in the activation energy, as shown in Fig. 8b,

c. These properties of SEAlide peptides prompted us to investigate the use of the

SEAlide unit in a kinetically controlled manner for a one-pot/N�to�C-directed

sequential NCL protocol, different from our initial attempt, as shown in Scheme 5

[76, 77].

The first NCL of thioesters 17 with N-terminal cysteinyl SEAlide peptides 18 in

the absence of phosphate salts under neutral conditions should proceed without

involvement of the SEAlide moiety in the NCL to yield the ligated amide-type

SEAlide peptides 19. Addition of cysteinyl peptides 21 in phosphate buffer to the

reaction mixture should enable the resulting amide-type SEAlide peptides 19 to

function as thioesters 20, to give the desired three-fragment ligated peptides 22 via

an N�to�C-directed one-pot reaction. Such a SEAlide-peptide-mediated one-pot/

N�to�C-directed sequential NCL operated under kinetically controlled conditions

would be very useful in peptide/protein preparations. In the following sections,

practical applications of SEAlide peptides to peptide/protein synthesis are

described.

Scheme 5 One-pot/

N�to�C-directed

sequential NCL using

SEAlide peptide

44 A. Otaka et al.



2.8 Synthesis of hANP by One-Pot/N�to�C-Directed
Sequential NCL

The usefulness of SEAlide peptides was first evaluated in the synthesis of hANP by

one-pot/N�to�C-directed sequential NCL. The 28-residue hANP, containing one

disulfide bond, was divided into three fragments (Scheme 6).

The N�to�C-directed construction of the hANP molecule required the N-

terminal cysteinyl thioester corresponding to residues 7–22 as the middle fragment.

This middle fragment has a glycine thioester moiety, which shows high reactivity in

NCL coupling. KCL [73–75], which was developed by Kent’s group, the success of
which depends on the large difference between the reactivities of aryl and alkyl

thioesters, was one potential option for the one-pot synthesis of hANP. However,

there was concern regarding retention of kinetic selectivity, i.e., whether

intermolecular NCL of the cysteine residue in the middle fragment with the aryl

thioester in the N-terminal fragment proceeded more efficiently than intramolecular

NCL, because the glycine alkyl thioester involved in KCL is among the most

reactive alkyl thioesters [78]. Insufficient kinetic selection was observed in the

KCL protocol for one-pot synthesis of hANP. However, one-pot/sequential NCL

using SEAlide peptides as the middle fragment for hANP was successful

(Scheme 6). The first NCL of thioester 26 with N-terminal cysteinyl SEAlide

peptide 27 in 6 M Gn·HCl-0.2 M HEPPS in the presence of 30 mM TCEP and

30 mMMPAA [79], pH 7.3, at 37 �C, proceeded almost to completion within 3 h, to

yield the desired ligated peptide without a detectable amount of the intramolecular

NCL product. Under the first NCL conditions, the SEAlide moiety remained

unreactive and the cysteinyl residue in the middle fragment reacted preferentially

with the alkyl thioester of N-terminal fragment 26 in a kinetically controlled

manner. Then addition of the C-terminal fragment 28 in 1 M phosphate buffer to

the reaction mixture initiated the second NCL, yielding the desired reduced form of

hANP 29 after reaction for 24 h. This experiment proved that SEAlide peptides are

useful thioester equivalents, and their reactivities in the NCL protocol can be tuned

by the addition of an appropriate buffer salt. We next attempted to perform an

unprecedented one-pot/four-segment ligation, using a combination of SEAlide

chemistry and the KCL protocol.

Scheme 6 One-pot/

N�to�C-directed

sequential NCL for

synthesis of reduced hANP
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2.9 One-Pot/Four-Segment Ligation

Although the KCL protocol showed insufficient kinetic selectivity in NCL using the

highly reactive glycine alkyl thioester, as mentioned above, KCL is still an indis-

pensable one-pot/N�to�C-directed sequential ligation method if appropriate alkyl

thioesters are selected. We expected that a combination of KCL and the SEAlide-

mediated method would result in an unprecedented one-pot/N�to�C-directed

four-segment coupling. This possibility was confirmed by the synthesis of the

reduced form of α-conotoxin ImI (11Ala) as a model peptide (Scheme 7). The entire

sequence of the conotoxin was divided into four segments. The first NCL of glycyl

aryl thioester 30 with leucyl alkyl thioester 31 in the presence of HEPPS buffer

proceeded under kinetically controlled conditions to yield the ligated alkyl thioester

(KCL conditions). Addition of N-terminal cysteinyl SEAlide peptide 32 to the

reaction mixture initiated the second NCL, to afford the desired amide-type

SEAlide peptide. This ligation step also operated under kinetically controlled

conditions because of the absence of phosphate salts, which are essential catalysts

for activation of the SEAlide moiety. The subsequent NCL was started by the

addition of cysteine amide 33 in phosphate buffer to the reaction mixture, allowing

the amide-type SEAlide unit to function as a thioester, yielding 4Cys-SH

α-conotoxin ImI (11Ala) 34. In this scheme, a sequence of three NCLs was

conducted in a one-pot manner. To the best of our knowledge [70], this is the first

example of a one-pot/N�to�C-directed four-segment sequential ligation.

2.10 Dual Kinetically Controlled Ligation

In a different project from the SEAlide project, we developed protocols for proline

site ligation [80–84], including an NCL-like reaction using HSPro followed by

desulfurization. Although the NCL-like reaction of HSPro with thioesters proceeds

more slowly than that of cysteine, the ligation of HSPro with thioesters using trans-
HSPro isomer, not the cis-isomer, has been independently reported by our group

and Danishefsky’s group. In addition, we found that trans-HSPro could be involved
in ligation with SEAlide peptides in the presence of phosphate salts. On the basis of

the successful reaction of HSPro with SEAlide peptides, and the difference between

the NCL reactivities of cysteine and HSPro, we anticipated that an ordered

Scheme 7 Unprecedented

one-pot/ four-segment

ligation for synthesis of

α-conotoxin ImI(11Ala).

See Scheme 6 for structure

of SEAlide in 32
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sequence of ligations of three peptide fragments simultaneously present in the same

reaction vessel would be possible using a combination of HSPro and SEAlide

chemistry [80]. This hypothesis was tested by the synthesis of the 26-residue bovine

insulin C peptide, as shown in Scheme 8. Cysteine and trans-HSPro were used for
9Ala and 16Pro, respectively. Initially, three peptide fragments (N-terminal frag-

ment (N-Fr 35), middle Fr (M-Fr 36), and C-terminal Fr (C-Fr 37)) were simulta-

neously dissolved in a ligation buffer without phosphate salts, to perform the

kinetically selective ligation of the glycine alkyl thioester in N-Fr 35 with cysteine

in M-Fr 36, not with trans-HSPro in C-Fr 37, to give the desired (N+M)-Fr.

Under these reaction conditions, one kinetic selection was achieved because of

the difference between the NCL reactivities (alkyl thioester�Cys vs alkyl

thioester�HSPro; V1>V3). Additionally, the absence of phosphate salts in the

ligation buffer guaranteed another kinetic selection based on the non-engagement

of the SEAlide moiety in the NCL (V1>V2). Because the successful first ligation

step affording the (N+M)-Fr required the achievement of two kinetically con-

trolled reactions, this reaction is referred to as dual kinetically controlled NCL.

Subsequent NCL of trans-HSPro in C-Fr 37 with the SEAlide moiety in (N +M)-Fr

was initiated by the addition of phosphate salts to yield the9Cys, 16HSPro C peptide.

The C peptide precursor obtained was successfully converted to the desired bovine

insulin C peptide 38 via desulfurization [85].

2.11 Chemical Synthesis of Proteins Using SEAlide Peptides

As mentioned in previous sections, one-pot/N�to�C-directed sequential NCLs

were achieved using SEAlide peptides, and SEAlide peptides can be used in

ligation with trans-HSPro, which is less reactive than standard cysteine. These

findings prompted us to use SEAlide peptides in a convergent chemical synthesis of

a protein (for recent achievement in chemical synthesis of proteins, see [86–96]).

We planned to use SEAlide chemistry in both the one-pot synthesis of a large

peptide fragment and the convergent coupling of large peptide fragments [97].

The monoglycosylated GM2-activator protein (GM2AP) analog 48 containing

162 amino acid residues was synthesized using the SEAlide protocol (Fig. 9). Native

Scheme 8 Dual kinetically

controlled ligation for

synthesis of bovine insulin

C peptide using a

combination of SEAlide

peptide and sulfanyl proline
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GM2AP has eight cysteine residues, at positions 8, 68, 75, 81, 94, 105, 107, and

152, and oneN-glycosylation site at 32Asn [98]. Synthesis of the N-half fragment of the

native form needed the preparation of a 67-residue thioester, corresponding to positions

8–74. However, anticipating the difficulty of straightforward SPPS of a fragment

containing over 50 residues, we planned to overcome this difficulty by substitution of

cysteine for 32Asn at the N-glycosylation site. Cysteine substituent was used both for

the NCL site and the S-alkylation-mediated incorporation of the N-acetyl glucosamine

moiety with iodoacetyl-N-acetyl glucosamine. A convergent synthetic strategy based

on cysteine replacement in the GM2AP analog is shown in Scheme 9. It was planned to

perform the convergent coupling between the 74-residue N-half and 88-residue C-half

fragments (46 and 47, respectively). Standard NCL of the 8Cys(Acm)-containing alkyl

thioester 39 with N-terminal cysteinyl SEAlide peptide 40, with S-Acm protection on

Fig. 9 Amino acid sequence of monoglycosylated GM2AP. Cysteine residues represented by

italic characters are other potential ligation sites; however, prolyl-cysteine is not suitable for NCL

Scheme 9 Scheme for convergent synthesis of monoglycosylated GM2AP analog: (a) NCL; (b)

S-glycosylation using iodoacetyl-N-acetylglucosamine; (c) removal of Acm group with AgOTf;

(d) NCL in absence of phosphate salts; (e) NCL in presence of phosphate salts and then opening of

thiazolidine ring; (f) convergent NCL in presence of phosphate salts and then folding
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the SEAlide moiety, was conducted to give the desired 74-residue non-glycosylated

N-half fragment precursor 44, with one sulfanyl group only for S-alkylation at position
32. The S-alkylation-mediated incorporation of an N-acetyl glucosamine unit with

iodoacetyl-N-acetyl glucosamine afforded S-Acm-protected monoglycosylated

SEAlide peptide 45. The resulting protected peptide was subjected to AgOTf-mediated

removal of the Acm group in TFA, to yield the monoglycosylated SEAlide N-half

fragment 46 needed for the following convergent coupling between N- and C-half

fragments. The C-half fragment 47 was constructed by one-pot/N�to�C-directed

sequential NCL using SEAlide peptide42. NCL of the N-terminal Thz alkyl thioester

41with SEAlide peptide 42 in 6MGn·HCl�0.1MHEPPS, 50mMTCEP, and 30mM

MPAA, pH 7.0, at 37 �C, in the absence of phosphate salts, proceeded under kinetically
controlled conditions to yield the desired amide-type SEAlide peptide (41+42) with

high chemoselectivity. Subsequent addition of N-terminal cysteine peptide 43 in 0.4

M phosphate buffer to the reactionmixture allowed the SEAlide moiety to function as a

thioester, to afford the 88-residue Thz peptide (41+42+43). Ring opening of the

1,3-thiazolidine ring in Thz was achieved by the addition of NH2OMe·HCl to the

reaction, to afford the requisite C-half fragment 47 for the convergent synthesis.

One-pot/N�to�C-directed sequential NCL using SEAlide peptide 42, followed by

the ring opening, enabled the efficient one-pot preparation of the 88-residue peptide

fragment 47. Convergent coupling of the N-half SEAlide peptide fragment 46 with the

C-half N-terminal cysteine fragment 47 in the presence of phosphate salts, as essential

additive, went almost to completion within 24 h to yield the desired 8Cys-SH GM2AP.

Exposure of the resulting reduced form of GM2AP to a folding buffer in the presence of

reduced and oxidized forms of glutathione gave the folded monoglycosylated GM2AP

analog 48, which assisted the hydrolysis of GM2 to GM3 by HexA with comparable

potency to a recombinant GM2AP protein. The successful synthesis of the GM2AP

analog involving use of a SEAlide moiety in one-pot/sequential and convergent

couplings clearly proves that SEAlide peptides are of great use in peptide/protein

synthetic chemistry.

Although tremendous utility of the N-sulfanylethyl moiety on N-peptidyl units
have been disclosed by application of SEAlide peptides to chemical protein syn-

thesis, similar observations have also been independently reported by several

research groups, including the use of bis(2-sulfanylethyl)amido (SEA) [99–103],

bis(2-mercaptoethyl)amido (BMEA) [104], thioethylalkylamido (TEA) [105], and

α-methylcysteine [106]. In comparison with this research, it is worth noting that the

function of the SEAlide unit can be controlled just by the presence or absence of

phosphate salts as essential additive.

3 Summary, Conclusions, and Outlook

Attempts to develop efficient synthetic methodologies for peptide thioesters based

on the N�S acyl transfer chemistry seen in the intein�extein system initially led to

the N-peptidyloxazolidinone system. The exploration of solutions to the problems
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encountered in the use of the oxazolidinone system in Fmoc chemistry generated

the idea that N-peptidyl-N-sulfanylethylanilines (SEAlide peptides) could be

superior alternatives to the oxazolidinone. An initial survey of the chemical nature

of SEAlide peptides indicated that amide-type SEAlide peptides could be routinely

synthesized by Fmoc protocols and converted to the corresponding thioesters

only under acidic conditions. These early findings led to research on the use of

SEAlide peptides in sequential NCL using the SEAlide moiety as protected

thioesters. Contrary to our expectations, this attempt revealed an unexpected

property of SEAlide peptides, namely that SEAlide peptides, which apparently

seem to be inactive under NCL conditions, can function as peptide thioesters in the

presence of phosphate salts as an acid�base catalyst. Tuning of the NCL reactivity

using phosphate salts enabled the use of SEAlide peptides in one-pot/N�to�C-

directed sequential ligation, in which KCL played a key role. One-pot/sequential

ligation using SEAlide peptides was successfully applied to the hANP synthesis

and α-conotoxin ImI (11Ala) synthesis by combining with Kent’s KCL protocol.

One-pot synthesis of bovine insulin C peptide by dual kinetic NCL using HSPro

was also achieved. Furthermore, the use of SEAlide peptides in both the one-pot

synthesis of an 88-residue peptide fragment and convergent coupling between

74- and 88-residue fragments achieved the chemical synthesis of a 162-residue

monoglycosylated GM2AP analog. We believe that the developed SEAlide pep-

tides can be of great importance in protein synthetic chemistry. The incorporation

of a functional group on the aromatic ring of the SEAlide moiety is expected to

modulate the reactivity of the N�S acyl transfer. Our preliminary examination of

the modification of the SEAlide structure has been revealing that “modified

SEAlides” should have great potential as alternative N�S acyl transfer devices.

The development of other innovative applications of SEAlide moieties in chemical

biology is under way, and further applications of SEAlide peptides in protein

chemical synthesis will be presented in due course.
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Postligation-Desulfurization: A General

Approach for Chemical Protein Synthesis

Jimei Ma, Jing Zeng, and Qian Wan

Abstract Native chemical ligation, involving regioselective and chemoselective

coupling of two unprotected peptide segments, enabled the synthesis of polypeptide

withmore than 200 amino acids. However, cysteinewas indispensable in this synthetic

technique in its initial format, which limited its further application. Thus, considerable

effort has been put into breaking the restriction of cysteine-containing ligation. As a

consequence, postligation-desulfurization, concerning thiol-mediated ligation

followed by desulfurization, was developed. This review describes the development

and recent progress on the chemical synthesis of peptides and proteins encompassing

postligation-desulfurization at alanine, valine, lysine, threonine, leucine, proline,

arginine, aspartic acid, glutamate, phenylalanine, glutamine, and tryptophan.

Keywords Chemical ligation � Metal-free desulfurization � Peptide � Protein

� Radical
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Abbreviations

Ac Acetyl

AFGP Antifreeze glycoprotein

Ala Alanine

Alloc Allyloxycarbonyl

Arg Arginine

Asp Aspartic acid

Boc tert-Butyloxycarbonyl
CXCR Chemokine receptor

Cys Cysteine

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene

DIAD Diisopropyl azodicarboxylate

DIBAL-H Diisobutylaluminum hydride

DIPEA Ethyldiisopropylamine

DMAP 4-Dimethylaminopyridine

DMF N,N-Dimethylformamide

DMSO Dimethyl sulfoxide

EDC N-(3-Dimethylanino propyl)-N0-ethylcarbodiimide

Fmoc Fluorenylmethyloxycarbonyl

Gln Glutamine

Glu Glutamic acid

Gn Guanidine

HEPES 2-[4-(2-Hydroxyethyl)-1-peperazinyl]ethanesulfonic acid

HMDS Bis(trimethylsilyl)amide

HOOBt Hydroxy-3,4-dihydro-4-oxo-1,2,3-benzotriazine

hPTHrP Human parathyroid hormone-related protein

KHMDS Potassium 1,1,1,3,3,3-hexamethyldisilazane

LC-MS Liquid chromatography-mass spectrometry

Leu Leucine

Lys Lysine

mCPBA meta-Chloroperoxybenzoic acid
MESNa Sodium-2-mercaptoethane sulfonate
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Met Methionine

MMTS (S)-Methyl methanethiosulfonate

MPAA Mercaptophenylacetic acid

Ms Methanesulfonyl

NCL Native chemical ligation

NMM N-Methylmorpholine

NVOC o-Nitroveratryloxycarbonyl
Pen Penicillamine

Phe Phenylalanine

PhFl 9-Phenylfluroenyl

Pro Proline

PyBOP Benzotriazol-1-yl-oxytripyrrolidinophosphonium

hexafluorophosphate

rt Room temperature

Ser Serine

SPPS Solid phase peptide synthesis

tBu tert-Butyl
TBAF Tetra-n-butylammonium fluoride

TBS tert-Butyldimethylsilyl

TCEP Tris(2-carboxyethyl)phosphine

TFA Trifluoroacetic acid

TFE Trifluoroethanol

TFET Trifluoroethanethiol

THF Tetrahydrofuran

Thr Threonine

TIS Triisopropylsilane

TMSE Trimethylsilylethyl

Tris Tri(hydroxymethyl)aminomethane

Trp Tryptophan

Trt Trityl

Ts 4-Toluenesulfonyl

Ub Ubiquitin

UV Ultraviolet

VA-044 2,20-Azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride

Val Valine

1 Introduction

The chemical synthesis of peptides and proteins has gained widespread attention of

chemists and biochemists because of the great importance of and huge necessity for

homogeneous proteins [1–3]. The past century has witnessed a major advance in the

development of peptide assembly techniques [4–12] since the first peptide bond

formation via chemical synthesis by Fisher in 1901 [13]. Among these great strides,
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perhaps the most innovative and central advances was the introduction of solid

phase peptides synthesis (SPPS) by Merrifield in 1963, which has revolutionized

the whole of peptide and protein chemistry [14–16]. Owing to Merrifield’s SPPS
technology, the chemical synthesis of peptides and proteins has become a routine

pipeline production. Unfortunately, SPPS is generally limited to peptides with

chain lengths less than ca. 50 amino acids because of the linear nature of the

technique, although there are some examples for the synthesis of larger peptides,

even proteins such as ribonuclease [17–19].

Another important milestone in peptide synthesis is the development of native

chemical ligation (NCL) by Dawson and Kent in 1994 [20], inspired by Kemp’s
earlier feasibility demonstrations [21, 22]. NCL involved a native peptide bond

formation between an unprotected C-terminal peptide thioester and a second

unprotected N-terminal cysteinyl peptide (Scheme 1). The occurrence of thiol

group on cysteine initiated the ligation by a reversible transthioesterification, and

subsequent irreversible S!N acyl shift via a five-membered transition state

furnished the native peptide bond [23]. The great potential of NCL has been

demonstrated by the total chemical synthesis of a series of proteins [12, 24,

25]. However, the strict requirement of cysteine residue, which is actually relatively

rare in naturally-occurring peptides and proteins, dramatically limited its

Scheme 1 The evolution of chemical ligation-desulfurization
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application. In many proteins there are no cysteine residues or the cysteine residue

isn’t in a position suitable for the NCL.

Great efforts have been made to overcome this limitation. One solution is to

introduce a removable thiol-containing auxiliary as a cysteine mimic. Albeit with

some successful examples, these strategies are limited by the typically sluggish

coupling rate and the requirement of relatively unhindered ligation sites [26–

31]. Another solution is to transform the thiol group of cysteine to a hydroxyl

group after ligation, which allowed the conversion of cysteine to serine [32–

35]. Very recently, Li et al. also developed a salicylaldehyde ester-induced

chemoselective serine and threonine ligation, which is different from NCL in

mechanism [36–39]. Among these efforts, the most important and widely applied

method is to reduce the thiol group of cysteine after ligation, which converts the

cysteine to more abundant alanine. In the past few years, this strategy has been

further expanded to other natural amino acid sites through the ligation of peptides

containing synthetic thiol-derived unnatural amino acids and subsequent desulfur-

ization. In this review we focus on the development of postligation-desulfurization

strategy and its application in protein synthesis [4, 5, 7, 9, 11, 40].

2 Postligation-Desulfurization (Alanine Ligation)

2.1 Metal-Based Desulfurization

In 2001, Yan and Dawson first combined NCL and desulfurization to convert the

cysteine-containing peptide to alanine-containing peptide [41]. The hydrogenolytic

desulfurization of cysteine residue was achieved through the action of either Raney

nickel or Pd/Al2O3 (Scheme 2). It was found by the Kent group in 2007 that these

metal-based desulfurization protocols could effectively accommodate both methi-

onine and acetamidomethyl (Acm) functionality [42]. The applicability of this

strategy was demonstrated by the syntheses of cyclic antibiotic microcin J25

(Scheme 3), streptococcal protein G B1 domain, and an analogue of baranase.

Despite these successes, the drawbacks, such as requirement of a large excess of

nickel, cause epimerization of secondary alcohols, not accommodated with Trp,

thiols, thioethers, thioesters, and thiazolidine (Thz) limiting the generality of this

approach. Nevertheless, this conceptual approach opens a new window for the

application of NCL on peptide and protein synthesis. It provides new possibilities

to extend cysteine-based peptide ligation to other amino acids.
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2.2 Metal-Free Desulfurization

Given the limitations of metal-based desulfurization, development of new condi-

tions was urgently needed to make the postligation-desulfurization strategy more

general. These conditions must fulfill the following requirements:

1. Mild reaction conditions with a tolerance of a range of functional groups

including carbohydrates and various amino acids, especially thiol-containing

functionalities, such as methionine, Cys(Acm), biotin, Thz, thioether and

thioesters

2. High efficiency with less side reactions and perfect yields

3. Tolerance in aqueous phase

4. Easy purification

In 2005, Alferiev et al. reported an unexpected desulfurization reaction when

trimethylphosphine or tris(2-carboxyethyl)phosphine (TCEP) was used to reduce

disulfide bonds in aqueous phase (Scheme 4) [43]. This side reaction possibly

passed through a free-radical process under basic conditions in the presence of

air. Inspired by this unwanted side reaction, Wan and Danishefsky came to consider

the possibility of radical-based reduction of cysteine to alanine [44].

Inspiringly, Hoffmann et al. described a desulfurization reaction promoted by

trialkylphosphite derivatives under thermal or photochemical conditions [45] via a

radical reaction mechanism, proposed by Walling and Rabinowitz soon thereafter

(Scheme 4) [46, 47]. These radical chain processes involved an alkylthiyl radical

attack on phosphite to generate a phosphoranyl radical intermediate, subsequent β
scission to provide an alkyl radical which rapidly abstracted hydrogen from the

Scheme 2 Metal-based desulfurization

Scheme 3 Synthesis of Microcin J25 by postligation-metal-based desulfurization. Conditions:

NCL: 0.1 M Tris-HCl, 6.0 M Gn·HCl, pH 8.5, 2% BnSH, 2% PhSH, overnight, rt, 50%;

Desulfurization: 20% HOAc, Pd/Al2O3, or Pd/C, or Raney nickel, H2, quantitative
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parent thiol to furnish the desulfurized alkane product and propagate the chain.

Walling et al. also extended this reaction to trialkylphosphines [47]. In addition,

Valencia and co-workers also reduced cysteine to alanine through radical reaction

initiated by triethylphosphite and borane [48–50]. Unfortunately, these conditions

were unsuccessful when used to reduce a cysteine-containing peptide.

Encouraged by these reports, Wan and Danishefsky sought to develop mild,

metal-free, radical-based desulfurization conditions for cysteine reduction in pep-

tide settings. TCEP, which was widely used as disulfide reducing reagent in peptide

and glycoprotein chemistry [51], was chosen as phosphine source for the benefits

from its good tolerance to a range of functionality and easy manipulation in air and

aqueous solution over a wide pH range. In addition, water-soluble 2,20-azobis
[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044) was used as radical initi-

ator. With these reagents, the desulfurization was carried out in water in the

presence of tBuSH. As expected, nearly quantitative desulfurization of cysteine in

model peptides was observed in a few hours (Scheme 4). More importantly, these

reaction conditions accommodated various functional groups including methionine,

Cys(Acm), Thz and biotin (Table 1) [44].

The applicability was further examined by synthesis of a glycopeptide

containing an N-terminal Thz group, Acm-protected Cys residue, N-linked glycan,

and C-terminal thioester. It was a pleasure to see that the postligation and subse-

quent desulfurization under the established TCEP-mediated conditions furnished

the desired glycopeptide, which incorporated alanine residue in place of the cyste-

ine group, in good overall yields. Wan and Danishefsky further applied this strategy

Scheme 4 Radical promoted desulfurization
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to the synthesis of cyclic peptide crotogossamide. It was also demonstrated that the

protocol was able to reduce selenocysteine and other seleno-amino acid residue [17,

44, 52–54].

2.3 Application of Postligation-Metal-Free Desulfurization
(Ala Ligation)

Using this highly versatile free-radical cysteine reduction protocol, a serious of

proteins with complex structures and up to 306 amino acid residues have been

synthesized, including human glycosyl-interferon-β [55], orf virus entry fusion

proteins ORFV036 and 049 [56], enzyme sortase AΔN59 [57], antifreeze proteins

(AFPs) and antifreeze glycoproteins (AFGPs) [58, 59], ribosomal protein S25

(RpS25) [60], α-synuclein (α-syn) [61, 62], granulocyte-macrophage colony-

stimulating factor (GM-CSF) [57], etc.

Among these protein syntheses, one of the most fantastic examples is the total

synthesis of homogeneous erythropoietin (EPO). EPO is a glycoprotein containing

polysaccharide chains and plays a vital role and mediates a range of crucial

biological processes. Many researchers have provided impressive contributions to

the total synthesis of EPO and, finally, Danishefsky’s group achieved the full

synthesis with all carbohydrates at all native sites [63, 64]. The synthesis involved

quadruple cysteine NCLs from four glyco-containing peptide fragments, one global

metal-free desulfurization, and a final folding step. This synthetic EPO was proved

to possess in vitro activity. The success of the total synthesis of such a challenging

molecule illustrated a promising future for the application of this postligation-

metal-free desulfurization strategy in complex protein synthesis.

Table 1 Metal-free desulfurization

Entry Cysteinyl peptide Alanyl peptide Yield (%)

1 Fmoc-RYKDSGCAHPRG-OH Fmoc-RYKDSGAAHPRG-OH 82

2 H-LRHKDSCRWKITR-OH H-LRHKDSARWKITR-OH 81

3 H-VETRFPCRNYEK-OH H-VETRFPARNYEK-OH 71

4 H-RFDSCRPMHWR-OH H-RFDSARPMHWR-OH 74

5 H-VRYTCKLSCys(Acm)WR-OH H-VRYTAKLSCys(Acm)WR-OH 89

6 Fmoc-Thz-YTRGCAKG-OH Fmoc-Thz-YTRGAAKG-OH 75

7 Biotin-KWRITNCEHR-OH Biotin-KWRITNAEHR-OH 91
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3 Postligation-Desulfurization at Other Amino Acid Sites

The successful application of native chemical ligation-desulfurization strategy

(alanine ligation) – especially metal-free desulfurization strategy – in chemical

total synthesis of proteins has stimulated the extension of this strategy to peptide

ligation at other amino acid sites. To date, the chemical synthesis of peptides or

proteins via postligation-metal-free-desulfurization strategy has been achieved at

valine, lysine, leucine, threonine, proline, arginine, aspartic acid, and glutamate

sites (Table 2). Ligation at phenylalanine, valine, leucine, glutamine, and trypto-

phan sites has also been carried out, accompanied by metal-based desulfurization.

The key point of this triumph is to introduce suitable thio-derived proteinogenic

amino acids as Cys surrogates which were able to facilitate the ligation reaction in a

similar manner to Cys residue and, more importantly, could be subsequently

desulfurized via either metal-free or metal-based conditions. A common strategy

to synthesize these Cys surrogates is to install thiol groups into α or β positions of

amino groups of corresponding natural amino acids.

Table 2 Postligation-desulfurization achieved at amino acids other than Cys
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3.1 Metal-Free Desulfurization

3.1.1 Ligation at Valine Site

In 2008, the Seitz group described that commercially available β-thiol valine (pen-

icillamine) could be utilized in ligation-desulfurization strategy (Scheme 5) [65]. The

model peptide Pen-Arg-Ala-Glu-Tyr-Ser-NH2 containing a Boc/Trt-protected Pen

was prepared by Fmoc-SPPS. The ligation of 1 with less sterically hindered

C-terminal peptide thioester was remarkably fast under optimal condition (6 M

Gn∙HCl, 100 mM NaH2PO4, 50 mM TCEP, 5% PhSH, pH 8.5, 37�C). The ligation
of Pen-Arg-Ala-Glu-Tyr-Ser-NH2 with more sterically hindered peptide thioester

also went well, to give target product, albeit with lower reaction rate and a small

amount of epimerized ligation product. However, these shortcomings could be

avoided by increasing pH and loading excess thioester. These tactics were success-

fully applied in the synthesis of peptide 5, segment of STAT-1, and the 22-mer Syk

kinase peptide 6. Interestingly, subsequent desulfurization was not smooth under

metal-induced conditions, but proceeded successfully under metal-free conditions

(an aqueous 100 mM phosphate buffer adjusted to pH 6.5 which contained 250 mM

TCEP, 200 mM VA-044, 40 mM glutathione, and 3 M Gn∙HCl) at 65�C (Table 3).

Almost at the same time, Wan and Danishefsky also demonstrated that β-thiol
valine (penicillamine) could assist in the oxo-ester mediated ligation step

[66]. β-Thiol valine was readily ligated with peptides 9 and 10 with nitro phenyl

ester terminal in pH 6.3–6.5 buffer (6.0 MGn∙HCl, 188.8 mMNa2HPO4, 7.2 mM p-
NO2PhOH) with TCEP at 30�C for 2–3 h. The desulfurization proceeded under

standard condition (6.0 M Gn∙HCl, 188.8 mM Na2HPO4, 18.8 mM TCEP∙HCl,
pH 6.3–6.5, TCEP, VA-044, 37�C, 2–3 h) to give target peptides (Scheme 6). It

should be noted that this oxo-ester-mediated NCL strategy exhibited high efficiency

compared to the traditional reaction of the corresponding thioester, which afforded

trace amount of product indicated by LC-MS.

However, when the β-thiol valine was incorporated into the N-terminal peptide

as the acyl acceptor, the ligation was dilatory because of the tertiary property of the

thiol group. Considering the less steric hindrance and greater reactivity of a primary

thiol, the Danishefsky group tried to install a thiol group at the γ-position on Val to
extend further the Val-promoted NCL. The γ-mercapto valine was synthesized

Scheme 5 Native chemical ligation at Val: (a) trans-thioesterification; (b) S- to N-acyl transfer;

(c) desulfurization
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from Fmoc-Asp-OtBu in several steps [67]. Initially, methylation at the β position

of 13 produced compound 14 in syn/anti mixture with the ratio of 1:1. Diastereo-

pure alcohol 15 was obtained by selective reduction of 14 and chromatographic

separation. Then the acetylated thiol was introduced to replace the hydroxyl group.

Further transformation led to the target γ-thiol valine derivative 18, which was then
employed in the ligation of a range of peptides (Scheme 7). γ-Thiol valine displayed
much higher efficiency than that of β-thiol valine residue, especially in the case of

extremely sterically hindered amino acids ligation. The versatility of this approach

was further certified by the effective ligation of glycopeptide 20 and peptide 19

containing γ-thiol valine moiety (Table 4).

3.1.2 Ligation at Lysine Site

Lysine is a common amino acid in proteins and both amino groups of lysine provide

a wide platform for post-translational protein modifications. Because of the two

amino groups in lysine, the mercapto group could be introduced either in the γ or δ
position. In 2009, the Liu X.-W. and Liu C.-F. group first reported a native chemical

ligation at Lys residue [68]. They introduced a single thiol group on the γ-carbon of
lysine derivative 22 (Scheme 8), which was prepared starting from (S)-Boc-Asp-
OtBu 21. Treatment of 22with TBAF, MsCl, and CH3COSK in turn furnished 23 in

good yields. The thiol was unmasked and further protected in disulfide form using

MMTS to access 24. Subjecting 24 to 95% TFA and following protection with

Scheme 6 Reagents and conditions: (a) 6.0 M Gn∙HCl, 188.8 mM Na2HPO4, 7.2 mM

p-NO2PhOH, pH 6.3–6.5, TCEP, 30�C, 2–3 h; (b) 6.0 M Gn∙HCl, 188.8 mM Na2HPO4,

18.8 mM TCEP∙HCl, pH 6.3–6.5, TCEP, VA-044, 37�C, 2–3 h

Scheme 7 Synthetic route to compound 18. Reagents and conditions: (a) KHMDS, MeI, THF,

�78�C, 3 h, 97%; (b) DIBAL-H, THF, �35�C, 1 h, 83%; (c) (1) MsCl, Et3N, CH2Cl2, 0
�C, 1 h;

(2) AcSH, DBU, DMF, rt, 16 h, 73%; (d) (1) 1 N NaOH, MeOH, 0�C, 10 min; (2) MMTS, Et3N,

CH2Cl2, rt, 30 min, 86%; (e) HCl in EtOAc, rt, 82%
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Boc2O led to the protected form of 4-mercaptolysine 25, which was then introduced

to the N-terminal peptide 26.

After unmasking the thiol group in situ, peptide 26 was successfully ligated with

H-LSTEA-COSR and H-LSTEL-COSR, respectively. A cascade ligation on the

ε-amino group followed by desulfurization could give ubiquitin (Scheme 9). A control

reaction indicated that the γ-SH of 4-mercoptolysine derivatives played a vital role in

mediating ligation at both α- and ε-NH2. Furthermore, the results of ligation reactions

revealed that the bulkiness of Leu did not affect the ligation rate or yield.

The γ-mercapto group is extremely important, allowing chemical ligation at both

α and ε amines in a so-called unique “one-stone-two-birds fashion.” However, the

harsh deprotecting condition for Cbz group limited the application of this strategy.

Thus, Cbz group on the ε-amino group was replaced by a photolabile protecting

group o-nitroveratryloxycarbonyl (NVOC) to facilitate its application [69]. The

protected form of 4-mercaptolysine 31 was synthesized using the similar proce-

dures as 25. Ligation of peptide thioester 32 with C-terminal segment 33 including

4-mercaptolysine proceed efficiently in a pH 7.5 buffer (6 M Gn∙HCl, 0.2 M

Table 4 NCL at Val site

Peptide 1-CO2R Ligationa

yield/time

Desulfurizationb product/yield/time

OPh-mSSEt

O

FmocThzRGDSCysRPGQ
FmocThzRGDSCysRPGQVGAPRHSWG-OMe

78%/1 h
84%/3 h

OPh-pCN

O

FmocKYDSRGF FmocKYDSRGFVGAPRHSWG-OMe80%/1 h

81%/3 h

SPh

O

FmocRTGDSAGT FmocRTGDSAGTVGAPRHSWG-OMe87%/4 h
89% /3 h

OPh-p CN

O

FmocVRSYTAGP 55%/1 h

98%/3 h

FmocVRSYTAGPVGAPRHSWG-OMe

Acm

Acm

O O

OH OH

HO
AcHN

O

OH

HO
AcHN

NH

NSTAGQFmoc-RLG

O

OPhm-SSEt

90%/1 h
O O

OH OH

HO
AcHN

O

OH

HO
AcHN

NH

Fmoc-RLGNSTAGQVGAPRHSWG-OMe
89%/3 h

20
apH 6.5 buffer, TCEP, rt, 30�C
bTCEP, VA-044, 37�C
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phosphate, 20 mM TCEP) and spontaneously completed the conversion of Thz

(1,3-thiazolidine-4-carboxo group) to Cys to afford 34. Further ligation of 34 with

peptide thioester 35 in pH 7.5 buffer (6 M Gn∙HCl, 0.2 M phosphate, 0.2 M

MESNa, 20 mM TCEP) furnished 36. Desulfurization was conducted under

metal-free conditions to provide monoubiquitin 37. Ligation of 37 with Ub(1–

76)-MES in pH 8.0 (6 M Gn∙HCl, 0.1 M phosphate, 40 mM TCEP, 1 vol.% benzyl

mercaptan) and desulfurization afforded the K48(4-SH)-containing ubiquitin 38

(Scheme 10). All the intermediates and the final product were purified by C18 semi-

preparative HPLC. Moreover, this approach executed two consecutive ligation

steps via the same thiol to synthesize many proteins containing modified lysine

residues.

In 2009, Brik et al. also investigated the Lys-ligation using δ-mercaptolysine

[70, 71]. The synthesis of modified lysine started from L-glutamic acid, which was

Scheme 8 Synthetic route to compound 25. Reagents and conditions: (a) (1) TBAF, THF, 0�C,
77%; (2) MsCl, DIPEA, 0 �C; (3) AcSK, DMF, 40 �C, 70% over two steps; (b) (1) NaOH, MeOH,

rt; (2) (S)-methyl methanethiosulfonate (MMTS), Et3N, CH2Cl2, rt, 50% over two steps;

(c) (1) 95% TFA, H2O, rt; (2) Boc2O/TEA. MeOH, rt, 78% over two steps

Scheme 9 Synthesis of peptides by dual ligation
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converted into aldehyde 39 in three steps. A Henry reaction of 39with nitromethane

followed by dehydration resulted in the E/Z mixture of conjugated nitro olefin 40. A

Michael reaction of tBuSLi with 40 at low temperature afforded a diastereomeric

mixture of compound 41. The reduction of nitro group followed by masking with

allyloxycarbonyl group gave the alloc-protected tert-butyl mercaptolysine 42,

which was converted to 43 and further saponified to produce the desired δ-(R,S)-
mercaptolysine 44 in quantitative yield (Scheme 11).

This δ-mercaptolysine building block was efficiently utilized in the

ubiquitylation of peptides. Thz-a-syn(2–17) 45 installed with the

δ-mercaptolysine was ligated with HAUb-SR 46 and, following unmasking of the

N-terminal cysteine, resulted in peptide 47. A further ligation of 47 with LYRAF-

SR (6 M Gn∙HCl, pH 7.5 and 2 vol.% of benzyl mercaptan and thiophenol for 4 h)

and desulfurization using Danishefsky’s method formed ubiquitylated protein 49

(Scheme 12). In this methodology, they demonstrated that the configuration of the

δ-carbon on the δ-mercaptolysine did not affect the ligation. Subsequently, the Brik

Scheme 10 Synthesis of K48-diubiquitin
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group used this method to synthesize a series of di-ubiquitin and tetraUb chains.

They indicated that it is also possible to introduce unnatural elements such as

specific chromophores [72, 73].

Ovaa et al. prepared both δ- and γ-lysine starting from δ-hydroxylysine and

L-lysine [74, 75]. These two kinds of modified lysine were applied in the synthesis of

K48-Ub and K43-Ub and the ligation efficiencies were compared. It was found that

both δ- and γ-lysine showed nearly equal efficiency in terms of reaction rate and

yields. These lysine-assisted ligation strategies contribute greatly to the synthesis of

Ub and to the understanding of all their structural and biological properties [76].

Scheme 11 Synthesis of δ-(R, S)-mercaptolysine 44. Reagents and conditions: (a) (1) MeNO2,

TBAF, 97%; (2) Ac2O, DMAP, Et2O, 0
�C to rt, 4 h, 71%; (b) tBuSH, BuLi, �10 to �78�C,

45 min, 85%; (c) (1) NaBH4, NiCl2
�6H2O, THF/MeOH(1:1), �20 to�15�C, 20 min; (2) AllocCl,

Et3N, THF, 0
�C to rt, 1 h, 69%; (d) (1) HCl, EtOAc, �20�C, 1 h; (2) Boc2O, Et3N, MeOH, 0�C to

rt, 2 h, 96%; (e) LiOH, THF/H2O, 0
�C, 1 h, 95%

Scheme 12 Utilize δ-mercaptolysine building block in the ubiquitylation of peptides
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3.1.3 Ligation at Threonine Site

Compared to cystine, threonine is relatively abundant in nature. Chen et al. found

an efficient way to merge two different glycopeptides by incorporating γ-thiol
threonine at the N-terminus of peptide, which was ligated with C-terminal peptide

thioester and subsequently desulfurized to provide the desired peptide [77]. The

γ-thiol Thr building block was prepared from D-vinylglycine through modification

of Rapoport’s route. Epoxidation of vinylglycine 50 gave syn-51 and anti-51 in a

ratio of 5:1. The major syn-epoxide 51 was separated and opened by thioacetate to

afford acetylated thiol 52, which was then changed to disulfide form 53. A routinely

transformation of 53 could provide the γ-thiol Thr variants 54 and 55 (Scheme 13).

The feasibility of this protocol was evaluated in the assembly of the threonine

variant 54 with various peptides. As expected, the ligation with peptides bearing a

less sterically hindered C-terminus (Ala, Gln, Phe, Trp, Tyr) proceeded quickly

and gave good yields; peptides with a more sterically hindered C-terminus

(Val, Leu, Ile, Pro) suffered slow reaction rate but provided a reasonable yield.

Subsequent desulfurization under standard radical-based conditions furnished the

corresponding threonine extension products in good yields. It should be noted that a

variety of C-terminal esters including thiophenyl ester, ortho-thiophenolic ester,

and para-thiophenyl ester were efficient in the ligation step. In particular, ortho-
thiophenolic ester is compatible with glycopeptide ligation.

The versatility of the threonine ligation/desulfurization approach was further

explored by the coupling of two different peptides. Peptide 57 incorporating the

γ-thiol surrogate at N-terminus, prepared from 55, was successfully ligated with its

partner 56 under TCEP in Gn∙HCl buffer. Subsequent radical-based desulfurization
readily provided the target products 58 (Scheme 14).

3.1.4 Ligation at Leucine Site

In 2010, the Brik group extended the ligation at Leu residue and demonstrated

its use in the synthesis of HIV-1Tat protein [78]. The key building block

Scheme 13 Synthesis of γ-thiol threonine 55. Reagents and conditions: (a) mCPBA, CH2Cl2, 0
�C

to rt, 24 h; (b) AcSH, NaOAc, toluene, DMF, rt, 2 h; (c) (1) 0.2 M NaOH, MeOH, 0�C, 20 min;

(2) MMTS, DIPEA, CH2Cl2, rt, 2 h; (d) Et2NH, DMF, rt, 2 h; (e) (1) Boc2O, THF, MeOH, Et3N;

(2) 1 N NaOH, H2O, THF
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β-mercaptoleucine was achieved from β-hydroxy-L-leucine 59, which was

converted to 60 in three steps. Ring opening of 60 with PMB-SH afforded a mixture

of 61 and its regio isomer, which could be separated by flash chromatography.

Compound 61 was transformed to the protected β-mercaptoleucine 62 by changing

the protective group on amino group and hydrolysis of ester (Scheme 15). The

efficacy of ligation at Leu was then illustrated by model reaction of C-terminal

peptide of HIV-1 Tat(69–86) fused with β-mercaptoleucine and various peptide

thioesters (Scheme 16). The ligation and desulfurization under metal-free condi-

tions furnished the desired product in excellent yields, albeit with slower ligation

rate compared to Cys. This is to be expected because of the intrinsic steric

hindrance of β-mercaptoleucine. The β-mercaptoleucine-assisted ligation was

then utilized in the synthesis of HIV-1Tat. It was noticeable that the close location

of several Cys residues hindered the use of NCL at Cys and their presence required

selective desulfurization. Thus, Brik et al. utilized a β-mercaptoleucine promoted

ligation of Tat 1 and Tat 2 followed by metal-free desulfurization, and Cys-NCL

with Tat 3 to accomplish the synthesis of HIV-1 Tat.

Scheme 14 Glycoprotein synthesis via Thr-ligation

Scheme 15 Synthesis of β-mercaptoleucine 62. Reagents and conditions: (a) p-MeOPhCH2SH,

BF3·OEt2, CH2Cl2, 0
�C, 40% (+60% isomer); (b) (1) p-MeOPhSH, K2CO3, rt, MeCN/DMSO;

(2) Boc2O, DIPEA, CH2Cl2, 0
�C; (3) 1 M LiOH, THF/H2O, 0

�C, 40% over three steps
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At the same time, Tan et al. exploited synthetic routes to epimeric Leu building

blocks and studied their ligation efficiency separately [79]. Two different diaste-

reomers of β-thioleucine surrogate, 66 and 69, were prepared from (2S,3S)-3-
hydroxyleucine and (2S,3R)-3-hydroxyleucine, respectively (Scheme 17). Sulfyl

moiety was introduced by substitution of β-hydroxyl group with thiol acetate and

then transferred to disulfide form. Compounds 66 and 69 merged with N-terminal

peptides to give 70 and 71, which were ligated with C-terminal peptide under

standard conditions. The validation results showed that configuration of β-C on

Leu significantly influence the ligation efficacy (Scheme 18). Peptide 70 was

readily coupled with C-terminal peptides under standard conditions, whereas pep-

tide 71 gave poor reactivity. The capacity of this Leu-mediated ligation combined

with metal-free desulfurization was further demonstrated in the synthesis of EPO

(95–120) (Scheme 19).

Danishefsky’s group then applied this approach to the chemical synthesis of

hPTHrP and ATAd2 [80, 81]. hPTHrP is a protein widespread in human tissues.

The synthesis was encompassed by iterative ligations of four component peptides

and desulfurization in a convergent manner (Scheme 20). The two Cys-ligations

Scheme 16 Synthetic strategy of HIV-1 Tat

Scheme 17 Synthesis of compound 66 and 69. Reagents and conditions: (a) Boc2O, Na2CO3,

THF/H2O, rt, 91%; (b) TMSE-OH, DCC, DMAP, CH2Cl2, 0
�C to rt, 99%; (c) (1) MsCl, Et3N,

CH2Cl2, 0
�C; (2) AcSK, DMF, rt, 40–60�C, 82%; (d) (1) NaOH, MeOH, 0�C; (2) MMTS, DIPEA,

CH2Cl2, rt, 79%; (e) TBAF, THF, rt, 98%
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Scheme 18 Leucine ligation with two leu(SSMe) diastereomers. Reagents and conditions: (a)

6 M Gn·HCl, 100 mM NaH2PO4, 50 mM TCEP, pH 7.5. Peptide 1: GKHLNSAERVE-; Peptide 2:

-RKKLQDVHNFVALG-OMe

Scheme 19 Synthesis of EPO(95–120). Reagents and conditions: (a) 6 M Gn·HCl, 100 mM

NaH2PO4, 50 mM TCEP, pH 7.5, 0.5 h; (b) 6 M Gn·HCl, 100 mM NaH2PO4, 50 mM TCEP,

pH 7.5, 0.5 h; MESNa, H2O/MeCN, 1 min, 61% over two steps; (c) TCEP, VA-044, tBuSH, 1 h,

82%

Scheme 20 Synthetic strategy to hTPHrP

76 J. Ma et al.



and one Leu-ligation followed by subsequent global desulfurization under metal-

free conditions furnished hPTHrP(1–141) in a 16% total yield with high purity [80].

ATAD2, a bromodomain protein related to gene expression and transcriptional

regulation, could also be synthesized by means of the Cys-ligation and Leu-ligation

(Scheme 21). This 130-mer peptide was assembled from five fragments via one

Cys-ligation and three Leu-ligations in a highly convergent manner with only three

total RP-HPLC events. The global desulfurization was also achieved under metal-

free conditions [81].

3.1.5 Ligation at Proline Site

Proline ligation had been a problematic issue indicated by the lower reactivity of

C-terminal proline thioester. Danishefsky group and Otaka group exploited HSPro-

mediated ligation by attaching proline moiety to N-terminal peptides [82–84]. Com-

mercially available diastereomeric 4-thioprolines 76 and 77 were appended to

peptides 78 and 79 by Fmoc-SPPS, respectively. The ligation efficiencies of 78

and 79 with peptide 80 bearing a 2-(ethyldithiophenyl)ester were then evaluated.

Both 78 and 79 went smoothly during trans-thioesterification. Interestingly, peptide

78 readily underwent the S!N acyl transfer at room temperature, whereas peptide

79 failed (Scheme 22). This was thought to be caused by the highly hindered

peptide 77 moiety restraining the S!N acyl transformation. The ligation of 78

with peptides bearing less sterically hindered C-termini, such as Gln and Phe, was

readily implemented under standard conditions and desulfurized to give the target

products. Those peptides with Val and Pro C-termini showed poor reactivities. It

was obvious that the efficiency of Pro-ligation was significantly influenced by the

size of the C-terminal peptide. A further investigation indicated that the ligation

efficiency could be improved by replacing thiol-Pro moiety with seleno-Pro and

Scheme 21 Synthetic strategy to ATAD2 bromodomain
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deselenation could be achieved under dithiothreitol, 6 M Gn · HCl, 100 mM

NaH2PO4, followed by TCEP (pH 5–6) [83].

The Pro ligation was later employed in the synthesis of hEPO(79–166)

(Scheme 23) [83]. The main skeleton was constructed by a Pro-ligation and two

Cys-ligations. A subsequent radical-based desulfurization could provide the target

molecule.

3.1.6 Ligation at Arginine Site

To expand the ligation-desulfurization methodology, Payne et al. developed a

practical route to synthesize protected β-thiol arginine and applied it to peptide

synthesis [85]. Building block 95 was synthesized starting from Garner’s aldehyde
89. Introduction of an allyl group on the carbonyl group and deprotection of the

hemiaminal provided compound 90. Selective protection of primary alcohol and

subsequent import of the sulfur moiety afforded compound 91. To facilitate incor-

poration into peptides through SPPS, the acetyl group on thiol was converted to an

S-trityl (Trt) group to access compound 92. The terminal alkene of 92 was oxidized

and subsequently reduced to give alcohol 93. A Mitsunobu reaction of the syn
diastereomer of 93 with globally protected guanidine followed by deprotection of

the TBS ether resulted in alcohol 94, which was oxidized to the protected thiol

arginine 95 (Scheme 24).

Incorporation of 95 into the pentapeptide through SPPS and successful ligation

with a range of peptide thioesters demonstrated the efficiency of this building block

Scheme 22 Ligation with two Pro(SH) diastereomers. Reagents and conditions: (a) 6 M Gn·HCl,

100 mMNaH2PO4, 50 mM TCEP, pH 7.5; (b) TCEP, VA-044, tBuSH, MeCN/H2O, 37
�C, 10 min,

88%. Peptide 1¼ALLVNSS-; Peptide 2: -WEPLN; Ar¼ 2-(ethyldithio)phenyl
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Scheme 23 Synthesis of hEPO(79–166) glycopeptide. Reagents and conditions: (a) (1) 6 M

Gn·HCl, 100 mM NaH2PO4, 50 mM TCEP, pH 7.5, 67%; (2) piperidine, DMSO, 61%;

(3) 0.2 M MeONH2, 60%; (b) 6 M Gn·HCl, 100 mM NaH2PO4, 50 mM TCEP, pH 7.5, 23%;

(c) 6 M Gn·HCl, 100 mM NaH2PO4, 50 mM TCEP, 200 mM MPAA, pH 7.8, 40%; (d) TCEP,

VA-044, tBuSH. R¼CH2CH2CO2Et

Scheme 24 Synthesis of β-thiol Arg. Reagents and conditions: (a) allyltributyltin, BF3∙OEt2,
CH2Cl2, �78�C, 3 h, 80%; (b) p-TsOH, 1,4-dioxane, rt, 3 h, 82%; (c) TBSCl, Et3N, DMAP,

CH2Cl2, rt, 16 h, 87%; (d) (1) MsCl, Et3N, CH2Cl2, 0
�C, 20 min; (2) KSAc, DMF, 50�C, 65% over

two steps; (e) (1) NaOMe, MeOH, rt, 5 min; (2) Trt-OH, BF3·OEt2, Et2O, rt, 45 min, 76% over two

steps; (f) (1) OsO4, NaIO4, 2,6-lutidine, H2O/1,4-dioxane (3:1 v/v), rt, 2 h; (2) LiBH4, THF, rt,

40 h, 50% over two steps; (g) N,N0,N00-tri-Boc-guanidine, PPh3, DIAD, 30�C, 10 min, 80%;

(h) TBAF, THF, rt, 1.5 h, 96% (i) (1) DMP, CH2Cl2, rt, 2 h; (2) NaClO2, NaH2PO4,

1-methylcyclohexane, tBuOH/THF/H2O (1:7:2 v/v/v), rt, 20 min, 37% over two steps
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in ligation. A kinetic study indicated that the reaction rate of sterically hindered

peptide thioester was much slower than that of unhindered counterparts. However,

the overall trend was consistent with those studied for NCL at Cys. Desulfurization

reaction at Arg was also sluggish compared to that at Cys, which could be because

of the guanidine moiety of the Arg. However, the final yields were satisfactory.

This synthetic methodology was further applied in the synthesis of a fragment of

the extracellular domain of mucin 1 (MUC 1). A glycopeptide 96 containing a

C-terminal thiophenyl thioester, bifunctional glycopeptides 97 including an

N-terminal β-thiol Arg and C-terminal thioester, and glycopeptides 98 with an

N-terminal β-thiol Arg, prepared through SPPS, were successfully formed MUC1

by two ligations and desulfurization in one pot (Scheme 25).

3.1.7 Ligation at Aspartic Acid Site

The Payne group developed a feasible route to a protected β-mercapto aspartate

(Asp) building block and applied it in ligation chemistry [86]. The protected

β-mercapto aspartate 103 was synthesized from Boc-Asp(OtBu)-OH 101 in three

steps. The mercapto moiety on β-C of Asp was introduced by a novel sulfenylating

reagent 104 (Scheme 26).

Scheme 25 Assembly of MUC1 glycopeptide
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β-Mercapto Asp 103 was incorporated into the peptide using standard Fmoc-

SPPS. The applicability was then demonstrated by the successful ligation between

105 and a few peptide thioesters (Table 5). It was shown that the ligation rate at

β-mercapto Asp was comparable to those of Cys residue and the configuration at the

β-carbon did not affect the ligation efficiency. Based on inference and computation,

the Payne group further displayed a formal one-pot ligation-desulfurization reac-

tion with β-mercapto Asp residue; however, the thiophenol used in the ligation step

must be removed before desulfurization. This strategy was further successfully

applied in the assembly of the chemokine receptor CXCR4 (Scheme 27). During

the investigation it was observed that pH 3 was optimal for desulfurization of

β-mercapto Asp residue. Increase of pH value resulted in sluggish desulfurization

rate and worse chemoselectivity. This was reasoned to be because the C-S bond on

Scheme 26 Synthesis of β-mercapto Asp building block 103. Reagents and conditions: (a) allyl

bromide, iPr2EtN, DMF, 16 h, 94%; (b) LiHMDS (2 equiv.), 104 (1.4 equiv.), THF, �78�C, 56%;

(c) Pd(PPh3)4, N-methylaniline, THF, 30 min, 80%

Table 5 Ligation-desulfurizations at Asp site

Entry X Ligationa yield (%) Desulfurizationb yield (%)

1 Gly 80 75

2 Ala 82 71

3 Met 71 63

4 Phe 78 76

5 Val 75 71
a6 M Gn·HCl, 200 mM HEPES, 50 mM TCEP, pH 7.3–7.5, PhSH, 37�C, 24 h
b6 M Gn·HCl, 200 mM HEPES, 250 mM TCEP, 40 mM reduced glutathione, 20 mM VA-044,

pH 6.5–7.0, 37�C, 16 h
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β-mercapto Asp was much weaker when the neighboring carboxylate was proton-

ated. It is a good example showing that desulfurization of β-mercapto Asp residue

within ligation products is possible in the presence of unprotected Cys residues.

The Tan group prepared β-thioaspartic acid 113, a similar diastereomer of 103,

through a trans-oxazoline intermediate [87] (Scheme 28). To this end, the

thiobenzamidomalonic ester 110was first obtained from Asp, and further iodination

of dianion followed by an acidic workup formed the trans thiazoline 111.

Unmasking and succeeding protection of the mercapto group gave compound

112. β-Thioaspartic acid was finally obtained after a successive deprotection and

protection. The feasibility and versatility of the β-thioaspartic acid-assisted ligation
was then demonstrated by a series of peptide assemblies and the synthesis of

hGALP (Scheme 29).

3.1.8 Ligation at the Glutamate Site

In 2014, the Payne group described an alternative ligation at glutamate [88]. First,

the γ-thiol-Glu building block 119 was prepared from Boc-Glu(OtBu)-OAll 116 by
installation of a 2,4-dimethoxybenzyl (DMB) thiol at the γ-position and

deprotection of allyl ester. Subsequently, γ-thiol-Glu 119 was transformed into

disulfide form to give 120 (Scheme 30), which was readily integrated into

N-terminal peptide 121 by SPPS. Then ligation of 121 with several peptide

thioesters was performed in pH 7.2–7.4 buffer (6 M Gn∙HCl, 100 mM Na2HPO4,

Scheme 27 Synthesis of CXCR4(1–38)

82 J. Ma et al.



50 Mm TCEP, 2 vol.% PhSH) to afford the product in excellent yields (Table 6).

After HPLC purification and lyophilization, the ligation products were subjected to

reduced glutathione, TCEP, and VA-044 in pH 6.5–6.8 buffer to provide the native

peptide products in excellent yields. Streamlining of this protocol by avoiding

Scheme 28 Synthesis of β-mercapto Asp building block 113. Reagents and conditions: (a) Et3N,

pyridine, 97%; (b) (1) LiHDMS, THF, 0�C; (2) I2, THF, �78�C, 38%; (c) 2 M HCl, THF, 45�C,
54%; (d) Trt-Cl, CH2Cl2, 76%; (e) Boc2O, DMAP, THF, 88%; (f) NH2NH2, THF, MeOH;

(g) Me3SnOH, 80
�C, DCE, 97%

Scheme 29 Synthesis of hGALP. Ligation condition: 6 M Gn·HCl, 300 mM Na2HPO4, 200 mM

MPAA, 20 mM TCEP, pH 7.9, 2 h, 56%; desulfurization condition: 3 M Gn·HCl, 100 mM

Na2HPO4, 250 mM TCEP, 40 mM glutathione, UV (365 nm), pH 6.5, 80%

Scheme 30 Synthesis of γ-mercapto Glu building block. Reagents and conditions:

(a) (1) LiHMDS, THF, �78�C, 1 h, (2) 117, �78�C, 30 min, 83%; (b) Pd(PPh3)4, PhSiH3, THF,

rt, 30 min, quant.; (c) dimethyl(methylthio)sulfonium tetrafluoroborate, MeOH/H2O, 45min, rt, 55%
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HPLC purification was also attempted. It was achieved by removing excess

thiophenol through extraction after the ligation and immediate exposure of the

ligation mixture to desulfurization conditions. Although a small amount of

byproduct emanating from VA-044 and γ-thiol was observed in the case of peptide
thioesters containing C-terminal Ala, Met, Phe, and Val, the overall efficiency and

yield is still satisfactory. The asset of “one-pot” ligation-desulfurization reaction at

γ-thiol-Glu was further highlighted by the synthesis of teriparatide, a drug for

glucocorticoid-induced osteoporosis.

3.2 Metal-Based Desulfurization

Despite the metal-free desulfurization strategy showing great advantages, such as

mildness, user friendliness, and wide functional group tolerance, etc., application of

this method on several Cys surrogates such as β-mercaptophenylalanine,

β-mercapto tryptophan, and γ-mercapto glutamine were unsuccessful or

unreported. The desulfurization was achieved by metal-based conditions on these

surrogates.

3.2.1 Ligation at the Phenylalanine Site

Crich and Banerjee reported a feasible synthetic route to the

β-mercaptophenylalanine building block and its application in the synthesis of

two decapeptides [89]. threo-β-Hydroxy-L-phenylalanine derivative 122 was

converted to the erythro-thiol 123 in accordance with Easton’s bromination proto-

col. Thiol 123was transformed to disulfide 124, which was deprotected with acid to

Table 6 Ligation-desulfurization at Glu site

Entry Thioester (X¼) Ligation yield (%) Desulfurization yield (%) “One-pot” yield (%)

1 Gly 72 89 73

2 Ala 77 91 67

3 Met 83 98 72

4 Phe 80 84 74

5 Val 68 98 56
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give β-mercaptophenylalanine derivative 125 or hydrolyzed under basic condition

to form 126 (Scheme 31).

Model ligation of 125 with N-Cbz glycine thioesters and N-Boc-L-methionine

thioesters, respectively, in the presence of MESNa in MeCN/Tris buffer (pH 7.5–

8.0) indicated that the sterically hindered thioester slows down the ligation rate.

Selective desulfurization was fulfilled with the combination of NaBH4 and NiCl2.

An ulterior application of this protocol was the ligation of β-(SSEt)-FRANK
peptide 127 and thioesters 126a and 126b. The reaction was performed in the

presence of MESNa and TCEP in Tris buffer (pH 8). After purification, desulfur-

ization was accomplished with NiCl2 and NaBH4 in pH 7 phosphate buffer,

providing LYRMGFRANK and LYRAMFRANK in reasonable yields

(Scheme 32). It is notable that the desulfurization condition is compatible with

the existence of methionine and ACM-protected cysteine.

3.2.2 Ligation at the Glutamine Site

In 2012, the Brik group reported NCL at the Glu site [90]. Racemic γ-mercapto-L-

glutamine (mGln) 133 was prepared from aldehyde 128 derived from L-aspartic

acid. Aldehyde 128 was converted to 130 by the Passerini three-component reac-

tion. Thiol moiety was then introduced by removal of bromoacetyl group on the

Scheme 31 Synthesis of β-mercapto Phe building block. Reagents and conditions: (a) (1) MsCl,

Et3N, CH2Cl2; (2) AcSH, DBU, DMF; (3) 1 M NaOH, MeOH; 55–60% over three steps; (b) EtSS

(O)Et, Et3N, CH2Cl2; (c) LiOH, THF, 40% over two steps; (d) TFA, CH2Cl2, 76%

Scheme 32 Decapeptide synthesis. Ligation condition: MESNa, TCEP, 0.1 M Tris–HCl, pH 8;

desulfurization condition: NiCl2·6H2O, NaBH4, 0.1 M phosphate buffer, pH 7
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γ-hydroxyl group, mesylation, and substitution with thioacetic acid. Changing the

protecting group on thiol and hydrolysis of ester provided γ-(R,S)-mercapto-L-

glutamine 133 (Scheme 33).

Glutamine 133 was readily incorporated into mGln-WW-(23–40) 135 through

SPPS. Ligation of peptide 135 with various peptide thioesters was successful and

gave good yields. The chirality on both the α- and γ-carbons of 133 did not affect

the ligation-desulfurization efficiency at all. The subsequent desulfurization step

was conducted under NiBr2, which was circumvented by routine metal-free condi-

tions in this case. It was possibly imputed to the strong propensity of forming a

radical on the γ-thiol. Subsequently, WW domain 137 was successfully synthesized

by employing this Gln ligation (Scheme 34). It was believed that this strategy is

beneficial to access proteins bearing repeated polyQ units, which are related to

several inherited neurodegenerative diseases.

3.2.3 Ligation at the Tryptophan Site

Many more ligation strategies other than Cys were developed, but they are not

widely used because of the tedious synthetic procedures of building blocks. Most

Scheme 33 Synthesis of γ-mercapto Gln building block. Reagents and conditions: (a) BrCH2COOH,

CH2Cl2, rt, 2 h, 89%; (b) (1) thiourea, NaHCO3, THF/H2O, 50
�C, 1.5 h, 94%; (2) MsCl, Et3N,

CH2Cl2, 0
�C, 15 min, 99%; (3) CH3COSH, DBU, DMF, rt, 14 h, 98%; (c) (1) 1 M NaOH, MeOH,

0�C; (2) Trt-Cl, Et3N, CH2Cl2, rt, 1 h, 70%; (d) 0.3 M LiOH, THF/H2O 4:1, 0�C, 1 h, 92%

Scheme 34 Synthesis of WW domain. Ligation condition: 6 M Gn·HCl, 200 mM Na2HPO4,

100 mMMPAA, 20 mM TCEP, pH 7.0, 37�C, 50%; desulfurization condition: Ni/H2, 20% AcOH
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amino acid surrogates required numerous synthetic steps except Val and Pro in

current reports. The Payne group developed 2-thiol Trp-mediated ligation in a

simple and rapid way [91]. Peptide 138 was prepared by standard Fmoc-SPPS on

Rink amide resin. 2-Thiol moiety was directly introduced by DNPS-Cl in the form

of resin. Acidic cleavage and further thiolysis generated 2-thiol Trp containing

peptide 141, which could only be isolated by lyophilization because of the propen-

sity for oxidation to the disulfide form (Scheme 35).

A few C-terminal peptide thioesters were synthesized and ligated with peptide

141. It was found that peptide with alkyl thioesters could not facilitate the ligation

under standard NCL conditions (6 M Gn∙HCl/0.1 M Na2HPO4/100 mM TCEP,

5 mM concentration with respect to 141, pH 7.3–7.5, 2 vol.% PhSH, 37�C) because
of the exogenous aryl thiol attaching at the 2-position of indole. However, reaction

of activated thiophenyl ester 142a with 141 could generate the ligation product at a

lower concentration. It was found that reaction of 141 with increased sterically

hindered 142b could form the ligation product, along with a small amount of

epimerized thiophenyl ester. This shortcoming was surmounted in optimal condi-

tions (4 mM concentration with respect to peptide 141, pH 6.5–6.7). The first

attempt to access the native peptide product conducted under standard radical-

based desulfurization conditions failed, probably because of the intrinsic strength of

the C–S bond in the 2-thiol indole fragment. Finally, the thiol auxiliary was

removed by standard metal-based desulfurization conditions (Pd on Al2O3 in

pH 5.8 buffer in the presence of H2 at 0
�C) (Table 7).

The ligation of a peptide possessing an N-terminal 2-thiol Trp residue and

C-terminal Met residue with thiophenyl ester 142d and Ac-LYRC(Acm)NG-SPh

143 followed by reductive desulfurization generated the desired product without

Met desulfurization. This methodology was again used in the synthesis of CXCR1

(1–28) (Scheme 36). CXCR1(10–28) 144 was obtained by standard Fmoc-SPPS,

including incorporation of both sugar and thio moiety. The peptide 144 and

Scheme 35 Synthesis of 2-thiol Trp peptide 141. Reagents and conditions: (a) TFA/iPr3SiH/H2O

(90:5:5 v/v/v), rt, 2 h, 88%; (b) DNPS-Cl, AcOH, rt, 16 h, 56%; (c) (1) DNPS-Cl, AcOH, DMF, rt,

2 h; (2) TFA/iPr3SiH/H2O (90:5:5 v/v/v), rt, 2 h, 38%; (d) PhSH, 6 M Gn∙HCl, 0.1 M Na2HPO4,

pH 8.0, rt, 3 h, 84%
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thiophenyl ester 145 were ligated under optimal conditions to give the target

product in excellent yield. Subsequent desulfurization was fulfilled under the

above-mentioned condition in a shorter time (5 min) to avoid the side reaction of

Met desulfurization. This 2-thiol Trp ligation-desulfurization approach was highly

efficient in the assembly of peptides. Moreover, the 2-thiol moiety on Trp could be

introduced through the solid-phase in simple way. It is an elegant alternative to be

used in the synthesis of complex peptides with Trp residue.

Table 7 Ligation of 2-thiol Trp peptide with peptide thioester and subsequent desulfurization

Entry X¼ Ligation yield (%) Desulfurization yield

1 Gly (142a) 71 71

2 Ala (142b) 81 89

3 Met (142c) 80 61

4 Phe (142d) 65 72

5 Pro (142e) 58 82

Ligation conditions: 6 M Gn∙HCl, 0.1 M Na2HPO4, 100 mM TCEP, pH 6.5–6.7, 37�C, 24 h.

Desulfurization conditions: Pd/Al2O3, 6 M Gn∙HCl, 0.1 M Na2HPO4, pH 5.8, H2, 0
�C, 4 h

Scheme 36 Synthesis of

CXCR1 (1–28). Reagents

and conditions: (a) 6 M

Gn∙HCl, 0.1 M Na2HPO4,

100 mM TCEP, pH 6.6,

37�C, 5 h, 91%;

(b) (1) Pd/Al2O3, 6 M

Gn∙HCl, 0.1 M Na2HPO4,

pH 5.8, H2, 0
�C, 5 min;

(2) thiourea, 79%
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3.3 Sugar-Assisted Ligation (SAL)

To extend the application of NCL in the synthesis of proteins, Cys-free ligation has

been developed during the past few years. In addition to the above-mentioned

amino acids, other removable thiol-based auxiliaries were also exploited to function

as cysteine. Among them (thiol-containing Nα-linked auxiliaries, 4,5,6-trimethoxy-

2-mercaptobenzyl auxiliaries, etc.), a carbohydrate auxiliary with a

mercaptoacetate at 2-position reported by the Wong group was quite attractive

because sugars are moieties of glycoproteins (Scheme 37) [92]. It was speculated

that the restricted conformation of the sugar plays a crucial role in the S!N acyl

transfer by closing the proximity between the N-amino group of glycopeptides and

the carbonyl group of the thioesters to facilitate the intermolecular rearrangement

via 14- or 15-membered rings. Subsequent desulfurization under metal-based

conditions could provide the target glycopeptides in good yields. This approach

was successfully applied in the synthesis of β-O-linked glycopeptides, α-O-linked
glycopeptides, and N-linked glycopeptides [93, 94].

Later, Yang et al. extended this method to the synthesis of α-O-linked
antibacterial glycoprotein diptericin E [95]. The total synthesis contained an SAL

and subsequent NCL. Since diptericin E contains two GalNAc moieties, which are

α-linked to serine and threonine, respectively, Nα-Fmoc-Thr[Ac3-α-GalNAc(SH)]
150 was prepared as the building block (Scheme 38).

The C-terminal glycopeptides Val53-Phe82 151, prepared from Nα-Fmoc-Thr

[Ac3-α-GalNAc(SH)] by Fmoc-SPPS on 2-ClTrt resin, was ligated with the peptide

thioester Cys(Acm)37-Gly52 152 in 6 M Gn∙HCl, 200 mM phosphate, pH 8.5 at

37�C. During the reaction, pH was adjusted to 7.2 because the pH dropped after

mixing both starting materials. An extra 0.5 equiv. of peptide thioester was added to

provide the desired product in 36% yield after 48 h. The other glycopeptide

thioester Asp1-Asn36 154 was prepared using the side-chain anchoring strategy by

Fmoc-SPPS. After removal of Acm, the N-terminal glycopeptide Cys37-Phe82 was

Scheme 37 Sugar assisted ligation
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ligated with glycopeptide thioester Asp1-Asn36 154 in 6 M Gn∙HCl, pH 7.9

containing 2% PhSH and 2% BnSH at 37�C for 16 h and gave 47% yield after

HPLC purification. Subsequent metal-based desulfurization reduced both thiols on

GalNAc and Cys37 to afford diptericin 155 in 54% yield (Scheme 39).

Payne et al. aimed to apply the SAL strategy to the total synthesis of native

glycoproteins [96]. However, direct utilization of the SAL method was unsuitable

for 75% of glycoproteins, indicated by the screening of over 200 O-linked glyco-

proteins in O-GlycBase v6.00. As a consequence, Payne et al. modified the SAL

method to extend its application in the synthesis of a variety of glycoproteins

(Table 8).

Building block 156, similar to 150, was prepared from glucosamine by a known

method. The N-terminal glycopeptides 157a–f of various lengths were achieved

from 156 by Fmoc-SPPS to investigate the ligation efficiency with thioester 158. It

was found that the extended SAL afforded the highest yield (86%) compared to

double-extended (70%), triple-extended (60%), quadruple-extended (38%), and

Scheme 38 Synthesis of building block 150. Reagents and conditions: (a) Zn/AcOH;

(b) TrtSCH2CO2H, HBTU, DIPEA, DMF, 84%; (c) Pd(PPh3)4, N-methylalanine, THF, 95%

Scheme 39 The synthesis of dipericin and its sequence
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penta-extended (49%) SAL in NMP and HEPES buffer (4:1 v/v NMP/6 M Gn∙HCl,
2% PhSH, 1 M HEPES, pH 8.5, 37�C). Both kinetic study and molecular dynamics

simulations showed that the ring size of the proposed transition state during S!N

acyl transfer influenced the ligation efficiency. As the ring size increased, the

distances between the N-terminus and the carbonyl carbon of the thioester

increased, resulting in slower ligation rate. However, it was found that 95% of all

O-glycoproteins in O-GlycBase v6.00 could be synthesized by SAL and extended

SAL (extended up to six amino acid residues) methodology. As a preliminary

application, the MUC1 repeating unit was effectively synthesized by employing

the extended SAL (Scheme 40).

Table 8 Extended sugar-assisted ligation

Ligation method X Isolated yield (%)

SAL a: Gly 91

exSAL b: GlyVal 86

dexSAL c: GlyValLeu 70

texSAL d: GlyArgValLeu 60

qexSAL e: GlySerArgValLeu 38

pexSAL f: GlyAlaSerArgValLeu 49

Scheme 40 The synthetic route to MUC1 repeating unit employing the extended SAL
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3.4 One-Pot Ligation-Desulfurization

The combination of native chemical ligation and desulfurization has been proved to

be a powerful strategy in protein synthesis. Chemists further considered the possi-

bility of carrying out the ligation and desulfurization in a one-pot manner to

simplify incrementally the purification procedure and improve the reaction effi-

ciency. However, aryl thiols commonly used in the ligation step are radical scav-

engers which hamper the homogenous desulfurization. To realize the one-pot

ligation and desulfurization, the additional aryl thiol must be removed from the

reaction system before proceeding with desulfurization [86, 88, 97]. Interestingly,

the Brik group examined several thiol additives and found that MESNa not only

afforded the ligation at a fast rate but also allowed the rapid and efficient desulfur-

ization, which promoted the one-pot ligation-desulfurization method with good

efficiency [98]. Having used MESNa promoted NCL to obtain HIV-1 Rev protein,

a 13 kDa protein plays an important role in the HIV replication cycle. Rev

1 (residues 68–116) bearing a Cys N-terminal, thioester segments Rev 2 (residues

37–67), and Rev 3 (1–36) were prepared by Fmoc-SPPS. Ligation between Rev

1 and Rev 2 followed by unmasking the Cys generated Rev 2-Rev 1, which was

ligated with Rve 3. MESNa was added as an alternative for aryl thiols during the

ligation process. Subsequent desulfurization with free radical conditions and trans-

formation of Cys to Ala in one pot afforded the desired Rev in 15% overall yield

(Scheme 41).

The Brik group [99] further demonstrated that a highly activated aryl thioester

(MPAA) could proceed with NCL in the absence of additional aryl thiol, which

would produce only 1 equiv. of aryl thiol and hardly influence the desulfurization

step. The peptide thioesters LYRAGLYRAG-MPAA, LYRAGLYRAA-MPAA,

and LYRAGLYRAV-MPAA were ligated with CYRAGLYRAG in 6 M Gn∙HCl,
TCEP, pH 7, 37�C. Then the desulfurization was successfully completed in 3 h after

Scheme 41 NCL-based synthesis of HIV-1 Rev and its sequence
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addition of VA-044 and tBuSH. It indicated that 1 equiv. of MPAA released from

the ligation step would not affect desulfurization. However, the addition of an extra

1–2 equiv. of MPAA significantly obstructed the desulfurization, indicated by low

conversion with a long reaction time. The protocol was next tested in the synthesis

of Ub by the ligation of Ub(1–45)-MPAA 164 and Cys-Ub(47–76) 165 and

subsequent desulfurization (Scheme 42). The desired product was obtained with

60% yield in 11 h in total, much better than with conventional synthesis.

A further application of this protocol in the synthesis of di-Ub in the chemical

ligation of Ub2-MPAA and Ub1(K48K*) (K*¼ δ-mercaptolysine) was not smooth,

which was solved by the utilization of a bifunctional reagent. The modified syn-

thesis of Ub was accomplished within 1.5 h by ligation of Ub(1–45)-methyl

mercaptopropionate and Cys-Ub(47–76) by the presence of reagent 166 bearing a

hydrazide functionality, capture with a resin bearing an aldehyde functionality, and

desulfurization (Scheme 43). This strategy was successfully applied to synthesize

di-Ub chain.

Payne et al. also developed an alkyl thiol TFET as an effective thiol additive in

NCL [100]. This strategy features high efficiency compared to MPAA and simple

operation. TFET effectively promoted the ligation reactions because its pKa (7.3) is

similar to other alkyl thiols. It should be noted that the intrinsic volatility simplifies

the intermediate purification, as TFET could be removed by degassing after the

ligation. The 70 amino acid thrombin inhibitory protein chimadanin and the

60 amino acid protein madanin-1 were successfully synthesized by this one-pot

ligation and desulfurization methodology, employing TFET as an additive.

Scheme 42 Synthesis of Ub(1–76) applying one-pot ligation and desulfurization

Scheme 43 Synthesis of Ub(1–76) and di-Ub employing bifunctional reagent in one-pot ligation

and desulfurization
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Chimadanin was assembled by three fragments in the C!N sequence (Scheme 44).

N-terminal γ-thiol Glu residue chimadanin(42–70) 172was reacted with C-terminal

thioester chimadanin(21–41) 171 in the presence of TFET, followed by treatment

with methoxyamine at pH 4.2 to furnish an intermediate. Without any purification,

the intermediate was directly subjected to N-terminal chimadanin(1–20) 173 and

TFET at pH 6.8 to complete the ligation. The reaction mixture was degassed and

then treated with TCEP, glutathione, and VA-044 to afford chimadanin in 35%

yield.

4 Total Synthesis of hPTH

With the endeavor of many scientists, the NCL has been expanded to encompass a

series of Cys-free amino acids to extend its influence. It has been proven to be

powerful in the synthesis of a range of complex biological active polypeptides and

proteins. A fantastic example is the synthesis of human parathyroid hormone

[hPTH(1–84)], a polypeptide contains 84 amino acids, based on Cys-free native

chemical ligations [101]. The initial plan was to synthesize hPTH(1–84) by NCL

between Ser1-Gly38 and Ala39-Gln84. However, the requisite peptides fragments

174 and 175 were unable to be prepared by standard SPPS. Then the synthesis was

modified to iterative leucine, alanine, and valine ligations starting from peptide

segments 176, 178, 179, and 180 (Scheme 45).

The ligation substrates 181–185were synthesized from peptides 176–180, which

were prepared through Fmoc-SPPS (Scheme 46). The assembly of fragments 184

and 185was accomplished by Val ligation. The terminal Cys of 186was unveiled to

give peptide 187. An attempt of a one-pot Cys ligation between 183 with 187 and

following combination with 181 through Leu ligation failed because of the self-

cyclization of 183. Thus, peptide 178 was converted to 187 with less reactive alkyl

thioester at the C-terminal. Peptide 187was merged with 181 or 182 by Leu ligation

to afford 188 and 189, respectively. NCL of 188 with 186 in the presence of MPAA

Scheme 44 One-pot synthesis of Chimadanin. Ligation: 6.0 M Gn∙HCl, 100 mM Na2HPO4,

25 mM TCEP, pH 6.8, 2 vol.% TFET, 30�C, 2 h. Thiazolidine deprotection: 0.2 M MeONH2

(to pH 4.2) 30�C, 3 h. One-pot ligation-desulfurization: for ligation, 173, pH 6.8, 2 vol.% TFET,

30�C, 18 h; for desulfurization, 500 mM TCEP, 40 mM reduced glutathione, argon, pH 6.2,

VA-044, 37�C, 5 h; 35% total yield
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followed by metal-free desulfurization provided full-length hPTH. [Nle8,18]hPTH

(1–84) was obtained from 189 and 186 in a similar way (Scheme 47). This protocol

was demonstrated to be effective in preparing a few analogues of hPTH by varying

peptides chain.

Scheme 45 Retrosynthetic analysis of hPTH(1–84)

Scheme 46 Preparation of peptide segments: (a) HCl∙H-Trp-O(EtSS)Ph, EDC, HOOBt,

TFE/CHCl3 (1:3), 4 h; (b) TFA/TIS/H2O (95:2.5:2.5), 45 min; (c) HCl∙H-Gly-O(EtSS)Ph, EDC,
HOOBt, TFE/CHCl3 (1:3), 4 h; (d) HCl∙H-Leu-O(EtSS)Ph, EDC, HOOBt, TFE/CHCl3 (1:3), 4 h;
(e) 6.0 M Gn∙HCl, 100 mM Na2HPO4, 50 mM TCEP, pH 7.5, 15 h; (f) MeO-NH2∙HCl, pH 4, 3 h
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5 Conclusion

In the past two decades, native chemical ligation has become the most popular

method for chemoselective synthesis of polypeptides and proteins. To overcome the

restriction of NCL requiring N-terminal cysteine to promote ligation, postligation-

desulfurization involving thiol-mediated ligation followed by desulfurization has

been developed. So far, peptide ligation has been realized at amino acid sites other

than Cys, including Ala, Val, Lys, Thr, Leu, Pro, Arg, Asp, Glu, Phe, Gln, and Trp.

The design and synthesis of these thiol-containing amino acids for native chemical

ligation at non-Cys sites have been described in this review. After the target

sequence assembly was furnished, the thiol moieties of the peptides were removed

by metal-based or radical-based desulfurization. As well as the above-mentioned

amino acids, other removable thiol-based auxiliaries such as carbohydrate auxiliary

were also exploited to function as Cys surrogates, providing an effective way to the

synthesis of glycoproteins.

To improve the efficiency of postligation-desulfurization strategy, synthesis of

polypeptides and proteins in a one-pot manner was also developed. The strength of

postligation-desulfurization has been demonstrated by the synthesis of a few com-

plex polypeptides and proteins. The present drawback of the powerful postligation-

desulfurization is that most of the building blocks for ligation are not commercially

available and require tedious synthesis. It is expected that the building blocks

should become more easily available and more generally applicable. Anyhow, the

postligation-desulfurization strategy facilitates the chemical synthesis of plentiful

homogeneous polypeptides and proteins, providing great help for further investi-

gation of protein structures and functions.

Scheme 47 Synthesis of hPTH(1–84) and [Nle8,18] hPTH(1–84): (a) HCl∙H-Gly-
SCH2CH2CO2Et, EDC, HOOBt, TFE/CHCl3 (1:3), 4 h; (b) TFA/TIS/H2O (95:2.5:2.5), 45 min;

(c) 188 or 189, 6.0 M Gn∙HCl, 100 mM Na2HPO4, 50 mM TCEP, pH 7.2, 3 h; (d) 6.0 M Gn∙HCl,
300 mM Na2HPO4, 200 mMMPAA, 20 mM TCEP, pH 7.3, 3 h; (e) VA-044, tBuSH, TCEP, H2O,

MeCN, 37�C, 2 h
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Solid Phase Protein Chemical Synthesis

Laurent Raibaut, Ouafâa El Mahdi, and Oleg Melnyk

Abstract The chemical synthesis of peptides or small proteins is often an impor-

tant step in many research projects and has stimulated the development of numerous

chemical methodologies. The aim of this review is to give a substantial overview of

the solid phase methods developed for the production or purification of polypep-

tides. The solid phase peptide synthesis (SPPS) technique has facilitated consider-

ably the access to short peptides (<50 amino acids). However, its limitations for

producing large homogeneous peptides have stimulated the development of solid

phase covalent or non-covalent capture purification methods. The power of the

native chemical ligation (NCL) reaction for protein synthesis in aqueous solution

has also been adapted to the solid phase by the combination of novel linker

technologies, cysteine protection strategies and thioester or N,S-acyl shift thioester
surrogate chemistries. This review details pioneering studies and the most recent

publications related to the solid phase chemical synthesis of large peptides and

proteins.

Keywords solid phase, peptide, protein, native chemical ligation, covalent

capture, non-covalent capture
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1 Introduction

Today, synthetic peptides are intensively used in chemistry, biology, medicine and

material sciences. During the last few decades, chemical synthesis has also emerged

as an alternative to the use of recombinant techniques for accessing large peptides

or small proteins. Chemical methods are particularly useful for producing proteins

which are toxic for living systems or whose expression can be difficult. They can

also give access to proteins which are modified at specific sites by non-native

modifications such as non-coded amino acids or chemical labels such as

fluorophores. Moreover, semi or total chemical protein synthesis enables the site-

specific introduction of a large variety of post-translational modifications from the

simplest ones (acetylation [1–3], phosphorylation [3, 4], methylation [5]) to the

more complex ones such as glycosylation [6–9], ubiquitination [10–15] or

sumoylation [16, 17], which are often difficult to install using recombinant

techniques [18].

Figure 1 gives the size and the year of synthesis for a selection of peptides and

proteins produced by chemical synthesis since the establishment of the field which

began with the pioneering work of Fisher in 1901 [19]. It shows a significant

increase in the size of the peptides or proteins produced by chemical synthesis

since the introduction of the solid phase peptide synthesis method by Merrifield in

1963 [20] (SPPS, Fig. 1, blue triangles) and of the native chemical ligation reaction

originated by Kent and coworkers in 1994 [21] (NCL, Fig. 1, green squares). This

trend has also been sustained by the development of numerous synthetic method-

ologies and stimulated by the need to access large polypeptides in various fields of

research and particularly in biology [21, 22].

Small synthetic peptides are usually produced using the SPPS technique [20],

which relies on the iterative coupling of protected amino acids to a solid support.

SPPS was automated soon after its discovery [23–25]. The potential of SPPS to

provide access to small functional proteins was demonstrated in 1969 with the

production of an enzymatically active ribonuclease A enzyme composed of

124 amino acids [26, 27]. Today, Fmoc-SPPS is the most popular technique for

producing peptides [28–30]. It has benefited from many improvements such as the

design of powerful activating reagents [31], efficient backbone [32] or side-chain
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protecting groups [33], various amino acid building blocks which minimize side

reactions or the aggregation of the growing peptide chain such as pseudo-prolines

[34–36] or isoacyldipeptides [37–44]. Last, but not least, various powerful linker

strategies and solid supports have been designed to facilitate the solid phase peptide

elongation step and cleavage procedure [45–47]. All these optimizations can give

access to peptides composed of up to 50–60 amino acids. Importantly, and as shown

in Fig. 1 (blue triangles), extensive optimization of the SPPS protocols can some-

times enable the synthesis of small proteins (>100 AA). The power of SPPS for

accessing large peptides is discussed in the second section of this review.

As already discussed above, the synthesis of large peptides (>50 amino acids) is

often challenging, despite the numerous improvements of the SPPS method. One

obvious reason for this is the inevitable decrease in the yield of the target polypep-

tide as the number of chemical steps increases, often caused by incomplete cou-

plings and thus the accumulation of capped truncated peptide segments on the solid

phase. Major mass losses also occur during the purification process because of the

similar chromatographic behaviours of the target polypeptide and of the main

impurities, i.e. the capped truncated peptide segments. This observation led to the

development of several useful purification methods based on a selective capture

step by a complementary solid support (Figs. 2, 3, 4 and 5, see section 3). These

methods, which rely on the selective modification of the α-amino group of the target
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peptide prior to its detachment from the solid support (Fig. 2, see section 3), are

detailed in the third section of this review.

Note that the solid phase fragment condensation (SPFC) approach, which relies

on the iterative coupling of protected peptide segments on a solid support, is an

alternative to SPPS for accessing long peptides. Importantly, the SPFC technique

simplifies the final purification step because the protected peptide segments are

purified before use. However, the widespread application of this method was

limited by the difficulty in synthesizing, purifying and solubilizing protected

peptide segments and by the potential racemization of the C-terminal residue of

the peptide segments during the coupling steps. The SPFC strategy is not discussed

in detail here because of the availability of excellent reviews on this topic

[48, 49]. Nevertheless, important applications of the SPFC method must be

highlighted, such as the total synthesis of prothymosin-α (109 amino acids, see

entry 16 of Table 1) [74] and of β-amyloid peptide 1–42 [108].

Today, the chemical synthesis of small proteins (>60–70 AA) is usually

performed in water by ligating chemoselectively short unprotected peptide seg-

ments (Fig. 1, green squares), which can be produced in a pure form using SPPS and

high resolutive purification techniques such as HPLC [22, 109]. Alternately, the

peptide segments can be produced using living systems, in this case with virtually

no limit to the number of amino acid residues composing the peptide chain. The

peptide segments are usually ligated using chemoselective amide bond-forming

reactions, which must proceed efficiently in water to enable the solubilisation of the

unprotected peptide segments [21, 110–114]. Among these, the NCL reaction [21],

which involves the reaction of a C-terminal peptide thioester with an N-terminal

cysteinyl peptide, is undoubtedly the most popular chemoselective amide bond-

forming reaction for protein total synthesis [115]. The concepts underlying NCL

were pioneered by Brenner [116] and Wieland [117] in the 1950s. Another impor-

tant tool is Expressed Protein Ligation (EPL) [118–120], which is an extension of

the NCL reaction to the use of recombinant protein thioesters.

For a given protein, the design of the synthetic strategy – and in particular the

choice of the ligation junctions and the order of assembly of the different peptide

segments – is dictated by many factors. Among these, we can mention the presence

and location of specific residues such as cysteines (or alanines after desulfuriza-

tion), the nature of the junctions, the ease of synthesis of the different segments,

their solubility and, of course, the potential occurrence of side-reactions. For these

reasons, the chemical synthesis of proteins often requires the chemical ligation of

three or more than three peptide segments, either sequentially [121] or by combin-

ing sequential and convergent [122–124] assembly schemes. In any case, the

assembly strategies require intermediate isolation or purification steps to change

the solvent systems, to remove some reagents and to avoid the accumulation of

unreacted peptide segments and side-products. Not surprisingly, these isolation

steps often result in significant material losses, especially when the intermediates

are poorly soluble.

To overcome these limitations, much effort has been focussed on the design

of one-pot three peptide segments sequential assembly methods [17, 109, 122,

125–127]. For the assembly of more than three peptide segments, a potential
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solution is to combine the power of the solid phase approach and of the NCL

reaction. The use of a solid phase enables separation of the growing peptide chain

from the excess of reagents and unreacted peptide segment by simple washing

steps. Moreover, the solid phase synthesis of proteins can have many other advan-

tages over the solution phase approach, reminiscent of the advantages of the SPPS

in comparison with the peptide synthesis in solution. In particular, the use of a water

compatible and hydrophilic solid support can improve the solvation of the peptide

chain by imposing its solvation properties onto the peptidyl resin, a point which is

important for a good accessibility of the reactive ends and for the efficiency of the

ligation reactions. In addition, excess of the reagents and of the peptide segments

can potentially be used, even if for the latter case the associated cost can be limiting.

Last, but not least, the solid phase approach makes it possible to automate the

process. The potential of the solid phase approach for the chemical synthesis of

proteins by ligating chemoselectively unprotected peptide segments is discussed in

the fourth section of this review.

2 Chemical Protein Synthesis by Stepwise Solid Phase

Peptide Synthesis

The seminal work of Merrifield published in 1963 described the synthesis of a

tetrapeptide using the Boc SPPS method (entry 1, Table 1). Soon after its discovery

the potential of SPPS for accessing small proteins was demonstrated by the

synthesis of bovine insulin [53] in 1966 (entry 3, Table 1) and of ribonuclease A

[26, 55] in 1969 (RNAse A, entry 5, Table 1). The work on RNAse A is outstanding

in several respects. It demonstrated the capacity of SPPS to yield large polypep-

tides, but also to contribute to the understanding of important fundamental phe-

nomena, such as the mechanism of protein folding. Indeed, over the same period

several studies showed that reduced and denatured RNAse A of biological origin

could be refolded into an active enzyme by air oxidation, suggesting that the

primary structure of a protein determines its tertiary structure [128–132]. However,

and as discussed by Merrifield in his seminal paper [26], “the conclusion that this

response was determined solely by the primary structure of the protein depended on

establishing that the unfolded chain had a completely random form and had lost all

of its secondary and tertiary structure”, as some remaining secondary or tertiary

structure from biological origin might serve as a nucleus for the refolding of the

enzyme. As no pre-existing conformation of biological origin was present in the

synthetic RNAse polypeptide, the reconstitution of an active enzyme by total

synthesis showed that the information contained within the primary structure was

sufficient to obtain a folded and functional enzyme.

The SPPS of peptides relies on repetitive deprotection and coupling steps which

take place on a solid support. Performing all the chemical reactions on a solid

support enables the use of a large excess of reagents for optimizing the yields of
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peptide bond formation. The reagents are subsequently removed by performing

simple washings procedures. The potential of the solid phase method for automat-

ing the synthesis of peptides was illustrated soon after its introduction in 1963 by

the automated SPPS of bradykinin in 1965 (entry 2, Table 1) [23–25].

Since that time, a huge amount of work has been devoted to the optimization of

the SPPS method. Several significant advances in the field of SPPS are mentioned

in Table 1. These include the development of efficient carboxylic acid activators

and coupling additives such as HOBt [60], HBTU [103], BOP or PyBOP [103, 104]

and HATU [94–96]. The improvement of Boc SPPS by the development of

anhydrous HF procedures for the final deprotection and cleavage steps must be

mentioned (HF method [54]: entry 4 of Table 1, low–high HF method [62–64]:

entry 11 of Table 1). Significant advances were the introduction of the Fmoc

protecting group by Carpino and coworkers in 1970 [133–135] and the develop-

ment of the Fmoc SPPS method by Sheppard and coworkers in 1978 [28], now the

most popular method for the solid phase synthesis of peptides (entry 7, Table 1).

The solid supports have also been optimized to minimize the aggregation of the

protected peptide chain during the peptide elongation step and to enable the

swelling of the peptidyl resin in a large variety of organic solvents. Polyethylene

glycol-based solid supports such as PEGA [136], Tentagel [137] or ChemMatrix

[16, 101] resins are particularly useful for accessing large polypeptides. Other

strategies for minimizing the aggregation of the growing peptide chain consist of

incorporating pseudo-prolines [34–36] at Ser, Thr or Cys positions (entries 30 and

34, Table 1), and/or Hmb [32, 88] or DMB [32, 106] protecting groups for the

peptide backbone (entries 25 and 34, Table 1). Both types of modifications reduce

the number of NH amide groups within the peptidyl resin, which can induce the

aggregation of the protected peptide through hydrogen bond formation. Pseudo-

proline residues also enable the formation of turns in the peptide chain by adopting

the cis peptide bond conformation, thereby preventing the aggregation of the

peptide which often occurs through β-sheet formation (composed of all trans
peptide bonds). The recent application of pseudo-proline and DMB backbone

modifications for the Fmoc SPPS of ubiquitin analogs illustrates the power of

these approaches for the production of large peptides (entry 34, Table 1).

3 Purification by Selective Capture on a Solid Support

The numerous improvements of SPPS since its introduction in 1963 make possible

the stepwise synthesis of large polypeptides or small proteins the length of which

can exceed 80–100 amino acids. Nevertheless, these achievements (some of which

are listed in Table 1) must be considered as exceptions, because the synthesis of

peptides composed of more than 50 amino acids is often challenging. Besides the

yield of the target polypeptide which decreases inevitably with the number of

coupling steps, a significant source of mass loss is the difficulty in separating the

target polypeptide from the large number of side-products formed during the
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synthesis. For example, if a capping step is applied, these are mainly capped

peptides formed during the peptide elongation step as a consequence of incomplete

couplings.

Several strategies were developed to simplify the purification step. To find a

needle in a haystack, the α-amino group of the target polypeptide is first derivatized

by a modifier before its deprotection and cleavage from the solid support (Fig. 2).

For this, the peptidyl resin must be capped carefully after each coupling step to

ensure that only the target and full-length peptide features a free α-amino group.

The modifier is used subsequently for capturing the target peptide by selective

immobilization on a solid support. Two strategies are possible, depending on

whether the immobilization involves the formation of a covalent bond (Figs. 3

and 4, Tables 2 and 3) or not (Fig. 5, Table 4). The capped and truncated peptides

are removed after the capture step by performing simple washing procedures or a

chromatographic separation. Finally, the detachment of the peptide from the solid

support and the cleavage of the bond between the modifier and the peptide yield the

target peptide in solution.

3.1 Purification by Covalent Capture on a Solid Support

The purification by covalent capture on a solid phase relies on the selection of a

chemoselective and site-specific ligation method between the solid support and the

modified peptide (Fig. 3). Merrifield and coworkers pioneered the field in 1976 by
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Fig. 2 The SPPS technique results in the formation of truncated and capped peptide contaminants

(red) which have to be separated from the target peptide (green). The covalent or non-covalent

capture purification methods require that the target peptide is modified on its N-terminus prior to

the peptide deprotection and cleavage steps
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using the Cys-Met dipeptide modifier (entry 1, Table 2), which can be easily

introduced during the SPPS elongation step. The cysteine thiol was used to capture

the target peptide on an organomercurial agarose solid support through the forma-

tion of an Hg–S bond. Treatment of the peptidyl resin with an excess of cysteine

resulted in the displacement and cleavage of the Hg–S bond, leading to the

detachment of the peptide from the solid support. In the last step, the Cys�Met

dipeptide modifier was removed in solution by the selective cleavage of the Met-

Xaa peptide bond with cyanogen bromide. Two years later, Lindeberg and

coworkers applied the same modifier to the immobilization of a synthetic peptide

using the thiol-disulfide exchange reaction, a strategy which avoids the use of the

toxic organomercurial agarose solid support (entry 2, Table 2) [139].

The ease of producing peptides featuring a free N-terminal cysteine residue by

the SPPS stimulated the use of chemoselective ligation methods specific for the

β-aminothiol group of cysteine for the capture step. A great advantage of these
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Fig. 3 In the covalent

capture purification method,

the target peptide is

captured chemoselectively

by a complementary

functionalized solid support

and then released in solution

in a purified form
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approaches is their compatibility with the presence of internal cysteine residues. In

particular, thiazolidine [141, 184] ligation was used for capturing N-terminal

cysteinyl peptides with an aldehyde solid support (entry 3, Table 2) [142]. The

peptide was released subsequently by reversing the thiazolidine in the presence of

O-methylhydroxylamine. The method has been extended to peptides featuring any

kind of N-terminal amino acid residue by inserting a β-amino alcohol linker

between the cysteine and the target peptide (entry 4, Table 2). In this case, the

removal of the modifier required the oxidative cleavage of the β-amino alcohol

linker with sodium periodate, a method reminiscent of the synthesis of α-oxo
aldehyde peptides by oxidative cleavage of N-terminal serine or threonine residues

with periodate (for reviews see [168, 185]) [146–150].

The rate of oxidative cleavage of β-amino alcohols is 102–104 times that of the

vicinal diol analogues in sugar series [147]. Therefore, this method is potentially

compatible with the purification of glycopeptides. Periodate oxidation of β-amino

alcohols is a fast reaction. However, some amino acids such as cysteine [186],

tryptophan [187], tyrosine [187, 188] and particularly methionine [150, 188, 189]

can also be oxidized by periodate, thereby potentially limiting the scope of the

method.

Other studies used non-oxidative methods to detach the captured peptide from

the solid support. In particular, several linkers have been developed which are

reminiscent of the methylsulfonylethyloxycarbonyl group (Msc) originally devel-

oped in 1975 by Tesser and coworkers (entries 5–7, Table 2) [190]. In these

approaches, the ethylsulfonyl-2-ethyloxycarbonyl (Esec) linker connects the chem-

ical group used for the capture step to the N-terminal amino acid of the target

peptide. They differ in the chemistry used for the immobilization step. The method

described in entry 5 of Table 2 relies on the formation of a thioether bond by

reaction of a thiol modifier with an iodoacetamide-functionalized solid support. The

chemoselective formation of an oxime bond is used in entry 6 of Table 2, whereas

the copper(I)-catalyzed alkyne azide cycloaddition reaction (CuAAC) [155, 156] is

used in entry 7 of Table 2. At the end, the target peptide is released in solution by

exposing the peptidyl resin to an aqueous base, which triggers a β-elimination

process. Note that the cleavage of the Esec linker requires strong basic conditions

(pH >11). Moreover, the alkylation of cysteine thiols by the vinylsulfone formed

by β-elimination of the Esec moiety has been mentioned as a potential

limitation [191].

The method described in entry 8 of Table 2 makes use of oxime ligation for the

capture step as in the work of Canne and coworkers (see entry 6, Table 2) [157]. In

this case, the cleavage of the amide bond between the modifier and the target

peptide relies on the work of Dixon and coworkers on the selective transamination

of the free α-amino group in the presence of glyoxylic acid and catalytic nickel

(II) ions [158–164]. The intermediate α-keto acyl moiety produced by transamina-

tion of the N-terminal lysine residue is removed subsequently by reaction with

o-phenylenediamine or related derivatives [159]. The great interest of this method

is the mildness of the experimental conditions and its compatibility with large

peptides or proteins. However, the authors mentioned that the transamination
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reaction in the presence of glyoxylic acid and nickel(II) used in catalytic amounts

was incomplete and required stoichiometric amounts of the metal ion to proceed

efficiently.

The method described in entry 9 of Table 2 was developed with the aim of

purifying hydrophobic peptides such as protected peptide segments [166]. The

capture step proceeds in an organic solvent and relies on chemoselective thioether

ligation. The structure of the modifier is reminiscent of the benzyloxycarbonyl

protecting group and is removed in concentrated TFA in the presence of appropriate

scavengers.

The last method described in entry 10 of Table 2 relies on the polymerization of

an acrylamide modifier, which is attached to the N-terminus of the peptide through

a Wang linker [167]. Because the peptidyl resin is formed by polymerization of the

modified peptide, this method does not correspond exactly to the general strategy

depicted in Fig. 3. To be applicable, the modified peptide must be produced in a

protected form, otherwise the acrylamide function might react with the nucleophilic

groups naturally present on polypeptides. The target peptide was detached subse-

quently from the polyacrylamide polymer by treatment with trifluoroacetic acid

(TFA) in the presence of the appropriate scavengers.

3.2 Purification by Covalent Internal Resin Capture

For all the examples listed in Table 2, the peptide was assembled on a solid support

by SPPS, released in solution together with the capped and truncated contaminants

and then purified by covalent capture using another solid support. This strategy

usually requires two different solid supports because the SPPS is carried out in

organic solvents, while the covalent capture step is usually performed in water

using deprotected peptides. Another limitation of this strategy resides in the need to

set up an efficient chemoselective capture step/release procedure to recover the

target peptide at the end. A way to simplify the overall process is to keep the

protected peptide produced by SPPS on the resin for introducing the modifier and

performing the covalent capture step on the same solid support (Fig. 4). In this case,

various chemical reactions operating in organic solvents can potentially be used for

linking the modifier to the solid support because chemoselectivity is no longer

mandatory. In practice, all the examples published to date rely on the formation of

an amide bond between selectively deprotected amine and carboxylic acid func-

tionalities (Table 3). It should be noted that the covalent capture step results in this

case in the formation of a tail-to-head cyclic peptide. The selective cleavage of the

linker between the C-terminus and the resin, i.e. linker 1, results in the reversal of

the peptide chain and in the removal of the capped peptides. The cleavage of the

second linker formed in the capture step between the N-terminus and the solid

support finally yields the purified peptide in solution.

The principle of the method was pioneered in the early 1990s by several

developments in the field of combinatorial peptide synthesis [192]. The production
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of on-bead peptide libraries enables one to take advantage of the one-bead

one-compound concept [193, 194] and to use various screening formats for peptide

selection. However, for peptides produced by the classical SPPS method, only the

N-terminus is available for binding as the C-terminus is linked to the solid support.

Moreover, peptides modified at the C-terminus have many applications, for exam-

ple as substrates or inhibitors of proteolytic enzymes. The production of on-bead

peptide libraries displaying a free C-terminus or a C-terminal modification requires

the reversal of the peptide orientation after the SPPS. Pioneering studies in this

direction were reported by Lebl [195, 196], Holmes [197] and Kania [198]. In these

studies, the linker formed in the cyclization step (linker 2 in Fig. 4) was stable in the

conditions used for deprotecting the peptide chain, because the goal was to keep the

peptide attached to the solid phase for screening purposes.

The potential of the method for the self-purification of peptides produced by

SPPS was reported in 1997 by Bradley and coworkers (entry 1, Table 3) [169,

170]. In this work, a lysine residue was used as the starting point of the synthesis.
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Fig. 4 The target peptide is synthesized by SPPS on the solid support using linker 1 as a starting

point. It is subsequently cyclized by reaction of the modifier introduced on the N-terminus with the

functional handle F1present on the solid support (formation of linker 2). This step is usually

preceded by the selective activation of the modifier and of F1 group (not shown for clarity). The
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The ε-amino group was derivatized by the highly acid labile 4-(4-hydroxymethyl-3-

methoxyphenoxy) butanoic acid (HMPB) linker which plays the role of linker 1 in

Fig. 4. The N-terminus of the peptidyl resin was modified by a handle reminiscent

of the Wang linker. Then the allylcarbamate and allyl ester protecting groups used

for masking the α-amino group of the lysine directly appended to the solid support

and the carboxylic acid function of the modifier, respectively, were removed

simultaneously using [Pd(PPh3)] in the presence of excess dimedone. The cyclative

lactamization step was carried out with PyBrop/DIEA/4-dimethylaminopyridine.

The HMPB linker was cleaved first with 1% TFA, thereby allowing the reversal of

the peptide chain with formation of a C-terminal carboxylic acid function. In the

original work [169], the resin was further treated with neat TFA to release the

deprotected and purified peptide in solution. Later on, Bradley and coworkers

exploited the C-terminal carboxylic acid function of the reverted and protected

peptidyl resin to produce various C-terminal amides derived from 4-tert-butoxycar-
bonylaminobutylamine, serinol(OBn), benzylamine and p-nitroaniline [170]. The

activation of the C-terminal carboxylic acid function was carried out using PyBrop

in the presence of DIEA. Of course, in this case a major issue is the potential

racemization of the C-terminal residue through 5(4H )-oxazolone formation, which

was found to be less than 10%. However, a detailed characterization of the

C-terminal peptide amides produced in this study in regard to the racemization

problem was not reported.

More recently, the concept of internal resin capture was applied to the synthesis

of C-terminal peptide thioesters, which are important building blocks for protein

total synthesis using NCL reaction (entries 2 and 3, Table 3). The synthesis of large

peptide thioesters using Fmoc SPPS is a recognized limitation to the chemical

synthesis of large proteins and has stimulated numerous developments [199]. One

important contribution to the field is certainly the application of the safety-catch

sulfonamide linker (Kenner linker [200–202]) to the synthesis of peptide thioesters

[203–206].

The Kenner linker allows the assembly of the peptide chain by standard Fmoc

SPPS. According to this method, the protected peptide chain is C-terminally linked

to the solid support through an N-acylsulfonamide bond, which is stable in the

presence of nucleophiles such as piperidine. Upon alkylation, the N-alkyl-N-
acylsulfonamide can be displaced by a variety of nucleophiles such as hydroxide

ion, amines or thiols. The application of the Kenner linker to the synthesis of

peptide thioesters by displacement of the N-alkyl-N-acylsulfonamide with a nucle-

ophilic thiol has been reported independently by the Pessi [203] and Bertozzi [204]

groups in 1999. The protected peptide thioesters detached from the solid support

during the thiolysis step were subsequently deprotected in TFA.

In the example described in entries 2 and 3 of Table 3, the Kenner linker plays

the role of linker 1 (Fig. 4), meaning that the reversal of the peptide chain and the

removal of the truncated peptides occur during the thiolysis step leading to the

formation of a C-terminal thioester functionality [171, 172]. In both cases, linker 2

is reminiscent of the Wang linker which is labile in concentrated TFA. The

difference between entries 2 and 3 of Table 3 resides in the strategy used for
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alkylating and activating the N-acylsulfonamide moiety. In entry 2 of Table 3 [171],

the N-acyl sulfonamide was alkylated with the allyl ester of iodoacetic acid. The

allyl ester was deprotected and the resulting N-carboxymethyl group was used

subsequently for lactam formation. At the end, several atoms of the alkylating

reagent are incorporated in linker 2 during the cyclization process. In the second

approach (entry 3, Table 3) [172], the alkylation and lactamization steps are

disconnected. This allows a simplification of the method and the possibility of

using milder alkylating reagents such as trimethylsilyldiazomethane for the activa-

tion of the N-acyl sulfonamide linker.

Internal resin capture strategies have a great potential. However, the paucity of

reports in the field highlights the difficulty in setting up internal resin capture/self-

purification strategies which require the combination of orthogonal linker and

protecting group strategies and the performance of a cyclization step on the solid

phase.

3.3 Purification by Selective and Non-Covalent Adsorption
on a Solid Support

The preceding section introduced the different methods developed for the purifica-

tion of peptides by covalent capture on a solid support. An alternative is to use a

modifier which induces significant changes in the physico-chemical or binding

properties of the modified peptide relative to the capped peptide contaminants. In

this case, the modified peptide is trapped selectively by a complementary solid

support without involvement of a covalent bond and separated from the impurities

by performing simple washing steps (method A, Fig. 5) or by using resolutive

chromatographic methods (method B, Fig. 5).

Here, again, Merrifield and coworkers pioneered the field in 1978 by developing

the 9-(2-sulfo)fluorenylmethyloxycarbonyl group (SulFmoc, entry 1, Table 4).[58]

The SulFmoc group is a modification of the Fmoc amino-protecting group. It is thus

removed in the presence of a base such as piperidine. The negatively charged

sulfonate group is exploited for separating the target peptide from impurities

using ion-exchange chromatography. Merrifield illustrated the method with short

peptides. Its usefulness for the purification of large peptides has not been demon-

strated and may be complicated if negatively charged residues (Asp, Glu) are

present both in the target peptide and in the capped peptide segments.

Another modifier derived from the Fmoc group is the tetrabenzo[a,c,g,i]

fluorenyl-17-methoxycarbonyl (TbFmoc) group developed by Ramage and

coworkers in the 1990s (entries 2 and 3, Table 4) [173]. The TbFmoc group is

highly hydrophobic and enables the isolation of the modified target peptide by

adsorption on porous graphitized carbon (PGC, entry 2, Table 4) or by RP-HPLC

(entry 3, Table 4). In the former case, the target peptide is released from the PGC

solid support by treatment with piperidine. In the latter case, the Tbfmoc-modified
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peptide is first purified by RP-HPLC and deprotected subsequently in aqueous

solution at pH 8.5.

The combination of the Fmoc group and of biotin-avidin technology led to the

development of the BiotFmoc group described at entry 4 of Table 4 [174]. The

biotinylated peptide was captured specifically using avidin agarose beads. The

target peptide was released subsequently in solution by treating the solid support

with aqueous triethylamine.

Another amine protecting group which stimulated the development of several

non-covalent capture purification methods is the 1-(4,4-dimethyl-2,6-dioxocyclo-

hexylidene)ethyl (Dde) group introduced by Bycroft and coworkers in 1993 [207,

208]. As with the examples derived from the Fmoc group, the Dde group was

modified by a hydrophobic tail (entry 5, Table 4) or a biotin moiety (entry 6,

Table 4) to enable the isolation of the target peptide using RP-HPLC or avidin

technology, respectively [176]. The last example based on the Dde group exploits

the affinity of a 1,10-phenanthroline handle for metal ions for the separation of the

modified target peptide by immobilized-metal affinity chromatography (IMAC,

entry 7, Table 4) [177]. In any case, the removal of the Dde-based modifiers was

performed in the presence of aqueous hydrazine. It should be noted that the Dde

group cannot be used for the protection of secondary amines. Consequently, the

Dde-based non-covalent purification strategies discussed above cannot be used for

the purification of peptides featuring an N-terminal proline residue.
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Fig. 5 Purification of peptides by selective adsorption on a solid support
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The example described at entry 8 of Table 4 combines the biotin-avidin tech-

nology and the usefulness of the Msc group for the protection of the amino group

[180]. Msc-based strategies have attracted a lot of attention for the purification

of peptides by covalent capture as already discussed in the previous section (see

Esec-based linkers, entries 5–7, Table 2). In this case, the capture of the biotinylated

peptide by avidin beads was followed by the treatment of the solid support with

ammonia, which triggered the cleavage of the Esec linker and the separation of the

target peptide from the solid support.

Note that the methods based on the Fmoc, Dde or Msc protecting groups require

basic conditions and/or strong nucleophiles for removing the modifier. The photo-

chemical method described at entry 9 of Table 4 was developed with the aim of

generating the target peptide using very mild conditions [181]. The modifier is

derived from the 1-(2-nitrophenyl)ethyloxycarbonyl (NPEOC) photolabile amine

protecting group [209, 210], which is usually cleaved upon irradiation at 365 nm. In

the example described at entry 9 of Table 4, the NPEOC scaffold was decorated

with a biotin handle to enable the capture of the target peptide using avidin

technology.

Another method, described at entry 10 of Table 4, makes use of the polyhistidine

tag, which is often used for the purification of peptides or proteins using IMAC

technology. In this work, the His6 tag was separated from the target peptide by a

glycyl–glycyl-methionyl tripeptide linker, which was cleaved by treatment with

cyanogen bromide using a method similar to that developed by Merrifield and

coworkers (see entry 1, Table 2) [182].

The last example described in Table 4 is a case apart because the target peptide is

N-terminally modified by a non-native glycolyl group [183]. The ester bond linking

the glycolyl residue to the biotin handle is cleaved at pH 9.5 after performing the

capture step with avidin beads.

4 Chemical Protein Synthesis by the Solid Phase Sequential

Chemoselective Ligation of Unprotected Peptide

Segments

4.1 Advantages of the Solid Phase Approach

This section discusses the emergence of novel chemical methods and strategies for

the assembly of large polypeptides by the solid phase sequential chemoselective

ligation of unprotected peptides segments. Up to now, the majority of proteins

produced by chemical synthesis were assembled in solution using the NCL reaction

(see Fig. 1, green squares). In most cases, small proteins with appropriately spaced

cysteine residues were assembled by ligating two or three peptide segments

sequentially. Efficient one-pot three peptide segments assembly procedures work-

ing either in the N-to-C or C-to-N direction have been developed for this purpose
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[109]. They allow one isolation step to be skipped, thus saving time and yield. With

some exceptions [121], the assembly of more than three peptide segments is usually

carried out using convergent approaches, the aim of which is to minimize the

number of chemical and isolation steps needed to obtain the target protein [122–124].

The synthesis of large proteins inevitably requires a significant number of

chemical steps. Besides the chemoselective ligations themselves, the synthetic

schemes can include several activation steps (e.g. for converting latent thioesters

into active thioesters), deprotection steps (for example for unmasking cysteine

residues) or a desulfurization step to convert cysteines or other thiol-modified

amino acids into proteinogenic residues. The experimental conditions used for a

given chemical transformation are frequently poorly compatible with the next one.

Consequently, a large number of chemical transformations often imply several

intermediate isolation steps. Moreover, each chemical or isolation step can be

dramatically complicated by the poor solubility of the segments or their tendency

to form aggregates.

Not surprisingly, and stimulated by the numerous advantages of the SPPS over

solution methods for peptide synthesis, performing sequential NCLs on a solid

phase was early viewed as a potential solution to the limitations encountered in

solution [211–213]. As already discussed in the introduction, performing the

synthesis on a solid phase allows the removal of excess reagents by simple washing

and filtration steps. The immobilized peptide cannot precipitate and, by adjusting

the loading of the solid support, the aggregation of the peptide can be minimized to

ensure the highest accessibility of the reactive sites. The solid support matrix can

sometimes assist the folding of the immobilized polypeptide [213–215]. Moreover,

the use of a solid support opens the possibility to automate the process, and

therefore to produce chemical protein libraries in different formats with the highest

reliability. These proteins can be assayed in solution or still attached to the solid

support [213]. In principle, most of the methods which were developed for gener-

ating combinatorial peptide libraries by SPPS can be extended to the stepwise

ligation of unprotected peptide segments on a solid phase, and thus potentially be

used for producing chemical protein libraries. Given the high potential of the solid

phase approach for protein synthesis, it is surprising to see that the number of papers

published in this area can be counted on the fingers of one hand (pink diamonds in

Fig. 1).

The first reason which might explain the reluctance to start a solid phase

approach is that this method is best suited for the assembly of at least four

peptide segments. This is because several highly efficient one-pot three peptide

segment strategies working either in the C-to-N [125, 216, 217] or N-to-C [17, 122,

218–220] direction have been developed in solution. The solid phase approach is

thus best adapted to highly challenging targets.

The second reason which can be invoked to explain the paucity of reports in the

field is the difficulty in developing efficient and simple linker methodologies for

attaching the first unprotected peptide segment to the solid support. This point is

discussed in a recent report from Jbara and coworkers [221]. Indeed, the method

used to immobilize the first segment must be compatible with the native functional
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groups present on the peptide segment, but also with those introduced for extending

the peptide chain using NCL such as thioester group or thioester surrogates.

Moreover, the resulting linker must be stable during the elongation steps and enable

the detachment of the target peptide under mild conditions. The paucity of reports

in the field is also probably because of the difficulty in adapting the methods

developed for protein synthesis in solution to the solid phase.

4.2 Solid Phase Protein Synthesis in the C-to-N Direction

Most of the protein total syntheses in solution reported to date were achieved by the

sequential NCL reaction of unprotected peptide segments in the C-to-N direction

[109]. Not surpringly, the majority of the solid phase approaches published up to

now performed the assembly in the C-to-N direction too. Note that the solid phase

approach has been used successfully for the semi-synthesis of Crk-II protein in the

C-to-N direction [222]. Although of high significance, this work is not discussed in

detail in this review, which is focused on proteins produced by using chemical

methods only. Likewise, the Raines’s solid phase approach to the semisynthesis of

RNAse is not discussed here, although of importance because it is one of the rare

examples combining two orthogonal native peptide ligation methods, i.e. NCL and

the traceless Staudinger ligation [112, 113], as well as chemical and biological

sources for the individual peptide segments [223].

4.2.1 N-Terminal Cysteine Protection Strategies

The assembly of the peptide chain in the C-to-N direction requires temporary

protection for N-terminal cysteines and the use of C-terminal thioester peptide

segments (Fig. 6). If N-terminal cysteines are left unprotected, the incoming peptide

segment can potentially cyclize or oligomerize and thus lead to a loss of expensive

material, to incomplete couplings or, even worse, to the insertion of multiple copies

of the peptide segments into the growing polypeptide chain. A large variety of

protecting groups (PG) have been designed for cysteine mainly to be used in SPPS

[33]. They are usually removed in organic solvents using specific reagents or during

the final cleavage and deprotection step in strong acids such as anhydrous HF or

TFA. In contrast, the cysteine protecting groups needed for the C-to-N elongation

strategies must be removed rapidly in aqueous solution using mild conditions and,

if possible, non-toxic reagents. Such protecting groups were not available when the

first solid phase NCL-based sequential ligation approaches were attempted in the

late 1990s.

The acetamidomethyl (Acm) group is a classical protecting group for cysteine

thiol, which can be removed in the presence of mercury or silver salts and an excess

of a thiol such as β-mercaptoethanol or dithiothreitol (Fig. 7). This protection

strategy has been used successfully by several groups for protein synthesis in
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solution [224–226]. Not surprisingly, the first report of a C-to-N NCL-based solid

phase elongation process also used Acm protecting group for the cysteine thiol

(Fig. 8a) [212]. Soon after the seminal report of Canne and coworkers in 1999, Brik

and coworkers reported the solid phase synthesis of vMIP-I-(1–71) chemokine by a

three-segment approach using Acm protection strategy too (Fig. 8b) [211]. The

authors also evaluated the Msc amine protecting group which, as discussed several

times in this review, is removed with aqueous base at pH ~11.

The harsh conditions required for removing Acm or Msc protecting groups have

stimulated the development of other methods such as thiazolidine protection (Thz),

which was introduced in 2004 (Fig. 7) [125]. It is perhaps today the most popular

protection strategy for synthesis of proteins in solution using NCL [8, 228]. Part of

this success is because of the ease of introducing Boc-protected 1,3-thiazolidine-4-

R-carboxylic acid during the last stage of SPPS using either Boc or Fmoc SPPS

protocols, but also the mild conditions for its removal which is carried out at pH 4 in

the presence of O-methylhydroxylamine. The potential of Thz for protein total

synthesis was first evaluated in solution by the total synthesis of [V15A] crambin

[125]. This protein was also produced by a mixed solution-solid phase approach as

shown in Fig. 9a [215]. In this example, the first two chemical steps – the ligation of

crambin peptide segments (16–31) and (32–46)-His6 and the subsequent unmasking

N C

Cys-segment
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CN
Cys-segment-Cys-segment

PG-Cys-segment-COSR NCL

C-to-N

- PG
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elongation
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Fig. 6 The C-to-N solid phase sequential NCL strategy requires the temporary protection of

N-terminal cysteine residues (PG protecting group)
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of the N-terminal cysteine – were performed in solution. The presence of His6 tag

on the C-terminus of the crambin (16–46)-His6 intermediate enabled its selective

capture and purification by Ni-NTA affinity chromatography. The product of the

second NCL reaction between crambin thioester peptide (1–15, V15A) and crambin

(16–46)-His6 was captured similarly and folded on the Ni-NTA agarose gel.

Overall, the isolation of His6 tagged products by Ni-NTA affinity column purifica-

tion enabled a significant reduction in the handling losses and the time required to

produce the target protein.

The first application of Thz protection strategy to the C-to-N solid phase

chemical synthesis of a protein was reported in 2006 by Johnson and coworkers

(Fig. 9b) [213]. In this work, the 28-amino acid trypsin inhibitor EETI-II was

assembled in 3 pieces. All the chemical steps were performed on a water-

compatible resin. After assembly, the peptide was folded and assayed, still attached

to the resin. Finally, a very recent application of Thz protection strategy to the solid

phase synthesis of histone H2B was reported by Jbara and coworkers [221].

4.2.2 Linker Strategies for C-to-N Solid Phase Elongation Strategies

The recent publication of Jbara and coworkers discusses the difficulty in designing

efficient linker strategies for assembling unprotected peptide segments on a solid

support as already mentioned at the beginning of this section [221]. This is a serious

bottleneck for the development of solid phase methods in the field of protein total

synthesis. The seminal work of Kent’s group relied on oxime ligation for attaching

the first segment to the solid support (Fig. 8a) [212]. An ester linker was used for

allowing the cleavage of the peptide from the resin using highly acidic conditions.

Alternately, Dawson’s group used a highly stable, safety catch amide linker (SCAL

[211]) originally developed by Patek and coworkers (Fig. 8b) [232]. SCAL linker is

reminiscent of the benzhydrylamine-type linkers which are very popular for peptide

amide synthesis using SPPS [233]. The benzhydrylamine core of the SCAL linker is

substituted by electron-withdrawing methylsulfinyl groups. SCAL linker is highly

stable in strong acids such as TFA or anhydrous HF. It is also stable in aqueous base

(pH 13) or in the presence of Hg(OAc)2, which are used for removing Msc or Acm

cysteine protecting groups, respectively. The release of the peptide chain from the

solid support proceeds through the reduction of the methylsulfinyl groups into

methylsulfanyl moieties by treatment with SiCl4/TFA.

Jbara and coworkers proposed a simple linker strategy consisting of a cysteine

residue attached to a Rink linker (Fig. 10) [221]. The cysteine residue was intro-

duced by coupling Fmoc-protected 1,3-thiazolidine-4-R-carboxylic acid to the Rink
PEGA solid support. The solid support was treated with piperidine to remove the

Fmoc group and then with O-methylhydroxylamine at pH 4 in the presence of

TCEP to unmask the cysteine residue. The free cysteine residue was used as a

starting point for the assembly of HA-tagged histone H2B polypeptide by assem-

bling four thioester peptide segments sequentially using the NCL reaction. Because
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histone H2B is devoid of cysteine residues, four appropriately spaced alanine

residues were replaced by cysteine residues to enable the ligations. The cysteine

residues were subsequently desulfurized on the solid phase using Danishefsky

conditions [235]. Finally, the target HA-H2B polypeptide was separated from the

solid support in concentrated TFA.

4.3 N-to-C Solid Phase Chemical Protein Synthesis

The reports describing N-to-C solid phase elongation strategies are rare with only

two papers published in 1999 [212] and 2013 [154]. The difficulty in developing

N-to-C elongation methods arises from the challenge in designing latent thioester

surrogates which can be activated on demand. Indeed, in the N-to-C direction, each

incoming peptide segment must feature a C-terminal blocked thioester group to

avoid its cyclization or oligomerization during the NCL reaction (Fig. 11).

In 1999, Kent’s group [212] published a seminal paper describing an N-to-C

solid phase sequential elongation process relying on the chemical properties of

NH
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Fig. 10 Preparation of a cysteinyl Rink PEGA solid support for sequential NCL reactions in the

C-to-N direction [221]. HA-Histone H2B corresponds to the human histone H2B protein labelled

on the N-terminus with the HA tag (the structure of histone H2B protein was generated using pdb

entry 1AOI [234])
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C-terminal peptide thioacids (Fig. 12) [237]. Owing to its low pKa, the thioacid

group is mainly deprotonated at neutral pH and therefore reacts slowly with the

arylthiol catalyst, cysteine thiols or other nucleophiles during the NCL reaction.

Interestingly, the thiocarboxylate group can be activated in a subsequent step by

alkylation to give an alkylthioester. This transformation was performed selectively

at pH 5 in the presence of bromoacetic acid. The chemoselectivity of the alkylation

step is governed by the greater nucleophilicity of the thiocarboxylate group in

comparison with the other nucleophilic groups naturally present on peptides.

Indeed, at this pH cysteine thiols are mainly in the SH form, whereas α- or

ε-amino groups are protected by protonation. The method described in Fig. 12

involves, as a first step, the chemoselective attachment of the first segment to the

solid support through its N-terminus. The linker used in this study is again derived

from the base-labile Msc group. It is modified by a levulinoyl group to enable the

formation of a ketoxime bond with an aminooxyacetyl derivatized solid support. In

practice, only one activation/NCL elongation cycle was performed on the solid

phase as the first segment was introduced with a C-terminal thioester functionality

already present. Besides the alkylation step, which can be difficult to control on the

solid phase, the method is limited by the capacity of the thiocarboxylate group to

react with amine nucleophiles as discussed by the authors themselves and more

recently by others [238–240].

The design of a true latent thioester surrogate which could be validated by the

N-to-C sequential assembly of five peptide segments was described only recently in

the work of Raibaut and coworkers, who exploited the chemical properties of the

bis(2-sulfanylethyl) amido group (SEA) [154]. The SEA group was introduced in

2010 as a new member of the N,S-acyl shift system family [111, 241]. The field has

N C

segment

segment COSR

CN

segment-Cys-segment

NCL

activate

[blocked
thioester]

[blocked
thioester]

N-to-C
direction of elongation

Cys-segment [blocked
thioester]

1. activate
2. NCL

elongation
cycle

Fig. 11 Solid phase sequential NCLs in the N-to-C direction require the temporary masking of the

C-terminal thioester group
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been reviewed recently [242, 243]. The SEA chemical properties that are essential

for the solid phase elongation process are highlighted in Fig. 13 [244].

First, the SEA group is a tertiary amide which in the dithiol form called SEAon

rearranges spontaneously at neutral to mildly acidic pH into a SEA transient

thioester. This transient thioester can react with an exogeneous alkylthiol such as

3-mercaptopropionic acid (MPA) to give a stable alkylthioester through a thiol-

thioester exchange reaction [245–247]. This reaction proceeds efficiently in water

at pH 4 and constitutes the activation step of the elongation cycle described later

on. Another method for converting the SEAon group into an alkylthioester involves

trapping the SEA transient thioester with an excess of glyoxylic acid [247]. Indeed,

the SEA transient thioester features a β-aminothiol functionality which enables the

formation of a stable thiazolidine, thereby displacing the SEAon/SEA transient

thioester equilibrium toward thiazolidine thioester peptide derivatives. Although

this mode of activation has not yet been illustrated on the solid phase, the high

reactivity of thiazolidine thioester peptides might be of interest for forming difficult

junctions such as Val-Cys [247] or Pro-Cys [248] peptide bonds.

The second important property is the ease of interconverting the SEAon group

and the corresponding cyclic disulfide form called SEAoff by oxidation/reduction.

Interestingly, the SEAoff group is inert in the presence of 4-mercaptophenylacetic

acid (MPAA), which is used to catalyse the NCL reaction, even when this aromatic

thiol is used in large excess (200 mM) as is usually the case to work in the best

kinetic conditions [16, 17, 109, 126, 249]. Thanks to this property, the SEAoff group

acts as a latent thioester surrogate during the NCL reaction.
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Fig. 13 Main chemical properties of SEAon and SEAoff groups exploited for the solid phase N-to-

C sequential assembly of unprotected peptide segments
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In summary and as illustrated in Fig. 14, the N-to-C elongation cycle based on

SEA chemistry consists of (1) converting the SEAoff group into an MPA thioester

by treating the SEAoff peptidyl resin with a strong disulfide bond reducing agent

such as TCEP in the presence of MPA at pH 4, (2) washing the resin to remove the

excess of MPA and TCEP and (3) performing the NCL reaction with the incoming

SEAoff peptide segment in the presence of MPAA [154].

The method was illustrated with the synthesis of a 94- or 135-amino acid

polypeptides by ligating sequentially 4 or 5 peptide segments respectively. The

synthesis of the 94-amino acid polypeptide is depicted in Fig. 15. The first SEAoff

segment was anchored chemoselectively to the solid support through its N-terminus

using the copper-catalyzed or the strain-promoted alkyne azide cycloaddition

reaction, i.e. CuAAC [155, 156] and SPAAC [250], respectively. For this, the

first SEAoff peptide segment was modified on the N-terminus with an azide-

functionalized Esec handle using the method developed by Aucagne and coworkers

([153]; see entry 7 of Table 2), while the solid support was modified by a terminal

alkyne or a cyclooctyne derivative. The ethylsulfonyl-2-ethyloxycarbonyl moiety

of Esec linker can be cleaved with aqueous base (pH ~11) as already discussed in

the previous sections. It is stable in the neutral or mildly acidic conditions used for

the elongation cycle, while its lability in basic conditions is exploited for monitor-

ing the elongation process or for cleaving off the target polypeptide by treatment of

the peptidyl resin with aqueous base. The overall isolated yield of the target

94-amino acid polypeptide was 6.5% including the HPLC purification step. Nine

chemical steps were performed on the solid phase, meaning an average yield per

step of 74%. A similar average yield per step was reported for the assembly of five

peptide segments.

As illustrated in Fig. 15, the method has also been used for isolating a large

SEAoff peptide corresponding to the first 60 amino acids, thanks to the stability of

the SEAoff group in basic conditions. The synthesis of large peptide thioesters or

thioester surrogates is a known limitation for accessing large proteins using the
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NCL reaction. The method described in Fig. 15 is a potential solution to this highly

challenging problem.

5 Conclusion

About 50 years after the introduction of the SPPS method by Merrifield, the field of

solid phase chemical protein synthesis is still a dynamic and highly challenging

field of research. The SPPS method is continuously improving and enables the

synthesis of small proteins. The purification of large peptides produced by SPPS

can be simplified by using one of the several capture purification methods which

were developed over the past 30 years. The SPPS technique also gives access to

large unprotected peptide segments which can be used for assembling proteins

using the NCL reaction. The adaptation of NCL chemistry to the solid phase might

extend considerably the limits of protein chemical synthesis and allow the automa-

tion of the process. Recent developments have shown the great potential of the

method in the N-to-C and C-to-N directions. We expect automated solid phase

protein synthesis relying on the sequential ligation of unprotected peptide segments

to become a popular technique for accessing large polypeptides in the near future.
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42. Coin I, Dölling R, Krause E, Bienert M, Beyermann M, Sferdean CD, Carpino LA (2006)

Depsipeptide methodology for solid-phase peptide synthesis: circumventing side reactions

and development of an automated technique via depsidipeptide units. J Org Chem 71

(16):6171–6177

43. Mutter M, Chandravarkar A, Boyat C, Lopez J, Dos Santos S, Mandal B, Mimna R, Murat K,

Patiny L, Saucede L, Tuchscherer G (2004) Switch peptides in statu nascendi: induction of

conformational transitions relevant to degenerative diseases. Angew Chem Int Ed 43

(32):4172–4178

44. Dos Santos S, Chandravarkar A, Mandal B, Mimna R, Murat K, Saucede L, Tella P,

Tuchscherer G, Mutter M (2005) Switch-peptides: controlling self-assembly of amyloid

beta-derived peptides in vitro by consecutive triggering of acyl migrations. J Am Chem

Soc 127(34):11888–11889

45. Guillier F, Orain D, Bradley M (2000) Linkers and cleavage strategies in solid-phase organic

synthesis and combinatorial chemistry. Chem Rev 100(6):2091–2158

46. Boas U, Brask J, Jensen KJ (2009) Backbone amide linker in solid-phase synthesis. Chem

Rev 109(5):2092–2118

47. James IW (1999) Linkers for solid phase organic synthesis. Tetrahedron 55(16):4855–4946

48. Lloyd-Williams P, Albericio F, Giralt E (1993) Convergent solid-phase peptide synthesis.

Tetrahedron 49(48):11065–11133

49. Benz H (1994) The role of solid-phase fragment condensation (SPFC) in peptide synthesis.

Synthesis 1994(04):337–358

50. Merrifield RB (1964) Solid phase peptide synthesis. II. The synthesis of bradykinin. J Am

Chem Soc 86(2):304–305

51. Merrifield RB (1964) Solid-phase peptide synthesis. III. An improved synthesis of bradyki-

nin. Biochemistry 3(9):1385–1390

144 L. Raibaut et al.



52. Stewart JM, Woolley DW (1965) Importance of the carboxyl end of bradykinin and other

peptides. Nature 207(5002):1160–1161

53. Marglin B, Merrifield RB (1966) The synthesis of bovine insulin by the solid phase method.

J Am Chem Soc 88(21):5051–5052

54. Lenard J, Robinson AB (1967) Use of hydrogen fluoride in Merrifield solid-phase peptide

synthesis. J Am Chem Soc 89(1):181–182

55. Gutte B, Merrifield RB (1969) Total synthesis of an enzyme with ribonuclease A activity.

J Am Chem Soc 91(2):501–502

56. Wang S-S, Kulesha ID (1975) Preparation of protected peptide intermediates for a synthesis

of the ovine pituitary growth hormone sequence 96–135. J Org Chem 40(9):1227–1234

57. Mitchell AR, Erickson BW, Ryabtsev MN, Hodges RS, Merrifield RB (1976) tert-Butoxycar-

bonylaminoacyl-4-(oxymethyl)phenylacetamidomethyl-resin, a more acid-resistant support

for solid-phase peptide synthesis. J Am Chem Soc 98(23):7357–7362

58. Merrifield RB, Bach AE (1978) 9-(2-Sulfo)fluorenylmethyloxycarbonyl chloride, a new

reagent for the purification of synthetic peptides. J Org Chem 43(25):4808–4816

59. Wong TW, Merrifield RB (1980) Solid-phase synthesis of thymosin α1 using tert-butyloxy-
carbonylaminoacyl-4-(oxymethyl)phenylacetamidomethyl-resin. Biochemistry 19

(14):3233–3238

60. König W, Geiger R (1970) Eine neue Methode zur Synthese von Peptiden: Aktivierung der

Carboxylgruppe mit Dicyclohexylcarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen.

Chem Ber 103(3):788–798

61. Li CH, Yamashiro D, Gospodarowicz D, Kaplan SL, Van Vliet G (1983) Total synthesis of

insulin-like growth factor I (somatomedin C). Proc Natl Acad Sci U S A 80(8):2216–2220

62. Tam JP, Heath WF, Merrifield RB (1982) Improved deprotection in solid phase peptide

synthesis: removal of protecting groups from synthetic peptides by an SN2 mechanism with

low concentrations of HF in dimethylsulfide. Tetrahedron Lett 23(43):4435–4438

63. Tam JP, Heath WF, Merrifield RB (1982) Improved deprotection in solid phase peptide

synthesis: quantitative reduction of methionine sulfoxide to methionine during HF cleavage.

Tetrahedron Lett 23(29):2939–2942

64. Tam JP, Heath WF, Merrifield RB (1983) An SN2 deprotection of synthetic peptides with a

low concentration of hydrofluoric acid in dimethyl sulfide: evidence and application in

peptide synthesis. J Am Chem Soc 105(21):6442–6455

65. Tam JP, Marquardt H, Rosberger DF, Wong TW, Todaro GJ (1984) Synthesis of biologically

active rat transforming growth factor I. Nature 309(5966):376–378

66. Heath WF, Merrifield RB (1986) A synthetic approach to structure-function relationships in

the murine epidermal growth factor molecule. Proc Natl Acad Sci U S A 83(17):6367–6371

67. Darke PL, Nutt RF, Brady SF, Garsky VM, Ciccarone TM, Leu CT, Lumma PK, Freidinger

RM, Veber DF, Sigal IS (1988) HIV-1 protease specificity of peptide cleavage is sufficient

for processing of gag and pol polyproteins. Biochem Biophys Res Commun 156(1):297–303

68. Nutt RF, Brady SF, Darke PL, Ciccarone TM, Colton CD, Nutt EM, Rodkey JA, Bennett CD,

Waxman LH, Sigal IS, Anderson PS, Veber DF (1988) Chemical synthesis and enzymatic

activity of a 99-residue peptide with a sequence proposed for the human immunodeficiency

virus protease. Proc Natl Acad Sci U S A 85(19):7129–7133

69. Schneider J, Kent SB (1988) Enzymatic activity of a synthetic 99 residue protein

corresponding to the putative HIV-1 protease. Cell 54(3):363–368

70. Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent

SB, Wlodawer A (1989) Structure of complex of synthetic HIV-1 protease with a substrate-

based inhibitor at 2.3 Å resolution. Science 246(4934):1149–1152

71. Wlodawer A, Miller M, Jaskolski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM,

Clawson L, Schneider J, Kent SB (1989) Conserved folding in retroviral proteases: crystal

structure of a synthetic HIV-1 protease. Science 245(4918):616–621

72. Ramage R, Green J, Ogunjobi OM (1989) Solid phase peptide synthesis of ubiquitin.

Tetrahedron Lett 30(16):2149–2152

Solid Phase Protein Chemical Synthesis 145



73. Ramage R, Green J, Muir TW, Ogunjobi OM, Love S, Shaw K (1994) Synthetic, structural

and biological studies of the ubiquitin system: the total chemical synthesis of ubiquitin.

Biochem J 299:151–158
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Abstract Chemical protein synthesis is a useful tool to generate pure proteins

which are otherwise difficult to obtain in sufficient amounts for structure and

property analysis. Additionally, because of the precise and flexible nature of

chemical synthesis, it allows for controllable variation of protein sequences,

which is valuable for understanding the relationships between protein structure

and function. Despite the usefulness of chemical protein synthesis, it has not been

widely adopted as a tool for protein characterization, mainly because of the lack of

general and efficient methods for the preparation and coupling of peptide fragments

and for the folding of polypeptide chains. To address these issues, many new

methods have recently been developed in the areas of solid-phase peptide synthesis,

peptide fragment assembly, and protein folding. Here we review these recent

technological advances and highlight the gaps needing to be addressed in future

research.
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1 Introduction

Chemical synthesis is a valuable tool for studying the structure and function of

proteins, particularly proteins with post-translational modifications [1, 2]. Com-

pared to recombinant DNA-based protein biosynthesis, chemical synthesis is a

more flexible and precise method to introduce natural and unnatural amino acid

mutations. Chemical coupling is less sensitive to large variations in the size,

structure, and sequence of peptide building blocks [3]. Condensation of easily

characterized fragments ensures purity of final protein products. Moreover, chem-

ical synthesis enables unparalleled control over the preparation of protein isoforms,

allowing systematic but well-defined structural variations. Access to such isoforms

greatly facilitates the development of a more comprehensive and deeper under-

standing of protein structure–function relationships and leads to better protein

engineering strategies [4].

Given the great scientific significance of chemical synthesis, it is not surprising

that considerable research effort has been devoted to developing more effective

chemical methods for preparing proteins. This effort has successfully led to tech-

nologies which are widely used today: solid-phase peptide synthesis (SPPS), native

chemical ligation (NCL), and metal-free desulfurization (MFD) [5–7]. Together

with the development of new folding methods, the application of SPPS, NCL, and

MFD has revolutionized the preparation of chemically pure proteins. Current

peptide synthesis methods allow for the relatively routine construction of many

kinds of proteins, including those without Cys residues and proteins with diverse

post-translational modifications.

As shown in Fig. 1, a protein molecule can be prepared by chemically ligating

two or more peptide fragments together. SPPS, developed by Merrifield [8, 9],

provides a fast and effective way to prepare peptide fragments. NCL [10] and MFD

[11], developed by Kent and Danishefsky, are the methods of choice for joining the

fragments. NCL is the ligation of an activated peptide fragment, in most cases a

peptide thioester (2), and a peptide fragment containing an N-terminal thio-

substituted amino acid (3). The ligation is initiated by a rapid thioester exchange

between the N-terminal thiol group and the C-terminal thioester. An S!N acyl

transfer immediately follows, leading to the formation of a native peptide linkage

between fragments 2 and 3. This process can be repeated many times to complete

the synthesis of longer protein chains [10]. After complete assembly of the full-

length target protein, global desulfurization under metal-free conditions can remove
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any thiol auxiliaries used to facilitate the ligation of individual peptide fragments

[11]. In the final step, the target protein folds into a well-defined tertiary structure

through several methods of disulfide formation [12, 13].

Despite many recent advances in chemical protein synthesis, there are still

practical issues to be addressed before chemical synthesis can be generally applied

by protein biochemists. The main problems limiting the wider use of chemical

protein synthesis include synthesis of long peptides [14], synthesis and handling of

hydrophobic peptides [15], side reactions in peptide synthesis [16, 17], preparation

of peptide thioesters [18], ligation at new amino acid sites [19], and in vitro folding

of chemically synthesized proteins [12]. These problems, separately or together,

render the chemical synthesis of many proteins a challenge which can only be

tackled by specialists.

To overcome the limitations of the existing methods, many studies have been

performed with the aim of achieving facile synthesis of proteins. Early efforts in

this direction have already been extensively reviewed [20–27]. To avoid redun-

dancy, the present review focuses on recent developments in this field, mostly since

2007. To enable readers to locate relevant information quickly, this review is

organized according to the general procedure for chemical protein synthesis

(Fig. 1). As listed in the table of contents, the three major topics covered here are

(1) peptide fragment synthesis, (2) assembly of peptide fragments, and (3) protein

folding.

2 Synthesis of Peptide Fragments

Linking individual amino acids is necessarily the first step in the synthesis of

proteins. Since Merrifield invented the technology in 1963, SPPS has become the

primary approach for the routine preparation of peptides [28–32]. The general

scheme of solid phase peptide synthesis is illustrated in Fig. 2. The peptide is

built from the C-terminus to the N-terminus. The first amino acid is attached to a

Fig. 1 General procedures for the synthesis of proteins: SPPS, NCL, and MFD. R, R1, and R2 can

be varied with the amino acid used. PG protecting group, P1 and P2 peptides

New Methods for Chemical Protein Synthesis 157



polymer support (resin) via a linker moiety. In addition to acting as the protecting

group for the C-terminal carboxyl group, the insoluble solid resin permits a rapid

and clean separation of the growing peptide product from complex reaction mix-

tures during synthesis.

The elongation of the peptide chain begins with the removal of the Nα-protecting

group of the first amino acid. In SPPS, two protecting groups – tert-butoxycarbonyl
(Boc) and 9-fluorenylmethoxycarbonyl (Fmoc) – are commonly used for

Nα-protection. In the Boc protection approach, trifluoroacetic acid (TFA) is typi-

cally used for Nα-deprotection and highly corrosive and toxic hydrofluoric acid

(HF) is used for the final global deprotection and release of the assembled peptide

from the resin [33]. For the Fmoc protection approach, the repetitive deprotection is

performed in a piperidine solution or a mixture of piperidine and 1,8-diazabicyclo

[5.4.0]undec-7-ene (DBU) and the final deprotection and cleavage of the peptide

chain is performed in TFA and appropriate scavengers [34]. Because of the milder

conditions and less toxic reagents used in the Fmoc approach, it is often preferred

over the Boc approach. Complete Nα-Fmoc removal can be achieved by treating the

peptide-resin with piperidine/DBU for 30 min.

After Nα-deprotection, subsequent amino acids are coupled to the free

N-terminus of the growing peptide chain (Fig. 2). Each coupling reaction is driven

to completion in two ways – using large excesses of amino acid and activation

reagents and employing a long reaction time, typically 1 h. When coupling is

complete, a thorough washing of the resin-bound peptide removes excess coupling

reagents and uncoupled amino acids. Nα-deprotection is then repeated and, follow-

ing another thorough washing step, the peptide is subjected to the next coupling

cycle. These steps are repeated until the peptide chain is complete, at which point

the desired peptide is cleaved from the resin support. Fully protected, unprotected,

and/or activated forms of peptides can be obtained through proper use of different

cleavage cocktails.

Since the establishment of the original procedures for solid phase synthesis of

oligopeptides, all aspects of SPPS, including resins, linkers, protecting groups,

coupling reagents, and synthesis protocols, have been optimized and improved,

making the preparation of large quantities of peptides of up to 30 amino acids

feasible and reliable [35]. Nevertheless, peptide synthesis is not without challenges.

Aggregation, incomplete coupling, racemization, aspartimide formation, and

Fig. 2 General scheme of Fmoc-based solid phase peptide synthesis. Act activating group
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methionine oxidation are all common complications which may arise during SPPS

and pose important product quality concerns [36]. Additionally, synthesis of acti-

vated peptide fragments using the Fmoc approach presents a significant challenge

because of the nucleophilic attack by piperidine at the activated acyl group [18]. To

develop more efficient and reliable procedures for preparing structurally diverse

proteins, numerous new methods have been introduced. In the following para-

graphs, we discuss a few such methods including those for forming amide bonds,

controlling side reactions, and activating C-terminal carboxyl groups.

2.1 New Methods for Peptide Synthesis

2.1.1 Amide Bond Formation

The major chemical reaction in peptide synthesis is amide bond formation. Cur-

rently, the most prevalent methods for forming amide bonds were developed based

on the general framework of directly coupling carboxylic acids with amines in the

presence of coupling reagents, bases, and additives (Fig. 3). The first step in these

methods involves the activation of the carboxylic acid. In the second step, nucle-

ophilic displacement of the activated carboxylic acid derivative by the free amine of

an amino acid generates the desired amide bond. Coupling reagent mediated

methods are highly effective and widely regarded as the methods of choice for

SPPS. However, as with all other methods in organic chemistry, these methods have

inherent limitations. Racemization of amino acid residues and expensive or waste-

ful procedures are common problems associated with the current coupling reagent-

mediated methods [37]. In the search for solutions to these issues, many new

methods have recently been published.

Several newly developed methods are based on the use of catalysts, both organo-

and metal catalysts [38, 39]. Catalysis has the potential to provide an atom-

economical and cost-effective route to amide bond formation and has already

shown considerable promise. However, most of these methods are still in their

infancy, and while they may provide useful solutions for existing problems, a

Fig. 3 Mechanism of amide bond formation using HATU as coupling reagent
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number of technological challenges need to be overcome before catalysis can be

generally applied in the solid phase synthesis of peptides.

Other groups have focused on the chemistry of functional groups not previously

used in peptide coupling reactions in order to improve amide bond formation in

SPPS. One of these new methods which has been applied in the context of SPPS is

the isonitrile-mediated amidation developed by Danishefsky and co-workers, which

highlights the usefulness of isonitriles in the synthesis of peptidyl and glycopeptidyl

amide bonds [40]. Early experiments during the development of this approach used

free carboxylic acids 23 as the acylating agents [41–44]. As shown in Fig. 4a, this

microwave-induced reaction is a two-component coupling reaction between car-

boxylic acids and isonitriles. According to the proposed mechanism, the combina-

tion of an isonitrile 24 and a carboxylic acid 23 at elevated temperature leads to the

formation of a high-energy formimidate carboxylate mixed anhydride 26 (FCMA),

possibly through an Alder-ene reaction, or, alternatively, through a step-wise

pathway of protonation and nucleophilic addition. The FCMA intermediate subse-

quently undergoes a 1,3-O-to-N acyl transfer to give rise to an N-formyl amide

product 27. If necessary, the N-formyl group can be selectively converted to a

variety of functionalities, including the natural N-H, but also N-homoallyl or N-Me.

It was also observed that, in the presence of external nucleophilic trapping agents

(R2XH), the putative FCMA intermediate could be intercepted by the nucleophile

to give a mixture of rearrangement 27 and acylation 28 products. Because no

external acids or bases are used in this new isonitrile-based coupling method,

racemization issues could be well addressed.

Danishefsky and co-workers then investigated the possibility of replacing car-

boxylic acids with thioacids, which were found to allow for much milder conditions

[45–47]. Thioacids readily react with isonitrile substrates at room temperature to

generate dipeptide products 32 in good yields. The reaction is proposed to proceed

through a similar mechanism to that of carboxylic acids (Fig. 4b). Again, in the

presence of a nucleophile, thio FCMA intermediates can undergo the bimolecular

acylation reaction to produce the acylation adduct 33.

Importantly, Danishefsky has successfully translated the isonitrile method from

proof-of-concept experiment to successful synthesis. In addition to a solution-phase

Fig. 4 Isonitrile-mediated amidation. R2XH¼ROH or RNH2
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synthesis of a highly N-methylated cyclic peptide, cyclosporine A [48], the method

has also been applied to the solid-phase synthesis of vasopressin 39, a cyclic peptide

hormone involved in conservation of water by the kidney [49]. As shown in Fig. 5,

the synthesis of vasopressin was achieved through a sequence of isonitrile-mediated

thioacid amidation steps on solid support. It began with Arg-derived thioacid and

solid support linked Gly 34. The resulting dipeptide was deprotected and reacted

with a Cys-Pro-derived thioacid to provide the resin-bound tetrapeptide 36.

Following this, Asn-, Gln-, Phe-, Tyr-, and Cys-derived thioacids were added

through the same two-step sequence of Fmoc deprotection/isonitrile-mediated acyl-

ation to afford the peptide backbone 37 of vasopressin. Cleavage of the nonapeptide

from the solid support and removal of all the protecting groups provides the linear

vasopressin 38 in 43% overall yield. Finally, formation of the intramolecular

disulfide bond via air oxidation gave vasopressin 39 in 71% isolated yield.

Of course, rather than entirely new chemistry, improvement of amide bond

synthesis could be achieved through the optimization of existing methods. As

described above, the classic methods rely on the use of coupling reagents, bases,

and/or additives to promote amide bond formation (Fig. 3), and a potential solution

to the limits of these classical methods could be to improve those coupling reagents,

bases, and/or additives. With this approach in mind, Albericio and co-workers

introduced several derivatives of ethyl 2-cyano-2-(hydroxyimino)acetate (Oxyma,

40) for use in amide bond formation [50]; see Fig. 6.

Oxyma 40, first reported in the early 1970s, is an oxime with a similar acidity

(pKa 4.60) to those of the most widely used additives, HOBt (pKa 4.60) and HOAt

(pKa 3.28) [51]. By systematically testing these three additives, Albericio

et al. found that Oxyma is more effective than either HOBt or HOAt at both

suppressing racemization during peptide coupling and coupling sterically hindered

amino acids [50]. They also showed that Oxyma decomposed at a slower rate than

HOBt and HOAt, thus having a lower risk of explosion. These properties make

Oxyma a practical replacement for HOBt and HOAt. In order to suppress side

reactions further, they also prepared a new formulation, K-Oxyma 41, a potassium

Fig. 5 Application of isonitrile-mediated thioacid amidation in the solid phase synthesis of

vasopressin
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salt of Oxyma. In addition to preserving most of the beneficial properties of Oxyma,

the new K-Oxyma formulation was found to inhibit premature cleavage of peptides

from acid labile resins, such as 2-chlorotrityl resin [52].

That same year, Albericio and co-workers went on to develop a safer and more

effective coupling reagent, a uronium salt derived from Oxyma, COMU 42

[53]. Because of the excellent leaving group ability of the Oxyma moiety [50],

the great solubility of the morpholino-containing iminium moiety [54], and the high

reactivity of the formed uronium salt [55], COMU shows superior performance in

the synthesis of many different types of amide bonds in comparison with HATU

and HBTU [53]. Unfortunately, COMU degrades more rapidly than HATU or

HBTU in DMF, although there has been discussion that this may not be because

of the inherent properties of COMU and can easily be overcome by using purer

COMU [56]. They also developed another derivative by combining Oxyma with bis

(2-oxo-3-oxazolidinyl) phosphorodiamidic chloride (BOP-Cl). Through their tests,

they found that the use of BOP-Oxy 43 is advantageous in most cases because of the

higher coupling efficiency and more efficient suppression of racemization [57].

Precise heating has also emerged as a powerful method for the synthesis of

amide bonds. Heating during coupling substantially accelerates the rates of amide

formation [29]. Unfortunately, any heat used can also accelerate competing side

reactions, including racemization. By determining the ratio of D-amino acids

incorporated into a model peptide, VYWTSPFMKLIHEQCNRADG-NH2, under

different microwave conditions, Collins and co-workers suggested that Cys, His,

and Asp were more susceptible to racemization at 80�C than other amino acids

[58]. Kappe and co-workers also reported similar racemization results based on the

study of peptides prepared under microwave and conventionally heated conditions

[59]. Lowering the temperature for the coupling of these three problematic amino

acids is currently the recommended solution to minimize their racemization [29].

2.1.2 Methods for the Synthesis of Long/Difficult Peptides

The chemical synthesis of full-length proteins usually requires the joining together

of several peptide fragments (Fig. 1). The longer the fragments, the fewer fragment-

joining steps required. Since the isolated yield of each fragment-joining step is

usually quite low (<50%), fewer synthetic steps generally significantly improve the

overall yield. Fewer synthetic steps almost always result in less time being spent on

the synthesis as well. For these reasons, it is highly desirable to use the longest

peptide fragments possible in the condensation reactions of a protein chemical

Fig. 6 Derivatives of

Oxyma for amide bond

formation
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synthesis. Currently, the synthesis of peptides longer than 50 amino acids is

inefficient, giving many side products which are, in most cases, difficult to separate

from the desired peptide [60]. Such limitations are most often caused either by

aggregation or by various side reactions which occur under the coupling and/or

deprotection reaction conditions. The most problematic side reactions are prema-

ture cleavage of peptides from the solid support, aspartimide formation, and Met

oxidation [36].

Growing peptide chains can form intra-/intermolecular hydrophobic interactions

and/or hydrogen bonds with themselves or neighboring peptides. The cumulative

effect of many of these interactions is peptide aggregation [61]. Long peptides, or

peptides containing clusters of hydrophobic residues, generally have a higher

tendency to aggregate [62]. Aggregation during synthesis can lead to the blocking

of the reacting N-terminus, which can cause incomplete coupling and/or

deprotection. By-products resulting from such incomplete reactions tend to have

chromatographic properties very similar to those of the desired products, making

the isolation and purification of the target peptide a difficult task. Additionally,

many peptide fragments en route to full-length proteins are especially prone to

aggregation, even if the full-length construct is not, thereby further complicating

the synthesis of proteins [63]. To overcome the aggregation issue, many methods

have been developed, including new resins, solvents, building blocks, coupling

reagents or times, and heating the reaction mixture. When synthesizing particularly

difficult sequences, more than one of these methods can be combined for more

effective aggregation suppression [64, 65].

Aggregation is less pronounced on a few solid supports [66]. The newly devel-

oped ChemMatrix® (CM) resin 44, a 100% PEG (polyethylene glycol)-based solid

support, is one of them (Fig. 7a) [67]. As compared to previously popular

Fig. 7 Methods to overcome the aggregation problem in SPPS: (a) ChemMatrix® (CM) resin;

(b) dipeptide analogs; (c) thioester Arg5 tag; (d) cleavable Arg tag
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polystyrene-based resins, the CM resin is more polar and contains both hydrogen

bond donor and acceptor functionality. These chemical properties mean CM resins

swell more effectively in polar solvents and can form aggregation-disrupting

intramolecular interactions with the growing peptides. This makes the CM resin a

valuable resin for preventing peptide chains from forming the ordered secondary

structures which lead to severe aggregation [68]. Another simple and effective way

to suppress aggregation is to use rigid amino acid building blocks which disfavor

highly ordered or aggregation prone structures during peptide synthesis. Such

building blocks are commonly used in difficult-to-synthesize peptides and include

pseudoproline dipeptides 45, Dmb (2,4-dimethoxybenzyl) dipeptides 46,

Dmb/Hmb (2-hydroxy-4-methoxy-benzyl) amino acids 47, and isoacyl dipeptides

48 (Fig. 7b). The combined use of CM resin and rigid building blocks has greatly

facilitated the synthesis of long and difficult sequences. Notable syntheses using

these approaches include HIV protease, Rantes (1–68), CCL4-L1 (chemokine C–C

motif ligand 4-like 1), and β-amyloid (1–42) [69, 70].

Heat has also been utilized to prepare long and difficult peptides successfully,

typically through the use of heating baths or microwave energy. In 2014, Collins

and co-workers developed a microwave irradiation-based high-efficiency-SPPS

method [71]. Critical to the success of the high efficiency microwave method was

a novel internal temperature probe which allowed for extremely careful monitoring

of the resin temperature and made it possible to achieve temperatures of 90�C in

about 20 s without significant temperature overshoot. This enabled high tempera-

tures to be used without long ramp times while simultaneously minimizing the side

reactions which can happen during temperature overshoot. Through aggressive use

of carefully controlled microwave irradiation and elimination of unnecessary wash-

ing steps, the average total cycle time for deprotection, coupling, and all washes

was reduced to only 4 min. This is a significant improvement over standard Fmoc

SPPS cycle times without microwave irradiation, which are typically in excess of

60 min.

A couple of strategies were also developed to increase the solubility and/or

decrease the aggregation propensity of peptides once cleaved from solid supports

[63, 72, 73]. The first strategy relies upon the use of a C-terminal (Arg)5/6 to

increase the solubility of peptide fragments (Fig. 7c), while the second strategy

introduced Arg residues via linkers to the side chains of peptides (Fig. 7d). The first

strategy was developed by Aimoto and co-workers, building upon earlier work by

Deber [74] and Muir [75] on the synthesis of hydrophobic proteins. Aimoto and

co-workers incorporated five Arg residues into the thiol moiety of the thioester

fragment [72]. This allowed them to synthesize the C-terminal 83 residues of ORL1

(opioid receptor-like 1). With the Arg5 sequence in place, the thioester fragment,

which contains one entire transmembrane domain of the receptor, was easily able to

undergo NCL in the presence of 7 mM SDS and MESNA with the C-terminal

intercellular domain of ORL1 to give the target peptide. The Arg residues used to

enhance solubility were removed along with the thiol moiety as a result of the NCL

reaction. In 2011, Danishefsky and co-workers developed a slightly different

method to prevent the aggregation of a synthetic fragment, hEPO (43–77)
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[63]. Rather than attaching the Arg residues to the thioester moiety, they chose to

attach the residues to the side chains of the problematic peptide fragment via

cleavable linkers. This method has the advantage of keeping the aggregation-

suppressing Arg residues attached during long syntheses which require more than

one NCL reaction. The Arg residues can be removed after all fragment coupling

steps are completed by cleaving the allylic ester in the presence of palladium(0).

Similar to aggregation, aspartimide formation leads to the generation of insep-

arable impurities during the synthesis of long peptides, and can occur under both

acidic and basic conditions [76]. In Fmoc-based SPPS, the initially formed five-

membered aspartimide ring 57 can be opened by a variety of nucleophiles, such as

water, methanol, and piperidine, to produce numerous by-products 58–61 (Fig. 8).

Because of the repetitive use of piperidine and/or DBU during each Nα-deprotection

step, aspartimide formation becomes a particularly serious problem in the synthesis

of long peptides containing multiple Asp residues or C-terminal Asp residues.

Many factors, including peptide sequence (Asp-X), conformation, base, acid,

β-carboxyl protecting groups, solid support, temperature, and solvent, affect the

severity of the aspartimide problem.

Many different methods have been developed to circumvent the aspartimide

problem. Among all the methods, the addition of dinitrophenol or HOBt to the

deprotection solution and the use of Fmoc-Asp(OMpe)-OH and Fmoc-Asp(OtBu)-

(Dmb)Gly-OH during SPPS are employed most frequently because of their effec-

tiveness and convenience [76]. In 2007, Collins and co-workers demonstrated that

the use of piperazine for Fmoc removal can significantly lower the level of

aspartimide [58]. However, because the basicity of piperazine is lower than that

of piperidine (pKa 9.8 vs 11.1, respectively), the rate of Fmoc-deprotection is

slower when using piperazine. This issue can be addressed by elevating the

temperature of the deprotection reactions. With the assistance of microwave irra-

diation, the deprotection can be complete in 3 min. Using microwave-SPPS and

piperazine (5% piperazine with 0.1 M HOBt in DMF), the amount of aspartimide

by-products observed during the synthesis of H-VYWTSPFMKLIHEQCNRADG-

NH2 was reduced from 32% to 3% [58]. More recently, it was demonstrated that the

addition of Oxyma [77] and acids such as formic acid [78] to the Fmoc cleavage

solution could also suppress the formation of aspartimide by-products. For exam-

ple, in the presence of formic acid (5 vol.% to piperidine), aspartimide formation

Fig. 8 Aspartimide formation and subsequent by-products
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during the synthesis of the C-terminal peptide fragment of parathyroid hormone

(PTH), H-AGSQPRRKKEDNVLVESHEKSLGEADKADVNVLTKAKSQ-NH2,

PTH (46–84), was reduced by around 90% [78].

Met oxidation is another side reaction complicating the purification of long

peptide fragments [79] and can happen at almost any time during the SPPS process,

the global deprotection step, or the handling and storage steps. It is highly likely

that the peptide sequence and conformation strongly influence Met oxidation, but

the exact connection is not well understood. Conventional methods to alleviate this

problem have involved the use of special cleavage cocktails, for example cocktails

composed of TFA/EDT/water/TIS or cocktails containing different Met sulfoxide

reducing agents such as N-methylmercaptoacetamide [80–82] and NH4I/DMS

[83]. Recently, Danishefsky and co-workers demonstrated that the attachment of

cleavable arginine tags to peptide side chains inhibits the oxidation of Met, which

may become a new way to advance the synthesis of long/difficult peptides [63].

2.2 New Methods for Activated Peptide Synthesis

Easily synthesized activated peptides are the key to the chemical synthesis of

proteins [18, 84]. Many types of activating groups have been used for peptide

ligations, including thioesters [85], acyl azides [86–90], acid chlorides [91], acyl

isoureas [92], acyl imidazoles [93], and aromatic esters [94]. Of all the possibilities,

however, peptide thioesters have become the most widely used (Fig. 1).

Since the discovery of NCL, a great deal of effort has been invested in devel-

oping easier and more reliable ways to synthesize peptide thioesters for all types of

peptide fragments [84]. At present, peptide thioesters can be readily obtained either

by SPPS [95–97] or by direct coupling of fully protected peptides with an amino

acid thioester under non-racemization conditions [98–101]. They can also be

produced in situ by either O! S or N! S acyl shift from the corresponding esters

[102–105] or amides [106–118]. Each method has its inherent strengths and

weaknesses [119], and we discuss those of the newer methods here.

One of the most important methods developed to improve access to peptide

thioesters is the O-mercaptoaryl ester rearrangement (OMER) process developed

by Danishefsky and co-workers [120, 121]. As shown in Fig. 9, an inert ortho-

thiophenolic ester is first installed on the C-terminus of the peptide. After the

reduction of the disulfide bond, the intermediate undergoes a spontaneous intramo-

lecularO! Smigration to afford the fully active peptide thioester. This method has

been extended to O-alkylesters as well by Liu and co-workers [105] and has been

widely used in the chemical syntheses of proteins [7]. An 11-residue glycopeptide

containing two N-glycans (72) was the first peptide synthesized using the OMER

methodology [7]. As shown in Fig. 9, 2-(ethylsulfinothioyl)phenol 64 was first

synthesized from 2-mercaptophenol 62 via oxidization and subsequent exchange

with excess ethyl disulfide. The resulting phenol derivative 64 was then coupled

with Boc-Phe-OH, followed by removal of the Boc protecting group, to afford a
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phenylalanine ester 65. The preparation of the peptide ester 68 was accomplished

by condensing the fully protected peptide acid 67 with the phenylalanine ester,

followed by TFA-deprotection. The peptide ester 68 is stable under the conditions

for the synthesis of N-linked glycopeptide and enabled the production of a complex

glycopeptide 72 in 75% yield.

In 2010, Melnyk and co-workers developed a new N! S acyl shift-based

method for the synthesis of peptide thioesters [122–128] which utilizes a

C-terminal bis(2-sulfanylethyl)amide (SEA) group. As depicted in Fig. 10, the

SEA moiety is introduced to the C-terminus of the peptide via standard SPPS on

a slightly modified resin support. After peptide cleavage, the open dithiol form 79

undergoes a reversible intramolecular thiol-exchange reaction to form a transient

thioester intermediate 80. The convenience of the SEA method has been illustrated

by the synthesis of many peptides. For example, at slightly elevated temperature,

peptides H-ILKEPVHGX-SEA (X¼G, A, Y, or V) 78 were successfully ligated

with peptide H-CILKEPVHGV-NH2 82 to afford peptides H-ILKEPVHGX-

CILKEPVHGV-NH2 83–86 in 32–77% yield (Fig. 10) [122].

Peptide thioesters can also be manufactured by thiolyzing activated acyl groups.

This idea was explored and successfully applied by Dawson and co-workers

Fig. 9 Synthesis of a glycopeptide with use of the O-mercaptoaryl ester rearrangement (OMER)

methodology

Fig. 10 Application of SEA peptide thioesters
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[129]. Dawson’s method uses a 3-(Fmoc-amino)-4-aminobenzoyl AM resin and, as

shown in Fig. 11, the peptide chain is assembled on one of the aniline groups. After

the peptide synthesis is completed, the 3,4-diaminobenzoyl (Dbz) linker is activated

with p-nitrophenylchloroformate and mild base to generate a cyclic N-acylurea
moiety (Nbz) 89. This Nbz group is mildly activating, but stable to the acid-

catalyzed cleavage methods used in standard Fmoc SPPS protocols; it can also be

rapidly thiolyzed in the presence of thiols such as 4-mercaptophenylacetic acid

(MPAA) to give peptide thioesters.

Several groups have reported that problems with over-acylation during coupling

cycles of SPPS can occur in certain cases while using the Dbz resin-based method.

For example, glycine rich sequences tend to lead to acylation at the second amino

group of the Dbz linker, leading to branched Nbz derivatives of varying length.

Recently, Ottesen and co-workers have proposed using Alloc as a protecting group

for the second amino group of the Dbz resin [130], potentially eliminating almost

all problems with branched peptide derivatives and over-acylation. The Alloc group

is orthogonal to almost all common Fmoc SPPS protecting groups, stable under

SPPS conditions, and can be easily removed with palladium(0) before Dbz activa-

tion to form the peptide Nbz derivative.

Similar to Dawson’s Nbz-peptides, peptide acyl azides can be readily thiolyzed

to generate peptide thioesters. Peptide acyl azides are also fairly well known and are

easily generated from peptide hydrazides after oxidation with nitrous acid (Fig. 12)

[131–135]. Early work in the field of chemical peptide synthesis by Hofmann

and others relied heavily on acyl azides as a way to couple peptide fragments

[87–89]. These methods were problematic for several reasons, including the favor-

able Curtius rearrangement which acyl azides readily undergo. In an attempt to

overcome these limitations, Liu and co-workers have investigated extensively

peptide hydrazines and their conversion to acyl azides [134]. They found that the

conversion of hydrazide 96 to acyl azide 97 could be completed nearly

Fig. 11 Application of Nbz-activated peptides for peptide-thioester generation
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quantitatively in about 20 min at a pH of 3–4 at �10�C. Subsequent addition of

thiols, such as MPAA, to the reaction mixture, followed by an increase in pH to 7.0,

reliably generated the required thioester 98 in a convenient one-pot procedure.

Usually, the resulting thioester was used directly in an NCL reaction without further

purification. Remarkably, there was no evidence for oxidation of Met or Trp

residues in the peptide fragments and very little racemization at C-terminal amino

acids as a result of this procedure. Because of the rapid internal cyclization of Gln,

Asp, and Asn acyl azide derivatives, this method was not successful at generating

thioesters with these three residues; but all 17 other proteinogenic amino acids are

compatible with this method.

Besides being easy to synthesize and convert to reactive thioesters, peptide

hydrazides are also stable to standard NCL conditions. This opens a new door for

designing convergent syntheses of proteins, as demonstrated by Liu and co-workers

with the preparation of a 142-residue protein, the ribosomal protein S25 (RpS25)

Fig. 12 Use of peptide hydrazines for peptide thioester synthesis

Fig. 13 Synthesis of ribosomal protein S25 using peptide hydrazines as thioester precursors
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[132]. As shown in Fig. 13, the full-length protein was divided into two halves, 109

and 110, each to be assembled from three fragments, 101, 102, 105 and 103, 104,

107, in the N-to-C direction. Except for the C-terminal one, each fragment was

synthesized as a peptide hydrazide and converted to the thioester via acyl azide

immediately before NCL.

3 Assembly of Peptide Fragments

Recent advances in solid-phase peptide synthesis have enabled the synthesis of

peptides of around 30 residues to become relatively straightforward. Proteins in

living systems, however, average 250 residues in length, making SPPS alone an

impractical means of obtaining full-length, fully functional, and relevant proteins

for study [6]. Ligation of shorter peptide fragments is currently the most convenient

way to access longer protein constructs. Early examples of peptide fragment

assembly revolved around the use of acyl azides as active partners in coupling

reactions. This kind of “azide coupling” strategy culminated in the 1981 synthesis

of the 124-residue bovine pancreatic ribonuclease A [90]. Yajima and co-workers

successfully coupled a total of 30 peptide fragments together using peptide azides to

form the full-length protein. That same year saw the advance of two other signif-

icant approaches to peptide fragment assembly. Sakakibara et al. proposed their

“maximum protection” strategy of ligating fully protected peptide fragments

together with the carbodiimide coupling reagent EDCI [136, 137]. This approach

allowed ligation at many different residues and was validated through the success-

ful synthesis of an 84-residue protein, human parathyroid hormone. The other

method proposed in 1981, called the prior thiol-capture method, was put forward

by Kemp and co-workers [138]. Prior thiol-capture involves the attachment of an

ester linked auxiliary group to the C-terminus of one fragment. The auxiliary group

contains a free thiol, which initially forms a disulfide bond to the thiol side chain of

an N-terminal cysteine on the other fragment. A spontaneous acyl transfer reaction

then occurs, releasing the thiol-containing auxiliary and forming an amide bond

between the two fragments. Although powerful, Kemp’s method was found to be

overly sensitive to steric bulk at the ligation site.

Several years later, in 1992, a new method for coupling unprotected fragments in

aqueous solutions was introduced by Kent and Schnolzer [139]. The new coupling

took advantage of the unique ability of thioacids to perform nucleophilic sub-

stitutions on alkyl bromides to create thioester linkages between two peptide

fragments. Even though the ligation was efficient, did not require side chain

protection, and proceeded readily in aqueous solution, the introduction of a

non-native bond into the protein structure severely limited application of this

kind of chemical ligation. It was 2 years later that Kent’s group published a reliable
way to form native amide bonds between unprotected peptide fragments in aqueous

solutions. The method was called native chemical ligation (NCL) to contrast with

Kent’s previous chemical ligation strategy which did not form a native, amide bond.

Rather than a nucleophilic thioacid, NCL used a thioester as an electrophile. At the
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time, it was well known that thioester exchange reactions took place rapidly in

aqueous solutions. By placing a thioester at the C-terminus of one peptide fragment

and a thiol-containing cysteine residue at the N-terminus of the other peptide

fragment, a thioesterification reaction could take place linking the two fragments

via thioester. Unlike previous thioester-forming ligation strategies, however, the

free amine of the cysteine residue would be well spaced to undergo an S-to-N acyl

shift. Such a shift occurs rapidly via a favorable five-membered ring-containing

cyclic intermediate and results in the formation of a natural amide bond between the

two peptide fragments (Fig. 1).

Since the original development of NCL, many groups have discovered ways of

extending the method. For example, thio-substituted amino acids were developed to

get around the requirement of an N-terminal cysteine in the classic NCL design

[140–158]. Although most of the thio-amino acids are not commercially available

and can be somewhat complicated to synthesize, they have significantly expanded

the scope of NCL. Figure 14 shows the 17 new thio-substituted amino acids which

have been synthesized and, together with mild desulfurization conditions, allow for

ligations at almost all proteogenic amino acids.

Extensive synthetic studies have confirmed the viability of a Cys-free NCL

approach utilizing thio-amino acid building blocks. In a seminal piece of work,

Danishefsky and co-workers synthesized human parathyroid hormone (PTH) using

Cys, thio-Val 115, and thio-Leu 121 [159]. As shown in Fig. 15, PTH, a

Cys-lacking protein containing 84 amino acids, was assembled from 4 fragments:

PTH (1–23) 129, (24–38) 130, (39–59) 131, and (60–84) 132. Under this synthetic

Fig. 14 Thiol-substituted amino acids for use in NCL
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route, thio-Leu, Thz, and thio-Val, which are located at the N-termini of 130, 131,

and 132, served as surrogates for Leu, Ala, and Val to facilitate NCL of the four

peptide fragments. Following ligation, all three thiol auxiliaries were simulta-

neously removed through exposure to the MFD conditions. This work, for the

first time, demonstrated the power and broad scope of the two-step, Cys-free

NCL/MFD for the total synthesis of Cys-poor proteins.

In addition to new thio-substituted amino acids, novel alternatives to NCL have

surfaced in recent years. Efforts to expand upon NCL have also led to reliable ways

to ligate multiple peptide fragments in one-pot, opening up more strategies for

chemical synthesis of proteins.

3.1 New Methods for Peptide Ligation

3.1.1 KAHA Method

Unprotected hydroxylamines and α-ketoacids are known to undergo condensation

and form new amide bonds. Similar to classic NCL, this α-ketoacid-hydroxylamine

(KAHA) ligation requires no reagents and works even in the presence of unpro-

tected amino acid side chains (Fig. 16a). This attractive reaction was investigated as

a means to ligate peptide fragments together, but was found to have severe

limitations [160]. Further development, however, revealed that, by replacing the

Fig. 15 Chemical synthesis of human PTH using only Cys-free NCL
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unprotected N-terminal hydroxylamine with a 5-oxaproline non-natural amino

acid, KAHA ligation could be very successful [161]. Unlike the N-hydroxyamino

acids used initially, 5-oxaproline is stable to peptide coupling conditions, a distinct

advantage which allows attachment to proceed exactly as does any standard amino

acid used in Fmoc SPPS. C-terminal peptide α-ketoacids are also easily obtained by
SPPS with the use of a recently developed cyanosulfur-ylide linker and Rink amide

MBHA resin. Cleavage of the linker from the resin gives a free cyanosulfur-ylide

which is readily and selectively oxidized to the α-ketoacid upon treatment with

oxone [162]. After ligation, the 5-oxaproling ring is opened to form a homoserine

residue. While not a natural amino acid, homoserine can be used as a substitute for

several natural amino acids with minimal disruption of the final protein structure.

Bode has demonstrated the usefulness of this KAHA ligation method through

the synthesis of Pup, the prokaryotic analog of ubiquitin (Fig. 16b) [161]. The

62-residue protein was assembled from 2 unprotected fragments. The C-terminal,

α-ketoacid fragment Pup (2–32) 142 was prepared using standard Fmoc SPPS and

the cyanosulfur-ylide linker system mentioned previously. The N-terminal frag-

ment Pup (33–63) 143 was also synthesized with standard Fmoc SPPS chemistry,

followed by manual coupling of N-Boc-protected 5-oxaproline with HCTU. Treat-

ment with TFA-based cleavage cocktail liberated the N-terminal oxaproline frag-

ment from the resin and removed all side chain protecting groups. The two

fragments were coupled successfully in 24 h in a solution of 6:4 DMSO:H2O and

0.1 M oxalic acid to give the full-length Pup (2–63) protein 144 in 43–51% isolated

yield. Despite the ligation being run at 50�C, no evidence of asparagine hydrolysis

was observed.

Fig. 16 The KAHA ligation. (a) General reaction and proposed mechanism. (b) Synthesis of Pup

2-63 via KAHA ligation
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3.1.2 Fragment Condensation

In addition to the Cys-free NCL approach mentioned previously, fragment conden-

sation is a common means of overcoming the difficulty associated with synthesiz-

ing Cys-scarce peptides and proteins [163]. Danishefsky and co-workers recently

developed a new fragment condensation method based on the previously

established O-mercaptoaryl ester rearrangement (OMER). This new method is

known as phenolic ester directed amide coupling (PEDAC) [164]. In this coupling

reaction, peptide fragments with O-mercaptoaryl esters are coupled to peptide

fragments with standard amino acids at the N-terminus, removing the need for

any thiol auxiliary groups at the ligation site. The PEDAC reaction can be either

TCEP or AgCl assisted (Fig. 17a). In the presence of TCEP or AgCl and DIEA in

DMSO, the O-mercaptoaryl ester is in equilibrium with the thioester form. The

reactive thioester peptide reacts with HOOBt, also in solution, to give a high energy

acyl donor which is easily attacked by the peptidyl amine of a second fragment to

afford the ligation product.

Peptide esters bearing C-terminal Gly or Pro residues were found to react

smoothly with peptidyl amines to give excellent yields. However, peptide esters

bearing C-terminal Ala or Phe residues were found to undergo significant amounts

of racemization under these conditions. Danishefsky and co-workers screened

different conditions in an attempt to suppress racemization and found that replacing

DIEA with the sterically hindered base DBDMAP (2,5-di-tert-butyl-N,N-
dimethylaminopyridine, pKa¼ 9) decreases racemization of Ala from 12–15% to

7–9% and Phe from 40–50% to 20–25%. Furthermore, only slightly lower coupling

rates and yields are observed when DBDMAP was used in place of DIEA.

Fig. 17 Phenolic ester directed amide coupling (PEDAC). (a) General scheme of PEDAC

reaction. (b) Selective PEDAC cascade for the synthesis of a short glycopeptide
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While either TCEP or AgCl can be used in this new fragment condensation, they

each have unique features. AgCl was found to activate either aryl acyl donors or

alkyl thioesters at the C-terminus of peptide fragments. TCEP, however, could

activate only aryl acyl donors, and did so without disruption of an alkyl thioester at

the C-terminus of the non-cysteine acyl acceptor fragment. This difference in

activation ability enables the cascade assembly of peptide fragments under strategic

TECP or AgCl activation, a feature that was exploited to synthesize a short

glycopeptide. Under PEDAC-TCEP conditions, peptide 149 was coupled with

peptide 150 without sacrificing the C-terminal alkyl thioester. Resulting interme-

diate peptide 151 was then joined with another fragment, 152, under AgCl condi-

tions to furnish the final adduct 153 in 65% yield (Fig. 17b) [164].

Later, Hojo and co-workers developed a post-SPPS thioesterification reaction to

synthesize reactive peptide aryl thioesters using Fmoc SPPS [116]. Peptide frag-

ments are synthesized on the CLEAR amide resin, and the N-protected amino acid

Fmoc-(Et)Cys(Trt)-OH was introduced as the first amino acid. After Fmoc SPPS,

TFA cleavage, and deprotection, the precursor peptide fragment is mixed with 2%

MPAA in 30% aqueous acetonitrile. Under these conditions, an N-to-S acyl transfer
occurs to form an intermediate thioester from the N-protected Cys residue intro-

duced as the first amino acid during SPPS. This intermediate alkyl thioester then

undergoes transthioesterification with MPAA in the solution to form a more

reactive aryl thioester (Fig. 18a).

By combining this thioester synthesis and fragment condensation, Hojo’s group
was able to synthesize a 95-residue chemokine, CCL27 163 (Fig. 18b). In their

synthetic plan for CCL27, they chose ligation sites such that Gly would be the

Fig. 18 Synthesis of CCL27 using a thioester synthesis and fragment condensation approach
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C-terminal thioester residue for each fragment. Additionally, they protected the

thiol of Cys side chains and the ε-amine of Lys side chains with Acm and Boc

groups, respectively. Under HOOBt/DIEA-promoted coupling conditions, peptides

158 and 159 were successfully linked. Standard Nα-Fmoc removal freed the

peptidyl amine for another coupling and intermediate peptide 161 was ligated to

peptide 160 to afford full-length CCL27.

3.1.3 Ser and Thr Ligation

The total frequency of serine and threonine residues is up to 12.7% in natural

polypeptides and proteins [6]. Therefore, it is highly desirable to develop the

ligations at Ser and Thr. In 2010, Li and co-workers described an efficient protocol

which featured the salicylaldehyde (SAL) ester-mediated ligation of unprotected

peptides at Ser and Thr residues (Fig. 19a) [165]. First, the amine group of the

N-terminal Ser and Thr is reversibly ligated with the aldehyde group of the

C-terminus to form a cyclic N,O-acetal intermediate 166, which spontaneously

undergoes an irreversible acyl transfer to provide the amide bond. Second, the

acetal group is hydrolyzed under acidic conditions to release the serine or threonine

residues.

Fig. 19 Ligation at serine and threonine. (a) General example of salicylaldehyde ester-mediated

ligation. (b) Convergent synthesis of human erythrocyte acylphosphatase via serine ligation
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To demonstrate the applicability of this strategy, they used this ligation method

to synthesize the 98-residue human erythrocyte acylphosphatase (ACYP1) in a

convergent manner (Fig. 19b) [166]. The protein was assembled from three fully

protected segments, each prepared with Fmoc SPPS. The C-termini of segments

(46–69) 169 and (1–45) 171 were converted into salicylaldehyde esters by

DCC-promoted condensation with salicylaldehyde. They first performed the liga-

tion of peptide segments (46–69) 169 and (70–98) 170 at Gly69-Ser70. The mixture

was stirred in a pyridine acetate solution for 10 h at room temperature, and then

treated with TFA cocktail to deliver the ligated peptide corresponding to segment

(46–98) 172 in 31% yield. Next, the resultant peptide 172was ligated with fragment

(1–45) 171 at Gly45-Thr46. After exposure to TFA cocktail, the full-length poly-

peptide 173 was synthesized in 34% isolated yield. After folding, the chemically

synthesized protein exhibited the reported activity.

3.2 One-Pot Strategies for the Assembly of Peptide
Fragments

Consecutive assembly of multiple peptide fragments allows for the synthesis of

long protein constructs. However, traditional NCL methods involve the tedious

purification of intermediate ligation products after each sequential reaction. These

purification steps often result in significant product loss and can have a discourag-

ing effect on the overall synthetic yield. Removing, or at the very least minimizing,

these purification steps, has the potential to boost substantially the synthetic effi-

ciency of large proteins. For this reason, one-pot strategies where multiple ligation

reactions can take place selectively and reliably without the need to purify inter-

mediate products have been proposed and optimized in recent years [167]. Cur-

rently, one-pot fragment assembly processes have been developed for ligation in

either the C-to-N or N-to-C direction.

3.2.1 C-to-N Direction

In the C-to-N strategy, the first ligation is between two fragments which end up at

the C-terminus of the final protein sequence (Fig. 20). The resulting crude peptide,

without purification, is directly subject to ligation with the fragment on its

N-terminal side. This process is repeated until the desired peptide is synthesized.

Early C-to-N assembly strategies used different Cys protecting groups to control

the reactivity of each fragment, making the protecting groups for the N-terminal

Cys residues of the middle fragments especially critical. The conditions required for

the removal of these protecting groups must be compatible with the conditions for

the subsequent ligation. Otherwise, isolation and purification steps would be nec-

essary following each deprotection. Currently, the protecting group most widely
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used for this purpose is the thiazolidine (Thz) group [168]. The Thz group can be

easily introduced to the N-termini of middle fragments by using the commercially

available Boc-Thz-OH building block. Thz residues are also easily transferred to

Cys residues by treatment with an excess of O-methylhydroxylamine (MeONH2)

under slightly acidic conditions (typically at pH 4). Importantly, these deprotection

conditions do not interfere with subsequent ligation steps, which are often carried

out at neutral or slightly basic pH.

Kent and co-workers took advantage of the C-to-N one-pot strategy in their 2008

synthesis of insulin-like growth factor 1 (IGF-1) and its diastereomeric analogue

[Gly7D-Ala]IGF-1 [169]. As shown in Fig. 20, the IGF-1 sequence was divided into

three fragments. Both a Thz residue and a C-terminal thioester were installed on the

middle fragment, IGF-1 (Thz18-47) 174. It was found that the most N-terminal

fragment, IGF-1 (1–17) 176, was not water soluble, so a special Arg4-tag was

introduced into the thioester moiety of the fragment to increase its solubility.

Fragments IGF-1 (Thz18-47) 174 and IGF-1 (48–70) 175 were assembled first

under general NCL conditions to furnish fragment IGF-1 (Thz18-70). The Thz

residue was subsequently deprotected with 0.2 mMmethoxylamine · HCl at pH 4 to

yield IGF-1 (18–70) 177. After solid-phase extraction and lyophilization, ligation

of fragment IGF-1 (1–17) 176 and crude fragment IGF-1 (Cys18-70) 177 was

performed. A high concentration of MPAA was required to complete this step

because of the low reactivity of Val-Cys ligation.

The above example of one-pot fragment assembly was dependent on the use of

Cys protecting groups. However, it is also possible to control the order of ligations

by exploiting the different reactivities of N-terminal thio-substituted amino acids.

Such a strategy would mean fragments could be assembled without N-terminal thiol

protecting groups on the middle fragments. Danishefsky and co-workers first

demonstrated such a kinetically controlled cascade coupling strategy in 2010

[148]. As shown in Fig. 21, EPO fragment (95–120) 184 was obtained from three

individual fragments through sequential cysteine and thioleucine ligations in one

pot with no intervening purification or isolation steps. The first ligation connected

peptides 179 and 180 by standard Cys-based NCL. The resulting intermediate

Fig. 20 C-to-N one-pot NCL for the construction of IGF-1 (1–70)
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peptide 182 then underwent a second ligation to peptide 181 through a slower thio-

leucine ligation. The desired double ligation product 183 was isolated in 61% yield.

This product was found to correspond to the expected sequence: 181 + 179 + 180.

The single ligation product corresponding to the self-assembly of peptide 179 could

not be found during the first ligation and neither was the double ligation product

with the sequence: 179+ 179+ 180. These results illustrate a novel way of control-

ling the order of sequential ligations by fine-tuning the reaction kinetics at each

ligation site.

3.2.2 N-to-C Direction

Several methods have also been developed to ligate multiple peptide fragments in

the N-to-C direction. The Kinetically Controlled Ligation (KCL) developed by

Kent and co-workers is one such method, which takes advantage of the different

reactivities of alkyl and aryl thioesters [85, 170]. This method was elegantly applied

in the 2012 synthesis of a cyclic, crambin-derived topological analogue protein

(topologue) by Kent and co-workers (Fig. 22) [171]. The topologue 189 consisted

of the natural sequence of crambin, but the ε-amino group of Lys10 is acylated by

the α-carboxyl group of Asn46 though an iso-peptide bond. An aryl thioester was

installed at the N-terminus of fragment 185, while an alkyl thioester was introduced

to the C-terminus of fragment 186. The first NCL was conducted under KCL

reaction conditions, in the absence of an exogenous thiol catalyst (MPAA or

thiophenol), to give the intermediate fragment 187. After deprotection (Thz40 to

Cys40 conversion), the ring was closed through a second NCL in the presence of

MPAA. Acm removal and folding gave the final cyclic peptide construct 189.

The SEA system mentioned previously can also be used in the one-pot, N-to-C
direction assembly of three peptide fragments [122]. In 2012, Melnyk and

Fig. 21 C-to-N one-pot

ligation using a kinetically-

controlled coupling cascade

New Methods for Chemical Protein Synthesis 179



co-workers synthesized the biologically active K1 domain from the hepatocyte

growth factor (HGF) using this strategy [124]. The K1 domain, HGF (125–209)

195, was divided into three fragments: fragment (125–148) 190, fragment (149–

176) 191, and fragment (177–209) 193. The SEAoff amide moiety was installed to

the C-terminus of fragment 191. The ligation between fragment 190 and 191

proceeded in the presence of MPAA to afford peptide 192. Addition of TCEP to

the reaction “turned on” the SEA moiety by reducing the disulfide bond and

allowing an N-to-S acyl transfer to occur. MPAA, still present in the reaction

solution, exchanged with the newly created thioester to activate the intermediate

Fig. 22 Kinetically controlled ligation in the synthesis of crambin topologue

Fig. 23 One-pot N-to-C assembly of HGF(125–209) using the SEAon/off approach
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peptide 192 towards attack by the N-terminal Cys of peptide 193 and trigger the

second ligation. This one-pot method led to the formation of the full-length, linear

K1 domain 194 in 39% yield and obviated the need for purification of any

intermediate peptide fragments (Fig. 23).

4 Folding of Synthetic Polypeptide Chains

Once the full-length primary sequence is assembled, it must be folded into a

biologically active structure. Two distinct approaches exist for the formation of

disulfide bonds and folding proteins into proper tertiary structures. Individual

disulfide bonds can be sequentially formed using an orthogonal protecting group

for each pair of cysteine residues and irreversible oxidation steps, or a reversible

redox buffer system can be used to form all disulfide bonds simultaneously in a

thermodynamically driven random process [172, 173]. Neither of these methods is

without flaws and the success of either method is highly sequence dependent.

Forming disulfide bonds irreversibly using orthogonal thiol protecting groups

allows for complete control over the resulting disulfide network, making it a very

appealing method. It is, however, inherently limited by the number of orthogonal

thiol protecting groups that are stable during peptide synthesis [174]. Four

protecting groups are most commonly used for Fmoc-based peptide synthesis and

subsequent step-wise, selective disulfide bond formation: tert-butyl mercapto

(StBu), removed with mild reduction by thiols such as DTT; acetamidomethyl

(Acm), removed by treatment with I2; monomethoxytrityl (Mmt), removed by

acid; and trityl (Trt), also removed by acid but considerably less labile than Mmt,

allowing for selective removal of Mmt groups in the presence of Trt.

The synthesis of human insulin is a classic example of using this totally

controlled, step-wise disulfide bond methodology. Insulin consists of two peptide

chains, known as the A and B chains, joined by intermolecular disulfide bonds; a

third intramolecular disulfide bond is present within the A chain (Fig. 24). Many

groups have synthesized insulin and various analogs using a controlled step-wise

approach, and their methods have already been reviewed elsewhere [175, 176]. One

noteworthy example from the recent literature was accomplished in a remarkable

24% yield, based on the substitution of the A-chain resin [177]. The synthetic plan

required use of all four above-mentioned thiol protecting groups for cysteine. In

addition, the synthesis used the well documented strategies of 2,20-dithiobis
(5-nitropyridine) (DTNP) activation for rapid disulfide formation [178] and isoacyl

dipeptides (Fig. 24, underlined residues) for synthesis of the hydrophobic chains

[179]. The 21-residue A chain 197 was first synthesized by standard Fmoc SPPS

chemistry with all four of its cysteines protected orthogonally. The intramolecular

A chain disulfide bond was formed on resin by first deprotecting CysA6, activating

it with DTNB, and then deprotecting CysA11. The resulting free thiol of CysA11

rapidly reacted with the DTNB-activated CysA6 to form the disulfide bond. The A

chain 198 was then cleaved from the resin, simultaneously removing the Trt group
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of CysA20. The B chain 200 contains two Cys residues, and was also synthesized

with standard Fmoc SPPS chemistry. CysB7 was protected with Acm group and

CysB19 was activated with DTNB after cleavage from the resin. Combining the

DTNB-CysB19 activated B chain 200 and free thiol CysA20 A chain 199 rapidly

gave the ligated A-B dimer 201 as expected. Simultaneous Acm group removal and

oxidation to form the remaining disulfide bond (A7-B7), and subsequent isoacyl

dipeptide rearrangement completed the synthesis.

Recent efforts to improve the chemistry involved in the controlled, step-wise

formation of disulfide bonds has resulted in new methods of oxidizing free thiols to

form disulfides and novel cysteine protecting groups. Albericio and co-workers

described N-chlorosuccinimide (NCS) as a mild oxidizing reagent for the formation

of disulfide bonds on resin [180]. They used this new method to synthesize

oxytocin, a 9-residue peptide containing 1 disulfide bond, and SI α-conotoxin, a
13-residue peptide containing 2 disulfide bonds. Furthermore, they report that

methionine and tryptophan residues as well as Trt and Mmt cysteine protecting

groups were unaffected by the NCS oxidation step. None of those groups are

compatible with I2 oxidation, the most common method for disulfide bond forma-

tion, which makes NCS a valuable alternative. The same group also recently

reported the trimethoxyphenylthio (STmp) protecting group as an improved sub-

stitute for the commonly used tert-butylthio (StBu) group [181]. Compared to the

StBu group, STmp was shown to be removed by mild DTT reduction both quicker

and more completely, resulting in higher peptide purity and fewer side reactions

(Fig. 25).

The alternative to a step-wise orthogonal protecting group strategy for disulfide

bond formation is to use a redox buffer to form all disulfide bonds simultaneously.

This approach has the advantage of requiring fewer steps and being operationally

more convenient, although isomeric disulfide species are common, which compli-

cates the purification and can lower yield. A redox buffer contains a free thiol and

its oxidized disulfide together in solution [182]. The presence of both oxidized and

Fig. 24 Synthesis of human insulin in high yield with disulfide bonds formed in a regioselective

manner
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reduced thiols initiates a series of random exchanges between free thiols and

disulfides, eventually leading to a thermodynamically favored structure for the

peptide. The exact mechanism of this folding/disulfide bond formation reaction is

not well understood, since the partially folded intermediates and various crossed

disulfide species are difficult to characterize. Commonly used redox buffer systems

are all small, aliphatic thiols, such as glutathione, cysteine, β-mercaptoethanol

(BME), and dithiothreitol (DTT). A detailed examination of the effect of different

kinds of thiols on the folding efficiency of lysozyme revealed that symmetric,

aromatic dithiols containing quaternary ammonium moieties gave the fastest kinet-

ics and highest yields [183]. The use of thiols containing positively charged groups

has also recently been investigated by a different group working on analogs of

glutathione. The Hidaka group has done extensive work with the tripeptide Arg-

Cys-Gly (RCG) and its use as a redox buffer [184, 185]. They have shown that an

RCG-based buffer system resulted in a significantly higher folding recovery of

lysozyme as compared to glutathione. The effect, however, was demonstrated to be

pH and concentration dependent, thus highlighting the currently murky understand-

ing of the relationship between folding efficiency and the redox buffer.

5 Conclusion

Scientific interest in precisely understanding the fundamental aspects of protein

structure and function has led to the development of chemical synthesis of proteins.

With the advances in solid phase peptide synthesis, peptide fragment assembly, and

protein chain folding, the total chemical synthesis of proteins is now a practical

reality. This has greatly facilitated research in biochemistry and molecular biology

through the application of carefully designed and chemically synthesized peptides

and proteins. Recently, many new and more general synthetic methods to produce

proteins have been introduced. By addressing the limitations and inefficiencies

associated with existing methods, these new developments have the potential to

make chemical protein synthesis more efficient and even easier to exploit. Despite

the significant progress made, chemical synthesis of proteins remains an imperfect

tool. Depending on the sequence of the synthetic target, unexpected difficulties can

pop up at every stage of a potential synthesis. Therefore, much effort is still required

to develop more general methods in the future, especially those allowing for the

synthesis of long peptide fragments, ligation at any pair of amino acids, and

selective folding.

Fig. 25 Use of both NCS oxidation and STmp thiol protection in the synthesis of SI α-conotoxin.
STmp¼ trimethoxyphenylthio
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Abstract Eukaryotic chromatin is a complex and dynamic system in which the

DNA double helix is organized and protected by interactions with histone proteins.

This system is regulated through a large network of dynamic post-translational

modifications (PTMs) which ensure proper gene transcription, DNA repair, and

other processes involving DNA. Homogenous protein samples with precisely

characterized modification sites are necessary to understand better the functions

of modified histone proteins. Here, we discuss sets of chemical and biological tools

developed for the preparation of modified histones, with a focus on the appropriate

choice of tool for a given target. We start with genetic approaches for the creation of

modified histones, including the incorporation of genetic mimics of histone mod-

ifications, chemical installation of modification analogs, and the use of the

expanded genetic code to incorporate modified amino acids. We also cover the

chemical ligation techniques which have been invaluable in the generation of

complex modified histones indistinguishable from their natural counterparts. We

end with a prospectus on future directions.

Keywords Chemical ligation • protein chemistry • expanded genetic code • post-

translational modifications • histones • nucleosomes • chromatin

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

2 Genetic Approaches for Modified Histones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

2.1 Genetic Mimics of Histone Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

2.2 Codon Suppression: Expanded Genetic Code Approaches to Modified Histones . . 198

C.J. Howard, R.R. Yu, M.L. Gardner, J.C. Shimko, and J.J. Ottesen (*)

Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The

Ohio State University, Columbus, OH 43210, USA

e-mail: ottesen.1@osu.edu

mailto:ottesen.1@osu.edu


3 Chemical Installation of PTM Analogs at Single Cysteine Sites . . . . . . . . . . . . . . . . . . . . . . . . . 202

3.1 MLAs: Methyllysine Analogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

3.2 Acetyllysine Analogs via Cysteine Alkylation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

3.3 Thiol-ene Chemistry to Introduce Modification Analogs . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

3.4 Disulfide Stapling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

4 Chemical Ligation for the Preparation of Modified Histone Proteins . . . . . . . . . . . . . . . . . . . . 207

4.1 Histone Semi-Synthesis by Expressed Protein Ligation: Modifications Near

the Histone N-Terminus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4.2 Considerations for Selection of Appropriate Ligation Sites . . . . . . . . . . . . . . . . . . . . . . . . . 210

4.3 Histone Semi-Synthesis by Expressed Protein Ligation: Modifications Near

the Histone C-Terminus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.4 Total Synthesis of Histone Proteins by NCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

5 Prospects: Synthetic Histone Proteins in the Eukaryotic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

1 Introduction

Eukaryotic chromatin is a complex and dynamic system in which the DNA double

helix is organized and protected through interactions with histone proteins to form

nucleosomes. These further interact to form higher order chromatin structures. This

serves to stabilize and sequester DNA, while also regulating interactions with

biologically relevant functional partners. At the core of this regulatory system are

the dynamic post-translational modifications of histone proteins which help control

gene transcription, DNA repair, and a host of other cellular functions. The nucle-

osome is the unit structure of chromatin (Fig. 1). In a canonical nucleosome, there

are four primary histone proteins – H3, H4, H2A, and H2B. Two copies of each of

H3 and H4 form the H32/H42 tetramer; whereas one copy each of H2A and H2B

form the H2A/H2B dimer. One tetramer and two dimers together form the histone

octamer, around which is wrapped ~147 bp of DNA [2]. This structure is elaborated

by incorporation of histone variants. For example, there are three major H3 variants

(H3.1, H3.2, and H3.3) in human chromatin, whereas the H3 variant CENP-A is

found only in centromeric chromatin [3]. Similarly, the dimer may contain variant

histones such as H2A variants H2A.X, which plays a role in DNA repair, or H2A.Z,

which is implicated in regulation of a variety of cellular functions [4–6]. Specific

incorporation of these histone variants is one mechanism by which chromatin

function may be dynamically regulated.

Conceptually, the nucleosome may be subdivided into two distinct functional

areas: the highly structured histone core, which forms the primary binding surface

for DNA, and the histone tails, which project out from the core and are typically

unstructured in the context of a mononucleosome. Histone octamers are deposited

to form nucleosomes in arrays along the DNA molecule, which along with linker

histone H1 can compact into higher order chromatin structures. Taken as a whole,

the nucleosome core packages and protects DNA, counteracting the negative

charge of the phosphate backbone with the positive charge of the basic histones,
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and the act of wrapping physically occludes the DNA from interaction with cellular

partners. The histone tails are poised to coordinate interactions between the nucle-

osomes and to recruit binding partners to regulate biological activity through

complex patterns of modifications. All these functions are dynamically mediated

by combinations of histone post-translational modifications which, with a focus on

the histone tails, have been described as the “histone code” [7, 8].

Histone proteins are extensively and specifically modified throughout the tail

and core regions. Our knowledge of the nature and number of histone modifications

is constantly expanding, and an exhaustive list of modifications is an ever-moving

target [9, 10]. In part, lysines are commonly mono-, di-, or tri-methylated, acety-

lated, ubiquitinated, sumoylated, biotinylated, formylated, or crotonylated [11–

13]. Arginine can be methylated or converted to citrulline. Ser, Thr, Tyr, and His

may be phosphorylated, and Ser and Thr are glycosylated [14]. In vivo, these

modifications are coordinated by an elaborate interplay of regulatory enzymes.

In vitro, histones have served as high-value targets to develop protein chemistry

tools to generate homogenous and precisely-modified histone proteins because of

the number and importance of PTMs in human health and disease. These modified

proteins can then be refolded back into functional nucleosomes and nucleosome

arrays to determine the molecular mechanisms by which these numerous modifi-

cations function.

Nucleosome Dyad

Entry-Exit
Region

Entry-Exit
Region

Fig. 1 The structure of the nucleosome [1]. Wrapped DNA is depicted in gray. Histone H3 is

shown in dark red, histone H4 in purple, histone H2A in dark blue, and histone H2B in light blue.
The nucleosome dyad and entry-exit regions are labeled for clarity

Chemical and Biological Tools for the Preparation of Modified Histone Proteins 195



Here, we discuss sets of chemical and biological tools for the creation of

modified histones, focusing on the appropriate choice of tool for a given target.

There have been several excellent and detailed reviews on the rapidly expanding

field of chemical ligation chemistry as applied to histone proteins [15–18]. We hope

to find a unique niche with a general overview designed for those new to the field,

with a focus on practical aspects of design and selected case studies, rather than an

exhaustive survey. We discuss genetic approaches to modified histones, including

the incorporation of genetic mimics of histone modifications, chemical installation

of residue analogs, and the use of expanded genetic code techniques to incorporate

modified amino acids. Next, we cover the chemical ligation techniques which have

been invaluable in the generation of complex modified histones which are indistin-

guishable from the natural counterparts. We discuss a variety of ligation approaches

developed for the production of these designer histones and chromatin. We end

with a perspective on future directions of synthetic chromatin in living systems.

2 Genetic Approaches for Modified Histones

2.1 Genetic Mimics of Histone Modifications

Techniques in chemical biology allow unparalleled control over each residue of a

protein, leading in the ideal case to the generation of a chemically modified protein

that is otherwise indistinguishable from the native counterpart. However, the

simplest approach to studying a histone modification is the introduction of one of

the 20 natural amino acids that mimics the features of the modified amino acid of

interest (Fig. 2). For example, glutamine has been used to substitute for acetylated

lysine, and arginine for constitutively unmodified lysine. Glutamate or aspartate is

often substituted for phosphorylated serine, threonine, or tyrosine, whereas alanine

is used to replicate the unmodified residue.

These approaches have two primary advantages. First, using amino acids that are

naturally available allows access to incredibly powerful genetic tools to screen for

phenotypic effects of a histone modification [19]. Many early leads on functionally

significant histone residues emerged out of large-scale mutational screens in yeast,

and were later confirmed by mass spectrometry or other studies [20]. Of note,

because these mimics introduce a completely different chemical moiety than either

the modified or unmodified states, the sites of mimic incorporation are incapable of

undergoing dynamic modification by histone modifying enzymes such as histone

acetyltransferases, methyltransferases, or histone deacetylases, even in a cellular

context. As such, observed changes may be caused by a substitution mimicking

either the modified or unmodified state, or through restriction of dynamic modifi-

cation at the static residue. Second, nucleosomes are easily refolded and

reconstituted from recombinant histone proteins expressed in and purified from

E. coli [21]. Any laboratory with expertise in recombinant protein expression can
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generate large quantities of histones bearing mimics of acetylation or phosphory-

lation using standard techniques. This opens up the use of biochemical or biophys-

ical techniques which require milligram quantities of a histone, such as

crystallography, to assess the role of a modification [22–24].

When employing genetic substitution to mimic a modified amino acid, it is

important to confirm that the mimic alters the same properties of a nucleosome as

the modification that is being studied. In some cases, such as the effect of lysine

acetylation in the H3 and H4 tails on chromatin compaction, Gln often appears to

replicate the effects of lysine acetylation, suggesting that neutralization of the

positive charge of an unmodified lysine, coupled with potential hydrogen bonding

capabilities of the Gln amide, is sufficient to replicate acetylation [25, 26]. These

results are contradicted by other studies suggesting that Gln mimics do not replicate

the effect of precisely acetylated histone tails in compaction [27]. The study of

histone modifications located in structured histone-DNA interfaces in the core of

the nucleosome has offered a more nuanced look at these mimics. In the dyad

region, H3-K115ac and H3-K122ac have been shown to destabilize the nucleosome

structure [28]. However, H3-K115Q and H3-K122Q do not replicate this effect and,

in fact, may stabilize the nucleosome slightly as assessed by competitive nucleo-

some reconstitution. Phosphorylation of H3-T118, also in the nucleosome dyad

region, significantly destabilizes the nucleosome [29] 40-fold relative to

unmodified nucleosome standards and, in fact, can support a stable altered nucle-

osome structure [30]. H3-T118E as a mimic of phosphorylation does not have these

effects, suggesting that negative charge is insufficient to replicate phosphorylation

in the context of these functions.

Within the nucleosome entry-exit region, where DNA begins to contact the

histone surface, the effectiveness of mimics is also ambiguous. Acetylation of

H3-K56 has been demonstrated to increase DNA unwrapping from the histone

octamer and to enhance transcription factor binding [31–33]. Incorporation of Gln

1 2

3 4

5 6

7 8

Fig. 2 Side chains relevant to genetic mimics of modifications. (1) Unmodified lysine. (2) Acet-

ylated lysine. (3) Arginine, used to mimic constitutively unmodified lysine. (4) Glutamine,

commonly used to mimic constitutively acetylated lysine. (5) Threonine. (6) Phosphorylated

threonine. (7) Aspartate. (8) Glutamate, commonly used to mimic constitutively phosphorylated

residues
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as H3-K56Q qualitatively enhances DNA unwrapping, but does not quantitatively

reproduce the effect of acetylation. However, as Gln does enhance DNA

unwrapping, it may be sufficient to mimic this effect, depending on the precision

required. These studies suggest that the ease of production of these natural amino

acid mimics must be balanced against the elements of the modified amino acid that

are essential for function. Further, mimics are a crude tool for some modifications,

as there are no good mimics to distinguish, for instance, mono-, di-, and/or

tri-methylation of lysine. These considerations are crucial to choose the tool

appropriate to the task. Because each of the more elaborate methods developed

for more precise replication of a modified residue also requires extra chemical steps

or processing, it is reassuring to know that the extra effort and expense of modified

histone preparation is justified by the improved accuracy and reliability of results.

2.2 Codon Suppression: Expanded Genetic Code Approaches
to Modified Histones

Expanded genetic code approaches have been developed to site specifically insert

unnatural amino acids at the amber codon (UAA) using orthogonal aminoacyl-

tRNA synthetases (aaRS) and tRNA (Fig. 3). These provide enhanced ability to use

molecular biology approaches to generate modified histone proteins containing a

wide range of modifications from naturally occurring PTMs to PTM mimics,

fluorescent amino acids, and amino acids modified to alter their intrinsic chemistry.

These subjects have been extensively discussed elsewhere [34, 35]; here, we do not

attempt an exhaustive review but highlight a few topics which span the diversity of

applications in histone proteins.

2.2.1 Encoded Lysine Modifications

Given the number of histone modifications that occur on lysine, the discovery of the

pyrrolysine incorporation machinery in methanogens and subsequent development

of artificial pyrrolysyl-tRNA synthetase (PylRS)/tRNA pairs for efficient incorpo-

ration of modified lysine residues has had a tremendous impact on the histone

modification field [36, 37]. The synthetase has been effective at incorporating

several lysine variants chemically similar to pyrrolysine, for example with a

modification that includes an amide bond at the ε-amine of the lysine side chain

(Fig. 3, compounds 1–4). This is exemplified by the classic work of Neumann and

coworkers in which they demonstrated the genetic incorporation of acetyllysine

into H3-K56ac, located in the entry-exit region of the nucleosome [32]. Milligram

quantities of uniformly acetylated histone H3 were generated using this genetic

encoding system, which enabled bulk and single molecule FRET experiments that

demonstrated an increase of DNA unwrapping and SWI/SNF-dependent chromatin
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remodeling upon acetylation without destabilizing the nucleosome as assessed by

salt-induced dissociation studies, or affecting higher order chromatin structures in

nucleosome arrays. Genetically incorporated acetyllysine has been used to probe

the role of lysine acetylation at several positions in the nucleosome core. In one key

study, H3 acetylated at K122 was used to elucidate the role of H3-K122ac in

transcriptional activation, partially through chromatin assembled in vitro with

recombinantly expressed acetylated histone H3 [38]. An additional study of note

used genetic incorporation of acetyllysine at H3-K64 to demonstrate that acetyla-

tion at this residue increased chromatin remodeling by Chd1, but not RSC, and

additionally caused destabilization of the nucleosome as assessed by salt depen-

dence of nucleosome dissociation and competitive nucleosome reconstitution

[39]. In each case, the ability to easily generate sufficient quantities of uniformly

acetylated histone proteins for nucleosome reconstitution was essential for the

success of the study.

The genetic incorporation system used for acetylated lysines has been further

developed for site-specific incorporation of methylated lysines. The development of

a synthetase with specificity for methylated lysine over unmodified lysine is

challenging because of their structural similarity. Therefore, methylated lysines

are typically introduced as a protected derivative that is deprotected to reveal the

methylated species. For example, Chin and coworkers generated H3

Pyl

mRNA

1 2 3 4 5

Fig. 3 Top: Schematic for expanded genetic code incorporation of lysine mimics by modified

pyrrolysine incorporation machinery. Bottom: Representative modified amino acids incorporated

using expanded genetic code techniques. (1) Acetylated lysine. (2) Boc-protectedNε-methyllysine.

(3) Photocaged Nε-methyllysine. (4) Nε(Cys)-Lysine. (5) Azidonorleucine
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monomethylated at K9 through introduction of a Boc-protected monomethyllysine

that could be deprotected with 2% TFA after purification (Fig. 3, compound 2)

[40]. A particularly elegant example is the genetic encoding of a photocaged Nε-

methyllysine (Fig. 3, compound 3) by Liu and coworkers which can be deprotected

by photolysis under mild conditions [41]. This opens the intriguing possibility of

the dynamic introduction of methyllysine in living cells. More esoteric lysine

modifications, including propionyl-, butyryl-, or crotonyl-lysine have been found

in histone proteins [42] as markers of active regions of chromatin [11]. PylRS-

tRNA pairs have been found to insert each of these modified lysines into histone

proteins [43, 44].

Expanded genetic code approaches in combination with other protein chemistry

tools have been used to probe site-specific ubiquitination of histones and other

proteins. Of note here are two interesting modified lysine variants that can be

genetically incorporated as intermediates to ubiquitinated proteins. Lysine in

which cysteine has been coupled to the ε-amine (Fig. 3, compound 5) can be

genetically incorporated, and then used as an avenue for native chemical ligation

onto the lysine side chain [45, 46]. Similarly, azidonorleucine (Fig. 3, compound 5)

can serve as a protected lysine derivative, allowing chemistry specifically at this

side chain position to introduce diubiquitin [47]. With the rapid pace of ongoing

discovery in this area, many more interesting derivatives of lysine suitable for

genetic incorporation may be anticipated in the future.

2.2.2 Combined Genetic and Chemical Approaches: Modifications

Introduced Through Dehydroalanine

Several researchers have exploited genetic approaches to install chemical moieties

that may be converted to the bioorthogonal, reactive dehydroalanine, an entry point

for the introduction of a wide variety of modified residues (Fig. 4). Schultz and

coworkers introduced phenylselenocysteine, which is susceptible to oxidative

elimination to yield a reactive dehydroalanine moiety, at H3-K9. Michael addition

of an appropriate thiol reagent results in a thioether analog of a post-translational

modification [48]. Liu and coworkers evolved the pyrrolysine incorporation

machinery to accept Nε-Cbz-lysine for site-specific incorporation at H3-K9, with

protein yields reported at 100 mg/L. Mild oxidation again resulted in conversion to

the reactive dehydroalanine, which was further converted into thioether analogs of

methylated lysine, acetylated lysine, and phosphocysteine [49].

The site-specific incorporation of dehydroalanine is not restricted to expanded

genetic code approaches. Davis and coworkers developed gentle chemical

approaches for the conversion of a cysteine residue to dehydroalanine by treatment

with 2,5-dibromohexanediamide [50]. Through this approach, they introduced

PTM mimics at single cysteine residues introduced at H3-K4, H3-K9, or H3-K79

[51]. Intriguingly, they also demonstrated that cysteine residues could be intro-

duced simultaneously at H3-K4 and H3-K79, which resulted in two dehydroalanine

moieties and therefore two PTM mimics installed at separate locations within the
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histone. However, it should be noted that conversion of cysteine or selenocysteine

to dehydroalanine eliminates the chirality of the α-carbon. The PTM mimics are

therefore not fully chirally resolved, although there have been suggestions that the

inherent chirality of the protein molecule may lead to enrichment of the L-form

PTM mimic.

2.2.3 Encoded Phosphoserine

Serine phosphorylation in histones is essential to regulation of several cellular

events. Phosphorylation of H3-S10, in particular, is thought to be interdependent

with acetylation and methylation of surrounding lysine residues in a network of

modification switches [52]. Park and coworkers developed an expanded genetic

code approach to the introduction of phosphoserine into proteins in E. coli, but with
poor expression yields [53]. However, they used H3-S10 as an ideal platform to

refine and improve the level of expression for genetically incorporated

phosphoserine in the context of a physiologically relevant substrate [54]. They
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were able to improve yields to 3 mg/L of culture, a 3,000-fold improvement over

previous work, bringing expression to levels useful for production of designer

nucleosomes. With the increased expression, they were able to demonstrate the

importance of context in histone H3 modification by carrying out histone

acetyltransferase (HAT) assays using Gcn5 and the Saga complex on H3 protein

alone, octamers, and nucleosome arrays with and without H3-S10ph. They found

that H3 alone demonstrated a decrease in acetylation compared to wild-type,

histone octamers demonstrated similar levels with phosphorylated and unmodified

substrates, whereas acetylation increased with H3-S10ph in nucleosome arrays.

These results clearly demonstrate the importance of precisely characterized and

regulated substrates in determining the function of histone modifications.

Expanded genetic code systems are clearly very powerful for the generation of

modified proteins, particularly in laboratories that are most comfortable with

molecular biology approaches to protein production [55]. They expand the reach

of precisely regulated modified histone proteins, particularly with acetylated lysine,

to a wider audience of chromatin researchers to determine the interplay between

histone modifications and other cellular functions. The primary limitation is that

without advanced techniques which are only beginning to be explored, only one

modification at a time may be introduced into the histone sequence because of the

limitation of the available matched stop codon pairs, and of the reduced yield often

observed with each incorporation event. This is likely to change as designer

organisms that lack amber codons in their genome become more common

[56]. As an example, amber codon (UAG) suppression is one method used in nature

by select organisms to expand their own genetic code, for example to include either

selenocysteine (Sec) or pyrrolysine (Pyl) [57]. Because the native pyrrolysine

tRNA/aaRS pair performs amber codon suppression, this is often used as the

starting point for the directed co-evolution of new noncanonical lysine analog

incorporation systems for efficient and specific amino-acyl charging of a

noncanonical amino acids (reviewed in Liu et al. 2010 [34]). The use of tRNA

that read quadruplet codons [58] was originally discovered in Salmonella
typhimurium as a suppressor of a +1 frameshift mutation, and it has been used as

a way to make changes to translation without mutations to the ribosomal complex,

which are often lethal [59, 60]. This has even given rise to suppression systems in

which two modified amino acids can be inserted into a protein.

3 Chemical Installation of PTM Analogs at Single Cysteine

Sites

Among the different functional groups presented by the 20 common amino acids,

the cysteine sulfhydryl has unique chemical reactivity and is relatively rare in

natural protein sequences. With careful selection of a modification reagent, cysteine

makes an attractive target for the site-specific incorporation of mimics of post-
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translational modifications. Cysteine modification can be extremely powerful due

to the ease of use of site-directed mutagenesis for the incorporation of a nonnative

cysteine, and the relatively high yields of recombinant histone proteins with these

single site substitutions. This same reactivity is commonly used to introduce

moieties which allow direct characterization of a modified biomolecule or complex

including spin labels [61, 62], fluorophores [63], cross-linkers [64], and foot

printing reagents [65] allowing for biophysical characterization of nucleosomes.

In this section we discuss methods developed to exploit the reactivity of the

cysteine sulfhydryl to introduce PTM mimics that resemble native modifications.

We discuss methods that alkylate cysteine directly to generate modified lysine

mimics, or that use the unique properties of cysteine for a disulfide “staple” to

reversibly link a modification such as ubiquitin to a histone. Methods that exploit

the reactivity of cysteine are particularly appropriate for use in histone proteins,

because there are no indispensable cysteine residues in the nucleosome. The only

native cysteines in a typical Homo sapiens nucleosome composed of standard

histone variants are found in histone H3 – at position C110 in histone variants

H3.1, H3.2, and H3.3, and at position 96 in histone variant H3.1 [66]. These

cysteines are commonly replaced by Ser at position 96 and Ala at C110, with

minimal to no perturbation of nucleosome structure, function, or dynamics [67,

68]. This allows introduction of a single cysteine elsewhere in the nucleosome

without cross-reactivity with native residues.

3.1 MLAs: Methyllysine Analogs

Shokat and coworkers revolutionized the study of methylated lysine residues in

histones through the development of simple and elegant cysteine alkylation tech-

niques which are accessible to a wide range of research groups [69]. The

aminoethylation of cysteine to generate a lysine analog in which the γ-methylene

is replaced with sulfide, with sufficiently similar properties to allow cleavage by

trypsin, had been known for decades [70]. Shokat and coworkers made the key

recognition that commercially available derivatives of the aminoethylation reagents

could be exploited to produce the corresponding mono-, di-, or tri-methylated

lysine analogs (MLA) (Fig. 5a). Substituting the methylene with a sulfide decreases

the pKa of the residue by 1.1, and increases the length of the sidechain by only

0.28 Å. The method is sufficiently high-throughput that, in the initial study, specific

methylated lysine variants were incorporated at H3-K4, H3-K9, H3-K36, H3-K79,

and H4-K20. The proteins readily refolded into histone octamer for reconstitution

into nucleosomes, and the MLA-modified nucleosomes were able to recapitulate

modification-specific recognition by natural binding partners, such as interaction of

H3-K9me2 with HP1α. MLAs were directly tested against the native modification

in synthetic peptides to assess activity of the methyltransferase SUV39H1, which

targets substrates methylated at H3-K9; the MLAs demonstrated equivalent activity
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to the native modification. Further, antibodies raised against the natural H3-K9me,

H3-K9me2, H3-K9me3, H4-K20me, H3-K4me3, H3-K36me3, and H3-K79me2

also recognized the MLA equivalents of each of these nucleosomes. The one caveat

was that the H3-K9me2 antibody showed fivefold lower affinity, which suggests

that the functional equivalency of the MLA is somewhat context-dependent. A

survey of the literature suggests that this theme continues; in the majority of cases,

MLAs are accessible and cost-efficient mimics of methylated histone function

that allow the incorporation of methylated lysine mimics throughout the histone

sequence, although concerns are raised in rare cases regarding the impact of the

thioether moiety on specific interactions with the MLA.

The elegance and simplicity of the MLA approach (together with the commer-

cial availability of methylated histones prepared using this approach) has enabled

discovery and characterization of important functional histone interactions [71]. A

few selected examples are as follows. Crystallography requires large quantities of

homogenous modified protein to explore the role of a histone modification in the

nucleosome. MLAs were used to prepare nucleosomes which included

H3-Kc79me2, H4-K20me3, or unmodified histone cores. Analysis of the crystal

structures suggested that H3-K79 methylation alters local sidechain structure to

partially reveal a hydrophobic pocket on the nucleosome surface. The ability to

generate large quantities of nucleosome arrays with these pure MLA-modified

histones also allowed experimental characterization of these modifications by

analytical ultracentrifugation, which revealed an influence of the tail modification,

but not the core, in chromatin compaction [72]. Similarly, MLAs have enabled

structural characterization of methylated histone binding partners by nuclear mag-

netic resonance, for example low affinity binding of methylated H3-K36 by the
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histone deacetylase complex Rpd3S [73] or high affinity binding of nucleosomes

methylated at H3-K36 to the PWWP domain of LEDGF, which plays an important

role in HIV integration [74]. In this study, the ability to prepare homogenous

MLA-nucleosomes was essential to the identification of cooperativity between a

hydrophobic H3-K36me3 binding site and a basic surface patch that interacts with

DNA [73]. While modified peptide pull-down studies were able to identify inter-

actions of H3-K4me3 with the ING4 PHD finger, which is important to tumor

suppression, only the ability to prepare MLA-nucleosomes identified that this

interaction mediates acetylation on histone H3 within the nucleosome; the ability

to prepare these well-defined samples is essential to understanding similar crosstalk

between histone modifications [75]. The ability to rapidly generate different mod-

ification states of each lysine allows rapid screening across large numbers of

differentially modified nucleosomes [76]. To sum up, MLAs have proven to be a

valuable chemical tool enabling biochemical and biophysical characterization of

histone methylation important for biological function.

3.2 Acetyllysine Analogs via Cysteine Alkylation

Alkylation of cysteine to form MLAs is rapid and high yielding using methylated

2-bromoethylamine derivatives. Unfortunately, reaction with corresponding

alkylated reagents provide poor kinetics and poor yields [77]. The Cole Laboratory

developed the methylthiocarbonyl-aziridine (MTCA) reagent as an alternate

approach to introduce methylthiocarbonyl-thiaLys (MTCTK) acetylation mimics

at cysteine sites (Fig. 5b), where the side chain includes the γ-sulfide as well as

methylthiocarbonyl in place of the acetyl group. While the additional sulfur does

add considerable steric bulk to the modification, specifically modified peptides

could be recognized by interaction partners, including the Brdt bromodomain and

specific antibodies, although with two- to fourfold lower affinity than the precisely

modified acetyllysine, and could stimulate Rtt109 HAT activity, although to a

lesser extent than acetyllysine. Although MTCTK may not fully recapitulate the

effect of lysine acetylation, the ease of installation may make it a valuable tool in

the nucleosome context.

3.3 Thiol-ene Chemistry to Introduce Modification Analogs

An alternate approach to acetyllysine uses free radical induced thiol-ene (or “thiol

click” [78]) chemistry to add N-vinyl-acetamide at a single cysteine site [79] to

generate the corresponding acetyllysine mimic (Fig. 5c). This mimic replicated

lysine deacetylation qualitatively, although not fully quantitatively. The mimic was

further reconstituted into nucleosome arrays where it appeared to reproduce fully

the impact of acetylation at H4-K16 on chromatin compaction. Fujimori and
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coworkers used a similar approach to introduce several methylarginine analogs into

histone proteins (Fig. 5d) [80]. In the methylated arginine mimics, the ε-nitrogen of
the guanidyl group is replaced with a methylene, which perturbs both geometry and

polarity of the arginine side chain. However, the mimic was functional across a

wide range of methylarginine binding partners, indicating that reproduction of the

terminal groups of methylarginine may dominate these interactions.

3.4 Disulfide Stapling

The unique ability of cysteine to form disulfide bonds has been exploited for

chemical ligation in histone proteins through the disulfide stapling approach,

exemplified by the Muir Laboratory in preparation of a disulfide-linked histone-

ubiquitin library [81]. To enable this approach, ubiquitin was expressed as a fusion

with an intein domain (Fig. 6). Thiolysis with the 1,2-aminothiol reagent

2-mercaptoethylamine generates a transient intermediate that undergoes

rearrangement to form the stable, amide-linked thiol derivative, which can then

be activated and incubated with a histone protein with a single cysteine to generate

the disulfide-linked ubiquitylated histone. Although this does not recapitulate the

native isopeptide linkage of a ubiquitylated protein, nucleosomes with ubiquitin at

H2B-K120C were able to stimulate the H3-K79 methyltransferase activity of

hDot1L, suggesting the mimic was sufficiently similar for recognition. Further,

this linkage enables the dynamic removal of a protein modification via reduction of

the disulfide bond, mimicking the dynamic behavior of protein modifications under

controlled conditions. The Muir Laboratory exploited this approach to determine

the position-dependent effect of ubiquitin in histones H2A and H2B while also

demonstrating that H2B ubiquitylation perturbs chromatin compaction [81, 82]. A

similar approach was used to prepare histone H4 with sumoylation at H4-K12 in the

N-terminal tail, and demonstrated that SUMO-3 inhibits higher order chromatin

structure required for chromatin compaction [13].

Each of the approaches described in this section benefits from the

overexpression of a recombinant histone protein with a cysteine substitution at

the site or sites of interest, with diverse yet elegant methods to elaborate these

cysteines into a modification mimic. The power of these techniques lies in the

ability to easily generate milligram quantities of modified histones. Consequently,

an important limitation of these techniques is that only a single class of modification

may be easily introduced within a single molecule because of the requirement for

complete reaction of all cysteine residues to yield a homogenous modified sample.

Highly modified histone proteins often contain varying numbers and types of post-

translational modifications within a single molecule. Cysteine modification

approaches are therefore unlikely to reach this level of diversity.
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4 Chemical Ligation for the Preparation of Modified

Histone Proteins

Although each method of preparing modified histones has advantages, to date only

chemical ligation has allowed access to histone proteins bearing the complex

mixtures of multiple, different modifications representative of native modified

proteins. In the general case, chemical ligation is any specific reaction of two

peptide or protein segments via a bioorthogonal, chemoselective mechanism to

generate a joined product. The most common type of chemical ligation used is

native chemical ligation (NCL). In the original form, a peptide with an α-thioester
at the C-terminus is reacted with a peptide that contains a 1,2-aminothiol, typically

a cysteine residue, at the N-terminus to form a product peptide with a native peptide

bond at the juncture [83]. If carried out at a site with a native Cys, the reaction

generates a product indistinguishable from the parent sequence. If a peptide seg-

ment is generated synthetically, this approach allows full chemical control over

each amino acid within the sequence. This allows the introduction of chemical

moieties which are challenging to incorporate biologically – for example, amino

acids bearing precise post-translational modifications at any desired location in the

component peptide sequence. The utility of such an approach to chemically mod-

ified histones is immediately apparent.

4.1 Histone Semi-Synthesis by Expressed Protein Ligation:
Modifications Near the Histone N-Terminus

Of course, the preparation of component peptides is limited by the typical param-

eters of solid phase peptide synthesis, such that peptide segments longer than ~40–

50 amino acids are challenging through standard techniques. The core histone
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proteins are approximately 100–140 amino acids in length, and a single ligation

step is not sufficient to generate a full-length protein from fully synthetic peptide

segments. However, many interesting histone modifications occur in the N-terminal

histone tails. To access modifications in these regions, only the tails need be

prepared synthetically to permit the controlled introduction of histone modifica-

tions. The remainder, and largest portion, of the protein sequence may be expressed

recombinantly in E. coli, without any modifications along the sequence, as depicted

in Fig. 7a. In general, native chemical ligation carried out with at least one

recombinant protein segment has been termed expressed protein ligation (EPL).

A main challenge in employing EPL to generate histones with modifications in

the N-terminal tails is the expression of the C-terminal portion of the protein with

an N-terminal cysteine. Several methods have been used in histone proteins. The

simplest approach is to introduce an initiator Met prior to a Cys, such that removal

of the Met by aminopeptidase results in an N-terminal Cys [84]. This expressed

protein can then be used directly in a ligation reaction. This approach does not work

in all situations; N-terminal Cys is thought to be alkylated by pyruvate in a number

of cases, which renders it incapable of acting as a chemoselective ligation site.

Another common approach is to follow the initiator Met with a specific proteolysis

site such that processing of the expressed protein results in the active N-terminal

Cys. This method also allows for the inclusion of an affinity tag N-terminal to the

protease sequence. Proteases including Factor Xa [85], TEV protease [86], or
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SUMO protease [87] have been successfully used to reveal an N-terminal Cys on

recombinant histone fragments with high yield and purity.

Historically, EPL has been used by many groups to study modifications in the

N-terminal tails of histones [69, 84, 85, 88–93]. Shogren-Knaak and coworkers

were the first to exploit this technique to generate histone H3 containing a phos-

phorylated serine residue (H3-S10ph, T32C). They demonstrated that the semi-

synthetic histone could be refolded into octamer and reconstituted into homoge-

neous nucleosome arrays, resulting in an increased histone acetyltransferases activ-

ity with Gcn5 over WT [85]. However, the physiological Gcn5 complex, SAGA,

does not show the same increase in acetyltransferases activity as recombinant Gcn5

and the phosphate modification did not introduce a disruption in the higher-order

chromatin structure [88]. Later that same year, He et al. 2003 reported the produc-

tion of semi-synthetic histone H3 containing a methylated lysine residue

(H3-K9me3) and histones H3 and H4 with multiple acetylated lysine residues

(H3-K4ac,9ac,14ac,18ac,22ac; H4-K5ac,8ac; and H4-K5ac,8ac,12ac). This group

showed that both semi-synthetic modified histones H3 and H4 were able to form

tetramer and serve as active substrate for histone-modifying enzymes [84].

In a landmark early study, Shogren-Knaak and coworkers prepared histone

H4-K16ac with an R23C substitution by ligating N-terminal peptide H3(1–22)-

K16ac to the C-terminal histone fragment H3(23–102, R23C). They found that

acetylation of lysine 16 affected higher-order chromatin structure by preventing

chromatin compaction in nucleosome arrays, and interrupted protein-histone inter-

action with adenosine triphosphate-utilizing chromatin remodeling and assembly

factor (ACF) [89]. This study clearly demonstrated the potential of semi-synthetic

histones to address questions in chromatin structure and function. In another early

study, Ferreira and coworkers prepared semi-synthetic, tetra-acetylated H3

(H3-K9ac,14ac,18ac,23ac,S28C) and H4 proteins (H4-K5ac,8ac,12ac,16ac,V21C)

to investigate the effects of these modification on chromatin remodeling by Snf2,

and found that combinations of acetylation impacted chromatin remodeling rates

differentially. H3 tetra-acetylation increased thermal mobility of nucleosomes

twofold over unmodified nucleosomes, and increased recruitment of chromatin

structure remodeling (RSC) complex 16-fold. H4 tetra-acetylation does not alter

thermal mobility of nucleosomes and slightly reduced remodeling activity of both

chromodomain helicase DNA binding protein 1 (Chd1) and Isw2 [90]. These results

suggested a complex network of unique mechanisms which, although dissimilar,

are interrelated to allow for multiple modes of regulation.

Approaches for the semi-synthesis of histones with modified N-terminal tails

have reached near-ubiquity in the field, such that semi-synthetic modified histones

have even become commercially available (Active Motif). As such, an exhaustive

listing of studies with histones prepared using these approaches would be somewhat

impractical. However, one recent advance of note is the use of sequential EPL, in

which the N-terminal synthetic segment is split into two distinct segments. This

allows the preparation of short peptide segments to achieve modifications of histone

residues either closer to the core domain (such as H3-R42me2, prepared from

recombinant H3(47–135) and synthetic H3(1–28) and H3(29–46)) [94], or
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somewhat synthetically challenging such as simultaneous modification of

H3-K4me3 and H3-K27me3 prepared from recombinant H3(29–135) and synthetic

H3(1–20) and H3(21–28) [95].

4.2 Considerations for Selection of Appropriate Ligation
Sites

One challenge in the design of ligation strategies is the selection of appropriate

ligation sites selected for the modification of interest. Many different ligation sites

have been successfully used to generate modified histone proteins, and selection of

an ideal ligation site depends on several factors. (1) The peptides must be synthet-

ically accessible, of a reasonable length, and maintaining desirable solubility prop-

erties. (2) The kinetics of the ligation reaction are dependent on the C-terminal

residue of the thioester peptide such that β-branched residues should be avoided if

possible, and proline is unsuitable [96]. (3) The classical NCL reaction results in a

cysteine at the ligation junction. EPL of histone H3 with a synthetic C-terminal

peptide carried out by Manohar and coworkers resulted in a cysteine at H3-C110

[28], which is the only native cysteine in nucleosomes in X. laevis. For all other EPL
schemes it is important to select a ligation site that can permit residue substitution by

cysteine if no further chemical steps are planned. H3 residues 25 [97], 28 [90], and

31 [85], as well as H4 residues 23 [98], and 20 [90] have been used as ligation sites

resulting in cysteine substitutions.

Because cysteine is rare in histone proteins, these cysteine substitutions result in

a non-native histone sequence for most ligation schemes. Methods to convert

cysteine to alanine through desulfurization dramatically increase the number of

potential ligation sites that can result in native sequences, eliminating any potential

effects of the substitution on histone function. Yan and Dawson introduced cysteine

desulfurization by treatment with Raney nickel [99]. Early histone ligation pro-

tocols including those by the McCafferty Laboratory [84] exploited these

approaches successfully to generate native histone sequences. Free radical desul-

furization was introduced by Wan and Danishefsky in 2007 [100], using mild

reagents fully compatible with ligation conditions. This alternate technique

rapidly gained wide-spread adoption within the field and is currently the method

of choice for most groups carrying out histone ligation chemistry. Free radical

desulfurization requires tris(2-carboxy)phosphine (TCEP) and the water soluble

radical initiator 2,20-azobis[2-(2-imaidazolin-2-yl)propane]dihydrochloride

(VA-044US), with a thiol proton source [100]. Several different thiols are compat-

ible with both NCL and with free radical desulfurization, including mercaptoetha-

nesulfonic acid (MESNA), which allows desulfurization to be carried out directly

on crude ligation mixtures. However, aromatic thiols such as mercaptophenylacetic

acid (MPAA) which are often used for improved ligation kinetics appear to quench
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desulfurization, requiring complete removal from a reaction mixture prior to

desulfurization [101].

Although the ability to use alanine ligation sites does expand the choices of

ligation sites available, not all modifications are conveniently accessible through

ligation schemes with these limited sites. The ability to carry out desulfurization,

when combined with non-native 1,2-aminothiol derivatives of amino acids, has

allowed the expansion of ligation sites to many more residues, reviewed in

[102]. For example, penicillamine is a β-thiol derivative of valine commercially

available in Fmoc- and Boc-protected forms, including the thiazolidine derivative

required for complex ligation schemes discussed in Sect. 4.4. Ligation with an

N-terminal penicillamine followed by desulfurization thus generates a valine res-

idue at the ligation site valine [103]. Similar approaches have allowed ligation at an

expanding number of amino acid sites including phenylalanine [104], leucine [47],

and lysine [45], one of the most common residues in histone proteins, which will

likely become more commonly used as the reagents become more accessible.

Of course, using these expanded ligation sites requires that the peptide segment

bearing the 1,2-aminothiol occur in a synthetic histone fragment; they are not

suitable for a one-step EPL reaction scheme to introduce modifications into the

N-terminal tail. Another consideration is that any methods for modification of

cysteine, described in Sect. 2, can be used to mask a residual ligation site. For

example, alkylation of a ligation site Cys by 2-bromoethylamine or derivatives

yields thiolysine analogs [27].

4.3 Histone Semi-Synthesis by Expressed Protein Ligation:
Modifications Near the Histone C-Terminus

Although modifications near the N-terminus of histone proteins are easily accessi-

ble by the methods described above, several interesting modifications near the

C-terminus of histone proteins require a different approach. Modifications of

interest within ~30 residues of the histone C-terminus include PTM sites in the

C-terminal tail of histone H2A, as well as modifications at key interfaces in the

structured nucleosome core in histones H3 and H4 [105, 106]. Access to these

modified residues requires a synthetic C-terminal histone peptide that can incorpo-

rate the modified residues, and a recombinant N-terminal histone fragment that

remains unmodified (Fig. 7b). This has most commonly been accomplished by

fusion of the N-terminal protein fragment with an intein domain. Folded intein

domains are capable of transferring the fused protein segment, or “extein,” to a thiol

side chain to form an intramolecular thioester [107]. This can be intercepted by free

thiol to form a reactive thioester in solution. The Mxe GyrA intein has historically

been the most commonly used because of its early discovery and commercial

availability as the pTXB1 plasmid (New England Biolabs), the capability to refold
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the functional protein, and robust cleavage conditions including the presence of

denaturant and high ionic strength [108].

The behavior of histone proteins fused to an intein is somewhat unpredictable.

Muir and coworkers found that histone H2B(1–116) expresses as a soluble protein

when fused to a GyrA intein-chitin binding domain construct (GyrA-CBD) [109]

and may be purified over chitin columns to easily generate the functional intein

derivative, but that histone H2A(1–113)-GyrA-His6 expressed into inclusion bod-

ies, which is typical of most recombinant histone proteins. Similarly, our own

laboratory has found that histone H3(1–109)-GyrA-CBD and H4(1–75)-GyrA-

CBD express into inclusion bodies and, further, interact nonspecifically with chitin

columns such that the chitin binding domain is not appropriate for purification

purposes [28, 110]. As such, these proteins must be resolubilized from inclusion

bodies and refolded to the active intein prior to thiolysis to generate the functional

thioester for ligation. At this point, ligation may proceed with standard

considerations.

Several modifications in the structured nucleosome core are accessible only via

EPL with a C-terminal synthetic peptide. This approach was used to explore the

impact of acetylation in the histone–DNA interface at the nucleosome dyad region,

at H3-K115ac,K122ac. In this approach, a native cysteine (H3-C110) was used as a

ligation site, such that ligation generated the native histone sequence with the

modification of interest. These studies demonstrated that acetylation in the nucle-

osome dyad reduces histone-DNA affinity and increases thermal repositioning,

suggesting a destabilization of the histone-DNA interface [28]. Interestingly, Gln

substitution for acetylated lysine does not replicate these effects. In addition,

acetylation at the dyad increases nucleosome disassembly in the context of mechan-

ically unwrapped DNA [111] and in the context of chromatin remodeling by the

hMSH2/hMSH6 DNA repair complex [112]. Subsequent work by Tropberger and

coworkers using H3-K122ac prepared using an expanded genetic code approach

suggested a role for H3-K122ac in transcriptional activation which is consistent

with the biophysical work carried out with the semi-synthetic histones [38]. EPL

followed by desulfurization was used to determine the impact of acetylation at

H4-K77ac,K79ac in the histone-DNA interface in the Loss of Ribosomal Silencing

(LRS) region of the nucleosome [110], resulting in the generation of the native H4

sequence with an alanine at the ligation site. Acetylation in this region of the

histone-DNA interface was found to increase DNA unwrapping and site exposure

for transcription factor binding, with no effect on nucleosome disassembly. Taken

together with studies of the nucleosome dyad region described above and for

acetylation of H3-K56ac in the entry-exit region [31, 32], these studies suggest

that different regions of the histone-DNA interface play distinct structural and

functional roles in the regulation of nucleosome unwrapping and

disassembly [111].

Histone phosphorylation remains best accessed by ligation approaches. EPL has

enabled study of H3-T118ph, which places a phosphate group into the histone-DNA

interface at the nucleosome dyad. This site had been highlighted in genetic screens

in yeast as likely to be important for transcriptional regulation and DNA repair [20,
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113, 114]. Preparation by EPL and incorporation into mononucleosomes revealed a

significant impact. H3-T118ph dramatically decreases histone-DNA affinity by

2 kcal/mol, increases nucleosome mobility in thermal repositioning assays

28-fold, and increases DNA accessibility near the dyad 6-fold. Consistent with

this picture of a destabilized histone-DNA interface, this modification also dramat-

ically increased nucleosome disassembly by hMSH2/hMSH6 and by the SWI/SNF

chromatin remodeling complex [29]. Reconstitution of nucleosomes with

H3-T118ph also resulted in formation of a second defined histone-DNA construct

which was structurally distinct from nucleosomes [30]. Extensive characterization

of this species suggested that on short segments of DNA, a nucleosome duplex is

formed in which two histone octamers are wrapped by two segments of DNA. On

long stretches of DNA up to 3 kb in length, structures form in which two histone

octamers are wrapped by a single piece of DNA. These structures were reminiscent

of the altosomes described during SWI/SNF chromatin remodeling [115, 116]. This

study demonstrated an important role for H3-T118 in regulating DNA wrapping,

and was the first to demonstrate that a single histone modification could result in

large-scale alterations of the nucleosome structure. In both studies, reconstitution of

nucleosomes with glutamate substitution for the phosphorylated threonine failed to

recapitulate the effects of the modifications, which is a strong argument for the

necessity of precise chemical modifications to understand the role of PTMS in

chromatin structure and function.

The Muir Laboratory has extensively studied ubiquitylation of histones H2A and

H2B using EPL schemes with synthetic C-terminal peptides, and optimizations to

their ligation approaches over time have resulted in dramatically improved product

yields. Their first chemical strategy to site-specifically introduce ubiquitin into a

histone produced ubiquitylated H2B (uH2B) via a three-piece ligation scheme in

which the N-terminal fragment of H2B and the first 75 residues of ubiquitin were

each expressed as intein fusions to generate the reactive thioester. H2B(117–125)-

A117C was generated synthetically, with a photocleavable ligation auxiliary linked

to the ε-amine of the lysine side chain. After ligation, desulfurization of the Cys to

Ala (see Sect. 3.3) and photolysis of the ligation auxiliary resulted in a traceless

ligation. Significantly, this study found that ubiquitylation of H2B-K120 enhanced

methylation of H3-K79 by the methyltransferase Dot1, a clear example of histone

modification crosstalk [109]. Subsequent ligation approaches eliminated the syn-

thetically costly photocleavable auxiliary in favor of a cysteine linked to the

ε-amine of the lysine through an isopeptide bond, such that after ligation and

desulfurization, the product maintained a native histone sequence but with a

G76A mutation in the ubiquitin domain [117]. Preparation of ubiquitylated H2A

added an additional twist, in that no suitable Cys or Ala ligation sites were

available. Instead, H2A(1–113) was expressed as a thioester, and H2A(114–128)

was synthesized with the thiazolidine derivative of penicillamine such that, after

ligation and desulfurization, the histone ligation junction was converted to the

native Val residue [101].

Although several laboratories have refined EPL approaches for the preparation

of modified histone proteins, the study that perhaps best illustrates the full power of
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this methodology is the development of high-throughput libraries of nucleosomes,

prepared with semi-synthetic modified histones, marked by reconstitution onto

barcoded DNA for identification [118]. These libraries, currently prepared on the

order of tens of nucleosomes, could be assembled rapidly with different targeted

modification marks in the N- or C-terminal histone tails of all four histone proteins,

either individually or simultaneously incorporated within the same nucleosome to

allow the identification of individual, synergistic, or antagonistic effects of different

histone modifications in the physiologically relevant context of a full nucleosome.

This study found robust evidence of crosstalk among modification marks on

different histone proteins within the same nucleosome across several histone

marks “readers” or “writers.”

4.4 Total Synthesis of Histone Proteins by NCL

While EPL grants access to modifications sequestered near the N- or C-terminus of

a histone protein, histone proteins contain modifications throughout the entire

sequence. Some of the modifications are centrally located such that a single

synthetic peptide does not span the required region. Other modification schemes

require the simultaneous incorporation of modifications in the N-terminal tail of a

histone and in the folded core domain. These cases require the development of

elaborate ligation schemes that enable total synthesis of a histone protein, enabling

complete chemical control of the entire histone sequence. This field is rapidly

advancing, such that any survey is outdated almost upon publication. However,

some trends are immediately apparent by assessing current progress and directions.

The first total synthesis of a histone protein was carried out by the Ottesen

Laboratory to prepare H3-K56ac via a sequential native chemical ligation scheme

(Fig. 8a). In a typical sequential native chemical ligation scheme, C-terminal

peptide is synthesized with a reactive 1,2-aminothiol. The central peptide segment,

in this case bearing the acetylated lysine of interest, is prepared with the reactive

thioester at the C-terminus as well as a protected 1,2-aminothiol at the N-terminus,

often introduced as a thiazolidine derivative which remains masked through the first

ligation step. After the first ligation step, the reactive 1,2-aminothiol can be

revealed to take part in the final ligation step to generate the full-length target

histone protein. Interestingly, the first generation synthesis of H3-K56ac serves as

an example of the need to carefully select ligation sites and chemistry to avoid

distorting results. The first generation ligation scheme used peptides split with

ligation junctions at H3-R40C based on sequence alignment to a divergent histone

from Cairina moschata and H3-S96C based on the human histone variant H3.1.

However, analysis of the first generation product H3-R40C,S96C with and without

acetylated K56 revealed that these semiconservative cysteine substitutions

destabilized the histone-DNA interface to a greater extent than the modification

of interest. An improved second generation ligation scheme (Fig. 8a) identified

alanine ligation sites at residues H3-47 and H3-91. Of note, all peptides in this first
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generation synthesis were prepared by solid phase peptide synthesis using Boc

chemistry, which is in use only among synthesis-intensive laboratories. Conversion

of the synthesis to Fmoc chemistry, which is more amenable to automation,

required development of improved techniques for the preparation of the Fmoc-

thioester peptide segments [119].

Synthesis of these segments followed by sequential ligation and desulfurization

resulted in a native-like histone sequence acetylated at H3-K56ac. Importantly, the

use of desulfurization in histone H3 requires the use of the H3-C110A substitution,

similar to any cysteine-modification approach. This substitution has been widely

used in studies requiring cysteine modification, and no effect of this substitution on

nucleosome structure, dynamics, or function has been detected. Studies using this

synthetic histone revealed that H3-K56ac increased transcription factor binding in

the histone-DNA interface threefold, consistent with results from the Chin labora-

tory using H3-K56ac prepared by codon suppression techniques (Sect. 2.2)

[32]. Direct comparison of H3-K56ac prepared synthetically by sequential native

chemical ligation and through genetic incorporation of the H3-K56ac species

demonstrates the utility of each approach. For a single acetylation site such as

H3-K56ac in the center of the histone sequence, exploitation of the pyrrolysine

incorporation machinery resulted in multimilligram quantities of protein and is

more suitable for repeated expression. Total synthesis by sequential native chem-

ical ligation provided 7% overall yield of the total histone protein, and each

repetition of synthesis is as labor-intensive as the first. The true power of the total

synthesis approach, then, lies in the ability to prepare histones with combinations of

modifications throughout the sequence, such as H3-Y41ph,K56ac (unpublished

data from the Ottesen Laboratory).
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Sequential native chemical ligation using masked Cys protection is limited to

ligation in a C-to-N direction. In an exciting advance, Liu and coworkers introduced

peptide hydrazides as a stable masked thioester which could be converted to a

reactive thioester in situ for use in native chemical ligation, allowing sequential

ligation in the reverse direction (Fig. 8b) [120]. Peptide hydrazides are stable under

ligation conditions, but can be converted to a reactive thioester by treatment with

NaNO2 and an external ligation-compatible thiol, typically MPAA. They applied

this methodology to carry out the sequential ligation of histone H3 with the same

split sites as the Ottesen scheme, but in reverse order, such that the N-terminal and

central segments were ligated to generate an initial ligation product, followed by

conversion of the central hydrazide to a reactive thioester for ligation to the

C-terminal peptide segment. Selective sidechain protection of H3-C110 allowed

desulfurization followed by ligation to yield Ala at the ligation sites, while also

maintaining the native H3-C110 residue. However, similar to the C-to-N synthesis

above, they found that yields were limited by the challenges of purification of the

final product from the component segments.

To eliminate these handling problems, they sought to develop a one-pot chem-

ical ligation approach (Fig. 8c). The key advance in this study was the identification

of an N-terminal cysteine protection strategy compatible with the chemistry

required for conversion of the peptide hydrazide, because the Thz group commonly

used for N-terminal cysteine protection is labile to the NaNO2 conversion step.

These requirements were satisfied by p-boronobenzyloxycarbonyl (Dobz) protec-
tion of the central segment, which could then be reversed by reaction with H2O2 to

regenerate the active cysteine. Overall, this one-pot approach resulted in 20%

isolated yield of histone H3-K4me3, a substantial improvement over the Ottesen

approach. The Liu group extended the one-pot chemical ligation approach with

peptide hydrazides and Dobz protection to the total synthesis of histone H4

[121]. Using the same approaches, they achieved an average 18% overall isolated

yield of H4-K16ac. Although these percentage yields are not commensurate with an

EPL strategy for N-terminal tail modification, they are highly respectable for a total

synthesis which can be applied in the future to combinations of modifications

throughout the histone sequence, and generated multimilligram quantities of each

modified histone. These amounts are sufficient for nearly all biochemical and

biophysical assays for characterization of modified nucleosomes.

The Brik Laboratory has introduced two alternate solutions to the challenges

posed by sequential native chemical ligation in the context of histone H2B. In 2013,

Siman and coworkers developed a convergent ligation strategy that exploits the

regulated reactivity of peptide hydrazides used by Liu and coworkers (Fig. 9)

[122]. In this strategy, H2B is split into four synthetically accessible peptide

fragments. In the first ligation step, H2B(1–20) is ligated to H2B(22–56)-hydrazide

and purified; separately Thz-H2B(59–96) is ligated to H2B(98–125), the

N-terminal Cys is revealed by treatment with methoxylamine, and the segment is

purified. The ligated H2B(1–56)-hydrazide segment is then converted to reactive

thioester by treatment with NaNO2, and ligated to the H2B(59–125) segment to

generate the full length histone sequence. Desulfurization and purification yields
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the final product. While the synthesis of H2B alone is a significant achievement, the

potential of total histone synthesis was further demonstrated by modification of the

reaction scheme to incorporate ubiquitin at H2B-K34 [123]. Brik synthetically

introduced a δ-mercaptolysine residue at position H2B-K34 in the H2B(22–56)

peptide hydrazide, which enabled orthogonal ligation to the ubiquitin thioester to

generate the H2B(22–56, K34Ub)-hydrazide fragment. This peptide could then be

plugged into the convergent ligation scheme to generate the full-length

H2B-K34Ub in low yields, but sufficient for incorporation into 12-mer nucleosome

arrays suitable for biochemical characterization.

Solid phase synthesis chemistry has had profound implications for the prepara-

tion of complex molecules, including individual peptide segments. Some elements

of solid phase chemistry would appear ideal for use with the assembly of histone

proteins via sequential solid phase ligation reaction. The Brik Laboratory explored

this concept for an improved total synthesis of histone H2B (Fig. 10) [123]. A key

element of any solid phase ligation approach is the use of a chemical linker to

connect the growing protein chain to a solid support that is stable for all ligation

conditions, but labile to orthogonal cleavage conditions after synthesis. Here,

researchers selected the acid-labile Rink linker commonly used for synthesis of

peptide amides. They first assembled a solid support connected to a Rink linker with

an N-terminal cysteine suitable for ligation. The prepared four peptide segments

using similar split sites to those exploited in the convergent synthesis to assemble
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the final product: H2B(1–20)-thioester, Thz-H2B(22–57)-thioester, Thz-H2B(59–

96)-thioester, and Thz-H2B(98–124)-thioester. Each round of solid phase ligation

then consisted of a repeated cycle of ligation, wash, Cys deprotection, and wash

steps. After chain assembly, free radical desulfurization was used to convert all Cys

residues to Ala on the solid phase. Treatment with trifluoroacetic acid then revealed

the full-length product in 10% isolated yield, which is significantly improved over

the convergent approach for this histone. Of note, the final protein product resulted

in an H2B-K125A substitution, and generation of the C-terminal amide rather than

acid derivative. Because the C-terminal tail of histone H2B is not folded into the

nucleosome core, these substitutions are likely to be permitted. However, care

would be required to consider alternate resin attachment strategies for proteins

such as H3 and H4 in which the C-terminal tail forms interactions within the

structured nucleosome core.
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Total protein synthesis by NCL offers the greatest potential level of chemical

control over every residue within a histone sequence. These methods offer the

possibility of complex combinations of chemically precise modifications installed

throughout the nucleosome. However, because of the challenges inherent to these

synthetic routes, this comes as a trade-off with effort and yield in synthesis.

Continual rapid advances in the field are likely to reduce the barriers to the

preparation of fully synthetic histones for researchers who are not specialists in

chemical protein synthesis.

5 Prospects: Synthetic Histone Proteins

in the Eukaryotic Cell

The previous sections have considered different ways to prepare precisely modified

histone proteins with single or multiple PTMs. We have available extremely

powerful tools covering the full range from fast, simple, and large scale preparation

of modification mimics, to careful, precise chemical control over the full histone

sequence. These amazing toolkits have enabled biochemical and biophysical inves-

tigation of the structural, dynamic, and functional properties of modified chromatin.

However, carefully modified histones, for the most part, have been restricted to

in vitro studies, isolated from the full biological complexity of the cellular envi-

ronment. Even though major advances have been made in understanding histone

modification cross-talk [124] and the local chromatin environment through prepa-

ration of complex synthetic chromatin arrays [16, 125], the next frontier is the

introduction of synthetic histones directly into a live eukaryotic cell for incorpora-

tion into functional chromatin. If this could be accomplished, the effects of specific

sets of modifications could be probed directly.

The most promising lead for this work is the slime mold Physarum
polycephalum. This fascinating myxomycete has several different growth stages

ranging from free-swimming amoeba to micro- and macro-plasmodia, single-celled

states which can grow up to 30 cm in diameter, in which each cell contains tens to

millions of nuclei synchronized across the cell cycle [126]. In the microplasmodial

and macroplasmodial stages, this organism has been shown to spontaneously

uptake exogenous histone proteins from media, transport these histones into the

nucleus, and incorporate them into active regions of transcription within their

chromatin [127, 128]. This myxomycete is easy to grow, and is widely used in

the field of bio-computing [129, 130].

Work carried out primarily by Thiriet and Hayes over the past decade has

demonstrated that properly folded histone H2A/H2B dimers or H3/H4 tetramers

added exogenously to P. polycephalum microplasmodia and macroplasmodia for

spontaneous uptake, as demonstrated by following the localization of fluorescein-

or FLAG-tagged histones. Uptake is most rapid during the end of the G2 phase of

the cell cycle, which occurs simultaneously for all nuclei within a single micro- or
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macroplasmodium [127, 131, 132]. Both H2A/H2B dimers and H3/H4 tetramers

are incorporated into chromatin, although H2A/H2B dimers are deposited at a

higher rate than H3/H4 tetramers [133, 134]. Thiriet and coworkers have explored

a range of questions in histone transport and chromatin assembly using these

techniques. In a recent study, they introduced recombinant histone proteins with

Gln mimics of acetylation in the H4 tails at combinations of positions 5, 8, 12, and

16. In general, these acetylation mimics appeared to increase nucleosome

exchange, although glutamine substitution at solely H4-K8 and/or H4-K16

abolished uptake into the nuclei. There would appear to be no reason why synthetic

and semi-synthetic histones could not be used similarly, to probe directly histone

modification cross-talk in the context of the cellular environment.

Although the spontaneous uptake of exogenous histone complexes has been

described as unique to P. polycephalum, the true target for designer chromatin

would be a mammalian or human cell line which could incorporate chemically

modified histones into chromatin. The ultimate target for designer chromatin would

be a human cell line that could take up histones and incorporate them into chro-

matin. The N-terminal tails of histones have stretches of highly positive charge

resembling cell-penetrating peptides [135, 136] and, in fact, researchers have

demonstrated that histone-derived CPPs can be used to carry protein cargo such

as bovine serum albumin into Leishmania tarentolae and into protoplasts of petunia
cells [137, 138]. Initial reports suggested that unfolded histones might penetrate

HeLa and Colo-205 cells to enter the nucleus, possibly through direct translocation

across the plasma membrane rather than through endocytosis, although several

questions remain unresolved [139]. Histones have also been proposed to increase

the uptake of plasmids into human cell lines in a process denoted “histonefection”

[140] through a poorly-understood, non-endosome-mediated pathway [141]. If any

of these methods are validated they could enable the power of chemistry to be used

to insert precisely modified histone proteins into the complexity of the biological

test tube that is the cell.
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