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We dedicate this book to our friend and colleague Daniel Pauly

for his fundamental insight in how problems of shifting baselines shape

and distort our lives.



  



c o n t e n t s

Introduction: The Importance of Shifting Baselines 1
jeremy b. c. jackson and karen e. alexander

PART I THE PROBLEM DEFINED 9

Chapter 1 A Shoreline Remembrance 13
carl safina

Chapter 2 The “March of Folly” in Global Fisheries 21
u. rashid sumaila and daniel pauly

Chapter 3 If a Frond Falls in the Kelp Forest
(does it make any sound?) 33
randy olson

PART II ANCHOVIES AND SARDINES 43

Chapter 4 The Sardine-Anchovy Puzzle 47
alec d. maccall

Chapter 5 Variations in Fisheries and Complex
Ocean Environments 59
david b. field, francisco chavez,

carina b. lange, and paul e. smith

PART III COD 77

Chapter 6 The Historical Abundance of Cod on the Nova
Scotian Shelf 79
w. jeffrey bolster, karen e. alexander,

and william b. leavenworth

Chapter 7 History and Context: Reflections from Newfoundland 115
daniel vickers, with loren mcclenachan



PART IV METHODS IN HISTORICAL MARINE ECOLOGY 135

Chapter 8 Uncovering the Ocean’s Past 137
heike k. lotze, jon m. erlandson,

marah j. hardt, richard d. norris,

kaustuv roy, tim d. smith,

and christine r. whitcraft

Chapter 9 Whales, Logbooks, and DNA 163
stephen r. palumbi

PART V FROM FISHERIES MANAGEMENT
TO ECOSYSTEMS 175

Chapter 10 Management in the Gulf of Maine 177
andrew a. rosenberg, karen e. alexander,

and jamie m. cournane

Chapter 11 Lessons from Coral Reefs 193
enric sala and jeremy b. c. jackson

Epilogue: Shifting Baselines for the Future 205
jeremy b. c. jackson

and karen e. alexander

Notes 207

Contributors 275

Index 283

Chapter 12



1

Introduction: The Importance
of Shifting Baselines

Jeremy B. C. Jackson and Karen E. Alexander

Exploding out of Africa just seventy thousand years ago, human beings col-
onized every continent but Antarctica before the end of the last ice age. In
the process, we drove three-quarters of the land animals larger than 100
pounds extinct—a truly remarkable achievement for fewer than five million
people armed with sticks and rocks. The oceans were still largely safe, but
heaps of bones and shells along the shoreline augured what was soon to
come.

Then about ten thousand years ago, people began to settle down and
invent agriculture and trade, towns, cities, and bureaucracies. Armies soon
followed. The familiar pattern of conquest, expansion, environmental de-
struction, and the rise and fall of empires was firmly established a few thou-
sand years later. Fishing also intensified, and the numbers of shellfish, fish,
sea turtles, sea cows, and seals began to drop worldwide. Persian stone
friezes in the Louvre vividly depict abundant sea turtles, marine mammals,
and fish at the time of Sargon the Great, around 700 BCE, but by the time
of the Romans most of these animals were growing scarce. Romans cast
their nets and built factories all the way from the northern Black Sea to
Britain to meet an ever-growing demand for fish and fish products. Similar
stories abound from the Americas, where middens tell us that people
shifted to tinier and tinier prey for subsistence, or they targeted fish that



were harder to catch or farther away. The human population was some-
where between two and three hundred million.

Fast-forward to the great maritime empires of the fifteenth to nine-
teenth centuries, when the oceans became a vast new fishing ground and a
superhighway to move people and commodities. Bigger and better ships
took to the open oceans to catch herring, cod, and great whales en masse.
One of the first casualties was the Atlantic gray whale, hunted to extinction
by the eighteenth century. Herring and cod were said to be inexhaustible.
Yet by the end of the nineteenth century, ships were fishing farther and far-
ther out to sea with increasingly sophisticated gear, but catches of even the
mighty cod showed evidence of steep decline. Similar stories abound for
oysters, shad, and alewives from New England to the Chesapeake Bay, and
sea turtles and monk seals from the Caribbean. Chemical pollution and in-
vasions of nonnative species also increased, and entire estuaries and coastal
ecosystems were devastated by 1900. Meanwhile, human population in-
creased to about 1.5 billion by the end of the nineteenth century.

But the real damage had only just begun. What had previously been a
series of local or regional problems were rapidly becoming global. The driv-
ing force was our relentless quest for progress and the necessity for growing
economies to feed, govern, and placate increasing billions of people. The
engine ran on cheap energy from a seemingly endless supply of fossil fuels.
Despite the carnage of two great world wars, humans increased to 2.5 bil-
lion by 1950.

Since then, the oceans as we knew them have begun to die. Most of the
largest fish are gone and, according to the latest conservative estimate,
more than 80 percent of the world’s major industrial fisheries have crashed
or are over- or fully exploited. Sports fishers pay more and more money to
catch fewer and smaller fish. Apex predators like tuna, salmon, and sword-
fish—and the people who eat them—are increasingly full of mercury, di-
oxins, and PCBs. Gigantic amounts of plastics are trapped in ocean gyres,
and dead zones of hypoxic waters have increased from a few dozen in the
1950s to more than four hundred today. Reef corals are dying en masse
from outbreaks of bleaching and disease fueled by rising temperatures, and
the acidification of surface waters due to increased carbon dioxide threatens
virtually all sea life with calcareous skeletons, including corals, shellfish, and
plankton.

As a result, entire ecosystems are in danger of extinction. Coral reefs,
estuaries, and coastal seas are “critically endangered” globally. Vast fishing
grounds of the continental shelves and seamounts are “endangered” and
the open ocean pelagic realm is “threatened.” Meanwhile, humans have
nearly tripled to more than 6.5 billion, and we have increased our con-
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Introduction: The Importance of Shifting Baselines 3

sumption of the total renewable resources the earth can provide annually—
the so-called global ecological footprint—from less than 50 percent in 1950
to 150 percent today. We are living off of our ecological credit cards and the
interest rates are going up.

All of this is well known to historians and ecologists, but that knowl-
edge hasn’t changed natural resource policy. We are blithely managing ma-
rine extinctions by ignoring past failures. This dangerous lack of historical
perspective was the stimulus for Daniel Pauly’s brilliant 1995 essay titled
“Anecdotes and the Shifting Baselines Syndrome in Fisheries,” which
marked a fundamental turning point in conservation biology and fisheries
science. Pauly’s basic point was that we have lost sight of nature because we
ignore historical change and accept the present as natural. Understanding
the perilous state of fisheries would require historical perspective to deter-
mine the true magnitude of decline and the challenges for sustainability in
the future.

Shifting baselines is a truly fundamental and revolutionary idea, but the
revolution has not yet happened because the challenges are enormous.
There are at least three impediments to change. First, it is not enough to
measure only what we see today because some of the most important
changes happened before scientists began to measure them. Consequently,
it is essential to adopt a truly interdisciplinary approach, using a wide vari-
ety of data to estimate past changes and understanding those changes in a
social and historical as well as scientific context. Second, shifting baselines
challenges long-established goals for management that were based on sim-
plistic concepts such as maximum sustainable yield (MSY). It illustrates
how past practices have destroyed healthy ecosystem structure and func-
tion, lessons that must now be incorporated into fisheries management.
Third, shifting baselines makes us uncomfortable because it places all of us
squarely within nature and holds us accountable for both past destruction
and shaping the future.

This book is a first joint attempt by scientists and historians to explore
the significance of the shifting baselines paradigm. What does it mean for
the future of fisheries and the ways in which we perceive our ever more un-
natural oceans? It is neither a comprehensive synthesis of scientific papers
about the collapse of fisheries nor a fisheries history. This information has
been ably covered elsewhere. Rather, it shows how new perspectives on the
past can alter our understanding of oceans today and change the future for
the better.

To achieve this, we need to establish a minimum set of parameters
required for basic understanding that excludes superfluous detail but is
amenable to appropriate changes in spatial and temporal scale. Such an



approach is essential to answer three practical and important questions.
First, how much, and in what ways, have marine ecosystems changed be-
cause of human impacts, as opposed to natural changes? Second, what were
the trajectories, scale, and tempo of change, and how can we distinguish be-
tween cause and effect? Third, how can we use insights from historical ecol-
ogy to ameliorate the degradation of marine resources and biodiversity? We
begin here with two well-studied fisheries, but the methods apply across
the full range of human impacts on watersheds, coastal regions, and open
oceans. We firmly believe there is no hope of success without historical
perspective.

In 1968, Richard Levins observed that “it is not possible to maximize
simultaneously generality, realism, and precision.” Following his maxim,
historical ecology commonly sacrifices precision for generality and realism.
General principles emerge from case studies that describe and predict the
long-term consequences of overfishing or habitat destruction. This has
been accomplished for degraded coral reefs and for estuaries and coastal
seas around the world. Essentially, the process is the same: general patterns
of degradation are repeated over and over again. First the big animals are
wiped out, then the smaller ones. Large herbivores, usually slower, safer
targets, generally disappear before large carnivores, usually faster, wilier,
more dangerous prey. Habitat structure is imperiled once large animals
have been removed. When you have seen one degraded coral reef or estu-
ary, you have seen them all, not in fine detail, but in terms of process. There
is an important message in this sameness.

In contrast, most ecologists, fisheries biologists, policymakers, and
fishers today focus on quantitative estimates of population size rather than
on functional processes. Conventional scientific wisdom tells us that histor-
ical data are rarely precise enough to estimate past populations (although
evidence mounts to the contrary), so realism is sacrificed for precision. But
such “precisionism” is seriously misguided. It focuses on recent fluctua-
tions of a few percent while ignoring extraordinary losses in the past. We
miss the signal by focusing intently on what is all too commonly statistical
noise.

Realistically, marine scientists need to know about long-term changes
in species abundance and distribution. Which species that were once abun-
dant are now extinct or vastly diminished? How have ranges contracted or
concentrations become diffused? How has essential habitat changed? What
kinds of organisms have filled vacant ecological niches? How has the topol-
ogy of food webs changed? Answers to these questions provide the best ev-
idence we can hope for in anticipating the consequences of conservation ac-
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tions such as stopping fishing entirely, restricting specific gear, setting catch
limits, or establishing large marine protected areas.

The story of the Caribbean provides a model for how to answer these
questions. Voyages of discovery spearheaded imperial adventures for eco-
nomic gain and power. Explorers, starting with Columbus, were good ob-
servers and practical folk. They had an eye for commodities that they could
sell or they would not have been explorers for long. Civil servants followed,
such as Fernández de Oviedo, whose General and Natural History of the In-
dies, published in 1534, is an impressively objective executive summary for
the king of Spain about the natural resources of the Caribbean. That Oviedo
chose to emphasize sea cows, green turtles, and sharks above all other ma-
rine creatures, animals that are now ecologically extinct throughout the
Caribbean, speaks loudly about their extraordinary abundance, value, and
danger in the 1500s. Oviedo cataloged not just these big animals, but also
fish, sponges, lobsters, conchs, and sea cucumbers.

Historical data alter the scale of abundance and distribution. It matters
very much that in Oviedo’s day there were between fifty and a hundred
nesting beaches with enormous numbers of Caribbean green turtles be-
cause, heretofore, scientists assumed there were fewer than twenty nesting
sites. Oviedo’s observation implies that there were at least 50–100 million
adult turtles in the Caribbean, when nobody had imagined more than 1 or
2 million before. It matters for the management of Caribbean seagrass eco-
systems that these millions of green turtles, a lot bigger on average than
those today, ate proportionately more seagrass. The future survival of sea-
grass ecosystems may depend upon restoring much larger populations of
these animals than conventional marine science could have predicted. Lo-
cating and resurrecting the most viable historical nesting sites will be essen-
tial to restoring both the turtle populations and the seagrass ecosystems.

This book grew out of a conference in November 2003 at the Scripps
Institution of Oceanography—the second of three conferences on Marine
Biodiversity: The Known, Unknown, and Unknowable. Papers and discussion
at the conference focused on varieties of past evidence arranged in long-
term data sets to produce scientific results, but notions of certainty and un-
certainty divided the assembly, and the same concepts voiced by ecologists
and historians often carried radically different meanings. However, two
topics dominated the media and were on everyone’s mind: the recent global
decline of large predatory fish and the collapse of the Newfoundland cod
fishery after five hundred years of commercial fishing. Scale matters, and
these large-scale events colored the debate.

Introduction: The Importance of Shifting Baselines 5



The debate has evolved significantly since 2003, and this book reflects
current events that make the fundamental issues timelier. The chapters are
arranged in five parts: the problem statement, two sets of case studies,
methods, and discussion. Thematically arranged, each part is framed by an
introduction from the editors and displays a narrative tension that reflects
real differences in the philosophy, perspective, and academic disciplines of
the authors. We structured the book to highlight these conceptual differ-
ences as a first step toward resolving them.

Rather than recapitulate findings already published elsewhere, several
authors used the book as an opportunity to reflect on the field and their
work with candor and introspection. They examined process in science and
history and speculated about the significance of collaboration in an uncer-
tain future. The results are often introspective and humane, and points of
view converge as often as they differ.

Part I presents three perspectives on the problem of shifting baselines.
In Carl Safina’s elegy, a single lifetime stands witness to profound local en-
vironmental change, and personal memory stands in for the historical past.
In contrast, Rashid Sumaila and Daniel Pauly remind us that governments
around the world continue to embrace folly rather than sound policies
when it comes to fisheries on the brink of collapse. They then slide the base-
line from the past into the future to illustrate the peril of economic and en-
vironmental presentism, a theme recapitulated in the concluding chapter.
Marine biologist turned filmmaker Randy Olson argues that scientists must
communicate more effectively with the public if the oceans are to be saved.

The first case study, the anchovy-sardine conundrum in Part II, has en-
gaged marine science since the middle of the twentieth century. The story
exhibits the extraordinary complexity and nonstationary dynamics of the
Pacific Ocean. As both Alec MacCall and David Field and colleagues point
out, the problem turned out to be historical as well as geographical in scale.
Fisheries scientists in the 1980s and 1990s linked novel data sets outside
their normal purview to show that the fish populations responded to
decadal-scale climate cycles, a pattern impossible to detect using traditional
sampling surveys and landings records.

In contrast, Part III shows there is no clear case implicating oceano-
graphic factors in the demise of northwest Atlantic cod. The story is one of
historical detective work going back several centuries. Jeff Bolster, Karen
Alexander, and Bill Leavenworth describe how historians developed a time
series of total removals based on a contextual analysis of landings from
centuries-old logbooks, which was then analyzed statistically using a fish-
eries stock assessment model. Nevertheless, in his memoir of Newfound-
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land before and after the collapse of the codfishery, Daniel Vickers cautions
that historical data are always filtered and interpreted through individual
experience.

The chapters in Part IV discuss the myriad kinds of data and method-
ologies employed to assess the degradation of coastal seas and the pristine
population sizes of great whales. As reviewed by Heike Lotze and col-
leagues, proxies for the past are imperfect. Our confidence increases when
different proxies and methods agree and falls when they do not. Stephen
Palumbi reemphasizes the cautions expressed by Vickers about historical
analysis by comparing wildly different estimates of past whale abundance
based on molecular population genetics versus others based on historical
whaling records. Here we are pushing at the very boundaries of what is
known versus what is yet unknown in historical analysis.

The essays in Part V stress the importance of historical perspectives for
effective management. First, Andrew Rosenberg, Karen Alexander, and
Jamie Cournane discuss fisheries management in New England, an area fa-
mous for confrontation. Rosenberg writes from long, personal experience
on the front lines of United States policy and government service, while
Cournane is beginning a career in fisheries management. Enric Sala and Je-
remy Jackson elaborate on their coral reef studies to outline how these dif-
ferent insights can be brought to bear to manage the ocean’s future. The
epilogue brings us up to date in 2010.

The Alfred P. Sloan Foundation and its related programs in the History
of Marine Animal Populations and the Census of Marine Life, the Center
for Marine Biodiversity and Conservation (CMBC), and the Scripps Insti-
tution of Oceanography sponsored the conference. Sarah Mesnick helped
to develop the scientific program, tracked down the participants, and coor-
dinated the participation of graduate students in every aspect of the sympo-
sium. She and the logistical genius of Penny Dockry made the symposium
possible. We also thank Nancy Knowlton, who made CMBC such a nurtur-
ing place to work, Ivan Gayler and the late Alan Jaffe for their kind support,
and Jesse Ausubel, for believing that historical perspective is fundamental
to facing the environmental challenges of the future.

At Island Press, Todd Baldwin shepherded the manuscript through the
review process, and Emily Davis oversaw all aspects of publication. Sharis
Simonian took the book through production, and Jaime Jennings handled
publicity. Their efforts and the comments of our anonymous reviewers
greatly improved the finished product. We are grateful to them all.
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PART I

The Problem Defined

9

In the three introductory essays, Carl Safina, Rashid Sumaila and Daniel
Pauly, and Randy Olson frame the fisheries crisis in human terms. Safina
poses the epistemological questions. Why is the past important? Is history
like memory? Does it provide a necessary context for decision making? If
this is true, does it follow that institutions ignorant of their history behave
like people with impaired memory, confronting recurring dilemmas as en-
tirely new? Can and should knowledge of the past influence modern marine
science and policy, and in what way?

Sumaila and Pauly look to the future and predict that, unless behavior
changes, humankind will continue on the “march of folly” of fisheries. Us-
ing Barbara Tuchman’s famous metaphor, they show how knowledge of the
past, ignored in the past, established pernicious fisheries policies that actu-
ally worked against the best interests of the majority of people and exhib-
ited a venal indifference to the well-being of future generations.

Olson’s approach is utilitarian. His forum is mass media, his audience
the digital generation. People must be convinced to modify their behavior
if the oceans are to be restored, and the stakes are too high to rely on mes-
sage alone to convince them. Packaging the message is equally important
in the digital media age. Using case studies, he explains which media



campaigns worked, which didn’t work, and why. Then he outlines how to
effectively communicate marine science to the public.

A marine scientist by training, Safina’s most recent professional publi-
cations have been on the need to add teeth and resolve to fisheries manage-
ment, and his celebrated books have instilled concern about the ocean’s
condition in a wide general audience. Here his essay takes a deeply personal
approach to shifting baselines. Most academic scientists move about like
gypsies and have missed witnessing firsthand the slow, but profound
changes taking place almost everywhere. In a memoir of the Long Island
shore he has known since childhood, Safina confronted the process in his
own lifetime. He reminds us that the importance of place is not only ab-
stract, scientific, and historical but also intimate and tangible. The small
scale resonates most clearly with human experience, and the individual is
still a fulcrum that can shift the world.

Sumaila and Pauly advance economic theories of resource allocation
that advocate fair distribution to future generations and undercut policies
that support overfishing worldwide. As an economist, Sumaila has worked
on natural resource allocation and policy development all around the
world. Pauly has published widely in all areas of fisheries science, but in-
creasingly has focused attention on the role of fisheries in providing food
and self-sufficiency to poor and marginalized people, particularly in Africa
and Asia. Like Voltaire, he is known for distilling fundamental concepts
into a few memorable words. The authors framed their essay around a his-
torian’s memorable words and employed citations that marshal an impres-
sive array of scientific and economic papers as evidence. Tuchman would be
amused to find her historical concept supported by so many statistical mod-
els. Yet the point of the essay is not the past, but the future. We inherited
damaged marine ecosystems because we are the heirs of past bad planning.
Sumaila and Pauly challenge us to do better for future generations by im-
plementing policies that history and science have shown may be successful.

Now a filmmaker, Olson was once a marine biologist. His first film,
Lobstahs, was about lobster fishing and fishermen in the Gulf of Maine.
Since then he has worked with Jeremy Jackson on the short film Re-
Diagnosing the Oceans and on the Shifting Baselines Ocean Media Project,
using humor to communicate to the public the alarming state of the oceans.
His recent films, Flock of Dodos: The Evolution–Intelligent Design Circus
(2006) and Sizzle: A Global Warming Comedy (2008), and his book Don’t
Be Such a Scientist (2009) use edgy humor to criticize scientists and science
foundations for failing to effectively communicate with the public on issues
of critical importance. His productions don’t look like business as usual,
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and he has drawn scathing rebukes from many in the scientific establish-
ment for his brash, irreverent approach—although never for his science.
Olson explains why innovative public communication is vitally important
for the future of the oceans and challenges the establishment to get with the
program.
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Chapter 1

A Shoreline Remembrance

Carl Safina

13

Orienting Memories

Well over forty years ago—I was about five—my father drove us from
Brooklyn to Long Island for a day of picnicking and fishing at a coastal state
park. At one point, my mother bravely walked me into the edge of a gull
colony. A city girl from Manhattan, she must have been almost as fright-
ened as I, because I remember her squeezing my hand and holding her hat
down as the birds—seemingly the size of condors—swooped in with men-
acing threat calls and the close whoosh of wings. I was terrified. But then
suddenly at my feet, there was an amazing bowl of grass and feathers
cradling three astonishing, huge speckled eggs. It was my first brush with
something wild, and it filled me with a sense of mystery and magical poten-
tial. Before the escalating agitation of the great birds forced my mother and
me to beat a prudent retreat, that nest made a lifetime impression.

Years later I began a decade of studying terns just down the beach from
that same colony, and I visited the gulls regularly. When I began research to-
ward my Ph.D. in ecology, I ran my boat each morning past the same island
the gulls nested on and the very shoreline my mother had led me along.

For more than twenty years, I lived only about four miles from that
gull colony, and each morning when I walked the mile from my home to

, 
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the bay I saw that gull island. No one else in my professional world stayed
in a single place for so long. Everyone went from home to college to gradu-
ate school to post docs to jobs.

I did most of these things, but just by chance, I never moved very far.
During this lifetime in one place, I noticed changes in abundance of fish
and other creatures. The fish I hunted for food and fun—striped bass,
flounders, sea bass, sharks, marlin, tunas, plus sea turtles—all seemed in a
continuous ebb tide of excessive catch and population decline. Fishermen
I knew were grumbling, but virtually no one in the scientific community
and not a single environmental group was talking about changes in fish
populations.

Learned, sophisticated people, it seemed, just didn’t stay in one place
long enough to see changes over time. Funding agencies wanted re-
sults, not pointless, repetitive long-term monitoring studies. Other ecolo-
gists were obsessed with “hypothesis testing”—preferring to guess rather
than patiently observe—a quicker route to “getting papers” and getting
promotions.

But for the simple reason that I stayed put long enough to gain a place-
based personal history, I witnessed the diminishment of my natural world.
First it saddened me, then angered me, then outraged me to action. My ap-
proach to fishing changed and my career as scientist took a different direc-
tion. I wanted to tell everyone how drastic these changes had been. Person-
ally witnessing history made me appreciate time’s great orienting power.
Time constantly transforms space. Like tide, it waits for no one.

Why the Past Is Important

Everything is on the way to becoming different, but in nature conservation,
the past is the only rational guide to a better future. This is not true in med-
icine or electrical engineering or communications, where the past offers lit-
tle insight on future developments. But we have diminished every realm of
nature—forests, fishes, corals, climate—so thoroughly that almost no con-
trols are left for comparison. The past must often become the control site.

Control sites are important. In tropical and subtropical seas, the U.S.-
owned uninhabited Northwestern Hawaiian Islands and Palmyra Atoll are
among few control sites left. Recent studies compared relative weight or
biomass of big versus small fishes between the main Hawaiian Islands, the
remote Northwest Hawaiian Islands, and Palmyra. The results: the weight
of big, carnivorous fishes was only 3 percent of the entire fish community
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around the main Hawaiian Islands, but was 54 percent in the remote
Northwest Hawaiian Islands, and even more around Palmyra Atoll. Even
greater differences have been found when scientists surveyed the extremely
remote Kingman atoll in the Line Islands—here, top predators comprised
85 percent of reef fish biomass. I’ve been to many of these places and the
difference is profoundly striking—and a bit scary because of the abundance
of big sharks. My book Eye of the Albatross relates my impressions of the
amazing numbers of tuna and sharks around Midway Atoll—closed to fish-
ing for half a century.

On the basis of the main Hawaiian Islands alone, no living person
could have described the changes and no hypothesis could have been
tested. So what of the rest of the world? We have no untouched Newfound-
land to compare with the one we’ve fished for centuries.

The past is our only marker, orienting us in a trackless sea to the reced-
ing coast of our origins. Nature has no hope in the absence of history. But
wringing information out of the past is problematic because scientists gen-
erally weren’t around to document what was happening. Yet I want to ask
whether ecologists overestimate this difficulty, insisting on standards of
proof higher than necessary to get at the truth.

In other fields people seem to have less trouble accepting historical
writings and authoritative anecdote. No one seems skeptical about what
Europeans wore in the fifteenth century, or what their farm animals were
like, or how Christopher Columbus’s ships were built, though that infor-
mation didn’t come from scientists’ clipboards.

So why does it seem unsatisfactory and unconvincing when we read
Ferdinand Columbus’s description that “in those twenty leagues, the sea
was thick with turtles so numerous it seemed the ships would run aground
on them and were as if bathing in them.” Bathing in turtles? Surely, that
can’t be accurate!

We accept as credible Francisco Pizzaro’s description of contact with
the Incas but view as untrustworthy or even dismissible the notion of
Caribbean turtles so locally dense during the 1600s that one Edward Long
wrote, “It is affirmed that vessels which have lost their latitude in hazy
weather have steered entirely by the noise which these creatures make in
swimming.” Both are equally anecdotal, yet even I will admit more skepti-
cism about nonscientists’ natural-history observation. I wonder why this is,
and whether there is really proper justification for it.

If we are going to dismiss the writing of eyewitnesses, we should have
better reason than the unconscious assumption that the world started on
our first day of graduate school.

A Shoreline Remembrance 15



Many ecologists observe that the great drawback of historical informa-
tion is that it was not scientifically, systematically collected. This is generally
true, but not absolutely true. The scientific method is the most powerful
toolkit, but it is not the only systematic way of acquiring information. For
example, astronomy and the study of plate tectonics lack the formal scien-
tific method of hypothesis, experimentation, and control groups. Yet these
are sciences because science is the systematic pursuit of true facts that char-
acterize existence.

Those explorers, traders, ship captains, and merchants who wrote the
observations that historians now study were not scientists. Yet they were
systematically pursuing something. They were motivated to keep track,
to record observations. In an era before widespread professional science,
their pursuit of new knowledge was often protoscientific. We can easily see
a systematic approach in the record keeping of ship captains like Captain
Robert Fitzroy of the Beagle (who kept better records of the origin of
finch specimens than his young naturalist Charles Darwin) and Captain
Charles Scammon, who meticulously documented the gray whales he
nearly exterminated.

Science studies the messy, noisy, nonquantified world around us, se-
lects things to focus on, and polishes its observations until the truth begins
to shine through. Scientific observation, thought, discourse, and analysis
can also be applied to material gathered and written by nonscientists. His-
torians are trained to think this way, yet ecologists seem unduly suspicious.

Yes, we should be suspicious of all sources of information. The world
abounds in Trojan horses. Whaling and fishing captains often falsified their
logbooks (especially as restrictions grew) and this has come to light spectac-
ularly in several cases. Explorers had motive to hyperbolize their discoveries
so their next expeditions could be funded. (Even scientists, despite greater
efforts toward objectivity, can also be unconsciously affected by the funding
imperative.) But not all historical information suggests great abundance.
Some records speak of scarcity, and this further suggests reliability.

So scientists ought to at least be curious and not dismissive about the
writings of seafarers who were dependable enough for investors of the day,
competent enough to find their way to the edge of the earth and back, and
thorough enough to systematically exterminate much of what they found.
They got the first glimpses of a world that was round and whole. They were
professionals on the leading edge of their time, and not all of them were ly-
ing or exaggerating. Their information was reliable enough to open fishing
and whaling and sealing industries and trade routes. Their businesses re-
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quired accurate accounting of the animals they killed. They had their stub-
born superstitions, but we have our scientific orthodoxies. If we could meet
today, we might understand each other all too well.

New attempts to look at the history of whale, turtle, and fish popula-
tions have ignited fierce criticism. The new analyses—each using very dif-
ferent techniques and timescales—have their strengths and weaknesses. Ex-
perience suggests that some are likely wrong, others likely right.

Let’s make sure we debate the flaws and merits, not the notions. Let’s
make sure we are at least open to well-supported alternate ideas. Some peo-
ple seem threatened by the very possibility that explorers were credible eye-
witnesses or that removing a few million whales, a few million turtles, and
billions of long-lived fishes might have changed the ocean.

Historical analyses in ecology are so unusual they have all the earmarks
of big new ideas—shocking, heretical, minority-held. Let’s bear in mind, as
we shred new news with our learned criticisms, that many breakthrough
ideas in science are at first attacked. Remember that geologists spent half
the last century resisting the idea that the surface of Earth floats on moving
plates. I myself independently discovered in third grade that South America
looks like it once fit up against Africa—only to be assured that I was wrong.
Had I had this insight fifty years earlier, resisted my teachers, and withstood
a withering career of derisive criticism, I might have contributed something
significant to geology.

We need many more controversial retrospective analyses along all avail-
able lines of investigation—historical, genetic, ecological—and they need
to be as good as they can be, improved by competitive debate and by con-
tributions of differing schools of thought. There is excellent information
that is still low fruit, waiting to be analyzed. In 2003 Ram Myers and Boris
Worm showed this in their analyses of existing, accessible data sets that
had previously been ignored. Japan’s longline data is almost certainly the
longest-running ocean monitoring program in the world, but was over-
looked until their study even by people who knew of its existence. Yet only
by knowing, for instance, that 90 percent of the big fish are gone can we
voice an informed recovery goal or an argument over what is sustainable.
Be aware that the forces of evil are working the other side of the street. Tuna
industry consultants and lobbyists removed the first half of the data set
from Atlantic bluefin assessments because it showed a clear relationship be-
tween abundance of spawning fish and spawning success.

The past is more important because we are losing any sense of it. Our
society shows profound disdain for history. Many cultures venerate elders
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and classic stories, but we are obsessed with modernism, unconscious of
our roots. Animals, plants, habitats, and human cultures vanish. Even the
memories of them are disappearing.

Why? To a significant extent our culture obliterates history and dis-
misses elders because no one owns history, and elders aren’t lucrative cor-
porate customers. Merchandising and fashion, thus advertising and the
vehicles of advertising—magazines, TV, movies, the Internet—virtually ig-
nore mature people, who often have sense enough not to buy what they
don’t need.

To younger generations who don’t see the scam, perspective, wisdom,
and history—even recent popular history—are practically invisible. A friend
of mine who teaches maritime studies tells me that neither of his two
teenage children has heard of Jacques Cousteau. Without the past we are
disinherited, flying blind, naïve and vulnerable.

The past is important because the tragedy of the commons exists not
just in place but also in time. Understanding what options and natural
wealth have been robbed from us must motivate us to work against the rob-
ber barons now desecrating the great commons of time, sucking up the fu-
ture, and stealing our descendants’ natural endowment and compromising
their well-being. Coral reefs, ice ecosystems, climate stability—great bites
of nature have been degraded at the expense of future potential. Replace-
ment cost will be measured in generations of lives over decades and
centuries.

Society needs to get oriented. The past is important because the more
we learn of it the better we might safeguard future options. A profoundly
ahistorical society lives only in the present in the most dangerous way pos-
sible: consuming natural capital, while freezing and reversing progress on
human rights and dignity. Those of us with a sense of history comprise a
minority. These are very serious problems. To me the only correct response
is moral outrage.

Good News

Now, the good news: the shifting baselines problem is not one of absence
of data as much as absence of analysis and lack of communication. And
both problems are improving. No students were surveying Native Ameri-
cans’ cod catches four thousand years ago, yet we have very informative re-
constructions from Indian middens. No British or American scientists
counted turtles in the Cayman Islands in the 1700s, yet we have very de-
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tailed population range estimates based on trade records and nesting beach
observations. No Canadian observers with clipboards and hard hats were
aboard fishing boats in 1900, yet we have a very informative historical
analysis. Happily, this list is growing.

We should fill in the blanks with a sense of mission. Nothing is more
precious than the rich, biologically diverse world that is our rightful her-
itage. That great tree of life contained all our future options. We have been
handed a tree of life pruned and truncated. We must not hand the next gen-
eration a bush. To prevent further destruction, we need both science and
the orienting power of history.

The world is in an anti-scientific mood. On Darwin’s birthday in 2009
only 39 percent of Americans believed that evolution occurs, and the world
is being set aflame by religious, political, and corporate ideologies. Yet, sci-
ence is the anti-ideology: the search for truth. Just as martyrs died for reli-
gion and liberty, they also died for imagining new scientific truths. It is foe
to cynicism. It is a threat to demagoguery, ignorance, political corruption,
and corporate recklessness. Anyone fortunate enough to have received sci-
entific training inherits a great moral imperative to spread the power of
knowledge. This imperative should propel every one of us.

The past asks our trust. In exchange for that trust, it will help us focus
our field of targets; it will inspire us toward healing and sober us with the
parameters of plausibility. And even if the data are spotty and not quantified
and we can learn only the broad generalizations and merely half of what we
burn to know, that’s still reason enough to seek, to dig, and to get to work.
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Chapter 2

The “March of Folly” in Global Fisheries

U. Rashid Sumaila and Daniel Pauly

21

It has now become apparent to most interested parties that marine fisheries
throughout the world are in serious trouble. Notably, the large, long-lived,
and usually pricey fishes on top of marine food webs have declined by at
least one order of magnitude relative to the period immediately following
World War II, and global landings peaked in the late 1980s. In many
coastal communities such as Newfoundland, fish stocks, which for cen-
turies had supported vibrant fisheries, have collapsed with enormous eco-
nomic and social costs. Similarly, in Ghana, West Africa, many locals no
longer fish because their resource base has been depleted, largely by foreign
industrial fisheries. This, in turn, has threatened the food security of local
coastal communities.

Self-defeating practices are of course nothing new. In her famous book
The March of Folly, historian Barbara Tuchman describes many instances of
governments around the world pursuing policies contrary to their own self-
interest and that of their people. The well-documented destruction of suc-
cessive fisheries, and their supporting biodiversity and ecosystems, is a
prime example of this folly. Current fisheries management policies led to
the “march”—and endanger global food security. Yet there are measures
that, if implemented, would overcome this pathology.
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The Folly of Fisheries

Though fisheries scientists tend to be jaded about it, the public at large does
not seem to realize the enormous impact fisheries have on marine ecosys-
tems. Particularly misunderstood is the decline of fish biomass that oc-
curred in the last decades, intensifying earlier trends initiated hundreds to
thousands of years ago. This biomass decline, which affects predominantly
the large, slow-growing, and expensive predatory fish on top of marine
food webs, has consequences for marine ecosystems, as well as species fac-
ing extinction. Low biomasses also have dire economic consequences, in-
cluding reduced incomes for the industry. The risk of recruitment failure
(and subsequent quota reductions) increases because low biomasses tend to
fluctuate more widely than high biomasses, which are usually composed of
numerous and overlapping year classes.

Why is it so difficult to turn fisheries around? There are many explana-
tions, some very technical, some more obvious. Here, Barbara Tuchman’s
“March of Folly” is a metaphor for the key features of the global crisis of
fisheries. According to Tuchman, to qualify as “folly,” a policy that is mani-
festly contrary to the interests of those pursuing it must meet three criteria.
First, it must have been perceived as counterproductive when it was origi-
nally proposed, and not merely appear foolish by hindsight. Second, an al-
ternative course of action must have been feasible; there is no point blam-
ing anyone for pursuing a certain policy if there was no choice. And finally,
the policy in question must be that of a group or institution, not an individ-
ual ruler or policymaker, and should persist beyond the (political) lifetime
of individual members of that group. Tuchman went on to document the
occurrence of folly throughout history, using a number of historical vi-
gnettes. Here, we will limit ourselves to documenting folly in fisheries, and
then we will present potential remedies.

Regarding the first criterion, the definition of biological and economic
overfishing that emerged in the mid-1950s was all that was needed to iden-
tify policies that would have conserved fisheries resources. The fisheries,
however, continued to follow trajectories established much earlier: overex-
ploitation was followed by the collapse of one species after the other and
the subsequent expansion of the fishing fleets into more distant or deeper
fishing grounds. All of this was subsidized with public funds, ultimately
leading to a peak in global catches in the late 1980s with subsequent, ongo-
ing declines (figure 2.1). Moreover, explicit warnings of the inevitable out-
come of overfishing were consistently ignored. In the case of northern cod,
coastal fishers in the Canadian Maritime Provinces, whose ancestors had
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for centuries exploited cod in shallow waters using traps, argued against
subsidizing the creation of a national trawler fleet after Canada declared an
Exclusive Economic Zone (EEZ) and sent European deep-sea trawlers
back home, but to no avail (figure 2.2).

The second criterion, the availability of an alternative course of action,
was also met. In the 1950s and 1960s, fisheries biologists and economists
advanced approaches to deal with the overcapitalization and overexploita-
tion of fishery resources. They may not have been as sophisticated as some
of the approaches currently proposed (and still not accepted). However,
these measures would certainly have been more effective than the laissez-
faire policy that was implemented and that led to a succession of stock col-
lapses, culminating in declining global catches (figure 2.1). To return to the
example of northern cod, the reasonable course of action would have been
to let the cod stock, which European trawlers had decimated under open
access, rebuild under the EEZ and to give the coastal fishers exclusive access
to it (figure 2.2).

The third criterion—that the policy must be that of a group and be pur-
sued for a long time—also clearly applies to fisheries. The overcapitalization
and overexploitation of fisheries have been going on for a long time, well
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Figure 2.1. Global marine fisheries trends. Overall landings (open circles) are from
the U.N. Food and Agricultural Organization (FAO) and suggest an increasing
trend through the 1990s. Adjustment for overreporting by China, as proposed by
Watson and Pauly in 2001, generates a decreasing trend (solid circles) though the
1990s. This decline, which continued in the 2000s, is even more apparent (triangle,
thick black line) when the catch of the strongly fluctuating Peruvian anchoveta is
omitted.



beyond the political life of single governments all over the world. Indeed,
fishing a resource down, then moving on to the next seems to have been the
way fisheries have been run since time immemorial, certainly in the last de-
cades. Moreover, we even forget about the previous abundance of resources
we overexploit, and often end up claiming they never existed. This criterion
undoubtedly applies to northern cod. Just consider the policies of succes-
sive Canadian governments, with the folly of excessive quota continuing
even after a moratorium was declared in 1992.

What Foolish Policies Do

Foolish fishing policies have repeatedly resulted in damage to both ecolog-
ical and human systems, affecting present generations and those to come.

Negative Ecological Effects

The folly of fisheries has resulted in declines in the biomass of most of the
world’s large predatory fishes. Myers and Worm demonstrated this for both
bottom fish stocks and the large pelagic fishes of oceanic waters. Notably,
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Figure 2.2. Time series of landings of northern cod off Newfoundland and Labra-
dor, Canada. The slowly increasing and apparently sustainable catch from 1850 to
the 1950s represents primarily the small-scale, inshore fishery that caught 150,000–
250,000 tonnes per year over centuries (only the last century is shown here). The
dramatic increase in the 1960s to the mid-1970s is due to foreign deep-sea trawlers
that were succeeded by local Canadian trawlers in the 1980s. The trawl fleets drove
catches up and the recruitment of young fish down (see time series in insert), result-
ing in the total collapse of the fishery.



the biomass of tuna and billfishes in various parts of the world ocean, as
suggested by the catch per effort of the Japanese longline fishery, declined
by a factor of 10 within ten to twenty years of being accessed by that fishery.
Although this result was much disputed, at least for a few Pacific species,
similar declines, using a very different, data- and computer-intensive ap-
proach, were shown for high-trophic-level neritic and oceanic fishes for the
North Atlantic from 1900 to 2000, for Southeast Asia from 1960 to 2000,
and for North West Africa from 1960 to 2000.

Fishing necessarily leads to declines in biomass, and some decline (to
about half of unexploited biomass) is in fact necessary for a stock to gener-
ate a harvestable surplus yield. However, the declines mentioned above,
those of northern cod (figure 2.2) and the multitude of stocks in the data-
base assembled by the late Ram Myers, greatly exceed what was required to
render the underlying stocks productive. Thus, as theory would have pre-
dicted, overall catches in the areas that suffered most from these declines in
biomass began to stagnate, then to decline. For example, North Atlantic
catches peaked in the mid-1970s and then went into continuous decline.
This decline was masked by the geographic expansion of fisheries, that is,
increasing landings of distant water fleets operating in places like North
West Africa or the South West Atlantic, as well as by imports from even
more distant areas such as the South Pacific.

However, this expansion proceeded at the rate of about 1 million
square kilometers per year from 1950 to 1980, then accelerated three to
four times in the 1980s. It has now reached its natural limits (figure 2.1).
There was also a marked change in the composition of fisheries landings,
which increasingly consist of smaller fishes from the lower part of the ma-
rine food web and reflect the scarcity of large, high-trophic-level fishes in
the ecosystems (figure 2.3). This phenomenon, now widely known as “fish-
ing down marine food webs” is far more pervasive than originally estimated
(figure 2.4).

Negative Human Impacts

Historically, the answer to local overfishing has been to “move on,” down
the food web, toward deeper waters, and to other areas or regions of the
world. Excess fishing effort by European vessels, for example, has tradition-
ally been exported toward West Africa. Alder and Sumaila have demon-
strated how this region of the world has attracted an increasing number
of distant water fleets from western and eastern Europe, and from Asia
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Figure 2.3. Decline of mean trophic level of fisheries landings reported by FAO.
The data were mapped into 180,000 cells of 1/2 latitude/longitude degree accord-
ing to the global information system (GIS) based procedure of Watson and col-
leagues in 2004. The two series shown here are for the North Atlantic (all waters
north of 26° N) and for coastal waters globally, defined here as 200 kilometers out
from coastlines.

Figure 2.4. What “fishing down marine food webs” means. Fisheries, after having
removed the larger fishes at the top of marine food webs, must target fishes lower
and lower down, including the prey and the juveniles of the larger fishes, which thus
fail to recover. At the end, the fisheries target plankton species, including jellyfish.
Bottom trawling compounds the problem by removing animals on the seafloor that
offer shelter and food to the juveniles of numerous commercial fish species, thus
further hampering their recovery.
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between 1960 and 2000. The result has been steep declines in biomass in
the waters off West Africa. West African countries received no real eco-
nomic or social benefits for their depleted marine resources and suffered in-
stead a serious decline in food security, as has been shown for Ghana’s
coastal fishing communities. Similarly, the collapse of cod stocks in New-
foundland in the early 1990s illustrates how an entire province in a devel-
oped country can suffer significant economic, social, and cultural losses be-
cause of foolish policies (figure 2.2). In addition to the huge economic and
social costs imposed on the current generation, the destruction of marine
resources will ultimately hamper the ability of future generations to meet
their needs from marine ecosystems.

Some Reasons for Foolish Fisheries Policies

Foolish fisheries have their roots in fundamental failures in economics and
governance, lack of well-defined catch rights, pernicious subsidies, techno-
logical progress, removal of market barriers associated with economic glob-
alization, and shortsightedness in economic valuation.

Open Access and Common Property

The folly in fisheries is at least partially due to the open access and common
property nature of fisheries. Fishing enterprises often operate without con-
trols because catch rights—whether individual, communal, or state—are
poorly defined, absent altogether, or not enforced. Open access or common
property fisheries repeatedly lead to overcapitalization and overexploita-
tion. This argument has led to various measures, especially at the interna-
tional level, aimed at turning fisheries away from open access. A case in
point is the 1982 U.N. Convention on the Law of the Sea (UNCLOS),
which formally established the right of coastal nations to exploit, and the
duty to protect, the marine resources within their 200-mile Exclusive Eco-
nomic Zones. UNCLOS thus turned what used to be a global common
into the property of coastal nations. However, UNCLOS did not solve the
problem of “domestic open access,” the problem of open access on the high
seas, or the problems due to the transboundary or “shared” nature of some
fishery resources. Thus, in many cases fisheries are still effectively open ac-
cess, and hence the continuation of the “March of Folly.”
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Subsidies

Governments around the world continue to provide massive subsidies to
the fishing sector, which intensify overcapitalization and overfishing. The
worldwide amount of subsidies to the fishing sector is nearly $30 billion
per year, much higher than the previous estimate used by the World Bank.
This, when fisheries economists have shown again and again that subsidies
enable otherwise bankrupt fishing fleets to maintain their pressure even on
collapsed stocks.

Technological Progress and the Removal of Natural and Market
Barriers to Overfishing

Over the last decades, new developments in fishing gear and sophisticated
onboard electronics for fish finding, geopositioning, and the like have mul-
tiplied the fishing power of individual vessels, turning even small units into
efficient fish-killing machines. Thus, fishing fleets have become powerful
enough to overexploit essentially all stocks in the world, anywhere, any
time of the year, thereby removing the last available “natural protection” af-
forded by depth or distance from shore. The loss of this natural protection,
moreover, is not compensated for by the establishment of marine protected
areas, which presently cover only about 0.7 percent of the area of the
world’s ocean. Technological improvements in preservation and transporta-
tion of fish products have also significantly increased the scope of interna-
tional trade. This resulted in the removal of what may be described as mar-
ket barriers to fishing: rather than being limited by their domestic market,
the fisheries of various countries now have access to a global market with
significantly higher demand for fish.

Shortsightedness in Economic Valuation

An important driver of the folly in fisheries is shortsightedness in valuation,
stemming from the general human tendency to view what is closest to us as
large and important, while discounting similar objects that are far away as
small and less important. A similar tendency prevails with time, and it is op-
erationalized by the economic concept of discounting. That is, values to be
received in the future are reduced to their present equivalent value using a
discount rate. In comparing the present values of policy alternatives, it is
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standard to discount net benefits that will accrue in the future compared to
net benefits that can be achieved today. Cost-benefit analysis discounts
streams of net benefits from a given project or policy alternative into a sin-
gle number termed net present value. Thus, assumptions about the discount
rate used in these time stream comparisons can have a huge impact on the
apparent best policy or project. In particular, high discount rates favor the
short-term policies that have led to unsustainable use of natural resources
and particularly to global overfishing, as illustrated here for the recent col-
lapse of northern cod off Newfoundland (figure 2.5).

Clearly, this widespread shortsightedness needs to be overcome. As
Fearnside pointed out, decisions about the relative weight of short- versus
long-term effects (in other words, the interests of current versus future gen-
erations) are a matter of policy rather than a scientific question. In princi-
ple, most of the world’s countries favor a long-term approach. For example,
the Magnuson-Stevens Fisheries Conservation and Management Act spe-
cifically requires that the interests of future generations be taken into ac-
count in the management of U.S. fisheries.

In practice, these decisions depend on the discount rate chosen to eval-
uate particular projects. Tol pointed out that the choice of discount rate and
discounting approach is both empirical and ethical. It is empirical because
people do make trade-offs between the present and the future in their daily
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Figure 2.5. Comparison of cod biomass profiles under different management
schemes and economic discounting. Note the large differences in the cod biomass
resulting from the actual history of the fishery, characterized by utterly ineffective
management, the biomass that would be left in the sea if conventional (and short-
sighted) valuation and discounting had been used, and the large biomass that would
be still be available if an intergenerational discounting approach had been applied.



decisions. It is at the same time ethical because the discount rate determines
the balance of intergenerational allocation of goods and services. Tol sug-
gested that neither the empirical nor the ethical should overrule the other.
He also identified personal and social taste as factors in economic prefer-
ences. Since political choices reflect social taste, whereas personal taste re-
flects personal economic choices, people may prefer the use of lower dis-
count rates to evaluate societal goals and objectives, even while using a
higher rate for their personal decisions. After all, we know that at least some
members of the current generation actually care about benefits to genera-
tions yet unborn. Of course, reversing the tendency to shortchange the fu-
ture would stop the depletion of fishery resources and begin rebuilding de-
pleted ecosystems for the benefit of future generations. Under these
considerations, all generations should agree that overcoming shortsighted
decision making would be the right thing to do.

Finding a Cure for Folly in Fisheries

There are four primary ways in which we can address and resolve the folly
and collapse of fisheries.

Address Open Access, Common Property, and Subsidies.

To overcome the open access problem, we need more effective ownership
structures at different levels, from the local to the national and beyond in
the case of straddling stocks and high sea fisheries. The current literature on
open access and common property tends to emphasize the privatization of
fishing rights, although the revitalization of public ownership through
lease or auction systems also appears promising and compatible with legal
and cultural constraints in Western societies.

Additionally, we must forgo destructive subsidies. Subsidizing fish-
eries in developing countries is just as damaging as the grotesque subsidies
in agriculture. Subsidization drives the folly of fisheries—without a stop
the march goes on.

Reestablish Natural Protections by Creating Marine Protected Areas.

There is a clear need to reestablish the natural barriers to fishing that tech-
nological progress has removed by creating a global network of marine re-
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serves. This would not only enable key stocks to recover, but also provide
protection against assessment errors, acknowledged to be a common cause
of collapses.

Engage in Aquaculture That Increases Rather Than Diminishes
Food Protein Supplies.

Aquaculture has grown tremendously in the last decades, and is seen by
many as the solution to food supply shortages. There are two main prob-
lems with this. First, the bulk of the reported increase in global aquaculture
production consists of carp and closely related fish in China, and there are
good reasons to assume that the overreporting besetting Chinese fisheries
catch statistics also affects these aquaculture statistics. Second, in most
other parts of the world, aquaculture growth is driven by increasing pro-
duction of carnivorous fishes such as salmon, bass, and tuna, all of which
consume more fish products than they themselves contribute. In terms of
detrimental fisheries effects alone, this practice actually increases pressure
on wild fish and removes cheap fish from developing country markets.
Thus, aquaculture produces net fish for society mainly if it is limited to the
farming of herbivorous fish such as tilapia and suspension-feeding inverte-
brates like mussels and clams.

Overcome the Tendency Toward Shortsightedness.

We absolutely need to deal with the still pervasive shortsightedness in valu-
ation, as expressed by high discount rates. We must value benefits and ad-
just discounting practices in a manner that explicitly takes into account the
interest of future generations as well as the present generation. This will
only happen if natural resource scientists actively engage with and advise
decision makers, making them and the public aware of the future conse-
quences of considering only the economic, social, and political pressures of
the here and now.
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Chapter 3

If a Frond Falls in the Kelp Forest
(does it make any sound?)

The Pew Oceans Report as a Case Study
of Communicating Ocean Conservation

Randy Olson

33

Science is at the core of ocean conservation. Protecting nature and restoring
it to a healthy state requires that we understand how nature works, and that
means science. As a result, conservation is likely to be dominated by the sci-
entific mindset, which is fine when it comes to the actual practice of science.
But when that mindset begins spilling over into associated disciplines such
as socioeconomics, policy, politics, and, most important, communication,
the entire practice of conservation can become handicapped. That is what
this chapter is about—understanding how “science think” can impede the
effective communication of ocean conservation.

I’m going to use the first person in this chapter. I’m going to talk about
communication, and if we know one thing about effective communicators,
from Dostoyevsky to Mark Twain, it’s that they generally speak in the first
person. As in, “This is what happened to me.” It’s simply the most personal,
and therefore the most powerful, voice.

Ideas vs. Events

In 2002 I was told that the Pew Oceans Commission Report was going to
change America.
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That’s what I heard as Dr. Jeremy Jackson and I were beginning to as-
semble the basic ideas for our Shifting Baselines Ocean Media Project. I
heard this from the communication directors of several major ocean conser-
vation groups, and I heard it from Andy Goodman, communications con-
sultant to the Environmental Defense Fund with whom I met for advice.
He and others advised us to not bother exploring new ways to communi-
cate ocean conservation because, as he put it, the Pew Report was poised to
dominate the American media landscape. Any other communication effort
would just end up being distracting “noise.”

The Pew Oceans Report was the result of a three-year, $3 million study
funded by the Pew Foundation to assess the condition of America’s coastal
oceans. It was billed as the most comprehensive assessment of U.S. oceans
in thirty years—since the Stratton Commission Report of 1969. Other
communications experts told me that the findings were so devastating that,
once released, they would appear on the covers of Time and Newsweek, and
would dominate the evening news for several days. From all directions I
heard, “You better brace yourself, it’s going to have a big impact.”

There was some justification for these great expectations. After all, the
1969 Santa Barbara oil spill hit the mass media so hard it became a major
catalyst in the birth of the modern American environmental movement.
Furthermore, the decline of whales in the 1970s and syringes washing up
on the beaches of Long Island in the 1980s put ocean issues on the covers
of Time and Newsweek. So it’s not like it hadn’t happened before.

But the Pew Report was something different than a single, visually dra-
matic event. It was a thought rather than an act. Whether academics (and
ocean conservationists) realize it or not, there is a difference between those
two things. Communicating ideas is very different from communicating
events.

A Coffee-less Press Conference

By the spring of 2003 we had raised some funds for Shifting Baselines and
I had decided that what the world really needed was a television commer-
cial that could call attention to ocean decline (a.k.a. “a public service an-
nouncement,” though I hate to tarnish our work with a label that conjures
up images of over-the-hill celebrities pouring their hearts out). My televi-
sion director friend Jason Ensler and I had concocted a humorous sketch
about the perils of lowered standards, and we thought it would be suffi-
ciently entertaining to get plenty of free airtime. We were ready to film our
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commercial, and since the timing corresponded, we thought we might as
well use the release of the Pew Oceans Report as part of our justification for
filming.

I began contacting comic actors like Jack Black (figure 3.1) and, as part
of my invitation to them, I said we were filming a television commercial to
help call attention to the release of the Pew Oceans Report. To make sure
this was okay, I contacted what remained of the production offices of the
Pew Ocean Commission in Washington, D.C. I spoke with Justin Kenney,
the fellow left in charge of staging a press conference to announce the re-
lease of the report. He was very warm and supportive of our efforts, wel-
coming any help to get publicity for the report.

I asked him about their strategy for communicating the findings.
Would they be staging press junkets and assembling public events around
the country? Holding town hall meetings with the commissioners to call at-
tention to ocean decline? His reply: “Are you kidding? I barely have enough
budget to afford coffee at the press conference.”
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Figure 3.1. Maestro Jack Black speaks with CNN about his role in conducting the
Bad Symphony for the Shifting Baselines television commercial.



A Textbook Example of “Science Think”

The plan was clear. The report was finished. And so was the budget for the
Pew Ocean Commission. And this is what I refer to as “science think”: It’s
the tendency to believe in the overwhelming power of information—to
think that single ideas, data points, observations, factoids, or reports are
what change the world.

The truth is, sometimes information alone is enough to change the
world. And in a perfect world, it should be. But sadly, we don’t live in a per-
fect world. We live in the United States.

So to make this long story very short, the release of the final report of
the Pew Oceans Commission did not dominate the American media land-
scape. It was released on June 2, 2003. It did not make the cover of Time or
Newsweek. It did not appear as the lead story on the evening news (though
NBC did mention it a few days later). And it didn’t even score the front
page of the science-savvy New York Times, but instead ended up on page
A-22 of that venerable publication.

Instead of going out with fanfare, the Pew Report landed in a pile of
papers on anonymous desks.

The 9/11 Commission Report: The Exception That
Proves the Rule

“It’s just a piece of paper in the end.” That’s what the communications direc-
tor of one major ocean conservation group warned me about the Pew Re-
port. “The government puts out stacks of reports every day. It’s hard for a
report to get any notice in the media. Don’t expect this one to do much.”
And clearly it didn’t. But did that have to be the case? Not if you look at a
similar report produced a year later.

The report was the final conclusions of the 9/11 Commission. On July
19, 2004, the New York Times reported on the unique approach the 9/11
Commission was taking to its task. Instead of falling victim to “science
think” and just producing a report that would “speak for itself,” the project
was allocating equal resources to the “follow-through” stage. The Commis-
sion spent half its resources on making the report and the other half com-
municating what it had to say. As the Times reported:

The lobbying effort would be a break with tradition, since blue-ribbon
federal commissions often disband almost as soon as they have com-
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pleted a final report, the members returning home from Washington
and leaving the report to speak for itself.

You see that last sentence—that’s exactly what happened with the Pew
Oceans Commission. Only one of the commissioners, Roger Rufe, then
Director of the Ocean Conservancy, went on the road to encourage others
to put the report to work.

At the twenty-year anniversary of Surfrider Foundation celebration in
October 2004, Warner Chabot of the Ocean Conservancy gave a talk
about the Pew Final Report in which he said, “We’ve given you a brick,
now go put it to use.” Certainly a great line for inciting a revolution, but,
alas, that was already more than a year after the release of the report and
was simply a last-gasp plea to make up for the lack of brick throwing by
ocean conservationists.

The Art of the Ad

What we’re talking about here are two simple elements that can be broken
down into the objective part of the process (the actual making of a product
such as the Pew study) and the subjective part of the process (going out and
communicating to other human beings about your product).

In the business world there is this thing called “advertising,” which is
basically that second part of the process. American businesspeople, more
than anyone else in the world, know that it’s not enough to just make a
good product—you have to get out there and vigorously sell it.

Companies often see their sales increase significantly simply by chang-
ing their advertising strategy. As Ken Auletta detailed in an article in The
New Yorker entitled “The New Pitch: Do Ads Still Work?” one guy at Aflac,
saying the insurance company’s name over and over again, realized it
sounds like a duck. This advertising gimmick was enough to overhaul the
insurer’s entire image and double its sales in less than four years—without
changing anything substantial about its product.

The need for the secondary, or follow-through, or just plain communi-
cation part of the process became broadly recognized in Hollywood with
the 1977 release of Star Wars—the first blockbuster movie to tack on a gi-
gantic marketing campaign. Industry skeptics back then ridiculed the waste
of advertising funds at first, but as the box office erupted, thinking in Hol-
lywood was changed forever.

Today it is simply accepted that studios will spend as much or more of
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their budget on advertising a movie as they do on actually making it. Figure
3.2 illustrates this point, showing the production versus marketing budgets
for three representative movies in the same summer that the Pew Oceans
Report was released. The most extreme example is Napoleon Dynamite
(“Gosh, why’d ya have to pick that movie?”), which cost a mere $400,000
to make. A group of scientists would have acquired the movie, decided it
was so brilliant that the quality would speak for itself, and saved $10 mil-
lion by forgoing any ads and just putting it in theaters to catch fire on its
own.

For some reason the studio execs didn’t opt for that strategy. Instead
they gambled $10 million on marketing (a scientist would say, “They could
have made twenty-five more equivalent movies for that much money!”),
and guess what came back to them at the box office? More than $50 mil-
lion. So the makers of Napoleon Dynamite—a quirky outlier—ended up
spending 96 percent of their budget to tell the public about their amazing
product. Now let’s take a look at what the Pew Ocean Commission did
with the release of their final report. It spent roughly 3 percent of its budget
on letting the public know what it had.

And there you have it. “Science think” at its finest: the belief that adver-
tising/marketing/communication is a big waste of money. And the net re-
sult was a potentially important study had minimal impact because no one
ever heard about it.
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of the budget went to communication. Any wonder why the Pew Ocean Report
had so little impact on the American public?



An alternative strategy would have been to spend only $1.5 million on
a little shorter and simpler study that would have produced the same con-
clusions—that our oceans are in bad shape—and proposed what to do then,
spend the other $1.5 million on a mass communication campaign to let
people know this simple fact. So why didn’t something like that happen?
Let me use the first person again to give my perspective on it.

How About a Super Bowl Commercial

I gave a talk to a meeting of ocean scientists and conservationists in the fall
of 2002. The meeting was dominated by an air of distress at how serious
the problems in the world’s oceans were becoming and the large gap that
existed between this important information and the public’s awareness of it.
The organizers of the meeting had asked me to address the second problem
and offer up suggestions on how to bridge the gap.

In my talk I threw caution to the wind by telling the group, “If you re-
ally think there is a major biodiversity crisis looming in the oceans that the
public needs to know about, then I propose a simple solution to get the
word out. I’ll make a thirty-second television commercial for $50,000, then
we’ll spent the rest of the $2 million on buying a thirty-second time slot
during the Super Bowl. Even if the commercial is terrible, every spot at the
Super Bowl is so heavily scrutinized, the worst that will happen is the entire
American public will scratch their heads and say things must be pretty bad
in the oceans for someone to pay so much for that lousy commercial.”

Was this a bad crazy idea? Definitely not! In February 2008 ABC News
ran a segment posing the question of whether the presidential candidates
should gamble $2 million on a Super Bowl commercial. The piece quoted
the C.E.O. of GoDaddy.com, a Web hosting company. A few years earlier,
he had taken an enormous gamble by spending half his company’s assets on
a single Super Bowl commercial: it showed a well-endowed woman testify-
ing to Congress as her blouse falls partially off. The C.E.O. says, “Our deci-
sion was right as rain,” as he recounts the gigantic surge in sales it brought
them.

But my idea for a Super Bowl commercial prompted an instant argu-
ment among the audience members, with about two-thirds enthusiastically
supporting me and a third saying I was a fool. The dispute climaxed with a
Scandinavian fisheries biologist saying, “This is the lowest I have ever heard
of science education stooping to.”

And that pretty much sums up “science think.” It’s the tendency to be-
lieve that the silliness and irrationality of mass communication is a big waste
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of time and money. Except to brand their research, science organizations
and foundations are rarely willing to support communications projects—
much less innovative communications projects. It’s a constant and ongoing
problem.

Kindred Spirits: The Turning the Tides Report

I dug deeper into the world of ocean conservation and accumulated a
longer list of frustrations with the lack of support for communication. But
finally I was guided to a study that warmed my heart. I felt I was listening
to the voice of kindred spirits. The study was titled Turning the Tide: Chart-
ing a Course to Improve the Effectiveness of Public Advocacy for the Oceans. It
was funded by the Packard Foundation and it bravely hit the nail on the
head about why ocean conservation is so ineffective.

Why was the study so powerful? It began by asking a very simple ques-
tion: Why is ocean conservation so ineffective compared to the major issue-oriented
campaigns such as the anti-smoking lobby or the N.R.A.? It found that each suc-
cessful campaign was characterized by five key traits and that the ocean con-
servation movement lacked one of them: a realistic political strategy using
lobbyists and real-world politics in Washington, D.C.

With a little further examination, the study’s authors concluded that
ocean conservationists are much more comfortable with and better at pol-
icy than politics. This matched everything I have experienced in working
with the ocean conservation movement for nearly a decade. Ocean conser-
vationists, scientists, and policy analysts know how to do research and make
policy recommendations. But when it comes time to talk to the public to
actually make things happen . . . well, the lack of success of the Pew Report
says it all. It charted a course for sea change, but the nation didn’t get the
memo. Ocean conservationists are comfortable with showing up at the
meeting, turning their backs to the public, mumbling to themselves, leav-
ing a copy of their report on the table for people to look at if they want,
then slipping out the door. Obviously this needs to change.

Throwaway Thinking in Our Throwaway Society

And now, in honor of Jennifer Jacquet and her “Guilty Planet” blog, it’s
time to add a little guilt to my message. Eco-conscious academics love to
criticize careless consumption. But this “throwaway” mentality can infect
our green friends, too.
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We saw this in 2003 when talking with the communications directors
of the major environmental groups. They held as sacred the basic belief that
this year’s message had better be different from last year’s so you don’t come
off as stale. Instead of sticking to a single, consistent, well-crafted message,
they were caught up in a never-ending cycle of creating new slogans, logos,
and brochures. Is that really much different than single-use disposable
plastics?

This same mentality was evident in the way the environmental commu-
nity treated Al Gore’s movie An Inconvenient Truth, released in 2006. By
2010 there was a widespread feeling that the movie was “old news,” and it
simply needed to be “let go,” rather than “rehashed.” But there’s a difference
between rehashing and follow-through. Just as the Pew Oceans Report
need not be swept under the rug because it didn’t have the desired impact,
Gore’s movie also needs a thorough postmortem. This is a critical aspect of
follow-through—to assess what did and did not work about the project.
That’s how we get smarter over time. It’s basically George Santayana’s fa-
mous quote, “Those who cannot remember the past are condemned to re-
peat it.” We can modify that a bit to say those who are unwilling to examine
the past are doomed to keep releasing the same report year after year.

And So, Sadly, History Repeats Itself in 2009

In 2009 the Obama administration released what it called a “landmark” re-
port on global climate change. The summary report of the United States
Global Change Program was touted as “the most comprehensive and thor-
ough report of its kind.” Similar to the Pew Report, it was launched with a
single press conference hosted by the President’s Science Advisor, John
Holdren—a video of which is on the U.S. Global Change Research Pro-
gram website. But by the spring of 2010 I found myself at a talk at M.I.T. in
which the speaker complained about how incredibly thorough the report
was, and yet . . . nobody ever heard about it.

A Perfect World with Perfect Oceans

In 2003 Daniel Pauly, the individual most responsible for coining the term
shifting baselines, published a book titled In a Perfect Ocean. For a perfect
ocean to exist there would have to be a perfect conservation movement to
maintain and defend it. And part of that perfect conservation movement
would involve perfect mass communication between the people in charge
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of protecting the oceans and the people who want to use them. So what
would such perfect ocean conservation communication be like?

The perfect movement would make “arouse, fulfill, and follow
through” its universal slogan. All three parts of the process are essential. If
the public isn’t interested, everything downstream is of little value. Involve-
ment has to begin with motivation, and most people are motivated not by
facts and figures, but through human elements like emotion, passion, and
humor. Once the mass audience is motivated to play an active role, feels
ownership of this resource, wants to defend it, and reaches out for informa-
tion, then its needs can be met through effective messaging. It’s as simple as
“arouse and fulfill.” Once the audience’s demands are fulfilled, the move-
ment must follow through by evaluating the impact of its messaging, and
reinventing and repackaging when necessary. Madonna has known this for
three decades.

At its core, the perfect conservation movement succeeds by creating a
voice that people want to hear. People respond positively to human voices.
Even the most overused celebrity spokesperson is still better than a cold,
lifeless statement from an organization. But reaching the mass audience in
today’s saturated media markets requires a new element—diversity. There
was a time when a single spokesperson like Jacques Cousteau could reach
the hearts and minds of the entire planet. Those days vanished in the 1980s
with the information explosion. Today, individual demographics tend to
“narrowcast” and listen only for voices with which they identify—voices
similar to their own. A perfect conservation movement would appreciate
the need for a diversity of voices and styles from all ethnicities and income
levels.

And lastly, the perfect conservation movement would know that,
above all else, communication is about people, which means that to effec-
tively communicate any issue related to science or nature, in the end, you
must find its “human face.” It is always there, no matter how obscure the
subject. And despite all the noise of today’s information society, it is still the
most powerful means of communicating with other human beings.
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PART II

Anchovies and Sardines

In the morning when the sardine fleet has made a catch, the purse-seiners
waddle heavily into the bay blowing their whistles . . . the cannery whis-
tles scream and all over the town men and women scramble into their
clothes and come running down to the Row to go to work. . . . The
whole street rumbles and groans and screams and rattles while the silver
rivers of fish pour in out of the boats and the boats rise higher and higher
in the water until they are empty . . . until the last fish is cleaned and cut
and cooked and canned.

—John Steinbeck, Cannery Row

Those were the good old days on John Steinbeck’s Cannery Row when the
California sardine fishery was booming in a confluence of industrial and
natural abundance that seemed inexhaustible. Then the oceans changed.
The fish and the stink were gone. Biological oceanographers call what hap-
pened “a regime shift”—a fundamental change in oceanographic conditions
that was bad for the fish, bad for the processing plants, and bad for the peo-
ple living on the margins. Now, the canneries have become high-priced
commercial real estate for shops catering to affluent tourists, and the seedy
and romantic characters of Steinbeck’s world live on only in his books.



In his historical review fisheries scientist Alec MacCall examines the
sardine-anchovy puzzle. The collapse of the California sardine fishery
shortly after World War II generated the California Cooperative Oceanic
Fisheries Investigations (CalCOFI) program, an ongoing, collaborative ef-
fort to develop a truly systematic fisheries science as a basis for sound man-
agement. A major participant in this work for more than thirty years, Mac-
Call recounts its high ideals, conflicting agendas, dead ends, and lasting
achievements, and reminds us of its pervasive influence in the marine sci-
ences. Principal concepts and analytical tools, originally developed to inves-
tigate anchovy and sardine populations, have since become fundamental to
fisheries management, marine biology, ocean science, and ecology in gen-
eral. Discovering the link between the fluctuating abundance of these small
pelagic fishes and decadal hemispheric climate cycles remains a scientific tri-
umph with increasing significance in the era of global warming.

Using the Peruvian anchoveta fishery as their focal point, David Field
and colleagues explore questions of uncertainly. What is known, unknown
but knowable, and simply unknowable? In particular, they stress how un-
certainty—including uncertainty caused by differences in interpretation—
promotes mismanagement of fisheries and eventual human misery, such as
occurred in factory towns along the Peruvian coast in the 1970s. Some of
this uncertainty lies in the biological variability within the life cycles and mi-
gratory ranges of small pelagic fishes, still poorly known. More lies in envi-
ronmental variability over differing spatial and temporal scales. Finally,
Field and colleagues remind us that ecosystem damage from overfishing
worldwide coincided with increased burning of fossil fuels and that the ef-
fects are very likely synergistic. Global warming has greatly increased uncer-
tainty about the future of these fisheries.

Both chapters illustrate how scientific uncertainty, erroneously con-
trasted with certainty of opinion, has been used as a whipping post to pre-
vent the implementation of rational fisheries regulation. While the negative
statistical correlation between sardine and anchovy abundance may be
weak, the human effects of the rise and collapse of the sardine fishery in Cal-
ifornia and the subsequent rise and collapse of the anchovy fishery in Peru
are by now thoroughly convincing. Fundamental to this breakthrough was
the pioneering application of paleoceanographic time-series data to expand
the baseline for the fisheries beyond what was possible with conventional
biological and climate measurements alone. Millennial time series, assem-
bled from disparate sources and carefully calibrated, yielded solutions to
previously intractable biological and ecological problems because they ex-
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panded conventional ecological frames of reference. This achievement her-
alded a slow but steady paradigm shift toward greater interdisciplinary col-
laboration. Despite remaining uncertainties, there is still room to improve
management based upon our new understanding of the interactions be-
tween oceanographic forcing and fishing.



Chapter 4

The Sardine-Anchovy Puzzle

Alec D. MacCall

47

Sardine (Sardinops spp.) and anchovy (Engraulis spp.) populations around
the world have exhibited extreme fluctuations, often varying a thousand-
fold in abundance from one decade to the next, accompanied by economic
boom-and-bust cycles that have become legendary. In nearly every case, for-
tunes are made during times of abundance, not only by the fishing and pro-
cessing industries, but also by secondary industries such as poultry ranching
and fish rearing—industries made possible by convenient large quantities
of inexpensive, high-protein animal food. Yet the prosperity typically lasts
for little more than a decade, and suddenly the fish stocks mysteriously dis-
appear. In some cases, alternative fisheries are eventually developed. How-
ever, in nearly every instance of stock collapse, the social and economic
damage is severe. Once prosperous fishing communities become ghost
towns: processing plants are boarded up, equipment is sold, and large fleets
of fishing vessels slowly rust away.

In response to this puzzle, biologists and oceanographers have con-
ducted major research programs off California, Peru and Chile, Japan, and
South Africa, but the answer has been remarkably elusive. Much of the
work has been done in the California Current, the site of perhaps the
largest, and certainly the longest, fishery-oceanographic research program
ever undertaken.
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Historical Review

During the 1930s and 1940s, the Pacific sardine (Sardinops sagax caerulea)
supported one of the largest fisheries in the world, with annual catches ex-
ceeding 600,000 metric tons (mt) and fishing fleets active from Mexico to
Canada. The collapse of this fishery in the late 1940s and early 1950s was a
landmark event in fishery science and biological oceanography. Although a
few other major world fisheries had disappeared previously, loss of the sar-
dine fishery was one of the first to be viewed as a subject for large-scale sci-
entific investigation, in this case centering on the debate as to whether the
decline of the resource was due to overfishing or to natural causes, and con-
sequently, what if anything could be done to rebuild the fishery. At the end
of the 1940s, the resource was clearly in decline, and the industry was
threatened by restrictive fishing regulations being proposed by California’s
Department of Fish and Game (CDFG). In response to this threat, the fish-
ing industry underwrote the creation of an ambitious multiagency scien-
tific program, the California Cooperative Oceanic Fisheries Investigations
(CalCOFI), a program that continues to the present day. Its members in-
cluded Scripps Institution of Oceanography (SIO), the federal govern-
ment’s Fish and Wildlife Service (FWS), and the CDFG, among others.
The program was originally funded by the fishing industry through a self-
imposed tax on fish landings and was overseen by the industry-controlled
Marine Research Committee (MRC).

CalCOFI embodied the modern concept of science-based fishery man-
agement that was emerging rapidly in North America and Europe. How-
ever, the science itself was not yet firmly established, especially with regard
to the basis of sustainable harvests. There was a bitter disagreement between
CDFG scientists, who contended that overfishing was the cause of the de-
cline, and the more lettered SIO and FWS scientists, who contended that a
temporary period of adverse environment was at fault, implying that fish-
ing pressure need not be reduced. Thus, the sardine debate mirrored the
contemporary ecological debate regarding density-dependent or density-
independent control of animal populations. The dark side of the CalCOFI
debate was that the SIO scientists, who were the major recipients of the new
funding, knew that the environmentally based CalCOFI program could not
be justified if the problem was found to be overfishing. As McEvoy de-
scribed it in 1986, “Through the first decade of its existence, then, the MRC-
CalCOFI project perpetuated a finely tuned stalemate between government
agencies competing for funds and influence, while the industry that oversaw
it squeezed out what life remained in the sardine fishery.”
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By 1950 and the beginning of CalCOFI, sardine catches had already
declined to half the 600,000 mt level typical of ten years earlier, and in the
1952 and 1953 seasons no sardines could be found in California (figure
4.1). Although sardines reappeared in 1954, by the mid-1950s it was ap-
parent that the resource was not returning to its former distribution and
productivity. However, in 1957 through 1959, California experienced a
strong El Niño that was accompanied by a resurgence of sardines, includ-
ing their reappearance in central California. This provided convincing
proof that environmental conditions have a major influence on the fishery
and revitalized the CalCOFI program. It also brought about the realization
that El Niño is associated with the physics and biology of the entire West-
ern Hemisphere, including the California Current, and not just the west
coast of South America. Thus, global climatology entered the mix of disci-
plines relevant to CalCOFI and the sardine problem.

In the early 1960s, Garth Murphy conducted a comprehensive study of
sardine demography, during which he invented the now-standard fishery
stock assessment tool of Virtual Population Analysis. Murphy concluded
that overfishing was the primary cause of the decline in the resource—“Fish-
ing rates applied to the population lowered reproduction to an extent that
decline was inevitable.”—and that reproductive failure in 1949 and 1950
precipitated the collapse of the stock. Murphy was not able to identify any
specific environmental influence associated with the pattern of reproduc-
tive successes and failures.

Murphy also concluded that during the 1950s the northern anchovy
(Engraulis mordax) stock had grown to a magnitude similar to the original
sardine biomass. He argued that anchovies had ecologically replaced the sar-
dines and were competitively preventing a sardine recovery. On that prem-
ise, Murphy, together with John Isaacs and others, promoted development
of an experimental anchovy fishery designed to reduce competition with
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Figure 4.1. California sardine landings during the early years of California Co-
operative Oceanic Fisheries Investigations (CalCOFI).



sardines. Although a small anchovy fishery did finally emerge in the 1970s, it
was not economically viable. The proposed fishery also was politically un-
popular: The recreational fishing sector was militantly opposed to a large an-
chovy fishery, fearing a reprise of the sardine collapse due to lack of manage-
ment control and loss of a critical link in the food chain needed to support an
abundance of sport fish.

Both the recreational fishing sector’s concern with food chain relation-
ships and Murphy’s proposed experiment, based on classical ecological con-
cepts of interspecific competition and species replacement, marked the en-
try of multispecies ecological theory into CalCOFI and the sardine debate,
presaging modern calls for “ecosystem management.” Murphy’s experiment
was never conducted, but it is worth imagining a scenario in which deliber-
ate anchovy overfishing was enthusiastically attempted beginning in the
late 1960s: Sardine abundance would have started increasing in the late
1970s (because we know it did so anyway), giving the impression that the
experiment had worked! In hindsight, we also now know that Murphy’s
anchovy biomass estimate of 5,000,000 mt was severely in error. Using a
much better technology to calibrate larval abundances, Lo and Methot later
estimated that anchovy spawning biomass in the late 1960s had actually
been less than 500,000 mt—a stock size that should be compared with pro-
posed annual anchovy harvests of 200,000 to 1,000,000 mt. Thus, the ex-
periment could indeed have depleted the entire anchovy biomass in two or
three years—more quickly than the triennial CalCOFI larval surveys would
have been able to detect, realizing the worst fears of the recreational fishing
sector. Both sides of the argument would have been able to claim victory in
the debate, and yet fishery managers would have been none the wiser for it.

A primitive form of ecosystem management was also being considered
in the Peruvian system, where Schaefer treated the guano birds (mostly cor-
morants, Phalacrocorax bougainvillii) as a competing source of mortality in
the Peruvian anchoveta (Engraulis ringens) fishery. Combined abundance
of the three seabird species had declined from 28 million individuals in
1955 to 4 million in the late 1960s. Schaefer calculated that loss of the birds
had increased sustainable yield of anchoveta by roughly 2,000,000 mt. He
concluded that any recovery of the bird population would require a reduc-
tion in allowable harvest by the fishery and that at the current guano bird
abundance, “the annual anchoveta catch can be maintained indefinitely at
9.3 million metric tons.” His only statement in favor of the birds was that
the birds should not be eliminated entirely.

Within three years of Schaefer’s analysis, the Peruvian anchoveta fishery
had collapsed, and the seabird population had also declined to fewer than

50 a n c h o v i e s a n d s a r d i n e s



one million individuals. The immediate cause of the declines was the strong
El Niño of 1972, which caused reproductive failure of both fish and birds
and also caused unusually high vulnerability to an already intense fishery.
However, the anchoveta’s lack of response to subsequent reductions in fish-
ing effort was puzzling. Meanwhile, sardine (Sardinops sagax sagax) abun-
dance was increasing rapidly in Peru and Chile. On the other side of the Pa-
cific Ocean, Sardinops melanostictus was increasing even faster in Japan.

In the early 1970s, Soutar and Isaacs developed a remarkable time
series of prehistoric sardine and anchovy abundances based on fish scales
preserved in southern California laminated anaerobic sediments. The
2,000-year paleosedimentary record, since refined by Baumgartner and col-
leagues (figure 4.2), indicated that unfished sardine abundances were
highly variable off California, with occasional disappearances even in the
absence of fishing. Once again, the fishery was absolved of responsibility
for the disappearance of the resource: “Nor can the virtual absence of the
sardine from the waters off Alta California be considered an unnatural cir-
cumstance.” Lasker and MacCall later pointed out that Soutar and Isaacs’
conclusion was not valid because the paleosedimentary data were incapable
of resolving sardine abundances below about 700,000 mt, at which level
zero scale counts become frequent. A biomass of 700,000 mt would still be
considered relatively healthy, whereas recent sardine abundances were esti-
mated to be below 10,000 mt. Another of Soutar and Isaacs’ surprising
findings was that there was no indication of anchovy-sardine alternations of
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Figure 4.2. History of sardine and anchovy scale deposition rates (no./1,000 cm2/
yr) in the Santa Barbara Basin, southern California. (Redrawn from Baumgartner et
al. [1992].)



abundance in the paleosedimentary time series, despite scientific consensus
that the two species were competitors.

The pattern of sardine fluctuations implied by the paleosedimentary
record could not be reconciled with the conventional fisheries view of an
approximately constant “reference” state of the resource corresponding to
an unfished condition (i.e., carrying capacity, in ecological terms). At the
1973 CalCOFI Symposium, Isaacs formalized this concern:

[T]here are probably a great number of possible regimes and abrupt
discontinuities connecting them, flip-flops from one regime to an-
other. . . . Sardines, for example, are either here or not here. . . . There
are internal, interactive episodes locked into persistence, and one is en-
tirely fooled if one takes one of these short intervals of a decade or so
and decides there is some sort of simple probability associated with it
. . . organisms must respond to more than just fluctuations around
some optimum condition. . . . Fluctuations of populations must be re-
lated to these very large alternations of conditions.

This was the origin of the terms regime and regime shift, which have recently
become common keywords in fisheries and oceanographic publications.

Lasker and MacCall examined the widths of the scales from Soutar and
Isaacs’ study. Based on the relationship between scale width and fish size,
Lasker and MacCall concluded that the average anchovy was 54 percent
heavier during periods when sardine scale deposition was low. While this
superficially seemed to be further evidence of sardine-anchovy competi-
tion, they concluded that the difference was a probably coincidental re-
sponse of anchovy growth to the (unknown) environmental conditions
that influenced sardine abundance. Specifically, Mais showed that in the
late 1970s a sudden reduction in the average size of anchovies had occurred
in southern California. Sardine abundance, while showing initial signs
of increase, was still much too low to have influenced the anchovy’s food
supply.

In the early 1980s it was becoming apparent that sardine fluctuations
occurred synchronously on a worldwide scale. Major sardine fisheries had
developed almost simultaneously in Peru-Chile and in Japan, where the sar-
dine population expanded to occupy the Kuroshio Current extension and a
large portion of the northwest Pacific Ocean. A new fishery had developed
in the Gulf of California, and sardine abundance was increasing in the Cali-
fornia Current. In 1983, the Food and Agriculture Organization addressed
this and related fishery issues by convening an Expert Consultation to Ex-
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amine Changes in Abundance and Species Composition of Neritic Fish Re-
sources. At this meeting, the worldwide synchrony of sardine fluctuations
was captured vividly in a figure presented by Kawasaki, reproduced here in
figure 4.3. Although the synchrony in Kawasaki’s figure is exaggerated by
combining the Gulf of California sardine fishery with the California Cur-
rent fishery (they are separate stocks), the strength and contrast of the rela-
tionship suggested that the underlying mechanism should easily be discov-
ered. Moreover, at the same meeting, Parrish and colleagues presented a
comprehensive study of the fishery-oceanographic mechanisms governing
fish recruitment in eastern boundary currents worldwide, where most of
the sardine stocks occur. It appeared that all of the pieces of the puzzle were
now in hand. A breakthrough seemed to be imminent, generating major
symposia in Capetown, South Africa, and Vigo, Spain, in 1986 and Sendai,
Japan, in 1989. Yet the answer proved elusive.

In the 1980s, CalCOFI oceanographers and biologists were beginning
to notice that the California Current ecosystem was behaving differently
than it had during the early years of the program. Sea surface temperatures
were consistently warmer than those seen in the 1950s and 1960s, and sar-
dine abundance was clearly increasing, among a wide variety of other phys-
ical and biological phenomena. Venrick and colleagues were the first to
fully identify the scale of the change as a regime shift: “We postulate that
these environmental fluctuations have resulted in significant long-term
changes in the carrying capacity of the [Central North Pacific] epipelagic
system. . . . We need to re-evaluate both the assumption of steady state . . .
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Figure 4.3. Kawasaki’s demonstration of synchronous worldwide fluctuations in
sardine populations. Solid circles are Far Eastern sardine, open circles are Cali-
fornian and Mexican sardine, and triangles are Chilean sardine. (Redrawn from
Kawasaki [1983].)



and our studies of community structure and dynamics.” The existence of a
major shift in northeastern Pacific climate ca. 1976 achieved popular rec-
ognition with publication of a multivariate study in the meteorological lit-
erature by Trenberth in 1990. The 1976 climate shift provided the first
directly observed phenomenon that could account for the kinds of fluctua-
tions seen in the paleosedimentary record. It also helped recast the sardine
puzzle from the conventional fisheries “recruitment problem” of under-
standing year-to-year fluctuations to a new “regime problem” that was con-
cerned with coherent worldwide decadal scale variability of anchovies and
sardines. The fishery and oceanographic research community was slow to
embrace the regime idea, and it was about ten years later that the concept of
“regimes” became widely accepted (figure 4.4).

The California sardine fishery had been closed by a legislated morato-
rium in 1974, with the provision that a fishery could be resumed if sardine
abundance recovered to at least 20,000 short tons (18,144 mt). By the
mid-1980s signs of increase were unmistakable. In 1985, estimated abun-
dance had reached this level and a small fishery was allowed. Sardine abun-
dance was closely monitored, emphasizing an ichthyoplankton-based
spawning area survey in the southern California Bight.

Changes occurred in several worldwide sardine-anchovy fisheries fol-
lowing 1988. Recruitment to the Japanese sardine fishery declined sud-
denly, and under intense fishing pressure, the resource biomass declined by
95 percent between 1988 and 1992. Although the turning point in Peru
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Figure 4.4. Fraction of peer-reviewed publications containing the keywords re-
gime together with climate and fish or fisheries in the Aquatic Sciences and Fisheries Ab-
stracts database.



was not as clear as that in Japan, Peruvian sardine fishery catches declined
by 99 percent during the 1990s, while anchoveta catches were returning to
pre-1972 levels. South Africa experienced a post-1988 warming of the
Benguela Current and sudden growth in its sardine population. Although a
1988 regime shift clearly occurred in those regions, no corresponding shift
was apparent in the California Current where the existing warm conditions
intensified.

Sardines continued to increase in abundance off California, and the
southern California spawning area increased progressively from 1985 to
1991. The spawning area surveys were based on the conventional view of
sardines as being a relatively nearshore species. Indeed, the historical fishery
had been conducted in nearshore waters, and the early CalCOFI ichthyo-
plankton surveys also suggested a coastal affinity. This nearshore view was
shattered in 1991 due to the chance discovery of large concentrations of Pa-
cific sardines far offshore. While conducting exploratory trawling for jack
mackerel (Trachurus symmetricus) in international waters more than 200
miles off the California coast, the Russian survey vessel Novodrutsk encoun-
tered surprising abundances of Pacific sardines as well as chub mackerel,
a.k.a. Pacific mackerel (Scomber japonicus)—at the farthest edge of the range
covered by standard CalCOFI surveys. Also, Pacific sardines reappeared in
British Columbia in 1992 after a nearly forty-year absence. This was attrib-
uted to the increasing abundance of sardines off California and a northward
shift in distribution due to the strong 1991–92 El Niño.

The 1990s saw major advances in understanding of interdecadal climate
variability. Mantua and colleagues described the Pacific Decadal Oscilla-
tion (PDO), a pattern of low-frequency atmospheric variability in the north
Pacific that is related to but is not identical with the previously known
pattern of El Niño-Southern Oscillation (ENSO) that dominates low-
frequency variability in the south and equatorial Pacific. It was apparent that
fluctuations of sardine and anchovy stocks were related in some way to
patterns in the ENSO and PDO, but the mechanism was unclear.

In the mid-1990s, environmentally explicit models of the stock and re-
cruitment relationship were developed for both the Pacific sardine and the
Japanese sardine. Previously, the effects of environmental conditions on re-
productive rates could not be distinguished from the effects of parental
abundance because of co-linearity in the data. However, post-1976 data
from California and post-1988 data from Japan provided new information
with contrasting environmental and abundance information that allowed
analytical separation of those effects. Jacobson and MacCall found that for
a given parental abundance, sardine recruits per spawner were about twice
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as high during favorable environmental conditions as they were during
unfavorable conditions. Under favorable conditions, equilibrium yields
could approach 1,000,000 mt, but during unfavorable conditions, there
may be no sustainable yield to support any fishing whatsoever. Wada and
Jacobson found that Japanese sardines achieved a remarkable twentyfold in-
crease in recruitment during favorable environmental conditions, which
also explains the rapid growth of the Japanese fishery after 1970. Also, the
“switch” from a favorable to an unfavorable state is abrupt; the virtual ces-
sation of sardine reproduction explains the rapid depletion of Japanese sar-
dines by fishing after 1988.

There have been several recent attempts to synthesize the information
on sardine and anchovy fluctuations. Schwartzlose and colleagues pre-
sented a comparative study of low-frequency variability in sardine and an-
chovy systems around the world. McFarlane and colleagues examined a va-
riety of hypothesized physical and biological mechanisms, but concluded
that “the underlying mechanisms . . . have yet to be identified.” Chavez and
colleagues reviewed the characteristics of regime shifts from an oceano-
graphic perspective, but the puzzle was not solved: “It remains unclear why
sardines increase off Japan when local waters cool and become more pro-
ductive, whereas they increase off California and Peru when those regions
warm and become less productive.”

Overfishing or Environment?

From the inception of CalCOFI, every few years a scientific study should
be published that indicated a strong environmental influence on Califor-
nia’s sardine fluctuations. These were carefully written publications, and the
authors tended to be cautious in their interpretations. However, in each
case the popular press was eager to announce that this most recent study
“finally” proves that natural events rather than overfishing were the cause of
the historic collapse of California’s sardine fishery. Apparently, scientific
publications that confirm overfishing as the primary cause of the sardine
collapse are of little public interest, but those that support a societal denial
of responsibility are newsworthy. It is ironic that the same conflict of inter-
est that Scripps Institution of Oceanography had in the 1950s (and which
it outgrew) survives to the present day in the “newsworthiness” of sardine
analyses reported by the popular press.

Of course, the question of whether the historical sardine collapse was
due to overfishing or to adverse environmental conditions is not posed cor-
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rectly. It fails to recognize that the collapse was due to both causes, working
in concert. This relationship can be clarified by some simple calculations
based on historical fishery catches and population estimates given by Mac-
Call in 1979. The environment shifted to an unfavorable condition some-
time during the 1940s. Between 1950 and 1965, the fishery landed a total
catch of 928,000 mt. During that period, the population size declined by
777,000 mt, implying that net production of sardines during that period
was 151,000 mt. Thus, during those sixteen years, average sustainable har-
vest was about 9,400 mt per year, in contrast to actual average harvests of
58,000 mt per year. Approximately 16 percent of the actual catch was sus-
tainable, whereas the remaining 84 percent was “mined” permanently from
the resource. The average fishing mortality rate of 36 percent per year was
very close to the natural mortality rate, which has long been considered to
be a safe rule of thumb for fishery management. However, in hindsight, if
only 16 percent of that total harvest was sustainable, the true sustainable
fishing rate must have been only about 6 percent per year under the prevail-
ing unfavorable environmental conditions. In view of the past fifty years of
worldwide “expert opinion” in fisheries, this would have been an incon-
ceivably low harvest rate to propose for a sardine fishery under any condi-
tions. Only in hindsight do we know that the sustainable harvest rate was
only one-sixth of the “safe” rule of thumb described above. A collapse of the
sardine industry could not have been avoided.

A fishery management plan for California’s sardine fishery was adopted
in 1998. The harvest specifications under this plan are extraordinary in the
history of fishery management. First of all, the plan establishes a minimum
sardine biomass reserve of 150,000 mt, below which no harvest is author-
ized. Based on the stock and recruitment relationships described by Jacob-
son and MacCall in 1995, the allowable harvest consists of a temperature-
dependent fraction of the biomass in excess of 150,000 mt. That fraction
ranges from a maximum of 15 percent under favorable warm conditions,
down to a minimum of 5 percent under unfavorable cold conditions. Be-
cause of the reserve biomass, realized total harvest rates will be below 5 per-
cent under cold conditions and declining abundance. It remains to be seen
how this management policy performs in future decades, and it cannot be
evaluated fully until the sardine stock passes through the next cold period
and emerges into the following warm period. The hundredth anniversary
of the founding of CalCOFI should be an appropriate occasion to evaluate
its success. Meanwhile, the post-1985 fishery on the Pacific sardine is still
healthy after twenty-five years. No other sardine fishery in the world has
lasted more than twenty years.
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Today, Peru’s anchoveta fleet and fishmeal factories remain idle for most of
the year. Although fish are abundant, large numbers of vessels resulting
from overinvestment mean that seasonal quotas can be reached shortly after
the fishing season opens (figure 5.1). After a brief period of intensive work,
hundreds of fishers, dockworkers, and factory employees must search for
jobs in whatever other employment may be available the rest of the year.
However, these hardships pale in comparison with the social and economic
upheavals that followed the anchoveta population collapse in the early
1970s, when coastal villages became virtual ghost towns. A generation
later, as catch rebounded to nearly 10 million metric tons per year, reinvest-
ment in the fishery soared (figure 5.2).

Since the 1950s, decades of highly abundant Peruvian anchoveta have
spurred enormous investment in fisheries and processing plants, while
decades of low catches have brought about the loss of industrial capac-
ity, boats, and local employment. Similar boom-and-bust cycles have
plagued sardine and anchovy fisheries in the California Current, Kuroshio
Current, Benguela Current, and many other regions. In general, strong El
Niño events result in lower anchoveta catches, but landings rebound
quickly and investment in factories and vessels remains high (figure 5.2).
During the 1960s, this resulted in industrial overcapitalization. Within a
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decade, however, the anchoveta population had collapsed and towns along
the Peruvian coast were devastated. Landings declined sharply and re-
mained persistently low, and the Peruvian fishmeal industry remained
moribund for almost twenty years. In 1984, a yearlong moratorium on an-
choveta fishing followed a strong depression in biomass after the 1982–83
El Niño (figure 5.2). Then in particular, factories and fishing vessels sub-
sisted on the less abundant populations of sardines.
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Figure 5.1. Top left, The anchoveta fishing fleet of the Port of Callao, Peru, remains
idle during a seasonal closure. Top right, Surrounded by the fleet, a fishing vessel sets
a purse seine amid a school of anchoveta. Middle left, Fishmeal processing plants in
Chimbote, Peru, remain idle during a seasonal closure. Middle right, An anchoveta
seiner raises a full net. Bottom left, Recently caught anchoveta. Bottom right, Filleting
anchoveta is time consuming, but when fresh fish are available, the result is tasty.
(Photos by Erich Rienecker and David Field.)



Small pelagic fishes like anchovy and sardine have very high egg pro-
duction rates and growth rates, and recruitment varies widely from success
to failure. These factors make them susceptible to large fluctuations in
abundance and exacerbate the boom-bust cycles of their fisheries. Their im-
mense coastal populations depend on highly productive but complex and
unstable boundary current ecosystems. The difficulty in determining how
oceanic processes interact to affect recruitment, abundance, and distribu-
tion exemplifies the difficulty in distinguishing natural variability from
overfishing, despite decades of intensive study, long-term records, and
monitoring. Moreover, because small pelagics sustain higher trophic levels
of fish, their dynamics are fundamental to entire coastal pelagic ecosystems.
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Figure 5.2. An example of the interaction between climate, fish catch, development
of the fishing industry, and predators of small pelagic fishes. (A) Thirteen-month
moving average of Southern Oscillation Index (SOI) and sea surface temperature
(SST) at Puerto Chicama as indicators of El Niño events and ocean climate off Peru.
(B) Peruvian catch records of anchoveta and sardine. (C) Number of anchoveta
fishing vessels (industrial and artisanal) and fishmeal processing plants (Fréon et al.
[2008]). (D) Ecosystem response of predators of small pelagic fish (Jahncke,
Checkley Jr., and G.L. Hunt Jr. [2004]) indicated by actual estimates of guano birds
from observations (obs.; bold line), a model prediction of guano bird abundance with
no fishing included (n.f.; solid line), and a model prediction with fishing included
(w.f.; dotted line).



Today, the Peruvian anchoveta fishery has rebounded once more, and
once more the idle boats reflect overinvestment. The Institute of the Seas of
Peru (IMARPE) closely monitors anchovy abundance and sets quotas that
have helped maintain moderately high catch for years. Seasonal closures
maintain a stock structure with sufficient numbers of large spawning fish,
and this stabilizes the fishery. Smaller fish have much higher water content
that decreases the quality and quantity of fishmeal. When catch is dominated
by small fish, changing fishing locations or halting activity altogether for a
few days or weeks could yield greater value per fish, but work habits are per-
sistent and such restraint is rare. Unfortunately, business as usual precludes
taking full advantage of the potential value of small pelagics as a resource.

Domestic costs due to ecosystem change have already been borne by
the once powerful guano industry, which, in the 1950s, objected strenu-
ously to the development of the anchoveta fishery because it threatened
seabirds and guano production. This concern appears to have been justified
by the precipitous decline in seabirds following the development of the an-
choveta fishery in the 1960s and 1970s (figure 5.2D). Although guano
mining is even less efficient than fishmeal production at converting protein-
rich anchoveta into a valuable industrial product, using fishmeal to feed
livestock and farmed fish such as salmon is enormously wasteful compared
to direct human consumption. Unfortunately, markets for anchoveta as hu-
man food are very limited.

We now know that decadal changes in sardine and anchovy abundance
may be related to large-scale changes in Pacific climate that persist for de-
cades at a time. The development, collapse, and subsequent rebuilding of
the Peruvian anchoveta fisheries in the 1990s graphically illustrate not only
the interaction between natural variability and fisheries exploitation, but
also how this interaction affects ecosystems and economies (figure 5.2). In
this chapter we review aspects of the known, unknown, and unknowable
regarding these highly productive, variable, and relatively well studied fish-
eries. One major emerging uncertainty is how climate change may drive
ecosystems in unprecedented directions. We conclude with a discussion of
some of the most important implications for future fisheries management.

The Known

The Efficacy of Fishing Restrictions

The magnitude and duration of a fisheries collapse, and its economic conse-
quences, increase dramatically if restrictions are not imposed long before
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fishing becomes economically unviable. Unfortunately, an increase in
catchability and price per fish is not uncommon in diminishing fisheries
(e.g., figure 5.3A). In 1964, the California sardine population was ap-
proaching its lowest levels observed to date, when reports from swordfish
spotter planes revealed the locations of major sardine populations offshore.
Immediately they were targeted and heavily fished. Thus, driven by high
demand and high price, catch per unit effort actually increased for a time.
Three years later the sardine fishery collapsed and was shut down, just as
the Peruvian anchoveta fishery was on the rise.

The same industrial participants who had presided over the collapse of
the California sardine fishery shifted focus to the anchoveta fishery in Peru.
Machinery and infrastructure went south. Fishery fleets and processing
plants soon developed the capacity to extract several times the number of
fish that existed in the wild (figure 5.2C). In 1972, evidence pointed to a
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Figure 5.3. Models of response of fish populations to changes in adult biomass: (A)
Changes in catchability and price per fish may remain constant (solid line) or increase
at lower population sizes (dashed line). (B) Theoretical stock-recruit relationships
showing different levels of density dependence. Spawning stock biomass and re-
cruits are scales to their maximum levels, but these vary dramatically with environ-
mental conditions. (Modified from Shertzer and Prager [2007]).
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drop in recruitment the year before and declining biomass during the onset
of the 1972–73 El Niño. Yet, scientific recommendations to reduce total
catches were ignored. High catches justified the continued heavy fishing.
Thus, the anchoveta population was soon decimated by a combination of
overfishing and El Niño, which had concentrated the diminishing popula-
tion near the coast (e.g., figure 5.4), giving the false impression of increased
abundance. After the collapse, population growth and the abundance of an-
chovies failed to recover for decades (figure 5.2B).

Variations in Recruitment

How fish growth and recruitment respond to changing environmental con-
ditions and preexisting abundance is critical to determining the effect of
fishing on future population size, and current and future fish yield. The
effect of fishing may be negligible if population growth shows negative
density dependence (compensation) due to competition or cannibalism, or
density independence because environmental factors dominate. Growth of
juveniles may also be faster if adults are removed because competition for
food is reduced. Thus, recruitment and growth may exceed the existing
population size and support removal by fisheries. In the early years of the
Peruvian anchoveta fishery, adults were removed at high rates under the
premise that this encouraged growth of juveniles. However, poor recruit-
ment in the early 1970s and concurrent removal of adult biomass resulted
in a greatly diminished spawning biomass, which, along with less favorable
oceanographic conditions, had an adverse effect on recruitment in future
years.

It is widely believed that greater spawning biomass increases the prob-
ability of high recruitment when spawning biomass is low (figure 5.3B).
Although actual recruitment data don’t follow any model well, nearly all
models assume that recruitment increases with greater population size and
spawning (figure 5.3B), even more so when spawning aggregations are too
small or habitat insufficient. The “hockey stick” model indicates that re-
cruitment will vary positively with spawning biomass until a threshold is
reached and the relationship breaks down (figure 5.3B). For example, sar-
dine recruitment in the Kuroshio Current appears to be largely determined
by environmental factors, and density dependence is important only at
low population sizes. The population threshold may also vary with cli-
matic conditions so that continued fishing below a critical population size
may limit the potential future increase of the species, especially during



F
i
g

u
r

e
5
.
4

.
Sp

at
ia

ld
ist

rib
ut

io
n

of
an

ch
ov

y
bi

om
as

sa
lo

ng
th

e
co

as
to

fP
er

u
as

in
fe

rr
ed

fr
om

ba
ck

-s
ca

tt
er

ed
ac

ou
st

ic
en

er
gy

fo
ra

nc
ho

ve
ta

sp
at

ia
ld

ist
rib

ut
io

n
su

rv
ey

st
ak

en
du

rin
g

di
ffe

re
nt

se
as

on
s(

ye
ar

an
d

m
on

th
s)

of
a

no
rm

al
ye

ar
(2

00
0)

an
d

an
E

lN
iñ

o
ye

ar
(1

99
8)

.(
Fo

llo
w

in
g

C
as

til
lo

et
al

.[
20

08
]a

nd
Ñ

iq
ue

n
an

d
B

ou
ch

on
[2

00
4]

).

65



unfavorable oceanographic conditions. Since variability in recruitment is al-
ways high and dependent upon environmental conditions, estimates of crit-
ical population size or maximum sustainable yield (MSY) are at best crude
approximations.

The management plan for the California sardine is unusual in the in-
corporation of temperature variation as a factor in the regulation of the
fishery. However, the relationship between temperature and recruitment is
still not well understood. Chavez and colleagues have emphasized varia-
tions in productivity that are particularly evident between regions and with
El Niño events, whereas Logerwell and Smith focused on mechanisms of
larval recruitment related to retention and circulation determined by
mesoscale eddies, and MacCall emphasized flow patterns on basin scales.

Very strong El Niño events off the Peruvian coast clearly reduce the
abundance, growth, and productivity of the Peruvian anchoveta, but the
cause of decadal-scale variations in abundance is obscure. The Southern Os-
cillation Index (SOI) was more strongly negative and waters warmer when
sardines were more abundant than anchovies (figure 5.2), but anchovy re-
covery occurred during the early 1990s when the SOI had been negative
for many consecutive years.

The California Cooperative Fisheries Investigations (CalCOFI) time
series from the California Current exhibits only a weak relationship be-
tween zooplankton biomass and fish larvae from 1950 to 1970, suggesting
that trophic links are not strong. Moreover, the abundance of sardines in-
creased during the 1980s and 1990s when zooplankton decreased. How-
ever, the decline in zooplankton is largely attributed to gelatinous taxa,
such as salps and doliolids, which are generally of little dietary importance
to fish, whereas the most abundant species of copepods and euphausiids
did not decrease. Sampling problems affect the determination of mecha-
nisms that drive recruitment and growth because fish collections have pri-
marily sampled fish eggs and larvae rather than juveniles, and many zoo-
plankton taxa sampled are not preferred prey for sardines or anchovies.
Nevertheless, the lack of clear trophic links on decadal timescales illustrates
the uncertainty that remains regarding the environmental factors control-
ling population growth and recruitment, so management must proceed
without a precise model of underlying mechanisms.

Variations in Fish Size, Type, and Distribution

The existence of different stocks or age structures of small pelagic fishes,
distributed across large biogeographic regions, greatly complicates stock
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assessments and understanding of recruitment dynamics. There are well-
documented changes in the distribution of small pelagics in the Kuroshio
Current, California Current, and Peru-Chile Current. For example, as El
Niño reduces the area of cool productive waters off the Peruvian coastline
to narrow areas near the coast, anchoveta congregate in these coastal re-
gions, move south toward Chilean waters (figure 5.4), and shift their verti-
cal distribution deeper by tens of meters. The density and catchability of
fish can increase near the coast during a strong El Niño, even while total
abundance, recruitment, and growth are extremely reduced (figures 5.3
and 5.4). Large-scale spatial data on stocks are clearly essential if distorted
estimates of population sizes are to be avoided and management becomes
more successful.

Variability in the spatial distribution, age, size, and stock of a species
sometimes results in local and regional differences in recruitment dynamics
that greatly complicate relationships between future recruitment, stock
size, and environmental variability. Different stocks may exist within a
boundary current system, and migration can occur between regions and
stocks. Anchoveta off Chile and southern Peru are generally considered to
compose a different stock than that off central and northern Peru, but mi-
grations occur between them. Older, larger sardines are found from north-
ern California to British Columbia during population expansions and show
a more wide-ranging swimming behavior. The presence of larger, older fish
in the northern California Current may result in greater recruitment
throughout the California Current since larger fish find food more easily,
can produce more eggs, and spawn in a greater range of habitats. Sardine
catches are more stable off southern and Baja California, which may
be due to the existence of a separate stock. If considerable mixing occurs,
fishing in one region may affect future catches in another region and they
should be managed as a single stock. However, the mere existence of recog-
nizably different stocks suggests that independent management strategies
may be more appropriate for each stock.

Ecosystem Structure and Indicators

Management must also consider the importance of a target fish population
to other components of the ecosystem. Small pelagics are important prey to
seabirds and higher trophic level fishes including tunas and salmon, which
are important to commercial and recreational fisheries. However, it is un-
clear how much higher trophic level fish depend on sardines and anchovies.
If sardines or anchovies are unavailable, top predators may feed on other
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small pelagic species, undergo decreases in population growth, or change
migrational patterns to feed in regions with greater availability of prey. Sar-
dines and anchovies are traditionally considered such important baitfish for
recreational fishers that the 1948 California Proposition Initiative 15
would have prohibited the use of purse seines for commercial fishing in
some regions of the California Current in order to preserve sardines for the
sports fishing and recreational industries. When anchovy were abundant
but sardines absent in the 1960s and 1970s, recreational and commercial
fishers of higher trophic level fish supported commercial catch limits of an-
chovy to maintain availability of small pelagics as food for these species. Ap-
parently, competing interests divided the California fisheries along the
trophic levels of their targeted species. The perception by fishers that fish-
ing in the California Current is a zero-sum game has been with us for nearly
a century.

Guano birds are historically the most conspicuous predators on Peru-
vian anchoveta. Populations of the guanay cormorant, Peruvian booby, and
Peruvian pelican exceeded 20 million birds and consumed an estimated 1.3
to 2.1 million metric tons of anchoveta per year, prior to the inception of
the fishery. Since anchovy live deeper and farther out of the range of diving
birds when sea surface temperatures increase, the birds are strongly affected
by prey reduction associated with El Niño events. However, the abundance
of guano birds in Peru decreased dramatically with the development of the
Peruvian anchoveta fishery and has not recovered along with the anchoveta
(figures 5.2B, D). Populations of seabirds may provide the most accurate
indicator of large-scale abundance of small pelagic fishes because they for-
age over much broader regions than the limited survey tracks of monitoring
programs.

Historical Records

The large variations in small pelagic fishes on decadal timescales are a major
problem for understanding patterns of variability because biological time
series of abundance are too short. Sedimentary records of fish scale abun-
dance and historical observations reveal several aspects of variability in pop-
ulation size prior to catch records and oceanographic surveys. The basic as-
sumption for interpreting the sedimentary records is that shedding of fish
scales and their consequential flux to the sediments accurately reflects the
number of fish living in the water column, which seems to be well founded.
While shifts in the spatial distribution of pelagic populations introduce un-
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certainties about the meaning of scale flux records from a localized core,
much has been learned from sedimentary records.

The mere presence or absence of scales can be highly informative. The
northern anchovy was not known to inhabit the Gulf of California when
the species unexpectedly appeared in the sardine catch in the late 1980s.
The initial interpretation was that fishing of sardines had created a new
niche for anchovies that would otherwise be outcompeted. However,
analysis of sedimentary records indicated that anchovy populations had per-
sisted in the Gulf of California previously and that their recent occurrence
was part of the natural variability of the ecosystem.

Time series in abundance of fish scales in sediments from the Santa Bar-
bara Basin are well known for indicating great variability in abundance of
sardines, anchovies, and hake for two thousand years before the advent of
commercial fishing. Less emphasized is the fact that anchovy and sardine
scales vary together at times, generally on centennial timescales, and vary out
of phase at other timescales, generally on decadal timescales. Environmental
variability affects each species differently and in ways that do not depend on
the abundance of other species. Thus, abundance is not necessarily driven by
competition or climatic conditions that always favor one species over an-
other. However, Lasker and MacCall found that the size of anchovy scales is
considerably smaller when sardine scales are abundant, suggesting that com-
petition for resources may occur when both species are abundant, causing a
reduction in average size and weight of anchovies. These observations cau-
tion against fishing one species to increase abundance of another.

Anthropogenic Activity versus Natural Variability

The recent downward trend in zooplankton displacement volume in the
California Current was associated with a large warming trend; both of
these trends reached their extreme levels during the 1997–98 El Niño.
Cooler conditions in the ensuing La Niña event of 1999 and following
years resulted in zooplankton biomass and temperatures nearer the long-
term average although not back to levels observed in earlier decades. Such
reversals in temporal trends epitomize the difficulty in distinguishing a
long-term trend possibly due to global warming from natural variability in
modern records, such as CalCOFI surveys that began in 1950.

However, analyses of planktonic foraminifera from a sediment core
record from Santa Barbara Basin clearly demonstrate that, in about 1925,
the abundance of tropical and subtropical species began to increase
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substantially above the variability typical in preceding centuries, whereas
temperate to polar species showed no trend or decrease (figure 5.5). Princi-
pal component analysis based on the abundances of these species shows a
strong association with sea surface temperature within the twentieth cen-
tury and indicates a substantial warming trend beginning before most
ocean and climate time series began. CalCOFI hydrographic surveys make
up one of the longest records of ocean climate, but the entire time series lies
entirely within a period of unusually high abundance for tropical and sub-
tropical species. The 1999 La Niña event brought nearly record low tem-
peratures in many instrumental records, but is only a short-lived minor
variation within the longer-term warming trend observed in the core
records (figure 5.5).

In addition to the twentieth-century warming trend, the assemblages
of planktonic foraminifera species in the Santa Barbara Basin after the mid-

Figure 5.5. Temporal variations of several species of planktonic foraminifera from
two-year sampling intervals of Santa Barbara Basin sediments illustrating how much
of the twentieth century has an assemblage of species that is not typical of prior
centuries. Species that are of tropical and subtropical origin and show trends of in-
creasing abundances are (A) the combined abundances of Globigerinella calida,
Globoturborotalita rubescens, Globigerinita glutinata, Globigerinella siphonifera, and
Globigerinella digitata, and (B) Orbulina universa. Species that are of temperate and
subpolar geographic affinities and show no trend are (C) Neogloboquadrina pachy-
derma (sin.), and (D) Turborotalita quinqueloba. (E) Temporal variations of a princi-
pal component (PC) analysis of the major species that show unusual separation of
PC-1 from PC-2 during the late twentieth century. (Modified from Field et al.
[2006]).



1970s are strikingly different from assemblages that existed during earlier
decadal variations (figure 5.5). Coral records from the tropical Pacific also
indicate that temperatures following the mid-1970s shift in the North Pa-
cific exceeded prior variations throughout the last 150–1,000 years. It is
well established that higher sea surface temperatures in the tropical Pacific
drove an intensification of the Aleutian Low Pressure system, resulting in
physical and biological shifts in the North Pacific in the mid-1970s. Taken
together, these records indicate that the change of the mid-1970s in the
North Pacific is distinct from most natural variations and is most likely ex-
plained by an influence of greenhouse gasses on ocean climate. The combi-
nation of models and instrumental data further indicates that an influence
of greenhouse gasses on the ocean and atmosphere was noteworthy in the
late twentieth century and will continue in the future.

The anthropogenic influence on ocean climate in the twentieth century
coincides with anthropogenic removal of many mammals and fishes at
higher trophic levels, which can have subsequent cascades to lower levels.
Many populations of sea otters, sea lions, northern fur seals, and whales
were severely depleted and elephant seals were commercially extinct by the
late nineteenth or early twentieth century. The recovery of many of these
populations of marine mammals in the twentieth century coincided with
the intensification of many other commercial fisheries. Studies of the rela-
tionship between climate and marine populations in the North Pacific are
derived from an atypical period of intense anthropogenic activity that has
influenced many aspects of both ocean climate and marine populations. As
the trend of climate change in the California Current is expected to con-
tinue, albeit with substantial variability superimposed, the changes in eco-
system structure are moving to even more unknown and perhaps unknow-
able states.

The Unknown and the Unknowable

We still have much to learn about the physical processes and trophic dy-
namics that affect growth and recruitment in small pelagic fish populations.
Variations in the mortality rates of larvae and juveniles strongly affect total
recruitment but have not been well sampled compared to eggs. Likewise,
additional spatial and temporal sampling would help to determine the rela-
tive influence of variations in productivity, mesoscale eddies, basin-scale
flow, and other processes that affect population recruitment and growth.
Some of these measurements could be made from networks of buoys at a
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more limited cost, but the expense and effort would still be enormous.
Time series of oceanographic observations from the California Current are
among the longest available from the oceans but are still shorter than large
decadal variations. Obviously, we need longer time series, but how long do
they need to be and do we have the time to wait and see?

We need to improve our ability to predict future oceanographic con-
ditions and their consequences for marine populations based on ocean-
atmosphere-ecosystem models. Complementary to such predictive models
are good reconstructions of the past. New records of fish scales, productiv-
ity, and climate are being developed from laminated sedimentary records
from sites off Peru and Chile. The discovery of laminated sediments at Eff-
ingham Inlet has raised expectations for finding additional sites in the fjord
regions of the northeast Pacific and southern Chile. Historical, archeologi-
cal, and geochemical observations provide additional information
on population distribution and abundance preceding commercial catch
records.

Other high-resolution paleoclimate indicators provide additional in-
formation on climate variability affecting fish populations that may im-
prove understanding of the specific links between marine populations and
climatic changes. To do this, it is necessary to distinguish between synoptic
patterns and time-averaged patterns of atmospheric and climate variability.
Are marine populations controlled more by lower frequency, mean, or ac-
cumulated environmental conditions, or by the activity of higher ampli-
tude, but perhaps infrequent, extreme synoptic events? For example, event-
scale variability in upwelling or eddy formation may be more important for
sardines and anchovies than the average wind strength or flow of a given
year. Better time series of paleoclimate and fish scales could contribute
greatly to this basic question.

But we need to ask how much does any of this new knowledge about
climate variability and fish populations contribute to better management?
Complete and definitive answers are probably unattainable. More impor-
tant, in almost every case the collapse of a fishery was obvious beforehand
from data on declining stocks. Time after time, resistance from fishers and
policymakers, combined with questions and uncertainties about the data,
prevented action from being taken. We will never have enough information
to cast aside all the uncertainties or doubts about the relations of fish stocks
to the condition of marine ecosystems and climate variability. The federal
mandate to calculate and assign to different fisheries a Maximum Sustain-
able Yield is meaningless unless environmental variability is accounted for,

72 a n c h o v i e s a n d s a r d i n e s



but this is never fully possible. Moreover, changing climate and anthro-
pogenic change will inevitably introduce new uncertainties. The sardine
fishery in the California Current is among the best studied in the world, but
we still lack a solid mechanistic understanding of the linkage of fish popula-
tions to their environment. Management decisions must be made without
knowing all the answers, and to pretend otherwise is folly.

The ocean is an extremely complex environment, and fundamentally
important climatic and ecosystem processes operate at different spatial and
temporal scales within and among different oceanographic regimes. Cli-
mate change and the extirpation of species add whole new dimensions of
uncertainty to the mix. High-latitude ecosystems such as the Bering Sea
may be more impacted by climate change than the California Current due
to greater magnitude of rising temperatures and loss of sea ice. In the Cali-
fornia Current, species may simply shift their ranges northward, although
new combinations of species may occur.

Extant species have experienced dramatic changes in climate associated
with glacial-interglacial cycles and very rapid warming events, but future
temperatures will likely exceed those of the past several million years. A
warmer climate will be coupled with other anthropogenic activities and
stresses. Reduction in the abundance of sardines or anchovies to the point
of commercial extinction increases the risk of extinction of their predators
such as larger fish or birds. Commercial extinction is unlikely to put small
pelagic fishes at risk of biological extinction since numbers of individuals
may still be in the millions and reproductive rates are enormous compared
to marine mammals or sea turtles. Nevertheless, mitochondrial DNA of
sardines and anchovies shows shallow haplotype diversity indicative of se-
vere population bottlenecks or founder events in the recent past. The ap-
pearance and disappearance of northern anchovies in the Gulf of California
support the genetic view that populations expand into new habitats, and
stocks and genetic diversity can virtually disappear. With the combined
pressures of fishing, ecosystem reorganization, and future climate changes
there is considerable uncertainty in the future of the Anthropocene. How-
ever, we have learned some basic principles and lessons.

Lessons for the Future

Small pelagic fishes such as sardines and anchovies exhibit extreme variabil-
ity in recruitment, biomass, and distribution patterns that help to sustain
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great fisheries but also make them vulnerable to overfishing. Despite great
uncertainties in the details of population regulation, several lessons for the
future are clear.

1. Fishing a population in decline inhibits its ability to recover. Fishing
alters stock structure in ways that may reduce future recruitment, and
density-dependent recruitment at low population sizes indicates that popu-
lations that are greatly reduced should not be further fished. Fishing popu-
lations to depletion, particularly during unfavorable climatic conditions, re-
duces their ability to recover during subsequent more favorable conditions.

2. Diversity in fish populations is beneficial to the health of the stock. Diver-
sity in the age and size structure of a population and broad geographic dis-
tribution are beneficial to recruitment. Older and larger fish often have
greater lipid reserves, span larger habitat ranges, and produce more eggs,
which increase the probability of future recruitment.

3. High fish densities do not imply healthy populations. Extreme spatial
variability in populations can substantially distort perceptions of abun-
dance. Pockets of high densities of anchoveta appear nearshore off Peru
during El Niño events when growth and reproduction are severely limited.
These aggregations often indicate a contraction of a diminishing popula-
tion to the nearshore, not a healthy population spread across a large spatial
area.

4. Highly dynamic ecosystems require precautionary management. Sustain-
ability is an obscure concept in dynamic systems like the California Current
where the only certainty is change. Populations are always expanding or
contracting in response to varying oceanic conditions on top of the effects
of fishing, so adaptive management is essential on yearly or seasonal time-
scales. Adaptability is all the more important in the face of climate change.

5. Manage fisheries with an ecosystem view. The abundance of sardines
and anchovies is of vital importance to many species of fish, seabirds, and
marine mammals as well as other industries. The extreme depression of
seabirds in relation to overfishing of anchoveta is obvious (figure 5.2D),
but effects on larger predatory fishes are not as well understood. Abun-
dance of euphasiids, birds, and mammals, as well as fish oil content, may be
useful indicators of the state of the ecosystem in the presence of fishing.
However, interactions between species are complex, and fluctuations in
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abundance of species dependent on the same resource are not strongly pre-
dictable. Thus, culling one species in order to increase the abundance of an-
other, as proposed for seals versus cod and whales versus fish, will almost
certainly have unexpected and unwanted consequences.

6. Unchecked exploitation leads to grim social consequences. Overcapitaliza-
tion and the tragedy of the commons plague fisheries. Business practices fa-
vor current exploitation over future potential, as well as the current and fu-
ture potential of other fisheries and other industries such as tourism. There
is a clear need to limit current fishing capacity and address incentives that
threaten the long-term interest of the fishery itself and the marine environ-
ment. However, fisheries are only easy to close when there are too few fish
to sustain the fishers.

How Can We Use These Lessons?

The oceans are complex. Lessons learned from complex scientific inquiries
may be simple, but their application to sustainable management is greatly
complicated, not least by human nature and the particular legal, economic,
and social values associated with certain species. Now seasonal closures
protect Peruvian anchoveta, and the California sardine management plan
permits flexible harvest guidelines by factoring in temperature and popula-
tion to determine harvestable biomass. However, West Coast groundfish
have been in sharp decline off California for years. Groundfish are subject
to environmental variability monitored by CalCOFI, but they have differ-
ent life-history characteristics that are not the focus of sampling. Ground-
fish live longer than sardines and exhibit different recruitment patterns and
relationships with the environment. Tighter fishing restrictions on ground-
fish are now in place, but there is considerable outrage from fishers who
complain that the science is uncertain—this in one of the best-studied ocean
environments in the world! There will never be enough information to ad-
dress every uncertainty.

The fisheries crisis demands that we not end with the common refrain
that “more research is needed.” We must apply learned lessons now, and de-
sign institutions and strategies that are flexible enough to incorporate new
information emerging from ongoing research that includes not only the
best science, but innovative social, legal, economic, and cultural approaches
as well. Forty years ago, the biggest investment into fisheries was for vessels
and the greatest exploration was in developing new fisheries. Today, we
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need to invest in and explore new ways to ensure the future sustainability of
fisheries resources. One way would be to make the economic value of fish
reflect its ecosystem value. Lower trophic level fish such as sardines and an-
chovies could be used directly for human consumption without the 90 per-
cent loss in energy that occurs when they are fed to tuna and salmon in fish
pens, or fed as fishmeal to chickens and hogs. Ironically, sardines were once
considered a delicacy in California, and their value as a healthy food is high.
Cultural values change through time, and it will take a positive shift in val-
ues to ensure that ocean resources and marine ecosystems are restored to
health and managed sustainably.
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PART III

Cod

The story of cod is dramatically different from that of sardines and an-
chovies because physical oceanographic signals are weak and overfishing
apparent at every stage. This story is also related differently than others in
this book. The following chapters on cod differ in length, in structure, and
in the way evidence is presented because the principle authors are histori-
ans, not scientists. They take great pains to explain historical epistemology,
which they would not have done in a text written for colleagues in their
own field. Often, the different disciplines ascribe similar concepts with rad-
ically different meanings. These chapters help to clarify the differences be-
tween historical and scientific perspectives, in hope of developing a com-
mon understanding.

Unlike the cumulative body of sardine-anchovy research, now half a
century old, the work communicated by Jeff Bolster, Karen Alexander, and
Bill Leavenworth is relatively new. The estimate of cod biomass on the
Scotian Shelf in 1852 was first presented at the Scripps conference in 2003.
Like the sardine-anchovy research, it involved intense collaboration, but in-
vestigators expanded the interdisciplinary paradigm well beyond science.
The historians discovered, extracted, analyzed, assembled, and linked data
sets in formats that marine scientists could then employ in population
models. More than a recapitulation of previous work, this chapter provides



the rationale for historical analysis. It reintegrates scientific results and his-
torical analysis. Thus, the biomass estimate derives relevance and power
from the testimony of long-dead fishermen.

The Scotian Shelf study refutes long-held myths about the limitless
abundance of the oceans and the inability of traditional fishers to harm re-
gional fish populations. It proves that reliable historical data sets may be
modeled, and that numerical results thus obtained can agree reasonably well
with estimates based on pure science. Furthermore, the estimate helped
confirm a consistent decline of more than 90 percent from historical levels
of abundance for almost all heavily fished marine species and ecosystems
examined so far, a stunning finding with global implications. Similar stud-
ies are now rapidly expanding our historical reach for other species and fish-
eries around the world.

MacCall and Bolster, Alexander, and Leavenworth celebrate achieve-
ments, while Field and colleagues and Daniel Vickers emphasize the limi-
tations of understanding in terms that are surprisingly similar. Biological
and physical unknowns and unknowables, historical contingency, attenua-
tion and lacunae, and the staggering entanglement of ecological and social
processes confound the predictive ability of scientific models. Moreover,
change takes place so rapidly today that the adaptive powers of individual
species, ecosystems, and human cultures may now be outstripped.

Vickers’s chapter presents a disquisition on historical thought, context,
and uncertainty that is at once magisterial and profoundly personal. As a
history professor at Memorial University, he saw the Newfoundland cod
fishery collapse firsthand. His chapter begins with his own memories and
reflections about that crisis and ends with deliberations on its political and
cultural underpinnings. Like Bolster, Alexander, and Leavenworth, he dis-
tinguishes between the uses of the past based on accumulated evidence and
the uses of history, which is the story of humanity ever filtered and inter-
preted through our own sense of ourselves. He cautions that cultural values
are historical—they cannot be ignored with impunity in scientific models
or in policymaking—and that people who are separated from their liveli-
hood by historical contingency as much as by institutional folly and per-
sonal choice deserve compassion.
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Chapter 6

The Historical Abundance of Cod
on the Nova Scotian Shelf

W. Jeffrey Bolster, Karen E. Alexander,

and William B. Leavenworth
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Only a generation ago marine scientists, fishery managers, and maritime
historians shared the popular assumption that diminished fish stocks and
damaged marine ecosystems were lamentable artifacts of the late twentieth
century, of synthetic filaments, fish finding sonar, and electronic naviga-
tional systems. It seemed highly unlikely that historic sailing fleets could
have depleted naturally abundant fish populations with simple hooks,
hemp line, and handmade nets.

Times have changed. Recently scientists, historians, journalists, and
fishery managers have come to the realization that, while destructive an-
thropogenic impacts on the ocean have accelerated dramatically since
World War II, this phenomenon has deep roots, and deeper implications.
As governments and NGOs grapple with the extent of the fisheries crisis
and attempt to implement policies that promote restoration of degraded
marine ecosystems, questions arise about the extent of the damage and
about appropriate targets for rebuilding fish stocks. Just what constitutes a
healthy marine ecosystem or a healthy population of a desirable species like
cod? What sort of baseline populations existed at certain points in the past?
What is the magnitude of current problems? Questions like these can only
be answered by incorporating historical perspective.
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This chapter presents the results of collaboration by maritime histori-
ans and marine ecologists assessing one part of the nineteenth-century
Northwest Atlantic cod fishery. It expands upon a paper previously pub-
lished by our interdisciplinary group. Our subjects are New England fisher-
men in the age of sail and the cod they caught with hand lines on the Nova
Scotian Shelf. Our group discovered that data recorded with quill pens in
stained logbooks during the 1850s proved suitable for computerized stock
assessment models and distribution analysis using GIS. The analysis relies
on historians’ assessment and contextualization of archival documents per-
tinent to the fishery, notably thousands of historical fishermen’s logbooks
that can be linked to other customs house records to provide fleet size,
landings in weight and numbers, fishing effort, and geographic location.

Our results are noteworthy in several ways. We have calculated the
earliest biomass estimate for a fished cod stock anywhere in the world
using data from the 1850s for the Scotian Shelf. We have reconstructed
the history of localized overfishing by the Scotian Shelf fleet during the
1850s, a pivotal decade during which New Englanders reluctantly adopted
a new longline technology—dory tub trawling—in response to declining
catch and overpowering competition by large French factory brigs. And we
have developed an interdisciplinary methodology that may inform future
collaborations.

In the process of this journey, members of our group adopted new
terms from unfamiliar lexicons, came to appreciate very different modes of
thinking, and learned to frame new questions in new ways. All agree that
our results would have been impossible without genuine collaboration.
This chapter reviews the literature that inspired the project, explains our
textual and scientific analysis of the historical documents, and presents the
results. We see it as validating the pioneers who first called for this type of
work, secure in their conviction that knowledge of oceans past is critical to
the future health of the sea.

Background

It is now clear that historical overfishing damaged coastal ecosystems and
reduced fish stocks before scientists could measure its magnitude or ob-
serve its effects. Yet until recently ecological changes went unnoticed be-
cause no one was looking for them, even though overfishing was identified
as an economic problem in Europe and the United States during the mid-
nineteenth century. The first systematic fisheries studies in the United
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States, at both state and federal levels, responded to existing public concern
about decreasing catches, partially attributed to overfishing. Similarly in
Europe, as Tim Smith has shown, dramatic fluctuations in Norway’s Lo-
foten Islands cod fishery during the 1860s prompted a government inquiry
and the foundation of fisheries science. Overfishing not only preceded sci-
entific inquiry into fisheries productivity, but was a precondition to it.

Accurately assessing the changing nature of marine abundance has
been difficult, however, because early narrative accounts lacked precision.
Awed by the unfathomable quantities of fish he found in the Gulf of Maine
on his first voyage there in 1614, Captain John Smith enjoined Englishmen
to convert those seemingly inexhaustible stocks into profitable commodi-
ties. On the second edition of his map of New England in 1635, engravers
added a vast school of fish between Cape Cod and Cape Ann, Massachu-
setts (figure 6.1). By 1675, there were reportedly 440 boats and about
1,300 men fishing the coast between Boston and eastern Maine, produc-
ing over 6 million pounds of dried salt cod annually. On the eve of the
American Revolution, dried cod was the fourth most valuable export in the
American mainland colonies, sent to Morocco, southern Europe, the wine
islands of Madeira, the Azores, the Canaries, and the Caribbean. Incontro-
vertible evidence indicates that humans were affecting regional populations
of right whales, great auks, sea minks (a North American mustelid, substan-
tially larger than the American mink, extinct by the mid-nineteenth cen-
tury), and various birds, and recent research indicates that early Puritan
fisheries had perceptible impact on cod stocks south of Cape Ann. How-
ever, few written records remain from seventeenth- and eighteenth-century
New England fisheries. We simply cannot quantify that era’s abundance
with the sleek precision of a number.

Following the American Civil War, New England fishermen worried
that fish were growing scarce. But how scarce? Prominent politicians in
Maine and Massachusetts called for better information about fish biology
and for government regulation of fishing gear. They feared overfishing
would harm commercial stocks and reduce the livelihood of coastal com-
munities. In 1872, Maine’s Fish Commissioner, Elias M. Stilwell, wrote to
Spencer Baird, head of the new federal Fish Commission, asking for infor-
mation on “the probable cause of the rapid diminution of the supply of
food-fishes on the coast of New England.” Six years later in his State of the
State address, Governor Selden Connor of Maine warned that depleting
“river fish,” including anadromous species like alewives, could reduce valu-
able populations of pollock, cod, and haddock that entered coastal waters
to feed. Yet along the Penobscot Bay estuary, a U.S. Fish Commission map



located 44 pound nets and 150 weirs actively harvesting “river fish,” as well
as former sites already abandoned. The same map noted that the number of
local fishworks had been reduced from 17 in 1832 to just 3 in 1873. Obvi-
ously, Spencer Baird’s scientists in the 1870s inherited ecosystems already
anthropogenically altered. In New England, home to the oldest fisheries in
the United States, no baseline exists for a marine environment in a pristine
state.

Hoping to chart the changing nature of abundance, the first genera-
tions of marine biologists in the United States and Europe began to collect
landings data. Not until the late nineteenth century, however, were land-
ings from the New England fleet regularly tallied. While this initiated valu-
able time series for the twentieth century, the coast of New England had
been fished since about 1600. Few reliable catch statistics existed prior to
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Figure 6.1. Map of New England, 1635. John Smith drew the region he explored
and named in 1614, and first published his map in 1616 in a Description of New En-
gland. He praised the abundance of cod, whales, and other valuable marine species
easily caught in coastal waters. This second edition of the map adds a great shoal of
cod roiling up to the surface near Smith’s vessel lying just east of Cape Ann and
Cape Cod, near what today is the Stellwagen Bank National Marine Sanctuary.



1900. Any that could be reconstructed from historical documents would
lend an especially valuable perspective to the changing nature of fished
stocks.

Early fishery scientists based their new discipline, in part, on fish sto-
ries. As late as the 1950s scientists like Henry Bigelow, instrumental in the
development of American oceanography, were still listening to fishermen.
It was commercial fishermen and saltwater anglers, noted Bigelow and his
collaborator, William Schroeder, authors of the magisterial Fishes of the Gulf
of Maine, who “supplied us with a vast amount of first-hand information on
the habits, distribution, and abundance of commercial and game fishes,
which could be had from no other source.” By the late twentieth century,
however, the disciplines of ecology and fisheries science had changed signif-
icantly: descriptions of systems or parts of systems (including basic taxon-
omy) were no longer particularly valued. Mathematical modeling became
the preferred route to professional success. The evolution of the field thus
tended to suppress descriptive natural histories. Few modelers, moreover,
sought data indicative of long-term historical change because gaps in the
data were messy and collection methods unreliable.

By the 1970s, when the first scientifically inspired federal regulations
limited American fishermen’s access to fish, commercial fishermen and sci-
entists were at loggerheads. Scientists found it increasingly difficult to be-
lieve fishermen or to imagine that fishermen had ever been believable. The
result of these changes was that by the late twentieth century, as fisheries
were collapsing all over the world, marine ecologists had long since sus-
pended attention to stories and anecdotal evidence about the former state
of the seas, despite a desperate need for information about oceans past.

Then Daniel Pauly challenged fisheries scientists to think historically
and to incorporate narrative evidence from the past into ocean ecosystem
models and fisheries management plans. The “shifting baseline syndrome
of fisheries” in his title ascribed deflated biological reference points and de-
based ecosystem standards to the human proclivity for assessing change in
terms of personal experience or living memory. Most scientists, he sug-
gested, failed to take long-term changes into account. This oversight led
to a gradual, unwitting “accommodation” of species decline and ecosys-
tem degradation in scientific models and management plans. As Pauly
argued in 1995,

Developing frameworks for incorporation of earlier knowledge—
which is what the anecdotes are—into the present models of fisheries
scientists would not only have the effect of adding history to a disci-
pline that has suffered from lack of historical reflection, but also of
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bringing into biodiversity debates an extremely speciose group of ver-
tebrates: the fishes, whose ecology and evolution are as strongly im-
pacted by human activities as the denizens of the tropical and other rain
forests that presently occupy center stage in such debates. Frameworks
that maximize the use of fisheries history would help us to understand
and to overcome—in part at least—the shifting baselines syndrome.

Jeremy Jackson and others subsequently revealed in more detail the
perversion of standards by which the “natural” ocean had come to be evalu-
ated. For centuries indigenous peoples had hooked, speared, trapped, net-
ted, or poisoned marine mammals and large carnivorous fishes, and labori-
ously dredged up shellfish. Archaeological evidence has shown that a few
marine species such as seals and sea otters in the Pacific Northwest were
hunted so heavily that local coastal ecosystems were affected. In the Euro-
pean colonial period, which began in earnest during the sixteenth century,
intensive commercial fishing and whaling with comparatively primitive
equipment expanded worldwide in the wake of settlement, first in the
Americas, then in Africa, and finally in the waters around Australia and
New Zealand. Pandolfi and colleagues ultimately attributed the “collapse”
of coastal and coral reef ecosystems to the impacts of overfishing and the
concomitant loss of certain trophic levels. The implication was that “fishing
down the food web” had been abetted by the shifting baseline syndrome.

As these authors and others made the case for marine ecologists to
think historically, an influential group of historians was already challenging
the historical profession for paying insufficient attention to environmental
change. Led by scholars such as Alfred Crosby, Donald Worster, William
Cronon, and Richard White in the United States, and Richard Hoffmann
in Canada, this insurgency propelled the development of environmental
history, making it one of the fastest growing subfields in American history
after the 1980s. The lion’s share of this work was terrestrial environmental
history, but the challenge to historians to think ecologically was not lost on
all maritime historians. Our interdisciplinary collaboration was nurtured by
injunctions from colleagues that ecology become more historical and his-
tory more ecological.

The Historian’s Perspective

At the heart of this volume are a couple of key questions: Why is the past
important? Why is history important? They are good questions, but they
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are not identical. If we honor the past and use it to inform current environ-
mental debates, we need to be clear about these terms. The past is gone. In
its vastness and messiness it is largely unknowable, even though the present
and future are contingent upon that past. We can never experience the past.
It eludes our grasp as effectively as a fistful of water.

History is something different. Like ecology, it is a form of analysis.
Most history is an interim report on some small slice of the past based on
the best available evidence and on currently respected methodology, verifi-
able, yet subject to revision when better resources and methods become
available. In that, it is like ecology. In its reliance on narratives, however,
both as a means of conveying what is known and as sources to be used in
the investigation, professional history differs considerably from profes-
sional ecology. Historians often, but not always, use narrative to tell what
they know. Historians, moreover, frequently rely on previous narratives for
information, sometimes in the form of stories left by the people they study.
Historians try to link the experiences in those stories with the meanings im-
posed on them by the people the stories are about. The point is to honor
historical actors on their own terms rather than recasting them as people
“just like us.”

The “anecdotes” in Pauly’s 1995 title referred to the sorts of nuggets re-
garding the past on which some historians traditionally have relied. How-
ever, most scientists have commonly dismissed anecdotal evidence for three
reasons. First, anecdotes relate to singular events and are difficult to incor-
porate into models. Second, no guarantees of accuracy exist. Finally, anec-
dotal information is often conveyed descriptively or comparatively rather
than quantitatively. In a famous example, Milan’s envoy in London, Rai-
mondo di Socino, reported on John Cabot’s return from his first trip to
Newfoundland in 1497 and included one of the earliest accounts of the
abundance of fish in the New World. “The Sea there is swarming with fish,”
noted the diplomat, “which can be taken not only with the net but in bas-
kets let down with a stone.” Such anecdotes convey magnitude by analogy,
narrative, and context so that it becomes memorable, but arguments about
accuracy are inevitable in the absence of quantitative measurement.

Of course historical sources consist of much more than anecdotes.
Quantitative data derived from historical records can provide reliable
statistics, but the raw data frequently require substantial interpretation be-
fore it is usable. The “new social history” that came of age during the 1960s
unleashed what was then called the cliometric revolution, the merging of
quantifiable analysis with Clio, the muse of history. Following E. H. Carr’s
dictum that history should “become more sociological”—by which he
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meant more quantitative—practitioners began to examine a host of records
from the past: tax records, voter rolls, militia musters, crew lists, probate
records, land transfers, slave manifests, and other documents that were sub-
ject to mathematical assessment. The point was not only to create statistical
profiles, but to use materials from the past that had been generated by daily
record keeping, thus avoiding the bias intrinsic to self-consciously created
texts such as letters, diaries, or anecdotes. In a classic case, Nobel Prize–
winning economist Robert Fogel and his colleague Stanley Engerman dis-
counted historical context in their statistical analyses of the economics of
chattel slavery, Time on the Cross. They concluded that slavery was econom-
ically viable, that most slaves were adequately treated, and that some bene-
fited from their own labor. Controversy erupted in the historical commu-
nity. Fifteen years later in a subsequent book on the same subject, Without
Consent or Contract, the authors contextualized their analysis, correcting er-
roneous interpretations and solidifying sound statistical arguments. It be-
came a milestone in economic history because context mattered.

No matter what sources are used, historical analysis always rests on in-
complete documentary evidence that survived the random winnowing of
fire, insects, disposal, and neglect. While historians search for “the smoking
gun,” they understand that they will never have all of the information they
want. Good historical reconstruction is like paleontology, where much can
be made from one bone—it is the best interpretation that can be made with
the materials at hand.

The Reliability and Nature of Nineteenth-Century Cod
Fishermen’s Logbooks

Our project began with a fortuitous discovery by a University of New
Hampshire master’s student in History, Robert Gee. While researching a
seminar paper in marine environmental history he found 233 nineteenth-
century fishing logs in the James Duncan Phillips Library at the Peabody
Essex Museum in Salem, Massachusetts. His perceptive appraisal of these
logs’ value led to the discovery of about 1,500 more in the National
Archives Regional Administration facility at Waltham, Massachusetts, and
in other public and private collections. This remarkable run of logs spans
the years 1852 to 1866 and records tens of thousands of numerical entries
pertaining to the abundance and distribution of cod in specific regions of
the northwest Atlantic during those years. Almost all logs provide the daily
catch of each fisherman and name of the bank on which the vessel was fish-
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ing. Sometimes navigational coordinates are indicated. Catch per day, with
reference to place, is thus recoverable (figure 6.2).

Thousands of fishing agreements, licenses, bonds, enrollments, and
other ancillary documents also exist that can be linked to maximize the
available data. Time consuming, and sometimes logistically difficult, these
linkages are essential. For instance, fishing agreements, the seasonal con-
tracts between the vessel and the crew, remain for many of the trips for
which logs exist. They provide the size of the fishing vessel in terms of ton-
nage and the number of quintals landed per fare. (A quintal consisted of
112 pounds of dried cod. Each separate trip in a season was called a fare.)
Linking the two sets of records provides the tonnage of the vessel, the size
of the crew, the daily catch per man, and the total weight of that catch—all
of the essentials necessary to calculate catch per unit effort (CPUE) with
reference to time and place for this mid-nineteenth-century cod fishery.

The logs are also rife with anecdotal information illuminating the na-
ture of specific places in the sea. Some daily log entries give the depth and
composition of the ocean floor. To experienced captains like Larkin West of
the Beverly, Massachusetts, schooner TORPEDO, bottom conditions indi-
cated the likelihood of finding fish. Skippers armed the end of their lead
lines with a blob of tallow to retrieve bottom samples. His log for August
25, 1852, reads, “this night and morning caught 450, hove up, tried some
time to find rough bottom.” But a week later, “this night caught 140, the
bottom being rocky and fish scarce.” The log of the IODINE in 1856
recorded a number of distinct bottom conditions on Nova Scotia’s West-
ern Bank: “Lat obs. 43°55′, green sandy bottom (6/9); Lat 43°55′, 35
fath[oms], moss bottom (6/13); shift 2 mi., anchor 32 fath., pumpkiny
bottom (6/24); here we find plenty of fish (6/25); anchor 33 fath., rough
mussel bottom, fish very large, Lat obs. 43°55′ (6/28),” the last noted with
satisfaction.

While the vast majority of the information in these logs concerns cod,
other species are occasionally noted, especially species used for bait. When
fishermen ran short of barreled salt clams shipped for the voyage, they set
gill nets at night for herring or other baitfish. Seabirds, considered a harbin-
ger of cod, were also shot for bait. The crew of the PETREL in May 1854,
“got 163 herring. Got today 221 f[ish].” Two days later they had better
fishing, “we got 535 large fish, use hagdons [seabirds, likely shearwaters] as
bait.” Calvin Foster, the captain and a true vocational scientist, recorded
fishing success using different baits. He also occasionally carried a barome-
ter, a rarity at the time. Other marketable species like hake or halibut some-
times made a welcome change from ships’ provisions and cod chowder, but



they were not “fish” in the parlance of fishermen: (HENRY 9/29/1855 on
Brown’s Bank) “tried for fish, but caught nothing but haddock.” Fish were
cod.

These records form the single best archival collection for a nineteenth-
century fishery of which we know, but it is far from complete. Of seventeen
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Figure 6.2. A page from the log of the Beverly, Massachusetts, fishing schooner
DOVE in 1852, John Woodbury, captain. Most New England fishing captains
recorded the events of one fishing season in a single, commercially printed logbook.
This is the form most commonly used in the deepwater fishing fleets. Here the
DOVE is anchored on Banquereau, or “Bank Quiro,” August 4– 6. Each fisherman’s
catch is recorded each day under his initials. Woodbury’s remarks are concerned
mostly with the weather, although he “shifted the foresail” on August 5. He also
spoke with the schooners BALANCE of Marblehead, from the Grand Banks with
9,000 fish, and the ESSEX, likely of Beverly. On August 6, the log notes that the
DOVE caught 300 squid, which would have been used for bait. (Courtesy of Na-
tional Archives and Records Administration, Waltham, MA)



New England customs districts, eight provide 97 percent of the logs. Al-
most all the surviving logs are from Maine and Massachusetts vessels, al-
though large fleets also sailed from Connecticut, Rhode Island, and New
Hampshire. That the records exist at all is almost entirely due to a long-
term government subsidy of the cod fishery and legislative requirements for
bureaucratic oversight between 1852 and 1866.

In 1792 the U.S. Congress passed legislation authorizing an annual
bounty to cod fishing vessels. To qualify, a vessel had to pursue only cod for
120 days or more during the fishing season. Cod was far and away the most
valuable commodity exported from New England in the late colonial pe-
riod. Moreover, Congress followed the British Parliament’s assumption
that the fishing fleet was “a nursery for seamen” for the navy. A federally
subsidized bounty for cod fishing thus seemed politically justified, espe-
cially in light of the fleet’s disastrous state following the American Revolu-
tion. From fishermen’s perspective, the bounty was an important part of
seasonal earnings, offsetting the duty on imported salt necessary to preserve
fish. Each district’s customs collector paid yearly remittances out of his
gross receipts to every vessel over 5 tons fishing for cod, whether it fished
inshore or on the deepwater banks.

In 1852 the law renewing the bounty was changed. The new authoriza-
tion stipulated that to receive the subsidy each captain had to submit a sea-
sonal logbook to the Collector of Customs in the vessel’s home port. That
legislation was a boon for future historians. Not only were the logs stan-
dardized, but many were retained. In 1866, however, Congress discontin-
ued the bounty because representatives from the southern and western
states were no longer interested in subsidizing the New England fishery. Af-
ter 1866, captains kept logs less religiously. More pertinently, government
offices or archives no longer retained a critical mass of fishery logbooks.
While scattered logs remain from years before 1852 and after 1866, the sys-
tematic run of quantifiable data exists only from 1852 to 1866.

Little incentive existed to falsify entries because of an unintentional
system of internal checks. To begin with, the government encouraged fish-
ing. Fishermen were neither taxed on their catch or restricted by quotas.
And the federal bounty was paid according to the size of the vessel, not by
the number or weight of cod landed. The captain did not need to show
government officials anything except that his crew had pursued cod for 120
days. However, each man was paid based on the number of fish that he
landed, and it was in his interest to see that each fish was recorded. When
paid on shares, the usual procedure was that each man received the same
percentage of the net proceeds as the fraction of total fish he had caught.
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Experienced men with a knack for hand-lining stood to earn considerably
more than lazy or incompetent fishermen. Since the log recorded the num-
ber of fish caught daily and the crew was not paid until the end of the sea-
son, the log served as the payroll account. Each fisherman had a vested in-
terest in its accuracy. Finally, the proceeds from the season were based on
the weight of the catch, not on the numbers of fish. The fish were weighed
at the end of each fare and sold to a merchant at the end of the season by to-
tal weight, expressed in quintals. Regulations and customary procedures
thus provided an interlocking system of internal checks that discouraged
chicanery.

The logs also provide accurate records of vessels’ locations and record
encounters with other vessels, establishing the minimum size of fishing
fleets on different banks. Fishermen were not secretive, but social. Vessels
fished in loose groups that constantly changed composition as some left
and others arrived. Often, congregating vessels hailed from the same home
port or contained family members who were otherwise dispersed around
New England and the Canadian Maritimes. Visiting and exchanging infor-
mation was the norm. On one pleasant Sunday, generally observed as a day
of rest by American and Canadian fishermen, the SARAH on Middle Bank
(9/12/1852) “had a visit from a part of the RICHMOND’s crew and a part
of the BRIDE’s crew and a part of the ANGLER’s crew and a part of the
MECHANIC’s crew, and a part of the GEORGE’s crew.”

Meetings and conversations were anticipated eagerly and news spread
quickly. When the cook on the FRANKLIN died on October 29, 1852, his
death at sea was duly recorded in the log of the E. W. FORREST although
the two vessels passed at a distance. Because he had learned about the cook’s
illness a week earlier, Captain Woodbury of the FORREST noted that they
“saw the FRANKLIN underweigh, and tried to get to us, but the tide run
so strong she did not, her colors was at half mast, supposed his cook was
dead (10/29/1852).” Sightings took on great importance when a vessel was
lost, like the GREENLEAF in 1852, last reported in the logs of the ESSEX
and the HENRY on August 23. Such accounts provided the owners and
families with the last known information about the schooner and the men
aboard her. Everyone shared the solemn obligation to tell the truth. An ex-
tended system of shared vocational knowledge and cultural values worked
to reinforce cooperation among the fleet on what had traditionally func-
tioned, at least from the fishermen’s perspective, as a maritime common.

Log keepers routinely recorded the “vessels spoken” in daily entries
when pleasantries or information were exchanged. Often these entries fol-
lowed a formula. They provide the spoken vessel’s name, home port, and a
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rough estimate of the cod caught to date, here illustrated by the BELLE fish-
ing at anchor in a crowd of Cape Anne schooners: (8/4/1854) . . . at 4 PM
sound Middle Ground, spk MECHANIC Beverly 7000f and PULASKI
Manchester 1,000f Lat 44°32′ Long 59°32′ (8/7) . . . MAYFLOWER Bev-
erly 300f (8/8) . . . PILOT of Manchester 400f found no fish, caught 9 (8/9)
. . . W. H. LOVETT of Beverly w/1,700f (8/10) . . . FRIENDSHIP Man-
chester 14,000f, bound home (8/11) . . . ESSEX 600f, RICHMOND
1,100, MAYFLOWER 300f, Little Frank [FRANKLIN 1 from Beverly]
1,700, FRANKLIN (Capt.) Buck [FRANKLIN 2 from Beverly] 8,000f
(8/12) . . . wind hauled to the WSW and blowed very heavy, most all the ves-
sels played lobster round [stopped fishing and maneuvered to avoided col-
liding].” After ten days Capt. Gentlee hauled up, steered to the northeast,
and anchored among a group of seven different Cape Anne vessels in search
of cod.

From the perspective of historians interested in reconstructing the na-
ture of the fishery, a significant aspect of “speaking” was this mutual ex-
change of estimated cumulative catch to date. Data from such mutual ex-
changes can be found in schooners’ logs. For instance, the RICHMOND
was also spoken on August 11, 1852, by the Beverly schooners J. PRINCE
and LODI, neither of which, however, spoke the BELLE. As with the death
of the FRANKLIN’s cook, rough catch estimates exchanged and recorded in
logs of “speaking” vessels can be cross-checked. They were recorded faith-
fully because they were considered part of a discourse both mutual and pub-
lic. Extant logbooks thus contain not only a record of their own catches, but
records of the catches of vessels spoken during the course of a trip. Impor-
tant for this study, the location provided in daily log entries showed that
both “speaking” and “spoken” vessels were all part of the Scotian Shelf fleet.

Choosing a Sample Set: Beverly Vessels on the Scotian Shelf

Although the logs and other pertinent documents contain quantitative
data about marine ecosystems, most archivists organize them by port or
customs district, historical categories that reflect their origin. We surveyed
the largest collections of logs to select the best group for scientific data re-
covery. Collections from the Customs Districts in Salem/Beverly, Massa-
chusetts (703 logs), Frenchman’s Bay, Maine (524 logs), and Newbury-
port, Massachusetts (233 logs) were all relatively extensive. Comparison
with fishing agreements and licenses revealed that the logs from Beverly,
a town on the north shore of Massachusetts that lay within the Salem/

The Historical Abundance of Cod on the Nova Scotian Shelf 91



Beverly Customs District, were also the most complete between 1852 and
1859.

Next we identified the fishing banks. Because we were looking for geo-
graphically specific catch data, we asked if there were diagnostic characteris-
tics that distinguished fleets fishing on one bank from fleets fishing on an-
other. Evaluating such practices in logs and other sources required us to
become familiar with variations in nineteenth-century orthography and
with abbreviations and symbols common in the trades. We learned archaic
names and locations for nineteenth-century fishing grounds from collo-
quial log notes and used historic charts to interpret from terse entries what
was actually happening.

Contemporary questions about species distribution are typically posed
in terms of large marine ecosystems (LMEs). But LMEs often include dis-
tinctive ecological areas, which were fished in distinctive ways. For in-
stance, the Scotia Shelf LME contains the inshore Nova Scotia Banks, the
Scotian Shelf, and half the Bay of St. Lawrence, each of which was consid-
ered a different fishery in the 1850s. Modern Northwest Atlantic Fisheries
Organization (NAFO) divisions also combine coastal and offshore fish-
eries. NAFO zone 4 extends from the Bay of Fundy across the Scotian Shelf
to the southern coast of Labrador (figure 6.3). In the 1850s the Scotian
Shelf consisted of Browns Bank, LeHave Bank, Sable Island Bank, Middle
Bank, and Banquereau, and demanded a deepwater fishery (figure 6.4).
Large fish were plentiful on these banks from April to November each year,
and fishermen stayed there for long periods of time hand-lining cod. Many
routinely filled their holds twice in a season. Alternatively, fish arrived in
the bays in southern Labrador for only about six or seven weeks. Men har-
vested them by beach-seining and by stop-seining bays. At more than 100
fish per quintal, cod there were only about one-third the size of Scotian
Shelf fish.

In addition, NAFO divisions 4 and 5 conform to the boundary divid-
ing U.S. and Canadian territorial waters. Today, separate management
agencies divide jurisdiction over natural coastal and deepwater ecosystems
(figure 6.3). Although diplomatic negotiations and international disputes
over the fisheries were ongoing, nineteenth-century New England fisher-
men on the Scotian Shelf paid little attention to political boundaries, even
within the three-mile limit of territorial authority at sea then operative.
Their logs reflect the natural constraints of distinct marine environments
more than the injunctions of governments. This made ecosystem-based
data organization unexpectedly straightforward. Fishing effort recorded in
extant logs focused on five geographic locations: the inshore banks of the
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Gulf of Maine, the offshore banks of the Scotian Shelf, the beach-based op-
erations on the southern Labrador coast, the Bay of St. Lawrence, and the
offshore Grand Banks. Comparatively few large vessels from the Beverly
fleet in the 1850s spent the season on the Grand Banks.

Fishermen showed marked preferences for fishing familiar banks, with
certain ports specializing in certain areas (figure 6.4). For instance, between
1852 and 1859, two-thirds of the Beverly vessels over 60 tons fished the
Scotian Shelf full-time, primarily on two of its composite banks, Ban-
quereau and the Western Banks. More than 90 percent of them fished there
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Figure 6.3. Global Information Systems (GIS) plot of large marine ecosystems
(LMEs) [shaded region delimited by thin white lines], and North Atlantic Fisheries Or-
ganization (NAFO) zones [outlined in gray, and numbered]. LMEs, distinctive eco-
logical regions extending from river drainage systems to the edge of the adjacent
continental shelf, can cover 200,000 km2 (Garcia and Farmer, editors [2000]).
Large Marine Ecosystems. Garcia, S., and T. Farmer, editors [2000], LME #8:
Scotian Shelf). NAFO zones are even larger. NAFO zone 4 encompasses the Scot-
ian Shelf LME, but extends west to the U.S.–Canada border, and south to the ap-
proximate latitude of the Delaware River estuary (Halliday and Pinhorn [1990]).
The dark gray regions in NAFO zones 4X, 4Vs, and 4W are the Scotian Shelf banks
where the Beverly fleet fished in the 1850s. (GIS map by Stefan Claesson.)
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at least part time. In that same period, 60 percent of the vessels from New-
buryport (most of which were quite large, over 90 tons burden) targeted
one bay in southern Labrador, Salmon Bay (now St. Paul’s River), near the
Straits of Belle Isle. Small Newburyport vessels making up another 30 per-
cent of that town’s fleet cruised the Isles of Shoals and other inshore banks
close to home. Likewise, from 1861 to 1865, 92 percent of the fishermen
from Frenchman’s Bay concentrated their efforts on the inshore fishery
bounded essentially by Penobscot Bay to the west and Grand Manan on the
New Brunswick border to the east. If captains could find fish on familiar
grounds, they cruised there year after year. These strong territorial prefer-
ences suggested a connection between fishing patterns, home port, and
fishing grounds, the kind of diagnostic correlation that offered promise as a
statistical proxy.

After a preliminary study of each fleet, we decided to focus on the Bev-
erly fleet fishing the Scotian Shelf from 1852 to 1859. There, we felt, the
greatest possibility existed to reconstruct the precise geographic distribu-
tion of catch and fishing effort in the mid-nineteenth century. And with
luck, it would be possible to calculate the size of the Scotian Shelf cod pop-
ulation in 1852.

Declining Catch and Technological Change

Neither historians nor biologists believed that primitive hook-and-line
technology could affect the legendary abundance of species like cod, but the
logbooks reveal they were wrong. During the early and middle years of the
1850s, 90–95 percent of the Beverly fleet’s vessel-days per season were
spent on the Scotian Shelf. But in 1859, many skippers shifted fishing to
the Grand Banks or Gulf of St. Lawrence, voyages up to two times longer
with substantially greater risk. Fleet size, however, remained roughly the
same. The next year, many vessels withdrew from the fishery altogether. Be-
tween 1859 and 1861, the number of Beverly vessels fishing on the Scotian
Shelf declined by half and the entire Beverly cod fleet by 55 percent. This
was before the disruptions of the Civil War, during which the Massachusetts
cod fleet dropped only 7 percent.

These dramatic changes in the deployment of fishing effort followed
changes in catch per unit effort (CPUE). Catch per vessel for the thirty Bev-
erly schooners in 1853 was down from the year before by about 1,200 fish.
That would equate to slightly more than one-third of a typical fisherman’s
seasonal income. The fleet as a whole caught more fish, but the fleet was
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also bigger. The declines continued and, by 1856, the average catch per ves-
sel had dropped 7,000 fish in just four years. The seven men fishing from an
average schooner in 1855 caught what five men had expected to catch in
1852.

As catch declined, fishing patterns changed dramatically. From 1852 to
1854 the Beverly fleet concentrated efforts on Banquereau. Most vessels di-
vided their season into two fares. Fishermen left Beverly on their spring fare
in late April or early May, stopping briefly to fish on the Western Banks, but
shifting to Banquereau by the third week in May. They filled their holds, or
“wet their salt” as they put it, in about seventy-eight days, returning to Bev-
erly by late July. After approximately two weeks in port unloading their
catch, washing the vessel, undertaking routine maintenance, and fitting out
with fresh stores, they sailed again in early to mid-August. Unlike the
spring fare, vessels outward bound on the fall fare from 1852 to 1854 spent
even less time on the Western Banks. Many proceeded directly to Ban-
quereau. There they fished until mid- to late October, returning to Beverly
in early November. At seventy-five days, the fares were roughly equal in
length. In 1852 and 1853 there were two distinct peaks in fishing activity:
one that lasted from late May until late June and another one that began in
late July and lasted until late September. On a very good day on Ban-
quereau in 1852 or 1853 a vessel like the CLARA M. PORTER could catch
more than 1,000 cod.

By 1855 declining catches had affected the rhythm of the season and
the distribution of vessels. A new pattern emerged that year. Beverly mas-
ters looked much more to the Western Banks to wet their salt, and they
spent less time on Banquereau. During the first fare, the fleet divided its
time equally between the Western Banks and Banquereau, leaving for Ban-
quereau in early June, two to three weeks later than was common from
1852 to 1854. Numbers of vessels on the two banks were almost equal in
both fares, and some vessels elected to remain on the Western Banks
throughout. By the fall of 1857, more vessels fished on the Western Banks
than on Banquereau (figure 6.4). Moreover, schooners averaged ten days
longer each fare, incurring more risk.

The American economy was as much of a roller coaster in the nine-
teenth century as it is today, but even within that climate of volatility, 1857
was famous for its depression. We thought that the Panic of 1857 might
have depressed fish prices. On the contrary, the price increased by about
25¢/quintal from the year before, and exports increased as well. Demand
for cod remained high. However, since the average fisherman caught about
10 quintals fewer fish than he had in 1856, he brought home less money.
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Although Samuel Wilson, aboard the LODI, still occasionally found “large
schools of fish on top of water in every direction” (6/23 on the Western
Banks), other skippers expressed concern. The ROBERT observed “good
fishing weather, few fish on the ground. Would catch 7 or 8 good fish & all
done. Dressed 102 fish, 40 or 50 good fish, the re[st] miserable devils” (6/8
on Banquereau). The SUSAN CENTER experimented early with tub
trawls, but new gear did not help her find fish: (8/25 on Banquereau) “set
trawls, found no fish. 30 sail of vessels in sight.” (8/27) “fished in dories,
found fish scarce.” (8/31) “hove up for Middle Bank.” (9/1) “Tried on Mid-
dle Bank, found no fish. Lat 44°30′.”

Fisheries historians have long known that during the middle of the
nineteenth century New England fishermen evolved their technique from
simply hand-lining along the rail of their schooners, to hand-lining from
small boats or dories, and then to long-lining (which they called tub trawl-
ing) from dories (figure 6.5). This story has generally been presented as a
sequential tale of technological progress and a means by which fishermen
could increase their catch. Little attention has been paid to the overlapping
use of these technologies or to the ecological impetus for their adoption.

William Leavenworth has shown that transition to a significantly larger
hook footprint, and then to a significantly larger number of hooks per man,
was a critical turning point in the history of the fishery. It may have been
more critical in the population history of codfish than has been recognized.
This transition occurred during the 1850s, precisely at the time that catches
were declining. During the transition from hand-lining over the rail of the
vessel to tub trawling from dories, fishermen on individual vessels employed
some or all of these methods during the same season, and often during the
same day. Skilled hand-liners initially were skeptical of expensive and dan-
gerous innovations. But all were aware that annual catches were declining.

The dominant technology in 1850 varied little from that of the sev-
enteenth century, except that the schooners were larger, faster, and less
forgiving. Hand-lining still prevailed. Leaving home with barrels of bait,
usually salted clams, fishermen proceeded east in their schooners until they
found the edge of the banks by sounding with a lead line. They tried for fish
at intervals as they sailed or drifted across the banks until they found a place
where fish were plentiful. Anchoring, each man fished with two or four
hooks over the rail until the fish became scarce. They might stay a day or
two, or more, until they weighed anchor and repeated the process. Using
one or two double-hook hand lines fitted with size 12 or larger hooks, a
skilled hand-liner adept at catching substantial numbers of large fish was an
artisan with status by virtue of expertise (figure 6.5A, top).
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As cod became scarcer during the mid-1850s, particularly on Ban-
quereau, some skippers adopted the practice of fishing from the stern boat,
as well as from the rail of the schooner. This extended the area they could
cover from a single anchorage. Initially, skippers sent their stern boat to
look for fish, following with the schooner if the mission was successful. No
extra outlay for equipment was necessary, but success at this level encour-
aged investment in dories. Some fishermen were increasingly interested in
fishing from small boats, as the log of the RICHMOND from 1854 on
Banquereau indicates: (6/15) “Sent the boat out. boat returned with 131
fish. We got altogether 520f.” (6/16) “This day we got 300, we got 49 fish
in the boat.” In 1856 Captain Samuel Wilson expressed greater enthusiasm
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Figure 6.5. (A) Hand-lining. Top, Four fishermen are hand-lining over the rail of a
typical small schooner. Hooks covered an area about the size of the vessel’s hull.
This technology was common on the Scotian Shelf before 1855. Bottom, One fish-
erman hand-lines from a dory. Other dories are nearby while their schooner rides at
anchor somewhere in the distance. Adopting dory hand-lining greatly increased the
hook footprint, the area over which one schooner could deploy its fishermen and
hooks. (plates 23 and 24, section V in Goode [1884–1887]).
(B) Tub trawling. Top, Two fishermen in a dory set a trawl for cod. A typical dory set
over 1500ft of ground line with 300 baited hooks. Bottom, The trawl was anchored
to the bottom and attached to buoys for easy retrieval. Not only did tub trawling in-
crease the hook footprint, it put more hooks in the water (Leavenworth [2006];
plates 26 and 27, section V in Goode [1884–1887]).



for boats: (7/8, Banquereau) “this day we catch about all of our fish in
boats; they will not bite aboard the vessel.” (7/12) “our boats do very well
by going a long way after them.”

Satisfactory landings from the stern boat encouraged fishermen to
begin carrying several boats, eventually dories, on deck to the fishing
grounds. While the immediate effects of this shift in technology were to in-
crease their hook “footprint” at any given anchorage and to catch more fish,
it also made fishing more dangerous. Schooners remained at anchor while
much of the crew rowed away to find fish (figure 6.5A, bottom). Dories
were easily lost, and schooners were threatened, too. Inability to weigh
anchor rapidly in the face of a sudden gale jeopardized shorthanded
schooners. Insurance policies reflected this concern in 1856 by stipulating
that the schooner never be left untended. Nevertheless, the industry
evolved from hand-lining along the rail to hand-lining from small boats. In
1853 fewer than 5 percent of the Beverly vessels fishing on the Scotian
Shelf mentioned fishing from boats or dories. By 1857, 35 percent of Bev-
erly vessels were using this new technology.

In 1858, as catches continued to decline, and as part of the New En-
gland fleet experimented with dory hand-lining, French trawlers appeared
on the Scotian Shelf. Substantial brigs and ships, each carrying two large
boats and tub trawls (longline technology then known as “bultows”) with a
total of about 4,000 hooks, these brigs and ships were the nineteenth-
century equivalent of factory ships today. The comparison is valid in light of
the fact that the typical Beverly hand-lining schooner was wetting only 14
to 28 hooks. French vessels were officially limited by treaty to fishing
within 100 miles of the tiny islands of St. Pierre and Michelon, French ter-
ritories south of Newfoundland. Their bultows had already raised the ire of
Americans. Lorenzo Sabine, a congressional expert on the New England
cod fishery, condemned bultows in 1853 and accused the well-financed and
heavily subsidized French fleet of treaty violations by employing them. By
1858, however, France and Great Britain were in the midst of diplomatic
negotiations regarding the fishery, and the French were optimistic that re-
strictions would be loosened in Britain’s Canadian waters. Perhaps antici-
pating a successful conclusion to the negotiations, French trawlers crossed
the Laurentian Channel to Banquereau in 1858. The effect was devastating
on the already beleaguered Beverly fleet.

FRANKLIN (7/8/1858) “saw 20 sail of French ships in sight, 50 sail
of sch[ooners].”

LODI (7/20/1858) “fish very scarce today. The French bothers us very
much. they run their trawl all around us so they get most all the fish.”
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PELICAN (7/22/1858) Lat 44°42′, “Not much chance for fishing on
account of so many trawlers.” catch 282f. (7/23) Lat 44°44′, “There is not
much chance for fishing this season, there is so many Frenchmen trawlers.”
(7/24) Lat 44°43′, “fine for fishing, the chance is small, being surrounded
by French trawls.” (7/25) “fine for the French trawlers.” . . . (7/27) “Fine
for fishing. French ships & brigs & schooners aplenty.”

PRIZE BANNER (9/6/1858) “Boarded the French ship CHAR-
LOTTE, w/160 thousand fish.”

In 1852, the best year for fishing in these records, the average Beverly
vessel brought home 26,000 fish. For a seasoned Beverly skipper to board a
French ship that had already landed 160,000 fish must have been dispiriting,
especially given that twenty such ships had already been sighted on Ban-
quereau that summer. And their spider web of lines, thousands of yards long
with hooks every six feet, interfered with New Englanders’ hand-lining.

Anchored at each end, tub trawls were set between two marker buoys
(figure 6.5B). With a tub trawl, two men and a dory could tend hundreds
or even thousands of hooks, instead of just four. Setting and retrieving
trawls required minimal fishing skill of the sort hand-liners respected, but it
called for adept boat handling. In bad weather fishermen in small boats
were unable to retrieve their trawls. Trawls were abandoned as the wind
rose, and dory men had all they could do to avoid foundering. Since vessels
generally fished in fleets, and staying at anchor was the only way to save ex-
pensive trawls, gales might cause closely anchored vessels to drag anchor
and collide, with catastrophic results. Tub trawling clearly made the fish-
eries more dangerous than ever for men on the banks.

Tub trawling also had the potential to remove considerably more fish
from the ecosystem. Not only could average landings per man rise, but the
demand for fresh bait escalated as well. Collateral bait fisheries expanded,
especially in Nova Scotia. It appears, moreover, that the cod population on
the Scotian Shelf had been declining before the arrival of French trawlers.
CPUE for the Beverly Scotian Shelf fleet had already fallen 37 percent in
just six years, when trawling was uncommon. Although biology or climate
may have contributed to the decline, hand-lining from schooners and
dories appears to have made an impact on cod stocks.

Calvin Foster, the experimentally minded Beverly skipper who carried
a barometer to sea in 1854 and a telescope in 1858, assessed the circum-
stances he faced like this: (PETREL, 7/15 on Banquereau) “A French ship
anchored very near us, pick up part of a Frenchman’s trawl full of stinking
fish.” (8/28) “Got 222 fish on the trawl.” catch 390f. (9/7) “fish scarce.
Hove up and run SSW 12 miles. Boarded the French Barque ‘Charlotte’
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and bartered for 10 lines of trawl and 800 hooks. Latter part anchored on
rough bottom.” Among the first to use trawls in the Beverly fleet, Foster
bought the gear from French competitors. But that year, despite his new
tub trawls, he brought home only 11,000 fish, less than half his take seven
years before. MAYFLOWER fared worse. After seventy-four days on the
Western Banks and Banquereau in the summer of 1858 she brought home
a pitiful 1,846 fish, a mere 57 quintals. EXCHANGE’s log keeper la-
mented, “always no fish.”

Even so, Beverly captains did not rush to adopt tub trawls as a pro-
gressive solution to their dilemma. In 1858 only 7.6 percent of the Scot-
ian Shelf bankers mentioned trawls in daily comments, although 41.5 per-
cent of them fished in boats. French fishermen at St. Pierre–Michelon had
been using trawls since the 1830s. New England outer banks fishermen
knew about them, and a few innovators like Calvin Foster and Samuel
Wilson had experimented with them for almost a decade. Yet reluctance to
abandon older methods generally remained the norm despite the fact that
some skippers were sufficiently flexible to fish alternately with hand lines,
dories, or trawls, or even to fish adrift now and then, and despite plum-
meting catches. In Swampscott, a small village near Beverly with an active
inshore hand-line fishery, some experienced men agitated against the use
of trawls. They complained that trawls gave unfair advantage to large,
well-capitalized schooners, which caught too great a share of available fish.
Throughout the 1850s Swampscott fishermen petitioned the Massachu-
setts legislature to outlaw trawls because they feared that haddock, cod,
and other demersal species would soon become “scarce as salmon.”

By 1859 Beverly vessels in the Scotian Shelf fishery were in desperate
straits, landing less than half as many fish as they had in 1852. The average
number of cod caught per vessel per season dropped from 26,217 to
14,414. Since vessels were 10 percent larger, efficiency had fallen off more
than 52 percent. That year, the Beverly Scotian Shelf fleet decreased by
more than half because captains accustomed to fishing there decided to try
their luck elsewhere. Among those who persisted on the familiar Scotian
Shelf grounds, 74 percent fished one long fare lasting almost five months
rather than returning home in the middle of the summer, as had been the
norm. Logs expressed the general refrain: “no fish.”

The gloomy 1859 season, the worst that decade for the Beverly Scotian
Shelf fleet, was notable in another way. Much of the fleet turned to tub
trawls. After 1859, no deepwater crew hand-lined from the vessel exclu-
sively. All had made the transition to using dories, and most had adopted
the trawls that had been eschewed just a few years earlier. Anthropologists
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have identified distinct adaptations modern fishers make to declining catch.
Changing their fishing patterns is typical, including variations in grounds,
adoption of new gear, and reallocation of time. Analyzing historic fishing
patterns in terms of days at sea and geographic distribution shows that Bev-
erly skippers reacted to declining CPUE on the Scotian Shelf as modern
fishers react when stocks become overfished.

By 1861, when Scotian Shelf catches had been decreasing for about a
decade, those once-plentiful grounds were virtually abandoned. As eco-
nomic historian Harold Innis explained years ago, the Assembly of Nova
Scotia in 1861 laid blame for the collapse of the cod fishery on Banquereau
“a few years since . . . [to] set line fishing [tub trawling], first practiced on
it by the French and latterly by United States fishermen.” Twenty-two years
later, when George Brown Goode published his monumental seven-
volume series Fisheries and Fishery Industries of the United States, he noted
about Banquereau: “Not much fished at present by Americans.” Yet a gen-
eration earlier it had been the destination of choice for most of the Beverly
fleet and for hundreds of schooners from Marblehead, Barnstable, Port-
land, Portsmouth, and other ports. Goode’s observation suggests that
hook-and-line fishing techniques in the age of sail had the ability to impact
cod abundance and distribution. More ominously, it may convey a New
England fishermen’s consensus in the 1880s that twenty years of light fish-
ing had not brought catch up to acceptable levels. By then, contemporary
writers like J. S. Collins observed that New England fisheries had lapsed
into “decadence” as greater opportunities enticed young men away from
fishing. The question requires further historical research.

Calculating the Biomass of Cod in 1852

The steady drop in CPUE for the Beverly Scotian Shelf cod fishery over
eight years mirrored the log keepers’ narratives of struggle and adaptation
induced by resource depletion. Fishermen worked increasingly hard to
catch fewer fish, and fishing pressure affected the cod population. A fishing
technology assumed benign proved, at least temporarily and locally, to be
unsustainable in a population considered abundant by modern standards.

The same drop in CPUE presented the potential to answer an impor-
tant biological question: how many cod gathered on the Scotian Shelf in
the mid-nineteenth century during the fishing season? A population esti-
mate derived from these data would be the earliest population estimate for
a commercially harvested fish, predating modern tables of catch statistics by
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almost a hundred years, and the earliest regular scientific sampling surveys
by thirty. Such a baseline could fundamentally change perceptions regard-
ing the nature of a North Atlantic shelf marine ecosystem before mecha-
nized exploitation and significantly redefine targets for a rebuilt fishery.

Our group employed a modification of the standard regression model
developed by D. B. DeLury in 1947 for estimating initial abundance of fish
stocks based on total removals when cumulative effort is known. The Chap-
man-Delury method, developed in 1972 to assess populations of sei whales
in the Antarctic, includes natural mortality in its calculation, which had not
been considered in DeLury’s original model. By adapting this well-estab-
lished stock assessment model to our detailed historical data, we estimated
the biomass of the cod population in 1852, the first year of the time series.

The Chapman-DeLury model scales abundance to total removals from
the harvested population (figure 6.6). Of course, the 236 Beverly schoo-
ners fishing there full-time were only a small portion of the entire Scotian
Shelf fleet. Ninety Beverly schooners fished across the Western Banks or
Banquereau on their way to the Grand Banks or the Gulf of St. Lawrence.
More important, 1,313 vessels from 76 other ports in New England and
Canada appeared in Beverly skippers’ daily comments, the spoken vessel
fleet. (Although Beverly vessels also spoke each other frequently, for the
purposes of this model, the spoken vessels will be defined as non-Beverly
vessels without extant logs.) Total catch taken from the Scotian Shelf each
year is the sum of the catch of these three groups:

1. the total catch from each Beverly vessel that spent the entire season
on the Shelf;

2. a portion of the catch from each Beverly vessel that spent part of the
season on the Shelf; and

3. some unknown amount of catch from each vessel spoken on the
Scotian Shelf.

Obtaining the catch for the first two categories was straightforward.
Logs give seasonal catch in numbers of fish, and the corresponding fishing
agreements provide the total weight in quintals. For 236 Beverly vessels
fishing the Scotian Shelf full-time, both documents survive and provide
catch in weight and numbers. From them we calculated a weight-to-
numbers ratio for cod caught there exclusively. The average number of
pounds per fish was estimated separately for each year internally in the
model so that uncertainty was propagated through into the total biomass
estimate. While no fishing agreements exist for six full-time Scotian Shelf
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logs, we estimated total catch weight for those vessels from their catch in
numbers using the appropriate conversion. In logs from thirty-four full-
time Scotian Shelf vessels, some daily catch figures were illegible and total
catch impossible to calculate. Therefore, total catch in numbers was esti-
mated from weight in quintals using the appropriate inverse ratio.

For Beverly vessels that fished across en route to distant grounds, our
model assumed that only 25 percent of their catch in numbers of fish came
from the Scotian Shelf. Logs show that these vessels spent, on average,
more than 60 percent of their time on the Shelf. Since captains did not re-
main long on barren banks or grounds, future studies of the Grand Banks
and Gulf of St. Lawrence fisheries should show that Beverly vessels caught
a significant portion of cod outward bound and inward bound across the
Scotian Shelf. Therefore, we reasoned, a conservative estimate for their
Scotian Shelf catch would result in a conservative biomass estimate. We
tested the sensitivity of our results to this assumption.

Estimating the total cod caught by the vessels spoken to for all the years
in question proved more challenging. We knew the spoken vessels caught
fish on the Scotian Shelf because many daily log entries preserved their cu-
mulative catch up to that date. But we did not know how many cod they
caught in total or what proportion were Scotian Shelf cod and relevant to
our study. Their fishing patterns became an important question, whether
they fished the Scotian Shelf full-time like two-thirds of Beverly schooners
or passed through on their way to distant banks like the Labrador fleet of
Newburyport. Modeling cod biomass depended upon knowing the size of
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Figure 6.6. Chapman-DeLury graph. Data (open circle) and predictions (broken
line) of catch per unit effort (CPUE) for Beverly fishing schooners on the Scotian
Shelf, 1852–1859. CPUE is in (hundreds of fish)/(ton of vessel). (Rosenberg et al.
[2005].)



spoken vessels (an indication of their fishing capacity) and determining
their fishing profiles (decisions made at sea by captains based on experi-
ence, vessel size and capability, market, and the expectation of finding fish).
Historical analysis of fishermen’s behavior became a necessary component
of the biomass model. Diagnostic characteristics of fishing profiles from
different areas had to be established. Comparison with the profile of the
Beverly fleet would determine if Beverly vessels could be considered repre-
sentative of the Scotian Shelf vessels spoken and used as statistical proxies
for the entire fleet.

We had already established a profile for all Beverly vessels relating ton-
nage to fishing patterns and captain’s experience. That profile indicated
where Beverly schooners and boats were likely to fish, for how long, and
with what gear. Initial surveys of the 233 logs from Newburyport, Massa-
chusetts, established fishing profiles for that fleet as well. For these two
ports, vessel size essentially determined fishermen’s technological and geo-
graphic options. The five Beverly vessels over 20 tons fishing in the in-
shore Gulf of Maine averaged 37.4 tons and their CPUE averaged 5.7
quintals/ton of vessel. Small schooners, sloops, or boats in the Gulf of
Maine fleet usually made several short trips of a few weeks’ duration during
the season, coinciding with the expected arrival of migrating cod. They
fished tiny banks just a few acres in area. Small crews needed little in the
way of supplies, which could be replenished frequently at home or in
nearby ports. Capital expenditure was minimal, and captains sometimes
owned their vessels outright. Because they were more vulnerable to foul
weather, few vessels under 50 tons fished offshore as far as Brown’s Bank,
the westernmost component of the Scotian Shelf.

Beverly vessels targeting the more distant Grand Banks were at the
other end of the spectrum. They averaged almost 88.1 tons, and CPUE was
9.0 quintals/ton of vessel. Although they sometimes went into Newfound-
land ports for bait or provisions, they generally carried supplies to last for
months, spending nearly five months at sea in one long fare. Capital expen-
diture was commensurately greater. Owners and managers operated multi-
ple vessels, and investment patterns encouraged consolidation. The shift to
tub trawls happened in large offshore vessels first, the vessels requiring
more manpower, a bigger crew, and much greater capital investment.

In Newburyport, tonnage also correlated with fishing ground. Very
large schooners and brigs (more than 90 tons) voyaged to the Salmon
River, Labrador, generally catching more than 100,000 very small cod each
in a stop-seine bay fishery (figure 6.4). Small schooners, sloops, and boats
(less than 45 tons) fished close to home in the Gulf of Maine.

A consistent pattern thus appeared in the Massachusetts fleet: vessels of
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the same size from the same community favored the same fishing grounds.
Eighty-eight percent of all Beverly vessels and 90 percent of Newburyport
vessels exhibited an identifiable fishing profile based on tonnage and home
port. Individual Massachusetts captains likewise showed a marked prefer-
ence for specific grounds.

The Frenchman’s Bay, Maine, logs from the 1860s revealed a different
profile, however. Although the average size of vessels fishing locally de-
clined for the period, both large and small vessels fished inshore (figure
6.4). Among all of the vessels spoken by Beverly skippers, only 19 percent
came from Maine. This percentage declined steadily from a high of 24 per-
cent in 1852 to 8 percent in 1859. From 1860 to 1866, only 39 vessels
from the twelve towns in the Frenchman’s Bay Customs District fished off-
shore banks at all. Although the tendency to fish local grounds may have
been exacerbated by the Civil War, the low number of Maine schooners
spoken on the Scotian Shelf is not an aberration. Only 12 percent of spoken
vessels hailed from Connecticut, Rhode Island, and Nova Scotia. Most of
the Scotian Shelf fleet consisted of schooners based in Massachusetts.

Having determined the relevance of tonnage to fishing profile for ves-
sels with extant logs, we turned to the 1,313 vessels spoken for which ton-
nage was the only statistical measurement obtainable. Using fishing agree-
ments, licensing records, local newspapers, and other ancillary sources, we
found tonnage measurements for 571 schooners in the vessels’ spoken
fleet—43 percent of all spoken vessels.

Massachusetts ports on Cape Ann and Cape Cod contributed 69 per-
cent of the spoken vessels. These two distinctive peninsulas offer poor soil
for farming and boast long fishing traditions. Fishing agreements listed
tonnage and total catch weight for the Marblehead and the Barnstable
Customs Districts, the largest home port cohorts next to Beverly. These
agreements enabled us to profile the tonnage of 478 Massachusetts vessels
spoken during this period. In 1852, Maine Scotian Shelf vessels were ap-
proximately the same size as the Beverly vessels, but their tonnage de-
creased as the decade progressed. Because Maine vessels showed up infre-
quently and declined steadily in numbers and size, they contributed little to
the profile of the fleet.

Although the success of individual vessels depended to some extent on
skill and chance, historical context indicates strongly that vessels of similar
tonnage fishing the same grounds were likely to use similar gear and similar
bait, and to exert similar fishing effort. Table 6.1 arrays the average ton-
nages of the fleet. It shows the average tonnage of Beverly vessels fishing
full-time on the Scotian Shelf to be 2.1 tons less than that of the spoken ves-
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sels, a negligible amount. The Beverly fleet is thus representative of all the
vessels spoken, irrespective of home port. To calculate biomass we assumed
that the Beverly catch profile could be used as a proxy for that of the vessels
spoken. The probable catch removed by the whole fleet became a function
of the Beverly catch.

Adding the time spent by the 236 Beverly vessels that fished the Scot-
ian Shelf full-time and the 90 Beverly vessels that fished it part-time (while
passing through en route to the Grand Banks or the Gulf of St. Lawrence),
we determined that 72.3 percent of the fleet’s fishing days were spent on
the Scotian Shelf between 1852 and 1859. We rounded up and assumed
that 75 percent of the days fished by the vessels spoken were spent on the
Scotian Shelf—or 75 percent of the spoken vessels fished full-time there—
and caught the same amount of fish Beverly full-time vessels caught. While
catch from Beverly vessels fishing across the bank was included in the
model, catch from the vessels spoken assumed to be passing through was
not. This made our assumptions conservative. Since Beverly “part-time”
vessels still spent 60 percent of their time there, “part-time” spoken vessels
may have caught more fish than we estimated. This is important because it
relates to scaling the biomass estimate. If total catch was greater, then the
biomass of cod in 1852 must have been greater as well.

For this biomass calculation, standard biological assumptions included
a cod population in an approximately unfished state at the beginning of the
time series, in 1852. Although Europeans had exploited those grounds
since at least 1539, we assumed a minimal impact for this preindustrial fish-
ery, much like the earliest stages of modern exploitation of an unfished spe-
cies. The cod population is understood to be in equilibrium, with juvenile
cod attaining breeding age as fast as adult cod die from natural causes. Over
short time periods the annual instantaneous rate of recruitment and the an-
nual instantaneous rate of natural mortality could be considered constant
for an unfished species at an early stage of exploitation. We assumed a stan-
dard mortality rate of 0.2, the standard rate assumed for cod in modern
stock assessments, but explored the sensitivity of our results to this as-
sumption by calculating biomass for a range of mortality rates. Addition-
ally, we examined the sensitivity of our results to the assumption that the
recruitment rate equals the natural mortality rate by varying that propor-
tion. With these conditions implicit, average population size for a given
year became a function of that year’s catch.

We related the decline in CPUE to the cumulative catch of the whole
fleet for each year between 1852 and 1859 inclusive, and adjusted for
assumed rates of natural mortality (M) and recruitment. We fit the
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population dynamics model to an index of abundance Ij with the following
equation:

where N0 is the initial abundance, Ci is the catch in year i, M is the instanta-
neous natural mortality rate, 0.2, and k is constant of proportionality.

For the index of abundance, we used CPUE only from those Beverly
vessels that spent the entire season on the Scotian Shelf and whose logs
gave catch in numbers of fish. CPUE equals the number of cod caught in
one fare divided by the number of days spent fishing multiplied by the ton-
nage of the vessel (catch/[days*tons]). The parameters of this model, in-
cluding the annual average number of pounds per fish, were estimated by
robust regression techniques contained in the AUTODIFF language incor-
porated into AD Model Builder. By estimating the parameters of the
model, we solved for initial abundance, N0, the number of cod on the Scot-
ian Shelf in 1852. Total initial biomass was calculated as N0 times the esti-
mated average weight of a cod caught in 1852.

Quintals measured split, salted, and dried fish. Live biomass was de-
rived using a modern conversion factor of 4.9 processed to live weight,
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Table 6.1. Average vessel tonnage each year with standard deviation
[sd].

Beverly
All Massa- Scotian

vessels chusetts Maine Shelf
Year spoken sd vessels sd vessels sd fleet sd

1852 75.58 14.88 75.05 14.08 69.36 10.86 72.87 12.44
1853 79.54 15.41 80.16 14.34 77.42 24.40 76.47 15.41
1854 79.43 15.62 80.87 18.27 67.50 16.18 76.19 14.04
1855 83.57 13.83 85.07 14.03 75.07 25.38 78.33 14.13
1856 83.34 16.32 85.71 14.22 63.85 21.04 78.57 13.15
1857 84.75 14.31 85.77 13.86 70.00 18.75 81.32 15.47
1858 83.22 15.63 83.45 14.35 80.83 16.57 80.95 15.81
1859 83.71 15.85 86.98 13.83 62.60 9.12 81.78 17.21
Average 81.64 15.23 82.88 14.62 70.83 17.79 78.31 14.71
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which was calculated in the 1950s by the Canadian government. There is
uncertainty in this conversion factor. Since 2005, other values converting
dried to live weight have been found in historical literature as far back as the
1700s. Variations may represent regional differences, the size and oil con-
tent of the fish, curing methods, and even time at sea, and we are integrat-
ing this information into our current work. While changing the conversion
factor changes the biomass estimate proportionally, abundance in numbers
of cod remains the same.

The Biomass Estimate and Its Significance

Taking the sensitivity of our assumptions about mortality, recruitment, and
total catch into account, and based only on New England fishery records,
we estimated a biomass of 1,260,000 metric tons of cod on the Scotian
Shelf in 1852. With respect to the Beverly part-time vessels, we found that
ignoring their contribution to total catch only lowered the estimate by
4,000 metric tons. Including them with the full-timers only raised the esti-
mate by 7,000 metric tons. Increasing the estimated instantaneous natural
mortality rate produced less than proportionally lower estimates for the
1852 biomass. For example, increasing M by 50 percent only decreased the
1852 biomass by 25 percent to 947,000 metric tons. Similarly, choosing a
smaller value for M produced less than proportionally larger estimates for
the 1852 biomass. By assuming the reproductive rate was greater than the
instantaneous natural mortality rate, we got lower estimates for the 1852
biomass, and vice versa, though the relationship was not linear. Assuming
the reproductive rate equalled 125 percent of M decreased our biomass es-
timate by 26 percent, but an assumed rate of 75 percent for M increased
cod biomass by 54 percent.

Not surprisingly, the biomass estimate proved very sensitive to the size
of the vessels spoken fleet because total fleet size directly affects total catch.
This encouraged us to craft our assumptions to be both reasonable and con-
servative. Data from the mid-nineteenth-century Nova Scotian inshore
fisheries were not included in our estimate because we know of no com-
parable historical records from that fishery. In 2006, we obtained French
removals from 1858 and 1859. A biomass estimate including catch from
these fisheries might well have been much higher.

Myers and colleagues have estimated the hypothetical carrying capacity
of the Scotian Shelf for cod based on productivity data. The western
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Scotian Shelf—what historic Beverly fishermen called the Western Banks—
has a carrying capacity of 232,715 metric tons of cod. The eastern Scotian
Shelf—referred to as Banquereau in the 1850s, when it was heavily fished—
has a carrying capacity of 917,789 metric tons of cod. The makes the to-
tal carrying capacity of the Scotian Shelf 1.15 million metric tons. This
ecological estimate using entirely different methodology lies within the
confidence interval of our biomass estimate derived from historical sources
(figure 6.7). Moreover, carrying capacity estimates were based on data col-
lected since 1950. The banks have been fished since at least 1539; therefore,
it is likely that their productivity was even greater in the distant past.

Canada’s Department of Fisheries and Oceans (DFO) has estimated
total cod biomass in NAFO divisions 4X, 4Vs, and 4W since 1970. Fishing
pressure from foreign factory ships was reduced with the imposition of the
200-mile limit in 1976, and peak total biomass in the era for which statis-
tics are available occurred during the 1980s, at approximately 300,000
metric tons. This area includes not only the Scotian Shelf but also the in-
shore banks near Nova Scotia, the Bay of Fundy, and waters as far south as
Cape May, New Jersey. The 2002 DFO estimate of total cod biomass for
this area is less than 50,000 metric tons—a mere 4 percent of the biomass in
1852 (figure 6.7).

Our biomass estimate likely reflects only the adult cod population.
Beverly fishermen in the 1850s complained when they caught small cod,
and even shifted berth to avoid it, because small cod were worth less. The
large hooks deployed in this deepwater fishery, sizes 10 and 12, reduced the
landing of juveniles. The average weight of a salted, split, and dried fish was
4 pounds, meaning that live fish averaged about 20 pounds each. It is rea-
sonable to assume that the fishermen we studied caught only adult cod and
that our biomass estimate does not include juveniles. The DFO’s 2002 esti-
mate for adult cod biomass in NAFO divisions 4X, 4W, and 4Vs was only
about 3,000 metric tons, less than 0.3 percent of the biomass of adult cod
in 1852—a difference of three orders of magnitude (figure 6.7)!

A further comparison draws an especially stark picture. Records reveal
that 43 Beverly schooners fishing the Scotian Shelf in 1855, just 20 percent
of the vessels fishing there that year, wetting fewer than 1,200 hooks,
caught 7,800 metric tons of cod. This is 600 metric tons more than the
landings of the entire Canadian fleet in 1999. In fact, the entire adult cod
biomass on the Scotian Shelf today, as estimated by DFO, would “wet the
salt” the fish holds of just 16 Beverly schooners of the size that fished there
during the 1850s.
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The Past and the Future

Reconstructing the narrative histories of people engaged with the ocean
strengthens the notion that humans have long been a key component of
marine ecosystems. Both the U.S. Commission on Ocean Policy and the
Pew Oceans Commission called for ecosystem-based management of fish-
eries resources. To succeed, ecosystem-based management must relate bio-
diversity, and species abundance and distribution, to the productivity of
marine ecosystems. At the same time, it must admit human responsibility in
degrading ocean and coastal ecosystems.

The biomass of many fish harvested for centuries probably follows the
trend in abundance we described for Scotian Shelf cod. The current abun-
dance of many varieties of edible fish and mollusks may differ by orders of
magnitude from what existed before mechanized harvesting. This has im-
portant ecological implications, particularly with respect to productivity.
Thinking historically suggests new avenues of research into important eco-
logical questions like the nature, magnitude, and resilience of productivity.
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Figure 6.7. Biomass estimates for Scotian Shelf cod. This study (solid circle in bro-
ken line), with confidence interval, for 1852; estimated carrying capacity (bold broken
line) of this marine ecosystem from late twentieth-century data; total biomass esti-
mates (gray spiked line) from 1970 to 2000 for cod, 4X,4VsW; biomass estimates
(black spiked line) from 1970 to 2000 for age 5+ cod, 4X,4VsW. Since prevalent
hook size in this deepwater fishery made landing smaller juvenile cod unlikely, the
biomass estimate for 1852 is compared with the current estimate for an adult cod
population. (Rosenberg et al. 2005).



Current ecological models benefit from new data sources that document
change in biodiversity, abundance, and distribution due to human agency.

By estimating the biomass of cod 150 years ago, we have challenged
the current standard of a rebuilt cod stock in a productive marine environ-
ment. Contemporary disputes over the management of George’s Bank and
the Gulf of Maine often focus on standards for rebuilding fish stocks and
the productive potential of marine ecosystems. Although some argue that a
“fully rebuilt cod stock” need only reach 1980s abundance levels, both his-
tory and biology indicate otherwise. Management standards reflecting
short-term political expediency fail to reflect the health of a cod population
continuously fished for centuries. Rather, these standards reflect cod in de-
cline and a profoundly distressed marine ecosystem. Our work on the Scot-
ian Shelf cod fishery from 1852–1859 revealed a fishery, a marine environ-
ment, and a cod population significantly richer in size and structure than
today’s counterparts.

Contemporary regulators and fishermen have known for years that
fewer fish exist now than “in the good old days.” But the magnitude of the
overall decline, which is the result of generations of shifting baselines, can
only be revealed through systematic historical investigation and careful
quantification of historic catches. It would not have been possible to esti-
mate historic cod biomass without understanding the testimony of historic
fishermen, and likewise impossible to explain changes in the nineteenth-
century fishery without acknowledging declining cod stocks. So what have
we learned? Some fishermen in recent years have declared that cod are com-
ing back. Even if this is true, our biomass estimate of Scotian Shelf cod in
1852 shifts the baseline backward and changes the context for these obser-
vations. Although sobering, it provides a fundamentally different scale—a
historical scale—against which to measure progress to date.
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Chapter 7

History and Context:
Reflections from Newfoundland

Daniel Vickers, with Loren McClenachan
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John Crosbie, the Canadian minister of fisheries, stunned Newfoundlan-
ders on July 2, 1992, when he announced the first moratorium on the
northern cod fishery, bringing to an end one of the oldest and richest fish-
eries on Earth. I was then teaching maritime history at the Memorial Uni-
versity of Newfoundland, and the news caught me entirely off guard.
Though aware of the problems in the cod fishery for some years, I had not
realized that things were as bad as they were—or at least I was not certain
enough to do anything about it. For almost fifteen years I had been writing
a book on the social history of colonial New England’s cod fishery that
dealt well enough with the hard lives of fishermen but ignored entirely the
possibility that the livelihood they pursued might have been in the long run
unsustainable. I had concerned myself only with the way in which the prof-
its from the fishery had been shared and had ignored entirely the process
through which the fishery itself was vanishing. And although it seemed true
enough that the degradation of the cod stocks had not yet begun before
1850, the period I was studying, I could not run from the feeling that I had
been dealing with a problem of the second order. Remarkably, two of my
most talented colleagues at Memorial—Rosemary Ommer and Sean Cadi-
gan—were completing parallel studies of the Gaspé and of Newfoundland
in the nineteenth century that also focused on the social relations of
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production in the fishery rather than the question of its ecological sustain-
ability. Although there is no reason to be ashamed of any of these books for
what they did achieve, we were in some real way fiddling while Rome
burned.

Once the severity of the ecological problem had been acknowledged,
however, the collapse of the cod and other fisheries seemed almost certainly
to be an issue with a history that was very deep. Indeed, as an historian, it
strikes me as strange that anyone would dispute this. There may be terrific
difficulties in the path of trying to establish how the oceans were once pop-
ulated, and it is plain that the sort of detail ecologists usually demand of
current research will never be possible for the distant past. But the same is
true of human history. Large areas of understanding have been opened up
during the last half century in territory that historians once believed was
truly unknowable, and some questions to which students of the human past
have produced clear answers bear a striking resemblance to the problems
marine scientists address.

Here is an example from historical demography. It was once thought
that the history of family structure—the biomass and age-class structure of
humanity—could only be told with some precision back to the period of
the first national censuses around 1800. Prior to that time, anyone inter-
ested in generalizing about such issues as age at marriage or family size had
to rely on literary evidence and anecdote. Then, in 1963, Peter Laslett of
Cambridge University published a short case study of family structure in a
pair of seventeenth-century English villages, Clayworth and Cogenhoe,
which undertook to measure some of these basic demographic phenomena.
A colleague had drawn his attention to two documents dated 1676 and
1688, in which the parish rector of Clayworth in Nottinghamshire had
listed for both years all the inhabitants of the village—around four hundred
people—by household, occupation, relation to the family head, and num-
ber of times married. Although this document had been well known for
many years, both to local scholars and to specialists in the history of Stuart
England, nobody had ever considered before that a source of this sort
might be used to reconstruct the population history of this particular vil-
lage and that, indeed, if all the parish priests in England or “even some of
them” had kept similar lists, “then the task of the historian of social struc-
ture would be transformed.” By historians’ standards, therefore, the stakes
were pretty high. With even a generous handful of such lists, Laslett be-
lieved, “we should have the chance of reconstructing the population of our
country as it was during all those generations which went by before the cen-
sus began in 1801, of doing it swiftly, accurately, and completely.”
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Even with the little he had, Laslett discovered a number of astonishing
facts. One was the extraordinary mortality and the constant reconstruction
of households that was, in this seventeenth-century village, a fact of life; an-
other was that households were a lot smaller (4.0–4.5 members) than
Laslett had expected; third was the predominance of nuclear families;
fourth was the ubiquity of servants, even in households of the middling
sort; fifth was the unexpectedly large number of youths and children;
and sixth was the high rate of mobility in and out of town. In short, the
seventeenth-century, preindustrial English family looked a lot more mod-
ern than historians had thought.

Sharing with most historians the cautious spirit of a highly traditional
discipline, Laslett did not push his generalizations very far. Amusingly for
our purposes here, he likened his experience to that of a marine ecologist,
“in his bathyscope [sic], miles beneath the surface of the sea, concentrating
his gaze for a moment or two on the few strange creatures who happen to
stray out of the total darkness into his beam of light.” Were these communi-
ties typical of early modern England?

On this the historian can only talk as the scientist might. Here are two
samples of communities in motion, two tiny globes of light disposed at
random a little way down into the great ocean of persons who lived and
died in our country before records of persons in general began to be
kept. These samples may be ordinary enough, but they may be quite ex-
traordinary. We cannot yet tell: we may never be able to tell.

In reality, Laslett may have been a little disingenuous, for even as he
wrote these words, he was at work on a much broader study, published two
years later as The World We Have Lost. Meanwhile, a team of historical de-
mographers, also at Cambridge, had discovered and begun to analyze sev-
eral hundred similar lists dating from 1574 to 1821, and in 1981, the so-
called Cambridge Population Group published the results of this project in
the monumental Population History of England, 1541–1871: A Reconstruc-
tion. Laslett’s work was hitched to a larger project—one of demonstrating
that the entirety of the last five centuries in English social history was one of
deep continuity and that the Marxist account of how the “horror of indus-
trialization” had torn apart the nuclear family from the kin group with its
“more humane, much more natural relationships” was simply a myth. Al-
though this bolder claim is complicated and still a matter of debate, the
bedrock of historical demography upon which it was based is now the
stuff of textbooks. Early modern English families, as Laslett posited in
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“Clayworth and Cogenhoe,” suffered from high mortality; they tended to
be small, young, and fairly nuclear in structure; and they moved around
a lot.

There isn’t an exact parallel between the Cambridge Population
Group’s research programs and those of the marine ecologists who gath-
ered at the Scripps Institute of Oceanography in 2003 for a conference on
Marine Biodiversity: The Known, Unknown, and Unknowable. Nobody
in 1965 was afraid that the modern English family was on the verge of ex-
tinction, so there was nothing of the urgency inflecting the discussion of
marine biodiversity at the beginning of the twenty-first century. In several
senses, however, the two projects do bear comparison. Both deal with ques-
tions of considerable significance about transformations whose origins may
well be buried in the distant past. Both face a paucity of evidence for the
early periods and have long been prevented from addressing those ques-
tions in the temporal depth they demand. Both must build on a welter of
models and assumptions to stretch these shards of evidence and data into a
convincing portrait of the past. And neither will ever approach in complete-
ness or certainty the standards of evidence that we demand of research con-
ducted into families or oceans of the present day, where we as researchers
have so much more control over what we choose to measure. The experi-
ence of historical demography, however, is an encouraging one. With little
more basic data than would fit onto a couple of now antiquated floppy
disks, scholars rediscovered a real part of “the world we have lost” in suffi-
cient detail that we can now claim to have a powerful historical perspective
on the contours of modern family life—one robust enough to allow us to
avoid romanticizing a mythic past and imagining transformations that did
not occur. Marine ecologists can reasonably hope to achieve the same.

The Panel Discussion

Why is the past important? In grappling with that seemingly basic ques-
tion, I now return to a panel discussion on the subject at the Scripps confer-
ence. In many ways that conversation between Paul Dayton, Robert Paine,
Michael Orbach, Alexander Stille, and myself with the audience character-
izes a critical, ongoing debate about the relationship between history and
ecology.

Paul Dayton argued that marine ecologists conduct their research too
frequently on scales that are both geographically and chronologically small.
The most appropriate regions in his view are large-scale basins or, possibly,
an entire continental shelf, and the most useful timescales run in hundreds
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of years, when the distinction between cyclical and linear changes can really
be tested. Dayton also warns against the pipe dream of trying to restore
damaged ecosystems to some previous, supposedly desirable, pristine state.
The Steller’s sea lion population of the Bering Sea, for example, has col-
lapsed under a variety of forces. Climate change, the reduction of food base
by heavy fishing, and increased predation by killer whales are all hypotheses
suggested to explain reductions in sea lion numbers. While past events such
as commercial fishing and hunting of the great whales can be elucidated
and even quantified, a direct link between past actions and the current state
of the ecosystem has not yet been demonstrated. Each proposed hypothesis
is overly simplistic and does not sufficiently explain recent sea lion popula-
tion trends. The manner in which multiple factors have combined to alter
the polar marine ecosystem is highly complex and as yet poorly under-
stood, but the changes they have wrought are permanent, and no amount
of human engineering is likely to bring the sea lions back.

Robert Paine, by contrast, was deeply skeptical about the prospect for
understanding any ecosystem as large as the Bering Sea or any span of time
as long as a century. Biological uncertainty coupled with multiple causation
makes it hard enough to develop ecological generalities for places as small
as Tatoosh Island in Washington State, over periods as short as the last few
decades. Coupled to human impact are the background challenges of cata-
strophic die-offs, disturbances, and externally forced biological phase-
shifts; how to sort these factors out over regions and periods as great as
historical ecologists demand presents problems that Paine feels are insur-
mountable. If the past was as biologically variable as the present is, little can
be learned from it.

Michael Orbach made a plea for incorporating the human cultural past
into our understanding of modern ecosystems and especially the project of
ocean conservation. The “tragedy of the commons,” he argued, needs to be
understood in the context of human expansion across the seas over the past
millennium—charting and beginning to exploit the spaces and resources of
most of the world’s oceans, at least to the depth of a few hundred fathoms.
With this expansion, there arose in the seventeenth century the doctrine of
mare liberum, the freedom of the seas, under which most uses of the world’s
oceans remained unregulated within any common community except for
the constraints of individual nation-states upon their own citizens. This
happened for a very practical reason: no single nation or group of nations
could effectively either monitor or control activities on the oceans, except
within fairly close proximity to land. Accordingly, in the course of intense
state competition over global commerce and marine resources, mare lib-
erum emerged as a negotiated compromise. Since then, nation-states have
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gradually been advancing their claims over the resources of the continental
shelves, arriving in recent decades at the establishment of 200-mile limits
off certain coasts. Even more recently the world as a whole, through the
United Nations, has at least begun to talk about a Common Heritage of
Mankind approach to the problems arising from the overexploitation of
oceanic resources. Yet, even today most of the world’s salt water remains in
a state of unregulated access with tragic consequences for many marine spe-
cies. Orbach pointed out that not all common property has historically es-
caped serious regulation. Nations have managed to regulate use of the at-
mosphere to some better effect—in areas of air pollution, trading rights,
telecommunications, and plane travel—which suggests that the enclosure
of the seas is at least possible.

Alexander Stille raised the possibility that the destruction of marine
biodiversity around the world may be closely linked to the decay of cultural
diversity. Noting that the greatest concentration of linguistic diversity oc-
curs in remote or isolated parts of the world that also register unusually
high levels of species diversity, Stille drew our attention to the market-
driven process of globalization and its homogenizing effects on the entire
environment. Originally, this was driven by explorers and traders, then by
colonizers and capitalists, yet now even well-intentioned conservation-
ists have occasionally forced Western models of preservation such as the
national park onto cultures where they make little sense. The rapid industri-
alization of the now-developed world has generated a connected but un-
realistic cultural notion of pristine nature—uncontaminated by human
contact—that has made many environmentalists hostile to the human com-
munity, complicating the process of addressing the real issue, which is the
decline in diversity of all stripes—human or otherwise. An environmental-
ism with an appreciation for human culture has a far greater chance for pro-
moting species diversity than one that sees man and nature as separate.

For all these differences in emphasis and opinion, two critical and quite
distinct themes emerged: the uses of the past—by which I mean the accu-
mulation of evidence before us—and the uses of history—or the story of hu-
manity. While sorting these two out was not something that the partici-
pants attempted, each theme merits discussion.

The Past

The past is the property of every science. Ecologists, economists, astron-
omers, demographers, as well as historians draw repeatedly from the record
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of events, social and natural, to identify patterns and explain them. In cer-
tain sciences—geology is one and ecology another—the fundamental task
has always been not the construction of predictive laws, but the explanation
of how things have got to where they are, and in this case the past is all we
have to go on. Although the quality and quantity of data collected by hu-
mans usually declines the farther into the past one delves, the investigation
of any dynamic system demands some time perspective, and scientists in a
wide variety of fields have proved highly ingenious at designing ways of us-
ing pieces of surviving evidence to learn something about what has tran-
spired in the human and natural worlds. One can shower doubt on their
methods, but their success in extracting patterns of any sort from this re-
search means that they must be tracking something real. What, then, are the
legitimate problems involved in mining the past for ecological data?

Two problems that seem to weigh heavily on the minds of ecologists
are the related issues of predictability and design. Can evidence from the
past be assembled that is solid enough to underpin working models allow-
ing us to predict the future of the oceans, and can we use those models to
design the sort of ecological results we wish? Ecologists strain toward pre-
dictability—partly because they are scientists and partly because they want
to be useful—but many of them are skeptical of data from the past, the col-
lection of which they cannot entirely control. Carl Safina pointed out that
much legitimate science already depends on the imperfect record of the
past—plate tectonics being an excellent example—and that marine ecology
could well proceed along the same path. Yet Robert Paine probably spoke
for many when he replied that marine ecosystems are terribly complex and
prone to serious localized disturbances for which historical evidence will
rarely be available.

On a microscale, of course, Paine is correct. Historians have to define
their topics broadly enough to incorporate sufficient evidence to answer
the questions they pose, and this rarely happens in the case of one microen-
vironment, say a fishing village, for example, over centuries of time. Ac-
cordingly, they broaden out to include a collection of villages along an en-
tire stretch of coastline, and this inevitably does dull in some degree one’s
analytical edge. Although two of the most important fishing ports in colo-
nial New England—Marblehead and Beverly—sat only fifteen minutes
apart by sail, they employed two very different methods of recompensing
the men and drew from two mutually exclusive labor pools. Lumping them
together for the purpose of analysis obscures these differences, yet for rea-
sons of limited evidence, this may be the only way to say anything sig-
nificant—less than precise but generally true—about fishing society in
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Massachusetts at all. Similarly in historical ecology, what one loses in preci-
sion by studying a large area such as a continental shelf, one may gain in sig-
nificance through the power of generalization. The result may be imperfect,
but if the big picture matters, it needs to be examined.

The New England cod fishery of the 1850s provides just such a case.
Displaying no obvious interest in the separate ecosystems that probably
made up the region confidently described as the single Scotian Shelf, Uni-
versity of New Hampshire ecological historians have agglomerated a great
many imperfectly related data points into one set aimed at one question:
how large were the cod stocks of that area in the age before the develop-
ment of industrial fisheries? Their strategies will never allow them to pene-
trate the workings of that ecosystem in the way that some scientists might
wish. Yet simply to know that cod stocks once stood at levels orders of mag-
nitude greater than they stand today says something blunt but deeply sig-
nificant about the changes that have transpired there over the last hundred
and fifty years.

The root of the disagreement here would seem to hinge around the is-
sue of predictability. Most will accept that we can discover something about
the past—a series of rough benchmarks about marine populations before
the advent of industrial fishing, for example. Whether or not we can use
this information from the past to construct models reliable enough to en-
able us to undo the damage that humans have wrought in any precise
way—“bending time’s arrow backward,” as Richard Hoffmann put it dur-
ing the discussion—is a thornier issue. Ecosystems are too complex, and
the models appropriate to describe them are too open-ended with too
many unknown or unacknowledged externalities, to allow for anything
like the sort of precision one would need to rebuild ecosystems as they
were. Changes in the environment and consequent extinctions and near-
extinctions in different seas have changed the pattern of species interaction
forever and made certain waters uninhabitable to life-forms that once called
them home. Were we to try to restore such complex environments under al-
tered and imperfectly understood conditions, we would almost certainly
produce unintended consequences. Though it is important to have some
notion about what a desirable ecosystem might consist of, we must admit
that any attempt to hit that target precisely will probably go awry and that a
degree of caution born of humility must be invested in the reconstruction
process, just as it ought to have been employed in the original march of
destruction.

If there are advocates for predictive knowledge of the sort that would
allow one to micromanage one particular coral reef or estuary back into
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some known, pristine state, they are not likely to be found among marine
scientists and historians. The call is, rather, for a series of general quantita-
tive measurements over wide areas that would alert us in an approximate
sense to (a) what the carrying capacity of the oceans once was and (b) what
the pace and direction of change in biodiversity and biomass, especially
since the beginnings of measurable human impact, have been. If this seems
simplistic, it is a point that many stakeholders in ocean resources still do not
accept, and even to demonstrate roughly what (a) and (b) may have been
would mark an advance over the present confusion.

In the general discussion that followed the panel, several participants
connected the lack of awareness of the degree to which marine biodiversity
is in decline to an increasingly ahistorical spirit abroad in the modern
world. Carl Safina expressed a worry that in the twenty-first century the
past was ceasing to have significance and that without any sense of it we
would be “flying blind.” Jeremy Jackson spoke of a “collective amnesia” that
allows policymakers to commit the same errors over and over again with-
out any clear awareness of how similar courses have proved disastrous be-
fore. Ram Myers offered a remarkable, graphic illustration of how the col-
lapse of the northern cod in Atlantic waters at the end of the 1980s had
been almost exactly foreshadowed by the crash of the haddock population
in the same waters a decade before. Others echoed Daniel Pauly’s concern
that our baseline definition of a pristine ecosystem seems to have fallen with
each successive generation.

While all of this is probably true, it is not clear to me that the problem
is rooted in a general ahistoricity peculiar to the modern condition. Indeed,
the very notion of modernity implies that we distinguish ourselves from a
past that is qualitatively different from the present; indeed, we are bom-
barded daily with facts and myths from the past in a profusion that would
have deluged our ancestors. Alexander Stille reminded us that even as ar-
chaeological monuments decay before our eyes, we feel prompted to record
more information about them and try to learn more about how they came
into being than earlier generations ever have. People in the past may have
possessed more respect for tradition than we do, but that does not mean
they had a clearer understanding of history—indeed, quite the opposite.
They honored tradition because it spoke to them of things they felt had not
changed. The problem is less that they were more conscious of history than
we are and more that in a world that was changing much more slowly than
ours, they could afford to be ignorant of history. We cannot. Roger Brad-
bury pointed out that it is not possible to see in the ecological history
of past centuries anything close to what is happening now. The world is
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moving, as he put it, into a nonanalog state. Even though, within the hu-
man realm, the past has never been a very effective analog for the present,
his broader point that the acceleration of change may be starting to outstrip
our ability to understand and react informatively to environmental change
is deeply worrying and demands that we try to chart out what these changes
have been.

History

That the past, and sometimes the distant past, is relevant to the study of
ecosystems should hardly require an extended defense. The touchier issue,
and one that draws comment repeatedly, is the call for the integration of
humans into the models of marine ecology. Integrating the past into ecol-
ogy is one thing; integrating history into it is another. The latter might strike
the uninitiated to be as self-evident as the former. We are certainly the top
predators on our planet. Yet food webs are regularly plotted in diagrams
where humans are not assigned any trophic level whatsoever; rather, we
seem to enter into ecologists’ current models of their ecosystems principally
as an external force. Although we are still aliens below the waves, I doubt
that after fifty years of dragging the continental shelves for fish, our otter
trawls can still be considered in any meaningful way external to the struggle
for life in the deep. Still, the consequences of incorporating Homo sapiens
into marine ecology are complicated, especially in our role over time, and
we need to think hard about what this may involve.

The central problem in letting humans into the story is that they
possess consciousness and culture, both of which differ across space and
change over time, making us very difficult to incorporate into any scientific
model—ecological or otherwise. Because we as a species possess a degree of
instability in our basic properties that manifests itself in the cultural time of
decades and centuries, not in the evolutionary time of millennia and more,
we are a shifting sandbar on which to construct theory.

Historians deal with this problem all the time. On the one hand, they
consider it their job to reassemble the human past. On the other hand, they
believe that absolutely all evidence from the past is in some sense corrupted
three times over: through the processes of selection (what was recorded),
preservation (what has survived), and analysis (what we choose to look at).
Every document appears to them as if it were an object viewed through a
series of wavy lenses, in which the object is the reality of something that
went on in the past, and the lenses are the cultural filters that people of all
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the intervening generations have employed in their attempts to record, pre-
serve, and interpret it. Part of the time, they are trying to use what they
know about the different lenses to determine something about the object—
the behavior of the past. And part of the time they are trying to use what
they know about the object itself to study the lenses—the culture of the
past. A historical document is, therefore, like a painting. It tells us some-
thing about the painter and something about the scene being painted, but
for distinguishing between these two different somethings there is no scien-
tific method. Becoming an historian, then, does not mean mastering a body
of theory or a definable methodology. Rather, it involves learning enough
about the practices and culture of a given age that one can look through a
piece of surviving evidence either for the values of the day imbedded in the
sort of story its author was trying to tell or for the real behavior one can dis-
cern behind the cultural presuppositions of the age. This may strike nonhis-
torians as a circular method—so it is—but it is inherent in a discipline that
contends we are in some measure subjects of history ourselves. To this de-
gree, history is an art and not a science.

In practice, therefore, historians will hardly ever be able to provide
ecologists with the hard data they desire. Take an example from New En-
gland’s woods and rivers. When the Puritan settlers first arrived in the sev-
enteenth century they viewed most, if not all of what they saw—the salmon
runs, the park-like forests, and the stocks of game—as features of an un-
touched wilderness. They saw it this way, however, only because they
believed the Algonquian inhabitants of this land to be just as wild as the
natural world around them and quite incapable of modifying it in any pro-
ductive way. Knowing that the Puritans were unlikely to recognize a type of
fishery based on brush and stone weirs, a style of forest culture organized
around calculated burnings, or a form of culturally limited hunting aimed
at a strictly regulated level of subsistence, we must now discount the Puri-
tans’ claim to have arrived at the edge of an unimproved world. These
colonists had encountered in North America forms of land use that did not
correspond to the world of hedges, sheepfolds, barns, and manure piles
that English people equated with civilization—and they did not recognize
the imprint that the Indians had already made upon the land.

Furthermore, they had a vested interest in seeing things this way. As
the first governor of Massachusetts, John Winthrop, put it in 1629:

That which lies common and hath never been replenished or subdued
is free to any that will possess and improve it. . . . The natives in New
England, they inclose no land neither have they any settled habitation
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nor any tame cattle to improve the land by, and so have no other but a
natural right to those countries. So as if we leave them sufficient for
their use we may lawfully take the rest, there being more than enough
for them and us.

Before establishing their own right to the lands around Massachusetts Bay,
Winthrop and his friends had to be convinced in their own minds that the
landscape before them was unimproved. They also had to believe that the
region was rich enough in natural resources to support them. Most of those
early travelers to New England who took the time to describe the natural
environment around them in forms (chiefly published) that have survived
to the present were promoters, trying to persuade themselves and others
that the Great Migration would work—that God really did intend this to be
a refuge for his chosen people. For all of these reasons, writes William
Cronon, one needs to take much of what they wrote with a grain of salt.

Nonetheless, their descriptions were more than simply self-justification
and propaganda. All of these writers had visited New England (or spoke
with those who had), and they were not just lying through their teeth. The
indigenous peoples of New England had placed a fainter footprint on the
land they had inhabited for thousands of years than the Europeans man-
aged during their first two hundred. The early descriptions of alewives
“pressing up in such shallow waters as will scarce permit them to swim” or
shad “so thick . . . you could not put in your hand without touching some
of them” plainly distinguish themselves from later descriptions of both
these fish in vastly depleted numbers. There may not have been many foot-
long oysters in banks that were a mile in length or clams “as big as a penny
white loaf” when Europeans first arrived, but even if there were just a few
of these monsters, or even if they were only nine inches long or half the size
of a loaf of Wonder Bread, we know that by the end of the nineteenth cen-
tury, mollusks were a lot smaller and much fewer in number than they had
been at the time of European settlement. If one takes such anecdotal evi-
dence in quantity, one can produce a picture of where and in roughly what
quantity many marine species once were found that transcends the peculiar
biases or mistakes of individual sources.

There remains, nevertheless, the difficulty that in all cultures, people
are predisposed to see things or miss them, count them or ignore them,
in consistent patterns we cannot disregard. Thus, the fact that in 1630
William Wood and many like him saw wilderness and abundance in the
same places where by 1850 Henry David Thoreau and his generation saw
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industrial development and the beginnings of scarcity tells us something,
not only about declining biodiversity in New England, but also about the
growing sensitivity to that decline among New Englanders, and it may well
be that comparing the two positions at face value may simultaneously exag-
gerate the degree of ecological transformation while it underestimates the
amount of cultural change. This is no reason to flee from comparisons over
time—in ecological history or cultural history—but an historian has to en-
join caution. That such evidence be used to demonstrate gross changes in
different ecosystems over approximate periods of time and thus to contex-
tualize the real pace of current change seems more than reasonable, but to
employ this evidence to construct models capable of allowing us to engage
in prediction at any level of real precision is unrealistic.

Letting humans into the picture not only introduces problems of evi-
dence; it also tangles the process of analysis and understanding. The models
that fisheries scientists now use to assess marine populations are far more
complicated than they used to be. In single-species-based management,
these models already involve an attempt to monitor fishing mortality
through measurements of fishing effort, effectiveness of gear, and size of
catch at different age levels. Daniel Pauly has suggested that in ecosystem-
based management, they might also include “trophic interaction between
species, habitat impacts of different gears, and a theory for dealing with the
optimum placement and size of marine reserves.” In such models, humans
appear chiefly through their effect on gear and effort, which is probably also
how the fish see it. But gear and effort are functions of much more compli-
cated human systems that are in constant motion over time. Ecologists can-
not study everything at once, of course, so they rely on economists, demog-
raphers, lawyers, and a few other specialists in human behavior to deal with
these factors. This may work in the short run, if the social science is good
enough, but in the longer run the possibility of cultural change enters the
picture and foundations upon which the social scientific models are built
begin to buckle.

A classic and fairly simple example is the relationship between prices
and effort. At the dawn of the twenty-first century, it seems clear that in all
commercial fisheries these are positively related and that, other things be-
ing equal, rising fish prices will prompt increasing fishing effort and im-
provements in gear. While I know of no studies of preindustrial fisheries
that address this relationship, one work on the fur trade in western Canada
during the eighteenth century and another on family-run mining opera-
tions in early modern England demonstrate the opposite—that in both
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cases, rising prices brought about diminished effort, as producers capital-
ized on improved returns by maximizing not profits but leisure or at least
the time to invest in alternate economic activities. An economist has no
trouble describing these responses; they both take the form of a classic
backward-sloping labor supply curve. But the shape of the curve is cultur-
ally determined—a historical creation—and its history never has been or
ever will be subject to prediction.

A more complicated cultural question—and one that has attracted
much interest among maritime historians, anthropologists, sociologists,
and others—is the concept of the common property resource. It is un-
doubtedly true that most of the ocean has been treated this way, especially
in the last five hundred years as Michael Orbach pointed out. Building on
this truth, economists and biologists have generated predictive theories of
some power and considerable influence. Yet it is also true that there have
been across the ages few utterly unregulated commons. All resources are ex-
ploited along a spectrum of legal and customary environments, each of
which contain a mix of public and private privileges that have developed
historically. Some commons have degraded very rapidly, others have sur-
vived much longer, but all of them have a history, which is basically one of
changing human assumptions about what one can and cannot do with the
resource. The indigenous salmon fishery of British Columbia, for example,
was sustained for something in the order of three thousand to five thou-
sand years before European settlement on the Pacific coast, not because In-
dians lacked the technical capacity to overfish or because they fished for per-
sonal consumption only, but because they possessed an economic culture
that emphasized subsistence, diversification, and reciprocity and because
their tribal culture was not inherently expansionist. When the Europeans
arrived in the nineteenth century, they introduced a different economic cul-
ture—based around commodity production, specialization, and seizure of
the land for settlement—that succeeded in destroying the salmon stocks in
many places along the coast within less than a century. This particular
tragedy of the commons is not an expression of an economic law but a com-
plex historical tale. No model constructed to explain the ecosystem of the
Pacific coast in 1800 (even with the best science) could have foreseen what
has transpired since. Allowing humans and the historical process into the
picture adds a measure of instability into our understanding of the environ-
ment that does not obviate the need for science but certainly clouds the
prospects for prediction.

The trouble with introducing humans into ecology is not that it is un-
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necessary—quite the opposite. The problem is rather that it ushers in a se-
ries of variables changing in nonlinear fashion that we cannot study with
true scientific objectivity because they are extraordinarily complex and be-
cause they are us. The elements of culture that can shape a given ecosystem
may spring from areas and activities that seem at first glance to have noth-
ing whatsoever to do with the environment in question. Always they are
rooted in events that transpired decades or even centuries before the degra-
dation of that ecosystem began. And they often work at cross-purposes,
pushing people to take some actions that protect the environment while si-
multaneously doing other things to ruin it. In the short run, the decisions
that humans make may seem like pure stupidity—“the march of folly,” to
borrow Barbara Tuchman’s phrase. But they are also embedded in cultural
assumptions of enormous power that we cannot easily, even humanely,
throw aside.

Newfoundland Redux

Which brings me back to Newfoundland. Here we have what Carl Safina
called with some justice “the worst fisheries management failure in the
world.” What happened there in the second half of the twentieth century
might well be described as a species of criminal imbecility, but it was also
rooted in cultural forces of great power and much antiquity. Those who
were connected to the tragedy—if only as passive observers like myself—
must accept responsibility for what happened, but we cannot trivialize the
difficulty in seeing things for what they are when we ourselves are impli-
cated in so many different ways in the culture that does the damage. Al-
though I am not an historian of Newfoundland myself, permit me some
general reflections on what those cultural forces may have been.

The first of these, oddly enough, is a form of nationalism. Newfound-
land was settled for the most part between 1775 and 1815—an extraordi-
narily short period of time when recurring maritime warfare destroyed the
migratory fishery from Europe and high fish prices enabled thousands of
people to move permanently to the island. Those conditions disappeared
with the Treaty of Ghent in 1815, leaving a population of about forty thou-
sand to make their way in a place where almost everyone lived on the knife’s
edge of survival. For the better part of two centuries in the face of constant
hardship they managed, scraping by on erratic returns from a fishery fi-
nanced by merchant capital. And in the course of time Newfoundlanders
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developed their own dominion government, a powerful sense of their own
identity, and a nationalist feeling that this was a place where they should be
allowed to live.

The decision to join Canada in 1949 as its tenth province constituted
something of a devil’s bargain, whereby Newfoundlanders gave up consid-
erable authority to Ottawa in return for the latter’s promise to help finance
their continued occupation of the island. This financial assistance has taken
innumerable forms since confederation: support for capital improvements
inside the fishery, development of infrastructure across the island, funding
for medicare and higher education, and a generous program of unemploy-
ment insurance that functions as a form of income supplement for fishing
families. Newfoundlanders have always been willing to emigrate if neces-
sary, but their commitment to the island is powerful enough that they
would rather not, and after 1949 enough of them bought into Ottawa’s
commitment to develop the province’s fishery that they eventually helped
destroy it. Sumaila and Pauly write with some justice of the disastrous eco-
logical consequences of subsidizing the fishing industry and the communi-
ties that pursued it. Yet it is hard to imagine how in a democracy there
would have emerged the political will to renege on the bargain of 1949,
squeeze Newfoundlanders out of their modest homes, and crush their cul-
tural traditions. This was not simply stupidity but also a considered re-
sponse to real moral issues and a nearly intractable historical problem.

The second cultural force of consequence was Newfoundland’s politi-
cal weakness. As a colony and dominion within the British Empire, the is-
land’s interest in the marine ecosystem that surrounds it was always subor-
dinated to Britain’s wider imperial concerns. On several occasions in the
nineteenth century, prompted by complaints over poor catches, the New-
foundland legislature did attempt to take measures to regulate its fishery,
only to be told by London that these were matters of maritime and, there-
fore, foreign policy, over which the island had no jurisdiction. When New-
foundland joined Canada, it hitched itself as a minor partner to a pro-
foundly continental country—born of the fur trade into the interior and
knit together by the building of the Canadian Pacific Railroad—a mari
usque ad mare, but no further. To this day, the effectively populated portion
of Canada retains a ribbon-like quality, 3,000 miles long and a couple of
hundred miles wide. Most Canadians live far from the ocean and do not
think of it very seriously if at all. In times of crisis, Ottawa has intervened
(as, for example, to establish the 200-mile limit in 1977 and to close the
cod fishery down in 1992), but most of the time the fishery has been char-
acterized mainly as a problem—a “failed staple,” an “employer of last re-
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sort,” or a “chain with too many weak links”—and the project of dealing
with it constructively has never managed to attract the imagination of Can-
ada’s ruling class or the majority of its voters.

The Canadian case is not unique. The advent of the industrial revolu-
tion and the arrival of the railroad throughout the world in the nineteenth
and twentieth centuries focused human attention toward manufacturing
processes and the profits to be won by colonizing the interior of the great
continents and developing their landward resources. Maritime events,
which had been at the center of world history since the beginning of the fif-
teenth century, ceased to be so after 1815. So while the exploitation of ma-
rine resources has intensified in the last two hundred years, the manage-
ment of the seas has become largely the responsibility of nations possessing
a maritime consciousness that is stilted at best. This is not to say that in
preindustrial times, the Dutch, French, or English states were ecologically
conscious. But at least their fisheries figured prominently in national policy,
which is more than one can say of most countries today.

Finally, and most profoundly, the destruction of the northern cod can-
not be understood apart from the historical construction over the past five
centuries of a global marketplace. Throughout this period, the freedom of
whalers, sealers, and fishers to descend on virtually any marine population
with the full force of human technology, unless specifically prohibited by
particular laws, has been the general rule. During the last fifty years, many
governments have grown more aggressive about reserving coastal waters to
their own fishermen, yet the default position in capitalist culture is that
whatever is not explicitly protected is fair game. In the months that fol-
lowed the cod moratorium in 1992, the Newfoundland media and general
public thrashed about looking for an explanation of what had happened.
Some named the Department of Fisheries and Oceans as the culprit and
others the politicians, some the foreign fishermen and others the seals. A
good many blamed themselves: “We took too much,” some of my neigh-
bors told me. But almost nobody blamed National Sea Products or Fish-
eries Products International—the two corporations who in the name of the
bottom line engineered most of the final slaughter. Their behavior was held
to be completely natural and no more culpable than the weather. To this
day, neither company displays much visible remorse over its role in driving
the northern cod to the edge of extinction. FPI’s website reported only that
“the Newfoundland groundfish industry has faced a number of resource
challenges in recent years,” a piece of bland corporat-ese that reflects the
company’s belief that since it did nothing illegal it was not responsible for
the disaster. It was only servicing demand.
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If the right to catch cod, and most other fish, is lightly regulated today,
the right to consume fish is freer still. Nations may use tariffs to protect lo-
cal fishers from foreign competition, but rarely will they regulate consump-
tion per se, especially if they possess no fishery of their own. Until interna-
tionally recognized as an endangered species, there exist almost no rules to
restrict the trade and consumption of legally caught fish. For the most part,
we simply expect market forces to drive the price of this scarce commodity
upward and push people into searching out other species or entirely differ-
ent sources of protein altogether.

Limitations on consumption are not unknown in history; dozens of
different cultures have followed dietary restrictions, for example, that for-
bid certain foods outright. In the modern West, however, we have enjoyed
many centuries of prosperity derived largely from market exchange and are
deeply vested in the freedom to buy and sell the commodities we produce
as well as the factors of production we need to produce them. Fundamen-
tally, it is what distinguishes us from serfs and slaves. Now and again, espe-
cially during periods of crisis (wars spring to mind), we will accept limita-
tions on these freedoms, but our tolerance for them is normally very low.
Especially in the United States, but to some degree in most Western coun-
tries, it is extraordinarily easy to protest any specific economic restriction
on consumption—no matter how important it may seem—by appealing in
general terms to the principle of liberty. So fully are we implicated in the
culture of choice—learned over centuries of coping with capitalism—that it
is difficult to mount any broad campaign to persuade one another to adopt
restraint. We will have to learn, but undoing five hundred years of being
taught the opposite will not be easy.

That we need to study the past both to understand what is happening
to marine ecosystems and to manage human involvement in them today
should go without saying. We cannot, however, underestimate the difficul-
ties involved in this project. Integrating ecology and history will force ecol-
ogists to confront culture, a phenomenon that complicates the collection
and interpretation of evidence and that evolves in unpredictable ways. Inso-
far as cultural change occurs gradually and in knowable directions, we can
allow for it in our attempt to reconstruct ecological behavior in the past—
but rarely with the sort of precision a scientist would like. Understanding
the rootedness of human ecological behavior in history helps us to see how
we got to where we are—but it also alerts us to the many ways in which the
values we inherit set the switches for the decisions, some of them quite dis-
astrous, that we make. We are not completely the prisoners of those values;
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if we were, nothing would ever change. But we call them values because we
value them, and we err if we think that casting them aside is a simple matter.
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PART IV

Methods in Historical Marine Ecology

Here the focus shifts from specific research questions and results to meth-
odology. Heike Lotze and colleagues review the remarkably broad array of
tools and analytical approaches that have been used with varying degrees of
success to reconstruct the ecological history of the ocean. Then Stephen
Palumbi addresses the question of how many whales existed in the past be-
fore we began to kill them and why different kinds of analyses can yield
strikingly conflicting results. The “devil is in the details” in historical marine
ecology as in any other discipline.

Analytical methods are so varied that large teams of different kinds of
specialists are often required to assemble a thorough picture of past events.
For this reason historical ecology is fundamentally collaborative and syn-
thetic. Lotze and co-authors present examples of techniques gleaned from
paleontology, geology, radiometric dating, stable isotope chemistry, ar-
chaeology, genetics, history, early and modern scientific surveys, and eco-
logical experiments, among others. All these fields are potentially relevant,
and several recent review articles employ data from most of them. The trick,
of course, is to know the strengths, weaknesses, and assumptions of differ-
ent methods, to judge which ones are more likely to bear fruit under rele-
vant conditions and over different temporal and spatial scales.



Sometimes it is enough to estimate the abundance of organisms or en-
vironmental conditions at some time in the past as a frame of reference to
compare with the present. But in other cases, we need well-constrained
time series of data to document long-term trends in ecosystems or establish
relationships of cause and effect. With better baselines and longer trajecto-
ries of change, managers can better anticipate the likely environmental con-
sequences of different actions.

In the happy case when the results of different methodologies agree,
confidence increases in our picture of the past. A good example is the re-
markable correspondence between historical estimates of past abundances
of cod on the Scotian Shelf versus calculations based on the carrying capac-
ity of the environment and the biological characteristics of cod. But in other
cases, different methods can produce drastically different results, as
Palumbi describes for estimates of pristine abundances of whales. Calcula-
tions based on historical catch data differ substantially from those based on
genetic analysis of mitochondrial DNA sequences. The historical estimates
appear too low because most of the assumptions used in the genetic analy-
ses err on the conservative side whereas the historical records are inevitably
incomplete. The situation is still unresolved.

The controversy about whales is of more than academic interest be-
cause estimates of pristine whale populations are used by the International
Whaling Commission (IWC) to determine the health of whale populations
today. Low population estimates before whaling would indicate that some
species, such as minke whales, are close to recovery. High population esti-
mates before whaling, on the other hand, would mean that whale popula-
tions today are still severely depleted and cannot support commercial whal-
ing. Because Japan and Norway want the IWC to lift the moratorium on
commercial whaling, which method is more accurate is bitterly debated and
has direct bearing on this controversy.

The same is true for virtually all overharvested fisheries and for any
other environmental problem for which modern baseline data are lacking.
Much work needs to be done to establish guidelines for the application and
interpretation of different kinds of historical records and to determine
which ones to use under the conditions at hand. Clearly stated assumptions
and transparent data are vital. The more different methods that can be
brought to bear on reconstructing the past, the more convincing will be
the results when they agree and the stronger the argument for regulatory
action.
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The ocean has a history. Over the past hundreds, thousands, and millions of
years the ocean and life within it have evolved and changed. This history de-
termines the ocean’s present state and shapes its path into the future. We
cannot understand how the ocean functions today without knowing its
ecological history. Likewise, we cannot predict future changes without
knowing the origin, cause, and trajectory of change in the past. Finally, we
cannot effectively restore degraded marine populations, communities, or
ecosystems without historical baselines to use as reference points.

Marine historical ecology is a new field concerned with compiling and
understanding the ocean’s ecological history. It is a multidisciplinary effort
to piece together a puzzle from fragments of the past. That past, however,
was ever changeable so that our baseline for comparison depends on when
we choose to measure it. Over time the baseline may have shifted due to nat-
ural variability, human impacts, or a combination of the two. Major goals of
historical ecology are to determine the direction and magnitude of such
changes, and to distinguish between natural and human cause and effect. In
particular, we want to answer these questions: What has changed in the
ocean? What caused these changes? And where do these changes lead us?

Answering these questions requires information from many different
disciplines, including paleontology, archaeology, history, and ecology. The
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kinds of data available and their strengths and weaknesses vary, but they all
provide valuable information about the past, which can be pieced together
to reconstruct an ecological history. The process is fundamentally retrospec-
tive (figure 8.1). Paleontologists analyze sedimentary records for fossils and
proxies of environmental change including isotopic composition, biochem-
ical traces of organisms that are not fossilized, and in some cases ancient
DNA. Archaeologists do much the same for artifacts, plant and animal re-
mains, and patterns of human habitation and exploitation. Historians ana-
lyze early narrative descriptions and archival records of what people saw,
caught, traded, and sold. Ecologists compare biological and environmental
observations, surveys, and experiments in the past with contemporary data.
Mathematical tools such as modeling, time series analysis, and meta-analy-
sis help to compare and integrate all these different kinds of data into a
more coherent whole.

Here we provide an overview of different research disciplines, data,
and methods used to reconstruct the ocean’s past. Then we highlight op-
portunities to integrate results in order to develop a comprehensive under-
standing of the past that stretches from deep time to the present. Our pur-
poses are to envision the kinds of biological and environmental changes
that have taken place in the ocean over different temporal and spatial scales,
not just for individual organisms but for entire food webs and ecosystems,
and to differentiate natural and human causes of change.

Disciplines and Data

Paleontological, archaeological, historical, and ecological data vary widely
in their temporal and spatial scale, precision, and application to the histori-
cal ecology of the ocean (table 8.1).

Paleontological and Geological Data

The fossil record is the primary source of information about changes in spe-
cies and environments over centuries and millennia to millions of years.
Macrofossils (figure 8.1B) provide information about species that are ex-
tinct today, or about occurrences of extant species in the distant past. The
sedimentary record represents archives of past communities and ecosystems
and thus a record of ecological and environmental change. This is because
layers of sediment are deposited over distinct periods of time, and the age



Figure 8.1. Examples for data sources used to reconstruct the past. (A) Core pho-
tograph of laminated sediments from Ocean Drilling Program Hole 1261A, core
41, section 1, Demerara Rise, NW South America (photo provided by Richard D.
Norris). (B) Fossil sardine from laminated organic claystones in the Monterey For-
mation, Gaviota Beach, Santa Barbara, California, approximately 11 million years
old (photo provided by Richard D. Norris). (C) Neolithic wall drawing on a sand-
stone wall at Ulchu in southwest Korea, showing a whale harpooned by a boatload
of men (from Ellis [1991], image used with permission). (D) Circular fishhooks
made from shells, less than 2,500 years old, San Miguel Island, California (photo
provided by Torben C. Rick). (E) Shell midden site at San Miguel Island (photo
provided by Jon M. Erlandson), (F) yielding animals such as abalone (photo pro-
vided by Jon M. Erlandson), and (G) archaeological remains of bone gorges, ca.
9,000 years old (photo provided by Jon M. Erlandson).
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of each layer can be determined by a great variety of methods, including ra-
diometric dating, the first and last occurrences of fossils, and climate
records based on stable isotopes or pollen. Although most sediments are
mixed to some extent by burrowing organisms, annually laminated deep-
sea sediments (figure 8.1A), especially those in anoxic basins, can even pre-
serve bimonthly environmental records spanning millennia. The relative
abundance of isotopes and minerals in different sedimentary layers is used
to reconstruct climate and environmental variability in the past. For exam-
ple, the oxygen isotope 18O is a common proxy to determine past tempera-
tures and reconstruct paleoclimates (figure 8.2). Likewise, strontium and
titanium can be used as proxies for paleosalinity and the amount of precipi-
tation and river runoff over thousands of years.

In addition to the sedimentary record, isotopic and trace element
analyses of skeletal growth bands of long-lived organisms such as some
mollusks and corals can provide a record of past environmental conditions.
Because corals grow incrementally every year, they show growth layers just
like tree rings and may preserve seasonal climate cycles over intervals of
several hundred years. The fraction of stable isotopes of O and elemental ra-
tios such as Sr/Ca (strontium/calcium) record the environmental condi-
tions when each layer was formed. For example, O measurements of long-
lived shallow-water corals have been used to determine a 240-year record
of precipitation and regional runoff in the Florida Keys. High-precision
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Figure 8.2. The sediment record: climate and plankton. Reconstruction of the
41,000-year cycle in abundance of the planktonic foraminifer Globorotalia miocenica
in response to cyclical changes in global climate derived from oxygen isotope
records from benthic foraminifera. (Adapted from Ocean Drilling Program Site
999, Caribbean Sea. Adapted from Norris [1999]; Haug and Tiedemann [1998]).



radiometric dating and the construction of master chronologies using char-
acteristic patterns of growth can be used to reconstruct the environmental
variability of ecosystems with daily to monthly to annual precision extend-
ing back thousands of years.

The fossil record is also the primary source of information about when
and how rapidly species first appeared or went extinct, and how relative
abundances of species and higher taxa changed over time. The fossil record
shows that populations of many species display large fluctuations in abun-
dance on a variety of timescales, which may translate into variations in sus-
ceptibility to extinction. For instance, the Caribbean planktonic foraminifer
Globorotalia miocenica displays large variations in abundance between 2.8
million and 2.3 million years ago with the growth and decay of glacial ice,
being more abundant during glacial than interglacial periods (figure 8.2).
The abundance of this species repeatedly dipped low during interglacial pe-
riods and ultimately became extinct globally during one of these episodes.

Similarly, pelagic fish that shed their scales throughout life leave clear
records of their past abundance in ocean sediments, as observed for popula-
tions of the northern anchovy (Engraulis mordax) off the California coast
during AD 278–1956 (see MacCall, figure 4.2, this volume). Relative
abundance fluctuated in cycles of about 102 years, a periodicity far longer
than any biological observations available for the entire Pacific Ocean. This
periodicity was not evident in existing catch statistics and underlines the
importance of the sediment record in evaluating population dynamics of
this commercially important fish. This begs the question of whether popu-
lation fluctuations reflect changes in abundance throughout a species’ range
or shifts in geographic distribution that reflect environmental fluctuations
(table 8.1). Distinguishing between these alternatives requires spatially ex-
plicit analyses using multiple samples along environmental and geographic
gradients.

The fossil record can also be used to assess the stability of ancient eco-
systems and changes in basic ecosystem structure that predate modern eco-
logical observations. Pandolfi studied a succession of uplifted reef terraces
on New Guinea and concluded that the population structure of reefs had
remarkable stability over a period of ~100,000 years. A comparable study
of uplifted reef terraces on Barbados showed that the widespread loss of the
coral Acropora from the Caribbean in the 1990s had no parallel in the fossil
record. Wapnick and colleagues arrived at a similar conclusion based upon
the temporal distribution of coral rubble in sediment cores from Discovery
Bay, Jamaica. In a different setting, analysis of the abundance and radiomet-
ric age of bivalves from the Colorado Delta was used to document the
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wholesale switch in species dominance associated with the reduction of
Colorado River flows in the early twentieth century.

The sedimentary record also provides an archive of past human impacts
such as increased sedimentation rate, pollution, eutrophication, and anoxia.
For example, the Ba/Ca (barium/calcium) ratio in cores of large coral heads
provides a proxy for sediment fluxes from river runoff, which usually in-
creased after permanent settlement and land clearing. Cooper and Brush
used a variety of proxies from sediment cores to demonstrate that water
quality in Chesapeake Bay deteriorated quickly after permanent European
settlement in the seventeenth and eighteenth centuries (figure 8.3). They
calculated sedimentation rate by measuring concentrations of terrestrial
pollen in each sediment layer, an index of eutrophication based on the ratio
of centric diatoms and pennate diatoms, as well as the total content of or-
ganic carbon and nutrients. They also used the content of sulfur and occur-
rence of the iron sulfide pyrite as proxies for hypoxia and anoxia. Even sim-
ple comparisons of the compositions of living benthic communities with
time-averaged death assemblages are a very good indicator of past anthro-
pogenic change.
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Figure 8.3. The sediment record: pollution. Reconstruction of anthropogenic ef-
fects on water quality of Chesapeake Bay over the past 2,000 years. Data from sedi-
ment cores indicate strong increases in sedimentation rate (solid squares), the ratio of
centric : pennate diatoms as a proxy for eutrophication (open circles), and the content
of sulfur as a proxy for anoxia (crosses) after European settlement in the seventeenth
to eighteenth century. (Data adapted for Core R4-50, with permission, from
Cooper and Brush [1993].)



The fossil record provides a picture of environmental and ecological
change over very long timescales that can be invaluable for placing current
changes into context so that we may better distinguish the natural variabil-
ity of ecosystems from anthropogenic effects. However, the spatial and
temporal scale of this record varies among regions and environments.
Deepwater microfossils can provide high-resolution records of past envi-
ronmental change on a global scale but tend to include only a small number
of species. Shallower-water macrofossil assemblages are much coarser in
temporal resolution, but are typically more diverse and include many com-
mercially important groups. However, the record consists primarily of spe-
cies that have preservable hard parts such as shells and bones, and some
groups have higher preservation probabilities than others. Quality of
preservation also depends on the environment of deposition and the extent
of subsequent alteration. There are also problems in estimating relative or
absolute abundance compared to simple presence or absence (table 8.1), al-
though this is sometimes possible under special circumstances.

Archaeological Data

Archaeologists analyze remains from past human settlements that mirror
former human activities, their tools and ornaments, as well as the species
that were used for food, medicine, or other needs. Remains can be found in
caves and graves or buried in the sediment of former occupation sites. Food
remains in the form of animal bones and shells, as well as remnants of
plants, are found in coastal shell middens (figure 8.1E) where they were de-
posited over time by subsequent settlement cultures. Different strata within
such sites can be dated through a variety of techniques, including radiocar-
bon dating. Thus, archaeologists can use stratified shell middens or sedi-
ments as archives of past information revealing human technology (figures
8.1D, 8.1G), resource use and other cultural practices, and environmental
parameters. Archaeological assemblages are culturally selected and biased
by human activities, interests, and preferences. Nonetheless, middens com-
monly contain diverse biological assemblages collected by humans for a va-
riety of purposes, including wild and domesticated species as well as stom-
ach contents and epifauna associated with various prey (table 8.2).

The most common plant and animal remains found in middens or sed-
iments are pollen, seeds, shells, bones, scales, teeth, and hairs. In addition,
most archaeological sites also contain remains of tools and weapons that
give clues about the technologies humans used for exploitation. Plant re-
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mains provide information on wild or cultivated plants used and the natural
vegetation surrounding the settlement area. Animal remains reveal past oc-
currences of particular species, their use by humans as food or ornaments,
and information on their size, age, and relative abundance. Over the past
11,000 years inhabitants of Daisy Cave on the Channel Islands of southern
California consumed more than 150 species of marine and terrestrial ani-
mals, some of which are extinct today (table 8.2). The relative abundance of
different species in various strata indicates changes in their importance as
nutritional resources over time. Intertidal shellfish and near-shore fish were
generally of greatest importance throughout the sequence, followed by
mammals, while birds were of minor importance (figure 8.4).

From these and other records it has become clear that anatomically
modern humans have heavily influenced coastal and island environments
for much longer than previously believed. Marine shell fishing, fishing, and
hunting are now known to date back to the last interglacial stage, more
than 100,000 years ago. The colonization of Australia and western Melane-
sia 64,000 to 35,000 years ago documents the Pleistocene use of seaworthy
boats, and there is evidence for the colonization of the California coast by
about 13,000 to 12,000 years ago.

Some sites clearly reveal the effects of human exploitation on the rela-
tive abundance or size of species over time. Highly valued species such as
sturgeon and geese in the Emeryville shell mound in San Francisco Bay de-
clined in relative abundance (figure 8.5) and were replaced by smaller and
less valued species, indicating resource depression by indigenous people.
The average size and age of sturgeon as indicated by their dentary width
also declined over time. In contrast, Atlantic cod (Gadus morhua) con-
sumed along the Gulf of Maine remained nearly one meter long in size for
4,000 years until intensive commercial fishing by European settlers, sug-
gesting that indigenous people may have had little impact on this com-
monly used species. However, a detailed analysis of archaeological records
in Penobscot Bay, Gulf of Maine, revealed a distinct trend of decreasing
apex predators (mainly cod and swordfish) and increasing mesopredators
(flounder, sculpin) between 4,350 and 400 years ago.

Archaeological remains also provide information about species that
occurred in earlier times but are now regionally or globally extinct (table
8.2). Excavations at several geographically distant sites help to reconstruct
how distributions of species changed over time due to natural or human
impacts. For example, breeding colonies of fur seals had persisted on both
the North and the South Islands of New Zealand prior to the arrival of the
Maori people in AD 1250. The Maori hunted fur seals for food. By 1500,
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Table 8.2. Selected animal species identified in archaeological and
paleontological strata from Daisy Cave, San Miguel Island, California.

Common name Identified taxa Notes/Comments

Marine mammals
Gray whale Eschrichtius gibbosus
Common dolphin Delphinus delphis
Seals and sea lions Arctocephalus townsendi, Callorhinus Food, fur, oil

ursinus, Phoca vitulina, Zalophus
californicus

Sea otter Enhydra lutris Food, fur
Marine birds

Bald eagle Halieetus leucocephalus Locally extinct
California condor Gmnogyps californianus Locally extinct
Albatross Diomedea albatrus
Pelican Pelicanus occidentalis
Cormorants Phalocrocorax pelagicus, P. penicillatus Breeding

colony at site
Gulls, terns Larus californicus, L. occidentalis, Migratory

Sterna paradisaea
Shearwaters Puffinus griseus, P. puffinus Migratory
Storm petrels Loomeliana melania, Oceanodroma

domochroa, O. leucorhoa
Murres and murrelets Uria aalge, Endomychura hypoleuca,

Synthliboramphus antiquum
Geese, black brant Chen hyperborean, C. rossii, Branta

nigricans
Crane Grus canadensis
Ducks, teals Anas sp., Oxyura jamaicensis
Scoters Chendytes lawi, Melanitta deglandi,

M. perspicillata
Chendytes Extinct

Grebes Aechmophorus occidentalis, Podiceps
auritus, P. caspicus

Loons Gavia arctica, G. immer, G. stellata
Black-bellied plover Squatarola squatarola Migratory
Sanderling Crocethia alba Migratory

Fish
California sheephead Pimelotopon pulchrum Major food

species
Rockfish Sebastes carnatus, S. flavidus Major food

species
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Table 8.2. Continued

Common name Identified taxa Notes/Comments

Topsmelt Atherinops affenis
Monkeyface eel Cebidichthys vioaceus
Cabezon Scorpaenichthys marmoratus
Surfperch Cymatogaster gracilis, Hypsurus caryi,

Embiotoca jacksoni
Pile perch Damalicthys vacca
Giant kelpfish Heterostichus rostratus
Lingcod Ophiodon elongatus
Sharks Mustelus californicus, Squatina

californica
Shellfish

Mussels Mytilus californianus, Septifer Major food
bifurcatus species

Sea urchins Strongylocentrotus purpuratus, Major food
S. franciscanus species

Abalones Haliotis cracherodii, H. fulgens, H. Food, tools,
rufescens ornaments

Limpets e.g., Lottia gigantea, Megathura Food,
crenulata ornaments

Clams & Cockles Protothaca staminea, Tivela stultorum, Food,
Clinocardium nuttalli ornaments

Turban & Top snails e.g., Tegula funebralis, Astraea undosa, Food, tools
Norrisia norrissi

Crabs Brachyura sp. Food
Olive snails Olivella biplicata, O. baetica Ornaments
Cowry & Coffee bean Cyprea spadicea, Trivia californiana Ornaments
Tusk shell Dentalium pretiosum Ornaments

Notes: Does not include many minor or incidental midden constituents. Also recovered were
human (H. sapiens sapiens), dog (Canis familiaris), and fox (Urocyon littoralis) remains—the
canids probably introduced to the island by Native Americans—and the remains of an extinct
mouse (Peromyscus nesodytes) and vampire bat (Desmodus stocki).
Data compiled from Rozaire (1976); Guthrie (1980); Walker (1980); Rick, Erlandson, and
Vellanoweth (2001).

the seals had completely disappeared from the archaeological record of the
North Island, and by 1790 their breeding range had shrunk to the south-
ern part of the South Island. Historical exploitation by the European seal-
ing industry further reduced the range and numbers of fur seals until pro-
tection was implemented in 1873. This is a fascinating example of the



initially strong depression of a marine resource by indigenous people and
subsequent exploitation by Europeans, and the value of archaeological
data for determining a baseline of geographic distribution. Many similar
examples are emerging through collaborations of archaeologists and his-
torical ecologists.

Analysis of stable isotopes and trace elements in human bones and
teeth can be used to determine the health, nutrition, and diet of people in
the past. Stable isotopes of carbon (C) in human bone collagen act as an
indicator of past diets, because marine and terrestrial proteins leave differ-
ent 13C/12C ratios. For example, inhabitants of Britain rapidly switched
from a marine-based to a terrestrial-based diet following the introduction
of agriculture at the onset of the Neolithic period about 5,200 years ago.

Archaeological remains can provide long time series of data spanning
hundreds or thousands of years, with a resolution of decades to centuries
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Figure 8.4. The archaeological record: prehistoric human diets. Reconstruction of
marine resource use by prehistoric people at San Miguel Island, California, over the
last 10,000 years. The data show percent of estimated total meat yield for shellfish
(dark gray), fish (white), sea mammals (light gray), and birds (black) estimated from
archaeological remains in shell middens. (Data adapted from Erlandson et al.
[2005]).



(table 8.1). Data represent the local environment over a generally small to
medium spatial scale. For much of the last 15,000 years, coastal shell mid-
dens may represent one of the best sources of information about the nature
of past intertidal and near-shore communities, since rising postglacial sea
levels have drowned, damaged, or destroyed much of the paleontological
record for such ecosystems except in areas of active tectonic uplift. How-
ever, the record is biased to favor species that are well preserved, by soil and
other geomorphic characteristics, and by stratigraphic mixing caused by
burrowing animals, plowing, and other disturbances that limit temporal
resolution. The quality and quantity of data also depend on the excavation
and analytical techniques applied. Excavated remains provide valuable
records of species’ occurrences, size, and age. They are less valuable for esti-
mates of relative abundance because the occurrence of remains is strongly
biased by human activities, interests, and preferences (table 8.1).

Genetic Data

The genes in animals or plants living today, and ancient DNA extracted
from remains of extinct species, represent an archive of information about
species through deep ecological time. Levels of neutral genetic variation
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Figure 8.5. The archaeological record: resource depression. Reconstruction of re-
source use by prehistoric people. Archaeological remains from Emeryville Shell-
mound, San Francisco Bay, California, show trends of decreasing relative abun-
dance of sturgeon (solid circles, solid regression line) and geese (open circles, dotted
regression line) over time from the oldest (–10, ca. 2600 BP) to the youngest (–1, ca.
700 BP) stratum. (Data adapted, with permission, from Broughton [1997, 2002]).



increase with population size. Thus, the level of genetic diversity found in a
population today should reflect its average population size in the past. Ge-
netic estimates of the average long-term population sizes of humpback, fin,
and minke whales in the North Atlantic before intensive whaling suggest
populations on the order of 240,000, 360,000 and 265,000 individuals,
respectively. Palumbi discusses the underlying assumptions of genetic re-
construction of whale populations more fully in the next chapter. Genetic
estimates of the minimum numbers of whales that must have been alive in
more recent times are proving useful in evaluating the effects of whaling. In
general, however, genetic data can provide range estimates of population
sizes in the past, but these estimates tend to integrate population trends
over large temporal and spatial scales (table 8.1). On the other hand, ge-
netic data can provide reliable estimates of past population bottlenecks,
which have proven to be very useful for tracking changes in the geographic
distributions of species in response to past climatic change.

Historical Data

Historians use a variety of published, handwritten, and illustrated sources
in libraries, archives, and museum collections to extract information about
the past. Even before writing was invented, people left paintings and carv-
ings in caves and on walls, and they left monuments of whale bones and
other animal remains that can be used to trace their lives and activities. For
example, a Neolithic Korean sandstone carving shows a whale harpooned
by a boatload of men (figure 8.1C). It was discovered in 1971 and may be
one of the oldest illustrations of whaling in existence. After the invention of
writing, people left anecdotal descriptions of their activities, of the natural
world around them, of their ordinary life, and of their travels and discover-
ies. They also left maps, drawings, and paintings. At some point in history,
people started to leave records on trade and customs, catches of fish, the
amounts of salt used to cure the catch, the technology of exploitation, and
the regulations implemented as catches declined. These records became
more detailed and sophisticated over time, eventually leading to modern
fisheries and hunting statistics.

Historical sources provide information on species’ occurrence, abun-
dance, and distribution, as well as information about human impacts on
species that were used for food, fuel, fashion, or other purposes. Richard
Hoffmann used a wide range of written and illustrated information to re-
construct fisheries in medieval Europe. Freshwater and diadromous fish
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species originally preferred as food became scarce in the Middle Ages due to
overexploitation, habitat degradation, and pollution. People responded to
this depletion by implementing fisheries regulations, inventing aquaculture
to raise carp, and expanding to saltwater fisheries. Similar human responses
have occurred many times and in many places to this day.

In another example, old logbooks from whaling vessels were used to
reconstruct former seasonal distributions of whales in the ocean (figure
8.6). These data suggest that the historic feeding range of humpback
whales may have included portions of the mid-Atlantic ridge, which is very
different from today’s coastal migration routes to northern feeding
grounds. More recently, Josephson and colleagues used similar data to cor-
rect our understanding of the historical distribution of right whales in the
North Pacific.

Historical descriptions and records of fisheries can be used to recon-
struct catches, effort, harvest rates, and, sometimes, relative abundance over
time, as discussed in Bolster, Alexander, and Leavenworth in chapter 6
in this volume. Hutchings and Myers reconstructed historical catches and
harvest rates of Atlantic cod in Newfoundland from 1500 to 1991, show-
ing that the first signs of overfishing appeared in the mid-1800s. Historic
and modern fisheries statistics also have been used to demonstrate the shift
in fisheries from predominantly groundfish in the nineteenth and early
twentieth centuries to invertebrates and plants in the late twentieth century,
and an increase in numbers of target species in the commercial fisheries (fig-
ure 8.7).

Historical data are invaluable for understanding the scope of past fish-
eries and their decline, but they are biased by selective interest in different
target species (table 8.1). Some of the better historical records can be used to
estimate the relative, and even absolute, abundance of once commercially
important species with reasonable confidence, as well as presence or absence
of species. In general, historic data often have a high temporal resolution,
but consistent records usually cover only short periods of time. The spatial
scale ranges from local to global (table 8.1).

Early Scientific Data

In the nineteenth century, marine scientists started to systematically cata-
logue and investigate life in the sea. In some fortunate cases, regular mea-
surements of temperature or precipitation extend back as far as a century.
Biological records are generally more episodic and are usually limited to
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short-term investigations (table 8.1). Biologists published species lists and
investigations on abundance, distribution, life history, and environmental
parameters. In some cases, we can compare past with recent results if simi-
lar sampling effort or methods were applied. In other cases we can correct
for differences in methods or adapt modern methods to simulate those
used in the past.

Comparisons of early and modern studies for the Wadden Sea demon-
strate extreme ecological degradation over the past century. Recent bottom
surveys at the same sites investigated 50–100 years ago unambiguously
demonstrated the loss of oyster banks and of complexity and diversity in
benthic communities due to overfishing. Comparing phytoplankton
samples from the 1930s and 1990s demonstrates changes in the abundance
and frequency of blooms, as well as shifts in species composition from
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Figure 8.6. The historical record: whaling logbooks. Locations of humpback
whales by month recorded in logbooks from whaling captains in the nineteenth cen-
tury. Circles denote monthly catches extracted by Townsend in 1935, and squares de-
note sightings extracted by Reeves and colleagues in 2004. Records show a monthly
progression from winter breeding grounds in the Caribbean and Cape Verde Islands
areas, demonstrating a migratory distribution. The presence of humpback whales
along the Mid-Atlantic ridge in the summer suggests historic summer feeding
grounds that are far from northerly coastal feeding grounds known today (Smith et
al. [1999]).



diatoms to dinoflagellates, a common sign of eutrophication. Likewise,
recent surveys on the southeastern Australian shelf and slope reveal that
changes in species composition began almost from the start of the trawl
fishery a century before. None of these insights are possible with modern
ecological data alone, although the time frame is generally limited to a cen-
tury or less (table 8.1).

More systematic and detailed fisheries data have become increasingly
available since the late nineteenth to early twentieth centuries. Despite their
limitations, such data often provide the best long-term estimates of changes
in abundance over time. A wide range of methods has been developed to
analyze the data to infer past trends in abundance. Records of fishing effort
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Figure 8.7. The historical record: fisheries statistics. Historical and modern fish-
eries statistics were used to demonstrate that (A) declining catches of traditional
groundfish (cod, haddock, pollock; dotted line) are gradually replaced by increasing
invertebrate and plant landings (solid line) in the Quoddy region of the Bay of
Fundy. Note that high groundfish landings in the 1960s arose from expansion to
offshore fishing grounds and the introduction of otter trawls. (B) Increase in the
number of target species in commercial fisheries over time. (Data adapted from
Lotze [2004]; Lotze and Milewski [2004]).



and efficiency in addition to catch records can be used to calculate standard-
ized catch rates as a measure of relative abundance over time. Estimates of
present species abundance, recruitment, and natural mortality can be used
to reconstruct former species abundance using simple population models
such as Sequential Population Analysis. Data on stomach contents and diet
can be used to calculate the former abundance of multiple species and their
interactions using Multi-Species Virtual Population Analysis or other mod-
els. For example, Whitehead used a simple population model to estimate
the trajectory of global sperm whale abundance from 1700 to 2000. Calcu-
lated abundance was 1.1 million before whaling began, compared to the
360,000 sperm whales that exist today. McClenachan and Cooper used a
simple model to estimate that the population of now extinct Caribbean
monk seals would have consumed a biomass of fish and invertebrates six
times that found on typical reefs today.

Fisheries and hunting data are often the best and most consistent long-
term, quantitative data available for the recent and historical past (table
8.2). However, because harvesting records were usually kept for commer-
cial purposes and because harvesters adapted their searching and catch-
handling behavior to local conditions, interpreting these records is difficult,
especially for abundance. Powerful analytical methods are available for cal-
culating past or future population size if we have good estimates of present
abundance and life-history parameters. The greatest problems are that fish-
eries data are naturally biased toward species of greatest commercial interest
and data can be skewed for political reasons.

Recent Surveys and Experiments

Increasingly, modern surveys and monitoring are providing consistent bio-
logical and environmental data. Monitoring includes a wide range of envi-
ronmental parameters as well as the occurrence, abundance, distribution,
size, or health of selected species. Standardized annual surveys of fish abun-
dance on continental shelves can be used to analyze population trends, spa-
tial distribution, and productivity of fish stocks over time. Spatial surveys,
which compare sites with different abundance levels and sizes of predatory
fish, can be used to infer how large predators affect community structure.
Ecological surveys of protected and unprotected areas can be used to quan-
tify the effects of human exploitation on the abundance and size of inter-
tidal invertebrates.

Using a more historical approach, Roy and colleagues used informa-
tion from museum collections in conjunction with field surveys to show
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that human activities have led to significant and widespread declines in
body sizes of rocky intertidal gastropods since the 1960s in southern Cali-
fornia (figure 8.8). These declines are not restricted to species harvested for
human consumption such as the gilded tegula (Tegula aureotincta) and the
owl limpet (Lottia gigantea). For example, the volcano keyhole limpet (Fis-
surella volcano), which is not commonly harvested for food, is declining due
to accidental catch and chronic human disturbance. Comparable declines
did not occur at a nearby protected area where conservation laws are strictly
enforced (figure 8.8). Similar changes in response to human harvesting
have been documented for many other species.

Standardized surveys and monitoring provide detailed trends of bio-
logical or environmental changes that rarely extend back more than fifty
years (table 8.1). Thus, apparent trends may reflect phases of longer cycles,
or even random fluctuations in ecosystems that were greatly altered by hu-
man disturbance before monitoring began. However, the temporal and
spatial resolution of monitoring and survey data is very high, and we can
obtain relative and sometimes absolute estimates of abundance, density, or
other measures. This greater precision helps to tease apart cause and effect,
although data can be strongly biased by the purpose and design of the sur-
veys, methodology, and effort.

Experiments help ecologists to ask questions and test hypotheses about
factors that determine the distribution and abundance of species, commu-
nities, or other elements of nature. Experiments are a powerful tool to tease
apart the causes and consequences of ecological changes and their magni-
tude, as well as the occurrence of interactions among species, and the nature
and magnitude of human impacts. For example, both nutrient supply and
consumer pressure influence the structure, diversity, and functioning of
plant-dominated benthic communities. However, the magnitude and direc-
tion of these “bottom up” and “top down” effects depend on each other
and on the productivity of the system. Nutrient supply and consumer pres-
sure also interact with environmental factors such as temperature and ultra-
violet radiation to affect germination and growth of macroalgae.

Such experiments demonstrate that it is rarely a single variable that de-
termines species performance, community structure, or ecosystem func-
tion, but that multiple environmental and ecological factors interplay. They
further suggest that multiple human impacts such as eutrophication, alter-
ations of food webs, and climate change have interdependent effects on
ecosystems. Thus, a comprehensive understanding of the current state of an
ecosystem requires knowing the historical changes in the environment, in
species, and in human activities of all kinds.

Not all experiments are planned in advance. Some occur by chance.
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Trawling for fish was greatly reduced during World Wars I and II. These in-
terregna resulted in much greater catches of larger fish immediately after
cessation of hostilities, although the benefits were short lived due to over-
fishing during postwar fishing booms. Nevertheless, experiments are the
most rigorous way to evaluate causal relationships and elucidate mecha-
nisms of change. Results inevitably depend on the experimental design, and
the appropriateness and scale of experimental conditions, which may range
from laboratory beakers and aquaria, to larger outdoor tanks, to experi-
ments at sea (table 8.1). In general, the better the experimental control, the
less the experiments resemble natural conditions. So-called natural experi-
ments such as the effects of the two world wars on fish stocks are invaluable,
but the outcomes are not always so clear. Combinations of experiments and
research surveys may be the best option to test hypotheses and to validate
their relevance in nature, but experiments can only suggest and never prove
causes of past changes.

Integrating Data from Different Temporal and Spatial Scales

Historical ecologists attempt to reconstruct the abundance, distribution
patterns, and food web links of individual species in the past, as well as the
structure and function of the ecosystems in which they lived, in order to

156 m e t h o d s i n h i s t o r i c a l m a r i n e e c o l o g y

Figure 8.8. Survey data. Average size of two intertidal gastropods, the gilded
limpet tegula, Tegula aureotincta (open diamonds) and the volcano keyhole limpet,
Fissurella volcano (solid circles) at the southern California coast at two periods in the
past (data from museum collections), from a recent field survey, and at the protected
area Cabrillo National Monument (CNM) for comparison of recent exploitation ef-
fects. Data are means and 95 percent confidence intervals. (Adapted from Roy et al.
[2003]).



determine trajectories of change into the present. Our goal is to analyze the
direction, magnitude, and rate of change, as well as its causes and conse-
quences. To this end, we can view the wide range of data, methods, and dis-
ciplines as pieces of a puzzle. The puzzle and its pieces can be qualitative,
conceptual images of the past, or more quantitative reconstructions. Espe-
cially for single species, it is sometimes possible to reconstruct past popula-
tion abundance and distribution with considerable confidence. In most
cases, however, we can only estimate relative abundance in comparison to
other species living at the same time in the past or to the abundance of the
same species living today. Inevitable gaps in the puzzle can be filled in using
mathematical models to estimate missing values.

The three most successful approaches to reconstructing the past and
analyzing patterns of ecological change include comparing different times
in the past with the present (then versus now), analyzing time series of eco-
logical change, and reconstructing ecosystem models of past food webs and
communities.

Then Versus Now

Comparing species lists from different times in the past provides a simple
but powerful means of detecting past extinctions, introductions, or dra-
matic changes in abundance. Wolff used archaeological records, historical
descriptions, and recent distribution patterns to reconstruct the former
fauna and flora of the Wadden Sea and the extinctions that occurred over
the past two thousand years due to large-scale human exploitation and
habitat alteration. Likewise, Lotze and Milewski estimated that more than
half the marine bird and mammal species in the outer Bay of Fundy were se-
verely reduced or extinct by 1900 due to human impacts. We can also esti-
mate former abundance based on the amount of habitat that was available
in the past, as has been demonstrated for waterbirds by using old maps of
the Netherlands. Similarly, estimates of the loss of spawning habitat for At-
lantic salmon and gaspereau (alewife, Alosa pseudoharengus, and blueback
herring, A. aestivalis) in the St. Croix River, New Brunswick, due to large-
scale damming of rivers and pollution beginning in the 1800s, agree well
with historic catches described in fisheries reports from the nineteenth cen-
tury. These were more than a hundred times greater than today (figure 8.9).

Some of the greatest losses observed are for large fish species. In the
Quoddy region of the Bay of Fundy, Canada, catches of haddock
(Melanogrammus aeglefinus), halibut (Hippoglossus hippoglossus), pollock
(Pollachius virens), and cod in the 1990s were only 3 to 37 percent as great
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as catches a century before, despite great increases in effort and the effi-
ciency and spatial extent of fisheries (figure 8.9B). Likewise, standardized
catch rates of the most commonly caught species of sharks in the Gulf of
Mexico have declined 90 to 99 percent between the 1950s and 1990s, and
the same is true for large predatory fish communities from nine different
study areas worldwide. These and other historical estimates suggest that ex-
ploitation has fundamentally altered marine food webs and ecosystems over
time.

Time Series

Repeated historical observations of absolute or relative abundance can be
analyzed mathematically to calculate trends back in time and into the fu-
ture. Different time series of environmental and biological data can be
correlated to look for interactions between species and environmental pa-
rameters, or between different species, and to infer causes of change over
different spatial scales.

Pandolfi and colleagues used paleontological, archaeological, histori-
cal, and recent scientific data from coral reefs around the world to estimate
the categorical abundance of different groups of reef organisms over differ-
ent cultural periods. Overall trajectories of ecosystem decline were strik-
ingly similar worldwide despite strong regional differences in types of reefs
and the timing of the onset of intensive degradation. Similarly, worldwide
patterns of decline have been documented for estuaries and coastal seas. An
example for the outer Bay of Fundy is shown in figure 8.10. In general, ma-
rine mammals and birds declined before fishes, invertebrates, seagrasses,
and wetlands. Hunting, fishing, and habitat loss reduced animal popula-
tions, dike building and draining destroyed marshes, and seagrass suc-
cumbed to wasting disease. Only birds have shown any significant evidence
of recovery.

Time series of standardized fisheries and monitoring data are especially
powerful for estimating changes in fish populations, teasing apart the rela-
tive contributions of fishing versus oceanographic change, and understand-
ing the effects of fishing on food webs. Unfortunately, such time series
rarely extend back more than a few decades. Records thousands of years
into the past can be obtained by analyzing fish scales or otoliths in lami-
nated marine sediments, as has now been done for fish stocks offshore
in California and South Africa. We can also use changes in the relative
abundance of microfossil species to infer changes in environmental condi-
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tions for which correlations with fish stocks or other environmental vari-
ables can be established.

Food Webs

Historical data can be used to reconstruct food webs based on the presence
or absence of different taxa over time. In addition, basic information on
their diets can be compiled mostly from stomach contents or by compar-
isons with other, better studied species whose diets are inferred to be
similar. So far, results are similar regardless of the types of qualitative or
quantitative data employed or the methods of analysis. Large apex preda-
tors are disproportionately removed first, often resulting in the phenome-
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Figure 8.9. Historical comparisons. Reconstruction of historical (white bars) and
comparison with recent (black bars) abundance or catch of important fish in the
outer Bay of Fundy, Canada. Upper scale, Reconstructed pre-1800s abundance of
Atlantic salmon and gaspereau (alewives and blueback herring) in St. Croix River
based on historic fisheries descriptions and modern estimates of available spawning
habitat, and recent counts of returning fish. Lower scale, Comparison of average his-
toric (1890–1900) with average recent (1990–2000) groundfish catch in the
Quoddy Region. (Data adapted from Lotze and Milewski [2004]).



Figure 8.10. Integration of different disciplines to create long-term timelines of
change. Relative abundance of (A) marine mammals, (B) birds, (C) fish, (D) inver-
tebrates, (E) vegetation, and (F) human population in the outer Bay of Fundy, Can-
ada, over different cultural periods in the past. Relative abundance was estimated in
percent of original levels or in categorical abundance as pristine (100%), abundant
(90%), depleted (50%), rare (10%), and extinct (0%). Cultural periods were, from
left to right, Pre (pre-human: >8000 BC), HG (hunter-gatherer: 8000 BC–AD
1600), Co1 (colonial establishment: 1600–1760), Co2 (colonial development:
1760–1900), Glo1 (early global: 1900–1950), Glo2 (late global: 1950–2000).
(Data adapted from Lotze and Milewski [2004]; methods after Lotze et al.
[2006]).

non of “fishing down the food web” as well as overall dramatic losses in
biomass.

Toward a Vision of the Past

Historical ecological analysis is imperfect and fraught with difficulties of
incomplete and approximate information. Nevertheless, careful analysis
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demonstrates that humans have affected the marine environment ever since
they began to collect shellfish for food and that these impacts have intensi-
fied in variety and magnitude of disturbance, and at ever increasing rates in
recent centuries. The most obvious changes include decreases in species
abundance and size, and changes in community composition, which alter
food web structure and function to degrees we are only beginning to
understand.

Historical ecology also inspires our imagination. Reading descriptions
of how the world appeared centuries ago, sorting through reports of ar-
chaeological investigations, and measuring changes in organisms and envi-
ronmental proxies from the sedimentary record help us to move beyond the
data to develop an image of what the oceans were like before large-scale hu-
man alteration. Together, knowledge and imagination give us back what is
lost in living memory: a long-term vision of the history of nature and of
ourselves. This vision can give us a sense of origin, knowledge of the path
we’ve traveled, and an idea of the magnitude of change that has taken place.
We can use that vision to question our actions and their consequences for
the ocean and to rethink and redirect our path into the future.
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Chapter 9

Whales, Logbooks, and DNA
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Historical Data Need Careful Analysis

Sixteenth-century Venice was a fascinating place. The glitterati of the Italian
Renaissance were close by. The canali (the sewage system) were the best in
Europe. The economy was booming. Although comings and goings of the
wealthy and powerful are well recorded almost everywhere, the history of
common commerce is particularly clear in Venice, a center of the European
merchant class. “I can without exaggeration claim to see the dealers, mer-
chants and traders on the Rialto of the Venice of 1530 . . . ,” assures Fer-
nand Braudel in his extensive economic history of Europe. This claim is
abundantly documented in a superb written record of the ins and outs of
Venetian market commerce—but there is a danger in using these data to an-
swer questions for which they were not designed.

Take, for example, the evidence for economic stability in late-sixteenth-
century Venice. Detailed price records show that the cost of a loaf of bread
in Venetian markets varied by less than 20 percent during the last fifteen
years of the century. Because bread was the main market commodity for
poorer workers, its price substantially dictated the quality of life for work-
ing people. Long-term stability in bread prices suggests long-term eco-
nomic health and stability for all strata of society. However, this was a time
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of upheaval, and other data show that grain prices changed wildly during
this time (figure 9.1). If grain prices varied, but bread prices did not, one
possibility is that Venice, like ancient Rome, sold grain below market price
in order keep the cost of bread artificially low in times of economic turmoil.

This historical conclusion may appear logical and compelling, but it
turns out to be wrong. It depends upon an inadvertent but critical assump-
tion about the historical record. In fact, although the price of a loaf of bread
was stable, Venetian bakers varied the size of loaves depending on the price
of grain (figure 9.1), a practice that was common in Renaissance Europe.
As a result, a loaf was always the same price, but in hard times, that loaf
would be up to 50 percent smaller and feed far fewer people. Stable bread
prices do not provide conclusive evidence of economic stability.

Braudel’s data are not at fault in the above example. But the use of his-
torical observations to answer questions for which they were not intended
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Figure 9.1. Grain prices and weight of bread loaves in sixteenth-century Venice.
(A) Grain prices (lira) varied twofold in Venice at the end of the sixteenth century,
despite stable prices for bread. (B) The weight of bread loaves sold in late-sixteenth-
century Venice. Bread prices could remain stable in the face of varying grain prices
because the size of a loaf of bread changed with grain cost. (Data from Chapter 2 in
Braudel [1978]).



presents an inherent problem—the need for accurate contextual informa-
tion. If we supply context from our own experience—for instance, if we as-
sume that loaf sizes are constant and prices vary because that is what we find
in today’s supermarket—we risk misreading the historical record because
this was not the reality of hungry Venetians in the late 1500s. Similarly, inter-
preting historical data about state of the oceans in the past requires making
assumptions about the past. In many cases, the assumptions underlying data
analysis may be more important than the data themselves in determining the
sensitivity of the analysis and the likelihood of the outcome.

Sensitivity about Whales

Alternative assumptions affecting the interpretation of historical data are
clearly important in reconstructing the size of whale population before
whaling. This has practical importance because, at its inception, the Inter-
national Whaling Commission received a global mandate to monitor the
current state and determine the past condition of whale populations in or-
der to manage hunting in the future. However, the size of whale popula-
tions in the past is difficult to estimate. One approach has been to model
populations in terms of removals and to use historical catch records to esti-
mate how many whales there must have been before removals began. This
process mines historical data and filters them through a set of assumptions
about population growth in order to generate the results.

Various methods have been used to model this process, but the basic
approach has been, for each whale species, to estimate the population
growth rate, subtract the known catches, and determine what pre-whaling
population size accounts for the current numbers, which are known from
careful population surveys. The simplest versions of these equations,
known as BALEEN II, are independent of age and sex. They relate popula-
tion size in year t (Nt) to population size in year t – 1, maximum possible
growth rate (rmax), the population level at which a fishery produces maxi-
mum sustainable yield (μ)), the overall environmental carrying capacity (K),
and hunting mortality, that is, the number of whales killed by hunting, in
year t – 1 (Ht–1): 

Nt = Nt–1 + rmax Nt[1 – (Nt – 1/K)μ] – Ht–1 (1).

Since hunting mortality is the only variable dependent on whaling, his-
torical whaling records play only a small role in determining the population
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trajectory. Nevertheless, several sets of crucial assumptions must be applied
in order for the historical data to be useful in equation 1. First, although the
equation requires knowing the hunting mortality, hunting mortality is not
known for any whale population. Instead, it must be estimated from catch
records. Here, historical data are often limited to numbers of barrels of oil
that documents show were off-loaded by ships or, less frequently, to the
number of whales of different species rendered. The best data come from
capture records, but even these estimate only that fraction of all the whales
killed that were recorded by the whalers and tried out for oil. Even with
perfect records from individual whalers, the total capture for a whole popu-
lation would require knowing all the records of all the whalers. To estimate
hunting mortality from incomplete catch records, we must estimate the
fraction of missing historical records and estimate the number of whales
killed, but lost to the fishery. As a result, hunting mortality in year t (Ht) is
related to the total recorded catch that year (Ct) by

Ht = Ct*(1/R)*[1/(1 – L)] (2),

where R is the fraction of the original catch that is currently compiled in ex-
tant historical records and L is the fraction of whales killed, but lost at sea.
Other adjustments might also be required.

Three other sets of assumptions must be added to equation 1. The vari-
able rmax is the maximum rate at which a whale population can expand, and,
in this equation, it must account for all births and all deaths except for those
due to hunting. The term rmax is familiar to ecological demographers. It
refers to the maximum innate capacity of a population to increase and is
highest for populations far below carrying capacity. Measuring rmax is diffi-
cult and demands observations of population growth when the population
is small. The use of rmax in equation 1 also assumes no interaction among spe-
cies—growth rate is fixed and independent of the abundance of competitors
or predators, or the availability of food. In this, the definition of rmax departs
significantly from the definition typical in ecological demography. 

Variation in population growth over time derives from two other parts
of the equation—the carrying capacity (K) and the population level that
supports maximum sustainable yield (μ). As used here, K is the population
size at which the growth rate is zero, and it necessarily depends on the same
parameters as rmax. The factor μ is the slope of the curve relating yield to the
standing stock and is typically envisioned as that fraction of the carrying ca-
pacity at which the population is at maximum sustainable yield (MSY). For
example, if the population reaches MSY at 50 percent of carrying capacity,
then μ is 0.50.
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Rigorous historic reconstructions can be accomplished only if rmax, μ,
total recorded catch (C), completeness of historical records (R), and the
rate of whales killed but lost at sea (L) are known. Then, estimates of possi-
ble values for K can be made by varying K and testing which values allow
the subsequent population trajectory to confirm historically known popu-
lation sizes. Whitehead attempted to reconstruct the history of sperm whale
populations in this way and showed that wide bounds, from 500,000 to
1,500,000, bracketed the number of sperm whales before whaling. At-
tempts to model the history of North Atlantic humpback whales have not
been fully successful; model trajectories do not pass through well-known
census values from recent decades. Gray whale populations in the eastern
North Pacific are difficult to model demographically—known population
parameters and the recorded hunting record do not combine to give a good
fit of gray whale population trajectories to population counts in the twenti-
eth century unless complex models with changing carrying capacities are in-
voked.

Uncertainty in Reconstructing Historical Whaling

Because of the difficulty in using historical data to model past whale popu-
lations and the complexity of some of the models that are used to bring his-
torical and current population data into alignment, it is worthwhile to ex-
plore the sensitivity of historical reconstructions to simple variation in
assumptions about R and L. Although it is beyond the purposes of this re-
view to estimate either variable, previous studies have used a range of values
for L, the proportion of whales killed, but lost at sea. Edward Mitchell and
Randall Reeves suggested a loss rate of L = 50 percent (1/[1 – L] = 2.0) in
preindustrial whaling in the North Atlantic. Peter B. Best and colleagues
suggested L = 25 percent (1/[1 – L] = 1.3) for right whales, but J. E. Scarff
suggested 57 percent (1/[1 – L] = 2.3). Stuart C. Sherman notes that
whalers typically lowered boats to initiate a chase five to six times for each
whale caught, but the fate of the many whales that were chased and lost was
seldom recorded.

Quantitatively, the completeness of historical records (R) is virtually
unexplored for nineteenth-century whaling. Of 13,927 whaling voyages tal-
lied by Sherman, only 4,000 logbooks were accessible to researchers at that
time, or 30 percent. It seems reasonable to assume that records of industrial
whaling would have become more accurate over time and that documenta-
tion for later voyages would be more complete. However, countervailing
trends raise questions about these assumptions. In particular, Reeves noted

Whales, Logbooks, and DNA  167



that the quality of logbook entries often declined from the 1840s to the
1880s, providing less information per hunt or per voyage.

These difficulties are surmountable with extra effort paid to the histor-
ical data, the assumptions used to interpret the data, and the final analysis.
Figure 9.2 shows how total hunting mortality is dependent upon assump-
tions about the completeness of historical data, described in equation 2.
Given a recorded humpback whale catch in the North Atlantic of about
29,000 animals, hunting mortality can be estimated at various levels of
hunting loss (L) and for various assumptions about whaling record com-
pleteness (R). If L and R are both 50 percent, for example, then total hunt-
ing mortality is about 120,000. This figure is a simplification: loss rates
probably vary decade by decade and species by species. Sherman suggests
that “interpretation of the extracted information by scholars is essential,”
and figure 9.2 shows why careful documentation of the analytical assump-
tions is just as important as careful extraction of the raw whaling data.
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Figure 9.2. Estimates of total hunting mortality for humpback whales in the North
Atlantic depends strongly on the fraction of historic records currently accounted for
and the loss rate from hunting. The sensitivity of hunting mortality is based on com-
pilations of catch records for humpback whales in the North Atlantic from 1650 to
1910 and varied assumptions about possible values for historical completeness and
hunting loss.



A Genetic View of the Past

Historical data analysis and interpretation benefit from comparison with
other methodological approaches, which use independent data sets to ad-
dress the same question. Recently, genetic data have been explored as a
means to illuminate the past population sizes of hunted whale populations.
Genetic diversity within a population builds up due to mutation and is re-
duced by genetic drift, which happens due to inbreeding. Small popula-
tions subject to severe inbreeding have a lower amount of genetic diversity.
By contrast, larger populations with little inbreeding show a higher amount
of diversity. Genetic diversity in whales can be measured by comparing
DNA sequences that have been obtained from individuals in the same pop-
ulation. Since the movement of whales from population to population can
inject genetic variation into the group, migration needs to be taken into ac-
count. Migration can be measured by comparing the DNA sequences of in-
dividuals from different populations. As a result, analyzing DNA sequences
from multiple populations of whales can help estimate migration patterns
and measure levels of genetic variation. If DNA sequences are only affected
by drift and mutation, then sequence diversity (represented by θ) is propor-
tional to the product of the mutation rate (μ) and the effective population
size. For nuclear DNA, inherited through both the male and the female lin-
eages, this relationship is denoted by

θ= 4Ne μ (3),

where Ne is the long-term effective size of the population.
Genetic variation is related not just to the current size of whale popula-

tions, but to population levels in the distant past. This is because mutation
builds up diversity slowly, and drift removes variation slowly. For a region
of whale DNA in an intervening, noncoding sequence in a coding gene,
mutation adds about 0.5 percent to sequence diversity in 100 million years.
Genetic drift due to inbreeding removes some of this diversity every gener-
ation, and the fraction removed can be estimated as 1/4Ne. However, this
removal is also slow. For North Atlantic right whales, the most threatened
whale species known, breeding adults probably number about 100. Even
with this very low number, drift removes only 1/400th of the current nu-
clear genetic variation in right whale DNA each generation. As a result, cur-
rent levels of whale diversity reflect past population sizes more than they re-
flect current levels.

Genetic diversity appears to be very high when current estimates of
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past population sizes are taken into account. For example, the Interna-
tional Whaling Commission estimates that humpback whales around the
world numbered no more than 115,000 before whaling. Total genetic di-
versity (θ) in humpback whale mitochondrial D-loop sequences is about
10 percent worldwide. The mutation rate (μ) has been measured to be
about 2–4 percent per million years, or 20–40 percent per million genera-
tions, in this region of the whale genome. Using these data, the effective
population size of humpback females worldwide is estimated to have been
θ/2μ = 125,000–250,000. Mature breeding females are thought to make
up about one-sixth to one-eighth of a whale population, so these numbers
suggest a global humpback whale population size of about 750,000 to
2,000,000 animals. Genetic estimates for gray whales, based on multiple
nuclear loci, suggest a North Pacific population of about 90,000 individu-
als instead of the 20,000–30,000 typically assumed in models and man-
agement plans.

Like population sizes reconstructed from historical logbook data, ge-
netic reconstructions also depend on a set of quantitative assumptions. Mu-
tation rate, generation time, and the ratio of breeding to nonbreeding adult
females are particularly critical. For example, if mutation rates are an order
of magnitude higher than estimated, then population size estimates would
be an order of magnitude lower. If all adults bred equally well and there
were no animals that were nonreproductive as adults, then total population
estimates would drop by about a factor of two. However, no survey of a
wild mammal population has ever observed such extreme constancy in off-
spring production among parents. In all monitored populations, there is
variation in reproductive success from adult to adult. In addition, the frac-
tion of successfully breeding female whales is thought to be much smaller
than the 50 percent assumed here.

It is possible that a combination of genetic parameters could give rise
to population estimates wholly inline with previous thinking. However, in
order for genetic models to reproduce Atlantic humpback whale popula-
tion sizes before whaling of 10,000–20,000 similar to those estimated by
the IWC, 

• the mutation rate must be higher by a factor of two, and
• all females must breed at the same rate, and
• generation times in the past must have been 40–50 years, instead of

the 20–25 years observed today.

In fact, our recent work suggests that the first condition is probably
true: previous estimates of the mutation rate of one gene were low by about
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a factor of two. However, the mutation rates of other genes seem robust,
and variation in the reproductive rate among females appears to be measur-
able. Perhaps future research will show these other assumptions to be faulty
(the most fascinating assumption is the one on generation time: suppose
whales lived a LOT longer in the past than we think they do today?). But
until then, it is most probable that the signal of high genetic variation re-
flects a past in which Atlantic humpback and Pacific gray whales were more
abundant than previously imagined. 

DNA Provides a Long-Term Estimate

When did these whales live? The simple answer—before whaling—belies
the complexity of genetic reconstructions. In fact, the historical popula-
tions chronicled in the genetic code could have lived long before industrial
whaling began. Population sizes reconstructed genetically are typical of the
species over long periods of time, and such long-term averages could in-
clude periods when numbers were low. However, if populations are low for
long periods of time, genetic variation will be stripped away. For example, a
population of 100 females loses 0.5 percent of its genetic variation every
generation, or 40 percent of its variation over 100 generations. 

Estimating how much variation is stripped away each generation by low
population sizes places general bounds on the variation in size that could
have occurred in the past. For example, genetic diversity in one population
of North Pacific gray whales suggests a historic population of 90,000 in-
stead of 20,000. Suppose this population was at some unknown but high
level during the last glaciation, 18,000 years ago, and subsequently fell to
20,000 animals. If this were true, then the whale population would have lost
about 1/5,000th of its mtDNA variation every generation since the reduc-
tion because only about 2,500 breeding females would have been left. Be-
cause 1,200 generations of humpback whales have occurred since the last
glaciation, this population would have retained (4,999/5,000)1,200 of its
original variation, or about 78 percent. As a result, its size would have to
have been about 22 percent higher than the previous estimate of 90,000 in-
dividuals in order to have retained the variation we see now. 

A separate type of calculation can help us ask whether high diversity in
a current whale population is likely to be due to a large population far in the
past followed by a population crash well before whaling. Alter and col-
leagues simulated the diversity of DNA sequences in gray whale popula-
tions as if they had been subjected to a bottleneck during whaling and 
to a bottleneck some time farther back in the past. Comparing the genetic
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 diversity of simulated populations with observed genetic diversity allows an
estimation of which bottleneck timing is consistent with current levels of
genetic variation. The result showed only a 5 percent chance that a popula-
tion suffering a pre-whaling bottleneck 30 generations ago (300–450
years) would still retain the high level of variation seen in gray whales today.
Bottlenecks farther back than that have even a lower likelihood (figure 9.3).
As a result, it is unlikely that the high level of current gray whale genetic di-
versity was due to a large population far in the past that crashed before
whaling began.

These calculations are little more than a cartoon of the way population
trajectories affect genetic diversity, and they deserve continued modeling,
but together with the genetic data on humpback, fin, minke, and gray
whales, they suggest four strong conclusions: 

• Any decline in whale numbers has been recent—within the past
100,000 years and probably since the last glaciation. 

• The decline affected multiple species (fin whales, humpback whales,
and gray whales at least). 

• The species less hunted, minke whales in the Atlantic and the
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Figure 9.3. The likelihood of the observed genetic variation (Hd, haplotype diver-
sity) in gray whales given a simulated bottleneck scenario beginning 15–80 genera-
tions ago (see inset drawing). A linear regression was used to determine the genera-
tion at which the likelihood falls below 0.05 (30 generations ago, or approximately
300–450 years). (Data from Alter et al. [2007]).



Antarctic, shows much less discrepancy between genetic estimates
and current estimates of population size.

• The decline was worldwide. 

We know of one factor that accounts for these patterns—historical whal-
ing. Other factors may also have been responsible, but to date there has
been no concerted attempt to provide reasonable demographic or historic
alternatives. Genetic possibilities include a dramatic underestimate of the
generation time of whales, a large increase in genetic mutation rate in cur-
rent populations compared to estimates derived from comparisons among
species, and a currently unknown demographic pattern that preserves ge-
netic diversity. 

Seeing the Past through Complex Lenses

Data from the past—whether they derive from DNA sequences or whaling
logbooks—require a set of careful assumptions to convert them into useful
conclusions. I have tried to point out ways in which data sets from genetics
and logbooks might be carefully interpreted to provide a framework for the
reconstruction of past whale populations. A challenge will be to improve
the accuracy of assumptions on a wide variety of interrelated topics such as
mutation rate, variation in female reproductive success and mutation pro-
cesses in DNA, catch record completeness, hunting loss rates, and logbook
accuracy. Though history and genetics seem like very different topics, they
intersect in models that convert historical data into historical perspective.
Attempts to improve this perspective are central to understanding the na-
ture of marine ecosystems before they were fundamentally perturbed by
humans and to charting the future of these ecosystems in a world wracked
with human-induced change.
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PART V

From Fisheries Management
to Ecosystems

This book is about the history of fish and people and how understanding
that history might help preserve the future of fish and the well-being of
people. Fish will not become fruitful and replenish marine ecosystems on
demand, nor will pollution, rising temperatures, or other physical insults
abate simply because we want them to go away. To restore the ocean, peo-
ple must be convinced to change their behavior because no policy will work
without citizen resolve.

Fisheries science is necessarily geared toward fishing industry, man-
agement, and policy. As in other economic sectors, management has un-
wittingly encouraged cycles of boom and bust. New technology and the
creation of new markets for alternative fish species temporarily restored
prosperity, but each success reset institutional memory. This final section
examines the role of historical perspective in governance and evaluates the
practical benefit of the lessons learned.

In chapter 10, we return to New England. Andy Rosenberg is a fish-
eries scientist and experienced fisheries manager with ten years in the
trenches of the northeast region of the National Marine Fisheries Service
(NMFS), two as regional administrator in Gloucester, Massachusetts, and
two more years as deputy director in Silver Spring, Maryland. Since leaving
the National Oceanic and Atmospheric Administration, Rosenberg has



written extensively on management and policy issues, served on the U.S.
Oceans Commission, and advised the National Academy of Sciences and
the United Nations on oceans policy issues. In the 1990s, he was at ground
zero of the worst fisheries crisis in American history. His strong leadership
reversed steep declines in a number of marine and anadromous species and
set the bar for effective, though controversial, management.

In 1994, Rosenberg closed New England ground fisheries in order to
rebuild cod, haddock, yellowtail flounder, and other stocks decimated by
overfishing, which had accelerated in the 1980s. Fishermen were incensed,
and, in 2002, some of them hung Rosenberg in effigy in Gloucester Har-
bor, protesting a new round of court-imposed restrictions aimed at rebuild-
ing groundfish stocks. However, today haddock and sea scallops once again
support valuable fisheries, and some other fish stocks are recovering. A few
fishermen have even admitted privately that Rosenberg was right after all.

In 1999, Rosenberg also supported removing the Edwards Dam on
Maine’s Kennebec River to restore spawning habitat for salmon, sturgeon,
alewife, and other anadromous fish. After ten years the lower Kennebec
showcases the local benefits of dam removal. Alewives now return in the
millions. Ospreys, eagles, and seals compete with sport fish for the bounty,
and boating, fishing, and other recreational activities thrive, supporting lo-
cal enterprises.

Karen Alexander shows that fisheries management is not new. Regula-
tions that look remarkably familiar date back to the Middle Ages in Europe
and start in 1623 in New England. Jamie Cournane currently serves on the
Atlantic Herring Plan Development Team of the New England Fishery
Management Council. She has worked most recently on mapping hot spots
of river herring bycatch by large trawlers and seiners that target Atlantic
herring. She discusses the success stories and explains how historical per-
spectives are increasingly important in management. Chapter 10 shows
how understanding of shifting baselines can help to restore the oceans—if
we stay the course.

In chapter 11, Enric Sala and Jeremy Jackson present lessons learned in
the warmer waters of the Mediterranean and the Caribbean. Rather than re-
turn to the broad questions raised by Carl Safina in chapter 1 and debated
throughout this book—How should history influence marine science, how
should science influence marine policy, and how do science and history
leverage each other to greater effect?—Sala and Jackson conclude with a
new set of criteria to determine whether or not historical marine ecology
may eventually fulfill its promise.
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Chapter 10

Management in the Gulf of Maine

Andrew A. Rosenberg, Karen E. Alexander,

and Jamie M. Cournane
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A Personal Perspective

The overexploitation of marine resources is a major global environmental
problem, overlooked by much of the public. While some threatened living
marine resources, such as whales, have garnered a great deal of public atten-
tion, depletion of once abundant fishery resources is virtually unknown
outside of a rather small community of scientists, policymakers, public in-
terest advocates, and those participating in fisheries both commercial and
recreational. For most people, fish is available in the market or restau-
rants, albeit at rather high prices, so overfishing seems not to be all that
widespread.

Surveys of public opinion find that most people in the United States
believe pollution, not fishing, is the greatest threat to marine resources. Of
course pollution is a major environmental problem, but usually a second-
order effect. That is, fishing directly increases the mortality rate of fish or
other exploited marine species, whereas pollution may reduce growth, re-
production, or survival in more subtle ways than simple removals. Other
anthropogenic impacts such as coastal development, habitat loss, and cli-
mate change also impact living marine resources, again through second-
order effects on productivity. But the existence of these other impacts does
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not negate the importance of fishing and overexploitation in depleting fish
stocks and fundamentally altering marine ecosystems. Human activities are
not independent of one another in their effects on changing ecosystems and
in loss of natural productivity. Unfortunately, the impacts exacerbate one
another. So, depletion due to fishing may occur more quickly because
of habitat loss, and habitat loss in turn may be partially due to fishing
activities.

For many populations of fish and other organisms, as abundance de-
clines from presumably high levels before fishing occurred, populations
compensate for the fishing pressure by increased production through
growth and reproduction. This is the basis for much of the theory of fishing
and for the expectation that some level of exploitation is sustainable for
many biological populations. Overfishing occurs when the rate of mortality
due to fishing is so high that the population cannot compensate with in-
creased production so that abundance continues to decline. Fishing at these
high rates becomes unsustainable. More complex effects occur when fish-
ing changes age structure, habitat, or subpopulation structure.

Unfortunately, we have had ample opportunity to observe the effects of
overfishing, both simple and complex. It has long been known that fish-
eries in general have a tendency toward overexploitation due to the overall
economic and business pressures of the industry. Some spectacular stock
collapses have occurred and, unfortunately, more are likely to occur in the
near future. Pauly, Myers, Jackson, and others have documented wide-
spread declines of fisheries resources worldwide. Though these analyses are
controversial with respect to technical details, the overall pattern that arises
from the fundamental character of the data on fishing and marine ecosys-
tems is clear: very large declines in the abundances of many marine popula-
tions in virtually every ocean.

There is no better example of the results of overfishing than considera-
tion of the Atlantic cod stocks. Cod have been a mainstay of fisheries for
much of the developed world for more than five hundred years. Nonethe-
less, even with relatively simple hook and line gear, noticeable depletion of
cod stocks occurred. From a variety of data sources, archaeological, histori-
cal, and ecological, it is clear that cod played an important role as predators
within the Gulf of Maine ecosystem. The changing abundance of cod due
to overfishing has had a major impact on trophic structure of the ecosystem
through time.

Other commercially and ecologically important species such as lobster,
urchins, and kelp respond to the changing predation pressure of cod. The
long-term intensive overfishing of cod has not only reduced its abundance,
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but shifted the ecological balance in the Gulf of Maine with apparent
trophic cascades affecting the whole ecosystem. Of course, the impacts of
factors other than fishing, notably climate, also affect the ecological balance
in this and many other areas. But the changing abundance of cod and the
consequent effects on the ecosystem are most likely the result of the cumu-
lative effects of fishing, climate, and other factors, as recently shown by
Rose for northern cod stocks. A major issue in considering such cumulative
impacts of overfishing and other changes in the ecosystem is whether over-
all system productivity has changed. In other words, if cod biomass was
very much higher and trophic structure quite different before massive over-
fishing, has that productivity simply moved to other components of the
ecosystem? Is productivity less today than in the past? In either case is the
process reversible? If overfishing ends, what is the eventual “rebuilt” state
of a system like the Gulf of Maine?

Moving beyond the biological effects of overfishing, resource deple-
tion affects the social and cultural resilience of fishing communities. Over-
fishing is not a one-time single event for cod stocks in particular and fish-
eries in general. Rather, cod have been repeatedly overfished or perhaps
continuously overfished for generations. During each period of overfish-
ing, the communities dependent on the fishery adjusted to the changing re-
source condition by employing different gear, switching target species, and
the migration of labor out of the community. Notably, the result of over-
fishing was rarely, if ever, the cessation of fishing and, therefore, a recovery
period for the resources upon which the community depends. Throughout
it all, governance of the fishery, hamstrung by political pressures, has lagged
behind the actual impacts, often to such an extent that the overfishing has
been nearly unaffected or even exacerbated by management. For these rea-
sons, historical analyses are far more than just of academic interest. They
provide a perspective that is lost by looking only at the recent history of a
fishery or an ecosystem.

Until very recently, fisheries science and, to an even greater extent,
management has paid little attention to the history of fisheries and the data
that can be developed through historical research. From a scientific per-
spective, the emphasis has been on analysis and assessment of biological
processes. The accuracy and precision of data sources and the development
of more sophisticated analytical methods have dominated scientific advice
for the near-term problems of management such as catch quota setting.
Management plans intended to end overfishing and rebuild resources al-
most never used the lessons of history as a guide until quite recently.
Frankly, managers have had enough of a struggle trying to reverse the
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downward spiral of fish stocks, let alone rebuild fully functional ecosys-
tems. But looking only at recent patterns in a fishery exacerbates the prob-
lems of continually overfishing a resource. That is because recent patterns
from a heavily exploited fishery hide the real potential of the species if ex-
ploitation is truly reduced. The historical analysis allows us to consider
what might be possible if we change the way we exploit an ecosystem.

History has other lessons to teach us, too. It emphasizes the ignorance
of repetitive overfishing. We can readily see that, in the Northwest Atlantic
cod fisheries as with many others, we replaced overfishing by foreign fleets
in U.S. and Canadian waters with overfishing by domestic fleets very
quickly. Somehow, fishery management policy accepted the absurd premise
that the only real problem was that “they” were overfishing rather than
“we” and that the resource wouldn’t crash for us even if the fishing mortal-
ity rate was the same as it was before the foreign vessels left. Historical analy-
ses also clarify the magnitude of the changes that must take place to end the
current overfishing. If current biomass of an enormously productive spe-
cies like cod is 5 percent of the biomass 150 years ago, then making a minor
reduction in fishing rates in the Northwest Atlantic or the North Sea is un-
likely to result in real recovery for “decades or centuries,” if at all. And his-
tory shows us that the social and economic losses due to repetitively over-
fishing a resource are far greater than the short-term losses due to reducing
fishing pressure now. The political battle is usually over the immediate
near-term impact of restrictions and ignores the fact that the lack of restric-
tion results in long-term economic and societal costs that can be very large.
Maine’s island communities are a good example. When fishing was good,
many islands supported healthy year-round populations, but now most are
left to summer people.

While such losses are out of sight and out of mind for most of the pub-
lic, marine resources and marine ecosystems are held in the public trust. In-
ternationally, the phrase in the Law of the Sea is that these resources are the
“common heritage of mankind.” Allowing overfishing to occur gives up
that heritage and violates the public trust. Even if most in the body politic
are unaware or unconcerned about overexploitation, the need for wise
stewardship is still there.

The political pressure with regard to fishery issues mostly comes from
those immediately affected by restrictions, that is, the fishing community
and businesses, recreational or commercial. That pressure is almost invari-
ably opposed to restrictions, not from any intent to deplete resources, but
rather to maintain maximum opportunity and flexibility for fishers. A com-
mercial fisherman wants to maximize the chance to be successful in earning
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a good living from the fishery. A recreational fisherman wants to maximize
the chance of enjoying a day’s fishing. But collectively they can exert enor-
mous pressure on a natural resource. Declining fish stocks are putting the
interests of commercial and recreational fishers at odds because they have to
compete for smaller portions of the total catch. Trophic interactions also oc-
cur among fisheries. For instance, commercial trawlers that intercept large
schools of herring before they can come near shore have the secondary ef-
fect of driving popular recreational species like striped bass that prey on
herring, thus having an adverse impact on the recreational fishery.

The power of fishing vessels is remarkable. A modern vessel with GPS,
color sounding equipment, large engines, and extraordinarily strong syn-
thetic materials used for fishing gear can locate and exploit any part of the
ocean. Note that all of the features listed above are available for recreational
as well as commercial vessels and have a consummate affect on fishing
power even if the scale of catches is quite different. If all the users are trying
to maximize opportunity, then what happens to that public trust? Elected
officials respond to the political pressure of the loudest voices engaged in an
issue. Then regulatory actions must be modified by that same pressure, at
least in a democratic system. The result has been an excruciatingly slow re-
sponse to the problem of overfishing and the loss of too many resources.
Despite differences in political systems around the world, this pattern is
quite widespread.

In recent years, public interest or environmental groups have entered
the fray on the side of regulating fishing. The reaction from commercial and
recreational fishing groups, and, sometimes, elected officials or govern-
ments, has been predictably negative, sometimes eliciting cries of horror at
the attention from news media and increased litigation in U.S. courts from
ostensibly well-funded environmentalists. Curiously, most lawsuits were
and probably still are brought against the government by fishing groups for
allegedly overzealous or inappropriate regulation. However, there was lit-
tle outcry against litigation until a few successful suits by environmental
groups resulted in more aggressive regulations. In spite of the hue and cry,
recent litigation has raised some interesting issues. Some have successfully
challenged the process for determining appropriate regulations under the
National Environmental Policy Act. Difficult questions have been raised in
some of these cases. To what extent have cumulative impacts on marine
ecosystems been analyzed and considered in the decision on regulatory ac-
tions? Have the options considered covered a broad enough spectrum of
choices? Clauses in primary fisheries statutes calling for broader ecosystem-
level habitat protections and the reduction in bycatch have been a major
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focus of litigation. Bycatch occurs when a directed fishery catches nontarget
fish. Often bycaught fish cannot be sold and are discarded at sea or at a pro-
cessing plant. Thus, the ecosystem effects are considerable.

The legal arguments are beyond our expertise. However, the concept
of cumulative impacts and ecosystem-level effects involve difficult but cru-
cial ecological questions directly related to the global pattern of overfishing.
The cumulative effect of human impacts on any particular ecosystem or the
global commons as a whole is clearly

1. large, such as a 95 percent decline in some resources;
2. profound, causing change such as major alteration of food webs; and
3. severe, resulting in the potentially irreversible loss of ecosystem goods

and services, that is, the properties of ecosystems that we extract as
goods like fish or need as services like carbon sequestration.

On the one hand, it is laudable that the statutes in the United States and
other nations, and recent international instruments such as the U.N. Fish
Stocks Treaty, recognize the need to conserve ecosystems and not just target
species. On the other, having the statutory or treaty authority is still a long
way from the implementation of management systems that truly protect
against overfishing and conserve ecosystem goods and services. Hence, the
pace of change in fisheries management is slow, despite the statutes, law-
suits, and public attention.

Cod is the poster child for the effects of overfishing. Every Atlantic cod
stock has been overfished and depleted. The pattern of overfishing has been
repeated again and again as if learning by example were anathema. Each
fishery has been declared unique and then followed a pattern remarkably
similar to all of its predecessors. Even within a fishery the battle to reduce
fishing pressure is fought over and over on the same political grounds and
with halting progress at best. Each slight upturn in the stocks is taken as a
signal to ease the restrictions on fishing for one more year, one more dollar,
or one more euro. Managers now negotiate over thousands of tons of bio-
mass when historically most stocks were hundreds of thousands or millions
of tons.

Once of huge ecological, economic, and societal importance across the
North Atlantic, only remnant populations of cod are left, a small fraction of
the abundance that existed only a century ago. One measure of the impor-
tance of the species is that fishing still continues today on those remnant
stocks of cod. Some of the remaining fisheries, such as in Iceland, may even
be sustainable, but relative to historic productivity, at the current very low
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levels. In other cases such as on the Scotian Shelf and George’s Bank, some
slow rebuilding is occurring, but rebuilding targets are only to those same
minimal levels seen in recent times. Off Newfoundland and Labrador, even
under an albeit incompletely closed fishery, little rebuilding of the once
great stock of northern cod is evident. And in the North Sea, the continu-
ing fishery has driven the stocks down to low levels of biomass never before
observed. It is almost as if we are addicted to fishing for cod even when the
remaining stocks are on life support. Maybe the enormous productivity of
the ocean that was once manifest in the cod stocks of the North Atlantic can
come back to feed future generations, but not without efforts toward re-
building the remaining resources that are as concerted as the efforts people
have made to overfish these stocks again and again.

Shifting Baselines of Management

As Alan Longhurst has charitably observed, fisheries management is under-
going a period of introspection. Policymakers have employed the best avail-
able assessments and scored important victories against opponents of regu-
lation, but historical stock declines of 80 percent or more across the board
have not reflected well over the long term. A historical perspective can offer
insights on this crisis in policy and governance.

Fisheries management is not new. Regulations likely sprang up as soon
as overfishing caused hardships among fishers and markets. In the Middle
Ages fresh- and then saltwater fisheries declined in northern Europe. Euro-
peans responded by developing aquaculture, especially for carp, and by reg-
ulating fishing gear along the coast. Citing as rationale the destruction of
fish stocks, the decline in average size, and the effect of poor quality and
high-priced fish on food supply, royal edicts regulated gear and imposed
closures along the French coasts by the fourteenth century to stabilize these
valuable resources.

Fisheries regulation accompanied the Pilgrims to America. Three years
after settlement, Plimouth Plantation gave itself the legal authority to regu-
late fisheries. Settlements begun in Piscataqua in 1623 were outside the
Plimouth commonwealth and threatened its monopoly on marine re-
sources, and the Pilgrims wanted the positive right via due process to pro-
tect their fish. Town laws also governed local fisheries, determining the
physical location of fish flakes, dams, and weirs and licensing privileges to
catch and preserve certain fish. Arguments pro and con are sometimes
recorded, and will be familiar to anyone who has recently attended hearings
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on fisheries management plans. However, colonial fisheries management
anticipated coastal zoning and nested layers of governance by four hundred
years.

Regulations imposed by the Pilgrims and Puritans look very much like
regulations today. They limited days fishing, established fishing seasons,
protected spawning, issued licenses, imposed gear restrictions, and even in-
stituted a landings moratorium—all before 1700. People rarely regulate
abundant resources unless they anticipate the possibility of depletion. But
the European settlers knew their history. Remembering exhausted Old
World waters, and a shortage of cod near Boston in the 1650s, encouraged
them to take a precautionary approach, protecting fish stocks they de-
pended upon with the best available management practices. In the United
States fisheries conservation contended with unfettered resource exploita-
tion until after the Civil War, when laissez-faire policies favoring industrial
fishing and factories won the day and undermined small producers. It is im-
portant to find out how effective regulations were in the past, and under
what circumstances, but the lesson here is that a historical perspective often
resulted in remarkably effective and adaptive risk management.

Shifting baselines promotes an unconscious preference for standards
that compliment our frame of reference. For this reason, core scientific con-
cepts deserve periodic reappraisal. What follow may be recent examples of
shifting baselines at work in New England fisheries management.

Halliday and Pinhorn showed that the statistical areas used in New En-
gland fisheries management today were originally based on the distribution
of cod and haddock, the most important commercial species in the 1930s,
and adapted to other species after the fact. Retained because they are famil-
iar and easy to use, these relatively large regions hide important variations
in the geographic distribution of catch over time. For instance, in 1902,
162 million pounds of Atlantic herring were caught in coastal nets along
the New England shore. In 2008, 165 million pounds were taken in statis-
tical areas that extended past the continental shelf and covered half a million
square kilometers. Clearly, catch distribution and density have changed in
the past century, and this may have important implications for the health of
Atlantic herring stocks.

Maximum sustainable yield (MSY) is an essential reference point in
stock assessment models and was developed from a substantial body of
work by a wide range of scientists. Many managers today view it as key to
implementing a precautionary approach, although results have too often
been problematic due to political pressure from economic interests. How-
ever, Carmel Finley recently pointed out that the adoption of MSY for fish-
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eries management was less the product of deliberative peer review than a
policy decision to expedite fisheries treaties in the wake of World War II.
Ecological and economic deficiencies may have been overshadowed by the
appeal of its “relative simplicity” and “lower information demand.”

Subsequently, stock assessment models have been modified to im-
prove estimates and forecasts. In 2007 Northeast Fisheries Science Center
(NEFSC) scientists modified stock assessment models for Gulf of Maine
cod. They went from a parametric approach, which yielded an MSY of
16,600 metric tons, to a nonparametric approach, which yielded an MSY
of 10,014 metric tons. This recovery target is 40 percent smaller and easier
to reach, although cod stocks are still moribund.

Also in 2007, NEFSC scientists modified the stock assessment models
for monkfish. Old models employed a time series starting in 1963, even
though demand was lackluster and data poor until Julia Child took up the
cause in 1979. Based on the old system of reference points, monkfish were
considered overfished in 2006. Under the new system developed in 2007,
data before 1980 were discarded. Results indicated that monkfish were not
overfished and overfishing was not occurring, although fish size had de-
clined. According to Haring and Maguire, “NMFS [National Marine Fish-
eries Service] was considering more drastic measures to try to meet the re-
building targets by 2009. The assessment results released in August 2007
suggest[ed] that this [would] not be necessary.” The fishery’s status quo was
maintained. However, biomass in 2009 was less than the value projected in
the 2007 assessment. The northern monkfish stock exhibited a strong ret-
rospective pattern, that is, one informed by prior events. Although over-
fishing is still not projected to occur, biological indicators have been ad-
justed downward.

Maine lobsters are generally considered to be abundant and well man-
aged by local cooperatives. Upper and lower size limits protect juveniles
and breeding stock, spawning females are protected, and effective gover-
nance is nested—local decisions are augmented with input from state and
federal agencies. If the cod fishery is the poster child for dysfunctional man-
agement, some propose that the lobster fishery be its role model. The stock
has ostensibly increased to almost twice the management target and mortal-
ity levels remain acceptable, even though fishing effort is high despite hard
economic times. Recent catch has been relatively consistent, and the cause
of considerable pride.

Historical catch tells a different story. In 1887 Maine lobstermen aver-
aged 200 lbs/trap, and in 2005 not quite 20 lbs/trap over the same
grounds. Although trap limits were put in place in the 1990s, effort is as
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high or higher than ever before. The states have the lead in management,
and they have not reduced fishing effort due to industry pressure. This is ev-
ident in the state of the southern New England lobster fishery, where the
lobster population collapsed in 2003. Regulators are considering a five-year
fishing moratorium to rebuild stocks.

Errors made because historical perspectives have not been taken into ac-
count are beginning to be identified and corrected. Yet finding the appro-
priate time frame for management actions is problematic. Everyone wants
quick results, especially fishers chaffing under restrictions aimed at rebuild-
ing fish stocks. Even if we agree that regulations work, we want them to
work really quickly. But economic, biological, ecological, oceanographic,
and climate cycles are simultaneously at play, and recovery depends on
complex interactions at different temporal scales. Economic cycles run from
year to year, but climate cycles may last for millennia.

MacCall found that outcomes of management models differed for
short-lived and long-lived species, and for competitive species responding
to fishing pressure under long periods of adverse climate. This means that
policy measures should be developed for each species on a case-by-case
basis in an ecosystem context and that responses to environmental changes
should be carefully monitored. This is especially important in light of
global warming. Lag time in implementing catch restrictions may actually
benefit fisheries for short-lived species like herring, but for long-lived, cool-
water predators like cod, recovery from overfishing under adverse climate
conditions may take a century. This gives new meaning to staying the
course and shows the scale of resolve necessary to truly rebuild fish stocks
and ecosystems.

However, Longhurst questioned the very concept of sustainability,
pointing out that there is no historical evidence that sustainable fisheries
have ever been maintained for long periods of time.

Evidence of Progress

Put in practice, the shifting baselines paradigm challenges traditional
perspectives on governance and scales of observation, refocusing manage-
ment from single species to ecosystems, and acknowledging the role of hu-
mans as a key species. Several case studies in New England show positive
results from this change in management perspective, often called spatial
management.
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Habitat Protection

The success of fisheries closures proved that protecting ecosystems protects
species. Although controversial at the time, NMFS regulations closed more
than 5,000 square nautical miles of prime fishing grounds beginning in
1994, in an attempt to restore depleted groundfish resources. Closure de-
sign focused on essential fish habitat (EFH), especially for cod, haddock,
and yellowtail flounder. The five resulting fishery closures in the Gulf of
Maine and on Georges Bank restricted commercial bottom-trawl fishing
and scallop dredging, but they did not restrict all fishing. Generally, com-
mercial fishing for herring and mackerel was permitted, with some restric-
tions to reduce groundfish bycatch, and all types of recreational fishing
were allowed.

These closures helped to successfully rebuild Atlantic sea scallops and
haddock on Georges Bank, although cod and yellowtail flounder are still re-
covering. Georges Bank haddock stock size increased tenfold from 1995 to
2005 partly due to a very strong year-class in 2003 and strong primary pro-
ductivity. In 1999 high-resolution video surveys of about 5 percent of
Georges Bank scallop grounds showed that density of the shellfish had in-
creased to about half of the average harvest from 1977 to 1988. Ten years
later, videos showed that Platts Bank, Fippennies Ledge, Jeffreys Ledge,
and Cashes Ledge in the central Gulf of Maine also supported high densi-
ties of juvenile scallops. Although still recovering from overfishing, yellow-
tail flounder biomass appears to be at levels not seen since the late 1960s.

Marine protected areas (MPAs), such as the fisheries closures on
Georges Bank, are one of the few strategies with proven success on an eco-
system level. This makes them important tools for ecosystem-based fish-
eries management, in which people’s actions are managed to ensure healthy
marine ecosystems and sustainable resources. Establishing an MPA in-
volves an important social and ecological trade-off: the long-term loss of
fishing grounds for the promise of biological conservation and healthy fish
stocks in the future. Understanding human impacts on multiple spatial and
temporal scales can provide the socioecological baselines required for suc-
cessful ecosystem-based management. This is where historical perspective
comes in.

Among the new tools being developed for multispecies spatial and
temporal management is the Swept Area Seabed Impact (SASI) model,
which assesses bottom conditions and the impacts of fishing gear on the
bottom. George Brown Goode (1887) and Walter Rich (1929) assessed
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the effect of bottom conditions on different fisheries, based on sampling
surveys and fishermen’s information, and these data provide essential base-
line habitat conditions to gauge the effect of widespread dragging and bot-
tom trawling. Acknowledging the importance of such historical baselines,
the Stellwagen Bank National Marine Sanctuary Management Plan of
2010 was informed by an assessment of historical marine ecology and so-
cially constructed fishing tradition.

Whale and Seal Management

The vast history of whaling and sealing and the collapse of marine animal
populations worldwide are unnecessary to review here. Whale and seal con-
servation are success stories in New England, despite the fact that shore
whaling took place on Cape Cod as late as 1900. Fishing moratoria and
protecting nursery grounds through the Marine Mammal Protection Act of
1972 and the Endangered Species Act of 1973 allowed populations to re-
build and revisit areas in the Gulf of Maine where they were once common.
Humpback whales now regularly feed off the New England coast, and seal
populations have become large enough to attract sharks. Today the greatest
risks to whales in New England waters are from boat strikes and abandoned
fishing gear.

Stellwagen Bank National Marine Sanctuary was established in 1992
partly as a protected area for whales and seals. Resident and migrant mam-
mals include five species of seals (harp, gray, harbor, hooded, and ringed
seals), ten species of whales (humpback, minke, fin, sperm, right, beluga,
orca, sei, blue, and pilot), along with white-beaked, white-sided, common,
bottlenose, and Risso’s dolphins and harbor porpoise. Whale watching,
popular with New Englanders and tourists alike, generates considerable
economic benefit for small businesses.

River Herring Management

River herring, the collective name for alewives and blueback herring, have
declined dramatically in the past fifty years. Commercial catch went from
approximately 70 million pounds in 1957, to 13.7 million pounds in 1985,
to under a million pounds in 2007. Some scientists fear a total collapse is
under way. Important to both freshwater and oceanic ecosystems, these fish
undertake extensive migrations from coastal oceans to spawn in fresh and
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brackish water, running through a gauntlet of man-made obstacles and
dangers. Then they return to the sea where they spend the majority of their
lives.

Historical landings data support arguments to protect river herring
populations that have been decimated by dam building, overharvest, and,
most recently, bycatch in other commercial fisheries. Methods such as dam
removal, fisheries closures, spawning closures, and bycatch monitoring and
regulation integrate very long-term changes in ecosystems, human behav-
ior, and the life histories of river herring to an extent not seen before in fish-
eries management. For instance, removing the 160-year-old Edwards Dam
on Maine’s Kennebec River in 1999 was controversial at the time, but it
helped reestablish a spawning population of two million alewives in just ten
years, as well as improve other aspects of the environment. Its success has
encouraged dam removals elsewhere.

Yet commercial river herring landings in state waters are a historic low
since 1887, and NOAA declared alewives and bluebacks “Species of Con-
cern” in 2006. Historical data supported Amendment 2 to the Shad and
River Herring Management Plan (2009), which includes a default closure
of directed commercial fisheries in state waters by 2012 unless sustainable
harvest plans have been approved.

Because they often mix with schools of Atlantic herring and mackerel,
significant river herring bycatch occurs in the herring and mackerel fish-
eries, among others. Roughly 64,000 pounds of river herring have been
taken in a single tow by large vessels fishing for sea herring, although the
magnitude of bycatch likely varies because of unique at-sea migration pat-
terns of genetically distinct stocks. In some places it might be the most sig-
nificant factor driving declines, whereas elsewhere it might be negligible.
Still, significant genetic variation within these species has been lost since
historical times, and bycatch is a continuing threat today.

National Standard 9 of the Magnuson-Stevens reauthorization man-
dated that Fisheries Management Councils minimize bycatch to the extent
practicable. The New England and Mid-Atlantic Fishery Management
Councils are addressing river herring bycatch through management plans
for targeted species by developing Amendment 5 to the Atlantic Herring
Fishery Management Plan (NEFMC) and Amendment 14 to the Squid,
Mackerel and Butterfish Plan (MAFMC). Spatial and temporal man-
agement is key to protecting these vulnerable fish, particularly before
spawning. The locations and timing of river herring hot spots in New En-
gland waters have been modeled using recent data and confirmed by histor-
ical information. Thus, historical perspectives strengthen arguments for
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implementing strong management plans to address river herring declines,
and in the case of dam removal, progress to date reflects the promise of
the past.

New Directions

Early U.S. Fish Commission reports show that fishermen and scientists
were not always at odds. Fish commissioners had great respect for local eco-
logical knowledge given willingly by fishermen who were eager to work
with the commission. In that spirit, a new emphasis on local ecological
knowledge brings fishermen, scientists, and managers together to restore
fish, fisheries, and fishing communities. For example, ongoing develop-
ment of a spawning closure for cod in Ipswich Bay, a historically important
spawning ground, includes scientists and fishermen in the process. History
can provide a working model and act as a bridge between stakeholders who
are often at odds.

National Standard 1 of the Magnuson-Stevens Act of 2006 required
ending overfishing by setting annual catch limits by 2011. At the same
time, New England groundfish management introduced a catch share sys-
tem. Commercial fishermen receive an allocation of the catch limit, the to-
tal allowable catch (TAC). They may consolidate their allocation with other
fishermen in a fishing sector, or retain it separately and remain in a common
pool.

Since vessels have a maximum range, catch shares may affect spatial
management plans. Fisheries operating near closure boundaries receive the
benefit of “spillover” productivity, but displaced fishing effort that concen-
trates along those boundaries may cause local depletion of fish stocks. Since
fish were allocated, not fishing area, will fishermen become stewards of the
closures that support productive populations, or will they exploit them for
short-term gain?

Spatial management has other implications for governance. Steneck
and Wilson argued that, since ecological and social processes operate si-
multaneously on different spatial scales, management at multiple levels is
needed. Nested layers of management creates the checks and balances neces-
sary to protect complex ecosystems, reinforce local knowledge systems and
incentives for stewardship, and limit perverse incentives to overharvest.

Scales of governance are even more important now that coastal oceans
are subject to conflicting usage. Ocean transportation carries much of what
affluent consumers eat, wear, and use daily across sea-lanes and through
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fragile coastal waters. Underwater cables thread the ocean floor, and wind
farms and tidal generators join offshore drilling platforms to produce en-
ergy. Commercial and recreational fisheries, and recreational, aesthetic, and
conservation interests now compete with industries for prime ocean loca-
tions. Even waste disposal, with its particularly long, unsavory history, has
become impossible to ignore any longer. Ocean zoning attempts to ration-
alize competing needs and interests while maximizing human well-being
and ecosystem integrity. Although many fishermen are wary, marine scien-
tists are coming to see its value. However, the Bluewater Horizon in the
Gulf of Mexico and the Cape Wind Project off Cape Cod prove how ex-
traordinarily difficult managing competing interests will be.

Loss of ecosystem services has been linked to loss of ecosystem re-
silience, economic viability, and human security. Tracking and assessing
changes in space and time across multiple scales is a daunting task, but it has
great value in modern ocean governance and will be increasingly necessary
in light of the global and local changes taking place. As we confront the fu-
ture, looking backward may be almost as important as looking forward.

Management in the Gulf of Maine 191



Chapter 11

Lessons from Coral Reefs

Enric Sala and Jeremy B. C. Jackson
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The collapse of human societies has commonly involved unsustainable
overexploitation of resources and rapid population growth, followed by an
environmental catastrophe, such as a prolonged drought, that destroyed
the remaining resources. Collapse was sometimes averted by expansion
into new territories to tap unexploited resources, which served as spatial
subsidies that fueled further population growth. Finally, when expansion
was no longer possible, collapse was even more sudden and severe (figure
11.1).

Collapse of marine ecosystems and fisheries has followed a strikingly
similar pattern (figure 11.1). Fisheries managed to achieve “maximum sus-
tainable yield” are especially vulnerable to environmental disturbance.
Most are already at or below their lower limits of productivity. Increased
fishing capacity supported by new technologies or economic subsidies may
help to maintain or even increase catches in the short term, as in the case of
cod. Then, when the fishery finally collapses, fishers move on to other spe-
cies, which are generally smaller and grow faster. The economic collapse of
one species ripples throughout the ecosystem as others become sequentially
overexploited. No one accepts responsibility for these mistakes. Without
historical memory, few even remember them. So the cycle of overfishing is
repeated over and over until there are almost no fish left.
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Atlantic bluefin tuna provide a fascinating example of this shifting
baselines problem in fisheries. Every year these giant fish migrate through-
out the Mediterranean to reproduce. Numbers that are unimaginable today
were caught in giant almadraba traps, an ancient technique of setting nets
in a maze to capture the tuna in a central pool. Aristotle witnessed waters
boiling with a moving tide of giant tuna. In the Middle Ages, the same
technology was still being employed, and in the mid-1600s a single trap on
the southern coast of the Iberian Peninsula caught up to 100,000 tuna
every year. There were hundreds of such traps throughout the Mediterra-
nean, and catches began to decrease several centuries ago (figure 11.2). The
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Figure 11.1. Historical sequence of events in which overexploitation of local re-
sources and environmental disturbance may lead to the collapse of societies and eco-
systems. Access to distant resources may delay the collapse of the system at the risk
of decreasing the future possibility of recovery.



unambiguous pattern of decline is emblematic of what must have occurred
for overfished cod, although the data are more fragmentary and recent. It
also contrasts strikingly with the long-term oscillations in sardines and an-
chovies driven primarily by oceanographic change. Today, only a handful of
almadrabas remain because the Atlantic tuna population has been over-
fished to near extinction and is listed as “critically endangered” by the Inter-
national Union for the Conservation of Nature (IUCN). Nevertheless,
modern fisheries managers still highlight the importance of factors other
than fishing, and the International Commission for the Conservation of At-
lantic Tunas (ICCAT) still assumes that the few remaining tuna can be
fished to achieve a maximum sustainable yield. Most egregiously in 2010,
the Convention on International Trade in Endangered Species (CITES)
caved in to intense lobbying and voted down the proposal that the species
be listed under Appendix 1 of its commercial regulations, a measure that
would have banned international trade in this endangered species.

The extreme degradation of ecosystems today seemed inconceivable a
century ago when the ocean’s riches were viewed as inexhaustible. Yet even
then, the waters all around New York City were a dead zone. Human and
animal sewage and industrial filth, and fishers with simple hook and line,
harpoons, or traps along the shore, had inflicted massive impacts on marine
ecosystems, now long forgotten.
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Figure 11.2. Catches of bluefin tuna (Thunnus thynnus) in two sites in southern
Spain, from 1525 to 1740. Note that small periodic fluctuations that could be at-
tributable to variation in environmental factors are negligible compared with the
larger decline after 1550, presumably caused by fishing. (Unpublished data from
the archives of the Medina-Sidonia family.)



Shifting Baselines on Coral Reefs

Just as for fisheries like cod, the lack of a baseline for pristine coral reefs
plagues our understanding of their global degradation and limits our ability
to do much about it. The Late Pleistocene fossil record tells us that coral
communities exhibited remarkable stability in species composition and rel-
ative abundance of dominant species for several thousand to hundreds of
thousands of years before their rapid demise in the twentieth century. How-
ever, modern ecological survey data are sparse until the 1970s when reefs
were already mildly to severely degraded. Since the 1970s, live coral cover
has declined by up to 50 percent in the Pacific and 90 percent in the
Caribbean, with seaweeds commonly taking over from the corals.

Abundance of reef fishes has declined by 90–95 percent just in the last
fifty years, and sea turtles by more than 99 percent. Comparisons of the
very few relatively pristine reefs still remaining with the more exploited
reefs yield great differences in coral and fish populations. However, sea tur-
tles today are nowhere more than a small percentage of their abundance a
century ago, and all are officially listed as endangered species by the IUCN.
Monk seals are extinct in the Caribbean and on the verge of extinction in
the Mediterranean and the Hawaiian Islands.

The known causes of coral reef decline include the direct and indirect
effects of overfishing, pollution from the land, coastal development, and
climate change, among myriad other factors. However, the interactions of
all these factors are of such Byzantine complexity that it is difficult to untan-
gle their comparative effects. Overfishing may greatly reduce some species
at the expense of others, setting off chain reactions of events that alter the
competitive balance between major groups of organisms. For example, loss
of grazing fishes allows seaweeds to rapidly increase at the expense of corals.
Seaweeds may kill corals directly by overgrowth or indirectly by promoting
coral disease. The latter occurs because seaweeds leak vast amounts of or-
ganic matter into the surrounding seawater, as is obvious from the “smell of
the ocean” along rocky coastlines in places like New England or Oregon.
The organic matter provides food for countless bacteria, including coral
pathogens, hence outbreaks of disease.

Runoff of sediments, toxins, excess nutrients, and sewage also kills
corals directly or indirectly via increased microbial populations, loss of oxy-
gen, and disease. Outbreaks of disease in turn cause catastrophic declines in
formerly abundant sea urchins and corals, confounding the effects of over-
fishing and pollution. Finally, increases in atmospheric CO2 are warming
the oceans, which is a major factor in coral bleaching. Warming breaks

196 f r o m f i s h e r i e s m a n a g e m e n t t o e c o s y s t e m s



down the symbiosis between corals and the microscopic algae within their
tissues that provide most of the coral diet and are essential for coral growth.
Sustained rises in temperature of only one to two degrees above normal
highs can cause massive bleaching and mass mortality of corals. Increases in
CO2 are also making the oceans more acidic, which hinders coral growth
and may dissolve their skeletons. Coral reefs as we know them may simply
disappear.

No wonder there is so much disagreement and confusion about what
to do. The problem is made even worse by lack of a historical record of
when degradation began, which we are only now beginning to piece to-
gether. For example, old photographs reveal that the massive loss of for-
merly dominant staghorn and elkhorn corals was nearly complete in Barba-
dos in the early twentieth century, and early qualitative surveys show
comparable declines at sites scattered throughout the Caribbean before the
1980s. But elsewhere, dense populations of these corals persisted until the
1980s or 1990s when coral mortality due to overgrowth by seaweed, dis-
ease, and bleaching increased to epidemic proportions. The causes of these
more recent losses are well documented, but have little bearing on the
causes or magnitude of changes that may have occurred earlier elsewhere, as
in the case of Barbados, and long before ecologists began to study them.
Circumstantial evidence suggests that the problems in Barbados were due
to deforestation of the island for sugarcane and the consequent runoff of
sediments and human waste, as well as extreme overfishing to feed the bur-
geoning population.

The crucial points are that all the different causes of reef degradation
are important and that degradation will continue and likely accelerate un-
less we reduce all the threats as soon as possible. If we could somehow wave
a magic wand to halt climate change tomorrow, coral reefs would still likely
disappear in a few decades unless we also halted overfishing and the runoff
of pollution from the land.

Setting Goals for Conservation and Management

Historical ecology tells us what ecosystems were like before we overex-
ploited and otherwise abused them and, therefore, implies what we could
hope to achieve if we decided to restore them. Moreover, the trajectory of
historical degradation provides a road map for restoration if we can re-
construct conditions as they were before. There is much talk and excite-
ment about marine reserves as tools to restore biodiversity and healthy
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ecosystems, and perhaps to increase fisheries yields. But what does it mean
to “restore” biodiversity, and how and when would we know whether we
had succeeded or failed? Moreover, even if it were possible, do we as a soci-
ety really want to return ecosystems to their pristine condition, and would
we be willing to pay the enormous price?

In the case of the Florida Keys, would we be satisfied if reef fishes and
corals became as abundant as they were in the 1970s? Or the 1950s? These
would be wonderful achievements to be sure, but sharks, sea turtles, and
manatee were already rare by the 1950s, sponges had suffered catastrophic
declines due to disease, and the monk seal was already extinct. So do we
need these creatures back as well, to the extent we can bring them back?
Some people might not want superabundant sharks, but there is strong ev-
idence that the extreme overfishing of sharks as well as other apex predators
may destabilize reef food webs and community structure. Likewise, the ex-
tirpation of green turtles has been strongly linked with turtle grass wasting
disease that wipes out entire meadows and their associated shrimp and fish
stocks.

Historical trajectories of reef degradation can offer partial answers to
these questions. For example, how do we know when a coral reef is in trou-
ble and when drastic action is required to stave off disaster? That might
seem obvious for the Florida Keys today, where fish, conch, and lobsters
are severely depleted, most reef corals are dead from disease, bleaching,
and overgrowth by seaweeds, and water quality has declined severely. But
the collapse of Jamaican coral reefs was far from obvious before the one-
two punch of Hurricane Allen and the mass mortality of the sea urchin
Diadema antillarum—although with hindsight the extreme overfishing of
reef fishes to the point of ecological extinction should have sounded the
alarm.

Hurricane Allen struck Jamaica in 1980—the first bad storm in nearly a
century. Immediately after the storm, scientists at the Discovery Bay Labo-
ratory were back in the water to document the damage. This was the first
time that the underwater effects of a hurricane were documented in such
detail. Fifty-foot waves had wiped the reefs clean down to 30 feet or more,
piling dead and stinking coral rubble into new islands on the reef crest and
causing mayhem far below.

Hurricanes are nothing new in the Caribbean, and scientists confi-
dently predicted how the reefs would recover based on the biology and vital
statistics of the dominant coral species. But they got it all wrong. Two years
later, a mysterious plague wiped out 95 percent of the ubiquitous sea
urchin Diadema antillarum, which turned out to have been the last impor-

198 f r o m f i s h e r i e s m a n a g e m e n t t o e c o s y s t e m s



tant grazing animal on Caribbean reefs. Within a few weeks the reefs were
covered by a thin coating of filamentous algae and a few years later were
carpeted in thick growths of seaweeds that smothered most of the remain-
ing corals. Live coral cover plummeted from about 60 percent to less than 5
percent. Coral bleaching and disease have further inhibited coral recovery.
Today, the waters are murky, and once beautiful reefs are mountains of sea-
weeds and slime.

On healthy coral reefs, grazing fish like parrotfish and surgeonfish are
the most important grazers upon seaweeds along with invertebrates like the
urchins. In the sparsely inhabited Northern Line Islands in the middle of
the Pacific, grazing fish are still abundant and the corals there are some of
the healthiest in the world, despite episodes of coral bleaching. On Jamaica,
however, overfishing had upset this balance by the early 1900s. Thus, the
fate of Jamaican reefs was sealed long before Hurricane Allen, pollution,
and climate change.

We can use such historical trajectories to rank reefs along a gradient of
degradation, identify reefs at risk, and identify conservation priorities to
ward off imminent collapse. This is, in effect, what the government of Aus-
tralia did in 2003 when it rezoned the Great Barrier Reef and closed one-
third of the reef and all the different reef habitats to any form of exploita-
tion, and more recently the designation of monument status for the entire
northwest Hawaiian Islands by the U.S. government.

How will Australia and the United States know whether their bold ac-
tions have been successful, and what criteria should we use to evaluate suc-
cess or failure? If we want to determine whether a marine reserve is fulfill-
ing its conservation goals, we can monitor sites inside and outside the
reserve over time. We can then incorporate the data into a historical data-
base and do a new analysis to observe the ecological trajectory of the reserve
sites over time. If the goal of the reserve is to recover ecosystem health, then
the trajectory of degradation should be approximately reversed (figure
11.3A). We say “approximately” because environments and ecosystems are
always changing for a variety of natural and human reasons besides the ones
we pay attention to, so the world is inevitably in a very different condition
than when degradation began. Thus, intervention may halt decline but
result in an entirely different trajectory to a new alternative community
state (figure 11.3B). As Thomas Wolfe famously said, “You can’t go home
again.” Nevertheless, and regardless of this fundamental uncertainty, if the
trajectory of degradation within a reserve is similar to unprotected sites or
does not change (figure 11.3C), the reserve would not be fulfilling its
stated purpose and additional actions would be required.
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Challenges for the Future

Five fundamental questions need to be resolved if historical ecology can live
up to its potential. Questions 1 and 2 are purely historical. Questions 3 and
4 combine historical analysis with ecological observations. Question 5 is
the most important, and will require the combination of historical ecologi-
cal perspective with appropriate large-scale and bold management initia-
tives and experiments.

1. How variable were pristine marine communities and ecosystems over dif-
ferent spatial and temporal scales? This question addresses the fundamental
properties of baseline conditions that must have varied considerably among
environments and ecosystems. Coral reef communities were remarkably
stable for millennia until their geologically instantaneous collapse. In con-
trast, sardine and anchovy upwelling ecosystems exhibited enormous cycli-
cal, and therefore predictable, fluctuations over comparable time periods.
We need more examples to calibrate our expectations with rigorous sam-
pling to distinguish signal from noise. The rich core records of planktonic
foraminifera and coccolithophores from the deep sea, as well as cores from
estuaries, seem particularly promising for analysis of pelagic baseline com-
munities. There are unlimited replicate samples and material, much of it al-
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Figure 11.3. Hypothetical ecological trajectories of a protected coral reef. The phase
space of the diagram represents the range of possible community composition from
pristine to ecologically extinct in ordination space (sensu Pandolfi et al. [2003];
Pandolfi et al. [2005]). Intervention is begun when the reef community has de-
graded approximately one-third of the way en route to ecological extinction. Three
possible trajectories are illustrated: (A) protection is successful in reversing the
trajectory of degradation; (B) protection halts degradation but results in some new
alternate community composition; and (C) protection fails to prevent further
degradation and effectively makes no difference compared to unprotected sites.
(Knowlton [2004]).



ready processed for paleoceanographic studies, which are ripe for this sort
of paleoecological analysis.

2. What were the chronologies and rates of change along trajectories of ecolog-
ical degradation? There are two crucial components to this question. First,
was degradation gradual or in steps, and did rates of change remain con-
stant or increase toward the present? We want to know whether trajectories
are nonlinear at all scales, with a series of little phase shifts along the way, or
whether everything happened all at once when some critical threshold was
reached. We can only guess the answer for most ecosystems because we as-
sumed stability until everything appeared to collapse at the end, like Cali-
fornia sardines in the 1950s, Jamaican coral reefs after 1983, or the debacle
of cod. Second, were changes synchronous globally or within large water
masses, or were they geographically out of phase? If changes were synchro-
nous, they may have an oceanographic as well as anthropogenic explana-
tion. However, if they were out of phase in ways closely correlated with hu-
man activity and not with climate, then human impacts must have been
primarily responsible. These questions could be addressed using time series
from sediment cores and uplifted outcrops of coral reefs.

3. What were the proximate causes or mechanisms of collapse? In terms of
the “straw that broke the camel’s back,” we need to know whether all straws
are, or were, equally important, or whether some changes or events were
more important than others in the loss of resilience leading up to cata-
strophic shifts. We suspect that the most frequent proximate causes are sto-
chastically occurring extreme natural disturbances such as especially strong
hurricanes or oceanographic regime shifts that push anthropogenically
stressed ecosystems beyond the point of no return. We could get much of
the answer to this question by careful analysis of the environmental condi-
tions leading up to and concurrent with well-studied examples of ecological
collapse. Other important measures could include retrospective analyses of
possible decrease in fitness of organisms before collapse occurred. For ex-
ample, did rates of coral growth or regeneration of injuries decline before-
hand? We could definitively answer these questions for reef corals by de-
tailed analysis of cores already collected for paleoceanographic studies of
climate change.

4. Can we identify simple and reliable proxies of imminent ecosystem col-
lapse? The simplest and most reliable proxies for effects of exploitation in-
clude the body size of exploited species and the distribution of biomass at
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different trophic levels of the food web. The absence of large fish is a sure
warning of disaster, as is the shift in proportional biomass from apex preda-
tors to herbivores or from vertebrates to invertebrates. We urgently need to
compile values of these simple indices along well-documented gradients of
ecological degradation so that they can be quickly and easily applied to
other previously unstudied ecosystems. Other likely proxies include retro-
spective measures of growth rates and other measures of fitness as described
for corals above.

5. Will degraded ecosystems tend to retrace their earlier trajectories of degra-
dation after human impacts are reduced or strike out in different directions? The
problem of the path of “recovery,” already alluded to, is an inevitable prob-
lem of multiple ecosystem states (figure 11.3), exacerbated by the possibil-
ity of entirely new sorts of assemblages due to changes in the available spe-
cies pool or environmental conditions unrelated to the original reasons for
collapse. Stated another way, since all marine ecosystems are significantly
degraded from their pristine state, could we somehow engineer their “re-
covery” to some new and “improved” ecological state? The only way to
know is to do ecosystem experiments on large enough spatial and temporal
scales to accommodate the life history characteristics and behavior of previ-
ously important species, and, with far greater difficulty, attempt to reverse
degradation once it has occurred.

Coda

So far the evidence for recovery from the few bold experiments and man-
agement actions is mixed. Indeed, bold management is almost inevitably a
bold experiment, whereas weak management or inaction is almost always a
bad experiment. Large-scale closures of fishing grounds such as those on
Georges Bank have resulted in the partial restoration of fish stocks, espe-
cially when managers were able to act quickly and on appropriately very
large scales to ward off total collapse. Likewise, reductions in excess runoff
of nutrients and eutrophication have resulted in improvements in water
quality and partial recovery of benthic ecosystems and fisheries in Tampa
Bay and the Black Sea. In contrast, substantial reductions of nutrients in the
Baltic Sea have so far failed to achieve the desired results due to the storage
of vast quantities buried in sediments that recharge excess nutrients to the
ecosystem.
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Such disappointments are hardly surprising given the centuries of hu-
man insults and the timidity of our response. Moreover, the numbers of se-
rious, large-scale attempts to address extensive ecological degradation are
very few and have only just begun. We are still applying a piecemeal ap-
proach, focusing on runoff of nutrients and toxins while ignoring over-
fishing, or worrying about climate change while ignoring everything else.
More integrated and holistic programs offer the promise of immediate
short-term gains in some directions that can help sustain the commitment
to stay the course in others. For coral reefs, protection of large areas from
fishing and runoff of nutrients may result in rapid recovery of fish stocks
but little, if any, short-term recovery of corals, which take so much longer to
grow and reproduce. But none of this will happen if we don’t start now
while we still have a chance.
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Epilogue: Shifting Baselines for the Future

Jeremy B. C. Jackson and Karen E. Alexander
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No one needed to “manage” fish when people were few and fishing pres-
sures were low. Indeed, as Andy Rosenberg is fond of pointing out, the
concept of managing fish is fundamentally absurd. Fish can’t read the regu-
lations and they don’t go to management meetings, people do. So we must
manage people in order to restore the fish, fisheries, and ecosystems that we
value.

Yet managing people is difficult. People have legal rights, economic in-
terests, and differing notions of well-being that can impede or facilitate
management practices. Denial of responsibility permeates fisheries folklore
and even scientific literature about the decline of sea turtles, monk seals,
whales, seabirds, and many food fish, which until recently has been attrib-
uted to everything but overfishing. But the concept of shifting baselines
helps to neutralize denial by spotlighting evidence to the contrary.

We end by highlighting what gives us hope—substantial changes in
human behavior can make a significant difference.

Several marine species have been brought back from the brink. Since
the International Whaling Commission declared a moratorium on com-
mercial whaling in 1986, many whale species have rebounded dramatically,
to the point that several nations now clamor to reopen the fishery despite
substantial loopholes for scientific and other forms of whaling by some
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signatories. The extent of recovery is currently debated, but everyone agrees
that increases since protection have been great. Establishing large closures
on Georges Bank in the 1990s resulted in such a substantial rebound of
scallops and haddock that fishing boats now crowd the closure boundaries
and there is pressure to reopen the grounds to fishing. Of course no one
would care if the closures had not worked.

On the newly rezoned Australian Great Barrier Reef, coral trout popu-
lations are rebounding, with the possible ecological benefit of their in-
creased predation on crown-of-thorns starfish, which have devastated reef
corals in the past. Likewise, the Northern Line Islands escaped heavy fish-
ing largely through benign neglect and today support close to the highest
reef fish biomass anywhere. They also exhibit among the highest cover of
reef-building corals and coralline algae in the central Pacific despite increas-
ingly high temperatures and coral bleaching. Apparently, marine protected
areas confer greater resistance to the effects of global climate change. Al-
though absolute protection has proven more difficult for developing na-
tions, alternative strategies based on long-standing local traditions for man-
agement have proven effective in Melanesia and elsewhere.

Recognizing shifting baselines is the first step toward creating new
ways of thinking that reintegrate the past, present, and future. Not to dwell
on our past failures or to imagine returning to some idyllic pristine state,
but to better envision ways of living that can heal the wounds of the natural
world while improving people’s lives: that is the lesson of this book.
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J.G. Sutinen (2000), Location choice in New England trawl fisheries: Old habits
die hard. Land Economics 76: 133–149.

“a few years since . . . [to] set line fishing (tub trawling), first practiced on it by
the French and latterly by United States fishermen”: p. 376–377 in Innis (1940).

“Not much fished at present by Americans”: chart 4, vol. 3 in Goode (1884–
1887).

greater opportunities enticed young men away from fishing: Collins, J.W.
(1898), Decadence of the New England Deep Sea Fisheries. reprinted on p. 393–
410 in Oppel, F., compiler, (1985), Tales of the New England Coast. Edison, NJ: Cas-
tle Books.

Page 103

the earliest regular scientific sampling surveys by thirty: Smith (1994).
based on total removals when cumulative effort is known: DeLury, D.B.

(1947), On the estimation of biological populations. Biometrics 3: 145–167.
The Chapman-Delury method, developed in 1972: Chapman, D. (1974), Es-

timation of population size and sustainability yield of Sei whales in the Antarctic.
Report of the International Whaling Commission 24: 82–90.

we estimated the biomass of the cod population in 1852, the first year of the
time series: Rosenberg et al. (2005).

Page 104

Figure 6.6: Rosenberg et al. (2005).

Page 106

both large and small vessels fished inshore: Alexander, K.E., W.B. Leaven-
worth, J. Cournane, A.B. Cooper, S. Claesson, S. Brennan, G. Smith, L. Rains,
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