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Preface

The Least Action Principle is among the most profound laws of physics. The
action — a functional of the fields relevant to a given physical system — encodes
the entire dynamics. Its strength stems from its universality: The principle applies
equally well in every domain of modern physics including classical mechanics,
general relativity and quantum field theory. Most notably, the action is a primary
tool in model-building in particle physics and cosmology.

The discovery of the Least Action Principle impelled a paradigm shift in the
methodology of physics. The postulates of a theory are now formulated at the level
of the action, rather than the equations of motion themselves. Whereas the success
of the ‘New Method’ cannot be overestimated, it raises a big question at a higher
level: “Where does the action come from?” A quick look at the current theoretical
efforts in cosmology and particle physics reveals an overwhelming multitude of
models determined by the actions, which are postulated basing on different
assumptions, beliefs, intuitions and prejudices. Clearly, it is the empirical evidence
that should ultimately select the correct theory, but one cannot help the impression
that our current models are only effective and an overarching principle remains
concealed.

A proposal for such an encompassing postulate was formulated by Ali
Chamseddine and Alain Connes in 1996 [5]. It reads [5, (1.8)]:

The physical action should only depend upon the spectrum of &,

where & is a certain unbounded operator of geometrical origin. The incarnation
of the Spectral Action Principle is very simple indeed:

S(@7f7 A) = Trf(|=@‘//1)7

with a given energy scale A and a positive cut-off function f. Such a formulation
provides a link with the current effective actions employed in field theoretic models
and allows for a confrontation against the experimental data. The striking upshot
of the spectral action is that, with a suitable choice of the operator &, it allows one

vii



viii Preface

to retrieve the full Standard Model of particle physics in curved (Euclidean)
spacetime [4, 6, 20]. This result attracted considerable interest in both physical and
mathematical communities and triggered a far-reaching outflow of theoretical
research. The most recent applications include Grand Unified Theories [7], modi-
fied Einstein gravity [15] and quantum gravity [10], to name only a few.

The formulation of the Least Action Principle dates back to the eighteenth
century and the seminal works of Pierre de Maupertuis, Gottfried Leibniz and
Leonhard Euler. The quest for its rigorous verbalisation sparked the development
of the calculus of variations along with the Lagrangian and Hamiltonian for-
malisms. The modern formulation is expressed in the language of differential
geometry.

The Spectral Action Principle is embedded in an even more advanced domain of
modern mathematics — noncommutative geometry, pioneered and strongly pushed
forward by Alain Connes [8, 9]. The idea that spaces may be quantised was first
pondered by Werner Heisenberg in the 1930s (see [1] for a historical review) and
the first concrete model of a ‘quantum spacetime’ was constructed by Hartland
Snyder in 1949, extended by Chen-Ning Yang shortly afterwards. However, it took
almost half a century for the concepts to mature and acquire the shape of a concrete
mathematical structure. By now, noncommutative geometry is a well-established
part of mathematics.

Noncommutative geometry a la Connes sinks its roots not only in the
Riemannian geometry, but also in the abstract framework of operator algebras. Its
conceptual content is strongly motivated by two fundamental pillars of physics:
general relativity and quantum mechanics, explaining why it has attracted both
mathematicians and theoretical physicists. It offers a splendid opportunity to con-
ceive ‘quantum spacetimes’ turning the old Heisenberg’s dream into a full-bodied
concept.

In this paradigm, geometry is described by a triplet (o7, #, Z), where o/ is a
not necessarily commutative algebra, & is an operator (mimicking the Dirac
operator on a spin manifold) both acting on a common scene — a Hilbert space 7.
Thus, by essence, this geometry is spectral. The data of a spectral triple (o7, #, &)
covers a huge variety of different geometries. The classical (i.e. commutative) case
includes primarily the Riemannian manifolds, possibly tainted by boundaries or
singularities, but also discrete spaces, fractals and non-Hausdorff spaces and when
o/ is noncommutative, the resulting ‘pointless’ geometries, with the examples
furnished by the duals of discrete groups, dynamical systems or quantum groups to
mention but a few.

At this point, one should admit that the simple form of the spectral action is
deceiving — an explicit computation would require the knowledge of the full
spectrum of the operator &, which is hardly ever the case. Nevertheless, one can
extract a great deal of physically relevant information by studying the asymptotics
of S(2,f, A) when A tends to infinity. The key tool to that end is the renowned heat
kernel method fruitfully employed in classical and quantum field theory, adapted
here to the noncommutative setting. Beyond the (almost) commutative case, the
latter is still a vastly uncharted water. It is our primary intent to provide a faithful
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map of the mathematical aspects behind the spectral action. Whereas the physical
motivation will be present in the backstage, we leave the potential applications to
the Reader’s invention. To facilitate the latter, we recommend to have a glimpse
into the textbooks [15, 20] and references therein.

The plan of our guided tour presents itself as follows:

In the first chapter, the basics of noncommutative geometry a la Connes are laid
out. Chapter 2 is designed to serve as a toolkit with several indispensable notions
related to spectral functions and their functional transforms. Therein, the delicate
notion of an asymptotic expansion is carefully detailed, both in the context of
functions and distributions. With Chap. 3, we enter into the hard part of this book,
which unveils the subtle links between the existence of asymptotic expansions of
traces of heat operators and meromorphic extensions of the associated spectral zeta
functions. While trying to stay as general as possible, we illustrate the concepts with
friendly examples. Therein, the large energies' asymptotic expansion of the spectral
action is presented in full glory. Chapter 4 is dedicated to the important concept of a
fluctuation of the operator & by a ‘gauge potential’ and its impact on the action. In
terms of physics, this means a passage from ‘pure gravity’ to a full theory vested
with the all admissible gauge fields. In terms of mathematics, it involves rather
advanced manipulations within the setting of abstract pseudodifferential operators,
which we unravel step by step. We conclude in Chap. 5 with a list of open prob-
lems, which — in our personal opinion — constitute the main stumbling blocks in
the quest of understanding the mathematics and physics of the Spectral Action
Principle. We hope that these would inspire the Reader to have his own take on the
subject. The bulk of the book is complemented with a two-part Appendix.
Section A contains further auxiliary tools from the theory of pseudodifferential
operators, including a detailed derivation of the celebrated heat kernel expansion. In
Section B, we present examples of spectral geometries of increasing complexity:
spheres, tori, noncommutative tori and a quantum sphere.

This book is devoted to the spectral action, which is only a small offspring in the
vast domain of noncommutative geometry. Therefore, when introducing the rudi-
ments of Connes’ theory, we are bound to be brief and focus on the specific aspects
related to the spectral action. We refer the Reader to the textbooks for a complete
introduction on noncommutative geometry [9, 11, 13, 14, 21].

Let us also warn the Reader that, although we have designed the book to be as
self-contained as possible, some mathematical prerequisites are indispensable to
grasp the presented advanced concepts. The Reader should be acquainted with the
basics of functional analysis, including, in particular, the spectral theory of
unbounded operators on Hilbert spaces (e.g. [2, 17, 18]) and the rudiments of
operator algebras (e.g. [3, 12]). Some intuitions from global differential geometry
(e.g. [16]) and the theory of pseudodifferential operators (e.g. [19]) may also prove
useful.
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Our ultimate purpose is not only to provide a rigid first course in the spectral
action, but also to charm the Reader with the marvellous interaction between
mathematics and physics encapsulated in this apparently simple notion of spectral
action. Let res ipsa loquitur...

During the years spent in the realm of noncommutative geometry, we have
collaborated with a number of our close colleagues: Driss Essouabri, Nicolas
Franco, Victor Gayral, José Gracia-Bondia, Michael Heller, Cyril Levy, Thierry
Masson, Tomasz Miller, Andrzej Sitarz, Jo Varilly, Dmitri Vassilevich, Raimar
Wulkenhaar, Artur Zajagc. We also took benefits from discussions with Alain
Connes. Moreover, Tomasz was a scrupulous proofreader and Thierry was a great
help with the LaTeX typesetting. It is our pleasure to cordially thank all of them, as
without their kind support this book could not come into being.

Finally, we are greatly indebted to our families for their constant support.

We acknowledge the financial support of the Copernicus Center for
Interdisciplinary Studies in Krakéw Poland through the research grant ‘Conceptual
Problems in Unification Theories’ (No. 60671) awarded by the John Templeton
Foundation, and the COST Action MP1405 ‘Quantum Spacetime’.

Krakow, Poland Michat Eckstein
Marseille, France Bruno Iochum
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Chapter 1 ®)
The Dwelling of the Spectral Action e

Abstract The natural habitat of the spectral action is Connes’ noncommutative
geometry. Therefore, it is indispensable to lay out its rudiments encoded in the notion
of a spectral triple. We will, however, exclusively focus on the aspects of the structure,
which are relevant for the spectral action computations. These include i.a. the abstract
pseudodifferential calculus, the dimension spectrum and noncommutative integrals,
based on both the Wodzicki residue and the Dixmier trace.

1.1 Spectral Triples

The basic objects of noncommutative geometry a la Connes are spectral triples. As
the name itself suggests, they consist of three elements: an algebra o7, a Hilbert
space ¢ and an operator & acting on 7¢’. These three constituents are tied together
with a set of conditions, which could be promoted to the axioms of a new — not
necessarily commutative — geometry.

In the following, we shall denote successively by £ (5¢), B(H), F (),
LY (H) the sets of linear, bounded, compact and trace-class operators on 7. As
for the latter, Tr will always stand for Tr_», unless stated explicitly.

Definition 1.1 A spectral triple (<7, 7€, 9) consists of a unital involutive algebra
o/ , with a faithful representation 7w : .o/ — J8(¢) on a separable Hilbert space 57,
and 9 € £ () such that:

e 7 is a (possibly unbounded) selfadjoint operator on JZ,
e [2, m(a)] extends to a bounded operator on JZ for all a € <7,
e 2 has a compact resolvent —i.e. (2 — L)~ € J (J#) for A ¢ spec(D).

Remark that the second assumption requires that 7 (¢) Dom 2 C Dom 2. It is stan-

dard to omit the symbol 7 of the representation when it is given once and for all.
This flexible definition is tailored to encompass the largest possible spectrum

of different geometries. However, in order to have workable examples one often has
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2 1 The Dwelling of the Spectral Action

to take into account the topology of <7. To this end, one can, for instance, demand
that o/ is a dense *-subalgebra of a C*-algebra or, more restrictively,
a pre-C*-algebra — if one desires to have a holomorphic functional calculus.

The set of axioms adopted in Definition 1.1 is at the core of Connes’ noncom-
mutative geometry. Shortly, we will discuss two additional properties of a spectral
triple: p-summability and regularity, which are crucial for the sake of explicit spec-
tral action computations. Before we do so, let us illustrate Definition 1.1 with the
canonical example.

Example 1.2 Let M be a compact Riemannian manifold without boundary and let
P be any elliptic selfadjoint pseudodifferential operator (pdo) of order one on a vector
bundle E over M endowed with a hermitian structure. Then (C*°(M), L*>(M , E), P)
is a spectral triple. In fact, P has a purely discrete spectrum and its singular values
grow to infinity [57, Lemma 1.6.3], so its resolvent is compact. Moreover, since
a € C*°(M) can be seen as a pdo of order zero, [P, a] is bounded as a pdo of
order 0. The archetype of such situation is when M is spin: Let . be a spinor bundle
over M . Letmoreover o = C®*(M), # = L*(M,.)andlet 2 = P = —iy“V;f’/
be the standard Dirac operator on (M , .%) (cf. [53]). Then, (&7, 5, 2) is a spectral
triple. ]

As the algebra <7 in the above example is commutative, the associated spectral
triple is also called commutative. A natural question arises: Given a spectral triple
with a commutative algebra o7, can one recover the underlying manifold? The pos-
itive answer is the content of the famous Connes’ Reconstruction Theorem [33]. It
requires several additional assumptions on the spectral triple (see [108, Chap. 3] for
a pedagogical explanation of these). However, in the noncommutative realm, there
are known examples of perfectly workable noncommutative geometries for which
some of these additional assumptions are not satisfied [43—45, 49].

If M is alocally compact Riemannian spin manifold, then the natural associated
C*-algebra .of = Cy(M) of functions on M vanishing at infinity does not have a unit.
Moreover, the Dirac operator on M does not have a compact resolvent.

Thus, when .27 is not unital, the last item of Definition 1.1 needs to be replaced by

o a(2 — A)~!is compact foralla € &7 and A ¢ R.

Equivalently, one can require a(2? + &*)~'/? to be compact for any ¢ > 0, a € /.

Again, in practice one needs to consider the topological issues. This can be done
(see, for instance, [54]) by demanding that <7 and a preferred unitisation &7 of &/
be pre-C*-algebras, which are faithfully represented on % in terms of bounded
operators and [Z, a] extends to a bounded operator for every a € 7. See also [98].

To simplify, we stick to the original Definition 1.1 and hence assume from now
on that the algebra .27 is unital, unless explicitly written.

Example 1.3 A basic noncommutative spectral triple is defined by
oy = My (C) (complex n x n-matrices), #x=C", Dr=9;c . N

Since the Hilbert space .77 is finite dimensional, finite direct sum of (&7, %, Dr)’s
as in Example 1.3 are called finite spectral triples (see [76] for a classification).
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Taking a tensor product of a commutative spectral triple with a finite one results in
an almost commutative geometry [73]. There exists an analogue of the Reconstruc-
tion Theorem for almost commutative spectral triples [11] allowing one to retrieve
a smooth manifold M together with a vector bundle and a connection. Almost com-
mutative geometries are extensively employed in building physical models of fun-
damental interactions [7, 20, 86, 100, 104].

The purpose of this book is, however, to study the spectral action in full generality
of noncommutative geometry, beyond the almost commutative realm. We refer the
Reader to the textbook [104] for a friendly introduction to almost commutative
geometries and their physical applications.

Example 1.4 Other illustrative examples are given by the noncommutative tori and
the Podles spheres — see Sects. B.3 and B.4 of Appendix B. |

Remark 1.5 Given a spectral triple (&7, ¢, Z) one can always obtain a new
one (o, 7, Dy),with Dy = D+ V,V = V* € B() and Dom Py := Dom Z.
Indeed, (&7, 72, Dy) is aspectral triple as [Z + V, a] extends to a bounded operator
for any a € ./ whenever [Z, a] does so. Furthermore, if 7 is in the resolvent of 2y
and 7’ is in the resolvent of & then,

(Z2+V-2"'=@-)"[1-(V+-(Z+V -27]

is compact since the first term is compact and the second one is bounded.

However, the geometry of (<7, 5, Yy ) need not a priori be related to the one of
(o, 7, ). 1f we want to obtain a geometry which is in a suitable sense equivalent,
the perturbation V has to acquire a precise form (see Sect. 1.6). |

On the technical side, we need to take into account the fact that Z may be non-
invertible. We adopt the following convention

D=9+ Py, (1.1)

where Py is the projection on Ker & C 7. The operator Py is a finite-rank (i.e.
dim Im Py < oo) selfadjoint operator on .7 and D is an invertible operator with a
compact resolvent. Thus, by the previous remark, (<, 77, D) is also a spectral triple.
Moreover, notice that |D| = |2| + Py and |D| ! is compact.

Another possibility is to define (see for e.g. [38]) an invertible selfadjoint operator
D as the restriction of & to the Hilbert subspace (1 — Py).%#. Yet another option,
chosen in [13], is to work with the invertible operator (1 + 2%)!/2.

The selection of a prescription to cook up an invertible operator for & is only a
matter of convention (cf. [13, Sect. 6], [51, Remark 3.2]). However, one has to stay
vigilant, as different choices may affect the associated spectral functions (see, for
instance, Formula (2.8)).

The first vital property of a spectral triple we shall need is a ‘finite dimensionality’
condition:
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Definition 1.6 A spectral triple (<, 52, D) is finitely summable or, more precisely,
p-summable for some p > 0 if Tr |D|™” < oo.

Note that p-summability yields (p + ¢)-summability but not (p — ¢)-summability
for ¢ > 0, so we define: The triple is said of dimension p (or p-dimensional) when

p = inf{g>0] Tr|D|™? < o0} < 0.

This notion of dimension will be refined in Definition 1.23.

Remark that finite spectral triples (cf. Example 1.3) are always O-dimensional. But
spectral triples with dim J# = oo can also have dimension 0 — like, for instance,
the standard Podles$ sphere (see Appendix B.4).

Example 1.7 Let (o, 7€, ) be a commutative spectral triple based on a Rieman-
nian manifold of dimension d, then (7, 72, 2) is d-dimensional [60, p. 489]. H

A slightly weaker notion is the one of -summability: Tr e~ P <oofort>1y>0

[29, Chap.4, Sect.8]. Every finitely summable spectral triple is 6-summable with
to = 0, but the converse is not true (cf. [27] and [29, Chap.4]). The geometry of
spectral triples which are not finitely summable is, however, too poor to accommodate
various analytical notions (cf. Sect. 1.4), which are indispensable for the spectral
action computations. On the other hand, note that we do not require p to be an
integer. For instance, fractal spaces are fruitfully described via p-summable spectral
triples with p being the (irrational) Hausdorff dimension of the fractal [5, 8, 22-25,
36, 61-63, 74, 79, 80].
The next key property encodes the notion of smoothness:

Definition 1.8 A spectral triple (7, 72, 9) is regular if

YVae o a,[D, d]e QN Dom 8™, where 8’ :=1[|2], ‘1. (1.2)
ne

The map 4’ is an unbounded derivation of the algebra 2 (7#). (Recall that the nota-
tion T € Dom ' means that T preserves Dom |2| and §' () = [|2|, T] extends
(uniquely) to a bounded operator on .77°). We note that some authors refer to assump-
tion (1.2) as smoothness [98, Definition 11] or QC* (Q for “quantum”) [13, Defini-
tion2.2].

The regularity assumption allows one to equip </ with a topology generated by
the seminorms a > ||6*(a)|| and a — ||6*([2, a]) . The completion of ./ in this
topology yields a Fréchet pre-C*-algebra <7 and (<%, 77, &) is again a regular
spectral triple [98] (see also [60, p. 469], [108, Sect.3.4] and [13]).

A commutative spectral triple (<7, 72, Z) based on a Riemannian manifold is
regular. Condition (1.2) assures that the functions constituting .27 are indeed smooth.
In this case, <y = C*°(M) also as topological spaces [98, Proposition 20].

In some of the approaches (in particular, in almost commutative geometries) it
is desirable to encode in the axioms of a spectral triple the fact that the classical
Dirac operator is a first order differential operator [108, Sect.3.3]. Such a demand
was originally used to restrict admissible Dirac operators for almost commutative
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geometries [20, 46] and restrain the free parameters of the underlying physical mod-
els. On the other hand, in recent studies, it is argued that one does not actually need
the first-order condition defined below and there exist examples of spectral triples
for which it is not satisfied (see [21] and references therein). Consequently, we will
not assume the first-order condition to hold throughout this book. Nevertheless, we
shall state it and explain its origin. To this end we need the following notions:

Definition 1.9 A spectral triple (o7, 7, &) is even if there exists a selfadjoint
unitary operator y on.%# suchthaty> = 1,y 2 = —%y and ya = ay foralla € <.
Otherwise, the spectral triple is odd.

Definition 1.10 A spectral triple (7, 7, 9) is real of KO-dimension d € 7./8 if
there is an antilinear isometry J : 5 — ¢ called the reality operator such that

JD =¢eDJ, JrP=¢, and Jy =¢&” yJ when the triple is even,

with the following table for the signs ¢, &', &”

do1r 2 3 4 5 67

efl—-11 1 1 -1 11

g1 —-1-1-1-111 (1.3)
"1 -1 1 —1

and the following commutation rule (see [35] or [60, Sect.9.5] for the details)
la, Jb*J'1=0, Va,be . (1.4)

For a spectral triple based on a Riemannian manifold of dimension d the
KO-dimension is just d mod 8. It encodes the fact that the Dirac operator is a square
root of the Laplacian, what generates a sign problem corresponding to the choice
of a spin structure (and orientation). In this context the operator J plays the role
of a charge conjugation for spinors (see [60, Sect.5.3] or [109]) and it encodes the
nuance between spin and spin® structures. On the other hand, given a spectral triple
(o, 7, D) with a noncommutative algebra one can usually find different reality
operators leading to real spectral triples with different KO-dimensions (see [76]).

The operator J takes its origin in the modular theory of von Neumann alge-
bras (see [29, Chap. 1, Sect.3 and Chap.5]) and has interesting applications in the
algebraic quantum field theory [65, Chap.V]. In the context of spectral triples,
with the help of J one can define a representation on 7 of the opposite alge-
bra 27°P, which is isomorphic to o7 as a vector space, but the multiplication in
/P is inverted, i.e. a @y b := b e, a. Given a representation 7w : &f — B(H),
define the representation 7° : &/ — Z( ) by n°(a) := Ja*J~'. The condition
[ (a), Jm(b*)J~']1 = 0 for a, b € </ means that the two representations commute
[ (), m°(2/°P)] = 0, hence 7°(27°P) is in the commutant of 7 (&) in B(H). If
&/ is commutative, o = .&7°P and this requirement becomes trivial. See, for instance,
[108, Chap. 3] for more details.

We are now ready to formulate the announced first-order condition.
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Definition 1.11 A real spectral triple (<7, 5, ) meets the first-order condition if
(2,al,Jb*)'1=0, Vabed. (1.5)

As mentioned above, it encodes the fact that for a commutative spectral triple = 2
is a first order differential operator. The reason for the appearance of the representa-
tion of 27°P in (1.5) is that [Z, -] is not a derivation from .7 to itself, but rather to
the commutant of .#°P [21]. The first-order condition plays an important role in the
study of fluctuations of the spectral action — see Sect. 1.6.

Finally, we remark that each of the properties of being even, real, regular or
p-summable can be extended to the non-unital framework [54, 98, 99].

1.2 Some Spaces Associated with ¥

In this section we discuss the pseudodifferential calculus suitable for noncommutative
geometries. We essentially base on the classical papers [28, 37], however some of
the definitions are taken from more recent works [13, 49, 67, 69].

Let us first define the following scale of spaces for a parameter s € R

77° .= Dom |DJ’. (1.6)

If s <0, 55 = #° = 5 and for s > 0, 5#° are Hilbert spaces for the Sobolev
norm

IEN3 == IEN* + IIDIE

and S+ C 5 C A for s, & > 0 since the injection J#°+¢ < J#* is continu-
ous.

Let us note, that we do not need the invertibility of 2 since #° = Dom |2|*
for s > 0 as Py = PyZ = 0 and Py € A (). Actually, for s > 0 we also have
5 = Dom (1 + 2?)*/? as shown in [13, Sect.6]. On the other hand, the Sobolev
norms will not be the same if we swap |D| for |Z| or (1 + 22 n the second
case the norms will not coincide even if Ker 2 = {0}. However, the precise form of
the Sobolev norms for 77 is not relevant and, as already stressed, the choice of |D|
instead of (1 + 22)'/? is only a matter of convention.

We also define the domain of smoothness of Z as

= = . (1.7)

s>0 keN

JC is dense in 7 and is in fact a core (see [97, p. 256] for a precise definition)
for 2 [98, Theorem 18]. Actually, it is sufficient to consider 7’ k with k € N [60, p-
467] (see also [109, Definition 6.11]). 5 can be equipped with a topology induced
by the seminorms ||-||;, which makes it a Fréchet space.
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With the spaces 7° at hand, we define the following classes of unbounded
operators on .7 for any r € R (compare [28, Sect. 1], [13, Definition6.1]):

op’ :={T € £(#) | Dom T D > and for any s > r
T maps (A, ||-||,) continuously into (S, [|-||,_,)}.
(1.8)

For instance Vr € R, |D|" € op”. Any operator in op” extends to a bounded map
from 7 to /™" Vs > r and since #° = J#, we have op’ C %(#). Moreover,

op” Cop’ifr<s, op -op'Cop ™ forallr, seR. (1.9)

In the previous section we met a map 8’ on (), the domain of which played
a pivotal role in the axiom of regularity. For further convenience we also define:

8¢):=I[D|,-l, V() :=[D*"1, o():=|D|-|D|I™!
() ==8C)DI™ &) :=V()IDI

Let & € {8, V, 0, &, &). Recall that, by definition, if 7 € Dom & C (), then
E(T) € B(H). Actually, one can extend any = to a map on unbounded operators
defined on the set {T' € £ () | Dom T D 7°°}. By the habitual abuse of notation
we denote the extensions of =’s with the same symbols. However, one has to stay
vigilant as in the following Dom = will always mean a subset of Z(5¢).

Furthermore, for any 7' € .Z () with Dom T D 7> we define the following
one-parameter group of (unbounded) operators:

0.(T) := |DF T |D| %, forzeC, (1.10)

using the Cauchy integral along a curve ¥ C C (see (A.3)) to define

|mﬂ=$/ AT = D) da. (L11)
re¥€

Note that for T € Dom o we have 6" (T) = 0,(T) for all n € N.
Lemma 1.12 ([13, 37]) We have ﬂN Dom 8" = ﬂN Dom 6" C op’.
ne ne

Proof Since |D| = |2]| + Py, Dom §’ = Dom § because Py is bounded and we get
the announced equality.
Letnow T € M Dom §". One checks that o = id 4+€ and, for every n € N,

neN

ENT) = 8(T) |ID|™, o™(T) = (id +&)(T) = Z(Z) skry DI, (1.12)
k=0
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Hence, £"(T) and ¢ (T) are bounded. Similarly,
o (T) = Z(—l)k(Z) ID| 7% §%(T) (1.13)
k=0

is bounded too. Thus, forn € Z and & € 7,

ITEI? = TN + |IDI"TE|* = ITEI + |0 (T) IDI" €|
< c(EI + | IDI" g = clIg12.

The case of an arbitrary n € R follows by the interpolation theory of Banach spaces
(cf. [60, Formula (10.65)] and [29, Chap.4, Appendix B]). O

We now introduce yet another class of operators on 5 (cf. [37], [13, Defini-
tion 6.6]):

oPY .= ﬂN Dom 8", OP :={T € L) | |D|”'T € OP’} forr e R. (1.14)
ne

The definition of OP” is symmetric: When r € N, Eq. (1.12) yields
OP" = |D|"OP° = |D|"OP° |D|™" |D|" c OP° |D|". (1.15)

When T € OP’, we say that the order of T is (at most) r and write ord T :=r.
Since s> is dense in .77, the operators in op” (and a fortiori in OP") are densely
defined and we can define (OP")* := {T* | T € OP"}. We have (OP")* = OP’, what
follows from the observation that (8"(T))* = (—1)"8"(T*), so (OP%)* = OP° for
n € N, and the symmetry (1.15) of OP".
Note also that

Py € OP™* forall k € R, (1.16)

because Py is trivially in OP? and Py|D|* = Py € A () for any k > 1.
Obviously, we have |D| € OP! (but not in OP°, because |D| ¢ Z()!). Also,
D € OP! since with F = D |D|™! € Z(#) we have §(F) = 0 as D is selfadjoint.
Consequently, 2, |2| € OP', but again 2, | 2| ¢ OP° for 2, | 9| ¢ B(H).
Note that the regularity condition (1.2) is equivalent to requiring that

o/ c OP°, [2,.4/]c OP°. (1.17)

In that case, for instance, a |2|[2, b]D~* € OP73 witha, b € <.
In [37] it was proved that operators of order < 0 admit another characterisation:

OP’ = (T |t +— F(T) € C®°[R, B(H))},
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where F,(T) := " PITe="P! for t € R, which is reminiscent of the geodesic flow
[28, 35], [40, Chap. 8]. Recall that (T) = [|D|, T] = strong- lim,_,o Z0=Fo0)

Proposition 1.13 Letr, s € Rand z € C. Then

(i) OP" C op.
(ii) o,(OP") C OP".
(iii) OP" OP* C OP'**.
(iv) OP" C OP’ when r < s.
(v) 8(OP") C OP".
(vi) V(OP") c OP"*! and &(OP") c OP" .
(vii) [ID|", OP*] C OP"+s~1,
(viii) IfT € OP", r > 0 has an inverse with T~' |D|" € B(), then T~' € OP™".
(ix) OP° C B(H) and OP~' C H ().

Proof (i) This follows from OP° C op® (Lemma1.12), |D|" € op” and (1.9).

(i) When T € OP?, since |D| ¥ and 8% (T") are also in OP for any k € N, Formulae
(1.12) and (1.13) tell us that for any n € Z, 0,,(T) = o"(T) € OP°. Let us fix
meNandlet F, : z€ Cr> §"(0,(T)) € L(). Since F,,(n) is bounded
when n € Z, a complex interpolation shows that F,,(z) is bounded for z € C,
so that o_(T) € OP’. When T' € OP” we have T = |D|" T’ with 7" € OP?, thus
0,(T) = |D|" o,(T") € OP".

(iii) Let T € OP" and T’ € OP*. Then, |[D|™"T and |D|™°T’ are in OP° and
by property ii) we have |D|~* (|[D|™"T)|D|* € OP°. Hence, we deduce that
D" TT = (DI~ T IDF)(ID|* T") € OP".

(iv) When s > r, |D|"™* is a bounded operator and is in OP°. Thus if T € OP’,
ID|™*T = |D|""* (ID|""T) € OP° by (iii).

(v) If T € OP’, then T = |D|" S with S € OP? and §(T) = §(|D|")S + |D|" §(S),
so the result follows from § (OP°) ¢ OP? and (iii).

(vi) Let T € OP". Since V(T) = 8(T) |D| + |D| 8(T), we get V(T) € OP"*! from
properties (iii) and (v).

Moreover, &(T) = V(T) |D|~2 € OP"*' OP~2 ¢ OP"~! using (v) and (iii).

(vii) By (iii) it is sufficient to prove that [|D|", OP°] € OP"~!. This is true for r € N
using (v) and for r € —N using [A~!, B] = —A~![A, B]JA~!. Finally, this also
holds true for an arbitrary » € R by interpolation — as in the proof of (ii).

(viii) Assume r = 0. Remark that §(T~!) = =T~ '8(T)T~! is bounded. Thus

2(TYY = =T71'83()T~' =T H8(MT' =T '8(T)8(T~") is bounded
and, by induction, 8"(T~") is bounded for any n € N*. Thus 7! € OP°.
Now for r > 0, T = |D|" S where S € OP" is such that S~' = T~"|D|" is
bounded by hypothesis, thus in OP? by previous argument and the claim fol-
lows from (iii).

(ix) By (i), we have oP’ ¢ Opo C B(A).Since |D| ' isa compact operator, the
last assertion follows. O
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Let us stress that the op classes are, in general, strictly larger than OP’s. E.g. on the
standard Podles sphere (cf. Appendix B.4), which is not regular, we have a € op”,
but a ¢ OP? for any a € Ay, a # cl.

The following, innocent-looking lemma, will prove very handy in practice:

Lemma 1.14 Let T € L (7). Assume that there exist r € R and 0 < ¢ < 1 such
that for any N e N, T = 22]:0 P, + Ry, with P, € OP"™" and Ry € OP"N—1+¢,
Then, actually, Ry € OP"~N=1,

Proof We have Ry = Py + Ry1. Because Ry, € OP"™ V=27 « OP"V~! and
Py41 € OP" V=1 we conclude that Ry is actually in OP" V1, 0

We will often need to integrate operators (like in Formula (1.11)) from a given OP
class and we will need a control of the order of the integral. A typical example is the
following: Fori € {1, ..., n},letus be given A;(A) € OP™% with q; € R, commuting
with |D|, and B; € oP”, C(A) € OP¢ with b;, ¢ € R, which do not necessarily
commute with |D|. For some I C R, we will need to show that f, R(A) d)\ € OP" for
some r € R, when R(A) = A;(AM)By -+ A,(A)B, C()\).

Letusdefinea :=a; + ... +a,andb := by + ...+ b,. Assumingb < a + c,we
first remark that the integrand R(X) is in OP~¢~** < OP?, so it is bounded. We now
decompose |D|“*? R(1) in the following way: For oy = Z,I;o aj, By = ZJI;O b;,
with ag = by = 0, we have

|D|a+c—b R()\.) — E1 ()L)Fl . En()L)Fn G()L),

E (L) = |D|(a+(‘*ak—l)*(b*ﬁk—l) ey |D|*(G+C*0‘k)+(b*ﬁk—l) = |D|* Ay (M),
Fy = |D|@te—e—(=Bi) g | p|~(@te—a)+b-p) G(A\) := |D|I°C(A).

Remark that all operators Ej (1), Fj, G(A) are in OP?, and hence bounded.
Typically, the operators A (L) would be of the form (D> 4+ 1)~!, which gives
Ar(A) € OP7% and Ay (M) = O (A1), So, to assure the integrability of R(A) for
I = Rt := [0, 0o) we usually have to sacrifice a few orders of OP. For example,
with R(A) = (D* + )72 € OP™*, we get ||ID|" [ R(\) d| < oo only for r < 2.

Theorem 1.15 Let I C R. Assume that there exist r € R and n € N* such that for
any A € I a given operator R(\) € L (H) can be decomposed as

[DI" R(A) = E\(MF; --- E,(MF, G(M), (1.18)
with Ex(\), Fr, G(L) € OP and [|D|, Ex(A)] = 0.

If/||E1 M- NE. ) - 118" (GA)) | dh < ooform € N, then/R(A)dk € OP™".
I I

Proof We need to show that |D|" #Z := |D|" fIR(A)dA e Op’ = N>, Dom 6™.
For m = 0, we have || [DI" Z|| < ([Ti; IFx ) f; Ty IEK)I- IG)I1dA < 00
by hypothesis. Hence, |D|" Z is bounded.
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An application of § to |D|"” % generates from the integrand |D|” R()\) a finite
linear combination of terms like those in (1.18) with either one of the F}’s replaced
by 8(F)) or G () replaced by 8(G (1)), as 8(E;) = 0. Since F;, € OP’, the norm of
8™ (Fy) is finite for any m € N and the norm of §”(|D|" #) can be estimated along
the same lines as for the case m = 0. [

As the first application of Theorem 1.15 we derive an operator expansion (1.22),
which will play a pivotal role in the construction of an abstract pseudodifferential
calculus. We will need the following technical lemma (cf. [13, Lemma 6.9]):

Lemma 1.16 Let T € OP” for an r € R and let A ¢ spec D>. Then, ¥n € N*,

N e N,
(D* — A)*”T:Z(—1)1(’”{,.*1)V1(T)(D2 — )7 4 (=DN TRy (A, n), (1.19)
Jj=0

Ry(,m) =y (N7 @2 = )} IV @y (07 — )~ e opro N
k=1

Proof The proof follows by pure combinatorics with an induction on n and N.

(1) Letus firsttake n = 1 and N = 0. We have

D*—=N'T=1TD* ="+ [(D* -1, T]
=TMD*—N"'=D* =)'V D* -1, (1.20)

which is precisely the Formula (1.19) forn =1, N = 0.
(2) Let us now assume that Formula (1.19) holds for N = 0 and a fixed n € N¥, i.e.

(D= N)"T=TMD* - 1" — Z(D2 — VD - 07k .21
k=1

We show that Eq.(1.21) holds also for n 4 1: Applying Eq.(1.20) again
n
D* == @ =) - =Y 0 - v o? - M7

k=1
=T7D* - n" 1 - - n v — a1

=Y @ =2y -7k
k=1

(3) If (1.19) holds for any n € N* and a fixed N € N, it is sufficient to show that

Ry (O, n) = (W) VVHT)(D? — 1)~ VD — Ry (A, ).
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Indeed, by assumption we have

n

Ry(A,n) = Z (k+x—1)(D2 _ kL NFL Ty (D2 )N

k=1
n
— Z (k+x_l)vN+l(T)(D2 _ )\')7(”+N+1)
k=1
n n+l—k
o Z (k+%71) Z (DZ _ A)j+k71172vN+2(T)(D2 _ )\’)7(/+k+N)
k=1 j=1
— (nNiAI)VNH(T)(DZ _ )“)*(N+n+1)
n k
_ Z Z (j+1[\\/171)(D2 _ )\')kfnflvNﬁ*Z(T)(DZ _ )\’)7(k<HV+1)7
k=1 j=I

which is the claimed equation, since Z_f:] (371 = () and in the third equality

we commuted the sums and changed the summation index j + k — 1 ~ k.
Lastly, the use of Proposition 1.13 (iii), (vi) shows that Ry (%, n) € OP"~2*=N=1 [

Theorem 1.17 Let T € OP’ for some r € R. Then, for any z € C and any N € N,

N
o2:(T) =Y () Vi) IDI > + Ry(2), Ry(z) € OP"V*D, (122)
=0

Here (;) =z(z—1)---(z — n+ 1))~ with the convention (é) =1,
Proof Forz € Cwedecomposez = n + s, withn = [N(z)| € ZandN(s) < 1yield-
ing |D|™*T = |D|"* |D|~*"T.

Let us first assume that 9%(z) > 0 and %R (s) > 0. Hence, n € N. For any N € N
Formula (1.19) with A = 0 implies

N
|D|722 T = Z(_l)](n-‘r;—l)|D|7ZSvj(T)|D|*2U+n) + (_1)N+1|D|72SRN(0’ n)

J=0

Now, for 0 < 9i(s) < 1, we invoke the operator identity

[e'9)
|D|—2x — Sm:”) / (D2 +)\)_] )L—s dhr.
0
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For any j € N, Formula (1.19) with —» € —R* ¢ specD>, n=—1,N —jeN
yields

DI Vi) = snz f (D2 +2)7'VI(T) 27 da

= sin(rs) Z( 1 vf+k(T)/ (D> + )T AL+ R (9)
k=0

— ﬂm(JTY) Z( 1)k r(lr(vlzi(lv)-ﬁ-k) V]+k(T) |D|—2(.§+k) +RNJ(S)

with RYy ;(s) = (=N 78I (D2 4 3)=INEH(T)(D? 4+ 1)V H=1A~5d .

Combining the formulae from above we obtain

|D|72ZT

z
d

(1Y () e s v @ Il 20+ )

M= 1=
x~
%

~
Il
o
~
Il
=

=
d

() i YOI AT+ 2

DL R VE@IDITA ) + ()

[
M=
MN

=0 k=0
N N

_ Z(_I)Z (Z+i—l)vK(T)|DI*2([+Z) + () ZZ (—EZ)VZ (T)|D|72(K+Z) + % (2),
=0 =0

where along the road we employed Euler’s reflection formula [1, (6.1.17)] and the
Chu—Vandermonde identity [1, (24.1.1)], and the global remainder reads

R@) =Y (1Y ("R ©IDIH 4+ (=DY DRy (0, 0. (1.23)
j=0

We have shown that o_,,(T) = Z]ZZO (_;) V{T)|D|7% + %(z) |D|*, under the
assumption that 9(z) > 0 and N(s) > 0, but the result can be extended to any z € C
on the strength of the uniqueness of the holomorphic continuation. Thus, a swap
z ~» —z would complete the proof, provided we can control the remainder Z(z).

The second term of (1.23) is easy to handle: From Lemma 1.16 and Proposi-
tion 1.13 (iii) we deduce |D|~*Ry (0, n) € Qp/~2(1+s)=N=1
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The first term of Z(z),

N

%I(Z) = (_1)N+l sin(ns Z n+j IQIJ(Z)
j=0

with % ;(z) == / (D? + 1) ' VNTHTY(D? + )TN D20 ) ) s d
0

is more delicate. We will handle it with the aid of Theorem 1.15.
For any fixed j € {0, 1, ..., N} and with x = N(s), we show that the operator
ID|*% %, j(z) IDI" 772" is bounded for some & > 0:

oo
|| |D|2x72€f (D2 + A)71VN+1 (T)(D2 + )\.)7N71+j |D|N+17r72j A 5d ||
0

o0
SC1+/ ||(D2+)\,)_l||1_x+£ ||(D2+)\,)_1D2||x_8)(
1
x VYT DIV D 4 DT DAH N A da

o0
<c+ czf AT TE AT < oo,
1

This computation is sound if | —x + & > 0 and x — ¢ > 0. The former is always
true, since x = N(s) < 1, whereas in the second one x > 0 and we can always tune
the & to be small enough. Note also that VN1 (T) |[D|™V~!=" € OP for any N and the
convergence of the integral of norms at 0 is automatic since 0 < (D?> +1)~'D? < 1.

As we kept j free and Z;(z) involves only a finite sum over j, we have actually
proven that || |D|*"* 2, (z) IDINT'="2" | < oo for an arbitrarily small & > 0. To
show that %, (z) € OP"~2M@-WHD+2e o5 that Ry (—z) € OP"~W+D+¢ we invoke
Theorem 1.15 with

E/(}) = |D|2x728 (D2 + )\,)71’ F, = VN+1(T) |D|7N71—r ’
Ex(h) = (D* + ) VDM GOy =

Finally, to get rid of the ¢ we invoke the handy Lemma 1.14. (]

This theorem was first proven in [28, 37] for T being a pseudodifferential oper-
ator (see Definition 1.18). But it only uses the fact that 7 € OP" for r € R. This
formulation was first given by Nigel Higson [66] with another proof (see also [13]).
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1.3 Abstract Pseudodifferential Calculus

In the previous section we were only concerned with an abstract unbounded operator
2 on a Hilbert space 2Z°. We now let the algebra .7 enter into the game and describe
the abstract pseudodifferential calculus associated with a spectral triple (<7, 77, 9).

We shall follow the conventions adopted in [69] (see also [49, 67]). Define first
P (/) := polynomial algebra generated by o7, 9, |2|and J.</J ' when J exists.

Definition 1.18 Given a regular spectral triple (<7, 72, &), one defines the set of
pseudodifferential operators (pdos) as

V() ={T e LH)|VNeN IPe P(), ReOP™", peN,

(1.24)
such that T = P|D| ™" + R}.
In particular |D|" € ¥ (/) for any r € R.
An operator T is smoothing if T € OP™" forall N € N. Remark that any smooth-
ing operator is automatically in ¥ (/) with P = 0 for each N in Formula (1.24).

Example 1.19 Here are few other examples of smoothing abstract pdos:

(i) The operator Py defined in (1.1) is smoothing thanks to property (1.16). For a
generalisation see (4.1).

(i) Iff is a Schwartz function, then f (|D]) is a smoothing pdo: We claim that for
any N € N, IDINf(IDI) € Nueny Dom &7, ie. f(|D]) € OP~" for all N € N.
Indeed, the function x € Rt — xV f(x) is bounded, whereas §"(f (|D])) = 0
forn > 1.

(iii) Let P € OP" for r > 0 be positive, invertible and such that P~ |D|" € B(H).
Then, the operator A = ¢~'* is a smoothing pdo for all > 0.

To prove this we use Formula (A.3) to write A = 5— [ e™™ (P — 1)~ d.

We first observe that || |DIY Al < || DN P~N/"|| |PN/"A|| < oo for any N e N
since |[D|Y P~N/" € OP? by Proposition 1.13 (iii), (viii) and for any s > 0, t > 0, the
function x € RT — x* ¢~ is bounded.

Secondly, we need to show that A is in Dom 6" for any n € N. To this end,
we observe that §(4) = %_—j; fip e (P —1)~18(P)(P — A)~! d converges in norm
because [|8(P)(P —A)~ 1| < I8(P)P~Y| - |P(P —A)~'|| and moreover we have
IP(P — 1)~ < A S ! for RA) > 0 (or < 1if R(1) < 0) cf. (A.6), so that we
can choose the curve % such that |[P(P — A)~!| is uniformly bounded for A € ¥.
Thus the norm of §(A) is estimated in the same way as the norm of A. The argument
extends to any 8"(A) showing that e=* € OP for any r > 0.

To see that A is smoothing amounts to showing that the operator |D|Y A is in OP°
for any N € N but we have already checked that it is bounded.

Itisin the domain of § because 8 (|D|N A) = |D|Y §(A) = [|D|Y P~N/"1[PN/"§(A)]
and both terms are bounded: In particular for any s > 0
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|P*s)|| < IP*IDI P>~V [|PHYTAL + | PPAPYIIPYT DL | < oo
Similar arguments show that IDIVA e ﬂN Dom §". |
ne

For T, T' € W (<), we define the equivalence T ~ T’ if T — T’ is smoothing.

Lemma 1.20 The set ¥ (&) is a Z-graded involutive algebra with
Uk(et) .= (/)N OPF, fork e Z. (1.25)

Moreover, §(W* (7)) C Wk(o7) and P () C W () C Upey, OPK.

Proof Only the stability under the product deserves a bit of attention. Let us take
the pdos T € ¥*(.o7) and T" € WX (o) with k, k' € Z. For any N, N’ € N we can
write T =P|D|™ +R and T’ = P'|D|™” + R/, where p,p' €N, P,P' € P ()
and P |D|™” € OP*, P'|D|™” € OP¥, R € OP™™, R € OP™"'. We claim that, for
any N” € N, there exist p” € N, P” € 2(</) and R” € OP™"" such that we have
TT' = P"|D|™"" +R'. Using (1.22) we get, forany M € N,

IT'=P

M=

(7% V"(P') DI """+ PRy ID| """+ RP'|D| ™" + P|D| "R + RR’

n

M= ¢

— [P (—;r:l/2)vn(P/) |D|2M—2n] |D|—p—p’—2M +RH —p’ |D|—p—p’—2M —{-R”.

Il
o

n

Wehave P” € (/) andwesetp” = p + p’ +2M € N.Letus focus on the remain-
der R’ = PRy |D|™" "+ RP'|D|™” + P|D|"” R+ RR, with Ry € OP"~M-1
Since N,N’, M are arbitrary, we can choose N = N” + |k’|, N’ = N" + |k| and
M = max{k +N” — 1,0}. Thus PRy |D|™” € OP™"" sincek —M — 1 < —N".
Similarly, the orders of the other terms in R” are successively —(N” + }k/| — k),
—(N" + k| — k), —(2N" + |k| + |k'|), thus less than —N" and hence R” € OP™""
proving the claim. It is immediate that 7T’ € W+ (7). O

Under the assumption of regularity of (&7, 57, &), the algebra ¥ (<7) can be
seen as the set of all operators with asymptotics of the form 3" ,en P, [D|?™" with
P, e P (), ie. with T € ¥ (/) we have T — ZLO P, D" € OP7V for all
N eN

If &'(/) is the polynomial algebra generated by </, 2 and J.</J~!, when J
exists, then &' (&) C (&) and one can construct a subalgebra ¥' (&) of ¥ (&)
by taking P € &' (/) in (1.24). In particular, | 2|¥ is not necessarily in &’ (<7 for
k odd. On the other hand, since |Z| = |D| — Py € & (&), we could have defined
P (/) with |D| in place of | Z| and we would arrive at the same definition of ¥ (<7).

Let us remark that a key point about pdos on a manifold is that they are integral
operators (see Appendix A). In the abstract framework this notion is missing even if
it is reminiscent in a few specific cases, like the noncommutative torus [39].
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Example 1.21 To show that the inverse of a classical pseudodifferential operator on a
manifold is also a pdo is not immediate. Let us have a look at an abstract example: Let
D, X e (), s0 D*> + X € ¥ (/) and assume that D and D?> + X are invertible.
We claim that (D> + X)~! € ¥ (&7): For any N € N, we have the expansion

N
(D* +X)7' =) (=D X) DI + (= IDI POV + X)) (1.26)
k=0

The first term is in ¥ (<), because |D|_2 ,X € (&) and the remainder is in
OP V=3 c OP7V, provided (D*>+X)~! € OP~2. But since D> +X € OP? and
(D> 4+ X)~'D?> = (1 + |D|72X)~! is bounded, because |D| > X € OP~! is compact
by Proposition 1.13 (ix), the part (viii) of the latter yields (D> + X)~' ¢ OP™2. W

It is desirable to have an extension of the pseudodifferential calculus, which takes
into account the complex powers of |D| (cf. [37, p. 239]):

W) :=(T|DI* |T € ¥ (&), z € C}. (1.27)

By construction, T'|D|* € OP**"@ when T € ¥¥ (7). Since Formula (1.22) is true
for any z € C, the set ¥© (&) is in fact an R-graded algebra.

The link between the algebraic and geometric definitions of pseudodifferential
operators is provided by the following fact:

Proposition 1.22 Fora commutative spectral triple (C M), L*(M,S RE), D E)
with Py = —iy“V;7®E (cf. Example 1.2), we have a natural inclusion

Y(C®M)) c¥EM,. s QE),

where W2(M ,.# ® E) is the space of classical pseudodifferential operators of
integer order defined over a vector bundle ¥ Q E.

This is a consequence of the observation that 7, |Z E‘ e v (M, ®E) and the
fact that a € ¥O(M,.¥ ® E) for any a € C*°(M ). For the full story on classical
pseudodifferential operators see the references in Appendix A.2 and for a noncom-
mutative vision see [60] and [109, Sect.5.1].

1.4 Dimension Spectrum

In Sect. 1.1 we discussed the p-summability of a spectral triple, which encodes the
dimension of the underlying manifold when (&, 77, &) is commutative. This notion
does not, however, capture the whole richness of noncommutative geometry. A more
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adequate description turns out to be provided by a, possibly infinite, discrete subset
of complex numbers.

Definition 1.23 A regular spectral triple (o7, 5, &) of dimension p has a dimension
spectrum Sd if Sd C C is discrete and for any T € ¥°(.7), the function

¢rp(s):=Tr T|D|™®, defined for R(s) > p, (1.28)

extends meromorphically to C with poles located in Sd.!
We say that the dimension spectrum is of order k € N* if all of the poles of
functions ¢r p are of the order at most k and simple when k = 1.

Note that all functions {r p are well defined for 9i(s) > p, since for such s the oper-
ator |D| ™% is trace-class and, as T € ¥°(«/) C (), sois the operator T |D| ™. By
a standard abuse of notation we shall denote the (maximal) meromorphic extension
of ¢r p with the same symbol.

Observe also that if (o7, 5, 2) has a dimension spectrum, then {7 p is actually
meromorphic on C for any T € ¥€(/). Indeed, if T € ¥(/) then there exist
S € wO(«7) and z € C such that T = S |D|*. Thus, for R(s) > p + R(z), the func-
tion ¢r p is defined by &7 p(s) :=Tr T |D|™ = Tr S |D|*** = &s.p(s — z). By the
uniqueness of the meromorphic extension ¢r p is meromorphic on C.

If, however, (&7, 7, 9) is not finitely summable, then the zeta function ¢q p is
nowhere defined and the notion of a dimension spectrum does not make sense.

Let us stress that the algebra does play an important role in Definition 1.23.
Generally, given the meromorphic extension of the function ¢ p, it is not clear
how to get one for ¢7 p, even when T € of. Although in the case of a commutative
spectral triple the poles of ¢r p do coincide with the poles of ¢g p for T € &7, it is
no longer to be expected for general noncommutative geometries.

Example 1.24 Let us consider the spectral triple (<7, S, .@5 ) of the standard

Podles sphere (cf. Appendix B.4). The function ¢y ps = 4% (where D} = 77
since the kernel is trivial) is regular at s = —2. On the other hand, using the explicit

formulae for the representation (B.17-B.25), one can check that, for instance,

(s) = 20l u
Res (64 Doany(®) = Fgr

The definition presented above is the one of [69] (see also [67]) and it differs from
the original one presented in [28, 37]. There, Sd was defined [37, DefinitionII.1]
as the set of poles of functions ¢r p, but with T € %, — the algebra generated by
8" (a) with a € o/ and n € N. This was tailored to prove the local index theorem in
noncommutative geometry [37]. On the other hand, in the context of spectral action
[35], the operator T from the definition was taken from a bigger algebra %, generated
by 8" (a) and §"([Z, a]) [35, Definition 1.133].

!One could in principle also allow for essential singularities of ¢z p, as long as they are isolated.
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The difference between the definition of the dimension spectrum adopted here and
the one of [35] (see also [13, 99]) is that |D|~! € ¥ (<) N OP?, but |D|~! ¢ %,.This
fact led to eventual variations concerning the dimension spectrum of a commutative
spectral triple (compare for instance [36, Example 13.8] with [31, p. 22]).

All these definitions of Sd satisfy Sd(disjoint sum of spaces) = U Sd(spaces).

There is a natural way to define the tensor product of two even spectral triples (see
[30, 52]) using & 1= A Q@ wh, H =1 Q 5 and P = 1 QL+, @ D, It
would be tempting to conclude that Sd(<7, 72, ) = Sd; + Sd,, but it is not obvious
how to obtain a meromorphic extension of {r,g7,.p given {r, p, and ¢z, p,.

With Definition 1.23 the following result holds [69, Proposition A.2]:

Example 1.25 Let (<7, 7, 2) be the commutative spectral triple associated with a
d-dimensional Riemannian manifold M and & is a first order differential operator,
then Sd(«7, 7, ) = d — N and it is simple. [ |

An interesting result of Jean-Marie Lescure [82] shows that for spectral triples
describing manifolds with conical singularities there appear poles of second order in
the dimension spectrum. On the other hand, the dimension spectra of fractal spaces
studied via noncommutative geometry [23-25, 61-63] encode the Hausdorff and
spectral dimensions of the fractal along with its self-similarity structure. The latter
is signalled by the appearance of complex numbers outside the real axis in Sd [74].

We see that the dimension spectrum carries much more information about the
underlying geometry than a single number, for instance p-summability. However,
there is no systematic procedure to compute the dimension spectrum for general
spectral triples. Beyond the almost commutative geometry it is not even clear under
what conditions (&7, 2, Z) has a dimension spectrum. In concrete examples, one
has to dutifully prove the existence of the meromorphic extensions of the whole
family of spectral functions and identify the poles. This was done only for few
specific spectral triples like the noncommutative torus [51], quantum group SU,(2)
[32, 45] and quantum Podles spheres [41, 43, 49, 93]. See also Problem 5 in Chap. 5.

Let us note that in the definition of dimension spectrum, both the original one
of [37] and the more recent one of [69], there is an (usually unspoken) assumption
about the regularity of the spectral triple. Indeed, if one does not have control on
the order of pseudodifferential operators, the definition of the dimension spectrum
might turn out to be inconsistent with the p-summability (c.f. [49, Sect. 3.2]). Clearly,
if a regular p-summable spectral triple has a dimension spectrum Sd, then p € Sd.
However, the p-summability together with regularity is not sufficient to conclude that
there is a pole of ¢1 p at p € C — there might be an essential singularity, a branch cut
or the boundary of analyticity, in which case (7, ¢, Z) does not have a dimension
spectrum at all. All these pathologies certainly deserve further studies.
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1.5 Noncommutative Integral

In a seminal paper [111] Mariusz Wodzicki has shown that the algebra of classi-
cal pseudodifferential operators of integer order ¥%(M , E) admits a single (up to
normalisation) trace when M is connected and dim M > 1. It has been called the
Wodzicki residue, since it can be expressed as a residue of a certain spectral func-
tion. Connes established in [26] a link between the Wodzicki residue of a compact
pseudodifferential operator and its Dixmier trace (see Definition 1.29), which is an
exotic trace on a certain ideal in the algebra (7). In this section we recollect some
basic facts about the Wodzicki residue and its use for defining an integral suitable
for noncommutative spaces. We start with the following definition:

Definition 1.26 Let (o7, 57, &) be a regular p-dimensional spectral triple with a
dimension spectrum. For any T € ¥ (/) and any k € Z define®

[k] [1]
][ T := R_eos s e p(s), ][T 3=][ T = R_COS ¢r.p(s). (1.29)

If the dimension spectrum of (&7, 77, &) is of order d, then for s in an open neigh-
bourhood of any z € C we have the Laurent expansion

[—k]

irp(s) = Z ][ T |D|% (s — ).

k=—d
The adopted notation is useful in the following result (cf. [37, PropositionII.1]):

Theorem 1.27 Let (o7, 7, D) be a regular p-dimensional spectral triple with a
dimension spectrum. Then, for any Ty, T» € W© (/) and any k € 7 we have

[k] [k] [k+j1
][ T1Tz=][ T2T1+Zn.2[ ]W][ TV"(Ty) D",

n=1

with N =p+ord T + ord T, and [ ] the unsigned Stirling numbers of the first
kind.3 In particular, if the dimension spectrum has order d, then f[ Vis a trace on
vC().

Proof Since the triple is regular (1.22) yields, for any T € PC(),se C,M €N,

M
IDI7ST =Y (T2 VHT)IDI ™" + Ry (s) IDI ™, Ry (s) € OPT=M =1 (1.30)
n=0

[k]
ZUsing the notation of [37] we havef =2k"1g_| fork > 1.

3Forany s € C,n e N, (;:) = ZJ'-[:O ["] with the convention [ § ] = 8,,0. See [1, Sect.24.1.3].
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Now, let r; = |ord Ty|, r, = |ord T|. For %(s) > p+ 2r; + r, we can use the
cyclicity property of the trace,

¢rr.p(s) =Tr TyTo [DI™° = Tr (Ty DI™™)(IDI" T2 |DI™*)
=Tr(ID|" T2 |DI™° T1) ID|™" =Tr T, |D|™° Ty,

since the operators |D|" T, |D|™°, |D|"" T, |D|™* T} are trace-class, whereas T} |D| ™"
and |D|™"" are bounded. Then, with the help of Formula (1.30), we obtain

N
tr1p(s) = Tr ToTy DI + Y (7¥2) Tr ToV'(T)|D| ™"~ + Tr TRy (s) |D| ™

n=1

={r7,0(s) + Z §T2V"(T1) p(2n+s) + h(s), (1.31)

n=1

where h is holomorphic for N(s) > p+ordT; +ordT, — N — 1 = —1. For
neN, T,V"(T;) € ¥C () and, since the spectral triple has a dimension spectrum,
the functions &7, v« (r,),p admit meromorphic extensions to the whole complex plane.
Consequently, equality (1.31) holds true for 9%(s) > —1 and, for any k € Z, we have

k] k] N
][ T\T, = ][ ToT) + 2555 S erygnry n(s +2n) (1.32)

[k] [k+j1
:][ T2T1+Zn,2[ ]“y][ T,V(T) ID|™>".  (1.33)

n=1

If the dimension spectrum of (&, 5, &) has order d, for k = d we obtain
f[d] T, = f[d] T2T1,becausef[d+ﬂ T = Oforany T € ¥© (&) andj € N*, whereas
forj=0,[7]=0. O

In the case of a commutative spectral triple (as in Proposition 1.22), { defined by
(1.29) is related to the Wodzicki residue [64, 111, 112]. The latter is defined in the
following context: Let D € W (M, E) be an elliptic pseudodifferential operator of
order 1. For P € ¥%(M , E), define

WRes P := Reos Cp.p(s).
S=|
Mariusz Wodzicki has shown that

WRes P = @ /S*M tro’,(x, &) du(x, &), (1.34)
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where S*M = {(x, &) € T*M | g;l(é, &) = 1} is the cosphere bundle over M, tr is
the matrix trace of the symbol ofd x,&)anddux, &) := |o(&)| |dx| where

dx:=dd Aeondy?, o§) =) (VT gdE A AdE A NdEg.
j=1

is a suitable Riemannian measure on S*M (the integrand of (1.34) is a 1-density on
M , so it is coordinate-independent, see [60, Sect.7.3] or [108, Sect. 5.3]). Moreover,
WRes is the unique (up to normalisation) trace on the algebra ¥%(M , E).

For a commutative spectral triple as in Proposition 1.22 with D = @, + Py, we
simply have { P = WRes P for any P € ¥2(M,.¥ Q E).

Example 1.28 Fora € o/ = C*°(M) of Example 1.2, Formula (1.34) yields

- 2L472) Vol (5!
][a|D| 4= ﬁ/ a(x) dp(),
M

where du(x) = /g dx is the standard Riemannian measure on M, since we have

aflflid(x, &) =alkx) IISII_‘J. It is worthy to store the following: In a commutative
spectral triple, since &g p is regular at O (see [57, p. 108, Eq.(1.12.16)]), we get

][11 0. B (135

The noncommutative integral defined in (1.29) turns out, moreover, to be related
to the Dixmier trace, the construction of which we briefly describe below.

Given a selfadjoint operator 7' with purely discrete spectrum, we denote by A, (T),
with n € N, its eigenvalues ordered increasingly. If T € £ (7¢), then for n € N we
define 1, (T) as the (n + 1)-th singular value of T, i.e. (n 4 1)-th eigenvalue of |T|
sorted in decreasing order, with the corresponding multiplicity M, (T). Note that
since T is a compact operator, we have lim,—, o u,(T) = 0.

Now, letus denote the partial trace Try (T') := Z;VZO M, (T) un(T).IET € L1 (7)),
limy_, o Try (T) < oo, but for a general compact operator the sequence Try is
unbounded. The role of a Dixmier trace is to capture the coefficient of the loga-
rithmic divergence of Try (T).

There exists a very convenient formula [60, Proposition7.34] for Try (7T) which
uses a decomposition of T into a trace-class and a compact part:

Try(T) = inf { T [R|+ N |IS|| |R € L' (), S € X (H), T =R+ S}.
(1.36)

The partial trace, Try (T") may be seen as a trace of |T'| cut-off at a scale N. But this
scale does not need to be a natural number and indeed, Formula (1.36) still makes
sense for any positive N, hence we define for any A € R*:
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Tr,(T) :=inf { Tr [R| + A |IS|| | R € L' (), S € H (H), T=R+S}.
(1.37)

With the help of Formula (1.37) we define the subspace of compact operators, the
partial trace of which diverges logarithmically

L) =T e H(H)| T,y = sup% < oo}. (1.38)
A>e

One has ||[ATB||, ; < |IAll ITl; 4 IIBIl for every A,B e %(s¢) and the space
L1+ () (sometimes denoted by £ (#), see [84] for historical notes) is a
C*-ideal of () [67, Lemma?2.5].

Now, for T € # (7¢) and A > e, define

A
1 Tr,(T) du

'L')L(T) = m ] li)v o (139)

The functional 7, is not additive on .Z!+, but the defect is controllable [60,

Lemma7.14], i.e. for positive operators 71, T, € £+

T(T1 + T2) — 0(T1) = (o) = O oo (FEED).

To obtain a useful additive functional on .Z"*, two more steps are needed. First
note that the map A — 7, (7T) is in Cy([e, 00)) for T € ZF . Define also a quo-
tient C*-algebra 2 := Cj([e, 00))/Co([e, 00)), and let [t(T)] € 2 be the class of
A+ 7,(T). Then, T > [t(T)] extends to a linear map from .+ to 2, which is a
trace, i.e. [t(T1T2)] — [t(T>T;)] = [0]. To get a true linear functional on Lt we
need to apply to [t (-)] a state w (i.e. w is a positive linear functional of norm 1) on 2.

Definition 1.29 A Dixmier trace [47] associated with a state w on 2 is defined as
Tr, () :=wo[t()].

In fact, a Dixmier trace is not only a trace, but a hypertrace on £ L+ (), ie.
Tr,(TS) = Tr,(ST) for any T € Z"* and any S € ZB(s#) [108, p. 45] (compare
also [60, Theorem 10.20 and Corollary 10.21]).

The definition of a Dixmier trace, although powerful, is not completely satisfactory
as it involves an arbitrary state on the commutative algebra 2, which is not separable
(and £+ () is also not separable). Thus, in practice, one cannot construct an
explicit suitable state and there exist myriads of ‘singular traces’, different than the
one of Dixmier, exploiting various notions of generalised limits [84].

Moreover, if one insists on defining the noncommutative integral via the Dixmier
trace, one faces a notorious problem related to the existence of measurable (and non
measurable!) sets in Lebesgue’s theory. In particular, there exists a class of operators
in 1+ (), for which a Dixmier trace does not depend on w.

Definition 1.30 An operator T € "+ (%) is measurable if Tr,(T) does not
depend on w. Then one speaks about the Dixmier trace of T and denote it by Trpix (7).
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The following proposition gives a convenient characterisation of measurable
operators, see [83], [84, Theorem 9.7.5] (and [107] for a link with the ¢-function).

Trn (T)

Proposition 1.31 AnoperatorT € £ ismeasurable if and only if limy_, oo Tog N

exists, in which case it is equal to Trpi (T).

The link between Definition 1.26 of f and Trpjx was provided by Connes via his
famous Trace Theorem [26, Theorem 1].

Theorem 1.32 Let M be a compact Riemannian manifold of dimensiond, E a vector
bundle over M and T € W~ (M, E). Then, T € £+, T is measurable and

Trpix(T) = 5 WRes(T) = ][ T. (1.40)

Remark 1.33 Despite the nice equality (1.40), we cannot hope for proportional-
ity between the Dixmier trace and the noncommutative integral for an arbitrary
P € W (4/), even in the commutative case: Consider for instance M = §2 — the two-
dimensional sphere, endowed with the standard Dirac operator &, which has sin-
gular values u,, = n + 1 with multiplicities 4(n + 1) (see Appendix B.1). Now take
T =1 € ¥°(C®(5%)). We have, {1, (s) = Tr |#|~° = 4¢(s — 1), which is regular
at s = 0, hence f 1 = 0. On the other hand, 1 is not a compact operator, hence its
Dixmier trace does not make sense at all.

We have privileged the noncommutative integral f, which — as we have just
explained — is more suitable in the noncommutative-geometric framework. How-
ever, on the technical side there are possible variants: Instead of {r p, we could
have chosen the more symmetrised Tr (T'/2|D|T'/?)~* when T is positive. The not
obvious links between these functions and others are investigated in [12]. |

1.6 Fluctuations of Geometry

Given a spectral triple (&7, 57, ) it is natural to ask whether there exist other
spectral triples describing a noncommutative geometry which is equivalent in some
sense to the one determined by (7, 7, Z). To discuss this issue we firstly need the
definition of noncommutative one-forms:

.Qij(szf) :=span{adb | a,b € &/}, withdb:=[Z,b]. (1.41)

One can define accordingly the n-forms (modulo the so-called junk forms [60,
Sect. 8.1]), which are building blocks of the Hochschild and cyclic homologies (see,
forinstance, [75, Chap. 3] for more details). On the physical side, elements of §2 }/ (o)
are to be seen as gauge potentials of the theory.

A notion of equivalence suitable for spectral triples is that of Morita equivalence
[35, Chap. 1, Sect. 10.8] (see also [34, Sect. 2], [60, Sect. 4.5] or [75, Sect. 2.3]), which
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we now briefly describe. Recall first that a (right) module E over a unital algebra
&7 is an Abelian group (E, +) along with the (right) action of &/ on E, i.e. a map
E x of — E suchthatforalle,f € E and any a, b € o

(e+f)a=ea+fa, e(a+b)=ea+eb, e(ab) = (ea)b, el, =e.

A finitely generated module E over 7 is free if there exists N € N such that E is
isomorphic to 27®N. A module E is called projective if there exists another (right)
module F over .o/ such that E @ F is a free module.

The Morita equivalence of algebras can be characterised as follows (cf. [104,
Proposition 6.12]).

Definition 1.34 Let <7, &/’ be two unital associative algebras. We say that <7’ is
Morita equivalent to </ if there exists a finitely generated projective (right) module
E over &, such that &/’ ~ End, E.

Having fixed a representation 7 of & on 77, o/ acts on 7' := E ® s . The
space 7 is endowed with the scalar product (r ® n, s ® €) := (n, 7w (r|s)&), where
(+]-) is a pairing (or an «/-valued inner product) E x E — &, which is .&/-linear
in the second variable and satisfies (r|s) = (s|r)*, (r|sa) = (r|s)a and (s|s) > O for
r € E,0 # s € E. Thus, each representation of 2/ on J¢ gives a representation of
o on A

For a given projective (right) module E over 27, one can choose a Hermitian
connection, i.e. alinear map V : £ — E Q4 .Ql9 (&), which satisfies the Leibniz
rule V(ra) = (Vr)a+r®da, forallr e E, a € .

With the help of a Hermitian connection one defines a selfadjoint operator
9 € L(H') by

DrRE) =r® Pt + (VrE, with rekE, & € Dom(2).

Then, (&', 7€', Z') is a spectral triple (for the compatibility with a real structure
see e.g. [104, Theorem 6.16]).

We say, by definition, that the spectral triple (&', ', 9') is equivalent to the
original one (&, 7, ). This is motivated by the following observation:

The algebra < is obviously Morita equivalent to itself (with E = &), in which
case ' = and Adg : a — [Z,a] € [219 (&) is a natural hermitian connec-
tion for E. Thus, any %4 = 2 + A with A = A* € 2], («/) would provide a spec-
tral triple (&7, 7€, Z4) equivalent to (o7, 7, &). The operator Z, is called a(n)
(inner) fluctuation of 2 and A (following physicists conventions) — a gauge poten-
tial. If 94y = P+ A with A = A* € Q}ﬂ(ﬁf), then for any B = B* € .Q_}/A(;zf) we
have 9, + B= 9 + A’ withA' = A+ B ¢ 52'9 () [35, Proposition 1.142]. In other
words: “Inner fluctuations of inner fluctuations are inner fluctuations”.
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As we want to consider real spectral triples, we should require (&7, 5, Z4) to
have the same KO-dimension (see p. 5) as (&7, 7, ). If 2J = eJ 2, then we
should require Z4J = &J D,. Therefore, we define

Dy =D+ A, with A:=A+eJAJ™!, for A=A"e 2, (o). (1.42)

Example 1.35 (cf. [14, p. 734] and [46, p. 22]). Let M be an even dimensional spin
manifold as in Example 1.2. For a, b € &/ we have a[9, b] = —iy*ad,b. Since
A is Hermitian, A, := —iad,b € C*°(M,R) and [J,A,] = 0. On the other hand,
Jy"* = —y"J because J commutes with & and anticommutes with i. Finally,

Dy=P+A=FP+A+IAI ' =P +A-AJJ ' = 9.

Hence, there are no inner fluctuations in commutative geometry. ]

The above considerations rely on the first-order condition (1.5). The latter can be
relaxed, what induces in a more general form of fluctuations [21]. Whereas the exact
shape of A does affect the physical content of the theory, the mathematics detailed
in Chap. 4 is not afflicted. Therefore, we shall only assume that A = A* € ¥0(),
which holds also for the more general form of perturbations, cf. [21, Eq.(10)]. As
we will see, for such an A, (&7, 5, Z,) is still a spectral triple, which inherits the
regularity, p-summability and dimension spectrum properties of (&7, 7, ).

1.7 Intermezzo: Quasi-regular Spectral Triples

Before we proceed, let us come back for a moment to the assumption of regularity of
a spectral triple — recall Definition 1.8. As we have witnessed, it played an essential
role in the construction of abstract pdos along with the dimension spectrum and the
noncommutative integral. It turns out that at least some of these properties survive
under a weaker assumption of quasi-regularity (cf. [48, Chap.4]):

(D, ) Cop’.

Clearly, every regular spectral triple is quasi-regular. An example of non-regular,
though quasi-regular spectral triple, is provided by the standard Podle§ sphere
(cf. Appendix B.4).

Observe thatif T € op”,theno,(T) € op? forany z € C by properties (1.9). On the
other hand, the expansion (1.22) does not hold in general. Typically, it is substituted
by a ‘twisted’ version (see [49, Lemma4.3] for an illustration).

Similarly to the regular case, given a quasi-regular (<7, ¢, &) one can furnish
the algebra <7 with alocally convex topology determined by the family of seminorms
a > |loy(a)l, a— ||0,([Z2, al)|l. The completion <7, is a Fréchet pre-C*-algebra
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and (o, , €, 9) is again a quasi-regular spectral triple. The proof of this fact closely
follows [98, Lemma 16] and the details can be found in [48, Chap.4].

In such a context one can define the algebra of pdos lT/(;zf ) as the polynomial
algebra generated by a € o7, 2, |2| and |D|™", complemented by J.o7J ! if the
triple is real and Py if ker & # {0}. In the same vein, one can consider the algebra
117@(,527 ) as being generated by the elements of lf’(&% ) sandwiched with |D|% for
z; € C. The grading is now provided by the op classes, U(of) =W ()N op".

The dimension spectrum of a quasi-regular spectral triple can be considered nat-
urally with 7' € (o) in place of ¥°(.<7) in Definition 1.23. Being fairly involved,
this notion is nevertheless workable and gives reasonable results for the Podles sphere
— cf. Theorem B.10.

Given a quasi-regular spectral triple with a dimension spectrum of order d, the
noncommutative integral (1.29) still makes sense, however, the pleasant feature of
f[d] being a trace on the algebra of pdos is, in general, lost. Also, the study of
fluctuations in the quasi-regular framework — although possible in principle — is
rather obnoxious, as the entire Chap. 4 of this book bases on Formula (1.22), hence
on the regularity.

1.8 The Spectral Action Principle

Having prepared the ground we are now ready to present the concept of the spectral
action. In a seminal paper [14] Chamseddine and Connes put forward the following
postulate:

The physical action only depends upon the spectrum of 9.

A mathematical implementation given in [14] led to the following definition.

Definition 1.36 Let (o7, 7, 2) be a spectral triple and let A > 0. The (bosonic)
spectral action associated with 2 reads:

SD,f, A):=Tr f (12]/4), (1.43)

where f : RT™ — R is a positive function such that f (| 2| /A) exists and is a trace-
class operator.

Let us emphasise (cf. [14, (1.23)]) that the operator & in Formula (1.43) should
be the one dressed with gauge potentials, i.e.

9 =9y + A.
This is because (&7, 7, Zy) and (&, 7, D) cook up equivalent geometries and

we must take into account all of the available degrees of freedom when constructing
the action. See also Problem 1 in Chap. 5.
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Before we pass on to the hard mathematics hidden behind Definition 1.36, to
which this book is primarily devoted, we provide a glimpse into its physical content.

The physics of the spectral action

As pointed out in [17], the spectral action has several conceptual advantages:

e Simplicity: If f is the characteristic function o 1}, then Formula (1.43) simply
counts the singular values of Z smaller or equal than A.

e Positivity: When f is positive, the action is manifestly positive — as required for
a sound physical interpretation.

e Invariance: The invariance group of the spectral action is the unitary group of the
Hilbert space ¢, which is vast.

The role of the parameter A is to provide a characteristic cut-off scale, at which
(1.43) is a bare action and the theory is assumed to take a geometrical form. It
should have a physical dimension of length™!, as the operator 2 does. Within the
almost commutative models the value of A is typically taken to be in the range
10107 GeV - (hc)~!.

Although f = x0,17 is a privileged cut-off function providing the announced sim-
plicity, it seems that for physical applications one should stay more flexible and allow
it to depart from the sharp characteristic function. This is desirable in the almost com-
mutative context, as the moments of f provide free parameters of the theory, which
can be tuned to fit the empirical data — cf. [104, Chap. 12]. The actual physical role
of f in full generality of noncommutative geometry is more obscure — see Problem 7
in Chap. 5.

Let % () ={ueo |uw* =uwu=1} and U := uJuJ !, with u € % ().
Now, if the first-order condition (1.5) is satisfied, then the operator &, transforms
under the action of U as follows

U9 U*=U(D+A+eJAT HWU* = 9 + A" + eJA"T !,

with A" := uAu* + u[ P, u*]. This ensures that % (/) is a subgroup of the symmetry
group of the spectral action. In the almost commutative realm, the full symmetry
group of (1.43) is a semi-direct product, & x Diff (M), of the group of local gauge
transformations & := {uJuJ ~' |u € % (<7)} and the group of diffeomorphisms of
the manifold M — see [104] for the details.

If one abandons the first-order condition (1.5), then the inner fluctuations of the
spectral action form a semi-group, which extends % (<7) [21].

To conclude this paragraph we exhibit the powerfulness of the spectral action:
Let M be a compact Riemannian 4-manifold with a spin structure, as in Example 1.2
and let @ = C @ H & .#;(C), with H denoting the algebra of quaternions. Then,
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S(2.f, A) = f @d“x(yo + M%R + a0 Cpuvpo CMP7 + 19 R*R* + 89 AR
M 0

+ 3G, G+ LFg prve 4 Lprvg,, (1.44)

+ 31D HIE = 2 IH P + 2gHI — 1—12R|H|2) + O (A7),

One recognises respectively: the cosmological constant, the Einstein—Hilbert term,
the modified gravity terms, the dynamical terms of gauge bosons and the Higgs
sector. The coefficients yp, &, 2, ay etc. depend on the powers of the energy scale
A*, A%, A" and also of the moments of the cut-off function f: fy = [, X*f (x)dx,
= fooo xf (x)dx and f (0). Furthermore, they depend upon the fermionic content of
the model, which is fixed by the choice of the Hilbert space .7 and the matrix P,
which encodes the Yukawa couplings of elementary particles (cf. [20, 104]).

To relish the full panorama of spectral physics, one supplements Formula (1.43)
with the fermionic action Sg := {(J¥, D), for y € T = %(1 + y)H (cf. [104,
Definition7.3] and [6, 20]). Although the physical content of Sy is exciting, its
mathematics is rather mundane. Therefore, shamefully, we shall ignore it in the
remainder of the book.

Many faces of the asymptotic expansions

How on earth the simple Formula (1.43) can yield the knotty dynamics of the full Stan-
dard Model and gravity? Actually, there is no mystery — just asymptotics. Roughly
(see Sect. 3.5 for the full story): S(Z,f, A) = [~ Tr (e~*171/4) d¢(s), when f is the

Laplace transform of a measure ¢. But, Tr e~ P is the celebrated heat trace associ-

ated with a (pseudo)differential operator P. The latter is known to enjoy a small-¢
asymptotic expansion [58, 110]: For instance, when P = .@2 andd = dim M

o0

Tre 7’ % > a( @ 4R, (1.45)
t
k=0

The alchemy is concealed in the coefficients a; known under the nickname of Seeley—
deWitt coefficients. They are expressible as integrals over M of local quantities poly-
nomial in the curvature of M and, if we happen to work with & (cf. Proposition 1.22),
in the curvature of E.

The Seeley—deWitt coefficients of a differential operator are local. The principle
of locality lies at the core of the concept of a field, which asserts that every point
of spacetime is equipped with some dynamical variables [65]. Concretely, a local
quantity in quantum field theory is precisely an integral over the spacetime manifold
M of some frame-independent smooth function on M, which is polynomial in the
field and its derivatives.

When P is a pseudodifferential operator, an asymptotic expansion similar to (1.45)
is still available (cf. Appendix A.5). On the other hand, the coefficients a; (P) are, in
general, nonlocal — see [59] for an explicit example. This means that pdos over clas-
sical manifolds belong already to the noncommutative world, which is prevailingly
nonlocal.
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In the full generality of noncommutative geometry the existence of an asymptotic
expansion (1.45) is no longer guaranteed. Nevertheless, one may hope to deduce it
from a meromorphic extension of the associated zeta function ¢p. The bulk of Chap. 3
is devoted to this enjoyable interplay.

If (of, 7€, 9) is a regular spectral triple with a simple dimension spectrum one
can hope to obtain the following formula (see Corollary 3.33 and Sect. 4.3):

S(2.f. H)=y_A° / XU () ][ IDI™ +£(0)£p(0) + O(1).  (1.46)
0

aeSd*

Astonishingly, the abstract Formula (1.46) does yield the Standard Model action
(1.44), once the suitable almost commutative spectral triple has been surmised.

A careful reader have spotted the 0 (1) term in (1.46) and (s)he might wonder
what does this symbol hide. Actually, if one has at one’s disposal the full asymptotic
expansion (see Definition2.33) of the form (1.45) one can expand Formula (1.46)
to the order A~V for arbitrarily large N (vide Theorem 3.20). On the other hand,
one must be aware of the fact that the explicit computation of the coefficients ay (P)
for k > 4 is arduous, even if P is a friendly differential operator. For a Laplace
type operator general formulae are available up to a;9 — see [4, 110]. From the
perturbative standpoint one might argue that the terms in the action, which vanish at
large energies can safely be neglected. Then, however, one risks overlooking some
aspects of physics. For example, it has been argued [102] that a contribution of the
order A2 might affect neutrino physics and the study of cosmic topology requires
the knowledge of all a;’s. To the latter end, several authors [5, 17, 19, 78, 86, 88,
89, 92, 105, 106] employed the Poisson summation formula, which we discuss in
Sect.2.4.

The summation formulae (sometimes dubbed not quite correctly “nonperturbative
methods”) give the spectral action modulo a reminder On,(A™%°), which is usually
disrespected. However, the devil often sits in the details: There exists an extensive
catalogue of physical phenomena, which are ‘exponentially small’. An enjoyable
account on this issue was produced by John P. Boyd [9].

Highlights on the research trends

The literature on the spectral action is abundant and growing fast. On top of the
references already quoted, we list below some highlights on current research. The
list is admittedly subjective and far from being complete — we would be pretentious
to claim to possess full knowledge on the topic.

To consider gravity as a low-energy effect of quantised matter fields, rather than
a fundamental force is a long-standing idea: Yakov Zeldovich considered the cos-
mological constant as an effect of quantum matter fluctuations and Andrei Sakharov
suggested that the structure of the quantum vacuum encodes the Einstein—Hilbert
action (see [91] for a short review).

The heat kernel methods were successfully applied in 1960’s by Bryce S. deWitt
in order to derive a series expansion for the Feynman propagator of quantum fields on
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a curved background. A more recent summary of the spectral approach to quantum
field theory can be found in the textbooks [10, 50].

But the upshot of the spectral action is that it provides an exact — i.e. truly non-
perturbative — formula for the bare action at the unification scale. Expression (1.43)
as it stands is nonlocal, which means that it encompasses both local and global
(topology, in particular) aspects of the physical world. For an approach balanced
between the local and global aspects of the spectral action, which also goes beyond
the weak field approximation, see [70, 71].

The impact of a boundary of a manifold on the spectral action was studied in
[16, 18, 72]. The main difficulty is related to the choice of the boundary conditions
for the operator 2, which would guarantee a selfadjoint extension, and then to define
a compatible algebra .7, see [68, 69].

Some aspects of spectral geometry, including the heat trace expansion, on mani-
folds with conical singularities were studied in [82] (cf. also [81]).

The role of the torsion in the spectral context has also been explored [72, 94, 96,
103]. Surprisingly enough, the spectral action for a manifold with torsion turns out to
embody the Holst action, well known in the Loop Quantum Gravity approach [95].

On the physical side, a programme on the inflationary scenarios compatible with
the spectral action has been launched [77, 85, 87-90, 100, 101].

Also, the spectral action was approached via quantum anomalies and Higgs—
dilaton interactions [2, 3].

Variations on the definition

Usually, one encounters the operator 2 instead of |2| in Formula (1.43) for the
spectral action. The reason for which 22 is favoured in the literature is that for a
commutative spectral triple @7 is a differential operator (of Laplace type), whereas
| D] is a priori only a pseudodifferential one. In the full generality of a noncommu-
tative geometry, however, we are bound anyway to work with abstract operators,
which are not even classical pdos and working with | 2| allows for more flexibility.
Clearly, we can restore the presence of 22 by taking f (x) = g(x?) (cf. Remark 3.35),
but caution is needed, as the cut-off functions f and g belong to different classes (see
Sect.2.2.2).

One could also consider the action of the form Tr f (Z/A). If f is even, as assumed
in [14], this is equivalent to (1.43). But one can take into account the asymmetry of
the spectrum of 2: When f is odd, then f (Z/A) = 2 |D|~! g(|2| /A) for an even
function g, see for instance [92]. Technically, the parity of f is not innocent and does
play a role in the Poisson formula, cf. Sect.?2.4.

In [55] a formulation of the spectral action for nonunital spectral triples has been
proposed, see also [15, 56]. Alternatively, one can simply consider a compacti-
fied spacetime manifold — see, for instance [17, 19], for the casus of Friedman—
Lemaitre—Robertson—Walker universe.

It should also be recognised that the spectral action (and its entire dwelling)
works under the assumption of a positive-definite metric. Hence, the action (1.43) is
an Euclidean one and its physical applications require a Wick rotation [42]. A truly
Lorentzian approach is a challenging programme — cf. Problem 4 in Chap. 5.
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We conclude with a derived notion of action: When the triple is even with a grading
y, we define the topological spectral action by

Sip(Z.f+ A) :=Tr y f(121/4). (1.47)

We us now show as in [104, Sect. 10.2.3] that S;op(Z, f, A) = £ (0) index(2):

The McKean-Singer formula: index(2) = Tr y e™'? * holds true for any t > 0.
Indeed, let 7, be the eigenspace associated to the eigenvalue A, of & and P, be
the eigenprojection on .77;,. Then,

Trye'? =Tr(y Po)+ »_ e ™ Te(P, — P_,) = Te(y Po) = index (2).

>0

Thus, if the function x € Rt — f &%) is a Laplace transform of a finite measure
¢, so that f (x) = fooo e ¥ d ¢ (¢), then the topological spectral action is simply

Swp(2.f, A) = / “ y e 71 ¢ (1) = index(2) / b dé(t) = £ (0) index(2).
0

0

Similarly its fluctuation is Sip(Za, f, A) = f(0) index(Z,).
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Chapter 2 ®)
The Toolkit for Computations oo

Abstract In this chapter we introduce a number of mathematical tools, which will
prove useful in the spectral action computations. Firstly, we consider the basic prop-
erties of some spectral functions via the functional calculus and general Dirichlet
series. Next, we study the interplay between these provided by the functional trans-
forms of Mellin and Laplace. The remainder of the chapter is devoted to various
notions from the theory of asymptotic behaviour of functions and distributions.

Before we start off let us recall the big-O and small-o notation:

Let X be a topological space and let xy be a non-isolated point of X. Let U be a
neighbourhood of xg and V = U \ {x¢} — a punctured neighbourhood of x,. For two
functions f, g : V — C we write

J(x) = Ormsxy (g(x)) if limsup [ f(x)/g(x)| < oo,

X—>Xp

S ) = O (8()) T lim [ (x)/g(x)] = 0.

We use Oy, (g(x)) and oy, (g(x)) when no mistake concerning the variable can arise.

We will mostly be concerned with the cases X = R* U {oo} or X = C U {o0}
and xo = 0 or xp = 0o. The notations Oy(x*°), O (x~>°) will stand, respectively,
for O,_,o(x¥) and Os= 400 (x7%), for all k > 0, and similarly for o.

Example 2.1 We have sinx = Oy (1), butsinx # 04 (1) and 1 # Oy, (sin x).
For any n > 0, log" x = 0g(x™°) = 0 (x°) forall ¢ > 0. |

For further examples and properties of O and © symbols see, e.g. [17, Sect. 1.2].
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38 2 The Toolkit for Computations
2.1 Spectral Functions

The spectral action (1.43) is par excellence a spectral function, i.e. a (possibly com-
plex valued) function on the spectrum of some operator.

We now take a closer look at various spectral functions from the perspective of
general Dirichlet series [24]. As this part only involves the properties of & and not
the full force a spectral triple, we shall work with a general operator H acting on an
infinite dimensional separable Hilbert space .7#°. We shall need the following classes
of positive densely defined unbounded operators, for p € R*,

TP :={He L) |H>0and Ye >0 Tr H "% < oo, but Tr H P** = oo}.

If H € 7P for some p, then it is invertible and H ™' € J# (). Moreover, with
L) :={T € L) | Tr|T|" < oo} (the so-called rth Schatten ideal), we have

p=inf{r e R | H ! e £ (s#)}.

If (o7, 7, 2) is a not finite (i.e. with dim.7# = co — cf. Example 1.3) p-
dimensional spectral triple then | D| € .77 and D* € T P/% (cf. (1.1)).If (&7, S, D)
is a regular spectral triple, then also | Dy | € .77 and D € 7 P/* with a suitable fluc-
tuation A — see Sect. 1.6 and Chap. 4. Note, however, that the requirement ¥ € J7
for some p rules out the finite spectral triples, since .77 N £ (%) = (. The lat-
ter situation is trivial from an analytic point of view as Tr f(|D| /A) is finite and
explicitly computable for any bounded measurable function f and any A > 0.

As the primary example of a spectral function let us consider

Ny (A) = Z M, (H), for A > 0,

n:r,(H)<A

titled the spectral growth function. We get N p|(A) = Tr x0, 41(I1D]) = S(D, xj0,11, A),
which is the archetype of the spectral action [9].

Via the unbounded functional calculus (see, for instance [30, Chap. 13]) we define
an operator f(H) := fkespec(H) fA)dP,(H) = Z;"ZO f(,(H)) P,(H), with the
spectral projections P,(H) := P,,(H), for any bounded Borel (possibly complex)
function f on R*. The operator f(H) is trace-class if and only if

Tr f(H) =Y M,(H) f(n(H)) < o0. @.1)

n=0

More generally, if H € 7, K is any operator in #(s¢) and Tr f(H) < oo, then
TrKf(H) = Z:o:o Tr(P,(H)K) f(A,(H)) < oo. This implies in particular that for
f(x) = x~% with R(s) > p, we obtain the spectral zeta function

tkn(s) = Te KH™ =Y Tr(P,(H)K) 1, (H)™", for %t(s) > p.  (2.2)

n=0
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If H is not positive, but nevertheless |H| € 77 for some p, we define
¢k u(s) := Tr K |H|™* in accordance with the notation adopted in (1.28). Moreover,
if K =1, we shall simply write

¢ =C1.H-

The function g g will often admit a meromorphic extension to a larger region of the
complex plane, in which case it is customary to denote the extension with the same
symbol. Note that H € .77 guarantees that {x g, if meromorphic, has at least one
pole located at s = p.

Yet another propitious spectral function is the heat trace, which results from
f(x) =e ™ witht > 0,

Tr Ke '™ := ) " Tr(P,(H)K) e ™. (2.3)
n=0

The operator e " # is called the heat operator. This nickname comes from physics:
When —H = A is the standard Laplacian on a Riemannian manifold then e~ ¥y
solves the heat equation, d,¢p + H¢ = 0, with the initial condition ¢ (0) = .

On the side, we note that for any positive (unbounded) operator P the function
t e R > e7'P € 2(5#) admits a holomorphic extension to the right half-plane
viae ' P = —_ [ e '*(P — 1)~ d\, where € is a contour around R*. This can
be proved by differentiating under the integral — see Appendix A.1. It implies, in
particular, that if e~ H ig trace-class for any ¢ > 0, then the function # > Tr e’ H
is smooth on (0, o) and sois t > Tr Ke~'H for any K € Z(#). We will give an
alternative proof of this fact in Proposition2.3.

When H € 77, both heat traces and spectral zeta functions (for R(s) > p) are
instances of general Dirichlet series [24]. The latter are defined as

o0
Z a, e s, 2.4)
n=0

fora, € C,b, € Rwithlim,_, o, b, = +0coand some s € C. The region of their con-
vergence constitutes a half-plane R (s) > L forsome L € R, the latter being called the
abscissa of convergence. In contradistinction to Taylor series, the domain of absolute
convergence of (2.4), which is also a half-plane R (s) > L', can be strictly smaller,
ie. L’ > L (cf.[2, Sect. 11.6]). The regions of convergence of general Dirichlet series
can be determined from the following theorem:

Theorem 2.2 ([24, Theorem 7 with the footnote]) If the series Z?.o:o a, is not con-
vergent, then the series (2.4) converges for R(s) > L and diverges for N(s) < L,
with

L =limsup b, loglag +--- +a,| > 0. (2.5)

n—oo

The non-negativity of L follows from the fact that for s = 0 the expression (2.4)
equals to > - a,, which is not convergent. To compute the abscissa of absolute
convergence one simply needs to take |a;| in Formula (2.5).
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For K, H > 0, we always have L’ = L in both Dirichlet series (2.3) and (2.2).

For given operators K and H the associated heat trace and zeta functions are
closely interrelated, which will be explored in great detail in Chap. 3. We now offer
the first glimpse into their intimate relation.

Theorem 2.2 implies that the operator K e~/

is trace-class for all ¢ > 0 iff

N
log| Y " Tr(P,(H)K)| = On ooy (H)). (2.6)
n=0

On the other hand, ¢k g is defined (i.e. (2.2) converges for fi(s) > p forsome p > 0)
if and only if (cf. [12, Proposition 2])

N
Y Tr(P(H)K) = Oyoaoo(hn(H)'),  forall r > p. Q2.7)
n=0

Formula (2.7) implies (2.6), but the converse is not true. As a counterexample
consider K =1 and 1,(H) = log2 n, M, (H) = 1. In particular, if a spectral triple
(o, 7, D) is B-summable with ty = 0, but not finitely summable (recall p. 4), the
heat traces Tr Te P! exist, while the spectral zeta functions {7, p do not.

Given the abscissa of convergence of the zeta function ¢k y we can easily deduce
the behaviour of Tr Ke~"# ast | 0.

Proposition 2.3 Let H € 77 and K € B(). The function t — Tr Ke™'H is
smooth on (0, 00) and Tr Ke ' = Oy(t™"), forall r > p.

Proof Let us consider the function x + x%e™, which is bounded on R™ for any
o > 0. For any x > 0, we thus have x“¢™ < c(«), with some positive constant
c(a). By invoking this inequality with x/2 and multiplying it by e™*/2, we obtain
x%e™* < 2%c(a) e /2.

Letus fixany r > p > 0 and use x*¢™ < c(«) again. For any » > p we have

o0 o0
0<i"Tre =3 My(H) '™ < e(r) Y My(H)ha(H) ™ = c(r) £ (r) < 00
=0 n=0
This shows in particular that e~ 7 is trace-class for any ¢ > 0. Moreover, the function
t — t" Tr e7'# is bounded for ¢ € [0, 0o) for every r > p and the limit superior of
t"Tr e~ " ast | 0 exists and is finite, giving Tr e 7 = Oyt ") for all r > p.
Furthermore, for any + > 0 and any k € N we have
|%TrKe_[H| =|Tr K H'e M| < |k || Tr HX e H < ||K | 2Fck) Tr e T H/2 < o0,
which shows that the function t — Tr Ke~" ¥ is indeed smooth on (0, co). Finally,
0<t|Tr Ke"H| < ||K|t" Tr e~* ¥ and one concludes as above. O
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Remark 2.4 The heat trace (2.3) can also be defined when H is a selfadjoint operator
bounded from below with a compact resolvent. In this case one writes, for any ¢ > 0,

N oo
Tr Ke_tH = ZTI‘(P”(H)K) e_t)‘n(H> + Z TI‘(P,,(H)K) e-fAn(H),
n=0 n=N+1

foran N € NsuchthatAy,;(H) > 0. Since the first finite sum is manifestly a smooth
bounded function on R™, Proposition 2.3 holds. |
In particular, in the context of spectral triples we have (recall p. 3)
Tre 17 =Tre P! + (1 — ¢ ™) dimker Z = Tra_py . e '1P! + dimker 2.
(2.8)
Also, for R(s) > p, we have ¢;(s) = Tra_pyw D™ = ¢p(s) — dimker 2.

Example 2.5 Let & be the Dirac operator associated with the trivial spin structure
on S' equipped with the round metric (cf. Appendix B.1). Then,

ip(s) =Y My(ID) A (IDD™ =17 +2) 0" = 1+ 2¢(s),
n=0

n=0

where ¢ is the familiar Riemann zeta function. The latter has a single simple pole at
s = 1, so the triple is 1-dimensional. The corresponding heat trace reads, for ¢ > 0,
Tre ' 7I=1+23" e"'=1+ ;
in accord with Proposition2.3. ]

zfe'/ =coth £ and hence Tr e~'171 = Op(+7")

Remark 2.6 Let us note that Proposition2.3 extends in a straightforward way to
Tre " H" = Oy(t7"), forall r > p/a, forany a > 0, as {ge(s) = ¢y (as).

When applied to Example 2.5 it implies a non-trivial fact: Y oo, e™" = Oy(t ™),
foralla > 1/r. |

‘We conclude this section with a sufficient condition for the well-definiteness of
the spectral function (2.1), which is of our primary interest.

Lemma 2.7 Let H € F7 and let f be a positive function defined on R* such that
f(x) = O (x™P7%) for some ¢ > 0. Then, f(H) is trace-class.

Proof With {,,},n being the orthonormal basis on 7Z” composed of the eigenvectors
of HweobtainTr f(H) = Y oo (Vn, fF(H)Yn) = Y ooy My (H) f(Ay(H)). By the
hypothesis on the decay of f, there exist c;, N > 0, such that for any x > 0, we can
estimate | f(x)| < ¢1 + €2 X[N.00) (X)X ™P7F, with ¢; = supy, -y | f(x)[. Then,

Tr f(H) < 1) My(H) + 2y My(H)[Ay(H) ™7™ < e3+ 0y Tr H 7™ < oo.
n<N n>N

O
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2.2 Functional Transforms

In this section we recall some basic notions and facts on two functional transforms,
which will allow us to express some spectral functions in terms of others. These tools
will help us to eventually establish an asymptotic expansion of the spectral action in
Chap. 3.

2.2.1 Mellin Transform

We recall the following definition (see e.g. [28, Sect.3.1.1] or [19, Definition 1]):

Definition 2.8 The Mellin transform of a locally (Lebesgue) integrable function
f (0, 00) — (0, 00) is a complex function [ f] defined by

ML f1(s) = f f@)r'adt, (2.9)
0

for all s € C for which the integral converges. The inverse Mellin transform 91~" of
a meromorphic function g is defined by

c+ioo

M (1) = 57 / g(s) 1™ ds, (2.10)
c—ioco

for some ¢ € R such that the integral exists for all # > 0.

The domain of definition of a Mellin transform turns out to be a strip, called the funda-
mental strip (see [19, Definition 1]). If £(t) = Op(t*) and f(t) = Ou(t?) for some
a > B, then M[ f](s) exists at least in the strip —« < N(s) < —B [19, Lemma 1].
The invertibility of Mellin transform is addressed by the following [19, Theorem 2]:

Theorem 2.9 Let f be a continuous function. If ¢ € (0, 0o) belongs to the funda-
mental strip of M[ f] and the function R > y — IM[ f1(c + iy) is integrable, then
foranyt > 0

ct+ioo
F =M MO = 5 / M) 1 ds.

In the realm of spectral functions the usefulness of the Mellin transform is attested
by the following result:

Proposition 2.10 Let H € 7 and let K € B(H), then

Mt +— Tr Ke ' 7(s) = I'(s) lk.u(s), for N(s) > p. 2.11)
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Proof Let us pick any r such that 9i(s) > r > p. Proposition2.3 guarantees that
Tr Ke™'#(t) = Op(¢t~") and the integral

o0
M +— Tr Ke ' (s) = / Tr Ke " H 57 dr
0

converges (absolutely) at 0. It also converges absolutely at oo since

o0
|Tr Ke ™| = e ™D | Tr(Py(H)K) + Y Tr(P,(H)K) ¢~ *(H=2al)
n=1

= On(e™h0)

and the first eigenvalue Ay(H) is positive.
Since the map (¢, n) — Tr(P,(H)K) e ) isin L'((0, co) x N) we can use
the Fubini theorem to swap the integral and the sum in the following:

M [t — Tr Ke " H(s)

oo X S 00

:f D Tr(Py(H)K) e =y :ZTr(Pn(H)K)/ e~ tH) 5= gy

0 0
n=0 n=0

o 00
= > Tr(Py(H)K) dn (H) ™ / eyl dy =tk (s) T (s). O

n=0 0

The domain of definition is an important ingredient of the Mellin transform:
Even if both functions f, g do have Mellin transforms, 91 f + g] might not exist if
Dom OM[ 1N Dom M[g] = @. Let us illustrate this feature by inspecting the Mellin
transform of Formula (2.8).

Example 2.11 Let (o7, 7, ) be a p-summable spectral triple. If 2 has a non-
trivial kernel, then the Mellin transform of the heat trace Tr ¢~ Z! does not exist.
Indeed, when 1o(2) =0, lim,_, o, Tr e~'“! = dimker 2 and the integral (2.10)
converges at oo only if 9i(s) < 0, whereas the convergence at 0 requires that
N(s) > p > 0.Ontheotherhand, Tr e~ !7! = Tre~"1P! — (e=* — 1) dim ker 2 using
(2.8). Notice that both functions of ¢ on the RHS of (2.8) do have Mellin transforms,
but with disjoint domains. In particular, we have 9M[s — (e — 1)](s) = I'(s) for
N(s) € (—1,0) (see [19, p. 13]). ]

The relation between the spectral functions unveiled by Proposition2.10 can be
inverted with the help of Theorem2.9.

Corollary 2.12 Let H € 7 and let K € B(). Then, for any ¢ > p and any
t >0,

c+ioo
Tr Ke ' = - T(s) ¢k p(s)t*ds.
c—io0

Proof Recall that the function t — Tr Ke~"# is smooth (cf. Proposition2.3). In
order to apply Theorem?2.9 we need the function y = I"(c +iy) ¢k u(c +iy) to
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be Lebesgue integrable for any ¢ > p. This is indeed the case as if ¢ > p > 0, we
have I'(c + iy) = (’)oo( ly|<=1/2 e’”'y‘/z) (cf. Lemma 3.8), and moreover we estimate
|¢k.u(c+iy)| = |TrKH™| < |K|Tr |[H="| < |K|| Tt H=. O

2.2.2 Laplace Transform

The Mellin transform allows us to move back and forth between a spectral zeta
function and the associated heat trace. In order to build a bridge from these to the
spectral action, we will resort to the Laplace transform.

Definition 2.13 The Laplace transform of a function f € L'(R*, C) is an analytic
function £[ f] : RT™ — C defined by

Ll flx) = /0 f(s)e " ds. (2.12)

For our purposes it is sufficient to consider x € R, although (2.12) actually defines
an analytic function in the whole half-plane N (x) > 0. Also, one can consider the
Laplace transform of functions in LlloC (R*) (locally integrable on R™), as long as
there exists M € R such that the integral converges (properly) for R(x) > M.
More generally, one can define the Laplace transform of a complex Borel measure

¢ on R* via the Lebesgue integral

Llolx) := / e dp(s), forx >0. (2.13)
0

Since we are interested in real functions £[¢] we shall restrict ourselves to the
case of Borel signed measures (see for instance [8]) on R™, i.e. o-additive maps
¢ : BR') - R U {£o0o}, on the o-algebra of all Borel subsets of R*. A signed
measure may assume one of the infinite values +00, but not both. The Hahn—Jordan
decomposition allows us to uniquely write any signed measure as ¢ = ¢ — ¢~ for
two non-negative measures, at least one of which is finite. It is customary to denote
|¢| = ¢ + ¢, whichis anon-negative measure on R* called the variation of ¢. The
support of a signed measure is defined as supp ¢ := supp |¢| = supp¢™ U supp¢~.

Let us recall that a function f is completely monotonic (c.m.) if f € C*((0, 00), R)
and (—1)" f®™(x) > 0 for any n € N, and any x > 0. The set of such functions,
denoted by C M, is well adapted as the range of the Laplace transform:

Theorem 2.14 (Bernstein, see e.g. [35, p. 160] or [31, Theorem 1.4]) Given a func-
tion f € CM we have f(x) = L[@p](x) for all x > 0 for a unique non-negative
measure ¢ on RT. Conversely, whenever £[¢](x) < 00, Vx > 0, then £[¢] € CM.

The set C M is a convex cone which is stable under products, derivatives of even order

and pointwise convergence. Moreover, the closure under pointwise convergence of

Laplace transforms of finite measures on R* is exactly CM [31, Corollary 1.6].
The Bernstein theorem naturally extends to the context of signed measures:
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Corollary 2.15 If f = f+ — f~ with c.m. functions f*, then f(x) = L[¢](x) for
all x > 0 for a unique signed measure ¢ on R™. Conversely, whenever £[¢](x) < oo
forall x > 0, then £[¢] can be uniquely written as a difference of two c.m. functions.

Proof This is a straightforward consequence of the Bernstein theorem and the Hahn—
Jordan decomposition. (]

The Laplace transform of a measure ¢ is well defined on the open set R \ {0}.
If the measure ¢ is sufficiently nice, then f = £[¢] along with its derivatives can be
extended to the whole R™:

Proposition 2.16 Ler ¢ be a signed measure on Rt and let f(x) = L£[¢](x) for
x > 0. If ¢ has a finite nth moment, i.e. fooo s"dp(s) < oo for an n € N, then
lim,_ o+ £ (x) exists and is equal to (—1)" fooo s"de(s).

Proof This is a consequence of the Lebesgue dominated convergence theorem: For
s, x > 0 we have |e’”| < 1, thus

/00 de(s) = lim /oo e dp(s) = lim f(x).
0 x—=0t fo x—>0t

The statement for n > 0 follows from a general property of the Laplace transform
(cf. [37, Eq. (12)]): £[s > s"@(s)](x) = (=1)" f™(x), forany n € N. (]

Remark 2.17 The converse of Proposition 2.16 is not in general true for signed mea-
sures. A counterexample is provided by the function f(x) = 1 — e~!/*, which is the
Laplace transform of the function ¢ (s) = J;(2s'/?)s~1/2, with J, being the Bessel
function of the first kind. Although lim,_,¢+ £ (x) = O forany n € N*, the function
s"¢(s) is not integrable on R* forn > 1.

If the measure ¢ is non-negative then lim,_, o+ " (x) < oo does imply that ¢ has
a finite nth moment. This is because if ¢ > 0 one can use the monotone convergence
theorem, which implies that lim,_, o+ e™** is integrable with respect to the measure ¢
(cf. [31, Proposition 1.2]). But for signed measures the monotone convergence fails
—see [5, p. 177]. |

Even more generally, on can consider the Laplace transform of distributions in a
suitable class (cf. [10, 17, 36]). Let D be the space of smooth compactly supported
functions on R endowed with the standard topology of uniform convergence with all
derivatives (cf. [10, Definition2.1]), with D’ denoting its dual. Furthermore, let S
denote the space of rapidly decreasing (Schwartz) functions on R and its dual S’ —
the space of tempered distributions. Wehave D c S ¢ S’ c D'.

Recall that a distribution T is said to be null on some openset U C Rif (T, ¢) =0
for all ¢ with supp ¢ C U. The support of a distribution T is the complement of its
null set (i.e. the union of all U, on which T is null) (cf. [17, Definition 2.5.2]).

We shall denote by D; the set of all right-sided distributions, i.e. distributions in
D', the support of which is contained in R*. Consequently, S/, =D/ NS
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Consider now a smooth function ¢ on R, which has bounded support on the left
(i.e. ¢(x) =0 for all x < m for some m € R) and equals 1 in a neighbourhood of
[0, 00). Then, for any T € S’ , we define

LTI(x) == (T.s — p(s)e™™), forx > 0. (2.14)

—S5X

The definition is sound as for any x > 0, the function s — ¢(s)e™** isin S and since
T is supported on R* the choice of ¢ does not play any role.
It is common to use the — somewhat sloppy — notation £[7](x) = (TS, e’”).
The range of the Laplace transform of distributions in S’ is uncovered by the

following result:

Theorem 2.18 ([37, Theorem9]) A function f is a Laplace transform of a distri-
bution in S’ if and only if

(i) f is analytic in the half-plane R (s) > 0;
(ii) There exists a polynomial p with | f (s)| < p(|s|) for any s € C with Ri(s) > 0.

Example 2.19 Foranya € R we have £[5,](x) = e %, In particular, £[8](x) = 1.
Since §, is a legitimate measure on R™, £[8,] is a c.m. function.

Letnow p(x) = Z?:O c;jx/ forsomed € Nand f(x) = p(x) e"* witha € RY.
Then, f is notc.m. unless d = 0. Nevertheless, its inverse Laplace transform exists
and equals £7![f] = Z?:o cj 8(§j). [ |

Remark 2.20 1t would be highly desirable to utilise the Laplace transform to deduce
the behaviour of Tre '#’ knowing that of Tre~"#. Unfortunately, the Gaussian
function f(x) = e~ does not satisfy the bound demanded in Theorem?2.18 as
lf(x+iy) = e~ Hence £ (f) does not exist, even as a distribution.

We also note that if the function f has compact support in Rt — in particular
if it is a smooth cut-off function as depicted in [6, Fig. 1] — then it is not complex
analytic in the right half-plane, and hence cannot be a Laplace transform. |

The pertinence of the Laplace transform in the context of the spectral action stands
from the fact that if f = £[¢] is the Laplace transform of a measure ¢, then for any
positive selfadjoint (possibly unbounded) operator H,

f(H/A) = /oo e 1A dg(s). (2.15)

0

The RHS of the above formula is well defined in the strong operator sense
(cf. [29, p. 237]). Moreover, since the trace is normal (i.e. if Hy, — H € B(H)
strongly with H, > H, for o’ > «, then Tr H = sup, Tr H,), and, if f(H/A) is
trace-class, then

Tr f(H/A) = fmTre_SH/A do(s), (2.16)
0
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Formula (2.16) will allow us to deduce the properties of the spectral action given
the corresponding heat trace. Most notably, it will enable us to establish a large energy
expansion of S(Z, f, A) in Sect.3.4. For our plan to succeed, we need to identify
the suitable classes of cut-off functions. We define successively:

Ci={f=f"—f.,fFeCM | f(x)=0, forx > 0},
(f=SlpleC | Ve, /ws"d|¢|<s><oo},
0

C. := {f =Ll¢]l €C | supp ¢ is compact},
CP = {feC | f*(x)=O0x(x"")}, forp=>0,
¢l = cyncer, Cr:=C.ncr, forp>0.

C()Z

Observe that, if the operator H is in .77 then Lemma2.7 implies that for f € Cj
with r > p we have Tr f(H) < oo. The property f(0) < oo is not necessary for
f(H) to be trace-class when H is invertible, but f(0) might (and usually does)
pop-up as the coefficient in front of ¢ in the expansion of Tr f(t H).

Clearly, CM C C,C. C Cyand C" C C? for r > p. Furthermore:

Proposition 2.21 Forany p,r > 0,C} -Cy € CY™ and C! - C. < CI™*'". Moreover,
oo
f=2LlpleCl = Vm> —p, / s"™d|p|(s) < oo. 2.17)
0

Proof Firstly, we note that since the set CM is closed under multiplication, so is C,
and hence C” - C" C CP*". Secondly, recall that when two signed measures ¢, x on
R are finite then their convolution ¢ * x is defined as [4, Definition5.4.2]

/0 f(s)d(d = x)(s) 12/0 /O fls+0dd(s)dx(t), for feCp(RT).

If £[¢], £Ix] € Co, then ¢ and x are finite and, moreover, for any n € N,
/ s"d|¢ * x|(s) =/ / (s +1)"d|pl(s)d|x|(t)
0 o Jo

=Z(Z)/ s"d|¢>|(s)/ " Fdx|(1) < 0.
k=0 0 0

From the general properties of Laplace transform [37, Theorem 10] we have
Ll * x1(x) =L[d1(x) L[ x1(x), hence we conclude that Cy - Co CCpand C,. - C. CC,.
Formula (2.17) for m € (—p, 0) follows from Fubini’s theorem:
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/oosmd|¢|(s) =I(=m)"! /Oox_m_l /oo e d|gl(s)dx
0 0 0
= F(—m)_lf x4+ fT () dx < oo.
0

On the other hand, for m > 0 the statement follows from the very definition of Cy:

00 1 00 00
/ s’"d|¢|(s>§/ sl"”d|¢|(s)+f sf"”d|¢|(s>§f s 4 sl (s).
0 0 1 0

O

A pleasant consequence of Proposition 2.21 is that if we have at our disposal a cut-
off function f € Cj for some r > 0, then we immediately obtain a cut-off function
in C} for any p > r by taking f" forn e N,n > p/r.

Example 2.22 Forany a > 0 the c.m. function f(x) = ™% = £(8,)(x) isin C’ for
all p > 0. Thus, when b > a > 0, the function f(x) = e™** — e 5% isin C? for any
p > 0, while it is not in CM.

If b >a >0 then also f(x) =x"!(e™® —e™) = L(Xa.p1)(x) is in CF for
p > 0. ]

Example 2.23 Let f(x) = (ax + b)™" for a, b, r > 0. Then, one computes that
L7 f1s) =T (r)'a"s"le /% and hence, f € C}, but f ¢ C.. [ ]

Example 2.24 Let f(x) = e [1 — Erf(x)], where the error function Erf is given by
Erf(x) = 2712 [ e’ dy. Then, f € CM with £7'[f1(s) = 7~"/?e~*"/*. More-
over fT(x) = f(x) = Ox(x71), hence f € C. |

Example 2.25 Let f(x) = e~ V*.Then, f € CM since £'[f](s) = ﬁ §T3/2e=1/0s),
On the other hand, lim,_, ¢+ f'(x) = oo, thus f ¢ Cp.

Similarly, let f(x) = log(a + b/x) witha > 1, b > 0. Then we have f € CM
with €71 f1(s) = s~ (1 — e7?%/%) +-1og(a) 8(s), but f ¢ Cy since we have
lim,_ o+ f(x) = oo. |

Every signed measure on R* (including ), &;) can be seen as a Laplace trans-
formable distribution, but the space £[S ;] is strictly larger, as illustrated in Exam-
ple2.19. A careful reader might thus ask whether one could extend the class C and
allow f to be the Laplace transform of a distribution in S, . At the operatorial level
it is possible to cook up an analogue of Formula (2.16). However, the topology of S’
obliges us to control the derivatives of the test functions and the asymptotic expan-
sions, which are our ultimate objective, do not behave well under differentiation. We
come back to this point in Remark 3.23.
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2.3 Weyl’s Law and the Spectral Growth Asymptotics

Let A be the Dirichlet Laplacian A on a bounded domain X C R¢.In 1911 Hermann
Weyl proved that N (A) = 236109 4d/2(1 4 o(1)) as A — co. This formula,
dubbed Weyl’s law, extends to the case of X being a compact connected Riemannian
manifold and A the Laplace-Beltrami operator — see [25] for a nice overview.
Beyond the commutative world one can deduce the asymptotic behaviour of the
spectral growth function of an arbitrary positive operator H, via the Wiener—lkehara
Tauberian theorem, from the properties of the associated spectral zeta function {p
(cf. [3] and references therein, and also [13]). On the other hand, the control of
Npg(A) as A tends to infinity yields the leading small-¢# behaviour of the heat trace
Tr e~ (cf. [12, Corollary 3]" or [33] and references therein).

The control of the sub-leading terms in the asymptotic behaviour of Ny (A) is a
formidable task, even in the context of classical elliptic pdos. In the latter case, the
remainder is of the order Ou(A“~1/2), but in full generality of noncommutative
geometry one can only expect 04, (A?%/?). The lower order terms, which are of great
interest from the viewpoint of the spectral action, are accessible (and will be accessed
in Chap. 3) provided we trade the sharp cut-off x[o, 17 for a gentler one.

Let now (of, 7€, 2) be a d-dimensional spectral triple with a simple dimension
spectrum Sd = d — N and ¢p regular at the origin. Then, one defines [6, Eq. (25)]

d
(Ng (A)) : Z%Ak][|D|*k+§D(0)+ker@. (2.18)

k=1

This could be justified via Formula (1.46)* using Ng (A) = (Ng (A)) + Ose (A7),
The computation of (2.18) is illustrated as follows [6, Proposition 1]:

Proposition 2.26 Given 2, assume that spec D = Z* and that the total multiplicity
of eigenvalues {£n} is P (n) with a polynomial P(u) = Z‘;;é Ccj ul.

Then, (No(A)) = [} Pu)du + Y 1" c; ¢(—j) +ker 2.

Proof The zeta function reads ¢p(s) = ; Yopezs P()n™ = Y oo, P(n)n~*, thus
Cp(s) = Z] Oc c(s —j) andeDI % = Res,; Cp(s) = cx_1. Moreover we have

¢p(0) = Z} 5 ¢j £(—j) completing the proof with fo P(u)du = Z‘Ji . ]11 AT

This result will be extended in Theorem A.8 in Appendix A.6 and applied in the
computation of the dimension spectrum of noncommutative tori in Sect. B.3.1.

I'The cited result provides a better control than Proposition 2.3, but requires some non-trivial assump-
tions — see [12, Sect. 5] for a detailed discussion and (counter)examples

2Strictly speaking, Formula (1.46) requires f to be the Laplace transform of a signed measure,
which is not the case for the counting function. Nevertheless, naively fol WbV du = 1/k.



50 2 The Toolkit for Computations

2.4 Poisson Summation Formula

Given the Fourier transform of a function g € L' (R™),

y e R" = Flgl(y) := / g(x) e Y dx,
Rm
the usual Poisson formula

D gtk+oy =) TR R k), Vi>0,VEeR",  (2.19)
kezZm keZm

is valid under mild assumptions for the decay of g and §[g] [32, VII, Corollary 2.6].
Formula (2.19) is deeply rooted in complex analysis. We have (if, e.g., g € S)

;(s)sm[g](s)=/0 S gtk dr=m Y g0, for R > 1,
k=1 k=1

(2.20)

what can be deduced from [~ g(t k) t*~' dt = k= [;° g(t) t*~" dt. In particular, a
proof of the Poisson formula (at least for m = 1) can be given by applying the inverse
Mellin transform to (2.20) and invoking the Riemann functional equation [18].

The Poisson summation formula is particularly useful for the spectral action com-
putations if one knows explicitly the singular values p,(2) along with the mul-
tiplicities. In favourable cases (which include i.a. the classical spheres and tori)
when w,,(2) are indexed by Z™ for some m € N one can rewrite the spectral action

as Tr f(121/A) = ), My(I2) f(un/A) = Y reym 84(k), for some function g 4.
Then, the next lemma shows that

Tr f(121/4) = 31841(0) + Occ (A™). (2.21)

In other words: Given a Schwartz function g, the difference between me g(tx) and
>z 8(tx) is negligible as ¢ | 0.

Proposition 2.27 (Connes) Given a function g € S(R™), define

S(g) == Z gk, I(g):= /Rm g(x)dx and g/(x):=g(tx), fort > 0.

kezZm
Then, S(g:) = 1(g:) + Op(t*™).

Proof Since t™" §[g](0) = 1(g,), the Poisson formula (2.19) implies that it suffices
to show that for any large n € N*, S(g;) — I(g;) = Zkem\{m g1t~ k) = Op(t").
But §[g] is also a Schwartz function, |§[g](x)| < c|x|™" forx # Oandeveryn € N,
so for n large enough, | ZkeZ’"\{O} Slglt b)) <c Zkezm\{O} k™= O



2.4 Poisson Summation Formula 51

As an example, this shows that

Z e~HIkIP — / eI gy 4 Op(t®) = 7™ 7"/ £ Oy (t>). (2.22)
kezm "

The smoothness of g is indispensable in Proposition 2.27: For instance, the function

g(x) = e~ has a Fourier transform [g](k) = M{ﬁ and [* e 'ldx =2

o
while Y00 e = ¢ = 24057 o 12171 p 52,

Proposition2.27 does not give a way to compute the asymptotics of 7(g;) or
S(g:). But it is hiddenly used in the computation of the heat trace asymptotics of a
Laplace type operator P on a compact manifold as in Appendix A: The asymptotics
of Tre~"? is not computed directly via Tre™* = Y2 /e~ #(P) but, as reminded
in Appendix A.4, using the integral kernel of e~'* and an approximation of the
resolvent (P — A)~! by a pseudodifferential operator R (), the parametric symbols
of which r, (x, &, A) authorise the use of integrals over x and & (see [20, Sect. 1.8])
without any reference to the discrete summation ) .

Let us now illustrate the usefulness of the Poisson summation formula for the

spectral action computations:

Example 2.28 If 9 is the Dirac operator on the sphere S¢, then by Formula (B.1),
Tr f(21/A) = 3, e 2427 () f( + D/ ).

Let us set d = 3, as in [6]. Assuming that f is an even Schwartz function and
checking that £1/2 are not in the spectrum, we get, via Eq.(2.19),

Tef(21/4) =2 (n+ D +2)f((n+3/2)/4) =Y k(k+ 1) f((k+1/2)/4)

neN keZ
=Y gatk+1/2) =Y (=D*lglk),
keZ keZ

where g4 (x) := (x — 1/2)(x + 1/2) f(x/A). As already seen in Formula (2.21), we
only need to compute §[g4](0) and the asymptotics of the action is

Tr f(12]/A) =A3/x2f(x)dx— }TA/ F(x)dx + O (A™). m (2.23)
R R

Example 2.29 Consider the spectral triple (C*®(T¢), L>(T¢, %), &) and assume
again that d = 3. By (B.2), the spectrum of & is the set of all values 27 ||k + £]|
where k varies in Z* while £ € R? is fixed and given by the chosen spin structure
(s1, ..., 8q). There is no degeneracy, apart from zero which is a double eigenvalue.
Again, to simplify we assume that f € S(R) and, as computed in [27],

Trf(21/0) =2 ga) =2 Flgal(k) = 23(8)(0) + O (4™,

keZ? keZ?
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with g4(x) := f (27 ||lx + £|| /A). Since Flgal(0) = [os f Q27 |x + €] /A) dx, we
get

Tr f(12]/4) = #/P/ FUlxID) dx + Ose(A™). m (224
R3

In Example 2.29, one can see that the spectrum of 2 does depend on the choice of the
spin structure and so does the spectral action. But this choice disappears in (2.24),
so that the dependence on the spin structure is asymptotically negligible. Is this a
general fact? See the associated Problem 10 in Chap. 5.

The Poisson formula has been widely employed in the computation of the spectral
action, as explained in Sect. 1.8. It requires, however, a complete knowledge of the
spectrum of &. The latter is available for a few Dirac operators on Riemannian
manifold, like the spheres, tori, Bieberbach manifolds, quotients of Lie groups, like
SU (n), etc. The reader should notice that the calculations can be tricky, especially
when swapping between f and g in (2.21).

Although the Poisson summation formula is exact, we focused on its application
for the study of asymptotics. Of course, since every summation formula is associated
with an asymptotic formula [17], one can investigate the Taylor—Maclaurin or Euler—
Maclaurin asymptotic formulae. For instance, the latter reads [7], forany 2 > m € N,

N N m
> k) = / g(x) dx 4 BOLEML LN "2 007D(N) — gU=D(0)] + Ry, (225)
k=0 0 =2

N
Ry = %/ g (x) By(x — x])dx,
0

where B; = —2j¢(1 — 2j) are the Bernoulli numbers, with By;;; = 0 for j € N*
so that B, = —é, B, = —%, Bg = %, ..., and B;(x) are the Bernoulli polynomi-
als defined by induction: By(x) = 1, B}(x) =jBj_i1(x), fol Bj(x)dx =0 (cf. [1,
Chap. 23]).

When N — occand7 <m € N,

2
2™

Rl < £(m) f 18 ()] dx < / 8™ ()] dx.
0

0

Example 2.30 Consider the Dirac operator on the sphere S*, as in [7]. Accord-
ing to AppendixB.1, we have {1, (|Z| |n € N} = {k € N} and the eigenvalue k
has multiplicity ;—‘(k3 — k) (thus 0, 1 are not eigenvalues). The Euler—Maclaurin
formula (2.25) can be used for Tr f(|Z]|/A) = %Z,fozog(k), where we take
g(x) = (x* —x) f(x/A). Assuming again f € S, we get R,, = Qs (A*™™) because
g™ (Au) = A3 P, (u, A", fP(u)), where P, (u, A~', f®(u)) is a polynomial
in u, A~! and a finite number of f® (u). Since g/ (0) =0 for all j € N and
g0)=—£(0),g?(0)=61(0)—6A""f'(0),g(0)=120A"" f'(0)—60A2 £ (0)
etc., we obtain
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3T (121 /2)

= /0 @ —x) fe/N) dx + (5 + D) f O + (— g A2 = 2 A DO + ...
which means
Tr f(121/4) = $A* / u f(u)du — ‘3—‘A2/ u f(u)du + g f(0)
0 0

+Y em AT F0) + O (A7), (2.26)

m=1

The coefficients ¢, can be computed explicitly: ¢; = 31/1890, ¢, = 41/7560,
¢z = —31/11880, etc. |

Similarly, the Euler—-Maclaurin formula can be utilised in the same way when the
singular values of & are polynomials in k € N with polynomial multiplicity in k.

Some authors use the name “non-perturbative spectral action” for expressions
like (2.26) after erasing the remainder Oy (A~%°). We warn the Reader that the
‘exponentially small’ term On, (A ™) can hide the devils, as argued in Sect. 1.8.

2.5 Asymptotic Expansions

The bulk of the physical information encoded in the spectral action can be read
out from its asymptotic behaviour at large energies. The leading term established in
Sect. 2.3 provides rather scarce information. We would like to recognise the leading,
subleading, etc. terms of the action and to control the remainder in a sensible way. It
would be most desirable to have a Laurent expansion

[ee]

S(2.f. A =Y alf. DA, (2.27)

k=—N

the convergence of which for A larger than some A, would guarantee that con-
sidering higher and higher order terms provides a better approximation of the true,
non-perturbative, action S(Z, f, A). Unfortunately, we are granted such a level of
precision only for rather specific geometries — see Sect. 2.6. Typically, the best what
one could hope for is a control of the order of the remainder when the series (2.27)
is truncated to the first, say, M terms. This desire is formalised with the help of the
notion of an asymptotic series. It firstly requires the following definition:

Definition 2.31 Let (¢;); be a (finite or infinite) sequence of functions on a punc-
tured neighbourhood of xy. We call it an asymptotic scale at x if, for any k, ¢ (x) # 0
for x # xp and @41 (x) = Oy, (@ (x)).
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Example 2.32 For any xo € R the sequence ((x — x0)"), _y» known from the Taylor
series, is an asymptotic scale at xo. More generally, one could take (x — x¢)" for any
complex r,’s with 9 (r,) /' oco.

The logarithmic terms can also be taken into account: For instance, the sequence
{x""log®x, x 'logx, x~!,log’> x, logx, 1,...} defines an asymptotic scale at
Xo = 0.

On the other hand, the sequence {Z, x~lcosx, x~%sinx, x> cosx, ...} is not
an asymptotic scale at xo = 00, as, for instance, the limit of ¢3(x) /@, (x) for x — oo
does not exist. |

3

Definition 2.33 Let (¢ )y be an asymptotic scale at x and g a complex function
on some punctured neighbourhood of xy. We say that g has an asymptotic expansion
with respect to (¢ ) when there exists a sequence of functions (o )xen such that

N
pe(x) = O (e(x)),  gx) — Z Pk(x) = Ox(@n(x)), forany N € N.

k=0
In this case, we write
0
O kz_; pi(x) (2.28)

and the symbol Y ., px(x) is called an asymptotic series of g at x,.

Remark 2.34 Let us warn the reader that the adopted Definition 2.33 is sometimes
called in the literature an extended asymptotic expansion (cf. [17, Definition 1.3.3]).
In the standard approach (see for instance [14]) one assumes that px(x) = cr@r(x)
with some complex constants c;. An example of a function which does not have
an asymptotic expansion at infinity in this standard sense, but does have one in the
extended sense is S(x) = fOX t~Vsint dt — see [17, Example 8].

Observe also that Definition 2.33 uses a flexible, though somewhat slippery, nota-
tion — two different pairs of scale functions (¢ )y and coefficients (o) can give the
same expansion (2.28) around x, for a given function g (cf. Example2.37).

In our venture through the meanders of noncommutative geometry we will
encounter situations in which the spectral action S(Z, f, A) exhibits oscillations
at large energies — see Example 2.39. To study its asymptotics, we will need the full
force of Definition2.33. |

Letg : R — Rbeasmooth function around x = 0. Then g always admits a Taylor

. (k) . . .. ..
expansion g(x) '1«0 Yook k,(o) x*. However, if g is not analytic, its Taylor series is
. !

only an asymptotic one. As an example consider g(x) = [~ e (1 + s%x?)'ds. It
is smooth at x = 0 and g(x) ’IO Z,fio(—l)k@k)! x%k_ but this expansion is clearly

not a convergent series.
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Let us also note that whereas the functions ¢; of the asymptotic scale must be non-
zero in some punctured neighbourhood V' of xy, the coefficients of the expansion —
i.e. the functions p; — can actually vanish in the whole V. A standard example is pro-
vided by the function 4 (x) := e~!/* for x > 0, h(x) := 0 for x < 0. The function h,
being smooth at x = 0, admits a Taylor expansion, i.e. an asymptotic expansion with
respect to the asymptotic scale (x*)¢. But, as 1% (0) = 0 for every k € N, we have
h(x) o 0, i.e. h(x) = Oy(x>). Note, however, that we could take g (x) = e~ 1/**

as the asymptotic scale and write a trivial expansion A (x) ’IO e V¥ 4 op(pn (%))
X

for any N € N*.

The casus of the latter function 4 shows that an asymptotic expansion can never
determine a function uniquely, even if it converges. Indeed, for any function g smooth
at zero, the functions g and g 4+ & will have the same asymptotic expansions with
respect to the scale (x*);.

Remark 2.35 Asymptotic expansions can be combined by linearity and multiplica-
tion. They can also be integrated, both with respect to the variable x, as well as
to some external parameters. On the other hand, asymptotic expansions (even the
standard — “non-extended” — ones) do not behave well under differentiation. This
is because the only information available about the remainder is its O, behaviour,
which is scarce: Although f(x) = O,,(g(x)) but, in general, f'(x) # Oy, (g’ (x)),
as exemplified by f(x) = xsin(x™!) = Op(x), f'(x) = Op(x™") # Op(1).

For more details on the properties of asymptotic series see [17, Sect. 1.4] and
references therein. ]

Example 2.36 As in Example 1.2 let us consider an elliptic selfadjoint differential
operator H of order m acting on a vector bundle E over a closed (i.e. compact without
boundary) d-dimensional Riemannian manifold M and let K € C*°(End(E)) be an
auxiliary smooth endomorphism. If H is positive, then [21, Theorem 1.3.5]

o0
TrKe ' b > K, Hyt* =0, (2.29)
k=0

The natural asymptotic scale is ¢ () = t*~D/™ whereas p (t) = a; (K, H) t&=/m
in accordance with [20, Definition (1.8.10)]. |

Example 2.37 More generally, if P € W (M, E) is positive, elliptic with m > 0,
then

Tre™'” 10 D aPyh Oy Thy(P) i logt.
k=0 =0

See Corollary A.7 in Appendix A.5 for the full story and a detailed proof.

Note that this expansion can be read as the one with respect to the asymptotic
scale {t=4/™ logt, t=4/m t—d+D/mog ¢, ¢(—d+D/m 3 with constant coefficients
Crj+1 = aj(P) and Cj = OfOI'j <d, C2j = bj(P) fOI'j >d.
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Alternatively, one can set the asymptotic scale ¢;(t) = tY=9/"=¢ for some
smalle > Oandtake p;(t) = (a; + b(j—ay/m logt) tY=/" for j —d € mNandalso
pj(t) = a;t¥=D/m for j —d ¢ mN, to satisfy p;(t) = Og(p;(1)).

This can be further generalised: If Q is a log-polyhomogeneous pdo of order ¢,

o0 r+1
Tr Qe P ~ [ (0. P)1 k,],(ij—d)/m,
rQe’ ~ ZO kX(;a,,k(Q ) log

=0 ke

where r is the degree of log-polyhomogeneity of Q (cf. [26, Sect. 3]).
In fact, as suggested on p. 168 of [26] (see also [23, p. 488]), this result should
survive even if P is also log-polyhomogeneous rather than a classical one. |

Remark 2.38 Let P be an elliptic positive pseudodifferential and let Q = P + R,
where R is a smoothing pdo.

Then (P —A)"'and (Q —A)~! = (P — A)~![1 — R(Q — 1)~!] have the same
parametrix. Moreover, if P satisfies Hypothesis A.1, so does Q. Thus the difference
between the two pdo’s e ¥ and e™* € (see Appendix A.4) is Oy(¢>°). This means
that Tre~' © and Tr e~" € have the same asymptotics. This coincidence also follows
from the Duhamel formula (4.13). |

Finally, let us present an example of an asymptotic expansion of the spectral
action on the standard Podle$ sphere, which justifies the need of the full force of
Definition?2.33.

Example 2.39 Let 9, be the Dirac operator on the standard Podle$ sphere (cf.
Appendix B.4). For a suitable cut-off function f the spectral action admits a large-
energy asymptotic expansion

00 2
Sy £ ) ~ DD DA, o X

il
k=0 n=0 jeZ logg
- 2mi
n—m(n n—m *2k+10—j
- i g4
x ) =0 T gz (02" 4 . (2.30)
m=0

The numbers f; are the generalised moments of the cut-off function and the a; ,’s
can be computed explicitly in terms of the residues of {g, — see [11] for the details.

As in Example 2.37 the expansion (2.30) can be consider either with respect to
the asymptotic scale {log” A, log A, 1, A=2log> A, A"2log A, A~2, ...} or with
respect to (A°" %)y for any & > 0. In both cases, the coefficients p(A) of the
asymptotic expansion are rather involved functions of A given in terms of absolutely
convergent Fourier series in the variable log A. |
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2.6 Convergent Expansions

Surprisingly enough, it turns out that the asymptotic series in Formula (2.30) is
actually convergent for all A > 0 and, moreover, one could write a genuine equal-
ity in place of the asymptotic expansion symbol [11, Theorem5.2]. The following
definition provides a general framework for such situations.

Definition 2.40 Let ) ;2 px(x) be an asymptotic series of a function g at xo with
respect to an asymptotic scale (¢;);. We say that the asymptotic expansion of g at
Xo 18 (absolutely/uniformly) convergent if the series Z/C:io pr(x) converges (abso-
lutely/uniformly) in some punctured neighbourhood V of xy. In this case, forx € V,

g(0) = p(x) + Roo(x),  With Reo(x) = 0y, (¢ (x)) forall k €N.
k=0

If, moreover, Ry, = 0 then the expansion is called exact.

Let us note that since Z/fio pr(x) is not, in general, a Taylor series, the domain
of its absolute convergence can be strictly smaller than the domain of conditional
convergence — cf. p. 39.

In this light, the expansion presented in Example 2.39 is exact for all A > 0. Let
us illustrate Definition 2.40 with two further examples of geometric origin:

Example 2.41 Let 9 be the standard Dirac operator on S' associated with the trivial
spin structure (see Appendix B.1). Then, Tre™'%" = > et = 93(0; ™) for

n=—00

t > 0 where 93(z; ¢ = €'™7) = ¥3(z| 1) := D oo n iz forz € C, |q| < lisa

n=—c0 4

Jacobi theta function (see [34, p. 464]) which enjoys the Jacobi identity [34, p. 475]
93(z|7) = (—it) 2 M9 (2o [ — 7). 2.31)

Equation (2.31) implies that, for any ¢ > 0,

Tre™ 7 = (1) 9300070 = (2) P 2(2) P Y e

n=1

= (1) 4 0y(r™).

The above asymptotic expansion is finite (thus absolutely and uniformly convergent
vVt > 0), but it is not exact. In fact, the asymptotic expansion of the heat trace asso-
ciated with 2? — the square of the standard Dirac operator on any odd dimensional
sphere S¢ is finite, but not exact — see Example 3.15 and [12, Corollary 2]. ]

Example 2.42 Let again & be the standard Dirac operator on S! associated with the
trivial spin structure (see Appendix B.1). Then, for ¢ > 0,
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e = l—i—ZZe " = coth (%) (2.32)

The function coth is complex analytic in the annulus |s| € (0, 7) and its Laurent
expansion at s = O reads [1, (4.5.67)]:

coths = s~ + Z 2(2,5;2,& st (2.33)

k=1

where By are the Bernoulli numbers (cf. p. 52). Hence, previous equality provides
an asymptotic expansion for Tre~"1?! as ¢ | 0, which is convergent (absolutely and
uniformly on compacts) for ¢ € (0, 27) and, moreover, exact.

On the side we remark that (2.32) actually provides a meromorphic continuation
of Tre~" 17! to the whole complex plane. ]

2.7 On the Asymptotics of Distributions

As explained in Sect.2.2.2, the Laplace transform technique applied to the spectral
action computations restricts the admissible cut-off function. In this section we briefly
sketch an alternative approach, via the asymptotics of distributions following [17]
(see also [15, 16] and [22, Sect.7.4]), which works for f € S(R).

Let K, := {f € C®(R", C) |10% f(x)| <ce(1 + [lx[)™ 1!, ¥multiindex o € N"}
for m € N be equipped with the topology defined by the family of seminorms
| fllx, := sup,cre{max(l, ||x||k_’") [0 f (x) | with || = k}. In particular, f € I,
implies 9% f € KC;—jo)- Now, let IC be the inductive limit of the spaces KC;,, as m tends
to infinity. Remark that all polynomials are in K and the Schwartz space S is dense
in K so that we can consider the dual X'’ as a subset of tempered distributions.

We remark that Proposition2.27 still holds true for f € KC(R") and such that
fRn f(x)dx is defined — see [16, Lemma 2.10]. More importantly, a distribution
T € D'(R) is in K'(R) if and only if (see [17, Theorem 6.7.1])

oo

T (Ax) s % 8™ (x), with w, := (T, x") — the moments of T (2.34)
n=0

in weak sense: Forany f € IC, (T (Ax), f(x)) = ZN b £FO0) + One(AV72)

n=0 p!Ant!
for any N € N*.
Notice that such a moment asymptotic expansion of a distribution harmonises with
the notion of the asymptotic expansion pondered in Sect. 2.5, as for f € K we have

(T(171X), f(x)) tIE) Z;’;O /Z_f‘x f(n)(o) L

Formula (2.34) is directly related to the Cesaro behaviour of distributions (cf. [17,
Sect. 6.3]): Given a distribution 7 € D’(R) and 8 € R \ (—N*) one writes
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T(x) == Ox(x) (O)

if there exist N € N, a primitive Ty of T of order N and a polynomial p of degree at
most N — 1, such that Ty is locally integrable for large x and we have, in the usual
sense, Ty(x) = p(x) + O (xVT#). Similarly, one defines T (x) = 05 (x?) (C)
and, consequently, 7 (x) := 0x(x~*°) (C) means that T'(x) := Os(x™P) (C)
for all B. It turns out that T € K’ if and only if T(x) = 0100(Jx|™*°) (C) (cf.
[17, Theorem 6.7.1]), which shows that the asymptotic behaviour (2.34) at infinity
is in fact equivalent to the Cesaro behaviour.
A good illustration of these notions is the following (see [17, Example 164]).

Example 2.43 A distribution S € S’(R) is said to be distributionally smooth at 0
when §® (0) exists (in the sense of Lojasiewicz) for n € N — a property equivalent
to the fact that its Fourier transform is distributionally small: F(S) € K.

Let now & € C with |&£] = 1 and assume first that £ # 1. Let T € K’ be defined
asT(x) =), ,&"8,(x). Wehave uy =Y, ,E"n* =0 (C). Thus,if S € §'is
distributionally smooth at 0, then ), _, £"S(nx) = 0o(x*°) in D’. But when £ = 1,
the Dirac comb ), _, 8, is not in K. Nevertheless, ), 8, — 1 € K’ and, still in
D2 Y,y Snx) =x7" [ Su)du 4+ 0p(x>), provided that J S() du is defined.

]

To justify this incursion within distributions, let us consider, as in [17, Sect. 6.16],
a (possibly unbounded) selfadjoint operator on 7. Its spectral decomposition
reads: H = ffooo Ad P, (H) and determines the spectral density dg()) = %
understood as a distribution from D’ valued in Z(Dom H, ). Given any
function f € D one gets f(H)=(dyg(}), f(A)), and it is natural to use the
notation dy(A) =: §(A — H). Observe now that, with X := N°2, Dom H", we
have (dg (1), A") = H", which means that actually §(A — H) € K'(R, B(X, 5)).
Hence, Formula (2.34) yields 8(ho — H) ~ Sy i H' 8™ (L) and,
moreover, § (A — H) vanishes to infinite order at 00 in the Cesaro sense, namely
S — H) = 040(IA[7)  (C).
We now take a detour through [16]: Let T € S’ (R) and assume the following
Cesaro asymptotic expansion:
[e¢] o.¢]
~ a )
T ~ Zc,,x +Zb]x (©), (2.35)

n=1 j=1

where «,, € R\ — N constitute a decreasing sequence. Then, by [17, Theorem 32],

o0 o0 o0
. . 1 )
TGA) ~ D e () + ) b PEG.A) T HOT+ Y e,
n=1 j=1 n=0
where w, = (T(x) — > 0 ¢y x§" — Z;’OZI b;Pf[x~/ H(x)], x") are the “gener-

alised moments”. Here, Pf is the Hadamard finite part:

(Pf[h(x)], f):=F p./o h(x) f(x)dx
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and the index + means that the integral defining the duality is restricted to R*. Thus,

(Pf[x~/ H()], f(x)) =F. P-/O;(X)x_j dx
0

00 1 Jj—1 Jj—2
s (u)o 3 (n>0
= f] f)x ’dx+/0 [f(x)—§ L0 xmx i dx — k,{jf;jl)
n=0

n=0

and, consequently, Pf [x~/ H (x)] is homogeneous of degree — j up to a logarithmic

term: Pf[(LA) ™/ H(LA)] = A~/ Pf[A~7 HW)] + S22 G) 155 A, Finally,
G=—DT AT g Y.

(T, F@E)s > e Eop. /0 A% £ (L) dA (2.36)
k=1

00 00 )
E J fo) SY7D0) E tn £ (0)

+ bjl] [F p/(; A_!d)\’_ =1 10gt]+ Tln.
j=1 n=0

Formula (2.36) can be utilised to obtain an asymptotic expansion of the spectral
action computation, at least in the commutative case:

Let P be a positive elliptic pdo of order kK > 0 on a d-dimensional compact
manifold M. Then, the Schwartz kernel dp (x, y; 1) of the operator § (. — P) enjoys
the following Cesaro expansion on the diagonal (cf. [16, Formula (4.5)]):

(o]
dp(x,x:3) ~ Y ay(x) (), (2.37)
n=0

— 00

where fM apg(x)du(x) = % WRes P~9/F — gee (1.34). The existence of such an
expansion is based on the following Ansatz: With o denoting the total symbol,

oo

olsG.—P)] ~_ ch 8™ () — o (P)).

n=0

Itis important to stress that the asymptotics (2.37) cannot, in general, be integrated
term by term in A (see [16]). But we are free to integrate over x € M: Given an
f € S(R), we write

S(P, f, A) = / (dp(x,x; 1), fFAA™)dx
M

and plug in Formula (2.36) with (2.37) to obtain an asymptotic expansion of
S(P, f, A) for large A.

In particular, with f(x) = e (thus f € K), one can recover as in [16, Corol-
lary 6.1] the celebrated heat kernel expansion for an elliptic pdo, which we derive
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from the scratch in Corollary A.7 (with a generalisation to pdos with non-scalar
symbols).

Example 2.44 Let (<7, 7, $*) be as in Example 1.2 with dim M = 4. For the
generalised Laplacian P = _@2 we get dg2 (x, x5 A) €O A+ ci(x) (C), which
—00

gives
Tr f(P*/A%) o A4/wdkkf(k)+cz Azfood,\ F)
-0 0 0

+ ) D PO eas AT

n=0

(cf. [16, p. 247]). Such an expansion works for f € S. If we would attempt to use
f = x10.1) — the counting function — we would discover that the expansion is not
valid after the first term. Nevertheless, the full expansion, beyond the first term is
valid in the Cesaro sense; see also [15] for more details. |

It would be highly desirable to implement this approach beyond the commutative
world — see Problem9 in Chap. 5.
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Chapter 3 ®)
Analytic Properties of Spectral Functions | o

Abstract In the previous chapter we have witnessed the interplay between the spec-
tral zeta functions and the associated heat traces (cf. Proposition 2.10). We have also
learned, in Sect. 2.2.2, how to exploit the Laplace transform to compute the spectral
action from a given heat trace. In this chapter we further explore the connections
between the spectral functions unravelling the intimate relationship between the
meromorphic continuation of a zeta function and the asymptotic expansion of the
corresponding heat trace. We utilise the latter to establish the sought asymptotic
expansion of the spectral action at large energies. Finally, we ponder the possibility
of obtaining convergent, rather than only asymptotic, formulae for this action.

Let us first fix some notations. Let f be a meromorphic function on some domain
W C C. For any subset V C W we shall denote by ‘B(f, V) the set of poles of f
contained in V. If f is meromorphic on C we abbreviate P( f) := P(f, C).

As in the previous chapter, let H € 77 and let K € (). For further conve-
nience we adopt the following notation:

Zx(s) = T'(s) Exn(s), for R(s) > p.

In accordance with the conventions adopted after Formula (2.2), we keep the simpli-
fied notation Zx p for H non-positive but enjoying |H| € 7P, and set Zy := Zq y.
If ¢,y admits a meromorphic extension to a larger region of the complex plane, then
so does Zk p and we keep denoting the meromorphic extension of Zg g by the same
symbol. Recall also that I" is holomorphic on C\(—N) and has first order poles at
—n € N, with Res,—_,, I"(s) = (—1)"(n)~". Hence, B(Zk.n) = Px.n) U (=N).

© The Author(s) 2018 63
M. Eckstein and B. Iochum, Spectral Action in Noncommutative Geometry,

SpringerBriefs in Mathematical Physics,

https://doi.org/10.1007/978-3-319-94788-4_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94788-4_3&domain=pdf
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3.1 From Heat Traces to Zeta Functions

As illustrated by Examples 2.36 and 2.37, in the realm of pseudodifferential operators
in classical differential geometry we are vested with an asymptotic expansion of the
heat trace Tr Ke~"# for small ¢. It turns out that such an expansion can be utilised to
establish a meromorphic extension of the corresponding zeta function {x p. As an
example, we quote the following result:

Theorem 3.1 ([15, Theorem 1.12.2]) Let K and H be differential operators as in
Example 2.36. Then, the function Zk y admits a meromorphic extension to C with
(possibly removable) simple poles at s = (d — k)/m for k € N and

Res  Zg n(s) = a(K, H).
s=(d—k)/m '

This agreeable interplay, which essentially relies on the Mellin transform as cap-
tured by Proposition 2.10, extends to the setting of abstract operators on a separable
Hilbert space. In this context the asymptotic expansion of Tr Ke~'# would, in gen-
eral, be more involved including terms in log® # and/or proportional to ' — exhibiting
log-periodic oscillations as ¢ tends to 0.

Theorem 3.2 Let H € TP and let K € B(I). Assume that there existd € N, a
sequence (ry)reny C R strictly increasing to +00 and a discrete set X C C without
accumulation points, such that

o9 d
Tr Ke ' 5 3" o), with pu(t) ==Y [Za“(K, H)log" t]t—Z, 3.1)
k=0

z€Xk n=0

where Xy :={z € X| —rrs1 < N@) < —1n}, X = U Xy and the series defining
pr(t) is absolutely convergent for any t > 0 and any k € N.

Then, the function g p admits a meromorphic extension to the whole complex
plane with the poles of order at most d + 1 and P(Zx ) C X.

Moreover, forany z € X andn € {0, 1, ...,d},

Res (s —2)" Zk.u(s) = (=1)"n! a..(K, H). (3.2

Before we prove the theorem, three comments concerning the notation are in order:

Firstly, the set X; = {z;};ez comes endowed with a lexicographical order defined
as: z; < z; iff J(z;) < J(z;) or J(z;) = J(z;) and NR(z;) < R(z;), what makes it
isomorphic — as a poset — to Z. Thus, the symbol } __ x, J (z) should be read as
lim,_, 2;27 ; f(z;). Since the assumed absolute convergence of the series implies
that the limit does not depend on the grouping or permutation of terms, the notation
Y _.cx, is unambiguous.

Secondly, the asymptotic expansion (3.1) should be understood with the respect to
the asymptotic scale (¢*)y, i.e. we should have p; (1) = Ogy(t"*) (recall Definition 2.33
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Sy
~
&

k] - - —TIo

Fig. 3.1 Illustration explaining the notations in Theorem 3.2: The discrete set X C C is partitioned
into a disjoint sum, X = LI X, with the help of the vertical lines )i(z) = —ry

and Remark 2.34). The latter is not an additional assumption and it follows from the
assumed form of py, as we shall see in the course of the proof.

Thirdly, the sequence (1) is needed only to fix an asymptotic scale and can be
adjusted at will, provided the absolute convergence of the resulting p;’s remains
unharmed. In particular, since max{fi(z) |z € X} = p we can choose r( arbitrar-
ily close to —p (see Fig.3.1). What matters in the final result (3.2) are the coeffi-
cients a, ,(K, H) and not how we distribute them into p;’s (cf. Remark 2.34 and
Example 2.37) and the poles of Zk p depend only on X and not on its partition by
X k’S.

Proof For R(s) > p we have ¢k y(s) = ﬁ Jo 57! Tr Ke™" ' dt on the strength
of Proposition 2.10. For such s € C we can split {x gy (s) = Fo(s) + Fi(s), with

1 00
Fo(s) = Fis)/(; fITr Ke " Hde,  Fi(s) = Fis)/l £~ Tr Ke ™' M ds.
Since Tr Ke~"* is smooth on (0, 00) and Tr Ke ™' # = Oy (e "), the function
F\ is actually holomorphic on C since [;° =" e™ ! dt = I'(s) Ay*.

Note first that Proposition 2.3 implies po(t) = Oy(t~P~?) for every § > 0, hence
po(t) = 0p(t"), and we now show that actually pr () = 0y(¢"*) for every k € N.
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To see this let us fix the index k € N and let us pick a #y > 0. As the series over
Xy is absolutely convergent for ¢ > 0, we have, whent < fyandn € {0, ..., d},

Y @ (K HY | <Y Jaga (K H)| 1% <Y Jaga (K, H)| g,

zeXk z€Xk z€Xi

where ¢, 1= —sup,cx, (rx +NR(2)) > 0.

Hence, forany ¢ > Othereexists 7y = [¢/ ) |az,n|]1/ck > O suchthatforeveryt < 1,

17 Y ex, @en(K H) 72| < g, s0 that limyo 7% Y.y @ (K, H) 173 = 0.
Since ry < —N(z) for z € Xy, we can find ¢’ > 0 such that r, + &' < —NR(z) and

| ZzeXk a,,(K,H)t™%| = 0o(1"%*). Hence, as log"t = Oy(t¢) for any & > 0,

[logt|" | ZzeXk a; (K, H)t™*| = 09(t"*) for n € N. Thus indeed, pi(t) = 0g(t'*).
Let us now fix N € N and invoke the asymptotic expansion (3.1) to provide the

meromorphic continuation of Fj to the half-plane R (s) > —ry. For R(s) > p,

N 1
R =Y [ ¢ i dr+ En),
k=0 Y0

where E y (s) := fol "' Ry(t)dtand Ry (1) := Tr Ke™" ¥ — 3"V pi(1). Butsince
Ry (1) = 0p(t"™"), En(s) is actually holomorphic for %i(s) > —ry.On the other hand,
for R(s) > —ry > p, fol t*~! pi (1) dt is absolutely convergent for any k € N (and so
is the series defining py), so that we can swap the integral with the series

1
/ £ o) dt = Z Zam(K H)/ = log" 1 dt
0

zeX; n=0

=y Z‘MK H) &2 (3.3)

zeX; n=0

Now, we claim that, the function s Z"eXk a, (K, H) (s — z)™"~!is holomor-
phic on C\ X forany k € N, n € {0, 1, ..., d}, and hence Formula (3.3) provides a
meromorphic extension of the complex function s fol 5~ pe(¢) dt to the whole
complex plane. Indeed, for any s ¢ X there exists § > 0 such that |s — z| > § for
all z € X, since X; does not have accumulation points. For any such s we have
|3 e, @en (K H) (s =) <8771 Yy Jawa (K, HD| < oo,

Summarising, for any fixed N € N we have

N
oD Z Za”(K H) S8+ En(s) + Fils),

=0 anO

lkH(s) =

which is a meromorphic function for %i(s) > —ry. As N can be taken arbitrarily
large and 1/I" is meromorphic on C, we conclude that ¢k p is also meromorphic
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on C. Moreover, the above reasoning shows that the function s — I"(s)k, g (s) can
only have poles in X of order at most d + 1 and (3.2) follows immediately. ]

As illustrated in Fig. 3.1 (see also, for instance, [19, Fig.2.10]) the set of poles of
a spectral zeta function {kx y does not need, in general, to exhibit any symmetries.
However, the geometric origin of the operators K and H can force a highly regular
shape of the set X.

Example 3.3 In particular, as follows from Example 2.37, if K and H are classi-
cal pseudodifferential operators on a Riemannian manifold M then {kx y admits a
meromorphic extension to the whole complex plane with isolated simple poles
located in (dim M + ordK — N)/ordH C R (cf. [16]).

If K is allowed to be a polyhomogeneous pdo, then the poles of {x r need no
longer be simple, but are still contained in the highly regular discrete subset of the
real line (dim M + ordK — N)/ord H — see [20]. |

Example 3.4 Let us illustrate an application of Theorem 3.2 in the context of the
noncommutative torus (see Appendix B.3):

Proposition 3.5 Let (A, 7, D) be the spectral triple of the noncommutative
d-torus. Then, for any a € </, the spectral zeta function ¢, p admits a meromorphic
extension to the whole complex plane with a single simple pole located at s = d /2.
Moreover, Res;—q2 {4 p = I(a)ZLd/and/ZF(d/Z)_' and ¢, p(0) = 0.

Proof In order to apply Theorem 3.2 we will show that the corresponding heat trace
Trae 7’ admits an asymptotic expansion as ¢ | 0. We have

2ld/2)

Trae'?" = Z Z(Uk ey, ae™'”’ Ui ®e;j)

kezd j=0
2Ld/2]
=33 M UL a ) (e, ef) =292 T (UFaU) e IHE
kezd j=0 13/
=22 ¢ (a) Z e = (@) Tre™'7°,

keZd

Invoking Proposition 2.27 with g(x) = e~ 1X1” we obtain
2-ld/2 e g et 7 = 7(a) Z o' KIP 7(a) Zg(tl/zk)
kezd k

= 17(a) eI g 4 Op(1%°) = T(@) 72 + O (1).

xeR4

Since dim KerZ = 219/2! and Tr Pya = 1(a)2'“/?) thanks to (B.7), Formula (2.8)
gives: Trae™' 2" = t(a) [Tre 7" + (=" — 1)219/2)] and hence
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Trae™' P = v(@2 2 (g2 1792 4 (€' = 1) + Oy (1))
]) ()29 742 17412 4 z(a)(e™" — 1) dim Ker 2.
t

Since the above expansion does not contain any log ¢ terms, Theorem 3.2 yields a
meromorphic extension of ¢, p to the whole complex plane with simple poles only.
To locate the poles we read out the non-zero coefficients from Formula (3.1)

aapola, D?) =298 72 1 (a),  a_yo(a, D) =292 C 1(a), for k € N*.

Thanks to Formula (3.2) we have Res;—q/2 {4,p(s) = 2192 712 (d /2y~ ().
Finally, since ag o(a, D?) =0 and Res;_oI"(s) = 1, we conclude from (3.2) that

Ca,D(O) =0. O

Remark that no Diophantine restriction on the matrix ® (see Definition A.10) was
needed in the previous result — in contrast with the more general
Theorem B.2. |

As mentioned on p. 18, the complex poles of the function {x g can appear, for
instance, when fractal geometry is involved. We shall see an explicit example in
Sect.3.3.

Let us now turn to the converse of Theorem 3.2.

3.2 From Zeta Functions to Heat Traces

In the context of pseudodifferential operators in classical Riemannian geometry one
has at one’s disposal the powerful existence theorems about the asymptotic expan-
sion of heat traces. From these one can construct the meromorphic continuations of
the corresponding spectral zeta functions via Theorem 3.2. The original proof for
classical pdos (see Appendix A) heavily relies on the symbolic calculus and integral
kernels of pdos [15]. Unfortunately, these tools are not available in the noncommu-
tative realm. On the other hand, one can hope that given a meromorphic extension of
a spectral zeta function {g g, guaranteed, for instance, by the dimension spectrum
property, one could deduce the existence (and the form) of an asymptotic expansion
of Tr Ke~" . This is indeed possible, however, one needs to control not only the
local structure of ¢k g (s) around the poles, but also its asymptotic behaviour on the
verticals — as |J(s)| — oo.

3.2.1 Finite Number of Poles in Vertical Strips

Letus first handle the case when {x_p has a finite number of poles in vertical strips, i.e.
forany U, » = {z € Cla < N(z) < b} the set B(¢k u, U, p) is finite. This is always
the case when K and H are classical pdos, but it often occurs also beyond the classical
geometry — for instance in the case of noncommutative torus (cf. Appendix B.3) or
the SU,(2) quantum group [8, 18].
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Theorem 3.6 Let H € TP and let K € B(I). Assume that:

(i) The function {g p admits a meromorphic extension to C with a finite number of
poles in vertical strips and of order at most d.
(ii) For any fixed x < rg there exists an e(x) > 0, such that

Zi.n(x +iy) = Oce(ly] 7750, 3.4
Fix a sequence (ry)ren C R, increasing to +o0o with p < —ry, giving a partition of

B(Zk.n) as P2k n) =L Xx with Xy = {z € B2k )| — riy1 < Rz) < —nih
Then, there exists an asymptotic expansion with respect to the scale (t')y,

o0
—tH
TrKe o g ok (1), (3.5)
d
with — pe(t) = Z [Zam(l(, H)log"t ]t~ (3.6)
zeXy n=0
a.(K, H) == S Res (s — 2)" Zg,u (s). (3.7
: s=z

Proof We slice the complex plane with the help of the chosen sequence (r;); as
shown on Fig.3.1. Since ¢g g (and hence Zk p) has a finite number of poles in
vertical strips, for any k € N there exists Y; > 0 such that Zx g is holomorphic for
|3 (s)| = Y. For each k let us denote

DF := rectangle {s € C| — ri1 < R(s) < —rp, =Y < J(s) < Vi),

so that Xy = P(Zk. u, D).
Letus fix the index k. By construction, the function Zx y is regular at the boundary
of any DF. Hence, the residue theorem yields

s - Zru(s)tds = Z Res Zru(s)t™, (3.8)

zeXk

where the contour 8 D* is oriented counter-clockwise. Let us decompose the boundary
of the rectangle using

—re+i Vi —rks1+i Ye
I (k) :=/ Zyxu(s)t~ds, I, (k) :=f Zu(s) ™ ds,

r/(—l' Yk

=TIk +i Yk
/ Zyn(s) 1~ ds,

rk+1:|:i Yk

i1 —i Yi

15 (k) :

so that [, Z g (s) 17 ds = I} (k) — I} (k) — Iy, (k) + I (k).
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We are now concerned with the limit of Eq. (3.8) as Y; — oo.
Firstly, by assumption (ii), we have,

o0

Ri(t) := 5~ Y}ijnoo 1y (k) = %/ Zx. (=11 +iy) 7V dy < oo,

—00
for any k € N and any ¢ > 0. We also have

o0

R =z Jim 17O =5 / Zxn(r i) (T dy = TeKe

on the strength of Corollary 2.12. Moreover, for any k € N, Ry (t) = 0o (¢"*+'): Indeed,
with § denoting the Fourier transform, we have

o0
R(t) 17 = %/ Zru(—rep1 +iy)t " dy
—00

= L3y > Zeu(=rip +iy)] (g;fg) 0. (3.9)

The latter statement is a consequence of the Riemann-Lebesgue Lemma, since
the function y > Zx y(—ry +iy) isin L' (R, dy) for each r; by hypothesis (3.4).
Secondly, hypothesis (3.4) guarantees that for any k € Nand any ¢ > 0

Tk
)< [ 1Zenet ol tax

—Tk+1

-
< sup | Zk. m(x £iY3)] tdx —— 0.
X€[=ris1,—rx] —Tk+1 Y

Finally, let us rewrite the residues more explicitly. By assumption (i) and the fact
that the function /" has only simple poles, the function Zx p admits a Laurent expan-
sion Zg y(s) = Z‘H' (=D"nla, (K, H) (s — z)7" in some open punctured disc

n=—oo

with the center at any z € ‘B(Zk, ), in accordance with Formula (3.7). On the other
hand,

o0
175 = gmelogtpm(s—g)logt _ 4=z Z %(s —2)", forany 5,7€C, t > 0.
n=0

Therefore, Res Zx g(s)t™ =¢7¢ Zj:o a, (K, H)log"t.
§=z2
Hence, for any k € N and any ¢ > 0 Eq. (3.8) yields

Ri—1(t) — R (1) = pi(1). (3.10)

Since Ry (t) = og(t"*+), it follows that pi (1) = ©y(¢"*) for any k € N. The latter
can also be easily deduced from the form of p; given by Formula (3.6).
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Starting with Formula (3.10) for k£ = 0 and iterating it N times we obtain the
announced asymptotic expansion Tr Ke ™' = Zﬁl:o o) + Ry (2). O

Remark 3.7 Suppose that, for a chosen sequence (r)x, we would require only the
Lebesgue integrability of Zx g on the verticals i(z) = —ry in place of the stronger
constraint (3.4) — as we will do in Theorem 3.12. Then, the theorem would still
hold, but the asymptotic expansion (3.5) might get an additional contribution from
the horizontal contour integrals, namely Tr Ke ™" oy Y eco (ox(@) + gk(1)) with

—ry

g = A lim, [Zi.n(x +iy) ™ — Zg gy (x —iy) 2]t "dx,  (3.11)
“Tk+1

which is smooth for ¢t > 0 and Oy (¢'*) as follows from Formula (3.8).

Let us note that even imposing a suitable decay rate of Zx y on N(z) = —ry is
not sufficient to get rid of the g;’s, as the Phragmén-Lindelof interpolation argument
(cf. [24, Sect. 12.7]) firstly requires that Zg p does not grow too fast on any vertical
in the segments 9(z) € [—rxy1, —7%]. This is not a priori guaranteed. |

In order to estimate the behaviour of Zx y on the verticals, it is useful to recall
the vertical decay rates of the I"-function.

Lemma 3.8 With x,y € R we have

Occ(Iy[*~12e7™M12), for x > 1/2,

FEFD =10 @iy, forx <172,

Proof The case x > 1/2 is standard [22, (2.1.19)]. To prove the other part we invoke
the I" reflection formula

I'Q)I'(1—z)=msin"'(nrz), forz e C\Z, (3.12)
along with a lower bound [6, p. 51]
| (x +iy)| > cosh(my) > I'(x), forx>1/2, y #0. (3.13)
Forx <1/2, x ¢ Z/2 and y # 0 we estimate:

IF(x + iyl =7 [sinGr(l —x) —imy)| ™" 71 —x —iy)| ™!
= [sinz(nx) coshz(rry) + cosz(nx) sinh2(7'ry)]1/2 |1 —x— iy)|71
< % [Isin(rx) cos(rx) sinh(rwy)| cosh(rry)]_l/2 cosh(zry)l/zf(l —x)_1
< % ' —x)~" [sin(rx) cosGrx)|~ V2 [sinh(ry)|~1/2.
Since sinh(y) = Ou(e), it follows that I'(x + iy) = Oso(e™™V/?) for x < 1/2,
x ¢ 7Z/2 and the constraint x ¢ Z/2 can be dropped by continuity. O
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An explicit control on the growth rate of the zeta function { g yields the following
important corollary of Theorem 3.6:

Corollary 3.9 Let H € 7, K € B(I) and let {x y meet the assumptions of
Theorem 3.6. Moreover, assume that {x g is of at most polynomial growth on the
verticals, i.e. for any fixed x < r( there exists c(x) < oo, such that

Cr,u(x +iy) = Ono(ly[“™). (3.14)

Then, for any q > 0, there exists an asymptotic expansion of Tr Ke™""" ast | 0 of
the form (3.5).

Proof Observe that, for (s) > p/q, (k. pe(s) =Tr KH 9 = ¢k g(gs). Then,
the assumption of the polynomial growth on the verticals of ¢x g, together with
Lemma 3.8, is sufficient to conclude. O

There is an important lesson for noncommutative geometers coming from the
above result:

Remark 3.10 Let (o7, 7€, 2) be a regular spectral triple of dimension p. If, for a
given T € ¥°(/), the zeta function {7 p has a meromorphic extension to C with a
polynomial growth on the verticals, then the small-¢ asymptotic expansions of both
TrTe 17! and Tr Te'?” exist. Nevertheless, the two expansions can be radically
different — compare Examples 3.11 and 3.15 with Example 3.18. |

We indicated in Sect. 2.1 that the spectral zeta functions are actually complex func-
tions defined by general Dirichlet series. Estimating the growth rate of the meromor-
phic continuation of these is, in general, a formidable task, which sometimes relates
to profound conjectures in number theory [14, p. 10]. For example, it is fairly easy
to show [25, Chap. V] that

O (I¥1°), for 1 < x,
Cx+iy) = O0x(Iy|'9/?), for0<x <1, (3.15)
Ouo(Iy]V*7),  forx < 0.

It implies, in particular, ¢(1/2 +iy) = Ox(ly|'/*). However, the Lindelsf
Hypothesis states that actually ¢(1/2 +iy) = O (|y|®) for any & > 0. The current
best estimate of the critical exponent is 13/84 [4].

Although if H and K are classical pseudodifferential operators the small-¢ asymp-
totic expansion of Tr Ke~" ! is guaranteed by Theorem A.6, it is instructive to apply
Theorem 3.6 in the context of the classical geometry of 2-sphere.

Example 3.11 Let 9 be the standard Dirac operator on S? (see Appendix B.1).
From Formula (B.1) we deduce {2 (s) =4 Y 2 o(n + 1)™**! = 4¢(2s — 1), which
is meromorphic on C with a single simple pole at s = 1. We thus have

—1k _1% B,
Res Zy2(s) =2, and Res Zoo(s) =4 G- ¢(-2k — 1) = —4 5= 325
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As the partitioning sequence we can choose, for instance, rp, = —3/2 + k, k € N.
Formula (3.15) guarantees that the assumption (3.14) is met and Corollary 3.9 yields

22 —_1)k . . . .
Tre~'7 ™ 2t —ay %gﬁg t*. This series is divergent for any t > 0
, [

since (— 1)1 By > 2(2k)!/(2m)* for k € N* [1, (23.1.15)]. In fact, the asymptotic
expansion of the heat trace associated with the square of the standard Dirac operator
on any even dimensional sphere is divergent [12, Proposition 11]. |

3.2.2 Infinite Number of Poles in Vertical Strips

For general noncommutative geometries the spectral zeta functions might have an
infinite number of poles in the vertical strips. This feature is always present when
fractal geometry is in play — see, for instance, [17] — and was detected also on
the standard Podles sphere (cf. Appendix B.4 and [11]). Theorem 3.6 carries over to
this context, but the proof needs to be refined as now each term of the asymptotic
expansion (3.6) can itself be an infinite series, the convergence of which is a subtle
issue.

Theorem 3.12 Let H € I? and let K € B(). Assume that:

(i) The function (g g admits a meromorphic extension to the whole complex plane
with poles of order at most d.

(ii) There exists a sequence (ry)reny C R strictly increasing to +00 with p < —ry,
such that the function Zg g is regular and Lebesgue integrable on the verticals
N(s) = —ry.

(iii) Foranyk e N, t > 0andn € {0, 1, ..., d} the series

Y Res (s —2)" Zxu(o)i (3.16)

zeXk

with X, = {z € B(Zk.u) | — rie1 < N(z) < —ri}, is absolutely convergent.

Then, there exists an asymptotic expansion, with respect to the scale (t"* ),

TrKe ' o Z (k) + g1 (D)), (3.17)
k=0
d
with — pe(t) = Y [ Y aza(K, H)log"t]t™* (3.18)
zeXy n=0
aa(K, H) := S Res (s — 2)" Zx u(s) (3.19)
N §=zZ

and the functions g; can be expressed as
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—7

. . () . . (k) _
gr(t) = % lim [ZK,H(x + ly,gf)) 1T — Zg g (x — ly,ﬁf)) o ]t *dx,
m—>00 J_

(3.20)

via an (always existing) sequence (y\),,cy strictly increasing to +o00 with yék) =0
and such that Zx y is regular on the horizontals x £ iy,gf) with x € [—rp41, —T%].

The introduction of the sequences (y,(f))m, illustrated in Fig. 3.2, is coerced by the
need to sum over the residues of an infinite number of poles in each strip. The final
result does not depend on the particular choice of the (y¥),,’s and, actually, one
could allow for curved lines instead of simple straight horizontals.

Observe also that, similarly as in Theorem 3.2, the only role of the sequence (ry )«
is to fix an asymptotic scale: If we choose another sequence (r})x, for which the
assumptions (ii) and (iii) are met, we will obtain the same asymptotic expansion
(3.17) — recall Remark 2.34.

Proof Foreachk € N, letuschoose asequence (y,,(f))meN with the properties required
by the theorem. Such a sequence can always be found since {x g is meromorphic

3(2)
1 1 A 1 1
4 [ 1 . 1 o 1
! ! Lo O
. ol 1 1 1
o | 1 1 1)- o :
! o b ! yg !
R 1 1 . . 1
® : ° : Ir ....................... .: ygo)
1 1 1 ° . 1
1 e 1 1 1
1 . ! ol 1
' b e (D '
SR ' :
1® 1 4 1 1
1 1 . 1 L,
e I I L R(2)
: :.. ............................. : _y(ll) :
1 1 . 1 ° 1
1 1 1 1
1 1® 1 1
! ! S SSSSOSROR 0
. 1 d 1 . 1
e 1 ° . 1
: ) :. ................ JRR0 EEERRREE Jl_y(zl) :
(] 1 ° 1 1 1
e S TUURTURUPY IR N
I I C et
1 e 1 . 1 1
1 1 1 1
- —n - P —n

Fig. 3.2 An illustration of the meromorphic structure of a function Zg p together with notations
adopted in the proof of Theorem 3.12
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(and so is Zg_ g) and hence the sets X; do not have accumulation points.
For each k let us denote D{; = @ and
(k)

DY = rectangle {s € C| — req1 < N(s) < —rk. —y X < 3(s) < v}, form e N*.

Now, let us fix the indices k and m.
By construction of the sequences (), and (y,(nk))m, the function Zx p is regular
at the boundary of any DX . Hence, the residue theorem yields

aDk, 2€PB(Zk,u, DX) a

where the contour d DY, is oriented counter-clockwise. In the above sum only a finite
number of residues is taken into account, as the region D,’; is bounded.
Let us decompose the boundary of the rectangle using

—rgtivy —risi iy
I\T(k, m) = / Zgu(s)t™ds, I,(k,m):= / Zr u(s)t—ds,
—rk—iym —Tk41—iYm
—rckiyy
Ik, m) = / Ziu(s)t™ ds,
—repi iy

sothat [, Zg u(s)t™ds = I} (k,m) — I (k,m) — Iy, (k, m) + I; (k, m).
We are now concerned with the limit of Eq.(3.21) asm — oo.
Firstly, as in the proof of Theorem 3.6, we deduce from assumption (ii) that

o0
Ri(1) i= 5z lim I (k,m) = 5 | Zk u(—rip +iy) "7 dy = 0p(1"),
27 00 21 oo

1

N BT + _ —tH
R_1(t) := %mh_l}go I;(0,m)=TrKe"".
Secondly, for any k € N and any ¢ > 0, we are allowed to write

dim Y7 Res Zgp(s)1 =) Res Zeu() 1™ = pi(o),

2€P(Zk.u. DX) z€Xy

as the sum over the (possibly infinite) sets X, is absolutely convergent by assumption
(iii). In particular, the limit m — oo of the sum of residues does not depend on the
choice of the sequence (y*),,.
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Finally, for any k € N and any # > 0 Eq. (3.21) yields

Ri—1(1) — Ri(t) — pi (1) = 5= Jim (17 (k, m) — 17 (k, m)]. (3.22)

Since the LHS of (3.22) is a well-defined function of k € N and ¢ € (0, c0), the
RHS must be so, hence, in particular, the limit m — oo exists and is finite for any
fixed value of k and ¢. We denote it by g (¢) := % lim,,,— oo [I,}L (k,m) — I (k, m)],
which accords with Formula (3.20).

Following the same arguments as in the proof of Theorem 3.2 one can deduce
that pr (1) = 0p(¢"*) for any k € N. Since Ri(¢) = 0g(t"*+"), we get g () = 0g(t'*)
for any k € N.

Starting with Formula (3.22) for £ = 0 and iterating it N times we obtain the
announced asymptotic expansion: Tr Ke ™" = Z,ivzo[,ok O +g@]+Ry@®. O

The assumptions in Theorem 3.12 are actually weaker than the ones adopted
in Theorem 3.6 as we have only imposed Lebesgue integrability on the verticals
N(s) = —ry, rather than demanding concrete decay rates in whole segments as in
Formula (3.4). The price for that are the possible additional terms g in the asymptotic
expansion (3.17) coming from the contour integrals (3.20) and not from the poles
of Zg g. This should not be a surprise in view of Remark 3.7. It is also clear that if
|ZK, H| decays on the verticals, i.e.

lim |Zx p(x +iy®)| =0, forall k €N, (3.23)

m—0o0 mn

then g, = O for every k.
When (3.23) is assumed, the limit m — oo of Formula (3.21) reads

Ri_1(t) — Ry(t) = lim Z Res Zx p(s)t". (3.24)
m-—00 §S=Z
2€P(Zk.u, DY)

It implies that the sum of residues converges for any k£ € N, ¢ > 0 and, moreover,
that the limit m — oo does not depend on the chosen sequence (y¥),,. Hence, one
might be tempted to conclude that the assumption (iii) is actually redundant when
the constraint (3.23) is met. However, Formula (3.24) guarantees the conditional
convergence only and we are not allowed to write the RHS of (3.24) simply as o (¢)
given by (3.16). More precisely, (3.24) says that the series of residues converges if
we group the terms into the sets B(Zx y, DX +l\D,’;) and add them subsequently
with the increasing counting index m. Adopting a more stringent constraint

sup | Zk m(x + iy,(,f))| = Ox(m|~'7%), for some & > 0,
X€[=rgs1,—re]

which looks natural when compared with assumption (ii) of Theorem 3.6, does imply
that Y0 | . cpzp . 0t oty RES Zxu(s) 17" | < oo, foranyk € N, £ > 0 (cf.
A m)s=z

m+1
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Fig. 3.3 An illustration of a possible pathological structure of poles of a meromorphic function.
The sum of residues might turn out finite if the poles are grouped by two, but infinite if they are
added one by one. It is unclear whether such a situation can actually produce itself for a spectral
zeta function of geometrical origin.

[12, Proposition 4]). But the grouping of terms into B(Zx p, D¥ 1 \D¥ ) might turn
out indispensable. Such a situation might produce itself for instance if the meromor-
phic structure of the function Zx y is as on Fig.3.3.

On the other hand, we are not able to cook up a concrete example of a function
Zg u, for which such a pathology occurs. So, it might well be that the geometric
origin of the operators K, H prevents such situations — see Problem 6(b). However,
we will shortly witness, in Sect.3.3.1, a computation of the asymptotic expansion,
in which the (vertical) contour integral does give a finite, non-zero, contribution.

We conclude this section with a friendly noncommutative-geometric example.

Example 3.13 Let @5 be the simplified Dirac operator on the standard Podles sphere
(cf. Appendix B.4) and let us denote u = |w|g(1 — ¢>)~! > 0. Using the explicit
formula for the eigenvalues of ‘@5 ‘ we can easily compute its spectral zeta function.
For 9i(s) > 0 we have:
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Cgs(s) = Z Z Z |W|q«+1/ g Z Q20 + 1)g "1

+,—} LeN+1/2 m=—t eN+1/2
o0
=4ug™H7 Y (n+ D™ =4ugH T (1—gH7
n=0

The latter equality, which is nothing but an elementary summation of a geometric
series, provides the meromorphic extension of §gs 10 the whole complex plane. It
has an infinite number of poles of second order regularly spaced on the imaginary
axis. The following meromorphic structure of the function Z@; emerges:

e a third order pole at s = 0,
e second order poles at s = 2mij/(logq), with j € Z*,
o first order poles at s = —k, with k € N.

The corresponding residues a. , (1, |9qs |), given by Formula (3.7), read

a0,2=10gzzq, ap,1 = l%q(ogu—i-y)

a0 = - (Zlog u+ 1% — Llog? g + 4y logu +2y?),

A2wij/logq.1 = _logzq u—rifloed F(kz,g; J)s for j € Z*,
A27ij/logq,0 = _logzq u~2rii/logq F(li”; J) llogu — w(f)’;’q N1, forjeZr,

where y stands for the Euler’s constant and ¢ := I'’/T" is the digamma function.
To apply Theorem 3.12, we can choose ry = —1/2 + k. We have on the verticals

. —1\rk —rp+iy |2 —1yr —ri\—
S5 (=r +iy)| = 4ug™ )™ [1 = g™+ <dug™)* (1 —¢g7) 7% (3.29)

With the help of Lemma 3.8, we see immediately that assumptions (ii) and (iii) of
Theorem 3.12 are fulfilled.

Finally, we choose a convenient sequence y,, = Zxm+1/2)

logg M€ N, for which

g = —1. It yields, for any x € R,
|§@;(X + lym)l — 4(uq—1)x |1 _qx+iym|—2 — 4(uq—l)X(1 +qX)—2'

Hence, no additional contribution from the contour integral (3.20) arises.
Summa summarum, Theorem 3.12 yields

Treit|@qs| ~

o a7 [210€° (ur) + Fi(log(un)) log(ur) + Fo(log(un))]

+ Z B ', (3.26)
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where Fy and F) are periodic bounded smooth functions on R defined as

2mi 2mijx
Fi(x) =4y —4 ) T(EL j)emi,
JEZ*

Fo(x) i= 4(r* + 6y —log? q) =4 Y I'(— L j) yr(ZL j) i,
JEZ*

see [11, Theorem 4.1].

Similarly as in Example 2.39, it turns out that the expansion (3.26) is actually
exact for all # > 0 — see Example 3.19. We remark that these results hold also for
the full Dirac operator &, on the standard Podles sphere, though the estimation of
the contour integrals is much more tedious — cf. [11, Sect.4]. |

3.3 Convergent Expansions of Heat Traces

As illustrated by Example 3.11 the small-# asymptotic expansion of a heat trace is
typically divergent. We have, however, witnessed the convergence of this expansion
in some particular geometrical context. We shall now connect these specific situations
to the behaviour of the associated zeta functions.

In the context of Theorems 3.6 and 3.12 the remainder of a convergent expansion
(cf. Definition 2.40) can be written explicitly as

—ry—+ioo
Reo(t) = lim L Zxu(s)t™ ds. (3.27)
N—oo ! —ry—ioo
Indeed, Eq. (3.17) yields
N
Trke " — lim kZ_(“)[pka) +a] = lim Ry ().

Hence, we can alternatively deduce the convergence of an asymptotic expansion of
the form (3.17) by inspecting the expression (3.27).

Namely, if there exists T € (0, oo] such that Ry (¢) converges absolutely/uniformly
on (0, T) as k — oo, then > ;- (o (?) + gk (1)) converges absolutely/uniformly on
(0, T) and for ¢ € (0, T) we can write Tr Ke™' ¥ Zk olok (1) + g ()] + R (1).
Moreover, Eq.(3.9) then shows that R, (1) = Oy(*°).

3.3.1 Convergent, Non-exact, Expansions

A particular instance of a convergent, but not exact, expansion of a heat trace produces
itself when the set of poles of the associated zeta function is finite.
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Proposition 3.14 Let H and K meet the assumptions of Theorem 3.6. If the set
PB(Zk. p) is finite, then there exists N € N* such that, for all t > 0,

N
TrKe ™' =" pu(t) + Roo(t).  with Ry # 0. (3.28)
k=0

Note that since $3(/") = —N the hypothesis of Proposition 3.14 requires in par-
ticular that {x g (—k) = 0 for almost all k¥ € N.

Proof Thisisaconsequence of Theorem 3.6. If SB(Zk g ) is finite then, for any choice
of the partitioning sequence (r¢); there exists an N € N* such that X; = ¢ for all
k > N,hence py = Ofork > N.Observethat N # 0, since g g has atleast one pole
ats = p > 0(cf. p. 37), which cannot be compensated by I"(s), since the function I”
has no zeros. Moreover, we cannot have Ro, = 0, since Tr Ke ™' # = Oy, (e~ o))
whereas lec\,:o pr(t) certainly grows faster than #© at infinity. (]

As an illustration let us consider the following example:

Example 3.15 Let 9 be the standard Dirac operator on S° (see Appendix B.1). The
spectral zeta function associated with % reads

() =2 m+ D+ +H =Y 20+ HEP 1Y+ H7™
n=0 n=0 n=0

=2¢(2s —2,3/2) — 1£(25,3/2),

where ¢(s,a) for a ¢ —N is the Hurwitz zeta function (see, e.g. [2, Chap. 12]).
For any a the latter admits a meromorphic extension to C with a single sim-
ple pole at s = 1. Moreover, it can be shown (cf. [12, Theorem 6] and [21])
that when arg(a) =0, ¢(s,a) is of polynomial growth on the verticals. Hence,

. _ /T ] —_JT
Corollary 3.9 can be applied. We have Sligz/sz Z@z (s) =5~ and SIile/sz Z@z (s) T

With¢ (s, a +1) = £(s,a) — a™*, werewrite £ 52 (s) = 20 (25 — 2,1/2) — 1e@s,1/2).
Then, fork € N, sli(isk Zg(s) = (’k—l,)k [2¢(—2k—=2,1/2) — %;(—2k, 1/2)]. But the
properties of the Bernoulli polynomials (cf. page 49) yield, for any £ € N,

_ Byn(1/2) _ 1—27% _
{(_2k7 1/2) - _% — 2k+1 BZ/H—I =0.

Hence, Tre—'%’ % @t*m - gt71/2 — Tre'?’ = gt*/z — gt”/z + Op(t™),
13

what harmonises with Formula (2.23) for f(x) = e and A = /2,

As remarked in Example 2.41, the asymptotic expansion of the heat trace associ-
ated with the square of the standard Dirac operator on any odd dimensional sphere
is convergent for all ¢ > 0, but is not exact. |
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Remark 3.16 Let us note that Proposition 3.14 can be a source of interesting iden-
tities for some special functions defined by general Dirichlet series: One checks (cf.
[13]) that in the context of Example 2.41 R, (t) = % (%)1/2[03(0; e’”z/’) — 1] and
hence Formula (3.28) yields the Jacobi identity (2.31). |

3.3.2 Exact Expansions

Let us now give a sufficient condition for the exactness of the small-# expansion of
a heat trace, in terms of the corresponding zeta function.

Theorem 3.17 Let H and K meet the assumptions of Theorem 3.12 and let the
estimate

| Zk n(—re +iy)| < cre™P! (3.29)
hold for every y € R and k € N with some cy, &y > 0. If

T := [lim sup(g—:)]/”]_l >0, (3.30)

k— 00

then the series Z,fio(pk(t) + gk (1)), with py and g given by (3.18) and (3.20)
respectively, converges to Tr Ke™' H locally uniformly on (0, T).

If, moreover, log k = O (1y) (i.e. 1y grows faster thanlog k), then the convergence
is absolute on (0, T).

Proof We estimate the remainder Ry (¢) as follows

oo

oo
mmnzﬁtﬂ;&ﬂem+wwwwﬂs§/ cre Py =

—0Q

Let0 < T’ < T.Foranys € (0, T'l wehavelimsup,_, ., t ¥ci/ex =t/T <T'/T.
Hence, for sufficiently large k we have t /cy/ex < a, where a € (T'/T, 1) is some
constant independent of 7. Then,

|Re(1)] < &2 < <& — 0, (3.31)

— an T ktoo

80 Ry (¢) tends to O uniformly for # € (0, T']. Since T’ can be any number in (0, T'),
the local uniform convergence is proven.

To check the absolute convergence we need to show that Z,fio lok (1) + gk ()] < 00
for t € (0, T). From the recurrence relation (3.22) we obtain that, for any k € N,
Lok () + gk ()] = |Re—1(1) — Re(0)] < [Rx—1 ()| + [R(#)|. Now, (3.31) implies
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o0 oo [0¢] o0
Doloe) + g <2) IR <2 4 < 2% "an,
k=0 k=0 k=0 k=0

with a € (T'/T, 1) for any T' € (0, T). Therefore, it suffices to show that the last
series is convergent for any a < 1. The latter is a general Dirichlet series in variable

x = —loga with coefficients ay = 1, by = ri fork € N. By Theorem 2.2 its abscissa
of convergence equals lim sup,_, . (logk)r,” !, which is 0 by hypothesis. Thus, the
series is convergent for x > 0,i.e.a < 1. O

The absolute convergence, on top of the exactness, of a heat trace expansion is
necessary to establish an exact large energies expansion of the spectral action (cf.
Theorem 3.24). Given an exact expansion, the absolute convergence is fairly easy to
check — it suffices to verify whether the sequence () of our choice grows faster
than log k. In fact, all of the examples of exact expansions we present in this book
are actually absolutely convergent in the same domain.

Let us also remark that if we have an exact expansion of the heat trace for an
open interval (0, T), then Tr Ke~" ¥ actually provides an analytic continuation of
the series Zk | ok () + gx(2)] to the whole half line (0, co).

In general, Theorem 3.17 provides only a sufficient condition, so Formula (3.30)
does not necessarily give the maximal range of (absolute) convergence. Nevertheless,
the following example shows that the bound (3.29) is often good enough to deduce
the actual upper limit.

Example 3.18 Let & be the standard Dirac operator on S' associated with the trivial
spin structure (see Appendix B.1). As shown in Example 2.42, the associated heat
trace can be computed explicitly for any # > 0 (recall Formula (2.32)) and developed
in a Laurent series around ¢ = 0. The latter converges to Tre~"1?! absolutely for
t € (0, 2m). Let us now re-derive this result using Theorems 3.6 and 3.17:

The operator & has a kernel of dimension 1, so Formula (2.8) gives

Tre 7! = Traq_pyr e''Pl 11, forallt > 0.

We have, {5(s) =2 ZZOZI n~% = 2¢(s), which is meromorphic on C with a single
simple pole at s = 1 and

—1)k _ 1)k
Res Zj(s) =2. Res Zp(s) =2 Ere(-k)y=—25F 22 for keN.
Since By41 = 0 for k € N*, we actually have B(Z5) = {1,0, -1, =3, -5, .. .}.
As the partitioning sequence we can choose, ro = —=3/2,r; = —1/2,r, = 1/2 and
ry = 2(k — 2),fork > 3. Then, Formula (3.15) guarantees that the assumption (3.14)
is met and Corollary 3.9 yields

o0
Tra_pyw e PV~ 271 — 142 Ba 21
(L—Po) 140 ; (2k)!
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in agreement with Formulae (2.32) and (2.33).
To check that this expansion is exact we need to find an explicit bound of the form
(3.29). Recall first the Riemann functional equation [1, Formula (23.2.6)]:

¢(s) =2"7"""sin (B) I (1 —5)¢(1 —s),

which yields Z5(s) = 2" (s)¢(s) = 2m)*¢(1 — s) (sin[w (1 — s)/2])_1;
For s = —r; 4+ iy with k > 3 the denominator of the above expression equals

sin[n(% +k—i3)]=cos[m(k —i%)] = (—1)* cosh (%) )
Thus, for k > 3 and y € R we have

. —2k —i _ v
|25 (=i + iy)| = FLFEH=IL < 2(2m) ¢ 2k + 1) e P2,
Hence, the assumptions of Theorem 3.17 are met with ¢; = 2(27)~%¢(2k + 1) and
er = m/2. Since {(x) — 1 as x — 400, we obtain

T71 — lim sup [272k+2n72k71§(2k + 1)]1/(2/{74) — L

2
k— 00

We have recovered the radius of convergence of the Laurent expansion of coth(z/2).
Thus, as r, = Oy (k), we conclude that this expansion is absolutely convergent. W
Letus now treat an example of an exact expansion valid forz > 0,i.e. withT = oo.

Example 3.19 Let .@qs be the simplified Dirac operator on the standard Podles sphere
(cf. Appendix B.4) and let us denote u = |w| g /(1 — ¢*) > 0. In Example 3.13 we
have derived an asymptotic expansion of Tr ¢~'174] and alluded to its exactness.
In fact, it is obvious that the series in (3.26) is absolutely and locally uniformly
convergent for any ¢ > 0. But there might a priori be a non-trivial contribution from
the contour integral at infinity namely R.

To show that this is not the case we will resort to Theorem 3.17. In Example 3.13
we chose ry = —1/2 + k and established an explicit estimate of §gs on the verticals
(cf. (3.25)). In order to proceed, we need a more precise estimate of the Gamma
function on the verticals than the one derived in Lemma 3.8. The Euler reflection
formula (3.12) together with inequality (3.13) and I'(x) > (27)"/? x*~1/2¢=* for
x > 0 ([26, p. 253]) gives

. _ 1 T T —1
[ (=re +iy) = T 1/2=iv)] = 1/27]1 = JeoshGry) Ik +1/2)
< STV (k4 1/2) keI, (3.32)

Thus, the assumptions of Theorem 3.17 are met with

a=2%  ca=4Jme(eug H" 21— ¢k +1/2)7F
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yielding limy_, o [871’16 (eug™HF172(1 — g2 )2 (k + 1/2)*"]1/(]{71/2) =0 for
0 < g < l.Hence, T = oo and, withry, = O (k), the expansion (3.26) is absolutely
convergent and exact for all # > 0. |

3.4 General Asymptotic Expansions

It turns out that the asymptotic expansion of the heat trace Tr K e~ # associated with

some operators K, H actually guarantees the existence of an asymptotic expansion
for a larger class of spectral functions of the form Tr K f (# H). This fact is especially
pertinent in our quest to unravel a large-energies asymptotic expansion of the spectral
action.

Recall that (cf. (2.17)) a function f on RT belongs to C} iff f is a Laplace
transform of a signed measure ¢ on Rt and fooo s"d|p|(s) < oo forallm > —p.

Theorem 3.20 Let H € TP, K € B(H) and assume that

o
TrKe'H ~ Z ok (t), w.rt. an asymptotic scale (t")y, (3.33)
o £
with pi € LiS.((0, 00)), pi(t) = 0p(t™) and pi(1) = 0no(t"41), for any k € N.
Then, for any f = L[¢] € Cy withr > p, the operator K f (t H) is trace-class for
any t > 0 and there exists an asymptotic expansion:

TrKf(tH) ’IO lefk(l), with Wk(l)=/Pk(Sf)dfﬁ(S):Oo(f”)- (3.34)
- 0

Let us stress that the choice of the asymptotic scale (¢'*); is merely a matter of
convention — recall Remark 2.34. In particular, since Proposition 2.3 implies that
po(t) = Op(t~P~%) forall ¢ > 0, we can shift ry to lie arbitrarily close to — p. Hence,
given any r > p, we actually haver > —rg > p > —ry.

Proof Recall first that, on the strength of Lemma 2.7 the operator f (¢ H) is trace-
class for any # > 0, and hence K f (¢ H) is so for any K € ZB().

As pointed out in Sect.2.2.2 we have Kf (tH) = fooo Ke™s""d¢(s) in the strong
operator sense. The trace being normal, Tr Kf (t H) = fooo Tr Ke"H d¢ (s) for any
t > 0. By assumption we have, for any N e N, Tr Ke™' 7 = Z/]Lo o) + Ry (@)
and hence, Tr Kf (tH) = Y oo ¥ (t) + [3° Rn(st) dg(s).

Let us first show that ¥ () = 0g(t"*) for any k € N. We have

ok (1) = 0p(t"*) & lirr}) T o) =06 Ye>038>0Vr<8, |op@)]<et™
11—

& Ve, t>038>0 Vs <8t L, |pp(st)| <et’*s'®.
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On the other hand, p; () = 0xo(t"*+) = 38 >0, Vi > &, |pe(t)] < 1.
Since py is locally bounded on R, we actually have a local uniform bound: For
any §” with 0 < §” < &/,

Vi 8" ()] < My(8") " with My(8") == sup,cisr gy lox(0].

Hence, forany ¢t > 0, Vs > 8"t71, |pr(st)| < My (8") t"++1 57+,
We now pick any ¢ > 0 and §” = min{8, 8’'}. For any ¢ > 0 we estimate

oo

5
[V (1)1 5/0 ka(st)|d|¢>|(S)+/(3 Lo (st)| d | (s)

=1
oo

8t
<ot / S dIB1(s) + My (8" 17 / S d|gl(s)
0 S

ng=1

o0 o0
< o / S dIBI(s) + Mi(8") 17 / S| (5).
0 0

Now, recall that r > —rg > p > —r; > —ry > ..., as (ry)¢ is strictly increasing.
Hence, by Proposition 2.21, with f € CMj both integrals fooo s d|p|(s) =: 1
and fooo s+ d|@|(s) =: ¢, are finite. Hence, we have ¢ =" |y (2)| < ecy + 7+ "¢y,
Since ¢ can be taken arbitrarily small we conclude that ¥, = ©¢(¢"*) for any k € N.

It remains to show that fooo Ry (st)dp(s) = 0o(t"V) for any N € N. This fol-
lows by the same arguments since Ry (t) = 0p(¢"V) and also Ry () = Oxo(t"™V*'), as
S0 0k(1) = Oy (1)) = Ono (1), whereas Tr Ke ™" H = Oy (e U1, [

Remark 3.21 Note thatif we do not insist on having a complete asymptotic expansion
of Tr K f (t H), then we can relax the assumption about the heat trace to the following
condition: Tr Ke™"# = Z/jcv=o pr(t) + 0o(t™), for some N € N, which implies, for
a suitable function f, that Tr K f (tH) = Z,f/:o Yy (1) + 0 (™). [ ]

Example 3.22 As an illustration of Theorem 3.20 we consider H = % and K = 1,
with & being the standard Dirac operator on S (see Appendix B.1). We have (cf.
Example 2.23), Tre ™' 7 ™ 207 =23 & CU Busa gk

t

S
Following Example 2.23 let us take f(x) = (ax + b)™" € Cj, with some a, b,
r > 0. Since * € 7 with p = 1 we can apply Theorem 3.20 when r > 1. From
Formula (3.34) we obtain

1)k kp—k—r
Vo) =255 17" g () = =25 B €0 TLEAD 4k for ke N

Hence, we have

Tr f(t ) o 26" [ a/b) it - Z( kB () (g /py k]
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Having established the existence theorem for an asymptotic expansion of
Tr Kf(tH) we can come back to the issue raised at the end of Sect.2.2.2: Why
we cannot allow f to be the Laplace transform of a distribution in S, rather than of
a signed measure?

Remark 3.23 Observe that one could derive an analogue of the operatorial Formula
(2.15) by regarding e~*F/4 as an element of the space of operator valued test func-
tions IC(R, B(X, 7)) (recall Sect.2.7). Along the same line, one could prove the
normality of the trace functional (cf. (2.16)), i.e. Tr f(H/A) = (£7'[ f], Tre*#/4)
for £7[fleK'NnS ', using the convergence of the sequence of partial sums in K
and invoking the weak-* topology of ' NS’,.

On the other hand, the topology of X’ obliges us to control the derivatives of the test
functions, on which £ f1act. But we do not, in general, have such a control on the
remainder of the asymptotic series (3.33) even in the standard case of px (1) = ¢ t ™™
(cf. Remark 2.35). |

Let us now turn to the case of convergent expansions.

Theorem 3.24 Let H € TP and let K € (). Assume that for t € (0, T) with
some T € (0, +00],

o0 o0
TrKe ' = Zpk(t) + Reo(t) and Z loe(1)| < o0, (3.35)
k=0 k=0

with pr € Lio.((0, T)) and p(t) = 0o(t') for any k € N, and Roo(t) = Op(t*°).
Then, forany f € C.withr > —ry > p, the series Y . Y (1), with the functions
Y (t) = fooo k(s 1) de (s) is absolutely convergent on the interval (0, T /N y) with

Ny := inf{N | supp £7'f1 C (0, N)}. Moreover; fort € (0, T/Ny),

TrKfGH) = Y r(t) + R, where RL(1) := /OO Roo(s 1) dgp(s) = Op(t%°).
k=0 0

Proof On the strength of Formula (2.16) and by assumption (3.35) we have

00 Ny o0 Ny
TeKf(tH) =/ Tr Ke™'H dg(s) =/ Zpk(sz)dq>(s)+/ Roo(s7) d (s).
0 0 k=0 0

Observe first that the sequence of partial sums is uniformly bounded, i.e. for N € N
and t € (0, T/Ny), | Spy pr(st)| < Yo lpk(st)| < oc. Via the Lebesgue dom-
inated convergence theorem, we obtain Tr K f (tH) = Z/fio Y (t) + Rofo (t) and it
remains to show that Rcf; (1) = Oy(t™). To this end, let us note that

Vk>0 Roo(t)=0p(t") & Vk>0 IM,6>0Vt<8, |Roo(t) <Mk
& Yk, t>03IM5>0Vs <8, |Roolst)] < MiKsK.
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Then, for any ¢ € (0, Ny) and any k > 0, we have

f 00 st1 00
VMW:M M@WWQSA mwmmmm+£lmwmwmm
-

0.¢] e.¢]
< wik [Tkl + [ IRt i),
.

As f € C., we have [ s*d|¢|(s) < oo for k > 0 and [;°, |Rec(st)| d|§|(s) =0
fort < SN;I. Since k can be arbitrarily large we conclude that Rgo (1) = Op(t*™). 0

In general, the compactness of the support of £7![ ] is necessary even if the
expansion of the heat trace at hand is actually convergent for all # > 0. This is
because if one would like to allow for f € CP, rather than f € Ct, one would need
to control the behaviour of R (¢) as t — o0o. On the other hand, such a control is
(trivially) provided if the expansion of Tr Ke ="' is exact for all > 0.

Corollary 3.25 Let K and H meet the assumptions of Theorem 3.24 with T = 400
and Ro, = 0. Then, for any f € Cy withr > —ro > p, and any t > 0 we have

TeKf(H) =Y yu(0), with Y(0) 2=/0 Pr(s 1) dg(s).

k=0

Proof Obviously, Rgo = 0. Hence, it suffices to observe that in the first part of the
proof of Theorem 3.24 we can safely allow for Ny = +o0, if the series ), pi(s?)
is absolutely convergent for any s, ¢ > 0. (I

On the other hand, we insist that the full force of condition (2.17) is necessary
for Theorem 3.24 to hold even if the convergent expansion of Tr Ke~'# has a finite
number of terms (recall Sect.3.3.1). Let us illustrate this fact:

Example 3.26 In Example 2.41 we had for any ¢ > 0, Tr et = (%)1/2 + Roo(2).

Let us try to apply Theorem 3.24 with f (x) = e~v*, which is a completely monotone
function, but f ¢ Cy (recall Example 2.25). Since

o0
Yo(t) = ﬁ; (12 / sT12 57321/ g — 94112,
0

we would get Tr f(12%*) =Tre 1?7 =211 Rgo(t). A comparison with
Example 2.42 gives Rofo(t) =1/6 + Oy(t?). Hence, whereas Ro (1) = Op(t*),
but R (1) # Op(t™). [ ]

An important question is whether one can tailor a cut-off function such that the
asymptotic expansion of Tr Ke ™ # turns to a convergent one of Tr K f (¢ H). When
TrKe ' # " > reoaxt®, as happens always in the context of classical differential

t

operators (cf. Example 2.42), one could seek an f with null Taylor expansion at 0
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— as recognised in [7]. Unfortunately, the natural candidate — a bump function (cf.
[7, Fig. 1]) is not a Laplace transform as explained in Remark 2.20. It is also clear
from Proposition 2.16 that f cannot be completely monotone. Nevertheless, one can
find functions with a null Taylor expansion at 0, which are in C}; for some p.

Example 3.27 Let ¢(s) = e sin(s'/4) for s > 0. This non-positive function has

all moments vanishing, i.e. fooo s"¢d(s)ds =0, Vn € N (cf. [23, Example 3.15]).
Moreover, its absolute moments are finite:

/ S”|¢>|(s)ds5/ ne=" ds = 4(4n + 3)\.
0 0

The Laplace transform of f = £[¢] can be obtained with the help of Mathematica
yielding an analytic, though rather uninviting, formula

r'5/4) 1 3. 1 JT 3 5. 1 '(=5/4) 5 . 1
f) = =5 F(Z’Z’_m)_WOB(Zva_ﬁh) 6T 0F2<1 25 m)v

with the hypergeometric function o F>(a, b; z) == Y ;o #% i—k,
One can check that f(x) > 0 for x > 0 and, since lim,_.o+ o F2(b1, b2; x) = 1, we
get f(x) = Ou(x~*). With the help of Proposition 2.21, one obtains a cut-off
function f” for some n € N*, which has null Taylor expansion at 0. ]
Let us emphasise that the cut-off function exemplified above would do the trick
of turning an asymptotic expansion to a convergent one only if the expansion of
Tr Ke™' # has a very specific form: Y ;- ayt*.In general, the expansion (3.34) would
involve the full shape of the cut-off function, via the integrals fooo sk log"(s)do (s).

3.5 Asymptotic Expansion of the Spectral Action

Equipped with the general results presented in the preceding section we are at a posi-
tion to formulate sufficient conditions for the existence of a large-energies asymptotic
expansion of the spectral action S(Z, f, A) associated with a given spectral triple.
Recall first that the cut-off function f € Cy is smooth at 0 (Proposition 2.16).
In particular, f(0) < oo and if the operator Tf (¢ |D|) is trace-class then so is
Tf(t12]). Moreover, from the spectral decomposition 2 = 0 Py + ZM £0 M P, we
get fU2D) = fOPy+ Y, .o f(raDPus FUDD = F(Po+ 3, o f(3al) Pa

and

TrTf(12|/A) =Te Tf(ID]|/A) + (f(0) — fF(A™)) Tr TP (3.36)
=TrTf(|D|/A) 4+ Ox(A™").

Remark 3.28 From this formula we see that the kernel of 2 becomes irrelevant in
the physical action at large energies. It also explains why we have not defined the
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spectral action (1.43) as Tr Tf(|D| /A) despite the simpliﬁ_cation of working with
an invertible operator. But the kernel pops up if we choose D instead of D

TrTf(|2|/A) —TrTf(D/A) = fO)Tr T Py = Os(AY). [ |

Theorem 3.29 Let (o7, 7, D) be a p-dimensional spectral triple and T € B(FC).
Assume that there exists d € N, a sequence (ry)ren C R strictly increasing to 400
and a discrete set X C C without accumulation points, such that

o) d
—t|D] . — n -z
TrTe o gpk(t), with pi(t) Z [Zaz,n(T, ID])log" 1]t (3.37)

zeXr n=0

where Xy = {z€ X| —ry1 <N©@) < —ri}, X = U Xy and the series defining
o (t) is absolutely convergent for any t > 0 and any k € N.
Then,

(i) The function {r p admits a meromorphic extension to the whole complex plane
with the poles of order at most d + 1 and B(Zr p) C X.
Moreover, forany z € X andn € {0, 1, ...,d},

d+1 [¢]

a.(T.|D)) =" ) Fe_n_mz)][ T|D|%, (3.38)
{=n

with I'j(z) denoting the j-th coefficient of the Laurent expansion around z of I',
i.e. I'i(z) == Res (s — )0 (s), for j e N— 1.
s=2

(ii) Forany f = £[¢] € C withr > p,
TeTf(DI/4)  ~ D W(A),  w.rt. the scale (A™");, (3.39)
k=0
with
d d
Ye(A) =Y AT (=D)"log" A Y (") @ (T, IDD) fomn, (3.40)

zeXy n=0 =i

Jon = / N s~ log"(s) do (s). (3.41)
0

Let us emphasise that, as in Theorem 3.20, the onliest role of the sequence (ry)
is to fix an asymptotic scale.
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Proof (i) Since the demand (3.37) exactly mimics the assumptions of Theorem 3.2

(ii)

the first of part of (i) follows. Then, Formula (3.38) arises from Eq. (3.2) followed
by some easy combinatorics:

Since ¢r p is meromorphic on C we have the following Laurent expansions in
some punctured neighbourhood around any z € X,

@)= Y b@G—-2" )= -2
t=—d—1 j=—1
Zrp@) =trp@) )= Y @ —2)",
m=—d-2
with ¢, (z) = Zl:fldfl b¢(z) I,—¢(z). Furthermore,

-]
be(z) = Res (s — z)fzflg“r,D(s) = Reos sTCITe T |DIT T = f T |D|=.
§S=z 5=

Now, Formula (3.2) yields, forany z € X,n € {0, 1, ..., d},

n!

azn(T.|DI) = S5 Res (s = 2)" F()r.p(s) = G eonm1 (@)

d+1 [e]

> rea@f T
{=n

—n
= 3 b M) =
l=—d—-1

Let us now turn to assertion (3.39). We have demonstrated in the course of
the proof of Theorem 3.2 that p; defined as in (3.37) satisfies pi () = O (¢'*).
Using the same arguments, one shows that p (1) = 0 (#"*'). Moreover, we have
o € L ((0, 00)) and since |D| € 77, Theorem 3.20 yields, with t = A~

loc

TrTf(ID|/A) P lefk(/l), with 1/fk(A)=/ ok(s/A)do(s).
- =0 0

+00

It remains to compute the explicit form of ;. By assumption, the series defining
every pi(t) are absolutely convergent for any ¢ > 0 so that we can invoke the
Lebesgue dominated convergence theorem to commute the sum over X; with
the integral over d¢ (cf. the proof of Theorem 3.24). In effect, we obtain
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d S
) = 30 A Y (110D [ log” (/4057 dgs)

z2€Xk m=0
d m
=D A (T IDD Y () log" (AT £
z€Xk m=0 j=0
d d
=D AT (=D"log" A Y (") am(T 1D fomne [
zeXy n=0 m=n

Formula (3.38) shows how to compute the noncommutative integrals 7C Wy |D|~*
given the coefficients a, , (T, | D|): For instance, since I'_j(—k) # 0 for k € N, it

implies thatf[d-H]T |IDIF = 0for T € ¥°(«) and k € N. More generally:

Corollary 3.30 Under same hypothesis but with T € W°(/). For —z =k € N,

[d+1]
][ T |Dk =0,

[d]
][ T|D* = (=) dikla_y 4(T, D)), ford >0,

[d—1]
][ TIDI = (- )= (d — 1)1k [agq1 (T, D) +

+ (=D (k") Ty(—k) a_ya(T. D], ford = 1;

whereas, for z € C\(—N), in which case I'_1(z) = 0 and I')(z) = I'(z), we obtain

[d+1] 1\
[T = G e a@oh. fordzo.

Ll (=D d=1!
][ T|D|™* = “ror [ @ azq—1(T,|D))+ IN()da,q(T,|D)], ford=1.

Ifd = 0, then {7 p is regular at —k € —Nwith ¢r p(—k) = (—=D*kla_; o(T, |D|)
and we have 1 = 0 (c¢f. Example 1.28).

The explicit formulae for the noncommutative integrals become rather involved
when d is large, but otherwise can be computed recursively from Formula (3.38).

Remark 3.31 Let (<7, 7, 2) be regular and let the assumptions of Theorem 3.29
be met for any T € ¥°(«/) with a common d and X;’s (i.e. there exist d, X; such
that for any T € ¥°(«), d(T) = d and X (T) = X;). Then, (<, 7, ) has a
dimension spectrum Sd of order at most d + 1 and Sd U (—N) C X.

Let us emphasise that this is a one-way street, even if (<, 7, ) is known to
possess a simple dimension spectrum included in R. As we have seen in the previous
sections, the existence of a small-¢ asymptotic expansion of a heat trace is a stronger
property than the existence of a meromorphic extension of the associated spectral zeta
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function. The assumptions about the growth rate of the ¢p-function on the verticals
are indispensable, as they allow us to control the contour integrals involved in the
Mellin inversion theorem and hence manage the remainder in the asymptotic series.
Its relevance was recognised by Connes and Moscovici in [10, p. 206] in the context
of index theorems. See also Problem 6(a) in Chap. 5. |

Example 3.32 For every commutative spectral triple associated with a Riemannian
compact manifold M the assumptions of Theorem 3.29 are met — cf. Example
2.37. In this context we have d = 1, X = dim M — N and X; = {dim M — k}. This
extends naturally to almost commutative geometries, as they are embedded in the
framework of purely classical pseudodifferential operators [3, 5]. ]

As a straightforward corollary of Theorem 3.29 we obtain the following, slightly
enhanced, known result [9, Theorem 1.145]:

Corollary 3.33 Let (o7, 7, D) be a regular p-dimensional spectral triple with
a dimension spectrum Sd, denote Sd* := {7z € Sd | N(z) > 0} and let T € ¥°().
Moreover, assume that

TrTe 17 = Z ao (T, | D))t~ + ao(T, | D]) + 0o(1), (3.42)

aeSd*

where the, possibly infinite, series over « is absolutely convergent for all t > 0.
Then, the function ¢ p is regular at 0 and for any f € Cy withr > p,

TTFAZ1/0) = Y A% [ 5 ods T IDI 4 FO)erp(0) + 0.

aeSdt
(3.43)
Alternatively, if in place of (3.42) one assumes
TrTe 7" = 3 Z ag/(T, D) 7712 + ay(T, D*) + 0p(1), (3.44)

peSd*

then, the expansion (3.43) holds for [x — f(ﬁ)] e Cywithr > p/2.

Proof The existence of the expansion (3.43) follows from Theorem 3.20 enhanced

by Remark 3.21, whereas the explicit form of the coefficients is provided by Formula

(3.40) from Theorem 3.29. The regularity of ¢r p at O follows from Formula (3.38)

and ao’l(T, |D|) =0.

Furthermore, ag o(T, | D|) =7C[0]T =Reos s~ ¢r.p(s) =¢7.p(0). Finally, we observe
§=

that £(0) = fooo d¢(s) < oo (cf. Proposition 2.16) and moreover, for () > 0
(see the proof of Proposition 2.21),

o 1 * a1 [T 1 * a1
fa,OZ[O sT%dg(s) = W/O x4 /() e rdg(s)dx = W/(; X7 f(x)dx,
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whereas aq,o(T, |D|) = ao(T, |D|) = I'(a)F T |D| 7.
For the alternative statement with hypothesis (3.44), we have with f(x) = g(x?),

TrTF(12]/A) = Tr Tg(2*)A?) = /OoTrTe—W/Aqusg(s)

0

=35 > Alagp(T, D?) f sTPPd(5) + g(0)¢r p2 (0) + 0p(1)
pesd* 0

LY [ @ s+ 0600+ an()
BeSd*

[e.¢]
> A / YT dy + f(0)¢r.0(0) + 0o(1). 0
pesdt 0
Remark 3.34 Let us emphasise that the remainder in (3.43) will, in general, involve
the full shape of the cut-off function f, even if (&, 57, &) has a simple dimension
spectrum. To conclude that 0., (1) depends only on the Taylor expansion of f at 0
one would need a considerably stronger assumption

o0
TrTe V71 ~ T,|D)t™® T,|D (T, DD t7*
rTe o %%( D) ™Y + ag(T, | |>+k2;ak< D17k,
ae =

in place of (3.42). This brings to focus the role of the cut-off function f in the
dynamics of the physical system modelled via the triple (<7, 77, &). See Problem 7
in Chap. 5. ]

Remark 3.35 As one can see, the swap between the alternative hypotheses (3.42) and
(3.44) is not at all innocent. Although they both yield the same Formula (3.43), but
for f in very different classes C. Moreover, the existence of asymptotics of Tr Te ™7 ’
cannot be easily deduced from the asymptotics of Tr Te~1?! via the Laplace trans-
form — see Example 2.25. The converse implication is also not guaranteed, as
observed in Remark 2.20. The existence of both asymptotic expansions is, however,
guaranteed if we know that the meromorphic extension of the corresponding zeta
function ¢r p is of polynomial growth on the verticals — cf. Corollary 3.9. See
Problem 6(e) in Chap. 5. u

Theorem 3.29 allows us to unveil the large-energies asymptotic expansion of
the spectral action S(Z, f, A) with a fixed operator Z. In order to understand the
complete picture of dynamics, we need to fathom out how does the spectral action,
and its asymptotics, behaves under the fluctuations of 2 — recall Sect. 1.6. This will
be our goal in the next chapter.
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Chapter 4 ®
Fluctuations of the Spectral Action oo

Abstract As we have learned in Sect. 1.6 a given spectral triple (&7, 5, &) ought
to be considered as a representative of the entire family of triples (&7, 72, a),
which yield equivalent geometries. It is therefore of utmost importance to understand
how the spectral action is affected by the fluctuations of geometry. We explore the
meromorphic structure of the fluctuated zeta function and, for regular spectral triples
with simple dimension spectra, we provide a few formulae for the noncommutative
integrals. Finally, we sketch the method of operator perturbations.

4.1 Fluctuations of the Spectral {-Function

We have seen in Chap.3 that the spectral zeta function plays a pivotal role in the
asymptotic expansion of the spectral action. In this section we study the relationship
of the spectral functions {p and ¢p, . To this end, we will work with a regular spectral
triple (o7, 7€, 2) and provide an operator expansion of |Dy|™* for s € C.

Let A be an abstract pdo such that A = A* € ¥°(&/). This hypothesis encom-
passes both the standard fluctuations A = A + e JAJ*, with A = A* € .Qij () (cf.
p. 26) and the more general ones considered in [2].

Recall from (1.42) that 9, = 2 + A and define

Dy =9 + Py,

where P, is the projection on Ker Z,. We implicitly exclude the case 5 = 0, which
can occur only if dim .7 < oo (recall p. 38).
Let us remark that 2, € ¥!(/) and, as already noted after Definition 1.18,

Vy := Py — Py is a smoothing pdo. 4.1

This follows from Ker %4 C (., Dom Z§ C (., Dom |D[, the fact that
|D|" Py and P, |D|* are bounded operators for any r, s € R since Im Py is finite
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dimensional, and for any k € N, ¢t € R the expression 85(Py) | D', being a linear
combination of terms of the form |D|” Py |DJ*, is also bounded. Thus, P, is a
smoothing pdo as Py, see Example 1.19 (cf. [7, Lemma4.1] for details).

Using (1.10), define forany T € ¥ (&), n € N*, s € C, and dt := dt, - - - dt,,

Ky(T,s) = (—%)”/ o5y (T) -+ 05, (T) dt, 4.2)
0<t;<--<t,<1

Recall that if T € OP*, then o0,(T) € OP* for any z € C (cf. Proposition 1.13)
and the integrand in (4.2) is in OP*", continuous in the strong topology in integration
variables varying over a compact set. Hence, K, (T, z) € OP*".

We shall need the following technical operators

X:=9 - P =A2+ DA+ A, Xy:=X+V,, 4.3)
Y := log(D?) — log(D?) = log(D? + Xy) — log(D?), 4.4)
(which are well defined since A preserves Dom 2 and Dé is invertible), so that

D>+ Xy =(Z2+A)+ Py =92+ Py = D3.
We store for the sequel that Xy ~ X. In the following we use the multi-index

notation £ = (¢, ...,4,) € N* with |{| = £, + - - - 4+ £, and the following complex
function i
Ba(s; €)= (=5)" f (0P (), teN, (45)
0=t <<t <1 !

which is a polynomial since (, ) = w fors € C, ¢; € N*and () = 1:

1]
hy(s: €) = Z hj(e)s"t, for £ e N", (4.6)

Lemma 4.1 The operator Y has the following expansion for any N € N¥,

N N—n
|€|+n l . v
Y = Z Z = |1l2|++ - XVZ" "(X-- V‘ZI(X))) p208+m od op~N-1 (4.7)
n=1 £y, ... .£,=0

Hence, Y € ¥'(«/) NOP~' ¢ W~ (&). In particular,
Y=XD?-LvX)D*+X’DH+...,

Proof Remark that, although Y depends on Xy we could replace it with X in (4.7)
as X ~ Xy. Thus, to simplify, we will, by an abuse of notation, work directly with
X.

Since forx > 0,log x = [;°[(1+A)~! — (x +1)~']dA, we obtain via the func-
tional calculus
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oo
Y =/ (D> + 1)~ —(D*+ X + 1) '1dr. (4.8)
0

Remark that D? + X + A = D3 + Aisinvertible forany A € [0, 0o). Moreover, with
L =L :=(D*+ 1) € OP? fora given A

L+X) '=[@+xL™HLy'=L7 "1+ xL7'17",

so that for a given N € N*,

N
[T+ XL =Y (=1 [XLO)™'T" + Ry (M),
n=0
Ry =DV XL "1V 1+ xLn) 117 e op~V L

We used the fact that X € OP! and Proposition 1.13 (viii) to deduce first that
L()~"is in OP~2 and then [1 + XL(1)~']~" € OP°, since 1 + XL(»)~' € OP’
has a discrete spectrum (because XL~' = (XD~ ")(D?>L~") D! is compact) and
1+ XL~!is invertible.

With the definition B, (1) :=L(A)"'[XL(A)~']" € OP™"2, n € N*, we get

0 N
Y=/ I(AM)dx, where I(A):= Z(—l)"+1 B,(\) +L(W)'Ry(V).  (4.9)
0

n=1

The idea is now to move all dependence in A in the sum to the right to facilitate an
explicit integration over A.

Let us define B,(T):=L~'[TL~']" for n € N*. Since [D>+ A, T]1 = V(T), a
recurrence gives, for any g; € N,

q1

BIT) = L7ITL™ =3 (= D'VAT) LGY ™2 + 714, (T),
=0

rig (T) = (—DynH =ty n+l(pyL—n-2,

Forn > 2wehave B,(T) = L~!'T B,_; and another recurrence gives, forany g, € N,

qn q1
B,(T) = Z .. (_1)\€\V€n (TVZVH (T---Vvh (T))) (et Fagn (T),
£,=0 £,=0
qn-1 q1

P (T) = Z . Z(_l)qnﬂ@l-’-l L1yt (TVZH (T--- v (T)))L—(qﬁ-lfl-&-n-!-l)
£=0  £,=0

+ L7 T ryyy, (T). (4.10)

The implementation of B, = B,(X) in (4.9) withg; = N —nforanyi =1,...,n,
and sy ,(A) :==ry n—n(X) forn =1,..., N gives
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N
1) =) =" N (—plAvi (x v x v X)) Ly (D
n=1 £ ¢;=0,..., N—n
N
+<@N,10‘) +,%F)N,2(X), with %N,l = L_IRN, %N,Z = Z(—l)n-HSN’n.
n=1

The integration f;° L)~V D g = (1€ 4+ n)~! D217 is valid for n > 1.
Remark that the first term of /(1) is XL(A\)™2 (with N = 1,son = 1, £; = 0) and
we deduce that Y is both in ¥'(.7) and OP~! with the announced expansion (4.7),
if for all N > 1 the integrals of the remainders %y (1) are in OP~V !,

We first claim that [~ Zy,1(A) dA € OP~N~** for some ¢ € (0, 1) and to prove
it we apply the method of Theorem 1.15.

With Z(1) :=[1 + XL~ '(1)]~'€ OP°, we rewrite the norm of | D|*~*Zy | D|V !
as

H(DZL—I)I—E/ZL—E/ZIﬁ (HDlN—l—k e |D|_N+k](D2L_1)>[|D|‘1 X](L_IZ)H.
k=0

Thus || [o° IDP*7° Zn.1 DIV dAl| < ¢ [ 1LY ™| |[(DE + A) 7"l dA, since
the terms in square brackets are in OP” and hence bounded, || DL (1) ~!|| < 1andalso
wehave L~1Z = (Di + 1)~ (we use Xy for the equality). This integral is finite for
any ¢ > 0, since for A € [0, 1], the integrand is smaller than || D7 ||D&2||, while
forA > 1 wehave L7'(A) <A7'and (D + 27! <a7L

As explained in Theorem 1.15, to prove the claim it is sufficient to check that the
previous integral’s estimates remain valid when L~! Z is swapped to 8" (L~ Z). Since
S§(L7'Z) = L7'8(Z) = —L~'Z 8(X)L~" Z, this improves previous estimates in A.

We also claim that fooo Ry .2(\)dr € OP~V=17¢ and proceed essentially in the
same way to prove it. We only need to show that [;° [lsy.,(A) [DIV'"¢ [l dA < oo
foreach nin {1, ..., N}, and we use the induction to that end: For n = 1 we have

lswa () DIV || = (DY L7V GOLV ! DIV |
= (L' DDAV (X) | DIV LNt DN |

- 2 N—e/2\1 — 2 - c/2
<cIL7N D VER LT = L e,

which is integrable on R* for any ¢ > 0. Now we show that

/ lsn.n—1 () IDINF17 || d < oo implies / sy @) DIV da < o0.
0 0

Using the relation (4.10), we only need to prove that L~ 'X ry_; |DI¥+1=¢ and the
operators L'V + (X Vi1 (X ... VO (X)) L@ HFn+D | DIV are integrable.
The first one follows directly from
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ILG)™' X[ = ILG) ™' DX (DT2X)| < D72 X]|
and the recurrence hypothesis. For the second one we take the decomposition

Lyl (ngn—l (X--- v (X)))L—(qn+\1f|+n+1) |D|N+l—8 —
L-1p2 [D72vqn+1 (XVE,H (X--- \vadl (X))) |D|*N*|5|+1 ] %
X |D|N+|Z|—1 L—N—|E|—1 |D|N+l—£ .

The term in the square bracket is in OPY, so that it remains to show the integra-
bility of || |[D|*VH=e L=V = | D2LTH N2 | DI LY /2, which
follows as above.

This completes the proof that Zy := fooo [Zn1(\) + By 2(W)]dh € OP~N-1+e,
To dispose of the ¢ we invoke the handy Lemma 1.14. O

Theorem 4.2 (see [4, 7)) Let (7, 7, D) be a regular spectral triple and let
A = A* e (). Then, forany N € N* and any s € C,

N
|DAI™ = [D|™ + ) K,(Y.$)[D|” mod OP~ D=1, (4.11)

n=I1

where K, (Y, s) € " (<) and we have for eachn € {1,..., N}

K,(Y,s) = Z ha(s; 0) E9(Y)---&E(Y) mod OPV!.  (4.12)

Proof To prove Formula (4.11) we observe that |Dy|™ = eC=6/DY o=C | D=5 with
C := (—s/2)log(D?*). We are going to use the Duhamel formula

1
eFe P =14 / S P g =P (s (4.13)
0

leading to the following Volterra series (expansional formula)

[ee]

eft e P =1+ Z / o) -+ Q) dt, where Q(t) :=e'PQe™'r.
0<t;<--<1,<1

n=1

The latter is valid for any (un)bounded selfadjoint operator P and any selfadjoint
bounded operator Q in the operator norm topology (see [6, Theorem3.5], [18,
Lemma 3.32] for a more general framework).

With P = —3 log(D?) and Q = —5 Y, we obtain Q(t) = —5 0_,(Y), so that

o0
IDal™* = DI + ) Ku(Y,9)|DI™*, (4.14)

n=1
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with each K, (Y, s) in OP™", hence proving (4.11).
Finally, applying the expansion (1.22) within Eq. (4.2), with N — n and the defi-
nition & (Y) = V"(Y) |D|~*", we get that K,,(Y, s) is equal, modulo OP~"~!, to

(5" Z (—sgt:/z) . (—SZ/Z) EHY) - E4(Y) dt,

0sn==tn=l peqo, ., N—n)n

which is nothing else than (4.12). (Il

Remark that £¢(Y), £ € N, are in ¥'(), see [7, Corollary 4.4].
It turns out that, thanks to Formula (4.11), the fluctuated triple (&, 52, D)
inherits many of the properties of the original (<7, 2, 9).

Corollary 4.3 Let (<, 7, D) be regular spectral triple and let A = A* € ¥°(7).
Then, (<, 7€, D) is a regular spectral triple and Wy (/) C W (), where Wp ()
refers to the pseudodifferential calculus defined by Dy.

Proof Recall that (o7, 52, 9,) is indeed a spectral triple — cf. Remark 1.5.
Formula (4.11) for s = —1 yields |Dy| = |D| + B(A), with B(A) € (7). In
particular Dom 84 = Dom § since ¥° (%) C (). Thus OP} = OP’; moreover,
if T € OP), then |D,|~"T € OP) = OP°, 50 |D|"T = (|D|~"|D4|") |Ds| " T isin
OP° as |D|™"|Dx|" € OP’, and T € OP’. By symmetry, OP), = OP" and by exten-
sion Wy (/) C W (&) since we already know that I, € W (/) and so is | Dy
by Theorem4.2, implying that |Z,| = |Da| — Py is also in ¥ (&) because Py is
smoothing (c.f. p. 95). As in Lemma .12, (%, Dom 8k = (M2, Dom &} with
the definition &) :=[%,, ‘1. Since for a € &7, we have a, [Z4,a] € OP° = OPY,
the regularity of the fluctuated triple is proved. (I

Consequently, we define ¥° (/) :={T |Ds|* | T € ¥ (&), z € C}.

Theorem 4.4 Let (o7, 7, D) be p-dimensional regular spectral triple with a
dimension spectrum of order d and let A = A* € W°(7). Then:

(i) The function s — {p, (s) = Tr|Da|™ has a meromorphic continuation to C.
(ii) The triple (o, 7€, Dy) is also p-dimensional and has a dimension spectrum
Sd(, 7, Dy) included in SA( , 7, D) and of order at most d.
(iii) For any z € C, we have |Dp|* € WC(7) and WE () C W ().

(iv) Foranyk € N*
[k] [k]
][ |Dpl™? :][ |D|™P. 4.15)

Proof (i) Firstly, let us rewrite Formula (4.11), for any s € C with R(s) > p, as

N
¢tp, (s) =Tr|Dy|™* =Tr|D|™* + ZTr (Kn(Y,5)|D|™5) +Tr Ry(s). (4.16)

n=1
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(i)

(iii)
(iv)

Note that it is well-defined for any N > 1 because K, (Y, s) |[D|™ € Op~"~"®)
and Ry (s) € OP~N=17%) g0 all of the involved operators are trace-class for

N (s) > p. Furthermore, we can rewrite {p, using the explicit form of the K,,’s
(4.12):

r;DA(s>—;D<s>+Z Z hn(s;mwn(@,a(s)+fN<s>, (4.17)

n=1 (€{0,...,
where fy(s) =Tr Ry(s) and
W, (€) := ENY) - E(Y) = VIY) DI - VU (Y) ID| 7. (4.18)

Since the functions {w, ), p admit meromorphic extensions to C by the dimen-
sion spectrum hypothesis on (&7, 7, ) and fy is actually a holomorphic
function for R(s) > p — N — 1, Formula (4.17) provides a meromorphic con-
tinuation of ¢p, to the half-plane %(s) > p — N — 1. As N can be taken arbi-
trarily large, we obtain a meromorphic extension of {p, to the whole com-
plex plane. Furthermore, since (<7, 7, &) is p-dimensional, ¢p is singular
at s = p and regular for 9i(s) > p, and so is ¢p,, hence (&7, S, D) is also
p-dimensional.

Secondly, let us multiply Formula (4.11) from the leftby T € ¥} (/) and take
the trace as in (4.16). Then, we have for N € N* and for R(s) > p

01,0, (8) = Crp(s) + Z Z h (53 £) Crw,).p(s) + Tr TRy ().
n=1 (€{0,..., N—n}"
- (4.19)

For any multi-index ¢, W, (¢) € OP™"1 ¢ OP°, and hence T W, (¢) € OP°.
Since ¥ (/) C (<), the dimension spectrum hypothesis on (&, 5, Z)
then assures that the functions ¢zw, ), p are meromorphic on C and thus we
establish a meromorphic continuation of ¢r p, forany T € ¥ ().

This fact implies that (&7, 2, Z,) has a dimension spectrum and, moreover,
Sd(, 7, Dy) C Sd(, H, D), with the former being at most of the order of
the latter, since the poles of any {r p, can only come from the ones of {7w, ). p.
Since K, (Y, s) € ¥ ~"(27), Formula (4.11) shows that |D,|* € ¥©(<). Fur-
thermore, Corollary 4.3 implies the announced inclusion.

Using Eq.(4.11) we obtain (|Da|"? — |D|77)|D|™ = K,(Y, p) |D|~**+,
modulo OP~*?_ This operator is in OP~?+!%) a5 K (Y, p) € OP7!,
so it is trace-class in a neighbourhood of s = 0. Hence, for any k € N*, we
have £*1(|D4|=? — |D|7") = 0. O
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4.2 Fluctuations of Noncommutative Integrals

Given A = A* € ¥°(/) we define, forany T € ¥ («/) and k € Z,

[k]
][ T :=Res s" ¢ p, (5).
A s=0 N

We shall now invoke Theorem4.2 to compute ﬁ{k] T in terms of f[k].

Proposition 4.5 Let (of, 7, 9) be a regular spectral triple of finite dimension
with a dimension spectrum of order d. Then, for A = A* e ¥(/), T € %C(,;z%)
and k € Z, k < d we have:

k] 13] d—k el [k+n+j1
][ T:][ T+ ) > Zh (E)][ T W,(€), (4.20)
A

n=1 (€{0,..., d—k—n}"

where h;(£) are defined in (4.6) and W, (£) in (4.18). Moreover, forany T € 11/1(5 (),

[d] [d]
][ T =][ T, 421
A

Proof By exploiting Formula (4.19), we obtain, with N =d — k,
d—k

[k] (k] k—1
][ ][ Z Z I}zeos S hy (850 Lrw, .0 (5)

€]

2 2 ORI 0. 0()

£€{0,....d—k—n}" j=0

1
d—k i [k+n+j]

= Z Zh (z)][ TW,(0).

Equality (4.21) results from R_eOs s Tr T|D|™ =0, for any T € ¥®(&),
n e N* ‘ O

Corollary 4.6 Let T € ¥ (/)N OP~P* for some § < 1. Then, for any k € N¥,
we have f[k] f[k] T

Proof Recall (cf. (4.18)) that W,(¢£) € OP~"~1l_ so that the operators T W, (¢)
appearing in Formula (4.20) are of the order —p — ¢ withe = n + [£| — § > O since
n>1,]¢l>0and § < 1, so TW,(£) are trace-class and f[k] TW, () =0 for any
k € N*, O
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Corollary 4.7 Let (of, 77, D) be a regular spectral triple of finite dimension with
a simple dimension spectrum and let A = A* € W°(7). Then:

(i) Forany T € lllfg(d),

ISZCOS SNOE ISZCOS ¢r.p(s). (4.22)

(ii) ¢p, is regular at 0 if and only if ¢p is so and {p,(0) = ¢p(0) — %fY
(iii) Moreover, with p being the dimension of (<, 7, D),

][|DA|*<P*“ = ][ DI~ — ”T”][XIDI*P*% (423)

][|DA|*(P*2) = ][ D]~ 4 223( —][X|D|”’ + g][X2|D|*2*P). (4.24)

Proof (i) Equation (4.22) is just a rewriting of Formula (4.21) ford = 1.

(i1) The point (i) with 7 = T implies that {p, is regular at O iff ¢p, is so. Moreover,
taking k = 0,d = 1, T = 1 in Formula (4.20) and recalling (4.5), (4.6) we obtain
Res s~1¢p, (s) =Res s71¢p(s) + ho(0) f ¥ = ¢p(0) — 5 £ Y.

(iii) Using respectively Formulae (4.7), (4.11) and (4.12) with N = 1 we get

[Da|™ = |D|™" + K1 (Y,s)|DI™" + Ri(s) = |[D|™" = 5Y [D|™ + Ra(s)
= |D|™ = X |D|™ 7% + Rs(s), (4.25)

forany s € C with R;(s) € OP™"®)=2 Taking s = p — 1 and applying the noncom-
mutative integral yields Eq. (4.23), since R3(p — 1) € OP~7~! is trace-class.
The same manoeuvre with N = 2 gives

D4 =[1 - 5Y +S(V(Y)D2+ Y)] DI mod OP>7"® (4.26)
Y=XD?-L(VX)D™*+X*D™*) mod OP°. 4.27)

Remark that Y = XD 2mod OP~2 and Y2 = X?D~* mod OP—3, Sincef is a trace,
V@)D" =fV(X)|D|”" =0 for any r € R and we obtain the Eq.(4.24) for
s =p—2—see[7, Lemma4.10]. U

Let us stress that the above corollary explicitly uses the assumption of simplicity
of the dimension spectrum of (<7, 7€, 9). If this is not the case, then {p, might fail
to be regular at 0, even though ¢ is so, because the higher order poles of functions
¢r.w,0,p at 0 can render §, 1 nonzero — contrary to the commutative case, see
(1.35). To show the next important result on the fluctuation of zeta functions at zero,
we need the following lemma which closely follows [4, Lemma?2.3].
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Lemma 4.8 Let (o7, 7, D) be a regular spectral triple and A = A* € W0(7).
Then:
(i) For any N € N, there exist B(t) € W (/) such that for t > 0, we have
mod OP~N
2 llog(D* +tXy) —log D* —log(1 + tXyD™?)] = [D* +tX, B(1)], (4.28)
log(D* + Xy) —log D* —log(1 + Xy D™?) = [D?, Bi]1+[X, By, (4.29)

where B = fol B(t)dt and B, := fol t B(t)dt are in U ().
(ii) Moreover,

][Y = ][[log(Dz + Xy) —log D?*] = ][log(]l + Xy D7?). (4.30)

Proof The operator C, := D* + tXy = tD3 + (1 — 1) D? is selfadjoint and positive
for t € [0, 1]. The invertibility of D? and D? implies that C; + A is invertible for
any A > 0 and, consequently, that 1 + Xy D=2 = C, D72 is also invertible when
t €0, 1].

Since Xy D=2 € OP~! is compact by Proposition 1.13(ix), it has a purely discrete
spectrum so that the operator log(1 + Xy D~2) = log(D3 D~2) exists.

(i) Formula (4.8) guarantees that the operator

o0
log(D* +1Xy) —logD?> = | [(D*+ 1) ' —(D*+1Xy +1)"dxr
g 0

always exists, so we obtain & (log(D* 4+ tXy)) = [~ ﬁ Xv ﬁ d. Moreover,

/ Xy (Ci+M2dh=XyC ' =Xy D?( L +tXy D)}
0
= Zlog(1 +tXyD7?).

Thus, with L(#) being the LHS of Eq. (4.28), we obtain
o0
L) = / [+ 07" Xy (€ + 1)
0

We now invoke Lemma 1.16 with D ~ C;, —A ¢ spec C, and n = 1 to deduce, with
vi(T):=[C, T],
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N
[(Cr 407" Xy (Cr+ 1) = ) (=D VX (C + 1) 2]+ Ry(r, 1)
k=1
with Ry, 1) := (DN (C, + 07 VINXy1(C + 1)~ N2 @.31)

Because (C; + A)~%**D, being in the centraliser of V,, can be put inside the paren-
thesis of V; in the first equality, we get

N
[(C+MT Xy (€ + 0=V DV X+ 1) ]+ Ry (1 1)
k=1

with Ry (1, t) € OP~"~*, The term in the bracket gives, after an integration over A,
B(r):= Y1, % VEI(Xy) €% Since €' is in W () (see Example 1.21),
so is B(?).

Thus, L(t) = V,[B()] + Ry (t) where Ry (t) := fooo Ry, t)dA.

We claim that Ry (1) € OP~". Using the method of Theorem 1.15, we show that
Ry (1) CN'? € OP°. With E = VN (X ) C; ' ™N/* € OPY, we get

o0
IRn () CY2| sf IRy (A, 1) CY2 | d
0
o0
5/ I A CO IENIC ™00+ )2 an
0

o0
< 1E| / 1C,0.+ CH IV 0+ € R d.
0

The latter is finite since C; is a positive operator and ||C;(A + C,)~!| < 1.
We now show that §(Ry(k, ) CN'?) = §(Ry(M, 1)) CV* + Ry (r, 1) 8(CN'%)

has a finite integral over A € R*. As for the second term, we have
IRy O, 1) 8(C ) < IRy G ) CY 217286 7))

thus yielding a finite integral. In the first term, we expand the derivation § on
Ry(h, 1) = A" B(A;)V*2 as a finite sum of expressions similar to Ry (X, )
with only one of the A;l = (A 4+ C,)~! replaced by —A;lrS(C,)A;1 or B replaced
by 8(B). Since [ A;'8(CHAT < 1C, 4+ C) ICTSCHI I+ €)', the
convergence of the integral is unspoilt. Thus Ry (A, 1) C,N /? € Dom § and, with the
same arguments, one deduces that Ry (X, t) C,N = N, Dom §".

The proof of (4.28) is complete because Xy ~ X, so one can swap Xy and X.

Finally, Eq. (4.29) follows from the definition of B; and B;.

(ii) The tracial property of f (Theorem 1.27) applied to (4.29) gives (4.30). O



106 4  Fluctuations of the Spectral Action

Theorem 4.9 ([4]) Let (o7, 7, D) be a p-dimensional regular spectral triple with
a simple dimension spectrum, {p regular at zero and let A = A* € W0(a7). Then,

P
£, (0) = p(0) = Y G ][ (AD™H (4.32)
k=1
Proof Thanks to Corollary4.7 and (4.30), one has

0, (0) — ¢p(0) = —3 ][ Y=-1 ][ log(1 + Xy D). (4.33)

We now write log(1 + Xy D~2) = Y3, (_'k)kﬂ (Xy D™H* + Ry, where the remain-
der is Ry = (=D)Y (XyD )V [J(1 =)V @ +1Xy D2~ NV dr. We have
already seen in the proof of Lemma4.8 that 11 4 Xy D=2 € OP? is invertible. Thus,
the integral makes sense and since Xy D~> € OP~! we have Ry € OP~"~!. In par-

ticular, Ry is trace-class for N = p and

P
][log(ll +XyD?) = Z (—lk)"*1 ][(XVD_Z)]‘,

k=1

where, as usual, we can safely replace Xy by X.

With a = D7'A and b =AD™', we have X = D(a+b +ab)D and also
XD = D(a+b+ab)D™',sothat, { being a trace, f (X D)% = f(a + b + ab)*
and we have to compare

N
Yo e ][(a + b+ ab)*
k=1

with

=

N k N k

_ 1)kt
g ( kl) ][ak: E ( lk) f(ak‘i‘bk).
k=

1 k=1

Let us, more generally, introduce the following two formal series in x € R within
. — (=D*! 2,11k
the free algebra g]m:ﬁrated byaandb: S(x) = > -, +— lxa + xb + x“ab]", and
T(x) =Y o, S [(xa)* + (xb)"].
We claim that they are equal modulo commutators (denoted by =) so that, using
the tracial property of £, the proof of (4.32) would be complete.

Since S(0) = T(0), it is sufficient to compare the derivatives of S and 7. Remark
first that for the derivative of a term M (x)", we have j—xM(x)" = nM@x)""'M' (x)

since one can commute M’ (x) to the right in M (x)*M’(x)M (x)"~*~!. Thus,
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o0
S (x) = Z(—l)k+1 (xa + xb + xzﬁtb)kf1 (a+ b+ 2xab)
k=1

=({+4+xa+xb+ xzab)_l(a + b+ 2xab) = [(1 +xa)(1 + xb)]_l(a + b+ 2xab)
=(1 —l—xb)_l(l —|—xa)_1[(l + xa)b+a(l + xb)]
= (1 +xb) o+ (1 +x0)7 (1 +xa)"'a(l + xb)
= (1 +xb) b+ (1 +xa) la=T'x). O

4.3 Consequences for the Spectral Action

Theorem4.4 assures that given a regular p-dimensional spectral triple (o7, S, )
with a dimension spectrum, the triple (&7, 7, &,) will also be regular, p-dimensio-
nal and possessing a dimension spectrum, for any A = A* € ¥°(.o7). However, to
deduce an expansion of Tr f(|Za|/A) we would need to control the behaviour
of (the maximal meromorphic extension of) ¢p, on the verticals, as explained in
detail in Sect. 3.2. This, unfortunately, does not come for free, even if we can control
the behaviour of ¢y p for every T € w0(a7). Indeed, observe that Formula (4.17)
relating {p, to ¢r p’s involves a holomorphic remainder Ry (s), which is harmless
when it comes to the poles and residues, but might contribute to the behaviour on the
verticals. Also, there is no good reason to believe that a heat trace expansion of the
form (3.37) for a given D will imply a similar one for Dy, although this is indeed
the case for commutative spectral triples and also for the noncommutative torus (cf.
Lemma B.5). In full generality of noncommutative geometry this is a stumbling block
and we list it as Problem 6(e) in Chap. 5.

After revealing the blot on the landscape, let us enjoy the bright perspective. Given
the heat trace asymptotic expansion of & and &, we can:

1. Deduce the large-A asymptotic expansion of S(Z, f, A) and S(Zy, f, A) with
the help of Theorem 3.29.

2. Express the coefficients of the expansion of S(Za, f, A) as noncommutative
integrals of operators polynomial in A, via Formulae (4.3), (4.7), (4.12), (4.22).

Let us illustrate it in the case of (&7, 7, &) with a simple dimension spectrum:

Theorem 4.10 Let (o7, 7€, D) be a regular p-dimensional spectral triple with a
simple dimension spectrum and let A = A* € W°(o7). Assume, moreover, that

Tre P = 3" au(IDal) 1™ + ao(| Dal) + 0o(1), (4.34)

aeSd*

where the, possibly infinite, series over « is absolutely convergent for all t > 0.
Then, the function {p, is regular at 0 and, for any f € Cy withr > p,
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00 Lp—NR(e)]
Tr f(1Dul/A) = A"‘/ X fdx Y ][P,,(oz, D, D', A)|DI™®
0 n=0

aeSdt

P
+ 100+ 305 @l D ] +on). @39

k=1
where P, € W~" (/) are polynomials in all variables and of degree n in A:
Po=1, Pi=—aAD™', Py=%+2)AD ) +<AD2, ... (436)

Proof Firstly, we apply Corollary 3.33 to obtain

Tr f(1Zal/A) = Z A"‘fo X fodx ]i IDal™ + f(0)¢p, (0) + Ox(1).

aeSd*

Secondly, we invoke Corollary 4.7(i) to deduce that J% |Dp| ™% = f |Da|™%. Thirdly,
we use Formulae (4.7), (4.11) and (4.12) with N = | p — N(«)], as in the proof of
Egs. (4.26) and (4.27) to expand |D4|™ = ", P, |D|™®. Observe that it is suffi-
cient to stop at N = | p — R(x)], because Py, |D|™* € OP~V-H@-1 - gp-r—¢
for some & > 0. Hence, Py |D|™® is trace-class and f Py |D|™% = 0.

Now, we utilise Formulae (4.26), (4.27) and recall that, since f is a trace,
FV(T)|D|™" =0 for any T € wC(a/) and any r € R. Denoting T = T’, when
fT D™ = f(T' + R)|D|™ for R € OP™3, we have

DA™ = [1— 2(XD? — 1X’D™" + (XD )] D[,
XD72=(AD+ DA+ A»D 2 =2AD"' + A’D™2, (XD ?)? = Xx*D*,
X’D™* =2ADAD? + AD’AD™* 4+ A’D™? = 2(AD™")? +2A’D 2,

since ADAD 3 = (AD™")? + AD'[D?, AlD73 = (AD™")? mod OP3 and sim-
ilarly, AD’AD™* = A’D~2 + A[D?, A]D™* = A’D™? mod OP~>,

This gives Formulae (4.36) and makes it clear that every A is accompanied by
D~!,sothat P, € ¥ (/) is a polynomial in A of order n. It is also straightforward
how to compute the higher P,’s.

Finally, we apply Theorem4.9 to express ¢{p, (0) using Eq. (4.32). ([

Beyond the case of a triple (&7, ¢, &) with a simple dimension spectrum we can
still express the coefficients of the asymptotic expansion of S(f, Z,, A) in terms of
the polynomials P,, provided we have at hand the heat trace expansion (3.37) for
both 9 and 9. Obviously, the analogue of Formula (4.35) would be considerably
more involved, but the coefficients can be computed algorithmically from Formulae
(4.3), (4.7), (4.12) and (4.20) — along the same lines as in Theorem4.10.

It is important to stress that if (o7, 77, Z) does not have a simple dimension spec-
trum then the noncommutative integral is not invariant under fluctuations. Indeed,
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Formula (4.20) implies that f, 7 — { T would, in general, involve the higher order

residues. On the other hand, the highest residue f 1] remains insensible to fluctuations
— recall Formula (4.21). More generally, we have:

Proposition 4.11 Let (o7, 7, D) be a regular p-dimensional spectral triple with
a dimension spectrum of order d and let A = A* € W0(<7). Assume that

d
Tre” =" [> a..(ID)log" t 175+ Ot ), (4.37)
ze€Xy n=0
d
Tre 1P =% [ Y bea(IDallog" 1] + 0o+,
zeXo n=0

where the, possibly infinite, series over the set Xy C C are absolutely convergent
Sforallt > 0and min{R(z) |z € Xo} > p — 1. Then, for any f € Cy withr > p, we
have

Tr f(IDal/A) = Tr f(ID|/A) = Ox(AP7"). (4.38)

Note that X here coincides with the one in Theorem 3.29, if we chooser; = —p — 1.

Proof On the strength of Theorem 3.29, with Formulae (3.40) and (3.38), it is suffi-
cient to check that ) [D| == = {9 |D| ™ forall z € Xp and k € {0, 1,...,d}.
But with R(z) > p — 1, we have, by Corollary4.6 and Formula (4.11) respec-
tvely, 171Dy = f 1 Dp1= = Y DI + T R(z) = £ DI, since R(z),
being in OP~1®@-1 s trace-class. O

In the commutative case, as well as on the noncommutative torus, Formulae (4.37)
are simply Tre™'" = a, o(T)t™" + Oy(t~P*1), with T € {|D|, |D4|}. In this case,
Eq. (4.38) is interpreted as the invariance of the dominant term under the fluctuations.
However, we can see that if the dimension spectrum of a given spectral triple is non-
simple and/or has poles in the vertical strip p > R(z) > p — 1, then not only the
dominant term is immune to the fluctuations.

Definition 4.12 Let (o7, 7, &) be a regular p-dimensional spectral triple with a
simple real dimension spectrum. The fadpole Tadp, (o) of order « is the linear term
in A in the asymptotics (4.35).

We have just shown that Tadp, (&) = (—a f;~ x*7' f(x)dx) f AD™"ifa € Sd* and
Tadp, (0) = —f(O)fAD‘l — see also [10, Proposition 3.5].

This notion of a tadpole is borrowed from quantum field theory where AD~! is
a one-loop graph with a fermionic internal line and only one external bosonic line
A, thus looking like a tadpole. There are no tadpoles in commutative geometries on
manifolds, also the ones with boundaries and torsion, or on noncommutative tori [9,
10, 13]. The vanishing of tadpoles means that a given geometry (<7, 77, &) is a
critical point for the spectral action [5, p. 210]. On the other hand, the existence of
tadpoles means a priori the instability of the quantum vacuum — see [8, 11].
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4.4 Operator Perturbations

The spectral action (1.43) is only a part of the large programme on the differenti-
ation of operators and on perturbation theory. There exist several strongly related
approaches and we only briefly sketch a few of them.

The first approach is the Lifshits formula given, for two selfadjoint, possibly
unbounded, operators Hy and V acting on 47, by

Telf(Ho+ V) — f(Ho)l = / ) F10) dh, 439)

where £ is the so-called Krein shift function (see for instance [3]). If the perturbation
V is a trace-class operator and R(A) is the resolvent of A, the holomorphic function
G(z):= det (1 + V R(Hy)(2)) satisfies

G™'(2)G'(z) = Tr[R(Ho)(z) — R(Hy + V)(2)]

and we define £(A) :=7~'lim,_ arg G(A + ig) for almost all A. Then, we get
logG(z) = [T EM) (L —2)7"dh whenJ(2) #0, [* |EA)|dA <TrV, and
Tr(V) = f_oooo &(A) dX\. Moreover, (4.39) holds true at least for functions f which
are smooth and compactly supported. Remark that the function £ is a spectral shift,
because, when X is an isolated eigenvalue of both Hy + V and H, with respective
multiplicities m and my, then £(A 4+ 0) — £(A — 0) = my — m and & has a constant
integer value in any interval located within the resolvent sets of both Hy + V and Hj.

Formula (4.39) is commonly employed in the scattering theory (see [14]) and
has also been adapted to the noncommutative framework for the computation of the
spectral action beyond the weak-field approximation, as in [12].

Another approach is the following: Assume that the unbounded operator Hj is
selfadjoint and V is also selfadjoint, but bounded. Let {A;}2; be the eigenvalues of
Hy counted here with their multiplicities and let {1/};2, be the corresponding nor-
malised eigenvectors. If V. ; := (V,., ), we have the following Taylor asymptotic
expansion for f € CN*!I(R):

Tr f(Ho+ V) = (4.40)

N—1
Tr f(HO) + ) % Y Vi Vi Vs GOV 2i) + R v
n=1 [TR

~~~~~ In

where ( f ")Iml is the divided difference of order m of f" and, of course, the difficulty
is to control the remainder Ry, 1 n-.

Defining Zp, ;v = f(Ho+ V) — Yoy L L) f(Hy+1V), where the
Gateaux derivatives %| (=0 f(Hop+tV) are taken in some uniform topology, the
strategy is to prove that



4.4 Operator Perturbations 111
Ri.pn =Tr Ry pn and || Ry, vl = Opyj=o(IVIY). (4.41)

Recall first that the Gateaux derivative of a function f : X — Y between two locally
convex topological vector spaces X, Y, is

Fu) )= lim (™ Lf (b + 1) = f()] for h, v € X.

It is linear in v if X, Y are Fréchet spaces.

This approach is used in [16] or [17, Sect.7.2.2] to compute the spectral action
So(V):=Tr f(Z+ V) via (440) for a finitely summable spectral triple
(o, I, D), setting Hy = 2 and under the following assumptions:

1. f(x)= fooo e d¢ (t) with a positive measure d¢.
2. [t Tr[|21F e 7] dg(r) < coforany o, B,y > 0and0 <& < 1.
3. Moreover, V € %%(5¢) — as defined below.

The derivation §’ given in (1.2) defines a family of seminorms {||8’”(T) || }nen and
the vector spaces B" () :={T € B(H) : ||6’k(T) || < oo for all k < n } become
Fréchet spaces, implying the Fréchet differentiability of the spectral action in terms
of the perturbation V. Remark that if the triple is regular, any selfadjoint one-form
in .Qij (&) is in 98° (). Without entering into the details of (4.40), the main steps
are an iterated use of the Duhamel formula (see (4.13))

1
” 2 2 72 _ 72 (11— 72
o1 THV? _ 1 PHX) _ 1D —t/ o—SHPHX) y —(U=1P? g
0

for the perturbation of the heat operator (the second line of the assumption guar-
antees the convergence of the trace of this integral), and the fact that the Taylor
expansion S¢ (V) = Zoo lSE;](O)(V, ..., V) has coefficients which are given by

n=0 n!

Formula (4.40) has been generélfsnf:d in [15] under the only assumption that the
selfadjoint operator Hj has a compact resolvent (but no positivity of Hy nor summa-
bility condition on its spectrum is required), V = V* is bounded and f € C¥*'(R)
with compact support (f is not necessarily positive or even). Even if the proof is
more subtle it essentially goes through the quoted steps. For instance, using the inclu-
sion C?’“(R) c{f: f™andF(f™)e L'®), n=0,..., N}, the exponentials
appearing in the iterated Duhamel formula are now unitaries so the second line of
the assumption is not necessary.

Further generalisation into the theory of multiple operator integrals, compatible
with the formalism of differentiation of operator functions, is possible. It relates to
the important notion of spectral flow in the setting of type II von Neumann algebras
— see, for instance, [1].



112 4  Fluctuations of the Spectral Action

References

1. Azamov, N., Carey, A., Dodds, P., Sukocheyv, F.: Operator integrals, spectral shift and spectral
flow. Can. J. Math. 61, 241-263 (2009)

2. Chamseddine, A.H., Connes, A., van Suijlekom, W.D.: Inner fluctuations in noncommutative
geometry without the first order condition. J. Geom. Phys. 73, 222-234 (2013)

3. Chattopadhyay, A., Sinha, K.: Trace formulae in operator theory. In: Bhattacharyya, T.,
Dritschel, M. (eds.) Operator Algebras and Mathematical Physics, pp. 1-36. Birkhiuser, Basel
(2015)

4. Connes, A., Chamseddine, A.H.: Inner fluctuations of the spectral action. J. Geom. Phys. 57(1),
1-21 (2006)

5. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. Collo-
quium Publications, vol. 55. American Mathematical Society, Providence (2008)

6. Davies, E.B.: One-Parameter Semigroups. Academic Press, London (1980)

7. Essouabri, D., Iochum, B., Levy, C., Sitarz, A.: Spectral action on noncommutative torus. J.
Noncommutative Geom. 2(1), 53-123 (2008)

8. Géré, A., Wallet, J.C.: Spectral theorem in noncomutative field theories: Jacobi dynamics. J.
Phys. Conf. Ser. 634, 012006 (2015)

9. Tochum, B., Levy, C.: Spectral triples and manifolds with boundary. J. Funct. Anal. 260, 117—
134 (2011)

10. Iochum, B., Levy, C.: Tadpoles and commutative spectral triples. J. Noncommutative Geom.
5(3), 299-329 (2011)

11. Iochum, B., Levy, C., Sitarz, A.: Spectral action on SU,(2). Commun. Math. Phys. 289(1),
107-155 (2009)

12. Tochum, B., Levy, C., Vassilevich, D.: Spectral action beyond the weak-field approximation.
Commun. Math. Phys. 316(3), 595-613 (2012)

13. Tochum, B., Levy, C., Vassilevich, D.: Spectral action for torsion with and without boundaries.
Commun. Math. Phys. 310(2), 367-382 (2012)

14. Simon, B.: Trace Ideals and Their Applications. Mathematical Surveys and Monographs, vol.
120. American Mathematical Society, Providence (2005)

15. Skripka, A.: Asymptotic expansions for trace functionals. J. Funct. Anal. 266(5), 2845-2866
(2014)

16. van Suijlekom, W.D.: Perturbations and operator trace functions. J. Funct. Anal. 260(8), 2483—
2496 (2011)

17. van Suijlekom, W.D.: Noncommutative Geometry and Particle Physics. Springer, Dordrecht
(2015)

18. Zagrebnov, V.: Topics in the Theory of Gibbs Semigroups. Leuven University Press, Louvain
(2003)



Chapter 5 ®)
Open Problems ez

Abstract As a desert, we serve a number of open problems connected with the
subject matter of the book. Some of them consider the general framework of spectral
triples and its possible extensions, while the other are more specific and relate to
the properties of the spectral action. The problems are essentially of mathematical
nature, though, at least in some cases, the conceptual skeleton strongly depends
upon the input from physics. To our mind, the solution to each of these stumbling
blocks would advance our understanding of the foundations and implications of the
Spectral Action Principle. We therefore cordially invite the Reader to contemplate
the list below, both from mathematical and physical perspectives.

(1) Existence of spectral triples. Despite quite a few illustrative examples, the terri-
tory of spectral triples remains vastly uncharted. Beyond the almost-commutative
enclave, the constructive procedures are available in some specific contexts:
isospectral deformations [15], AF C*-algebras [14] or crossed products [43, 46].
The first road towards spectral triples is to fix a C*-algebra </ and then to
find (and classify!) all possible smooth dense *-subalgebras <7, along with the
compatible operators & acting on a chosen Hilbert space 7. The ultimate aim
would be to understand the ‘space of the operators 2°, which is the domain of
the spectral action functional (1.43). This would certainly require the theory of
Fredholm modules and K-homology [44], but surely much more than that.
Alternatively, one can fix a sequence of real numbers seen as the spectrum of &
and seek a compatible algebra <7. Such a situation appears, for instance, in the
context of manifolds with boundary [45].

(2) Non-unital spectral triples. We have focused exclusively on unital spectral triples,
which correspond to compact manifolds in the classical case. Non-unital triples

I'Such a fixed C*-algebra can come from physics — as the natural algebra of observables of a given
system (see e.g. [42, 49, 61]).
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have been studied to some extent [9, 10, 57, 58]. In such a case the operator
2 does not have a discrete spectrum and one needs to adjust the definition of
the spectral action. The easy way is to introduce a ‘spatial’ (or infrared) cut-
off: Tr@f(|Z| /A), with a suitable @ € <7, but its choice yearns for a deeper
physical motivation. One could also promote the energy scale A to a dilaton field
[13, 38-40].

(3) Twisted spectral triples. Motivated by the type III noncommutative geome-
try, where there are no finitely summable spectral triples [17], a few notions
of twisted spectral triples emerged. The original one relaxes the condition
(2, a] € $B(5) to the demand of the boundedness of “twisted commutators”:
Pa —o0(a)9 € AB(A°), with a given automorphism o of the algebra .o/
[11, 30, 54, 56]. The notions of reality, pdos, regularity etc. get modified accord-
ingly [8, 50, 52]. A related notion of modular spectral triples [12] is motivated
by deformation of some physical models or quantum groups [4, 41, 46, 48,
51]. There is also an increasing interest for the ‘twist’ in particle physics [22].
However, the spectral action has not yet been systematically approached in this
context, to our best knowledge.

(4) The Lorentzian signature. An insistent problem, which has been swept under the
carpet is that of the signature: The notion of a spectral triple generalises Rieman-
nian manifolds with the Euclidean signature. Alas, the spacetime we are living
in has a Lorentzian signature, instead. At the almost-commutative level, one can
bypass the problem using the old (and somewhat murky) trick of the Wick rota-
tion [20]. However, a rigorous approach requires a deep conceptual change:

A distinctive feature of spaces with the signature (—, +, +, .. . ) is the existence
of a causal structure. Needless to remind that the micro-causality is one of the
key axioms in quantum field theory. A rigorous notion of causality suitable for a
noncommutative geometry has been proposed [34] and studied [25-27, 35-37].
The Dirac operators % on pseudo-Riemannian manifolds, formally similar to
their Euclidean colleagues, are drastically different [2]. First of all, & is not
selfadjoint in L2(M, .#). Secondly, & has infinite dimensional eigenspaces (in
particular, dim Ker = 00), hence no function f can render f(|%)|) trace-class.
Let us also point out that in the Lorentzian context a nonunital algebra is manda-
tory, as compact spacetimes always contain causal loops, which is undesirable.
The problem of compactification of spacetimes, or “attaching a causal boundary
to the spacetime” is an old-standing and a hard one — both on the conceptual
and on the technical side (cf. [53] for a nice abstract mathematical formulation).
Yet another serious obstacle is the presence of the notorious spacetime singu-
larities, which seem to be an inherent element of our Universe, as attested by
the famous Hawking—Penrose theorems (see [64] or any other mathematically
oriented textbook on general relativity). On the mathematical side, it creates
problems with the incompleteness of spacetime manifolds (see, for instance,
[3D.

As one can see, the algebraic situation is rather dramatic already at the commuta-
tive level. Nevertheless, the programme of “pseudo-Riemannian spectral triples”
is being systematically developed [5, 21, 23-26, 32, 33, 55, 62, 63]. Its central
idea is to work with a Krein space [6].
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&)

(6)

@)

®)

The “Lorentzian spectral action” has not yet even emerged from the depth.
A result, which might shed some light on it is the Lorentzian version of the
index theorem [1].

The dimension spectrum. The computation of the dimension spectrum of a given
spectral triple is a formidable task. Beyond the almost-commutative realm it
has been accomplished only for a few examples listed on p.19. Firstly, the
existence of the dimension spectrum is by no means automatic — there exist
spectral zeta functions admitting no meromorphic continuation (see [59] and
[28, Sect.5]). Secondly, even if we do have a meromorphic extension of {p, the
one of {7, p does not come for free, even for 7' € o7. In the worked out examples,
one firstly unravels the meromorphic extension of the basic zeta function ¢p and
then constructs the ones for {7 p by expressing the operators T € ¥°(7) in the
eigenbasis of 2. Whereas the poles of ¢p and {7, p do not coincide in general
(see Example 1.24), in all known cases we actually have Sd C U enB (8 pj+ p)-
So it seems as if the whole dimension spectrum is actually encoded in the
operator 7.

Is this a general fact or a specific property of the worked out examples?

Heat traces and zeta functions. In Chap.3 we have spied into the intimate inter-
play between the small-t asymptotic expansion of Tr Ke ™'/ and the meromor-
phic extension of {x g . But on the route we only employed the properties of gen-
eral Dirichlet series and the geometric origin of the operators H and K remained
concealed. It would be highly desirable to understand what impact might the
geometrical dwelling of H and K have on the problems we encountered. Con-
cretely:

(a) Whenis ¢k y of polynomial growth on the verticals (in which case Tr K e~

admits an asymptotic expansion with the vanishing contribution (3.11))?

(b) Are the pathologies illustrated on Fig. 3.3 always avoided?

(c) When is the asymptotic expansion of Tr Ke~" ¥ actually convergent?

(d) When is the existence of the asymptotic expansion of Tre~"1”| equivalent to
the existence of an expansion of Tre~'? 9

(e) When does the existence of an expansion of Tre~'I! imply the existence of
an expansion of Tr e /174l for a suitable fluctuation 2, = 2 + A?

The role of the cut-off function. Arguably, the smooth cut-off function f involved
in the definition of the spectral action S(2, f, A) is of non-geometric origin.
It might encode some physical input (such as the parameters of the Standard
Model), however, one has to keep in mind that for general noncommutative
geometries — and for the almost-commutative ones, but beyond the asymptotic
expansion — the full shape of f enters into the game. Adopting a puritanical point
of view, one should set f = x[o.1) and create the tools to study the asymptotic
expansion of the raw spectral action N|z|(A).

The coefficients of the asymptotic expansion. In the almost-commutative frame-
work the coefficients of the large-energy asymptotic expansion of the spectral
action have a pellucid geometric and physical interpretation — as pictured in for-
mula (1.44). However, beyond the homely classical ground, the situation is more
obscure. The “curvature” has been defined [16, Defintion 1.147] and computed
on a conformally rescaled noncommutative 2-torus [18, 19, 31]. However, such
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an interpretation remains controversial, as we have imperceptibly entered into the
domain of nonminimal operators, which might also involve the torsion [47, 60].
The comprehension of geometry and physics behind the coefficients of the
general asymptotic expansion of the form (3.40) is a serious challenge.

(9) Distributional approach to the asymptotics. The framework presented in
Sect. 2.7 is very appealing. It would be desirable to employ it beyond the realm
of classical pdos. To that end, one would need to understand how the assumption
(2.35) should be reformulated for general elements in K'(R, £ (7#)) and when
it is met.

(10) Beyond the asymptotic expansion. As forewarned on p. 30, the asymptotic expan-
sion of the spectral action (even in its full glory) might fail to capture the ‘expo-
nentially small physical phenomena’ [7] encoded in the nonperturabtive expres-
sion Trf(|Z| /A). The pressing question, both for mathematicians and physi-
cists, is: What is actually lost? More concretely (see also Remark2.38), assume
that Tre ™" 17! — Tre="17'l = ©y(¢>). What can be said about 2 versus 2'?

If & is the standard Dirac operator on the flat 3-torus, then the information about
the chosen spin structure .# is concealed in the Oy, (A~>°) term of the spectral
action expansion — see Example 2.29. Is this a general feature of commutative
geometries?

A related problem is the impact of different possible selfadjoint extensions of
2 on the spectral action — see [29, Theorem 7.2] for the casus of a differential
operator.

(11) Spectral action for the noncommutative torus. In the spectral action for the non-

commutative torus (TheoremB.6), the constant term in A coincides with its
classical value for the commutative torus after the swap v < de. This has been
demonstrated in dimensions 2 and 4. We conjecture that this holds true in arbi-
trary dimension.
The asymptotic expansion of the spectral action for noncommutative tori relied
heavily on the Diophantine hypothesis. It would be very instructive to see how
does it look like (if it exists at all!) for &, which does not meet the Diophantine
condition.
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Appendix A
Classical Tools from Geometry and Analysis

A.1 About “Heat Operators”

Recall first that if P is an unbounded operator, then ¢’? cannot be defined by the
series ||-||-limy_ oo Zly:;o %P”. WhatisneededisthatG : t > 0 — e'f € B(H)is
a strongly-continuous contraction semigroup (i.e. G(0) = 1, G(s) G(t) = G(s + 1),
|G ()] < 1 and the functiont > 0 — G (¢) v is norm-continuous for each ¥ € H).
Then, a closed densely defined operator P is the generator of this semigroup, i.e. by
definition G(¢) = e'?, if and only if R* is contained in the resolvent set of P and
(P =2 <ar!forall A > 0 (see [24, Chap. 14]).
Moreover, e'? = strong-lim,_, . (1 — (¢/n)P) ™" and

o0
(P—A)’lz—/ eedr, for M) >0 (A.])
0

holds true in this generality since actually the right half-plane {» € C | (1) > 0}
is in the resolvent set of P and [|(P —1)~'|| < M(x)~". The generator P is upper
semibounded: R((Pyr, ) <0, for all ¥ € Dom P.

Sometimes, the generator of G (¢) is denoted by —P like in [33, Sect. X.8].

We can rephrase previous results as a constructive way to get the exponential. Let
P be an unbounded operator on the Hilbert space .77 such that P — A is invertible
in the sector Ag := {re® | r >0, |¢| = 6}, 0 < 6 < Z and assume there exists ¢
with

[P =7 <c@+ APV Vi e 4,. (A.2)
This allows to define

e Pi=L | (P —n)"dx, (A.3)
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where ¢ = 6, (with 6 < %) is the path from oo along the ray re” for r > r
followed by a clockwise circle around zero of radius ry and ending at infinity along
the ray r e~ Since the two rays lie in the right-half plane, the exponential decay of
e~'* guarantees the convergence of the integral. We will need that fact for instance
in (2.15) of Sect.2.2.2 on Laplace transform.

To close these remarks on heat operators, we recall that many functions can
be defined through an integral along a curve in C. For instance, given a selfadjoint
operator P, one defines (cf. [36, Sect. 10]), P~% = —— [, .. A7% (A — P*)~' d 1 along
the curve % for any z € C with i (z) > 0, as in (A.3). Typically, to control the norm-
convergence of the integral, one uses

(. —P) 'l = sup |pu—al"" =dist(r,spec P)' < IS, (A4
nespec P

[P —P) "= sup [ullpw—2al"" (A5)
nespec P

Moreover, if P = P* is positive,

iy < [RGBy = 0,
1PG =Pyl = { 1 if %) <0, (A-6)
which follows from |P(A — P)~!|| = SUP,espec pJf (1) Withf (u) = p | — Al7'and

the computation of the maximum of f.

A.2 Definition of pdos, Sobolev Spaces and a Few Spectral
Properties

There are several good textbooks on pdos: [19, 23, 25, 36, 37]. For the heat trace
asymptotics of a pdo we closely follow [23, Sect.4.2] and the nice notes [35]. See
also [1, 20, 27] for the computation of heat kernel coefficients.

To study pdos on R? we need a few basic definitions:

—{x) == (14 |x[I")"/? and (x, n) := (1 + ||Ix|* + [n))"/? forx € R", n € N*, and
neC.

—-S":={p: (x,&) e RY x R — C such that |8§‘8§p(x,§)| < caﬁ(é)m"“‘ }is
the set of symbols of order m € R. Here o, B are in N with || = " ;. This yields
a family of seminorms on §™ defined by |p|,, , 4 = sup, |8§‘8,’?p(x, £)|(g) M,

The set of smoothing symbols is S~ :=N,, S™.

— The symbol p € S™ has the expansion p ~ » " p,,—;, when p,,_; € "~/ and
for each n, p — Z}Lo DPm—j € S™7". It is named classical if, moreover, for all j,

P (6, tE) = " Ip(x, ), Y(x, ) e R x RY, ||g|| = 1, £ > 1.
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It is said to be elliptic when p(x, &) is invertible and |p(x, £)~'| < ¢ (€)™ for all x
and ||&]| > r for some r > 0. A classical symbol p € §™ is elliptic when p,,(x, &) is
invertible for all x € R? and ||&]| = 1.

From now on, we assume in this appendix that all symbols are classical.

— Every symbol p gives rise to a pdo acting on u in the Schwartz space S(RY) via
the inverse Fourier transform by

OP)w ) =T '[P, ) Flul()]x) = /Rd e'PTE p(x, §) Flul(§) dé.

This definition is compatible with the product of operators as for p € S™', g € §™
there exists a symbol called the Leibniz product of p and ¢, denoted p o g € S™ 1",
such that &' (p) 0(q) = O (p o q) with the expansion

(Poq)(x,§) ~ Z< D% (02 p) (x, £) (099) (x. 6).

In particular, when p € S™ is elliptic, there exists a symbol g called the parametrix
such thatpo g — 1 and g o p — 1 are both in §~°.

— The Sobolev spaces read H*(R?) := {u € S'(RY) | (¢)* F(u) € L*(R?)} for
s € R, with scalar product (u, u’) := f{?(u)(é) S()(E) (£)* d& and complete for
the norm ||u||§ := (u, u). For instance §, € HRY) if s < —d /2.

We have, H'(RY) = L>(R?) and if s > d/2 then H*(RY) c C(R?) (Sobolev
embedding theorem). When s > d /2, any bounded operator A : H~* — H*® is an
integral operator with a Schwartz kernel given by k4 (x, y) = (A4, 6y).

We now adapt previous definitions to

a compact boundaryless Riemannian manifold M of dimensiond,

so we need coordinate charts (U, h) where U are open sets in M and h are diffeo-
morphisms from U to open sets in RY.

LetP: C®°(M) — C*(M); when¢, ¥ € C°(U) (smooth functions on U with
compact support), the localised operator ¢Pyy on C°(U) is pushed-forward as
h(@Py¥) on C°(h(U)). The operator P is a pseudodifferential operator of order
m when each such localisation is a pdo of order m on h(U).

Then, one extends S™ to symbols on M as follows:

S"(M) = {p(x,§) € C*(T"M) | h(¢p) € §"(h(U)), V(U, h, $)}.

Of course, P is said to be elliptic or smoothing if all its local symbols have such a
property and the set of classical pdos of order m is denoted by ¥ (M) which defines
U(M) :=U,v"(M).

For x € (U, h) one defines the principal (or leading) symbol of P € ¥ (M) as
Pm(P) = W*p,,(h(pPP)) € S™(M)/S™1 (M), where one chooses a ¢ € C (M)
equal to 1 in vicinity of x. One checks that this principal symbol makes sense and
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is invariantly defined on 7*M while the total symbol is quite sensitive to a change
of coordinates. Moreover, for each p € §" (M), one constructs P € ¥ (M) with
pm(P) = p via the partition of unity.

A new extension is possible when P acts on sections of a smooth vector bundle
E of finite rank over M equipped with a smooth inner product. So, typically, a
fiber is acted upon by a matrix. By local triviality, on can define H*(M , E) using a
partition of unity. Hence P : C*°(M, E) — C*®(M, E) is called a pseudodifferential
operator of order m if every localisation is a matrix of pdos of order m for all charts
U over which E is trivial. Such operators, the symbols of which are now matrices,
define Y™ (M, E). The properties of classicality and ellipticity are generalised in a
straightforward way.

In particular, P has a matrix-valued kernel Kp, which in local coordinates reads

kp(x,y) = / eHTIVE p(x, £) dE. (A7)
R4

Similarly, the Sobolev space H*(M) is defined as the set of distributions u on
M which, in a given local patch U, satisfy u € 2'(U) with yu € H*(R?) for all
Y € CX(U). By the Rellich theorem, the inclusion H*(M) < H' is compact for
any ¢t < s and even trace-class when r +d < s.

From the beginning, classical symbols can be seen as objects defined up to S~°.
It has the following consequence: P € ¥ (M, E) is smoothing (i.e. all of its local
symbols are smoothing) if and only if P has a Schwartz kernel kp which is smooth on
M x M . For instance, ¥ P¢ is smoothing if v, ¢ € C>°(M) with disjoint supports.

We now recall a few classical results on pdos — see loc. cit. at the beginning
of this section. They provide links between a pdo and the same object, but viewed
as an operator which has eventually several closed extensions on a Hilbert space.
Recall that a bounded operator between Banach spaces is Fredholm if it has a finite
dimensional kernel and cokernel and a closed range.

Theorem A.1 Let P € W (M, E). Then:

(i) The extension of P : H°(M , E) — H* (M, E) is bounded for all s € R.
(ii) If P is elliptic, all previous extensions are Fredholm operators, which means that
there exists a Fredholm inverse which is a pdo of order —m.
In particular, when m > 0, P : C* (M, E) — C*™ (M, E) acting on the Hilbert
space H OM,E) = L*(M, E) has only one closed extension with the domains
H™(M , E) and a spectrum either equal to C or discrete without accumulation
points except 0.
(iii) When P : H°(M ,E) — H*"™(M , E) is invertible for some s, then we have
Pl e w—"(M E).
(iv) The space oM, E)isan algebra.
(v) IfP € ¥Y"™(M, E)withm < —d, then P has a continuous kernel and its extension
P on L*(M , E) is trace-class with Tr rm.p P = fM tr g kp(x, x) dx.

The inverse in (i) is obtained by the construction of a local parametrix over a local
chart, which, after being patched, gives rise to two pdos Q and Q' of order —m
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such that R = QP — 1 and R’ = PQ’ — 1 are smoothing pdos. Moreover, Q — Q' is
a smoothing pdo. So, modulo smoothing pdos, Q is the left and right inverse of P.

We now present some details from the constructive proof of this theorem for
parameter-dependent symbols.

A.3 Complex Parameter-Dependent Symbols and
Parametrix

Letus be given an elliptic pdo P € ¥"(M , E) of order m > 0 with the matrix symbol
p~ Zﬁo Pm—;j. Despite the nice unique L?-extension of P provided by Theorem A. 1,
it is still interesting to look at e~** not only as an operator on L*(M, E) but as
a smoothing pdo (or, similarly, to regard the complex power P* as a pdo of order
mMNR(s)).

The main idea, which we expound in some detail below, is to replace the resolvent
(P — 1)~! of P by a parameter-dependent parametrix, the symbol of which is under
control. Since we want to control the integrand of (A.3), we assume the following
(uniform) parameter-ellipticity of the principal symbol of P:

Hypothesis A.1 The operator (P — 1)~ exists in the left keyhole region V,, 4
defined by ¢, ¢ for & < Z. Moreover, we have the resolvent growth condition: The
matrices p,,(x, §) — A are invertible for all x, £ when A € V,, y and

|, ) = )7 < (L1517 + P72 = (5, 217
For the principal symbol, let us introduce the strictly homogeneous symbol p!" :

P, &) == lIEI" pu(x, &/ 1E])

(which coincides with p,, for ||£]| > 1, but is now homogeneous of degree m for all
& # 0) and we can rephrase the hypothesis as: p/ (x, &) has no eigenvalues in V,, ¢
forall £ #£ 0 (see [23, Lemma 1.5.4]). Recall that p,, (x, &) is homogeneous of degree
m only for [|£]| > 1 and we have to control the integral in &, as in (A.7).

Let (U, h) be a fixed coordinate chart. Forx e U, £ e R, A =™ € Vyo,0 and
J € N, we want to generate a parametrix by an inductive sequence (see [28])

Gom(x, &) == (pm(x, &) — ™71,

Jj—1 _a
Qoo b = — 3 3 g £ ) 0Dt E) i §) — ™)
k=1 a,l

where the second sum is over « € N, ¢ € N such that k + £ + |«] =j.
In the scalar case (i.e. the fibers of E are one-dimensional),
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2j
Gm i &) = D pjs(x, &) (pulx, &) — 0™, (A8)
k=1
where the p; ; are symbols of order mk — j obtained from p,,, ..., pm—;.

Using 3((p — 1™~ = = 0m — 0™ " @pm) (P — ™), with 3 = 9, or 0,
one checks that Bg‘ 8,’? q—m—j is a sum of terms of the form

Pn =170 pks o — ™) O Pk, (o — 0™ (A9)

where Y ,_, k¢ + |og| =j + lex].
Moreover, 3¢9 q_—;(x, 18, 1) = 1" I3 q__;(x, €. 1) for lE] = 1, 1> 1
and there are at least two factors (p,, (x, £) — n™)~!if either j > O or || + |B] > O.
This implies the following estimates:

o qp . _ O = ((E. ) () 71y forj €N,
”aE ax qufj(-xy Ev 77)|| - {Oeﬁ”—)oc((s’ n>72m <§->mfj7\a|) lfj + |O{| + |,8| = 0.
(A.10)

Now, defining ¢ such that g ~ ZjeN q—m—j, We get

o0l [ate. 6. = 3 @y 6] = Opnc(6 )2 (). (AT

j<J

We claim that: If r(x, &, 1) := g(x, &, A1) o (p(x, &) — A) — id, then for any N, all
seminorms in S~V of the symbol r are Qs ((X)71).

The proof is based on the decomposition of the series defining p, ¢ in finite sums
and remainders and their Leibniz products via the above estimates.

Then, one gets rid of the local chart U by patching previous parametrices to get
a parameter-dependent pdo Q(A) (associated to the symbol g(x, £, A/™)), such that
R(}) = Q) (P — i) — 1 (with the symbol r(x, &, 1)) is a smoothing pdo, where
the seminorms ||-[|_y 4 4 of its symbol are Ose((A)™1) for each N.

Since formally [Q(A) (P — M) ' =[1+RW)] ' = Z;io(—R()\.))j, we deduce
that

oo

P =1~ =00 = (IQWEP -1 = 1) () = Y (=RM)Y (1)

j=1
has a norm which is O ((1)72) since |Q(M)] = Oso (X)) so that:
Proposition A.2 We have |(P —2)™" — QL) | = O ((A)72) for all 1 € Ay.

Remark that we can define similarly Q’()) such that (P — 1) Q'(A) — 1 = R'(})
for another smoothing pdo R'(%).
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Thus Q(A) — Q'(A) = R(A)Q'(A) — Q(A)R'()) is a smoothing pdo. Moreover,
the operator (P — A)~! can be seen as an elliptic pdo of order —m since, by (A.10)—

(A.11), the operator (P — 1)~! — Zj<J q-m—j(x, &, A1/™) is a pdo of order m — J,

the seminorms of which are Ou ((A)72).
This explains why the operator (P — 1)~! seen as a pdo is nothing else than Q(1).
Consequently, G (1) := ™' defined by (A.3) is also equal to 5= [, e*Q(1) dA.
Another consequence is that (P — A~ lis compact by Theorem A.1(v) so P has
a discrete spectrum without accumulation points (compare with Theorem A.1(if)).

A4 About e *? as a pdo and About its Kernel

Let P € Y™ (M, E) be elliptic with m > 0 and let its principal symbol satisfy (A.1).

Theorem A.3 Fort > 0, G(t) := e~'? is a pdo of order zero, the symbol g(x, €, t)
of which has the expansion g(x, &,t) ~ Z,ﬁo g—j(x, &, 1) with

D) = o / e gmi (e £V AN, forj € N. (A.12)
3

Moreover, go(x, &,0) = 1, while g_j(x,&,0) = 0 forj e N*.

Proof We follow [23, Theorem4.2.2].
In a coordinate chart, we have

=3 | Ol £, 0" dh = 015 / e M q(x £, 2") dA]
4 4

~

~ Y Olgj(x. & D]

j=0
First, one checks that gy = ¢~'P (by residue calculus) and the homogeneity property
g 1€, ") =g (. £.0), for £l =1 r> 1.
We now want to prove the following estimates: There exists ¢ > 0 such that
l9gal g (e, & DIl < ()77 @ E) e ™, Ya < min(m, j + |l). (A.13)
These hold true for j = 0 and for j > 1 we begin with the scalar case, cf. (A.8):

% %
8= Pikr / e pm =0T A=) piag e (A.14)
k=1 v

k=1
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We get || P 1] < (6)™ 1 = (&) 1 ((§)" '~ with ()" n)* ! < 1if ()1 < 1.
Moreover, ||((£)? t)*~le=P/2|| < 1 if (£)"t > 1. Thus, the estimates are proved
when o = 8 = 0 witha = m. As aconsequence, we cover the situation where a < m
and for &, B non-zero one differentiates under the integral of (A.12) until the estimate
fora = B = 0 applies. For the non-scalar case, one proceeds as in the proof of (A.10)
thanks to the expansion (A.9) for the derivatives.

The equality g_;(x, &, 0) = 0 is a consequence of (A.13).

We can now conclude the proof thanks to the following argument: The symbol

gx, &, 1)~ Z;io g—j(x, &, 1) can be chosen in such a way that

19g07 (g — > " g-pll < &)/ (/g e ", Ya < min(m, j + |al).
j<J

So, for any integer J, i Jp e Olg(x, &, ALy — Zj<j Gom—j(x, &, A/™) ] d ) s
a pdo of order zero and the asymptotics of the symbol for G(¢) = e~'” is justified.
|

But since we are interested in Tr e¢~*” it is worthwhile to control the kernel of

G (¢) as a function of ¢ and to give an alternative proof of the previous theorem. On
the way, it is shown that e ' is a smoothing pdo.
Let G_;(t) be the pdo defined locally by g_;(x, &, 1) after patching local charts.

Lemma A4 Foranyt > 0:
(i) The kernels of G_;(t) satisfy the estimates

1Ko Gy, 0l < 7 4m et K ey, 0l < 97D/M =t for 0 < j < m+ d;

IKG_,, oGy Dl < 1(1+ llogt)) e ™!, IKg_ .y 0l <te™ forj>m+d.
Moreover, on the diagonal we have, with ¢;(G, x) := fR(, g’jj(x, &, 1)d§,
Ko ,(x,x, 1) = ¢;(G,x) 17" 4 Oy(1), for 0 <j<m+d.
(ii) The remainder G’ (t) := G(t) — Zj<j G_;(1) satisfies

1Kgy (x, y, DI < (1 + llogt]) e ", forJ >m+d,
Ker(x,y,0) =0, forJ >d.

Proof (i) We begin with the kernel of Go: K, (x, y, 1) =[5, €274 7 Pn(8) gg,
Since |le”Pm — e"”ZH = Oy(t) when ||&]| < 1, we get
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_tph _ il
1Ko (ray, DIl < €1 / e d + ¢ / e Pad) _ o wheE)) g
R IENI=<1

< fd/m/ e cll” dn+crt <c3t ™M 4 eyt
Rd
and for the diagonal

K, (x, x, 1) = t~4/m /

]Rd
=:¢o(G, x) =™ + Op(1).

e*Pﬁ,(Xﬂl) dn +/ e*th(x,S) _ e*tp'n',(x,é) de
gl<1

When j # 0, the estimate [|g";(x, &, 1)|| < €™ te=<IEI" follows from (A.13).
Since the last function is &-integrable when m — j > —d, we deduce that the kernel
K (x, 9, 1) = [pa €208 g_i(x, §, 1) d§ is Ox(e™“"/?), while for 1 > 0,

1Ko ey, Dl < e / 1" dE + / (g1l + 1”1 d&

l&n=1

<ot | NENT eI dE eyt = s tVTDIM 4 o5t
R4
As above, still with 0 < j < d + m, one gets

Kc,,(x,x,t)=/]R gii(x,é,t)dé+cl/ (g — &' )(x. &, 1) dE
a lel<1

= ¢j(G,x) 1™ Dm 1 Oy (1). (A.15)

Moreover, using (A.13), we obtain

”KG_.,-(X, vy, t)” <t </ +/ ) (§>m—j e_ct<§>m ds
i<t Jign=n
00 ) )
= t(l +/ pn—j—d=1 ,=ctr dr)
1

- t(c; + ¢ |logtl), forj=m+d,
t(cy 4+ co t7 =DMy forj > m4d.

This completes the proof of (7).
(i) The remaining symbol

45008, 0) =g, E, 0™ = g0, & 0N

j<J

gives G (1) = 5~ [., e ™0 (q})(1) d X, whichisapdooforder—m —J < —2m —d,
so has a continuous kernel (and is trace-class) by Theorem A.1(v). Moreover,
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Kgr (x,y,1) = i/ e_”\Ka(q;)(x,y, A dr,
€

with [|[Kog) (x, y, M| = Ouso({A)72) as in the proof of Proposition A.2. Thus, the
integral over & converges uniformly for all # > 0 since |e~™| < ¢~ for some ¢ > 0.
Consequently, K, (x, y, 1) is Os(e7¢") and as such, it has a continuous extension at
zero since K¢y (x, y, 0) = 0, because in i fY Ko (x,y, ) dA, % can be deformed
into a closed contour around zero.

We already know from Sect. A.1 that G/, () € C*((0, 00), #(s¢)) and, fort < 1,

o0
19 Kgr, (x, y. Dl :ﬁ\]éxe—“@;(x,y, da| 5c1e—”+C3/ e~y =lgn
o

o
§C4+C5/ ™29V da < cg + c7 |log 1] . (A.16)
rot

(See the definition of ry after (A.3).)
The Taylor series in ¢ gives |K¢: (x, y, )| < ct(1 + |log?|) when ¢ € (0, 1] and
hence the announced estimate. O

Technically, itis useful touse e *# = 5= [ e~ 2% PX Q(1) d A, Vk € N which
follows from Q(A) = A~'(A — P + P)Q(A) = —A~' + A~'P Q()) which after iter-
ation gives Q(A) = — ZJI.;I AP 47 PEQ() and [, e 2 dL = 0.

We denote: Q) (1) := P¥ Q(1), seen as a pdo of order (k — 1)m with the symbol

k (k) : : (k) . (k)
g% ~ ¥ ien 44 1ym_,; and, preserving the notation, Q" ), ; == Olgy y,_,1 and

k) . k k)
0y = 0® — Zj<J O 1ym—j- As an example,

q=—-1"=2T"p+21¢?
e )\—2( m+ P+ O\\E\\Hoo((é)_m_l))
FA2(g2 4 4 4%+ Oemoo (€)1 (£, A ™).

L _ (k=1 & (k -
By iteration, g_—; = —A"2pu_; — -+ — A1) + A78q0,,_; Where p© s

the symbol of P*. Since these symbols are independent of A, we get

ﬁ e_r)\ qufj(xs %_v )"l/m) d

8-j(x,§.1)

= # / et ‘]Ell?—l)m_j(% g2y d. (A.17)
In particular, for k € N we rewrite the Q®’s as
G(t) = #/ e Mk Q(k)()\) dx,
¢

G0 = 4 L R E by,
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Gh(t) = 5= [6 e AR QW) da. (A.18)

With the help of this representation, we can improve the key estimate (A.13) along
with the estimates from Lemma A.4:

Lemma A.5 Foranyk € N,
10800 0f g—j(x, &, )] < ¢'(x) ()"l (A.19)
For the kernel of G_; = 0(g—j) we have

L (1 + [logt]) e, forj—km=d,
”8[ KG,j(x, Yy, t)“ =< { (1 + t(jfkmfd)/m) efct’ f()l’j _ km # d

(A.20)
On the diagonal we get, with ¢; ; (x) 1= fRd 8, g_j (x, &, 1) dE,
K (x,x, 1) = ¢ )t DL 00@%), j< k—Dm+d.  (A21)

For the kernel of G_; we have, with j > km + d for some k € N,

b

-1
Ko ,(x,y,0) =) 5 0/Kc ,(x,,0) + *R(x, v, 1) (A22)
1

o~
Il

and BfKG#. (x,y,0) and R(x, y, t) are continuous in x, y and int > 0.
When J > (k + 1)m + d for some n € N, the kernel of the remainder G'; satisfies

k e
10, K (x, y, Dl < e™,
k—1

Koy (x.y.0) = Y 5 /K (x.y.0) + *R(x, y. 1), (A.23)
=1

where BfK(;; (x,y,0) and R(x, y, t) are continuous in x, y and in t > 0.

Proof For £ € N*, dfg_;(x,£,1) = 'S “ Sy e ™ qge D@, €, A1/M) d )\ s derived
from (A.17) and the estimate (A.19) i 1s proved in the same way as (A.13).

Since 9°*! g—j is bounded when t — 0 by the above formula, the function
8fg,j is continuous at ¢ = 0. Since g _j(x,€,0) =0 by TheoremA.3, we have
the Taylor expansion g_;(x, £, 1) = Yf_, $0fg_j(x, £,0) 1" +1*r_j k(x, &, 1) where
8fg_j(x, &, 0) are pdos of order {m — j.

The operators 8,]‘G,j =0 (8{‘ g—j) have kernels, for which we can repeat the
same arguments used for the proof of Lemma A.4(7) in order to get (A.20).

If j > d, Kg_;(x,y,0) =0 by Lemma A.4 and by a Taylor expansion, we get
(A.22).

We need to control the remainder. For k > 1, choose J > km + d and the pre-
sentation (A.18) for the kernel of K¢;. Since G is a pdo of order (k — 1)m — M,
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g, x, &, L) < (&)= (£, A1/my=m thus, after a £-integration, we get the estimate
of the kernel ||KQ}k> (x,y, V[ < (») ' and

Ky (x,y,1) = 5= / e MAT* W (1) dr
3

because all Q% are holomorphic in 1. Thus, for ¢ < k — 1,
19 Ky, (6, 3, D1l = 2 | ﬂge—“ﬂ—"KQ;k)<x>dx|| <A [5 M T da) < e

As a consequence we get: K¢ (x,y, 1) = Zlg;]z % 3 Ky (x,y,0) + *7'R(x, y, 1).
This Taylor expansion begins at £ = 1 since K¢/, (x, y, 0) = 0 by Lemma A.4. Swap-
ping m — 1 to m completes the proof of the lemma. (|

A.5 The Small-t Asymptotics of e~*

The above estimates can be used to prove that e~'% has a smooth Schwartz kernel
for any t > 0. Therefore, e~** is a smoothing pdo, and hence is trace-class.

Theorem A.6 Let P € (M, E) be elliptic withm > 0 and let its principal symbol
satisfy (A.1). Then, G(t) = e~'* is a smoothing pdo and its kernel has the following
asymptotics on the diagonal:

~ (n—d)/m (n—d)/m
Ko(xx,1) ~ Y ax. Gt + Y e, Gt logt

neN neN
n—dg¢mN n—demN

+) nx, Gt

LeN

where the coefficient c,_q(x, G) € C®°(M) depends only on p,, ..., pm—n, while
re(x, G) € C*®(M) depends globally on the operator P.

Proof The smoothness of the kernel K_;(x, y, ¢) in x, y follows from (A.19) and it
remains to control the remainder. In fact, || (x — y)” 0¢ Bf Kgr(x,y, 0|l < e ! when
J > (k+ )m—|y| + |a| + |B| 4+ d which follows, as in the previous lemma, from
the estimate || (x — y)” 95 8},ﬂKQ;A+1> (x,y, A)|| < (A)~'. Thus, G(¢) is a smoothing pdo.

Now, let us choose a large k € N. By a successive integration of (A.21) and using
(A.15) withj = d, we get, forj < (k — )m+ d,

¢ @) 197D/ 4 pe o (x, 1) 4+ Op (1), forj—d ¢ mZ,
K(;_j (x,x,1) = J,’ (—d)/m X / k P

cj,k(x)t logt+pj'k(x, t) + Op(t"), forj—d € mZ,
where cjf_k (x) depends only on c;j(x) of Lemma A.5, p;(x,t) and P]/',k (x,1) are
polynomials of degree k in f and are continuous in x with p; ; (x, 0) = p;, (6, 0) =0.
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Moreover, the remalnder in(A23)forJ =k —1)m+d > (k—=3)+1)m+d
is Kgr (x,y, 1) = th 1 Z, 8‘KG (x v, 0) + Oy (t*3). Thus, for the full integral
kernel

Kg(x,x, 1) = Z ¢ () 19D/ 4 Z ¢l () 1" logt
0<j<J=(k—1)m+d j=me+d
j—d¢mN 1 legt<k—1

+ pr(x, 1) + Op(F73),

where the py (x, t) are polynomials in # such that p; (x, 0) = 0. Sending & to infinity,
we get, after a relabeling, the announced asymptotics because K¢ (x, x, t) minus the
sum of terms up to (n —d)/m = N and £ = N is Oy (t"+1/¢). The coefficients c P
depend only on G_j, thus locally on the symbols of P of orders from m to m — j. The
pi’s are not easy to characterise, but they are smooth in x: The smoothness of ¢;
(and so of cj’ ) 1s clear from its definition in LemmaA.5, while the smoothness of
Djk Or p]’.q « can be checked at each step of the above integrations in f withr = 1. [J

By taking the trace and relabeling, we immediately get the celebrated expansion:

Corollary A.7 Let (M, g) be a compact Riemannian manifold of dimension d and
let P € ™(M , E) be an elliptic pdo with m > 0, the principal symbol of which
satisfies (A.1). Then,

Tre™ Zak(P)t(k d)/m+Zbg(P)t log 1,
i £=0
ar(P) = [y tt cx_q(x, P)Jgdlx,  fork —d ¢ mN,
with { ag(P) = [y, tt rge—gyym(x. P)ygd?x, fork —d e mN,
be(P) = [y tr cme(x, P) /g d%x, for€ eN. O

It can be of interest to recall a few links between the resolvent, complex powers
and heat operators (with s € C, k € N, ¢ > 0)

e P =1tL / AP —-NTdr = 5 (I (s)P~°ds,  (A24)
2

N(s)=c

o0
_ 1 ' k—s ak 1 -1 —tP
szmi/)\ SOEP — )T d/\_m)/ rl e P dr.

A.6 Meromorphic Extensions of Certain Series and their
Residues

‘We gather below some results on meromorphic extensions of certain series. These will
allow us for an extension of Proposition 2.26 and provide tools for the computation
of the dimension spectrum of the noncommutative torus in Sect. B.3.1. On the way,
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a ‘Diophantine condition” will pop up guaranteeing a control on the commutation
between the residues and the series. For complete proofs, see [15].
In the following, >’ means that we omit the division by zero in the summand.

Theorem A.8 Let P be a polynomial P(x) = Zf:o Pi(x) € Clxy, ..., x,], where P;
is the homogeneous part of P of degree j and d is fixed.
Then, the function f (s) := Z;( P (&) Ik ||~ has a meromorphic extension to C.
Moreover, f is not entire iff Pp = {j | fuesH Pj(u) ds(u) # 0} # @ and [ has

only simple poles at j + n, j € Pp, with Res f(s) = fueSH Pi(u) ds(u).
s=j+n

Here ds is the Lebesgue measure on S"~!. The proof is based on the fact that the func-
tion Z;EznP(k) k|l ™% — f]Rn\B” P(x)||x||~* dx, with B" —the unit ball in R”, originally
defined for %i(s) > d + n, extends holomorphically to C.

This result can be seen as an extension of Proposition 2.26: Let D be a self-
adjoint invertible operator with only discrete spectrum equal to Z" such that each
eigenvalue £k € Z" has multiplicity p(k) for a given polynomial P € N[xy, ..., x,].
Then, sRﬁ-sn tp(s) = [ g Pi(u) ds(u).

Assume that all of ¢g;’s are even, then ¢, ., (s) is a nonzero sum of terms
P(k)||k||~%, where P is a homogeneous polynomial of degree g; + - - - + ¢,. The-
oremA.8 yields the following: ¢, ., has a meromorphic extension to C with a
unique pole at n 4+ q; + - - - + ¢g,. This pole is simple and the residue at this pole is

Res §) =2 F[(Ch+1)/2]'"F[(4n+1)/2]. B (A25
s=n+qi+-+qn {ql """ q”( ) ( )

We now recall few notions from the Diophantine approximation theory.

Definition A.10 (i) Let § > 0. A vector a € R" is said to be §-badly approximable
if the Diophantine condition holds true:

There exists ¢ > 0 such that |g.a —m| > c|q|™%,¥Yq € Z"\ {0} and Vm € Z.

We denote by ¥ the set of §-badly approximable vectors and BY = Us.q BYs
the set of badly approximable vectors.

(i1) A matrix @ € ., (R) (real n x n matrices) will be called badly approximable
if there exists u € Z" such that '® (u) is a badly approximable vector of R”.

It is known that for § > n the Lebesgue measure of R" \ ZA¥; is zero (i.e almost
any element of R” is §-badly approximable) and, consequently, almost any matrix in
My, (R) is badly approximable.

We store below a rather technical result [15, Theorem 2.6], omitting the proof. As
compared with the previous theorem, it takes care of the possible oscillations e 7%-4,
where a is a vector in R”, which will be allowed to vary later on.
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Theorem A.11 Let P € Clxy, ..., x,] be a homogeneous polynomial of degree d
and let b € S(Z™")?) for g € N*. Then,

(i) For a € R", define f,(s) := Y ;7P (k) ||k =" €27k,

1. If a € Z", then f, has a meromorphic extension to the whole space C.

Moreover, f, is not entire if and only lfquS"‘] P(u) ds(u) # 0. In that case, f, has
a single simple pole at the point d + n, with Sgdefnfu (s) = fues,,,l P(u)ds(u).

2. Ifa e R*"\ 7", then f,(s) extends holomorphically to C.

(ii) Suppose that @ € #,(R) is badly approximable. For any (¢;); € {—1, 0, 1}9,
the function

86 = . b o x a1 ()

extends meromorphically to C with only one possible pole at s = d + n.
Moreover, ifweset 2 :={l € (Z") | Y.L, &l =0}andV :=Y",_ b(l), then
1.IfV fs”—l P(u)ds(u) # 0, then s = d + n is a simple pole of g(s) and

Res g(s) =V / P(u)ds(u).
s=d+n uesn—1

2.IfV fS”’l P(u) ds(u) = 0, then g(s) extends holomorphically to C.

(iii) Suppose that © € ., (R) is badly approximable. For any (&;); € {—1, 0, 1}9,
the function

806) =Dy PDfo 2160 09),

with & = {l € (Z")1 | Z?:l &;l; = 0}, extends holomorphically to C.

Is is unknown whether the Diophantine condition, which is sufficient to get the
results of (iif), is also necessary — see nevertheless [15, Remark 2.9].

In the study of the dimension spectrum of the noncommutative torus we will need
the following result [15, Theorem 2.18(i)].

It requires some notations: Fixg e N, g >2and r = (r,...,74-1) € (N*)a—1,

When (xi, ..., X), we setX; :=x; + - -+ +xj + Xg41 + - - - + x4y for any j with
Il <j<gandweletP € R[x;,...,x,] andd = degP.

Theorem A.12 Let %@ be a badly approximable matrix, and a € . ((Z")z‘f).
Then,

q—1
s @ = Y a Y] [TI+T k™ PG X

le(@yir keZn i=1

has a meromorphic extension to C with at most simple possible poles at the points
s=n+d+|r|+- -+ |rq,1| — m where m € N.

An explicit formula for the residues of f is given in [15, Theorem 2.18(ii)].



Appendix B
Examples of Spectral Triples

B.1 Spheres

A particularly illustrative example of a commutative spectral triple (recall Exam-
ple 1.2) is provided by the d-dimensional unit spheres S¢.

On S! there are two possible spin structures, where the nontrivial one is associated
to functions with antiperiodic boundary conditions. When d > 2 there is only one
spin structure available since S? is simply connected. Let us equip S¢ with the
standard round metric and cook up the standard Dirac operator & acting on the
chosen spinor bundle .7 Then, (C*®(S7), L*>(S¢, ), &) is a d-dimensional regular
spectral triple with a simple dimension spectrum d — N (cf. Example 1.25), for any
d > 1 and any spinor bundle ..

The spectrum of 2 turns out to be very simple [2, 21]: For the trivial spin structure
on S! we have 1,,(%) = n forn € Z and all of the eigenspaces are one-dimensional.
In particular, we have dimker & = 1. In the non-trivial case, the spectrum of the
Dirac operator agrees with the general pattern for S and for d > 1:

(D) =signm)(n+2),  M(P) = 215! ("N, withne Z. (B.D)

d
Hence, u,(%) =n+ di with M, (|2|) = 22! (”;‘il), with n € N.

B.2 Tori

Another commutative spectral triple is given by the flat tori T¢ = R?/Z¢ and, as
above, (C®(T9), L*(T¢, .¥), 9) is a d-dimensional regular spectral triple with a
simple dimension spectrum d — N. There are 2¢ different spin structures on T¢

classified by the twisting of each coordinates of the lattice Z¢: Givenabasisey, . .. , e
of Z4, this is realised by choosing sy, ..., ss € {0, 1}, so that we have the group
© The Author(s) 2018 137
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homomorphism: ¢; € Z¢ — (—1)% € {+1, —1} and all spin structures are given
this way by (sy, ..., ss). The eigenvalues of the Dirac operator Z (endowed with
the induced flat metric) depend on the chosen spin structures and are given by (see
(2, 21])

d
(2 Ik + 5 spefll | k ez (B.2)
j=1

where Z2" is the dual lattice and (e}, ..., e)) is the dual basis of (ey, ..., e4).
The multiplicity of the eigenvalue 0 (given by s; = 0, V) is 2\9/2) while the
non-zero eigenvalues have multiplicity 214/~

B.3 Noncommutative Tori

The noncommutative d-tori were introduced by Rieffel [34] and Connes [5] as defor-
mations of T¢ characterised a by non-zero skew-symmetric matrix ® € M, (R).
Denote by C* (T”é) the algebra generated by d unitariesu;,i = 1, ..., d satisfying

UpUj = e P uj Uy, (B.3)

and with Schwartz coefficients. So, a € COO(TZ)) canbe writtenasa = ), ez @ Ug,
where {a;} € S(Z%) (i.e. SUPgeza [kt |™ - - - |kg|" |ag| < oo, Vn; € N) and

Lk.O'k

_ k
U, i=e 2 up' -ukt, kel

where @’ is the restriction of @ to its upper triangular part. Relation (B.3) reads

U U, = e 910, or UU, =e ™ ®10,U; . (B.4)
Thus, the unitary operators Uy satisfy

U = Uy and [Ug, Uj] = =2i sin(3k.01) Ugy,.

Let 7 be the trace on COO(TI‘@) defined by

I(Zkezd Ay Uk) =qQ

and J7; be the GNS Hilbert space obtained by completion of C“(T‘é) with respect
to the norm induced by the scalar product (a, b) := t(a*b).

On J6 ={) 1o ax Up | {ar}k € (24}, let 8., for we{l,...,d}, be the
pairwise commuting canonical derivations, given by

8, (Up) := ik, Uy . (B.5)
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Define now
g = COO(TZ)) acting on % := 7, @ C*, with m := |d/2].

Each element of o7y is represented on 57 as w(a) := L(a) ® 1,» where L(-) (and
R(-)) is the left (right) regular representation of COO(T%). The Tomita conjugation
Jo(a) 1= a* satisfies JoL(a) = R(a*)Jp and [Jy, §,,] = 0 and we defineJ := Jy ® Cy,
where Cy is an operator on C" such that Cé = +1,m, depending on the parity of m.
The (flat) Dirac-like operator is given by

9D :=—is, @ y", (B.6)

with hermitian Dirac matrices y satisfying Coy* = £y *Cy (see [6, 22] for details
about the signs). The operator & is defined and symmetric on the dense subset of .77
given by C*°(T%) ® C*" and we still denote by ¥ its selfadjoint extension. Thus

2Ur®e =k, U ® yhe;,

where (e;) is the canonical basis of C*".
Finally, in the even case, the chirality operator reads: y := id ®@(—i)"y"'---y<.
The operator Z is not invertible: ker 2 = Uy ® C?" has dimension 2™ because if
Y= Zk’j ckjUr ® e, then 0 = 2y = Zk’j Ckj IklI? Uy ® e;. Thus,

Py = |Up)(Up| ® L2 (B.7)

This yields a spectral triple:

Theorem B.1 The tuple (g, 7€, 2, J, y) is a real regular spectral triple of dimen-
sion d. Its KO-dimension is also d.

Most of the arguments will be revisited in the computation of the dimension spectrum
— see Theorem B.2. For a complete proof see [6, 22].

We remark that the torus actions on C*-algebras lead to interesting nonunital
spectral triples, see [4, Chap.5].

B.3.1 Dimension Spectrum

Theorem B.2 (i) If %(H) is badly approximable, the spectrum dimension of the
triple (C°° (T4), A, .@) is equal to the set {d — k : k € N} and all of the poles are
simple.

(ii) ¢p(0) = 0.
Proof (i) Let B € (&) and p € N. Suppose that B is of the form
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B=ab. 2"\ 9" a,_1b,_1 --- 21| D|" a\by,
where r e N, a; € o7, b; € JAJ 7', q;, pi € N.

We decompose a; =: Y, za aie Ug and b; =: )", bi o Up.
With the shorthands &, ,,, =k, -k, and yHtta = pHt...yta we get

UMD a1by Uy, ® ¢j

= Y a1.0,by,g Up UrUyg [k + € + 117 (k + 01+ €y ey, @ ¥H 10,
K].(f’l

which gives, after r iterations,

r—1

~7 ~ -~ =
BWUy®e) = ) AbeUs, U UgUp - Uy [ TIk+ G+ G k4840 i
L,0ezd i=1
® )/M 1’/‘:1:1 e y“i*“% €.
where dg:=aie -are,. by =byg by,
—~ r—1 Mr*]

bii=0 4+ 4, yHho= M e .,.y“i’/‘él.

Let us denote F, (k, £, ¢') := Hf:ll |k + 0+ ’[”p,- (k + G+ z;)ﬂi -
= Hg;
With the shortcut ~, meaning equality modulo a constant function in the variable
s, we have
e , - Fu(k,0,0)
Tr (BIDI ™) ~c 3" D Gbe t(U—Us, - U Uy Uy -+ Uy) i (7).
kezd ¢.0'ezd

Since Uy, - - - Uy, Uy = U Uy, - - - Uy, e i L0k we get
t(U_kUs, - Uy UlUp, -+ Up) = 85 g e ¥G0) e Zimt 60K,

where ¢ is a real valued function. Thus,

o oy o (k) e T GOk
T BIDITP™) ~e 3 30 PO b o @be "
kezd ¢.0'ezd
~e fu() tr (yH).

The function f, (s) can be decomposed as a linear combination of zeta functions of
the type described in Theorem A.12 (or, if » = 1 or if all p;’s are zero, in Theorem
A.11). Thus, by linearity, s — Tr (B|D|’P’S) has a meromorphic extension to C
with simple poles located exclusively in Z C C.

Moreover, if B € ¥%(«7) and g € N is such that ¢ > d, then B|D|™* € OP™"'(®,
so it is trace-class around ¢ and hence ¢z p(s) = Tr B |D| ™’ is regular around q.
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(ii) Let Zy(s) := Y 'reze k]| ™ be the Epstein zeta function associated to the
quadratic form g(x) := x% 4+ + xﬁ. Then Z; enjoys the functional equation:

Zy(s) =772 rd)2 —s/2)(s/2)"  Zy(d — s). (B.8)

Since ns’d/ZF(d/Z —5/2) I'(s/2)~! = 0 for any negative even integer d and Z, (s)
is meromorphic on C with only one pole at s = d (with residue 279/2I"(d/2)!
according to (A.25)), we get Z;(0) =

By definition, {p(s) = ) oy Z] ' Uk ® ¢j, |D| Ui ® ¢;), so that

to(s) =212 Z() + 1) (B.9)

and the conclusion ¢p(0) = 0 follows. U

B.3.2 Heat Kernel Expansion

Proposition B.3 The heat trace asymptotics is Tr e~ 7" o 22 g d/2 4=d)2,
t

Proof Since 2°U; ® e; = Ik||? U ® e;, we know by Formula (2.22) that

017 _om Z ot IKI? ,’JO old/2) d/2 —dj2. 0
kezd

This result can also be obtained (in an admittedly circuitous way) from Theo-
rem3.6: We have Zp(s) = 21 (s)(Z;4(2s) + 1) and the Epstein zeta function Z; is
meromorphic on C with a single simple pole at s = d. Moreover, the Epstein zeta
function enjoys a polynomial growth on the verticals — see the non trivial estimates
demonstrated in [14, 30].

Remark that we recover the classical result: For the torus T¢ with the usual scalar
Laplacian A = —gH"9,d,, Tr e™'4 = Vol (T?)(4m)~4/2 t=4/2 4 Oy (t~4/2e~1/4)
and Vol (T?) = (2)? so that Vol (T?)(47)~4/?> = 74/? = a, o (mod 2™).

B.3.3 Spectral Action for Noncommutative Tori

We consider the d-dimensional noncommutative torus (g, .77, &) of Theorem B.1
with o/ = COO(T ), aone-form A = A* € .Q () and

A=A+ eJAT". (B.10)

Thus, the constraint A = A* € ¥%(&) is satisfied.
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Remark that A can be written as A =: L(—iA,) ® y“, where A, = —A} € o,
so that

Dn = —ilda + L(Aa) — R(AL)] ® v*. (B.11)
As for the commutative torus T¢, we get
D} = =89 (8g, + M) By + Aay) @ 1on — 1 20,0, ® y12,
where §%f is the Kronecker symbol and

Ag 1= LAd) = R(Aa), ¥y = 5 (yMy™ — y™y™),
Qalaz = [6011 + AO{[? 60(2 + Aaz] = L(F()tlolz) - R(Fa]ag)a
FO(]OQ = 80(1 (AOQ) - Saz(Aa]) + [AotlﬂA(Xz] € “!Z{@' (B‘lz)

Thus,

@ﬁ = —8%"[84, + L(As,) — R(Ag,)1[84, + L(Ag,) — R(Ag,)]1 ® Lom
_% (L(Fﬂllﬂlz) - R(Fozlozz)) ® ]/alaz. (B13)

We now prove the existence of the asymptotics of the fluctuated heat trace on the
noncommutative torus using the one for the ‘bare’ one given in Proposition B.3 (cf.
also Problem 6(e) in Chap. 5). To this end, we employ the pseudodifferential calculus
introduced by Connes for C*-dynamical system (A, R4, &) (see [3, 7, 8]) and follow
the arguments given in the proof of [29, Theorem4.2]. The idea is essentially to
mimic the classical pdo calculus on a manifold — cf. Appendix A.3 — improving
the Proposition2.27 to gain control on the series defined by Tr e™'? A

We first quickly summarise this symbolic calculus — see [5, 7, 8] (and especially
the complete approach by Lesch and Moscovici [29]) for details.

Let Ay be the universal C*-algebra generated by the U, and let 7, consist of
those elements in Ay for which a — «,(a) is C® for each s € R?, with the definition
as(Uk) = e—i27'r S'kUk.

A smooth map p : C®(R?) — & is named a symbol of order m € Z if for
any k, £ € N%, [|8%0 p(&)I| < cr.e(1+[IE])") for some constants ¢, where
we define 8% ;= §{' -+ 85 for k € N¢ and f := 3’ --- 0, and if there exists
oeC™® (Rd,Ago) such that limy o A" p(A€) = o (€). Such a symbol is elliptic
when p(£)~! exists and the estimate ||p(£)~'|| < c¢(1 + [|€]|)~™ holds for ||£]| large
enough.

Given a symbol p, let us define the pdo P,, : SRY, o) — S(R?, ) by

P,(u) == /a_x(S‘l[p](x — ) u@y)dy = /a_x(S‘l[p](y))u(x —y)dy.
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An action of the pre-C*-algebra <7 x, R? on the pre-C*-module S(RY, .<%) is given,
fora € A, by au(x) = a_(a) u(x) and U, (u)(x) := u(x — y).

Then, P, = [ S 'pl) Uydy can be seen as an element of the multiplier
space of Ay x, R?. The GNS representation of A, given by the trace T can be
extended to Ay X, R?, with the maps a € Ay > a and U, — «,, so that
P, = f S el oy dy can be seen as an element of the multiplier of Ay.

Since P, Uy = f%‘l[p](y)e_iz”y'k dy U = p(k) Uy, we get, for any element
a= Zkezd ai Uy, Pp(a) = ZkeZd ai p (k) Uy.

Thus, Tr P, =) iUk, PoUk) = D 4 cqa TWULp(R)UR) = ) ey Tlp(K)] s
finite if m < —d, because || p(k)|| < coo(1 + (X0, k2)/2)™.

A parametric symbol p (&, A) with A € V —a region in C is defined similarly:

18%0£ 05 p (&, Ml < cre (1 +[IE] + (A1, (B.14)

Cf. [19, Sect. 1.7.1] and the (slightly different) Hypothesis A.1 of Appendix A.3.
‘We now adapt the Proposition2.27:

Proposition B.4 Ifp € S"(R? x V, Ag°) is a parametric symbol of order m < —d,
then Y "y za Pk, A) = [a p(5, 1) dE + Ono(IA]7%).

PVOOf Using (219)» ZkEZ" p(k5 )") = f]Rzl p(§9 }") + ZkEZd\{O} S[p(a )")](k)
Via the Fourier transform of a derivative and (B.14), we get, for each N € N*,
IFoC. DI < 1NN |A|“FN and the conclusion follows from: For any g € N7,

>0 BloC AW < eqn (20 )

keZd\(0) keZd\ (0} O
Lemma B.5 For 9, as in (B.11), we have Tre 7 TO > oreo ar(Dy) th=D/2,
t

Moreover, for f (\/-) € C§ with r > d /2, the spectral action has the asymptotics

d oo
S(Dn.f M) =) A /0 foi ar ][ DA™ +£(0) ¢, (0) + Oo(ATH).
k=1
(B.15)

Proof The operator &, given in (B.11) can be seen as a differential multiplier of
order 1. Namely, 7, € Diff! (R?, %, ® C*"), where %, is the algebra generated by
oy and J oy ', following a slight extension of [29, Definition3.5]. The symbol
of Dy is 69,(8) = (5 — iAy — iJA,J ") ® y®. Thus, 7} given in (B.13) has the
form ) g na. B1<2 bg&#, where by € By ® C*" with&F .= &' .. f", and 73 is an
elliptic differential multiplier of order 2. As such, its symbol can be decomposed into
a sum of monomials a;(§) of order j = 2, 1, O: 0%(5) =a )+ a1(§) + ap.

If A is the resolvent parameter for (.@i —2)~Y, in the search for the resol-
vent parametrix B, we need to solve 1 = o, x op, for the parameter dependent
symbol 0, (§) :=052(§) — A = ay (&) + a1 (€) + ap with a5 (§) = a,(€) — A. Since
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op, = by + by + by + ..., where b;(&; L) is asymbol of order —2 — j, one can com-
pute recursively the symbols by, by, by, ... of the parameter-dependent pseudodif-
ferential multiplier B, (see [7, 8, 16, 17, 29] for examples of such computations).
Then, thanks to (A.24), Tr e~'7% = r**+1.L [ e~ Tr[(22 — 4)~*]d] (recall
that Tr [(23 — A)*] < cofork > |d/2] + 1), one implements the resolvent expan-

sion into the integral to get the asymptotics Tr e~'Z4 % Y oreoax(Z3) th=Dr2
t

exactly as in [19, Sects. 1.7 and 1.8] using the Proposition B.4.
Thus, 4 (73) = 5 [pa d€ [, e Tlbr(E, M)]d .
Finally, we use Formula (3.43), which becomes (B.15). U

While there is no Diophantine condition to get the asymptotics of the fluctuated
heat trace, the computation of the coefficients seems to need one — this is due to a
commutation between a series and a residue.

Theorem B.6 Assume that %6) is badly approximable. Then, the spectral action
(B.15) fluctuated by A as in (B.10) reads, for f (\/_) e Cywithr > d/2,

Arfy A + Os(A72), ford =2,

A =
S(-@A,f7 ) {8ﬂ2f4 A4 — % 0) T(F;/.VFMV) + Ooo(A_z)’ ford = 4.
For arbitrary d, S(Dy,f, A) = ZZ;(l)fd_k Ca—i(A) A4F 4 Ox(A™Y), where we
have cq—>(A) = 0 and cy4—;(A) = 0 for k odd. In particular, cy(A) = 0 when d is
odd.

We do not know if, without the Diophantine condition, the above spectral action
would stay the same, see [18, Appendix B].

The proof goes through several steps and the first one is to identify the noncom-
mutative integrals in (B.15):

Proposition B.7 Assume that %@ is a badly approximable matrix. Then, we have
d+2
FIDuI~ =22 g2 ()71, fIDAI74H* = 0 for k odd and f|Da|~4*? = 0.

These equalities follow from the explicit computation of (4.15)—(4.24) and the
fact that { P |D|™¥*% = 0 for any P € ¥'(.<7) and any odd integer g.

In a similar way, f A’D~¢ = f(eJAJ*)’D~7 = 0 and f PD~9T7 = 0 for p > 0,
1 < ¢ < d and P in the algebra generated by <7, [Z, &/, J&/J*, J[Z, < 1J*. All
these equalities can be proved using the deep results stored in Appendix A.6. The case
p = q = 1 corresponds to the fact that there is no tadpole for the noncommutative
torus — see Definition4.12. The main point is again to be able to commute an infinite
series, like those defining an element of <7, and a residue given by { and this is
where the hypothesis on %(H) is used.

In the second step, we face explicit computations like, inter alia, the following:

Lemma B.8 Under same hypothesis (recall that A = L(—iAy) Q@ y%),
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P —8g,24m T(AgAY) ford =2,
ATD™ = 72 a ag., 01 m —
6q,4 12 T(Aoq o 'AO(4) tr ()/ YTty ety )(Sltl,pu,/l,}./u ford - 4,

where 8y, iy s = Sy Spuapns F SpinsSpaps F SprpaSpas-

WithA = L(—iAg) @ y* = —i ) ey e, Uy ® y* and ¢ := %, we have

%][(AD*I)2 = %][(sJAJ*D’l)Z =C Y a0 uy e (177€2 = 54 1€]?).

Lezd

- g][(AD*')3 =—%][(£JAJ*D’I)3 =4CY " Auy 1t Gy 5 Gy SIN LG AT

L;eZd
%][(AD*I)“ = %][(sJAJ*D’I)“

=2 E oy~ —tr—t3 Gy, 03 Aoy € Aoy £y SIN
L;e7d

fl-@(gz+53) sin 132-(2“)153_

These equalities follows from tedious computations (cf. [15] for the details). They
are necessary to get ¢p, (0) from (4.32), using {p(0) = 0 obtained in Theorem B.2.
This gives ¢p, (0) = —c t(F,,,F"") in dimension d = 4, while {p, (0) = Oford =2
or when d is odd. Gathering all these computations brings us to Theorem B.6.

B.4 Podles Sphere

Podles has introduced the eponym standard quantum spheres in [32] as homogeneous
spaces under the action of the quantum deformation of the SU (2) group. They fit into
the picture of noncommutative geometry a la Connes and concrete spectral triples
were constructed in [11, 12], see also [10].

The algebra <7, introduced in [32] is a complex *-algebra generated, for a param-
eter0 < g < 1,by A = A*, B, B* subject to the relations

AB = ¢’BA, AB* = ¢ ’B*A, BB* =q ?A(1 —A), B'B=A(l —g¢°A).

As a C*-algebra, it is isomorphic to the minimal unitisation of the algebra of compact
operators on a separable Hilbert space and is an invariant subalgebra of the quantum
group SU,(2) under a circle action. We will use only the polynomial algebra .7, in
the above generators, which is a dense subalgebra of ,@/;

In the following we will employ the g-numbers defined as

[n] := 45=L, for g€ (0, 1) andn € C. (B.16)

Observe that lim,_,[n] = n forany n € C.
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Let 7, be the separable Hilbert space with an orthonormal basis |/, m) for
me{—Il,—l+1,...,1} and [ € % + N. It is suitable for a representation of <7,
equivariant under the action of the *-Hopf algebra % (su(2)). There exist two non-

equivalent %, (su(2))-equivariant representations of .o7;, on S, [12]:

Tl mye = AL L me +AD L me + AL, =1 m)x,

(B.17)

we B\, myx = Bl I+, m+ 1)+ B, o Lm+ D) + B, =1, m+1)x,

ne B\ m)x =B, I+ Lm0t B,y g llm=1)at By, 1= 1m—1),

1
AL = =" 2T —m+ MU +m+ 1o,
1
Al =q 2z (L=m+ 10U +ml =gl =mll+m+1]) e} + s,

i
A, = ¢" 2V = mlll + m] o,

Bl =q"VIl+m+ 1l +m+2] e,
B, =q"VIl+m+1][l —m]

=" =mlll—m—1] e,

= V= 2= T
Bgm — qm_l\/[l +m]ll —m+ 1] Ollo s

B, =q""VU+mll+m—1]af,.
The coefficients o; read: o, := —g*t? a;“ and
formy : of = ﬁ%,
of =4 T
form_ : o) = ﬁ%’
o =0 o -

Since ¥ are faithful, the algebra 7, is dense in ,537; in the operator norm.

(B.18)

(B.19)

(B.20)

(B.21)
(B.22)

(B.23)
(B.24)
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Let now J; := J} @ S , where Jt;. := J4 , with the representation of .27

(7@ O
@ = (") (B.25)
On 7 we define an unbounded selfadjoint operator given by

P, = (,D‘)Tq @OTq) . T, lm) e Ay [+ HLm) e Ay, (B26)
for an arbitrary constant w € C \ {0}.
We note that ker 7, = {0} and the polar decomposition of Z, reads

9, =F|7,|. with |@q|=|w|(f;f}’q) and  F:=-L1(0%) (B27)

[w]
The phase operator satisfies [F, w(a)] = 0 for a € 7,. We have
| Dyl (U, m)y @ |1, m) ) = [wlll + 51 (L, m)y ®|1,m)_),
which gives
wn(Zy) = r(1Z,) = lwlln+ 1] and M,(|Z,]) =4(n+1), neN. (B.28)

Let us recall (B.16) and observe that the singular values of &, grow exponentially.
In [12] it is proven that (<7, 7%, %,) is a spectral triple, which moreover is even
fory = ((1) 5 ) and real for the antiunitary operator J on 7, defined by

J,myy == i?"p™ |, —m); withp € RT.

In particular, J: = —1,Jy = —yJ,JaJ ' commutes with yand[Z,, J] = 0,s0the
spectral triple is of KO-dimension 2 [9]. The operator & is the unique %, (su(2))-
equivariant operator fulfilling the first-order condition, which makes the spectral
triple real [12].

In the limit ¢ — 1 one recovers the commutative spectral triple on the 2-
dimensional sphere — cf. [32, Remark 2] and [12, p. 8].

In [32] yet another Dirac operator for the standard Podles sphere was introduced

— S — 2.
@s::( 0 qu>7 TS |l,m>€jﬁ/2|_>w|l,m)ef%pl/2.

1 wly 0 g
which shares the property of the exponential growth of singular values with Z,.
The operators 7, and &, commute and are related by 7, = 7 — (% N
Remark that (7))~ is actually trace-class. It turns out that by taking 7 instead of
2, we preserve most of the properties of the spectral triple with the exception of the
first order condition. Moreover, we have
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|Z4) = 121 = =012,

1—¢*
Proposition B.9 The triples (<7,, 7€, 9,) and (7, 7, .@5 ) are O-dimensional.

Proof This is a direct consequence of the exponential growth of singular values of
9, and @5 .Indeed, u,(Z,;) = Ox(q™") and un(@qS ) = Ox(g™™), whereas we have
M,(12,]) = Mn(|@(f|) = Ox(n), which means that for any ¢ > 0 both Tr |Z,|~*
and Tr | 75|~ are finite. O

Observe that, whereas the limit g — 1 of the spectral triple (<7, 77, Z,) is well
defined and yields the standard round geometry on S, the spectral dimension jumps
abruptly from O to 2. This phenomenon, known as the ‘dimension drop’, has also its
impact on (co)homologies of ;z/; [31] and provided inspiration for ‘twisted” noncom-
mutative geometries (see Problem 3 in Chap. 5). The potential physical implications
of the dimension drop in the context of quantum gravity are the subject of an intensive
study — see, for instance, [3].

Another drastic consequence of the exponential growth of singular values is that
neither of the spectral triples (<7, 57, 9,), (%, 7, 95 ) is regular. In fact, already
[l@ I, [12], a]] is an unbounded operator and more generally §"(a) is an operator of
order n — 1 for a generic element a € 7. This could be seen by computing a fixed
matrix element of the operator §”(A), for instance:

L m WL mye = ([1+3] - [1+ 1) A, -

The behaviour of Azrm for large [ is Ouno(q'), which can be read from the explicit

Formula (B.18), while ([l + %] — [+ %])" = Os(g™™), and the above expression
is unbounded for n > 2, and, generally, §"(A) is in op!,
Note that, in general, 8%(a) and 8'(a) are bounded for any a € ./, but not 8%(a).
Nevertheless, the spectral triple (%7, 7, ) is quasi-regular (recall Sect. 1.7).

Within this extended framework one discovers that [13, Corollary 3.10]:

Theorem B.10 For any 0 < g < 1, the dimension spectrum of (#,, 75, D) is of

the order 2 and equals to —N + ilggq Z.

Proof (sketch) Firstly, one shows (using a simple summation of geometric series
[13, Proposition 3.2]) that the basic zeta function reads

o0
- 1-¢* I (s+n)
$9,(5) =Tr |2, = 4(ﬁ)s TG =gy »
n=0

2n

for N(s) > 0.

This formula leads us to the realm of ‘g-zeta functions’ (see [26] and other references
on [13, p.633]). It yields a meromorphic extension of {5, to the whole complex plane
with second order poles in —2N + i %Z c C.

Secondly, one shall consider general functions ¢p o, with P € l1~/0(£Z1) (cf. [13,
Proposition 3.8]). To start, one notices that it is sufficient to consider elements of
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the form P = T|Z,|™7, with T € & (/) Nop” forsomen € Nandn < p € Nand
uses the quasi-regularity [13, Lemmas 3.4 and 3.6] to commute all of the operators
9, and |Z,| from T to the right. Then, one observes that the generators of <7, are
represented via 7 in terms of weighted shift operators on .77;. Moreover, the weights
are analytic functions of (bounded) variables ¢'*", =™ and ¢'. Rewriting these in
terms of infinite convergent Taylor series one arrives at a formula for {7 4, , which
involves a (multiple) infinite series in ¢'. Finally, a resummation over / € N + 1/2
yields the desired meromorphic extension of {p », to C — cf. [13, Eq. (30)]. (]

The zeta function associated with the simplified operator 95 was presented in
Example 3.13. Although the spectral triple (<7, 73, @5 ) has not been studied exten-
sively in [13], one can show along the same lines that it is quasi-regular and has a
dimension spectrum of second order equal to —N + i%Z.

The exponential growth of singular values of &, has also some pros: It leads to

the following spectacular result highlighted at the beginning of Sect.2.6:

Theorem B.11 Let f € Cj for some r > 0 and denote x := %. Then, for any
A >0,

o0 2 n
SDarf- M=) D" Y a s (=" () f-2krijm (log A)" " AZHFH,

k=0 jeZ n=0 m=0

Proof (sketch) The theorem is proven in detail in [13], via the heat trace expansion.
It uses the full force of Theorems 3.12, 3.17, 3.24 and Corollary 3.25. The estimation
of the contour integrals is rather subtle and arduous — cf. [13, Proposition4.3]. [

This result is remarkable for two reasons: Firstly, the formula for the spectral
action contains terms proportional to log> A and oscillating with A, which is a sign
that the geometry of Podles$ sphere lies outside of the kingdom of classical pdos
(recall Example2.37). Secondly, the formula is exact for all A > 0 and for a fairly
general class of cut-off functions. Recall that in the classical (pseudo)differential
geometry one is bound to use the asymptotic expansion, which might obscure some
important information (see p. 30).

As for the fluctuations, these are much more tedious to control in the quasi-regular
case. In [13, Theorem5.6] it was shown that the leading term of S(Z, + A, f, A)
does not depend on A, when the fluctuation is ‘small’, but a deeper understanding of
the problem is missing. In particular, it is not clear whether an explicit exact formula
for the fluctuated action is available at all.
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