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Preface

The Least Action Principle is among the most profound laws of physics. The
action — a functional of the fields relevant to a given physical system — encodes
the entire dynamics. Its strength stems from its universality: The principle applies
equally well in every domain of modern physics including classical mechanics,
general relativity and quantum field theory. Most notably, the action is a primary
tool in model-building in particle physics and cosmology.

The discovery of the Least Action Principle impelled a paradigm shift in the
methodology of physics. The postulates of a theory are now formulated at the level
of the action, rather than the equations of motion themselves. Whereas the success
of the ‘New Method’ cannot be overestimated, it raises a big question at a higher
level: “Where does the action come from?” A quick look at the current theoretical
efforts in cosmology and particle physics reveals an overwhelming multitude of
models determined by the actions, which are postulated basing on different
assumptions, beliefs, intuitions and prejudices. Clearly, it is the empirical evidence
that should ultimately select the correct theory, but one cannot help the impression
that our current models are only effective and an overarching principle remains
concealed.

A proposal for such an encompassing postulate was formulated by Ali
Chamseddine and Alain Connes in 1996 [5]. It reads [5, (1.8)]:

The physical action should only depend upon the spectrum of D,

where D is a certain unbounded operator of geometrical origin. The incarnation
of the Spectral Action Principle is very simple indeed:

SðD; f ;KÞ ¼ Tr f ð Dj j=KÞ;

with a given energy scale K and a positive cut-off function f . Such a formulation
provides a link with the current effective actions employed in field theoretic models
and allows for a confrontation against the experimental data. The striking upshot
of the spectral action is that, with a suitable choice of the operator D, it allows one
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to retrieve the full Standard Model of particle physics in curved (Euclidean)
spacetime [4, 6, 20]. This result attracted considerable interest in both physical and
mathematical communities and triggered a far-reaching outflow of theoretical
research. The most recent applications include Grand Unified Theories [7], modi-
fied Einstein gravity [15] and quantum gravity [10], to name only a few.

The formulation of the Least Action Principle dates back to the eighteenth
century and the seminal works of Pierre de Maupertuis, Gottfried Leibniz and
Leonhard Euler. The quest for its rigorous verbalisation sparked the development
of the calculus of variations along with the Lagrangian and Hamiltonian for-
malisms. The modern formulation is expressed in the language of differential
geometry.

The Spectral Action Principle is embedded in an even more advanced domain of
modern mathematics — noncommutative geometry, pioneered and strongly pushed
forward by Alain Connes [8, 9]. The idea that spaces may be quantised was first
pondered by Werner Heisenberg in the 1930s (see [1] for a historical review) and
the first concrete model of a ‘quantum spacetime’ was constructed by Hartland
Snyder in 1949, extended by Chen-Ning Yang shortly afterwards. However, it took
almost half a century for the concepts to mature and acquire the shape of a concrete
mathematical structure. By now, noncommutative geometry is a well-established
part of mathematics.

Noncommutative geometry à la Connes sinks its roots not only in the
Riemannian geometry, but also in the abstract framework of operator algebras. Its
conceptual content is strongly motivated by two fundamental pillars of physics:
general relativity and quantum mechanics, explaining why it has attracted both
mathematicians and theoretical physicists. It offers a splendid opportunity to con-
ceive ‘quantum spacetimes’ turning the old Heisenberg’s dream into a full-bodied
concept.

In this paradigm, geometry is described by a triplet ðA;H;DÞ, where A is a
not necessarily commutative algebra, D is an operator (mimicking the Dirac
operator on a spin manifold) both acting on a common scene — a Hilbert space H.
Thus, by essence, this geometry is spectral. The data of a spectral triple ðA;H;DÞ
covers a huge variety of different geometries. The classical (i.e. commutative) case
includes primarily the Riemannian manifolds, possibly tainted by boundaries or
singularities, but also discrete spaces, fractals and non-Hausdorff spaces and when
A is noncommutative, the resulting ‘pointless’ geometries, with the examples
furnished by the duals of discrete groups, dynamical systems or quantum groups to
mention but a few.

At this point, one should admit that the simple form of the spectral action is
deceiving — an explicit computation would require the knowledge of the full
spectrum of the operator D, which is hardly ever the case. Nevertheless, one can
extract a great deal of physically relevant information by studying the asymptotics
of SðD; f ;KÞ when K tends to infinity. The key tool to that end is the renowned heat
kernel method fruitfully employed in classical and quantum field theory, adapted
here to the noncommutative setting. Beyond the (almost) commutative case, the
latter is still a vastly uncharted water. It is our primary intent to provide a faithful
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map of the mathematical aspects behind the spectral action. Whereas the physical
motivation will be present in the backstage, we leave the potential applications to
the Reader’s invention. To facilitate the latter, we recommend to have a glimpse
into the textbooks [15, 20] and references therein.

The plan of our guided tour presents itself as follows:
In the first chapter, the basics of noncommutative geometry à la Connes are laid

out. Chapter 2 is designed to serve as a toolkit with several indispensable notions
related to spectral functions and their functional transforms. Therein, the delicate
notion of an asymptotic expansion is carefully detailed, both in the context of
functions and distributions. With Chap. 3, we enter into the hard part of this book,
which unveils the subtle links between the existence of asymptotic expansions of
traces of heat operators and meromorphic extensions of the associated spectral zeta
functions. While trying to stay as general as possible, we illustrate the concepts with
friendly examples. Therein, the large energies' asymptotic expansion of the spectral
action is presented in full glory. Chapter 4 is dedicated to the important concept of a
fluctuation of the operator D by a ‘gauge potential’ and its impact on the action. In
terms of physics, this means a passage from ‘pure gravity’ to a full theory vested
with the all admissible gauge fields. In terms of mathematics, it involves rather
advanced manipulations within the setting of abstract pseudodifferential operators,
which we unravel step by step. We conclude in Chap. 5 with a list of open prob-
lems, which — in our personal opinion — constitute the main stumbling blocks in
the quest of understanding the mathematics and physics of the Spectral Action
Principle. We hope that these would inspire the Reader to have his own take on the
subject. The bulk of the book is complemented with a two-part Appendix.
Section A contains further auxiliary tools from the theory of pseudodifferential
operators, including a detailed derivation of the celebrated heat kernel expansion. In
Section B, we present examples of spectral geometries of increasing complexity:
spheres, tori, noncommutative tori and a quantum sphere.

This book is devoted to the spectral action, which is only a small offspring in the
vast domain of noncommutative geometry. Therefore, when introducing the rudi-
ments of Connes’ theory, we are bound to be brief and focus on the specific aspects
related to the spectral action. We refer the Reader to the textbooks for a complete
introduction on noncommutative geometry [9, 11, 13, 14, 21].

Let us also warn the Reader that, although we have designed the book to be as
self-contained as possible, some mathematical prerequisites are indispensable to
grasp the presented advanced concepts. The Reader should be acquainted with the
basics of functional analysis, including, in particular, the spectral theory of
unbounded operators on Hilbert spaces (e.g. [2, 17, 18]) and the rudiments of
operator algebras (e.g. [3, 12]). Some intuitions from global differential geometry
(e.g. [16]) and the theory of pseudodifferential operators (e.g. [19]) may also prove
useful.
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Our ultimate purpose is not only to provide a rigid first course in the spectral
action, but also to charm the Reader with the marvellous interaction between
mathematics and physics encapsulated in this apparently simple notion of spectral
action. Let res ipsa loquitur…

During the years spent in the realm of noncommutative geometry, we have
collaborated with a number of our close colleagues: Driss Essouabri, Nicolas
Franco, Victor Gayral, José Gracia-Bondía, Michael Heller, Cyril Levy, Thierry
Masson, Tomasz Miller, Andrzej Sitarz, Jo Varilly, Dmitri Vassilevich, Raimar
Wulkenhaar, Artur Zając. We also took benefits from discussions with Alain
Connes. Moreover, Tomasz was a scrupulous proofreader and Thierry was a great
help with the LaTeX typesetting. It is our pleasure to cordially thank all of them, as
without their kind support this book could not come into being.

Finally, we are greatly indebted to our families for their constant support.
We acknowledge the financial support of the Copernicus Center for

Interdisciplinary Studies in Kraków Poland through the research grant ‘Conceptual
Problems in Unification Theories’ (No. 60671) awarded by the John Templeton
Foundation, and the COST Action MP1405 ‘Quantum Spacetime’.

Kraków, Poland Michał Eckstein
Marseille, France Bruno Iochum
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Chapter 1
The Dwelling of the Spectral Action

Abstract The natural habitat of the spectral action is Connes’ noncommutative
geometry. Therefore, it is indispensable to lay out its rudiments encoded in the notion
of a spectral triple.Wewill, however, exclusively focus on the aspects of the structure,
which are relevant for the spectral action computations. These include i.a. the abstract
pseudodifferential calculus, the dimension spectrum and noncommutative integrals,
based on both the Wodzicki residue and the Dixmier trace.

1.1 Spectral Triples

The basic objects of noncommutative geometry à la Connes are spectral triples. As
the name itself suggests, they consist of three elements: an algebra A , a Hilbert
spaceH and an operatorD acting onH . These three constituents are tied together
with a set of conditions, which could be promoted to the axioms of a new — not
necessarily commutative — geometry.

In the following, we shall denote successively by L (H ), B(H ), K (H ),
L 1(H ) the sets of linear, bounded, compact and trace-class operators on H . As
for the latter, Tr will always stand for TrH , unless stated explicitly.

Definition 1.1 A spectral triple (A ,H ,D) consists of a unital involutive algebra
A , with a faithful representation π : A → B(H ) on a separable Hilbert spaceH ,
and D ∈ L (H ) such that:

• D is a (possibly unbounded) selfadjoint operator on H ,
• [D, π(a)] extends to a bounded operator on H for all a ∈ A ,
• D has a compact resolvent – i.e. (D − λ)−1 ∈ K (H ) for λ /∈ spec(D).

Remark that the second assumption requires that π(a)DomD ⊂ DomD . It is stan-
dard to omit the symbol π of the representation when it is given once and for all.

This flexible definition is tailored to encompass the largest possible spectrum
of different geometries. However, in order to have workable examples one often has
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2 1 The Dwelling of the Spectral Action

to take into account the topology of A . To this end, one can, for instance, demand
that A is a dense ∗-subalgebra of a C∗-algebra or, more restrictively,
a pre-C∗-algebra — if one desires to have a holomorphic functional calculus.

The set of axioms adopted in Definition1.1 is at the core of Connes’ noncom-
mutative geometry. Shortly, we will discuss two additional properties of a spectral
triple: p-summability and regularity, which are crucial for the sake of explicit spec-
tral action computations. Before we do so, let us illustrate Definition1.1 with the
canonical example.

Example 1.2 Let M be a compact Riemannian manifold without boundary and let
P be any elliptic selfadjoint pseudodifferential operator (pdo) of order one on a vector
bundle E overM endowed with a hermitian structure. Then (C∞(M ),L2(M ,E),P)

is a spectral triple. In fact, P has a purely discrete spectrum and its singular values
grow to infinity [57, Lemma1.6.3], so its resolvent is compact. Moreover, since
a ∈ C∞(M ) can be seen as a pdo of order zero, [P, a] is bounded as a pdo of
order 0. The archetype of such situation is whenM is spin: LetS be a spinor bundle
overM . Let moreoverA = C∞(M ),H = L2(M ,S ) and letD = D/ := −iγ μ∇S

μ

be the standard Dirac operator on (M ,S ) (cf. [53]). Then, (A ,H ,D) is a spectral
triple. �
As the algebra A in the above example is commutative, the associated spectral
triple is also called commutative. A natural question arises: Given a spectral triple
with a commutative algebra A , can one recover the underlying manifold? The pos-
itive answer is the content of the famous Connes’ Reconstruction Theorem [33]. It
requires several additional assumptions on the spectral triple (see [108, Chap.3] for
a pedagogical explanation of these). However, in the noncommutative realm, there
are known examples of perfectly workable noncommutative geometries for which
some of these additional assumptions are not satisfied [43–45, 49].

If M is a locally compact Riemannian spin manifold, then the natural associated
C∗-algebraA = C0(M ) of functions onM vanishing at infinity does not have a unit.
Moreover, the Dirac operator on M does not have a compact resolvent.
Thus, when A is not unital, the last item of Definition1.1 needs to be replaced by

• a(D − λ)−1 is compact for all a ∈ A and λ /∈ R.

Equivalently, one can require a(D2 + ε2)−1/2 to be compact for any ε > 0, a ∈ A .
Again, in practice one needs to consider the topological issues. This can be done

(see, for instance, [54]) by demanding that A and a preferred unitisation ˜A of A
be pre-C∗-algebras, which are faithfully represented on H in terms of bounded
operators and [D, a] extends to a bounded operator for every a ∈ ˜A . See also [98].

To simplify, we stick to the original Definition1.1 and hence assume from now
on that the algebra A is unital, unless explicitly written.

Example 1.3 A basic noncommutative spectral triple is defined by

AF =Mn(C) (complex n× n-matrices), HF = C
n, DF = D∗

F ∈ AF . �

Since theHilbert spaceHF is finite dimensional, finite direct sum of (AF ,HF ,DF )’s
as in Example1.3 are called finite spectral triples (see [76] for a classification).



1.1 Spectral Triples 3

Taking a tensor product of a commutative spectral triple with a finite one results in
an almost commutative geometry [73]. There exists an analogue of the Reconstruc-
tion Theorem for almost commutative spectral triples [11] allowing one to retrieve
a smooth manifoldM together with a vector bundle and a connection. Almost com-
mutative geometries are extensively employed in building physical models of fun-
damental interactions [7, 20, 86, 100, 104].

The purpose of this book is, however, to study the spectral action in full generality
of noncommutative geometry, beyond the almost commutative realm. We refer the
Reader to the textbook [104] for a friendly introduction to almost commutative
geometries and their physical applications.

Example 1.4 Other illustrative examples are given by the noncommutative tori and
the Podleś spheres – see Sects.B.3 and B.4 of AppendixB. �

Remark 1.5 Given a spectral triple (A ,H ,D) one can always obtain a new
one (A ,H ,DV ), withDV = D + V , V = V ∗ ∈ B(H ) and DomDV := DomD .
Indeed, (A ,H ,DV ) is a spectral triple as [D + V, a] extends to a bounded operator
for any a ∈ A whenever [D, a] does so. Furthermore, if z is in the resolvent of DV

and z′ is in the resolvent of D then,

(D + V − z)−1 = (D − z′)−1 [

1− (V + z′ − z)(D + V − z)−1]

is compact since the first term is compact and the second one is bounded.
However, the geometry of (A ,H ,DV ) need not a priori be related to the one of

(A ,H ,D). If we want to obtain a geometry which is in a suitable sense equivalent,
the perturbation V has to acquire a precise form (see Sect. 1.6). �

On the technical side, we need to take into account the fact that D may be non-
invertible. We adopt the following convention

D := D + P0, (1.1)

where P0 is the projection on KerD ⊂H . The operator P0 is a finite-rank (i.e.
dim Im P0 < ∞) selfadjoint operator on H and D is an invertible operator with a
compact resolvent. Thus, by the previous remark, (A ,H ,D) is also a spectral triple.
Moreover, notice that |D| = |D | + P0 and |D|−1 is compact.

Another possibility is to define (see for e.g. [38]) an invertible selfadjoint operator
D as the restriction of D to the Hilbert subspace (1− P0)H . Yet another option,
chosen in [13], is to work with the invertible operator (1+D2)1/2.

The selection of a prescription to cook up an invertible operator for D is only a
matter of convention (cf. [13, Sect. 6], [51, Remark3.2]). However, one has to stay
vigilant, as different choices may affect the associated spectral functions (see, for
instance, Formula (2.8)).

The first vital property of a spectral triple we shall need is a ‘finite dimensionality’
condition:
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Definition 1.6 A spectral triple (A ,H ,D) is finitely summable or, more precisely,
p-summable for some p ≥ 0 if Tr |D|−p < ∞.
Note that p-summability yields (p+ ε)-summability but not (p− ε)-summability
for ε > 0, so we define: The triple is said of dimension p (or p-dimensional) when

p := inf {q ≥ 0 | Tr |D|−q < ∞} < ∞.

This notion of dimension will be refined in Definition1.23.
Remark that finite spectral triples (cf. Example1.3) are always 0-dimensional. But

spectral triples with dimH = ∞ can also have dimension 0 — like, for instance,
the standard Podleś sphere (see AppendixB.4).

Example 1.7 Let (A ,H ,D) be a commutative spectral triple based on a Rieman-
nian manifold of dimension d , then (A ,H ,D) is d -dimensional [60, p. 489]. �

A slightly weaker notion is the one of θ -summability: Tr e−tD 2
< ∞ for t > t0 ≥ 0

[29, Chap.4, Sect. 8]. Every finitely summable spectral triple is θ -summable with
t0 = 0, but the converse is not true (cf. [27] and [29, Chap.4]). The geometry of
spectral tripleswhich are not finitely summable is, however, too poor to accommodate
various analytical notions (cf. Sect. 1.4), which are indispensable for the spectral
action computations. On the other hand, note that we do not require p to be an
integer. For instance, fractal spaces are fruitfully described via p-summable spectral
triples with p being the (irrational) Hausdorff dimension of the fractal [5, 8, 22–25,
36, 61–63, 74, 79, 80].

The next key property encodes the notion of smoothness:

Definition 1.8 A spectral triple (A ,H ,D) is regular if

∀a ∈ A a, [D, a] ∈ ∩
n∈N

Dom δ′n, where δ′ := [|D | , ·]. (1.2)

The map δ′ is an unbounded derivation of the algebraB(H ). (Recall that the nota-
tion T ∈ Dom δ′ means that T preserves Dom |D | and δ′(t) = [|D | ,T ] extends
(uniquely) to a bounded operator onH ). We note that some authors refer to assump-
tion (1.2) as smoothness [98, Definition11] or QC∞ (Q for “quantum”) [13, Defini-
tion2.2].

The regularity assumption allows one to equip A with a topology generated by
the seminorms a �→ ∥

∥δ′k(a)
∥

∥ and a �→ ∥

∥δ′k([D, a])∥∥. The completion of A in this
topology yields a Fréchet pre-C∗-algebra Aδ′ and (Aδ′ ,H ,D) is again a regular
spectral triple [98] (see also [60, p. 469], [108, Sect. 3.4] and [13]).

A commutative spectral triple (A ,H ,D) based on a Riemannian manifold is
regular. Condition (1.2) assures that the functions constitutingA are indeed smooth.
In this case, Aδ′ ∼= C∞(M ) also as topological spaces [98, Proposition20].

In some of the approaches (in particular, in almost commutative geometries) it
is desirable to encode in the axioms of a spectral triple the fact that the classical
Dirac operator is a first order differential operator [108, Sect. 3.3]. Such a demand
was originally used to restrict admissible Dirac operators for almost commutative
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geometries [20, 46] and restrain the free parameters of the underlying physical mod-
els. On the other hand, in recent studies, it is argued that one does not actually need
the first-order condition defined below and there exist examples of spectral triples
for which it is not satisfied (see [21] and references therein). Consequently, we will
not assume the first-order condition to hold throughout this book. Nevertheless, we
shall state it and explain its origin. To this end we need the following notions:

Definition 1.9 A spectral triple (A ,H ,D) is even if there exists a selfadjoint
unitary operator γ onH such that γ 2 = 1, γD = −Dγ and γ a = aγ for all a ∈ A .
Otherwise, the spectral triple is odd.

Definition 1.10 A spectral triple (A ,H ,D) is real of KO-dimension d ∈ Z/8 if
there is an antilinear isometry J :H →H called the reality operator such that

JD = εDJ , J 2 = ε′, and Jγ = ε′′ γ J when the triple is even,

with the following table for the signs ε, ε′, ε′′

d 0 1 2 3 4 5 6 7
ε 1 −1 1 1 1 −1 1 1
ε′ 1 1 −1 −1 −1 −1 1 1
ε′′ 1 −1 1 −1

(1.3)

and the following commutation rule (see [35] or [60, Sect. 9.5] for the details)

[a, Jb∗J−1] = 0, ∀a, b ∈ A . (1.4)

For a spectral triple based on a Riemannian manifold of dimension d the
KO-dimension is just d mod 8. It encodes the fact that the Dirac operator is a square
root of the Laplacian, what generates a sign problem corresponding to the choice
of a spin structure (and orientation). In this context the operator J plays the role
of a charge conjugation for spinors (see [60, Sect. 5.3] or [109]) and it encodes the
nuance between spin and spinC structures. On the other hand, given a spectral triple
(A ,H ,D) with a noncommutative algebra one can usually find different reality
operators leading to real spectral triples with different KO-dimensions (see [76]).

The operator J takes its origin in the modular theory of von Neumann alge-
bras (see [29, Chap.1, Sect. 3 and Chap.5]) and has interesting applications in the
algebraic quantum field theory [65, Chap.V]. In the context of spectral triples,
with the help of J one can define a representation on H of the opposite alge-
bra A op, which is isomorphic to A as a vector space, but the multiplication in
A op is inverted, i.e. a •A op b := b •A a. Given a representation π : A → B(H ),
define the representation πo : A op → B(H ) by πo(a) := Ja∗J−1. The condition
[π(a), Jπ(b∗)J−1] = 0 for a, b ∈ A means that the two representations commute
[π(A ), πo(A op)] = 0, hence πo(A op) is in the commutant of π(A ) in B(H ). If
A is commutative,A = A op and this requirement becomes trivial. See, for instance,
[108, Chap.3] for more details.

We are now ready to formulate the announced first-order condition.
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Definition 1.11 A real spectral triple (A ,H ,D) meets the first-order condition if

[[D, a], Jb∗J−1] = 0, ∀ a, b ∈ A . (1.5)

Asmentioned above, it encodes the fact that for a commutative spectral tripleD = D/
is a first order differential operator. The reason for the appearance of the representa-
tion of A op in (1.5) is that [D, ·] is not a derivation from A to itself, but rather to
the commutant of A op [21]. The first-order condition plays an important role in the
study of fluctuations of the spectral action — see Sect. 1.6.

Finally, we remark that each of the properties of being even, real, regular or
p-summable can be extended to the non-unital framework [54, 98, 99].

1.2 Some Spaces Associated with D

In this sectionwediscuss the pseudodifferential calculus suitable for noncommutative
geometries. We essentially base on the classical papers [28, 37], however some of
the definitions are taken from more recent works [13, 49, 67, 69].

Let us first define the following scale of spaces for a parameter s ∈ R

H s := Dom |D|s. (1.6)

If s ≤ 0, H s =H 0 =H and for s ≥ 0, H s are Hilbert spaces for the Sobolev
norm

‖ξ‖2s := ‖ξ‖2 + ‖|D|sξ‖2

and H s+ε ⊂H s ⊂H 0 for s, ε ≥ 0 since the injection H s+ε ↪→H s is continu-
ous.

Let us note, that we do not need the invertibility of D since H s = Dom |D |s
for s ≥ 0 as DP0 = P0D = 0 and P0 ∈ B(H ). Actually, for s ≥ 0 we also have
H s = Dom (1+D2)s/2 as shown in [13, Sect. 6]. On the other hand, the Sobolev
norms will not be the same if we swap |D| for |D | or (1+D2)1/2. In the second
case the norms will not coincide even if KerD = {0}. However, the precise form of
the Sobolev norms forH s is not relevant and, as already stressed, the choice of |D|
instead of (1+D2)1/2 is only a matter of convention.

We also define the domain of smoothness of D as

H ∞ := ∩
s≥0 H

s = ∩
k∈N

H k . (1.7)

H ∞ is dense in H and is in fact a core (see [97, p. 256] for a precise definition)
for D [98, Theorem 18]. Actually, it is sufficient to considerH k with k ∈ N [60, p.
467] (see also [109, Definition6.11]).H ∞ can be equipped with a topology induced
by the seminorms ‖·‖k , which makes it a Fréchet space.
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With the spaces H s at hand, we define the following classes of unbounded
operators on H for any r ∈ R (compare [28, Sect. 1], [13, Definition6.1]):

opr := {

T ∈ L (H )
∣

∣ Dom T ⊃H ∞ and for any s ≥ r

T maps (H ∞, ‖·‖s) continuously into (H ∞, ‖·‖s−r)
}

.

(1.8)

For instance ∀r ∈ R, |D|r ∈ opr . Any operator in opr extends to a bounded map
fromH s toH s−r ∀s ≥ r and since H 0 =H , we have op0 ⊂ B(H ). Moreover,

opr ⊂ ops if r ≤ s, opr · ops ⊂ opr+s for all r, s ∈ R. (1.9)

In the previous section we met a map δ′ on B(H ), the domain of which played
a pivotal role in the axiom of regularity. For further convenience we also define:

δ(·) := [|D|, ·], ∇(·) := [D2, ·], σ (·) := |D| · |D|−1

E(·) := δ(·)|D|−1 E (·) := ∇(·) |D|−2.

Let Ξ ∈ {δ,∇, σ, E,E }. Recall that, by definition, if T ∈ DomΞ ⊂ B(H ), then
Ξ(T ) ∈ B(H ). Actually, one can extend any Ξ to a map on unbounded operators
defined on the set {T ∈ L (H ) | Dom T ⊃H ∞}. By the habitual abuse of notation
we denote the extensions of Ξ ’s with the same symbols. However, one has to stay
vigilant as in the following DomΞ will always mean a subset ofB(H ).

Furthermore, for any T ∈ L (H ) with Dom T ⊃H ∞ we define the following
one-parameter group of (unbounded) operators:

σz(T ) := |D|z T |D|−z, for z ∈ C, (1.10)

using the Cauchy integral along a curve C ⊂ C (see (A.3)) to define

|D|−z = 1
i2π

∫

λ∈C
λ−z/2 (λ− D2)−1 dλ. (1.11)

Note that for T ∈ Dom σ we have σ n(T ) = σn(T ) for all n ∈ N.

Lemma 1.12 ([13, 37]) We have ∩
n∈N

Dom δ′n = ∩
n∈N

Dom δn ⊂ op0.

Proof Since |D| = |D | + P0, Dom δ′ = Dom δ because P0 is bounded and we get
the announced equality.

Let now T ∈ ∩
n∈N

Dom δn. One checks that σ = id+E and, for every n ∈ N,

E n(T ) = δn(T ) |D|−n, σ n(T ) = (id+E)n(T ) =
n

∑

k=0

(n
k

)

δk(T ) |D|−k . (1.12)
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Hence, E n(T ) and σ n(T ) are bounded. Similarly,

σ−n(T ) =
n

∑

k=0

(−1)k
(n
k

) |D|−k δk(T ) (1.13)

is bounded too. Thus, for n ∈ Z and ξ ∈H ∞,

‖Tξ‖2n = ‖Tξ‖2 + ∥

∥|D|nTξ
∥

∥

2 = ‖Tξ‖2 + ∥

∥σ n(T ) |D|n ξ
∥

∥

2

≤ c(‖ξ‖2 + ∥

∥|D|n ξ
∥

∥

2
) = c ‖ξ‖2n .

The case of an arbitrary n ∈ R follows by the interpolation theory of Banach spaces
(cf. [60, Formula (10.65)] and [29, Chap.4, Appendix B]). �

We now introduce yet another class of operators on H (cf. [37], [13, Defini-
tion6.6]):

OP0 := ∩
n∈N

Dom δn, OPr := {T ∈ L (H ) | |D|−rT ∈ OP0} for r ∈ R. (1.14)

The definition of OPr is symmetric: When r ∈ N, Eq. (1.12) yields

OPr = |D|r OP0 = |D|r OP0 |D|−r |D|r ⊂ OP0 |D|r . (1.15)

When T ∈ OPr , we say that the order of T is (at most) r and write ord T := r.
SinceH ∞ is dense inH , the operators in opr (and a fortiori in OPr) are densely

defined and we can define (OPr)∗ := {T ∗ | T ∈ OPr}. We have (OPr)∗ = OPr,what
follows from the observation that (δn(T ))∗ = (−1)nδn(T ∗), so (OP0)∗ = OP0 for
n ∈ N, and the symmetry (1.15) of OPr .

Note also that

P0 ∈ OP−k for all k ∈ R, (1.16)

because P0 is trivially in OP0 and P0|D|k = P0 ∈ B(H ) for any k ≥ 1.
Obviously, we have |D| ∈ OP1 (but not in OP0, because |D| /∈ B(H )!). Also,

D ∈ OP1 since with F = D |D|−1 ∈ B(H ) we have δ(F) = 0 as D is selfadjoint.
Consequently, D, |D | ∈ OP1, but again D, |D | /∈ OP0 for D, |D | /∈ B(H ).

Note that the regularity condition (1.2) is equivalent to requiring that

A ⊂ OP0, [D,A ] ⊂ OP0 . (1.17)

In that case, for instance, a |D | [D, b]D−4 ∈ OP−3 with a, b ∈ A .
In [37] it was proved that operators of order ≤ 0 admit another characterisation:

OP0 = {T | t �→ Ft(T ) ∈ C∞(R,B(H ))},
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where Ft(T ) := eit |D|Te−it|D| for t ∈ R, which is reminiscent of the geodesic flow
[28, 35], [40, Chap.8]. Recall that δ(T ) = [|D| ,T ] = strong- limt→0

Ft(T )−F0(T )

i t .

Proposition 1.13 Let r, s ∈ R and z ∈ C. Then

(i) OPr ⊂ opr .
(ii) σz(OPr) ⊂ OPr .
(iii) OPr OPs ⊂ OPr+s.
(iv) OPr ⊂ OPs when r ≤ s.
(v) δ(OPr) ⊂ OPr .
(vi) ∇(OPr) ⊂ OPr+1 and E (OPr) ⊂ OPr−1.
(vii) [|D|r ,OPs] ⊂ OPr+s−1.
(viii) If T ∈ OPr , r ≥ 0 has an inverse with T−1 |D|r ∈ B(H ), then T−1 ∈ OP−r .
(ix) OP0 ⊂ B(H ) and OP−1 ⊂ K (H ).

Proof (i) This follows from OP0 ⊂ op0 (Lemma1.12), |D|r ∈ opr and (1.9).
(ii) When T ∈ OP0, since |D|−k and δk(T ) are also in OP0 for any k ∈ N, Formulae

(1.12) and (1.13) tell us that for any n ∈ Z, σn(T ) = σ n(T ) ∈ OP0. Let us fix
m ∈ N and let Fm : z ∈ C �→ δm(σz(T )) ∈ L (H ). Since Fm(n) is bounded
when n ∈ Z, a complex interpolation shows that Fm(z) is bounded for z ∈ C,
so that σz(T ) ∈ OP0. When T ∈ OPr we have T = |D|r T ′ with T ′ ∈ OP0, thus
σz(T ) = |D|r σz(T ′) ∈ OPr .

(iii) Let T ∈ OPr and T ′ ∈ OPs. Then, |D|−r T and |D|−s T ′ are in OP0 and
by property ii) we have |D|−s (|D|−r T ) |D|s ∈ OP0. Hence, we deduce that
|D|−(r+s) TT ′ = (|D|−(r+s) T |D|s)(|D|−s T ′) ∈ OP0.

(iv) When s ≥ r, |D|r−s is a bounded operator and is in OP0. Thus if T ∈ OPr ,
|D|−s T = |D|r−s (|D|−r T ) ∈ OP0 by (iii).

(v) If T ∈ OPr , then T = |D|r S with S ∈ OP0 and δ(T ) = δ(|D|r)S + |D|r δ(S),
so the result follows from δ(OP0) ⊂ OP0 and (iii).

(vi) Let T ∈ OPr . Since ∇(T ) = δ(T ) |D| + |D| δ(T ), we get ∇(T ) ∈ OPr+1 from
properties (iii) and (v).
Moreover, E (T ) = ∇(T ) |D|−2 ∈ OPr+1 OP−2 ⊂ OPr−1 using (v) and (iii).

(vii) By (iii) it is sufficient to prove that [|D|r ,OP0] ∈ OPr−1. This is true for r ∈ N

using (v) and for r ∈ −N using [A−1,B] = −A−1[A,B]A−1. Finally, this also
holds true for an arbitrary r ∈ R by interpolation — as in the proof of (ii).

(viii) Assume r = 0. Remark that δ(T−1) = −T−1δ(T )T−1 is bounded. Thus
δ2(T−1) = −T−1δ2(T )T−1 − δ(T−1)δ(T )T−1 − T−1δ(T )δ(T−1) is bounded
and, by induction, δn(T−1) is bounded for any n ∈ N

∗. Thus T−1 ∈ OP0.
Now for r > 0, T = |D|r S where S ∈ OP0 is such that S−1 = T−1 |D|r is
bounded by hypothesis, thus in OP0 by previous argument and the claim fol-
lows from (iii).

(ix) By (i), we have OP0 ⊂ op0 ⊂ B(H ). Since |D|−1 is a compact operator, the
last assertion follows. �
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Let us stress that the op classes are, in general, strictly larger than OP’s. E.g. on the
standard Podleś sphere (cf. AppendixB.4), which is not regular, we have a ∈ op0,
but a /∈ OP0 for any a ∈ Aq, a �= c1.

The following, innocent-looking lemma, will prove very handy in practice:

Lemma 1.14 Let T ∈ L (H ). Assume that there exist r ∈ R and 0 ≤ ε < 1 such
that for any N ∈ N, T = ∑N

n=0 Pn + RN , with Pn ∈ OPr−n and RN ∈ OPr−N−1+ε.
Then, actually, RN ∈ OPr−N−1.

Proof We have RN = PN+1 + RN+1. Because RN+1 ∈ OPr−N−2+ε ⊂ OPr−N−1 and
PN+1 ∈ OPr−N−1 we conclude that RN is actually in OPr−N−1. �

Wewill often need to integrate operators (like in Formula (1.11)) from a given OP
class and we will need a control of the order of the integral. A typical example is the
following: For i ∈ {1, . . . , n}, let us be given Ai(λ) ∈ OP−ai with ai ∈ R, commuting
with |D|, and Bi ∈ OPbi , C(λ) ∈ OP−c with bi, c ∈ R, which do not necessarily
commute with |D|. For some I ⊂ R, we will need to show that

∫

I R(λ) dλ ∈ OPr for
some r ∈ R, when R(λ) = A1(λ)B1 · · · An(λ)Bn C(λ).

Let us definea := a1 + . . .+ an andb := b1 + . . .+ bn. Assumingb ≤ a + c, we
first remark that the integrand R(λ) is in OP−a−c+b ⊂ OP0, so it is bounded. We now
decompose |D|a+c−b R(λ) in the following way: For αk = ∑k

j=0 aj, βk = ∑k
j=0 bj,

with a0 = b0 = 0, we have

|D|a+c−b R(λ) = E1(λ)F1 · · · En(λ)Fn G(λ),

Ek(λ) := |D|(a+c−αk−1)−(b−βk−1) Ak (λ) |D|−(a+c−αk )+(b−βk−1) = |D|ak Ak(λ),

Fk := |D|(a+c−αk )−(b−βk−1) Bk |D|−(a+c−αk )+(b−βk ) , G(λ) := |D|cC(λ).

Remark that all operators Ek(λ), Fk ,G(λ) are in OP0, and hence bounded.
Typically, the operators Ak(λ) would be of the form (D2 + λ)−1, which gives

Ak(λ) ∈ OP−2 and Ak(λ) = O∞(λ−1). So, to assure the integrability of R(λ) for
I = R

+ := [0,∞) we usually have to sacrifice a few orders of OP. For example,
with R(λ) = (D2 + λ)−2 ∈ OP−4, we get

∥

∥|D|r ∫

R+ R(λ) dλ
∥

∥ < ∞ only for r < 2.

Theorem 1.15 Let I ⊂ R. Assume that there exist r ∈ R and n ∈ N
∗ such that for

any λ ∈ I a given operator R(λ) ∈ L (H ) can be decomposed as

|D|r R(λ) = E1(λ)F1 · · · En(λ)Fn G(λ), (1.18)

with Ek(λ),Fk ,G(λ) ∈ OP0 and [|D| ,Ek(λ)] = 0.

If
∫

I
‖E1(λ)‖ · · · ‖En(λ)‖ · ‖δm(G(λ))‖ dλ < ∞ form ∈ N, then

∫

I
R(λ)dλ ∈ OP−r .

Proof We need to show that |D|r R := |D|r ∫

I R(λ)dλ ∈ OP0 = ∩∞m=0 Dom δm.
For m = 0, we have ‖ |D|r R‖ ≤ (

∏n
k=1 ‖Fk‖)

∫

I

∏n
k=1 ‖Ek(λ)‖ · ‖G(λ)‖ dλ < ∞

by hypothesis. Hence, |D|r R is bounded.
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An application of δ to |D|r R generates from the integrand |D|r R(λ) a finite
linear combination of terms like those in (1.18) with either one of the Fk ’s replaced
by δ(Fk) or G(λ) replaced by δ(G(λ)), as δ(Ek) = 0. Since Fk ∈ OP0, the norm of
δm(Fk) is finite for any m ∈ N and the norm of δm(|D|r R) can be estimated along
the same lines as for the case m = 0. �

As the first application of Theorem 1.15 we derive an operator expansion (1.22),
which will play a pivotal role in the construction of an abstract pseudodifferential
calculus. We will need the following technical lemma (cf. [13, Lemma6.9]):

Lemma 1.16 Let T ∈ OP r for an r ∈ R and let λ /∈ specD2. Then, ∀ n ∈ N
∗,

N ∈ N,

(D2 − λ)−nT=
N

∑

j=0

(−1)j
(n+j−1

j

)∇ j(T )(D2 − λ)−(j+n) + (−1)N+1RN (λ, n), (1.19)

RN (λ, n) :=
n

∑

k=1

(k+N−1
N

)

(D2 − λ)k−n−1∇N+1(T )(D2 − λ)−(k+N ) ∈ OP r−2n−N−1 .

Proof The proof follows by pure combinatorics with an induction on n and N .

(1) Let us first take n = 1 and N = 0. We have

(D2 − λ)−1T = T (D2 − λ)−1 + [(D2 − λ)−1,T ]
= T (D2 − λ)−1 − (D2 − λ)−1∇(T )(D2 − λ)−1, (1.20)

which is precisely the Formula (1.19) for n = 1, N = 0.
(2) Let us now assume that Formula (1.19) holds for N = 0 and a fixed n ∈ N

∗, i.e.

(D2 − λ)−nT = T (D2 − λ)−n −
n

∑

k=1

(D2 − λ)k−n−1∇(T )(D2 − λ)−k . (1.21)

We show that Eq. (1.21) holds also for n+ 1: Applying Eq. (1.20) again

(D2 − λ)−n−1T = (D2 − λ)−1[T (D2 − λ)−n −
n

∑

k=1

(D2 − λ)k−n−1∇(T )(D2 − λ)−k]

= T (D2 − λ)−n−1 − (D2 − λ)−1∇(T )(D2 − λ)−n−1

−
n

∑

k=1

(D2 − λ)k−n−2∇(T )(D2 − λ)−k .

(3) If (1.19) holds for any n ∈ N
∗ and a fixed N ∈ N, it is sufficient to show that

RN (λ, n) = (n+N
N+1

)∇N+1(T )(D2 − λ)−(N+n+1) − RN+1(λ, n).
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Indeed, by assumption we have

RN (λ, n) =
n

∑

k=1

(k+N−1
N

)

(D2 − λ)k−n−1∇N+1(T )(D2 − λ)−(k+N )

=
n

∑

k=1

(k+N−1
N

)∇N+1(T )(D2 − λ)−(n+N+1)

−
n

∑

k=1

(k+N−1
N

)

n+1−k
∑

j=1

(D2 − λ)j+k−n−2∇N+2(T )(D2 − λ)−(j+k+N )

= (n+N
N+1

)∇N+1(T )(D2 − λ)−(N+n+1)

−
n

∑

k=1

k
∑

j=1

(j+N−1
N

)

(D2 − λ)k−n−1∇N+2(T )(D2 − λ)−(k+N+1),

which is the claimed equation, since
∑�

j=1

(j+N−1
N

) = (

�+N
N+1

)

and in the third equality
we commuted the sums and changed the summation index j + k − 1 � k.
Lastly, the use of Proposition1.13 (iii), (vi) shows that RN (λ, n) ∈ OP r−2n−N−1. �

Theorem 1.17 Let T ∈ OP r for some r ∈ R. Then, for any z ∈ C and any N ∈ N,

σ2z(T ) =
N

∑

�=0

(z
�

)∇�(T ) |D|−2� + RN (z), RN (z) ∈ OP r−(N+1) . (1.22)

Here
(z
n

) := z(z − 1) · · · (z − n+ 1)(n!)−1 with the convention
(z
0

) = 1,

Proof For z ∈ Cwedecompose z = n+ s, withn = ��(z)� ∈ Z and�(s) < 1yield-
ing |D|−2z T = |D|−2s |D|−2n T .

Let us first assume that �(z) > 0 and �(s) > 0. Hence, n ∈ N. For any N ∈ N

Formula (1.19) with λ = 0 implies

|D|−2z T =
N

∑

j=0

(−1)j
(n+j−1

j

)|D|−2s∇ j(T )|D|−2(j+n) + (−1)N+1|D|−2sRN (0, n).

Now, for 0 < �(s) < 1, we invoke the operator identity

|D|−2s = sin(πs)
π

∫ ∞

0
(D2 + λ)−1 λ−s dλ.
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For any j ∈ N, Formula (1.19) with −λ ∈ −R
+ �⊂ specD2, n = −1,N − j ∈ N

yields

|D|−2s ∇ j(T ) = sin(πs)
π

∫ ∞

0
(D2 + λ)−1∇ j(T ) λ−s dλ

= sin(πs)
π

N−j
∑

k=0

(−1)k∇ j+k(T )

∫ ∞

0
(D2 + λ)−k−1λ−s dλ+ R′N ,j(s)

= sin(πs)
π

N−j
∑

k=0

(−1)k �(1−s)�(s+k)
�(k+1) ∇ j+k(T ) |D|−2(s+k) + R′N ,j(s),

with R′N ,j(s) = (−1)N−j+1 sin(πs)
π

∫ ∞
0 (D2 + λ)−1∇N+1(T )(D2 + λ)−N+j−1λ−sdλ.

Combining the formulae from above we obtain

|D|−2zT

=
N

∑

j=0

N−j
∑

k=0

(−1)j+k(n+j−1
j

) sin(πs)
π

�(1−s)�(s+k)
�(k+1) ∇j+k (T ) |D|−2(s+k+j+n) +R(z)

=
N

∑

j=0

N−j
∑

k=0

(−1)j+k(n+j−1
j

) �(s+k)
�(k+1)�(s)∇j+k (T )|D|−2(k+j+z) +R(z)

=
N

∑

�=0

�
∑

k=0

(−1)�
(n+�−k−1

�−k
)(k+s−1

k
)∇�(T )|D|−2(�+z) +R(z)

=
N

∑

�=0

(−1)�
(z+�−1

�

)∇�(T )|D|−2(�+z) +R(z) =
N

∑

�=0

(−z
�

)∇�(T )|D|−2(�+z) +R(z),

where along the road we employed Euler’s reflection formula [1, (6.1.17)] and the
Chu–Vandermonde identity [1, (24.1.1)], and the global remainder reads

R(z) :=
N

∑

j=0

(−1)j
(n+j−1

j

)

R′N ,j(s)|D|−2(j+n) + (−1)N+1|D|−2sRN (0, n). (1.23)

We have shown that σ−2z(T ) = ∑N
�=0

(−z
�

)∇�(T )|D|−2� +R(z) |D|2z, under the
assumption that �(z) > 0 and �(s) > 0, but the result can be extended to any z ∈ C

on the strength of the uniqueness of the holomorphic continuation. Thus, a swap
z � −z would complete the proof, provided we can control the remainder R(z).

The second term of (1.23) is easy to handle: From Lemma1.16 and Proposi-
tion1.13 (iii) we deduce |D|−2sRN (0, n) ∈ OP r−2�(n+s)−N−1.
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The first term of R(z),

R1(z) := (−1)N+1 sin(πs)
π

N
∑

j=0

(n+j−1
j

)

R1,j(z)

with R1,j(z) :=
∫ ∞

0
(D2 + λ)−1∇N+1(T )(D2 + λ)−N−1+j|D|−2(n+j)λ−sdλ,

is more delicate. We will handle it with the aid of Theorem 1.15.
For any fixed j ∈ {0, 1, . . . ,N } and with x = �(s), we show that the operator

|D|2x−2ε R1,j(z) |D|N+1−r+2n is bounded for some ε > 0:

∥

∥ |D|2x−2ε
∫ ∞

0
(D2 + λ)−1∇N+1(T )(D2 + λ)−N−1+j |D|N+1−r−2j λ−sdλ

∥

∥

≤ c1 +
∫ ∞

1
‖(D2 + λ)−1‖1−x+ε

∥

∥(D2 + λ)−1D2
∥

∥

x−ε×
× ‖∇N+1(T ) |D|−N−1−r ‖ ‖(D2 + λ)−1D2‖N+1−j

∣

∣λ−s
∣

∣ dλ

≤ c1 + c2

∫ ∞

1
λ−1+x−ε λ−xdλ < ∞.

This computation is sound if 1− x + ε > 0 and x − ε > 0. The former is always
true, since x = �(s) < 1, whereas in the second one x > 0 and we can always tune
the ε to be small enough. Note also that∇N+1(T ) |D|−N−1−r ∈ OP0 for anyN and the
convergence of the integral of norms at 0 is automatic since 0 < (D2 + λ)−1D2 ≤ 1.

As we kept j free and R1(z) involves only a finite sum over j, we have actually
proven that

∥

∥ |D|2x−2ε R1(z) |D|N+1−r+2n
∥

∥ < ∞ for an arbitrarily small ε > 0. To
show that R1(z) ∈ OP r−2�(z)−(N+1)+2ε, so that RN (−z) ∈ OPr−(N+1)+ε, we invoke
Theorem 1.15 with

E1(λ) = |D|2x−2ε (D2 + λ)−1, F1 = ∇N+1(T ) |D|−N−1−r ,

E2(λ) = (D2 + λ)−N−1+jD2(N+1−j), G(λ) = λ−s.

Finally, to get rid of the ε we invoke the handy Lemma1.14. �

This theorem was first proven in [28, 37] for T being a pseudodifferential oper-
ator (see Definition1.18). But it only uses the fact that T ∈ OP r for r ∈ R. This
formulation was first given by Nigel Higson [66] with another proof (see also [13]).
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1.3 Abstract Pseudodifferential Calculus

In the previous section we were only concerned with an abstract unbounded operator
D on a Hilbert spaceH . We now let the algebraA enter into the game and describe
the abstract pseudodifferential calculus associated with a spectral triple (A ,H ,D).

We shall follow the conventions adopted in [69] (see also [49, 67]). Define first
P(A ) := polynomial algebra generated byA , D, |D | and JA J−1 when J exists.

Definition 1.18 Given a regular spectral triple (A ,H ,D), one defines the set of
pseudodifferential operators (pdos) as

Ψ (A ) := {

T ∈ L (H )
∣

∣ ∀N ∈ N ∃P ∈P(A ), R ∈ OP−N , p ∈ N,

such that T = P|D|−p + R
}

.
(1.24)

In particular |D|r ∈ Ψ (A ) for any r ∈ R.
An operator T is smoothing if T ∈ OP−N for all N ∈ N. Remark that any smooth-

ing operator is automatically in Ψ (A ) with P = 0 for each N in Formula (1.24).

Example 1.19 Here are few other examples of smoothing abstract pdos:

(i) The operator P0 defined in (1.1) is smoothing thanks to property (1.16). For a
generalisation see (4.1).

(ii) If f is a Schwartz function, then f (|D|) is a smoothing pdo: We claim that for
any N ∈ N, |D|N f (|D|) ∈ ∩n∈N Dom δn, i.e. f (|D|) ∈ OP−N for all N ∈ N.
Indeed, the function x ∈ R

+ → xN f (x) is bounded, whereas δn(f (|D|)) = 0
for n ≥ 1.

(iii) Let P ∈ OPr for r > 0 be positive, invertible and such that P−1 |D|r ∈ B(H ).
Then, the operator A = e−t P is a smoothing pdo for all t > 0.

To prove this we use Formula (A.3) to write A = i
2π

∫

C e−tλ (P − λ)−1 dλ.
We first observe that ‖ |D|N A‖ ≤ ‖ |D|N P−N/r‖ ‖PN/rA‖ < ∞ for any N ∈ N

since |D|N P−N/r ∈ OP0 by Proposition1.13 (iii), (viii) and for any s ≥ 0, t > 0, the
function x ∈ R

+ → xs e−t x is bounded.
Secondly, we need to show that A is in Dom δn for any n ∈ N. To this end,

we observe that δ(A) = −i
2π

∫

C e−tλ (P − λ)−1δ(P)(P − λ)−1 dλ converges in norm
because ‖δ(P)(P − λ)−1‖ ≤ ‖δ(P)P−1‖ · ‖P(P − λ)−1‖ and moreover we have
‖P(P − λ)−1‖ ≤ |λ| �(λ)−1 for �(λ) ≥ 0 (or ≤ 1 if �(λ) < 0) cf. (A.6), so that we
can choose the curve C such that ‖P(P − λ)−1‖ is uniformly bounded for λ ∈ C .
Thus the norm of δ(A) is estimated in the same way as the norm of A. The argument
extends to any δn(A) showing that e−tP ∈ OP0 for any t > 0.

To see that A is smoothing amounts to showing that the operator |D|N A is in OP0

for any N ∈ N but we have already checked that it is bounded.
It is in thedomainof δ because δ(|D|N A) = |D|N δ(A) = [|D|N P−N/r] [PN/rδ(A)]

and both terms are bounded: In particular for any s ≥ 0
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∥

∥Psδ(A)
∥

∥ ≤ ‖Ps |D|P−s−1/r‖‖Ps+1/rA‖ + ‖PsAP1/r‖‖P−1/r |D| ‖ < ∞.

Similar arguments show that |D|N A ∈ ∩
n∈N

Dom δn. �

For T ,T ′ ∈ Ψ (A ), we define the equivalence T ∼ T ′ if T − T ′ is smoothing.

Lemma 1.20 The set Ψ (A ) is a Z-graded involutive algebra with

Ψ k(A ) := Ψ (A ) ∩ OPk , for k ∈ Z. (1.25)

Moreover, δ(Ψ k(A )) ⊂ Ψ k(A ) and P(A ) ⊂ Ψ (A ) ⊂ ∪k∈Z OPk .

Proof Only the stability under the product deserves a bit of attention. Let us take
the pdos T ∈ Ψ k(A ) and T ′ ∈ Ψ k ′(A ) with k, k ′ ∈ Z. For any N ,N ′ ∈ N we can
write T = P |D|−p + R and T ′ = P′ |D|−p′ + R′, where p, p′ ∈ N, P,P′ ∈P(A )

and P |D|−p ∈ OPk , P′ |D|−p′ ∈ OPk ′ , R ∈ OP−N ,R′ ∈ OP−N ′
. We claim that, for

any N ′′ ∈ N, there exist p′′ ∈ N,P′′ ∈P(A ) and R′′ ∈ OP−N ′′
such that we have

TT ′ = P′′ |D|−p′′ + R′′. Using (1.22) we get, for any M ∈ N,

TT ′ = P
M

∑

n=0

(−p/2
n

)∇n(P′) |D|−p−p′−2n+ PRM |D|−p−p′+ RP′|D|−p′ + P|D|−pR′+ RR′

= [

P
M

∑

n=0

(−p/2
n

)∇n(P′) |D|2M−2n
] |D|−p−p′−2M + R′′ = P′′ |D|−p−p′−2M + R′′.

WehaveP′′ ∈P(A ) andwe set p′′ = p+ p′ + 2M ∈ N. Let us focus on the remain-
der R′′ = PRM |D|−p−p′ + RP′ |D|−p′ + P |D|−p R′+ RR′, with RM ∈ OPp′−M−1.
Since N ,N ′,M are arbitrary, we can choose N = N ′′ + ∣

∣k ′
∣

∣, N ′ = N ′′ + |k| and
M = max{k + N ′′ − 1, 0}. Thus PRM |D|−p′ ∈ OP−N ′′

, since k −M − 1 ≤ −N ′′.
Similarly, the orders of the other terms in R′′ are successively−(N ′′ + ∣

∣k ′
∣

∣− k ′),
−(N ′′ + |k| − k),−(2N ′′ + |k| + ∣

∣k ′
∣

∣), thus less than −N ′′ and hence R′′ ∈ OP−N ′′

proving the claim. It is immediate that TT ′ ∈ Ψ k+k ′(A ). �

Under the assumption of regularity of (A ,H ,D), the algebra Ψ (A ) can be
seen as the set of all operators with asymptotics of the form

∑

n∈N Pn |D|d−n with
Pn ∈P(A ), i.e. with T ∈ Ψ (A ) we have T −∑ N

n=0 Pn |D|d−n ∈ OP−N for all
N ∈ N.

If P ′(A ) is the polynomial algebra generated by A , D and JA J−1, when J
exists, thenP ′(A ) ⊂P(A ) and one can construct a subalgebra Ψ ′(A ) of Ψ (A )

by taking P ∈P ′(A ) in (1.24). In particular, |D |k is not necessarily inP ′(A ) for
k odd. On the other hand, since |D | = |D| − P0 ∈P(A ), we could have defined
P(A )with |D| in place of |D | and we would arrive at the same definition ofΨ (A ).

Let us remark that a key point about pdos on a manifold is that they are integral
operators (see AppendixA). In the abstract framework this notion is missing even if
it is reminiscent in a few specific cases, like the noncommutative torus [39].



1.3 Abstract Pseudodifferential Calculus 17

Example 1.21 To show that the inverse of a classical pseudodifferential operator on a
manifold is also a pdo is not immediate. Let us have a look at an abstract example: Let
D, X ∈ Ψ 1(A ), so D2 + X ∈ Ψ (A ) and assume that D and D2 + X are invertible.
We claim that (D2 + X )−1 ∈ Ψ (A ): For any N ∈ N, we have the expansion

(D2 + X )−1 =
N

∑

k=0

(− |D|−2 X )k |D|−2 + (− |D|−2 X )N+1(D2 + X )−1. (1.26)

The first term is in Ψ (A ), because |D|−2 ,X ∈ Ψ (A ) and the remainder is in
OP−N−3 ⊂ OP−N , provided (D2 + X )−1 ∈ OP−2. But since D2 + X ∈ OP2 and
(D2 + X )−1D2 = (1+ |D|−2 X )−1 is bounded, because |D|−2 X ∈ OP−1 is compact
by Proposition1.13 (ix), the part (viii) of the latter yields (D2 + X )−1 ∈ OP−2. �

It is desirable to have an extension of the pseudodifferential calculus, which takes
into account the complex powers of |D| (cf. [37, p. 239]):

Ψ C(A ) := {T |D|z |T ∈ Ψ (A ), z ∈ C}. (1.27)

By construction, T |D|z ∈ OPk+�(z) when T ∈ Ψ k(A ). Since Formula (1.22) is true
for any z ∈ C, the set Ψ C(A ) is in fact an R-graded algebra.

The link between the algebraic and geometric definitions of pseudodifferential
operators is provided by the following fact:

Proposition 1.22 Fora commutative spectral triple
(

C∞(M ),L2(M ,S ⊗ E),D/ E

)

,
with D/ E = −iγ μ∇S ⊗E

μ (cf. Example1.2), we have a natural inclusion

Ψ (C∞(M )) ⊂ Ψ Z(M ,S ⊗ E),

where Ψ Z(M ,S ⊗ E) is the space of classical pseudodifferential operators of
integer order defined over a vector bundle S ⊗ E.

This is a consequence of the observation that D/ E,
∣

∣D/ E

∣

∣ ∈ Ψ 1(M ,S ⊗ E) and the
fact that a ∈ Ψ 0(M ,S ⊗ E) for any a ∈ C∞(M ). For the full story on classical
pseudodifferential operators see the references in AppendixA.2 and for a noncom-
mutative vision see [60] and [109, Sect. 5.1].

1.4 Dimension Spectrum

In Sect. 1.1 we discussed the p-summability of a spectral triple, which encodes the
dimension of the underlyingmanifoldwhen (A ,H ,D) is commutative. This notion
does not, however, capture the whole richness of noncommutative geometry. A more
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adequate description turns out to be provided by a, possibly infinite, discrete subset
of complex numbers.

Definition 1.23 Aregular spectral triple (A ,H ,D)of dimensionphas adimension
spectrum Sd if Sd ⊂ C is discrete and for any T ∈ Ψ 0(A ), the function

ζT ,D(s) := Tr T |D|−s, defined for �(s) > p, (1.28)

extends meromorphically to C with poles located in Sd.1

We say that the dimension spectrum is of order k ∈ N
∗ if all of the poles of

functions ζT ,D are of the order at most k and simple when k = 1.

Note that all functions ζT ,D arewell defined for�(s) > p, since for such s the oper-
ator |D|−s is trace-class and, as T ∈ Ψ 0(A ) ⊂ B(H ), so is the operator T |D|−s. By
a standard abuse of notation we shall denote the (maximal) meromorphic extension
of ζT ,D with the same symbol.

Observe also that if (A ,H ,D) has a dimension spectrum, then ζT ,D is actually
meromorphic on C for any T ∈ Ψ C(A ). Indeed, if T ∈ Ψ C(A ) then there exist
S ∈ Ψ 0(A ) and z ∈ C such that T = S |D|z. Thus, for �(s) > p+�(z), the func-
tion ζT ,D is defined by ζT ,D(s) := Tr T |D|−s = Tr S |D|−s+z = ζS,D(s− z). By the
uniqueness of the meromorphic extension ζT ,D is meromorphic on C.

If, however, (A ,H ,D) is not finitely summable, then the zeta function ζ1,D is
nowhere defined and the notion of a dimension spectrum does not make sense.

Let us stress that the algebra does play an important role in Definition1.23.
Generally, given the meromorphic extension of the function ζ1,D, it is not clear
how to get one for ζT ,D, even when T ∈ A . Although in the case of a commutative
spectral triple the poles of ζT ,D do coincide with the poles of ζ1,D for T ∈ A , it is
no longer to be expected for general noncommutative geometries.

Example 1.24 Let us consider the spectral triple (Aq,Hq,DS
q ) of the standard

Podleś sphere (cf. AppendixB.4). The function ζ1,DS
q
= 4 (1−q2)s

|w|s(1−qs)2 (whereD
S
q = DS

q
since the kernel is trivial) is regular at s = −2. On the other hand, using the explicit
formulae for the representation (B.17–B.25), one can check that, for instance,

Res
s=−2

(s+ 2)ζA,DS
q
(s) = 2q(1+q2)|w|2

(log q)2 . �

The definition presented above is the one of [69] (see also [67]) and it differs from
the original one presented in [28, 37]. There, Sd was defined [37, Definition II.1]
as the set of poles of functions ζT ,D, but with T ∈ B0 – the algebra generated by
δ′n(a) with a ∈ A and n ∈ N. This was tailored to prove the local index theorem in
noncommutative geometry [37]. On the other hand, in the context of spectral action
[35], the operator T from the definitionwas taken from a bigger algebraB1 generated
by δ′n(a) and δ′n([D, a]) [35, Definition1.133].

1One could in principle also allow for essential singularities of ζT ,D, as long as they are isolated.
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The difference between the definition of the dimension spectrum adopted here and
the one of [35] (see also [13, 99]) is that |D|−1 ∈ Ψ (A ) ∩ OP0, but |D|−1 /∈ B1. This
fact led to eventual variations concerning the dimension spectrum of a commutative
spectral triple (compare for instance [36, Example13.8] with [31, p. 22]).

All these definitions of Sd satisfy Sd(disjoint sum of spaces) = ∪ Sd(spaces).
There is a natural way to define the tensor product of two even spectral triples (see

[30, 52]) using A := A1 ⊗A2, H :=H1 ⊗H2 and D := D1 ⊗ 1+ γ1 ⊗D2. It
would be tempting to conclude that Sd(A ,H ,D) = Sd1+Sd2, but it is not obvious
how to obtain a meromorphic extension of ζT1⊗T2,D given ζT1,D1 and ζT2,D2 .

With Definition1.23 the following result holds [69, PropositionA.2]:

Example 1.25 Let (A ,H ,D) be the commutative spectral triple associated with a
d -dimensional Riemannian manifold M and D is a first order differential operator,
then Sd(A ,H ,D) = d − N and it is simple. �

An interesting result of Jean-Marie Lescure [82] shows that for spectral triples
describing manifolds with conical singularities there appear poles of second order in
the dimension spectrum. On the other hand, the dimension spectra of fractal spaces
studied via noncommutative geometry [23–25, 61–63] encode the Hausdorff and
spectral dimensions of the fractal along with its self-similarity structure. The latter
is signalled by the appearance of complex numbers outside the real axis in Sd [74].

We see that the dimension spectrum carries much more information about the
underlying geometry than a single number, for instance p-summability. However,
there is no systematic procedure to compute the dimension spectrum for general
spectral triples. Beyond the almost commutative geometry it is not even clear under
what conditions (A ,H ,D) has a dimension spectrum. In concrete examples, one
has to dutifully prove the existence of the meromorphic extensions of the whole
family of spectral functions and identify the poles. This was done only for few
specific spectral triples like the noncommutative torus [51], quantum group SUq(2)
[32, 45] and quantum Podleś spheres [41, 43, 49, 93]. See also Problem 5 in Chap.5.

Let us note that in the definition of dimension spectrum, both the original one
of [37] and the more recent one of [69], there is an (usually unspoken) assumption
about the regularity of the spectral triple. Indeed, if one does not have control on
the order of pseudodifferential operators, the definition of the dimension spectrum
might turn out to be inconsistent with the p-summability (c.f. [49, Sect. 3.2]). Clearly,
if a regular p-summable spectral triple has a dimension spectrum Sd, then p ∈ Sd.
However, the p-summability together with regularity is not sufficient to conclude that
there is a pole of ζ1,D at p ∈ C— there might be an essential singularity, a branch cut
or the boundary of analyticity, in which case (A ,H ,D) does not have a dimension
spectrum at all. All these pathologies certainly deserve further studies.
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1.5 Noncommutative Integral

In a seminal paper [111] Mariusz Wodzicki has shown that the algebra of classi-
cal pseudodifferential operators of integer order Ψ Z(M ,E) admits a single (up to
normalisation) trace when M is connected and dimM > 1. It has been called the
Wodzicki residue, since it can be expressed as a residue of a certain spectral func-
tion. Connes established in [26] a link between the Wodzicki residue of a compact
pseudodifferential operator and its Dixmier trace (see Definition1.29), which is an
exotic trace on a certain ideal in the algebraB(H ). In this section we recollect some
basic facts about the Wodzicki residue and its use for defining an integral suitable
for noncommutative spaces. We start with the following definition:

Definition 1.26 Let (A ,H ,D) be a regular p-dimensional spectral triple with a
dimension spectrum. For any T ∈ Ψ C(A ) and any k ∈ Z define2

∫

−
[k]

T := Res
s=0

sk−1ζT ,D(s),
∫

− T :=
∫

−
[1]

T = Res
s=0

ζT ,D(s). (1.29)

If the dimension spectrum of (A ,H ,D) is of order d , then for s in an open neigh-
bourhood of any z ∈ C we have the Laurent expansion

ζT ,D(s) =
∞

∑

k=−d

∫

−
[−k]

T |D|−z (s− z)k .

The adopted notation is useful in the following result (cf. [37, Proposition II.1]):

Theorem 1.27 Let (A ,H ,D) be a regular p-dimensional spectral triple with a
dimension spectrum. Then, for any T1,T2 ∈ Ψ C(A ) and any k ∈ Z we have

∫

−
[k]

T1T2 =
∫

−
[k]

T2T1 +
N

∑

n=1

1
n!

n
∑

j=0

[ n
j
]

(−1)j

2j

∫

−
[k+j]

T2∇n(T1) |D|−2n ,

with N = p+ ord T1 + ord T2 and
[ n
j
]

the unsigned Stirling numbers of the first

kind.3 In particular, if the dimension spectrum has order d, then
∫ [d ] is a trace on

Ψ C(A ).

Proof Since the triple is regular (1.22) yields, for any T ∈ Ψ C(A ), s ∈ C,M ∈ N,

|D|−sT =
M
∑

n=0

(−s/2
n

)∇n(T )|D|−2n−s + RN (s) |D|−s , RM (s) ∈ OPord T−M−1. (1.30)

2Using the notation of [37] we have
∫ [k] = 2k−1τk−1 for k ≥ 1.

3For any s ∈ C, n ∈ N,
(s
n

) = ∑n
j=0

[ n
j
] sj
n! with the convention

[ n
0
] = δn,0. See [1, Sect. 24.1.3].
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Now, let r1 = | ord T1|, r2 = | ord T2|. For �(s) > p+ 2r1 + r2 we can use the
cyclicity property of the trace,

ζT1T2,D(s) = Tr T1T2 |D|−s = Tr (T1 |D|−r1)(|D|r1 T2 |D|−s)

= Tr (|D|r1 T2 |D|−s T1) |D|−r1 = Tr T2 |D|−s T1,

since the operators |D|r1 T2 |D|−s , |D|r1 T2 |D|−s T1 are trace-class, whereasT1 |D|−r1

and |D|−r1 are bounded. Then, with the help of Formula (1.30), we obtain

ζT1T2,D(s) = Tr T2T1 |D|−s +
N

∑

n=1

(−s/2
n

)

Tr T2∇n(T1)|D|−2n−s + Tr T2RN (s) |D|−s

= ζT2T1,D(s)+
N

∑

n=1

(−s/2
n

)

ζT2∇n(T1),D(2n+ s)+ h(s), (1.31)

where h is holomorphic for �(s) > p+ ord T1 + ord T2 − N − 1 = −1. For
n ∈ N, T2∇n(T1) ∈ Ψ C(A ) and, since the spectral triple has a dimension spectrum,
the functions ζT2∇n(T1),D admit meromorphic extensions to the whole complex plane.
Consequently, equality (1.31) holds true for �(s) > −1 and, for any k ∈ Z, we have

∫

−
[k]

T1T2 =
∫

−
[k]

T2T1 +
N

∑

n=1

Res
s=0

sk−1
(−s/2

n

)

ζT2∇n(T1),D(s+ 2n) (1.32)

=
∫

−
[k]

T2T1 +
N

∑

n=1

1
n!

n
∑

j=0

[ n
j
]

(−1)j

2j

∫

−
[k+j]

T2∇n(T1) |D|−2n . (1.33)

If the dimension spectrum of (A ,H ,D) has order d , for k = d we obtain
∫ [d ] T1T2 =

∫ [d ] T2T1, because
∫ [d+j] T = 0 for any T ∈ Ψ C(A ) and j ∈ N

∗, whereas
for j = 0,

[ n
j
] = 0. �

In the case of a commutative spectral triple (as in Proposition1.22),
∫

defined by
(1.29) is related to the Wodzicki residue [64, 111, 112]. The latter is defined in the
following context: Let D ∈ Ψ (M ,E) be an elliptic pseudodifferential operator of
order 1. For P ∈ Ψ Z(M ,E), define

WResP := Res
s=0

ζP,D(s).

Mariusz Wodzicki has shown that

WResP = 1
(2π)d

∫

S∗M
tr σ P

−d (x, ξ) dμ(x, ξ), (1.34)
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where S
∗M := {(x, ξ) ∈ T ∗M | g−1

x (ξ, ξ) = 1} is the cosphere bundle overM , tr is
the matrix trace of the symbol σ P

−d (x, ξ) and dμ(x, ξ) := |σ(ξ)| |dx| where

dx := dx1 ∧ · · · ∧ dxd , σ (ξ) :=
n

∑

j=1

(−1)j−1 ξj dξ1 ∧ · · · ∧ ̂dξj ∧ · · · ∧ dξd .

is a suitable Riemannian measure on S
∗M (the integrand of (1.34) is a 1-density on

M , so it is coordinate-independent, see [60, Sect. 7.3] or [108, Sect. 5.3]). Moreover,
WRes is the unique (up to normalisation) trace on the algebra Ψ Z(M ,E).

For a commutative spectral triple as in Proposition1.22 with D = D/ E + P0, we
simply have

∫

P =WResP for any P ∈ Ψ Z(M ,S ⊗ E).

Example 1.28 For a ∈ A = C∞(M ) of Example1.2, Formula (1.34) yields

∫

− a |D|−d = 2�d/2� Vol(Sd−1)

(2π)d

∫

M
a(x) dμ(x),

where dμ(x) = √
g dx is the standard Riemannian measure on M , since we have

σ
a|D|−d

−d (x, ξ) = a(x) ‖ξ‖−d . It is worthy to store the following: In a commutative
spectral triple, since ζ1,D is regular at 0 (see [57, p. 108, Eq. (1.12.16)]), we get

∫

− 1 = 0. � (1.35)

The noncommutative integral defined in (1.29) turns out, moreover, to be related
to the Dixmier trace, the construction of which we briefly describe below.

Given a selfadjoint operator T with purely discrete spectrum, we denote by λn(T ),
with n ∈ N, its eigenvalues ordered increasingly. If T ∈ K (H ), then for n ∈ N we
define μn(T ) as the (n+ 1)-th singular value of T , i.e. (n+ 1)-th eigenvalue of |T |
sorted in decreasing order, with the corresponding multiplicity Mn(T ). Note that
since T is a compact operator, we have limn→∞ μn(T ) = 0.

Now, let us denote thepartial traceTrN (T ) := ∑N
n=0 Mn(T ) μn(T ). IfT ∈L 1(H ),

limN→∞ TrN (T ) < ∞, but for a general compact operator the sequence TrN is
unbounded. The role of a Dixmier trace is to capture the coefficient of the loga-
rithmic divergence of TrN (T ).

There exists a very convenient formula [60, Proposition7.34] for TrN (T ) which
uses a decomposition of T into a trace-class and a compact part:

TrN (T ) = inf
{

Tr |R| + N ‖S‖ ∣

∣ R ∈ L 1(H ), S ∈ K (H ), T = R+ S
}

.

(1.36)

The partial trace, TrN (T ) may be seen as a trace of |T | cut-off at a scale N . But this
scale does not need to be a natural number and indeed, Formula (1.36) still makes
sense for any positive N , hence we define for any λ ∈ R

+:
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Trλ(T ) := inf
{

Tr |R| + λ ‖S‖ ∣

∣ R ∈ L 1(H ), S ∈ K (H ), T = R+ S
}

.

(1.37)

With the help of Formula (1.37) we define the subspace of compact operators, the
partial trace of which diverges logarithmically

L 1,+(H ) := {T ∈ K (H ) | ‖T‖1,+ := sup
λ≥e

Trλ(T )

log λ
< ∞}. (1.38)

One has ‖ATB‖1,+ ≤ ‖A‖ ‖T‖1,+ ‖B‖ for every A,B ∈ B(H ) and the space
L 1,+(H ) (sometimes denoted by L 1,∞(H ), see [84] for historical notes) is a
C∗-ideal ofB(H ) [67, Lemma2.5].

Now, for T ∈ K (H ) and λ ≥ e, define

τλ(T ) := 1
log λ

∫ λ

e

Tru(T )

log u
du
u . (1.39)

The functional τλ is not additive on L 1,+, but the defect is controllable [60,
Lemma7.14], i.e. for positive operators T1,T2 ∈ L 1,+

τλ(T1 + T2)− τλ(T1)− τλ(T2) = Oλ→∞(
log log λ

log λ
).

To obtain a useful additive functional on L 1,+, two more steps are needed. First
note that the map λ �→ τλ(T ) is in Cb([e,∞)) for T ∈ L 1,+. Define also a quo-
tient C∗-algebra Q := Cb([e,∞))/C0([e,∞)), and let [τ(T )] ∈ Q be the class of
λ �→ τλ(T ). Then, T �→ [τ(T )] extends to a linear map fromL 1,+ toQ, which is a
trace, i.e. [τ(T1T2)] − [τ(T2T1)] = [0]. To get a true linear functional on L 1,+, we
need to apply to [τ(·)] a stateω (i.e.ω is a positive linear functional of norm 1) onQ.

Definition 1.29 A Dixmier trace [47] associated with a state ω on Q is defined as
Trω(·) := ω ◦ [τ(·)].

In fact, a Dixmier trace is not only a trace, but a hypertrace on L 1,+(H ), i.e.
Trω(TS) = Trω(ST ) for any T ∈ L 1,+ and any S ∈ B(H ) [108, p. 45] (compare
also [60, Theorem 10.20 and Corollary 10.21]).

Thedefinitionof aDixmier trace, althoughpowerful, is not completely satisfactory
as it involves an arbitrary state on the commutative algebraQ, which is not separable
(and L 1,+(H ) is also not separable). Thus, in practice, one cannot construct an
explicit suitable state and there exist myriads of ‘singular traces’, different than the
one of Dixmier, exploiting various notions of generalised limits [84].

Moreover, if one insists on defining the noncommutative integral via the Dixmier
trace, one faces a notorious problem related to the existence of measurable (and non
measurable!) sets in Lebesgue’s theory. In particular, there exists a class of operators
inL 1,+(H ), for which a Dixmier trace does not depend on ω.

Definition 1.30 An operator T ∈ L 1,+(H ) is measurable if Trω(T ) does not
depend onω. Then one speaks about theDixmier trace of T and denote it by TrDix(T ).
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The following proposition gives a convenient characterisation of measurable
operators, see [83], [84, Theorem 9.7.5] (and [107] for a link with the ζ -function).

Proposition 1.31 AnoperatorT ∈ L 1,+ ismeasurable if andonly if limN→∞ TrN (T )

logN
exists, in which case it is equal to TrDix(T ).

The link between Definition1.26 of
∫

and TrDix was provided by Connes via his
famous Trace Theorem [26, Theorem 1].

Theorem 1.32 LetM be a compact Riemannianmanifold of dimension d, E a vector
bundle over M and T ∈ Ψ −d (M ,E). Then, T ∈ L 1,+, T is measurable and

TrDix(T ) = 1
d WRes(T ) = 1

d

∫

− T . (1.40)

Remark 1.33 Despite the nice equality (1.40), we cannot hope for proportional-
ity between the Dixmier trace and the noncommutative integral for an arbitrary
P ∈ Ψ (A ), even in the commutative case: Consider for instanceM = S2 – the two-
dimensional sphere, endowed with the standard Dirac operator D/ , which has sin-
gular values μn = n+ 1 with multiplicities 4(n+ 1) (see AppendixB.1). Now take
T = 1 ∈ Ψ 0(C∞(S2)). We have, ζ1,D/ (s) = Tr |D/ |−s = 4ζ(s− 1), which is regular
at s = 0, hence

∫

1 = 0. On the other hand, 1 is not a compact operator, hence its
Dixmier trace does not make sense at all.

We have privileged the noncommutative integral
∫

, which — as we have just
explained — is more suitable in the noncommutative-geometric framework. How-
ever, on the technical side there are possible variants: Instead of ζT ,D, we could
have chosen the more symmetrised Tr (T 1/2|D|T 1/2)−s when T is positive. The not
obvious links between these functions and others are investigated in [12]. �

1.6 Fluctuations of Geometry

Given a spectral triple (A ,H ,D) it is natural to ask whether there exist other
spectral triples describing a noncommutative geometry which is equivalent in some
sense to the one determined by (A ,H ,D). To discuss this issue we firstly need the
definition of noncommutative one-forms:

Ω1
D (A ) := span{a db | a, b ∈ A }, with db := [D, b]. (1.41)

One can define accordingly the n-forms (modulo the so-called junk forms [60,
Sect. 8.1]), which are building blocks of the Hochschild and cyclic homologies (see,
for instance, [75,Chap.3] formore details).On the physical side, elements ofΩ1

D (A )

are to be seen as gauge potentials of the theory.
A notion of equivalence suitable for spectral triples is that of Morita equivalence

[35, Chap.1, Sect. 10.8] (see also [34, Sect. 2], [60, Sect. 4.5] or [75, Sect. 2.3]), which
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we now briefly describe. Recall first that a (right) module E over a unital algebra
A is an Abelian group (E,+) along with the (right) action of A on E, i.e. a map
E ×A → E such that for all e, f ∈ E and any a, b ∈ A

(e + f )a = ea + fa, e(a + b) = ea + eb, e(ab) = (ea)b, e1A = e.

A finitely generated module E over A is free if there exists N ∈ N such that E is
isomorphic to A ⊗N . A module E is called projective if there exists another (right)
module F over A such that E ⊕ F is a free module.

The Morita equivalence of algebras can be characterised as follows (cf. [104,
Proposition6.12]).

Definition 1.34 Let A ,A ′ be two unital associative algebras. We say that A ′ is
Morita equivalent to A if there exists a finitely generated projective (right) module
E over A , such that A ′ � EndA E.

Having fixed a representation π of A onH , A ′ acts onH ′ := E ⊗A H . The
spaceH ′ is endowed with the scalar product 〈r ⊗ η, s⊗ ξ 〉 := 〈η, π(r|s)ξ〉, where
(·|·) is a pairing (or an A -valued inner product) E × E → A , which is A -linear
in the second variable and satisfies (r|s) = (s|r)∗, (r|sa) = (r|s)a and (s|s) > 0 for
r ∈ E, 0 �= s ∈ E. Thus, each representation of A on H gives a representation of
A ′ on H ′.

For a given projective (right) module E over A , one can choose a Hermitian
connection, i.e. a linear map ∇ : E → E ⊗A Ω1

D (A ), which satisfies the Leibniz
rule ∇(ra) = (∇r)a + r ⊗ da, for all r ∈ E, a ∈ A .

With the help of a Hermitian connection one defines a selfadjoint operator
D ′ ∈ L (H ′) by

D ′(r ⊗ ξ) = r ⊗Dξ + (∇r)ξ, with r ∈ E, ξ ∈ Dom(D).

Then, (A ′,H ′,D ′) is a spectral triple (for the compatibility with a real structure
see e.g. [104, Theorem 6.16]).

We say, by definition, that the spectral triple (A ′,H ′,D ′) is equivalent to the
original one (A ,H ,D). This is motivated by the following observation:

The algebra A is obviously Morita equivalent to itself (with E = A ), in which
case H ′ =H and AdD : a → [D, a] ∈ Ω1

D (A ) is a natural hermitian connec-
tion for E. Thus, any DA = D + A with A = A∗ ∈ Ω1

D (A ) would provide a spec-
tral triple (A ,H ,DA) equivalent to (A ,H ,D). The operator DA is called a(n)
(inner) fluctuation of D and A (following physicists conventions) – a gauge poten-
tial. If DA = D + A with A = A∗ ∈ Ω1

D (A ), then for any B = B∗ ∈ Ω1
DA

(A ) we
haveDA + B = D + A′withA′ = A+ B ∈ Ω1

D (A ) [35, Proposition1.142]. In other
words: “Inner fluctuations of inner fluctuations are inner fluctuations”.
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As we want to consider real spectral triples, we should require (A ,H ,DA) to
have the same KO-dimension (see p. 5) as (A ,H ,D). If DJ = εJD , then we
should require DAJ = εJDA. Therefore, we define

DA := D + A, with A := A+ εJAJ−1, for A = A∗ ∈ Ω1
D (A ). (1.42)

Example 1.35 (cf. [14, p. 734] and [46, p. 22]). LetM be an even dimensional spin
manifold as in Example1.2. For a, b ∈ A we have a[D/ , b] = −iγ μa∂μb. Since
A is Hermitian, Aμ := −ia∂μb ∈ C∞(M , R) and [J ,Aμ] = 0. On the other hand,
Jγ μ = −γ μJ because J commutes with D/ and anticommutes with i. Finally,

D/ A = D/ + A = D/ + A+ JAJ−1 = D/ + A− AJJ−1 = D/ .

Hence, there are no inner fluctuations in commutative geometry. �

The above considerations rely on the first-order condition (1.5). The latter can be
relaxed, what induces in a more general form of fluctuations [21]. Whereas the exact
shape of A does affect the physical content of the theory, the mathematics detailed
in Chap.4 is not afflicted. Therefore, we shall only assume that A = A

∗ ∈ Ψ 0(A ),
which holds also for the more general form of perturbations, cf. [21, Eq. (10)]. As
we will see, for such an A, (A ,H ,DA) is still a spectral triple, which inherits the
regularity, p-summability and dimension spectrum properties of (A ,H ,D).

1.7 Intermezzo: Quasi-regular Spectral Triples

Before we proceed, let us come back for a moment to the assumption of regularity of
a spectral triple — recall Definition1.8. As we have witnessed, it played an essential
role in the construction of abstract pdos along with the dimension spectrum and the
noncommutative integral. It turns out that at least some of these properties survive
under a weaker assumption of quasi-regularity (cf. [48, Chap. 4]):

A , [D,A ] ⊂ op0 .

Clearly, every regular spectral triple is quasi-regular. An example of non-regular,
though quasi-regular spectral triple, is provided by the standard Podleś sphere
(cf. AppendixB.4).

Observe that ifT ∈ op0, thenσz(T ) ∈ op0 for any z ∈ C by properties (1.9).On the
other hand, the expansion (1.22) does not hold in general. Typically, it is substituted
by a ‘twisted’ version (see [49, Lemma4.3] for an illustration).

Similarly to the regular case, given a quasi-regular (A ,H ,D) one can furnish
the algebraA with a locally convex topology determined by the family of seminorms
a �→ ‖σn(a)‖, a �→ ‖σn([D, a])‖. The completion Aσ is a Fréchet pre-C∗-algebra



1.7 Intermezzo: Quasi-regular Spectral Triples 27

and (Aσ ,H ,D) is again a quasi-regular spectral triple. The proof of this fact closely
follows [98, Lemma16] and the details can be found in [48, Chap.4].

In such a context one can define the algebra of pdos ˜Ψ (A ) as the polynomial
algebra generated by a ∈ A , D , |D | and |D|−1, complemented by JA J−1 if the
triple is real and P0 if kerD �= {0}. In the same vein, one can consider the algebra
˜Ψ C(A ) as being generated by the elements of ˜Ψ (A ) sandwiched with |D|zi for
zi ∈ C. The grading is now provided by the op classes, ˜Ψ r(A ) := ˜Ψ (A ) ∩ opr .

The dimension spectrum of a quasi-regular spectral triple can be considered nat-
urally with T ∈ ˜Ψ 0(A ) in place of Ψ 0(A ) in Definition1.23. Being fairly involved,
this notion is neverthelessworkable and gives reasonable results for the Podleś sphere
— cf. TheoremB.10.

Given a quasi-regular spectral triple with a dimension spectrum of order d , the
noncommutative integral (1.29) still makes sense, however, the pleasant feature of
∫ [d ] being a trace on the algebra of pdos is, in general, lost. Also, the study of
fluctuations in the quasi-regular framework — although possible in principle — is
rather obnoxious, as the entire Chap.4 of this book bases on Formula (1.22), hence
on the regularity.

1.8 The Spectral Action Principle

Having prepared the ground we are now ready to present the concept of the spectral
action. In a seminal paper [14] Chamseddine and Connes put forward the following
postulate:

The physical action only depends upon the spectrum ofD .

A mathematical implementation given in [14] led to the following definition.

Definition 1.36 Let (A ,H ,D) be a spectral triple and let Λ > 0. The (bosonic)
spectral action associated with D reads:

S(D, f ,Λ) := Tr f (|D | /Λ) , (1.43)

where f : R
+ → R

+ is a positive function such that f (|D | /Λ) exists and is a trace-
class operator.

Let us emphasise (cf. [14, (1.23)]) that the operator D in Formula (1.43) should
be the one dressed with gauge potentials, i.e.

D = D0 + A.

This is because (A ,H ,D0) and (A ,H ,D) cook up equivalent geometries and
we must take into account all of the available degrees of freedom when constructing
the action. See also Problem 1 in Chap.5.
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Before we pass on to the hard mathematics hidden behind Definition1.36, to
which this book is primarily devoted, we provide a glimpse into its physical content.

The physics of the spectral action

As pointed out in [17], the spectral action has several conceptual advantages:

• Simplicity: If f is the characteristic function χ[0,1], then Formula (1.43) simply
counts the singular values of D smaller or equal than Λ.

• Positivity: When f is positive, the action is manifestly positive — as required for
a sound physical interpretation.

• Invariance: The invariance group of the spectral action is the unitary group of the
Hilbert space H , which is vast.

The role of the parameter Λ is to provide a characteristic cut-off scale, at which
(1.43) is a bare action and the theory is assumed to take a geometrical form. It
should have a physical dimension of length−1, as the operator D does. Within the
almost commutative models the value of Λ is typically taken to be in the range
1013–1017 GeV · (�c)−1.

Although f = χ[0,1] is a privileged cut-off function providing the announced sim-
plicity, it seems that for physical applications one should staymore flexible and allow
it to depart from the sharp characteristic function. This is desirable in the almost com-
mutative context, as the moments of f provide free parameters of the theory, which
can be tuned to fit the empirical data — cf. [104, Chap.12]. The actual physical role
of f in full generality of noncommutative geometry is more obscure— see Problem 7
in Chap.5.

Let U (A ) := {u ∈ A | uu∗ = u∗u = 1} and U := uJuJ−1, with u ∈ U (A ).
Now, if the first-order condition (1.5) is satisfied, then the operator DA transforms
under the action of U as follows

UDAU
∗ = U (D + A+ εJAJ−1)U ∗ = D + Au + εJAuJ−1,

withAu := uAu∗ + u[D, u∗]. This ensures thatU (A ) is a subgroup of the symmetry
group of the spectral action. In the almost commutative realm, the full symmetry
group of (1.43) is a semi-direct product, G � Diff(M ), of the group of local gauge
transformations G := {uJuJ−1 | u ∈ U (A )} and the group of diffeomorphisms of
the manifold M — see [104] for the details.

If one abandons the first-order condition (1.5), then the inner fluctuations of the
spectral action form a semi-group, which extends U (A ) [21].

To conclude this paragraph we exhibit the powerfulness of the spectral action:
LetM be a compact Riemannian 4-manifold with a spin structure, as in Example1.2
and let AF = C⊕H⊕M3(C), with H denoting the algebra of quaternions. Then,
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S(D, f , Λ) =
∫

M

√
g d4x

(

γ0 + 1
2κ20

R+ α0 CμνρσC
μνρσ + τ0 R

�R� + δ0 ΔR

+ 1
4G

i
μνG

μνi + 1
4F

a
μνF

μνa + 1
4B

μνBμν (1.44)

+ 1
2 |DμH |2 − μ2

0|H |2 + λ0|H |4 − 1
12R|H |2

)

+O∞(Λ−1).

One recognises respectively: the cosmological constant, the Einstein–Hilbert term,
the modified gravity terms, the dynamical terms of gauge bosons and the Higgs
sector. The coefficients γ0, κ−2

0 , α0 etc. depend on the powers of the energy scale
Λ4,Λ2,Λ0 and also of the moments of the cut-off function f : f4 =

∫ ∞
0 x3f (x)dx,

f2 =
∫ ∞
0 xf (x)dx and f (0). Furthermore, they depend upon the fermionic content of

the model, which is fixed by the choice of the Hilbert spaceHF and the matrix DF ,
which encodes the Yukawa couplings of elementary particles (cf. [20, 104]).

To relish the full panorama of spectral physics, one supplements Formula (1.43)
with the fermionic action SF := 〈Jψ,Dψ〉, for ψ ∈H + = 1

2 (1+ γ )H (cf. [104,
Definition7.3] and [6, 20]). Although the physical content of SF is exciting, its
mathematics is rather mundane. Therefore, shamefully, we shall ignore it in the
remainder of the book.

Many faces of the asymptotic expansions

Howonearth the simpleFormula (1.43) canyield the knotty dynamics of the full Stan-
dard Model and gravity? Actually, there is no mystery — just asymptotics. Roughly
(see Sect. 3.5 for the full story): S(D, f ,Λ) = ∫ ∞

0 Tr (e−s|D |/Λ) dφ(s), when f is the

Laplace transform of a measure φ. But, Tr e−tP is the celebrated heat trace associ-
ated with a (pseudo)differential operator P. The latter is known to enjoy a small-t
asymptotic expansion [58, 110]: For instance, when P = D/ 2 and d = dimM

Tr e−tD/ 2 ∼
t↓0

∞
∑

k=0

ak(D/
2) t(d−k)/2. (1.45)

The alchemy is concealed in the coefficients ak known under the nickname of Seeley–
deWitt coefficients. They are expressible as integrals overM of local quantities poly-
nomial in the curvature ofM and, ifwehappen toworkwithD/ E (cf. Proposition1.22),
in the curvature of E.

The Seeley–deWitt coefficients of a differential operator are local. The principle
of locality lies at the core of the concept of a field, which asserts that every point
of spacetime is equipped with some dynamical variables [65]. Concretely, a local
quantity in quantum field theory is precisely an integral over the spacetime manifold
M of some frame-independent smooth function on M , which is polynomial in the
field and its derivatives.

WhenP is a pseudodifferential operator, an asymptotic expansion similar to (1.45)
is still available (cf. AppendixA.5). On the other hand, the coefficients ak(P) are, in
general, nonlocal—see [59] for an explicit example. This means that pdos over clas-
sical manifolds belong already to the noncommutative world, which is prevailingly
nonlocal.
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In the full generality of noncommutative geometry the existence of an asymptotic
expansion (1.45) is no longer guaranteed. Nevertheless, one may hope to deduce it
from ameromorphic extension of the associated zeta function ζD. The bulk of Chap.3
is devoted to this enjoyable interplay.

If (A ,H ,D) is a regular spectral triple with a simple dimension spectrum one
can hope to obtain the following formula (see Corollary 3.33 and Sect. 4.3):

S(D, f ,Λ)=
∑

α∈Sd+
Λα

∫ ∞

0
xα−1f (x)dx

∫

− |D|−α + f (0)ζD(0)+ O∞(1). (1.46)

Astonishingly, the abstract Formula (1.46) does yield the Standard Model action
(1.44), once the suitable almost commutative spectral triple has been surmised.

A careful reader have spotted the O∞(1) term in (1.46) and (s)he might wonder
what does this symbol hide. Actually, if one has at one’s disposal the full asymptotic
expansion (see Definition2.33) of the form (1.45) one can expand Formula (1.46)
to the order Λ−N for arbitrarily large N (vide Theorem 3.20). On the other hand,
one must be aware of the fact that the explicit computation of the coefficients ak(P)

for k > 4 is arduous, even if P is a friendly differential operator. For a Laplace
type operator general formulae are available up to a10 — see [4, 110]. From the
perturbative standpoint one might argue that the terms in the action, which vanish at
large energies can safely be neglected. Then, however, one risks overlooking some
aspects of physics. For example, it has been argued [102] that a contribution of the
order Λ−2 might affect neutrino physics and the study of cosmic topology requires
the knowledge of all ak ’s. To the latter end, several authors [5, 17, 19, 78, 86, 88,
89, 92, 105, 106] employed the Poisson summation formula, which we discuss in
Sect. 2.4.

The summation formulae (sometimes dubbed not quite correctly “nonperturbative
methods”) give the spectral action modulo a reminder O∞(Λ−∞), which is usually
disrespected. However, the devil often sits in the details: There exists an extensive
catalogue of physical phenomena, which are ‘exponentially small’. An enjoyable
account on this issue was produced by John P. Boyd [9].

Highlights on the research trends

The literature on the spectral action is abundant and growing fast. On top of the
references already quoted, we list below some highlights on current research. The
list is admittedly subjective and far from being complete—we would be pretentious
to claim to possess full knowledge on the topic.

To consider gravity as a low-energy effect of quantised matter fields, rather than
a fundamental force is a long-standing idea: Yakov Zeldovich considered the cos-
mological constant as an effect of quantum matter fluctuations and Andrei Sakharov
suggested that the structure of the quantum vacuum encodes the Einstein–Hilbert
action (see [91] for a short review).

The heat kernel methods were successfully applied in 1960’s by Bryce S. deWitt
in order to derive a series expansion for the Feynman propagator of quantum fields on
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a curved background. A more recent summary of the spectral approach to quantum
field theory can be found in the textbooks [10, 50].

But the upshot of the spectral action is that it provides an exact — i.e. truly non-
perturbative— formula for the bare action at the unification scale. Expression (1.43)
as it stands is nonlocal, which means that it encompasses both local and global
(topology, in particular) aspects of the physical world. For an approach balanced
between the local and global aspects of the spectral action, which also goes beyond
the weak field approximation, see [70, 71].

The impact of a boundary of a manifold on the spectral action was studied in
[16, 18, 72]. The main difficulty is related to the choice of the boundary conditions
for the operatorD , which would guarantee a selfadjoint extension, and then to define
a compatible algebra A , see [68, 69].

Some aspects of spectral geometry, including the heat trace expansion, on mani-
folds with conical singularities were studied in [82] (cf. also [81]).

The role of the torsion in the spectral context has also been explored [72, 94, 96,
103]. Surprisingly enough, the spectral action for a manifold with torsion turns out to
embody the Holst action, well known in the Loop Quantum Gravity approach [95].

On the physical side, a programme on the inflationary scenarios compatible with
the spectral action has been launched [77, 85, 87–90, 100, 101].

Also, the spectral action was approached via quantum anomalies and Higgs–
dilaton interactions [2, 3].

Variations on the definition

Usually, one encounters the operator D2 instead of |D | in Formula (1.43) for the
spectral action. The reason for which D2 is favoured in the literature is that for a
commutative spectral triple D/ 2 is a differential operator (of Laplace type), whereas
|D | is a priori only a pseudodifferential one. In the full generality of a noncommu-
tative geometry, however, we are bound anyway to work with abstract operators,
which are not even classical pdos and working with |D | allows for more flexibility.
Clearly, we can restore the presence ofD2 by taking f (x) = g(x2) (cf. Remark3.35),
but caution is needed, as the cut-off functions f and g belong to different classes (see
Sect. 2.2.2).

One could also consider the action of the formTr f (D/Λ). If f is even, as assumed
in [14], this is equivalent to (1.43). But one can take into account the asymmetry of
the spectrum of D : When f is odd, then f (D/Λ) = D |D|−1 g(|D | /Λ) for an even
function g, see for instance [92]. Technically, the parity of f is not innocent and does
play a role in the Poisson formula, cf. Sect. 2.4.

In [55] a formulation of the spectral action for nonunital spectral triples has been
proposed, see also [15, 56]. Alternatively, one can simply consider a compacti-
fied spacetime manifold — see, for instance [17, 19], for the casus of Friedman–
Lemaître–Robertson–Walker universe.

It should also be recognised that the spectral action (and its entire dwelling)
works under the assumption of a positive-definite metric. Hence, the action (1.43) is
an Euclidean one and its physical applications require a Wick rotation [42]. A truly
Lorentzian approach is a challenging programme — cf. Problem 4 in Chap. 5.
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We concludewith a derived notion of action:When the triple is evenwith a grading
γ , we define the topological spectral action by

Stop(D, f ,Λ) := Tr γ f (|D |/Λ). (1.47)

We us now show as in [104, Sect. 10.2.3] that Stop(D, f ,Λ) = f (0) index(D):
The McKean–Singer formula: index(D) = Tr γ e−tD 2

holds true for any t > 0.
Indeed, let Hn be the eigenspace associated to the eigenvalue λn of D and Pn be
the eigenprojection on Hn. Then,

Tr γ e−tD 2 = Tr(γ P0)+
∑

λn>0

e−tλ2
n Tr(Pn − P−n) = Tr(γ P0) = index (D).

Thus, if the function x ∈ R
+ �→ f (x1/2) is a Laplace transform of a finite measure

φ, so that f (x) = ∫ ∞
0 e−t x2 dφ(t), then the topological spectral action is simply

Stop(D, f ,Λ) =
∫ ∞

0
Tr γ e−tD 2/Λ dφ(t) = index(D)

∫ ∞

0
dφ(t) = f (0) index(D).

Similarly its fluctuation is Stop(DA, f ,Λ) = f (0) index(DA).

References

1. Abramowitz,M., Stegun, I.A.: Handbook ofMathematical Functions: with Formulas, Graphs,
and Mathematical Tables. Courier Dover Publications, USA (2012)

2. Andrianov, A., Kurkov, M., Lizzi, F.: Spectral action, Weyl anomaly and the Higgs-dilaton
potential. J. High Energy Phys. 10(2011)001

3. Andrianov, A., Lizzi, F.: Bosonic spectral action induced from anomaly cancellation. J. High
Energy Phys. 5(2010)057

4. Avramidi, I.: Heat Kernel Method and its Applications. Birkhäuser, Basel (2015)
5. Ball, A., Marcolli, M.: Spectral action models of gravity on packed Swiss cheese cosmology.

Class. Quantum Gravity 33(11), 115018 (2016)
6. Barrett, J.: Lorentzian version of the noncommutative geometry of the standard model of

particle physics. J. Math. Phys. 48(1), 012303 (2007)
7. Beenakker,W., van denBroek,T., vanSuijlekom,W.D.: Supersymmetry andNoncommutative

Geometry. SpringerBriefs in Mathematical Physics. Springer, Berlin (2016)
8. Bhowmick, J., Goswami, D., Skalski, A.: Quantum isometry groups of 0-dimensional mani-

folds. Trans. Am. Math. Soc. 363(2), 901–921 (2011)
9. Boyd, J.P.: The Devil’s invention: asymptotics, superasymptotics and hyperasymptotic series.

Acta Appl. Math. 56, 1–98 (1999)
10. Bytsenko, A.A., Cognola, G., Moretti, V., Zerbini, S., Elizalde, E.: Analytic Aspects of Quan-

tum Fields. World Scientific, Singapore (2003)
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41. D’Andrea, F., Dąbrowski, L.: Local index formula on the equatorial Podleś sphere. Lett.Math.
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Chapter 2
The Toolkit for Computations

Abstract In this chapter we introduce a number of mathematical tools, which will
prove useful in the spectral action computations. Firstly, we consider the basic prop-
erties of some spectral functions via the functional calculus and general Dirichlet
series. Next, we study the interplay between these provided by the functional trans-
forms of Mellin and Laplace. The remainder of the chapter is devoted to various
notions from the theory of asymptotic behaviour of functions and distributions.

Before we start off let us recall the big-O and small-O notation:
Let X be a topological space and let x0 be a non-isolated point of X . Let U be a

neighbourhood of x0 and V = U \ {x0} – a punctured neighbourhood of x0. For two
functions f, g : V → C we write

f (x) = Ox→x0 (g(x)) if lim sup
x→x0

| f (x)/g(x)| < ∞,

f (x) = Ox→x0 (g(x)) if lim
x→x0

| f (x)/g(x)| = 0.

We useOx0 (g(x)) andOx0 (g(x))when nomistake concerning the variable can arise.
We will mostly be concerned with the cases X = R

+ ∪ {∞} or X = C ∪ {∞}
and x0 = 0 or x0 = ∞. The notations O0(x∞), O∞(x−∞) will stand, respectively,
for Ox→0(xk) and Ox→+∞(x−k), for all k > 0, and similarly for O.

Example 2.1 We have sin x = O∞(1), but sin x �= O∞(1) and 1 �= O∞(sin x).
For any n > 0, logn x = O0(x−ε) = O∞(xε) for all ε > 0. �

For further examples and properties of O and O symbols see, e.g. [17, Sect. 1.2].

© The Author(s) 2018
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2.1 Spectral Functions

The spectral action (1.43) is par excellence a spectral function, i.e. a (possibly com-
plex valued) function on the spectrum of some operator.

We now take a closer look at various spectral functions from the perspective of
general Dirichlet series [24]. As this part only involves the properties of D and not
the full force a spectral triple, we shall work with a general operator H acting on an
infinite dimensional separable Hilbert spaceH . We shall need the following classes
of positive densely defined unbounded operators, for p ∈ R

+,

T p := {
H ∈ L (H )

∣∣ H > 0 and ∀ε > 0 Tr H−p−ε < ∞, but Tr H−p+ε = ∞}
.

If H ∈ T p for some p, then it is invertible and H−1 ∈ K (H ). Moreover, with
L r (H ) := {T ∈ L (H ) | Tr |T |r < ∞} (the so-called r th Schatten ideal), we have

p = inf{r ∈ R
+ | H−1 ∈ L r (H )}.

If (A ,H ,D) is a not finite (i.e. with dimH = ∞ — cf. Example1.3) p-
dimensional spectral triple then |D| ∈ T p and D2 ∈ T p/2 (cf. (1.1)). If (A ,H ,D)

is a regular spectral triple, then also |DA| ∈ T p and D2
A

∈ T p/2 with a suitable fluc-
tuationA— see Sect. 1.6 and Chap.4. Note, however, that the requirementD ∈ T p

for some p rules out the finite spectral triples, since T p ∩ L 1(H ) = ∅. The lat-
ter situation is trivial from an analytic point of view as Tr f (|D| /Λ) is finite and
explicitly computable for any bounded measurable function f and any Λ > 0.

As the primary example of a spectral function let us consider

NH (Λ) :=
∑

n:λn(H)≤Λ

Mn(H), for Λ > 0,

titled the spectral growth function.We get N|D|(Λ) = Tr χ[0,Λ](|D|) = S(D, χ[0,1], Λ),
which is the archetype of the spectral action [9].

Via the unbounded functional calculus (see, for instance [30, Chap.13]) we define
an operator f (H) := ∫

λ∈spec(H)
f (λ) dPλ(H) = ∑∞

n=0 f (λn(H)) Pn(H), with the
spectral projections Pn(H) := Pλn (H), for any bounded Borel (possibly complex)
function f on R

+. The operator f (H) is trace-class if and only if

Tr f (H) =
∞∑

n=0

Mn(H) f (λn(H)) < ∞. (2.1)

More generally, if H ∈ T p, K is any operator in B(H ) and Tr f (H) < ∞, then
Tr K f (H) = ∑∞

n=0 Tr(Pn(H)K ) f (λn(H)) < ∞. This implies in particular that for
f (x) = x−s with �(s) > p, we obtain the spectral zeta function

ζK ,H (s) := Tr K H−s =
∞∑

n=0

Tr(Pn(H)K ) λn(H)−s, for �(s) > p. (2.2)
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If H is not positive, but nevertheless |H | ∈ T p for some p, we define
ζK ,H (s) := Tr K |H |−s in accordance with the notation adopted in (1.28). Moreover,
if K = 1, we shall simply write

ζH := ζ1,H .

The function ζK ,H will often admit a meromorphic extension to a larger region of the
complex plane, in which case it is customary to denote the extension with the same
symbol. Note that H ∈ T p guarantees that ζK ,H , if meromorphic, has at least one
pole located at s = p.

Yet another propitious spectral function is the heat trace, which results from
f (x) = e−t x with t > 0,

Tr Ke−t H :=
∞∑

n=0

Tr(Pn(H)K ) e−tλn(H). (2.3)

The operator e−t H is called the heat operator. This nickname comes from physics:
When −H = Δ is the standard Laplacian on a Riemannian manifold then e−t Hψ

solves the heat equation, ∂tφ + Hφ = 0, with the initial condition φ(0) = ψ .
On the side, we note that for any positive (unbounded) operator P the function

t ∈ R
+ �→ e−t P ∈ B(H ) admits a holomorphic extension to the right half-plane

via e−t P = 1
i2π

∫
λ∈C e−t λ(P − λ)−1 dλ, where C is a contour around R

+. This can
be proved by differentiating under the integral — see AppendixA.1. It implies, in
particular, that if e−t H is trace-class for any t > 0, then the function t �→ Tr e−t H

is smooth on (0,∞) and so is t �→ Tr Ke−t H for any K ∈ B(H ). We will give an
alternative proof of this fact in Proposition2.3.

When H ∈ T p, both heat traces and spectral zeta functions (for �(s) > p) are
instances of general Dirichlet series [24]. The latter are defined as

∞∑

n=0

an e
−s bn , (2.4)

for an ∈ C, bn ∈ Rwith limn→∞ bn = +∞ and some s ∈ C. The region of their con-
vergence constitutes a half-plane�(s) > L for some L ∈ R, the latter being called the
abscissa of convergence. In contradistinction to Taylor series, the domain of absolute
convergence of (2.4), which is also a half-plane �(s) > L ′, can be strictly smaller,
i.e. L ′ ≥ L (cf. [2, Sect. 11.6]). The regions of convergence of general Dirichlet series
can be determined from the following theorem:

Theorem 2.2 ([24, Theorem7 with the footnote]) If the series
∑∞

n=0 an is not con-
vergent, then the series (2.4) converges for �(s) > L and diverges for �(s) < L,
with

L = lim sup
n→∞

b−1
n log |a0 + · · · + an| ≥ 0. (2.5)

The non-negativity of L follows from the fact that for s = 0 the expression (2.4)
equals to

∑∞
n=0 an , which is not convergent. To compute the abscissa of absolute

convergence one simply needs to take |ai | in Formula (2.5).
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For K , H > 0, we always have L ′ = L in both Dirichlet series (2.3) and (2.2).

For given operators K and H the associated heat trace and zeta functions are
closely interrelated, which will be explored in great detail in Chap. 3. We now offer
the first glimpse into their intimate relation.

Theorem2.2 implies that the operator Ke−t H is trace-class for all t > 0 iff

log
∣∣

N∑

n=0

Tr(Pn(H)K )
∣∣ = ON→∞(λN (H)). (2.6)

On the other hand, ζK ,H is defined (i.e. (2.2) converges for�(s) > p for some p ≥ 0)
if and only if (cf. [12, Proposition2])

N∑

n=0

Tr(Pn(H)K ) = ON→∞(λN (H)r ), for all r > p. (2.7)

Formula (2.7) implies (2.6), but the converse is not true. As a counterexample
consider K = 1 and λn(H) = log2 n, Mn(H) = 1. In particular, if a spectral triple
(A ,H ,D) is θ -summable with t0 = 0, but not finitely summable (recall p. 4), the
heat traces Tr T e−t |D| exist, while the spectral zeta functions ζT,D do not.

Given the abscissa of convergence of the zeta function ζK ,H we can easily deduce
the behaviour of Tr Ke−t H as t ↓ 0.

Proposition 2.3 Let H ∈ T p and K ∈ B(H ). The function t �→ Tr Ke−t H is
smooth on (0,∞) and Tr Ke−t H = O0(t−r ), for all r > p.

Proof Let us consider the function x �→ xαe−x , which is bounded on R
+ for any

α ≥ 0. For any x > 0, we thus have xαe−x ≤ c(α), with some positive constant
c(α). By invoking this inequality with x/2 and multiplying it by e−x/2, we obtain
xαe−x ≤ 2αc(α) e−x/2.

Let us fix any r > p ≥ 0 and use xαe−x ≤ c(α) again. For any r > p we have

0 ≤ tr Tr e−t H =
∞∑

n=0

Mn(H) tr e−tλn(H) ≤ c(r)
∞∑

n=0

Mn(H)λn(H)−r = c(r) ζH (r) < ∞.

This shows in particular that e−t H is trace-class for any t > 0.Moreover, the function
t �→ tr Tr e−t H is bounded for t ∈ [0,∞) for every r > p and the limit superior of
tr Tr e−t H as t ↓ 0 exists and is finite, giving Tr e−t H = O0(t−r ) for all r > p.

Furthermore, for any t > 0 and any k ∈ N we have

| dk

d tk
Tr K e−t H | = |Tr K Hke−t H | ≤ ‖K‖Tr Hk e−t H ≤ ‖K‖ 2kc(k) Tr e−t H/2 < ∞,

which shows that the function t → Tr Ke−t H is indeed smooth on (0,∞). Finally,
0 ≤ tr |Tr Ke−t H | ≤ ‖K‖ tr Tr e−t H and one concludes as above. �
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Remark 2.4 The heat trace (2.3) can also be defined when H is a selfadjoint operator
bounded from below with a compact resolvent. In this case one writes, for any t > 0,

Tr Ke−t H =
N∑

n=0

Tr(Pn(H)K ) e−t λn(H) +
∞∑

n=N+1

Tr(Pn(H)K ) e−t λn(H),

for an N ∈ N such thatλN+1(H) > 0. Since the first finite sum ismanifestly a smooth
bounded function on R

+, Proposition2.3 holds. �
In particular, in the context of spectral triples we have (recall p. 3)

Tr e−t |D | = Tr e−t |D| + (1 − e−t ) dim kerD = Tr(1−P0)H e−t |D̄| + dim kerD .

(2.8)

Also, for �(s) > p, we have ζD̄(s) = Tr(1−P0)H D̄−s = ζD(s) − dim kerD .

Example 2.5 Let D/ be the Dirac operator associated with the trivial spin structure
on S1 equipped with the round metric (cf. AppendixB.1). Then,

ζD(s) =
∞∑

n=0

Mn(|D|) λn(|D|)−s = 1−s + 2
∞∑

n=0

n−s = 1 + 2ζ(s),

where ζ is the familiar Riemann zeta function. The latter has a single simple pole at
s = 1, so the triple is 1-dimensional. The corresponding heat trace reads, for t > 0,
Tr e−t |D | =1 + 2

∑∞
n=1 e

−n t =1 + 2e−t

1−e−t =coth t
2 and hence Tr e−t |D | = O0(t−1)

in accord with Proposition2.3. �
Remark 2.6 Let us note that Proposition2.3 extends in a straightforward way to
Tr e−t Hα = O0(t−r ), for all r > p/α, for any α > 0, as ζHα (s) = ζH (αs).

When applied to Example2.5 it implies a non-trivial fact:
∑∞

n=1 e
−nr t = O0(t−α),

for all α > 1/r . �
We conclude this section with a sufficient condition for the well-definiteness of

the spectral function (2.1), which is of our primary interest.

Lemma 2.7 Let H ∈ T p and let f be a positive function defined on R
+ such that

f (x) = O∞(x−p−ε) for some ε > 0. Then, f (H) is trace-class.

Proof With {ψn}n∈N being the orthonormal basis onH composedof the eigenvectors
of H weobtainTr f (H) = ∑∞

n=0 〈ψn, f (H)ψn〉 = ∑∞
n=0 Mn(H) f (λn(H)). By the

hypothesis on the decay of f , there exist c2, N > 0, such that for any x ≥ 0, we can
estimate | f (x)| ≤ c1 + c2 χ[N ,∞)(x)x−p−ε, with c1 = sup|x |<N | f (x)|. Then,

Tr f (H) ≤ c1
∑

n<N

Mn(H) + c2
∑

n≥N

Mn(H)[λn(H)]−p−ε ≤ c3 + c2 Tr H−p−ε < ∞.

�
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2.2 Functional Transforms

In this section we recall some basic notions and facts on two functional transforms,
which will allow us to express some spectral functions in terms of others. These tools
will help us to eventually establish an asymptotic expansion of the spectral action in
Chap.3.

2.2.1 Mellin Transform

We recall the following definition (see e.g. [28, Sect. 3.1.1] or [19, Definition1]):

Definition 2.8 The Mellin transform of a locally (Lebesgue) integrable function
f : (0,∞) → (0,∞) is a complex function M[ f ] defined by

M[ f ](s) =
∫ ∞

0
f (t) t s−1 dt, (2.9)

for all s ∈ C for which the integral converges. The inverse Mellin transformM−1 of
a meromorphic function g is defined by

M−1[g](t) = 1
2π i

∫ c+i∞

c−i∞
g(s) t−s ds, (2.10)

for some c ∈ R such that the integral exists for all t > 0.

The domain of definition of aMellin transform turns out to be a strip, called the funda-
mental strip (see [19, Definition1]). If f (t) = O0(tα) and f (t) = O∞(tβ) for some
α > β, then M[ f ](s) exists at least in the strip −α < �(s) < −β [19, Lemma 1].
The invertibility of Mellin transform is addressed by the following [19, Theorem2]:

Theorem 2.9 Let f be a continuous function. If c ∈ (0,∞) belongs to the funda-
mental strip of M[ f ] and the function R � y �→ M[ f ](c + iy) is integrable, then
for any t > 0

f (t) = M−1
[
M[ f ]](t) = 1

2π i

∫ c+i∞

c−i∞
M[ f ](s) t−s ds.

In the realm of spectral functions the usefulness of theMellin transform is attested
by the following result:

Proposition 2.10 Let H ∈ T p and let K ∈ B(H ), then

M[t �→ Tr Ke−t H ](s) = Γ (s) ζK ,H (s), for �(s) > p. (2.11)
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Proof Let us pick any r such that �(s) > r > p. Proposition2.3 guarantees that
Tr Ke−t H (t) = O0(t−r ) and the integral

M[t �→ Tr Ke−t H ](s) =
∫ ∞

0
Tr Ke−t H t s−1 dt

converges (absolutely) at 0. It also converges absolutely at ∞ since

∣∣Tr Ke−t H
∣∣ = e−tλ0(H)

∣∣Tr(P0(H)K ) +
∞∑

n=1

Tr(Pn(H)K ) e−t (λn(H)−λ0(H))
∣∣

= O∞(e−tλ0(H))

and the first eigenvalue λ0(H) is positive.
Since the map (t, n) �→ Tr(Pn(H)K ) e−tλn(H) is in L1((0,∞) × N) we can use

the Fubini theorem to swap the integral and the sum in the following:

M [t �→ Tr Ke−t H ](s)

=
∫ ∞

0

∞∑

n=0

Tr(Pn(H)K ) e−tλn(H) t s−1 dt =
∞∑

n=0

Tr(Pn(H)K )

∫ ∞

0
e−tλn(H) t s−1 dt

=
∞∑

n=0

Tr(Pn(H)K ) λn(H)−s
∫ ∞

0
e−y ys−1 dy = ζK ,H (s) Γ (s). �

The domain of definition is an important ingredient of the Mellin transform:
Even if both functions f, g do have Mellin transforms,M[ f + g] might not exist if
DomM[ f ] ∩ DomM[g] = ∅. Let us illustrate this feature by inspecting the Mellin
transform of Formula (2.8).

Example 2.11 Let (A ,H ,D) be a p-summable spectral triple. If D has a non-
trivial kernel, then the Mellin transform of the heat trace Tr e−t |D | does not exist.
Indeed, when μ0(D) = 0, limt→∞ Tr e−t |D | = dim kerD and the integral (2.10)
converges at ∞ only if �(s) < 0, whereas the convergence at 0 requires that
�(s) > p ≥ 0.On theother hand,Tr e−t |D | = Tr e−t |D| − (e−t − 1) dim kerD using
(2.8). Notice that both functions of t on the RHS of (2.8) do have Mellin transforms,
but with disjoint domains. In particular, we have M[t �→ (e−t − 1)](s) = Γ (s) for
�(s) ∈ (−1, 0) (see [19, p. 13]). �

The relation between the spectral functions unveiled by Proposition2.10 can be
inverted with the help of Theorem2.9.

Corollary 2.12 Let H ∈ T p and let K ∈ B(H ). Then, for any c > p and any
t > 0,

Tr Ke−t H = 1
i2π

∫ c+i∞

c−i∞
Γ (s) ζK ,H (s) t−s ds.

Proof Recall that the function t �→ Tr Ke−t H is smooth (cf. Proposition2.3). In
order to apply Theorem2.9 we need the function y �→ Γ (c + iy) ζK ,H (c + iy) to
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be Lebesgue integrable for any c > p. This is indeed the case as if c > p ≥ 0, we
haveΓ (c + iy) = O∞

( |y|c−1/2 e−π |y|/2) (cf. Lemma3.8), andmoreoverwe estimate∣∣ζK ,H (c + iy)
∣∣ = ∣∣Tr K H−c−iy

∣∣ ≤ ‖K‖Tr ∣∣H−c−iy
∣∣ ≤ ‖K‖Tr H−c. �

2.2.2 Laplace Transform

The Mellin transform allows us to move back and forth between a spectral zeta
function and the associated heat trace. In order to build a bridge from these to the
spectral action, we will resort to the Laplace transform.

Definition 2.13 The Laplace transform of a function f ∈ L1(R+,C) is an analytic
function L[ f ] : R+ → C defined by

L[ f ](x) :=
∫ ∞

0
f (s) e−sx ds. (2.12)

For our purposes it is sufficient to consider x ∈ R
+, although (2.12) actually defines

an analytic function in the whole half-plane �(x) ≥ 0. Also, one can consider the
Laplace transform of functions in L1

loc(R
+) (locally integrable on R

+), as long as
there exists M ∈ R such that the integral converges (properly) for �(x) > M .

More generally, one can define the Laplace transform of a complex Borel measure
φ on R+ via the Lebesgue integral

L[φ](x) :=
∫ ∞

0
e−sx dφ(s), for x > 0. (2.13)

Since we are interested in real functions L[φ] we shall restrict ourselves to the
case of Borel signed measures (see for instance [8]) on R

+, i.e. σ -additive maps
φ : B(R+) → R ∪ {±∞}, on the σ -algebra of all Borel subsets of R+. A signed
measure may assume one of the infinite values ±∞, but not both. The Hahn–Jordan
decomposition allows us to uniquely write any signed measure as φ = φ+ − φ− for
two non-negative measures, at least one of which is finite. It is customary to denote
|φ| = φ+ + φ−, which is a non-negativemeasure onR+ called the variation ofφ. The
support of a signed measure is defined as suppφ := supp |φ| = suppφ+ ∪ suppφ−.

Let us recall that a function f is completely monotonic (c.m.) if f ∈ C∞((0,∞),R)

and (−1)n f (n)(x) ≥ 0 for any n ∈ N, and any x > 0. The set of such functions,
denoted by CM, is well adapted as the range of the Laplace transform:

Theorem 2.14 (Bernstein, see e.g. [35, p. 160] or [31, Theorem1.4]) Given a func-
tion f ∈ CM we have f (x) = L[φ](x) for all x > 0 for a unique non-negative
measure φ on R+. Conversely, whenever L[φ](x) < ∞, ∀x > 0, then L[φ] ∈ CM.

The set CM is a convex conewhich is stable under products, derivatives of even order
and pointwise convergence. Moreover, the closure under pointwise convergence of
Laplace transforms of finite measures on R+ is exactly CM [31, Corollary1.6].

The Bernstein theorem naturally extends to the context of signed measures:
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Corollary 2.15 If f = f + − f − with c.m. functions f ±, then f (x) = L[φ](x) for
all x > 0 for a unique signedmeasureφ onR+. Conversely, wheneverL[φ](x) < ∞
for all x > 0, thenL[φ] can be uniquely written as a difference of two c.m. functions.
Proof This is a straightforward consequence of the Bernstein theorem and theHahn–
Jordan decomposition. �

The Laplace transform of a measure φ is well defined on the open set R+ \ {0}.
If the measure φ is sufficiently nice, then f = L[φ] along with its derivatives can be
extended to the whole R+:

Proposition 2.16 Let φ be a signed measure on R
+ and let f (x) = L[φ](x) for

x > 0. If φ has a finite nth moment, i.e.
∫ ∞
0 sndφ(s) < ∞ for an n ∈ N, then

limx→0+ f (n)(x) exists and is equal to (−1)n
∫ ∞
0 sndφ(s).

Proof This is a consequence of the Lebesgue dominated convergence theorem: For
s, x ≥ 0 we have

∣∣e−sx
∣∣ ≤ 1, thus

∫ ∞

0
dφ(s) = lim

x→0+

∫ ∞

0
e−sx dφ(s) = lim

x→0+
f (x).

The statement for n > 0 follows from a general property of the Laplace transform
(cf. [37, Eq. (12)]): L[s �→ snφ(s)](x) = (−1)n f (n)(x), for any n ∈ N. �

Remark 2.17 The converse of Proposition2.16 is not in general true for signed mea-
sures. A counterexample is provided by the function f (x) = 1 − e−1/x , which is the
Laplace transform of the function φ(s) = J1(2s1/2)s−1/2, with Jα being the Bessel
function of the first kind. Although limx→0+ f (n)(x) = 0 for any n ∈ N

∗, the function
snφ(s) is not integrable on R+ for n ≥ 1.

If the measure φ is non-negative then limx→0+ f (n)(x) < ∞ does imply that φ has
a finite nth moment. This is because if φ ≥ 0 one can use the monotone convergence
theorem, which implies that limx→0+ e−sx is integrable with respect to the measure φ

(cf. [31, Proposition1.2]). But for signed measures the monotone convergence fails
— see [5, p. 177]. �

Even more generally, on can consider the Laplace transform of distributions in a
suitable class (cf. [10, 17, 36]). Let D be the space of smooth compactly supported
functions onR endowed with the standard topology of uniform convergence with all
derivatives (cf. [10, Definition2.1]), with D ′ denoting its dual. Furthermore, let S
denote the space of rapidly decreasing (Schwartz) functions on R and its dual S ′ –
the space of tempered distributions. We have D ⊂ S ⊂ S ′ ⊂ D ′.

Recall that a distribution T is said to be null on some open setU ⊂ R if 〈T, ϕ〉 = 0
for all ϕ with suppϕ ⊂ U . The support of a distribution T is the complement of its
null set (i.e. the union of all U , on which T is null) (cf. [17, Definition2.5.2]).

We shall denote byD ′+ the set of all right-sided distributions, i.e. distributions in
D ′, the support of which is contained in R

+. Consequently, S ′+ = D ′+ ∩ S ′.
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Consider now a smooth function ϕ on R, which has bounded support on the left
(i.e. ϕ(x) = 0 for all x < m for some m ∈ R) and equals 1 in a neighbourhood of
[0,∞). Then, for any T ∈ S ′+, we define

L[T ](x) := 〈
T, s �→ ϕ(s)e−sx

〉
, for x > 0. (2.14)

The definition is sound as for any x > 0, the function s �→ ϕ(s)e−sx is in S and since
T is supported on R

+ the choice of ϕ does not play any role.
It is common to use the — somewhat sloppy — notation L[T ](x) = 〈

Ts, e−sx
〉
.

The range of the Laplace transform of distributions in S ′+ is uncovered by the
following result:

Theorem 2.18 ([37, Theorem9]) A function f is a Laplace transform of a distri-
bution in S ′+ if and only if

(i) f is analytic in the half-plane �(s) > 0;
(ii) There exists a polynomial p with | f (s)| ≤ p(|s|) for any s ∈ C with �(s) > 0.

Example 2.19 For any a ∈ R
+ we haveL[δa](x) = e−ax . In particular,L[δ](x) = 1.

Since δa is a legitimate measure on R
+, L[δa] is a c.m. function.

Let now p(x) = ∑d
j=0 c j x

j for some d ∈ N and f (x) = p(x) e−ax with a ∈ R
+.

Then, f is not c.m. unless d = 0. Nevertheless, its inverse Laplace transform exists
and equals L−1[ f ] = ∑d

j=0 c j δ
( j)
a . �

Remark 2.20 It would be highly desirable to utilise the Laplace transform to deduce
the behaviour of Tr e−t H 2

knowing that of Tr e−t H . Unfortunately, the Gaussian
function f (x) = e−x2 does not satisfy the bound demanded in Theorem2.18 as
| f (x + iy)| = e−x2+y2 . Hence L−1( f ) does not exist, even as a distribution.

We also note that if the function f has compact support in R
+ — in particular

if it is a smooth cut-off function as depicted in [6, Fig. 1] — then it is not complex
analytic in the right half-plane, and hence cannot be a Laplace transform. �

The pertinence of the Laplace transform in the context of the spectral action stands
from the fact that if f = L[φ] is the Laplace transform of a measure φ, then for any
positive selfadjoint (possibly unbounded) operator H ,

f (H/Λ) =
∫ ∞

0
e−sH/Λ dφ(s). (2.15)

The RHS of the above formula is well defined in the strong operator sense
(cf. [29, p. 237]). Moreover, since the trace is normal (i.e. if Hα → H ∈ B(H )

strongly with Hα′ > Hα for α′ > α, then Tr H = supα Tr Hα), and, if f (H/Λ) is
trace-class, then

Tr f (H/Λ) =
∫ ∞

0
Tr e−sH/Λ dφ(s), (2.16)
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Formula (2.16) will allow us to deduce the properties of the spectral action given
the corresponding heat trace.Most notably, it will enable us to establish a large energy
expansion of S(D, f,Λ) in Sect. 3.4. For our plan to succeed, we need to identify
the suitable classes of cut-off functions. We define successively:

C := { f = f + − f −, f ± ∈ CM | f (x) ≥ 0, for x > 0},
C0 := { f = L[φ] ∈ C | ∀ n ∈ N,

∫ ∞

0
snd |φ| (s) < ∞},

Cc := { f = L[φ] ∈ C | supp φ is compact},
C p := { f ∈ C | f ±(x) = O∞(x−p)}, for p > 0,

C p
0 := C0 ∩ C p, C p

c := Cc ∩ C p, for p > 0.

Observe that, if the operator H is in T p then Lemma2.7 implies that for f ∈ Cr
0

with r > p we have Tr f (H) < ∞. The property f (0) < ∞ is not necessary for
f (H) to be trace-class when H is invertible, but f (0) might (and usually does)
pop-up as the coefficient in front of t0 in the expansion of Tr f (t H).

Clearly, CM ⊂ C, Cc ⊂ C0 and Cr ⊂ C p for r > p. Furthermore:

Proposition 2.21 For any p, r > 0, C p
0 · Cr

0 ⊂ C p+r
0 and C p

c · Cr
c ⊂ C p+r

c . Moreover,

f = L[φ] ∈ C p
0 =⇒ ∀m > −p,

∫ ∞

0
sm d|φ|(s) < ∞. (2.17)

Proof Firstly, we note that since the set CM is closed under multiplication, so is C,
and hence C p · Cr ⊂ C p+r . Secondly, recall that when two signed measures φ, χ on
R

+ are finite then their convolution φ ∗ χ is defined as [4, Definition5.4.2]

∫ ∞

0
f (s) d(φ ∗ χ)(s) :=

∫ ∞

0

∫ ∞

0
f (s + t) dφ(s)dχ(t), for f ∈ Cb(R

+).

If L[φ],L[χ ] ∈ C0, then φ and χ are finite and, moreover, for any n ∈ N,

∫ ∞

0
snd|φ ∗ χ |(s) =

∫ ∞

0

∫ ∞

0
(s + t)nd|φ|(s)d|χ |(t)

=
n∑

k=0

(n
k

) ∫ ∞

0
sk d|φ|(s)

∫ ∞

0
tn−k d|χ |(t) < ∞.

From the general properties of Laplace transform [37, Theorem10] we have
L[φ ∗ χ ](x)=L[φ](x)L[χ ](x), hence we conclude that C0 · C0⊂C0 and Cc · Cc ⊂Cc.

Formula (2.17) for m ∈ (−p, 0) follows from Fubini’s theorem:
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∫ ∞

0
smd|φ|(s) = Γ (−m)−1

∫ ∞

0
x−m−1

∫ ∞

0
e−sx d|φ|(s) dx

= Γ (−m)−1
∫ ∞

0
x−m−1 (

f +(x) + f −(x)
)
dx < ∞.

On the other hand, for m ≥ 0 the statement follows from the very definition of C0:
∫ ∞

0
smd|φ|(s) ≤

∫ 1

0
s�m�d|φ|(s) +

∫ ∞

1
s�m�d|φ|(s) ≤

∫ ∞

0
(s�m� + s�m�)d|φ|(s).

�

Apleasant consequence of Proposition2.21 is that if we have at our disposal a cut-
off function f ∈ Cr

0 for some r > 0, then we immediately obtain a cut-off function
in C p

0 for any p ≥ r by taking f n for n ∈ N, n ≥ p/r .

Example 2.22 For any a > 0 the c.m. function f (x) = e−ax = L(δa)(x) is in C p
c for

all p > 0. Thus, when b > a > 0, the function f (x) = e−ax − e−bx is in C p
c for any

p > 0, while it is not in CM.
If b > a > 0 then also f (x) = x−1(e−ax − e−bx ) = L(χ[a,b])(x) is in C p

c for
p > 0. �

Example 2.23 Let f (x) = (ax + b)−r for a, b, r > 0. Then, one computes that
L−1[ f ](s) = Γ (r)−1 a−r sr−1e−bs/a and hence, f ∈ Cr

0, but f /∈ Cc. �

Example 2.24 Let f (x) = ex
2 [1 − Erf(x)], where the error function Erf is given by

Erf(x) = 2π−1/2
∫ x
0 e−y2dy. Then, f ∈ CM with L−1[ f ](s) = π−1/2e−s2/4. More-

over f +(x) = f (x) = O∞(x−1), hence f ∈ C1
0 . �

Example 2.25 Let f (x) = e−√
x . Then, f ∈ CM sinceL−1[ f ](s) = 1

2
√

π
s−3/2e−1/(4s).

On the other hand, limx→0+ f ′(x) = ∞, thus f /∈ C0.
Similarly, let f (x) = log(a + b/x) with a ≥ 1, b > 0. Then we have f ∈ CM

with L−1[ f ](s) = s−1(1 − e−b s/a) + log(a) δ(s), but f /∈ C0 since we have
limx→0+ f (x) = ∞. �

Every signed measure on R
+ (including

∑
i δi ) can be seen as a Laplace trans-

formable distribution, but the space L[S ′+] is strictly larger, as illustrated in Exam-
ple2.19. A careful reader might thus ask whether one could extend the class C and
allow f to be the Laplace transform of a distribution in S ′+. At the operatorial level
it is possible to cook up an analogue of Formula (2.16). However, the topology of S ′
obliges us to control the derivatives of the test functions and the asymptotic expan-
sions, which are our ultimate objective, do not behave well under differentiation. We
come back to this point in Remark3.23.
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2.3 Weyl’s Law and the Spectral Growth Asymptotics

LetΔ be the Dirichlet LaplacianΔ on a bounded domain X ⊂ R
d . In 1911 Hermann

Weyl proved that NΔ(Λ) = Vol(Sd−1) Vol(X)

(2π)d
Λd/2

(
1 + O(1)

)
asΛ → ∞. This formula,

dubbedWeyl’s law, extends to the case of X being a compact connected Riemannian
manifold and Δ the Laplace–Beltrami operator — see [25] for a nice overview.
Beyond the commutative world one can deduce the asymptotic behaviour of the
spectral growth function of an arbitrary positive operator H , via the Wiener–Ikehara
Tauberian theorem, from the properties of the associated spectral zeta function ζH
(cf. [3] and references therein, and also [13]). On the other hand, the control of
NH (Λ) as Λ tends to infinity yields the leading small-t behaviour of the heat trace
Tr e−t H (cf. [12, Corollary3]1 or [33] and references therein).

The control of the sub-leading terms in the asymptotic behaviour of NH (Λ) is a
formidable task, even in the context of classical elliptic pdos. In the latter case, the
remainder is of the order O∞(Λ(d−1)/2), but in full generality of noncommutative
geometry one can only expect O∞(Λd/2). The lower order terms, which are of great
interest from the viewpoint of the spectral action, are accessible (andwill be accessed
in Chap.3) provided we trade the sharp cut-off χ[0,1] for a gentler one.

Let now (A ,H ,D) be a d-dimensional spectral triple with a simple dimension
spectrum Sd = d − N and ζD regular at the origin. Then, one defines [6, Eq. (25)]

〈ND (Λ)〉 :=
d∑

k=1

1
k Λk

∫
− |D|−k + ζD(0) + kerD . (2.18)

This could be justified via Formula (1.46)2 using ND (Λ) = 〈ND (Λ)〉 + O∞(Λ−1).
The computation of (2.18) is illustrated as follows [6, Proposition 1]:

Proposition 2.26 GivenD , assume that spec D = Z
∗ and that the total multiplicity

of eigenvalues {±n} is P(n) with a polynomial P(u) = ∑d−1
j=0 c j u

j .

Then, 〈ND (Λ)〉 = ∫ Λ

0 P(u) du + ∑d−1
j=0 c j ζ(− j) + kerD .

Proof The zeta function reads ζD(s) = 1
2

∑
n∈Z∗ P(n) n−s = ∑∞

n=1 P(n) n−s , thus

ζD(s) = ∑d−1
j=0 c j ζ(s − j) and

∫ |D|−k = Ress=k ζD(s) = ck−1. Moreover we have

ζD(0) = ∑d−1
j=0 c j ζ(− j) completing the proof with

∫ Λ

0 P(u) du = ∑d−1
j=0

c j
j+1Λ

j+1.
�

This result will be extended in TheoremA.8 in AppendixA.6 and applied in the
computation of the dimension spectrum of noncommutative tori in Sect.B.3.1.

1The cited result provides a better control thanProposition2.3, but requires somenon-trivial assump-
tions — see [12, Sect. 5] for a detailed discussion and (counter)examples
2Strictly speaking, Formula (1.46) requires f to be the Laplace transform of a signed measure,
which is not the case for the counting function. Nevertheless, naively

∫ 1
0 uk−1 du = 1/k.
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2.4 Poisson Summation Formula

Given the Fourier transform of a function g ∈ L1(Rm),

y ∈ R
m �→ F[g](y) :=

∫

Rm

g(x) e−i 2π x .y dx,

the usual Poisson formula

∑

k∈Zm

g(t k + �) = t−m
∑

k∈Zm

ei 2π t
−1k.� F[g](t−1 k), ∀ t > 0, ∀ � ∈ R

m, (2.19)

is valid under mild assumptions for the decay of g and F[g] [32, VII, Corollary2.6].
Formula (2.19) is deeply rooted in complex analysis. We have (if, e.g., g ∈ S)

ζ(s)M[g](s) =
∫ ∞

0

∞∑

k=1

g(t k) t s−1 dt = M
[ ∞∑

k=1

g(· k)
]
(s), for �(s) > 1,

(2.20)

what can be deduced from
∫ ∞
0 g(t k) t s−1 dt = k−s

∫ ∞
0 g(t) t s−1 dt . In particular, a

proof of the Poisson formula (at least form = 1) can be given by applying the inverse
Mellin transform to (2.20) and invoking the Riemann functional equation [18].

The Poisson summation formula is particularly useful for the spectral action com-
putations if one knows explicitly the singular values μn(D) along with the mul-
tiplicities. In favourable cases (which include i.a. the classical spheres and tori)
when μn(D) are indexed by Zm for some m ∈ N one can rewrite the spectral action
as Tr f (|D | /Λ) = ∑

n Mn(|D |) f (μn/Λ) = ∑
k∈Zm gΛ(k), for some function gΛ.

Then, the next lemma shows that

Tr f (|D | /Λ) = F[gΛ](0) + O∞(Λ−∞). (2.21)

In other words: Given a Schwartz function g, the difference between
∫
Rm g(t x) and∑

Zm g(t x) is negligible as t ↓ 0.

Proposition 2.27 (Connes) Given a function g ∈ S(Rm), define

S(g) :=
∑

k∈Zm

g(k), I (g) :=
∫

Rm

g(x) dx and gt(x) := g(t x), for t > 0.

Then, S(gt ) = I (gt) + O0(t∞).

Proof Since t−m F[g](0) = I (gt), the Poisson formula (2.19) implies that it suffices
to show that for any large n ∈ N

∗, S(gt ) − I (gt) = ∑
k∈Zm\{0} F[g](t−1 k) = O0(tn).

But F[g] is also a Schwartz function, |F[g](x)| ≤ c|x |−n for x �= 0 and every n ∈ N,
so for n large enough, |∑k∈Zm\{0} F[g](t−1 k)| ≤ c

∑
k∈Zm\{0} |t−1 k|−n = c′tn . �
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As an example, this shows that

∑

k∈Zm

e−t‖k‖2 =
∫

Rm

e−t ‖x‖2 dx + O0(t
∞) = πm/2 t−m/2 + O0(t

∞). (2.22)

The smoothness of g is indispensable in Proposition2.27: For instance, the function
g(x) = e−t |x | has a Fourier transform F[g](k) = 2 t

4π2k2+t2 and
∫ ∞
−∞ e−t |x | dx = 2

t ,

while
∑∞

k=−∞ e−t |k| = et+1
et−1 = 2

t + 2
∑∞

n=1
B2n

(2n)! t
2n−1 p. 52).

Proposition2.27 does not give a way to compute the asymptotics of I (gt) or
S(gt ). But it is hiddenly used in the computation of the heat trace asymptotics of a
Laplace type operator P on a compact manifold as in AppendixA: The asymptotics
of Tr e−t P is not computed directly via Tr e−t P = ∑∞

n=0 e
−t μn(P) but, as reminded

in AppendixA.4, using the integral kernel of e−t P and an approximation of the
resolvent (P − λ)−1 by a pseudodifferential operator R(λ), the parametric symbols
of which rn(x, ξ, λ) authorise the use of integrals over x and ξ (see [20, Sect. 1.8])
without any reference to the discrete summation

∑
n .

Let us now illustrate the usefulness of the Poisson summation formula for the
spectral action computations:

Example 2.28 If D is the Dirac operator on the sphere Sd , then by Formula (B.1),

Tr f (|D | /Λ) = ∑
n∈N 2�d/2�+1

(n+d−1
d−1

)
f ((n + d

2 )/Λ).

Let us set d = 3, as in [6]. Assuming that f is an even Schwartz function and
checking that ±1/2 are not in the spectrum, we get, via Eq. (2.19),

Tr f (|D | /Λ) = 2
∑

n∈N
(n + 1)(n + 2) f ((n + 3/2)/Λ) =

∑

k∈Z
k(k + 1) f ((k + 1/2)/Λ)

=
∑

k∈Z
gΛ(k + 1/2) =

∑

k∈Z
(−1)k F[gΛ](k),

where gΛ(x) := (x − 1/2)(x + 1/2) f (x/Λ). As already seen in Formula (2.21), we
only need to compute F[gΛ](0) and the asymptotics of the action is

Tr f (|D | /Λ) = Λ3
∫

R

x2 f (x) dx − 1
4Λ

∫

R

f (x) dx + O∞(Λ−∞). � (2.23)

Example 2.29 Consider the spectral triple (C∞(Td), L2(Td ,S ),D/ ) and assume
again that d = 3. By (B.2), the spectrum of D/ is the set of all values ±2π ‖k + �‖
where k varies in Z

3 while � ∈ R
3 is fixed and given by the chosen spin structure

(s1, . . . , sd). There is no degeneracy, apart from zero which is a double eigenvalue.
Again, to simplify we assume that f ∈ S(R) and, as computed in [27],

Tr f (|D | /Λ) = 2
∑

k∈Z3

gΛ(k) = 2
∑

k∈Z3

F[gΛ](k) = 2F(g)(0) + O∞(Λ−∞),
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with gΛ(x) := f (2π ‖x + �‖ /Λ). Since F[gΛ](0) = ∫
R3 f (2π ‖x + �‖ /Λ) dx , we

get

Tr f (|D | /Λ) = 1
4π3 Λ

3
∫

R3
f (‖x‖) dx + O∞(Λ−∞). � (2.24)

In Example2.29, one can see that the spectrum ofD does depend on the choice of the
spin structure and so does the spectral action. But this choice disappears in (2.24),
so that the dependence on the spin structure is asymptotically negligible. Is this a
general fact? See the associated Problem10 in Chap.5.

The Poisson formula has been widely employed in the computation of the spectral
action, as explained in Sect. 1.8. It requires, however, a complete knowledge of the
spectrum of D . The latter is available for a few Dirac operators on Riemannian
manifold, like the spheres, tori, Bieberbach manifolds, quotients of Lie groups, like
SU (n), etc. The reader should notice that the calculations can be tricky, especially
when swapping between f and g in (2.21).

Although the Poisson summation formula is exact, we focused on its application
for the study of asymptotics. Of course, since every summation formula is associated
with an asymptotic formula [17], one can investigate the Taylor–Maclaurin or Euler–
Maclaurin asymptotic formulae. For instance, the latter reads [7], for any 2 ≥ m ∈ N,

N∑

k=0

g(k) =
∫ N

0
g(x) dx + [g(0)+g(N )]

2 +
m∑

j=2

Bj

j ! [g( j−1)(N ) − g( j−1)(0)] + Rm, (2.25)

Rm := (−1)m+1

m!

∫ N

0
g(m)(x) Bm(x − �x�) dx,

where Bj = −2 jζ(1 − 2 j) are the Bernoulli numbers, with B2 j+1 = 0 for j ∈ N
∗

so that B2 = − 1
6 , B4 = − 1

30 , B6 = 1
42 , . . ., and Bj (x) are the Bernoulli polynomi-

als defined by induction: B0(x) = 1, B ′
j (x) = j B j−1(x),

∫ 1
0 Bj (x) dx = 0 (cf. [1,

Chap. 23]).
When N → ∞ and 7 ≤ m ∈ N,

|Rm | ≤ 2

(2π)m
ζ(m)

∫ ∞

0
|g(m)(x)| dx ≤

∫ ∞

0
|g(m)(x)| dx .

Example 2.30 Consider the Dirac operator on the sphere S4, as in [7]. Accord-
ing to AppendixB.1, we have {μn(|D/ | | n ∈ N} = {k ∈ N} and the eigenvalue k
has multiplicity 4

3 (k
3 − k) (thus 0, 1 are not eigenvalues). The Euler–Maclaurin

formula (2.25) can be used for Tr f (|D | /Λ) = 4
3

∑∞
k=0 g(k), where we take

g(x) = (x3 − x) f (x/Λ). Assuming again f ∈ S, we get Rm = O∞(Λ4−m) because
g(m)(Λu) = Λ3−m Pm(u,Λ−1, f (k)(u)), where Pm(u,Λ−1, f (k)(u)) is a polynomial
in u, Λ−1 and a finite number of f (k)(u). Since g(2 j)(0) = 0 for all j ∈ N and
g′(0)=− f (0), g(3)(0)=6 f (0)−6Λ−1 f ′(0), g(5)(0)=120Λ−1 f ′(0)−60Λ−2 f ′′(0)
etc., we obtain
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3
4 Tr f (|D | /Λ)

=
∫ ∞
0

(x3 − x) f (x/Λ) dx + ( 1
12 + 1

120 ) f (0) + (− 1
120Λ−2 − 1

252Λ−2) f ′(0) + . . . ,

which means

Tr f (|D | /Λ) = 4
3Λ

4
∫ ∞

0
u3 f (u) du − 4

3Λ
2
∫ ∞

0
u f (u) du + 11

90 f (0)

+
∞∑

m=1

cm Λ−2m f (m)(0) + O∞(Λ−∞). (2.26)

The coefficients cm can be computed explicitly: c1 = 31/1890, c2 = 41/7560,
c3 = −31/11880, etc. �

Similarly, the Euler–Maclaurin formula can be utilised in the same way when the
singular values of D are polynomials in k ∈ N with polynomial multiplicity in k.

Some authors use the name “non-perturbative spectral action” for expressions
like (2.26) after erasing the remainder O∞(Λ−∞). We warn the Reader that the
‘exponentially small’ term O∞(Λ−∞) can hide the devils, as argued in Sect. 1.8.

2.5 Asymptotic Expansions

The bulk of the physical information encoded in the spectral action can be read
out from its asymptotic behaviour at large energies. The leading term established in
Sect. 2.3 provides rather scarce information. We would like to recognise the leading,
subleading, etc. terms of the action and to control the remainder in a sensible way. It
would be most desirable to have a Laurent expansion

S(D, f,Λ) =
∞∑

k=−N

ak( f,D)Λ−k, (2.27)

the convergence of which for Λ larger than some Λmin would guarantee that con-
sidering higher and higher order terms provides a better approximation of the true,
non-perturbative, action S(D, f,Λ). Unfortunately, we are granted such a level of
precision only for rather specific geometries— see Sect. 2.6. Typically, the best what
one could hope for is a control of the order of the remainder when the series (2.27)
is truncated to the first, say, M terms. This desire is formalised with the help of the
notion of an asymptotic series. It firstly requires the following definition:

Definition 2.31 Let (ϕk)k be a (finite or infinite) sequence of functions on a punc-
tured neighbourhood of x0.We call it an asymptotic scale at x0 if, for any k,ϕk(x) �= 0
for x �= x0 and ϕk+1(x) = Ox0(ϕk(x)).
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Example 2.32 For any x0 ∈ R the sequence
(
(x − x0)n

)
n∈N, known from the Taylor

series, is an asymptotic scale at x0. More generally, one could take (x − x0)rn for any
complex rn’s with �(rn) ↗ ∞.

The logarithmic terms can also be taken into account: For instance, the sequence
{x−1 log2 x, x−1 log x, x−1, log2 x, log x, 1, . . . } defines an asymptotic scale at
x0 = 0.

On the other hand, the sequence {π
2 , x−1 cos x, x−2 sin x, x−3 cos x, . . .} is not

an asymptotic scale at x0 = ∞, as, for instance, the limit of ϕ3(x)/ϕ2(x) for x → ∞
does not exist. �

Definition 2.33 Let (ϕk)k∈N be an asymptotic scale at x0 and g a complex function
on some punctured neighbourhood of x0. We say that g has an asymptotic expansion
with respect to (ϕk)k when there exists a sequence of functions (ρk)k∈N such that

ρk(x) = Ox0(ϕk(x)), g(x) −
N∑

k=0

ρk(x) = Ox0(ϕN (x)), for any N ∈ N.

In this case, we write

g(x) ∼
x→x0

∞∑

k=0

ρk(x) (2.28)

and the symbol
∑∞

k=0 ρk(x) is called an asymptotic series of g at x0.

Remark 2.34 Let us warn the reader that the adopted Definition2.33 is sometimes
called in the literature an extended asymptotic expansion (cf. [17, Definition1.3.3]).
In the standard approach (see for instance [14]) one assumes that ρk(x) = ckϕk(x)
with some complex constants ck . An example of a function which does not have
an asymptotic expansion at infinity in this standard sense, but does have one in the
extended sense is S(x) = ∫ x

0 t−1 sin t dt — see [17, Example8].
Observe also that Definition2.33 uses a flexible, though somewhat slippery, nota-

tion – two different pairs of scale functions (ϕk)k and coefficients (ρk)k can give the
same expansion (2.28) around x0 for a given function g (cf. Example2.37).

In our venture through the meanders of noncommutative geometry we will
encounter situations in which the spectral action S(D, f,Λ) exhibits oscillations
at large energies — see Example2.39. To study its asymptotics, we will need the full
force of Definition2.33. �

Let g : R → R be a smooth function around x = 0. Then g always admits a Taylor
expansion g(x) ∼

x↓0
∑∞

k=0
g(k)(0)
k! xk . However, if g is not analytic, its Taylor series is

only an asymptotic one. As an example consider g(x) = ∫ ∞
0 e−s(1 + s2x2)−1ds. It

is smooth at x = 0 and g(x) ∼
x↓0

∑∞
k=0(−1)k(2k)! x2k , but this expansion is clearly

not a convergent series.
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Let us also note that whereas the functions ϕk of the asymptotic scale must be non-
zero in some punctured neighbourhood V of x0, the coefficients of the expansion —
i.e. the functions ρk —can actually vanish in thewhole V . A standard example is pro-
vided by the function h(x) := e−1/x for x > 0, h(x) := 0 for x ≤ 0. The function h,
being smooth at x = 0, admits a Taylor expansion, i.e. an asymptotic expansion with
respect to the asymptotic scale (xk)k . But, as h(k)(0) = 0 for every k ∈ N, we have
h(x) ∼

x↓0 0, i.e. h(x) = O0(x∞). Note, however, that we could take ϕk(x) = e−1/xk

as the asymptotic scale and write a trivial expansion h(x) ∼
x↓0 e−1/x + O0(ϕN (x))

for any N ∈ N
∗.

The casus of the latter function h shows that an asymptotic expansion can never
determine a function uniquely, even if it converges. Indeed, for any function g smooth
at zero, the functions g and g + h will have the same asymptotic expansions with
respect to the scale (xk)k .

Remark 2.35 Asymptotic expansions can be combined by linearity and multiplica-
tion. They can also be integrated, both with respect to the variable x , as well as
to some external parameters. On the other hand, asymptotic expansions (even the
standard — “non-extended” — ones) do not behave well under differentiation. This
is because the only information available about the remainder is its O∞ behaviour,
which is scarce: Although f (x) = Ox0(g(x)) but, in general, f ′(x) �= Ox0(g

′(x)),
as exemplified by f (x) = x sin(x−1) = O0(x), f ′(x) = O0(x−1) �= O0(1).

For more details on the properties of asymptotic series see [17, Sect. 1.4] and
references therein. �
Example 2.36 As in Example1.2 let us consider an elliptic selfadjoint differential
operator H of orderm acting on a vector bundle E over a closed (i.e. compact without
boundary) d-dimensional Riemannian manifold M and let K ∈ C∞(End(E)) be an
auxiliary smooth endomorphism. If H is positive, then [21, Theorem1.3.5]

Tr Ke−t H ∼
t↓0

∞∑

k=0

ak(K , H) t (k−d)/m . (2.29)

The natural asymptotic scale is ϕk(t) = t (k−d)/m , whereas ρk(t) = ak(K , H) t (k−d)/m

in accordance with [20, Definition (1.8.10)]. �
Example 2.37 More generally, if P ∈ �m(M, E) is positive, elliptic with m > 0,
then

Tr e−t P ∼
t↓0

∞∑

k=0

ak(P) t (k−d)/m +
∞∑

�=0

b�(P) t� log t.

See CorollaryA.7 in AppendixA.5 for the full story and a detailed proof.
Note that this expansion can be read as the one with respect to the asymptotic

scale {t−d/m log t, t−d/m, t (−d+1)/m log t, t (−d+1)/m, . . .}, with constant coefficients
c2 j+1 = a j (P) and c2 j = 0 for j < d, c2 j = b j (P) for j ≥ d.
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Alternatively, one can set the asymptotic scale ϕ j (t) = t ( j−d)/m−ε for some
small ε > 0 and take ρ j (t) = (a j + b( j−d)/m log t) t ( j−d)/m for j − d ∈ mN and also
ρ j (t) = a j t ( j−d)/m for j − d /∈ mN, to satisfy ρ j (t) = O0(ϕ j (t)).

This can be further generalised: If Q is a log-polyhomogeneous pdo of order q,

Tr Q e−t P ∼
t↓0

∞∑

j=0

[ r+1∑

k=0

a j,k(Q, P) logk t
]
t ( j−q−d)/m,

where r is the degree of log-polyhomogeneity of Q (cf. [26, Sect. 3]).
In fact, as suggested on p. 168 of [26] (see also [23, p. 488]), this result should

survive even if P is also log-polyhomogeneous rather than a classical one. �

Remark 2.38 Let P be an elliptic positive pseudodifferential and let Q = P + R,
where R is a smoothing pdo.

Then (P − λ)−1 and (Q − λ)−1 = (P − λ)−1[1 − R(Q − λ)−1] have the same
parametrix. Moreover, if P satisfies HypothesisA.1, so does Q. Thus the difference
between the two pdo’s e−t P and e−t Q (see AppendixA.4) is O0(t∞). This means
that Tr e−t P and Tr e−t Q have the same asymptotics. This coincidence also follows
from the Duhamel formula (4.13). �

Finally, let us present an example of an asymptotic expansion of the spectral
action on the standard Podleś sphere, which justifies the need of the full force of
Definition2.33.

Example 2.39 Let Dq be the Dirac operator on the standard Podleś sphere (cf.
AppendixB.4). For a suitable cut-off function f the spectral action admits a large-
energy asymptotic expansion

S(Dq , f,Λ) ∼
Λ→+∞

∞∑

k=0

2∑

n=0

∑

j∈Z
a−2k+ 2π i

log q j,n
×

×
n∑

m=0

(−1)n−m
(n
m

)
f−2k+ 2π i

log q j,m
(logΛ)n−m Λ

−2k+ 2π i
log q j

. (2.30)

The numbers fz are the generalised moments of the cut-off function and the az,n’s
can be computed explicitly in terms of the residues of ζDq — see [11] for the details.

As in Example2.37 the expansion (2.30) can be consider either with respect to
the asymptotic scale {log2 Λ, logΛ, 1, Λ−2 log2 Λ, Λ−2 logΛ, Λ−2, . . .} or with
respect to (Λε−2k)k∈N for any ε > 0. In both cases, the coefficients ρk(Λ) of the
asymptotic expansion are rather involved functions ofΛ given in terms of absolutely
convergent Fourier series in the variable logΛ. �
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2.6 Convergent Expansions

Surprisingly enough, it turns out that the asymptotic series in Formula (2.30) is
actually convergent for all Λ > 0 and, moreover, one could write a genuine equal-
ity in place of the asymptotic expansion symbol [11, Theorem5.2]. The following
definition provides a general framework for such situations.

Definition 2.40 Let
∑∞

k=0 ρk(x) be an asymptotic series of a function g at x0 with
respect to an asymptotic scale (ϕk)k . We say that the asymptotic expansion of g at
x0 is (absolutely/uniformly) convergent if the series

∑∞
k=0 ρk(x) converges (abso-

lutely/uniformly) in some punctured neighbourhood V of x0. In this case, for x ∈ V ,

g(x) =
∞∑

k=0

ρk(x) + R∞(x), with R∞(x) = Ox0(ϕk(x)) for all k ∈ N.

If, moreover, R∞ = 0 then the expansion is called exact.

Let us note that since
∑∞

k=0 ρk(x) is not, in general, a Taylor series, the domain
of its absolute convergence can be strictly smaller than the domain of conditional
convergence — cf. p. 39.

In this light, the expansion presented in Example2.39 is exact for all Λ > 0. Let
us illustrate Definition2.40 with two further examples of geometric origin:

Example 2.41 LetD/ be the standard Dirac operator on S1 associated with the trivial
spin structure (see AppendixB.1). Then, Tr e−tD/ 2 = ∑∞

n=−∞ e−t n2 = ϑ3(0; e−t ) for
t > 0 where ϑ3(z; q = eiπτ ) = ϑ3(z | τ) := ∑∞

n=−∞ qn2e2niz for z ∈ C, |q| < 1 is a
Jacobi theta function (see [34, p. 464]) which enjoys the Jacobi identity [34, p. 475]

ϑ3(z | τ) = (−iτ)−1/2 ez
2/π iτ ϑ3

(
zτ−1 | − τ−1) . (2.31)

Equation (2.31) implies that, for any t > 0,

Tr e−t D// 2 = (
π
t

)1/2
ϑ3(0; e−π2/t ) = (

π
t

)1/2 + 2
(

π
t

)1/2
∞∑

n=1

e−π2n2/t

= (
π
t

)1/2 + O0(t
∞).

The above asymptotic expansion is finite (thus absolutely and uniformly convergent
∀t > 0), but it is not exact. In fact, the asymptotic expansion of the heat trace asso-
ciated with D/ 2 – the square of the standard Dirac operator on any odd dimensional
sphere Sd is finite, but not exact — see Example3.15 and [12, Corollary2]. �

Example 2.42 Let againD/ be the standard Dirac operator on S1 associated with the
trivial spin structure (see AppendixB.1). Then, for t > 0,
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Tr e−t |D/ | = 1 + 2
∞∑

n=1

e−t n = coth
(
t
2

)
. (2.32)

The function coth is complex analytic in the annulus |s| ∈ (0, π) and its Laurent
expansion at s = 0 reads [1, (4.5.67)]:

coth s = s−1 +
∞∑

k=1

22k B2k
(2k)! s2k−1, (2.33)

where Bk are the Bernoulli numbers (cf. p. 52). Hence, previous equality provides
an asymptotic expansion for Tr e−t |D/ | as t ↓ 0, which is convergent (absolutely and
uniformly on compacts) for t ∈ (0, 2π) and, moreover, exact.

On the side we remark that (2.32) actually provides a meromorphic continuation
of Tr e−t |D/ | to the whole complex plane. �

2.7 On the Asymptotics of Distributions

As explained in Sect. 2.2.2, the Laplace transform technique applied to the spectral
action computations restricts the admissible cut-off function. In this sectionwebriefly
sketch an alternative approach, via the asymptotics of distributions following [17]
(see also [15, 16] and [22, Sect. 7.4]), which works for f ∈ S(R).

LetKm := { f ∈ C∞(Rn,C) | |∂α f (x)|≤cα(1 + ‖x‖)m−|α|, ∀multiindexα∈N
n}

for m ∈ N be equipped with the topology defined by the family of seminorms
‖ f ‖k,m := supx∈Rn {max(1, ‖x‖k−m) |∂α f (x) | with |α| = k}. In particular, f ∈ Km

implies ∂α f ∈ Km−|α|. Now, letK be the inductive limit of the spacesKm asm tends
to infinity. Remark that all polynomials are in K and the Schwartz space S is dense
in K so that we can consider the dual K′ as a subset of tempered distributions.

We remark that Proposition2.27 still holds true for f ∈ K(Rn) and such that∫
Rn f (x)dx is defined — see [16, Lemma 2.10]. More importantly, a distribution
T ∈ D ′(R) is in K′(R) if and only if (see [17, Theorem6.7.1])

T (λx) ∼
λ→∞

∞∑

n=0

(−1)n μn

n! λn+1 δ(n)(x), with μn := 〈T, xn〉 – the moments of T (2.34)

inweak sense: For any f ∈ K, 〈T (λx), f (x)〉 = ∑N
n=0

μn

n! λn+1 f (n)(0) + O∞(λ−N−2)

for any N ∈ N
∗.

Notice that such amoment asymptotic expansion of a distribution harmonises with
the notion of the asymptotic expansion pondered in Sect. 2.5, as for f ∈ K we have

〈T (t−1x), f (x)〉 ∼
t↓0

∑∞
n=0

μn

n! f (n)(0) tn+1.

Formula (2.34) is directly related to the Cesàro behaviour of distributions (cf. [17,
Sect. 6.3]): Given a distribution T ∈ D ′(R) and β ∈ R \ (−N

∗) one writes
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T (x) := O∞(xβ) (C)

if there exist N ∈ N, a primitive TN of T of order N and a polynomial p of degree at
most N − 1, such that TN is locally integrable for large x and we have, in the usual
sense, TN (x) = p(x) + O∞(xN+β). Similarly, one defines T (x) = O∞(xβ) (C)

and, consequently, T (x) := O∞(x−∞) (C) means that T (x) := O∞(x−β) (C)

for all β. It turns out that T ∈ K′ if and only if T (x) = O±∞(|x |−∞) (C) (cf.
[17, Theorem6.7.1]), which shows that the asymptotic behaviour (2.34) at infinity
is in fact equivalent to the Cesàro behaviour.

A good illustration of these notions is the following (see [17, Example164]).

Example 2.43 A distribution S ∈ S ′(R) is said to be distributionally smooth at 0
when S(n)(0) exists (in the sense of Łojasiewicz) for n ∈ N— a property equivalent
to the fact that its Fourier transform is distributionally small: F(S) ∈ K′.

Let now ξ ∈ C with |ξ | = 1 and assume first that ξ �= 1. Let T ∈ K′ be defined
as T (x) = ∑

n∈Z ξ n δn(x). We have μk = ∑
n∈Z ξ n nk = 0 (C). Thus, if S ∈ S ′ is

distributionally smooth at 0, then
∑

n∈Z ξ n S(nx) = O0(x∞) inD ′. But when ξ = 1,
the Dirac comb

∑
n∈Z δn is not in K′. Nevertheless,

∑
n∈Z δn − 1 ∈ K′ and, still in

D ′:
∑

n∈Z S(n x) = x−1
∫
R
S(u) du + O0(x∞), provided that

∫
R
S(u) du is defined.

�

To justify this incursion within distributions, let us consider, as in [17, Sect. 6.16],
a (possibly unbounded) selfadjoint operator on H . Its spectral decomposition
reads: H = ∫ ∞

−∞ λdPλ(H) and determines the spectral density dH (λ) := dPλ(H)

dλ

understood as a distribution from D ′ valued in B(Dom H,H ). Given any
function f ∈ D one gets f (H)=〈dH (λ), f (λ)〉λ and it is natural to use the
notation dH (λ) =: δ(λ − H). Observe now that, with X := ∩∞

n=1 Dom Hn , we
have 〈dH (λ), λn〉 = Hn , which means that actually δ(λ − H) ∈ K′(R,B(X,H )).
Hence, Formula (2.34) yields δ(λσ − H) ∼

σ→∞
∑∞

n=0
(−1)n

n! σ n+1 Hn δ(n)(λ) and,

moreover, δ(λ − H) vanishes to infinite order at ±∞ in the Cesàro sense, namely
δ(λ − H) = O±∞(|λ|−∞) (C).

We now take a detour through [16]: Let T ∈ S ′+(R) and assume the following
Cesàro asymptotic expansion:

T (λ) ∼
λ→∞

∞∑

n=1

cnλ
αn +

∞∑

j=1

b jλ
− j (C), (2.35)

where αn ∈ R\ − N constitute a decreasing sequence. Then, by [17, Theorem32],

T (λΛ) ∼
Λ→∞

∞∑

n=1

cn (λ+Λ)αn +
∞∑

j=1

b jλ
− jPf [(λΛ)− j H(λ)] +

∞∑

n=0

(−1)n μn δ(n)(λ)

n! Λn+1 ,

where μn = 〈T (x) − ∑∞
n=1 cn x

αn+ − ∑∞
j=1 b j Pf [x− j H(x)], xn〉 are the “gener-

alised moments”. Here, Pf is the Hadamard finite part:

〈Pf [h(x)], f 〉 := F. p.
∫ ∞

0
h(x) f (x) dx
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and the index+means that the integral defining the duality is restricted toR+. Thus,

〈Pf [x− j H(x)], f (x)〉 = F. p.
∫ ∞

0
f (x) x− j dx

=
∫ ∞

1
f (x) x− j dx +

∫ 1

0
[ f (x) −

j−1∑

n=0

f (n)(0)
n! xn] x− j dx −

j−2∑

n=0

f (n)(0)
k! ( j−n−1)

and, consequently, Pf [x− j H(x)] is homogeneous of degree − j up to a logarithmic
term: Pf [(λΛ)− j H(λΛ)] = Λ− j Pf [λ− j H(λ)] + (−1) j δ( j−1)(λ)

( j−1)! Λ j logΛ. Finally,

〈T (λ), f (tλ)〉λ ∼
t↓0

∞∑

k=1

ck t
−αk−1 F. p.

∫ ∞

0
λαk f (λ) dλ (2.36)

+
∞∑

j=1

b j t
j
[
F. p.

∫ ∞

0

f (λ)

λ j dλ − f ( j−1)(0)
( j−1)! log t

] +
∞∑

n=0

μn f (n)(0)
n! tn.

Formula (2.36) can be utilised to obtain an asymptotic expansion of the spectral
action computation, at least in the commutative case:

Let P be a positive elliptic pdo of order k > 0 on a d-dimensional compact
manifold M . Then, the Schwartz kernel dP(x, y; λ) of the operator δ(λ − P) enjoys
the following Cesàro expansion on the diagonal (cf. [16, Formula (4.5)]):

dP(x, x; λ) ∼
λ→∞

∞∑

n=0

an(x) λ(d−k−n)/k (C), (2.37)

where
∫
M a0(x) dμ(x) = 1

k WRes P−d/k — see (1.34). The existence of such an
expansion is based on the following Ansatz: With σ denoting the total symbol,

σ [δ(λ − P)] ∼
λ→∞

∞∑

n=0

cn δ(n)(λ − σ(P)).

It is important to stress that the asymptotics (2.37) cannot, in general, be integrated
term by term in λ (see [16]). But we are free to integrate over x ∈ M : Given an
f ∈ S(R), we write

S(P, f,Λ) =
∫

M
〈dP(x, x; λ), f (λΛ−1)〉λdx

and plug in Formula (2.36) with (2.37) to obtain an asymptotic expansion of
S(P, f,Λ) for large Λ.

In particular, with f (x) = e−x (thus f ∈ K), one can recover as in [16, Corol-
lary6.1] the celebrated heat kernel expansion for an elliptic pdo, which we derive
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from the scratch in CorollaryA.7 (with a generalisation to pdos with non-scalar
symbols).

Example 2.44 Let (A ,H ,D/ 2) be as in Example1.2 with dim M = 4. For the
generalised Laplacian P = D/ 2 we get dD/ 2(x, x; λ) ∼

λ→∞ c0 λ + c1(x) (C), which

gives

Tr f (D/ 2/Λ2) ∼
Λ→∞ c0 Λ4

∫ ∞

0
dλ λ f (λ) + c2 Λ2

∫ ∞

0
dλ f (λ)

+
∞∑

n=0

(−1)n f (n)(0) c2n+4 Λ−2n

(cf. [16, p. 247]). Such an expansion works for f ∈ S. If we would attempt to use
f = χ[0,1] — the counting function — we would discover that the expansion is not
valid after the first term. Nevertheless, the full expansion, beyond the first term is
valid in the Cesàro sense; see also [15] for more details. �

It would be highly desirable to implement this approach beyond the commutative
world — see Problem9 in Chap.5.
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Chapter 3
Analytic Properties of Spectral Functions

Abstract In the previous chapter we have witnessed the interplay between the spec-
tral zeta functions and the associated heat traces (cf. Proposition 2.10). We have also
learned, in Sect. 2.2.2, how to exploit the Laplace transform to compute the spectral
action from a given heat trace. In this chapter we further explore the connections
between the spectral functions unravelling the intimate relationship between the
meromorphic continuation of a zeta function and the asymptotic expansion of the
corresponding heat trace. We utilise the latter to establish the sought asymptotic
expansion of the spectral action at large energies. Finally, we ponder the possibility
of obtaining convergent, rather than only asymptotic, formulae for this action.

Let us first fix some notations. Let f be a meromorphic function on some domain
W ⊂ C. For any subset V ⊂ W we shall denote by P( f, V ) the set of poles of f
contained in V . If f is meromorphic on C we abbreviate P( f ) := P( f,C).

As in the previous chapter, let H ∈ T p and let K ∈ B(H ). For further conve-
nience we adopt the following notation:

ZK ,H (s) := Γ (s) ζK ,H (s), for �(s) > p.

In accordance with the conventions adopted after Formula (2.2), we keep the simpli-
fied notationZK ,H for H non-positive but enjoying |H | ∈ T p, and setZH :=Z1,H .

If ζK ,H admits a meromorphic extension to a larger region of the complex plane, then
so doesZK ,H and we keep denoting the meromorphic extension ofZK ,H by the same
symbol. Recall also that Γ is holomorphic on C\(−N) and has first order poles at
−n ∈ N, with Ress=−nΓ (s) = (−1)n(n!)−1. Hence, P(ZK ,H ) = P(ζK ,H ) ∪ (−N).
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64 3 Analytic Properties of Spectral Functions

3.1 From Heat Traces to Zeta Functions

As illustrated byExamples 2.36 and 2.37, in the realm of pseudodifferential operators
in classical differential geometry we are vested with an asymptotic expansion of the
heat trace Tr Ke−t H for small t . It turns out that such an expansion can be utilised to
establish a meromorphic extension of the corresponding zeta function ζK ,H . As an
example, we quote the following result:

Theorem 3.1 ([15, Theorem 1.12.2]) Let K and H be differential operators as in
Example 2.36. Then, the function ZK ,H admits a meromorphic extension to C with
(possibly removable) simple poles at s = (d − k)/m for k ∈ N and

Res
s=(d−k)/m

ZK ,H (s) = ak(K , H).

This agreeable interplay, which essentially relies on the Mellin transform as cap-
tured by Proposition 2.10, extends to the setting of abstract operators on a separable
Hilbert space. In this context the asymptotic expansion of Tr Ke−t H would, in gen-
eral, bemore involved including terms in logk t and/or proportional to t i —exhibiting
log-periodic oscillations as t tends to 0.

Theorem 3.2 Let H ∈ T p and let K ∈ B(H ). Assume that there exist d ∈ N, a
sequence (rk)k∈N ⊂ R strictly increasing to +∞ and a discrete set X ⊂ C without
accumulation points, such that

Tr Ke−t H ∼
t↓0

∞∑

k=0

ρk(t), with ρk(t) :=
∑

z∈Xk

[ d∑

n=0

az,n(K , H) logn t
]
t−z, (3.1)

where Xk := {z ∈ X | − rk+1 < �(z) < −rk}, X = ∪k Xk and the series defining
ρk(t) is absolutely convergent for any t > 0 and any k ∈ N.

Then, the function ζK ,H admits a meromorphic extension to the whole complex
plane with the poles of order at most d + 1 and P(ZK ,H ) ⊂ X.

Moreover, for any z ∈ X and n ∈ {0, 1, . . . , d},

Res
s=z

(s − z)n ZK ,H (s) = (−1)nn! az,n(K , H). (3.2)

Before we prove the theorem, three comments concerning the notation are in order:
Firstly, the set Xk = {zi }i∈Z comes endowed with a lexicographical order defined

as: zi 	 z j iff 
(zi ) < 
(z j ) or 
(zi ) = 
(z j ) and �(zi ) ≤ �(z j ), what makes it
isomorphic — as a poset — to Z. Thus, the symbol

∑
z∈Xk

f (z) should be read as

limJ→∞
∑J

j=−J f (z j ). Since the assumed absolute convergence of the series implies
that the limit does not depend on the grouping or permutation of terms, the notation∑

z∈Xk
is unambiguous.

Secondly, the asymptotic expansion (3.1) should be understoodwith the respect to
the asymptotic scale (trk )k , i.e. we should haveρk(t) = O0(trk ) (recallDefinition 2.33
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Fig. 3.1 Illustration explaining the notations in Theorem 3.2: The discrete set X ⊂ C is partitioned
into a disjoint sum, X = 
 Xk , with the help of the vertical lines �(z) = −rk

and Remark 2.34). The latter is not an additional assumption and it follows from the
assumed form of ρk , as we shall see in the course of the proof.

Thirdly, the sequence (rk)k is needed only to fix an asymptotic scale and can be
adjusted at will, provided the absolute convergence of the resulting ρk’s remains
unharmed. In particular, since max{�(z) | z ∈ X} = p we can choose r0 arbitrar-
ily close to −p (see Fig. 3.1). What matters in the final result (3.2) are the coeffi-
cients az,n(K , H) and not how we distribute them into ρk’s (cf. Remark 2.34 and
Example 2.37) and the poles of ZK ,H depend only on X and not on its partition by
Xk’s.

Proof For �(s) > p we have ζK ,H (s) = 1
Γ (s)

∫ ∞
0 t s−1 Tr Ke−t H dt on the strength

of Proposition 2.10. For such s ∈ C we can split ζK ,H (s) = F0(s) + F1(s), with

F0(s) := 1
Γ (s)

∫ 1

0
t s−1 Tr Ke−t H dt, F1(s) := 1

Γ (s)

∫ ∞

1
t s−1 Tr Ke−t H dt.

Since Tr Ke−t H is smooth on (0,∞) and Tr Ke−t H = O∞(e−λ0(H) t ), the function
F1 is actually holomorphic on C since

∫ ∞
0 t s−1 e−λ0 t dt = Γ (s) λ−s

0 .
Note first that Proposition 2.3 implies ρ0(t) = O0(t−p−δ) for every δ > 0, hence

ρ0(t) = O0(tr0), and we now show that actually ρk(t) = O0(trk ) for every k ∈ N.
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To see this let us fix the index k ∈ N and let us pick a t0 > 0. As the series over
Xk is absolutely convergent for t > 0, we have, when t ≤ t0 and n ∈ {0, . . . , d},

t−rk
∣∣
∑

z∈Xk

az,n(K , H) t−z
∣∣ ≤

∑

z∈Xk

∣∣az,n(K , H)
∣∣ t ck ≤

∑

z∈Xk

∣∣az,n(K , H)
∣∣ t ck0 ,

where ck := − supz∈Xk
(rk +�(z)) > 0.

Hence, for any ε > 0 there exists t0 = [ε/∑ |az,n|]1/ck > 0 such that for every t ≤ t0,
t−rk

∣∣∑
z∈Xk

az,n(K , H) t−z
∣∣ ≤ ε, so that limt→0 t−rk |∑z∈Xk

az,n(K , H) t−z| = 0.
Since rk < −�(z) for z ∈ Xk , we can find ε′ > 0 such that rk + ε′ < −�(z) and

|∑z∈Xk
az,n(K , H) t−z| = O0(trk+ε′). Hence, as logn t = O0(t−ε′) for any ε′ > 0,

|log t |n |∑z∈Xk
az,n(K , H) t−z| = O0(trk ) for n ∈ N. Thus indeed, ρk(t) = O0(trk ).

Let us now fix N ∈ N and invoke the asymptotic expansion (3.1) to provide the
meromorphic continuation of F0 to the half-plane �(s) > −rN . For �(s) > p,

F0(s) =
N∑

k=0

∫ 1

0
t s−1 ρk(t) dt + EN (s),

where EN (s) := ∫ 1
0 t s−1 RN (t) dt and RN (t) := Tr Ke−t H − ∑N

k=0 ρk(t). But since
RN (t) = O0(trN ), EN (s) is actually holomorphic for�(s) > −rN . On the other hand,
for�(s) > −r0 > p,

∫ 1
0 t s−1 ρk(t) dt is absolutely convergent for any k ∈ N (and so

is the series defining ρk), so that we can swap the integral with the series

∫ 1

0
t s−1 ρk(t) dt =

∑

z∈Xk

d∑

n=0

az,n(K , H)

∫ 1

0
t s−z−1 logn t dt

=
∑

z∈Xk

d∑

n=0

az,n(K , H) (−1)nn!
(s−z)n+1 . (3.3)

Now, we claim that, the function s �→ ∑
z∈Xk

az,n(K , H) (s − z)−n−1 is holomor-
phic on C\Xk for any k ∈ N, n ∈ {0, 1, . . . , d}, and hence Formula (3.3) provides a
meromorphic extension of the complex function s �→ ∫ 1

0 t s−1 ρk(t) dt to the whole
complex plane. Indeed, for any s /∈ Xk there exists δ > 0 such that |s − z| ≥ δ for
all z ∈ Xk , since Xk does not have accumulation points. For any such s we have∣∣∑

z∈Xk
az,n(K , H) (s − z)−n−1

∣∣ ≤ δ−n−1 ∑
z∈Xk

∣∣az,n(K , H)
∣∣ < ∞.

Summarising, for any fixed N ∈ N we have

ζK ,H (s) = 1
Γ (s)

N∑

k=0

∑

z∈Xk

d∑

n=0

az,n(K , H) (−1)nn!
(s−z)n+1 + EN (s) + F1(s),

which is a meromorphic function for �(s) > −rN . As N can be taken arbitrarily
large and 1/Γ is meromorphic on C, we conclude that ζK ,H is also meromorphic
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on C. Moreover, the above reasoning shows that the function s �→ Γ (s)ζK ,H (s) can
only have poles in X of order at most d + 1 and (3.2) follows immediately. �

As illustrated in Fig. 3.1 (see also, for instance, [19, Fig. 2.10]) the set of poles of
a spectral zeta function ζK ,H does not need, in general, to exhibit any symmetries.
However, the geometric origin of the operators K and H can force a highly regular
shape of the set X .

Example 3.3 In particular, as follows from Example 2.37, if K and H are classi-
cal pseudodifferential operators on a Riemannian manifold M then ζK ,H admits a
meromorphic extension to the whole complex plane with isolated simple poles
located in (dim M + ordK − N)/ordH ⊂ R (cf. [16]).

If K is allowed to be a polyhomogeneous pdo, then the poles of ζK ,H need no
longer be simple, but are still contained in the highly regular discrete subset of the
real line (dim M + ordK − N)/ordH — see [20]. �

Example 3.4 Let us illustrate an application of Theorem 3.2 in the context of the
noncommutative torus (see Appendix B.3):

Proposition 3.5 Let (AΘ,H ,D) be the spectral triple of the noncommutative
d-torus. Then, for any a ∈ AΘ , the spectral zeta function ζa,D admits a meromorphic
extension to the whole complex plane with a single simple pole located at s = d/2.
Moreover, Ress=d/2 ζa,D = τ(a)2�d/2�πd/2Γ (d/2)−1 and ζa,D(0) = 0.

Proof In order to apply Theorem 3.2 we will show that the corresponding heat trace
Tr a e−t D 2

admits an asymptotic expansion as t ↓ 0. We have

Tr a e−t D 2 =
∑

k∈Zd

2�d/2�∑

j=0

〈Uk ⊗ e j , ae
−t D 2

Uk ⊗ e j 〉

=
∑

k∈Zd

2�d/2�∑

j=0

e−t‖k‖2〈Uk, a Uk〉 〈e j , e j 〉 = 2�d/2� ∑

k∈Zd

τ(U ∗
k aUk) e

−t‖k‖2

= 2�d/2� τ(a)
∑

k∈Zd

e−t‖k‖2 = τ(a)Tr e−t D 2
.

Invoking Proposition 2.27 with g(x) = e−‖x‖2 we obtain

2−�d/2�Tr a e−t D 2 = τ(a)
∑

k∈Zd

e−‖t1/2k‖2 = τ(a)
∑

k

g(t1/2k)

= τ(a)

∫

x∈Rd

e−‖t1/2x‖2 dx +O0(t
∞) = τ(a) t−d/2 +O0(t

∞).

Since dimKerD = 2�d/2� and Tr P0 a = τ(a)2�d/2� thanks to (B.7), Formula (2.8)
gives: Tr a e−t D2 = τ(a) [Tr e−t D 2 + (e−t − 1)2�d/2�] and hence
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Tr a e−t D2 = τ(a)2�d/2�(πd/2 t−d/2 + (e−t − 1) +O0(t
∞)

)

∼
t↓0 τ(a)2�d/2�πd/2 t−d/2 + τ(a)(e−t − 1) dimKerD .

Since the above expansion does not contain any log t terms, Theorem 3.2 yields a
meromorphic extension of ζa,D to the whole complex plane with simple poles only.
To locate the poles we read out the non-zero coefficients from Formula (3.1)

ad/2,0(a, D2) = 2�d/2�πd/2 τ(a), a−k,0(a, D2) = 2�d/2� (−1)k

k! τ(a), for k ∈ N
∗.

Thanks to Formula (3.2) we have Ress=d/2 ζa,D(s) = 2�d/2�πd/2Γ (d/2)−1 τ(a).
Finally, since a0,0(a, D2) = 0 and Ress=0Γ (s) = 1, we conclude from (3.2) that
ζa,D(0) = 0. �

Remark that no Diophantine restriction on the matrixΘ (see Definition A.10) was
needed in the previous result — in contrast with the more general
Theorem B.2. �

As mentioned on p. 18, the complex poles of the function ζK ,H can appear, for
instance, when fractal geometry is involved. We shall see an explicit example in
Sect. 3.3.

Let us now turn to the converse of Theorem 3.2.

3.2 From Zeta Functions to Heat Traces

In the context of pseudodifferential operators in classical Riemannian geometry one
has at one’s disposal the powerful existence theorems about the asymptotic expan-
sion of heat traces. From these one can construct the meromorphic continuations of
the corresponding spectral zeta functions via Theorem 3.2. The original proof for
classical pdos (see Appendix A) heavily relies on the symbolic calculus and integral
kernels of pdos [15]. Unfortunately, these tools are not available in the noncommu-
tative realm. On the other hand, one can hope that given a meromorphic extension of
a spectral zeta function ζK ,H , guaranteed, for instance, by the dimension spectrum
property, one could deduce the existence (and the form) of an asymptotic expansion
of Tr Ke−t H . This is indeed possible, however, one needs to control not only the
local structure of ζK ,H (s) around the poles, but also its asymptotic behaviour on the
verticals – as |
(s)| → ∞.

3.2.1 Finite Number of Poles in Vertical Strips

Let us first handle the casewhen ζK ,H has a finite number of poles in vertical strips, i.e.
for anyUa,b = {z ∈ C | a < �(z) < b} the setP(ζK ,H ,Ua,b) is finite. This is always
the casewhen K and H are classical pdos, but it often occurs also beyond the classical
geometry — for instance in the case of noncommutative torus (cf. Appendix B.3) or
the SUq(2) quantum group [8, 18].
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Theorem 3.6 Let H ∈ T p and let K ∈ B(H ). Assume that:

(i) The function ζK ,H admits a meromorphic extension to C with a finite number of
poles in vertical strips and of order at most d.

(ii) For any fixed x ≤ r0 there exists an ε(x) > 0, such that

ZK ,H (x + iy) = O∞(|y|−1−ε(x)). (3.4)

Fix a sequence (rk)k∈N ⊂ R, increasing to +∞ with p < −r0, giving a partition of
P(ZK ,H ) asP(ZK ,H )=
k Xk with Xk := {z ∈ P(ZK ,H ) | − rk+1 < �(z) < −rk}.

Then, there exists an asymptotic expansion with respect to the scale (trk )k ,

Tr Ke−t H ∼
t↓0

∞∑

k=0

ρk(t), (3.5)

with ρk(t) :=
∑

z∈Xk

[ d∑

n=0

az,n(K , H) logn t
]
t−z (3.6)

az,n(K , H) := (−1)n

n! Res
s=z

(s − z)n ZK ,H (s). (3.7)

Proof We slice the complex plane with the help of the chosen sequence (rk)k as
shown on Fig. 3.1. Since ζK ,H (and hence ZK ,H ) has a finite number of poles in
vertical strips, for any k ∈ N there exists Yk > 0 such that ZK ,H is holomorphic for
|
(s)| ≥ Yk . For each k let us denote

Dk := rectangle {s ∈ C | − rk+1 ≤ �(s) ≤ −rk, −Yk ≤ 
(s) ≤ Yk},

so that Xk = P(ZK ,H , Dk).
Let us fix the index k. By construction, the functionZK ,H is regular at the boundary

of any Dk . Hence, the residue theorem yields

1
i2π

∫

∂Dk

ZK ,H (s) t−s ds =
∑

z∈Xk

Res
s=z

ZK ,H (s) t−s, (3.8)

where the contour ∂Dk is oriented counter-clockwise.Let us decompose the boundary
of the rectangle using

I+V (k) :=
∫ −rk+i Yk

−rk−i Yk

ZK ,H (s) t−s ds, I−V (k) :=
∫ −rk+1+i Yk

−rk+1−i Yk

ZK ,H (s) t−s ds,

I±H (k) :=
∫ −rk±i Yk

−rk+1±i Yk

ZK ,H (s) t−s ds,

so that
∫
∂Dk ZK ,H (s) t−s ds = I+V (k) − I+H (k) − I−V (k) + I−H (k).



70 3 Analytic Properties of Spectral Functions

We are now concerned with the limit of Eq. (3.8) as Yk → ∞.
Firstly, by assumption (ii), we have,

Rk(t) := 1
i2π lim

Yk→∞ I−V (k) = 1
2π

∫ ∞

−∞
ZK ,H (−rk+1 + iy) trk+1−iy dy < ∞,

for any k ∈ N and any t > 0. We also have

R−1(t) := 1
i2π lim

Y0→∞ I+V (0) = 1
2π

∫ ∞

−∞
ZK ,H (−r0 + iy) tr0−iy dy = Tr Ke−t H

on the strength of Corollary 2.12. Moreover, for any k∈N, Rk(t)=O0(trk+1): Indeed,
with F denoting the Fourier transform, we have

Rk(t) t
−rk+1 = 1

2π

∫ ∞

−∞
ZK ,H (−rk+1 + iy) t−iy dy

= 1
2π F[y �→ ZK ,H (−rk+1 + iy)]

(
log t
2π

)
→
t↓0 0. (3.9)

The latter statement is a consequence of the Riemann–Lebesgue Lemma, since
the function y �→ ZK ,H (−rk + iy) is in L1(R, dy) for each rk by hypothesis (3.4).

Secondly, hypothesis (3.4) guarantees that for any k ∈ N and any t > 0

∣∣I±H (k)
∣∣ ≤

∫ −rk

−rk+1

|ZK ,H (x ± i Yk)| t−xdx

≤ sup
x∈[−rk+1,−rk ]

|ZK ,H (x ± i Yk)|
∫ −rk

−rk+1

t−xdx −−−→
Yk→∞ 0.

Finally, let us rewrite the residues more explicitly. By assumption (i) and the fact
that the functionΓ has only simple poles, the functionZK ,H admits a Laurent expan-
sionZK ,H (s) = ∑d+1

n=−∞(−1)nn! az,n(K , H) (s − z)−n in some open punctured disc
with the center at any z ∈ P(ZK ,H ), in accordance with Formula (3.7). On the other
hand,

t−s = e−z log t e−(s−z) log t = t−z
∞∑

n=0

(−1)n logn t
n! (s − z)n, for any s, z ∈ C, t > 0.

Therefore, Res
s=z

ZK ,H (s) t−s = t−z
∑d

n=0 az,n(K , H) logn t .

Hence, for any k ∈ N and any t > 0 Eq. (3.8) yields

Rk−1(t) − Rk(t) = ρk(t). (3.10)

Since Rk(t) = O0(trk+1), it follows that ρk(t) = O0(trk ) for any k ∈ N. The latter
can also be easily deduced from the form of ρk given by Formula (3.6).



3.2 From Zeta Functions to Heat Traces 71

Starting with Formula (3.10) for k = 0 and iterating it N times we obtain the
announced asymptotic expansion Tr Ke−t H = ∑N

k=0 ρk(t) + RN (t). �
Remark 3.7 Suppose that, for a chosen sequence (rk)k , we would require only the
Lebesgue integrability of ZK ,H on the verticals �(z) = −rk in place of the stronger
constraint (3.4) — as we will do in Theorem 3.12. Then, the theorem would still
hold, but the asymptotic expansion (3.5) might get an additional contribution from
the horizontal contour integrals, namely Tr Ke−t H ∼

t↓0
∑∞

k=0

(
ρk(t) + gk(t)

)
with

gk(t) = 1
i2π lim

y→∞

∫ −rk

−rk+1

[ZK ,H (x + iy) t−iy − ZK ,H (x − iy) t iy
]
t−xdx, (3.11)

which is smooth for t > 0 and O0(trk ) as follows from Formula (3.8).
Let us note that even imposing a suitable decay rate of ZK ,H on �(z) = −rk is

not sufficient to get rid of the gk’s, as the Phragmén–Lindelöf interpolation argument
(cf. [24, Sect. 12.7]) firstly requires that ZK ,H does not grow too fast on any vertical
in the segments �(z) ∈ [−rk+1,−rk]. This is not a priori guaranteed. �

In order to estimate the behaviour of ZK ,H on the verticals, it is useful to recall
the vertical decay rates of the Γ -function.

Lemma 3.8 With x, y ∈ R we have

Γ (x + iy) =
{
O∞(|y|x−1/2 e−π |y|/2), for x > 1/2,

O∞(e−π |y|/2), for x ≤ 1/2.

Proof The case x ≥ 1/2 is standard [22, (2.1.19)]. To prove the other part we invoke
the Γ reflection formula

Γ (z) Γ (1− z) = π sin−1(π z), for z ∈ C\Z, (3.12)

along with a lower bound [6, p. 51]

|Γ (x + iy)| ≥ cosh(πy)−1/2 Γ (x), for x ≥ 1/2, y �= 0. (3.13)

For x ≤ 1/2, x /∈ Z/2 and y �= 0 we estimate:

|Γ (x + iy)| = π |sin(π(1− x) − iπy)|−1 |Γ (1− x − iy)|−1

= π [sin2(πx) cosh2(πy) + cos2(πx) sinh2(πy)]1/2 |Γ (1− x − iy)|−1

≤ π√
2
[|sin(πx) cos(πx) sinh(πy)| cosh(πy)]−1/2 cosh(πy)1/2Γ (1− x)−1

≤ π√
2

Γ (1− x)−1 |sin(πx) cos(πx)|−1/2 |sinh(πy)|−1/2 .

Since sinh(y) = O∞(e|y|), it follows that Γ (x + iy) = O∞
(
e−π |y|/2) for x ≤ 1/2,

x /∈ Z/2 and the constraint x /∈ Z/2 can be dropped by continuity. �
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An explicit control on the growth rate of the zeta function ζK ,H yields the following
important corollary of Theorem 3.6:

Corollary 3.9 Let H ∈ T p, K ∈ B(H ) and let ζK ,H meet the assumptions of
Theorem 3.6. Moreover, assume that ζK ,H is of at most polynomial growth on the
verticals, i.e. for any fixed x ≤ r0 there exists c(x) < ∞, such that

ζK ,H (x + iy) = O∞(|y|c(x)). (3.14)

Then, for any q > 0, there exists an asymptotic expansion of Tr Ke−t Hq
as t ↓ 0 of

the form (3.5).

Proof Observe that, for �(s) > p/q, ζK ,Hq (s) = Tr K H−qs = ζK ,H (qs). Then,
the assumption of the polynomial growth on the verticals of ζK ,H , together with
Lemma 3.8, is sufficient to conclude. �

There is an important lesson for noncommutative geometers coming from the
above result:

Remark 3.10 Let (A ,H ,D) be a regular spectral triple of dimension p. If, for a
given T ∈ Ψ 0(A ), the zeta function ζT,D has a meromorphic extension to C with a
polynomial growth on the verticals, then the small-t asymptotic expansions of both
Tr T e−t |D | and Tr T e−tD 2

exist. Nevertheless, the two expansions can be radically
different — compare Examples 3.11 and 3.15 with Example 3.18. �

We indicated in Sect. 2.1 that the spectral zeta functions are actually complex func-
tions defined by general Dirichlet series. Estimating the growth rate of the meromor-
phic continuation of these is, in general, a formidable task, which sometimes relates
to profound conjectures in number theory [14, p. 10]. For example, it is fairly easy
to show [25, Chap.V] that

ζ(x + iy) =

⎧
⎪⎨

⎪⎩

O∞(|y|0), for 1 < x,

O∞(|y|(1−x)/2), for 0 ≤ x ≤ 1,

O∞(|y|1/2−x ), for x < 0.

(3.15)

It implies, in particular, ζ(1/2+ iy) = O∞(|y|1/4). However, the Lindelöf
Hypothesis states that actually ζ(1/2+ iy) = O∞(|y|ε) for any ε > 0. The current
best estimate of the critical exponent is 13/84 [4].

Although if H and K are classical pseudodifferential operators the small-t asymp-
totic expansion of Tr Ke−t H is guaranteed by Theorem A.6, it is instructive to apply
Theorem 3.6 in the context of the classical geometry of 2-sphere.

Example 3.11 Let D/ be the standard Dirac operator on S2 (see Appendix B.1).
FromFormula (B.1)we deduce ζD/ 2(s) = 4

∑∞
n=0(n + 1)−2s+1 = 4ζ(2s − 1), which

is meromorphic on C with a single simple pole at s = 1. We thus have

Res
s=1

ZD/ 2(s) = 2, and Res
s=−k

ZD/ 2(s) = 4 (−1)k

k! ζ(−2k − 1) = −4 (−1)k

k!
B2k+2

2k+2 .
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As the partitioning sequence we can choose, for instance, rk = −3/2+ k, k ∈ N.
Formula (3.15) guarantees that the assumption (3.14) is met and Corollary 3.9 yields
Tr e−t D/ 2 ∼

t↓0 2t−1 − 4
∑∞

k=0
(−1)k

k!
B2k+2

2k+2 t
k . This series is divergent for any t > 0

since (−1)k+1B2k > 2(2k)!/(2π)k for k ∈ N
∗ [1, (23.1.15)]. In fact, the asymptotic

expansion of the heat trace associated with the square of the standard Dirac operator
on any even dimensional sphere is divergent [12, Proposition 11]. �

3.2.2 Infinite Number of Poles in Vertical Strips

For general noncommutative geometries the spectral zeta functions might have an
infinite number of poles in the vertical strips. This feature is always present when
fractal geometry is in play — see, for instance, [17] — and was detected also on
the standard Podleś sphere (cf. AppendixB.4 and [11]). Theorem 3.6 carries over to
this context, but the proof needs to be refined as now each term of the asymptotic
expansion (3.6) can itself be an infinite series, the convergence of which is a subtle
issue.

Theorem 3.12 Let H ∈ T p and let K ∈ B(H ). Assume that:

(i) The function ζK ,H admits a meromorphic extension to the whole complex plane
with poles of order at most d.

(ii) There exists a sequence (rk)k∈N ⊂ R strictly increasing to +∞ with p < −r0,
such that the functionZK ,H is regular and Lebesgue integrable on the verticals
�(s) = −rk .

(iii) For any k ∈ N, t > 0 and n ∈ {0, 1, . . . , d} the series
∑

z∈Xk

Res
s=z

(s − z)n ZK ,H (s) t−z, (3.16)

with Xk := {z ∈ P(ZK ,H ) | − rk+1 < �(z) < −rk}, is absolutely convergent.
Then, there exists an asymptotic expansion, with respect to the scale (trk )k ,

Tr Ke−t H ∼
t↓0

∞∑

k=0

(
ρk(t) + gk(t)

)
, (3.17)

with ρk(t) :=
∑

z∈Xk

[ d∑

n=0

az,n(K , H) logn t
]
t−z (3.18)

az,n(K , H) := (−1)n

n! Res
s=z

(s − z)n ZK ,H (s) (3.19)

and the functions gk can be expressed as
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gk(t) = 1
i2π lim

m→∞

∫ −rk

−rk+1

[ZK ,H (x + iy(k)
m ) t−iy(k)

m − ZK ,H (x − iy(k)
m ) t iy

(k)
m

]
t−xdx,

(3.20)

via an (always existing) sequence (y(k)
m )m∈N strictly increasing to+∞ with y(k)

0 = 0
and such that ZK ,H is regular on the horizontals x ± iy(k)

m with x ∈ [−rk+1,−rk].
The introduction of the sequences (y(k)

m )m , illustrated in Fig. 3.2, is coerced by the
need to sum over the residues of an infinite number of poles in each strip. The final
result does not depend on the particular choice of the (y(k)

m )m’s and, actually, one
could allow for curved lines instead of simple straight horizontals.

Observe also that, similarly as in Theorem 3.2, the only role of the sequence (rk)k
is to fix an asymptotic scale: If we choose another sequence (r ′k)k , for which the
assumptions (ii) and (iii) are met, we will obtain the same asymptotic expansion
(3.17) — recall Remark 2.34.

Proof For each k ∈ N, let us choose a sequence (y(k)
m )m∈Nwith the properties required

by the theorem. Such a sequence can always be found since ζK ,H is meromorphic

Fig. 3.2 An illustration of the meromorphic structure of a function ZK ,H together with notations
adopted in the proof of Theorem 3.12
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(and so is ZK ,H ) and hence the sets Xk do not have accumulation points.
For each k let us denote Dk

0 := ∅ and

Dk
m := rectangle {s ∈ C | − rk+1 ≤ �(s) ≤ −rk , −y(k)

m ≤ 
(s) ≤ y(k)
m }, for m ∈ N

∗.

Now, let us fix the indices k and m.
By construction of the sequences (rk)k and (y(k)

m )m , the function ZK ,H is regular
at the boundary of any Dk

m . Hence, the residue theorem yields

1
i2π

∫

∂Dk
m

ZK ,H (s) t−s ds =
∑

z∈P(ZK ,H , Dk
m )

Res
s=z

ZK ,H (s) t−s, (3.21)

where the contour ∂Dk
m is oriented counter-clockwise. In the above sum only a finite

number of residues is taken into account, as the region Dk
m is bounded.

Let us decompose the boundary of the rectangle using

I+V (k,m) :=
∫ −rk+iy(k)

m

−rk−iy(k)
m

ZK ,H (s) t−s ds, I−V (k,m) :=
∫ −rk+1+iy(k)

m

−rk+1−iy(k)
m

ZK ,H (s) t−s ds,

I±H (k,m) :=
∫ −rk±iy(k)

m

−rk+1±iy(k)
m

ZK ,H (s) t−s ds,

so that
∫
∂Dk

m
ZK ,H (s) t−s ds = I+V (k,m) − I+H (k,m) − I−V (k,m) + I−H (k,m).

We are now concerned with the limit of Eq. (3.21) as m → ∞.
Firstly, as in the proof of Theorem 3.6, we deduce from assumption (ii) that

Rk(t) := 1
i2π lim

m→∞ I−V (k,m) = 1
2π

∫ ∞

−∞
ZK ,H (−rk+1 + iy) trk+1−iy dy = O0(t

rk+1),

R−1(t) := 1
i2π lim

m→∞ I+V (0,m) = Tr Ke−t H .

Secondly, for any k ∈ N and any t > 0, we are allowed to write

lim
m→∞

∑

z∈P(ZK ,H , Dk
m )

Res
s=z

ZK ,H (s) t−s =
∑

z∈Xk

Res
s=z

ZK ,H (s) t−s = ρk(t),

as the sum over the (possibly infinite) sets Xk is absolutely convergent by assumption
(iii). In particular, the limit m → ∞ of the sum of residues does not depend on the
choice of the sequence (y(k)

m )m .
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Finally, for any k ∈ N and any t > 0 Eq. (3.21) yields

Rk−1(t) − Rk(t) − ρk(t) = 1
i2π lim

m→∞ [I+H (k,m) − I−H (k,m)]. (3.22)

Since the LHS of (3.22) is a well-defined function of k ∈ N and t ∈ (0,∞), the
RHS must be so, hence, in particular, the limit m → ∞ exists and is finite for any
fixed value of k and t .We denote it by gk(t) := 1

i2π limm→∞ [I+H (k,m) − I−H (k,m)],
which accords with Formula (3.20).

Following the same arguments as in the proof of Theorem 3.2 one can deduce
that ρk(t) = O0(trk ) for any k ∈ N. Since Rk(t) = O0(trk+1), we get gk(t) = O0(trk )
for any k ∈ N.

Starting with Formula (3.22) for k = 0 and iterating it N times we obtain the
announced asymptotic expansion: Tr Ke−t H = ∑N

k=0[ρk(t) + gk(t)] + RN (t). �

The assumptions in Theorem 3.12 are actually weaker than the ones adopted
in Theorem 3.6 as we have only imposed Lebesgue integrability on the verticals
�(s) = −rk , rather than demanding concrete decay rates in whole segments as in
Formula (3.4). The price for that are the possible additional terms gk in the asymptotic
expansion (3.17) coming from the contour integrals (3.20) and not from the poles
of ZK ,H . This should not be a surprise in view of Remark 3.7. It is also clear that if∣∣ZK ,H

∣∣ decays on the verticals, i.e.

lim
m→∞ |ZK ,H (x + iy(k)

m )| = 0, for all k ∈ N, (3.23)

then gk = 0 for every k.
When (3.23) is assumed, the limit m → ∞ of Formula (3.21) reads

Rk−1(t) − Rk(t) = lim
m→∞

∑

z∈P(ZK ,H , Dk
m )

Res
s=z

ZK ,H (s) t−s . (3.24)

It implies that the sum of residues converges for any k ∈ N, t > 0 and, moreover,
that the limit m → ∞ does not depend on the chosen sequence (y(k)

m )m . Hence, one
might be tempted to conclude that the assumption (iii) is actually redundant when
the constraint (3.23) is met. However, Formula (3.24) guarantees the conditional
convergence only and we are not allowed to write the RHS of (3.24) simply as ρk(t)
given by (3.16). More precisely, (3.24) says that the series of residues converges if
we group the terms into the sets P(ZK ,H , Dk

m+1\Dk
m) and add them subsequently

with the increasing counting index m. Adopting a more stringent constraint

sup
x∈[−rk+1,−rk ]

|ZK ,H (x + iy(k)
m )| = O∞(|m|−1−εk ), for some εk > 0,

which looks natural when compared with assumption (ii) of Theorem 3.6, does imply
that

∑∞
m=0

∣∣ ∑
z∈P(ZK ,H , Dk

m+1\Dk
m ) Ress=z

ZK ,H (s) t−s
∣∣ < ∞, for any k ∈ N, t > 0 (cf.



3.2 From Zeta Functions to Heat Traces 77

Fig. 3.3 An illustration of a possible pathological structure of poles of a meromorphic function.
The sum of residues might turn out finite if the poles are grouped by two, but infinite if they are
added one by one. It is unclear whether such a situation can actually produce itself for a spectral
zeta function of geometrical origin.

[12, Proposition 4]). But the grouping of terms intoP(ZK ,H , Dk
m+1\Dk

m)might turn
out indispensable. Such a situation might produce itself for instance if the meromor-
phic structure of the function ZK ,H is as on Fig. 3.3.

On the other hand, we are not able to cook up a concrete example of a function
ZK ,H , for which such a pathology occurs. So, it might well be that the geometric
origin of the operators K , H prevents such situations — see Problem6(b). However,
we will shortly witness, in Sect. 3.3.1, a computation of the asymptotic expansion,
in which the (vertical) contour integral does give a finite, non-zero, contribution.

We conclude this section with a friendly noncommutative-geometric example.

Example 3.13 LetD S
q be the simplifiedDirac operator on the standard Podleś sphere

(cf. Appendix B.4) and let us denote u = |w| q(1− q2)−1 > 0. Using the explicit
formula for the eigenvalues of

∣∣D S
q

∣∣we can easily compute its spectral zeta function.
For �(s) > 0 we have:
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ζD S
q
(s) =

∑

{+,−}

∑


∈N+1/2


∑

m=−


(|w| q−
+1/2

1−q2

)−s = 2(uq−1)−s
∑


∈N+1/2

(2
 + 1)q s(
−1/2)

= 4(uq−1)−s
∞∑

n=0

(n + 1) q sn = 4(uq−1)−s (1− q s)−2.

The latter equality, which is nothing but an elementary summation of a geometric
series, provides the meromorphic extension of ζD S

q
to the whole complex plane. It

has an infinite number of poles of second order regularly spaced on the imaginary
axis. The following meromorphic structure of the function ZD S

q
emerges:

• a third order pole at s = 0,
• second order poles at s = 2π i j/(log q), with j ∈ Z

∗,
• first order poles at s = −k, with k ∈ N.

The corresponding residues az,n(1, |D S
q |), given by Formula (3.7), read

a0,2 = 2
log2 q

, a0,1 = 4
log2 q

(log u + γ ) ,

a0,0 = 1
log2 q

(
2 log2 u + 1

3π
2 − 1

3 log
2 q + 4γ log u + 2γ 2

)
,

a2π i j/ log q,1 = − 4
log2 q

u−2π i j/ log q Γ ( 2π i
log q j), for j ∈ Z

∗,

a2π i j/ log q,0 = − 4
log2 q

u−2π i j/ log q Γ ( 2π i
log q j) [log u − ψ( 2π i

log q j)], for j ∈ Z
∗,

where γ stands for the Euler’s constant and ψ := Γ ′/Γ is the digamma function.
To apply Theorem 3.12, we can choose rk = −1/2+ k. We have on the verticals

|ζD S
q
(−rk + iy)| = 4(uq−1)rk

∣∣1− q−rk+iy
∣∣−2 ≤ 4(uq−1)rk (1− q−rk )−2. (3.25)

With the help of Lemma 3.8, we see immediately that assumptions (ii) and (iii) of
Theorem 3.12 are fulfilled.

Finally, we choose a convenient sequence ym = 2π(m+1/2)
log q , m ∈ N, for which

qiym = −1. It yields, for any x ∈ R,

|ζD S
q
(x + iym)| = 4(uq−1)x |1− qx+iym |−2 = 4(uq−1)x (1+ qx )−2.

Hence, no additional contribution from the contour integral (3.20) arises.
Summa summarum, Theorem 3.12 yields

Tr e−t |D S
q | ∼

t↓0
1

log2 q

[
2 log2(ut) + F1

(
log(ut)

)
log(ut) + F0

(
log(ut)

)]

+
∞∑

k=1

(−1)k q−k

(k)!(1−q−k )2
(ut)k, (3.26)
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where F0 and F1 are periodic bounded smooth functions on R defined as

F1(x) := 4γ − 4
∑

j∈Z∗
Γ ( 2π i

log q j) e2π i j x ,

F0(x) := 1
3 (π

2 + 6γ 2 − log2 q) − 4
∑

j∈Z∗
Γ (− 2π i

log q j) ψ( 2π i
log q j) e2π i j x ,

see [11, Theorem 4.1].
Similarly as in Example 2.39, it turns out that the expansion (3.26) is actually

exact for all t > 0 — see Example 3.19. We remark that these results hold also for
the full Dirac operator Dq on the standard Podleś sphere, though the estimation of
the contour integrals is much more tedious — cf. [11, Sect. 4]. �

3.3 Convergent Expansions of Heat Traces

As illustrated by Example 3.11 the small-t asymptotic expansion of a heat trace is
typically divergent. We have, however, witnessed the convergence of this expansion
in some particular geometrical context.We shall now connect these specific situations
to the behaviour of the associated zeta functions.

In the context of Theorems 3.6 and 3.12 the remainder of a convergent expansion
(cf. Definition 2.40) can be written explicitly as

R∞(t) = lim
N→∞

1
i2π

∫ −rN+i∞

−rN−i∞
ZK ,H (s) t−s ds. (3.27)

Indeed, Eq. (3.17) yields

Tr Ke−t H − lim
N→∞

N∑

k=0

[ρk(t) + gk(t)] = lim
N→∞ RN (t).

Hence, we can alternatively deduce the convergence of an asymptotic expansion of
the form (3.17) by inspecting the expression (3.27).

Namely, if there exists T ∈ (0,∞] such that Rk(t) converges absolutely/uniformly
on (0, T ) as k → ∞, then

∑∞
k=0(ρk(t) + gk(t)) converges absolutely/uniformly on

(0, T ) and for t ∈ (0, T ) we can write Tr Ke−t H = ∑∞
k=0[ρk(t) + gk(t)] + R∞(t).

Moreover, Eq. (3.9) then shows that R∞(t) = O0(t∞).

3.3.1 Convergent, Non-exact, Expansions

Aparticular instance of a convergent, but not exact, expansion of a heat trace produces
itself when the set of poles of the associated zeta function is finite.
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Proposition 3.14 Let H and K meet the assumptions of Theorem 3.6. If the set
P(ZK ,H ) is finite, then there exists N ∈ N

∗ such that, for all t > 0,

Tr Ke−t H =
N∑

k=0

ρk(t) + R∞(t), with R∞ �= 0. (3.28)

Note that since P(Γ ) = −N the hypothesis of Proposition 3.14 requires in par-
ticular that ζK ,H (−k) = 0 for almost all k ∈ N.

Proof This is a consequence ofTheorem3.6. If P(ZK ,H ) is finite then, for any choice
of the partitioning sequence (rk)k there exists an N ∈ N

∗ such that Xk = ∅ for all
k ≥ N , hence ρk = 0 for k ≥ N . Observe that N �= 0, since ζK ,H has at least one pole
at s = p ≥ 0 (cf. p. 37), which cannot be compensated by Γ (s), since the function Γ

has no zeros. Moreover, we cannot have R∞ = 0, since Tr Ke−t H = O∞(e−tλ0(H))

whereas
∑N

k=0 ρk(t) certainly grows faster than tr0 at infinity. �
As an illustration let us consider the following example:

Example 3.15 Let D/ be the standard Dirac operator on S3 (see Appendix B.1). The
spectral zeta function associated with D/ 2 reads

ζD/ 2(s) = 2
∞∑

n=0

(n + 1)(n + 2)(n + 3
2 )

−2s =
∞∑

n=0

2(n + 3
2 )

−2s+2 − 1
2

∞∑

n=0

(n + 3
2 )

−2s

= 2ζ(2s − 2, 3/2) − 1
2ζ(2s, 3/2),

where ζ(s, a) for a /∈ −N is the Hurwitz zeta function (see, e.g. [2, Chap. 12]).
For any a the latter admits a meromorphic extension to C with a single sim-
ple pole at s = 1. Moreover, it can be shown (cf. [12, Theorem 6] and [21])
that when arg(a) = 0, ζ(s, a) is of polynomial growth on the verticals. Hence,
Corollary 3.9 can be applied. We have Res

s=3/2
ZD/ 2(s) =

√
π

2 and Res
s=1/2

ZD/ 2(s) = −
√

π

4 .

With ζ(s, a + 1) = ζ(s, a) − a−s ,we rewrite ζD/ 2 (s) = 2ζ(2s − 2, 1/2) − 1
2 ζ(2s, 1/2).

Then, for k ∈ N, Res
s=−k

ZD/ 2(s) = (−1)k

k! [2ζ(−2k − 2, 1/2) − 1
2ζ(−2k, 1/2)]. But the

properties of the Bernoulli polynomials (cf. page 49) yield, for any k ∈ N,

ζ(−2k, 1/2) = − B2k+1(1/2)
2k+1 = 1−2−2k

2k+1 B2k+1 = 0.

Hence, Tr e−tD/ 2 ∼
t↓0

√
π

2 t−3/2 −
√

π

4 t−1/2 ⇐⇒ Tr e−tD/ 2 =
√

π

2 t−3/2 −
√

π

4 t−1/2 +O0(t∞),

what harmonises with Formula (2.23) for f (x) = e−x2 and Λ = t−1/2.
As remarked in Example 2.41, the asymptotic expansion of the heat trace associ-

ated with the square of the standard Dirac operator on any odd dimensional sphere
is convergent for all t > 0, but is not exact. �
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Remark 3.16 Let us note that Proposition 3.14 can be a source of interesting iden-
tities for some special functions defined by general Dirichlet series: One checks (cf.
[13]) that in the context of Example 2.41 R∞(t) = 1

2 ( π
t )

1/2[ϑ3(0; e−π2/t ) − 1] and
hence Formula (3.28) yields the Jacobi identity (2.31). �

3.3.2 Exact Expansions

Let us now give a sufficient condition for the exactness of the small-t expansion of
a heat trace, in terms of the corresponding zeta function.

Theorem 3.17 Let H and K meet the assumptions of Theorem 3.12 and let the
estimate

∣∣ZK ,H (−rk + iy)
∣∣ ≤ cke

−εk |y| (3.29)

hold for every y ∈ R and k ∈ N with some ck, εk > 0. If

T := [
lim sup
k→∞

( ck
εk

)1/rk
]−1

> 0 , (3.30)

then the series
∑∞

k=0(ρk(t) + gk(t)), with ρk and gk given by (3.18) and (3.20)
respectively, converges to Tr Ke−t H locally uniformly on (0, T ).

If, moreover, log k = O∞(rk) (i.e. rk grows faster than log k), then the convergence
is absolute on (0, T ).

Proof We estimate the remainder Rk(t) as follows

|Rk(t)| = 1
2π |

∫ ∞

−∞
ZK ,H (−rk + iy) trk−iydy| ≤ 1

2π

∫ ∞

−∞
cke

−εk |y|trk dy = 1
π

ck
εk
trk .

Let 0 < T ′ < T . For any t ∈ (0, T ′]wehave lim supk→∞ t rk
√
ck/εk = t/T ≤ T ′/T .

Hence, for sufficiently large k we have t rk
√
ck/εk < a, where a ∈ (T ′/T, 1) is some

constant independent of t . Then,

|Rk(t)| ≤ ck trk
εkπ

< ark
π

→
k↑∞ 0, (3.31)

so Rk(t) tends to 0 uniformly for t ∈ (0, T ′]. Since T ′ can be any number in (0, T ),
the local uniform convergence is proven.
To check the absolute convergence we need to show that

∑∞
k=0 |ρk(t) + gk(t)| < ∞

for t ∈ (0, T ). From the recurrence relation (3.22) we obtain that, for any k ∈ N,
|ρk(t) + gk(t)| = |Rk−1(t) − Rk(t)| ≤ |Rk−1(t)| + |Rk(t)|. Now, (3.31) implies
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∞∑

k=0

|ρk(t) + gk(t)| ≤ 2
∞∑

k=0

|Rk(t)| ≤ 2
∞∑

k=0

ck trk
εkπ

< 2
π

∞∑

k=0

ark ,

with a ∈ (T ′/T, 1) for any T ′ ∈ (0, T ). Therefore, it suffices to show that the last
series is convergent for any a < 1. The latter is a general Dirichlet series in variable
x = − log a with coefficients ak = 1, bk = rk for k ∈ N. By Theorem 2.2 its abscissa
of convergence equals lim supk→∞(log k)r−1

k , which is 0 by hypothesis. Thus, the
series is convergent for x > 0, i.e. a < 1. �

The absolute convergence, on top of the exactness, of a heat trace expansion is
necessary to establish an exact large energies expansion of the spectral action (cf.
Theorem 3.24). Given an exact expansion, the absolute convergence is fairly easy to
check — it suffices to verify whether the sequence (rk) of our choice grows faster
than log k. In fact, all of the examples of exact expansions we present in this book
are actually absolutely convergent in the same domain.

Let us also remark that if we have an exact expansion of the heat trace for an
open interval (0, T ), then Tr Ke−t H actually provides an analytic continuation of
the series

∑
k |ρk(t) + gk(t)| to the whole half line (0,∞).

In general, Theorem 3.17 provides only a sufficient condition, so Formula (3.30)
does not necessarily give themaximal range of (absolute) convergence. Nevertheless,
the following example shows that the bound (3.29) is often good enough to deduce
the actual upper limit.

Example 3.18 LetD/ be the standard Dirac operator on S1 associated with the trivial
spin structure (see Appendix B.1). As shown in Example 2.42, the associated heat
trace can be computed explicitly for any t > 0 (recall Formula (2.32)) and developed
in a Laurent series around t = 0. The latter converges to Tr e−t |D/ | absolutely for
t ∈ (0, 2π). Let us now re-derive this result using Theorems 3.6 and 3.17:

The operator D/ has a kernel of dimension 1, so Formula (2.8) gives

Tr e−t |D/ | = Tr(1−P0)H e−t |D̄| + 1, for all t > 0.

We have, ζD̄(s) = 2
∑∞

n=1 n
−s = 2ζ(s), which is meromorphic on C with a single

simple pole at s = 1 and

Res
s=1

ZD̄(s) = 2, Res
s=−k

ZD̄(s) = 2 (−1)k

k! ζ(−k) = −2 (−1)k

k!
Bk+1

k+1 , for k ∈ N.

Since B2k+1 = 0 for k ∈ N
∗, we actually have P(ZD̄) = {1, 0,−1,−3,−5, . . .}.

As the partitioning sequence we can choose, r0 = −3/2, r1 = −1/2, r2 = 1/2 and
rk = 2(k − 2), for k ≥ 3. Then, Formula (3.15) guarantees that the assumption (3.14)
is met and Corollary 3.9 yields

Tr(1−P0)H e−t |D̄| ∼
t↓0 2t−1 − 1+ 2

∞∑

k=1

B2k
(2k)! t

2k−1,
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in agreement with Formulae (2.32) and (2.33).
To check that this expansion is exact we need to find an explicit bound of the form

(3.29). Recall first the Riemann functional equation [1, Formula (23.2.6)]:

ζ(s) = 2sπ s−1 sin
(

πs
2

)
Γ (1− s)ζ(1− s),

which yields ZD̄(s) = 2Γ (s)ζ(s) = (2π)sζ(1− s)
(
sin[π(1− s)/2])−1

;
For s = −rk + iy with k ≥ 3 the denominator of the above expression equals

sin[π( 12 + k − i y2 )] = cos[π(k − i y2 )] = (−1)k cosh
(

πy
2

)
.

Thus, for k ≥ 3 and y ∈ R we have

∣∣ZD̄(−rk + iy)
∣∣ = (2π)−2k |ζ(2k+1−iy)|

cosh(πy/2) ≤ 2(2π)−2k ζ(2k + 1) e−π |y|/2.

Hence, the assumptions of Theorem 3.17 are met with ck = 2(2π)−2kζ(2k + 1) and
εk = π/2. Since ζ(x) → 1 as x → +∞, we obtain

T−1 = lim sup
k→∞

[2−2k+2π−2k−1ζ(2k + 1)]1/(2k−4) = 1
2π .

We have recovered the radius of convergence of the Laurent expansion of coth(t/2).
Thus, as rk = O∞(k), we conclude that this expansion is absolutely convergent. �

Let us now treat an example of an exact expansion valid for t > 0, i.e.with T = ∞.

Example 3.19 LetD S
q be the simplifiedDirac operator on the standard Podleś sphere

(cf. Appendix B.4) and let us denote u = |w| q/(1− q2) > 0. In Example 3.13 we
have derived an asymptotic expansion of Tr e−t|D S

q | and alluded to its exactness.
In fact, it is obvious that the series in (3.26) is absolutely and locally uniformly
convergent for any t > 0. But there might a priori be a non-trivial contribution from
the contour integral at infinity namely R∞.

To show that this is not the case we will resort to Theorem 3.17. In Example 3.13
we chose rk = −1/2+ k and established an explicit estimate of ζD S

q
on the verticals

(cf. (3.25)). In order to proceed, we need a more precise estimate of the Gamma
function on the verticals than the one derived in Lemma 3.8. The Euler reflection
formula (3.12) together with inequality (3.13) and Γ (x) > (2π)1/2 xx−1/2e−x for
x > 0 ([26, p. 253]) gives

|Γ (−rk + iy)| = 1
|Γ (k+1/2−iy)|

π
|sin[π(k−1/2+iy)]| ≤ π√

cosh(πy)
Γ (k + 1/2)−1

<
√

πek+1/2(k + 1/2)−k e−π |y|/2. (3.32)

Thus, the assumptions of Theorem 3.17 are met with

εk = π
2 , ck = 4

√
πe(euq−1)k−1/2(1− q1/2−k)−2(k + 1/2)−k
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yielding limk→∞
[
8π−1e (euq−1)k−1/2(1− q1/2−k)−2(k + 1/2)−k

]1/(k−1/2) = 0 for
0 < q < 1. Hence, T = ∞ and, with rk = O∞(k), the expansion (3.26) is absolutely
convergent and exact for all t > 0. �

3.4 General Asymptotic Expansions

It turns out that the asymptotic expansion of the heat trace Tr Ke−t H associated with
some operators K , H actually guarantees the existence of an asymptotic expansion
for a larger class of spectral functions of the form Tr K f (t H). This fact is especially
pertinent in our quest to unravel a large-energies asymptotic expansion of the spectral
action.

Recall that (cf. (2.17)) a function f on R
+ belongs to Cp

0 iff f is a Laplace
transform of a signed measure φ on R

+ and
∫ ∞
0 smd|φ|(s) < ∞ for all m > −p.

Theorem 3.20 Let H ∈ T p, K ∈ B(H ) and assume that

Tr Ke−t H ∼
t↓0

∞∑

k=0

ρk(t), w.r.t. an asymptotic scale (trk )k, (3.33)

with ρk ∈ L∞
loc((0,∞)), ρk(t) = O0(trk ) and ρk(t) = O∞(trk+1), for any k ∈ N.

Then, for any f = L[φ] ∈ Cr0 with r > p, the operator K f (t H) is trace-class for
any t > 0 and there exists an asymptotic expansion:

Tr K f (t H) ∼
t↓0

∞∑

k=0

ψk(t), with ψk(t) =
∫ ∞

0
ρk(s t) dφ(s) = O0(t

rk ). (3.34)

Let us stress that the choice of the asymptotic scale (trk )k is merely a matter of
convention — recall Remark 2.34. In particular, since Proposition 2.3 implies that
ρ0(t) = O0(t−p−ε) for all ε > 0, we can shift r0 to lie arbitrarily close to−p. Hence,
given any r > p, we actually have r > −r0 > p > −r1.

Proof Recall first that, on the strength of Lemma 2.7 the operator f (t H) is trace-
class for any t > 0, and hence K f (t H) is so for any K ∈ B(H ).

As pointed out in Sect. 2.2.2 we have K f (t H) = ∫ ∞
0 Ke−st Hdφ(s) in the strong

operator sense. The trace being normal, Tr K f (t H) = ∫ ∞
0 Tr Ke−st Hdφ(s) for any

t > 0. By assumption we have, for any N ∈ N, Tr Ke−t H = ∑N
k=0 ρk(t) + RN (t)

and hence, Tr K f (t H) = ∑N
k=0 ψk(t) +

∫ ∞
0 RN (st) dφ(s).

Let us first show that ψk(t) = O0(trk ) for any k ∈ N. We have

ρk(t) = O0(t
rk ) ⇔ lim

t→0
t−rk |ρk(t)| = 0 ⇔ ∀ ε > 0 ∃ δ > 0 ∀ t ≤ δ, |ρk(t)| ≤ εtrk

⇔ ∀ ε, t > 0 ∃ δ > 0 ∀ s ≤ δt−1, |ρk(st)| ≤ εtrk srk .
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On the other hand, ρk(t) = O∞(trk+1) ⇒ ∃ δ′ > 0, ∀ t ≥ δ′, |ρk(t)| ≤ trk+1 .
Since ρk is locally bounded on R

+, we actually have a local uniform bound: For
any δ′′ with 0 < δ′′ ≤ δ′,

∀ t ≥ δ′′, |ρk(t)| ≤ Mk(δ
′′) trk+1 with Mk(δ

′′) := supt∈[δ′′,δ′] |ρk(t)| .

Hence, for any t > 0, ∀ s ≥ δ′′t−1, |ρk(st)| ≤ Mk(δ
′′) trk+1srk+1 .

We now pick any ε > 0 and δ′′ = min{δ, δ′}. For any t > 0 we estimate

|ψk(t)| ≤
∫ δ′′t−1

0
|ρk(st)| d|φ|(s) +

∫ ∞

δ′′t−1

|ρk(st)| d|φ|(s)

≤ εtrk
∫ δ′′t−1

0
srk d|φ|(s) + Mk(δ

′′) trk+1

∫ ∞

δ′′t−1
srk+1d|φ|(s)

≤ εtrk
∫ ∞

0
srk d|φ|(s) + Mk(δ

′′) trk+1

∫ ∞

0
srk+1d|φ|(s).

Now, recall that r > −r0 > p > −r1 > −r2 > . . . , as (rk)k is strictly increasing.
Hence, by Proposition 2.21, with f ∈ CMr

0 both integrals
∫ ∞
0 srk d|φ|(s) =: c1

and
∫ ∞
0 srk+1 d|φ|(s) =: c2 are finite. Hence, we have t−rk |ψk(t)| ≤ εc1 + trk+1−rk c2.

Since ε can be taken arbitrarily small we conclude that ψk = O0(trk ) for any k ∈ N.
It remains to show that

∫ ∞
0 RN (st)dφ(s) = O0(trN ) for any N ∈ N. This fol-

lows by the same arguments since RN (t) = O0(trN ) and also RN (t) = O∞(trN+1), as∑N
k=0 ρk(t) = O∞(ρN (t)) = O∞(trN+1), whereas Tr Ke−t H = O∞(e−λ0(H)t ). �

Remark 3.21 Note that ifwedonot insist onhaving a complete asymptotic expansion
of Tr K f (t H), then we can relax the assumption about the heat trace to the following
condition: Tr Ke−t H = ∑N

k=0 ρk(t) + O0(trN ), for some N ∈ N, which implies, for
a suitable function f , that Tr K f (t H) = ∑N

k=0 ψk(t) + O0(trN ). �

Example 3.22 As an illustration of Theorem 3.20 we consider H = D/ 2 and K = 1,
with D/ being the standard Dirac operator on S2 (see Appendix B.1). We have (cf.
Example 2.23), Tr e−t D/ 2 ∼

t↓0 2 t−1 − 2
∑∞

k=0
(−1)k

k!
B2k+2

k+1 t k .

Following Example 2.23 let us take f (x) = (ax + b)−r ∈ Cr0, with some a, b,
r > 0. Since D/ 2 ∈ T p with p = 1 we can apply Theorem 3.20 when r > 1. From
Formula (3.34) we obtain

ψ0(t) = 2 b1−r

a(r−1) t
−1, ψk+1(t) = −2 (−1)k

k!
B2k+2

k+1
akb−k−rΓ (k+r)

Γ (r) t k, for k ∈ N.

Hence, we have

Tr f (tD/ 2) ∼
t↓0 2b−r

[
1

r−1 (a/b)−1 t−1 −
∞∑

k=0

(−1)k B2k+2

k+1

(r+k−1
k

)
(a/b)k tk

]
. �
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Having established the existence theorem for an asymptotic expansion of
Tr K f (t H) we can come back to the issue raised at the end of Sect. 2.2.2: Why
we cannot allow f to be the Laplace transform of a distribution in S ′+ rather than of
a signed measure?

Remark 3.23 Observe that one could derive an analogue of the operatorial Formula
(2.15) by regarding e−sP/Λ as an element of the space of operator valued test func-
tions K(R,B(X,H )) (recall Sect. 2.7). Along the same line, one could prove the
normality of the trace functional (cf. (2.16)), i.e. Tr f (H/Λ) = 〈

L−1[ f ],Tr e−sH/Λ
〉

for L−1[ f ] ∈ K′ ∩ S ′+, using the convergence of the sequence of partial sums in K
and invoking the weak-∗ topology of K′ ∩ S ′+.
On the other hand, the topology ofK′ obliges us to control the derivatives of the test
functions, on whichL−1[ f ] act. But we do not, in general, have such a control on the
remainder of the asymptotic series (3.33) even in the standard case of ρk(t) = ck t−rk

(cf. Remark 2.35). �

Let us now turn to the case of convergent expansions.

Theorem 3.24 Let H ∈ T p and let K ∈ B(H ). Assume that for t ∈ (0, T ) with
some T ∈ (0,+∞],

Tr Ke−t H =
∞∑

k=0

ρk(t) + R∞(t) and
∞∑

k=0

|ρk(t)| < ∞, (3.35)

with ρk ∈ L∞
loc((0, T )) and ρk(t) = O0(trk ) for any k ∈ N, and R∞(t) = O0(t∞).

Then, for any f ∈ Crc with r > −r0 > p, the series
∑∞

k=0 ψk(t), with the functions
ψk(t) :=

∫ ∞
0 ρk(s t) dφ(s) is absolutely convergent on the interval (0, T/N f ) with

N f := inf{N | suppL−1[ f ] ⊂ (0, N )}. Moreover, for t ∈ (0, T/N f ),

Tr K f (t H) =
∞∑

k=0

ψk(t) + R f∞(t), where R f∞(t) :=
∫ ∞
0

R∞(s t) dφ(s) = O0(t
∞).

Proof On the strength of Formula (2.16) and by assumption (3.35) we have

Tr K f (t H) =
∫ ∞
0

Tr Ke−st H dφ(s) =
∫ N f

0

∞∑

k=0

ρk(st) dφ(s) +
∫ N f

0
R∞(st) dφ(s).

Observe first that the sequence of partial sums is uniformly bounded, i.e. for N ∈ N

and t ∈ (0, T/N f ),
∣∣∑N

k=0 ρk(st)
∣∣ ≤ ∑∞

k=0 |ρk(st)| < ∞. Via the Lebesgue dom-
inated convergence theorem, we obtain Tr K f (t H) = ∑∞

k=0 ψk(t) + R f
∞(t) and it

remains to show that R f
∞(t) = O0(t

∞). To this end, let us note that

∀ k > 0 R∞(t) = O0(t
k) ⇔ ∀ k > 0 ∃M, δ > 0 ∀ t ≤ δ, |R∞(t)| ≤ Mtk

⇔ ∀ k, t > 0 ∃M, δ > 0 ∀ s ≤ δt−1, |R∞(st)| ≤ Mtksk .



3.4 General Asymptotic Expansions 87

Then, for any t ∈ (0, N f ) and any k > 0, we have

∣∣∣R f∞(t)
∣∣∣ =

∣∣∣∣
∫ ∞
0

R∞(s t) dφ(s)

∣∣∣∣ ≤
∫ δt−1

0
|R∞(st)| d|φ|(s) +

∫ ∞
δt−1

|R∞(st)| d|φ|(s)

≤ Mtk
∫ ∞
0

sk d|φ|(s) +
∫ ∞
δt−1

|R∞(st)| d|φ|(s).

As f ∈ Cc, we have
∫ ∞
0 sk d|φ|(s) < ∞ for k > 0 and

∫ ∞
δt−1 |R∞(st)| d|φ|(s) = 0

for t < δN−1
f . Since k can be arbitrarily large we conclude that R f

∞(t) = O0(t
∞). �

In general, the compactness of the support of L−1[ f ] is necessary even if the
expansion of the heat trace at hand is actually convergent for all t > 0. This is
because if one would like to allow for f ∈ Cp

0 , rather than f ∈ Cp
c , one would need

to control the behaviour of R∞(t) as t → ∞. On the other hand, such a control is
(trivially) provided if the expansion of Tr Ke−t H is exact for all t > 0.

Corollary 3.25 Let K and H meet the assumptions of Theorem 3.24 with T = +∞
and R∞ = 0. Then, for any f ∈ Cr0 with r > −r0 > p, and any t > 0 we have

Tr K f (t H) =
∞∑

k=0

ψk(t), with ψk(t) :=
∫ ∞

0
ρk(s t) dφ(s).

Proof Obviously, R f
∞ = 0. Hence, it suffices to observe that in the first part of the

proof of Theorem 3.24 we can safely allow for N f = +∞, if the series
∑

k ρk(st)
is absolutely convergent for any s, t > 0. �

On the other hand, we insist that the full force of condition (2.17) is necessary
for Theorem 3.24 to hold even if the convergent expansion of Tr Ke−t H has a finite
number of terms (recall Sect. 3.3.1). Let us illustrate this fact:

Example 3.26 In Example 2.41 we had for any t > 0, Tr e−t D/ 2 = ( π
t )

1/2 + R∞(t).

Let us try to apply Theorem 3.24with f (x) = e−
√
x , which is a completelymonotone

function, but f /∈ C0 (recall Example 2.25). Since

ψ0(t) = 1
2
√

π
t−1/2

∫ ∞

0
s−1/2 s−3/2e−1/4s ds = 2t−1/2,

we would get Tr f (t2D/ 2) = Tr e−t |D/ | = 2t−1 + R f
∞(t). A comparison with

Example 2.42 gives R f
∞(t) = t/6+O0(t

3). Hence, whereas R∞(t) = O0(t∞),
but R f

∞(t) �= O0(t
∞). �

An important question is whether one can tailor a cut-off function such that the
asymptotic expansion of Tr Ke−t H turns to a convergent one of Tr K f (t H). When
Tr Ke−t H ∼

t↓0
∑∞

k=0 akt
k , as happens always in the context of classical differential

operators (cf. Example 2.42), one could seek an f with null Taylor expansion at 0
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— as recognised in [7]. Unfortunately, the natural candidate – a bump function (cf.
[7, Fig. 1]) is not a Laplace transform as explained in Remark 2.20. It is also clear
from Proposition 2.16 that f cannot be completely monotone. Nevertheless, one can
find functions with a null Taylor expansion at 0, which are in Cp

0 for some p.

Example 3.27 Let φ(s) = e−s1/4 sin(s1/4) for s > 0. This non-positive function has
all moments vanishing, i.e.

∫ ∞
0 snφ(s)ds = 0, ∀n ∈ N (cf. [23, Example 3.15]).

Moreover, its absolute moments are finite:

∫ ∞

0
sn|φ|(s) ds ≤

∫ ∞

0
sn e−s1/4 ds = 4(4n + 3)!.

The Laplace transform of f = L[φ] can be obtained with the help of Mathematica
yielding an analytic, though rather uninviting, formula

f (x) = Γ (5/4)
x5/4 0F2

( 1
2 , 3

4 ;− 1
64x

) −
√

π

2x3/2 0F2
(
3
4 , 5

4 ;− 1
64x

)
− Γ (−5/4)

16x7/4 0F2
(
5
4 , 3

2 ;− 1
64x

)
,

with the hypergeometric function 0F2(a, b; z) := ∑∞
k=0

Γ (a)Γ (b)
Γ (a+k)Γ (b+k)

zk

k! .

One can check that f (x) > 0 for x > 0 and, since limx→0+ 0F2(b1, b2; x) = 1, we
get f (x) = O∞(x−5/4). With the help of Proposition 2.21, one obtains a cut-off
function f n for some n ∈ N

∗, which has null Taylor expansion at 0. �
Let us emphasise that the cut-off function exemplified above would do the trick

of turning an asymptotic expansion to a convergent one only if the expansion of
Tr Ke−t H has a very specific form:

∑∞
k=0 akt

k . In general, the expansion (3.34)would
involve the full shape of the cut-off function, via the integrals

∫ ∞
0 sk logn(s) dφ(s).

3.5 Asymptotic Expansion of the Spectral Action

Equipped with the general results presented in the preceding section we are at a posi-
tion to formulate sufficient conditions for the existence of a large-energies asymptotic
expansion of the spectral action S(D, f,Λ) associated with a given spectral triple.

Recall first that the cut-off function f ∈ C0 is smooth at 0 (Proposition 2.16).
In particular, f (0) < ∞ and if the operator T f (t |D|) is trace-class then so is
T f (t |D |). Moreover, from the spectral decompositionD = 0 P0 + ∑

λn �=0 λn Pn , we
get f (|D |) = f (0)P0 + ∑

λn �=0 f (|λn|)Pn , f (|D|) = f (1)P0 + ∑
λn �=0 f (|λn|)Pn ,

and

Tr T f (|D | /Λ) = Tr T f (|D| /Λ) + (
f (0) − f (Λ−1)

)
Tr T P0 (3.36)

= Tr T f (|D| /Λ) +O∞(Λ−1).

Remark 3.28 From this formula we see that the kernel of D becomes irrelevant in
the physical action at large energies. It also explains why we have not defined the
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spectral action (1.43) as Tr T f (|D| /Λ) despite the simplification of working with
an invertible operator. But the kernel pops up if we choose D̄ instead of D

Tr T f (|D | /Λ) − Tr T f (D̄/Λ) = f (0)Tr T P0 = O∞(Λ0). �

Theorem 3.29 Let (A ,H ,D) be a p-dimensional spectral triple and T ∈ B(H ).
Assume that there exists d ∈ N, a sequence (rk)k∈N ⊂ R strictly increasing to +∞
and a discrete set X ⊂ C without accumulation points, such that

Tr T e−t |D| ∼
t↓0

∞∑

k=0

ρk(t), with ρk(t) =
∑

z∈Xk

[ d∑

n=0

az,n(T, |D|) logn t ] t−z (3.37)

where Xk := {z ∈ X | − rk+1 < �(z) < −rk}, X = 
k Xk and the series defining
ρk(t) is absolutely convergent for any t > 0 and any k ∈ N.

Then,

(i) The function ζT,D admits a meromorphic extension to the whole complex plane
with the poles of order at most d + 1 and P(ZT,D) ⊂ X.
Moreover, for any z ∈ X and n ∈ {0, 1, . . . , d},

az,n(T, |D|) = (−1)n

n!
d+1∑


=n

Γ
−n−1(z)
∫
−

[
]
T |D|−z , (3.38)

with Γ j (z) denoting the j-th coefficient of the Laurent expansion around z of Γ ,
i.e. Γ j (z) := Res

s=z
(s − z)− j−1Γ (s), for j ∈ N− 1.

(ii) For any f = L[φ] ∈ Cr0 with r > p,

Tr T f (|D| /Λ) ∼
Λ→+∞

∞∑

k=0

ψk(Λ), w.r.t. the scale (Λ−rk )k, (3.39)

with

ψk(Λ) =
∑

z∈Xk

Λz
d∑

n=0

(−1)n logn Λ

d∑

m=n

( m
m−n

)
az,m(T, |D|) fz,m−n , (3.40)

fz,n :=
∫ ∞

0
s−z logn(s) dφ(s). (3.41)

Let us emphasise that, as in Theorem 3.20, the onliest role of the sequence (rk)k
is to fix an asymptotic scale.
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Proof (i) Since the demand (3.37) exactly mimics the assumptions of Theorem 3.2
the first of part of (i) follows. Then, Formula (3.38) arises fromEq. (3.2) followed
by some easy combinatorics:
Since ζT,D is meromorphic on C we have the following Laurent expansions in
some punctured neighbourhood around any z ∈ X ,

ζT,D(s) =
∞∑


=−d−1

b
(z)(s − z)
, Γ (s) =
∞∑

j=−1

Γ j (z)(s − z) j ,

ZT,D(s) = ζT,D(s) Γ (s) =
∞∑

m=−d−2

cm(z)(s − z)m,

with cm(z) = ∑m+1

=−d−1 b
(z) Γm−
(z). Furthermore,

b
(z) = Res
s=z

(s − z)−
−1ζT,D(s) = Res
s=0

s−
−1Tr T |D|−s−z =
∫
−

[−
]
T |D|−z .

Now, Formula (3.2) yields, for any z ∈ X , n ∈ {0, 1, . . . , d},

az,n(T, |D|) = (−1)n

n! Res
s=z

(s − z)n Γ (s)ζT,D(s) = (−1)n

n! c−n−1(z)

= (−1)n

n!
−n∑


=−d−1

b
(z) Γ−n−1−
(z) = (−1)n

n!
d+1∑


=n

Γ
−n−1(z)
∫
−
[
]
T |D|−z .

(ii) Let us now turn to assertion (3.39). We have demonstrated in the course of
the proof of Theorem 3.2 that ρk defined as in (3.37) satisfies ρk(t) = O0(trk ).
Using the same arguments, one shows thatρk(t) = O∞(trk+1).Moreover,we have
ρk ∈ L∞

loc((0,∞)) and since |D| ∈ T p, Theorem 3.20 yields, with t = Λ−1,

Tr T f (|D| /Λ) ∼
Λ→+∞

∞∑

k=0

ψk(Λ), with ψk(Λ) =
∫ ∞

0
ρk(s/Λ) dφ(s).

It remains to compute the explicit form ofψk . By assumption, the series defining
every ρk(t) are absolutely convergent for any t > 0 so that we can invoke the
Lebesgue dominated convergence theorem to commute the sum over Xk with
the integral over dφ (cf. the proof of Theorem 3.24). In effect, we obtain
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ψk(Λ) =
∑

z∈Xk

Λz
d∑

m=0

az,m(T, |D|)
∫ ∞

0
logm(s/Λ) s−z dφ(s)

=
∑

z∈Xk

Λz
d∑

m=0

az,m(T, |D|)
m∑

j=0

(m
j

)
logm− j (Λ−1) fz, j

=
∑

z∈Xk

Λz
d∑

n=0

(−1)n logn Λ

d∑

m=n

( m
m−n

)
az,m(T, |D|) fz,m−n . �

Formula (3.38) shows how to compute the noncommutative integrals
∫−[
]T |D|−z

given the coefficients az,n(T, |D|): For instance, since Γ−1(−k) �= 0 for k ∈ N, it
implies that

∫−[d+1]T |D|k = 0 for T ∈ Ψ 0(A ) and k ∈ N. More generally:

Corollary 3.30 Under same hypothesis but with T ∈ Ψ 0(A ). For −z = k ∈ N,

∫
−
[d+1]

T |D|k = 0,

∫
−
[d]

T |D|k = (−1)d+kd! k! a−k,d (T, |D|), for d ≥ 0,

∫
−
[d−1]

T |D|k = (−1)d+k−1(d − 1)! k! [a−k,d−1(T, |D|)+
+ (−1)kd (k!) Γ0(−k) a−k,d (T, |D|)], for d ≥ 1;

whereas, for z ∈ C\(−N), in which case Γ−1(z) = 0 and Γ0(z) = Γ (z), we obtain

∫
−
[d+1]

T |D|−z = (−1)dd!
Γ (z) az,d (T, |D|), for d ≥ 0,

∫
−
[d]

T |D|−z = (−1)d (d−1)!
Γ (z)2

[
Γ (z) az,d−1(T, |D|) + Γ1(z) d az,d (T, |D|)] , for d ≥ 1.

If d = 0, then ζT,D is regular at−k ∈ −Nwith ζT,D(−k) = (−1)kk!a−k,0(T, |D|)
and we have

∫−1 = 0 (cf. Example 1.28).
The explicit formulae for the noncommutative integrals become rather involved

when d is large, but otherwise can be computed recursively from Formula (3.38).

Remark 3.31 Let (A ,H ,D) be regular and let the assumptions of Theorem 3.29
be met for any T ∈ Ψ 0(A ) with a common d and Xk’s (i.e. there exist d, Xk such
that for any T ∈ Ψ 0(A ), d(T ) = d and Xk(T ) = Xk). Then, (A ,H ,D) has a
dimension spectrum Sd of order at most d + 1 and Sd ∪ (−N) ⊂ X .

Let us emphasise that this is a one-way street, even if (A ,H ,D) is known to
possess a simple dimension spectrum included inR. As we have seen in the previous
sections, the existence of a small-t asymptotic expansion of a heat trace is a stronger
property than the existence of ameromorphic extension of the associated spectral zeta
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function. The assumptions about the growth rate of the ζD-function on the verticals
are indispensable, as they allow us to control the contour integrals involved in the
Mellin inversion theorem and hence manage the remainder in the asymptotic series.
Its relevance was recognised by Connes and Moscovici in [10, p. 206] in the context
of index theorems. See also Problem6(a) in Chap.5. �

Example 3.32 For every commutative spectral triple associated with a Riemannian
compact manifold M the assumptions of Theorem 3.29 are met — cf. Example
2.37. In this context we have d = 1, X = dim M − N and Xk = {dim M − k}. This
extends naturally to almost commutative geometries, as they are embedded in the
framework of purely classical pseudodifferential operators [3, 5]. �

As a straightforward corollary of Theorem 3.29 we obtain the following, slightly
enhanced, known result [9, Theorem 1.145]:

Corollary 3.33 Let (A ,H ,D) be a regular p-dimensional spectral triple with
a dimension spectrum Sd, denote Sd+ := {z ∈ Sd | �(z) > 0} and let T ∈ Ψ 0(A ).
Moreover, assume that

Tr T e−t |D | =
∑

α∈Sd+
aα(T, |D|) t−α + a0(T, |D|) + O0(1), (3.42)

where the, possibly infinite, series over α is absolutely convergent for all t > 0.
Then, the function ζT,D is regular at 0 and for any f ∈ Cr0 with r > p,

Tr T f (|D | /Λ) =
∑

α∈Sd+
Λα

∫ ∞

0
xα−1 f (x)dx

∫
− T |D|−α + f (0)ζT,D(0) + O∞(1).

(3.43)

Alternatively, if in place of (3.42) one assumes

Tr T e−tD 2 = 1
2

∑

β∈Sd+
aβ/2(T, D2) t−β/2 + a0(T, D2) + O0(1), (3.44)

then, the expansion (3.43) holds for
[
x �→ f (

√
x)

] ∈ Cr0 with r > p/2.

Proof The existence of the expansion (3.43) follows from Theorem 3.20 enhanced
by Remark 3.21, whereas the explicit form of the coefficients is provided by Formula
(3.40) from Theorem 3.29. The regularity of ζT,D at 0 follows from Formula (3.38)
and a0,1(T, |D|) = 0.
Furthermore, a0,0(T, |D|)=∫−[0]T =Res

s=0
s−1 ζT,D(s)=ζT,D(0). Finally, we observe

that f (0) = ∫ ∞
0 dφ(s) < ∞ (cf. Proposition 2.16) and moreover, for �(α) > 0

(see the proof of Proposition 2.21),

fα,0 =
∫ ∞
0

s−α dφ(s) = 1
Γ (α)

∫ ∞
0

xα−1
∫ ∞
0

e−sx dφ(s)dx = 1
Γ (α)

∫ ∞
0

xα−1 f (x)dx,
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whereas aα,0(T, |D|) = aα(T, |D|) = Γ (α)
∫− T |D|−α .

For the alternative statement with hypothesis (3.44), we have with f (x) = g(x2),

Tr T f (|D | /Λ) = Tr Tg(D2/Λ2) =
∫ ∞

0
Tr T e−sD 2/Λ2

dφg(s)

= 1
2

∑

β∈Sd+
Λβaβ/2(T, D2)

∫ ∞

0
s−β/2dφg(s) + g(0)ζT,D2(0) + O0(1)

= 1
2

∑

β∈Sd+
Λβ

∫ ∞

0
xβ/2−1g(x) dx + f (0)ζT,D(0) + O0(1)

=
∑

β∈Sd+
Λβ

∫ ∞

0
yβ−1 f (y) dy + f (0)ζT,D(0) + O0(1). �

Remark 3.34 Let us emphasise that the remainder in (3.43) will, in general, involve
the full shape of the cut-off function f , even if (A ,H ,D) has a simple dimension
spectrum. To conclude that O∞(1) depends only on the Taylor expansion of f at 0
one would need a considerably stronger assumption

Tr T e−t |D | ∼
t↓0

∑

α∈Sd+
aα(T, |D|) t−α + a0(T, |D|) +

∞∑

k=0

a−k(T, |D|) t−k,

in place of (3.42). This brings to focus the role of the cut-off function f in the
dynamics of the physical systemmodelled via the triple (A ,H ,D). See Problem7
in Chap.5. �

Remark 3.35 As one can see, the swap between the alternative hypotheses (3.42) and
(3.44) is not at all innocent. Although they both yield the same Formula (3.43), but
for f in very different classes C. Moreover, the existence of asymptotics of Tr T e−tD 2

cannot be easily deduced from the asymptotics of Tr T e−t |D | via the Laplace trans-
form — see Example 2.25. The converse implication is also not guaranteed, as
observed in Remark 2.20. The existence of both asymptotic expansions is, however,
guaranteed if we know that the meromorphic extension of the corresponding zeta
function ζT,D is of polynomial growth on the verticals — cf. Corollary 3.9. See
Problem 6(e) in Chap.5. �

Theorem 3.29 allows us to unveil the large-energies asymptotic expansion of
the spectral action S(D, f,Λ) with a fixed operator D . In order to understand the
complete picture of dynamics, we need to fathom out how does the spectral action,
and its asymptotics, behaves under the fluctuations ofD — recall Sect. 1.6. This will
be our goal in the next chapter.
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Chapter 4
Fluctuations of the Spectral Action

Abstract As we have learned in Sect. 1.6 a given spectral triple (A ,H ,D) ought
to be considered as a representative of the entire family of triples (A ,H ,DA),
which yield equivalent geometries. It is therefore of utmost importance to understand
how the spectral action is affected by the fluctuations of geometry. We explore the
meromorphic structure of the fluctuated zeta function and, for regular spectral triples
with simple dimension spectra, we provide a few formulae for the noncommutative
integrals. Finally, we sketch the method of operator perturbations.

4.1 Fluctuations of the Spectral ζ -Function

We have seen in Chap.3 that the spectral zeta function plays a pivotal role in the
asymptotic expansion of the spectral action. In this section we study the relationship
of the spectral functions ζD and ζDA

. To this end, we will work with a regular spectral
triple (A ,H ,D) and provide an operator expansion of |DA|−s for s ∈ C.

Let A be an abstract pdo such that A = A
∗ ∈ Ψ 0(A ). This hypothesis encom-

passes both the standard fluctuationsA = A + εJ AJ ∗, with A = A∗ ∈ Ω1
D (A ) (cf.

p. 26) and the more general ones considered in [2].
Recall from (1.42) that DA = D + A and define

DA :=DA + PA,

where PA is the projection onKer DA.We implicitly exclude the caseDA = 0, which
can occur only if dimH < ∞ (recall p. 38).

Let us remark that DA ∈ Ψ 1(A ) and, as already noted after Definition1.18,

VA := PA − P0 is a smoothing pdo. (4.1)

This follows from Ker DA ⊂ ⋂
k≥1 Dom D k

A
⊂ ⋂

k≥1 Dom |D|k , the fact that
|D|r PA and PA |D|s are bounded operators for any r, s ∈ R since Im PA is finite

© The Author(s) 2018
M. Eckstein and B. Iochum, Spectral Action in Noncommutative Geometry,
SpringerBriefs in Mathematical Physics,
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dimensional, and for any k ∈ N, t ∈ R the expression δk(PA) |D|t , being a linear
combination of terms of the form |D|r PA |D|s , is also bounded. Thus, PA is a
smoothing pdo as P0, see Example 1.19 (cf. [7, Lemma4.1] for details).

Using (1.10), define for any T ∈ Ψ (A ), n ∈ N
∗, s ∈ C, and dt := dt1 · · · dtn ,

Kn(T, s) := (− s
2 )

n
∫

0≤t1≤···≤tn≤1
σ−s t1(T ) · · · σ−s tn (T ) dt, (4.2)

Recall that if T ∈ OPα , then σz(T ) ∈ OPα for any z ∈ C (cf. Proposition1.13)
and the integrand in (4.2) is in OPαn , continuous in the strong topology in integration
variables varying over a compact set. Hence, Kn(T, z) ∈ OPαn .

We shall need the following technical operators

X :=D2
A

− D2 = AD + DA + A
2, XV := X + VA, (4.3)

Y := log(D2
A
) − log(D2) = log(D2 + XV ) − log(D2), (4.4)

(which are well defined since A preserves Dom D and D2
A
is invertible), so that

D2 + XV = (D + A)2 + PA = D2
A

+ PA = D2
A
.

We store for the sequel that XV ∼ X . In the following we use the multi-index
notation 	 = (	1, . . . , 	n) ∈ N

n with |	| = 	1 + · · · + 	n and the following complex
function h

hn(s; 	) := (− s
2

)n
∫

0≤t1≤···≤tn≤1

(−s t1/2
	1

) · · · (−s tn/2
	n

)
dt, 	 ∈ N

n, (4.5)

which is a polynomial since
( s
	i

) = s(s+1)···(s−	i+1)
	i ! for s ∈ C, 	i ∈ N

∗ and
(s
0

) = 1:

hn(s; 	) =
|	|∑

j=0

h j (	) s
n+ j , for 	 ∈ N

n. (4.6)

Lemma 4.1 The operator Y has the following expansion for any N ∈ N
∗,

Y =
N∑

n=1

N−n∑

	1, ... ,	n=0

(−1)|	|+n+1

|	|+n ∇	n
(
X∇	n−1(X · · · ∇	1(X))

)
D−2(|	|+n) mod OP−N−1. (4.7)

Hence, Y ∈ Ψ ′(A ) ∩ OP−1 ⊂ Ψ −1(A ). In particular,

Y = XD−2 − 1
2 (∇(X)D−4 + X2D−4) + . . . ,

Proof Remark that, although Y depends on XV we could replace it with X in (4.7)
as X ∼ XV . Thus, to simplify, we will, by an abuse of notation, work directly with
X .

Since for x > 0, log x = ∫ ∞
0 [(1 + λ)−1 − (x + λ)−1] dλ, we obtain via the func-

tional calculus
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Y =
∫ ∞

0
[(D2 + λ)−1 − (D2 + X + λ)−1] dλ. (4.8)

Remark that D2 + X + λ = D2
A

+ λ is invertible for anyλ ∈ [0,∞).Moreover, with
L = L(λ) := (D2 + λ) ∈ OP2 for a given λ

(L + X)−1 = [(1 + XL−1)L]−1 = L−1[1 + XL−1]−1,

so that for a given N ∈ N
∗,

[1 + XL(λ)−1]−1 =
N∑

n=0

(−1)n [XL(λ)−1]n + RN (λ),

RN (λ) := (−1)N+1[XL(λ)−1]N+1[1 + XL(λ)−1]−1 ∈ OP−N−1.

We used the fact that X ∈ OP1 and Proposition1.13 (vii i) to deduce first that
L(λ)−1 is in OP−2 and then [1 + XL(λ)−1]−1 ∈ OP0, since 1 + XL(λ)−1 ∈ OP0

has a discrete spectrum (because XL−1 = (XD−1)(D2L−1) D−1 is compact) and
1 + XL−1 is invertible.

With the definition Bn(λ) := L(λ)−1[XL(λ)−1]n ∈ OP−n−2, n ∈ N
∗, we get

Y =
∫ ∞

0
I (λ) dλ, where I (λ) :=

N∑

n=1

(−1)n+1 Bn(λ) + L(λ)−1RN (λ). (4.9)

The idea is now to move all dependence in λ in the sum to the right to facilitate an
explicit integration over λ.

Let us define Bn(T ) := L−1[T L−1]n for n ∈ N
∗. Since [D2 + λ, T ] = ∇(T ), a

recurrence gives, for any q1 ∈ N,

B1(T ) = L−1T L−1 =
q1∑

	=0

(−1)	∇	(T ) L(λ)−	−2 + r1,q1(T ),

r1,q1(T ) := (−1)q1+1L−1∇q1+1(T )L−q1−2.

Forn ≥ 2wehave Bn(T ) = L−1T Bn−1 and another recurrence gives, for anyqn ∈ N,

Bn(T ) =
qn∑

	n=0

· · ·
q1∑

	1=0

(−1)|	|∇	n
(
T∇	n−1(T · · · ∇	1(T ))

)
L−(|	|+n+1) + rn,qn (T ),

rn,qn (T ) =
qn−1∑

	n−1=0

· · ·
q1∑

	1=0

(−1)qn+|	|+1 L−1∇qn+1
(
T∇	n−1(T · · · ∇	1(T ))

)
L−(qn+|	|+n+1)

+ L−1T rn−1,qn−1(T ). (4.10)

The implementation of Bn = Bn(X) in (4.9) with qi = N − n for any i = 1, . . . , n,
and sN ,n(λ) := rn,N−n(X) for n = 1, . . . , N gives
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I (λ) =
N∑

n=1

(−1)n+1
∑

	| 	i=0,..., N−n

(−1)|	|∇	n
(
X∇	n−1(X · · · ∇	1(X))

)
L(λ)−(|	|+n+1)

+ RN ,1(λ) + RN ,2(λ), with RN ,1 := L−1RN , RN ,2 :=
N∑

n=1

(−1)n+1sN ,n .

The integration
∫ ∞
0 L(λ)−(|	|+n+1) dλ = (|	| + n)−1 D−2|	|−2n is valid for n ≥ 1.

Remark that the first term of I (λ) is XL(λ)−2 (with N = 1, so n = 1, 	1 = 0) and
we deduce that Y is both in Ψ ′(A ) and OP−1 with the announced expansion (4.7),
if for all N ≥ 1 the integrals of the remainders RN (λ) are in OP−N−1.

We first claim that
∫ ∞
0 RN ,1(λ) dλ ∈ OP−N−1+ε for some ε ∈ (0, 1) and to prove

it we apply the method of Theorem1.15.
With Z(λ) := [1 + XL−1(λ)]−1∈OP0,we rewrite the normof |D|2−εRN ,1|D|N−1

as

∥
∥
∥(D2L−1)1−ε/2L−ε/2

N−1∏

k=0

(
[|D|N−1−k X |D|−N+k](D2L−1)

)
[|D|−1 X ](L−1Z)

∥
∥
∥.

Thus ‖ ∫ ∞
0 |D|2−ε RN ,1 |D|N−1 dλ‖ ≤ c

∫ ∞
0 ‖L(λ)−ε/2‖ ‖(D2

A
+ λ)−1‖ dλ, since

the terms in square brackets are inOP0 and hence bounded, ‖D2L(λ)−1‖ ≤ 1 and also
we have L−1Z = (D2

A
+ λ)−1 (we use XV for the equality). This integral is finite for

any ε > 0, since for λ ∈ [0, 1], the integrand is smaller than ‖ |D|−1 ‖‖D−2
A

‖, while
for λ ≥ 1 we have L−1(λ) ≤ λ−1 and (D2

A
+ λ)−1 ≤ λ−1.

As explained in Theorem1.15, to prove the claim it is sufficient to check that the
previous integral’s estimates remain validwhen L−1Z is swapped to δn(L−1Z). Since
δ(L−1Z) = L−1δ(Z) = −L−1Z δ(X)L−1 Z , this improves previous estimates in λ.

We also claim that
∫ ∞
0 RN ,2(λ) dλ ∈ OP−N−1+ε and proceed essentially in the

same way to prove it. We only need to show that
∫ ∞
0 ‖sN ,n(λ) |D|N+1−ε ‖ dλ < ∞

for each n in {1, . . . , N }, and we use the induction to that end: For n = 1 we have

‖sN ,1(λ) |D|N+1−ε ‖ = ‖(−1)N L−1∇N (X)L−N−1 |D|N+1−ε ‖
= ‖(L−1D2)[D−2∇N (X) |D|−N+1]L−N−1 |D|2N−ε ‖
≤ c‖L−1 |D|2 ‖N−ε/2‖L−1‖1+ε/2 = c′‖L−1‖1+ε/2,

which is integrable on R
+ for any ε > 0. Now we show that

∫ ∞

0
‖sN ,n−1(λ) |D|N+1−ε ‖ dλ < ∞ implies

∫ ∞

0
‖sN ,n(λ) |D|N+1−ε ‖ dλ < ∞.

Using the relation (4.10), we only need to prove that L−1X rn−1 |D|N+1−ε and the
operators L−1∇qn+1

(
X∇	n−1(X · · · ∇	1(X))

)
L−(qn+|	|+n+1) |D|N+1−ε are integrable.

The first one follows directly from
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‖L(λ)−1X‖ = ‖L(λ)−1D2(D−2X)‖ ≤ ‖D−2X‖

and the recurrence hypothesis. For the second one we take the decomposition

L−1∇qn+1(X∇	n−1(X · · · ∇	1(X))
)
L−(qn+|	|+n+1) |D|N+1−ε =

L−1D2
[
D−2∇qn+1

(
X∇	n−1(X · · · ∇	1(X))

) |D|−N−|	|+1
] ×

× |D|N+|	|−1 L−N−|	|−1 |D|N+1−ε .

The term in the square bracket is in OP0, so that it remains to show the integra-
bility of ‖ |D|2N+|	|−ε L−N−|	|−1‖ = ‖D2L−1‖N+	−ε/2 ‖ |D|−	 ‖‖L−1‖1+ε/2, which
follows as above.

This completes the proof that RN := ∫ ∞
0 [RN ,1(λ) + RN ,2(λ)] dλ ∈ OP−N−1+ε.

To dispose of the ε we invoke the handy Lemma1.14. �

Theorem 4.2 (see [4, 7]) Let (A ,H ,D) be a regular spectral triple and let
A = A

∗ ∈ Ψ 0(A ). Then, for any N ∈ N
∗ and any s ∈ C,

|DA|−s = |D|−s +
N∑

n=1

Kn(Y, s)|D|−s mod OP−(N+1)−
(s), (4.11)

where Kn(Y, s) ∈ Ψ −n(A ) and we have for each n ∈ {1, . . . , N }

Kn(Y, s) =
∑

	∈{0,..., N−n}n
hn(s; 	)E 	1(Y ) · · ·E 	n (Y ) mod OP−N−1. (4.12)

Proof To prove Formula (4.11) we observe that |DA|−s = eC−(s/2)Y e−C |D|−s with
C := (−s/2) log(D2). We are going to use the Duhamel formula

eP+Q e−P = 1 +
∫ 1

0
e s(P+Q) Q e−sP ds (4.13)

leading to the following Volterra series (expansional formula)

eP+Qe−P = 1 +
∞∑

n=1

∫

0≤t1≤···≤tn≤1
Q(t1) · · · Q(tn) dt, where Q(t) := et P Q e−t P .

The latter is valid for any (un)bounded selfadjoint operator P and any selfadjoint
bounded operator Q in the operator norm topology (see [6, Theorem3.5], [18,
Lemma3.32] for a more general framework).

With P = − s
2 log(D

2) and Q = − s
2 Y , we obtain Q(t) = − s

2 σ−s t (Y ), so that

|DA|−s = |D|−s +
∞∑

n=1

Kn(Y, s)|D|−s, (4.14)
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with each Kn(Y, s) in OP−n , hence proving (4.11).
Finally, applying the expansion (1.22) within Eq. (4.2), with N − n and the defi-

nition E m(Y ) = ∇m(Y ) |D|−2m , we get that Kn(Y, s) is equal, modulo OP−N−1, to

(− s
2 )

n
∫

0≤t1≤···≤tn≤1

∑

	∈{0,..., N−n}n

(−s t1/2
	1

) · · · (−s tn/2
	n

)
E 	1(Y ) · · ·E 	n (Y ) dt,

which is nothing else than (4.12). �

Remark that E 	(Y ), 	 ∈ N, are in Ψ ′(A ), see [7, Corollary4.4].
It turns out that, thanks to Formula (4.11), the fluctuated triple (A ,H ,DA)

inherits many of the properties of the original (A ,H ,D).

Corollary 4.3 Let (A ,H ,D) be regular spectral triple and letA = A
∗ ∈ Ψ 0(A ).

Then, (A ,H ,DA) is a regular spectral triple andΨA(A ) ⊂ Ψ (A ), whereΨA(A )

refers to the pseudodifferential calculus defined by DA.

Proof Recall that (A ,H ,DA) is indeed a spectral triple — cf. Remark1.5.
Formula (4.11) for s = −1 yields |DA| = |D| + B(A), with B(A) ∈ Ψ 0(A ). In

particular Dom δA = Dom δ sinceΨ 0(A ) ⊂ B(H ). Thus OP0
A

= OP0; moreover,
if T ∈ OPr

A
then |DA|−r T ∈ OP0

A
= OP0, so |D|−r T = (|D|−r |DA|r ) |DA|−r T is in

OP0 as |D|−r |DA|r ∈ OP0, and T ∈ OPr . By symmetry, OPr
A

= OPr and by exten-
sion ΨA(A ) ⊂ Ψ (A ) since we already know that DA ∈ Ψ (A ) and so is |DA|
by Theorem4.2, implying that |DA| = |DA| − PA is also in Ψ (A ) because PA is
smoothing (c.f. p. 95). As in Lemma1.12,

⋂ ∞
k=0 Dom δk

A
= ⋂ ∞

k=0 Dom δ
′ k
A

with
the definition δ′

A
:= [DA, ·]. Since for a ∈ A , we have a, [DA, a] ∈ OP0 = OP0

A
,

the regularity of the fluctuated triple is proved. �

Consequently, we define Ψ C

A
(A ) := {T |DA|z | T ∈ Ψ (A ), z ∈ C}.

Theorem 4.4 Let (A ,H ,D) be p-dimensional regular spectral triple with a
dimension spectrum of order d and let A = A

∗ ∈ Ψ 0(A ). Then:

(i) The function s �→ ζDA
(s) = Tr |DA|−s has a meromorphic continuation to C.

(ii) The triple (A ,H ,DA) is also p-dimensional and has a dimension spectrum
Sd(A ,H ,DA) included in Sd(A ,H ,D) and of order at most d.

(iii) For any z ∈ C, we have |DA|z ∈ Ψ C(A ) and Ψ C

A
(A ) ⊂ Ψ C(A ).

(iv) For any k ∈ N
∗

∫

−
[k]

|DA|−p =
∫

−
[k]

|D|−p. (4.15)

Proof (i) Firstly, let us rewrite Formula (4.11), for any s ∈ C with 
(s) > p, as

ζDA
(s) = Tr |DA|−s = Tr |D|−s +

N∑

n=1

Tr
(
Kn(Y, s) |D|−s) + Tr RN (s). (4.16)
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Note that it is well-defined for any N ≥ 1 because Kn(Y, s) |D|−s ∈ OP−n−
(s)

and RN (s) ∈ OP−N−1−
(s), so all of the involved operators are trace-class for

(s) > p. Furthermore, we can rewrite ζDA

using the explicit form of the Kn’s
(4.12):

ζDA
(s) = ζD(s) +

N∑

n=1

∑

	∈{0,..., N−n}n
hn(s; 	) ζWn(	),D(s) + fN (s), (4.17)

where fN (s) = Tr RN (s) and

Wn(	) := E 	1(Y ) · · ·E 	n (Y ) = ∇	1(Y ) |D|−2	1 · · · ∇	n (Y ) |D|−2	n . (4.18)

Since the functions ζWn(	),D admit meromorphic extensions to C by the dimen-
sion spectrum hypothesis on (A ,H ,D) and fN is actually a holomorphic
function for 
(s) > p − N − 1, Formula (4.17) provides a meromorphic con-
tinuation of ζDA

to the half-plane 
(s) > p − N − 1. As N can be taken arbi-
trarily large, we obtain a meromorphic extension of ζDA

to the whole com-
plex plane. Furthermore, since (A ,H ,D) is p-dimensional, ζD is singular
at s = p and regular for 
(s) > p, and so is ζDA

, hence (A ,H ,DA) is also
p-dimensional.

(ii) Secondly, let us multiply Formula (4.11) from the left by T ∈ Ψ 0
A
(A ) and take

the trace as in (4.16). Then, we have for N ∈ N
∗ and for 
(s) > p

ζT,DA
(s) = ζT,D(s) +

N∑

n=1

∑

	∈{0,..., N−n}n
hn(s; 	) ζTWn(	),D(s) + Tr T RN (s).

(4.19)
For any multi-index 	, Wn(	) ∈ OP−n−|	| ⊂ OP0, and hence TWn(	) ∈ OP0.
Since Ψ 0

A
(A ) ⊂ Ψ 0(A ), the dimension spectrum hypothesis on (A ,H ,D)

then assures that the functions ζTWn(	),D are meromorphic on C and thus we
establish a meromorphic continuation of ζT,DA

for any T ∈ Ψ 0
A
(A ).

This fact implies that (A ,H ,DA) has a dimension spectrum and, moreover,
Sd(A ,H ,DA) ⊂ Sd(A ,H ,D), with the former being atmost of the order of
the latter, since the poles of any ζT,DA

can only come from the ones of ζTWn(	),D .
(iii) Since Kn(Y, s) ∈ Ψ −n(A ), Formula (4.11) shows that |DA|z ∈ Ψ C(A ). Fur-

thermore, Corollary4.3 implies the announced inclusion.
(iv) Using Eq. (4.11) we obtain (|DA|−p − |D|−p) |D|−s = K1(Y, p) |D|−(p+s),

modulo OP−(p+2). This operator is in OP−(p+1+
(s)), as K1(Y, p) ∈ OP−1,
so it is trace-class in a neighbourhood of s = 0. Hence, for any k ∈ N

∗, we
have

∫ [k]
(|DA|−p − |D|−p) = 0. �
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4.2 Fluctuations of Noncommutative Integrals

Given A = A
∗ ∈ Ψ 0(A ) we define, for any T ∈ Ψ C

A
(A ) and k ∈ Z,

∫

−
[k]

A

T := Res
s=0

sk−1ζT,DA
(s).

We shall now invoke Theorem4.2 to compute
∫ [k]
A

T in terms of
∫ [k].

Proposition 4.5 Let (A ,H ,D) be a regular spectral triple of finite dimension
with a dimension spectrum of order d. Then, for A = A

∗ ∈ Ψ 0(A ), T ∈ Ψ C

A
(A )

and k ∈ Z, k < d we have:

∫

−
[k]

A

T =
∫

−
[k]

T +
d−k∑

n=1

∑

	∈{0,..., d−k−n}n

|	|∑

j=0

h j (	)

∫

−
[ k+n+ j ]

T Wn(	), (4.20)

where h j (	) are defined in (4.6) and Wn(	) in (4.18). Moreover, for any T ∈ Ψ C

A
(A ),

∫

−
[d]

A

T =
∫

−
[d]

T, (4.21)

Proof By exploiting Formula (4.19), we obtain, with N = d − k,

∫

−
[k]

A

T −
∫

−
[k]

T =
d−k∑

n=1

∑

	∈{0,..., d−k−n}n
Res
s=0

sk−1hn(s; 	) ζTWn(	),D(s)

=
d−k∑

n=1

∑

	∈{0,..., d−k−n}n

|	|∑

j=0

h j (	)Res
s=0

sk+n+ j−1ζTWn(	),D(s)

=
d−k∑

n=1

∑

	∈{0,..., d−k−n}n

|	|∑

j=0

h j (	)

∫

−
[ k+n+ j ]

TWn(	).

Equality (4.21) results from Res
s=0

sd+n Tr T |D|−s = 0, for any T ∈ Ψ C(A ),

n ∈ N
∗. �

Corollary 4.6 Let T ∈ Ψ C

A
(A )∩ OP−p+δ for some δ < 1. Then, for any k ∈ N

∗,
we have

∫ [k]
A

T = ∫ [k] T .

Proof Recall (cf. (4.18)) that Wn(	) ∈ OP−n−|	|, so that the operators TWn(	)

appearing in Formula (4.20) are of the order−p − ε with ε = n + |	| − δ > 0 since
n ≥ 1, |	| ≥ 0 and δ < 1, so TWn(	) are trace-class and

∫ [k] TWn(	) = 0 for any
k ∈ N

∗. �
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Corollary 4.7 Let (A ,H ,D) be a regular spectral triple of finite dimension with
a simple dimension spectrum and let A = A

∗ ∈ Ψ 0(A ). Then:

(i) For any T ∈ Ψ C

A
(A ),

Res
s=0

ζT,DA
(s) = Res

s=0
ζT,D(s). (4.22)

(ii) ζDA
is regular at 0 if and only if ζD is so and ζDA

(0) = ζD(0) − 1
2

∫
Y .

(iii) Moreover, with p being the dimension of (A ,H ,D),

∫

− |DA|−(p−1) =
∫

− |D|−(p−1) − p−1
2

∫

− X |D|−p−1, (4.23)

∫

− |DA|−(p−2) =
∫

− |D|−(p−2) + p−2
2

( −
∫

− X |D|−p + p
4

∫

− X2|D|−2−p
)
. (4.24)

Proof (i) Equation (4.22) is just a rewriting of Formula (4.21) for d = 1.
(ii) The point (i) with T = 1 implies that ζDA

is regular at 0 iff ζDA
is so.Moreover,

taking k = 0, d = 1, T = 1 in Formula (4.20) and recalling (4.5), (4.6) we obtain
Res
s=0

s−1ζDA
(s) = Res

s=0
s−1ζD(s) + h0(0)

∫
Y = ζD(0) − 1

2

∫
Y.

(iii) Using respectively Formulae (4.7), (4.11) and (4.12) with N = 1 we get

|DA|−s = |D|−s + K1(Y, s) |D|−s + R1(s) = |D|−s − s
2Y |D|−s + R2(s)

= |D|−s − s
2 X |D|−s−2 + R3(s), (4.25)

for any s ∈ C with Ri (s) ∈ OP−
(s)−2. Taking s = p − 1 and applying the noncom-
mutative integral yields Eq. (4.23), since R3(p − 1) ∈ OP−p−1 is trace-class.

The same manoeuvre with N = 2 gives

|DA|−s = [1 − s
2Y + s2

8 (∇(Y )D−2 + Y 2)] |D|−s mod OP−3−
(s), (4.26)

Y = XD−2 − 1
2 (∇(X)D−4 + X2D−4) mod OP−3. (4.27)

Remark that Y = XD−2 mod OP−2 and Y 2 = X2D−4 modOP−3. Since
∫
is a trace,∫ ∇(Y ) |D|−r = ∫ ∇(X) |D|−r = 0 for any r ∈ R and we obtain the Eq. (4.24) for

s = p − 2 — see [7, Lemma4.10]. �

Let us stress that the above corollary explicitly uses the assumption of simplicity
of the dimension spectrum of (A ,H ,D). If this is not the case, then ζDA

might fail
to be regular at 0, even though ζD is so, because the higher order poles of functions
ζT ·Wn(	),D at 0 can render

∫
A
1 nonzero — contrary to the commutative case, see

(1.35). To show the next important result on the fluctuation of zeta functions at zero,
we need the following lemma which closely follows [4, Lemma2.3].
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Lemma 4.8 Let (A ,H ,D) be a regular spectral triple and A = A
∗ ∈ Ψ 0(A ).

Then:

(i) For any N ∈ N, there exist B(t) ∈ Ψ (A ) such that for t > 0, we have
mod OP−N

∂
∂t [log(D2 + t XV ) − log D2 − log(1 + t XV D

−2)] = [D2 + t X, B(t)], (4.28)

log(D2 + XV ) − log D2 − log(1 + XV D
−2) = [D2, B1] + [X, B2], (4.29)

where B1 := ∫ 1
0 B(t) dt and B2 := ∫ 1

0 t B(t) dt are in Ψ (A ).
(ii) Moreover,

∫

− Y =
∫

−[log(D2 + XV ) − log D2] =
∫

− log(1 + XV D
−2). (4.30)

Proof The operator Ct := D2 + t XV = t D2
A

+ (1 − t)D2 is selfadjoint and positive
for t ∈ [0, 1]. The invertibility of D2 and D2

A
implies that Ct + λ is invertible for

any λ ≥ 0 and, consequently, that 1 + t XV D−2 = Ct D−2 is also invertible when
t ∈ [0, 1].

Since XV D−2 ∈ OP−1 is compact by Proposition1.13(i x), it has a purely discrete
spectrum so that the operator log(1 + XV D−2) = log(D2

A
D−2) exists.

(i) Formula (4.8) guarantees that the operator

log(D2 + t XV ) − log D2 =
∫ ∞

0
[(D2 + λ)−1 − (D2 + t XV + λ)−1] dλ

always exists, so we obtain ∂
∂t

(
log(D2 + t XV )

) = ∫ ∞
0

1
Ct+λ

XV
1

Ct+λ
dλ. Moreover,

∫ ∞

0
XV (Ct + λ)−2 dλ = XVC

−1
t = XV D

−2(1 + t XV D
−2)−1

= ∂
∂t log(1 + t XV D

−2).

Thus, with L(t) being the LHS of Eq. (4.28), we obtain

L(t) =
∫ ∞

0

[
(Ct + λ)−1, XV (Ct + λ)−1] dλ.

We now invoke Lemma1.16 with D � Ct ,−λ /∈ spec Ct and n = 1 to deduce, with
∇t (T ) := [Ct , T ],
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[(Ct + λ)−1, XV (Ct + λ)−1] =
N∑

k=1

(−1)k ∇k
t

[
XV (Ct + λ)−(k+2)

] + RN (λ, t)

with RN (λ, t) := (−1)N+1 (Ct + λ)−1 ∇N+1
t [XV ] (Ct + λ)−(N+2). (4.31)

Because (Ct + λ)−(k+1), being in the centraliser of ∇t , can be put inside the paren-
thesis of ∇t in the first equality, we get

[(Ct + λ)−1, XV (Ct + λ)−1] = ∇t
[ N∑

k=1

(−1)k ∇k−1
t (XV )(Ct + λ)−(k+2)]+RN (λ, t)

with RN (λ, t) ∈ OP−N−4. The term in the bracket gives, after an integration over λ,
B(t) := ∑N

k=1
(−1)k

k+1 ∇k−1
t (XV )C−(k+1)

t . Since C−1
t is in Ψ (A ) (see Example1.21),

so is B(t).
Thus, L(t) = ∇t [B(t)] + RN (t) where RN (t) := ∫ ∞

0 RN (λ, t) dλ.
We claim that RN (t) ∈ OP−N . Using the method of Theorem1.15, we show that

RN (t)CN/2
t ∈ OP0. With E = ∇N+1

t (XV )C−1−N/2
t ∈ OP0, we get

‖RN (t)CN/2
t ‖ ≤

∫ ∞

0
‖RN (λ, t)CN/2

t ‖ dλ

≤
∫ ∞

0
‖(λ + Ct )

−1‖ ‖E‖ ‖C1+N/2
t (λ + Ct )

−N−2 CN/2
t ‖ dλ

≤ ‖E‖
∫ ∞

0
‖Ct (λ + Ct )

−1‖N+1 ‖(λ + Ct )
−1‖2 dλ.

The latter is finite since Ct is a positive operator and ‖Ct (λ + Ct )
−1‖ ≤ 1.

We now show that δ(RN (λ, t)CN/2
t ) = δ(RN (λ, t))CN/2

t + RN (λ, t) δ(CN/2
t )

has a finite integral over λ ∈ R
+. As for the second term, we have

‖RN (λ, t) δ(CN/2
t )‖ ≤ ‖RN (λ, t)CN/2

t ‖ ‖C−N/2
t δ(CN/2

t )‖

thus yielding a finite integral. In the first term, we expand the derivation δ on
RN (λ, t) = A−1

λ B (A−1
λ )N+2 as a finite sum of expressions similar to RN (λ, t)

with only one of the A−1
λ = (λ + Ct )

−1 replaced by −A−1
λ δ(Ct )A

−1
λ or B replaced

by δ(B). Since ‖A−1
λ δ(Ct )A

−1
λ ‖ ≤ ‖Ct (λ + Ct )

−1‖ ‖C−1
t δ(Ct )‖ ‖(λ + Ct )

−1‖, the
convergence of the integral is unspoilt. Thus RN (λ, t)CN/2

t ∈ Dom δ and, with the
same arguments, one deduces that RN (λ, t)CN/2

t ∈ ∩n Dom δn .
The proof of (4.28) is complete because XV ∼ X , so one can swap XV and X .
Finally, Eq. (4.29) follows from the definition of B1 and B2.
(ii) The tracial property of

∫
(Theorem1.27) applied to (4.29) gives (4.30). �
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Theorem 4.9 ([4]) Let (A ,H ,D) be a p-dimensional regular spectral triple with
a simple dimension spectrum, ζD regular at zero and let A = A

∗ ∈ Ψ 0(A ). Then,

ζDA
(0) − ζD(0) =

p∑

k=1

(−1)k

k

∫

−(A D−1)k . (4.32)

Proof Thanks to Corollary4.7 and (4.30), one has

ζDA
(0) − ζD(0) = − 1

2

∫

− Y = − 1
2

∫

− log(1 + XV D
−2). (4.33)

Wenowwrite log(1 + XV D−2) = ∑N
k=1

(−1)k+1

k (XV D−2)k + RN ,where the remain-

der is RN = (−1)N (XV D−2)N+1
∫ 1
0 (1 − t)N (1 + t XV D−2)−(N+1) dt . We have

already seen in the proof of Lemma4.8 that 1 + t XV D−2 ∈ OP0 is invertible. Thus,
the integral makes sense and since XV D−2 ∈ OP−1 we have RN ∈ OP−N−1. In par-
ticular, RN is trace-class for N = p and

∫

− log(1 + XV D
−2) =

p∑

k=1

(−1)k+1

k

∫

−(XV D
−2)k,

where, as usual, we can safely replace XV by X .
With a = D−1

A and b = AD−1, we have X = D(a + b + ab)D and also
XD−2 = D(a + b + ab)D−1, so that,

∫
being a trace,

∫
(XD−2)k = ∫

(a + b + ab)k

and we have to compare

N∑

k=1

(−1)k+1

k

∫

−(a + b + ab)k

with

− 1
2

N∑

k=1

(−1)k

k

∫

− ak =
N∑

k=1

(−1)k+1

k

∫

−(ak + bk).

Let us, more generally, introduce the following two formal series in x ∈ Rwithin
the free algebra generated by a and b: S(x) = ∑∞

k=1
(−1)k+1

k [xa + xb + x2ab]k , and
T (x) = ∑∞

k=1
(−1)k+1

k [(xa)k + (xb)k].
We claim that they are equal modulo commutators (denoted by

.=) so that, using
the tracial property of

∫
, the proof of (4.32) would be complete.

Since S(0) = T (0), it is sufficient to compare the derivatives of S and T . Remark
first that for the derivative of a term M(x)n , we have d

dx M(x)n
.= nM(x)n−1M ′(x)

since one can commute M ′(x) to the right in M(x)kM ′(x)M(x)n−k−1. Thus,
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S′(x) .=
∞∑

k=1

(−1)k+1(xa + xb + x2ab)k−1(a + b + 2xab)

= (1 + xa + xb + x2ab)−1(a + b + 2xab) = [(1 + xa)(1 + xb)]−1(a + b + 2xab)

= (1 + xb)−1(1 + xa)−1[(1 + xa)b + a(1 + xb)]
= (1 + xb)−1b + (1 + xb)−1(1 + xa)−1a(1 + xb)
.= (1 + xb)−1b + (1 + xa)−1a = T ′(x). �

4.3 Consequences for the Spectral Action

Theorem4.4 assures that given a regular p-dimensional spectral triple (A ,H ,D)

with a dimension spectrum, the triple (A ,H ,DA)will also be regular, p-dimensio-
nal and possessing a dimension spectrum, for any A = A

∗ ∈ Ψ 0(A ). However, to
deduce an expansion of Tr f (|DA| /Λ) we would need to control the behaviour
of (the maximal meromorphic extension of) ζDA

on the verticals, as explained in
detail in Sect. 3.2. This, unfortunately, does not come for free, even if we can control
the behaviour of ζT,D for every T ∈ Ψ 0(A ). Indeed, observe that Formula (4.17)
relating ζDA

to ζT,D’s involves a holomorphic remainder RN (s), which is harmless
when it comes to the poles and residues, but might contribute to the behaviour on the
verticals. Also, there is no good reason to believe that a heat trace expansion of the
form (3.37) for a given D will imply a similar one for DA, although this is indeed
the case for commutative spectral triples and also for the noncommutative torus (cf.
LemmaB.5). In full generality of noncommutative geometry this is a stumbling block
and we list it as Problem 6(e) in Chap. 5.

After revealing the blot on the landscape, let us enjoy the bright perspective. Given
the heat trace asymptotic expansion of D and DA we can:

1. Deduce the large-Λ asymptotic expansion of S(D, f,Λ) and S(DA, f,Λ) with
the help of Theorem3.29.

2. Express the coefficients of the expansion of S(DA, f,Λ) as noncommutative
integrals of operators polynomial in A, via Formulae (4.3), (4.7), (4.12), (4.22).

Let us illustrate it in the case of (A ,H ,D) with a simple dimension spectrum:

Theorem 4.10 Let (A ,H ,D) be a regular p-dimensional spectral triple with a
simple dimension spectrum and let A = A

∗ ∈ Ψ 0(A ). Assume, moreover, that

Tr e−t |DA| =
∑

α∈Sd+
aα(|DA|) t−α + a0(|DA|) + O0(1), (4.34)

where the, possibly infinite, series over α is absolutely convergent for all t > 0.
Then, the function ζDA

is regular at 0 and, for any f ∈ Cr0 with r > p,
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Tr f (|DA| /Λ) =
∑

α∈Sd+
Λα

∫ ∞

0
xα−1 f (x)dx

�p−
(α)�∑

n=0

∫

− Pn(α, D, D−1,A) |D|−α

+ f (0)
[
ζD(0) +

p∑

k=1

(−1)k

k

∫

−(A D−1)k
]

+ O∞(1), (4.35)

where Pn ∈ Ψ −n(A ) are polynomials in all variables and of degree n in A:

P0 = 1, P1 = −αAD−1, P2 = α
4 (α + 2)(AD−1)2 + α2

4 A
2D−2, . . . (4.36)

Proof Firstly, we apply Corollary3.33 to obtain

Tr f (|DA| /Λ) =
∑

α∈Sd+
Λα

∫ ∞

0
xα−1 f (x)dx

∫

−
A

|DA|−α + f (0)ζDA
(0) + O∞(1).

Secondly, we invoke Corollary4.7(i) to deduce that
∫
A

|DA|−α = ∫ |DA|−α . Thirdly,
we use Formulae (4.7), (4.11) and (4.12) with N = �p − 
(α)�, as in the proof of
Eqs. (4.26) and (4.27) to expand |DA|−α = ∑

n Pn |D|−α . Observe that it is suffi-
cient to stop at N = �p − 
(α)�, because PN+1 |D|−α ∈ OP−N−
(α)−1 ⊂ OP−p−ε

for some ε > 0. Hence, PN+1 |D|−α is trace-class and
∫
PN+1 |D|−α = 0.

Now, we utilise Formulae (4.26), (4.27) and recall that, since
∫

is a trace,∫ ∇(T ) |D|−r = 0 for any T ∈ Ψ C(A ) and any r ∈ R. Denoting T
.= T ′, when∫

T |D|−α = ∫
(T ′ + R) |D|−α for R ∈ OP−3, we have

|DA|−α .= [1 − α
2 (XD−2 − 1

2 X
2D−4) + α2

8 (XD−2)2] |D|−α ,

XD−2 = (AD + DA + A
2)D−2 .= 2AD−1 + A

2D−2, (XD−2)2
.= X2D−4,

X2D−4 .= 2ADAD−3 + AD2
AD−4 + A

2D−2 .= 2(AD−1)2 + 2A2D−2,

sinceADAD−3 = (AD−1)2 + AD−1[D2,A]D−3 = (AD−1)2 mod OP−3 and sim-
ilarly, AD2

AD−4 = A
2D−2 + A[D2,A]D−4 = A

2D−2 mod OP−3.
This gives Formulae (4.36) and makes it clear that every A is accompanied by

D−1, so that Pn ∈ Ψ −n(A ) is a polynomial inA of order n. It is also straightforward
how to compute the higher Pn’s.

Finally, we apply Theorem4.9 to express ζDA
(0) using Eq. (4.32). �

Beyond the case of a triple (A ,H ,D)with a simple dimension spectrumwe can
still express the coefficients of the asymptotic expansion of S( f,DA,Λ) in terms of
the polynomials Pn , provided we have at hand the heat trace expansion (3.37) for
both D and DA. Obviously, the analogue of Formula (4.35) would be considerably
more involved, but the coefficients can be computed algorithmically from Formulae
(4.3), (4.7), (4.12) and (4.20) — along the same lines as in Theorem4.10.

It is important to stress that if (A ,H ,D) does not have a simple dimension spec-
trum then the noncommutative integral is not invariant under fluctuations. Indeed,
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Formula (4.20) implies that
∫
A
T −∫

T would, in general, involve the higher order

residues. On the other hand, the highest residue
∫ [d] remains insensible to fluctuations

— recall Formula (4.21). More generally, we have:

Proposition 4.11 Let (A ,H ,D) be a regular p-dimensional spectral triple with
a dimension spectrum of order d and let A = A

∗ ∈ Ψ 0(A ). Assume that

Tr e−t |D| =
∑

z∈X0

[ d∑

n=0

az,n(|D|) logn t ] t−z + O0(t
−p+1), (4.37)

Tr e−t |DA| =
∑

z∈X0

[ d∑

n=0

bz,n(|DA|) logn t ] t−z + O0(t
−p+1),

where the, possibly infinite, series over the set X0 ⊂ C are absolutely convergent
for all t > 0 andmin{
(z) | z ∈ X0} > p − 1. Then, for any f ∈ Cr0 with r > p, we
have

Tr f (|DA| /Λ) − Tr f (|D| /Λ) = O∞(Λp−1). (4.38)

Note that X0 here coincideswith the one in Theorem3.29, if we choose r1 = −p − 1.

Proof On the strength of Theorem3.29, with Formulae (3.40) and (3.38), it is suffi-
cient to check that

∫ [k]
A

|DA|−z = ∫ [k] |D|−z for all z ∈ X0 and k ∈ {0, 1, . . . , d}.
But with 
(z) > p − 1, we have, by Corollary4.6 and Formula (4.11) respec-

tively,
∫ [k]
A

|DA|−z = ∫ [k] |DA|−z = ∫ [k] |D|−z +∫ [k] R(z) = ∫ [k] |D|−z , since R(z),
being in OP−
(z)−1, is trace-class. �

In the commutative case, as well as on the noncommutative torus, Formulae (4.37)
are simply Tr e−tT = ap,0(T )t−p + O0(t−p+1), with T ∈ {|D|, |DA|}. In this case,
Eq. (4.38) is interpreted as the invariance of the dominant term under the fluctuations.
However, we can see that if the dimension spectrum of a given spectral triple is non-
simple and/or has poles in the vertical strip p > 
(z) > p − 1, then not only the
dominant term is immune to the fluctuations.

Definition 4.12 Let (A ,H ,D) be a regular p-dimensional spectral triple with a
simple real dimension spectrum. The tadpole TadDA

(α) of order α is the linear term
in A in the asymptotics (4.35).

We have just shown that TadDA
(α) = (−α

∫ ∞
0 xα−1 f (x) dx)

∫
AD−1 ifα ∈ Sd+ and

TadDA
(0) = − f (0)

∫
AD−1 — see also [10, Proposition 3.5].

This notion of a tadpole is borrowed from quantum field theory where AD−1 is
a one-loop graph with a fermionic internal line and only one external bosonic line
A, thus looking like a tadpole. There are no tadpoles in commutative geometries on
manifolds, also the ones with boundaries and torsion, or on noncommutative tori [9,
10, 13]. The vanishing of tadpoles means that a given geometry (A ,H ,D) is a
critical point for the spectral action [5, p. 210]. On the other hand, the existence of
tadpoles means a priori the instability of the quantum vacuum — see [8, 11].
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4.4 Operator Perturbations

The spectral action (1.43) is only a part of the large programme on the differenti-
ation of operators and on perturbation theory. There exist several strongly related
approaches and we only briefly sketch a few of them.

The first approach is the Lifshits formula given, for two selfadjoint, possibly
unbounded, operators H0 and V acting on H , by

Tr [ f (H0 + V ) − f (H0)] =
∫ ∞

−∞
ξ(λ) f ′(λ) dλ, (4.39)

where ξ is the so-called Krein shift function (see for instance [3]). If the perturbation
V is a trace-class operator and R(A) is the resolvent of A, the holomorphic function
G(z) := det

(
1 + V R(H0)(z)

)
satisfies

G−1(z)G ′(z) = Tr[R(H0)(z) − R(H0 + V )(z)]

and we define ξ(λ) :=π−1 limε→0 argG(λ + iε) for almost all λ. Then, we get
logG(z) = ∫ ∞

−∞ ξ(λ) (λ − z)−1 dλ when �(z) �= 0,
∫ ∞
−∞ |ξ(λ)| dλ ≤ Tr V , and

Tr(V ) = ∫ ∞
−∞ ξ(λ) dλ. Moreover, (4.39) holds true at least for functions f which

are smooth and compactly supported. Remark that the function ξ is a spectral shift,
because, when λ is an isolated eigenvalue of both H0 + V and H0 with respective
multiplicities m and m0, then ξ(λ + 0) − ξ(λ − 0) = m0 − m and ξ has a constant
integer value in any interval located within the resolvent sets of both H0 + V and H0.

Formula (4.39) is commonly employed in the scattering theory (see [14]) and
has also been adapted to the noncommutative framework for the computation of the
spectral action beyond the weak-field approximation, as in [12].

Another approach is the following: Assume that the unbounded operator H0 is
selfadjoint and V is also selfadjoint, but bounded. Let {λk}∞k=1 be the eigenvalues of
H0 counted here with their multiplicities and let {ψk}∞k=1 be the corresponding nor-
malised eigenvectors. If Vr,s := 〈Vψr , ψs〉, we have the following Taylor asymptotic
expansion for f ∈ CN+1

c (R):

Tr f (H0 + V ) = (4.40)

Tr f (H0) +
N−1∑

n=1

1
n

∑

i1,...,in

Vi1,i2 · · · Vin−1,in Vin ,i1 ( f ′)[n−1](λi1 , . . . , λin ) + RH0, f,N ,

where ( f ′)[m] is the divided difference of order m of f ′ and, of course, the difficulty
is to control the remainder RH0, f,N .

Defining RH0, f,N := f (H0 + V ) − ∑N−1
n=0

1
n!

dn

dtn |t=0 f (H0 + tV ), where the
Gâteaux derivatives d

dt |t=0 f (H0 + tV ) are taken in some uniform topology, the
strategy is to prove that
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RH0, f,N = Tr RH0, f,N and ‖RH0, f,N‖ = O‖V ‖→0(‖V ‖N ). (4.41)

Recall first that the Gâteaux derivative of a function f : X → Y between two locally
convex topological vector spaces X, Y , is

f ′(h)(v) := lim
t→0

t−1 [ f (h + tv) − f (h)] for h, v ∈ X.

It is linear in v if X, Y are Fréchet spaces.
This approach is used in [16] or [17, Sect. 7.2.2] to compute the spectral action

SD (V ) := Tr f (D + V ) via (4.40) for a finitely summable spectral triple
(A ,H ,D), setting H0 = D and under the following assumptions:

1. f (x) = ∫ ∞
0 e−t x2 dφ(t) with a positive measure dφ.

2.
∫ ∞
0 tα Tr [|D |β e−t (εD 2−γ )] dφ(t) < ∞ for any α, β, γ > 0 and 0 ≤ ε < 1.

3. Moreover, V ∈ B2(H ) – as defined below.

The derivation δ′ given in (1.2) defines a family of seminorms {∥∥δ′n(T )
∥
∥}n∈N and

the vector spacesBn(H ) := { T ∈ B(H ) : ∥
∥δ′k(T )

∥
∥ < ∞ for all k ≤ n } become

Fréchet spaces, implying the Fréchet differentiability of the spectral action in terms
of the perturbation V . Remark that if the triple is regular, any selfadjoint one-form
in Ω1

D (A ) is inB2(H ). Without entering into the details of (4.40), the main steps
are an iterated use of the Duhamel formula (see (4.13))

e−t (D+V )2 = e−t (D 2+X) = e−tD 2 − t
∫ 1

0
e−st (D 2+X) X e−(1−s)tD 2

ds

for the perturbation of the heat operator (the second line of the assumption guar-
antees the convergence of the trace of this integral), and the fact that the Taylor
expansion SD (V ) = ∑∞

n=0
1
n! S

[n]
D (0)(V, . . . , V ) has coefficients which are given by

S[n]
D (0)(V, . . . , V ) = (n − 1)!∑i1,...,in

Vin−1,in Vin ,i1 f ′(λi1, . . . , λin ).
Formula (4.40) has been generalised in [15] under the only assumption that the

selfadjoint operator H0 has a compact resolvent (but no positivity of H0 nor summa-
bility condition on its spectrum is required), V = V ∗ is bounded and f ∈ CN+1(R)

with compact support ( f is not necessarily positive or even). Even if the proof is
more subtle it essentially goes through the quoted steps. For instance, using the inclu-
sion CN+1

c (R) ⊂ { f : f (n) and F( f (n)) ∈ L1(R), n = 0, . . . , N }, the exponentials
appearing in the iterated Duhamel formula are now unitaries so the second line of
the assumption is not necessary.

Further generalisation into the theory of multiple operator integrals, compatible
with the formalism of differentiation of operator functions, is possible. It relates to
the important notion of spectral flow in the setting of type II von Neumann algebras
— see, for instance, [1].
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Chapter 5
Open Problems

Abstract As a desert, we serve a number of open problems connected with the
subject matter of the book. Some of them consider the general framework of spectral
triples and its possible extensions, while the other are more specific and relate to
the properties of the spectral action. The problems are essentially of mathematical
nature, though, at least in some cases, the conceptual skeleton strongly depends
upon the input from physics. To our mind, the solution to each of these stumbling
blocks would advance our understanding of the foundations and implications of the
Spectral Action Principle. We therefore cordially invite the Reader to contemplate
the list below, both from mathematical and physical perspectives.

(1) Existence of spectral triples. Despite quite a few illustrative examples, the terri-
tory of spectral triples remains vastly uncharted. Beyond the almost-commutative
enclave, the constructive procedures are available in some specific contexts:
isospectral deformations [15], AFC∗-algebras [14] or crossed products [43, 46].
The first road towards spectral triples is to fix a C∗-algebra A 1 and then to
find (and classify!) all possible smooth dense ∗-subalgebras A , along with the
compatible operators D acting on a chosen Hilbert space H . The ultimate aim
would be to understand the ‘space of the operators D’, which is the domain of
the spectral action functional (1.43). This would certainly require the theory of
Fredholm modules and K -homology [44], but surely much more than that.
Alternatively, one can fix a sequence of real numbers seen as the spectrum of D
and seek a compatible algebra A . Such a situation appears, for instance, in the
context of manifolds with boundary [45].

(2) Non-unital spectral triples.Wehave focused exclusively onunital spectral triples,
which correspond to compact manifolds in the classical case. Non-unital triples

1Such a fixed C∗-algebra can come from physics — as the natural algebra of observables of a given
system (see e.g. [42, 49, 61]).
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have been studied to some extent [9, 10, 57, 58]. In such a case the operator
D does not have a discrete spectrum and one needs to adjust the definition of
the spectral action. The easy way is to introduce a ‘spatial’ (or infrared) cut-
off: TrΦ f (|D | /Λ), with a suitable Φ ∈ A , but its choice yearns for a deeper
physical motivation. One could also promote the energy scaleΛ to a dilaton field
[13, 38–40].

(3) Twisted spectral triples. Motivated by the type III noncommutative geome-
try, where there are no finitely summable spectral triples [17], a few notions
of twisted spectral triples emerged. The original one relaxes the condition
[D, a] ∈ B(H ) to the demand of the boundedness of “twisted commutators”:
Da − σ(a)D ∈ B(H ), with a given automorphism σ of the algebra A
[11, 30, 54, 56]. The notions of reality, pdos, regularity etc. get modified accord-
ingly [8, 50, 52]. A related notion of modular spectral triples [12] is motivated
by deformation of some physical models or quantum groups [4, 41, 46, 48,
51]. There is also an increasing interest for the ‘twist’ in particle physics [22].
However, the spectral action has not yet been systematically approached in this
context, to our best knowledge.

(4) The Lorentzian signature.An insistent problem, which has been swept under the
carpet is that of the signature: The notion of a spectral triple generalises Rieman-
nian manifolds with the Euclidean signature. Alas, the spacetime we are living
in has a Lorentzian signature, instead. At the almost-commutative level, one can
bypass the problem using the old (and somewhat murky) trick of the Wick rota-
tion [20]. However, a rigorous approach requires a deep conceptual change:
A distinctive feature of spaces with the signature (−,+,+, . . . ) is the existence
of a causal structure. Needless to remind that the micro-causality is one of the
key axioms in quantum field theory. A rigorous notion of causality suitable for a
noncommutative geometry has been proposed [34] and studied [25–27, 35–37].
The Dirac operators D/ on pseudo-Riemannian manifolds, formally similar to
their Euclidean colleagues, are drastically different [2]. First of all, D/ is not
selfadjoint in L2(M,S ). Secondly, D/ has infinite dimensional eigenspaces (in
particular, dim KerD/ = ∞), hence no function f can render f (|D/ |) trace-class.
Let us also point out that in the Lorentzian context a nonunital algebra is manda-
tory, as compact spacetimes always contain causal loops, which is undesirable.
The problem of compactification of spacetimes, or “attaching a causal boundary
to the spacetime” is an old-standing and a hard one — both on the conceptual
and on the technical side (cf. [53] for a nice abstract mathematical formulation).
Yet another serious obstacle is the presence of the notorious spacetime singu-
larities, which seem to be an inherent element of our Universe, as attested by
the famous Hawking–Penrose theorems (see [64] or any other mathematically
oriented textbook on general relativity). On the mathematical side, it creates
problems with the incompleteness of spacetime manifolds (see, for instance,
[3]).
As one can see, the algebraic situation is rather dramatic already at the commuta-
tive level. Nevertheless, the programme of “pseudo-Riemannian spectral triples”
is being systematically developed [5, 21, 23–26, 32, 33, 55, 62, 63]. Its central
idea is to work with a Krein space [6].
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The “Lorentzian spectral action” has not yet even emerged from the depth.
A result, which might shed some light on it is the Lorentzian version of the
index theorem [1].

(5) The dimension spectrum. The computation of the dimension spectrum of a given
spectral triple is a formidable task. Beyond the almost-commutative realm it
has been accomplished only for a few examples listed on p.19. Firstly, the
existence of the dimension spectrum is by no means automatic — there exist
spectral zeta functions admitting no meromorphic continuation (see [59] and
[28, Sect. 5]). Secondly, even if we do have a meromorphic extension of ζD , the
one of ζT,D does not come for free, even for T ∈ A . In the worked out examples,
one firstly unravels the meromorphic extension of the basic zeta function ζD and
then constructs the ones for ζT,D by expressing the operators T ∈ Ψ 0(A ) in the
eigenbasis of D . Whereas the poles of ζD and ζT,D do not coincide in general
(see Example1.24), in all known cases we actually have Sd ⊂ ∪k∈NP(ζ|D|−k ,D).
So it seems as if the whole dimension spectrum is actually encoded in the
operator D .
Is this a general fact or a specific property of the worked out examples?

(6) Heat traces and zeta functions. In Chap.3 we have spied into the intimate inter-
play between the small-t asymptotic expansion of Tr Ke−t H and the meromor-
phic extension of ζK ,H . But on the route we only employed the properties of gen-
eral Dirichlet series and the geometric origin of the operators H and K remained
concealed. It would be highly desirable to understand what impact might the
geometrical dwelling of H and K have on the problems we encountered. Con-
cretely:

(a) When is ζK ,H of polynomial growth on the verticals (inwhich case Tr Ke−t H

admits an asymptotic expansion with the vanishing contribution (3.11))?
(b) Are the pathologies illustrated on Fig. 3.3 always avoided?
(c) When is the asymptotic expansion of Tr Ke−t H actually convergent?
(d) When is the existence of the asymptotic expansion of Tr e−t |D | equivalent to

the existence of an expansion of Tr e−tD 2
?

(e) When does the existence of an expansion of Tr e−t |D | imply the existence of
an expansion of Tr e−t |DA| for a suitable fluctuation DA = D + A?

(7) The role of the cut-off function.Arguably, the smooth cut-off function f involved
in the definition of the spectral action S(D, f,Λ) is of non-geometric origin.
It might encode some physical input (such as the parameters of the Standard
Model), however, one has to keep in mind that for general noncommutative
geometries — and for the almost-commutative ones, but beyond the asymptotic
expansion— the full shape of f enters into the game.Adopting a puritanical point
of view, one should set f = χ[0,1] and create the tools to study the asymptotic
expansion of the raw spectral action N|D |(Λ).

(8) The coefficients of the asymptotic expansion. In the almost-commutative frame-
work the coefficients of the large-energy asymptotic expansion of the spectral
action have a pellucid geometric and physical interpretation— as pictured in for-
mula (1.44). However, beyond the homely classical ground, the situation is more
obscure. The “curvature” has been defined [16, Defintion1.147] and computed
on a conformally rescaled noncommutative 2-torus [18, 19, 31]. However, such
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an interpretation remains controversial, as we have imperceptibly entered into the
domain of nonminimal operators, which might also involve the torsion [47, 60].
The comprehension of geometry and physics behind the coefficients of the
general asymptotic expansion of the form (3.40) is a serious challenge.

(9) Distributional approach to the asymptotics. The framework presented in
Sect. 2.7 is very appealing. It would be desirable to employ it beyond the realm
of classical pdos. To that end, one would need to understand how the assumption
(2.35) should be reformulated for general elements in K′(R,L (H )) and when
it is met.

(10) Beyond the asymptotic expansion.As forewarned on p. 30, the asymptotic expan-
sion of the spectral action (even in its full glory) might fail to capture the ‘expo-
nentially small physical phenomena’ [7] encoded in the nonperturabtive expres-
sion Tr f (|D | /Λ). The pressing question, both for mathematicians and physi-
cists, is: What is actually lost? More concretely (see also Remark2.38), assume
that Tre−t |D | − Tre−t |D ′| = O0(t∞). What can be said about D versus D ′?
IfD/ is the standard Dirac operator on the flat 3-torus, then the information about
the chosen spin structure S is concealed in the O∞(Λ−∞) term of the spectral
action expansion — see Example2.29. Is this a general feature of commutative
geometries?
A related problem is the impact of different possible selfadjoint extensions of
D on the spectral action — see [29, Theorem7.2] for the casus of a differential
operator.

(11) Spectral action for the noncommutative torus. In the spectral action for the non-
commutative torus (TheoremB.6), the constant term in Λ coincides with its
classical value for the commutative torus after the swap τ ↔ ∫

Td . This has been
demonstrated in dimensions 2 and 4. We conjecture that this holds true in arbi-
trary dimension.
The asymptotic expansion of the spectral action for noncommutative tori relied
heavily on the Diophantine hypothesis. It would be very instructive to see how
does it look like (if it exists at all!) for Θ , which does not meet the Diophantine
condition.

References

1. Baer, C., Strohmaier, A.: An index theorem for Lorentzian manifolds with compact spacelike
Cauchy boundary. Am. J. Math. 1, 1 (2017). (to appear)

2. Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltig-
keiten. Teubner-Texte zur Mathematik, vol. 41. Teubner, Leipzig (1981)

3. Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian Geometry. Monographs and Textbooks in
Pure and Applied Mathematics, vol. 202. CRC Press, Boca Raton (1996)

4. Bertozzini, P., Conti, R., Lewkeeratiyutkul, W.: Modular theory, non-commutative geometry
and quantum gravity. SIGMA 6, 47p. (2010)

5. Besnard, F., Nadir, B.: On the definition of spacetimes in noncommutative geometry: Part I. J.
Geom. Phys. 123, 292–309 (2018). See also arXiv:1611.07842

6. Bognár, J.: Indefinite Inner Product Spaces. Springer, Berlin (1974)
7. Boyd, J.P.: The Devil’s invention: asymptotics, superasymptotics and hyperasymptotic series.

Acta Appl. Math. 56, 1–98 (1999)

http://arxiv.org/abs/1611.07842


References 117
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Appendix A
Classical Tools from Geometry and Analysis

A.1 About “Heat Operators”

Recall first that if P is an unbounded operator, then e t P cannot be defined by the
series ‖·‖-limN→∞

∑N
n=0

tn

n! P
n.What is needed is thatG : t ≥ 0 → e t P ∈ B(H ) is

a strongly-continuous contraction semigroup (i.e. G(0) = 1,G(s)G(t) = G(s + t),
‖G(t)‖ ≤ 1 and the function t ≥ 0 → G(t) ψ is norm-continuous for each ψ ∈ H ).
Then, a closed densely defined operator P is the generator of this semigroup, i.e. by
definition G(t) = e t P , if and only if R

+ is contained in the resolvent set of P and
‖(P − λ)−1‖ ≤ λ−1 for all λ > 0 (see [24, Chap.14]).

Moreover, e t P = strong-limn→∞(1 − (t/n)P)−n and

(P − λ)−1 = −
ˆ ∞

0
e−λ t e t P dt, for �(λ) > 0 (A.1)

holds true in this generality since actually the right half-plane {λ ∈ C | �(λ) > 0}
is in the resolvent set of P and ‖(P − λ)−1‖ ≤ �(λ)−1. The generator P is upper
semibounded: �(〈Pψ,ψ〉) ≤ 0, for all ψ ∈ Dom P.

Sometimes, the generator of G(t) is denoted by −P like in [33, Sect. X.8].
We can rephrase previous results as a constructive way to get the exponential. Let

P be an unbounded operator on the Hilbert space H such that P − λ is invertible
in the sector Λθ := {r eiφ | r ≥ 0, |φ| ≥ θ}, 0 < θ < π

2 and assume there exists c
with

∥
∥(P − λ)−1

∥
∥ ≤ c (1 + |λ|2)−1/2, ∀λ ∈ Λθ. (A.2)

This allows to define

e−t P := i
2π

ˆ
C
e−t λ (P − λ)−1 dλ, (A.3)
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where C = Cr0,θ (with θ < π
2 ) is the path from ∞ along the ray r eiθ for r ≥ r0

followed by a clockwise circle around zero of radius r0 and ending at infinity along
the ray r e−iθ . Since the two rays lie in the right-half plane, the exponential decay of
e−t λ guarantees the convergence of the integral. We will need that fact for instance
in (2.15) of Sect. 2.2.2 on Laplace transform.

To close these remarks on heat operators, we recall that many functions can
be defined through an integral along a curve in C. For instance, given a selfadjoint
operatorP, one defines (cf. [36, Sect. 10]),P−2z = 1

i2π

´
λ∈C λ−z (λ − P2)−1 dλ along

the curve C for any z ∈ C with�(z) > 0, as in (A.3). Typically, to control the norm-
convergence of the integral, one uses

‖(λ − P)−1‖ = sup
μ∈spec P

|μ − λ|−1 = dist(λ, spec P)−1 ≤ |�(λ)|−1 , (A.4)

‖P(λ − P)−1‖ = sup
μ∈spec P

|μ| |μ − λ|−1. (A.5)

Moreover, if P = P∗ is positive,

‖P(λ − P)−1‖ ≤
{ |λ| |�(λ)|−1 if �(λ) ≥ 0,
1 if �(λ) < 0,

(A.6)

which follows from ‖P(λ − P)−1‖ = supμ∈spec P f (μ)with f (μ) = μ |μ − λ|−1 and
the computation of the maximum of f .

A.2 Definition of pdos, Sobolev Spaces and a Few Spectral
Properties

There are several good textbooks on pdos: [19, 23, 25, 36, 37]. For the heat trace
asymptotics of a pdo we closely follow [23, Sect. 4.2] and the nice notes [35]. See
also [1, 20, 27] for the computation of heat kernel coefficients.

To study pdos on R
d we need a few basic definitions:

– 〈x〉 := (1 + ‖x‖2)1/2 and 〈x, η〉 := (1 + ‖x‖2 + |η|)1/2 for x ∈ R
n, n ∈ N

∗, and
η ∈ C.

– Sm := {p : (x, ξ) ∈ R
d × R

d → C such that |∂α
ξ ∂

β
x p(x, ξ)| ≤ cαβ〈ξ 〉m−|α| } is

the set of symbols of order m ∈ R. Here α, β are in N
d with |α| = ∑

αi. This yields
a family of seminorms on Sm defined by |p|m,α,β := supx |∂α

ξ ∂
β
x p(x, ξ)|〈ξ 〉−m+|α|.

The set of smoothing symbols is S−∞ := ∩m Sm.
– The symbol p ∈ Sm has the expansion p ∼ ∑∞

j=0 pm−j, when pm−j ∈ Sm−j and
for each n, p − ∑n

j=0 pm−j ∈ Sm−n. It is named classical if, moreover, for all j,

pm−j(x, tξ) = tm−jp(x, ξ), ∀(x, ξ) ∈ R
d × R

d , ‖ξ‖ ≥ 1, t ≥ 1.
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It is said to be elliptic when p(x, ξ) is invertible and |p(x, ξ)−1| ≤ c 〈ξ 〉−m for all x
and ‖ξ‖ > r for some r ≥ 0. A classical symbol p ∈ Sm is elliptic when pm(x, ξ) is
invertible for all x ∈ R

d and ‖ξ‖ = 1.
From now on, we assume in this appendix that all symbols are classical.
– Every symbol p gives rise to a pdo acting on u in the Schwartz space S(Rd ) via

the inverse Fourier transform by

(O(p) u)(x) := F−1[(p(x, ·)F[u](·)](x) =
ˆ
Rd

ei 2π x.ξ p(x, ξ)F[u](ξ) dξ.

This definition is compatible with the product of operators as for p ∈ Sm1 , q ∈ Sm2

there exists a symbol called the Leibniz product of p and q, denoted p ◦ q ∈ Sm1+m2 ,
such that O(p)O(q) = O(p ◦ q) with the expansion

(p ◦ q)(x, ξ) ∼
∑

α

(−i)|α|
α! (∂α

ξ p)(x, ξ) (∂α
x q)(x, ξ).

In particular, when p ∈ Sm is elliptic, there exists a symbol q called the parametrix
such that p ◦ q − 1 and q ◦ p − 1 are both in S−∞.

– The Sobolev spaces read Hs(Rd ) := {u ∈ S ′(Rd ) | 〈ξ 〉s F(u) ∈ L2(Rd )} for
s ∈ R, with scalar product (u, u′) := ´

F(u)(ξ)F(v)(ξ) 〈ξ 〉2s dξ and complete for
the norm ‖u‖2s := (u, u). For instance δy ∈ Hs(Rd ) if s < −d/2.

We have, H 0(Rd ) = L2(Rd ) and if s > d/2 then Hs(Rd ) ⊂ C(Rd ) (Sobolev
embedding theorem). When s > d/2, any bounded operator A : H−s → Hs is an
integral operator with a Schwartz kernel given by kA(x, y) = (Aδx, δy).

We now adapt previous definitions to

a compact boundaryless Riemannianmanifold M of dimension d ,

so we need coordinate charts (U, h) where U are open sets in M and h are diffeo-
morphisms from U to open sets in R

d .
Let P : C∞(M ) → C∞(M ); when φ, ψ ∈ C∞

c (U ) (smooth functions onU with
compact support), the localised operator φPψ on C∞

c (U ) is pushed-forward as
h∗(φPψ) on C∞

c (h(U )). The operator P is a pseudodifferential operator of order
m when each such localisation is a pdo of order m on h(U ).

Then, one extends Sm to symbols on M as follows:

Sm(M ) := {p(x, ξ) ∈ C∞(T ∗M ) | h(φp) ∈ Sm(h(U )), ∀(U, h, φ)}.

Of course, P is said to be elliptic or smoothing if all its local symbols have such a
property and the set of classical pdos of orderm is denoted byΨ m(M )which defines
Ψ (M ) := ∪mΨ m(M ).

For x ∈ (U, h) one defines the principal (or leading) symbol of P ∈ Ψ m(M ) as
pm(P) := h∗pm(h∗(φPφ)) ∈ Sm(M )/Sm−1(M ), where one chooses a φ ∈ C∞

c (M )

equal to 1 in vicinity of x. One checks that this principal symbol makes sense and
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is invariantly defined on T ∗M while the total symbol is quite sensitive to a change
of coordinates. Moreover, for each p ∈ Sm(M ), one constructs P ∈ Ψ m(M ) with
pm(P) = p via the partition of unity.

A new extension is possible when P acts on sections of a smooth vector bundle
E of finite rank over M equipped with a smooth inner product. So, typically, a
fiber is acted upon by a matrix. By local triviality, on can define Hs(M ,E) using a
partition of unity. HenceP : C∞(M ,E) → C∞(M ,E) is called a pseudodifferential
operator of order m if every localisation is a matrix of pdos of order m for all charts
U over which E is trivial. Such operators, the symbols of which are now matrices,
define Ψ m(M ,E). The properties of classicality and ellipticity are generalised in a
straightforward way.

In particular, P has a matrix-valued kernel KP , which in local coordinates reads

kP(x, y) =
ˆ
Rd

ei 2π(x−y).ξ p(x, ξ) dξ. (A.7)

Similarly, the Sobolev space Hs(M ) is defined as the set of distributions u on
M which, in a given local patch U , satisfy u ∈ D ′(U ) with ψu ∈ Hs(Rd ) for all
ψ ∈ C∞

c (U ). By the Rellich theorem, the inclusion Hs(M ) ↪→ Ht is compact for
any t < s and even trace-class when t + d < s.

From the beginning, classical symbols can be seen as objects defined up to S−∞.
It has the following consequence: P ∈ Ψ (M ,E) is smoothing (i.e. all of its local
symbols are smoothing) if and only if P has a Schwartz kernel kP which is smooth on
M × M . For instance, ψPφ is smoothing if ψ, φ ∈ C∞

c (M ) with disjoint supports.
We now recall a few classical results on pdos — see loc. cit. at the beginning

of this section. They provide links between a pdo and the same object, but viewed
as an operator which has eventually several closed extensions on a Hilbert space.
Recall that a bounded operator between Banach spaces is Fredholm if it has a finite
dimensional kernel and cokernel and a closed range.

Theorem A.1 Let P ∈ Ψ m(M ,E). Then:

(i) The extension of P : Hs(M ,E) → Hs−m(M ,E) is bounded for all s ∈ R.
(ii) If P is elliptic, all previous extensions are Fredholm operators, which means that

there exists a Fredholm inverse which is a pdo of order −m.
In particular, when m > 0, P : C∞(M ,E) → C∞(M ,E) acting on the Hilbert
space H 0(M ,E) = L2(M ,E) has only one closed extension with the domains
Hm(M ,E) and a spectrum either equal to C or discrete without accumulation
points except 0.

(iii) When P : Hs(M ,E) → Hs−m(M ,E) is invertible for some s, then we have
P−1 ∈ Ψ −m(M ,E).

(iv) The space Ψ 0(M ,E) is an algebra.
(v) If P ∈ Ψ m(M ,E)withm < −d, then P has a continuous kernel and its extension

P on L2(M ,E) is trace-class with Tr L2(M ,E) P = ´
M tr E kP(x, x) dx.

The inverse in (ii) is obtained by the construction of a local parametrix over a local
chart, which, after being patched, gives rise to two pdos Q and Q′ of order −m
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such that R = QP − 1 and R′ = PQ′ − 1 are smoothing pdos. Moreover, Q − Q′ is
a smoothing pdo. So, modulo smoothing pdos, Q is the left and right inverse of P.

We now present some details from the constructive proof of this theorem for
parameter-dependent symbols.

A.3 Complex Parameter-Dependent Symbols and
Parametrix

Let us be given an elliptic pdoP ∈ Ψ m(M ,E) of orderm > 0 with thematrix symbol
p ∼ ∑∞

j=0 pm−j. Despite the nice unique L2-extension ofP provided by TheoremA.1,
it is still interesting to look at e−t P not only as an operator on L2(M ,E) but as
a smoothing pdo (or, similarly, to regard the complex power Ps as a pdo of order
m�(s)).

The main idea, which we expound in some detail below, is to replace the resolvent
(P − λ)−1 of P by a parameter-dependent parametrix, the symbol of which is under
control. Since we want to control the integrand of (A.3), we assume the following
(uniform) parameter-ellipticity of the principal symbol of P:

Hypothesis A.1 The operator (P − λ)−1 exists in the left keyhole region Vr0,θ

defined by Cr0,θ for θ < π
2 . Moreover, we have the resolvent growth condition: The

matrices pm(x, ξ) − λ are invertible for all x, ξ when λ ∈ Vr0,θ and

∥
∥(pm(x, ξ) − λ)−1

∥
∥ ≤ (1 + ‖ξ‖2 + |λ|2/m)−m/2 = 〈ξ, λ1/m〉−m.

For the principal symbol, let us introduce the strictly homogeneous symbol phm:

phm(x, ξ) := ‖ξ‖m pm(x, ξ/ ‖ξ‖)

(which coincides with pm for ‖ξ‖ ≥ 1, but is now homogeneous of degree m for all
ξ �= 0) and we can rephrase the hypothesis as: phm(x, ξ) has no eigenvalues in Vr0,θ

for all ξ �= 0 (see [23, Lemma1.5.4]). Recall that pm(x, ξ) is homogeneous of degree
m only for ‖ξ‖ ≥ 1 and we have to control the integral in ξ , as in (A.7).

Let (U, h) be a fixed coordinate chart. For x ∈ U, ξ ∈ R
d , λ = ηm ∈ Vr0,θ and

j ∈ N, we want to generate a parametrix by an inductive sequence (see [28])

q−m(x, ξ, η) := (pm(x, ξ) − ηm)−1,

q−m−j(x, ξ, η) := −
j−1∑

k=1

∑

α,�

(−i)|α|
α! ∂α

ξ q−m−k (x, ξ, η) ∂α
x pm−�(x, ξ)(pm(x, ξ) − ηm)−1,

where the second sum is over α ∈ N
d , � ∈ N such that k + � + |α| = j.

In the scalar case (i.e. the fibers of E are one-dimensional),
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q−m−j(x, ξ, η) =
2j∑

k=1

pj,k(x, ξ)(pm(x, ξ) − ηm)−k−1, (A.8)

where the pj,k are symbols of order mk − j obtained from pm, . . . , pm−j.
Using ∂((pm − ηm)−1) = −(pm − ηm)−1(∂pm)(pm − ηm)−1, with ∂ = ∂x or ∂ξ ,

one checks that ∂α
ξ ∂

β
x q−m−j is a sum of terms of the form

(pm − ηm)−1∂
α1
ξ ∂β1

x pm−k1(pm − ηm)−1 · · · ∂αr
ξ ∂βr

x pm−kr (pm − ηm)−1, (A.9)

where
∑r

�=1 k� + |α�| = j + |α|.
Moreover, ∂α

ξ ∂
β
x q−m−j(x, tξ, tη) = t−m−j∂α

ξ ∂
β
x q−m−j(x, ξ, η) for ‖ξ‖ ≥ 1, t ≥ 1

and there are at least two factors (pm(x, ξ) − ηm)−1 if either j > 0 or |α| + |β| > 0.
This implies the following estimates:

‖∂α
ξ ∂β

x q−m−j(x, ξ, η)‖ =
{O‖ξ‖→∞(〈ξ, η〉−m 〈ξ 〉−j−|α|) for j ∈ N,

O‖ξ‖→∞(〈ξ, η〉−2m 〈ξ 〉m−j−|α|) if j + |α| + |β| > 0.
(A.10)

Now, defining q such that q ∼ ∑
j∈N q−m−j, we get

∂α
ξ ∂β

x

[
q(x, ξ, η) −

∑

j<J

q−m−j(x, ξ, η)
]

= O‖ξ‖→∞(〈ξ, η〉−2m 〈ξ 〉m−J−|α|). (A.11)

We claim that: If r(x, ξ, λ) := q(x, ξ, λ1/m) ◦ (p(x, ξ) − λ) − id , then for any N, all
seminorms in S−N of the symbol r are O∞(〈λ〉−1).

The proof is based on the decomposition of the series defining p, q in finite sums
and remainders and their Leibniz products via the above estimates.

Then, one gets rid of the local chart U by patching previous parametrices to get
a parameter-dependent pdo Q(λ) (associated to the symbol q(x, ξ, λ1/m)), such that
R(λ) = Q(λ) (P − λ) − 1 (with the symbol r(x, ξ, λ)) is a smoothing pdo, where
the seminorms ‖·‖−N ,α,β of its symbol are O∞(〈λ〉−1) for each N .

Since formally [Q(λ) (P − λ)]−1 = [1 + R(λ)]−1 = ∑∞
j=0(−R(λ))j, we deduce

that

(P − λ)−1 − Q(λ) = ([Q(λ)(P − λ)]−1 − 1
)
Q(λ) =

∞∑

j=1

(−R(λ))j Q(λ)

has a norm which is O∞(〈λ〉−2) since ‖Q(λ)‖ = O∞(〈λ〉−1) so that:

Proposition A.2 We have
∥
∥(P − λ)−1 − Q(λ)

∥
∥ = O∞(〈λ〉−2) for all λ ∈ Λθ .

Remark that we can define similarly Q′(λ) such that (P − λ)Q′(λ) − 1 = R′(λ)

for another smoothing pdo R′(λ).
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Thus Q(λ) − Q′(λ) = R(λ)Q′(λ) − Q(λ)R′(λ) is a smoothing pdo. Moreover,
the operator (P − λ)−1 can be seen as an elliptic pdo of order −m since, by (A.10)–
(A.11), the operator (P − λ)−1 − ∑

j<J q−m−j(x, ξ, λ1/m) is a pdo of order m − J ,
the seminorms of which are O∞(〈λ〉−2).

This explains why the operator (P − λ)−1 seen as a pdo is nothing else thanQ(λ).
Consequently, G(t) := e−t P defined by (A.3) is also equal to i

2π

´
C e−tλQ(λ) dλ.

Another consequence is that (P − λ)−1 is compact by Theorem A.1(v) so P has
a discrete spectrum without accumulation points (compare with TheoremA.1(ii)).

A.4 About e−t P as a pdo and About its Kernel

Let P ∈ Ψ m(M ,E) be elliptic with m > 0 and let its principal symbol satisfy (A.1).

Theorem A.3 For t > 0, G(t) := e−t P is a pdo of order zero, the symbol g(x, ξ, t)
of which has the expansion g(x, ξ, t) ∼ ∑∞

j=0 g−j(x, ξ, t) with

g−j(x, ξ, t) := i
2π

ˆ
C
e−tλ q−m−j(x, ξ, λ1/m) dλ, for j ∈ N. (A.12)

Moreover, g0(x, ξ, 0) = 1, while g−j(x, ξ, 0) = 0 for j ∈ N
∗.

Proof We follow [23, Theorem4.2.2].
In a coordinate chart, we have

e−t P = i
2π

ˆ
C
e−tλO[q(x, ξ, λ1/m)] dλ = O[ i

2π

ˆ
C
e−tλ(q(x, ξ, λ1/m) dλ]

∼
∞∑

j=0

O[g−j(x, ξ, t)].

First, one checks that g0 = e−t pm (by residue calculus) and the homogeneity property

g−j(x, rξ, r−mt) = r−jg−j(x, ξ, t), for ‖ξ‖ ≥ 1, r ≥ 1.

We now want to prove the following estimates: There exists c > 0 such that

‖∂α
ξ ∂β

x g−j(x, ξ, t)‖ ≤ 〈ξ 〉−j−|α| (t1/m〈ξ 〉)a e−c 〈ξ〉mt, ∀a ≤ min(m, j + |α|). (A.13)

These hold true for j = 0 and for j ≥ 1 we begin with the scalar case, cf. (A.8):

g−j =
2j∑

k=1

pj,k
i
2π

ˆ
C
e−tλ(pm − λ)−k−1 dλ =

2j∑

k=1

pj,k
1
k! t

k e−tpm . (A.14)



128 Appendix A: Classical Tools from Geometry and Analysis

We get ‖Pj,k tk‖≤〈ξ 〉mk−j tk =〈ξ 〉m−j t (〈ξ 〉d t)k−1 with (〈ξ 〉m t)k−1 ≤ 1 if 〈ξ 〉d t ≤ 1.
Moreover, ‖(〈ξ 〉d t)k−1e−tpm/2‖ ≤ 1 if 〈ξ 〉m t ≥ 1. Thus, the estimates are proved
when α = β = 0with a = m. As a consequence, we cover the situation where a < m
and forα, β non-zero one differentiates under the integral of (A.12) until the estimate
for α = β = 0 applies. For the non-scalar case, one proceeds as in the proof of (A.10)
thanks to the expansion (A.9) for the derivatives.

The equality g−j(x, ξ, 0) = 0 is a consequence of (A.13).
We can now conclude the proof thanks to the following argument: The symbol

g(x, ξ, t) ∼ ∑∞
j=0 g−j(x, ξ, t) can be chosen in such a way that

‖∂α
ξ ∂β

x (g −
∑

j<J

g−j)‖ ≤ 〈ξ 〉−J−|α| (t1/μ〈ξ 〉)a e−c 〈ξ〉m t, ∀a ≤ min(m, j + |α|).

So, for any integer J , i
2π

´
C e−tλ O[q(x, ξ, λ1/m) − ∑

j<J q−m−j(x, ξ, λ1/m)] dλ is
a pdo of order zero and the asymptotics of the symbol for G(t) = e−t P is justified.

�

But since we are interested in Tr e−t P it is worthwhile to control the kernel of
G(t) as a function of t and to give an alternative proof of the previous theorem. On
the way, it is shown that e−t P is a smoothing pdo.

Let G−j(t) be the pdo defined locally by g−j(x, ξ, t) after patching local charts.

Lemma A.4 For any t > 0:
(i) The kernels of G−j(t) satisfy the estimates

‖KG0 (x, y, t)‖ ≤ t−d/m e−c′ t, ‖KG−j (x, y, t)‖ ≤ t(j−d)/m e−c′ t, for 0 < j < m + d;
‖KG−m−d (x, y, t)‖ ≤ t(1 + |log t|) e−c′ t, ‖KG−j (x, y, t)‖ ≤ t e−c′ t, for j > m + d .

Moreover, on the diagonal we have, with cj(G, x) := ´
Rd gh−j(x, ξ, 1) dξ ,

KG−j (x, x, t) = cj(G, x) t(j−d)/m + O0(t), for 0 ≤ j < m + d .

(ii) The remainder Gr
J (t) := G(t) − ∑

j<J G−j(t) satisfies

‖KGr
J
(x, y, t)‖ ≤ t(1 + |log t|) e−c′ t, for J > m + d ,

KGr
J
(x, y, 0) = 0, for J > d .

Proof (i) We begin with the kernel of G0: KG0(x, y, t) = ´
Rd ei2π(x−y).ξ e−tpm(x,ξ) dξ .

Since ‖e−tpm − e−tphm‖ = O0(t) when ‖ξ‖ ≤ 1, we get
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‖KG0(x, y, t)‖ ≤ c1

ˆ
Rd

‖e−t phm(x,ξ)‖ dξ + c1

ˆ
‖ξ‖≤1

‖e−tpm(x,ξ) − e−tphm(x,ξ)‖ dξ

≤ c1 t
−d/m

ˆ
Rd

e−c‖η‖m dη + c2 t ≤ c3 t
−d/m + c2 t,

and for the diagonal

KG0(x, x, t) = t−d/m
ˆ
Rd

e−phm(x,η) dη +
ˆ

‖ξ‖≤1
e−tpm(x,ξ) − e−tphm(x,ξ) dξ

=: c0(G, x) t−d/m + O0(t).

When j �= 0, the estimate ‖gh−j(x, ξ, t)‖ ≤ ‖ξ‖m−j t e−c t‖ξ‖m follows from (A.13).
Since the last function is ξ -integrable when m − j > −d , we deduce that the kernel
KG−j (x, y, t) = ´

Rd ei2π(x−y).ξ g−j(x, ξ, t) dξ is O∞(e−c t/2), while for t > 0,

‖KG−j (x, y, t)‖ ≤ c1

ˆ
Rd

‖gh−j‖ dξ + c1

ˆ
‖ξ‖≤1

(‖g−j‖ + ‖gh−j‖) dξ

≤ c2 t
ˆ
Rd

‖ξ‖m−j e−c t ‖ξ‖m dξ + c3 t = c4 t
(j−d)/m + c3 t.

As above, still with 0 < j < d + m, one gets

KG−j (x, x, t) =
ˆ
Rd

gh−j(x, ξ, t) dξ + c1

ˆ
‖ξ‖≤1

(g−j − gh−j)(x, ξ, t) dξ

= cj(G, x) t(j−d)/m + O0(t). (A.15)

Moreover, using (A.13), we obtain

‖KG−j (x, y, t)‖ ≤ t

(ˆ
‖ξ‖≤1

+
ˆ

‖ξ‖≥1

)

〈ξ 〉m−j e−c t〈ξ〉m dξ

≤ t
(
1 +

ˆ ∞

1
rm−j−d−1 e−c t rm dr

)

≤
{
t(c1 + c2 |log t|), for j = m + d ,

t(c1 + c2 t−1+(j−d)/m)), for j > m + d .

This completes the proof of (i).
(ii) The remaining symbol

qrJ (x, ξ, λ) := q(x, ξ, λ1/m) −
∑

j<J

q−m−j(x, ξ, λ1/m)

givesGr
J (t) = i

2π

´
C e−tλO(qrJ )(λ) dλ, which is a pdoof order−m − J < −2m − d ,

so has a continuous kernel (and is trace-class) by TheoremA.1(v). Moreover,
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KGr
J
(x, y, t) = i

2π

ˆ
C
e−tλKO (qrJ )(x, y, λ) dλ,

with ‖KO(qrJ )(x, y, λ)‖ = O∞(〈λ〉−2) as in the proof of Proposition A.2. Thus, the
integral overC converges uniformly for all t > 0 since |e−tλ| ≤ e−c t for some c > 0.
Consequently, KGr

J
(x, y, t) isO∞(e−c t) and as such, it has a continuous extension at

zero sinceKGr
J
(x, y, 0) = 0, because in i

2π

´
C KO (qrJ )(x, y, λ) dλ,C can be deformed

into a closed contour around zero.
We already know fromSect.A.1 thatGr

J (t) ∈ C∞((0,∞),B(H )) and, for t ≤ 1,

‖∂t KGr
J
(x, y, t)‖ = 1

2π

∥
∥
ˆ
C

λe−tλ KGr
J
(x, y, λ)dλ

∥
∥ ≤ c1e

−c t + c3

ˆ ∞
r0

e−c2|λ|t〈λ〉−1dλ

≤ c4 + c5

ˆ ∞
r0t

e−c2 a a−1 da ≤ c6 + c7 |log t| . (A.16)

(See the definition of r0 after (A.3).)
The Taylor series in t gives |KGr

J
(x, y, t)| ≤ c t(1 + |log t|) when t ∈ (0, 1] and

hence the announced estimate. �

Technically, it is useful to use e−t P = i
2π

´
C e−tλ λ−k Pk Q(λ) dλ, ∀k ∈ N which

follows from Q(λ) = λ−1(λ − P + P)Q(λ) = −λ−1 + λ−1P Q(λ) which after iter-
ation gives Q(λ) = −∑k

j=1 λ−jPj−1 + λ−kPkQ(λ) and
´
C e−tλ λ−j dλ = 0.

We denote: Q(k)(λ) := Pk Q(λ), seen as a pdo of order (k − 1)mwith the symbol
q(k) ∼ ∑

j∈N q(k)
(k−1)m−j and, preserving the notation, Q(k)

(k−1)m−j := O[q(k)
(k−1)m−j] and

Q(k)
J := Q(k) − ∑

j<J Q
(k)
(k−1)m−j. As an example,

q = −λ−1 − λ−2p + λ−2q(2)

= λ−1 − λ−2
(
pm + · · · + p−m + O‖ξ‖→∞(〈ξ 〉−m−1)

)

+ λ−2
(
q(2)
m + · · · + q(2)

−m + O‖ξ‖→∞(〈ξ 〉−1〈ξ, λ1/m〉−m)
)
.

By iteration, q−m−j = −λ−2pm−j − · · · − λ−kp(k−1)
(k−1)m−j + λ−kq(k)

(k−1)m−j, where p
(�) is

the symbol of P�. Since these symbols are independent of λ, we get

g−j(x, ξ, t) = i
2π

ˆ
C
e−tλ q−m−j(x, ξ, λ1/m) dλ

= i
2π

ˆ
C
e−tλ λ−k q(k)

(k−1)m−j(x, ξ, λ1/m) dλ. (A.17)

In particular, for k ∈ N we rewrite the Q(k)’s as

G(t) = i
2π

ˆ
C
e−λt λ−k Q(k)(λ) dλ,

G−j(t) = i
2π

ˆ
C
e−λt λ−k Q(k)

(k−1)m−j(x, ξ, λ) dλ,
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Gr
J (t) = i

2π

ˆ
C
e−λt λ−k Q(k)

J (λ) dλ. (A.18)

With the help of this representation, we can improve the key estimate (A.13) along
with the estimates from LemmaA.4:

Lemma A.5 For any k ∈ N,

‖∂α
ξ ∂β

x ∂k
t g−j(x, ξ, t)‖ ≤ c′(x) 〈ξ 〉km−j−|α| e−c〈ξ〉m t . (A.19)

For the kernel of G−j = O(g−j) we have

‖∂k
t KG−j (x, y, t)‖ ≤

{
(1 + |log t|) e−ct, for j − km = d ,

(1 + t(j−km−d)/m) e−ct, for j − km �= d .
(A.20)

On the diagonal we get, with cj,k(x) := ´
Rd ∂k

t g
h−j(x, ξ, 1) dξ ,

∂k
t KG−j (x, x, t) = cj,k(x) t

(j−km−d)/m + O0(t
0), j < (k − 1)m + d . (A.21)

For the kernel of G−j we have, with j > km + d for some k ∈ N,

KG−j (x, y, t) =
k−1∑

�=1

t�

�! ∂�
t KG−j (x, y, 0) + tkR(x, y, t) (A.22)

and ∂�
t KG−j (x, y, 0) and R(x, y, t) are continuous in x, y and in t ≥ 0.

When J > (k + 1)m + d for some n ∈ N, the kernel of the remainder Gr
J satisfies

‖∂k
t KGr

J
(x, y, t)‖ ≤ e−c t,

KGr
J
(x, y, t) =

k−1∑

�=1

t�

�! ∂�
t KGr

J
(x, y, 0) + tkR(x, y, t), (A.23)

where ∂�
t KGr

J
(x, y, 0) and R(x, y, t) are continuous in x, y and in t ≥ 0.

Proof For � ∈ N
∗, ∂�

t g−j(x, ξ, t) = i(−1)�

2π

´
C e−tλ q(�)

(�−1)m−j(x, ξ, λ1/m) dλ is derived
from (A.17) and the estimate (A.19) is proved in the same way as (A.13).

Since ∂�+1
t g−j is bounded when t → 0 by the above formula, the function

∂�
t g−j is continuous at t = 0. Since g−j(x, ξ, 0) = 0 by TheoremA.3, we have
the Taylor expansion g−j(x, ξ, t) = ∑k

�=1
1
�!∂

�
t g−j(x, ξ, 0) t� + tkr−j,k(x, ξ, t) where

∂�
t g−j(x, ξ, 0) are pdos of order �m − j.
The operators ∂k

t G−j(t) = O(∂k
t g−j) have kernels, for which we can repeat the

same arguments used for the proof of LemmaA.4(i) in order to get (A.20).
If j > d , KG−j (x, y, 0) = 0 by Lemma A.4 and by a Taylor expansion, we get

(A.22).
We need to control the remainder. For k ≥ 1, choose J > km + d and the pre-

sentation (A.18) for the kernel of KGr
J
. Since Gr

J is a pdo of order (k − 1)m − M ,
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‖qrJ (x, ξ, λ)‖ ≤ 〈ξ 〉km−J 〈ξ, λ1/m〉−m, thus, after a ξ -integration, we get the estimate
of the kernel ‖KQ(k)

J
(x, y, λ)‖ ≤ 〈λ〉−1 and

KGr
J
(x, y, t) = i

2π

ˆ
C
e−λt λ−k Q(k)

J (λ) dλ

because all Q(k) are holomorphic in λ. Thus, for � ≤ k − 1,

‖∂�
t KGr

J
(x, y, t)‖ = 1

2π ‖
ˆ
C
e−λtλ�−kK

Q(k)
J

(λ)dλ‖ ≤ 1
2π |

ˆ
C
e−λt〈λ〉�−k−1dλ| ≤ e−ct .

As a consequence we get: KGr
J
(x, y, t) = ∑k−2

�=1
t�

�! ∂�
t KGr

J
(x, y, 0) + tk−1R(x, y, t).

This Taylor expansion begins at � = 1 since KGr
J
(x, y, 0) = 0 by LemmaA.4. Swap-

ping m − 1 to m completes the proof of the lemma. �

A.5 The Small-t Asymptotics of e−t P

The above estimates can be used to prove that e−t P has a smooth Schwartz kernel
for any t > 0. Therefore, e−t P is a smoothing pdo, and hence is trace-class.

Theorem A.6 Let P ∈ Ψ m(M ,E) be elliptic withm > 0 and let its principal symbol
satisfy (A.1). Then, G(t) = e−t P is a smoothing pdo and its kernel has the following
asymptotics on the diagonal:

KG(x, x, t) ∼
t↓0

∑

n∈N
n−d /∈mN

cn−d (x,G) t(n−d)/m +
∑

n∈N
n−d∈mN

cn−d (x,G) t(n−d)/m log t

+
∑

�∈N
r�(x,G) t�,

where the coefficient cn−d (x,G) ∈ C∞(M ) depends only on pm, . . . , pm−n, while
r�(x,G) ∈ C∞(M ) depends globally on the operator P.

Proof The smoothness of the kernel K−j(x, y, t) in x, y follows from (A.19) and it
remains to control the remainder. In fact, ‖(x − y)γ ∂α

x ∂
β
y KGr

J
(x, y, t)‖ ≤ e−c t when

J > (k + 1)m − |γ | + |α| + |β| + d which follows, as in the previous lemma, from
the estimate ‖(x − y)γ ∂α

x ∂
β
y KQ(k+1)

J
(x, y, λ)‖ ≤ 〈λ〉−1. Thus,G(t) is a smoothing pdo.

Now, let us choose a large k ∈ N. By a successive integration of (A.21) and using
(A.15) with j = d , we get, for j < (k − 1)m + d ,

KG−j (x, x, t) =
{
c′
j,k(x) t

(j−d)/m + pj,k(x, t) + O0(tk), for j − d /∈ mZ,

c′
j,k(x) t

(j−d)/m log t + p′
j,k(x, t) + O0(tk), for j − d ∈ mZ,

where c′
j,k(x) depends only on cj,k(x) of Lemma A.5, pj,k(x, t) and p′

j,k(x, t) are
polynomials of degree k in t and are continuous in x with pj,k(x, 0) = p′

j,k(x, 0) = 0.
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Moreover, the remainder in (A.23) for J = (k − 1)m + d > ((k − 3) + 1)m + d
is KGr

J
(x, y, t) = ∑k−4

�=1
t�

�! ∂�
t KGr−J

(x, y, 0) + O0(tk−3). Thus, for the full integral
kernel,

KG(x, x, t) =
∑

0≤j<J=(k−1)m+d
j−d /∈mN

c′
j,k(x) t

(jd)/m +
∑

j=m�+d
1 leq�<k−1

c′
j,k(x) t

� log t

+ pk(x, t) + O0(t
k−3),

where the pk(x, t) are polynomials in t such that pk(x, 0) = 0. Sending k to infinity,
we get, after a relabeling, the announced asymptotics, because KG(x, x, t) minus the
sum of terms up to (n − d)/m = N and � = N is O0(tN+1/d ). The coefficients c′

j,k
depend only on G−j, thus locally on the symbols of P of orders fromm tom − j. The
pk ’s are not easy to characterise, but they are smooth in x: The smoothness of cj,k
(and so of c′

j,k ) is clear from its definition in LemmaA.5, while the smoothness of
pj,k or p′

j,k can be checked at each step of the above integrations in t with t = 1. �

By taking the trace and relabeling, we immediately get the celebrated expansion:

Corollary A.7 Let (M , g) be a compact Riemannian manifold of dimension d and
let P ∈ Ψ m(M ,E) be an elliptic pdo with m > 0, the principal symbol of which
satisfies (A.1). Then,

Tr e−t P ∼
t↓0

∞∑

k=0

ak (P) t(k−d)/m +
∞∑

�=0

b�(P) t� log t,

with

⎧
⎪⎨

⎪⎩

ak (P) = ´
M tr ck−d (x,P)

√
g dd x, for k − d /∈ mN,

ak (P) = ´
M tr r(k−d)/m(x,P)

√
g dd x, for k − d ∈ mN,

b�(P) = ´
M tr cm�(x,P)

√
g dd x, for � ∈ N. �

It can be of interest to recall a few links between the resolvent, complex powers
and heat operators (with s ∈ C, k ∈ N, c > 0)

e−t P = t−k i
2π

ˆ
C
e−tλ ∂k

λ(P − λ)−1 dλ = 1
i2π

ˆ
�(s)=c

t−s Γ (s)P−s ds, (A.24)

P−s = 1
(s−1)···(s−k)

i
2π

ˆ
C

λk−s ∂k
λ(P − λ)−1 dλ = 1

Γ (s)

ˆ ∞

0
ts−1 e−t P dt.

A.6 Meromorphic Extensions of Certain Series and their
Residues

Wegather belowsome results onmeromorphic extensions of certain series. Thesewill
allow us for an extension of Proposition 2.26 and provide tools for the computation
of the dimension spectrum of the noncommutative torus in Sect.B.3.1. On the way,
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a ‘Diophantine condition’ will pop up guaranteeing a control on the commutation
between the residues and the series. For complete proofs, see [15].

In the following,
∑′ means that we omit the division by zero in the summand.

Theorem A.8 Let P be a polynomial P(x) = ∑d
j=0 Pj(x) ∈ C[x1, . . . , xn], where Pj

is the homogeneous part of P of degree j and d is fixed.
Then, the function f (s) := ∑′

k∈ZnP(k) ‖k‖−s has a meromorphic extension to C.
Moreover, f is not entire iff PP := {j | ´

u∈Sn−1 Pj(u) ds(u) �= 0} �= ∅ and f has
only simple poles at j + n, j ∈ PP, with Res

s=j+n
f (s) = ´

u∈Sn−1 Pj(u) ds(u).

Here ds is the Lebesguemeasure on Sn−1. The proof is based on the fact that the func-
tion

∑′
k∈ZnP(k) ‖k‖−s − ´

Rn\Bn P(x)‖x‖−s dx, withBn – the unit ball inR
n, originally

defined for �(s) > d + n, extends holomorphically to C.
This result can be seen as an extension of Proposition 2.26: Let D be a self-

adjoint invertible operator with only discrete spectrum equal to Z
n such that each

eigenvalue ±k ∈ Z
n has multiplicity p(k) for a given polynomial P ∈ N[x1, . . . , xn].

Then, Res
s=j+n

ζD(s) = ´
u∈Sn−1 Pj(u) ds(u).

Example A.9 Let us consider the functions ζq1,...,qn(s) := ∑′
k∈Zn k

q1
1 · · · kqnn ‖k‖−s,

for qi ∈ N
∗. By the symmetry k �→ −k, the functions ζq1,...,qn vanish if any qi is odd.

Assume that all of qi’s are even, then ζq1,...,qn(s) is a nonzero sum of terms
P(k)‖k‖−s, where P is a homogeneous polynomial of degree q1 + · · · + qn. The-
oremA.8 yields the following: ζp1,...,pn has a meromorphic extension to C with a
unique pole at n + q1 + · · · + qn. This pole is simple and the residue at this pole is

Res
s=n+q1+···+qn

ζq1,...,qn(s) = 2 Γ [(q1+1)/2]···Γ [(qn+1)/2]
Γ [(n+q1+···+qn)/2] . � (A.25)

We now recall few notions from the Diophantine approximation theory.

Definition A.10 (i) Let δ > 0. A vector a ∈ R
n is said to be δ-badly approximable

if the Diophantine condition holds true:
There exists c > 0 such that |q.a − m| ≥ c |q|−δ , ∀q ∈ Z

n \ { 0 } and ∀m ∈ Z.
Wedenote byBVδ the set of δ-badly approximable vectors andBV := ∪δ>0 BVδ

the set of badly approximable vectors.
(ii) AmatrixΘ ∈ Mn(R) (real n × nmatrices) will be called badly approximable

if there exists u ∈ Z
n such that tΘ(u) is a badly approximable vector of R

n.

It is known that for δ > n the Lebesgue measure of R
n \ BVδ is zero (i.e almost

any element of R
n is δ-badly approximable) and, consequently, almost any matrix in

Mn(R) is badly approximable.
We store below a rather technical result [15, Theorem2.6], omitting the proof. As

compared with the previous theorem, it takes care of the possible oscillations ei 2πk.a,
where a is a vector in R

n, which will be allowed to vary later on.
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Theorem A.11 Let P ∈ C[x1, . . . , xn] be a homogeneous polynomial of degree d
and let b ∈ S((Zn)q) for q ∈ N

∗. Then,
(i) For a ∈ R

n, define fa(s) := ∑′
k∈ZnP(k) ‖k‖−s ei 2πk.a.

1. If a ∈ Z
n, then fa has a meromorphic extension to the whole space C.

Moreover, fa is not entire if and only if
´
u∈Sn−1 P(u) ds(u) �= 0. In that case, fa has

a single simple pole at the point d + n, with Res
s=d+n

fa(s) = ´
u∈Sn−1 P(u) ds(u).

2. If a ∈ R
n \ Z

n, then fa(s) extends holomorphically to C.
(ii) Suppose that Θ ∈ Mn(R) is badly approximable. For any (εi)i ∈ {−1, 0, 1}q,

the function
g(s) :=

∑

l∈(Zn)q
b(l) fΘ ∑

i εi li (s)

extends meromorphically to C with only one possible pole at s = d + n.
Moreover, if we setZ := {l ∈ (Zn)q | ∑q

i=1 εili = 0} and V := ∑
l∈Z b(l), then

1. If V
´
Sn−1 P(u) ds(u) �= 0, then s = d + n is a simple pole of g(s) and

Res
s=d+n

g(s) = V
ˆ
u∈Sn−1

P(u) ds(u).

2. If V
´
Sn−1 P(u) ds(u) = 0, then g(s) extends holomorphically to C.

(iii) Suppose thatΘ ∈ Mn(R) is badly approximable. For any (εi)i ∈ {−1, 0, 1}q,
the function

g0(s) :=
∑

l∈(Zn)q\Z b(l) fΘ ∑q
i=1 εi li (s),

with Z := {l ∈ (Zn)q | ∑q
i=1 εili = 0}, extends holomorphically to C.

Is is unknown whether the Diophantine condition, which is sufficient to get the
results of (iii), is also necessary — see nevertheless [15, Remark2.9].

In the study of the dimension spectrum of the noncommutative torus we will need
the following result [15, Theorem2.18(i)].

It requires some notations: Fix q ∈ N, q ≥ 2 and r = (r1, . . . , rq−1) ∈ (N∗)q−1.
When (x1, . . . , x2q), we set x̃j := x1 + · · · + xj + xq+1 + · · · + xq+j for any j with

1 ≤ j ≤ q and we let P ∈ R[x1, . . . , xn] and d = degP.

Theorem A.12 Let 1
2π Θ be a badly approximable matrix, and a ∈ S

(
(Zn)2q

)
.

Then,

s �→ f (s) :=
∑

l∈[(Zn)q]2
al

∑

k∈Zn

′
q−1∏

i=1

|k + l̃i|ri ‖k‖−s P(k) eik.Θ
∑q

1 lj

has a meromorphic extension to C with at most simple possible poles at the points
s = n + d + |r1| + · · · + ∣

∣rq−1

∣
∣ − m where m ∈ N.

An explicit formula for the residues of f is given in [15, Theorem2.18(ii)].



Appendix B
Examples of Spectral Triples

B.1 Spheres

A particularly illustrative example of a commutative spectral triple (recall Exam-
ple1.2) is provided by the d -dimensional unit spheres Sd .

On S1 there are two possible spin structures, where the nontrivial one is associated
to functions with antiperiodic boundary conditions. When d ≥ 2 there is only one
spin structure available since Sd is simply connected. Let us equip Sd with the
standard round metric and cook up the standard Dirac operator D/ acting on the
chosen spinor bundleS . Then, (C∞(Sd ),L2(Sd ,S ),D/ ) is a d -dimensional regular
spectral triple with a simple dimension spectrum d − N (cf. Example1.25), for any
d ≥ 1 and any spinor bundle S .

The spectrum ofD/ turns out to be very simple [2, 21]: For the trivial spin structure
on S1 we have λn(D/ ) = n for n ∈ Z and all of the eigenspaces are one-dimensional.
In particular, we have dim kerD/ = 1. In the non-trivial case, the spectrum of the
Dirac operator agrees with the general pattern for Sd and for d ≥ 1:

λn(D/ ) = sign(n)(n + d
2 ), Mn(D/ ) = 2� d2 �(|n|+d−1

d−1

)
, with n ∈ Z. (B.1)

Hence, μn(D/ ) = n + d
2 withMn(|D/ |) = 2� d2 �+1(n+d−1

d−1

)
, with n ∈ N.

B.2 Tori

Another commutative spectral triple is given by the flat tori T
d = R

d/Z
d and, as

above, (C∞(Td ),L2(Td ,S ),D/ ) is a d -dimensional regular spectral triple with a
simple dimension spectrum d − N. There are 2d different spin structures on T

d

classifiedby the twistingof each coordinates of the latticeZ
d :Given abasis e1, . . . , ed

of Z
d , this is realised by choosing s1, . . . , sd ∈ {0, 1}, so that we have the group

© The Author(s) 2018
M. Eckstein and B. Iochum, Spectral Action in Noncommutative Geometry,
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homomorphism: ek ∈ Z
d → (−1)sk ∈ {+1,−1} and all spin structures are given

this way by (s1, . . . , sd ). The eigenvalues of the Dirac operator D/ (endowed with
the induced flat metric) depend on the chosen spin structures and are given by (see
[2, 21])

{±2π ‖k + 1
2

d∑

j=1

sj e
∗
j ‖ | k ∈ Z

d ∗}. (B.2)

where Z
d ∗

is the dual lattice and (e∗
1, . . . , e

∗
d ) is the dual basis of (e1, . . . , ed ).

The multiplicity of the eigenvalue 0 (given by sj = 0, ∀ j) is 2�d/2� while the
non-zero eigenvalues have multiplicity 2�d/2�−1.

B.3 Noncommutative Tori

The noncommutative d -tori were introduced by Rieffel [34] and Connes [5] as defor-
mations of T

d characterised a by non-zero skew-symmetric matrix Θ ∈ Md (R).
Denote byC∞(Td

Θ) the algebra generated byd unitariesui, i = 1, . . . , d satisfying

u� uj = eiΘ�j uj u�, (B.3)

andwith Schwartz coefficients. So, a ∈ C∞(Td
Θ) can bewritten as a = ∑

k∈Zd ak Uk ,
where {ak} ∈ S(Zd ) (i.e. supk∈Zd |k1|n1 · · · |kd |nd |ak | < ∞, ∀ni ∈ N) and

Uk := e− i
2 k.Θ

′k uk11 · · · ukdn , k ∈ Z
d ,

where Θ ′ is the restriction of Θ to its upper triangular part. Relation (B.3) reads

UkUq = e− i
2 k.Θq Uk+q or UkUq = e−ik.Θq UqUk . (B.4)

Thus, the unitary operators Uk satisfy

U ∗
k = U−k and [Uk ,Ul] = −2i sin( 12k.Θl)Uk+l .

Let τ be the trace on C∞(Td
Θ) defined by

τ
( ∑

k∈Zd
ak Uk

) := a0

and Hτ be the GNS Hilbert space obtained by completion of C∞(Td
Θ) with respect

to the norm induced by the scalar product 〈a, b〉 := τ(a∗b).
On Hτ = { ∑

k∈Zd ak Uk | {ak}k ∈ �2(Zd ) }, let δμ, for μ ∈ { 1, . . . , d }, be the
pairwise commuting canonical derivations, given by

δμ(Uk) := ikμUk . (B.5)
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Define now

AΘ := C∞(Td
Θ) acting on H := Hτ ⊗ C

2m , with m := �d/2�.

Each element ofAΘ is represented onH as π(a) := L(a) ⊗ 12m where L(·) (and
R(·)) is the left (right) regular representation of C∞(Td

Θ). The Tomita conjugation
J0(a) := a∗ satisfies J0L(a) = R(a∗)J0 and [J0, δμ] = 0 andwe define J := J0 ⊗ C0,
where C0 is an operator on C

2m such that C2
0 = ±12m , depending on the parity of m.

The (flat) Dirac-like operator is given by

D := −i δμ ⊗ γ μ, (B.6)

with hermitian Dirac matrices γ satisfying C0γ
α = ±γ αC0 (see [6, 22] for details

about the signs). The operatorD is defined and symmetric on the dense subset ofH
given by C∞(Td

Θ) ⊗ C
2m and we still denote by D its selfadjoint extension. Thus

D Uk ⊗ ei = kμUk ⊗ γ μei,

where (ei) is the canonical basis of C
2m .

Finally, in the even case, the chirality operator reads: γ := id ⊗(−i)mγ 1 · · · γ d .
The operatorD is not invertible: kerD = U0 ⊗ C

2m has dimension 2m because if
ψ = ∑

k,j ck,jUk ⊗ ej, then 0 = D2ψ = ∑
k,j ck,j ‖k‖2Uk ⊗ ej. Thus,

P0 = |U0〉〈U0| ⊗ 1C2m . (B.7)

This yields a spectral triple:

Theorem B.1 The tuple (AΘ,H ,D, J , γ ) is a real regular spectral triple of dimen-
sion d. Its KO-dimension is also d.

Most of the arguments will be revisited in the computation of the dimension spectrum
— see TheoremB.2. For a complete proof see [6, 22].

We remark that the torus actions on C∗-algebras lead to interesting nonunital
spectral triples, see [4, Chap. 5].

B.3.1 Dimension Spectrum

Theorem B.2 (i) If 1
2π Θ is badly approximable, the spectrum dimension of the

triple
(
C∞(Td

Θ),H ,D
)
is equal to the set { d − k : k ∈ N } and all of the poles are

simple.
(ii) ζD(0) = 0.

Proof (i) Let B ∈ P(A ) and p ∈ N. Suppose that B is of the form
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B = arbrD
qr−1 |D |pr−1ar−1br−1 · · ·Dq1 |D |p1a1b1,

where r ∈ N, ai ∈ A , bi ∈ JA J−1, qi, pi ∈ N.
We decompose ai =: ∑

�∈Zd ai,� U� and bi =: ∑
�′∈Zd bi,�′ U�′ .

With the shorthands kμ1,μqi
:= kμ1 · · · kμqi

and γ μ1,μqi := γ μ1 · · · γ μqi , we get

Dq1 |D |p1a1b1Uk ⊗ ej

=
∑

�1, �
′
1

a1,�1b1,�′
1
U�1UkU�′

1
|k + �1 + �′

1|p1 (k + �1 + �′
1)μ1,μq1

⊗ γ μ1,μq1 ej,

which gives, after r iterations,

B(Uk ⊗ ej) =
∑

�,�′∈Zd

ã�̃b� U�r · · ·U�1UkU�′
1
· · ·U�′

r

r−1∏

i=1

|k + �̂i + �̂′
i|pi (k + �̂i + �̂′

i)μi
1,μ

i
qi

⊗ γ
μr−1
1 ,μr−1

qr−1 · · · γ μ1
1,μ

1
q1 ej,

where ã� := a1,�1 · · · ar,�r , b̃�′ := b1,�′
1
· · · br,�′

r
,

�̂i := �1 + · · · + �i, γ μ := γ
μr−1
1 ,μr−1

qr−1 · · · γ μ1
1,μ

1
q1 .

Let us denote Fμ(k, �, �′) := ∏r−1
i=1 |k + �̂i + �̂′

i|pi (k + �̂i + �̂′
i)μi

1,μ
i
qi
.

With the shortcut ∼c meaning equality modulo a constant function in the variable
s, we have

Tr
(
B|D|−p−s) ∼c

∑

k∈Zd

′ ∑

�,�′∈Zd

ã�̃b�′ τ
(
U−kU�r · · ·U�1UkU�′

1
· · ·U�′

r

)Fμ(k,�,�′)
‖k‖s+p tr (γ μ) .

Since U�r · · ·U�1Uk = UkU�r · · ·U�1 e
−i

∑r
i=1 �i .Θk , we get

τ
(
U−kU�r · · ·U�1UkU�′

1
· · ·U�′

r

) = δ∑r
i=1 �i+�′

i,0
ei φ(�,�′) e−i

∑r
i=1 �i .Θk ,

where φ is a real valued function. Thus,

Tr
(
B|D|−p−s) ∼c

∑

k∈Zd

′ ∑

�,�′∈Zd

eiφ(�,�′) δ∑r
i=1 �i+�′

i,0
ã�̃b�′ Fμ(k,�,�′) e−i

∑r
i=1 �i .Θk

‖k‖s+p tr (γ μ)

∼c fμ(s) tr (γ μ).

The function fμ(s) can be decomposed as a linear combination of zeta functions of
the type described in TheoremA.12 (or, if r = 1 or if all pi’s are zero, in Theorem
A.11). Thus, by linearity, s �→ Tr

(
B|D|−p−s

)
has a meromorphic extension to C

with simple poles located exclusively in Z ⊂ C.
Moreover, if B ∈ Ψ 0(A ) and q ∈ N is such that q > d , then B |D|−s ∈ OP−�(s),

so it is trace-class around q and hence ζB,D(s) = Tr B |D|−s is regular around q.
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(ii) Let Zd (s) := ∑′
k∈Zd ‖k‖−s be the Epstein zeta function associated to the

quadratic form q(x) := x21 + · · · + x2d . Then Zd enjoys the functional equation:

Zd (s) = π s−d/2Γ (d/2 − s/2)Γ (s/2)−1 Zd (d − s). (B.8)

Since π s−d/2Γ (d/2 − s/2) Γ (s/2)−1 = 0 for any negative even integer d and Zd (s)
is meromorphic on C with only one pole at s = d (with residue 2πd/2Γ (d/2)−1

according to (A.25)), we get Zd (0) = −1.
By definition, ζD(s) = ∑

k∈Zd

∑2m

j=1〈Uk ⊗ ej, |D|−sUk ⊗ ej〉, so that

ζD(s) = 2�d/2�(Zd (s) + 1) (B.9)

and the conclusion ζD(0) = 0 follows. �

B.3.2 Heat Kernel Expansion

Proposition B.3 The heat trace asymptotics is Tr e−tD 2 ∼
t↓0 2

�d/2�πd/2 t−d/2.

Proof Since D2Uk ⊗ ei = ‖k‖2Uk ⊗ ei, we know by Formula (2.22) that

Tr e−tD 2 = 2m
∑

k∈Zd

e−t ‖k‖2 ∼
t↓0 2

�d/2�πd/2 t−d/2. �

This result can also be obtained (in an admittedly circuitous way) from Theo-
rem3.6: We have ZD2(s) = 2mΓ (s)(Zd (2s) + 1) and the Epstein zeta function Zd is
meromorphic on C with a single simple pole at s = d . Moreover, the Epstein zeta
function enjoys a polynomial growth on the verticals — see the non trivial estimates
demonstrated in [14, 30].

Remark that we recover the classical result: For the torus T
d with the usual scalar

Laplacian Δ = −gμν∂μ∂ν , Tr e−t Δ = Vol (Td )(4π)−d/2 t−d/2 + O0(t−d/2e−1/4t)

and Vol (Td ) = (2π)d so that Vol (Td )(4π)−d/2 = πd/2 = ad ,0 (mod 2m).

B.3.3 Spectral Action for Noncommutative Tori

We consider the d -dimensional noncommutative torus (AΘ,H ,D) of TheoremB.1
with AΘ = C∞(Td

Θ), a one-form A = A∗ ∈ Ω1
D (AΘ) and

A := A + εJAJ ∗. (B.10)

Thus, the constraint A = A
∗ ∈ Ψ 0(A ) is satisfied.
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Remark that A can be written as A =: L(−iAα) ⊗ γ α , where Aα = −A∗
α ∈ AΘ ,

so that

DA = −i[δα + L(Aα) − R(Aα)] ⊗ γ α. (B.11)

As for the commutative torus T
d , we get

D2
A

= −δα1α2(δα1 + Aα1)(δα2 + Aα2) ⊗ 12m − 1
2Ωα1α2 ⊗ γ α1α2 ,

where δαβ is the Kronecker symbol and

Aα := L(Aα) − R(Aα), γ α1α2 := 1
2 (γ

α1γ α2 − γ α2γ α1),

Ωα1α2 := [δα1 + Aα1 , δα2 + Aα2 ] = L(Fα1α2) − R(Fα1α2),

Fα1α2 := δα1(Aα2) − δα2(Aα1) + [Aα1 ,Aα2 ] ∈ AΘ. (B.12)

Thus,

D2
A

= −δα1α2 [δα1 + L(Aα1) − R(Aα1)] [δα2 + L(Aα2) − R(Aα2)] ⊗ 12m

− 1
2

(
L(Fα1α2) − R(Fα1α2)

) ⊗ γ α1α2 . (B.13)

We now prove the existence of the asymptotics of the fluctuated heat trace on the
noncommutative torus using the one for the ‘bare’ one given in PropositionB.3 (cf.
also Problem 6(e) in Chap.5). To this end, we employ the pseudodifferential calculus
introduced by Connes for C∗-dynamical system (A, R

d , α) (see [5, 7, 8]) and follow
the arguments given in the proof of [29, Theorem4.2]. The idea is essentially to
mimic the classical pdo calculus on a manifold — cf. Appendix A.3 — improving
the Proposition2.27 to gain control on the series defined by Tr e−tD 2

A .
We first quickly summarise this symbolic calculus— see [5, 7, 8] (and especially

the complete approach by Lesch and Moscovici [29]) for details.
Let Aθ be the universal C∗-algebra generated by the Uk and let Aθ consist of

those elements in Aθ for which a → αs(a) is C∞ for each s ∈ R
d , with the definition

αs(Uk) := e−i2π s.kUk .
A smooth map ρ : C∞(Rd ) → Aθ is named a symbol of order m ∈ Z if for

any k, � ∈ N
d , ‖δk∂�

ξ ρ(ξ)‖ ≤ ck,�(1 + ‖ξ‖)m−|�| for some constants ck,�, where

we define δk := δ
k1
1 · · · δkdd for k ∈ N

d and ∂�
ξ := ∂

�1
ξ1

· · · ∂�d
ξd
, and if there exists

σ ∈ C∞(Rd ,A∞
θ ) such that limλ→∞ λ−mρ(λξ) = σ(ξ). Such a symbol is elliptic

when ρ(ξ)−1 exists and the estimate ‖ρ(ξ)−1‖ ≤ c(1 + ‖ξ‖)−m holds for ‖ξ‖ large
enough.

Given a symbol ρ, let us define the pdo Pρ : S(Rd ,Aθ ) → S(Rd ,Aθ ) by

Pρ(u) :=
ˆ

α−x(F
−1[ρ](x − y)) u(y) dy =

ˆ
α−x(F

−1[ρ](y)) u(x − y) dy.
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An action of the pre-C∗-algebraAθ �α R
d on the pre-C∗-moduleS(Rd ,Aθ ) is given,

for a ∈ Aθ , by a u(x) = α−x(a) u(x) and Uy(u)(x) := u(x − y).
Then, Pρ = ´

F−1[ρ](y)Uy dy can be seen as an element of the multiplier
space of Aθ �α R

d . The GNS representation of Aθ given by the trace τ can be
extended to Aθ �α R

d , with the maps a ∈ Aθ → a and Ux → αx, so that
Pρ = ´

F−1[ρ](y) αy dy can be seen as an element of the multiplier of Aθ .
Since Pρ Uk = ´

F−1[ρ](y)e−i2π y.k dy Uk = ρ(k)Uk , we get, for any element
a = ∑

k∈Zd ak Uk , Pρ(a) = ∑
k∈Zd ak ρ(k)Uk .

Thus, Tr Pρ = ∑
k∈Zd 〈Uk ,PρUk〉 = ∑

k∈Zd τ(U ∗
k ρ(k)Uk) = ∑

k∈Zd τ [ρ(k)] is
finite if m < −d , because ‖ρ(k)‖ ≤ c0,0(1 + (

∑d
i=1 k

2
i )

1/2)m.
A parametric symbol ρ(ξ, λ) with λ ∈ V – a region in C is defined similarly:

‖δk∂�
ξ ∂

r
λρ(ξ, λ)‖ ≤ ck,�(1 + ‖ξ‖ + |λ|)m−|�|−|r|. (B.14)

Cf. [19, Sect. 1.7.1] and the (slightly different) HypothesisA.1 of Appendix A.3.
We now adapt the Proposition2.27:

Proposition B.4 If ρ ∈ Sm(Rd × V,A∞
θ ) is a parametric symbol of order m < −d,

then
∑

k∈Zd ρ(k, λ) = ´
Rd ρ(ξ, λ) dξ + O∞(|λ|−∞).

Proof Using (2.19),
∑

k∈Zd ρ(k, λ) = ´
Rd ρ(ξ, λ) + ∑

k∈Zd \{0} F[ρ(·, λ)](k).
Via the Fourier transform of a derivative and (B.14), we get, for each N ∈ N

∗,
‖F[ρ(·, λ)]‖ ≤ ‖ξ‖−N |λ|d+m−N and the conclusion follows from: For any q ∈ N

d ,

∥
∥
∥

∑

k∈Zd \{0}
F[ρ(·, λ)](k)

∥
∥
∥
q

≤ cq,N
( ∑

k∈Zd \{0}
‖k‖−N

)
|λ|d+m−N .

�

Lemma B.5 For DA as in (B.11), we have Tr e−tD 2
A ∼

t↓0
∑∞

k=0 ak(DA) t(k−d)/2.

Moreover, for f (
√· ) ∈ Cr

0 with r > d/2, the spectral action has the asymptotics

S(DA, f ,Λ) =
d∑

k=1

Λk
ˆ ∞

0
f (t) tk−1 dt

ˆ
− |DA|−k + f (0) ζDA

(0) + O∞(Λ−1).

(B.15)

Proof The operator DA given in (B.11) can be seen as a differential multiplier of
order 1. Namely,DA ∈ Diff1σ (Rd ,Bθ ⊗ C

2m), whereBθ is the algebra generated by
Aθ and JAθJ−1, following a slight extension of [29, Definition3.5]. The symbol
of DA is σDA(ξ) = (ξα − iAα − iJAαJ−1) ⊗ γ α . Thus, D2

A
given in (B.13) has the

form
∑

β∈Nd , |β|≤2 bβξβ , where bβ ∈ Bθ ⊗ C
2m with ξβ := ξ

β1
1 · · · ξβd

d , andD2
A
is an

elliptic differential multiplier of order 2. As such, its symbol can be decomposed into
a sum of monomials aj(ξ) of order j = 2, 1, 0: σD 2

A
(ξ) = a2(ξ) + a1(ξ) + a0.

If λ is the resolvent parameter for (D2
A − λ)−1, in the search for the resol-

vent parametrix Bλ, we need to solve 1 = σλ � σBλ
for the parameter dependent

symbol σλ(ξ) := σD 2
A
(ξ) − λ = a′

2(ξ) + a1(ξ) + a0 with a′
2(ξ) = a2(ξ) − λ. Since
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σBλ
= b0 + b1 + b2 + . . . ,where bj(ξ ; λ) is a symbol of order−2 − j, one can com-

pute recursively the symbols b0, b1, b2, . . . of the parameter-dependent pseudodif-
ferential multiplier Bλ (see [7, 8, 16, 17, 29] for examples of such computations).

Then, thanks to (A.24), Tr e−tD 2
A = t−k+1 i

2π

´
C e−tλ Tr [(D2

A
− λ)−k ] dλ (recall

that Tr [(D2
A

− λ)−k ] < ∞ for k ≥ �d/2� + 1), one implements the resolvent expan-
sion into the integral to get the asymptotics Tr e−tD 2

A ∼
t ↓ 0

∑∞
k=0 ak(D

2
A
) t(k−d)/2

exactly as in [19, Sects. 1.7 and 1.8] using the PropositionB.4.
Thus, ak(D2

A
) = i

2π

´
Rd dξ

´
C e−λ τ [bk(ξ, λ)] dλ.

Finally, we use Formula (3.43), which becomes (B.15). �

While there is no Diophantine condition to get the asymptotics of the fluctuated
heat trace, the computation of the coefficients seems to need one — this is due to a
commutation between a series and a residue.

Theorem B.6 Assume that 1
2π Θ is badly approximable. Then, the spectral action

(B.15) fluctuated by A as in (B.10) reads, for f
(√· ) ∈ Cr

0 with r > d/2,

S(DA, f ,Λ) =
{
4π f2 Λ2 + O∞(Λ−2), for d = 2,
8π2f4 Λ4 − 4π2

3 f (0) τ (FμνFμν) + O∞(Λ−2), for d = 4.

For arbitrary d, S(DA, f ,Λ) = ∑d−1
k=0 fd−k cd−k(A)Λd−k + O∞(Λ−1), where we

have cd−2(A) = 0 and cd−k(A) = 0 for k odd. In particular, c0(A) = 0 when d is
odd.

We do not know if, without the Diophantine condition, the above spectral action
would stay the same, see [18, AppendixB].

The proof goes through several steps and the first one is to identify the noncom-
mutative integrals in (B.15):

Proposition B.7 Assume that 1
2π Θ is a badly approximable matrix. Then, we have´ |DA|−d = 2� d+2

2 �
πd/2Γ ( d2 )−1,

´ |DA|−d+k = 0 for k odd and
´ |DA|−d+2 = 0.

These equalities follow from the explicit computation of (4.15)–(4.24) and the
fact that

´
P |D|−d+q = 0 for any P ∈ Ψ ′(A ) and any odd integer q.

In a similar way,
´
ApD−q = ´

(εJAJ ∗)pD−q = 0 and
´
P D−d+q = 0 for p ≥ 0,

1 ≤ q < d and P in the algebra generated by A , [D,A ], JA J ∗, J [D,A ]J ∗. All
these equalities can be proved using the deep results stored inAppendixA.6. The case
p = q = 1 corresponds to the fact that there is no tadpole for the noncommutative
torus— see Definition4.12. Themain point is again to be able to commute an infinite
series, like those defining an element of AΘ , and a residue given by

´
and this is

where the hypothesis on 1
2π Θ is used.

In the second step, we face explicit computations like, inter alia, the following:

Lemma B.8 Under same hypothesis (recall that A = L(−iAα) ⊗ γ α),
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ˆ
− AqD−q =

{
−δq,24π τ(AαAα) for d = 2,

δq,4
π2

12 τ(Aα1 · · ·Aα4 ) tr (γ
α1 · · · γ α4γ μ1 · · · γ μ4 )δμ1,μ2,μ3,μ4 for d = 4,

where δμ1,μ2,μ3,μ4 = δμ1μ2δμ3μ4 + δμ1μ3δμ2μ4 + δμ1μ4δμ2μ3 .
With A = L(−iAα) ⊗ γ α = −i

∑
�∈Zd aα,�U� ⊗ γ α and c := 4π2

3 , we have

1
2

ˆ
−(AD−1)2 = 1

2

ˆ
−(εJAJ ∗D−1)2 = c

∑

�∈Zd

aα1,� aα2,−�

(
lα1�α2 − δα1α2‖�‖2).

− 1
3

ˆ
−(AD−1)3=− 1

3

ˆ
−(εJAJ ∗D−1)3 = 4c

∑

�i∈Zd

aα3,−�1−�2 aα1,�2 aα1,�1 sin �1.Θ�2
2 �

α3
1 .

1
4

ˆ
−(AD−1)4 = 1

4

ˆ
−(εJAJ ∗D−1)4

= 2c
∑

�i∈Zd

aα1,−�1−�2−�3 aα2,�3 aα1,�2 aα2,�1 sin
�1.Θ(�2+�3)

2 sin �2.Θ�3
2 .

These equalities follows from tedious computations (cf. [15] for the details). They
are necessary to get ζDA

(0) from (4.32), using ζD(0) = 0 obtained in TheoremB.2.
This gives ζDA

(0) = −c τ(FμνFμν) in dimension d = 4, while ζDA
(0) = 0 for d = 2

or when d is odd. Gathering all these computations brings us to Theorem B.6.

B.4 Podleś Sphere

Podleś has introduced the eponym standard quantum spheres in [32] as homogeneous
spaces under the action of the quantum deformation of the SU (2) group. They fit into
the picture of noncommutative geometry à la Connes and concrete spectral triples
were constructed in [11, 12], see also [10].

The algebra ¯Aq introduced in [32] is a complex ∗-algebra generated, for a param-
eter 0 < q < 1, by A = A∗, B, B∗ subject to the relations

AB = q2BA, AB∗ = q−2B∗A, BB∗ = q−2A(1 − A), B∗B = A(1 − q2A).

As aC∗-algebra, it is isomorphic to the minimal unitisation of the algebra of compact
operators on a separable Hilbert space and is an invariant subalgebra of the quantum
group SUq(2) under a circle action. We will use only the polynomial algebra Aq in
the above generators, which is a dense subalgebra of ¯Aq.

In the following we will employ the q-numbers defined as

[n] := q−n−qn

q−1−q , for q ∈ (0, 1) and n ∈ C. (B.16)

Observe that limq→1[n] = n for any n ∈ C.
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Let H1/2 be the separable Hilbert space with an orthonormal basis |l,m〉 for
m ∈ {−l,−l + 1, . . . , l} and l ∈ 1

2 + N. It is suitable for a representation of Aq,
equivariant under the action of the ∗-Hopf algebra Uq(su(2)). There exist two non-
equivalent Uq(su(2))-equivariant representations of Aq on H1/2 [12]:

π±(A)|l,m〉± := A+
l,m,± |l+1,m〉± + A0l,m,± |l,m〉± + A−

l,m,± |l−1,m〉± , (B.17)

π±(B)|l,m〉± := B+
l,m,± |l+1,m+1〉± + B0l,m,± |l,m+1〉± + B−

l,m,± |l−1,m+1〉±,

π±(B∗)|l,m〉± := B̃+
l,m,±|l+1,m−1〉±+ B̃0l,m+1,±|l,m−1〉±+ B̃−

l,m,±|l−1,m−1〉±,

A+
l,m := −qm+l+ 1

2
√[l − m + 1][l + m + 1] α+

l , (B.18)

A0
l,m := q− 1

2 1
1+q2

([l − m + 1][l + m] − q2[l − m][l + m + 1]) α0
l + 1

1+q2 ,

A−
l,m := qm−l− 1

2
√[l − m][l + m] α−

l ,

B+
l,m := qm

√[l + m + 1][l + m + 2] α+
l , (B.19)

B0
l,m := qm

√[l + m + 1][l − m] α0
l ,

B−
l,m := qm

√[l − m][l − m − 1] α−
l ,

B̃+
l,m := qm−1

√[l − m + 2][l − m + 1] α−
l+1 , (B.20)

B̃0
l,m := qm−1

√[l + m][l − m + 1] α0
l ,

B̃−
l,m := qm−1

√[l + m][l + m − 1] α+
l−1 .

The coefficients αl read: α
−
l := −q2l+2 α+

l and

for π+ : α0
l := 1√

q

(q− 1
q )[l− 1

2 ][l+ 3
2 ]+q

[2l][2l+2] , (B.21)

α+
l := q−l−2 1√[2l+2]([4l+4]+[2][2l+2]) ; (B.22)

for π− : α0
l := 1√

q

(q− 1
q )[l− 1

2 ][l+ 3
2 ]−q−1

[2l][2l+2] , (B.23)

α+
l := q−l−1 1√[2l+2]([4l+4]+[2][2l+2]) . (B.24)

Since π± are faithful, the algebra Aq is dense in ¯Aq in the operator norm.
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Let now Hq := H+ ⊕ H− , where H± := H1/2, with the representation of Aq:

π(a) :=
(

π+(a) 0
0 π−(a)

)
. (B.25)

On H we define an unbounded selfadjoint operator given by

Dq :=
(

0 w̄ Tq
w Tq 0

)
, Tq : |l,m〉 ∈ H1/2 �→ [l + 1

2 ] |l,m〉 ∈ H1/2, (B.26)

for an arbitrary constant w ∈ C \ {0}.
We note that kerDq = { 0 } and the polar decomposition of Dq reads

Dq = F |Dq|, with |Dq| = |w|
(

Tq 0
0 Tq

)
and F := 1

|w|
(
0 w̄
w 0

)
. (B.27)

The phase operator satisfies [F, π(a)] = 0 for a ∈ Aq. We have

|Dq| (|l,m〉+ ⊕ |l,m〉−) = |w|[l + 1
2 ] (|l,m〉+ ⊕ |l,m〉−) ,

which gives

μn(Dq) = λn(|Dq|) = |w|[n + 1] and Mn(|Dq|) = 4(n + 1), n ∈ N. (B.28)

Let us recall (B.16) and observe that the singular values of Dq grow exponentially.
In [12] it is proven that (Aq,Hq,Dq) is a spectral triple, which moreover is even

for γ := (
1 0
0 −1

)
and real for the antiunitary operator J on Hq defined by

J |l,m〉± := i2mpm |l,−m〉∓ with p ∈ R
+.

In particular, J 2 = −1, Jγ = −γ J , JaJ−1 commuteswithAq and [Dq, J ] = 0, so the
spectral triple is of KO-dimension 2 [9]. The operator D is the unique Uq(su(2))-
equivariant operator fulfilling the first-order condition, which makes the spectral
triple real [12].

In the limit q → 1 one recovers the commutative spectral triple on the 2-
dimensional sphere — cf. [32, Remark2] and [12, p. 8].

In [32] yet another Dirac operator for the standard Podleś sphere was introduced

DS
q :=

(
0 w̄ TS

q

w TS
q 0

)
, TS

q : |l,m〉 ∈ H1/2 �→ q−(l+1/2)

q−1−q |l,m〉 ∈ H1/2.

which shares the property of the exponential growth of singular values with Dq.
The operatorsDq andDS

q commute and are related byDq = DS
q − (

|w| q
1−q2 )

2(DS
q )−1.

Remark that (DS
q )−1 is actually trace-class. It turns out that by taking DS

q instead of
Dq we preserve most of the properties of the spectral triple with the exception of the
first order condition. Moreover, we have
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|Dq| = |DS
q | − (

|w| q
1−q2 )

2|DS
q |−1.

Proposition B.9 The triples (Aq,Hq,Dq) and (Aq,Hq,DS
q ) are 0-dimensional.

Proof This is a direct consequence of the exponential growth of singular values of
Dq andDS

q . Indeed,μn(Dq) = O∞(q−n) andμn(DS
q ) = O∞(q−n), whereas we have

Mn(|Dq|) = Mn(|DS
q |) = O∞(n), which means that for any ε > 0 both Tr |Dq|−ε

and Tr |DS
q |−ε are finite. �

Observe that, whereas the limit q → 1 of the spectral triple (Aq,Hq,Dq) is well
defined and yields the standard round geometry on S2, the spectral dimension jumps
abruptly from 0 to 2. This phenomenon, known as the ‘dimension drop’, has also its
impact on (co)homologies of ¯Aq [31] and provided inspiration for ‘twisted’ noncom-
mutative geometries (see Problem 3 in Chap.5). The potential physical implications
of the dimension drop in the context of quantum gravity are the subject of an intensive
study — see, for instance, [3].

Another drastic consequence of the exponential growth of singular values is that
neither of the spectral triples (Aq,Hq,Dq), (Aq,Hq,DS

q ) is regular. In fact, already
[|D |, [|D |, a]] is an unbounded operator and more generally δn(a) is an operator of
order n − 1 for a generic element a ∈ A . This could be seen by computing a fixed
matrix element of the operator δn(A), for instance:

±〈l + 1, m| δn(A)|l,m〉± = ([
l + 3

2

] − [
l + 1

2

])n
A+
l,m .

The behaviour of A+
l,m for large l is O∞(ql), which can be read from the explicit

Formula (B.18), while
([l + 3

2 ] − [l + 1
2 ]

)n = O∞(q−nl), and the above expression
is unbounded for n ≥ 2, and, generally, δn(A) is in OPn−1.

Note that, in general, δ0(a) and δ1(a) are bounded for any a ∈ Aq, but not δ2(a).
Nevertheless, the spectral triple (Aq,Hq,Dq) is quasi-regular (recall Sect. 1.7).

Within this extended framework one discovers that [13, Corollary3.10]:

Theorem B.10 For any 0 < q < 1, the dimension spectrum of (Aq,Hq,Dq) is of
the order 2 and equals to −N + i 2π

log qZ.

Proof (sketch) Firstly, one shows (using a simple summation of geometric series
[13, Proposition3.2]) that the basic zeta function reads

ζDq(s) = Tr |Dq|−s = 4( 1−q2

|w| )s
∞∑

n=0

Γ (s+n)
n! Γ (s)

q2n

(1−qs+2n)2
, for �(s) > 0.

This formula leads us to the realm of ‘q-zeta functions’ (see [26] and other references
on [13, p. 633]). It yields ameromorphic extension of ζDq to the whole complex plane
with second order poles in −2N + i 2π

log qZ ⊂ C.

Secondly, one shall consider general functions ζP,Dq with P ∈ Ψ̃ 0(Aq) (cf. [13,
Proposition3.8]). To start, one notices that it is sufficient to consider elements of



Appendix B: Examples of Spectral Triples 149

the form P = T |Dq|−p, with T ∈ P(Aq) ∩ op n for some n ∈ N and n ≤ p ∈ N and
uses the quasi-regularity [13, Lemmas3.4 and 3.6] to commute all of the operators
Dq and |Dq| from T to the right. Then, one observes that the generators of Aq are
represented via π in terms of weighted shift operators onHq. Moreover, the weights
are analytic functions of (bounded) variables ql+m, ql−m and ql . Rewriting these in
terms of infinite convergent Taylor series one arrives at a formula for ζT ,Dq , which
involves a (multiple) infinite series in ql . Finally, a resummation over l ∈ N + 1/2
yields the desired meromorphic extension of ζP,Dq to C — cf. [13, Eq. (30)]. �

The zeta function associated with the simplified operator DS
q was presented in

Example3.13. Although the spectral triple (Aq,Hq,DS
q ) has not been studied exten-

sively in [13], one can show along the same lines that it is quasi-regular and has a
dimension spectrum of second order equal to −N + i 2π

log qZ.
The exponential growth of singular values of Dq has also some pros: It leads to

the following spectacular result highlighted at the beginning of Sect. 2.6:

Theorem B.11 Let f ∈ Cr
0 for some r > 0 and denote κ := 2π i

log q . Then, for any
Λ > 0,

S(Dq, f ,Λ)=
∞∑

k=0

∑

j∈Z

2∑

n=0

a−2k+κj,n

n∑

m=0

(−1)n−m(n
m

)
f−2k+κj,m (logΛ)n−m Λ−2k+κj.

Proof (sketch) The theorem is proven in detail in [13], via the heat trace expansion.
It uses the full force of Theorems3.12, 3.17, 3.24 and Corollary3.25. The estimation
of the contour integrals is rather subtle and arduous — cf. [13, Proposition4.3]. �

This result is remarkable for two reasons: Firstly, the formula for the spectral
action contains terms proportional to log2 Λ and oscillating with Λ, which is a sign
that the geometry of Podleś sphere lies outside of the kingdom of classical pdos
(recall Example2.37). Secondly, the formula is exact for all Λ > 0 and for a fairly
general class of cut-off functions. Recall that in the classical (pseudo)differential
geometry one is bound to use the asymptotic expansion, which might obscure some
important information (see p. 30).

As for the fluctuations, these are muchmore tedious to control in the quasi-regular
case. In [13, Theorem5.6] it was shown that the leading term of S(Dq + A, f ,Λ)

does not depend on A, when the fluctuation is ‘small’, but a deeper understanding of
the problem is missing. In particular, it is not clear whether an explicit exact formula
for the fluctuated action is available at all.
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