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Foreword

Numerical Simulation of incompressible flows has become an essential tool for
studying many important problems in science and engineering, thanks to advances
both in numerical methods and computer technology. In life and earth sciences,
complicated flow phenomena can be simulated today because of such sophisti-
cated tools. For example, in biology the circulation of blood in the human heart
and brain, air in the lungs, and urine in kidneys is the subject of many extensive
studies. Similarly, simulations of oil well and oil field flows provide critical infor-
mation to geologists. Ocean circulation and weather prediction are among the fields
that have become dependent on computer simulations. Engineering applications of
internal and external incompressible flows are plentiful, including laminar and tur-
bulent flows of pipes, pumps and turbines, hydrofoils, and flow around ships and
submarines.

With faster and more powerful computers available every year, scientists and
engineers are running numerical simulations of highly sophisticated problems and
developing efficient numerical methods. To handle complex geometry, overset grids
have proven to be of practical use. Higher order upwinding schemes are used
for high Reynolds number flows, and approximate (LU) factorization methods
and/or relaxation schemes can be used for both structured and unstructured grids.
With these advances, together with enhanced turbulence modeling (algebraic, one-
and two-equation models), commercial software today is being applied to a wide
spectrum of flow simulation problems.

Historically, numerical simulations of compressible and incompressible flows
were based on two different mathematical formulations. For compressible flows,
the density and velocity components are updated using the continuity and momen-
tum equations, respectively, and the pressure is calculated from the energy equation
together with the equation of state. On the other hand, incompressible flow calcu-
lations, where density is constant, are usually based on artificial compressibility or
pressure correction methods. In the first approach, the continuity equation is aug-
mented by an artificial, time-dependent term of the pressure, while in the second
approach, a Poisson’s equation for the pressure is derived by taking the divergence
of the momentum equations with the constraint of mass conservation.

In this book, NASA computational fluid dynamics researchers Dochan Kwak
and Cetin C. Kiris discuss and analyze these two approaches in detail. Moreover,
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x Foreword

they introduce a unified approach that is validated for both compressible and
incompressible flows using standard benchmark cases.

The authors present many applications, for both laminar and turbulent flows,
with an emphasis on practical applications that is clear throughout the book. Three
separate chapters are devoted to simulations of liquid propellant rocket engine sub-
systems, turbopumps, and hemodynamics related to simulation of blood circulation
in the human brain and in mechanical heart assist devices.

All calculations presented are based on finite differences or finite volumes,
using structured grids. For complex geometries, overset grids are used. In order to
obtain steady-state solutions in an efficient manner, several methods of convergence
acceleration are included using parallel computations.

Unlike other books on incompressible flow simulations (in particular those based
on finite elements), no abstract mathematics, such as functional analysis or tensors,
are used in the presentation. The authors appeal to more physical approaches. Based
on papers and reports written by the authors and colleagues at NASA and else-
where over the last two decades, this collection of material is very useful for both
researchers and graduate students. The book is easy to read and understand. The
only mathematical prerequisites are first-level courses on linear algebra, calculus,
and differential equations.

This book is a valuable contribution to the subject of incompressible flow simu-
lations, and I am proud to have collaborated with the authors on numerous projects
in this area.

Davis, CA Mohamed Hafez
March 2010



Acknowledgements

Many colleagues contributed to the material presented in this monograph. We espe-
cially thank those who have worked with us at Ames over various periods since the
1980s; Stuart Rogers, Moshe Rosenfeld, Marcel Vinokur, Jeff Housman, Changsung
Kim, Jennifer Dacles-Mariani, Seokkwan Yoon, Jong-Youb Sa, and William Chan;
a number of researchers from Rocketdyne during the Space Shuttle engine redesign
period, including James L.C. Chang, Steve Barson, and Gary Belie—to name
just a few; researchers from NASA Marshall Space Flight Center throughout the
1980s and 1990s: Luke Schutzenhofer, Paul McConnaughey, Robert Garcia, Robert
Williams, and others.

We are very grateful to Prof. Mohamed Hafez for reviewing the entire draft
and writing the Foreword for this monograph. We would like to acknowledge our
many years of collaboration with him in developing computational methods for
incompressible flow.

There are many others not explicitly listed here—you know who you are—whom
we have interacted with during the course of algorithm and applications procedure
development. We truly appreciate their cooperation and encouragement through-
out the course of our efforts in performing NASA mission-related tasks. We hope
this monograph passes some of their ideas on numerical simulation of incompress-
ible flow to the next generation of scientists and engineers working on real-world
problems.

We would also like to thank Jill Dunbar for editing multiple drafts and Marco
Librero for preparing the final manuscript.

Most notably, DK would like to thank his wife Soonup for her continuous sup-
port and encouragement throughout his CFD career over the past several decades.
Without her support, completion of this monograph would not have been possible.

Moffett Field, CA Dochan Kwak
Moffett Field, CA Cetin C. Kiris
May 2010

xi



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Flow Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 History of Computational Approaches . . . . . . . . . . . . . . . 2
1.3 Scope of this Monograph . . . . . . . . . . . . . . . . . . . . . . 4

2 Methods for Solving Viscous Incompressible Flow Problems . . . . 7
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Formulation for General Geometry . . . . . . . . . . . . . . . . . 9
2.4 Overview of Solution Approaches . . . . . . . . . . . . . . . . . 12

2.4.1 Pressure-Based Method . . . . . . . . . . . . . . . . . . . 13
2.4.2 Artificial Compressibility Method . . . . . . . . . . . . . 20
2.4.3 Methods Based on Derived Variables . . . . . . . . . . . . 21

3 Pressure Projection Method in Generalized Coordinates . . . . . . . 25
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Formulation in Integral Form . . . . . . . . . . . . . . . . . . . . 26
3.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Geometric Quantities . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Mass Conservation Equation . . . . . . . . . . . . . . . . 30
3.3.3 Momentum Conservation Equation . . . . . . . . . . . . . 31

3.4 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Fractional-Step Procedure . . . . . . . . . . . . . . . . . . 34
3.4.2 Solution of Momentum Equations Using

an Upwind Scheme . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Pressure Poisson Solver . . . . . . . . . . . . . . . . . . . 37

3.5 Validation of the Solution Procedure . . . . . . . . . . . . . . . . 38

4 Artificial Compressibility Method . . . . . . . . . . . . . . . . . . . 41
4.1 Artificial Compressibility Formulation and Physical Characteristics 41

4.1.1 Characteristics of Pseudo Waves . . . . . . . . . . . . . . 43
4.1.2 Wave-Vorticity Interaction . . . . . . . . . . . . . . . . . 44
4.1.3 Rate of Convergence . . . . . . . . . . . . . . . . . . . . 46
4.1.4 Limit of Incompressibility . . . . . . . . . . . . . . . . . 47

xiii



xiv Contents

4.2 Steady-State Formulation . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Steady-State Algorithm . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Difference Equations . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Approximate Factorization Scheme . . . . . . . . . . . . . 51
4.3.3 LU-SGS Scheme . . . . . . . . . . . . . . . . . . . . . . 54
4.3.4 Line Relaxation Scheme . . . . . . . . . . . . . . . . . . 55
4.3.5 Numerical Dissipation or Smoothing . . . . . . . . . . . . 56
4.3.6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . 59

4.4 Time-Accurate Procedure . . . . . . . . . . . . . . . . . . . . . . 61
4.5 Time-Accurate Algorithm Using Upwind Differencing . . . . . . 63

4.5.1 Upwind Differencing Scheme . . . . . . . . . . . . . . . . 63
4.5.2 Implicit Scheme . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.3 Boundary Conditions for Upwind Scheme . . . . . . . . . 67

4.6 Validation of Solution Procedure . . . . . . . . . . . . . . . . . . 69
4.6.1 Two-Dimensional (2-D) Channel Flow . . . . . . . . . . . 69
4.6.2 Flow over a Backward-Facing Step . . . . . . . . . . . . . 71

4.7 Unified Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.1 Time-Derivative Preconditioning Method . . . . . . . . . 74
4.7.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . 75

5 Flow Solvers and Validation . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 Scope of Validation . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Artificial Compressibility Codes . . . . . . . . . . . . . . 80
5.1.2 Pressure Projection Code . . . . . . . . . . . . . . . . . . 81

5.2 Selection of Codes for Engineering Applications . . . . . . . . . . 81
5.3 Steady Internal Flow: Curved Duct with Square Cross Section . . 82
5.4 Time-Dependent Flow . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Flow Over a Circular Cylinder . . . . . . . . . . . . . . . 89
5.4.2 Impulsively Started Flat Plate at 90◦ . . . . . . . . . . . . 92
5.4.3 Pulsatile Flow Through A Constricted 2-D Channel . . . . 95
5.4.4 Flapping Foil in a Duct . . . . . . . . . . . . . . . . . . . 101

5.5 External and Juncture Flow . . . . . . . . . . . . . . . . . . . . . 116
5.5.1 Cylinder on a Flat Plate . . . . . . . . . . . . . . . . . . . 116
5.5.2 Wing-Body Junction . . . . . . . . . . . . . . . . . . . . 118
5.5.3 Wingtip Vortex Flow . . . . . . . . . . . . . . . . . . . . 120

6 Simulation of a Liquid-Propellant Rocket Engine Subsystem . . . . 139
6.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . 140
6.2 Flow Analysis in the Space Shuttle Main Engine (SSME) . . . . . 141
6.3 Flow Analysis Task and Computational Model

for the SSME Powerhead . . . . . . . . . . . . . . . . . . . . . . 142
6.3.1 Computational Model Description . . . . . . . . . . . . . 143
6.3.2 Multiple-Zone Computation . . . . . . . . . . . . . . . . 146
6.3.3 Grid and Geometry Effects . . . . . . . . . . . . . . . . . 148



Contents xv

6.4 Turbulence Modeling Issues . . . . . . . . . . . . . . . . . . . . 150
6.4.1 Selection of Turbulence Model for Internal Flow . . . . . . 151
6.4.2 Turbulence Modeling Issues Involving Strong

Streamwise Curvature . . . . . . . . . . . . . . . . . . . . 156
6.5 Analysis of the Original Three-Circular-Duct HGM Configuration 168
6.6 Development of New Two Elliptic-Duct HGM Configuration . . . 173

6.6.1 From Redesign to Flight . . . . . . . . . . . . . . . . . . 179

7 Turbopumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . 181
7.2 Turbopumps in Liquid-Propellant Rocket Engines . . . . . . . . . 182
7.3 Mathematical Formulation for a Steady Rotating Frame

of Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.4 Validation of Simulation Procedures Using a Steadily

Rotating Inducer . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.5 Application to Impeller Simulation . . . . . . . . . . . . . . . . . 191

7.5.1 SSME Impeller . . . . . . . . . . . . . . . . . . . . . . . 191
7.5.2 Advanced Impeller . . . . . . . . . . . . . . . . . . . . . 193

7.6 Simulation of a Complete Pump Geometry . . . . . . . . . . . . . 195
7.6.1 Geometry and Computational Grid . . . . . . . . . . . . . 195
7.6.2 Issues Related to Large-Scale Computations . . . . . . . . 197
7.6.3 Issues Related to Flange-to-Flange Simulation . . . . . . . 200

7.7 High-Fidelity Unsteady Flow Application to SSME Flowliners . . 201
7.7.1 Description of the Flow Simulation Task . . . . . . . . . . 202
7.7.2 Computational Model and Grid System . . . . . . . . . . 203
7.7.3 Computed Results . . . . . . . . . . . . . . . . . . . . . . 206

7.8 Some Aspects of a Parallel Implementation . . . . . . . . . . . . 211

8 Hemodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.1 Issues in Computational Hemodynamics for Humans . . . . . . . 216

8.1.1 Geometry of the Human Vascular System . . . . . . . . . 217
8.1.2 Modeling Non-Newtonian or Stress-Supporting Flow . . . 218
8.1.3 Turbulence Model . . . . . . . . . . . . . . . . . . . . . . 218
8.1.4 Geometry and Morphology . . . . . . . . . . . . . . . . . 218
8.1.5 Arterial Wall Model . . . . . . . . . . . . . . . . . . . . . 218
8.1.6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . 219
8.1.7 Cardiovascular Model . . . . . . . . . . . . . . . . . . . . 220
8.1.8 Brain Model . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.2 Model Equations for Blood Flow Simulation . . . . . . . . . . . . 221
8.2.1 Blood Flow Model . . . . . . . . . . . . . . . . . . . . . 222
8.2.2 Deformable Wall Model . . . . . . . . . . . . . . . . . . 223
8.2.3 Vascular Bed Model . . . . . . . . . . . . . . . . . . . . . 224
8.2.4 Arteriolar Auto-Regulation Model . . . . . . . . . . . . . 226

8.3 Validation of the Simulation Procedure . . . . . . . . . . . . . . . 227
8.3.1 Carotid Bifurcation . . . . . . . . . . . . . . . . . . . . . 227
8.3.2 Circular Tube with 90◦ Bend . . . . . . . . . . . . . . . . 229



xvi Contents

8.3.3 Effect of Arterial Wall Distensibility . . . . . . . . . . . . 229
8.3.4 Effects of Altered Gravity on Blood Circulation . . . . . . 233

8.4 Blood Circulation in the Human Brain . . . . . . . . . . . . . . . 234
8.4.1 Collateral Circulation Under Auto-Regulation . . . . . . . 235
8.4.2 Extraction of Geometry Data from Anatomical Picture . . 237
8.4.3 Effects of Gravitational Variations . . . . . . . . . . . . . 239

8.5 Simulations of Blood Flow in Mechanical Devices . . . . . . . . . 241
8.5.1 Artificial Heart Valves . . . . . . . . . . . . . . . . . . . . 241
8.5.2 Ventricular Assist Devices . . . . . . . . . . . . . . . . . 245

Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279



Chapter 1
Introduction

The field of fluid dynamics offers a plentiful source of mathematical, experimental,
and computational challenges. The computational approach for viscous incompress-
ible flow analysis is a subset of this rich field, and has been the subject of many
books and articles for many decades. This introduction gives readers a summary of
the purpose and the scope of this monograph.

1.1 Flow Physics

Even though nearly all fluids are compressible in an absolute sense, incompressible
flow approximation can be made when the flow speed is insignificant everywhere in
the flow field compared to the speed of sound of the medium. Following this defini-
tion of incompressibility, a large number of fluid dynamic problems can be classified
as incompressible and, in most cases, viscous. To name a few types of incompress-
ible flows, there are problems related to low-speed aerodynamics, hydrodynamics
such as the flow around submerged vehicles, flow through pumps, mixing of the flow
in chemical reactors, coolant flow in nuclear reactors, and blood flow in the human
body. When the flow is assumed to be incompressible, mathematically the flow field
becomes elliptic, which introduces major challenges in computations.

Additional difficulties arise when the flow is viscous. Most notably, complica-
tions come from predicting flow physics involving turbulence and transition. In flow
problems containing incompressible flow regions, physics involving multi-phase,
multi-material, non-Newtonian and stress-supporting media can add complexities
to the incompressible flow computation in a broad sense. Another challenge may
come from resolving multi-scale dynamics such as those encountered in biomedical
applications.

There are several levels of approximations in flow analysis. At a formulation
level, the incompressible Navier-Stokes equations are the most commonly accepted
governing equations. The “incompressibility” assumption in the governing equa-
tions is an approximation for the medium. Other than a small number of laminar
flow problems, most problems of fundamental and engineering interest involves
transition and turbulence. This introduces the question of how to approximate flow

1D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific
Computation, DOI 10.1007/978-94-007-0193-9_1, C© US Government 2011



2 1 Introduction

physics to resolve the flow features involved at a reasonable level of accuracy. In
most cases, a computational approach offers a viable option for flow analysis. The
procedure involving computational modeling, numerical boundary conditions, and
algorithms adds another source of approximation requiring assessment of computa-
tional accuracy. Therefore, it is important to define the relative contributions from
mathematical formulations, physical modeling, and computational procedures to the
accuracy of the analysis results.

1.2 History of Computational Approaches

Since the beginning of the computer age, the computational study of fluid dynamic
problems has been of interest to researchers studying both fundamental problems
and engineering applications. As computer technology progressed, a computational
approach became viable to deal with increasingly complicated flow, eventually
extending the computational technology to industrial problems. At the same time,
flow devices became increasingly sophisticated and highly efficient, pushing the
conventional operating envelope. Vast numbers of real-world problems require
accurate viscous flow solutions to meet requirements for supporting engineering
and science tasks—such as achieving ideal fluid dynamic performances and sat-
isfying cost effectiveness. For example, computational analysis is indispensable,
as well as economical, for developing advanced rocket-engine turbopumps and
biomedical devices handling blood flow in humans. It therefore became of practical
interest to have advanced computational capabilities for simulating these flow prob-
lems. Computational tools are used not only as an alternative or a complementary
means to analytical or empirical approaches, but as a primary basis for preliminary
engineering designs and design optimization.

The demand for advanced methods and new tools prompted a flood of research on
numerical methods, flow solvers, and validation experiments. To solve fluid dynam-
ics problems using these methods and tools requires algorithmic simplifications
as well as geometric modeling. Furthermore, significant physical modeling is also
required, such as turbulence modeling for high-Reynolds number flows and non-
Newtonian modeling for blood flow. Accuracy of the numerical solution of these
flows—especially in three dimensions—needs to be assessed in terms of errors and
uncertainties involving numerical, geometric, and physical modeling. So, numerical
computation of these flows, especially real-world problems in three dimensions, is
often called “simulation” in the literature.

The computational fluid dynamics (CFD) for viscous, incompressible flow
has been of interest for many decades to investigate fundamental fluid dynamic
problems as well as engineering applications. The pioneering work by Harlow and
Welch (1965) opened a new possibility of applying a computational approach to
solving realistic incompressible fluid engineering problems, especially for three-
dimensional problems. Their method of using pressure as a mapping parameter
has been further developed into many variations ever since. Most notably, Patankar
and Spalding (1972) used this approach to develop algorithms and tools especially
useful for engineering applications with heat transfer. Shortly after Harlow and
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Welch’s Marker-and-Cell method was introduced to the incompressible flow
community, Chorin (1967) proposed an artificial compressibility approach that
enables the use of a wide spectrum of algorithms developed for compressible flow
analysis. Some details of these two approaches are discussed in this monograph
(Chapters 2, 3 and 4).

When CFD became a viable option for engineering in early 1970s, vast amounts
of numerical methods and analysis were already available. Many books and reviews
were published in the 1970s and 1980s, and a handful has been added since
then, covering a comprehensive collection of various approaches and methods.
Evolutionary advances and improvements in CFD methods have been made through
the 1990s and beyond. Flow solvers developed in the 1970s and 1980s advanced to
software-level CFD tools, and these became available commercially. Students and
researchers in academia began using commercial codes rather than developing their
own versions.

A vast number of books on CFD have been published, especially in the late
1990s. These cover mathematical formulations, numerical algorithms, and flow sim-
ulation procedures as a whole. For more comprehensive review of computational
methods in general, readers are referred to these authors, to name a few: Roach
(1972, 1998), Peyret and Taylor (1983), Tannehill et al. (1984, 1997), Hirsch (1988),
Gunzburger and Nicolades (1993), Hafez and Oshima (1995, 1998), Gresho and
Sani (1998), Lomax et al. (2001), Ferziger and Peric (2002), Hafez (2002), Chung
(2002), and Drikakis and Rider (2004).

Methods for incompressible flows are usually included as special cases in these
books. In addition to methods cited later in conjunction with those discussed
in this monograph, various methods specific to incompressible flow computa-
tions are reported by numerous authors, for example: Ghia et al. (1977), Raithby
and Schneider (1979), Leonard (1985), Guerran and Gustafsson (1986), Abdallah
(1987a, b), Wesseling et al. (1992), Hafez and Soliman (1993), Chen et al. (1995),
Turek (1999), Hafez (2001), Brown (2002), Glowinski et al. (2002), Gustafsson
et al. (2002), Khosla and Rubin (2002), Kuwahara et al. (2002), Loner et al. (2002),
Morgan et al. (2002), Nikfetrat and Hafez (2002), Satofuka et al. (2002), Tezduyar
(2002), and Wendl and Agarawal (2002). While certainly not exhaustive, this list
illustrates the abundance of literature addressing various aspects of the fundamentals
of CFD and incompressible flows.

One might then question “why another book on computation of incompressible
flow?” In the current environment, it is of crucial importance for users of existing
codes to understand the algorithmic characteristics and underlying assumptions
used in modeling flow physics. Users need to understand engineering issues at hand
and identify what needs to be resolved through numerical simulations. Even in one
code, various algorithm options and physical models are generally available, and
users need to choose the most suitable procedure for the problem being solved. It
is difficult to provide a universal guideline to general problem solving. However,
realistic examples for illustrating the process will offer valuable information not
readily available from existing numerical methods books. In this monograph, we
illustrate “best practices” in solving viscous incompressible flow problems using
real-world problems.



4 1 Introduction

1.3 Scope of this Monograph

Back in the early 1980s, the author’s major interests were roused in conjunc-
tion with industrial applications and mission support activities requiring viscous
incompressible flow analysis. Specifically, our activity began with a mission task to
resolve issues involving the Space Shuttle propulsion system. At that time, the avail-
able supercomputing power was not much more than that offered in later desktop
computers of the early 2000s. However, CFD simulation of a complicated rocket
propulsion system, when combined with engineering ideas, could make significant
contributions to retrofitting a liquid-propellant rocket engine. Since then, both com-
puting power and simulation technology have been much advanced, to the point
that almost every organization has access to large-scale computers for scientific and
mission computing, and CFD software has become available either through local
development or through vendors. When we started with our NASA mission tasks in
the early 1980s, our own applications codes had to be developed.

Our first step was to develop numerical methods and simulation tools, followed
by implementation of these to the analysis of the flight engine configuration. The
problem involved both complex geometry and complex flow physics. Therefore,
application of these tools added another level of approximations in conjunction with
geometry modeling, an engineering model of the real system including truncated
boundary conditions, and flow physics modeling. These engineering tasks required
deep understanding of approximations made for flow physics modeling as well as
numerical methods and solvers. The tasks of generalizing and establishing guide-
lines for applications are difficult and often require expertise and experience to solve
particular, real issues at hand. The authors have experienced these challenges over
many years of developing and utilizing CFD tools, especially related to viscous
incompressible flows, in order to make timely impacts on various projects related to
NASA mission.

The process of utilizing CFD as an engineering tool to design or improve
aerospace vehicles and to develop safe operational procedures is problem dependent
and cannot be easily standardized. Simulation of incompressible flow shares many
of the same fundamental algorithmic needs common to all fluid flow problems.
However, there are features specific to incompressible flow. Basic CFD methods
are referred to in existing literature cited throughout this monograph, so that issues
relevant to incompressible flow problem solving can be addressed in more detail. To
keep the flow of thought more self-contained, some basics specifically pertaining
to incompressible flow computations are included in this monograph. The simula-
tion details for mission computing are then presented to illustrate the entire gamut
of procedures and issues. Among the vast number of application problems, limited
samples—primarily from the author’s experience—have been selected to illustrate
different types of flow issues.

The material presented here illustrates some aspects of incompressible flow sim-
ulation not generally covered in existing CFD textbooks, and yet often encountered
in practice. This monograph is, therefore, intended primarily to give a concise guide
to practitioners and graduate students for applying CFD approaches to real-world
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problems requiring quantification of viscous incompressible flows. Although the
procedural details are given with respect to particular tasks, they are very relevant
to many other problems in fluid engineering. Therefore, issues in applying CFD to
engineering problems are discussed extensively, assuming that readers can get CFD
basics from those references cited.

The design of this monograph is as follows: Chapter 2 gives a brief review of
existing methods using primitive variables. In Chapter 3, the projection method is
explained in some detail, followed by a description of an artificial compressibility
method in Chapter 4, which also presents a unified formulation for obtaining incom-
pressible flow solution from compressible flow formulation. Chapter 5 contains
various validation computations using fundamental problems; this is to illustrate
various issues related to different flow characteristics often encountered in solving
real-world problems. The remainder of the book is devoted to mission applications:
liquid-propellant rocket engine subsystem in Chapter 6, turbopumps in Chapter 7,
and hemodynamics and human modeling in Chapter 8.



Chapter 2
Methods for Solving Viscous Incompressible
Flow Problems

In this chapter, numerical solution approaches for viscous incompressible flow are
briefly compared. Detailed discussions of each approach follow in separate chapters.
All discussions are from an engineering perspective and mathematical formalities
are not emphasized, in keeping with our perspective for this monograph that CFD
is an engineering tool for supporting mission tasks, and thus one can implement
well-founded numerical algorithms and physical models to resolve engineering
issues at hand. To make significant impacts on missions such as aerospace vehi-
cle design and operation, the CFD applications procedure is just as important as tool
development. Here, we present a quick summary of numerical approaches most suit-
able for application to tasks for supporting missions, especially space exploration
missions.

2.1 Overview

The Navier-Stokes equations are generally accepted as the equations governing the
flow of Newtonian fluid in a continuum regime. Mathematically, the compressible
flow equations become singular at the limit where the speed of sound of the medium
becomes infinity or the flow speed becomes insignificant relative to the speed of
sound. This singular nature of the governing equations poses the primary diffi-
culty in solving incompressible Navier-Stokes equations. Physically, the challenge
is maintaining incompressibility during iterative processes for obtaining steady-state
solutions or at each time level for computing time-accurate solutions. Several meth-
ods have been developed in the past (see references cited in Section 1.2) where
the main differences among various approaches come from the way in which the
incompressibility condition is satisfied computationally.

A traditional approach is to start the computational process directly from an
incompressible Navier-Stokes formulation. The primary concern is then how to sat-
isfy the continuity equation. One can use the primitive variables, namely, pressure
and velocities or derived quantities like stream function-voriticy and vorticity-
velocity. For general three-dimensional problems, primitive variable formulation
poses the least complications in imposing physical boundary conditions.

7D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific
Computation, DOI 10.1007/978-94-007-0193-9_2, C© US Government 2011
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The summary of methods discussed in this chapter is an outgrowth of the review
given by one of the authors in 1989 as a Von Karman Institute Lecture note. Some
details of derivation of the equations and algorithms are given here, as well as the
physical interpretation of the solution procedures. A large amount of mission sup-
port work has also been performed since the lecture notes were first assembled. The
real-world application experiences show that computational approaches for obtain-
ing engineering solutions require in-depth understanding of flow phenomena as well
as the relative importance of various engineering aspects involved in the task, which
involve far beyond algorithms and software issues. The mathematical foundation
for several well-known approaches for solving incompressible flow equations is
outlined next.

2.2 Mathematical Models

Three-dimensional incompressible flow with constant density is governed by the
following Navier-Stokes equations:

∂ui

∂xi
= 0 (2.1)

∂ui

∂t
+ ∂(uiuj)

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
(2.2)

where t is the time, xi the Cartesian coordinates, ui the corresponding velocity com-
ponents, p the pressure, and τ ij the viscous-stress tensor. Here, all variables are
non-dimensionalized by a reference velocity and length scale. The viscous stress
tensor can be written as follows.

τij = 2νSij (2.3a)

Sij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(2.4)

Here, ν is the kinematic viscosity, and Sij is the strain-rate tensor. Note that the
bulk viscosity is reduced to “so-called” shear viscosity in the case of incompressible
flow. Using conventional Reynolds decomposition, the viscous stress tensor can be
written as:

τij = 2νSij − Rij (2.3b)

where, Rij is the Reynolds stresses, and Equation (2.3b) represents Reynolds-
averaged incompressible Navier-Stokes equations. Various levels of closure models
for Rij are possible. In this discussion on solution approaches, turbulence is
simulated by an eddy viscosity model using a constitutive equation of the following
form:
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Rij = 1

3
Rkkδij − 2νTSij (2.5)

where νt is the turbulent eddy viscosity. By including the normal stress, Rkk, in the
pressure, ν in Equation (2.3b) can be replaced by (ν + νT ) as follows:

τij = 2 (ν + νt) Sij = 2νTSij (2.6)

For the remainder of this chapter, the total viscosity, νT, will be represented
simply by ν. Therefore, in discussing solution methods and algorithms, the incom-
pressible Navier-Stokes equations are modified to allow variable viscosity in the
present formulation. The flow solvers described here include turbulent flow cases
as long as turbulence is represented by an eddy viscosity model. Note that in many
real cases, this assumption may not hold, causing inaccuracies in the solution. The
sensitivity of the turbulence modeling on solution accuracy and convergence is prob-
lem dependent. Turbulence modeling on a higher level than eddy viscosity has been
researched for many decades, and continues to be a research area. In lieu of any
general recommendations, application procedures are discussed using an eddy vis-
cosity assumption. Therefore, for flows involving non-equilibrium turbulence, the
eddy viscosity formulation needs to be revisited.

One avenue worth mentioning for resolving this non-equilibrium, time-
dependent turbulent flow is large eddy simulation (LES). The LES approach limits
the modeling to small-scale (sub-grid scale) motion, where some degree of uni-
versality can be assumed. This approach was first used in meteorological flow
simulation and later (starting in the 1970s) extended to general engineering appli-
cations. The usefulness of the LES method has been fairly limited, to date. A full
account of this approach requires a separate discussion, starting with the basic for-
mulation. There are merits to applying LES to practical problems, but they are
not included here, since it is difficult to resolve the boundary layer region and
requires relatively large amounts of computing time for solving realistic geometry
and Reynolds numbers. Turbulence modeling issues in solving engineering prob-
lems will be discussed further, in conjunction with our work on liquid-propellant
rocket propulsion system, in Chapter 6.

2.3 Formulation for General Geometry

In order to numerically solve the governing equations involving general geometry,
one commonly needs to map the entire flow field using a grid system such as a
Cartesian grid, body-conforming curvilinear structured grid, or an unstructured grid
like a triangular or tetrahedral grid. Special techniques exist that do not require a
grid system, but those grid-free approaches do not offer any general advantages over
the grid-based methods, and will not be discussed here. By mapping the coordinate
system to a general coordinate, it becomes easier to handle complex geometry. One
advantage of body-conforming coordinates is the ability to follow the surface of an
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object to follow the boundary layer. For discretization of the governing equations,
such as finite difference or finite volume, it is convenient to transform the governing
equations into general coordinates.

Here, transformation of coordinate system will be presented first, with a discus-
sion of ways to directly integrate the governing equations in general coordinates
handled in a later chapter.

To perform calculations on 3-D arbitrarily shaped geometries, the following
generalized independent variables are introduced, which transform the physical
coordinates (x, y, z) into general curvilinear coordinates (ξ , η, ζ ).

ξ = ξ (x, y, z, t)
η = η(x, y, z, t)
ζ = ζ (x, y, z, t)

The Jacobian of the transformation is defined as:

J = det
∂(ξ , η, ζ )

∂(x, y, z)
=

∣∣∣∣∣∣
ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

∣∣∣∣∣∣ (2.7)

where ξx = ∂ξ

∂x
, ξy = ∂ξ

∂y
, etc.

In actual coding, metric terms can be calculated as follows.

(
ξx
ξy
ξz

)
= 1

J′

(
yηzζ − yζ zη
xζ zη − xηzζ
xηyζ − xζ yη

)
,

(
ηx
ηy
ηz

)
= 1

J′

(
yζ zξ − yξ zζ
xξ zζ − xζ zξ
xζ yξ − xξ yζ

)
,

(
ζx
ζy
ζz

)
= 1

J′

(
yξ zζ − yζ zξ
xηzξ − xξ zη
xξ yη − xηyξ

)

(2.8)

J′ = det
∂(x, y, z)

∂(ξ , η, ζ )
=

∣∣∣∣∣∣
xξ xη xζ
yξ yη yζ
zξ zη zζ

∣∣∣∣∣∣ (2.9)

Applying the transformation to Equations (2.1) and (2.2) yields the following
governing equations in general curvilinear coordinates, (ξ , η, ζ ):

∂

∂t
û = − ∂

∂ξ

(
ê − êυ

) − ∂

∂η

(
f̂ − f̂υ

)
− ∂

∂ζ

(
ĝ − ĝυ

)

= − ∂

∂ξi

(
êi − êυi

) = −r̂

(2.10)

∂

∂ξ

(
U − ξt

J

)
+ ∂

∂η

(
V − ηt

J

)
+ ∂

∂ζ

(
W − ζt

J

)

= ∂

∂ξi

(
Ui − (ξi)t

J

)
= 0

(2.11)

where ξi = ξ , η, or ζ for i = 1, 2 or 3
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û = 1

J

⎡
⎣ u
υ

w

⎤
⎦

ê = 1

J

⎡
⎣ ξxp + uU
ξyp + υU
ξzp + wU

⎤
⎦ , f̂ = 1

J

⎡
⎣ ηxp + uV
ηyp + υV
ηzp + wV

⎤
⎦ , ĝ = 1

J

⎡
⎣ ζxp + uW
ζyp + υW
ζzp + wW

⎤
⎦

U = (ξ)t + (ξ)x u + (ξ)y υ + (ξ)z w
V = (η)t + (η)x u + (η)y υ + (η)z w
W = (ζ )t + (ζ )x u + (ζ )y υ + (ζ )z w

(2.12)

The viscous terms are quite lengthy; for the benefit of new practitioners, the fully
expanded version is given next.

∂τij

∂xj
= ∂

∂xj
2νSij

= ∂

∂x
ν

⎡
⎣ ux + ux

υx + uy

wx + uz

⎤
⎦ + ∂

∂y
ν

⎡
⎣ uy + υx

υy + υy

wy + υz

⎤
⎦ + ∂

∂z
ν

⎡
⎣ uz + wx

υz + wy

wz + wz

⎤
⎦

When ν is constant, the contribution of the second terms in the bracket sum
up to be zero for incompressible flow, since the velocity field is divergence free.
However, in general, ν varies in space and time, such as in the case of eddy viscosity
formulation, and so these terms must be kept. Then, the viscous terms in transformed
coordinates are as follows.

êυ = ν

J

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ξ ·
(
∇ξ ∂

∂ξ
+ ∇η ∂

∂η
+ ∇ζ ∂

∂ζ

)⎡
⎣ u
υ

w

⎤
⎦ +

(
ξx
∂u

∂ξi
+ ξy

∂υ

∂ξi
+ ξz

∂w

∂ξi

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
ξi

∂

∂y
ξi

∂

∂z
ξi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

f̂υ = ν

J

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇η ·
(
∇ξ ∂

∂ξ
+ ∇η ∂

∂η
+ ∇ζ ∂

∂ζ

)⎡
⎣ u
υ

w

⎤
⎦ +

(
ηx
∂u

∂ξi
+ ηy

∂υ

∂ξi
+ ηz

∂w

∂ξi

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
ξi

∂

∂y
ξi

∂

∂z
ξi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

ĝυ = ν

J

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇ζ ·
(
∇ξ ∂

∂ξ
+ ∇η ∂

∂η
+ ∇ζ ∂

∂ζ

)⎡
⎣ u
υ

w

⎤
⎦ +

(
ζx
∂u

∂ξi
+ ζy

∂υ

∂ξi
+ ζz

∂w

∂ξi

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
ξi

∂

∂y
ξi

∂

∂z
ξi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.13a)
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The above fully expanded terms can be simplified if an orthogonal coordinate
system is used.

∇ξi · ∇ξj = 0; for i �= j

For constant ν (that is, constant density laminar flow), the contribution by the
second group of terms in the parentheses of Equation (2.13a) is zero. Therefore, for
flows with constant ν in orthogonal coordinates, the full viscous term in (2.13a) can
be simplified as shown below.

êυ =
(ν

J

) (
ξ2

x + ξ2
y + ξ2

z

)⎡
⎣ uξ
υξ
wξ

⎤
⎦

f̂υ =
(ν

J

) (
η2

x + η2
y + η2

z

)⎡
⎣ uη
υη
wη

⎤
⎦

ĝυ =
(ν

J

) (
ζ 2

x + ζ 2
y + ζ 2

z

)⎡
⎣ uζ
υζ
wζ

⎤
⎦

(2.13b)

Satisfying the mass conservation equation, where the pressure term is decoupled
from the momentum equations, is the primary issue in solving the above set of equa-
tions. Physically, incompressible flow is characterized by elliptic behavior of the
pressure waves, the speed of which, in a truly incompressible medium is infinite. The
pressure field is wanted as a part of the solution. However, the pressure condition has
to be imposed on the boundary for numerical computation that poses the difficulty
in designing numerical boundary conditions for incompressible flow computations.

Instead of using primitive variables, one can utilize other formulations using
derived quantities, such as vorticity, to eliminate the pressure from the boundary
conditions; however, this is at the expense of introducing boundary conditions for
the derived variables. In realistic 3-D problems, these derived quantities are difficult
to define or impractical to use. The primitive variable formulation, namely, using
pressure and velocities as dependent variables, then becomes more convenient and
flexible in 3-D applications. Keep in mind that in this formulation, the pressure
solver has to be designed to satisfy mass conservation while achieving computa-
tional efficiency in obtaining the pressure-field solution. Various techniques have
been developed in the past, none of which have proven to be universally better than
another.

2.4 Overview of Solution Approaches

Depending on the flow features to quantify, the solution method of choice can vary.
For flows involving thin viscous layers, it is advantageous to have large time steps,
possibly using an implicit method. For time accurate solutions, the physical time
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step required to resolve unsteady motion could be very small, in which case, explicit
schemes can be used effectively. For spatial differencing, the usual finite differ-
ence and finite volume schemes can be implemented along with central or upwind
differencing. Stable central differencing schemes need dissipation terms, while
upwind schemes include dissipation automatically in the differencing. The addi-
tion of dissipation effectively lowers the Reynolds number of the flow. In addition,
dissipation is affected by grid effect and turbulence.

Grid topology and the “goodness” of grid can affect the solution accuracy in
significant ways—not only from a numerical dissipation point of view but also
in designing boundary conditions. Requirements on grid density and distribution
are also realistic factors affecting the order of differencing schemes. All these
factors should be considered in developing a flow solver and implementation guide-
lines. Solution procedures discussed below represent different approaches but are
not unique combinations of these methods. A quick overview of the different
approaches is discussed below to give readers a general outline of methods com-
monly used to date. A more detailed discussion on production-oriented methods
will be discussed in separately in later chapters.

2.4.1 Pressure-Based Method

The basic idea of this method is to solve the pressure field such that a divergence-
free velocity field is maintained at every time step. This approach was first started
with the marker-and-cell (MAC) method discussed below, followed by proliferation
in simplified and generalized forms. Several variations of this method have been
developed as computer speed and the numerical methods have advanced.

2.4.1.1 MAC Method

The MAC Method was probably the first primitive variable method for incompress-
ible flow using a derived Poisson equation for pressure to satisfy mass conservation.
The first paper written on this approach was published by Harlow and Welch from
Los Alamos National Laboratory in 1965. They called this the marker-and-cell
(MAC) method, in which the pressure is used as a mapping parameter to satisfy
the continuity equation. This laid the foundation for subsequent variations of the
pressure-based method by many researchers. The MAC method can be viewed as
a special case of the pressure projection method or—from the operator point of
view—one variation of the fractional step method. A pressure projection method in
general coordinates, using a fractional step approach, will be discussed in detail in
Chapter 3.

In a fractional-step procedure, the time-dependant governing equations can be
solved in several steps, which can be convenient for time-dependent computa-
tions of the incompressible Navier-Stokes equations (see Chorin, 1968; Yanenko,
1971; Marchuk, 1975). In this procedure, the time evolution of the flow field can
be approximated through several steps. Operator splitting can be accomplished
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in several ways by treating the momentum equations as a combination of con-
vection, pressure, and viscous terms. The common application of this method to
incompressible Navier-Stokes equations is done in two steps.

The first step is to solve for an auxiliary velocity field using the momentum
equation, in which the pressure-gradient term can be computed from the pressure
in the previous time step (for example, Dwyer et al., 1986) or can be excluded
entirely in this step. In the second step, the pressure is computed, which can map
the auxiliary velocity onto a divergence-free velocity field.

The concept of this approach is illustrated by the following simplified example:

Step 1: Using the following form of the momentum equations (2.2):

∂ui

∂t
= − ∂p

∂xi
− ∂(uiuj)

∂xj
+ ∂τij

∂xj
= − ∂p

∂xi
+ Ri (2.2a)

Calculate the auxiliary or intermediate velocity, ûi, for example by:

ûi − un


t
= −δp

n

δxi
+ Rn

i (2.14)

Step 2: Solve for the pressure correction.

un+1 − ûi


t
= −δ

(
pn+1 − pn

)
δxi

(2.15)

In the second step the pressure correction is computed. To minimize the pressure
correction in the next time step, the pressure gradient term at the previous time step
can be included. The velocity field has to satisfy the following continuity equation.

∇ · un+1 = 0 (2.16)

The above Equation (2.16), can be satisfied by combining Equations (2.14) and
(2.15), resulting in the following Poisson equation for pressure.

∇2
(

pn+1 − pn
)

= 1


t

δûi

δxi
(2.17)

Once the pressure correction is computed, new velocities can be obtained.

un+1 − un


t
= −∇pn+1 + Ri (2.18)

Many researchers have used essentially the same procedure shown above. One
particular aspect of the fractional-step method requiring special care is that of inter-
mediate boundary conditions. Orszag et al. (1986) discussed this extensively. As
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(a) Staggered grid (b) Collocated grid

Fig. 2.1 Staggered vs.
collocated variable
arrangements on a Cartesian
grid. a Staggered grid.
b Collocated grid

will be explained in Chapter 3, Rosenfeld et al. (1988) and Kiris and Kwak (2001)
devised a generalized scheme where physical boundary conditions can be used at
intermediate steps.

The original MAC method is based on a staggered-grid arrangement on 2-D
Cartesian coordinates (Fig. 2.1). The staggered grid arrangement conserves mass,
momentum, and kinetic energy in a natural way and avoids odd-even point decou-
pling of the pressure encountered in a regular collocated grid (Gresho and Sani,
1987). A differencing method using the staggered-grid arrangement is essentially
a finite-volume discretization while the regular grid produces a finite difference
form of discretization. As will be discussed in more detail in Chapter 3, the differ-
ences between these two approaches in Cartesian coordinates become unclear when
using generalized curvilinear coordinates. A more complete presentation of these
grid arrangements can be found in Ferziger and Peric (2002), Abdallah (1987a, b),
and Roach (1998).

The major drawback of the MAC method is the large amount of computing time
required for solving the Poisson equation for pressure. When the physical problem
requires a very small time step, the penalty paid for an iterative solution procedure
for the pressure may be tolerable. But the method as a whole is slow and the pressure
boundary condition is difficult to specify. Although the original method used an
explicit Euler solver, various time advancing schemes can be implemented here.
Since its introduction, numerous variations of the MAC method have been devised
and successful computations have been made. Many more examples can be found
in the literature, for example, Ferziger (1987), and Orszag and Israelli (1974).

2.4.1.2 Pressure Field Solution for MAC-Type Method

One important aspect of the numerical solution of the Poisson equation for pressure
is tied to the spatial differencing of the second derivatives. To satisfy the mass con-
servation in grid space, the difference form of the second derivative in the Poisson
equation has to be constructed consistent with the discretized momentum equation
(Kwak, 1989). To explain this intuitive comment in a more convincing way (primar-
ily for those not experienced with incompressible flow) the following comparison
of various discretization approaches is given.
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Let’s compare the different methods for discretizing the Poisson equation for
pressure.

The equation for pressure is obtained by taking the divergence of the momentum
equation, as shown below:

∇2p = ∂hi

∂xi
− ∂

∂t

∂ui

∂xi
= g (2.19)

where

hi = −∂uiuj

∂xj
+ ∂τij

∂xj

Three methods for solving the pressure field are compared, below.

Method 1:

First, an exact form of the Laplacian operator is used in solving Equation (2.19).
The Fourier transform of Equation (2.19) is:

− k2p̂ = ĝ′ (2.20a)

where

p̂ = Fourier tranform of p
k2 = k2

x + k2
y + k2

z

k2
x , k2

y , k2
z = wave numbers in the x-, y-, and z-directions

g′ = finite difference approximation to g
ĝ′ = Fourier transform of g′

The wave number, ki, in discrete Fourier expansion is defined as below.

ki = 2π

N

n= wave number in the xi-direction

n = −N

2
, . . . 0, 1, . . .

(
N

2
− 1

)


 = mesh space
N = number of mesh points in the xi-direction

By inverse transformation, p can be obtained.

Method 2:

A second approach is to use the difference form of the second derivatives in
Equation (2.19), as below.

(
δ2

δx2
+ δ2

δy2
+ δ2

δz2

)
p = g′
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The Fourier transform of the above equation is:

− k̃ik̃ip̂ = ĝ′ (2.20b)

where k̃i is the Fourier transform of the difference form of the second derivative.

Method 3:

The finite difference form of the governing equations is:

δui

δxi
= Dui = 0 (2.1′)

δui

δt
− h′

i = δp

δxi
= Gp (2.2′)

where h′
i is the finite difference form of hi. By applying the divergence operator,

D, to the above equations, the following difference form of the Poisson equation is
obtained.

DGp = δDui

δt
− Dh′

i = g′
i

Then, taking the Fourier transform of the above equation:

− k′
ik

′
ip̂ = ĝ′ (2.20c)

Since the governing equations are solved in difference form, the above three
methods are compared in solving Equations (2.1′) and (2.2′). The Fourier transform
of Equation (2.21) is as below.

δûi

δt
− ĥ′

i = −k′
ip̂ (2.21)

To satisfy the continuity equation in grid space, the following equation has to be
satisfied for a flow that has Dui = 0 at the beginning.

δD

δt
= 0

In Fourier space, this is equivalent to k′
iui = 0 at the first and next time steps.

Substituting p̂ from the above three methods into Equation (2.21), the following
results are obtained.

For Method 1:

δ

δt

(
k′

iûi
) =

(
ĥ′

i − k′k′
j

k2
ĥ′

j

)
k′

i �= 0
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For Method 2:

δ

δt

(
k′

iûi
) =

(
ĥ′

i − k′k′
j

k̃2
ĥ′

j

)
k′

i �= 0

For Method 3:

δ

δt

(
k′

iûi
) =

(
ĥ′

i − k′k′
j

k′2 ĥ′
j

)
k′

i = 0

The source of error introduced by different choices of the ∇2 operator in
discretized space can be seen by observing the magnitude of k2, k̃2 and k′2.

For the purpose of comparison, modified wave numbers, k̃2 and k′2 are given
below, where five-point fourth-order central differencing is applied.

(k̃i)2 = 1

6
2
[15 − 16 cos(
ki ) + cos(2
ki )]

(k′
i)

2 = 1

72
2
[65 − 16 cos(
ki ) − 64 cos(2
ki ) − cos(4
ki)]

(2.23)

The magnitude of these quantities is compared in Fig. 2.2. Method 3 satisfies the
continuity equation at the next time step in grid space, and should be used for the
pressure field solution. Therefore, in the solution method using a Poisson equation
for pressure, the divergence gradient (DG) operator plays an important role in satis-
fying the mass conservation in grid space. As will be explained later in Chapter 4,
this requirement can be relaxed in an artificial compressibility approach.

k2
1 = exact, k̃2

1 = fourth order
δ2

δx2
1

, k
′2
1 = fourth order DG operator

(
δ

δx1

δ

δx1

)

2.4.1.3 Simplified Pressure Iteration (SIMPLE-Type) Method

The major drawback of the MAC method is that a Poisson equation must be solved
for pressure. A direct solver is practical only for simple 2-D cases. However, for 3-D
problems, an iterative procedure is the best available choice. The strict requirement
of obtaining correct pressure for a divergence-free velocity field in each step sig-
nificantly slows down the overall computational efficiency. Since, for a steady-state
solution, the correct pressure field is needed only when the solution is converged,
then the iteration procedure for the pressure can be simplified such that it requires
only a few iterations at each time step. The best-known method using this approach
is the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) developed
by Caretto et al. (1972); see also Patankar et al. (1972, 1979) or Patankar (1980).
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Fig. 2.2 Comparison of ∇2 operators for 16 equally spaced mesh points (see Equation 2.23)

This particular method is presented here only for historical reasons and has not been
used for computing any of the examples included in this monograph.

A brief explanation of the SIMPLE method key features begins with a guessed
pressure p∗, which is usually assumed to be pn at the beginning of the cycle. Then,
the momentum equation is solved to obtain an intermediate velocity u∗

i as below:

u∗
i − un

i = 
t

[
fcn(un, vn, u∗, v∗) − δp∗

δxi

]
(2.24)

The corrected pressure is obtained by setting:

p = p∗ + p′ (2.25)

The velocity correction is introduced in a similar manner:

ui = u∗
i + u′

i (2.26)

Now the relation between the pressure correction, p′, and the velocity correc-
tion, u′

i, is obtained from a simplified momentum equation. First, the equation for p′
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and u′
i is obtained from the linearized momentum equations. Then, by dropping all

terms involving neighboring velocities, the following form of the pressure correction
equation is obtained:

u′
i = �

δp′

δxi
(2.27)

where � is a function of the particular differencing scheme chosen. Substituting
Equations (2.26) and (2.27) into the continuity equation, a pressure correction equa-
tion is obtained. This is equivalent to taking the divergence of Equation (2.27). This
procedure in essence results in a simplified Poisson equation for pressure, which
can be solved iteratively, for example, line by line.

The unique feature of this method is the simple way of estimating the velocity
correction u′

i. This feature simplifies the computation but introduces empiricism into
the method. Despite its empiricism, the method has been used successfully for many
computations, especially when the computing resources were rather limited. Further
details of SIMPLE, SIMPLER, and other variations such as the pressure-implicit
with splitting of operators (PISO) algorithm, can be found in the literature, for exam-
ple, see Patankar (1980) and Issa (1985). As computing power rapidly increases, this
type of simplification has become unnecessary and, moreover, unwanted for more
accurate prediction of physics, especially involving three-dimensional applications.
Subsequently, a rather general formulation called the “pressure-based” approach has
been used more, in practice.

2.4.2 Artificial Compressibility Method

Large advances in the state of the art in CFD have been made in conjunction with
the field of aerodynamics. Therefore, it is of significant interest to be able to use
some of the compressible flow algorithms. To do this, the “artificial compressibility”
approach of Chorin (1967), who first introduced the term, can be used.

Later, the method was fully extended to general three dimensions in the form
presented here by Kwak et al. (1984) and Chang and Kwak (1984). To reflect the
physical nature of the pressure projection in this method more accurately, a new
term “pseudo-compressibility” was then introduced. The two terms, artificial com-
pressibility and pseudo-compressibility have been used interchangeably ever since.

In this formulation, the continuity equation is modified by adding a time-
derivative of the pressure term, resulting in:

1

β

∂p

∂t
+ ∂ui

∂xi
= 0 (2.28)

where β is an artificial compressibility or a pseudo compressibility parameter.
Together with the unsteady momentum equations, Equation (2.28) forms a

hyperbolic-parabolic type of time-dependent system of equations. Thus, implicit
schemes developed for compressible flows can be implemented. Note that the no
longer represents a true physical time in this formulation.
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Physically, this means that waves of finite speed are introduced into the incom-
pressible flow field as a medium to distribute the pressure. For a truly incompressible
flow, the wave speed is infinite, whereas the speed of propagation of the pseudo
waves introduced by this formulation depends on the magnitude of the artifi-
cial compressibility parameter. In a true incompressible flow, the pressure field is
affected instantaneously by a disturbance in the flow, but with artificial compress-
ibility, there will be a time lag between the flow disturbance and its effect on the
pressure field. Ideally, the chosen value of the artificial compressibility can be as
high as the particular choice of algorithm allows so that incompressibility is recov-
ered quickly. This must be done without lessening the accuracy and the stability
property of the numerical method implemented.

On the other hand, if the artificial compressibility is chosen such that these waves
travel too slowly, then the variation of the pressure field accompanying these waves
is very slow. This will interfere with the proper development of the viscous effects,
such as the boundary layer for wall-bounded flows. In wall-bounded viscous flows,
the behavior of the boundary layer is very sensitive to the stream wise pressure gra-
dient, especially when the boundary layer is separated. If separation is present, a
pressure wave traveling with finite speed will cause a change in the local pressure
gradient, which will affect the location of the flow separation. This change in sepa-
rated flow will feed back to the pressure field, possibly preventing convergence to a
steady state. Especially for internal flow, the viscous effect is important for the entire
flow field, and the interaction between the pseudo pressure-waves and the viscous
flow field becomes very important.

Artificial compressibility relaxes the strict requirement of satisfying mass con-
servation in each step. To utilize this convenient feature, it is essential to understand
the nature of artificial compressibility from both the physical and mathematical
points of view. Chang and Kwak (1984) reported physical characteristics of artificial
compressibility, and suggested some guidelines for choosing the artificial compress-
ibility parameter. An extensive mathematical account of the artificial compressibility
approach is presented by Temam (1979).

Various applications that evolved from this concept were reported for obtaining
steady-state solutions (for example, Steger and Kutler, 1977; Kwak et al., 1984;
Chang et al., 1984, 1985a, b, 1988a, b; Choi and Merkle, 1985). To obtain time-
dependent solutions using this method, an iterative procedure can be applied in each
physical time step such that the continuity equation is satisfied. Merkle and Athavale
(1987) and Rogers and Kwak (1988, 1989, 1991) reported on this pseudo-time
iteration approach. Further details are given in Chapter 4.

2.4.3 Methods Based on Derived Variables

So far, we have outlined various strategies where incompressibility was satisfied
using pressure as a mapping parameter. To avoid solving for pressure directly, other
approaches have been developed that introduce other variables, allowing elimination
of pressure from the formulation. The most commonly used variables are stream
function and vorticity.
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Here, two approaches from those categories are introduced briefly.

2.4.3.1 Stream Function-Vorticity

For two-dimensional flow, introducing a stream function, ψ , as below, the incom-
pressibility condition is identically satisfied.

u = ∂ψ

∂y
, υ = −∂ψ

∂x

The vorticity, ω, is defined in the conventional way as:

ω = ∇ × u

then the stream function satisfies:

∇2ψ = −ω (2.29)

From the momentum equations, the following vorticity transport equation can be
derived.

∂ωi

∂t
+ ∂ωiui

∂xj
= ωj

∂ui

∂xj
+ ν∇2ω (2.30)

This, essentially, is the stream function-vorticity formulation—an approach used
since the early days of CFD mainly to solve two-dimensional fluid dynamic prob-
lems of fundamental interest. To extend this approach to three dimensions involves
velocity vector potential that adds much complexity to the formulation. Thus, this
approach has not been the method of our choice for three-dimensional real-world
applications. More extensive coverage of this and related approaches is found in the
book by Quartapelle (1993).

2.4.3.2 Vorticity-Velocity Method

Among various methods using derived variables, the vorticity-velocity method has
a good potential for 3-D applications.

A vorticity-velocity method was proposed, for example, by Fasel (1972), to study
the boundary layer stability problems in two dimensions. Other authors have used
this approach to solving incompressible flow problems (for example, Dennis et al.,
1979; Gatski et al., 1982; Osswald et al., 1987; Hafez et al., 1988). However, a
three-dimensional extension of this method has been limited to simple geometries,
to date.

The basic equations can be summarized below. Instead of the momentum equa-
tion, the vorticity transport Equation (2.30), is used. Taking the curl of the above
definition of vorticity and using the continuity equation, the following Poisson
equation for velocity is obtained:
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∇2u = −∇ × ω (2.31)

Equations (2.29) and (2.30) can be solved for velocity and vorticity. Here, the
pressure term and the continuity equation are removed at the expense of introduc-
ing three vorticity equations. This requires vorticity boundary conditions on a solid
surface. As in the pressure projection approach, the computational efficiency of this
method depends on the Poisson solver. In general 3-D applications, overall perfor-
mance will determine the competitiveness of this approach compared to the artificial
compressibility or pressure projection approaches.



Chapter 3
Pressure Projection Method in Generalized
Coordinates

In Chapter 2, a general idea of the pressure projection method is introduced. This
method is described in detail for developing general three-dimensional simulation
capability. While an artificial compressibility approach modifies the nature of gov-
erning equations, the pressure projection method is formulated time accurately, and
so is used both in time-dependant problems and for obtaining steady-state solutions.
In light of successful computations in Cartesian coordinates using its numerous
variants, Rosenfeld et al. (1991a, b, 1992) developed a staggered grid-based frac-
tional step method in general curvilinear coordinates. Later, Kiris and Kwak (2001)
developed a more robust implicit procedure for “not- so-nice” grids using the same
finite-volume framework. Among many variations in projection methods, the details
presented in this chapter are extracted from these activities by the authors and their
colleagues at NASA Ames Research Center.

3.1 Overview

As was pointed out in the previous chapter, in the pressure projection method,
pressure is used as a mapping parameter to satisfy the continuity equation. The
usual computational procedure involves choosing the pressure field at the current
time step such that continuity is satisfied at the next time step. The time step can
be advanced in multiple steps (fractional step method), which is computationally
convenient. However, the governing equations are not coupled as in the artificial
compressibility approach. In the usual fractional step approach, an auxiliary velocity
field is first obtained by solving momentum equations. Then, a Poisson equation for
pressure is formed by taking the divergence of the momentum equations and using
a divergence-free velocity field constraint. The numerical solution of the Poisson
equation for pressure with the Neuman-type boundary conditions exists only if the
compatibility condition is satisfied. In three-dimensional curvilinear coordinates,
efficiently solving the resulting algebraic equations from Poisson and momentum
equations is one of the important features of the pressure projection approach.

Spatial discretization, especially for pressure field solutions, needs special atten-
tion in developing flow solvers in order to satisfy incompressibility conditions in

25D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific
Computation, DOI 10.1007/978-94-007-0193-9_3, C© US Government 2011
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the grid space. In Cartesian coordinates, a staggered grid orientation is convenient
for satisfying the continuity equation. But in general curvilinear coordinates, the
formulation is not straightforward, and geometric quantities have to be discretized
consistently with the flow differencing.

For the Poisson solver, a multi-grid acceleration procedure can be incorporated,
which is consistent with the elliptic nature of incompressible flow equations. In this
respect, the governing equations can be discretized by a finite-volume scheme on a
staggered grid. As for the choice of dependent variables, the volume fluxes across
each face of the computational cells can be used, thereby improving the stability
of the algorithm by treating both convective and viscous fluxes implicitly. In this
way, the discretized mass conservation equation can be satisfied consistently with
the flux-balancing scheme explained later.

In solving the momentum equations, a significant part of the viscous terms is
solved implicitly to minimize the time-step limitation resulting from use of a vis-
cous grid. A staggered grid has favorable properties in Cartesian coordinates, such
as coupling odd-even points. However, it is debatable whether a staggered grid has
clear advantages over a regular grid in generalized curvilinear coordinates since flux
computations in generalized coordinates require various interpolations. In the pro-
cedure discussed below, a staggered arrangement is chosen to simplify the pressure
boundary condition in devising a Poisson solver.

The pressure projection method presented here is formulated time-accurately.
Consequently, the flow solver developed using this particular approach has been
used in time-dependant problems as well as for obtaining steady-state solutions.
The method developed by Rosenfeld et al. (1991a) and Kiris and Kwak (2001) is
presented in some detail to give readers an in-depth understanding involved in this
approach.

3.2 Formulation in Integral Form

The equations governing the flow of isothermal, constant density, incompressible,
viscous fluids in a time-dependent control volume can be written for the conser-
vation of mass with the face area vector S(t) and volume V (t). In order to use a
finite-volume discretization, it will be convenient to write the governing equations
in the following integral form:

∂V

∂t
+

∮
S

dS · (u − v) = 0 (3.1)

and for the conservation of momentum:

∂

∂t

∫
V

udV =
∮

S
dS · T (3.2)
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where t is the time, u is the velocity vector, v is the surface element velocity resulting
from the motion of the grid, and dS is a surface area vector. The tensor T is given
by:

T = −(u − v)u − pI + ν
(∇u + (∇u)T) (3.3)

where ∇u is the gradient of u while (·)T is the transpose operator.
The only differences between the fixed and the moving-grid equations are the

terms that include the surface element velocity v and the time dependence of the cell
geometry (volume and face area). The volume conservation of each time-varying
cell requires the following:

∂V

∂t
−

∮
S

dS · v = 0 (3.4)

where the term dS · v represents the volume swespt out by the face S over the time
increment . Thus, the mass conservation equation has exactly the same form as for
fixed grids.

∮
S

dS · u = 0 (3.5)

The usual practice is to transform Equations (3.2) and (3.5) into a differential
form. Here, the integral formulation is maintained for convenience in deriving the
finite-volume scheme for arbitrarily moving geometries.

3.3 Discretization

In the present integral formulation, spatial derivative terms are discretized in another
way from the differential formulation described in Chapter 4. In this section, details
of the discretization method for governing equations are discussed.

3.3.1 Geometric Quantities

A general non-orthogonal coordinate system (ξ , η, ζ ) is defined by the following
equation.

r = r(ξ , η, ζ , t) (3.6)

The center of each primary cell is designated by the indices (i, j, k), as shown in
Fig. 3.1.
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Fig. 3.1 Staggered grid in generalized coordinates: primary cell

The surface area of the face l of a primary cell is given by the vector quantity:

Sl = ∂r
∂(l + 1)

× ∂r
∂(l + 2)

(3.7)

where the computational coordinates l = ξ , η, or ζ are in cyclic order and × is
the cross product operator. The vector Sl has the magnitude of the face area and a
direction normal to it. The equivalent differential formulation is the contravariant
base vector ∇l scaled by the inverse of the Jacobian 1

/
J, i.e., Sl = (1

/
J)∇l.

An accurate discretization should satisfy certain geometric identities, as pointed
out by Vinokur (1986). The condition that a computational cell is closed in integral
form is shown below.

∮
S

dS = 0 (3.8a)

This condition should be satisfied exactly in discrete form, as well:

∑
l

Sl = 0 (3.8b)

where the summation is over all the faces of the computational cell. Equation (3.8b)
can be satisfied if Sl is approximated from Equation (3.7) by a proper approximation
of dr

/
dl.
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For example, Sξ is computed at the point
(

i + 1
2 , j, k

)
by using the second order

approximation.

(
∂r
∂η

)
i+ 1

2

= 1
2

(
rj+ 1

2 ,k− 1
2

− rj− 1
2 ,k− 1

2
+ rj+ 1

2 ,k+ 1
2

− rj− 1
2 ,k+ 1

2

)
i+ 1

2

(
∂r
∂ς

)
i+ 1

2

= 1
2

(
rj− 1

2 ,k+ 1
2

− rj− 1
2 ,k− 1

2
+ rj+ 1

2 ,k+ 1
2

− rj+ 1
2 ,k− 1

2

)
i+ 1

2

The volumes of all discrete computational cells will sum up to the total volume
at a given time. The definition of a cell volume is not unique. However, the volume
of each computational cell can be computed by dividing the cell into three pyramids
having in common the main diagonal and one vertex of the cell, resulting in the
following:

V = 1

3

(
Sξ

i− 1
2

+ Sη
j− 1

2
+ Sς

k− 1
2

)
·
(

ri+ 1
2 ,j+ 1

2 ,k+ 1
2

− ri− 1
2 ,j− 1

2 ,k− 1
2

)
(3.9)

For time-varying or moving grids, the volume conservation Equation (3.4) must
be satisfied discretely. This can be done by interpreting the term dS · v in Equation
(3.4) as the rate of the volume swept by the face dS. For example, the volume swept
by the face Sξi+1/2 can be computed by a formula similar to Equation (3.9), as shown
below:

(
δVξ

i− 1
2

)n+ 1
2 = 1

3

((
Sξ

i− 1
2

)n

+ δSη
j− 1

2
+ δSζ

k− 1
2

)
·
(

rn+1
i− 1

2 ,j+ 1
2 ,k+ 1

2
− rn

i− 1
2 ,j− 1

2 ,k− 1
2

)

(3.10)
where the time level is given by n. The quantities δSηj−1/2 and δSζk−1/2 are the areas

swept by the motion of the face Sξi−1/2.
The area δSηj−1/2is computed from:

δSη
j− 1

2
= 1

2

((
rn+1

k− 1
2

− rn
k+ 1

2

)
×

(
rn+1

k+ 1
2

− rn
k− 1

2

))
i− 1

2 ,j− 1
2

(3.11)

and δSζk−1/2 can be computed in a similar way. The volume of the cell at the time
level (n + 1) is computed from Equation (3.4), as shown below.

Vn+1 = Vn +
∑

l

(
δVl

)n+ 1
2

(3.12)

Here, the summation is over all the faces of the computational cell. Figure 3.2
illustrates the moving grid notations.
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Fig. 3.2 Notations for a
time-varying grid

Note that δVl
/

t is the volume flux resulting from the motion of the coordinate

system and has a meaning similar to the volume-flux Ul as defined in the next sec-
tion on the mass conservation equation. An accurate computation of the volume of
each cell at the time level (n + 1) is important for an accurate representation of the
momentum equation.

In our finite volume formulation, no coordinate derivatives appear directly in the
discrete equations, as in the case of finite-difference formulas. Instead, quantities
with clear geometric meaning, such as the volume and the face areas of the compu-
tational cells, are used. The discrete approximation of these quantities satisfies the
geometric conservation laws. A principal difference between the finite-volume and
the finite-difference approaches to moving grids is in the interpretation of the quan-
tity δVl

/

t. In the finite-volume method, it is treated as a geometric quantity that

expresses the rate of displacement of a cell face, whereas in the finite-difference
method, the grid velocity is combined with the fluid velocity to define a “relative
flow velocity” (see Vinokur, 1986).

3.3.2 Mass Conservation Equation

The discretization of the mass conservation Equation (3.5) over the faces of the
primary computational cells yields:

(
Sξ · u

)
i+ 1

2
−(

Sξ · u
)

i− 1
2
+(

Sη · u
)

j+ 1
2
−(

Sη · u
)

j− 1
2
+(

Sζ · u
)

k+ 1
2
−(

Sζ · u
)

k− 1
2

= 0

(3.13)
Note that the default indices (i, j, k) and the time-level (n + 1) are omitted for

simplicity. Each term on the left-hand side of Equation (3.13) approximates the
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volume-flux over a face of the primary cell. A simple, discretized mass conservation
equation can be obtained by using the following variables as the unknowns instead
of the Cartesian velocity components.

Uξ = Sξ · u
Uη = Sη · u
Uς = Sς · u

(3.14)

The quantities Uξ , Uη, and Uς are the volume fluxes over the ξ , η, and ς faces of
a primary cell, respectively. In tensor algebra nomenclature, these are the contravari-
ant components of the velocity vector scaled by the inverse of the Jacobian (1

/
J),

which is equivalent to volume of the computational cell. With this choice of the
dependent variables, the continuity equation takes a form identical to the Cartesian
case as shown below.

Uξ

i+ 1
2

− Uξ

i− 1
2

+ Uη

j+ 1
2

− Uη

j− 1
2

+ Uς

k+ 1
2

− Uς

k− 1
2

= DivUl = 0 (3.15)

This is crucial to satisfying the discrete mass conservation equation. Therefore,
the simple form of Equation (3.15) suggests that the volume fluxes can be chosen
as the dependent variables for fractional step methods. Treating the mass fluxes as
dependent variables in a finite volume formulation is equivalent to using contravari-
ant velocity components, scaled by the inverse of the transformation Jacobian, in
a finite-difference formulation. The choice of mass fluxes as dependent variables
complicates the discretization of the momentum equations. Here, we have chosen
volume fluxes and the pressure fluxes are chosen as the dependent variables.

3.3.3 Momentum Conservation Equation

In order to replace u by the new dependent variables Ul, the corresponding area
vectors are dotted with the momentum equations. Then, the integral momentum
equation is evaluated on each cell surfaces for the unknown Ul.

Each cell has the dimensions of 
ξ × 
η × 
ζ with the centers of each cell
surface located at (i + 1

/
2, j, k),

(
i, j + 1

/
2, k

)
, and

(
i, j, k + 1

/
2
)

for the Uξ , Uη,
and Uζ momentum equations, respectively. In Fig. 3.3, the computational cell for
Uξ -momentum equation is shown with the cell volume, Vj+1/2, j,k. The staggered
grid orientation eliminates “checkerboard-like” pressure oscillations and provides
more compact stencils.

The derivation of the Uξ -momentum equation is outlined next. The Uη- and Uζ -
momentum equations can be obtained similarly by using cyclic permutation.

Spatial discretization of the momentum conservation law Equation (3.2) for a
computational cell with volume V yields:
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Fig. 3.3 Computational cell for ξ-direction momentum equation

∂

∂t
(Vu) =

∑
l

Sl · T (3.16)

The dot product of the above equation and the surface vector Sξj + 1/2 results in:

∂

∂t

(
VUξ

) = Sξ
j+ 1

2
·
∑

l

Sl · T (3.17)

where the summation is over all faces of a computational cell. Note that:

u = SξUξ + SηUη + SζUζ (3.18)

and

Ul = Sl · u = Sl · SmUm (3.19)

The invariance of the velocity vector requires:

Sl · Sm = δlm (3.20)

where δlm is the Kronecker delta, and Sl is the inverse base to Sm and has the dif-
ferential analogue Sm = J∂r

/
∂m. In terms of tensor algebra, Sm is the covariant
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base vector scaled by the Jacobian J while Sl is the contravariant base vector scaled
by 1

/
J. A uniform velocity field can be numerically preserved if the base Sm is

computed at each point from the relation:

Sm = Sm+1 × Sm+2

Sm ·
(

Sm+1 × Sm+2
) (3.21)

which satisfies (3.20) identically. The variable m is the cyclic permutation of
(ξ , η, ζ ).

In constructing momentum equations, the product Sl · T should be computed for
each face of each momentum equation; see Equation (3.17). For example, the ξ
face-center for the Uξ momentum cell is located at (i, j, k). The flux over this face is
computed from below.

(
Sξ · T

)
i, j,k

=
(

−
(

Uξ − δVξ


t

)
UlSl − SξP + Sξ · ν (∇u + (∇u)T

))
i, j,k

(3.22)
The conservative form of the velocity vector gradient is as below.

∇u =
∮

s dSu

V
(3.23)

Applying Equation (3.26) for the computation of ∇ui, j,k yields:

∇ui, j,k = 1

V

(
S
ξ

i+ 1
2

ui+ 1
2
−S

ξ

i− 1
2

ui− 1
2
+S

η

j+ 1
2

uj+ 1
2
−S

η

j− 1
2

uj− 1
2
+S

ς

k+ 1
2

uk+ 1
2
−S

ς

k− 1
2

uk− 1
2

)
(3.24)

where only those indices different from (i, j, k) are given.
The η or ζ face-centers are located at (i+1/2, j−1/2, k) and (i+1/2, j, k−1/2),

respectively. The fluxes over these faces are computed in a similar way. The convec-
tion and diffusion fluxes in Equation (3.22) can be approximated in various ways.
In the present formulation, all of the unknowns at the point (i, j, k) are computed by
simple averaging, and therefore, the scheme is equivalent to the results computed
by second-order central differencing.

The difference between a fixed-grid and a moving-grid case is in the computation
of the convection term, which should include the motion of the grid. For example,
the convection flux of the ξ -momentum equation on the ξ -face center (i, j, k) is given
by: (

−
(

Uξ − δVξ


t

)
UlSl

)
i, j,k

The difference equations are second-order accurate in time if δVξ would not lag
in time by 
t

/
2 over the volume-flux terms Ul. The resulting discrete equations

are conservative in any moving coordinate system and are second-order accurate,
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spatially. For high Reynolds number flows, fourth-order dissipation can be added to
eliminate high-frequency components of the solution (Rosenfeld et al., 1991). The
dissipation terms are interpreted in terms of fluxes, and therefore the conservation
properties of the equations are maintained.

3.4 Solution Procedure

In Chapter 2, the basic idea of the pressure projection method was illustrated using
a MAC approach. Similar procedures can be devised, in combination with other
algorithms, in advancing advection terms. From an operator point of view, the MAC
method is a form of the fractional step approach. In this section, other variations we
have implemented in solution procedures are discussed.

3.4.1 Fractional-Step Procedure

The time-advancing scheme can be designed using numerous combinations of exist-
ing algorithms. For example, for computing intermediate velocity, Kiris and Kwak
(2001) used a second-order Runge-Kutta scheme. The procedure employing pres-
sure and volume fluxes as dependent variables combined with the Adams-Bashforth
method was used by Rosenfeld et al. (1988) and Rosenfeld and Kwak (1989). Here
we explain a simple example where the momentum equations are discretized in time
using a three-point-backward difference formula as below.

Rewriting the momentum equation (2.2) for simplicity of explanation as below:

∂ui

∂t
= − ∂p

∂xi
− ∂(uiuj)

∂xj
+ ∂τij

∂xj
= − ∂p

∂xi
+ Ri (2.2a)

then:

1


t
(3u∗

i − 4un
i + un−1

i ) = −∂pn

∂xi
+ R(u∗

i ) (3.25)

where u∗
i denotes the auxiliary velocity field. The R(u∗

i ) term in the momentum
equations includes the convective and viscous terms. Note that the time derivatives
can be differenced using the backward Euler formula for steady-state calculations.
The velocity field that satisfies the incompressibility condition is obtained by using
the following correction step:

1


t
(un+1 − u∗) = −∇p′ (3.26)

where p′ = pn+1 − pn. At the n + 1 time level, the velocity field must satisfy the
incompressibility condition that is to satisfy the following continuity equation:



3.4 Solution Procedure 35

∇ · un+1 = 0 (3.27)

This is done by using a Poisson equation for pressure.

∇2p′ = 1


t
∇ · u∗ (3.28)

The Poisson equation for pressure is obtained by taking the divergence of
Equation (3.26) and using Equation (3.27).

In Equation (3.25), both convective and viscous terms are treated implicitly. In
order to maintain second-order temporal accuracy, the linearization error in the
implicit solution of Equation (3.25) needs to be reduced. This is achieved by using
sub-iterations. In most cases, three sub-iterations are sufficient to reduce the lin-
earization error. Here, the purpose of this sub-iteration procedure is quite different
from that in the artificial compressibility method for time-accurate computations.
The artificial compressibility formulation requires the solution of a steady-state
problem at each physical time step. Therefore, the number of sub-iterations for
time accuracy in an artificial compressibility approach can be an order of magnitude
higher than the number of sub-iterations for the present formulation.

3.4.2 Solution of Momentum Equations Using an Upwind Scheme

The convective and viscous terms in Equation (3.22) can be approximated in various
ways. Rosenfeld et al. (1991) implemented an approximate factorization method.
In order to relax the inherent Courant-Friedrichs-Lewy (CFL) number restriction
in three dimensions and to be able to use the “not so smoothly” varying grids,
Kiris and Kwak (2001) implemented a line relaxation scheme where both convective
and viscous terms are treated implicitly. In this example, the convective flux terms
in Equation (3.22) are computed using a high-order upwind-biased stencil. This
alleviates the need for specifying smoothing terms required for central differencing.
The numerical flux, for the convective terms is given by:

f̃i+ 1
2

= 1

2

[
f (ui+1)+ f (ui)− φi+ 1

2

]
(3.29)

where φi+ 1
2

is a dissipation term. If φi+ 1
2

= 0, this represents a second-order central
difference scheme. A first-order upwind scheme is given by:

φi+ 1
2

=
[

f +

i+ 1
2

−
f −
i+ 1

2

]
(3.30)

and a third-order upwind is defined as below.

φi+ 1
2

= −1

3

[

f +

i− 1
2

−
f +
i+ 1

2
+
f −

i+ 1
2

−
f −
i+ 3

2

]
(3.31)
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A fifth-order accurate, upwind-biased stencil that requires seven points, as
derived by Rai (1987), is as follows:

φi+ 1
2

= − 1
30

[
−2
f +

i− 3
2

+ 11
f +
i− 1

2
− 6
f +

i+ 1
2

− 3
f +
i+ 3

2
+ 2
f −

i+ 5
2

− 11
f −
i+ 3

2
+ 6
f −

i+ 1
2

+ 3
f −
i− 1

2

]

(3.32)

where 
f ± is the flux difference across positive and negative traveling waves. The
flux difference is computed by:


f ±
i+ 1

2
= a± (ū)
ui+ 1

2
(3.33)

where the 
 operator is given by:


ui+ 1
2

= ui+1 − ui (3.34)

The plus (minus) Jacobian is computed by:

a± = 1

2
(a ± |a|) (3.35)

The Roe properties (1981), which are necessary for a conservative scheme, are
satisfied if the following averaging procedure is employed.

u =1

2
(ui+1 + ui) (3.36)

An implicit delta form approximation applied to the momentum equations,
after linearization in time, results in the following hepta-diagonal scalar matrix
equation:

bδqi−1 + aδq + cδqi+1 + dδqj−1 + eδqj+1 + f δqk−1 + gδqk+1 = RHS (3.37)

where δq = Un+1 − Un and a, b, c, d, e, f , g are diagonals.
The Gauss-Seidel line relaxation scheme by MacCormack (1985) can be

employed to solve the matrix equations. The right-hand-side (RHS) term in
Equation (3.45) can be stored for the entire domain during a relaxation procedure.
The line relaxation procedure is composed of three stages, each involving a scalar
tri-diagonal inversion in one direction. In the first stage, δq is solved line-by-line in
one direction at a time. Before the tri-diagonal equation can be solved, off-diagonal
terms are multiplied by the current value of δq and are shifted over to the RHS
of the equation. The same procedure is repeated in the second and third stages by
inverting the tri-diagonal matrix in each remaining direction, and treating the off-
diagonal terms for the other two directions in Gauss-Seidel fashion. One forward
and one backward sweep in each computational direction are sufficient for most
problems. However, the number of sweeps can be increased as needed.
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3.4.3 Pressure Poisson Solver

Since the early days of computation, Poisson solvers have been studied exten-
sively, and many variations of iterative approach are available. Efficiency of the
pressure projection method is largely dependant on the computational efficiency of
the pressure Poisson equation. In the particular arrangement of the variable defi-
nition discussed in this chapter, the pressure is defined at the center of each cell.
Computationally, the pressure boundary condition is not needed in this arrangement.
For a general, non-orthogonal coordinate system, the 19-point discrete equations
pose some challenges in solving the Poisson equation. Here, the method employed
by Rosenfeld et al. (1991) is briefly introduced.

In this method, a four-color ZEBRA scheme is used. The three-dimensional
ZEBRA scheme is an iterative scheme that solves implicitly all equations along
one coordinate line—say along ξ—as in the successive line over-relaxation (SLOR)
method. For the ZEBRA scheme, the order in which the lines are processed is not
the usual order by rows or columns. Rather, a “colored” order is devised such that
the implicit solution of a line is decoupled from the solution of the other lines. For
the non-orthogonal grid discussed here, instead of using the usual two-color order-
ing (red-black scheme), the points in the (ξ , η) plane are grouped into four different
color labels (see Fig. 3.4). First, all the “black” lines are swept, then the “red,”
“blue,” and “green” lines, respectively. The implicit solution of one coordinate line
is decoupled from the same color lines. For example, when solving for a “black”
line, all the neighboring lines are of different color. The convergence properties of
this approach are similar to the SLOR method. In typical cases, more than 80% of

Fig. 3.4 Four-color labeling
of the points in the (ξ , η)
plane for the Poisson solver
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the computational time was required for the Poisson solver. Therefore, a multi-grid
acceleration algorithm was implemented by Rosenfeld and Kwak (1993) to sub-
stantially improve the computational efficiency. The four-color scheme has good
smoothing properties and is a good choice for a multi-grid procedure.

When used in conjunction with the line relaxation scheme, the Poisson solver
does not need to be solved in each sweep. Kiris and Kwak (1996) solved the
Poisson solver after two sweeps in each direction of the Gauss-Seidel line relaxation
procedure. This saves some computational time. In general, however, the pressure
projection method discussed in this chapter is expensive and requires small time
steps. For unsteady flow where flow physics requires small time steps, this approach
can be comparable to others. However, for steady-state computations, this approach
is generally more expensive than the artificial compressibility approach. In the next
chapter, we describe in detail an artificial compressibility method as another option
for solving incompressible flow problems. The two methods will be compared more
extensively using benchmark problems, in Chapter 5.

3.5 Validation of the Solution Procedure

The fractional step procedure presented below, combined with the generalized coor-
dinate systems chosen, involves complicated algebraic manipulation. Therefore, it is
in the readers’ best interest to verify the procedure using a simple idealized problem.
This validation is designed to study the effects of grid quality. The test case selected
by Kiris and Kwak (1996) is a laminar Couette flow with the grid intentionally gen-
erated in a saw-tooth shape to introduce metric discontinuity and non-orthogonality
(Fig. 3.5). Even with this “not-so-smooth” mesh point distribution, the numerical
procedure should be able to produce a linear u-velocity profile that is the exact
solution for the laminar Couette flow.

Fig. 3.5 Grid (63×63) for
Couette flow



3.5 Validation of the Solution Procedure 39

Fig. 3.6 U-velocity contours
for the Couette flow

The flow is started with free-stream velocity everywhere except at the stationary
wall. The stationary wall has a no-slip condition and the upper wall is moving at
a constant velocity. Periodic conditions are imposed on inflow and outflow bound-
aries. A Courant-Friedrich-Levy (CFL) number of 100 is used for this computation,
where the CFL number is defined as:

CFL = max
(∣∣Uξ

∣∣ + ∣∣Uη
∣∣ + ∣∣Uζ

∣∣)∗ dt
/

V

Figure 3.6 shows axial (U) velocity contours at steady state. The velocity
contours show very small kinks where metric discontinuities are present in the mesh.

In Fig. 3.7, the U-velocity profile at x/L = 0.5 station is compared with the exact
solution of the Couette flow. This test case shows that our approach presented here
introduces minimal grid effects where a sudden change in the slope of grid lines

Fig. 3.7 U-velocity profile
for Couette flow
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Fig. 3.8 Convergence history

occurs. The small errors caused by discontinuity in grid slope have an insignificant
effect on the solution.

The convergence history is plotted in Fig. 3.8. The solid line shows the max-
imum residual of the momentum equations, and the dashed line represents the
maximum divergence of the velocity. The maximum divergence of velocity flat-
tens at about 10–5 because the iteration procedure in the Poisson equation solver
is terminated after achieving 10−5 accuracy. With further iterations in the Poisson
solver, the error in the divergence of velocity can be lowered to machine accuracy.
Since the purpose of this test case is to obtain steady-state solutions, this accuracy
limit is adequate. Moreover, the convergence rate is good for a large CFL number.
In time-accurate calculations, the Poisson solver may need to be converged more
tightly. Further validations where time accuracy and viscous effects are important
are presented in Chapter 5.



Chapter 4
Artificial Compressibility Method

The artificial compressibility method is quite different from the pressure projection
approach in both the nature of the formulation and the subsequent numerical algo-
rithm. In an artificial compressibility method, a fictitious time derivative of pressure
is added to the continuity equation so that the set of equations modified from the
incompressible Navier-Stokes equations can be solved implicitly by marching in
pseudo time. When a steady-state solution is reached, the original equations are
recovered. To obtain time accuracy, an iterative technique can be employed at each
time level, which is equivalent to solving the governing equations for steady state at
each time level. Using a large, artificial compressibility parameter to spread artificial
waves quickly throughout the computational domain, and allowing some residual
level of the mass conservation equation, the computing time requirement for time
accurate solutions may be controlled within approximately one order-of-magnitude
higher than the steady-state computations. In the artificial compressibility approach,
the mass conservation does not have to be strictly enforced at each time step, and
this gives robustness during iteration.

In this chapter, the physical characteristics of the artificial compressibility
method are examined, followed by a more detailed discussion on the solution pro-
cedures developed utilizing this approach. As you will see, the addition of pressure
term in the continuity equation introduces mathematical pressure waves into the
incompressible flow field. This addition is more accurately termed “pseudo-waves”
or “pseudo-compressibility.” However, for historical reason, the term “artificial
compressibility” has been used more frequently. We use both terms interchangeably
throughout.

Some details are presented next. At the end of this chapter, a more general-
ized form stemming from the artificial compressibility idea is included to unify the
compressible and incompressible flow regimes, and some test cases are presented.

4.1 Artificial Compressibility Formulation and Physical
Characteristics

The artificial compressibility method, as shown by Equation (2.28), results in a sys-
tem of hyperbolic-parabolic equations of motion. Physically, this means that waves

41D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific
Computation, DOI 10.1007/978-94-007-0193-9_4, C© US Government 2011
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of finite speed are introduced into the incompressible flow field as a medium to
distribute the pressure. For a truly incompressible flow, the wave speed is infinite,
whereas the speed of propagation of these pseudo-waves depends on the magnitude
of the artificial compressibility. Ideally, the value of the artificial compressibility is
to be chosen as high as the particular choice of algorithm allows, so that the incom-
pressibility is recovered quickly. This has to be done without lessening the accuracy
and the stability property of the numerical method implemented. On the other hand,
if the artificial compressibility is chosen such that these waves travel too slowly,
then the variation of the pressure field accompanying these waves is very slow. This
will interfere with the realistic development of the viscous boundary layer, espe-
cially when the flow separates. For internal flow, the viscous effect is important for
the entire flow field, and the interaction between the pseudo pressure-waves and the
viscous flow field also becomes very important.

Artificial compressibility relaxes the strict requirement of satisfying mass conser-
vation in each time step in an iterative process. However, to utilize this convenient
feature, it is essential to understand the nature of the artificial compressibility both
physically and mathematically. A few key questions need to be answered with
respect to this “perturbed” system resulting from the addition of an artificial pressure
term. These are:

• What are the characteristics of the pseudo-waves introduced by the addition of
an artificial pressure term?

• How does this pseudo-wave interact with vorticity due to viscosity?
• When converged, do the modified governing equations become incompressible

flow equations, e.g., incompressible Navier-Stokes equations?
• What are factors affecting the rate of convergence?

These questions can be answered from a mathematical viewpoint with respect
to a system of equations perturbed from the incompressible Navier-Stokes formula-
tion. However, since our primary focus is to develop a CFD capability for solving
real-world problems, these questioned will be examined from a flow physics point
of view.

During the early development of the computational procedure, Chang and Kwak
(1984) reported details of the physical characteristics of this method, of which some
key features are presented below. From a mathematical point of view, this approach
can be viewed as a special case of a preconditioned compressible Navier-Stokes
solution procedure. This will be discussed at the end of the chapter in the context of
a unified formulation with compressible flow.

For simplicity of analysis, the following 1-D form of the governing equations is
used here:

∂p

∂t
+ β

∂u

∂x
= 0 (4.1a)

∂u

∂t
+ ∂u2

∂x
= −∂p

∂x
+ τw (4.1b)
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where τw is the normalized shear stress term, and is equal to (1
/

Re)(∂2u
/
∂x2) in the

1-D case. The shear stress term in the 1-D formulation contributes to stream-wise
viscous diffusion, which is small. To investigate the interaction between the pseudo-
wave and vorticity from the wall, the wall shear stress needs to be considered; this
aspect will be discussed later in this section.

4.1.1 Characteristics of Pseudo Waves

In the above governing equations, the normal stress term in the stream-wise direc-
tion contributes to the diffusion of the waves. To study the wave propagation
phenomena, the shear stress term in the above equations is neglected for simplic-
ity, and then linearization around a steady-state velocity component, ū, produces the
following system of equations.

⎛
⎜⎜⎝
∂p

∂t

∂u

∂t

⎞
⎟⎟⎠ =

(
0 −β

−1 −2ū

)
⎛
⎜⎜⎝
∂p

∂x

∂u

∂x

⎞
⎟⎟⎠ (4.2)

From this, the following characteristic equation can be obtained:

λ2 + 2ūλ− β = 0

The corresponding eigenvalues are: λ = −ū ± √
ū2 + β

then we can write the 1-D equations without the viscous stress term as:

[
∂u

∂t
+ 1

(ū ± c)

∂p

∂t

]
+ (ū ± c)

[
∂u

∂x
+ 1

(ū ± c)

∂p

∂x

]
= 0 (4.3)

and the pseudo speed of sound, c, is given as below:

c =
√

ū2 + β

Relative to this sound speed, the pseudo Mach number, M, can be expressed as
below:

M = ū√
ū2 + β

< 1 (4.4)

It is clear that M is always less than 1 for all β > 0; therefore, the artificial com-
pressibility formulation does not introduce artificial shock waves into the system
and the flow remains subsonic with respect to the pseudo-sound speed.
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Equation (4.3) suggests that quantities similar to (u + p

ū + c
) propagate with

(ū + c) and (u + p

ū − c
) propagates with (ū − c). This is heuristically comparable

to invariants propagating along characteristic lines in compressible flow. Next, the
nature of the pseudo-wave propagation will be examined further.

4.1.2 Wave-Vorticity Interaction

To understand the main features of interaction between the pseudo-wave propaga-
tion and spreading of the vorticity, such as in boundary layer development, it is of
interest to study one-dimensional linear waves. First, the momentum equation is
locally linearized and then, by cross-differencing equations (4.1a) and (4.1b), the
following equations are obtained:

∂2p

∂t2
+ 2ū

∂2p

∂t∂x
− β

∂2p

∂x2
= β

∂τw

∂x

∂2u

∂t2
+ 2ū

∂2u

∂t∂x
− β

∂2p

∂x2
= −∂τw

∂t

(4.5)

These equations may be expressed as

[
∂

∂t
+ (ū + c)

∂

∂x

] [
∂

∂t
+ (ū − c)

∂

∂x

](
p
u

)
=

⎛
⎜⎜⎜⎝
β
∂τw

∂x

−∂τw

∂t

⎞
⎟⎟⎟⎠ (4.6)

If the shear stress term on the right-hand side of Equation (4.6) were absent,
characteristic equations for the linear waves would take a simple form expressed by:

[
∂

∂t
+ (ū + c)

∂

∂x

](
p+
u+

)
= 0 (4.7a)

[
∂

∂t
+ (ū − c)

∂

∂x

](
p−
u−

)
= 0 (4.7b)

Waves denoted by the “+” sign propagate downstream with a speed |ū + c|,
and waves denoted by a “–” sign travel against the stream with a speed |ū − c|.
The quantities with “+” or “–” signs are not defined rigorously here, but may be
considered as quantities propagating down- or upstream similar to invariants in com-
pressible flow formulation. For compressible flow, these quantities are functions of
density, while in the artificial compressibility formulation these are related to the
pressure.
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The presence of the shear stress term, however, complicates the wave systems
because the shear stress depends on the velocity field. The coupling between the
pseudo pressure-waves and the vorticity spreading depends on their respective time
scales. An order-of-magnitude analysis can be performed here to obtain a general
guideline for determining the magnitude of artificial compressibility. To investigate
the interaction between the vorticity spreading from the wall and upstream propa-
gating waves, we will consider a channel with width xref and length L (normalized
by xref ). This can be studied using the following characteristic equation.

∂u−

∂t
+ (u − c)

∂u−

∂x
= −∂τw

∂t
(4.8a)

The vorticity development during the iteration process in an artificial compress-
ibility approach resembles the boundary layer being developed from a suddenly
started flow. Therefore, the rate of growth of vorticity thickness, δ, can be approxi-
mated as below.

∂δ2

∂t
∼= 4ν̃ = 4

Re
, where Re = uxref

ν

Now we will consider the wave with the lowest wave number with the length
scale of L. Defining the following non-dimensional quantities:

x̃ = x

L
, t̃ = (u − c)t

L
, tν = 4

Re
t such that

dδ2

dtν
∼= 1

Equation (4.8) can be written as below.

∂u−

∂ t̃
+ ∂u−

∂ x̃
= −

[
4L

(u − c)Re

]
∂

∂tν
τw(u, δ(tν)) (4.8b)

In this equation, the variation of the wave with respect to x̃ and t̃, as well as the
shear stress term with respect to tν , are of order 1. Therefore, the interaction between
the waves and the vorticity can be decoupled if:

[
4L

(u − c)Re

]
<< 1 (4.9)

This relation can be from the following physical reasoning: suppose the distance
from a point in the flow field (such as a point on a flat plate or channel) to the
downstream boundary is xL; then the time required for the upstream propagating
wave to reach that point from the downstream boundary, τL, can be estimated by
the following relation.

τL = L

c − u
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The time scale, τ δ , for the viscous effect to spread for a distance, δ, can be
estimated as follows.

τδ ∼= Re

4

(
δ

xref

)2

The pseudo wave introduced by the artificial compressibility formulation must
distribute the pressure such that the viscous boundary layer adjusts to its new
pressure environment properly, and must avoid slow fluctuations of the separation
region when it is present; so it is required that:

τδ >> τL (4.10)

If we set δ
/

xef to be order 1, we will have the wave-vorticity decoupling relation,
Equation (4.9).

Now, substituting the pseudo-sound speed into Equation (4.9) and letting the
dimensionless flow speed to unity, i.e. u = 1, we obtain the following criterion for
β for obtaining a converged solution for laminar flows.

β >>

(
1 + 4L

Re

)2

− 1 (4.11)

This gives an estimate of the lower bound of the artificial compressibility param-
eter, β. Here, δ is the length scale for the viscous effect to cover, and can be on
the same order of the viscous reference length, xref . For example, in a channel flow,
xref can be the channel height. This guideline is based on physical interpretation of
the artificial compressibility formulation. The physical phenomena described above
will be illustrated by numerical experiments later.

4.1.3 Rate of Convergence

The rate at which the solution converges to the incompressible solution depends
on β as well as on the stream-wise length, L, which represents convective flow
geometry such as the channel length. The time required for the pseudo-waves to
travel downstream and back upstream for a total distance of 2L is obtained as
below.

τ2L = L

c + u
+ L

c − u
(4.12)

To converge the solution to a steady state, pseudo-waves have to travel the length
of the entire flow field at least one complete sweep so that the pseudo pressure-
wave can interact with the viscous layer spreading from the wall into the flow
field. Therefore, the physical time required for an iterative process has to be greater
than τ2L. Substituting the definition of the pseudo-sound speed, Equation (4.3) into
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Equation (4.12), and taking the reference velocity, u = 1, then the number of
computational time steps required to achieve a steady-state solution is:

N >

√
1+β
β

2L


τ
(4.13)

where 
τ is the dimensionless computational time step.

4.1.4 Limit of Incompressibility

It is also of interest to see whether the solution obtained using the present artificial
compressibility method indeed converges to an incompressible solution in the limit.
To look into this, the pressure and velocities are expressed into steady-state part, p̄
and ūi, and transient part due to artificial compressibility, p′ and ui

′ as below:

p(x, t) = p̄(x) + p′(x, t)

u(x, t) = ū(x) + u′(x, t)
(4.14)

Substituting these into the artificial compressibility Equations (4.1a) and (4.1b),
the following equations for fluctuating components are obtained.

∂p′

∂t
+ β

∂u′

∂x
= 0 (4.15)

∂u′

∂t
+ 2u

∂u′

∂x
= −∂p′

∂x
+ 1

Re

∂2u′

∂x2
(4.16)

Moreover, by cross-differencing these equations, the coupling of velocity and
pressure can be eliminated. Solving the decoupled equations, solutions of the
following form can be obtained:

(
p′+
u′+

)
≈ f {α[x − (u + c)t]} exp

[
− α2

2Re
(1 + M2)

]
→ 0 (4.17)

(
p′−
u′−

)
≈ g{α[x − (u − c)t]} exp

[
− α2

2Re
(1 − M2)

]
→ 0 (4.18)

where M is the pseudo Mach number based on ū, and α is the wave number. Since
M is always less than 1 for all β > 0, the pseudo-waves vanish as time pro-
gresses, resulting in an incompressible steady-state solution. The rate of decay of
the transient waves depends on their wave numbers. Heuristically speaking, for
a given problem with fixed boundary conditions, any compression waves gener-
ated in the course of computation will always be accompanied by the generation of
expansion waves. When these two families of waves meet, they will either cancel
one another out or break themselves into several waves. The broken waves have
a shorter wave-length that corresponds to larger wave numbers, and therefore will
decay faster.
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4.2 Steady-State Formulation

Now, let’s derive the generalized equations for obtaining steady-state solutions using
an artificial compressibility approach. Artificial compressibility is introduced by
adding a time derivative term for pressure to the continuity equation, resulting in:

1

β

∂p

∂τ
+ ∂

∂ξi

(
Ui − (ξi)t

J

)
= 0 (4.19)

In the steady-state formulation the equations are to be marched in a time-like
fashion until the divergence of velocity in Equation (4.19) converges to zero. The
time variable for this process no longer represents physical time, so in the momen-
tum equations t is replaced with τ , which can be thought of as a pseudo-time or
iteration parameter. Combining Equation (4.19) with the momentum equations gives
the following system of equations:

∂

∂τ
D̂ = − ∂

∂ξ
(Ê − Êv) − ∂

∂η
(F̂ − F̂v) − ∂

∂ζ
(Ĝ − Ĝv) = −R̂ (4.20)

where R̂ is the right-hand side of the momentum equation and can be defined as the
residual for the steady-state computations, where:

D̂ = D

J
= 1

J

⎡
⎢⎢⎢⎣

p

u
v
w

⎤
⎥⎥⎥⎦

Ê =
[
β(U − ξt)/J

ê

]
= 1

J

⎡
⎢⎢⎣
β(U − ξt)
ξxp + uU
ξyp + vU
ξzp + wU

⎤
⎥⎥⎦

F̂ =
[
β(V − ηt)/J

f̂

]
= 1

J

⎡
⎢⎢⎣
β(V − ηt)
ηxp + uV
ηyp + vV
ηzp + wV

⎤
⎥⎥⎦

Ĝ =
[
β(W − ζt)/J

ĝ

]
= 1

J

⎡
⎢⎢⎣
β(W − ζt)
ζxp + uW
ζyp + vW
ζzp + wW

⎤
⎥⎥⎦

Êv =
[

0
êv

]

F̂v =
[

0
f̂v

]

Ĝv =
[

0
ĝv

]

(4.21a)
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and for flow with constant ν in orthogonal coordinates:

Êv =
( v

J

) (
ξ2

x + ξ2
y + ξ2

z

)
Im
∂D

∂ξ
= γ1D

F̂v =
( v

J

) (
η2

x + η2
y + η2

z

)
Im
∂D

∂η
= γ2D

Ĝv =
( v

J

) (
ζ 2

x + ζ 2
y + ζ 2

z

)
Im
∂D

∂ζ
= γ3D

Im =

⎡
⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

(4.21b)

This set of equations is to be solved for obtaining a steady-state solution in
generalized coordinates.

4.3 Steady-State Algorithm

This section focuses on iterative schemes. Even though the algorithm is explained
in steady-state formulation, the iterative schemes can be used for a time-accurate
solution procedure, as discussed in Section 4.4.

4.3.1 Difference Equations

For spatial differencing, there are several different ways of defining variables in a
grid system. For example, a standard cell-node oriented grid or a staggered grid
arrangement can be chosen. In Cartesian coordinates, a staggered grid arrangement
has some favorable properties such as natural coupling of variables at odd-even
points. In generalized coordinates, these advantages become obscured because of
the interpolation required. However, a fully conservative differencing scheme can
be devised that maintains the convenience of a staggered arrangement such as in a
Poisson solver (Rosenfeld et al., 1988). Using any grid system, spatial differencing
can be done either in finite-difference (Steger and Kutler, 1977) or finite-volume
form. The finite-volume scheme usually produces better results near geometric sin-
gularities. Since most of the results presented later in this monograph were obtained
using finite-difference schemes, algorithms based on a finite-difference approach are
discussed in this chapter. The numerical procedure using central differencing will
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be discussed in this section and an upwind differencing scheme will be discussed in
a later section.

If the pseudo-time derivative is replaced by a trapezoidal rule finite-differencing
scheme, the time difference term results in:

D̂n+1 = D̂n + 
τ

2

⎡
⎣
(
∂D̂

∂τ

)n

+
(
∂D̂

∂τ

)n+1
⎤
⎦ + O

(

τ 3

)
(4.22)

where the superscript n refers to the nth pseudo-time iteration level. By substituting
Equation (4.20) into Equation (4.22), one obtains the following.

Dn+1 + 
τ

2
J
[
δξ (Ê − Êv)n+1 + δη(F̂ − F̂v)n+1 + δζ (Ĝ − Ĝv)n+1

]

= Dn − 
τ

2
J
[
δξ (Ê − Êv)n + δη(F̂ − F̂v)n + δζ (Ĝ − Ĝv)n

] (4.23)

The objective is to solve for Dn+1, and this is nonlinear in nature since Ên+1 =
Ê(Dn+1) is a nonlinear function of Dn+1 as are F̂n+1 and Ĝn+1. The following
linearization procedure is applied to solve for these quantities. A local Taylor
expansion about un yields:

Ên+1 = Ên + Ân(Dn+1 − Dn) + O(
τ 2)

F̂n+1 = F̂n + B̂n(Dn+1 − Dn) + O(
τ 2)

Ĝn+1 = Ĝn + Ĉn(Dn+1 − Dn) + O(
τ 2)

(4.24)

where Â, B̂ and Ĉ are the Jacobian matrices defined as below.

Â = ∂Ê

∂D
, B̂ = ∂F̂

∂D
, Ĉ = ∂Ĝ

∂D
(4.25)

The Jacobian matrices can all be represented by the following equation:

Âi = 1

J

⎡
⎢⎢⎣

0 L1β L2β L3β

L1 Q + L1u L2u L3u
L2 L1v Q + L2v L3v
L3 L1w L2w Q + L3w

⎤
⎥⎥⎦ (4.26)

where Âi = Â, B̂ or Ĉ for i = 1, 2, or 3, respectively.

Q = L0 + L1u + L2v + L3w

L0 = (ξi)t, L1 = (ξi)x, L2 = (ξi)y, L3 = (ξi)w

ξi = (ξ , η, or ζ ) for (Â, B̂, or Ĉ)
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Substituting Equation (4.24) into Equation (4.23) results in the governing
equation in delta form:

{
I + h

2
J
[
δξ (Ân − �1) + δη(B̂n − �2) + δζ (Ĉn − �3)

]}
(Dn+1 − Dn)

= −
τJ
[
δξ (Ê − Êv)n + δη(F̂ − F̂v)n + δζ (Ĝ − Ĝv)n

] (4.27)

where

�i =
(ν

J

)
∇ξi ·

(
∇ξ ∂

∂ξ
+ ∇η ∂

∂η
+ ∇ζ ∂

∂ζ

)
Im

h = 
τ for trapezoidal differencing

h = 2
τ for Euler implicit scheme

At this point it should be noted that the notation of the form
[
δξ (A − �)

]
D

refers to:

∂

∂ξ
(AD) − ∂

∂ξ
(�D) and not

∂A

∂ξ
D − ∂�

∂ξ
D

4.3.2 Approximate Factorization Scheme

The solution of Equation (4.27) would involve a formidable matrix inversion prob-
lem. With the use of an alternating direction implicit (ADI) type scheme, the
problem could be reduced to the inversion of three matrices of small bandwidth,
for which there exist some efficient solution algorithms. The particular ADI form
used here is known as approximate factorization (AF) (Beam and Warming, 1978);
a similar scheme was developed independently by Briley and McDonald in 1977.
However, it is difficult to apply the AF scheme to Equation (4.27) in its full
matrix form. Noting that at the steady state, the left-hand side of Equation (4.27)
approaches zero, a simplified expression for the viscous term as shown in Equation
(4.21b) is used on the left-hand side. To maintain the accuracy of the solution, the
entire viscous term is used on the right-hand side. Using these terms, the governing
equation becomes:

LξLηLζ (Dn+1 − Dn) = RHS (4.28a)

where

Lξ =
[

I + 
τ

2
Jn+1δξ (Ân − γ1)

]

Lη =
[

I + 
τ

2
Jn+1δη(B̂n − γ2)

]

Lζ =
[

I + 
τ

2
Jn+1δζ (Ĉn − γ3)

]
(4.28b)
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and RHS is the right-hand side of Equation (4.27). When second-order central dif-
ferencing is used, the solution to this problem becomes the inversion of three block
tridiagonal matrices. Then the inversion problem is reduced to the three inversions
as below.

(Lη)
D̄ = RHS

(Lξ )
D̃ = 
D̄

(Lζ )
Dn+1 = 
D̃

(4.29)

These inversions are carried out for all interior points, and the boundary condi-
tions can be implemented explicitly. Later on, we’ll discuss how to implement the
boundary conditions implicitly.

A guideline for estimating the lower bound of β was given by Equation (4.10),
which was derived from physical reasoning. To make the pressure wave travel fast,
it is advantageous to choose β as large as possible. There is, however, a bound of
β that comes from the particular algorithm chosen here; namely, the error intro-
duced by the approximate factorization. In implementing the AF scheme leading to
Equation (4.28), the following second-order cross product terms are introduced into
the following equation.

(

τ

2
Jn+1

)2 [
δξ (Ân − �1)δη(B̂n − �2) + . . . . . .

]

This term must be kept smaller than the original terms in the equation. Including
only the terms that contain β, this restriction can be expressed as:


τ

2
Jn+1δξi Â

n
i δξj Â

n
j

〈
δξi Â

n
i , i �= j

or


τ

2
Jn+1δξj Â

n
j < 1

Recalling the expression for Ân
i given by Equation (4.26), the terms that have β

in them give the following.

τ

2
βδξj

(
∂ξj

∂xi

)
< 1

The term to the right of β in this inequality is essentially the change in 1/
xi in
either the ξ , η, or ζ direction. An estimate of the order of magnitude of this term is
given by:

O

[
δξj

(
∂ξj

∂xi

)]
≈ 2

which puts the restriction on β
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O(β
τ ) < 1 (4.30)

For most problems, the restrictions for β given by Equations (4.10) and (4.30)
are satisfied with a value for β in the range from 1 to 10. As will be shown later, this
restriction on the upper value of β can be relaxed if the factorization error involving
β is removed, for example, by implementing a line relaxation scheme.

4.3.2.1 Diagonal Algorithm

To gain computational efficiency, the Jacobian matrices can be diagonalized. In
a diagonal algorithm, a similarity transform can be implemented to uncouple the
governing set of equations. The equations can then be answered by solving scalar
tridiagonal matrices instead of block tridiagonal matrices. A similarity transform,
which symmetrizes and diagonalizes the matrices of the compressible gas dynamic
equations, has been used by Warming et al. (1975) and Turkel (1973). This method
was extended by Pulliam and Chaussee (1981) to produce a diagonal algorithm for
the Euler equations. This method can be applied to the compressible Navier-Stokes
equations to obtain a considerable savings in computing time (Flores, 1985).

Here, similarity transforms for the matrices used in the artificial compressibility
method are presented, which results in a substantial reduction in computer time
(Rogers et al., 1987).

Similarity transformations exist that diagonalize the Jacobian matrices:

Âi = Ti�̂iT
−1
i (4.31)

where �̂i is a diagonal matrix whose elements are the eigenvalues of the Jacobian
matrices and which is given by:

�̂i =

⎡
⎢⎢⎣

Q 0 0 0
0 Q 0 0
0 0 Q − L0/2 + c 0
0 0 0 Q − L0/2 − c

⎤
⎥⎥⎦ (4.32)

and where c is the pseudo-speed of sound, which is given by:

c =
√

(Q + L0/2)2 + β(L2
1 + L2

2 + L2
3) (4.33)

The Ti matrix is composed of the eigenvectors of the Jacobian matrix. For more
details on the derivation of Ti, its inverse, and eigenvectors, see Rogers et al. (1987).

The implementation of the diagonal scheme involves replacing the Jacobian
matrices in the implicit operators with the product of the similarity transform matri-
ces and the diagonal matrix, as given in Equation (4.31). The identity matrix in
the implicit operators is replaced by the product of the similarity transform matrix
and its inverse. Modification is made to the implicit viscous terms by replacing
the Im matrix with an identity matrix so that the transformation matrices may also
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be factored out of these terms. This implicitly adds an additional viscous dissipa-
tion term to the pressure. Adding higher order smoothing terms for stability, the
transformation matrices are now factored out of the implicit operators to give:

Lξ = Tξ

[
I + 
τ

2
Jδξ

(
�̂ξ − γ̂1

)
+ εi∇ξ
ξ

]
T−1
ξ

Lη = Tη

[
I + 
τ

2
Jδη

(
�̂η − γ̂2

)
+ εi∇η
η

]
T−1
η

Lζ = Tζ

[
I + 
τ

2
Jδζ

(
�̂ζ − γ̂3

)
+ εi∇ζ
ζ

]
T−1
ζ

(4.34)

where the implicit viscous terms are now given by:

γ̂i = ν

J
∇ξi · ∇ξiIδξi (4.35)

and ∇ and
 represent forward and backward spatial-differencing operators, respec-
tively. The higher order smoothing terms are discussed further in Section 4.3.5.

Since the transformation matrices are dependent on the metric quantities, factor-
ing them outside the difference operators introduces an error. No modification has
been made to the right-hand side of the equation, and therefore, these linearization
errors will not affect the steady-state solution. Only the convergence path toward the
solution is affected using this diagonal algorithm.

The implementation of this algorithm over the block algorithm will result in a
substantial reduction in computational time per iteration because of the decrease
in the number of operations performed. Additionally, considerably less memory is
required to store the elements on the left-hand side. This space can be used in data
and memory management, depending on the computer architecture. For example,
when vector machines were the workhorse systems, this additional memory was
used to further vectorize the existing code. Since the solution of a tri-diagonal block
or scalar matrix is recursive, it is not vectorizable for loops that use the current
sweep direction as the inner do-loop index. However, if a large number of these
matrices are passed into the inversion routines at once, then vectorization can take
place in the “non-sweep” direction. Computer architectures continuously evolve and
coding strategy can also change to accelerate memory speed. Whatever the computer
architecture may be, lower memory requirements from the algorithm can be utilized
in gaining overall computational efficiency.

4.3.3 LU-SGS Scheme

In 1987, Yoon and Jameson developed an implicit lower-upper symmetric-Gauss-
Seidel (LU-SGS) scheme for the compressible Euler and Navier-Stokes equations.
A similar scheme was devised for the artificial compressibility formulation (Yoon
and Kwak, 1989). The LU-SGS scheme is not only unconditionally stable but also
completely vectorizable in three dimensions if a vector computer is used. Spatial
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differencing is equivalent to either central or upwind schemes, depending on the
numerical dissipation model that augments the finite volume method (Yoon and
Kwak, 1988). This scheme is briefly described below.

Starting from an un-factored implicit scheme similar to Equation (4.27):

{
I + h

2
J
[
δξ Â + δηB̂ + δζ Ĉ

]}
(Dn+1 − Dn)

= −
t
[
δξ (Ê − Êv) + δη(F̂ − F̂v) + δζ (Ĝ − Ĝv)

] (4.27′)

The LU-SGS implicit factorization scheme can be derived as:

LlL
−1
d Lu(Dn+1 − Dn) = RHS (4.36a)

where

Ll = I + h

2
(δ−ξ Â+δ−η B̂+ + δ−ζ Ĉ+ − Â− − B̂− − Ĉ−)

Ld = I + h

2
(Â+ − Â− + B̂+ − B̂− + Ĉ+ − Ĉ−)

Lu = I + h

2
(δ+ξ Â− + δ+η B̂− + δ+ζ Ĉ− + Â+ + B̂+ + Ĉ+)

(4.36b)

and where δ−ξ and δ+ξ are the backward- and forward-difference operators
respectively.

This particular scheme has been coded using finite volume discretization and
second-order central differencing for the viscous fluxes, which require numerical
dissipation terms for stability (Yoon and Kwak, 1989). By choosing different numer-
ical dissipation models and Jacobian matrices, a variety of other schemes can be
developed. For example, when there is no source term, the Jacobian matrices of the
flux vectors can be constructed to yield diagonally dominant approximate Jacobian
matrices. This will eliminate the need for block inversion and enables scalar inver-
sion. This makes the cost per iteration much lower than block inversion and can
accelerate convergence, and thus can be a useful alternative for obtaining steady-
state solutions. However, it is essential to make sure that the accuracy of the solution
does not suffer due to the approximation of the flux Jacobian. In general, approxi-
mations at the algorithm level need to be minimized to enhance prediction capability
for analyzing complex flow physics. Further details of this method are found in the
references cited.

4.3.4 Line Relaxation Scheme

The line-relaxation implicit scheme is formed through an iterative solution process
rather than through factorization of the left-hand-side matrix. The discrete form of
the matrix on the left-hand side of Equation (4.27) is a banded matrix composed
of seven diagonals, where each entry of a diagonal consists of a 4 × 4 block. The



56 4 Artificial Compressibility Method

discrete version of Equation (4.27) is written as:

[T , 0, . . . , 0, U, 0, . . . , 0, X, Y , Z, 0, . . . , 0, V , 0, . . . , 0, W]
D = RHS (4.37)

where T , U, V , W, X, Y and Z are the diagonals, with the Y vector being the main
(center) diagonal. This matrix equation is approximately solved using an iterative
approach. One of the three computational directions is chosen to be the implicit
direction, and sweeping through the domain proceeds in the other two directions.
Using, for example, the ξ family, a tridiagonal matrix is formed by keeping the X,Y
and Z diagonals on the left-hand side, and multiplying the remaining diagonals by
the latest known iteration of the ΔD solution vector, and shifting them to the right-
hand side. A forward sweep is composed of solving a block-tridiagonal system of
the form:

[X, Y , Z]
Dl+1 = RHS − [T , 0, . . . , 0, U]
Dl+1

− [V , 0, . . . , 0, W]
Dl

and a backward sweep is similarly composed of solving the following:

[X, Y , Z]
Dl+1 = RHS − [T , 0, . . . , 0, U]
Dl

− [V , 0, . . . , 0, W]
Dl+1

where the l superscript denotes the sweep iteration number.
The process is initialized by setting 
D0 = 0. The algorithm is implemented so

that any or all of the three computational directions can be chosen for the sweep
direction. The optimum direction and number of sweeps is very much problem
dependent. Our experience with this algorithm has revealed that for most problems
it is best to use the wall-normal direction as the implicit direction, and that on the
order of 10 sweeps should be used (Rogers et al., 1991a, b).

4.3.5 Numerical Dissipation or Smoothing

In applying the above factored schemes, it has been found that the stability of the
scheme is dependent on the use of some higher-order smoothing terms. These terms
help to damp out the higher-order oscillations and odd- and even-point decoupling
in the solutions, which are caused by the use of central differencing. The smooth-
ing term can be related to an upwind finite-difference approximation. The idea of
splitting the upwinding scheme into the central differencing scheme plus dissipation
was successfully implemented by Kreiss (1964) and others (for example, Jameson
et al., 1981). Pulliam (1986) discussed an implicit dissipation model extensively.
Later, the dissipation models were unified in the framework of a finite volume total
variation diminishing (TVD) method for high-speed flow. Since for incompressible
flow we are not dealing with shocks, numerical dissipation is added primarily for
stability. However, we generally followed the strategy used for compressible flow
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formulation, and these models were then extended into the artificial compressibility
formulation (Yoon and Kwak, 1989). Here, we focus on only those specifics relevant
to the constant coefficient model.

By including these smoothing terms, Equations (4.28a) and (4.28b) become:

LξLηLζ (Dn+1 − Dn) = RHS of (4.27) − εe[(∇ξ
ξ )2 + (∇η
η)2 + (∇ζ
ζ )2]Dn

(4.28c)
where

Lξ =
[

I + 
τ

2
Jn+1δξ

(
Ân

1 − γ1

)
+ εi∇ξ
ξ

]

Lη =
[

I + 
τ

2
Jn+1δη

(
Ân

2 − γ2

)
+ εi∇η
η

]

Lζ =
[

I + 
τ

2
Jn+1δζ

(
Ân

3 − γ3

)
+ εi∇ζ
ζ

]
(4.28d)

Here, ∇ and 
 represent forward and backward spatial-differencing operators,
respectively. To preserve the tridiagonal nature of the system, only second-order
smoothing can be used on the left-hand side of the equation, whereas fourth-order
smoothing is used on the right-hand side. When the diagonal algorithm (described
in Section 4.3.2) is used, however, it is feasible to increase the bandwidth of the
system to a pentadiagonal. This makes it possible to use fourth-order smoothing on
the left-hand side of the equation, as well. The AF algorithm will be stable if εi

and εe satisfy a certain relation (see Pulliam, 1986; Jameson and Yoon, 1986) as
discussed below.

To study the nature of the numerical smoothing, a 1-D form of the dissipation
terms is represented as below.

[
1 − εi∇ξ
ξ

]
(pn+1 − pn) = −εe(∇ξ
ξ )2pn (4.38)

Suppose p is represented by the discrete Fourier expansion:

p =
∑

n

p̂(k)eikξ (4.39)

where

p̂ = Fourier transform of p

k = 2π

N
ξ
n = wave number

n = −N/2, . . . 0, 1, . . . (N/2 − 1)
N = number of mesh points

Then Equation (4.37) can be written as:

[1 − εik′](p̂n+1 − p̂n) = −εe(k′)2p̂n (4.40)
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where

k′ = −2 + 2 cos(k)

(k′)2 = 6 − 8 cos(k) + 2 cos(2 k)

From this, the amplification factor can be defined.

σ = p̂n+1

p̂n
= [1 − εik′ − εe(k′)2]

[1 − εik′]
(4.41)

To damp out the numerical fluctuations as time advances, the absolute value of
the amplification factor σ has to be less than one for all possible frequencies.

|σ | < 1

Noting that k′ is always negative, this requirement leads to the following relation.

εe ≤ 2(1 − εik′) (4.42a)

It can be shown that the above inequality is always satisfied if:

2εe ≤ εi (4.42b)

The exact relation between these two coefficients can be determined only by a
nonlinear stability analysis. In the cases presented in this monograph, εi is taken to
be three times larger than εe. From the expression given in Equation (4.40), it is
clear that if εi is too large, the rate of damping will be diminished, so it may not
be advantageous to take a very large value for εi over εe. The choice of εe depends
on the Reynolds number and the grid spacing. However, as discussed later, large
values of εe adversely affect the accuracy of the continuity equation, which is why
the magnitude of εe is usually taken to be small. If grid sizes are fine enough to
resolve the changes in the flow field, then εe can be as small as 10−3.

In computing incompressible flow problems, two major sources of inaccuracy
are associated with the numerical dissipation terms, namely: (1) the numerical dis-
sipation terms effectively change the Reynolds number of the flow, and (2) the
explicit smoothing terms added to the continuity equation do not conserve mass.
In particular, the explicit smoothing on the pressure can affect whether or not the
computational procedure converges to an incompressible flow solution. Chang and
Kwak (1984) showed that the pseudo-pressure waves decay exponentially with
time, and vanish as the solution converges. Thus, the change in pressure with time
approaches zero. When there is no explicit smoothing added to the equation, the
divergence of the velocity field identically approaches zero. However, when explicit
smoothing is included, as the change in pressure approaches zero, the divergence of
the velocity approaches the following:

δui

δxi
→ εe1

β
τ
[(∇ξ
ξ )2 + (∇η
η)2 + (∇ζ
ζ )2]p (4.43)
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where δ/δxi is a difference form of the divergence operator and εe1 is the explicit
smoothing parameter for the pressure. If εe is scaled by h, for example, εe = 
τεe,
Equation (4.41) becomes independent of the time step. Depending on the magnitude
of β and the local pressure gradient, this term can deteriorate the conservation of
mass. However, note that in the numerical computations, the central differencing
scheme is modified to include numerical dissipation terms resulting in what is
essentially an upwinding scheme for momentum equations.

4.3.6 Boundary Conditions

Once the flow solver is developed, a boundary condition procedure has to be devised
to be compatible with the solution algorithm. Boundary conditions play an important
part in determining the overall accuracy, stability property, and convergence speed
of the solution process. Different types of boundaries are encountered in numerical
simulation, including solid surface, inflow and outflow, and far-field boundaries,
discussed below.

4.3.6.1 Solid Surface

At a solid surface boundary, the usual no-slip condition is applied. To design a
pressure boundary condition on the boundary in generalized coordinates, the grid
curvature on the boundary needs to be considered. In general, however, the grid
points adjacent to the surface are sufficiently close to the boundary so that constant
pressure normal to the surface in the viscous boundary layer can be assumed. For a
ζ = constant surface, this can be expressed as:(

∂p

∂ζ

)
L=1

= 0 (4.44)

This approximate boundary condition is good for high Reynolds numbers, and
can be implemented either explicitly or implicitly. The implicit implementation,
however, will enhance the stability of the code. This can be done during the ζ −
sweep by including the following in the matrix to be inverted:

I
Dj,k,1 + ĉ
Dj,k,2 = f̂ (4.45)

where

ĉ =

⎡
⎢⎢⎣

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

f̂ =

⎡
⎢⎢⎣

pL=2 − pL=1
0
0
0

⎤
⎥⎥⎦
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4.3.6.2 Inflow, Outflow and Far-Field Conditions

The inflow and outflow boundary conditions for an internal flow problem and the
far-field boundary conditions for an external flow problem are handled in much the
same way. The incoming flows for both problems are set to an appropriate constant
as dictated by the problem. For example, at the inlet to a pipe, the pressure can be
set to a constant and the velocity profile can be specified as uniform. Downstream
conditions, however, are the most difficult to provide. Simple upwind extrapolation
is not well posed. The best convergence rate is obtained if global mass is conserved.
So to ensure the best results, the velocities and pressure are first updated using a
second-order upwind extrapolation. For an exit at L = LMAX this is written as:

Qñ
l max =

Qn+1
l max −1

(

z2


z1

)
− Qn+1

l max −2


z2


z1
− 1

(4.46)

where


z1 = zl max − zl max −1

z2 = zl max − zl max −2

Then, these extrapolated velocities are integrated over the exit boundary to obtain
the outlet mass flux.

mÝout =
∫

exit

V̄ ñ · dâ (4.47)

Next, the velocity components are weighted by the mass flux ratio to conserve
global mass:

V̄n+1 = nÝin

nÝout
V̄ ñ (4.48)

If nothing further is done to update the boundary pressure, this can lead to dis-
continuities in the pressure because momentum is not being conserved. A method
of weighting the pressure by a momentum correction was presented by Chang
et al. (1985a), where the pressure condition is obtained by the mass weighted
velocities:

pn+1 = pñ− 1

ζz
[(wW)n+1−(wW)ñ]+ ν

ζz
(∇ζ ·∇ζ )

[(
∂w

∂ζ

)n+1

−
(
∂w

∂ζ

)ñ
]

(4.49)

where W is the contravariant velocity. In obtaining this formula, we assume that
the streamlines near the exit plane are nearly straight. Any appreciable devia-
tion will cause a discontinuity in the pressure and may lead to an instability. To
avoid this, we used a momentum-weighted pressure, obtained by integrating the
momentum-corrected pressure pn+1 and the extrapolated pressure pñ across the
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exit, as below.

In+1
p = ∫

exit
pn+1dâ

Iñ
p = ∫

exit
pñdâ

The final outlet pressure is then taken to be:

pn+1 =
(

In+1
p

Iñ
p

)
pñ (4.50)

Under these downstream boundary conditions, global conservation of mass and
momentum are ensured. Many practical applications have been solved using the
above procedure. However, the nonreflecting-type boundary conditions, according
to Rudy and Strikwerda (1980), may enhance the convergence speed.

4.4 Time-Accurate Procedure

Time-dependent calculations of incompressible flows are especially time con-
suming due to the elliptic nature of the governing equations. Physically, this
means that any local change in the flow has to be felt by the entire flow field
instantaneously. Numerically, this means that in each time step, the pressure
field has to go through one complete steady-state iteration cycle; for example,
by Poisson-solver-type pressure iteration or the pseudo-compressibility iteration
method.

In transient flow, the physical time step has to be small—consequently the change
in the flow field may be small. In this situation, the number of iterations at each
time step for getting a divergence-free flow field may not be as high as regu-
lar steady-state computations. However, time-accurate computations are in general
extremely time consuming. Therefore, it is particularly useful to develop com-
putationally efficient methods by implementing a fast algorithm and by utilizing
computer characteristics such as parallel processing. In this section, a way of obtain-
ing time-accurate solutions using an artificial compressibility approach is reviewed
(see Rogers and Kwak, 1988, 1989).

Using a second-order, three-point, backward-difference formula, the time deriva-
tives in the momentum equations are differenced:

3ûn+1 − 4ûn + ûn−1

2
t
= r̂n+1 (4.51)

where the superscript n denotes the quantities at time t = n
t and r̂ is the right-hand
side given in Equation (2.10). To solve Equation (4.51) for a divergence-free veloc-
ity at the n + 1 time level, a pseudo-time level is introduced and is denoted by the
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superscript m. The equations are iteratively solved such that ûn+1,m+1 approaches
the new velocity ûn+1 as the divergence of ûn+1,m+1 approaches zero. To drive the
divergence of this velocity to zero, the following artificial compressibility relation
is introduced:

pn+1,m+1 − pn+1,m


τ
= −β∇ · ûn+1,m+1 (4.52)

where τ denotes pseudo-time and β is an artificial compressibility parameter.
Combining Equation (4.52) with the momentum equations gives:

Itr

(
D̂n+1,m+1 − D̂n+1,m

)
= −R̂n+1,m+1 − Im


t

(
1.5D̂n+1,m − 2D̂n + 0.5D̂n−1

)
(4.53)

where D̂ is the same vector defined in Equation (4.21), R̂ is the same residual vector
defined in Equation (4.20), Itr is a diagonal matrix, and Im is a modified identity
matrix given by:

Itr = diag

[
1


τ
,

1.5


t
,

1.5


t
,

1.5


t

]

Im = diag[0, 1, 1, 1]

Finally, the residual term at the m + 1 pseudo-time level is linearized, giving the
following equation in delta form.

⎡
⎣ Itr

J
+

(
∂R̂

∂D

)n+1,m
⎤
⎦(Dn+1,m+1 − Dn+1,m)

= −R̂n+1,m − Im


t
(1.5D̂n+1,m − 2D̂n + 0.5D̂n−1)

(4.54)

As can be seen, this equation is very similar to the steady-state formulation given
by Equation (4.27), which can be rewritten for the Euler implicit case as below.

[
I

J
τ
+

(
∂R̂

∂D

)n]
(Dn+1 − Dn) = R̂n (4.55)

Both systems of equations will require discretization of the same residual vec-
tor R̂. The derivatives of the viscous fluxes in this vector are approximated using
second-order central differences. The convective flux terms can be discretized using
central differences, as was done in Section 4.3. This will require numerical dis-
sipation terms for stability. Since, in the artificial compressible formulation, the
governing equations are changed into the hyperbolic-parabolic type, some of the
upwind differencing schemes developed for the compressible Euler and Navier-
Stokes equations by numerous authors (e.g. Roe, 1981; Chakravarthy and Osher,
1985; Steger and Warming, 1981; Harten et al., 1983) can be utilized.
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In this section, the method of Roe (1981) was adopted in differencing the con-
vective terms. Here, the upwind method is biased by the signs of the eigenvalues
of the local flux Jacobian. This is accomplished by casting the governing equa-
tions in their characteristic form and then forming the differencing stencil such that
it accounts for the direction of wave propagation. In this formulation, the set of
numerical equations is solved using a nonfactored line relaxation scheme, similar
to that employed by MacCormack (1985). This implicit scheme, described in the
next section, makes use of large amounts of processor memory for efficient coding.
However, the particulars of coding may vary depending on ever-evolving computer
architectures.

4.5 Time-Accurate Algorithm Using Upwind Differencing

Earlier, in Section 4.3.5, higher order smoothing was explained in conjunction with
the central differencing scheme. Upwind differencing is essentially a combined form
of differencing where numerical dissipation is embedded in the central differenc-
ing. Although the current method is explained in conjunction with time-accurate
calculations, the same method can be used for steady-state problems as well.

4.5.1 Upwind Differencing Scheme

The upwind scheme for the convective flux derivatives is derived from the 1-D
theory, and is then applied to each of the coordinate directions separately. Flux-
difference splitting is used here to structure the differencing stencil, based on the
sign of the eigenvalues of the convective flux Jacobian. The scheme presented here
was originally derived by Roe (1981) as an approximate Riemann solver for the
compressible gas dynamics equations.

The derivative of the convective flux in the ξ -direction is approximated by:

∂Ê

∂ξ
≈

[
Ẽi+1/2 − Ẽi−1/2

]

ξ

(4.56)

where Ẽi+1/2 is a numerical flux and the subscript i is the discrete spatial index for
the ξ -direction.

The numerical flux is given by:

Ẽi+1/2 = 1

2

[
Ê(Di+1) + Ê(Di) − φi+1/2

]
(4.57)

where the φi+1/2 is a dissipation term. For φi+1/2 = 0 this represents a second-order
central difference scheme. A first-order upwind scheme is given by:

φi+1/2 =
(

E+

i+1/2 −
E−
i+1/2

)
(4.58)
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where 
E± is the flux difference across positive or negative traveling waves. The
flux difference is computed as:


E± = A±(D̄)
Di+1/2 (4.59)

where the 
 operator is given by:


Di+1/2 = Di+1/2 − Di (4.60)

The plus (minus) Jacobian matrix has only positive or negative eigenvalues and
is computed from:

A± = X1�
±
1 X−1

1

�±
1 = 1

2
(�1 ± |�1|) (4.61)

where the subscript 1 denotes matrices corresponding to the ξ -direction flux. The
matrices X1 and X−1

1 are the right and left eigenvectors of the Jacobian matrix of the
flux vector and �1 is a diagonal matrix consisting of its eigenvalues. All matrices
appearing in the upwind dissipation term must be evaluated at a half-point (denoted
by i+1/2). To do this, a special averaging of the dependent variables at neighboring
points must be performed. The following averaging procedure is employed.

D̄ = 1

2
(Di+1 + Di) (4.62)

A scheme of arbitrary order may be derived using these flux differences.
Implementation of higher-order-accurate approximations in an explicit scheme does
not require significantly more computational time if the flux differences 
E± are
all computed simultaneously for a single line. A third-order upwind flux is then
defined by:

φi+1/2 = −1

3

(

E+

i−1/2 −
E+
i+1/2 +
E−

i+1/2 −
E−
i+3/2

)
(4.63)

The primary problem with using schemes of greater than third-order accuracy
occurs at the boundaries. Special treatment is needed, requiring a reduction of
order—or a much more complicated scheme. Therefore, when going to a higher-
order-accurate scheme, compactness is advantageous. Such a scheme was derived
by Rai (1987), using a fifth-order-accurate, upwind-biased stencil. A fifth-order,
fully upwind difference would require 11 points, but this upwind-biased scheme
requires only seven points, and is given below.

rlφi+1/2 = − 1

30

[
−2
E+

i−3/2 + 11
E+
i−1/2 − 6
E+

i+1/2 − 3
E+
i+3/2

+2
E−
i+5/2 − 11
E−

i+3/2 + 6
E−
i+1/2 + 3
E−

i−1/2

] (4.64)
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Next to the boundary, near-second-order accuracy can be maintained by the third-
and fifth-order schemes, by using the following:

φi+1/2 = ε
(

E+

i+1/2 −
E−
i+1/2

)
(4.65)

For ε = 0, this flux leads to a second-order central difference. For ε = 1, this is
the same as the first-order dissipation term given by Equation (4.58). By including
a nonzero ε, dissipation is added to the second-order, central-difference scheme to
help suppress any oscillations. A value of ε = 0.01 is commonly used for many
applications.

To form the delta fluxes used in this scheme, the eigensystem of the convective
flux Jacobian is needed. For the current formulation, a generalized flux vector is
given by Equation (4.21), and the Jacobian matrix Ai = ∂Êi/∂D of the flux vector
is given by Equation (4.26). The normalized metrics are redefined as:

kx = 1

J

∂ξi

∂x
, i = 1, 2, 3

ky = 1

J

∂ξi

∂y
, i = 1, 2, 3

kz = 1

J

∂ξi

∂z
, i = 1, 2, 3

kt = 1

J

∂ξi

∂t
, i = 1, 2, 3

As explained in conjunction with the diagonal algorithm in the previous section,
a similarity transform for the Jacobian matrix is introduced here:

Âi = Xi�iX
−1
i

where �i is defined by Equation (4.39). The matrix of the right eigenvectors is
given by:

Xi =

⎢⎢⎢⎢⎢⎣
0 0 β(c − kt/2) −β(c + kt/2)
xk xkk uλ3 + βkx uλ4 + βkx

yk ykk vλ3 + βky vλ4 + βky

zk zkk wλ3 + βkz wλ4 + βkz

⎥⎥⎥⎥⎥⎦ (4.66)

where

xk = ∂x

∂ξi+1
, yk = ∂y

∂ξi+1
, zk = ∂z

∂ξi+1

xkk = ∂x

∂ξi+2
, ykk = ∂y

∂ξi+2
, zkk = ∂z

∂ξi+2

(4.67)
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ξi+1 = η, ζ , or ξ for i = 1, 2, and 3 respectively
ξi+2 = ζ , ξ , or η for i = 1, 2, and 3 respectively

and its inverse can be similarly obtained. Note that this transformation is nonsingular
in any combination of metrics.

4.5.2 Implicit Scheme

Here, we describe the way in which Equations (4.54) and (4.55) are numerically rep-
resented and solved. The first consideration is the formation of the Jacobian matrix
of the residual vector R̂ required for the implicit side of the equation. Applying the
difference formula given in Equation (4.56) to the convective flux vectors and apply-
ing a second-order, central-difference formula to the viscous terms, the residual at a
discrete point

(
xijk, yijk, zijk

)
is given by:

R̂ijk = Ẽi+1/2,j,k − Ẽi−1/2,j,k

�ξ
+ F̃i,j+1/2,k − F̃i,j−1/2,k

�η
+ G̃i,j,k+1/2 − G̃i,j,k−1/2

�ζ

−

(
Êv

)
i+1,j,k

−
(

Êv

)
i−1,j,k

2�ξ
+

(
F̂v

)
i,j+1,k

−
(

F̂v

)
i,j−1,k

2�η
+

(
Ĝv

)
i,j,k+1

−
(

Ĝv

)
i,j,k−1

2�ζ
(4.68)

The generalized coordinates are chosen so that �ξ , �η, and �ζ are equal to
one. To limit the bandwidth of the implicit system of equations, the Jacobian of
the residual vector will be formed by considering only first-order contributions
to the upwind numerical fluxes, and the second-order differencing of the viscous
terms. So, the only portion of the residual vector that is actually linearized is the
following:

R̂ijk = 1

2

(
Êi+1,j,k − Êi−1,j,k + . . .

−�E+
i+1/2,j,k +�E−

i+1/2,j,k +�E+
i−1/2,j,k −�E−

i−1/2,j,k − · · ·
−

(
Êv

)
i+1/2,j,k

+
(

Êv

)
i−1/2,j,k

− · · ·
(4.69)

The exact Jacobian of this residual vector will result in a banded matrix of the
following form.

∂R̂

∂D
= B

[
∂R̂ijk

∂Di,j,k−1
, 0, . . . , 0,

∂R̂ijk

∂Di,j−1,k
, 0, . . . , 0,

∂R̂ijk

∂Di−1,j,k
,
∂R̂ijk

∂Di,j,k
,
∂R̂ijk

∂Di+1,j,k
,

0, . . . , 0,
∂R̂ijk

∂Dij+1,k
, 0, . . . ,

∂R̂ijk

∂Di,j,k+1

]

(4.70)
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These exact Jacobians can be very costly to form; therefore, approximate
Jacobians of the flux differences as derived and analyzed by both Yee (1986) and
Barth (1987) are used. These are given as follows:

∂R̂ijk

∂Di,j,k−1
≈ 1

2

(
−Ĉi,j,k−1 − Ĉ+

i,j,k−1/2 + Ĉ−
i,j,k−1/2

)
− (γ̄3)i,j,k−1/2

∂R̂ijk

∂Di,j,k
≈ 1

2

(
A+

i+1/2,j,k + A+
i−1/2,j,k − A−

i+1/2,j,k − A−
i−1/2,j,k

+ B+
i,j+1/2,k + B+

i,j−1/2,k − B−
i,j+1/2,k − B−

i,j−1/2,k

+C+
i,j,k+1/2 + C+

i,j,k−1/2 − C−
i,j,k+1/2 − C−

i,j,k−1/2

)
+ (γ̄1)i+1/2,j,k + (γ̄2)i,j+1/2,k + (γ̄3)i,j,k+1/2

+ (γ̄1)i−1/2,j,k + (γ̄2)i,j−1/2,k + (γ̄3)i,j,k−1/2

∂R̂ijk

∂Di+1,j,k
≈ 1

2

(
Âi+1,j,k − Â+

i+1/2,j,k + Â−
i+1/2,j,k

)
− (γ̄1)i+1/2,j,k

(4.71)

where Â = Â1, B̂ = Â2 and Ĉ = Â3 as given by Equation (4.26), and where only the
orthogonal mesh terms are retained for the implicit viscous terms. This set of matrix
equations can be solved using the line-relaxation method presented in Section 4.3.4.

4.5.3 Boundary Conditions for Upwind Scheme

Implicit boundary conditions at all of the boundaries enable the use of large time
steps. At a viscous no-slip surface, the velocity is specified to be zero, and the pres-
sure at the boundary is obtained by specifying that the pressure gradient normal to
the wall be zero, as discussed for the steady-state solution procedure. The boundary
conditions used for the inflow and outflow regions are based on the method of char-
acteristics. The formulation of these boundary conditions is similar to that given by
Merkle and Tsai (1986), but the implementation we use here is slightly different.

Here, we derive boundary conditions in two-dimensional space, first for a con-
stant ξ boundary, with similar results for a constant η or a constant ζ boundary in
a three-dimensional case. The finite-speed waves that arise with the use of artificial
compressibility are governed by the following:

∂D̂

∂τ
= −∂Ê

∂ξ
= − ∂Ê

∂D

∂D

∂ξ
= −Â

∂D

∂ξ
= −X�X−1 ∂D

∂ξ

Multiplying by X− gives:

X−1 ∂D̂

∂τ
= �X−1 ∂D

∂ξ
(4.72)
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If the X−1 matrix is moved inside the spatial- and time-derivative, for example
for the far field, the result is a system of independent scalar equations, each having
the form of a wave equation. The sign of the eigenvalues in the�matrix determines
the traveling direction of each wave. For a positive or negative eigenvalue, a corre-
sponding wave propagates information in the positive or negative ξ-direction. The
number of positive or negative eigenvalues determines the number of characteristic
equations propagating information from the interior of the computational domain to
the boundary. Thus, at the boundary, the characteristics equations that bring infor-
mation from the interior will be chosen as part of the boundary conditions. The
rest of the information should come from outside the computational domain, which
leaves some variables to be specified.

Either one or two characteristics will be traveling toward the boundary from the
interior because there is always at least one positive eigenvalue and one negative
eigenvalue. To select the proper waves, Equation (4.72) is multiplied by a diagonal
selection of matrix L, which has an entry of one in the position of the eigenvalue we
wish to select, and zeros elsewhere. Therefore:

LX−1 ∂D̂

∂τ
= −L�X−1 ∂D

∂ξ
(4.73)

Replacing the time derivative with an implicit Euler time step gives:

(
LX−1

J
τ
+ L�X−1 ∂

∂ξ

)(
Dn+1 − Dn

)
= −L�X−1 ∂Dn

∂ξ
(4.74)

which gives either one or two relations, depending on the number of nonzero ele-
ments in L. To complete the set of equations, some variables must be specified to be
constant. Now define a vector � of the variables to be held constant such that:

∂�

∂τ
= 0 → ∂�

∂D

∂D

∂τ
= 0 → ∂�

∂D

(
Dn+1 − Dn

)
= 0 (4.75)

Combining Equations (4.74) and (4.75), we obtain:

(
LX−1

J
τ
+ L�X−1 ∂

∂ξ
+ ∂�

∂D

)(
Dn+1 − Dn

)
= −L�X−1 ∂Dn

∂ξ
(4.76)

Equation (4.76) can be used to update the variables implicitly at any of the inflow
or outflow boundaries with the proper choice of L and �.

For inflow boundaries, two different sets of specified variables have been used
successfully. One set consists of the total pressure and the cross-flow velocity. This
set is useful for problems in which the inflow velocity profile is unknown. For out-
flow boundaries, static pressures have been specified for computations presented
later in this monograph. The algorithm discussed in this section can also be used for
obtaining steady-state solutions. The only difference is that for steady-state calcu-
lations, only one-time-level iteration is needed. Further discussions can be found in
Rogers and Kwak (1990).
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4.6 Validation of Solution Procedure

The physical interpretation of the artificial compressibility method is given in
Section 4.1, which explains how the artificial wave, brought in by the introduc-
tion of artificial compressibility, interacts with vorticity transport. Therefore, it is of
interest to verify the validity of the guideline given by Equations (4.11) and (4.30)
on the permissible range of the artificial compressibility parameter, β. To do this, a
validation calculation is performed over a range of β using a simple test problem.
This study is done using the steady-state algorithm as explained in Section 4.3.2.

4.6.1 Two-Dimensional (2-D) Channel Flow

The channel flow is perhaps the simplest internal-flow test problem, where the pres-
sure wave propagates between the in- and out-flow boundaries while the viscous
effect spreads inward from two walls of the channel. The coordinate system of a
2-D straight channel with a width of 1 and length of 15 is illustrated in Fig. 4.1,
which also shows velocity vectors for a converged solution.

To obtain fully developed velocity profiles within a reasonable channel length, a
partially developed boundary layer profile can be imposed at the inflow boundary. In
our numerical experiment, a uniform inlet flow is prescribed, the Reynolds number
based on the duct width and the average velocity is 1,000, and the pseudo-time
step is 
τ = 0.1. Then, the recommended range of β is estimated to be 0.12 <

β < 10. To illustrate the pressure wave propagation phenomena and its effect on
the convergence property, the channel is impulsively started. Here, five different
values of β (0.1, 1, 5, 10 and 50) were chosen such that two cases are outside the
recommended range and three values are kept within range.

Pressure contours at three different time levels are shown in Fig. 4.2a for β = 5,
which is within the recommended range. The expansion wave from the exit plane
propagates upstream sufficiently fast to balance the spreading of the viscous effect.
The solution converges nicely, in this case. However, as shown in Fig. 4.2b, for
β = 0.1, which is lower than the recommended lower bound of β, the speed of the
upstream propagating pressure wave from the exit plane is very low. Therefore, the
expansion wave is confined near the exit plane while the viscous effect spreads into
the flow field from both upper and lower surfaces. The viscous field is not properly
balanced by the physically correct pressure gradient. This causes the spurious fluc-
tuations to amplify, as shown at τ = 2.5—and eventually the computation blows

Fig. 4.1 Channel flow: velocity profile at Re = 1000, β = 5, τ = 0.1
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(a) (b)

Fig. 4.2 Pressure contours for developing channel flow during the initial iteration process:
a β = 5, b β = 0.1

up—as shown at τ = 4.0. In Fig. 4.2a, b, the pressure contours are shown during
the initial iteration process until β = 0.1 case diverges. When fully converged, the
pressure contours are straight lines for β = 5 case.

The convergence history for these cases is shown in Fig. 4.3. The log of the root-
mean-square of the change in pressure and velocities (RMSDQ) is plotted against
the computation time τ . It can be seen that calculations for β = 0.1 and 50 become
unstable within 50 steps and start to diverge, whereas other cases converge to a
stable solution. The effect of β values on the incompressibility of the fluid is shown
in Fig. 4.3b in the form of the log of the root-mean-square of the divergence of the
velocity field (RMSDIV) plotted against the pseudo-time τ .

Internal flow, especially the current 2-D channel flow, is an excellent example of
an instance where interaction between upstream propagating pressure wave and vor-
ticity transport is visible. For external flows, such as flow over a circular cylinder for

(a) (b)

Fig. 4.3 Convergence history for channel flow at Re = 1000: a RMSDQ, b RMSDIV
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example, the effects of these two are not very discernable. However, the guideline
for the selection of artificial compressibility can still be applied, as will be shown in
the next chapter.

4.6.2 Flow over a Backward-Facing Step

The flow over a 2-D backward-facing step is simple in geometry but offers rich
fluid dynamics phenomena with recirculating zones and separation bubbles on the
opposite wall. Maintaining two-dimensional flow is a challenge in conducting exper-
iment. Even when the cross-flow direction is large using a constant cross section
of backward-facing step like Fig. 4.4, three-dimensional flow can be developed for
high Reynolds numbers. Therefore, for the current study of numerical methods, lam-
inar ranges of Reynolds numbers are computed and compared with experiments.
Figure 4.4 shows the schematic of the problem, where the step height is equal to
the inlet height and the Reynolds number is based on twice the step height. The
upstream boundary is located at the step and a fully developed channel flow is
imposed at the inlet. This problem is very challenging computationally as it involves
a primary and a secondary separation bubble. The size and location of these separa-
tion zones are very sensitive to the pressure gradient, providing a good viscous flow
validation case.

Results obtained using an approximate factorization scheme have been reported
previously by Rogers et al. (1985). The separation lengths were found to be sen-
sitive to the magnitude of the numerical dissipation coefficient at higher Reynolds
numbers. In essence, this is equivalent to changing the effective Reynolds number
of the flow as the Reynolds number approaches 1,000. So, it is quite desirable to
remove the dissipation model dependence on the solution at a high laminar range of
Reynolds numbers. When the flow becomes turbulent, the Reynolds number based

Fig. 4.4 Geometry of a backward-facing step flow problem
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Fig. 4.5 Separation and
reattachment lengths for the
flow over a backward-facing
step

on turbulent eddy viscosity is on the order of a few hundred, and thus dissipation
model presented here perform adequately.

More extensive validation has been done by using the upwind discussed in
Section 4.5 and a line relaxation scheme by Rogers (1990). The computed sepa-
ration and reattachment locations are then compared to experimental values given
by Armaly et al. (1983) in Fig. 4.5. For the primary reattachment length, ×1,
good agreement is observed between the experiments and the computation—until
the secondary separation appears at a Reynolds number of about 400. At a higher
Reynolds number, the primary separation length, ×1, and the secondary separation
point, ×2, deviates from the experimental data. Armaly et al. reported that 3-D flow
was observed near the step when the Reynolds number is greater than 400.

For more complete validation, the numerical simulation needs to contain the
entire experimental configuration, including the possible 3-D effect. In Fig. 4.6, the
convergence history is shown. Using the grid of 100 points in the stream-wise direc-
tion and 53 points in the cross-flow direction, a good converged solution is obtained
within 100 iterations and with less than 11.5 s of computing time on the Cray 2, a
number cruncher during the 1980s.

The two examples shown in this section are used to demonstrate the artificial
compressibility procedure, and are not intended to validate the entire spectrum of
flow problems we are likely to encounter in basic and applied work. In Chapter 5,
more computed cases are presented for the purpose of evaluating capabilities and
performances of different approaches.
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Fig. 4.6 Convergence history for the flow over a backward-facing step: (a) residual, (b) primary
attachment length

4.7 Unified Formulation

Previously, we presented implicit methods for incompressible flow computations.
When the flow field contains a wide range of speed regimes, Mach numbers can
vary from almost zero to the transonic range. In such cases, it will be of practi-
cal interest to have a flow solution method that can cover both the incompressible
and compressible flow regimes. In this section, we discuss a single unified solution
approach that can be applied to flows of both regimes.

The need for a unified formulation for “all-speed” flow becomes apparent when
compressible flow codes break down at low speed regime (see Hafez, 2001).
For example, time-marching methods developed for solving compressible flow
problems become inefficient and lose accuracy when applied to low speed flows.

One idea for designing a unified scheme came from the artificial compressibility
method. Since the artificial compressibility formulation resembles the compressible
Navier-Stokes solver, these two can be combined in such a way that the com-
pressible Navier-Stokes algorithm behaves similarly to the artificial compressibility
approach at a low speed. A series of development work appeared starting in the late
1980s (for example see reviews by, Merkle, 1995; Venkataswaran and Merkle, 1999,
2002).

We show a method using preconditioning that can be applied to compress-
ible flow solvers to overcome difficulties in the low-Mach regime. One such
approach is to extend the time-derivative preconditioning method, used in the
artificial compressibility formulation to the compressible flow equations. The time-
derivative preconditioning method developed by Housman et al. (2009), investigates
both conservative and non-conservative discretizations, where the non-conservative
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approach follows the split coefficient matrix (SCM) method of Chakravarthy et al.
(1980).

4.7.1 Time-Derivative Preconditioning Method

The unified formulation can be applied to both gases and liquids, so no explicit
equation of state is assumed in the derivation. In the present formulation we assume
that the state equations can be expressed as:

ρ ≡ ρ(p, T) and h ≡ h(p, T) (4.77)

where ρ is the fluid density, h is the specific enthalpy, p is pressure, and T is temper-
ature. The only other restriction on the equation of state is that the inviscid system
remains hyperbolic in time.

The time-derivative preconditioned system of equations written in strong conser-
vation law form for a non-orthogonal curvilinear coordinate system are written as:

�p
∂Q̂

∂τ
+ ∂Ê

∂ξ
+ ∂F̂

∂η
+ ∂Ĝ

∂ζ
= 0 (4.78)

where

Q̂ = J−1
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(4.79)
In the system of equations above, (u, v, w) are the Cartesian velocity compo-

nents, (ξ̂ , η̂, ζ̂ ) are the inverse Jacobian scaled metric terms, (Û, V̂ , Ŵ) are the scaled
contravariant velocities, and H=h+(u2+v2) is the total enthalpy. The time-derivative
preconditioning matrix is:

�p =

⎡
⎢⎢⎢⎢⎣

ρ′
p 0 0 0 ρT

uρ′
p ρ 0 0 uρT

vρ′
p 0 ρ 0 vρT

wρ′
p 0 0 ρ wρT

Hρ′
p + ρhp − 1 ρu ρv ρw HρT + ρhT

⎤
⎥⎥⎥⎥⎦

where the physical material derivatives, (ρT , hp, hT ) are defined by the equation of
state and the preconditioning parameter ρ′

p is defined locally by:
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ρ′
p = 1

V2
p

− ρT (1 − ρhP)

ρhT
. (4.80)

The characteristic velocity scale is:

Vp = min(c, max
(√

u2 + v2 + w2,β)
)

(4.81)

where β > 0 is a problem-dependent constant, which avoids division by zero
in the evaluation of ρ′

p. This is equivalent to the definition of β in the artificial
compressibility method. The physical isentropic speed of sound is defined by:

c2 = ρhT

ρhTρp + ρT (1 − ρhp)
(4.82)

Note that when the characteristic velocity scale approaches the isentropic speed
of sound, the preconditioned equations converge to the non-preconditioned system.
This is the preferred behavior since the standard time-marching system is well con-
ditioned in the transonic limit. A complete derivation of the preconditioned system
is given in Housman et al. (2009).

4.7.2 Numerical Results

The unified formulation is tested using steady-state flow problems over a large range
of Mach numbers by Housman et al. (2009). Here, low-speed liquid flow through a
channel containing a hydrofoil is presented to illustrate the capability of the precon-
ditioned approach. In this case, the conservative and non-conservative approaches
both agree reasonably well with the experiment and are indistinguishable from one
another.

4.7.2.1 Liquid Flow over a NACA 0015 Hydrofoil

The test case considers the flow of water through a channel containing a NACA 0015
hydrofoil. This case was proposed as a benchmark problem for low-Mach com-
pressible flow solvers by Salvetti and Beux (2004) as part of a numerical workshop
conducted for low Mach number flows.

The purpose of this case is to test the capability of the unified formulation to
compute nearly incompressible flow. An experimental study on the same problem
has been performed by Rapposelli et al. (2003). An outline of the geometry with a
structured overset grid arrangement is shown in Fig. 4.7.

Liquid water is assumed to obey a stiffened gas equation of state of the form:

ρ = p + p∞
RT

and h = CpT
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Fig. 4.7 Structured overset grid for NACA 0015 hydrofoil at the center of a channel

where the gas constant is defined by R = Cp(γ − 1)/γ . The material properties
are:

γ = 1.9276, Cp = 8, 076.73 J/kg/K,

p∞ = 1.137279 × 109 Pa

The inlet conditions P = 59, 000 Pa, U = 3.11 m/s, and T = 298 K, correspond
to an inlet Mach number of 0.0021. Figure 4.8a shows the pressure coefficient on
the upper and lower surfaces of the NACA 0015 hydrofoil, comparing the pre-
conditioned Roe (PROE) method and the non-conservative preconditioned split
coefficient matrix (PSCM) method, a potential flow solution, and experimental data.

(a) (b)

Fig. 4.8 Comparison of computed (PROE, PSCM and potential flow solution) and experimental
results for liquid flow over a NACA 0015 hydrofoil: (a) Cp on upper and lower surfaces of NACA
0015 hydrofoil; (b) maximum residual convergence history
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The PROE and PSCM methods converge to identical solutions that match the poten-
tial flow solution up to the trailing edge. At the trailing edge, the O-grid boundary
condition causes additional numerical dissipation, resulting in Cp not dropping com-
pletely. The computed results match the experiment on the upper surface, while the
lower surface is not captured. This is most likely due to the inviscid assumption used
for computing this case.

In Fig. 4.8b convergence of the maximum residual is plotted versus iteration
number for both the conservative PROE and the non-conservative PSCM meth-
ods. Nearly identical convergence rates are obtained and the overall number of
iterations is less than 500. The results of these two test cases suggest that the
unified formulation with the alternating line Jacobi relaxation algorithm is Mach
number-independent regardless of the fluid medium. More comprehensive valida-
tion is necessary to make a definitive conclusion of this approach. However, in
general, a unified approach can be very useful for many engineering applications
where flow speed is in a wide range or where both incompressible and compressible
flow coexist, such as in a multi-material or multi-phase flow.

Further validations of the artificial compressibility method are presented in
Chapter 5.



Chapter 5
Flow Solvers and Validation

Up to this point, we have reviewed numerical algorithms for computing viscous
incompressible flows, primarily using primitive variables along with finite differ-
ence and finite volume frameworks. The solution methods for incompressible flows
are based on the assumption that the flow can be approximated by incompressible
Navier–Stokes equations. Once a solution algorithm is developed, flow solvers and
software procedures need to be developed to compute fluid dynamic problems.
This process includes setting up the problem, solving the flow with the proper
initial and boundary conditions, and then post-processing the computed results.
These solutions include several levels of approximations including algorithmic,
geometry-related and physical-modeling related approximations.

The methods we have chosen for developing flow solvers and solution proce-
dures, namely, pressure projection and artificial compressibility, are discussed in
Chapters 3 and 4, respectively. Our discussions on algorithms in these chapters are
given from a practical utility viewpoint and, of course, other methods and algorithms
are available in the literature.

Once the solution procedure has been developed, numerical simulation can be
used to study fundamental fluid dynamics problems and/or to utilize the software
as a tool for fluid engineering. Geometry definition and grid generation can be rela-
tively simple for fundamental problems. However, for engineering applications, this
step could be very involved and require much human time, as the surface defini-
tion of geometry is often not very well defined and variations in format are diverse.
Depending on the geometry complexity, the grid resolution requirement will vary,
affecting the computational strategy regarding how to divide the computational
domain, what grid resolution is required to capture the correct flow phenomena,
how to utilize particular computer architecture for implementing parallel processing
and data management, and so on.

As computing power has increased, has now become feasible to model more
complete geometries at a very high resolution. So, the programming and computer
science aspects of the flow solvers are important for accomplishing computational
efficiency and decreased solution time. When the problem size is large, data man-
agement such as communication among processors and data transmittal time in and
out of the memory become significant.

79D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific
Computation, DOI 10.1007/978-94-007-0193-9_5, C© US Government 2011
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In this chapter, the flow solver validation process will be discussed using several
test problems of a fundamental nature. For these problems, the geometry is simple
and we hone in on the accuracy of various algorithms presented earlier. These test
problems cover internal and external flows and steady and time-dependent flows,
selected as building-block validation cases representing flow characteristics encoun-
tered in many real-world applications. Some of these flow features will be illustrated
later when we describe computational examples for supporting specific missions.
The first class of validation cases were chosen in the laminar range of Reynolds
numbers, followed by turbulent flow cases to discuss issues related to physical
modeling.

5.1 Scope of Validation

Computational performance depends not only on the methods implemented but also
on how solvers are coded. The flow solution codes selected here have been devel-
oped and used by the authors and their colleagues at NASA Ames Research Center
over the years, so we trust that solvers used in this chapter are reasonably well coded,
and as such can be used to represent the algorithms explained earlier in Chapters 3
and 4. For convenience, these codes are identified as below.

5.1.1 Artificial Compressibility Codes

5.1.1.1 INS3D

Historically, a flow solver code named INS3D was developed first based on the
steady-state algorithm described in Section 4.3.2. In INS3D, the artificial com-
pressibility approach is implemented using an approximate factorization scheme.
This takes advantage of the advances made in conjunction with compressible flow
computations. The spatial discretization utilizes second-order central differencing
with additional numerical dissipation terms. The code name is derived from the
Incompressible Navier–Stokes code in 3-D generalized coordinates. This code was
developed primarily to obtain steady-state solutions in conjunction with an early
task in the 1980s of redesigning the Space Shuttle main engine. The experience
gained in that project was then extended to the following version using the same
line of approach.

5.1.1.2 INS3D-UP

To obtain time-accurate solutions using the artificial compressibility formulation,
the continuity equation must be satisfied at each time step by sub-iteration in
pseudo-time. In order to use a large time step in the pseudo-time iteration, an upwind
differencing scheme based on flux-difference splitting is used in combination with
an implicit line relaxation scheme. This removes the factorization error and the need
for specifying a numerical dissipation amount. To characterize upwind differencing,
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“-UP” was added to the code. After successful validation of this version, the code
has been used in most applications at NASA and other organizations.

Other variants of INS3D have been tried using the artificial compressibility
approach, including one called INS3D-LU. This code is mainly used to inves-
tigate the LU-SGS scheme for computing incompressible flow, as discussed in
Section 4.3.3. For spatial discretization, a finite volume scheme in conjunction with
either central or upwind differencing is implemented. An LU-SGS implicit algo-
rithm is employed for temporal discretization. Results for steady-state solutions are
compared with other codes in this chapter, but only for limited cases. For time-
accurate solutions, this code has similar characteristics to the original three-factored
scheme. INS3D-LU was created to investigate various algorithmic options, but has
not been much utilized in actual engineering applications.

5.1.2 Pressure Projection Code

5.1.2.1 INS3D-FS

A generalized flow solver based on a pressure projection method using a fractional-
step approach has been developed for time-dependent computations of the incom-
pressible Navier–Stokes equations. The governing equations are discretized conser-
vatively using a finite-volume approach on a staggered grid. Here, the discretized
equations are advanced in time by decoupling the solution of the momentum equa-
tion from that of the continuity equation. This procedure, combined with accurate
and consistent approximations of the geometric quantities, satisfies the discretized
mass conservation equation exactly in a discrete sense. The addition of “-FS” in
the code name represents the fractional step method implemented in the pressure
projection approach. As in the case of “-LU”, this version was primarily used to
compare different approaches.

5.2 Selection of Codes for Engineering Applications

Historically, many research versions of incompressible flow solvers have been
developed at Ames. Practically speaking, not all the results from those codes
can be presented here. Those benchmark problems presented are fundamental
fluid dynamics problems in nature. These problems are geometrically simple, and
approximations related to geometry and grid do not cause significant issues—so,
these problems offer good validation cases for characterizing algorithms and for
comparing the codes’ capabilities in predicting various flow features.

Based on our benchmark test runs and experience gained from other applications,
we have observed the following:

For obtaining steady-state solutions, the artificial compressibility approach
(INS3D-UP) is very effective. Combined with overset-grid topology, this approach
offers the greatest flexibility in modeling complex geometry problems.
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1. For obtaining time-accurate solutions, the artificial compressibility approach
with sub-iterations at the pseudo-time level works very well and offers great
flexibility in modeling complex geometry problems. Even though the implicit
sub-iteration is computationally expensive, since the method does not require
strict enforcement of a divergence-free velocity field in each time step, one can
advance the time without tight convergence in the continuity equation.

2. The pressure projection method (INS3D-FS) offers an alternative to the artifi-
cial compressibility code when the flow physics require a small time step. Even
though the pressure Poisson equation is expensive, when the time step is small,
iterations can be less expensive. Combined with multi-grid acceleration, this can
be a competitive approach.

3. In addition to benchmark problems, the INS3D-UP artificial compressibility
code has been used in engineering applications presented in Chapters 6, 7
and 8. The above observations are presented here first so that readers may
understand why we chose a particular solver in conjunction with applications
for engineering. Several basic validation cases will be presented next with some
detailed discussion.

5.3 Steady Internal Flow: Curved Duct with Square
Cross Section

The flow through a square duct with a 90◦ bend offers a good test case for a three-
dimensional Navier–Stokes solver. This flow is rich in secondary flow phenomena,
both in the corner regions and through the curvature in a streamwise direction.
Flow through this geometry was studied experimentally by Humphrey et al. (1977)
and Taylor et al. (1981, 1982), and extensive laminar flow data are available. This
particular geometry was used as a steady-state test case for both the artificial com-
pressibility and pressure projection methods discussed in Chapters 3 and 4. The
geometry is shown in Fig. 5.1; the Reynolds number of the flow is set to 790 based
on the unit length and average velocity, which is identical to the experimental cases
mentioned. The problem was non-dimensionalized using the side length, H, of the
square cross section.

Since the flow considered here is laminar, accuracy of the computed results in
this case depends primarily on the algorithm selected, including numerical dissipa-
tion associated with the procedure and grid resolution. For turbulent cases, issues
related to turbulence modeling have to be added to the uncertainties of the results.
Even in this seemingly simple example, the variations in the numerical results
coming from formulations and computational modeling are clear. Two aspects
affecting the computed results will be examined next; namely, grid resolution and
algorithm.

Next, we present the study on the effect of grid resolution from the work by
Rogers and Kwak (1989), where the INS3D-UP artificial compressibility code is
used. However, similar variations in numerical results can be observed with other
codes. For the inflow boundary condition, the velocity was specified to be that of
the fully developed, laminar, straight square duct (see White, 1974).
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Fig. 5.1 Geometry of a
square duct with a 90◦ bend,
with a grid of 31 × 11 × 11

The velocity is normalized by the average inflow velocity. The computed results
are compared to the experimental results of Humphrey et al. (1977). Three different
grids are used, each with dimensions of 31 × 11 × 11, 61 × 21 × 21, and 121 ×
41 × 41. The coarsest grid (31 × 11 × 11) is shown in Fig. 5.1. Both the straight
inflow section before the bend and the outflow section after the bend were set to
a length of five. Computational experiments (Rogers et al., 1991a) show that the
solutions are insensitive to the downstream boundary locations and conditions. As
shown in the figure, the radius of curvature for the inner wall of the bend is set to
be 1.8 units.

To study how the artificial compressibility affects the convergence, the 31 × 11×
11 grid problem is computed using β values ranging from 0.1 to 10,000. The con-
vergence of the maximum residual values is plotted against iteration numbers,
shown in Fig. 5.2a. The values of β, ranging from 1 to 100, leads to excellent
convergence. Therefore, for the remaining computations for this problem, the β
value of 10 is used.

The convergence history of three grid cases is compared in Fig. 5.2b. The max-
imum residual over all grid points vs. iteration number is plotted. The convergence
is shown to be very fast, although it is somewhat slower for the finest grid. It is
expected that finer grid takes longer to converge because the information has to
propagate through a greater distance in computational space.
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Fig. 5.2 Convergence rate for flow through a square duct with a 90◦ bend at Re = 790: (a) effect
of β on convergence on 31 × 11 × 11 grid; (b) using different grids with β = 10

Comparing computed results to experimental data brings up a question on the
location for plotting. Since secondary flow is generated through the bend, comparing
the results on one cross-section could exhibit misleading discrepancies, while over-
all flow quality is fairly well captured by the computations. This will be explained in
more detail later in this section. For the moment, computed results for two grids are
shown in Fig. 5.3 using velocity magnitude contours at the 90-degree cross section
at the end of the bend. As the figure shows, there is very good comparison between
the medium- and fine-grid solutions throughout most of this cross section. In par-
ticular, the location and value of the maximum velocity magnitude agree very well.
Some minor difference occurs in the swirling flow in the region close to the inner
wall where the flow is more dissipated in the medium grid compared to fine grid
solution.

The computed streamwise velocity profiles at various streamwise stations are
then plotted in Fig. 5.4. The plots on the left are from z = 0.25, which is halfway
between the x-y plane wall and the x-y symmetry plane. The right-hand side plots
are from the x-y plane at z = 0.5, which is the x-y symmetry plane. In both parts of
the figure, the profiles are shown at four positions in the curved section correspond-
ing to θ equal to 0, 30, 60, and 90◦. The symbols represent the experimental results,
and the lines represent computed results.

The results generally follow closely to one another. One exception to that general
trend is the formation of the second maximum in velocity on the inner wall side.
This second maximum is developed farther upstream in the computation than in the
experiment, causing discrepancy at the θ = 60◦ location in both plots. At the θ = 90◦
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Fig. 5.3 Velocity magnitude
contours for fine-grid (121 ×
41 × 41) and medium-grid
(61 × 21 × 21) computations
at θ = 90◦

location for z = 0.25 plot, three different maxima occur in the computations. Details
of the dynamics can be seen more clearly by observing the entire cross section
rather than from line plots alone. It would be even more illuminating if there were a
convenient way to observe the entire three-dimensional flow. A series of 2-D cross-
sectional views from the fine-grid computation, shown in Fig. 5.5, provides a better
picture for understanding these multiple peaks.

(a) (b)

Fig. 5.4 Streamwise velocity profile for flow through a square duct with a 90◦ bend at Re = 790:
(a) x-y plane at z = 0.25; (b) x-y plane at z = 0.5; r = 0 represents inner wall and r = 1 represents
outer wall
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Fig. 5.5 Velocity magnitude contour and cross-sectional velocity vectors at three sections for flow
through a square duct with a 90◦ bend at Re = 790

First, the high-velocity fluid moves toward the outside wall (Fig. 5.5a) as the
flow turns the bend, bringing some of this high-velocity flow toward the inner wall
(Fig. 5.5b), which later forms multiple peaks in velocity near the inner wall. Then, as
seen at the 90-degree location (Fig. 5.5c), the swirl has wrapped the region of higher
velocity around toward the middle. Therefore, any small change in flow conditions,
such as Reynolds number, grid resolution, and dissipation terms, can change the
magnitude and the exact location of this swirl. Even though the overall comparison
is quite satisfactory, some of the details can best be compared by viewing at least
the entire cross-sectional results, which also requires detailed measured data.

To further illustrate this point, the computed results on the square duct with a
90◦ bend by McConnaughey et al. (1989) is presented next. In their work, exten-
sive validation of the artificial compressibility method was performed using the
original version of INS3D. Utilizing the detailed inflow measurement by Taylor
et al. (1981, 1982), they investigated various aspect of the flow solver, including
a grid refinement study and a sensitivity study of the numerical dissipation terms.
Computed results on a 90◦ bend and an S-bend are extensively compared in the same
report.

From the grid resolution study using four successively refined grids, the finest
grid results are shown in Fig. 5.6, using grid dimension of 28 × 52 × 121 for
one-half height by width by length. The figure shows predicted axial flow contours
compared to experimental data, while Fig. 5.7 shows predicted radial flow contours
compared with experimental data. These contours on a cross-sectional plane illus-
trate how the numerical solutions can be compared with experiments. The flow field
details from the cross-sectional view shed more light than studying line plots alone.
At the final plane of data at +2.5H past the bend, the experimental data exhibit more
dissipation than that predicted by computations.

The source of this difference needs further investigation. However, this sug-
gests that computations can be performed for planning experiments. Overall, both
computations and experiments compare very well. As noted by those authors, the
square duct problem offers a good test case for validating secondary flow pre-
diction capability, even though the geometry is simple. Correct prediction of this
phenomenon can play an important role in engineering problems involving com-
plex internal flow geometry such as that encountered in advanced rocket propulsion
systems.
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Fig. 5.6 Predicted axial flow in a 90◦ bend (McConnaughey et al., 1989, using INS3D) compared
with the experimental data of Taylor et al. (1981)

We have presented how grid resolution and artificial compressibility affect the
quality of solutions, as well as the issue related to post-processing the results. As
explained in Section 5.1, three different flow solver codes have been developed
based on different algorithms and discretization. The performance of these three
approaches is compared in Fig. 5.8 using a medium grid resolution. As the figure
shows, results vary somewhat depending on differencing schemes and the smooth-
ing applied. Again, as explained above, the magnitude of differences in line plots
can be somewhat bigger than magnitude observed in contour plots. However, this
illustrates differences among codes that may be expected in practice. Quantification
of uncertainties or errors as illustrated here is a challenging issue, and generally
accepted criteria have yet to be developed.
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Fig. 5.7 Predicted radial flow in a 90◦ bend (McConnaughey et al., 1989, using INS3D) compared
with the experimental data of Taylor et al. (1982)

5.4 Time-Dependent Flow

For quantification of fluid dynamic characteristics such as forces and moments
on a vehicle, steady-state solutions are used. For practical applications, using
steady-state solutions as ensemble-averaged quantities is in many cases the most
reasonable approach in design and analysis. However, in many realistic situations,
flow becomes time dependent, either in transitional mode such as in impulsively
started flow or in unsteady fluctuating mode. For example, for the analysis of startup
conditions as encountered in an impulsively started vehicle and for determining
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(a) (b)

Fig. 5.8 Comparison of streamwise velocity distribution along (a) z = 0.25, and (b) z = 0.5

vibration load due to fluctuating flow, time-accurate computations are necessary,
which are much more expensive than steady-state computations—usually at least
one order of magnitude higher. For the purpose of validating the time accuracy of
the algorithms and processes discussed earlier, a few building block problems are
studied next.

5.4.1 Flow Over a Circular Cylinder

Flow over a circular cylinder has been of interest for many decades, as it offers
a full range of phenomena from laminar, periodic shedding of vortices, transition
to turbulent, and fully turbulent flow regimes (see Morkovin, 1964)—making it a
challenging problem for computational simulation. Computational studies of flow
over a circular cylinder began as early as the 1930s (e.g., Thom, 1933), and this
continues to be a popular subject.

In this section, an impulsively started circular cylinder at Re = 40 is first pre-
sented, followed by vortex shedding cases with higher Reynolds numbers up to
1,000. This represents a simple case for external flows, for the purpose of comparing
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artificial compressibility and pressure projection formulations without involving
transition and turbulence modeling.

For external flows in which the computational domain extends a large distance
from the body, the pressure waves originating from the body surface propagate into
the far field. Therefore, to obtain the near-field solution using only an artificial com-
pressibility code, the distance traveled by the waves and the spreading of vorticity
can be considered approximately the same in magnitude. The range of β in INS3D
can then be estimated based on this reasoning. For example, at Re = 40, if the vis-
cous region is taken to be approximately two diameters away from the body, one
can estimate the following range for β using 
τ = 0.1:

0.1 << β < 10

Physically, for external flows, the pressure wave can quickly travel a short dis-
tance to balance the viscous region close to the body. Therefore, the magnitude
of β is less restrictive than for internal flow cases such as in the channel flow
described in Chapter 4. Results from computations using this range of artificial com-
pressibility produce similar data found in the literature for steady-state computation
at Re = 40 (Kwak et al., 1986, INS3D). Far more extensive validation computa-
tions were performed at Re = 5, 10, 20, and 40 by Rogers and Kwak (1988) using
INS3D-UP, where computed data showed good agreement with experiments and
other computations (results not illustrated here).

To validate the time accuracy of the pressure projection method, the near-field
detail of transient flow for impulsively started circular cylinders at Re = 40 and
200 is computed using the INS3D-FS code (Rosenfeld et al., 1988; Rosenfeld and
Kwak, 1989). In Fig. 5.9, the computed time evolution of the separation length is
compared with experiments by Coutanceau and Bouard (1977). Also plotted are
the computed result by Collins and Dennis (1973). During the initial, short start-up
time period, the flow development is viscous dominated and both methods produced
equivalent results in capturing time accuracy (see Rogers et al., 1985, for INS3D-UP
results).

As the Reynolds number increases above 40, a non-symmetric wake develops
and periodic vortex shedding sets in. Both the artificial compressibility approach
(INS3D-UP) and pressure projection method (INS3D-FS) are validated using this
simple yet challenging problem. In Fig. 5.10, these computations are compared with
other numerical and experimental results.

The calculations using both codes were performed using an O-type grid clustered
near the body. To obtain time-accurate solutions from INS3D-UP, sub-iterations
were carried out at each physical time step. Starting impulsively from rest, over
20 sub-iterations were required during the transient phase. A non-symmetric wake
develops spontaneously, followed by shedding of vortices, without introducing any
artificial disturbance—probably due to biasing in the upwind scheme, which in turn
may have introduced enough disturbance into the flow field. When a central differ-
encing scheme is used (as in INS3D-FS), it is necessary to introduce asymmetric
disturbance to initiate the shedding within a reasonable time. This technique is
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Fig. 5.9 Time evolution of separation length for flow over a circular cylinder at Re = 40

consistent with the natural process where some sort of disturbances trigger vor-
tex shedding. Figure 5.10 plots a Strouhal number versus a Reynolds number from
computed results compared to experiments. Both methods produced comparable
solutions. The Strouhal number is perhaps relatively easier to predict. However, the
time accuracy of the code itself has been validated using other problems with exact
solutions (see Rogers and Kwak, 1990).

Fig. 5.10 Vortex shedding from a circular cylinder
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Fig. 5.11 Karman vortex street behind a circular cylinder at Re = 105: (a) computed result using
the artificial compressibility method (INS3D-UP code); (b) experimental visualization by Taneda
(see Van Dyke, 1982)

The staggered pattern of the vortex shedding known as Karman’s vortex street
has been a subject of many flow visualization studies. For the purpose of compari-
son, particle traces are generated from the time-dependent solution of flow around a
circular cylinder at a Reynolds number of 105 using INS3D-UP. Figure 5.11a shows
this computed vortex street, while Fig. 5.10b shows an experimental photograph of
the same conditions taken by Taneda in 1972 and reproduced from Van Dyke (1982).
The streaklines in the experiment are shown by electrolytic precipitation in water. As
can be seen, the vortex structure is very similar between the two. The experimental
picture is digitized and displayed on a workstation along with the computation-
ally generated flow visualization image. This example illustrates the potential of
using post-processing of the CFD results for studying fundamental fluid dynamics
phenomena.

5.4.2 Impulsively Started Flat Plate at 90◦

To further investigate various algorithm features of the two primary methods
designed for applications, namely the artificial compressibility method (INS3D-UP)
and the pressure projection method (INS3D-FS), an impulsively started flat plate at
90◦ to the flow direction is solved next. Even though the unsteady flow encountered
in two-dimensional problems does not encompass all the features observed in three-
dimensional problems, such as vortex stretching, current numerical experiments can
provide some basis for selecting methods for real-world applications.

Computed results from both of these methods are compared with the experimen-
tal data by Taneda and Honji (1971). The experiment has been carried out in a water
tank 40 cm wide, where a thin, 3-cm high flat plate was immersed. The flow started
from rest impulsively at the velocity u = 0.495 cm/s. The Reynolds number for this
case is 126 based on the plate height; the computational grid size is 181 × 81 in
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Fig. 5.12 Computational
grid for the impulsively
started flow past a 90-degree
flat plate: plate
thickness = 0.03 H, Reynolds
number based on plate height
= 126

the flow and vertical directions, respectively (Fig. 5.12). Recalling that INS3D-FS
is written in a finite volume staggered-grid formulation, one additional ghost cell is
required in each direction.

To visualize the time evolution of the flow, velocity vectors at various non-
dimensional times are plotted in Fig. 5.13. The flow separates at the edge of the
plate and forms a vortex pair. The twin vortices are elongated in flow direction as
time progresses. To quantify the time history, the separation bubble lengths from
computations and experiment (Taneta and Honji, 1971) are compared in Fig. 5.14.
The separation bubble length is defined in the figure. Computations using the artifi-
cial compressibility, pressure projection, and a finite element method (Yoshida and
Nomura, 1985) all produced very similar results.

Although the plate started impulsively in the experiment, it was started slowly
in the computation. Two different ways of starting the flow are used in the compu-
tations, as illustrated in Fig. 5.15. The computed results plotted in Fig. 5.14 used
a slow start procedure with the time interval of 0.5 s, which corresponds to a non-
dimensional time step size of 0.0825. For the finite element computations plotted in
the same figure, Yoshida and Nomura (1985) used the same slow start procedure.

Fig. 5.13 Computed velocity vectors at various non-dimensional times (INS3D-FS)
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Fig. 5.14 Computed time
history of separation bubble

The velocity profile for the slow start case is prescribed as shown in Fig. 5.15b and
the starting time of calculation is shifted to match that of the experiment.

Next, computed results using the INS3D-FS pressure projection code are pre-
sented in some detail. The effect of the starting procedure on the flow development
is shown in Fig. 5.16a. Measurable differences between the two procedures can be
seen in the resulting flows. In Fig. 5.16b, results using different time step sizes and
grid resolution are plotted. Increasing the spatial resolution does not improve the
results significantly, while decreasing the time step size improves agreement with
experiment.

For the artificial compressibility method using INS3D-UP, two important param-
eters affecting time accuracy are the artificial compressibility parameter, β (BETA),
and the number of sub-iterations at each time level to recover the incompressibility
condition. Two different β and sub-iteration numbers have been tested, as shown in
Fig. 5.17. Since a slow start produces more favorable results, as studied above, that
procedure is employed here.

This experiment shows the importance of satisfying incompressibility for time
accurate computations using the artificial compressibility approach. However, a
large number of sub-iterations can impose a heavy burden on computational
resources, in contrast to the small number of time steps required for the pressure
projection approach. In reality, one can limit the sub-iterations to a fixed number. In
that case, users have to determine the level of time accuracy needed for the analysis
at hand, in light of the available computing resources.

Fig. 5.15 Prescribed velocity
for an impulsive started (a)
and a slow start (b) procedure
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Fig. 5.16 Effects of starting procedure and time step size for pressure projection method (INS3D-
FS code)

5.4.3 Pulsatile Flow Through A Constricted 2-D Channel

The next validation cases are designed to test time accuracy for internal flow
using INS3D-FS and INS3D-UP, representing the pressure projection and artificial
compressibility methods, respectively.

5.4.3.1 Oscillating Wall

The first case is intended to model the large-amplitude self-excited oscillations gen-
erated when fluid flows through a collapsible tube, such as blood flow through a
vein. Stephanoff et al. (1983) and Pedley and Stephanoff (1985) performed a series
of flow visualization experiments in which the channel walls were rigid except for
the indented region. The length of an indentation is 10, measured by an unindented
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Fig. 5.17 Effects of starting procedure and effects of time step size

channel height as the reference unit length. The channel starts at a distance of 120
units upstream of the oscillating constriction and is 250 units long. The indentation
is made of a thick rubber membrane and is driven by a piston with a sinusoidal
motion in time and a maximum indentation of 0.38 units. At the beginning of each
cycle the indentation is flush with the wall of the channel.

A computational model for this experiment was constructed with the upstream
boundary placed at 5 units from the oscillating constriction and the downstream
boundary placed at 30 units from the upstream boundary. A grid for this model is
illustrated in Fig. 5.18, with the grid dimension of 31 × 251 in cross-stream and flow
directions, respectively. The grid in the indentation region stretches and compresses
linearly with the moving indentation. Every other grid point is plotted in the figure.
The shape of the indentation is approximated by a hyperbolic tangent, as suggested
by Pedley and Stephanoff (1985). The grid for the upstream side of the indentation
is much coarser compared to the downstream side, making the computational geom-
etry asymmetric. However, numerical experiments show that flow is insensitive to
the upstream geometry of the indentation, so the grid points are more clustered near
the downstream side of the indentation.

A fully developed flow profile is given at the initial and upstream boundaries.
At the downstream boundary, a non-reflecting condition is imposed. In Fig. 5.19,

Fig. 5.18 Grid for channel with an oscillating indentation
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Fig. 5.19 Comparison of
instantaneous streamlines at
t = 0.55, Re = 610: (a)
experimental results; (b)
computed results (INS3D-FS)

instantaneous streamlines from computations are compared to the experimental
visualization by Stephanoff et al. (1983) at the non-dimensional time of t = 0.55,
based on one period. The Strouhal number St = 0.038 and the Reynolds number
Re = 610 are based on the channel height and average velocity.

The first separation occurs downstream of the sloping wall, followed by a second
large eddy formed on the opposite wall with a secondary separation bubble buried
inside the primary bubble. A similar pattern of weaker vortex pairs repeats as flow
goes downstream. The computed separation length of the first eddy at the upper
wall is under-predicted compared to experiments. However, the distance between
vortices, which are related to the wavelength of the core flow, compare favorably.
Overall, the results are shifted about 0.4 units of the channel height.

To identify the cause of this discrepancy, we conducted a grid refinement study,
and applied the artificial compressibility code INS3D-UP to compute the same
case. Both produced almost identical grid-independent results. This indicates that
it is likely that the modeling of the experimental set up does not exactly match the
experimental conditions.

Evolution of the flow over one complete cycle is shown in Fig. 5.20 for Re = 600
and a Strouhal number, St = 0.057. The instantaneous streamlines are plotted at sev-
eral instances over one complete cycle of the indentation. The flow development
is very similar to that observed experimentally by Pedley and Stephanoff (1985).
At the beginning of the cycle, during which the indentation moves downward, the
downstream flow is accelerating and a single separation bubble forms on the sloping
wall behind the indentation, as shown in Fig. 5.20a. As time progresses, the sepa-
ration length increases and a second counter-rotating eddy appears on the opposite
wall downstream of the primary eddy, as shown in Fig. 5.20b. The flow field signif-
icantly changes during the second half of the period, when the indentation moves
upwards and causes deceleration of the flow downstream. A third eddy is formed at
the upper wall further downstream at t = 0.55, as shown in Fig. 5.20c. In the third
quarter of the period, the core flow becomes wavy and a series of eddies appear
along the walls. The amplitude of the core flow increases with time up to t = 0.75,
as shown in Fig. 5.20g, which corresponds to the maximum deceleration. During the
last quarter of the period, eddies shrink in size and strength and wash downstream.
By the end of the cycle, the residual eddies are quite small. and were found not to
affect the next cycle. Following the experiments by Pedley and Stephnoff (1985),
eddies are labeled alphabetically, as shown in Fig. 5.20d.



98 5 Flow Solvers and Validation

Fig. 5.20 Evolution of instantaneous streamlines computed using INS3D-FS: St = 0.55, Re = 600

It is difficult to understand the entire flow field dynamics of this case, especially
from a validation point of view. As a measure of validating time accuracy, the time
evolution of the center of vortices A, B, C, and D is plotted in Fig. 5.21. Computed
results from the two methods and experimental measurements are compared. Even
though this plot is somewhat qualitative, dynamics of eddies generally follow the
experimental trend. For full validation, a grid resolution study along with more
quantitative measurements will be necessary.

5.4.3.2 Oscillating Inflow

In the second case, we model pulsating flow through a constricted channel, such as
in the case of blood flow through stenosed arteries. The computational geometry is
consistent with the experimental setup of Park (1989), and is shown in Fig. 5.22. The
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Fig. 5.21 Time evolution of center of vortices

channel height is h and has been normalized to unity. The height of the constriction,
a, is 0.57, which is the distance from the top of the wall to the lowest point in
the constriction. The length of the channel upstream of the constriction is given by
Lu = 7. The length of the channel is Lc = 4.66 and the length of the straight channel
downstream of the constriction is Ld = 15.34 (Fig. 5.22).

The inflow boundary for the experimental setup was at 100 channel heights
upstream of the constriction. For computational efficiency, the boundary for the
inflow condition was placed at 7 channel heights upstream of the constriction. The
inflow boundary condition is designed to match with experiment (Rosenfeld et al.,
1991b). A parabolic profile was imposed and scaled to match the mass flow from
the experimental setup.

The inflow velocity profile is periodic and is given by the shape function given
in Fig. 5.23. This shape is defined analytically by:

U(t) = Us 0 < t / T < 1/2
U(t) = Us − Up sin(2π t

/
T) 1/2 < t / T < 1

Fig. 5.22 Computational model of 2-D constricted channel
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Fig. 5.23 Inflow velocity
versus time for one period

where Us is the non-dimensional steady component of the average velocity, Up is
the pulsatile component and T is the period. This wave form was created to represent
diastole and systole in a mammalian blood circulatory system and could generically
represent conditions encountered for modeling arteriosclerosis.

Since the wall geometry is fixed, this case offers an opportunity to compare the
two methods in achieving time accuracy. Both methods use pressure as a map-
ping parameter to obtain incompressibility after advancing each time step, and
the iterative processes are very similar. However, it is interesting to observe a
subtle difference between the artificial compressibility method (IS3D-UP) and the
pressure projection method (INS3D-FS). The former shows upstream propagating
waves from the downstream boundary, while the latter changes the pressure in time.
Figure 5.24 shows the evolution of pressure contours during the iteration process

(a) (b)

Fig. 5.24 Evolution of pressure contour during iteration within one time step at t /T = 0.5
using 
t/T = 0.01: (a) sub-iteration using INS3D-UP with β = 100; (b) Poisson iteration using
INS3D-FS
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(a) (b)

Fig. 5.25 Evolution of pressure contour for one period: computed results using (a) INS3D-UP,
and (b) INS3D-FS

for one time-step advancement. The plots are obtained from two separate computa-
tions and contours are not in the same scale. However, the two show the pressure
propagation phenomena qualitatively during the iteration within one time step.

To compare the time accuracy of results from the two methods, a train of vortices
propagating downstream from the constriction is plotted for one period. This com-
parison, as shown in Fig. 5.25, is qualitative, and also shows how the flow develops
as the vortices convect downstream.

One easily quantifiable physical result is the location of the center of the
B-vortex, defined to be the vortex along the bottom wall of the channel, as shown
in Fig. 5.26; it grows immediately behind the end of the constriction and is shed
downstream. The location of this vortex was examined as function of time. Results
from both the INS3D-UP and INS3D-FS methods are compared to the experimental
results. Both methods produce equivalent results and agreement with experiment is
good for t/T < 2.0, but deviates as it goes further downstream after t/T > 2.0. At that
point the vortex strength is considerably weaker than at the upstream location, and
thus the uncertainty of measuring the center of the B-vortex increases. This suggests
that more precise measurements can be useful for validating the time accuracy of
these numerical methods and simulation procedures.

5.4.4 Flapping Foil in a Duct

In this section, the time-accurate procedure of the artificial compressibility method
described in Chapter 4 will be validated using a flapping airfoil problem. This next
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Fig. 5.26 Location of B-vortex as it goes downstream in time

validation case has been selected to represent time-dependent flow generated by
bodies in motion relative to stationary components—a class of unsteady flow often
encountered in engineering. For example, the next generation of fluid engineers
may be required to analyze advanced components such as high-lift devices, marine
propulsion systems, turbopumps in liquid-propellant rocket engines, and mechanical
heart valves and assist devices. These advanced devices are likely to require more
efficient and simpler designs with lower manufacturing costs. Accurate and detailed
knowledge of the flow field obtained by unsteady flow calculations can greatly help
designers to reduce cost and improve the reliability of such advanced systems. In
addition to geometric complexities the challenges in these numerical simulations
include turbulent boundary layer separation, wakes, transition, tip vortex resolution,
Reynolds number effects, and moving boundaries.

An ideal validation case for the time-accurate artificial compressibility method
was presented by the Office of Naval Research (ONR) and Massachusetts Institute
of Technology (MIT) at the Unsteady Flow Workshop held March 29–30, 1993.
The ONR/MIT designed a flapping foil experiment (FFX) as a two-dimensional
representation of the interaction between the propeller blade and wake flows. One
purpose of the experiment was to provide detailed experimental data to be used
to evaluate computational methods for marine propulsors. At the ONR/MIT work-
shop, the computed results obtained by various research groups were compared with
experimental measurements. The flappers in the FFX generate high frequency peri-
odic wakes, which impose an unsteady loading on the stationary foil. In addition to
the complexity of the flow physics, the numerical simulation of the FFX requires
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proper domain decomposition and moving boundary procedures. This makes the
FFX a good validation case for a time-accurate numerical procedure. Kiris et al.
(1994a) reported time-accurate computations using the artificial compressibility
approach. Key features of that report are summarized here, from a validation
perspective.

5.4.4.1 Experimental and Computational Models

A schematic of the experimental setup is shown in Fig. 5.27. The stationary foil,
which has an 18-inch chord and a 1.18-degree angle-of-attack, represents a pro-
peller blade embedded in the wake generated by upstream pitching foils. The
upstream flapping foils are NACA 0025 foils of 3-inch chord. The flappers per-
form synchronized sinusoidal motions of 6-degree amplitude at a reduced frequency
of 3.62.

The flappers in the FFX generate periodic wake, which imposes an unsteady
condition on the stationary foil. Velocity and pressure measurements at a Reynolds
number (based on the stationary foil chord and the in-flow mean velocity) of
3.7 × 106 were taken on and around the stationary foil inside the measurement
box shown by the dashed line in Fig. 5.27. The measurements in this box are given
to provide the upstream, downstream, and outer boundary conditions for calcula-
tions of the stationary foil alone. Since the purpose of the current numerical study
is to investigate the moving boundary capability, the computational model includes
the entire domain shown in Fig. 5.27, where experimental inflow and exit conditions
are provided for computation.

Various grid topologies are created for computations, and the computed results
obtained from a time-accurate artificial compressibility formulation are compared
with the experimental data. To simulate the entire configuration, two commonly
used grid topologies in structured-grid approaches are tested, i.e., multi-block
patched and Chimera overlapped grids.

Fig. 5.27 Schematic of MIT flapping foil experiment (FFX)
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Fig. 5.28 Multi-block patched grid topology for the flapping foil computation

A multi-block patched grid topology applied to the FFX geometry, shown in
Fig. 5.28, consists of four H-grids. The patched grids are point-wise continuous at
the zonal boundaries, and the interfaces have two points of overlap. Each grid has
the dimension of 319 × 63, resulting in a total number of grid points of 80,388.
Alternate grid lines were plotted in all grid-related figures in this section. Grid 1
covers the region between the lower tunnel wall and the lower flapper surface; grid
2 extends between the upper surface of the lower flapper and the pressure side of the
main foil; grid 3 is located between the suction side of the main foil and the bottom
surface of the upper flapper; and grid 4 extends between the top surface of the upper
flapper and the upper tunnel wall.

The advantage of a multi-block patched grid scheme is that the grids remain
point-wise continuous as the bodies move, avoiding any interpolation error at the
interface boundaries. However, the grid does have to be regenerated at each physical
time step to account for the flapper motion. For the FFX, the interface boundaries
between zones move up or down with the flappers and each zone contracts and
expands during the cyclic motion.

An alternative to the multi-block patched grid scheme is the Chimera overlapped
grid scheme. The overlapped grid topology for the FFX is shown in Fig. 5.29a. An
H-grid with a dimension of 253 × 191 (Grid 1) occupies the water tunnel without
considering the foils. Three C-grids are generated for the foils and are overlapped
with the tunnel grid. Grid 2 is generated for the stationary foil with a grid dimen-
sion of 337 × 61. Grids 3 and 4 wrap around the flappers with grid dimensions of
215 × 40 each; these rotate with the flappers. The total number of grid points for
this grid system is 86,080.

The advantage of the overlapped-grid scheme as a moving boundary procedure
is a simplified grid-generation procedure. For the FFX, the grids are generated,
then the flapper grids are rotated relative to the tunnel grid. However, additional
numerical boundary conditions and the data management for time-dependent inter-
polation stencils are introduced. The overlapped grid regions in the near field of
the flapper and in the near field of the stationary foil leading edge are plotted in
Fig. 5.29b.

The individual grids receive information from each other by interpolating the
dependent variable. The grids around the foils have outer boundaries overlapping
the interior region of the tunnel grid, which has an interior boundary surrounding a
hole. A hole-point is a mesh point that is removed from the solution procedure. The
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(a)

(b)

Fig. 5.29 (a) A Chimera overlapped grid topology for the flapping foil computation;
(b) Overlapped grid in the near field of the stationary foil and the flapper

immediate neighboring points of the hole-points, called “fringe points,” are updated
from the interpolation procedure. For all computations presented in this section, two
layers of fringe points are used for interior and outer boundaries. The interpolation
of data between the flapper grid and the tunnel grid is time dependent, while the
interpolation of data between the stationary foil grid and the tunnel grid remains
steady in time.

The major differences between the patched and overlapped grid approaches are
the amount of effort required to generate the time-varying grids and the amount
of computation required for interpolation between zonal boundaries. Generating
the time-varying patched grid system for the FFX using the elliptic grid genera-
tor requires an order of magnitude more work than that required to generate the
overlapped grid system and the interpolation database. The overlapped grid sys-
tem provides the flexibility of choosing grid topologies since the grids do not have
boundary constraints. Therefore, the C-type hyperbolic grids can be easily used
around the foils, in which very fine grid resolution is required near the boundary
layer. The patched grid system designed for the FFX requires use of the H-type grid
with constraints at the boundaries. The elliptic grid generator was used for these
H-grids. Obtaining the preferred grid density near the boundary layer is the most
time-consuming part in this procedure, and this process has to be repeated at every
boundary movement.
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Fig. 5.30 Composite grid
topology for the flapping foil
computation

The third grid topology studied is illustrated in Fig. 5.30. This composite grid
combines both patched and overlapped grid schemes. Three H-grids (grids 1, 3
and 4) are patched around the flappers. A C-grid is generated around the station-
ary foil (grid 2), and a hole is cut in grid 1 to accommodate this stationary foil.
Grids 1 and 2 communicate with each other through the Chimera interpolation pro-
cedure. The total number of grid points for this composite grid system is 77,932; the
grids dimensions are 255 × 99, 337 × 61, 255 × 63 and 255 × 63, for grids 1, 2, 3,
and 4, respectively.

5.4.4.2 Computed Results

We have compared the computational procedures for obtaining both steady-state
and time-accurate solutions using these three grid topologies.

Steady-State Solutions

Because experimentally measured data was available for steady flow with station-
ary flappers with 0◦ angle of attack, we first carried out steady-state calculations
to validate the computational procedures not involving moving grid. The artificial
compressibility coefficient, β, is set to be 10 for all computations in this section.

In Fig. 5.31, the measured and calculated static pressure coefficient, Cp, on the
stationary foil surface, are compared. Symbols represent the experimental measure-
ment. Computed results using three different grid topologies are compared: the
dashed line represents the patched grid results; the solid line represents the over-
lapped grid results; and the chain-dotted line represents the composite grid results.
All results compare well with the measured data. The composite grid system Cp
results are nearly identical to the overlapped grid results.

Total velocity magnitude contours from the overlapped grid calculations are
shown in Fig. 5.32. The wakes from the stationary foil and the flappers are clearly
seen. Contours obtained from two different grids in the overlapped regions match
quite well, indicating that the solution has been converged.

The convergence history for this case is shown in Fig. 5.33. Converged solutions
were obtained after 250 iterations. Very similar convergence behavior was observed
for all grid topologies. Even though the results did not change significantly after
250 iterations, the computation was continued to 600 iterations in order to verify
the convergence characteristics. The solid line in Fig. 5.33 shows the history of the
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Fig. 5.31 Steady-state pressure coefficient (Cp) distribution on the stationary foil

maximum residual of the flow equations. The dashed line shows the history of the
maximum of the divergence of velocity, and the chain-dotted line shows the history
of the RMS of the Baldwin–Barth one-equation turbulence model (1991). This result
indicates that all three measures of convergence behave in a similar fashion.

In Fig. 5.34, the velocity profiles on the suction side boundary layer region of the
stationary foil at the streamwise station of x/c = 0.612 are plotted. These streamwise
velocity plots compare the effects of grid resolution for three different grid topolo-
gies. The dashed and chain-dashed lines represent the results from the patched grid
system, in which each zone has an H-type grid. The elliptic grid generator used
for this grid does not provide the capability to control the grid spacing exactly at
the solid wall boundary. Even though spacing on the order of 10–5 was specified as
input to the elliptic grid generator, the resulting wall spacing was typically on the
order of 10−3. As a result, the grid resolution near the stationary foil wall is poor in
this calculation. The velocity profile shown with the dashed line does not compare
well with the experimental data.

In order to improve the grid resolution near the wall region, grid points near the
wall are prevented from moving away from the wall in the elliptic grid generator.

Fig. 5.32 Total velocity magnitude contour for steady-state solution
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Fig. 5.33 Convergence history for the overlapped grid topology

The result from this modified grid is shown by the chain-dashed line. Although the
velocity profile shown with the chain-dashed line is improved compared to that of
the dashed line, it still does not compare well with the experimental data.

Next, we performed the overlapped grid computations for the three levels of grid
density. The total number of grid points for the coarse grid system was 38,607
with grid dimension of 127 × 96, 337 × 35, 215 × 34, and 214 × 34 for the

Fig. 5.34 Velocity profile on
the upper surface of the
stationary foil at x/c = 0.612
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Fig. 5.35 Velocity profile on the upper surface of the stationary foil

four regions. The total number of grid points for the finest overlapped grid sys-
tem was 97,480 with the grid dimensions of 253 × 191, 337 × 91, 215 × 43, and
215 × 43 for the four regions. The dotted line in Fig. 5.34 represent overlapped
grid results from the coarse grid. The grid spacing near the wall for the coarse
grid is 2.5 × 10−4. The overlapped-grid result using the coarse grid (dotted line)
shows better agreement with the experimental data than the patched grid results.
The solid line represent the result obtained by using the finer grid system, and the
dashed line with the x-symbols represent the result obtained by using the composite
grid topology. The grid spacing near the stationary foil wall for these fine grids is
5.0 × 10−5.

Both velocity profiles are virtually identical and compare fairly well with the
measured data. These calculations using a C-type hyperbolic grid for the stationary
foil show the flexibility of the overlapped grid approach, compared to the patched
grid approach with an H-type grid over the stationary foil. The amount of work in
generating the H-type elliptic grid increased when the grid resolution in the bound-
ary layer region was increased. Therefore, computation results presented in the
remainder of this section are primarily based on the overlapped grid computations
and the composite grid topology.

Figures 5.35, 5.36 and 5.37 show the velocity profiles at several streamwise
locations on the surfaces and at the stationary foil wake. Symbols represent the
experimental measurements and the solid lines represent numerical results obtained
by using the overlapped grid topology. The velocity profiles from the composite
grid topology are not included here, as they are virtually identical to overlapped
grid results (see Fig. 5.34).

Overall, the computed results compare very well with the measured data at
the boundary layer and at the wake of the stationary foil. The largest discrepancy
between the computed results and the measured data is seen in the wake of the foil
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Fig. 5.36 Velocity profile on the lower surface of the stationary foil

(x/c = 1.2). The velocity at the edge of the wake is over-predicted with less than a
couple of percentage points in error range.

To ensure that the steady flow results are grid independent, additional compu-
tations were performed. The order of accuracy for convective terms in coarse grid
calculations was increased from third-order to fifth-order flux difference splitting.
The third-order coarse grid result is indicated by the dashed line and the fifth-order
coarse grid result is indicated by the chain-dashed line in Fig. 5.38. The solid line
and the dotted line with x-marks represent the fine grid third-order and fifth-order
results, respectively. The wake from the fine grid computations clearly shows better

Fig. 5.37 Velocity profile on the wake of the stationary foil
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Fig. 5.38 Velocity profile in
the wake of the stationary
foil: at x/c = 1.20

agreement with the measured data than the coarse-grid results. Note that the over-
shoot occurring at the edge of the wake in the third-order results does not occur in
the fifth-order results.

In the finest grid computations, the base grid for the stationary foil was refined
by increasing the number of grid points from 61 to 91 in the normal direction. The
velocity profile from the resulting finer grid (91K points total) with third-order differ-
encing is plotted with the chain-dotted line. This fine-grid result is very similar to the
base grid result (86K grid points), indicating that this is close to a grid-independent
solution and that 86K-point grid will provide adequate resolution for the unsteady
calculations.

In fact, the difference between the 86K and the 97K grid results is less than the
oscillations in the measured data. Note that there is a rather large difference between
the measured and computed wake edge velocities. Since this edge velocity is shown
to be grid independent, it is thought that the experimental data used an erroneous
value for the reference velocity. In addition, all computed results have the same
velocity magnitude at the edge of the wake, and fine grid results are self-consistent.
For these reasons, the result shown with the solid line in Fig. 5.38 is considered
to be a grid-independent solution. Validation of the time-dependent procedure is
presented next.

Time-Dependent Solutions

The converged steady solutions were used as the initial conditions for the unsteady
calculations. The motion of flappers was specified as pitching about the mid-chord
point described by α = αm sin (ωt), where t is time αm is 6◦ and ω = 2 kU∞

/
c is

the angular velocity. Here, U∞ is the reference velocity specified as 20.62 ft/s and
c = 18 inches is the stationary foil chord. The reduced frequency, k, is 3.62 based
on c/2. In all unsteady calculations, one cycle of the flapping foil period consisted
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of 192 physical time steps, which corresponds to a discrete non-dimensional time
step of 4.53 × 10−3. We chose a time-step size that is small enough so moving
mesh points in the overlapped grid system do not move more than one cell in a
neighboring grid during one time step. At each physical time step, the maximum of
non-dimensional divergence of velocity was dropped below 10−2 for all zones. This
required 15−40 sub-iterations during each time step. Numerical tests indicate that
reducing the divergence of velocity further does not have measurable effects on the
solution accuracy. The pseudo-time step was taken to be the same value as physical
time step. The artificial compressibility coefficient, β, was set to 10. The periodic
solution was obtained for both grid topologies after six flapping cycles.

Figure 5.39 shows the total velocity magnitude contours at a non-dimensional
time of t/T = 0.25 a. Here, T denotes the period of the flapping motion. This quali-
tative comparison shows that the results obtained from two different grid topologies
are very similar. The unsteady wake using the composite grid shows slightly more
detailed features compared to the results using the overlapped grid. Since the grid
boundaries are located in the middle of the oscillating wakes, we found it easier to
increase the grid resolution using the patched grid. However, the difference between
the two results is not easily recognizable from the contours. The quantitative
comparison between the two, along with the experimental data, is presented next.

The mean Cp distributions on the stationary foil surface from the unsteady calcu-
lation are plotted in Fig. 5.40. The symbols represent the experimental mean values,
the solid lines represent the overlapped grid results, and the dashed lines represent
the composite grid results. The computed mean Cp values compare very well with
the experimental measurements, except that there is a slight over-prediction at the
60% chord location on the pressure side of the foil. The mean Cp values from two
different grid topologies are practically identical.

Fig. 5.39 Instantaneous
velocity magnitude contours
at t/T = 0.25
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Fig. 5.40 Mean Cp
distribution on stationary foil
from unsteady calculations

In Fig. 5.41, the time history of Cp values on the stationary foil is compared with
experimental data at several streamwise locations. The Cp values obtained from
both grid topologies show a very similar time history and compare fairly well with
the measurement. The biggest discrepancies are seen on the pressure side of the foil
at streamwise location x/c = 0.611, where Cp is over-predicted, and on the suction
side of the foil at streamwise location x/c = 0.972, where Cp is under-predicted.
This is consistent with the mean Cp distribution in Fig. 5.40. The major difference
between the two computed results is that overlapped grid topology produces higher
frequency oscillations compared to the composite grid approach. It should be noted
that the grid movement and the resulting interpolations required in grid boundaries
are quite different between the two grid topologies.

In the overlapped grid, as the flapper grids rotate they move through a relatively
coarse region in the tunnel grid. This mismatch of the grid resolution between the
two overlapped regions can lead to interpolation errors. Considering that different
hole points are being cut at each time step while unsteady wakes from flappers
continuously move through the region, it is difficult to obtain the same degree of
accuracy between the two grids in the overlapped grid topology. In the composite
grid system on the other hand, the mesh points in the tunnel grid move with the
flappers, which maintains relatively fine grid resolution in the near wakes of the
flappers. The FFX problem would offer a good test case for validating any improved
correction schemes in the overset grid arrangement.

The sensitivity and importance of the boundary interpolation scheme for the
composite grid approach are illustrated next. In Fig. 5.42, the effect of interpola-
tion is shown when computing previous time level data for newly created fringe
points. The time history of Cp on the suction side of the foil at streamwise location
x/c = 0.810 is reported for the composite grid computation. The symbols represent
the experimental measurements.
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Fig. 5.41 Time history of Cp at various streamwise locations of stationary foil
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Fig. 5.42 The effect of
updating boundary points in
the overlaid moving regions
of the composite grid system

The different procedures for updating previous time level data at the fringe
points are compared in Fig. 5.42. Since, in the present computations a second-order
three-point backward differencing scheme is used for time discretization, infor-
mation at time levels n and n–1 is needed to advance to the n+1 time-level. When
a hole-point becomes a fringe point due to moving boundaries, this fringe point
does not have any information from the previous time levels. One way to obtain the
previous time level data is to interpolate the variables from the donor grid (as it is
done for the current time level information). The result obtained by this procedure
is plotted by the dashed line in Fig. 5.42. This shows that very large amplitude
errors occur in the computations.

The source of these fluctuations can be found in the interpolating procedure. The
previous time-level data for the new fringe points is obtained by using the interpo-
lated database at the current time level. However, the grid point locations from the
previous time-level should have been used. Using the current time-level database for
these points results in incorrect interpolation coefficients and incorrect donor points.
When this error was corrected the computed Cp value shown by the solid line in
Fig. 5.42 was obtained. When the previous time-level data is not available for the
newly created boundary points, the time integration for these points is changed to
first-order. The time differencing in the next time step will be second-order back-
ward differencing because the previous time-level information has been established
from the current time-step calculation.

The present flapping foil example illustrates the issues encountered in actual
simulations—especially when bodies of relative motion are involved. The fidelity
of computed results depends not only on algorithm and geometry modeling but also
on computational procedures like interpolation schemes between grids. These are
realistic issues users of CFD tools need to resolve when dealing with real-world
simulations. In addition, physical modeling plays an equally, if not more important
role in computing a wide range of flow regimes. Some of these features are discussed
further in later chapters, in conjunction with examples.
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5.5 External and Juncture Flow

The flow around a cylinder plate or a wing-body juncture produces interesting
viscous phenomena due to the interaction between the boundary layer from the plate
and viscous layer from the cylinder. The 3-D separation of the boundary layer and
subsequent formation of the so-called horseshoe vortex and its development is very
challenging to analyze both experimentally and numerically. This juncture flow
can occur in many practical engineering problems. Flow around a wing-fuselage
junction and around an appendage submarine body are just two examples, and
the flow near the end-wall of turbomachinery blades might be one of the most
complicated juncture flow problems in engineering. One major motivation for
studying this type of juncture flow is related to the flow analysis of the Space
Shuttle main engine (SSME), which will be presented in detail in the next chapter.
In the SSME, liquid oxygen (LOX) posts are densely packed in the main injector
region. Even though a single cylinder-plate flow is an extreme idealization of the
flow in the actual oxygen-post region in the SSME, validating the computational
procedure in this simplified model problem is of considerable value in extending the
simulation procedure to realistic cases where detailed experimental measurements
are very difficult and scarce.

5.5.1 Cylinder on a Flat Plate

Most of the earlier studies on cylinder/flat plate juncture flow have been experi-
mental. Baker (1979) shows that laminar juncture flow is confined to a very limited
region. A similar result was obtained later by Thomas (1987). Eckerle and Langston
(1986) reported a single primary vortex and saddle point contrary to multiple vortex
systems observed earlier by other researchers. Interpretation of the phenomena also
varies (Thomas, 1987; Peake and Tobak, 1980).

Computational simulation of these flows involves distinctively different features
from those of external aerodynamics. For instance, the thickness of the viscous layer
for these types of flows is of the same order as the characteristic flow-field dimen-
sion, while the viscous region tends to be confined in a thin layer near the body
for external flows. Realistic juncture flows under an internal flow environment are
likely to have a large amount of deflection, as in the case of LOX post regions
in the SSME. Several numerical studies on this flow have been attempted. Kaul
et al. (1985) reported a numerical study on a single cylinder-plate flow using the
INS3D code. Highlights of this and other studies were reported by Kwak et al.
(1986). Independently, Kiehm et al. (1986) reported a numerical study of flow
around a single post in a channel. These computational results show qualitatively
similar phenomena. Several representative results using INS3D are summarized
below.

In Fig. 5.43a, the computational domain for a single post on a flat plate is illus-
trated. The upstream boundary layer thickness is varied by using partially and fully
developed channel flow profiles. The convergence characteristics of the flow solver
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Fig. 5.43 Flow around a
single post on flat plate at
Re = 1,000 using the artificial
compressibility method
(INS3D code): (a) grid; (b)
convergence history

are shown in Fig. 5.43b by the history of RMSDQ, which denotes the root-mean-
square value of the change per iteration in the pressure and velocities. The three
curves in the figure show three variations of the INS3D code; namely a block
tri-diagonal, a diagonal version with second-order implicit smoothing terms, and
a diagonal version with fourth-order implicit smoothing terms, as explained in
Chapter 4. The flow solver converges quickly to about four orders of magnitude
reduction in RMSDQ. The computing time per iteration per grid point is 91 μs for
the block tri-diagonal version and 32 μs for the diagonal version of the code. These
timings were based on computations performed on the Cray 2 supercomputer in the
early days of high-end computing.

In Fig. 5.44, particle traces for a single post at Re = 1,000 are shown. A sad-
dle point separation and a horseshoe vortex can be seen from the traces near the
flat plate. The secondary flow in front of the cylinder wraps around toward the
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Fig. 5.44 Particle traces for a single post on a flat plate at Re = 1,000

wake region and forms a counter-rotating pair of vortex filaments. These spiral-
ing twin vortices demonstrate a striking difference between this type of juncture
flow and a 2-D cylinder. The vortex filaments are washed upward and attenuate
as they interact and move downstream. In reality, vortex shedding and possible
unsteady motion take place at this stage. These tornado-shaped vortices are very
difficult to observe experimentally, and validation of this phenomenon was very
much needed in the 1980s. G. Schewe (1985, private communication, DFVLR, West
Germany) produced oil flow visualization around a single post that shows clear evi-
dence of the twin vortex behind the cylinder, as shown in Fig. 5.45 (special thanks to
Dr. G. Schewe for providing this picture). This experimental observation is qualita-
tively similar to the computed results, shown by the particle traces in Fig. 5.44. This
juncture flow structure will lead to a strong variation in skin friction and pressure
along the cylinder, and hence significantly affects the overall loading on the post.

5.5.2 Wing-Body Junction

Wing-body flow has been of interest for resolving juncture flow and tip vortex roll-
up and propagation. At the junction region, the flow has similar characteristics to the
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Fig. 5.45 Oil flow
visualization around a single
post at Re = 1.85 × 105

(G. Schewe, DFVLR, 1985)

cylinder on a flat plate shown above. Wing-body juncture flow has been of interest
to airplane designers in resolving the wing-fuselage area that is close to high-lift
devices. For naval hydrodynamics, wing-body is a generic case for a submarine
hull-appendage flow, and thus provides a good validation case for CFD procedures
to be used for the entire submerged vehicle.

5.5.2.1 Wing-Body Juncture Flow

An example case of a wing on a flat plate is discussed next. The results pre-
sented were obtained by Burke (1989). Numerical results were obtained by applying
INS3D and comparing them with the experimental data of Dickinson (1986). The
wing is a hybrid shape consisting of a 1.5:1 elliptic nose and a NACA 0020 tail
joined at the location of maximum thickness. This is a generic configuration char-
acterizing a wing-fuselage juncture of an aircraft or a hull-appendage juncture of
ships or submarines. The Reynolds number of the experiments, based on the chord
length of the wing, is 5 × 105. The coordinate system is shown in Fig. 5.46.

Turbulence modeling for this type of complex flow is very challenging. A high-
level turbulence model may be necessary for detailed study on the juncture flow
itself. Since our study was done in preparation for extending the flow solver to more
realistic applications, computing efficiency was of major importance. Therefore, the
computational simulation was done by devising a simple algebraic turbulence model
derived from Patankar et al. (1979). Considering the simplicity of the turbulence
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Fig. 5.46 Coordinate system
for the wing-flat plate study

model, the results compare quite well with experimental data capturing important
features of the flow. Some of the results are reproduced here.

In Fig. 5.47, surface pressure on a flat plate near the wing is compared with
experiments while, in Figs. 5.48 and 5.49, velocity contours at two different ver-
tical planes are shown. Overall, the computed results compare favorably with the
experimental data. However, in this numerical experiment, some flow details close
to the juncture region are not studied. Also, the Reynolds number for realistic cases
is orders of magnitude higher than the current laboratory experiment, requiring fur-
ther validation. Since the wing has a finite height, another aspect to consider is the
wing tip vortex effect, especially in the wake region. A wing tip vortex roll up and
propagation is presented next.

5.5.3 Wingtip Vortex Flow

The wingtip vortex flow has been of interest in many areas of fluid engineering, and
its significance has been seen in many practical problems. For example, tip vortices
generated by wings of large aircraft have been known to affect other aircraft fol-
lowing closely behind. In rotorcraft aerodynamics, interaction of the tip vortex and
blade can directly affect the aerodynamic performance of the vehicle and can cause
substantial vibration under some flight conditions. On ship propellers or submarine
propulsors, the tip vortex is of great concern in conjunction with cavitation inception
and wake propagation (see, for example, Arndt and Maines, 1994). In liquid rocket
propulsion, tip vortex and cavitation generated from turbopump blades can be very
damaging to the pump, as well create system-level vibration.

Although there has been a great deal of tip vortex work in the form of theoretical,
experimental and computational studies, the current understanding of the intricacies
of this flow is still not very comprehensive. General characteristics of tip vortex
formation are well known; however, the details of their formation, initial roll-up,
and downstream development is still a subject of research.
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Fig. 5.47 Pressure on flat
plate along y = constant at
Re = 5. × 105

Fig. 5.48 Velocity contour for wing on flat plate at x/c = 0.18 and Re = 5. × 105: (a) experiment
(Dickinson, 1986); (b) computation (Burke, 1989: INS3D)

5.5.3.1 Experimental-Computational Validation Approach

Computational studies on tip vortex formation and propagation have been per-
formed perhaps most extensively in conjunction with rotorcraft aerodynamics.
Inaccuracies in computational studies can be attributed to computational procedures
and physical modeling. Accurate modeling of tip vortices requires resolution not
only of the viscous boundary layer region, but also certain areas with high flow gra-
dients such as the core of the vortex region. Sufficient grid density and appropriate
distribution are essential. The inaccuracy caused by poor grid resolution manifests
itself in the form of excessive numerical dissipation. Thus, use of a high-accuracy
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Fig. 5.49 Velocity contours for wing on flat plate at x/c = 0.75 and Re = 5. × 105: (a) experiment
(Dickinson, 1986); (b) computation (Burke, 1989: INS3D)

scheme can be very helpful. The flow field generated by the tip vortex is highly
three-dimensional and can be highly turbulent, or can be dominated by inviscid
dynamics, as in the wake region.

A computational capability for predicting a detailed flow field, especially the
rollup of the tip vortex, is of interest for validating computational procedures, as well
as for assessing turbulence models being used in conjunction with production codes.
For the purpose of studying tip vortex details, a low-speed experimental study was
performed by Chow et al. (1991) and Zilliac et al. (1993) at NASA Ames Research
Center. The experimental setup is shown in Fig. 5.50. Even though the test was
performed with air, the flow speed is low in the incompressible regime. Therefore,
the experimental results from this study have been used to validate incompressible
flow solvers we discussed earlier.

Fig. 5.50 Experimental model: (a) 32-inch × 48-inch low-speed wind tunnel at NASA Ames
Fluid Mechanics Laboratory; (b) NACA 0012 wing with round tip, Re = 4.6 × 106, α = 10◦
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The flow domain includes a rectangular wing with a NACA 0012 airfoil section
and a rounded wing tip. The wing has an aspect ratio of 0.75 and is mounted inside
a wind tunnel at 10◦ angle of attack. The flow is turbulent with a Reynolds number
of 4.6 million based on the chord length. Both the artificial compressibility code,
INS3D-UP, and the pressure projection code, INS3D-FS, are used to study the roll-
up of a vortex in the tip region and the near-field propagation behind the trailing
edge.

5.5.3.2 Geometry

The full computational geometry is a close approximation to the 32 inch × 48
inch low-speed wind tunnel and wing setup, as discussed above. Two major fac-
tors affecting the accuracy of the computation are numerical errors primarily due to
approximation from discretization and lack of grid resolution, and turbulence and
transition modeling. Adequate grid resolution is especially important not only for
the viscous boundary layer region but also for the region with high flow gradients,
such as the vortex core and near-wake region. Sufficient grid density and appro-
priate distribution are essential. Our initial calculations indicated that an extremely
fine mesh is required to resolve the tip vortex flow field. Consequently, a subset
of the full geometry problem is devised that only includes the wake region. This
enables extensive study of several contributing factors to the accuracy of computed
results, such as grid refinement, discretization effects, and sensitivity to turbulence
modeling.

(i) Wake-only Problem
The computational domain for this problem includes the region from the trail-
ing edge to 0.69c downstream of the trailing edge. The experimental velocity
profile in a cross-flow plane at the trailing edge of the wing was imposed at
the inflow of this wake model. The inflow boundary condition for the pressure
was computed based on the method of characteristics using one-dimensional
Riemann invariants. An experimental pressure distribution is prescribed at the
exit boundary. The velocity components at the outflow were calculated by using
one-dimensional Riemann invariants. This information is not what one usually
has available in numerical simulations. For this study, however, the boundary
conditions are set up to resolve vortex roll-up on the wing surface and sub-
sequent propagation in the near field with minimum influence of boundary
procedures.

(ii) Complete Geometry Problem
The computational domain for the complete geometry case includes a rectangu-
lar half-wing with a NACA 0012 airfoil section and rounded wing tip, as shown
in Fig. 5.50. No slip boundary condition is imposed at the solid surface, and
the normal pressure gradient is set to be zero. The inflow and outflow boundary
conditions are prescribed in the same manner as for the wake-only problem.
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5.5.3.3 Grid

Several different grid generation strategies can be selected, depending on the flow
solver to be used. In the present validation, a single grid topology is chosen for
the entire wing region with an optional embedded grid for the vortex core region.
This will minimize grid-related error. However, in more realistic problems involv-
ing complex geometry, generating single-zone grids may not be straightforward.
Multiple zones, possibly with overlapping regions, are common in structured grid
setups—otherwise unstructured grids can be employed. Equally important is the
grid distribution to resolve flow features of interest. The automatic adaptive grid
method is not discussed here. The base grid for the wing is shown in Fig. 5.51a.

For the wake-only problems, a single grid is generated such that a uniformly
clustered grid covers the vortex region. This is then stretched out to uniform spacing
away from the vortex core region. As one approaches the side and top walls, spacing
is reduced to resolve viscous layers. The grid for the wake-only problem is shown
in Fig. 5.51b.

The generation of a single-block grid for the entire geometry of the experi-
mental setup is not straightforward. Specifically, the restrictions of the outer wind
tunnel walls and corner regions can cause problems because of their closeness to
the wing surface and wingtip. For this reason, a smoothly varying grid is diffi-
cult to obtain. Also, the inflow location of the domain is situated very closely to
the wing.

For the computed results presented here, a single-zone grid of C-O type is chosen
without introducing grid singularity at the tip region. A two-dimensional base grid
is first generated around the airfoil section on the wind tunnel wall using an ellip-
tic grid generator. The volume grid is generated by stacking the 2-D grid along
the straight section of the wing. Then, the grid is wrapped around the rounded
wingtip. Viscous spacing of 1 × 10−5 c is imposed on the body and root wall,
while viscous spacing of 1 × 10−4 c is imposed on the wind tunnel wall. Local
mesh refinement based on the knowledge of the tip vortex location from a previous

(a) (b)

Fig. 5.51 Grid topology: (a) wing region grid 130 × 145 × 73; (b) wake region grid 36 ×
82 × 82
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solution is also incorporated. Even though this grid feature adaption was done manu-
ally at the time this computation was performed, more sophisticated grid adaptation
methods are now available that can be coupled to the solution procedures in general
applications.

5.5.3.4 Turbulence Modeling

Varying levels of turbulence models have been used to study vortical flows and
wake vortex problems. Algebraic models such as the Baldwin–Lomax (1978) model
are primarily designed for boundary layer type problems and are not suitable for
complex vortical flow problems. Models of this type do not take into account the
transport and diffusion of turbulence, and history effects are not captured. These
effects are important for wingtip vortex flows, recirculating flows, separated flows,
and interacting shear layers. Higher-level models, such as one- or two-equation
models, have similar deficiencies. However, higher-level models offer a possibility
for adding ad hoc revisions to characterize tip vortex flow.

To study the sensitivity of turbulence models to solution accuracy, a modified
form of the Baldwin–Barth one-equation turbulence model (1991) was experi-
mented with in the current study. The model can be implemented in a straight-
forward manner, since the turbulence length scale is automatically handled in the
model equation. This type of model over-predicts the eddy viscosity level in the
core of a vortex. It attempts to fix this issue by modifying the production term in the
model equation. In the standard Baldwin–Barth one-equation model, the production
term, P, for νRτ is approximated by:

P = C1νRτX (5.1)

where C1 is a constant, ν is the laminar kinematic viscosity, Rτ is the turbulent
Reynolds number, and X is a scalar measure of the deformation tensor. There
are several choices of X. For example, X can be based on the magnitude of vor-

ticity, |ω| = (
2�ij�ij

)1/2 where �ij is the vorticity tensor, on the strain rate

|s| = (
2SijSij

)1/2 or on the norm of the entire tensor, as discussed by Spalart and
Allmaras (1992). The option of basing X on |ω| is the simplest to implement, and
has a theoretical motivation, in that turbulence can be related to vorticity. A similar
idea can be found in the k − ω two-equation modeling. A modified form of the pro-
duction term was used by Dacles et al. (1993) and Kiris et al. (2001) for the wake
vortex study presented here. This ad hoc production term combines |ω| and |s| as
follows:

P = C1νRτ (|ω| + 2 min (0, |s| − |ω|)) (5.2)

The modification is devised to reduce the eddy viscosity in the regions where the
vorticity exceeds the strain rate, such as in a vortex core where the flow is nearly
pure rotation. This modification represents an attempt to empirically adjust the pro-
duction term for vortex-dominated flows. Note that the factor 2 in this equation is
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an arbitrary constant that can be adjusted depending on the amount of diffusion the
turbulence model gives.

In addition to this modification, other forms of the production term are also
experimented with using INS3D-FS, such as:

X = |ω|
X = min (|ω| , |s|)

This numerical experiment provides information on the sensitivity of the turbu-
lence model on the solution for highly vortical flow. For more general applications,
the turbulence model has to be designed to automatically reflect this change in tur-
bulence production in the vortex core region. Existing one-equation models produce
excessive dissipation regardless of the grid resolution.

Transition to turbulence is dictated by the experimental setup and is set at
s/c = 0.0417 from the leading edge. This transition strip is located on the pressure
and suction side of the wing and wraps around the tip. Early computations reveal
that the result, which includes this transition location, is not much different from
that of a fully turbulent assumption for the entire region. Therefore, all computed
results presented here do not include the transition location.

5.5.3.5 Near Wake Computation Using the Artificial Compressibility Method

Computed results by Dacles–Mariani et al. (1993, 1995a, b, c) using the artificial
compressibility code INS3D-UP, are presented next for wake vortex propagation
in the near field. For this wake-only problem, a 35 × 103 × 103 grid (371,000
gird points) is used. We found that the third-order accurate differencing scheme for
the convective terms in the momentum equations was too diffusive. In the numer-
ical experiment, both third-order and fifth-order schemes are compared, combined
with production model modifications in the Baldwin–Barth turbulence model using
Equation (5.2).

As shown in Fig. 5.52a, b, the turbulence model modification has the greatest
impact on velocity at the core during the near-field propagation in the wake. An
additional 5% improvement in accuracy was observed by increasing the differencing
scheme to fifth order. In Fig. 5.52b, the core center velocity is under-predicted by
approximately 25% for the cases with no turbulence model modification. The reason
for this difference can be seen in Fig. 5.52c: the magnitude of eddy viscosity in the
vortex core region between the modified and unmodified models is quite different,
indicating that the turbulence model in use needs improvement to correctly represent
flow physics in highly vortical flow.

Capturing the flow features of the propagation of the tip vortex flow depends
primarily on two factors: numerical procedures including grid resolution and turbu-
lence modeling. The static pressure coefficient in the core region is very sensitive
to numerical accuracy. It also depends on how well the turbulence model represents
the flow in the core region, as briefly illustrated above. More detail can be found in
the references cited.
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(a) (b)

(c)

Fig. 5.52 (a) Peak velocity magnitude at vortex core; (b) Total velocity magnitude across vortex
core at x/c = 1.241; (c) Eddy viscosity profile across vortex core at x/c = 1.241

5.5.3.6 Near Wake Computation Using the Pressure Projection Method

We computed the same case using the pressure projection code, INS3D-FS. To illus-
trate a validation process and to characterize the near wake computations using a
pressure projection approach with the fractional step procedure, results presented
by Kiris and Kwak (2001) are summarized next.

The computational domain includes the region from the trailing edge of the wing
(x/c = 1.0) to 0.673 of the chord-length, c, downstream of the wing using the H-H
grid topology. Extensive experimental data by Chow et al. (1991) are available at
x/c = 1.0, 1.12, 1.24, 1.447 and 1.673. The experimental velocity profile at the trail-
ing edge (x/c = 1.0) is imposed as an inflow boundary condition so that we can focus
on wake propagation aspects. Pressure distributions at boundaries are calculated
from the compatibility condition.

As a first step, we performed the computations on a coarse grid with a 36 ×
42 × 42 mesh in x, y, z directions (i-, j-, k-directions). The velocity peak at the
vortex core was under-predicted using this grid; therefore, we next increased the
grid dimensions to 36 × 82 × 82—essentially doubling the grid in cross-flow direc-
tions. The peak velocity at the core was improved, but not significantly. This is
consistent with the same computations using the artificial compressibility method by
Dacles–Mariani (1993). The primary reason for this is due to excessive dissipation
in the core region, even with increased grid resolution. Physically, the vortex core
is dominated by dynamics and not much viscous effect exists. To account for this
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physics, the production term in the turbulence model is modified as explained in
Equations (5.1) and (5.2). The sensitivity of this term affecting the solution accuracy,
especially in the core region, is shown in the series of plots presented next.

We have experimented with several combinations of convective term differenc-
ing, grid resolution, and modification of the production term in turbulence modeling.
A list of these test cases and legends used in the figures presenting computed results
are summarized in Table 5.1. First, in Fig. 5.53, axial progression of velocity mag-
nitude and static pressure coefficient Cp are shown along the vortex core line in the
wake. As can be seen, even with the best choice of differencing scheme and mod-
ified turbulence model, the accuracy of the solution deteriorates when the grid is
coarse. Using increased resolution and a higher order differencing scheme, the error
in the core region can be reduced to less than 2%.

The amount of dissipation is automatically computed in upwind differencing.
It also depends on grid spacing. Computationally, higher-order schemes are less
expensive to implement compared with increasing the grid resolution to produce
comparable results. These cases are compared in Fig. 5.54 by plotting velocity
magnitude across the wake vortex at three interior stations (x/c = 1.12, 1.24 and
1.47) and at the exit boundary (x/c = 1.673). The most sensitive quantity in these
plots is the peak velocity at the vortex core. For our computations, the grid resolu-
tion near the wind tunnel wall boundary layer was not sufficiently high, especially
considering that the Reynolds number is 4.6 million. Also, the turbulent Reynolds
number at the inflow boundary for the computation is set to 1 in the Baldwin–Barth
model. Therefore the computations and the experimental results do not match very
well near the wind tunnel wall, and the discrepancy is largest at the exit plane.

Similarly, the cross-flow velocity across the wake vortex at four different loca-
tions is plotted in Fig. 5.55. Using a different production term in the turbulence
model equation does not have a measurable influence on cross-flow velocity
compared to the velocity magnitude.

Since the cross-flow velocity is zero at the vortex core, the dissipation intro-
duced by the turbulence model, the grid resolution, and the order of accuracy in the
differencing scheme primarily affect the axial flow velocity components.

In Fig. 5.56, the comparison of Cp across the wake vortex is shown at three
different locations. Since the pressure has not been prescribed at the inflow

Table 5.1 Legend of computed results in Fig. 5.53 through 5.56

Experiment, Chow et al. (1991)

Computed
results

Convective
terms diff.

Grid size
j × k × l

Baldwin–Bart model production
term

Third-upwind 36 × 82 × 82 min(|s| , |w|)
Fifth-upwind 36 × 42 × 82 min(|s| , |w|)
Fifth-upwind 36 × 82 × 82 |w| + 2.0 ∗ min(0.0, |s| − |w|)
Fifth-upwind 36 × 82 × 82 |w|
Fifth-upwind 36 × 82 × 82 min(|s| , |w|)
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Fig. 5.53 Axial progression of flow quantities along vortex core line

boundary, computed Cp values are compared at the inflow and outflow boundaries,
as well. The comparison is quite satisfactory.

In the current pressure projection method, the incompressibility condition is sat-
isfied automatically at each physical time step. This feature makes it possible to use
this method in time-accurate computations.

5.5.3.7 Initial Rollup of Round Wingtip Vortex

Initial rollup of the wingtip vortex flow has been of significant importance because
of its relevance to many practical problems including formation of aircraft wake,
interaction of tip vortex and rotorcraft blades, tip and wake vortex from propellers
of naval vehicles, and tip vortex from turbopump blades and its impact on cavitation.
Tip shape, as well as flow conditions, impact the rollup process. In our experimental-
computational study, only a round tip shape was considered. However, by presenting
a detailed study, we hope to shed some light on how numerical methods and physics
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Fig. 5.54 Comparison of
velocity magnitude across
wake vortex



5.5 External and Juncture Flow 131

Fig. 5.55 Comparison of
cross-flow velocity across
wake vortex



132 5 Flow Solvers and Validation

Fig. 5.56 Comparison of Cp
across wake vortex
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affect the tip vortex rollup and propagation. In the previous sections, we discussed
how the numerical procedure and turbulence model affect propagation of the wake
vortex in the near field. In this section, the rollup process is studied using the same
wing with a round tip.

The tip vortex formation process for a wing with nearly constant loading is
schematically shown in Fig. 5.57. A discrete vortex forms at the tip fed by vor-
ticity from the boundary layer near the tip. As the vortex moves downstream, it
rolls up more and more of the wing wake, until its circulation is nominally equal
to that of the wing. The rollup distance is small compared to the distance between
interacting lifting surfaces, such as the strake or foreplane, and the main wing on
a close-coupled fighter or consecutive blades on a helicopter rotor. The flow in the
near-field rollup region is therefore important in its own right, as well as in providing
a possible means of controlling the far-wake vortex.

As depicted in Fig. 5.50, the experimental inflow is at 10◦ of angle of attack. Near
the tip high, cross-flow velocity whips around the wing tip from the pressure side
to the suction side, as sketched in Fig. 5.57. Here, we assume the entire flow field
is turbulent, so a transition model is not considered. For implementing a turbulence
model—either Baldwin–Barth (1991) or Spalart–Allmaras (1992)—the grid spacing
on the boundary layer must be small enough to capture the rollup. In many practical
problems, it is common to use y+ = 1.0 for the first grid spacing in the boundary
layer. To resolve the turbulent boundary layer during the initial rollup, we found it
is necessary to use much finer grid spacing, 0.16 < y+ < 0.36, for the one-equation
turbulence model used.

Fig. 5.57 Schematic of initial rollup of a wingtip vortex for a round tip configuration with an angle
of attack α = 10◦
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The entire rollup is visualized both by experiment (measured by seven-hole pres-
sure probe) and by computation. The computed results presented here are obtained
using the artificial compressibility code and the Baldwin-Barth turbulence model,
unless otherwise specified. In Fig. 5.58, the velocity magnitude is compared for the
rollup and the near-wake region. The black outline in both figures represents the
outer boundary of the measured planes. The first sign of the vortex rollup can be
seen in the farthest upstream plane in the figure. At the trailing edge, the circula-
tion of the vortex is 87% of its final level (Zilliac et al., 1993). Notice also that the
root vortex (horseshoe vortex region) was captured by the computation designated
here by the blue patch on the root wall. In the experimental image (Fig. 5.58), the
density of measured points near the wall was not enough to accurately map the low
momentum region.

Since the flow is rich in flow physics, visualization of the entire field to cap-
ture all details is a challenge even in this simple geometry problem. In Fig. 5.59,
initial rollup of the tip vortex is visualized using particle traces colored by velocity
magnitude.

To validate the quality of the numerical solution on the wing surface, the surface
pressure contour is compared with experimental data, in Fig. 5.60. The general trend
and pressure levels of the computed and measured results compare quite well. Of
particular interest is the pressure peak induced by the presence of the vortex above
the suction side of the wing (green patch on the outboard portion of the wing near

Fig. 5.58 Comparison of velocity magnitude contours
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Fig. 5.59 Visualization of computed particle path lines colored by velocity magnitude

the trailing edge). The magnitude and extent of this pressure region are sensitive
to the grid resolution and the turbulence modeling. A chord-wise line plot of the
pressure coefficient, Cp, is shown in Fig. 5.61 at the location z/c = 0.667, which is
approximately under the tip vortex. Although some differences occur, the vortex-
induced peak is well captured by this numerical procedure.

Fig. 5.60 Comparison of
surface static pressure for
awing tip vortex rollup
problem
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Fig. 5.61 Static pressure profile at z/c = 0.667 (roughly below the tip vortex)

x/c = 0.813 (Wing Surface) x/c = 1.462 (Near Wake)

Fig. 5.62 Cross-flow velocity comparison at two streamwise locations
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Figure 5.62 shows a close-up of the cross-flow velocity, depicting details of how
the vortex rolls up, detaches from the surface, and forms free vortex flows. The gen-
eral trends agree well although some of the computed details do not exactly match
the measured contours. In both the computed and measured results, the shear layer
detachment point is on the suction side of the wing tip. This result was expected
because the turbulent boundary layer can withstand a limited amount of adverse
pressure gradients. This illustrates that the choice of turbulence models plays an
important role in accurately predicting a vortex rollup procedure. In the literature
cited, we have experimented extensively using different turbulence models and grid
resolutions, and found that turbulence modeling significantly affects the results.
Since we only present the numerical procedure, we simply emphasize the signifi-
cance of the physical modeling aspects in conjunction with this highly vortical flow
simulation.

An important measure of the validity of the Navier–Stokes computation is
whether the surface skin-friction topology is computed correctly. Figure 5.63 shows
a comparison between the surface skin-friction magnitude and the results of an oil-
flow wind tunnel experiment. As seen in the figure, the location and extent of the
primary and secondary convergence lines agree well with those of the experiment.
The lower surface boundary layer flows around the tip to a line of surface stream-
line confluence or convergence, as shown in the particle traces. The convergence
line indicates the departure of the shear layer from the surface, and occurs as the
fluid moving in a cross-flow direction encounters an adverse pressure gradient. Near
the rear of the wingtip a second convergence line is shown in both the experiment
and computation, indicating the presence of a secondary vortex. On the suction-
side mid-span region of the wing, the computation shows a small area of separation
near the trailing edge. As shown by the skin-friction magnitude level, the shear is

Fig. 5.63 Comparison of skin friction coefficient and particle path lines: 115 × 157 × 83 grid
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low upstream of this region. Although not readily visible, this behavior is similarly
reflected in the oil flow pattern.

In this section, we presented a wingtip vortex flow validation to illustrate the
procedures and modeling involved. When this case was first studied in the 1990s—
when computing capability was measured in megaflops—1.5 to 2.5 million grid
points for a small region around a wingtip were unrealistic for real-world problem
solving. Now (in 2010) the case is measured by multiple teraflops and is expected to
go toward petaflops or higher—so even if only a fraction of any computing facility’s
resources are available, it is feasible to attain the grid resolution at the level we
discuss for a CFD simulation of a realistic configuration. Of course, researchers
can also achieve this high-accuracy through a combination of high-order numerical
schemes, grid refinement, and higher-level turbulence models as necessary.

In this chapter we have presented validation cases selected to cover various differ-
ent types of flow features of fundamental nature. We tried to cover both steady and
time-dependent procedures using internal, external and juncture flows. Some of the
algorithmic and physical characteristics presented in conjunction with these cases
will appear in following chapters when we solve real-world engineering problems.



Chapter 6
Simulation of a Liquid-Propellant Rocket
Engine Subsystem

From an engineering point of view, CFD is a tool for preliminary design, design
improvement, risk analysis, mission planning and operations. In this chapter, we
will present engineering aspects of CFD through a task where CFD has played a
significant role in accomplishing the goal of a real mission.

In this chapter, we focus on the engine subsystem related to complex internal
flow. In applications involving real-world problems, CFD simulation is often con-
fined to a truncated geometry, since modeling the entire configuration could be
unrealistic or may not be necessary. Therefore, in addition to the approximations
due to numerical algorithms, uncertainties can come from geometric simplification,
approximate boundary conditions, and assumed initial conditions. Physical model-
ing often involves transition, turbulence, and multi-phase phenomena. Engineering
problems require varying degrees of rigor and accuracy in obtaining flow solutions.
Some of these features can best be discussed through real examples.

Previously, we presented some details of algorithms and computational proce-
dures, including issues related to grid generation and designing boundary condi-
tions, and validation using fundamental fluid dynamics problems. Even when all
these fundamental issues are clarified and usable tools have been developed, it takes
another step to make all these technologies useful to accomplish goals required for
specific missions.

In this and subsequent chapters, some of the issues often encountered in CFD
applications are presented. (Turbopump flow is discussed separately in the next
chapter.) The level of rigor can only be determined depending on the requirements
of particular simulations, whether it be dictated by economy, as in the commer-
cial world, or by enabling computations, as in mission support arenas. This chapter
illustrates the steps required for “mission computing,” a term used for those classes
of problems that require enabling analysis in designing and operating a specific
mission, such as space exploration vehicle development and operation. This is in
contrast to those problems dictated by economy in the commercial world where
similar tasks are repeated with some variations to meet customer requirements.

Even though computing procedures and priorities may vary, this chapter is
intended to illustrate the “next challenges” faced by those who go into real-world
practices after formal training in CFD. The technical issues discussed in this

139D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific
Computation, DOI 10.1007/978-94-007-0193-9_6, C© US Government 2011
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chapter are limited to flow simulation aspects. However, for a complete engineering
analysis, fluid dynamic features must be coupled to multidisciplinary aspects.

Typical 3-D CFD applications require a large number of mesh points to solve
complex flow involving multiple zones, which include skewed and stretched grids,
as well as physics modeling. Therefore, for flexibility of setting up computational
models, it is natural to choose a primitive variable approach, which has been the pri-
mary focus of this monograph. We used our flow solvers developed at NASA Ames
Research Center. However, there are a wide variety of algorithms, procedures, and
associated codes available for incompressible flows. These codes and procedures
can be utilized for obtaining results similar to those presented here. Users of off-
the-shelf codes, however, need to be fully aware of the capabilities and limitations
of the tools they choose.

In applying these computational tools (even though computer speed and mem-
ory have increased substantially in the recent past) the turnaround time still dictates
the problem size one can choose for modeling and simulation—a constraint that
will remain for the foreseeable future. In many engineering applications, it is very
important to generate solutions in a timely fashion to have any impact on design and
analysis. However, although varying degrees of solution fidelity, numerical simula-
tions, when combined with engineering and physical understanding of the problem
at hand, can provide valuable complementary information to measured data—thus
reducing the number of experimental trials required for developing advanced flow
devices. And, even when component-level optimization has been performed, a more
sophisticated approach, such as computer optimization of a reasonably complete
design, can be attempted with the increased computer speed through massive paral-
lelism. A specific example related to the Space Shuttle is presented in this chapter.

6.1 Historical Background

The development process of the Space Shuttle as the nation’s primary space trans-
portation system (STS) began in early 1969. The design process, starting from
concept to selection of the major design configuration, was much affected by polit-
ical, budgetary, and technical considerations. Budgetary constraints impacted the
selection of the vehicle configuration. The budgetary considerations included limit-
ing development cost as well as lowering operational cost. The shuttle development
program was subjected to formal economic constraints, perhaps for the first time in
space exploration. Thus, the terminology “mission computing” implicitly includes
cost and effectiveness as well as functionality.

The shuttle design also involved huge challenges of integrating various subsys-
tems as well as coordinating discipline experts in different organizations and tasks.
Eventually, in March 1972, the orbiter configuration comprising solid rocket boost-
ers and external tanks with three engines was adopted, which is similar to that flown
in shuttle missions we have observed. The three-engine configuration was selected
to enhance various abort capability.
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The Space Shuttle main engine (SSME) development work began as a part of
the two-stage-to-orbit vehicle development. The SSME was the first reusable liquid
booster engine requiring performance substantially beyond the engines available at
that time. Successfully developed by Rocketdyne, the SSME has been used in all
shuttle missions starting from the first mission, STS-1, flown on April 12, 1981.

A wide spectrum of fluid dynamics issues has been associated with the SSME
where CFD has been very valuable for analysis and design. However, in the begin-
ning, CFD technology and computing power were at a fundamental development
stage and were not available for any large-scale engineering applications such as
shuttle development. Right after the first flight, several upgrade projects began for
enhancing the safety, reliability, and performance of the shuttle. The SSME power-
head upgrade, called the Phase II+ redesign, was under way in the early 1980s.
At the same time, flow solvers were being developed at NASA, and Cray-class
computers became available. In this chapter, we will discuss how CFD began
making impacts on SSME hardware development in conjunction with integrated
design, experiments, and full-scale tests.

While the CFD application work began with this historical background, the
approaches and application processes discussed in this chapter are relevant to CFD
application processes for “mission computing” in general. It is hoped that the exam-
ples given in this chapter will provide CFD users with some valuable insights into
the potential issues and how CFD can influence real-world applications.

6.2 Flow Analysis in the Space Shuttle Main Engine (SSME)

Rocket propulsion systems using liquid propellant have been used for boosters and
spacecraft starting in the early 1950s. The Space Shuttle became NASA’s workhorse
for the Space Transportation System (STS) in 1981, and has been the primary vehi-
cle for the agency’s human space program ever since. For shuttle launches, three
powerful main engines operate in addition to two solid rocket boosters. The SSME
is 14 feet long, weighs approximately 7,000 pounds, and is 7.5 feet in diameter at
the end of the nozzle. It is propelled by liquid hydrogen and liquid oxygen (LOX),
producing a specific impulse of 453 s and 512,264 pounds of thrust in a vacuum.
In this staged-combustion cycle engine, the fuel and oxidizer are fed by a turbo-
pump. The engines operate for 8.5 min during liftoff and ascent and burn more than
500,000 gal of cryogenic fuel and oxidizer.

The SSME was originally developed without the help of CFD technology.
However, it has been the only operational liquid booster engine designed for human
space flight to date (as of 2009). Since its initial design, NASA has continued to
increase the reliability and safety of shuttle flights through a series of enhance-
ments. Modifications include new high-pressure fuel and oxidizer turbopumps, a
redesigned powerhead, and a new heat exchanger and large-throat main combustion
chamber. These modifications support the increasingly extended role of the shuttle
for scientific and commercial applications. As a part of these activities, the upgrade
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of the SSME powerhead was initiated in the early 1980s to substantially increase
the operating margin and engine durability. To achieve this goal without increasing
the weight and size of the existing engine, it became essential to understand the
dynamics of the hot-gas flow in the powerhead.

Generally, there are three categories of fluid dynamics related sub-elements in
liquid-propellant engine systems: (1) combustion devices, (2) turbopumps, and (3)
complex internal flow subsystems. Analyses of these components offer three cor-
responding categories of simulation challenges: Mixing and chemistry; flow with
cavitation; and complex internal flow in subsystems, respectively.

Because of the complexity of the geometry, an experimental approach is
extremely difficult, time consuming, and expensive. Therefore, computational sim-
ulations have offered an economical alternative to complement experimental work
in analyzing the original SSME powerhead configuration, and to suggest new,
improved design possibilities. During this redesign work, major milestones were
established for the computational effort. Highlights of this task are presented here
to explain features encountered in this mission support application from a CFD
perspective.

The late Werner von Braun said:

. . . Behind each apparent miracle, however, stands the flawless performance of numerous
highly complex systems. All are important. The failure of only one portion of a launch vehi-
cle or spacecraft may cause failure of an entire mission. But the first to feel this awesome
imperative for perfection are the propulsion systems, especially the engines . . .

If we call the Space Shuttle a great engineering masterpiece, the SSME is
certainly an engineering marvel. We’ll discuss next how CFD can be applied to
meet some of the fluid dynamics challenges encountered in the SSME powerhead
upgrade.

6.3 Flow Analysis Task and Computational Model for the SSME
Powerhead

The SSME hot gas manifold (HGM) is the structural backbone of the engine and
contains two preburners, a main injector, and various propellant and oxidizer ducts
and lines (see Fig. 6.1). It also includes two high-pressure turbopumps, the main
combustion chamber, and a gimbal bearing that attaches the engine to the shuttle
orbiter. Together, all components are called the “powerhead.”

In the SSME staged combustion cycle, the fuel is partially burned at very high
pressure and at relatively high temperature in the preburners. The resulting hot gas
is used to run the two-stage turbines in the high-pressure turbopumps. Hot gas dis-
charged from the gas turbine enters the annular turnaround duct (TAD) and makes a
180◦ turn to flow back along the outer surface of the pump through the annular fuel
bowl. The fuel-rich hot gas is directed into transfer tubes that link the bowl with the
injector. The hot gas enters the injector and flows across a forest of LOX posts. It
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Fig. 6.1 Sketch of the SSME powerhead indicating various components (courtesy of Rocketdyne,
Canoga Park, California, USA)

enters concentric tubes around the LOX posts and flows into the main combustion
chamber where it burns with the oxygen.

In Fig. 6.1, the bold outlined area from the turbine outlet to the transfer tube
connected to main injector assembly is called the “fuel side” of the hot gas manifold,
and is the focus of the redesign effort discussed in this chapter.

The Reynolds number of the primary flow in the manifold is on the order of 106

per inch. Because of the high gas temperature, the Mach number is less than 0.12.
The flow is turbulent and is incompressible for all practical purposes. At the time of
the HGM redesign work, our preconditioning technique, as discussed in Chapter 4,
was not mature, so it was not possible to use the compressible Navier-Stokes flow
solver at this low Mach number range. Therefore, we utilized the INS3D incom-
pressible flow solver that was then being developed. Similarly, other low Mach
number flow problems not involving local high-speed compressible flow regions
can be simulated using incompressible flow solvers available today.

6.3.1 Computational Model Description

In the original design of the SSME powerhead components, the gas flows into the
main injector through three transfer ducts on the left side of the powerhead, as
sketched in Fig. 6.1 (fuel preburner side), and enters into the top portion of the
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Fig. 6.2 Schematic of liquid
oxygen (LOX) post
arrangement in the main
injector: top view of a
horizontal cross section of the
main injector assembly

main injector assembly where many liquid oxygen (LOX) posts are bundled (see
Fig. 6.2) on top of the main combustion chamber. On the right side of the power
head (oxidizer preburner side), two transfer ducts are connected to the right side
of the main injector assembly. Around the bottom portion of each LOX post in the
main injector assembly are a number of small holes through which the hot gas flows
into the main combustion chamber. There, it mixes with the oxidizer, which comes
through a circular passage along the centerline of each LOX post.

As a part of the HGM redesign effort, the CFD study began with an analysis of
the hot gas flow in the original powerhead configuration. When this effort began,
only the first version of the INS3D code was available, so the computed results
presented in this section have been obtained using the original version of INS3D.

We have chosen a computational model of the powerhead to analyze critical areas
where the dynamics of the hot gas flow are expected to have a significant effect on
the overall performance of the SSME. As shown in Fig. 6.3, the model starts from
the gas turbine exit on the fuel preburner side, and extends to the main injector
assembly. The main injector consists primarily of a bundle of LOX posts, which
is physically modeled by a porous media. The engine was in operation when the
upgrade effort was initiated, and then it was identified that the modification was
needed on the fuel side of the HGM. Since the hot gas from the oxidizer side and
fuel side meet in the racetrack region in the main injector assembly, the computa-
tional model for the fuel side was truncated at the racetrack where outflow boundary
conditions are imposed.

The fuel-side HGM model geometry and grid topology are shown in Fig. 6.3.
The grids in the horizontal and vertical cross section of the HGM are shown in
Fig. 6.3a, b. The model shows only one half of the fuel-side HGM geometry, as
shown by the B-B cut in Fig. 6.3a. There are three transfer ducts connecting the fuel
bowl and main injector assembly. Shown in the figure are one side duct and half of
the center duct.

The H-grids for these ducts are generated using an algebraic process starting from
a unit circle. Near the duct boundary the grid lines are concentric circles except in
the vicinity of the four singular points. Using the nearly orthogonal grid in this unit
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Fig. 6.3 Geometry and grid of the original SSME three-duct hot gas manifold model:(a) horizontal
view (cross section A-A); (b) vertical view (cross section B-B); (c) H-grid for circular and elliptic
cross section of transfer duct; (d) unwrapped surface of annular fuel bowl (cross section C-C)
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circle, one can obtain H-grids for tubes or ducts of any given shape and dimension
by a simple linear transformation. These duct-grids are connected to the fuel bowl
and circular racetrack-shaped region (see Fig. 6.2) of the main injector. As shown
on left side of Fig. 6.3c, the original duct design used a circular cross section. On
the right side of Fig. 6.3c, the grid for an elliptic duct is also shown, which allows
a redesign option if deemed beneficial. Note that any geometry modification must
include structural analysis as well as fluid dynamics.

Two approaches can be considered in coupling two computational regions,
namely, the fuel bowl and the transfer ducts. Overlapping grids will require inter-
polation, while perfectly matching grids simplify this at the expense of adding
complexity in grid generation. In our computation, matching grids were employed.
Figure 6.3d shows an unwrapped surface of the annular fuel bowl with openings.
The H-type grid topology for the transfer duct then allows smooth transition from
the axisymmetric TAD to the transfer ducts. This arrangement is also convenient in
clustering the grid near the duct wall. For general development work, overlapping
a grid arrangement may be more convenient for parametric comparison of various
geometric options.

The grid for the entire HGM system is generated by using algebraic functions,
and is written with a high degree of flexibility for changing geometric config-
urations. By specifying the shape, dimension, and preferred number of transfer
ducts, a grid for a variety of new HGM configurations can be obtained in a short
time. The ducts described in this section are connected directly to the fuel bowl
without any fairings, while in the original engine the three transfer ducts were con-
nected smoothly to the annular fuel bowl with fairings. This configuration, with
an abrupt change in geometry, is more demanding computationally than smooth
configurations. At the time this task was performed, the particular grid genera-
tion routine was customized for this particular application, partly because automatic
grid generators were not versatile enough to accommodate this configuration. Now,
commercial packages and software in the public domain are capable of handling
complex geometry gridding and are readily available.

6.3.2 Multiple-Zone Computation

A large number of mesh points are required to solve the 3-D turbulent flow in the
SSME. To facilitate numerical simulations, the domain of interest is divided into
several zones. This requires a special treatment at the zonal interface for a smooth
continuation of the solution between zones.

Figure 6.4 shows a five-zone arrangement for the HGM flow field. Zone 1
includes the TAD and fuel bowl. Zones 2, 3, and 4 comprise the three transfer ducts
for the original engine configuration. The annular region, denoted as the racetrack
of the main injector, is represented by Zone 5. Also shown in the figure are some
overlapping grids in the various zonal interfaces. The grid is chosen to be continuous
and smooth across zonal boundaries. In the first attempt at simulating this model,
the racetrack (Zone 5) was not included in the computation. In a later computation
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Fig. 6.4 Multiple-zone
arrangement for the SSME
powerhead simulation

involving a new design configuration, the racetrack region was included, along with
the main injector assembly that was modeled by a porous medium.

More detailed study of the LOX post in the main injector assembly was also
performed using the results of the HGM computation as the boundary condition, but
is not be given here. Since the vertical plane through the center of the fuel bowl and
the main injector is taken to be a plane of symmetry, results for the HGM presented
in this chapter were obtained using only half of the HGM. When the swirling flow
from the gas turbine exit is included, the symmetry assumption should not be used.

In the artificial compressibility formulation, waves are propagating in both up-
and downstream directions while the solution approaches a steady state. In the
present problem, the interfaces between zones are locations where the geome-
try changes abruptly. Therefore, in the neighborhood of those interfaces, the flow
is expected to experience a rapid change. To maintain a smooth continuation
of the solutions across these zones and, consequently, to achieve a stable and
fast-converging computation, means for providing adequate communication for
the traveling waves must be established. Overlapping regions and a proper zonal
interpolation scheme are required for this purpose.

A forward or backward differencing operation, if applied to the interfaces of
multiple zones, would distort the geometric representation. To maintain a smooth
transition of the flow field across a zonal boundary, the Jacobian and the metrics
at the interfaces are computed using grid points in neighboring zones. Then the
pressure and velocities, Q, are updated explicitly at each iteration.

Let values at n + 1
/

2 denote conditions to be used to advance the computation
to n + 1. The values of Qn+1/2 Zone 1 at the exit plane are obtained from the values
of the corresponding plane of Zone 2 at n, that is:

[
Qn+1/2

B.C.

]
Zone1

= [
Qn

interior

]
Zone2
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Values of Qn+1/2 for Zone 2 at the zonal interfaces are taken from the latest
computed result of Zone 1 as:

[
Qn+1/2

B.C.

]
Zone2

= [
Qn

interior

]
Zone1

When more than two points overlap, the latest values in the interior of this over-
lapping region must be properly transmitted to the next zone. A number of ways
are available to treat this problem. The simplest one is to take an average of the two
values computed in Zones 1 and 2, as below:

[
Qn+1/2

]
= 1

2

([
Qn]

Zone2 +
[
Qn+1

]
Zone1

)

A scheme using updated zonal boundary values, but original interior values, has
also been tested. Either way, converged steady-state solutions have been obtained.
However, the scheme with interior updates converges at a much faster rate.

6.3.3 Grid and Geometry Effects

The INS3D flow solver has been validated by computing fundamental fluid dynam-
ics problems, as illustrated in previous chapters. However, many other aspects need
to be clarified in real-world applications, such as grid-induced error due to skewness
and 3-D stretching, and grid clustering and its relation to numerical dissipation. In
real geometry, the flow is likely to go through strongly curved sections. This intro-
duces yet another subject—that of strong curvature effect on turbulence structure.
The grid selected for the current simulation could introduce errors such as grid sin-
gularities in H-grid, as well as skewness while trying to enforce one-to-one matching
between grid interfaces, and stretching. Some of these aspects are examined here.

The approximate factorization (AF) algorithm implemented in the original
version of the INS3D flow solver integrates the difference equations along the trans-
formed coordinates. At the junction of the two H-grid directions, flow particles in
the two coordinate directions could communicate only indirectly via the interior
mesh points. This produces a corner-effect error. Even though this error is not as
severe as the one caused by external flows, an ad hoc method of eliminating this
corner effect is devised based on a finite-element concept.

Let j and k denote the indices for the grid points along the increasing ξ and η
directions, respectively. Then let j = k = 1 be the corner point, which is singular.
First, the pressure at this point, p11, is determined by an extrapolation along the
diagonal direction j = k. Second, p13 and p31 are obtained in the usual manner.
Then p12 and p21 are established by an interpolation along the circular surface (see
the H-grid singularity in Fig. 6.3c).

The full viscous term given by Equation (2.13a) can be simplified to Equation
(2.13b) when the grid is orthogonal. Even though full viscous terms can be used,
it is convenient and economical to keep only the orthogonal part. It is, therefore,
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of practical interest to estimate the overall error caused by using the orthogonal
formulation when a non-orthogonal grid system is used.

As a quick measure of an overall error caused by grid skewness, a 2-D channel
flow is computed using two grids, namely, (1) a stretched Cartesian grid (orthogo-
nal) and (2) a non-orthogonal grid where the skewness is controlled on the upper
half of the channel, as sketched in Fig. 6.5. In the computation only orthogonal
terms are kept. Converged solutions on the lower half, where the two grids are iden-
tical, are then compared. Total error depends additionally on the Reynolds number
and the third-directional skewness. However, this quick experiment indicates that

Fig. 6.5 Grid effect on channel flow solution at Re = 1,000: (a) definition of grid skewness,
(b) relative error due to skewness
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the orthogonal assumption can be used without significantly impacting the overall
solutions if the grid is basically orthogonal in most of the computational domain.

This is a qualitative study only, and a full investigation should include more
severe cases involving separation and recirculation regions, as well. When com-
putational resources are not severely limited, the full viscous terms can be used on
the right-hand side of the momentum equations, which will remove the uncertainty
associated with non-orthogonal viscous terms.

6.4 Turbulence Modeling Issues

Turbulence models for RANS calculations of aerospace vehicles have been devel-
oped mostly for external flows such as on airfoils or wings. The primary focus for
external flow has been predicting the boundary layer development and separation.
Since these models lack universality, turbulence models for RANS calculations are
adjusted to match characteristics of different types of external flow such as boundary
layer or free shear flow.

Historically, various levels of turbulence models have been developed, such as
algebraic, one-equation, two-equation and Reynolds stress models. Review articles
on these turbulence modeling are numerous (for an early review, see, for exam-
ple, Reynolds, 1976). These modeling approaches based on Reynolds-averaged
Navier-Stokes equations are lacking in prediction capability. More physics-based
approaches such as large eddy and direct simulation emerged most notably
in the 1970s.

The three-dimensional time-dependent computations of large-scale structures
of turbulence were of primary interest to meteorological flow simulation (see for
example, Deardorff, 1973; Fox and Lilly, 1972; Smagorinsky, 1963). Later, the tur-
bulence research group at Stanford University started using the term “Large-Eddy
Simulation (LES)” (see Leonard, 1973; Kwak et al., 1975). The original hope was
that the sub-grid scale (SGS) model would provide the necessary dissipation for
unresolved scale turbulence independently from numerical algorithm. However, it
was found that the numerical scheme acts as spatial filter simultaneously. Moreover,
handling of the boundary layer region turned out to be very challenging.

A hybrid LES-RANS approach was then developed to circumvent the problem
related to the boundary layer region (e.g. Spalart et al., 1997, 2009). A large number
of research reports have been published over the years, and readers are referred to
existing literatures on this subject. A comprehensive review of this subject is beyond
the scope of the present monograph.

Since the task we discuss in this chapter involves internal flow, straight appli-
cations of the usual RANS models developed for external flows will not produce
a reliable basis for analysis and redesign involving HGM flow. Even though one-
and two-equation models are incorporated into the INS3D family of codes, in lieu
of developing a new turbulence model for internal flow, we discuss how to handle
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the turbulent flow encountered using a simple algebraic expression. Even though
an algebraic model lacks prediction capability and does not represent turbulent flow
physics in a strict sense, when tuned for a particular type of turbulent flow the model
can still produce engineering solutions in an economical way.

The primary goal of our task was to analyze the current configuration and then
suggest a modified design configuration of the HGM in time to be used for the flight
hardware development. As will be explained in the latter part of this chapter, the
entire process of developing an upgraded engine with flight certification takes a very
long time. Like many mission support tasks, the preliminary design phase had to be
done in a relatively short time to make any impact on flight hardware development
and testing. Of course, this meant the turbulence model implementation and ad hoc
adjustment had to be done with expediency.

6.4.1 Selection of Turbulence Model for Internal Flow

The simplest turbulence model for a RANS computation is an algebraic model. The
basic assumption of algebraic models (or of any eddy viscosity models) is that the
turbulence is in local equilibrium; that is, the production and dissipation of turbu-
lence are the same. For this modeling approach, turbulence length scale distribution
needs to be prescribed based on empirical input. The empiricism has been mostly
based on boundary-layer type flow. Even though this modeling approach cannot
handle transport and history effects, simplicity of the expression has been the major
advantage, and many external flow problems have been successfully computed using
this approach. However, for flows with streamline curvature, separation and/or rota-
tional effects, as well as unsteady flow, it becomes very difficult to define a generally
applicable length scale.

In external flow problems, boundary layer thickness or displacement thickness is
often used as a length scale for the turbulence. However, boundary layer thickness is
difficult to define in a numerical approach. In addition, computation of displacement
thickness requires very fine grid resolution to maintain accuracy. In one of the most
frequently used algebraic models, Baldwin-Lomax model (1978), the length scale
of the turbulent eddies is determined by the location of the maximum moment of
vorticity. This length scale is well defined in external flows when the flow is not
separated. However, the maximum moment of vorticity is not as well defined for
fully turbulent internal flows or juncture flows. In particular, the moment of vorticity
is almost constant for a fully developed pipe or channel flow except in the thin
sublayer region and near the centerline.

For fully developed internal flows in a duct with mild streamwise curvature,
the location of the maximum velocity may be used to determine the eddy sizes.
However, in the case of the present turnaround duct, as illustrated in Fig. 6.3b, the
location of the maximum velocity is not a good measure of the boundary layers asso-
ciated with the two opposite walls. In this case, the flow consists of a pair opposite
vorticities. Therefore, there must be a location where both of them vanish, which
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essentially divides the two boundary layers from opposite walls. In practice, how-
ever, it is difficult to locate the position where vorticity vanishes. One alternative is
to use vorticity thickness as the distance from the wall to the position where vorticity
becomes minimum, as will be explained next.

6.4.1.1 An Extended Prandtl-Karman Mixing Length Model
for Internal Flow

An algebraic model is based on the idea that the turbulence level is represented by
a length scale. To represent internal flow turbulence by an algebraic eddy viscosity
model, we attempted to modify the Prandtl-Karman mixing length expression that
matches internal flow characteristics.

An eddy viscosity model for the wall region is typically given by:

νt = l2
du

dy

l = ky

where

νt = eddy viscosity
l = mixing length
k = Karman constant

Away from the wall, the mixing length approaches a constant value representing
the turbulent eddy size. For fully turbulent internal flow in a duct, the two boundary
layers associated with the opposite walls merge in the flow field. In the middle of
the duct, these opposite vortices cancel each other. Following Chang et al. (1985b,
1988a), a simple algebraic model can be devised as follows, based on the Prandtl-
Karman mixing length theory combined with the strength of vorticity:

νt = l2 |ω| (6.1)

where

l = κ2
[

1 − exp

(
− y

κδω

)]
δω

κ = 0.4

Here, |ω| is the strength of the 3-D vorticity and y is the distance from the wall.
The vorticity length, δω, is defined to be the distance between the maximum vorticity
and the point where vorticity first vanishes. This length can be interpreted as a mea-
sure of turbulent eddy sizes. The location of the maximum vorticity for an attached
flow is at the wall. When the boundary layer separates, typically under adverse
pressure gradient, this location starts to move away from the wall. The points of
vanishing vorticity can then be replaced by the location of minimum vorticity in
merged layers for the purpose of numerical study.
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Near the wall, corrections for the viscous sublayer effects are required. For
attached layers, one of the first damping functions by Van Driest (1956) can be
applied. In the neighborhood of boundary layer separation, as well as for the sep-
arated reverse flow region, this damping function has to be modified. In view of
the fact that viscous effects in the shear layer are concentrated in the vicinity of the
maximum vorticity, an effective vorticity length can be defined as:

� = uref

|ω|max
(6.2)

where uref is the average velocity at the inlet. Then, following the spreading rate
of the laminar viscous region, an effective thickness of the viscous region can be
defined as:

δ+ =
√
ν�

uref
=

√
ν

|ω|max
(6.3)

The inner sub-layer scale is thus given by:

y+ = y

δ+
(6.4)

For an attached turbulent boundary layer, the maximum vorticity coincides with
the maximum rate of strain at the wall. Then Equation (6.4) reduces to the usual form
for y+. Near the inception of separation and the separated flow region, however, the
point of maximum vorticity will move away from the wall.

In the outer layer, the intermittency factor, γ , given by the Klebanoff’s turbulent
boundary layer, is applied with a slight modification, as follows:

γ = 1

2

{
1 − erf

[
5

(
y − yωmax

δω
− 0.8

)]}
(6.5)

where yωmax is the distance between the wall and the maximum vorticity. The max-
imum point in the Gaussian distribution is located at 0.8δω, corresponding to about
0.76δ in Klebanoff’s original expression. To sum up, the composite form of the eddy
viscosity can be written as:

νt = γ
[
l
(

1 − e−y+/A+)]2 |ω| (6.6)

In the reverse flow region of the separated layer, there exists a small-size vorticity
with an opposite direction to its adjacent outer mixing or wake-type shear layer. The
eddy size of the reverse flow is determined by the distance from the wall to the point
of minimum vorticity, somewhere in the vicinity of the largest negative velocity.
Since reverse flow regions are usually very thin and close to the wall, the Prandtl
mixing length with wall damping is adequate for this region.
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6.4.1.2 Application to Pipe and Channel Flow

As a precursor to turnaround duct calculations, the above algebraic model is first
applied to the fully developed pipe and channel flow. Here, δω = R, where R is the
radius of a pipe or the channel half-height. The mixing length given by Equation
(6.1) is compared with classical experimental data by Nikuradse (1932), as shown
in Fig. 6.6.

In these flows:

|ω| =
∣∣∣∣du

dy

∣∣∣∣
and the shear stress varies linearly from the wall:

τ = τw(1 − ŷ), ŷ = y

δω
(6.7)

By using the relation for the turbulent shear stresses and the eddy viscosity
defined by:

τ = ρνt
du

dy
(6.8)

The eddy viscosity for the fully developed channel or pipe flow can then be
obtained by:

νt

uτR
= κ2

(
1 − e−ŷ/κ

) (
1 − ŷ

)1/2 (6.9)

where

uτ =
(
τw

ρ

)1/2

The result of Equation (6.9) is plotted as the broken line in Fig. 6.6b. It compares
quite well with the experiments until the distance from the wall reaches about 0.7.
The solid line in the same figure is the computed result for the inlet of the turnaround
duct where a logarithmic velocity profile is specified. In the center region the veloc-
ity profile is almost flat. It is difficult to obtain accurate velocity gradients from the
old measured velocity data. The calculated eddy viscosities in this region therefore
have some uncertainty. It is commonly believed that the eddy viscosity approaches
some constant value in this region. If a constant value for this region is acceptable,
νt for y/R ≥ 0.7 can be set to its value at y/R = 0.7 as determined by the above
equation.

The results shown above from the ad hoc modification of an algebraic model
based on mixing-length concept is to verify whether the mixing length approach
proposed here is adequate for application to the TAD analysis, and is not intended
for developing a new turbulence model generally applicable to internal flows. When
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(a)

(b)

Fig. 6.6 A mixing length model for a channel flow: (a) mixing length, (b) turbulent eddy viscosity
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the TAD analysis was in progress, available turbulence models were not designed
for a direct application to this type task. In addition to the internal flow aspects
where the viscous effects are not confined to the boundary layer, TAD geometry
poses additional challenges for defining strong curvature effects in a diverging three-
dimensional channel. In many mission applications, similar situations may arise
where theoretical or empirical studies are not available. In those cases, judicious
implementation of available physical models, modified as needed, may be required
for timely impact of the CFD approach on mission schedules.

6.4.2 Turbulence Modeling Issues Involving Strong Streamwise
Curvature

The flow through the SSME powerhead offers a variety of rich internal flow phe-
nomena. Among others, the curvature effect of turbulence was most uncertain at
the time the current simulation was started. Therefore, we raised the question on
the accuracy of the computed results when the turbulence model being used did not
account for the strong curvature effects. In this section, our process for addressing
this issue is described.

In the current configuration of the SSME hot gas manifold, the partially com-
busted hot gas from the pre-burner operates the turbopump (see Fig. 6.1), then enters
into the axisymmetric annular 180◦ TAD, as shown in Fig. 6.3b. In the sharp U-turn
region of the TAD, the ratio of the internal shear layer thickness to the radius of cur-
vature is of order one. On the convex side (that is, the inner wall), the turbulence is
expected to be greatly reduced, while it is expected to be substantially enhanced on
the concave side. In addition, strong adverse and favorable pressure gradients coex-
ist and interact with each other. Because of the sharp turn, the streamwise variations
and the normal gradient of the streamwise velocity are of the same order of magni-
tude. Furthermore, the flow rapidly changes direction. Understanding the structure
of turbulence in this flow and quantifying the effects on the flow are crucial for a
successful computation of the TAD.

Since the original work by Prandtl in 1929, the effect of mild streamline curvature
on the structure of a turbulent boundary layer has been studied by many investigators
(for a comprehensive review, see, for example, Bradshaw, 1973). It is well known
that a mild curvature produces a profound effect on the turbulent flow structure.
For example, if the ratio of the boundary layer thickness to the radius of the wall
curvature is merely 1%, there will be approximately 10% or more change in the
turbulent quantities. In most external flows such as the flow over an airfoil, the
streamline curvature is designed to be very mild except near the nose region where
flow remains laminar. For problems of this kind, the literature on the curvature effect
is quite extensive (see, for example, Wattendorf, 1935; Eskinazi and Yeh, 1954;
Gillis and Johnston, 1983; Moser and Moin, 1984).

However, study on a strong curvature effect is very limited. The question was
how the strong curvature in the TAD affects the turbulence quantity in a very short
duration while the flow passes through the 180◦ turn region. To analyze the fluid
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dynamic performance of the SSME powerhead, it is thus essential to quantify the
strong curvature effect under the flow condition in the TAD.

Since virtually no data was available at the time, experimental investigations
were started to study the fundamental structure of turbulence associated with sharp
U-turn internal flows. Two different experimental configurations were designed:
(1) two-dimensional 180◦ turn with a constant cross-sectional area, at NASA Ames
by Monson et al. (1989, 1992), and (2) axisymmetric U-duct to simulate the TAD,
at Rocketdyne by Sharma et al. (1987). Even though the Ames experiment was
motivated by the SSME flow analysis, is was designed to study the fundamental
aspects of turbulent flow with strong curvature; while the Rocketdyne experiment
was designed to provide more specific information relevant to TAD flow. The Ames
experiment and related turbulence modeling issues will be discussed next, followed
by the axisymmetric U-duct modeling case.

6.4.2.1 Two-Dimensional U-Duct Study

Many internal flows in engineering encounter curvature of various degrees.
Experimental and computational studies have been done on pipes and ducts with
bends, in conjunction with liquid rocket engine and hydroelectric power generation,
among many engineering practices. Two-dimensional U-duct experiments at Ames
do not provide directly applicable data to SSME simulations. For instance, this
geometry does not have the large expansion of flow passage as in the SSME TAD,
and the Reynolds number is much lower than the actual flow. To obtain 2-D results,
a three-dimensional duct with a constant cross sectional area was constructed where
two end-walls are separated by 10 channel height. The data taken along the center-
line of the channel are to be used for 2-D computations. Therefore, end-wall effects
along the centerline need to be minimized such that the data can be used for model
validation, and then to extend to future model development.

The experimental configuration conducted at NASA Ames High Reynolds
Channel I (HRC I) is depicted in Fig. 6.7. HRC I is a blow down facility using
unheated dry air at ambient temperature. After an entrance nozzle, a straight rect-
angular upstream duct is located with a dimension of 3.8-cm high and 38-cm wide
(that is, an aspect ratio of 10), and 83-cm long. It is followed by a 180◦ bend with
constant channel gap spacing equal to the centerline radius of 3.8 cm (that is, a
radius to gap ratio of 1). Following the bend, another 54-cm long straight down-
stream section is placed. A throttle plate at the exit of a bottom-settling chamber
controls the flow rate. This was adjusted so that the Mach number of the flow was
0.1, which is the same condition as in the SSME TAD.

Tests were conducted with pt at 1.2 and at 12 atmospheric pressure to achieve
Reynolds numbers of 105 and 106, respectively. Large Plexiglas side windows
allowed optical access to the entire bend, and to 12H up- or downstream regions.
Inner windows incorporated suction slots spaced H apart upstream of the bend to
remove the side-wall boundary layers. The suction (combined with the high AR)
was intended to keep the flow as two-dimensional as possible. The full detail of this
experiment is documented by Monson and Seegniller (1992).
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Fig. 6.7 Geometry of 2-D turnaround duct experimental model at NASA Ames High Reynolds
Number Channel I (HRC I)

A numerical study performed by Monson et al. (1989) assessed the ability of a
simple algebraic modeling approach for computing this type of internal flow with
strong curvature. An algebraic model given by Equation (6.1) was used for this
exercise. The length scale is calculated following Burke (1989), who used the ad
hoc formula below to account for n walls or surfaces:

1

l
=

n∑
i=1

1

κyi
[
1 − exp

(−y+
i

/
A + )] (6.10)

This simple model was chosen because Burke successfully simulated wing-body
juncture flow at a Mach number of approximately 0.1 and Re=106, and it is simple
enough for a quick implementation for 3-D applications. It is natural to expect some
limited prediction capability in this approach. However, this can give a quick overall
picture to users seeking first-order results before embarking on high-fidelity com-
putations. A few selected results, measured and computed using a modified mixing
length model by Monson et al. (1989, 1992), are presented below.

In Fig. 6.8, velocity profiles measured at 4H upstream of the bend are shown. The
overlapping data in the figure are taken from separate runs from each wall. The curve
fits, shown as a solid and a dotted line in the figure, are used as upstream boundary
conditions for computation. The profiles show that about the middle third of the
channel contains an inviscid core indicating that the flow is turbulent but not fully
developed at this location. The intensity of this core is measured by the LDV at about
1%, which is the resolution of the instrument. The boundary layers on the inner wall
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Fig. 6.8 Longitudinal velocity in 2-D U-duct at x/H = −24.0, M = 0.1

are somewhat thicker due to an asymmetric test section of the inlet nozzle. The flow
angle was measured as zero across the channel. Additional velocity and flow angles
taken at several transverse positions in the duct show excellent two-dimensionality
of the flow at this inflow location before entering into the bend region.

In Fig. 6.9, computed pressure coefficients and data are compared. The reference
pressure, pr, was chosen such that computational results agree with the measured
data at the start of the calculation. The experiment shows a moderate pressure rise
on the outer wall along the bend and a strong suction peak on the inner wall. The
maximum difference in pressure coefficients between the two walls is about 2.6,
which is about the difference one may expect from centrifugal forces. Computed
results and experimental data agree very well along the outer wall. However, along
the inner wall, the differences widen farther around the bend, probably due to dif-
ferences in the separated region. Downstream of the bend computed results show
higher pressure, indicating that the skin friction losses along the bend are under-
predicted by the computation. The slopes of the computed and measured pressure
are about the same downstream of the bend, which indicates that skin friction agrees
better in that region.

In Fig. 6.10, computed and experimental velocity profiles are compared at the
start of the bend (θ = 0◦). The measured profile shows that the flow has begun
to accelerate near the inner wall due to a favorable pressure gradient, and the peak
velocity is much closer to the inner wall. On the other hand, the flow near the outer
wall is decelerated. Generally, the computed and experimental results agree well
at this point. This is probably because the flow is mainly driven by the pressure
field, and turbulence structure has very little effect, so the algebraic model works
reasonably well.
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Fig. 6.9 Comparison of static pressure coefficients for 2-D turnaround duct at M = 0.1

Fig. 6.10 Longitudinal velocity profile in 2-D turnaround duct at M = 0.1 and θ = 0◦

In Fig. 6.11, the velocity profile is shown halfway through the bend (θ = 90◦).
The flow continues acceleration near the inner wall and deceleration near the outer
wall. Very few differences are observed between the flow at the two Reynolds
numbers.

The boundary layer on the inner wall is extremely thin and may actually be
relaminarized. The computed results over-predict the boundary layer thickness on
the outer wall. A similar trend is observed in an axisymmetric case that uses an
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Fig. 6.11 Longitudinal velocity profile in 2-D turnaround duct at M = 0.1 and θ = 90◦

algebraic model by Chang and Kwak (1988a). Possible factors contributing to this
discrepancy come from the high level of turbulence and unsteadiness in this region,
observed during the LDV tests. Sandborn (1988) presented evidence for the exis-
tence of highly time-dependent instabilities in this region of a turnaround duct. The
computed mixing length along the outer wall is nearly constant, indicating that an
algebraic modeling approach is likely to over-predict boundary layer thickness in
the outer wall region. The accuracy of an algebraic model suffers in this region.
Using other models will result in different boundary layer thickness. For example,
Chen and Sandborn (1986) reported thinner boundary layer thickness using a k − ε

model. The difficulty may have started from the basic assumption of equilibrium tur-
bulence in using an eddy viscosity model. This type of flow may require higher-level
modeling. However, considering that the flow is highly unsteady at this point and
will separate after this point, the simple algebraic recipe for eddy viscosity produces
remarkably good results.

In Fig. 6.11b, flow angles are measured. The measured data indicate that flow
turns with a much larger positive turning angle. The scatter in the data is due to the
unsteadiness in this region. The computed results deviate widely from the measured
flow angle, and this may be due to the extent of separation along the inner wall
downstream of the turn.

In Fig. 6.12, the velocity profile is shown at the end of the bend (θ = 180◦). The
velocity profiles indicate that separation bubbles exist on the inner wall just down-
stream of 150◦ in the bend—a small one for Re = 105 (height of 3.1% of H) and
a much larger one for Re = 106 (height of 8.5% of H). The reattachment occurs
at x/H between 1 and 2 for Re = 105, and at x/H = 2 for Re = 106. The separa-
tion bubbles observed from the real-time Doppler signals on an oscilloscope appear
to be very unsteady and unstable at both Reynolds numbers. At times, the bubbles
are completely swept away—then instantly reestablish at aperiodic frequency. The
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Fig. 6.12 Longitudinal velocity profile in 2-D turnaround duct at M = 0.1 and θ = 180◦

instability of separation bubbles could be a major reason for highly scattered mea-
surement in this flow. Outside the separated region, the flow is accelerated around
the bubbles. Sandborn (1988) observed a similar phenomenon in his water flow test
at Re = 105.

Using an algebraic model, one might expect that the accuracy of computed results
is very much lost. However, our results show varying degrees of success in match-
ing the experimental data. For Re = 105, separation is reasonably well predicted
with the separation angle at 153◦ into the bend, reattachment at x/H = 1.1, and a
bubble height of 5.7% of the channel height, H. The velocity profile matches quite
well except that, near the outer wall, the mixing length model overpredicted the
boundary layer thickness. For Re = 106, the mixing length model predicted smaller
separation bubbles than it did at Re = 105. Once the separation is not predicted
correctly, the computed result past the separation point becomes worse in matching
with the experiments. The bubble size becomes smaller as the Reynolds number
increases—which is opposite to experimental observation. As a reference point, the
Navier-Stokes prediction of Sandborn (1988) using a multiple-scale k − ε model
with low-Reynolds number k − ε model predicts larger separation zones than the
mixing length model, as described here. Our mixing length model predicts smaller
separation bubbles for Re = 106, which is expected. Because of the poor separation
prediction, results for the downstream side of this flow are expected to be poor. This
shows that the modeling approach needs to incorporate more physics than a simple
mixing length description.

Many attempts have been made to develop a higher accuracy, more predictable
model, and many review articles can be found (for example, Reynolds, 1976).
From a CFD applications viewpoint, trade-offs between accuracy versus uncertainty
bounds or consistency need to be assessed for a timely impact on engineering.

A typical velocity profile after reattachment is shown in Fig. 6.13 at x/H = 2
and 12, respectively. The computed results show a gradual approach toward a fully
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Fig. 6.13 Longitudinal velocity profile in 2-D turnaround duct at M = 0.1

developed channel profile, while the experiments show more plug flow type profiles.
At this stage, differences existed between the experiments and computation—such
as unsteadiness and presence of a weak 3-D structure in the experiment, among other
things. For full validation in this region, three-dimensionality needs to be included
as well as a more physically correct turbulence model.

6.4.2.2 Axisymmetric U-Duct

The two-dimensional U-duct discussed above was intended to produce turbulence
data for model development and validation. However, the cross sectional area of the
2-D duct remains constant, while in the SSME TAD case, the cross-sectional area
for flow passage diverges starting from the beginning of the bend. The flow in the
actual TAD is under much higher adverse pressure gradient due to expansion of this
channel configuration. Therefore, another experiment was designed to account for
the divergent channel effect in addition to the strong curvature. That experiment was
performed at Rocketdyne by Sharma et al. (1987).

A schematic of this axisymmetric experiment is shown in Fig. 6.14. The duct
width is 2 inches, and the radius of the center-plane of the annular duct is 10 inches
upstream of the turn and 14 inches downstream of the 180◦ bend. The radius of
curvature is 1 inch for the convex inner wall, and 3 inches for the concave outer
wall. From the beginning through completion of the turn, the annular cross-sectional
area undergoes a 40% increase. The boundary layer on the inner wall side is there-
fore expected to separate in the neighborhood of the 180◦ turn. The experiment
is conducted at atmospheric pressure. The Reynolds number is approximately 105,
and the Mach number is about 0.1. Hot wire and hot film probes are used for data
acquisition.

For such complicated turbulent flow as encountered in the SSME, high-level
turbulence models such as a two-equation model or Reynolds-stress model may
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Fig. 6.14 Schematic of experimental axisymmetric turnaround duct model

be needed. However, as discussed in the previous section, for many engineering
applications, a simple yet adequately tuned model as proposed by Equation (6.1)
will be of considerable value for design purposes. The previous study with a 2-
D U-turn was intended to determine the sensitivity of the strong curvature effect
on the existing turbulence models. Since the existing models are primarily devel-
oped for external flow, a modified algebraic model was proposed and tested with the
experimental data.

It is to be noted that the purpose of this study was to assess whether the pro-
posed algebraic model is adequate for the SSME HGM redesign task on hand. One
primary concern was the strong curvature effect where no empirical data was avail-
able for the evaluation of the model adequacy. From the study, it was observed that
strong unsteadiness, separation, and adverse pressure gradient have more dominant
impacts on the computed results. The SSME TAD, however, has annular axisym-
metric geometry in the 180◦ turn region, followed by a non-symmetric transfer duct
connected form the fuel bowl to the main injector assembly. Therefore, the actual
TAD to be redesigned includes the rapidly diverging area in the flow direction, as
well as the strong curvature effect.

The axisymmetric experiment was designed to study these features in a labora-
tory setting. The related computations presented here are natural extensions to the
two-dimensional U-duct study, and the computations are used to assess the sensitiv-
ity of the proposed algebraic turbulence model for the analysis of the actual SSME
geometry.

For computations, only three azimuthal planes are required because of the
axisymmetry. The center plane and the other two planes are set on either side of
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the center plane offset by a small angle. Across the duct width, 81 grid points are
distributed with an expansion factor of about 1.2. The smallest grid size next to
the wall is 0.02% of the duct width that corresponds to y+ of less than 5. In order
to resolve the detail of the separated flow profile, the largest grid size in the core
region is set to be 0.025 times the width. The 180◦ U-turn region is divided by 42
equal intervals. An orthogonal cylindrical grid system is used here to eliminate any
inaccuracies associated with non-orthogonal grids. The grids upstream and down-
stream of the bend are then fixed by smooth expansions from the bend region. These
grids are orthogonal close to both walls. Therefore, the flow path is represented by a
3×81×95 grid in the circumferential, radial, and flow directions, respectively. This
grid in the U-turn region is shown in Fig. 6.15a.

The measured streamwise velocities at 10 inches upstream of the bend
(i.e. x/H = −5) are used as the inlet conditions. Due to hot-wire probe infusion,
reliability of the measured velocity normal to the wall is uncertain. Since the normal
velocities are small, they are set equal to zero.

Figure 6.15b shows the comparison of the static pressure distributions between
the measured data and the computed results. The measured data were obtained in an
earlier experiment in which no turbulent tripping mechanism was used. The result-
ing boundary layer on the outer wall at 8 inches upstream of the bend, that is,
x/h = −4, is very thin. By using these measured velocities as an inlet condition
at that location, the computed result shown with a solid line agrees very well with
the experiment. In the neighborhood of the 180◦ turn, pressure on the inner wall
shows a dip followed by a long recovery from the trough.

In external flows, boundary layer separations usually interrupt the pressure-
recovering processes. The resulting pressure downstream of the separation will

(a) (b)

Fig. 6.15 A computational model for an axisymmetric turnaround duct and computed pressure
coefficient: (a) grid; (b) pressure coefficients on the inner and outer wall
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be almost constant. In the present confined duct, the flow that is pushed out-
ward due to inner layer separations is squeezed back by the flow on the opposite
side. As a result, the effective flow area is reduced, creating a region of local
acceleration that results in a local pressure dip. In a later experiment, the layer
is tripped and artificially thickened to about 0.5 inches at the position 10 inches
upstream. Because of the thickened layer at the outer wall, a larger portion of
kinetic energy is carried by the inner-wall region, inducing a larger acceleration
in the bend.

Comparisons of the measured and computed streamwise velocity profiles are
shown in Fig. 6.16. Agreement is good, in general, except near the outer con-
cave wall in the bend region. The numerical results show a slight separation from
the beginning of the turn through about 103◦, while the experimental data shows
attached layers all the way through the turn.

Accuracy of the measured velocities in this region is still uncertain due to two
factors. First, because of the sharp concave wall effect, the enhanced turbulent
intensities obtained are as high as 45% of the measured mean velocities. Since the
hot-wire probe measures only the rate of heat transfer, it does not detect the direction
of the flow. In a region where heat transfer is significantly affected by the turbulent
fluctuations, it is extremely difficult to obtain the true mean flow velocities, as evi-
denced by experiments in the low-speed region of a mixing layer. Second, the mass
flow obtained by integration of the measured velocities over the cross-sectional sur-
face of these few planes is substantially larger than the amount of mass coming from
the inlet. The computed velocity profiles conserve the mass flow to an order of 10−5.

Because of these uncertainties, we have drawn no conclusion for the discrepan-
cies. On the convex inner-wall side, the layer begins to separate at about 125◦ into
the turn. The data obtained by the hot-wire probe registered a high value due to large
turbulent fluctuations in the separated region, and the data do not reveal the direction
of the flow. Just as the computations need assessment of uncertainties coming from
numerical procedures and physical modeling, experimental data need to be carefully
evaluated to determine validity and error bound.

In Fig. 6.17, the Reynolds stress, −u′v′/u2
ref , is shown. The computed results

agree qualitatively with the experiments in the U-turn region. Again, in the outer
concave region the turbulence level is much higher than the inner convex part of the
turn region.

To capture the curvature and diverging channel effects, a higher-level turbu-
lence model will be necessary, possibly with curvature effect terms included.
From our study, however, the accuracy of the solution using the proposed alge-
braic turbulence model is regarded as acceptable for studying preliminary design
changes—providing the final design configuration is verified by higher accuracy
modeling and testing. Therefore, this model has been used extensively for simu-
lating the SSME powerhead for the analysis and redesign tasks. In the followings
sections we discuss how this CFD approach has been utilized in the redesign task,
and present computed flow solutions in a variety of different HGM configurations
at various Reynolds numbers. Here, the Reynolds number is based on the mean
velocity and the duct width at the entrance of the TAD.
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Fig. 6.16 Comparison of normalized streamwise velocities for axisymmetric U-duct
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Fig. 6.17 Comparison of normalized Reynolds stress for axisymmetric U-duct

6.5 Analysis of the Original Three-Circular-Duct HGM
Configuration

One of the main purposes of the SSME redesign was to increase the rated thrust.
To proceed with this task, called the Phase II+ redesign, the first step was to
analyze the flow in the powerhead. Turbulence modeling issues with quantifying
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this complicated flow have been discussed in previous section. Here, we present a
step-by-step process for analyzing the current design configuration, followed by an
analysis of the new design in the next section.

The entire rocket engine development process, including design of the basic
configuration, experimental validation of component level functions, and final
certification testing, requires enormous time and cost in terms of computational
resources. In order to make any impact on the configuration design, the CFD con-
tribution has to be timely as well as reliable. Therefore, geometry modeling and
boundary condition procedures are often truncated and approximated, and physi-
cal models chosen for economy—as long as one can obtain reasonably consistent
results at the expense of some inaccuracies such as in the separated flow regions. We
present the engineering process used in conjunction with the Phase II+ redesign of
the SSME for the purpose of illustrating a CFD application procedure for supporting
a mission-driven task.

In the design of rocket engines and vehicles, size and weight are two major con-
straints to work within. The original SSME configuration was designed with an
axisymmetric annular turnaround duct. The duct width is on the order of 1 inch and
the radii of curvature are approximately 0.6 and 1.4 inches for the convex inner and
concave outer walls, respectively. The Reynolds number, based on the width of the
duct entrance, is on the order of 107. The Mach number of the hot gas flow is less
than 0.1, which makes the incompressible assumption mathematically valid.

For the first step, steady-state solutions are obtained for a truncated model of
the current three-circular-duct HGM. For this initial computation, the intention is
to define the function of the three transfer ducts sketched in Fig. 6.4. These ducts
connect the fuel-side fuel bowl (left-hand side in Fig. 6.1) and the main injector
assembly at the center. On the right-hand side of the schematic shown in Fig. 6.1, a
similar configuration is located with the oxidizer turbopump. The two sides are not
symmetric and thus a full analysis requires coupling of these ducts and the racetrack
of the main injector. For the fuel side, the two computational domains, namely, the
fuel bowl with TAD and main injector assembly with the racetrack, are connected
by three ducts. Therefore, for the analysis of the fuel-side TAD, a computational
model truncated at the junction of the transfer ducts and the racetrack, is generated.
A three-dimensional view in Fig. 6.18 shows surface grids for this model.

To investigate the function of the three ducts, a laminar flow at Re = 1,000 was
first computed. Even though the boundary layer is thicker than a turbulent case and
the subsequent separation region would be large, the resulting flow will give a con-
servative estimate for engineering purposes. In this model, the three transfer ducts
are assumed to discharge the flow separately, which results in no communication
of the pressure between the center and outer ducts at their exit planes. Therefore,
the downstream condition is not a good approximation of the real case. For this
reason, small residual waves have remained in the computed results. However, the
root-mean-square value of the change in the flow variables, RMSDQ, has dropped
below 10−5, and an essentially steady-state solution has been obtained.

Interpretation of the computed results is another challenge for this problem. The
overall energy required for the flow to reach the main injector assembly can be one
measure. A locally non-uniform flow field that can cause high structural load on
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Fig. 6.18 Inner and outer
surface grids for a three-duct
Hot Gas Manifold model

some of the LOX posts along the racetrack needs to be identified. Three-dimensional
flow visualization can shed some light on this aspect.

In Fig. 6.19a, b, velocity vectors are shown in the horizontal and vertical cross-
sections corresponding to the cut view of the grid. The flow in the center transfer
duct is highly non-uniform, and a large separation region is formed just down-
stream of the entrance to the transfer ducts. By comparison with the vector length
in the figure, the flow in the center duct is much slower than in the outer ones. The

Fig. 6.19 Computed velocity distribution at Re = 1,000: (a) top view, (b) vertical cross-section of
center transfer duct
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Fig. 6.20 Particle traces on unwrapped inner wall surface: (a) computed vectors indicating par-
ticle traces, (b) experiment (at Rocketdyne) showing particle traces on inner wall of the Hot Gas
Manifold

results shown in this figure agree qualitatively with the airflow test data conducted at
Rocketdyne with a Reynolds number of about 106. The predicted mass flow through
the center duct is 9.8% of the total mass flow, which agrees with the test data.

Figure 6.20a illustrates the 3-D velocity vectors at an unwrapped plane near the
inner wall of the fuel bowl. A reverse-flow pattern is clearly visible near this wall.
Three-dimensional swirl patterns are predicted in the vicinity of the entrance to the
transfer ducts. Figure 6.20b is a photograph taken after removing the outer wall
following flow measurements at Rocketdyne, which indicates, by means of surface-
streak (shear-pattern) visualization, the similar swirls at the corresponding locations
in the airflow test.

The existence of the swirls can be explained as follows. The flow coming from
below the SSME powerhead has a large momentum due to the relatively small width
of the annular duct. Among the streamlines of this flow in between the two ducts,
there exists a dividing streamline. This streamline has a stagnation point at the top
of the fuel bowl, as shown in Fig. 6.20a. On the left side of this dividing streamline,
the flow is bent leftward to the center duct. Due to symmetry, a rightward flow
is also approaching the center from the other side. When these opposite currents
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approach each other, another dividing streamline is formed with a stagnation point,
again at the top wall. The stagnation pressure forces the streams to bend downward,
and at the same time, the streams make a right-angle turn into the circular duct.
Conservation of momentum consequently results in the formation of swirls.

The pattern of the swirl and its center depends on the relative strength of the
approaching currents. Near the center duct, double swirls of equal strength are
formed due to symmetry. In the vicinity of the entrance to the outer duct, the current
approaching leftward from the rear part of the bowl is larger than the one approach-
ing rightward. A stronger swirl is thus formed, located sideways toward the weaker
stream.

Figure 6.21 shows perpendicular cross-sectional views of three different sections
of the transfer ducts; namely, near the entrance, at the midsection, and near the exit
plane. Near the entrance, the velocity vectors in the center duct have symmetric dou-
ble swirls, while the outer duct has a strong swirl accompanied by a much weaker
one. The swirling velocities are largely reduced at the midsection and are physically
dissipated before entering the main injector regions.

In this original HGM design, the three transfer ducts are to carry evenly divided
loads for transferring hot gas from the fuel bowl side to the main injector. However,

Center transfer duct Outer transfer duct

Fig. 6.21 Computed velocity
vectors at three different
vertical cross sections of
three-duct Hot Gas Manifold
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from our analysis, it was found that only about 10% of the total mass flow goes
through the center duct. The large separated region at the entrance of the center duct
does not help alleviate this uneven distribution of the flow. Subsequently, a new
design idea was developed using two larger area transfer ducts.

The original design used a circular cross section based on structural reason. For
the new two-duct design, an elliptic shape was chosen. This maximizes the total
cross-sectional area, given the limited space in the powerhead. The new two-duct
design is analyzed using the same numerical procedure and then compared with
the original design. This provides relative change in performance and flow quality.
Then, to quantify the flow more accurately, the Reynolds number and turbulence
modeling were chosen closer to the real case. This and other features are discussed
next.

6.6 Development of New Two Elliptic-Duct HGM Configuration

From the computational flow analysis and experiments, the center duct of the origi-
nal three-duct HGM is found to transfer a limited amount of mass flow (about 10%
of the total flow). In addition, the transverse pressure gradient remains large, with a
large bubble of separation after the 180◦ turn. To improve the quality of the flow, a
large-area, two-duct design concept has been developed (see Yang et al., 1987; Lin
et al., 1987). In addition, the ducts are chosen to have an elliptical shape in order to
distribute the mass flow evenly to the main injector region. A cross-sectional view
of the computational grids for the new two-duct power head model is shown in
Fig. 6.22.

The main injector assembly consists of several hundred LOX posts (Fig. 6.2), and
is located at the center section in both Figs. 6.22 and 6.23. The flow goes through

Fig. 6.22 Computer model of the new two-duct SSME power head: (a) horizontal cross section
(B-B), (b) vertical cross section (A-A)
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the gap between the posts and small holes between shields supporting these posts.
We therefore assumed that the flow enters into the main injector assembly from the
racetrack in the radial direction.

The fuel side of the HGM delivers 70% of the total flow. Therefore it is assumed
that approximately 70% of the main injector area along the racetrack receives 70%
of the mass flow. Airflow tests confirm this approximation. The primary task of this
redesign is to modify the fuel side of the powerhead (left-hand side of the cross-
sectional view in Fig. 6.1). Thus, for the analysis of the fuel-side HGM, a truncated
geometry was created from the entire powerhead model. The computational model
for the fuel-side HGM is shown in Fig. 6.18. Multi-zone computations were per-
formed, as sketched in Fig. 6.4 with the extended turbulence model discussed in
Equation (6.1). Both laminar and turbulent flow solutions are obtained for compari-
son. The Reynolds number is based on the width of the TAD entrance, and the inlet
velocity is 103 for the laminar flow and 1.9×106 for the turbulent flow case. The
same boundary conditions are used for both flow simulations.

One important improvement goal of the new design was to reduce the size of
the separation bubble after the 180◦ turn. The computational approach for this
task is achievable using laminar flow analysis. For the purpose of comparing rel-
ative change in flow quality under a geometric modification of this type, laminar
flow analysis can be used for a conservative estimate and to minimize uncertainties
stemming from turbulence modeling. Once the new configuration is outlined, a para-
metric study and optimization can be performed to arrive at a preliminary redesign
configuration. As shown in Fig. 6.24, the separation bubble size is substantially
reduced after the geometry has been modified.

Fig. 6.23 Computational grids for the fuel-side HGM analysis: (a) horizontal cross section, B-B,
and (b) vertical cross section A-A
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Fig. 6.24 Comparison of velocity vectors on vertical cross-section of HGM to observe the
separation bubble after the 180◦ turn: (a) original three-duct design, (b) new two-duct design

Because laminar flow computations were utilized for the design change, it is
of interest to compare computed results for laminar and turbulent flow conditions.
Therefore, comparison of computed solutions are made among three different cases:
Laminar solutions for the original three-duct design, and laminar and turbulent
solutions for the new two-duct design.

For the new two-duct design, Fig. 6.25 shows the velocity vectors at three sec-
tional planes of the TAD with laminar and turbulent flow conditions. For the laminar
computation, a fairly large separated zone exists starting right after the 180◦ turn,
while a much smaller separated region is predicted for turbulent case. For the tur-
bulent case, the boundary layer is much thinner than in the laminar flow case. Since
the turbulent kinetic energy is much higher in the boundary layer, relative to the
corresponding laminar case, a smaller separation bubble develops under the adverse
pressure gradient after the turn.

Fig. 6.25 Comparison of cross-sectional velocity profile between laminar and turbulent flow for
the two-duct design
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When the flow goes into the transfer duct, a swirling flow pattern develops, as
shown in Figs. 6.19 and 6.20. The intensity of the swirl depends on the upward
velocity from the TAD. Since the laminar flow has a larger blockage than the tur-
bulent case due to larger separation after the turn, the magnitude of the swirling is
expected to be larger in the laminar case than in the turbulent flow case. The com-
puted maximum magnitude of the swirling velocity near the duct entrance is 0.44
of the inlet velocity for the laminar case, and 0.33 for the turbulent case. The swirl
gradually dissipates as the flow goes farther into the duct. Also it is observed that a
large separation bubble existing at the entrance of the transfer duct in the original
design is practically removed in the new configuration.

One important objective of the redesign was to reduce the transverse pressure
gradient at the exit of the gas turbine underneath the preburner (see Fig. 6.1).
Therefore, the laminar and turbulent solutions for the new two-duct HGM is
compared to the computed results of the original configuration. In addition, the
experiments performed using both the three-duct HGM and the new two-duct con-
figuration are compared with the computed results. In Fig. 6.26, pressures around
the fuel bowl of the HGM are compared among these cases. In the original config-
uration, there exists a large pressure gradient from the back side (θ = 180◦) to the
transfer duct side (θ = 0◦). In the new two-duct configuration, both the experiment
and the computation show a much lower pressure gradient.

As sketched in Fig. 6.1, the hot gas flowing into the computational model of the
HGM shown in Fig. 6.26 is from the exit of the gas turbine run by the hot pre-burned
gas. Therefore, the pressure at the exit of the gas turbine blades has a large pres-
sure gradient in the case of the original design, while this gradient is substantially

Fig. 6.26 Comparison of transverse pressure coefficients after 180◦ turn along circumference of
the turnaround duct
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Fig. 6.27 Velocity head measurements inside the turnaround duct after 180◦ turn: (a) original
3-duct design, (b) new 2-duct design

reduced in the new design. From a hardware perspective, the new design results
in a substantially reduced load on the bearings that hold the gas turbine and the
turbopump through the center of the HGM (see Fig. 6.1).

A large number of parametric computations were performed to optimize the
HGM configuration. Because of the limited computer speed and capacity in the
1980s, only manual optimization was performed to find the best TAD, fuel bowl,
and transfer duct geometry. Various laboratory experiments were performed to
fine-tune the HGM design, initially using cold air. Some water tests with bubbles
injected for qualitative visualization were also tried at the beginning of this redesign
effort. Because of the three-dimensional nature of the flow, visualization was also a
challenge.

To compare the differences between the two designs, the velocity head is mea-
sured within the HGM. The measured velocity head at five different locations across
the channel between the inner and the outer wall is shown in Fig. 6.27a, b for the
original and new designs, respectively. To find the most favorable flow conditions,
over 20 different two-duct configurations were studied computationally, potentially
providing the optimum geometry to designers. Ideas from researchers were incorpo-
rated into the manual optimization process. Fully automated numerical optimization
may be implemented utilizing faster codes and computers compared to the 1980s.

One of the objectives of the computational analysis was to pinpoint the locations
where flow experiences the greatest energy losses. An important measure of the
energy losses is the mass-weighted average total pressure along the flow. The total
pressure coefficient Cpo is defined as:

Cpo = p̄o − p̄o1

p̄o1

where

p̄o = 1

M

∫ [
P + 1

2

(
u2 + v2 + w2

)]
dm
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Fig. 6.28 Comparison of surface pressure between the original and the new Hot Gas Manifold
design

To visualize the pressure distribution, surface pressure maps for the original and
newly designed HGM are shown in Fig. 6.28. The flow is much more uniform in the
new configuration and the variation between the maximum and minimum pressures
is much lower. Visualization of various quantities is presented by Belie (1985).

Figure 6.29 illustrates the decreasing coefficient of the mass-weighted total pres-
sure along the centerline of the TAD, the fuel bowl, and the transfer duct. The
discontinuities shown in the figure correspond to the entrance of the transfer duct,
where energy fluxes are computed over different planes. In the figure, three differ-
ent HGM configurations are compared. The initial two-duct design shows 28% less

Fig. 6.29 Comparison of measured pressure losses between the original and new, computationally
improved Hot Gas Manifold design
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total pressure drop compared to the original three-duct version. After fine-tuning
the two-duct configuration computationally, the pressure drop decreased even fur-
ther to 36% less than the original configuration. This final optimized configuration
was then tested using cold-air flow, which shows 40% reduction in pressure loss
under cold air test condition.

6.6.1 From Redesign to Flight

After laboratory experiments and CFD validation, the new two-duct hot gas mani-
fold became part of a new powerhead design. In the course of integrating this new
configuration, Rocketdyne incorporated a new and improved design process. This
design lowers the temperatures in the engine during operation, as well. In addition,
this design reduces stress on the main injector and requires fewer welds, eliminat-
ing potential weak spots in the powerhead, and had 52 fewer parts, leading to a 40%
cost reduction.

The new two-duct engine made its first flight on Space Shuttle Discovery’s 20th
mission (STS-70) in July 1995, and has been used in all subsequent shuttle missions.



Chapter 7
Turbopumps

Rotating machinery that involves liquid has been in use for many centuries. The
history of various forms of pumps goes back to the early days of human civilization,
just as that of hydraulic turbines or marine propellers. Hydraulic turbines, for exam-
ple, have used water for hydroelectric power generation. Another example is the
Francis turbine developed in the nineteenth century—still one of the most popular
water turbines in use.

Highly sophisticated pumps driven by high-speed turbines have emerged as
liquid-propellant rocket engine technology has advanced, prompting use of the term
“turbopump,” particularly in conjunction with rocket engines for space exploration.
Requirements of a turbopump vary depending on the specific impulse required and
the associated engine design approach. For example, the inlet and exit pressures
and flow rate for a gas-generator cycle engine are different from that of a staged-
combustion cycle engine. In general, liquid-propellant rocket engine turbopumps
operate under very severe conditions and are a challenge for numerical simulation.

Major advances in turbo pump technology have been made for more than three
decades, just as CFD became an engineering tool during the same period in parallel
with computer hardware advances. State-of-the-art of turbopumps depend on many
factors such as material, the manufacturing process, bearing and seals, inlet and
outlet arrangement, and the dynamics of the unsteady flow environment. Although
all these factors vary among designs—sometimes significantly—CFD simulation
procedures can be discussed in a unified manner. In this chapter, we discuss the
CFD issues in simulating turbopump flow, based on our experience with the most
advanced staged-combustion cycle engine, the Space Shuttle Main Engine (SSME).
The discussion is focused on the computational procedures rather than engine
specifics.

7.1 Historical Background

As briefly introduced in Section 6.1, in the early 1980s several major upgrades were
made to the first flight engine used as the First Manned Orbital Flight (FMOF)
SSME. One of the major modifications made on the FMOF engine was a new

181D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific
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two-duct powerhead as well as an upgraded high-pressure oxygen turbopump. These
modifications were incorporated to produce the Block I engine. The upgraded Block
I engine was first flown successfully on STS-70 in July 1995, after which, a series
of upgrades were undertaken to develop the Block II engine. Modifications in the
Block II engine include the addition of a large throat combustion chamber, a new
high-pressure fuel turbopump, and new material and manufacturing processes. The
first model of this engine flew in 2001 and the first flight mission with all three
Block II engines was STS-110 in April 2002.

From a CFD perspective, these upgrades require high-fidelity simulation capabil-
ities, especially for combustion devices, turbine stages, pump inducer and impeller,
and complex internal flows. Incompressible flow simulation capabilities are of criti-
cal importance for the analysis of pump-related flow and internal flow of cryogenic
liquid. In this chapter, computational steps are discussed in detail, using the shuttle
and shuttle-derived examples.

7.2 Turbopumps in Liquid-Propellant Rocket Engines

In designing a liquid-propellant rocket engine, several different approaches can be
used in selecting the power cycle, depending on the mission requirements and the
cost. To obtain high thrust, the chamber pressure has to be high, so it is necessary
to increase the thrust-to-weight ratio. A turbopump in this environment needs to
be compact to minimize weight. The most complicated and sophisticated design to
date is the staged combustion power cycle used in the SSME. Historically, a gas-
generator power cycle was developed and has been used very successfully in many
rockets. More recent engines use expander or hybrid power cycles. From a pump
design viewpoint, each design approach will result in different turbopump arrange-
ments. Since the scope of our discussion is limited to CFD procedure development,
any turbopump from these engines would satisfy our purpose. In this chapter, there-
fore, the examples are selected from our computational activities related to the
shuttle engine and shuttle-derived configurations

In a staged-combustion engine, liquid propellant (typically cryogenic) is pumped
from the fuel tank at low pressure into the combustion chamber. A turbine powered
by partially burned combustion product is sketched in Fig. 7.1. The fuel turbopump
is shown on the left-hand side of the figure. A typical turbopump assembly for a
liquid-propellant rocket engine is shown in Fig. 7.1. Issues related to fluid dynamics
are also indicated in the figure.

Fuel at the inlet of the turbopump is at low pressure, and is delivered to the
combustion chamber at high pressure. Since a rocket engine needs to achieve a
high thrust-to-weight ratio, turbopumps typically operate at an order-of-magnitude
higher speed than other turbomachinery, such as turbojets or conventional pumps.
Even at highly pressurized operating conditions in a rocket engine, cavitation is still
a major issue because cavitation-induced vibration can cause serious damage to the
pump structure, such as the impeller and diffuser blades. From a simulation point
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Fig. 7.1 Sketch of a generic fuel pump arrangement for a liquid-propellant rocket engine

of view, the major advantage of accurately simulating the unsteady environment in
a turbopump is to design cavitation-free or minimally cavitating impeller configu-
rations. Considering that the turbopump has to operate in a relatively wide range,
finding an optimum configuration including off-design conditions is not straight-
forward. In this chapter, we discuss a general CFD simulation procedure using a
generic pump similar to those used in the SSME.

The turbopump subsystem is the most crucial and expensive element in a
liquid-propellant rocket engine. However, turbopumps have been developed semi-
empirically for many decades and the unsteady three-dimensional viscous flow
phenomena have not been fully accounted for in the design process. Even though
CFD applications for turbomachinery have been reported in the literature, appli-
cations for turbopump design have been very limited. This may be due to the
difficulties associated with quantifying the unsteady three-dimensional flow in tur-
bopumps that include inducers, impellers, and diffusers (stationary). In addition, it
takes many years from design to flight to develop a new or improved turbopump
system. To predict pump performance, which is directly tied to the engine perfor-
mance, salient features of 3-D viscous flow phenomena must be resolved, including
wakes, boundary layers in the hub, shroud and blades, blade-hub juncture flows, and
tips clearance flows (see, for example, Hah et al., 1995). Another important feature
related to 3-D unsteady flow in turbopumps that affects the safety and reliability
of a rocket engine, is the fatigue on the structure due to flow-induced vibration.
Quantifying damaging frequencies and amplitude of this flow-induced vibration is
an important challenge to CFD simulation of turbopumps.

One of the early efforts for improving turbopump subsystem designs in liquid-
propellant rocket engines began in the early 1990s at NASA’s Marshall Space
Flight Center, where a pump CFD consortium was established involving univer-
sities, industry, and NASA (see Garcia et al., 1992, 1994). Some of the computed
results generated during this consortium activity through the 1990s are used here to
discuss the simulation steps. In addition, analysis of the shuttle flowliner in the fuel
feed line, performed in early 2000s, is presented to illustrate complex internal flow
issues involving pump flows.
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7.3 Mathematical Formulation for a Steady Rotating Frame
of Reference

Geometrically, one of the simplistic pump configurations is shown in Fig. 7.2.
Basically, the flow passes through the main impeller passage, usually at a constant
speed. In this configuration, there is no interaction between stationary and rotational
components, such as the interaction between the impeller and diffuser or between
the inlet guide vane and impeller. Stationary shrouds can be treated as a moving
boundary. Compared to a full pump assembly, this type of simplified configuration
is easier to handle for obtaining experimental measurements, and thus convenient to
use as the first step for validating pump computational procedures. In this section,
we present a mathematical formulation in a steady rotating frame of reference. This
formulation will be used for validation in the next section.

The computational procedure used in this chapter is based on the artificial com-
pressibility method discussed in Chapter 4. In a steadily rotating frame of reference,

Fig. 7.2 Schematic view of a generic pump impeller cross-section
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the governing Equation (4.20) is modified to include the centrifugal force and the
Coriolis force as source terms.
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If the relative reference frame is rotating around the x-axis, this term is given by:
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where � is the rotational speed. The source term can be set to zero in most cases
other than for obtaining rotational steady solutions. Relative velocity components
are written in terms of absolute velocity components ua, va, and wa as:
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An unfactored implicit scheme can be obtained from the governing equations by
linearizing the flux vectors about the previous time step. Then the following delta
form of governing equation is obtained:
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This equation is iterated in pseudo-time until the solution converges to steady
state, at which time the original incompressible Navier-Stokes equations are sat-
isfied. A direct inversion of Equation (7.1) would become a Newton iteration for
a steady-state solution. In three dimensions, however, direct inversion of a large
block-banded matrix of the unfactored scheme would be impractical. Implicit meth-
ods discussed in Chapter 4 can be applied to this formulation. The computed results
presented in this chapter have been obtained using upwinding and line relaxation
schemes with the one-equation turbulence model by Baldwin and Barth (1991).

7.4 Validation of Simulation Procedures Using a Steadily
Rotating Inducer

One of the difficulties facing the validation of a pump flow simulation procedure
comes from the scarce data available for validating detailed flow features. For the
pump CFD consortium activity mentioned above, a special pump inducer geom-
etry with a high flow coefficient was developed and experimentally studied by
Rocketdyne (see Garcia et al., 1992). An inducer that provides a sufficient pressure
rise to the pump inlet is crucial to prevent or minimize cavitation on the impeller
blades, and is therefore a critically important element in a rocket engine pump
design. The Rocketdyne inducer is designed to deliver 2,236 gal/min with a design
speed of 3,600 rpm. The tip diameter of the inducer is 6 inches. As shown in Fig. 7.3,
the upstream section of the inducer is composed of a 10-inch-long straight channel.
The tip clearance is 0.008 inches and the tip-leakage effect had to be included in
the computational validation. The Reynolds number was based on 1 inch and the
average inflow velocity of 339.6 inch/s was 191,800. The computational validation
steps are presented here to illustrate the procedure.

As the first step of the validation, rotational steady or ensemble-averaged solu-
tions are computed. Therefore, it is possible to represent the flow with one blade
passage that is one-sixth of the cross-section of the tube. An H-H grid topology
with grid dimensions of 187 × 27 × 35 was used, as shown in Fig. 7.4. The H-type
surface grid was generated for each surface of the passage by using an elliptic grid
generator. The interior region was filled by using an algebraic solver coupled with
an elliptic smoother. It is assumed that similar grids can be generated using other

Fig. 7.3 Rocketdyne inducer geometry used for validating computational procedure
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Fig. 7.4 Surface grid for the
Rocketdyne inducer

existing grid generation software. The bull nose of the inducer (front of the inducer
shaft in Figs. 7.3 and 7.4) was treated as a rotating wall and the cavity section at
the center of the bull nose was neglected. Geometric detail of this region can be
included by adding one more zone. However, the cavity region is not expected to
change the flow details in the inducer passage. Figure 7.4 shows the surface grid of
the inducer configuration.

Since one passage is computed, periodic boundary conditions are imposed on
the circumferential direction. For the rotational steady solution, the iterative process
is considered converged when the maximum residual drops at least five orders of
magnitude. The convergence history is shown in Fig. 7.5.

Validation in a qualitative sense can be done using three-dimensional flow
visualization.

For more quantitative validation, experimental measurements were made on a
number of cross sections, as shown in Figs. 7.6 and 7.7. Relative total velocity and
relative total angles obtained from the current computation are compared with those
obtained from experiments in Figs. 7.8, 7.9, 7.10 and 7.11. The radial velocity was
not measured experimentally. Therefore, the total velocity is defined as the combi-
nation of the axial and tangential velocity components. The flow angle is computed

Fig. 7.5 Convergence history
for Rocketdyne inducer
validation computation
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Fig. 7.6 Schematic
representation of
measurement locations along
the streamwise direction

as the angle between the axial velocity and the total velocity. The circumferential
angle in all four figures is measured from the suction side to the pressure side of
the blade. The symbols represent the experimental measurements and solid lines
represent the computed results.

The computations and experiments compare well near the leading edge (Plane A)
from the hub to the tip region. Inside the blade passage (Plane B), computed and
experimental results compare fairly well. The biggest discrepancy occurs near the
hub region. The computation under-predicts the axial velocity near the suction side

Fig. 7.7 Schematic representation of measurement locations at radial positions designated as
Planes A, B, C, and D along the streamwise direction
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Fig. 7.8 Comparison of experimental measurements and computed results: relative total velocity
and relative flow angle in Plane A

Fig. 7.9 Comparison of experimental measurements and computed results: relative total velocity
and relative flow angle in Plane B

Fig. 7.10 Comparison of experimental measurements and computed results: relative total velocity
and relative flow angle in Plane C
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Fig. 7.11 Comparison of experimental measurements and computed results: relative total velocity
and relative flow angle in Plane D

of the hub where secondary flow is significant. The accuracy of the computed results
may be improved by increasing the grid resolution for the boundary layer region. In
the core and near the tip region, the agreement is much better.

As we move downstream (Plane C), the error at the hub section decreases sig-
nificantly, as seen in Fig. 7.10 (R = 1.803). In the core section, computed results
follow the trend measured in experiments. Near the casing wall (R = 2.95), 5–8%
differences are observed where the computed results over-predict the wake strength.

In Fig. 7.11, results are compared in the mixing region (Plane D). The location of
the wake in the core region indicates a 5- to 10-degree difference between the numer-
ical results and the measurements (R = 2.221 and R = 2.587). One possible reason
for this discrepancy may come from the clocking error between the computational
grid and the location of the measurements during post-processing. In Planes A, B,
and C, the suction-side and pressure-side boundaries are clearly defined. However,
in Plane D, it is assumed that the suction side starts at the same angle as the blade
trailing edge. The computational grid does not follow the same circumferential angle
as the blade trailing edge in the wake region. Therefore, it is possible to have slight
differences between the computational and the experimental suction-side locations,
causing the clocking uncertainties.

The flow field in this validation problem is very complicated, and predicting the
turbulent flow structure in and around the blade passages is highly challenging, at
best. In demonstrating the current computational procedure, turbulence is modeled
by a one-equation model using an eddy viscosity hypothesis. However, the flow field
includes high-speed rotational effect, juncture flow region and tips vortex flow, and
is very likely to have significant non-equilibrium turbulence. Thus it is not expected
to resolve the flow field accurately with the type of model we used in the current
computations. Rather, it has been shown how one can utilize a Navier-Stokes solver
to capture important viscous flow features in an ensemble-averaged sense. Even
though the overall comparison of the integral quantities looks reasonable, more



7.5 Application to Impeller Simulation 191

validation is necessary to assess whether the computational procedure is capable
of predicting flow physics in detail, especially phenomena involving unsteady flow.
In engineering, it is of critical importance to obtain computed results in a timely
fashion for analysis and design. Therefore, validation computations were performed
using design conditions. In off-design conditions, one may face additional com-
plexity, such as massive separation. Interpretation of the computational results of
this flow may require a deep understanding of the flow features and an assessment
of the validity and limitations of the results.

7.5 Application to Impeller Simulation

The computational procedure discussed in the previous section is applied to an
impeller simulation in this section. Baseline cases are selected from the class of
pumps used in the SSME High Pressure Fuel Turbopump (HPFTP). The SSME fuel
pump is shown on the left-hand side of the engine powerhead in Fig. 6.1.

7.5.1 SSME Impeller

The water test data of the SSME HPFTP impeller are used for validating the sim-
ulation procedure. Water test conditions are shown in Fig. 7.12. From the water
test, flow data were collected at the exit of the impeller. Thus, the computed results
are compared to the data at the impeller exit between two long blades. Rotational

Fig. 7.12 SSME High Pressure Fuel Turbopump (HPFTP) impeller geometry and water rig test
conditions
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Fig. 7.13 Comparison of computed results and water test data downstream of the impeller exit for
the SSME HPFTP

steady results are compared. However, the flow field in several regions such as the
blade-hub junction, tip region, and entrance region to the diffuser may involve some
unsteadiness. Full validation of all the features is difficult, partially because the
experimental data are limited to ensemble-averaged quantities. In Fig. 7.12, the hub
surface is colored by computed static pressure to aid in visualizing the flow field.

As shown in Fig. 7.13, the flow field was measured at two locations just
downstream of the impeller exit at the half-height of the blade at the exit. The
circumferential angle was measured from the suction side of a long blade to the pres-
sure side of the next long blade. The fluctuating velocity and flow angle represent a
partial blade and two short blades within this one flow passage.

The results in an ensemble-averaged sense compares reasonably well, consid-
ering that the flow field is quite complicated. Based on this comparison, flow
visualization of the computed results can be utilized to shed light on the dynamics
of the secondary flow and tip vortex flow. Three-dimensional computations require
large grids and, consequently, a large amount of computer time is needed. To solve
big problems, parallel implementation of the solver is necessary and various strate-
gies for parallel implementation can be applied. Some of these will be explained in
conjunction with the computation for the SSME flowliner, which will be discussed
in a later section.
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7.5.2 Advanced Impeller

During the CFD consortium activity (Garcia et al., 1992, 1994), a series of flow
analyses inside an advanced impeller geometry were performed to verify the design.
The computational procedure described above was applied to this configuration.
Comparison between the computed results and experimental data is presented here
(Kiris and Kwak, 1994b).

The computational grid and pump geometry are shown in Fig. 7.14. The impeller
design flow rate is 1,205 gal/min with a design speed of 6,322 rpm. The Reynolds
number for the computation was 181,283 per inch. The computation was performed
using the formulation in a steady rotating frame of reference.

In Fig. 7.15, the circumferentially averaged meridional velocity is plotted at the
impeller exit. The relative x-distance is measured from shroud to hub, where x = 1.0
corresponds to the hub location. As sketched in Fig. 7.2, the exit shroud and hub cav-
ity start at the impeller exit, and in the present case, x-distance starts from −0.5 at
the shroud cavity, extending to 1.5 at the hub cavity. The average meridional veloc-
ity, Cm, is non-dimensionalized by the wheel speed of 249.5 ft/s. The meridional
velocity distribution for 5 and 10% recirculation from the exit shroud cavity are also
plotted. The recirculation is due to leakage from the exit shroud cavity back to the
impeller eye. This recirculation causes the peak velocity at the impeller exit move
toward the hub. However, the overall impact of the leakage on the solution is minor
at the impeller exit. The test data show that the peak velocity is closer to the center
of the b2 width compared to the computed data. At the time the computation was
performed, the recirculation in the hub cavity was not included. Since the leakage at
the hub cavity leads to a stronger recirculation, this causes the shift in the velocity
peak toward the center of the b2 width.

In Fig. 7.16, blade-to-blade velocity distributions at the impeller exit are plotted.
This plot shows how the velocity is distorted at the impeller exit. The wake shows
jet-like flow patterns in both locations between the full and partial blades. In a pump

Fig. 7.14 Advanced pump impeller geometry and computational grid on the hub surface
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Fig. 7.15 Comparison of circumferentially averaged meridional velocity at the impeller exit

Fig. 7.16 Comparison of
blade-to-blade meridional
velocity at the impeller exit
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assembly, this jet-like flow imposes unsteady load in the diffuser vane usually placed
right after the impeller exit. Overall, the numerical results compare fairly well with
experimental data for this impeller-only configuration.

7.6 Simulation of a Complete Pump Geometry

The geometry of an oxidizer or a fuel pump in a liquid-propellant rocket engine
has both rotating and stationary components. As illustrated in Fig. 7.17, a typical
pump has various components such as a flow straighter or inlet guide vane, inducer,
impeller, and diffuser. The geometry handling is complicated, especially when rel-
ative motion is involved between rotational and stationary components. The flow is
complex and unsteady, requiring time-dependant simulations. In this section, com-
putational aspects of this multi-component simulation are discussed. In the previous
section, impeller-only geometry from the SSME fuel pump was used to validate a
rotational steady flow computation. In this section, the baseline geometry is selected
again from the class of pump similar to the SSME High Pressure Fuel turbopump
(HPFTP). The arrangement of the inlet guide vane (IGV), impeller, and diffuser is
illustrated using the SSME-rig1 shuttle upgrade geometry in Fig. 7.17. We will refer
to this baseline test geometry as the SSME HPFTP for discussing computational
procedures.

7.6.1 Geometry and Computational Grid

In the baseline configuration, the impeller consists of 6 long blades, 6 medium
blades, and 12 short blades, as shown in Fig. 7.18. The inlet guide vane (IGV) has

Fig. 7.17 Schematic of SSME-rig 1 shuttle upgrade pump geometry
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Fig. 7.18 Baseline water test geometry of the SSME HPFTP class pump

15 blades and the diffuser has 23 blades, as shown in the figure. This is a simplified
model extracted from the actual multi-stage fuel turbopump and is used for water
tests to collect validation data. This model computation ignores cavitation and does
not include upstream and downstream manifolds and ducting. Depending on the
flow solver, the computational grid for this configuration can be either a structured
or unstructured grid. Since we are using a structured-grid-based solver, an overset
grid system is employed for ease of generating grids at the expense of interpola-
tion in the overlapping regions. Other grid arrangements can be created to capture
essentially the same features of the flow.

For the geometry including the IGV and diffuser blades, flow data needs to be
transferred correctly through the interface between the rotating impeller and the sta-
tionary IGV, or between the impeller and diffuser blades. Since this pump geometry
requires 360-degree computations, an overset grid approach can be utilized to gen-
erate component-level grids independently from the neighboring geometry, offering
maximum flexibility. Here, for connecting regions between the rotating and the sta-
tionary blades, a ring grid idea can be applied in the interface region. As sketched in
Fig. 7.19, ring grids are included to cover the gap between the stationary and mov-
ing regions. For example, a ring grid fills the gap between the impeller region and
the diffuser blades with some overlap on both sides. With this arrangement, impeller
grids and diffuser grids can be generated independently without constraints, and the
two regions connected by the ring grid.

Using this approach, grids were generated for each region. In the example shown
here, a total of 34.3 million grid points are used. The IGV grid consists of 23 overset
zones with 6.5 million grid points, and the diffuser has 31 zones with 8.6 million
grid points (Fig. 7.20).

The grid for the impeller is the most involved. As shown in Fig. 7.21, the over-
set grid is set up around three different blades of the impeller to resolve the flow
features. Near the tip region the grid resolution must be increased to capture the
leakage and tip vortex flow. Generating this grid system is very time consuming,
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Fig. 7.19 Ring grid arrangement for a generic impeller-diffuser geometry

Fig. 7.20 Overset grid arrangement for (a) IGV and (b) diffuser for the SSME HPFTP water test
geometry

so an accelerated procedure is preferred for simulating pump flow, in order to eval-
uate the effects of geometric variations such as different blade shapes and blade
angles. One approach, developed in conjunction with the generic turbopump geom-
etry shown in Fig. 7.17, is to automate the grid generation process through scripting.
This technique accelerates changing the number of blades and shapes from weeks
to several minutes.

7.6.2 Issues Related to Large-Scale Computations

To achieve reasonable turnaround for computing the pump flow, especially for com-
puting unsteady flow, using grids of this magnitude requires parallel processing.
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Fig. 7.21 Geometry and overset grid arrangement for the SSME fuel pump impeller geometry

The specifics for parallel implementation of any given code depends on the com-
puter architecture and the flow solver being used. As the grid size becomes larger
and requires a large number of processors, scalability becomes one of the primary
issues. Here, we illustrate how we performed parallel computations using the SGI
Origin 3000, the production computer available at the time the SSME HPFTP class
pumps were simulated.

Two different approaches using the INS3D code are explained here. The first is
a hybrid MPI/OpenMP approach and the second is Multi-Level Parallelism (MLP)
developed at NASA Ames (Taft, 2000). The approach is to use message-passing
interface (MPI) for inter-zone parallelism, and to use OpenMP directives for intra-
zone parallelism. The INS3D-MPI code is based on the explicit message-passing
interface across MPI groups and is designed for coarse-grain parallelism. The pri-
mary strategy is to distribute the zones across a set of processors. During the
iteration, all the processors are to exchange boundary condition data between pro-
cessors whose zones shared interfaces with zones of other processors. A simple
master-worker architecture was selected because it is relatively easy to implement
and it is a common architecture for parallel CFD applications. All I/O was per-
formed by the master MPI process and data were distributed to the workers. After
the initialization phase was complete, the program began its main iteration loop.

The MLP approach differs from the MPI/OpenMP approach in a fundamental
way, in that it does not use messaging at all. All data communications at the coars-
est and finest level are accomplished via direct memory referencing instructions.
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Fig. 7.22 Computing time (in seconds) per iteration for the SSME impeller using MPI/OpenMP

However, note that this can only be executed on shared-memory computers. The
coarsest-level parallelism is implemented by spawning independent processes via a
standard UNIX fork. The advantage of this approach over the MPI procedure is that
the user does not have to change the initialization section of a large code. Libraries
of routines are used to initiate forks, to establish shared memory arenas, and to pro-
vide synchronization primitives. The boundary data for the overset grid system is
updated in the shared memory arena by each process. Other processes access the
data from the arena as needed.

The performance of both the MPI/OpenMP and MLP approaches, are compared
using the SSME impeller with 19.2 million grid points. In Fig. 7.22, the scaling
performance of the MPI/OpenMP approach is shown. In Fig. 7.23, scalability using
the MLP approach is shown for the same grid arrangement.

Using the MLP approach, time-accurate computations for the SSME-rig 1 con-
figuration were performed on the SGI Origin 2000 and 3000 platforms. Computation
of this case was started with the flow at rest, and the impeller began to rotate impul-
sively. It took three full rotations before the flow was established. A total of 128
CPUs of the Origin 3000 system were used with 34.3 million grid points. It took 3.5
days to complete the computation.

The computing platform and speed are continuously advancing, and these num-
bers are provided only to give the order of magnitude of the problem. As shown
here, the computational approach for the design and analysis of turbopump sys-
tems require large computing resources and turnaround time. Therefore, relatively
low-fidelity methods have often been used. With increased computer capability, the
resolution for both space and time can enhance the ability to predict unsteady flow
and capture more accurate flow physics.

With the large number of grid points and unsteady data, post-processing becomes
another challenge in simulating a complete pump configuration. One avenue was
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Fig. 7.23 Computing time (in seconds) per iteration for the SSME impeller using MLP

to visualize the flow in unsteady mode, which will provide analysts with valuable
insights into the dynamic flow phenomena. Figure 7.24 shows snapshot from the
unsteady computed results to illustrate the flow details one can obtain from the
unsteady flow simulation. More examples can be found in Kiris et al. (1993, 2008)
and Kiris and Kwak (2000, 2002). Further details on parallel implementation of
pump flow computational procedures will be discussed in Section 7.8.

7.6.3 Issues Related to Flange-to-Flange Simulation

We have seen that the impeller-only flow field has been compared fairly reason-
ably with experimental data. However, this comparison is only a partial validation.
In realistic cases, full flange-to-flange simulation is desired with the full range of
pump speed. Other flow features such as tip vortex interaction with flow through
impeller passages, vibration due to a fluctuating flow field, and fluid dynamic loads
on full and partial blades require more extensive experimental data. To use CFD as
a design tool, more complete validation is needed to verify the prediction capability
for the full operational range. For example, the procedure validated for design flow
conditions should produce equally valid results for off-design conditions. Unless the
simulation procedure correctly represents the flow physics, it is difficult to assess
geometric variations and operating conditions. In particular, the turbulence model-
ing should include non-equilibrium turbulence as well as rotational effects. Since
most high-speed pumps encounter cavitation, a multi-phase capability will become
important at some point in the design process.

Even though the flow simulation procedure for pumps has not matured enough
to design a pump completely based on CFD, real impacts can be made in the areas
of pump development and retrofitting. To date, CFD has been utilized in analysis
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Fig. 7.24 Snapshot of particle traces and surface pressure from unsteady computations

and parametric studies of various pump-related flow features. In the next section,
we discuss one such example that played a crucial role in determining the shuttle’s
flight rationale in conjunction with NASA’s Return to Flight Program in the early
2000s.

7.7 High-Fidelity Unsteady Flow Application to SSME
Flowliners

In the shuttle Main Propulsion System (MPS), there are two 17-inch diameter feed-
line manifolds, one for liquid oxygen (LOX) and another for liquid hydrogen (LH2).
These feedlines contain three outlets each, which are connected to each SSME by
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12-inch diameter feedlines providing LOX and LH2 to the engine (see Fig. 7.23).
Fuel enters the orbiter through gaseous and liquid fuel branches. In each liquid
hydrogen branch, LH2 enters the low-pressure fuel turbopump (LPFTP) when the
prevalve is open. The entire feedline system in the powerhead can be found in the
literature, and we explain the LH2 feedline leading to the flowliner region to define
the current CFD simulation task.

The shuttle orbiter LPFTP is an axial flow pump similar to the inducer used for
validation of the simulation procedure in Section 7.4. The LPFTP is driven by a
two-stage turbine powered by gaseous hydrogen. The main function of LPFTP is
to boost the pressure of the liquid hydrogen supplied to the high-pressure fuel tur-
bopump (HPFTP), from approximately 30–276 psi. This increase in inlet pressure to
HPFTP will permit the HPFTP to operate at high speeds with minimum impact from
cavitation. The LPFTP operates at the level of 16,000 rpm and is approximately 18
by 24 inches in size. The flowliner is located in the connecting region between the
LH2 feedline and the LPFTP, just upstream of the pump, to accommodate gimbaling
of the main engine.

7.7.1 Description of the Flow Simulation Task

In May of 2002, three cracks were found in the downstream flowliner at the gimbal
joint in the LH2 feedline of the SSME #1 of orbiter OV-104. Subsequently, inspec-
tions of the feedline flowliners revealed that all orbiters were found to have LH2
feedline flowliner cracks. To produce a correct flight rationale, it became necessary
to investigate this issue. To identify primary contributions to the cracking, charac-
terizations of various elements were performed, such as structural dynamics and
material and fluid dynamics involving LPFTP. The flow simulation presented in this
section is a part of this combined effort.

The LPFTP creates transient flow features such as reverse flows, tip clearance
effects, secondary flows, vortex shedding, junction flows, and cavitation effects.
Flow unsteadiness originating from the orbiter LPFTP inducer is one of the major
contributors to the high-frequency cyclic loading that results in high cycle fatigue
damage to the gimbal flowliners. The reverse flow generated at the tips of the
inducer blades travels upstream and interacts with the bellows cavity. The dynamic
environment with limited means of validation makes it very difficult to simulate
the flow. In order to characterize various aspects of the flow field near the flow-
liner and determine vibration frequencies generated from unsteady flow, full-scale
tests were carried out using the configuration sketched in Fig. 7.25, as well as
a single flowliner model. The computational model of the test article is shown
in Fig. 7.26 with an enlarged view of the flowliner region. The flight hardware
feeds LH2 into three main engines. Therefore, the data obtained using the test
articles with one LPFTP are to be used for validating the simulation procedure.
Then the resulting procedure can be extended to analyze various flight conditions.
In this section, we discuss various computational issues associated with generating
analysis data.
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Fig. 7.25 Sketch of the fuel feedline arrangement in the shuttle orbiter Main Propulsion System

   (a) Fuel feed line    (b) LPFTP and flowliner 

Fig. 7.26 Computational model and flow conditions of the shuttle flowliner

7.7.2 Computational Model and Grid System

In order to characterize various aspects of the flow field near the flowliner, several
computational models have been developed and high-fidelity computations car-
ried out. The computations include a straight pipe model with the LPFTP inducer,
and the LPFTP inducer with the addition of upstream and downstream flowliners
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(a) (b)

Fig. 7.27 Overset grid arrangement for the shuttle flowliner computation: (a) surface grids for the
LPFTP inducer and the liquid LH2 flowliner; (b) details of the flowliner overset grid system

with 38 slots (Fig. 7.26b), an overhang area between the liners, and the bellows
cavity (Fig. 7.27).

The first computational model (Model I) includes the LPFTP inducer with four
long and four short blades, and a straight duct, which extends four duct diameters
upstream of the inducer. The bull nose of the inducer and split-blades are included
in the model. The objective of studying the inducer model alone is to compare
unsteady pressure values against existing data. To resolve the complex geometry
in relative motion, an overset grid approach is employed. The geometrically com-
plex body is decomposed into a number of simple grid components. Connectivity
between neighboring grids is established by interpolation at each grid outer bound-
ary. The addition of new components to the system and simulation of arbitrary
relative motion between multiple bodies are achieved by establishing new connec-
tivity without disturbing the existing grids. This computational grid has 57 overset
zones with 26.1 million grid points.

The second computational grid system (Model II) is based on the first, with the
addition of the flowliner geometry. The grid system includes 38 upstream slots, 38
downstream slots (see Fig. 7.26), the overhang area between liners, and the bellows
cavity (see Fig. 7.27). This model is very similar to the ground test article. It consists
of 264 overlapped grids with 65.9 million grid points. Details of the grid system are
shown in Fig. 7.27a, b. The flowliner component consists of an axisymmetric cham-
ber around the external wall of the pipe, and two rows of slots in the streamwise
direction. Each slot is a rectangular-shaped hole with rounded corners. On the out-
side wall of the chamber are the bellows, which are shaped like 10 periods of a sine
wave. The bellows cavity is connected to the duct via the overhang area and the
slots. Two-dimensional overset grids are first created for the bellows, sidewalls, and
the overhang area of the bellows cavity. These are then revolved 360◦ to form the
volume grids. Each slot consists of a body-conforming grid and a warped Cartesian
core grid in the middle of the hole. The flowliner component alone contains 212
grids and 41 million points.

The orbiter fuel feedline manifold grid system consists of an inflow pipe, the
manifold, three exit pipes with elbows to the main engines, and two short exit
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Fig. 7.28 Detail of the computational model for the orbiter fuel feedline manifold

pipes; one for the recirculating pump and the other for the fill and drain line (see
Fig. 7.28). The recirculating pump and the fill and drain line are not included in the
computational model, so we have closed these two exit pipes.

All pipes are connected to the manifold via internal collar grids. The upstream
side of the inflow pipe and the downstream side of the exit pipes are modeled by
body-conforming O-grids with a singular polar axis running down the core of the
pipe. In the regions of the inflow and exit pipes near the manifold, the singular
axis is avoided by adding a warped Cartesian core grid. Body-conforming grids are
used for the walls of the manifold. A series of uniform Cartesian grids are used to
occupy the core of the manifold. The entire grid system consists of 38 grids and 12
million points (see Fig. 7.28). A separate computational model was generated for
the representative manifold test article. The computational grid representing the test
article is created using O-H grids consisting of six overlapping zones and a total of
7.1 million points

In order to speed up and automate the grid generation procedure, a script sys-
tem was developed to automatically and rapidly perform the various steps prior to
the use of the flow solver. Just as in the impeller simulation in Section 7.5, spe-
cial procedures were implemented to automatically create grids for each component
type. The component types included in the script are blade, pipe, ring, nose, flow-
liner, and strut. The blade component is one of the most common parts of a liquid
rocket subsystem and may contain multiple sections of one or more sets of different
blades, for example, inducer, impeller, and diffuser. The pipe and ring components
are used to connect different blade components. Pipes can be straight or curved and
are bounded by the shroud. Rings can only be straight and are bounded by both the
hub and the shroud. The nose component is a cap that fits at the start or end of the
hub. The flowliner is a highly complex part with bellows and slots. The strut com-
ponent consists of multiple blades connected to brackets at the shroud end and a
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central hub at the other end. The strut component was not used in the test article; it
was used in the flight configuration, which is not included in this section.

7.7.3 Computed Results

The incompressible Navier-Stokes flow solver based on the artificial compressibil-
ity method was used to compute the flow of liquid hydrogen in each test article.
All computations included tip leakage effects with a radial tip clearance of 0.006
inches; a pump operating condition of 104.5% rated power level (RPL); a mass flow
rate of 154.7 lbm/s; and a rotational speed of 15,761 rpm. The problem was non-
dimensionalized with a reference length of one inch and reference velocity equal to
the inducer tip speed. The Reynolds number for these calculations is 3.6 × 107 per
inch. Liquid hydrogen is treated as an incompressible single-phase fluid.

The past decade has seen considerable progress in the development of engineer-
ing CFD models for the multiphase flows characteristic of cavitation. The most
practical approach among these is the homogeneous-mixture model, wherein the
liquid-vapor mixture is treated using individual transport equations for each phase,
and source terms are employed to describe the phase-change process. In spite of
the progress made in multi-phase simulations methods in recent years, cavitation
remains an extremely complex physical phenomenon and quantitative prediction
is still a major challenge. Our current computations were performed with a single-
phase assumption to provide a baseline solution for this complex flow. The validated
cavitation model can then be implemented to produce results relative to single-phase
results.

Initially, the flow is at rest. Then, the inducer is rotated at full speed. Mass flow
is specified at the inflow, and characteristic boundary conditions are used at the
outflow. Simulations for 14 inducer rotations were completed for Model I, and 12
inducer rotations were completed for Model II. The time history of non-dimensional
pressure difference from INS3D calculations (Model I) at a location where exper-
imental measurements are taken is plotted in Fig. 7.29a. Even though computed
results have not fully converged to periodic solution in time and may still show
evidence of start-up transients, the dominant 4 N (4 times the rotational speed)
unsteadiness at a fixed location is seen in Fig. 7.29a. In Fig. 7.29b, maximum and
minimum pressure values are recorded from the experimental data. Comparisons
between CFD results and hot fire test data measured at a location near the down-
stream liner (see Fig. 7.26) also show good correlation in the non-dimensional
pressure amplitudes.

Quantification of flow features in this unsteady environment is very difficult.
Identification of sources and magnitudes of vibration is extremely important to the
safety and reliability of the vehicle components involving the pump. The amplitude
and the frequency of the unsteadiness due to backflow could be calculated as shown
in Fig. 7.30. However, vibration at higher frequencies, possibly due to acoustics and
cavitation, could not be resolved with the current computation and still remains a
simulation challenge.
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(a) (b) 

Fig. 7.29 Time history of non-dimensional pressure during one inducer rotation (Model I, 14th
inducer rotation), and Min/Max values of non-dimensional pressure from hot fire measurements
near downstream liner

In addition to the quantification of flow features, visualization techniques provide
valuable insights into the flow phenomena. In Fig. 7.30, an instantaneous non-
dimensional pressure map from the Model II computation is shown on the inducer
surface. Blue indicates the least value and magenta indicates the greatest value. The
pressure difference between the pressure side (facing downstream into the pump)
and suction side (facing upstream) of the inducer blade is clearly visible in these
pictures. Backflow near the inducer blade tip is caused by this pressure difference.

In Fig. 7.31, an instantaneous axial velocity map is shown on a vertical plane.
Since the number of slots (38) produces a lack of symmetry on the vertical plane.
To create this figure, the data on each of the structured overset grids are cut vertically
and projected onto an unstructured two-dimensional surface. Inherent in this process
is the creation of small discontinuities in the contours between overset grids that do
not line up with one-to-one matching in the selected two-dimensional plane.

The contours show strong reverse flow regions coming from the blade, travel-
ing through the overhang region and creating a jet-like flow on the order of 10%

(a) (b)

Fig. 7.30 Instantaneous surface pressure map on inducer (Model II): (a) view from upstream of
the LPFTP looking into the flow direction; (b) side view of the pump inducer
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(a) (b)

Fig. 7.31 Velocity at an instantaneous time: (a) axial velocity map in a vertical cut; (b) velocity
vectors colored by total velocity magnitude in the bellows cavity region

of the inducer tip speed. The backflow regions travel up from the inducer blades to
the upstream flowliner. The region of reverse flow extends far enough upstream to
interfere with both downstream and upstream flowliners in the gimbal joint. Positive
axial velocity values are colored in red/magenta and negative axial velocity values
are colored in blue. Axial velocity values are non-dimensionalized by tip velocity.
The strong interference between the backflow in the duct and the flow in the bellows
cavity is clearly visible. The backflow velocity magnitude reaches 15–20% of the
tip velocity magnitude in the overhang area between the upstream and downstream
liners. It should be noted that this interaction is unsteady and backflow travels in
the circumferential direction, as well. Due to strong interactions in the overhang
area, flow is excited in the bellows area, which results in time-dependent recircu-
lation regions. This observation can be seen in Fig. 7.31b, where strong jet flow
with velocities of about 10–15% of the inducer tip speed penetrates directly into the
bellows cavity, resulting in strong unsteady recirculation regions in the cavity. The
time-dependent interaction between the duct and the bellows cavity can be one of
the major contributors for high cycle loading. Figure 7.31 also shows that modeling
the gap in the overhang area between flowliners is very important. Jet-like flow in
the overhang area pushes the fluid in the bellows cavity toward the duct through the
slots. Without proper modeling of this detailed geometry, one cannot obtain fine-
scale flow unsteadiness on the liner. This transient phenomena creates an unsteady
pressure-loading spectrum on the flowliner surfaces. Backflow also causes pre-swirl
to occur in the flow approaching the inducer.

Visualization of unsteady phenomena can best be done using animation, or a
series of instantaneous snapshots. In Fig. 7.32a, b, particles are released from the
upstream slots and evolve for five inducer rotations. The colors of the particles rep-
resent forward flow (blue) and backward flow (red). We see from the figures that the
particles are driven toward the center of the duct and travel to the inducer, where
some of the particles are trapped into the backflow regions. In Fig. 7.32c, d the
particles are released from the downstream slots and evolve for five rotations. In
Fig. 7.32c, the particles are colored the same as in the previous two figures. We
observe a much more complicated flow structure in which many of the particles
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(a) (b)

(c) (d)

Fig. 7.32 Instantaneous snapshots of particle traces colored by axial velocity values

travel into and out of the bellows cavity. In Fig. 7.32d, the particles are colored with
axial velocity in order to show their presence in the bellows cavity. When the par-
ticles are released from the downstream slots they are under the influence of the
backflow and swirl, resulting in fewer particles traveling toward the inducer.

In the Space Shuttle, the LH2 feeds into the fuel pump through a three-pronged
manifold. This arrangement will cause non-uniform inflow into the flowliner. For
system-level analysis, one should take this into account. Additionally, the geometry
for the orbiter fuel feedline manifold and the experimental test article are different,
as shown in Fig. 7.33. Therefore, the flow field through the manifold and the test
article is computed to characterize the similarities and differences between the two
configurations.

Initially, steady-state calculations were conducted for both the orbiter manifold
and the representative test article. The calculations for the orbiter manifold did not
converge to a steady solution because of high grid resolution, which captures the
fine-scale, unsteady details that exist in high Reynolds number flows. Instead, time-
accurate calculations were performed, and the mean flow results are presented here.
For both of these computations, the same non-dimensionalization is used as in the
flowliner analysis, including a Reynolds number of 36 million based on the inducer
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(a) (b)

Fig. 7.33 Comparison of total velocity for orbiter manifold and the test article: (a) total velocity
map of the orbiter manifold at the inlet to the LPFTP; (b) total velocity at various cross sections of
the test article

tip speed and the reference length of an inch. Consistent inflow and exit boundary
conditions are used for the test article and the orbiter manifold, such that the test arti-
cle exit and the three engines downstream of the orbiter manifold receive the same
mass-flow rate. At the inflow, the mass-flow rate is specified with a corresponding
turbulent velocity profile and the pressure is calculated through the characteris-
tic relation. At the exit, the pressure is extrapolated and the mass-flow rate is
enforced.

The orbiter manifold displayed in Fig. 7.33a is qualitatively different for each
of the three outlet sections, and none of these sections are represented well by the
test article results. Figure 7.33a also shows that at the outer wall of the engine 1
feedline the velocity is large, while the high velocity is more uniformly distributed
around the entire wall of the engine 3 feedline, and that near the walls of the engine
2 feedline, high-low velocity regions are not well developed. One of the reasons
for the different velocity profiles at the three engine feedlines is the difference in
lengths of the these feedlines. The velocity profiles for each of the three engines
are different as they leave the manifold. In Fig. 7.33b, the velocity magnitude is
displayed at various cross-sections of the test article. The flow direction is from
the top of the figure to the bottom. The velocity profile is uniform before the first
turn. It then becomes non-uniform after the first turn, but returns to a more uniform
distribution toward the end of the pipe. The inflow profiles into the pumps for the
three engines are different. This may explain one of the reasons why the flowliner
failure rates vary among three orbiters. Since the test article does not reproduce
inflow conditions from any of the three engines, the analysis of the test article does
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not provide a one-to-one picture of the real case in a strict sense. However, data
from the test article provide detailed flow features for validation of the simulation
procedure, increasing the confidence level of the simulation results for a real case.

7.8 Some Aspects of a Parallel Implementation

The total number of grid points for pumps and flowliner computations is very large,
requiring large amounts of memory and computing time. To perform the computa-
tion within a reasonable turnaround time, parallel implementation of the flow solver
is necessary. For almost all large-scale applications, parallel computing is neces-
sary given the computer architecture we used and processor speeds. Here, we will
illustrate a few strategies for parallel computing using the solver used for flowliner
computations. This section is intended to illustrate some aspects of parallel comput-
ing, and the specifics discussed here may have to be modified depending on the flow
solvers and computer architecture being used.

Two distinct parallel processing paradigms have been implemented into
the INS3D code. These include the Multi-Level Parallelism (MLP) and the
MPI/OpenMP hybrid parallel programming models. Both models contain coarse-
and fine-grain parallelism. Coarse-grain parallelism is achieved through a UNIX
fork in MLP and through explicit message passing in the MPI/OpenMP hybrid
code. Fine-grain parallelism is achieved using OpenMP compiler directives in both
the MLP and MPI/OpenMP hybrid codes. The multi-level parallel organization for
INS3D is shown in Fig. 7.34.

Both the MLP and MPI/OpenMP approaches use a group-based data structure
for global solution arrays. Computations on a single node of the parallel platform at
NASA Ames Research Center (the Columbia platform) have been carried out using
the MLP and MPI/OpenMP hybrid approaches. At the time (2004), Columbia was a
10240-processor supercluster consisting of 20 SGI Altix nodes with 512 processors
each. In the MLP implementation, all data communication at the coarsest and finest
parallelization levels is accomplished via direct memory referencing instructions.
The coarsest level parallelism is supplied by spawning independent processes via
the standard UNIX fork. A library of routines is used to initiate forks, to establish
shared memory arenas, and to provide synchronization primitives. The MLP code

Fig. 7.34 MLP and MPI hybrid parallel organization for INS3D
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Fig. 7.35 INS3D-MLP and MPI+OMP performance on NASA Ames’ Columbia platform

uses a global shared memory data structure for overset connectivity arrays, while the
MPI/OpenMP code uses local copies of the connectivity arrays, providing a more
local data structure.

Computations were performed to compare the scalability between the MLP and
MPI/OpenMP hybrid versions of the solver on the Columbia system using the BX2b
processors. Initial computations using one group and one thread were used to estab-
lish the baseline runtime for one physical time step, where 720 such time steps are
required to complete one inducer rotation.

In Fig. 7.35, both the time per iteration (in minutes) and the speedup factor for
the MLP and MPI/OpenMP hybrid implementations are displayed. Here, 36 groups
have been chosen to maintain good load balance for both versions. Then, the run-
time per physical time step is obtained using various numbers of OpenMP threads
(1, 2, 4, 8, and 14). The scalability for a fixed number of both MLP and MPI groups
and varying OpenMP threads is good, but begins to decay as the number of OpenMP
threads becomes larger. Further scaling can be accomplished by fixing the number
of OpenMP threads and increasing the number of MLP/MPI groups until load bal-
ancing begins to fail. Unlike varying the OpenMP threads, which does not affect
the convergence rate of INS3D, varying the number of groups may deteriorate the
convergence rate. This will lead to more iterations even though faster runtime-per
iteration is achieved. Figure 7.35 shows that the MLP and MPI/OpenMP codes per-
form almost equivalently for one OpenMP thread, then as the number of threads are
increased the MPI/OpenMP hybrid version of the code begins to perform slightly
better than the MLP version. This advantage can be attributed to having local copies
of the connectivity arrays in the MPI/OpenMP hybrid code. Achieving consistent
scaling between the MPI/OpenMP and MLP versions of INS3D is promising, as the
former version is easily portable to other platforms.

Performance results of the INS3D MPI/OpenMP code on multiple BX2b nodes
on Columbia are compared against single node results. The results include run-
ning the MPI/OpenMP version using two different communication paradigms,
master-worker communication, and point-to-point communication. The runtime per
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Fig. 7.36 Performance of
INS3D across multiple BX2b
nodes using NUMAlink4 and
InfiniBand interconnects
(MPI point-to-point
communication)

physical time step is recorded using 36 MPI groups and 1, 4, 8, and 14 OpenMP
threads on one, two, and four BX2b nodes. The communication between nodes is
achieved using the InfiniBand and NUMAlink4 interconnects denoted IB and XPM,
respectively. Figure 7.36 contains the results using the point-to-point communica-
tion paradigm. When comparing the performance attained using multiple nodes
with that of the single node, we observe that the scalability of the two-node and
four-node runs with NUMAlink4 interconnects is similar to the single-node runs,
which also use NUMAlink4. When using InfiniBand interconnects we observe a
10–29% increase in runtime per iteration on two- and four-node runs. The differ-
ence in runtime per iteration between four-node runs and two-node runs decreases
as the number of CPUs increases.

Figure 7.37 shows the results using the master-worker communication paradigm.
The first observation is that the time per iteration is much higher using this com-
munication protocol compared to the point-to-point communication. We also see a

Fig. 7.37 Performance of
INS3D across multiple BX2b
nodes using NUMAlink4 and
InfiniBand interconnection
(MPI master-worker
communication)
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more significant deterioration of the scalability between the single- and multiple-
node runs—even for the two- and four-node runs with NUMAlink4 interconnects,
where almost no difference is observed when using point-to-point communication.
Using NUMAlink4 interconnects, we observe a 5–10% increase in runtime per iter-
ation for one to two nodes and an 8–16% increase using four nodes. This is because
the master resides on one node, and all the workers residing on the other nodes
must communicate with the master using the interconnect. Alternatively, when using
point-to-point communication, many of the messages are bound to the node from
which they are sent. In fact, the MPI groups can be manipulated so that a minimum
number (as low as one in many cases) of messages must be passed between each
node. Note that this optimization has not been utilized here and will be studied fur-
ther. An additional 14–27% increase in runtime is observed when using InfiniBand
interconnects instead of NUMAlink4—a similar increase was observed when using
point-to-point communications, shown in Fig. 7.37.

The parallel implementation explained above illustrates strategies for enhancing
the performance of large-scale CFD computations, and optimal choice will depend
on the flow solver and the particular computer architecture on hand.



Chapter 8
Hemodynamics

Since our primary interest has been in human space flight, biomedical performance
of humans during space flight and post-flight recovery, especially for long-duration
missions, has been an important aspect of space exploration.

During space flights, astronauts are exposed to hostile environment such as the
damaging effects of strong radiation, bone and muscle loss due to altered grav-
ity, and the difficulties of living in a confined space. Astronauts’ performance and
post-flight recovery data have been recorded since the early days of space flight.
Unfortunately, available flight data is limited to the maximum duration of 6-month
stays on the International Space Station. For longer space travel, extrapolation of the
current data, either from flight or ground-based (e.g., from artificial gravity experi-
ments) is difficult. Modeling these and many other factors have been considered in
conjunction with long-duration human space flight (see White and Avener, 2001, for
an overview). To date, however, biomedical performance modeling for astronauts is
accomplished primarily via empirical correlations.

One of the important aspects of the human performance model is related to the
fluid dynamics of blood circulation. Under altered gravity conditions, blood circu-
lation can be significantly modified compared to its circulation on Earth, which can
in turn affect biomedical performance of astronauts in space. This motivated us to
apply the incompressible flow methods discussed previously to human circulatory
system simulations.

In this chapter, we present computational procedures for extending the incom-
pressible flow computation capability to blood flow simulation, focusing on humans.
For comprehensive human circulatory systems simulations, human physiological
aspects must be included in some depth. Since this chapter is intended for use by
CFD practitioners, possibly collaborating with bio-medical researchers, our discus-
sion is limited to obtaining biomedical engineering solutions within a reasonable
computing time and amount of effort.

Computing the human circulatory systems is very involved and requires multi-
disciplinary modeling. For example, computational hemodynamics for studying
arterial or vascular disease should include blood rheology, arterial wall structure,
and general cellular biology. However, the intention of this chapter is narrowly
focused on blood flow simulation with regard to human space flight. Extending
the procedure discussed here to general biomedical research will naturally require
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further development of multi-disciplinary computational hemodynamics, including
extensive physiological aspects. For the rest of this chapter, the term “hemodynam-
ics” is used to represent hemodynamics with our limited scope.

We discuss the hemodynamics of altered gravity first, followed by applications
for the development of prosthetic devices. The material presented here is based on
studies performed by the authors and their co-workers. Further details can be found
in individual publications cited in this chapter, for example, Kim et al. (2004, 2006),
Kiris et al. (1990, 1997, 1998), and Kwak et al. (1988).

8.1 Issues in Computational Hemodynamics for Humans

Computational hemodynamics in humans has been of considerable interest for many
years, since it offers the potential for big payoffs in such areas as analysis and treat-
ment of atherosclerotic diseases, surgical planning, long-term biomedical studies,
development of mechanical heart assist devices, and biomedical study of the physio-
logical functions of the brain, kidneys, and other organs. Hemodynamics is a closely
coupled problem of multiple disciplines such as complex geometrical systems, bio-
chemistry, control, the cardiovascular system, and more. Blood flow involves a wide
range of geometric and time scales from large vessels to micron-scale capillaries,
eventually leading to molecular diffusion of various scalar quantities. In biomedical
areas, “in vivo” measurements are difficult, making computed results—especially
for unsteady, three-dimensional problems—very valuable.

Computational modeling, simulation, and analyses for treatment of the human
circulatory system are all of major interest to medical researchers. Handling of
any of those subjects in a comprehensive manner requires major effort, and is
beyond the scope this chapter. The genesis and motivation of this chapter stemmed
from an attempt to extend viscous incompressible flow simulation capabilities to
benefit human space flight. As such, the methods and applications presented here
are intended to help understand the alteration of physiological phenomena due to
changes in gravitational force, especially through altered blood circulation, and its
impacts on human biomedical performance in space. Eventually, it is hoped that the
analysis can be used to develop countermeasures for risks encountered in space, and
to extend that knowledge to human lives on Earth.

Since human subjects vary in geometry and physical conditions, without all the
parametric detail it is very difficult to develop analytical models for circulation
systems.

Here, we attempt to build some analytical basis for developing a predictive model
for human performance under a different gravitational environment. We propose to
use the circulatory system as a medium to connect various biomedical performance
models. Important features that need to be included in circulatory system modeling
are arterial wall motion due to fluid-wall interaction, shear thinning effects of blood
flow, and a boundary condition procedure.

We next review some of the basic features that need to be considered.
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8.1.1 Geometry of the Human Vascular System

A complete model of the human circulatory system is beyond the current modeling
and simulation capability, although it may not be necessary or practical to include
all details of a vascular bed. Depending on the particular goal at hand, it is more
realistic to design a high-fidelity local model, where an accurate boundary condi-
tion procedure becomes necessary at truncated locations. The size of blood vessels
in human varies from a few centimeters in diameter for the aorta to a few microns
in capillaries. For example, an ascending aorta starts with a blood vessel approx-
imately 1.25 cm in radius and gradually tapers down about 7 cm downstream to
approximately 1.14 cm in radius. Actual sizes vary depending on the subjects, as
well as where and how measurements are made.

One possible modeling approach is illustrated in Fig. 8.1, where the human cir-
culatory system is modeled by a vascular bed. In the figure, the impact of gravitation
is illustrated for the typical human in a standing position. At the truncated location
or in a more conventional sense at outflow boundaries, the boundary conditions can
be derived from an electrical circuit model of this vascular bed. An alternative is to
design a one-dimensional model combined with an auto-regulation model derived
from physiological knowledge. Some of the specific modeling issues are reviewed
next.

Fig. 8.1 Schematic of a human vascular system model
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8.1.2 Modeling Non-Newtonian or Stress-Supporting Flow

Newtonian flow assumption is usually valid in large arteries where shear stress
is high. However, in low shear regions (such as in capillaries) non-Newtonian
characteristics become increasingly significant. In general, it is safe to include a
non-Newtonian model in the governing equations.

8.1.3 Turbulence Model

In large arteries, the Reynolds number of the flow is in the laminar regime. However,
the flow may show some turbulent behavior locally; for example, near heart valves.
When prosthetic devices are used the flow may become locally turbulent.

8.1.4 Geometry and Morphology

Since the circulatory system varies among populations, one of the first issues in
human blood flow simulation is the definition of geometry. Patient-specific geom-
etry data can be used to model a representative geometry. In order to capture flow
dynamics that closely resemble real phenomena, variations in blood vessel sizes
and shapes have to be included in modeling. Detailed analysis of local flow is just
as informative as the entire circulation simulation. Regardless of how inclusive the
model is, it is realistic to truncate the vascular tree at manageable locations. Special
boundary conditions are required at the truncated locations to correctly represent
physiological conditions of the truncated region. For example, one can develop a
detailed model for a combined cardiovascular and brain geometry, and then impose
boundary conditions at truncated location derived from a vascular bed model.

8.1.5 Arterial Wall Model

Arterial walls move as blood flows. The wall motion depends on the wall structure
and the local load from the flow in such a way that flow is distributed as dictated by
human physiological needs. This motion has to be incorporated in the computational
procedure. For example, relative blood vessel wall diameter change due to the heart
pulse is found to be up to about 10% in common carotid arteries of young people
(Reneman et al., 1986). Also, Giller et al. (1993) reported that the mean diameter
change in the large cerebral arteries (internal carotid, middle cerebral, and vertebral
artery) is less than 4%, but the smaller arteries such as the anterior cerebral artery
showed 21% diameter changes to the mean change in a blood pressure of 30 mmHg
with 16 mmHg deviations. In a standing posture on Earth, gravity pulls blood down
to the feet. The blood pressure in the feet can be about 100 mmHg higher than that
of the heart, whereas it is 20–40 mmHg lower in the brain (see Fig. 8.1, above).
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In space flight condition, however, blood pressure equalizes and becomes uni-
form throughout the body. Consequently, under microgravity, arteries will contract
in the lower body and dilate in the upper body.

Detailed high-fidelity computations have been performed to characterize local
phenomena. However, for a complete circulatory systems simulation, it is realistic
to design a simplified model assuming that the blood vessel is a thin-walled and
linearly elastic channel (Caro et al., 1978; Steinman and Ethier, 1994). In practice,
when the wall is sufficiently thin, this wall motion algorithm produces very similar
results to those obtained from finite element methods for computing arterial wall dis-
placements (Perktold and Rappitsch, 1995; Zhao et al., 2002). It is expected that for
general biomedical studies, this approach will produce first-order estimates on arte-
rial wall displacements. Even though this model is a simplification of wall physics, it
shows sufficient evidence for arterial contraction and dilatation due to changing con-
ditions such as gravitational forces, which should be sufficient to assess the overall
impact of circulation on other biomedical functions of the body.

8.1.6 Boundary Conditions

The complete circulatory system includes large numbers of branching arteries down
to the capillary level and then to veins. Explicit modeling of this complete system,
starting from and returning back to the heart will be nearly impossible and may
not be necessary for practical purposes. Since the entire human vascular network
is enormous in size and complexity, minor arteries such as arterioles, venules, and
capillaries need to be truncated to perform the numerical simulation at a computa-
tionally manageable level. At the truncated position where flow information is not
available, outflow boundary conditions are necessary.

Several models have been reported in the literature for designing truncated
boundary conditions. Lumped models utilizing the analogy of arterial networks
to electric circuits have been used to provide boundary conditions for three-
dimensional computations (for example, Quarteroni et al., 2000; Formaggia et al.,
2002; Ferrandez et al., 2002) have defined a novel boundary condition using a con-
trol theory to simulate the peripheral resistance of the cerebrovascular tree and its
auto-regulation function. Olufsen et al. (2000) developed a vascular tree model.
In yet another approach, a vascular bed model was adopted to impose pressure
boundary conditions at truncated boundaries (Cebral et al., 2000).

All of these models were designed to account for the resistance at the trun-
cated locations such that blood flow distribution to various parts of the body is
reasonable. The main question then is how to impose boundary conditions to pre-
dict blood supply to various parts of the body when conditions are not normal,
such as under microgravity, during lengthy air travel in a confined space, or under
abnormal physiological situations. The downstream boundary conditions are chal-
lenging for incompressible flow computations in general. Yet blood flow at truncated
locations are not “downstream” in a strict sense. Flow resistance in arteriolar beds



220 8 Hemodynamics

varies dynamically such that the resulting blood flow rate is maintained at near con-
stant. One option for incorporating this feedback mechanism is to model this by an
arteriolar auto-regulation algorithm (AAR), as will be discussed later in this chapter.

8.1.7 Cardiovascular Model

Many researchers have studied cardiovascular modeling over many years. For
system-level simulations, simple models have been used, while higher fidelity mod-
els are generally intended for studying the heart itself. We assume that heart models
are available to readers, so in this chapter, cardiac output is assumed as given bound-
ary conditions for simulating other parts of the circulatory system. Readers are
referred to the literature for a more comprehensive heart model (for example, Hunter
et al., 1997; Smith et al., 2002).

8.1.8 Brain Model

There have also been several numerical studies on brain circulation. Cebral et al.
(2000) simulated the blood flow in patient-specific cases taken from magnetic res-
onance angiograms (MRA) as a planning tool for neuro-surgical and interventional
procedures. Ferrandez and David (2000) and Ferrandez et al. (2002) have shown
that the variants of arterial geometry and modeling of the auto-regulatory mecha-
nisms are crucial in determining the correct amount of blood supply to the brain.
Later in this chapter, an example is presented for simulating local blood flow in the
major arteries supplying blood to the brain.

Specific shapes and connections of the arteries in the brain vary among the
human population (Alpers et al., 1959; Zhao et al., 2002). Three-dimensional recon-
struction techniques have been used to obtain the subject-specific vasculature from
magnetic resonance imaging (MRI), magnetic resonance angiogram (MRA), and
computed tomography (CT); for example see, Taylor et al. (1999), Cebral et al.
(2000), Quarteroni et al. (2000) and Steinman et al. (2002).

Computational simulations coupled with these medical imaging techniques can
provide physicians with patient-specific information to predict the outcome of sur-
gical procedures. In addition, flow variables that are difficult to measure in vivo can
be calculated using real geometries. Considering the geometric variations, a com-
putational approach will be of enormous value in mapping a wide spectrum of flow
conditions complementing experiments using in vitro models. In a similar manner,
this kind of information can be used for planning astronaut-specific space travel and
for designing countermeasures.

In this chapter, a basic formulation will be presented first, followed by dis-
cussion of specific issues related to human models. In addition, there are special
circumstances where blood flow simulation can be of significant value in developing
prosthetic devices. For many decades, there have been attempts to use mechanical
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devices as a replacement or temporary measures in various medical treatments. The
flow involving machines such as ventricular assist devices and mechanical heart
valves can substantially alter blood circulation. The blood flow simulation aspects
of these applications are different from natural circulation modeling, and will be
discussed at the end of the chapter.

8.2 Model Equations for Blood Flow Simulation

Until it reaches the capillaries, blood flow can be assumed to be continuum and
incompressible. Thus, for simulations involving most arterial networks, it is suit-
able to use the three-dimensional, unsteady, incompressible Navier-Stokes equations
given by Equations (2.1) and (2.2). The gravitational source terms, gj, are added to
Equation (2.2) to account for cases where different postures on Earth and in altered
gravity during space flights are important, resulting in the following form:

∂ui

∂t
+ ∂(uiuj)

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
+ gj (2.2a)

With a fixed reference pressure such as the one at heart level, the blood pressure
gradient due to height differences must be added to the boundary conditions. The
blood flow is largely laminar except at the localized region of turbulence near the
heart valves and possibly around the stenosed bifurcation region due to deposits.
Even in those situations, the flow is not likely to be fully turbulent, and is very
chaotic (see Berger and Jou, 2000). Therefore, the shear stress tensor, τij, can
be approximated as below, only accounting for blood rheology without including
turbulence stresses:

τij = 2νSij for Newtonian flow (2.3a)

τij = 2ηSij for non-Newtonian flow (2.3b)

where

Sij = 1
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η = fcn(γ̇ )

γ̇ = Shear rate =
√

2
(
SijSij − S2

kk

)

This is a simplified expression where non-Newtonian behavior of the blood
is accounted for only through shear stress-dependent viscous stress terms. Some
simplified models via apparent viscosity models are reviewed below.
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8.2.1 Blood Flow Model

Blood consists of suspended particles such as red cells, white cells, and platelets
in plasma, an aqueous solution. Red cells are the largest in concentration, are
deformable and, at low strain rate, form aggregates, called roleaux. Formation
of these aggregates results in increased viscosity at low strain. When the strain
increases, these aggregates break down and the blood flow exhibits shear thinning
effects, as illustrated in Fig. 8.2. In this figure, eddy viscosities from experimental
data available in the literature (Chien, 1975; Merrill, 1969; Thurston, 1979), from
two different non-Newtonian models and from a Newtonian flow model, are plotted
to illustrate shear stress-dependent behavior of blood flow.

In a Newtonian flow, the stress is a linear function of the rate of strain. For a
stress-supporting medium, the stress and strain have non-linear dependence. Various
types of visco-elastic fluids exist where constitutive expressions have been devel-
oped in the past. In blood flow, for simplicity of the applications, empirical models
are often used to account for the shear-thinning effects only. In most circulatory
system simulations, these models provide adequate means to describe the pseudo-
plastic behavior in computing dynamic aspects of the blood flow. Two models are
described below that can be used to capture the change in viscosity due to the shear
thinning effect of blood.

A model by Carreau-Yasuda (Bird et al., 1987) accounts for shear-thinning
effects and was not designed for capturing visco-elastic behavior. The blood
viscosity, η, is expressed in terms of the deformation tensor, γ̇ , as:

Fig. 8.2 Shear-thinning effect of non-Newtonian blood model compared to experiments
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η (γ̇ ) = η∞ + (η0 − η∞)
[
1 + (λγ̇ )a

] n−1
a (8.1)

Where λ and a define the width of the transition region from the Newtonian
to power-law regions, and n−1 is a power-law slope, as shown in Fig. 8.2. The
constitutive parameters of human blood, based on the experimental measurements
(see Chien, 1975; Merrill, 1969) are given by:

μ∞ = 0.00348 Pa · s, μ0 = 0.1518 Pa · s,
λ = 40.0s, a = 2.0, n = 0.356

(8.2)

As shown in Equation (8.1), the model quantifies the shear thinning behavior
of blood flow with asymptotic apparent viscosities, η0 and η∞, at zero and infinite
shear rates, respectively.

Another model is given by Casson (see, for example, Perktold et al., 1991). An
extended version is given below:

η (γ̇ ) =
(

1

γ̇

[
C1 (Ht)+ C2 (Ht)

√
γ̇
]2

, ηmax

)
(8.3)

where Ht is the hematocrit, C1 and C2 are coefficients determined for Ht = 40% as
C1 = 0.2(dyn/cm2)1/2 and C2 = 0.18(dyn·s/cm2)1/2 based on the experimental data
(Merrill, 1969). To avoid extreme values at lower shear rates, the apparent viscosity
is confined within ηmax = 0.1518 Pa · s.

As compared with several different experimental datasets in Fig. 8.2, the Carreau-
Yasuda model is smoothly varying at the low shear region compared to the Casson
model. Numerous other models exist, most of which are designed to reproduce
empirical results for particular applications being studied. Since this chapter is writ-
ten as an extended application for a general incompressible flow simulation, we use
the above two models for computing examples listed here.

For circulatory system simulations, there are many modeling aspects coupled
to hemodynamics. The simplified expressions presented here to account for non-
Newtonian effects are adequate to illustrate the simulation procedures. As is the case
for any physical model or equation of state, new models should be used whenever a
more advanced prediction capability is needed.

8.2.2 Deformable Wall Model

Arterial walls have a finite thickness with layers of material. The outermost layer is
known as the tunicia externa and the innermost layer in contact with the blood flow
is the tunicia intima. The internal cavity through which the blood flows is known
as the lumen. Descriptions of the anatomical construction of blood vessel walls and
associated properties such as elastic behavior and distensibility are found in many
medical references. As a first approximation for blood flow simulation, the arterial
wall can be assumed to be a thin-walled, linearly elastic channel.
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This is a practical approach for circulation modeling, however, the effect of wall
motion to flow needs to be accounted for. For a general circulatory system simula-
tion with a truncated network, wave reflection phenomena have to be included in the
model. Compared to structural computation of the wall using finite element meth-
ods (Perktold and Rappitsch, 1995; Zhao et al., 2002), this assumption provides a
first-order, yet realistic approximation to the complex behavior of the arterial wall
(Caro et al., 1978; Steinman and Ethier, 1994).

Due to tethering to the surrounding structure, the arterial motion in the longi-
tudinal direction is thought to be minimal (Milnor, 1989). Thus, assuming that the
blood vessels are circular and have thin elastic walls with negligible longitudinal
displacements, the increment of the blood vessel radius, r, can be estimated by:


ri

r
= 1 − ν2

P

E

r

h
(pw − p̄w)i = Dw (pw − p̄w)i (8.4)

where pw and p̄w are transmural and reference pressures at the wall, respectively,
and the arterial wall distensibility Dw is defined as:

Dw = 1 − ν2
P

E

r

h
(8.5)

where h is the wall thickness, E and νp are the elastic modulus and a Poisson’s
ratio of the arterial wall, respectively. Although the arterial wall material shows
non-linear elastic characteristics, it can be modeled as a linear or constant elastic
material over the normal physiological range (Zhao et al., 2002). In a simplified
study, a constant material property can be assumed for both normal and microgravity
conditions. For a typical blood vessel wall, the elastic modulus of 3.0 × 105Pa and
a Poisson’s ratio of 0.49 can be assumed, which represents a nearly incompressible
isotropic wall property (Steinman and Ethier, 1994; Perktold and Rappitsch, 1995).
For the deformable wall, the no-slip boundary condition has to be replaced by the
moving wall boundary condition using the Equation (8.5). This model can be used
to account for a fluid-vessel wall interaction in a circulation simulation.

8.2.3 Vascular Bed Model

The primary interest of the circulatory system simulation in this chapter is to
study the impact of altered gravity on human physiological function—both the
overall impact and local phenomena. The human arterial network consists of a
series of bifurcating trees, a cross-sectional area of which increases from approx-
imately 5 cm2 at the aortic root by two orders of magnitude smaller at the arterioles
(Caro et al., 1978).

Starting from the pulsatile inflow at the aortic root, the blood flow simulation
of the entire circulatory system is quite involved and includes complex geometry, a
moving wall, and reflected pressure waves moving backward toward the upstream
direction. To make the circulatory system simulation computationally manageable,
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Fig. 8.3 Model of arterial network

minor arteries such as arterioles and capillaries need to be truncated. This requires
an outflow boundary condition procedure at the truncated position. High-fidelity
local solutions can be obtained with this approach.

There are several different approaches to modeling the arterial network. Olufsen
et al. (2000) used a one-dimensional tree for large arteries, with structured trees
for small arteries to provide outflow boundary conditions for the large ones (see
Fig. 8.1 for a schematic of vascular trees). Another approach is to use an analogy
between the arterial network and the electrical circuit, similar to the one illustrated
in Fig. 8.3 (see Quarteroni, 2001). In this approach, flow resistance corresponds
to electric resistance, flow rate corresponds to electric current, and pressure drop
corresponds to electric voltage. The truncated artery is assumed to divide into N
branches of the same size; for instance, N equals two for bifurcation and three for
trifurcation. Under this assumption, the outflow boundary condition, especially for
pressure, can be approximated by utilizing the electrical circuit analogy and the
Poiseuille’s theorem (Nichols and O’Rourke, 1998; Cebral et al., 2000).

The pressure drop in each branch can be expressed with the Poiseuille’s formula
as follows:

Q̇ = π r4

8μL

p ⇒ Q̇ = 
p

R
, Q̇k+1 = 1

N
Q̇k (8.6)

where Q̇ is mass flow rate, p is pressure, and R is flow resistance. At the kth bifurca-
tion (or trifurcation), its mass flow rate is N times the flow rate through the (k−1)th
branches. Assuming that the flow resistance ratio f is constant, the pressure drop at
each level can be expressed in a geometrical series form:
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where A and L are the sectional area and length of the vessel, respectively. The
flow resistance ratio f is generally unknown and should be properly determined to
avoid an unrealistic pressure drop at the capillary bed. The optimal value of f can be
determined from the arteriolar auto-regulation model explained in the next section.

This is just one approach that can be chosen. A similar idea can be applied where
the vascular trees are modeled by a series of one-dimensional pipe flows with dif-
ferent sizes and lengths In these models, one needs geometry information on the
representative vascular dimensions as well as a model of the physiological response
at the truncated location.

8.2.4 Arteriolar Auto-Regulation Model

In the above, we discussed the need for constructing downstream boundary condi-
tions to simulate blood flow using a truncated vascular bed model. This accounts for
only the geometrical impact of truncating the network. In addition to this peripheral
resistance, the human body shows a form of homeostasis called “auto regulation.”
Flow resistance in arteriolar beds varies dynamically by dilating or constricting
mechanisms of the blood vessels, so the blood flow rate is maintained nearly at
constant for a certain range of the perfusion pressure. This “auto” mechanism is
pronounced in the kidney, heart, and brain such that the body can maintain a stable
blood flow to support these vital organs.

In order to incorporate this feedback mechanism in the arteriolar bed, the arterio-
lar auto-regulation (AAR) model can be developed. In their series of computational
efforts, David and his co-workers (for example, Ferrandez et al., 2000, 2002) devel-
oped auto-regulation models for numerical simulation of cerebral circulation. The
model was used to study abnormalities of the Circle of Willis (CoW) in the human
brain.

Following this idea, an AAR model is illustrated next, which is to be incorporated
into the vascular bed modeling in Equation (8.7). Using the flow rate at the nth time
step, the outflow pressure at the next time step is updated with the flow resistance
ratio f until the flow rate satisfies the reference flow rate, Q̇ref . Equation (8.7) is
rewritten as shown below.

pn+1
e = pref + 8πμL

(1 − f n+1)A2
Q̇n+1

e = pref + Rn+1
e Q̇n+1

e

Rn+1
e = 8πμL

(1 − f n+1)A2
, f n+1 = 1 − 0.5/an+1

an+1 = an + kt
(Q̇n+1

e − Q̇ref )

Q̇ref
kt = α
t/T

(8.8)

In this model α is selected in the range of 3.6–8.0, which produces reasonable
auto-regulatory response, and Δt and T are the physical timesteps and period of the
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heartbeat, respectively. The velocity components at the outflow boundary are extrap-
olated from the interior domain. The above model is presented as an example, and
we expect to see further development in modeling the auto-regulation mechanism as
numerical simulation of the circulatory system advances. Even with this simplified
modeling approach, numerical simulation can provide much information not readily
available from empirical means.

8.3 Validation of the Simulation Procedure

To illustrate how the above modeling approaches work, as well as to validate the
algorithm and simulation procedures, two test problems, namely, a carotid bifurca-
tion and a circular tube with 90◦ bend, are computed next. Those two problems are
chosen because they are commonly encountered building-block configurations in
circulatory system modeling.

8.3.1 Carotid Bifurcation

Anatomically, a pair of common carotid arteries (CCA) arises from the ascending
aorta of the heart and connects to the brain through the neck. The CCA are divided
into internal (ICA) and external carotid arteries (ECA), respectively. A model geom-
etry used for the experiment by Gijsen et al. (1999a, b) is sketched in Fig. 8.4. In
their experiment, a blood analogy fluid (KSCN-X; KSCN-Xanthan gum solution)
was used to mimic the shear thinning property of blood.

For the validation computations, the same flow condition is used as in this exper-
iment. For the non-Newtonian model, both the Carreau-Yasuda and Casson models
are implemented.

8.0 mm

4.6

5.6

30ο

25ο

5.6

8.9

Common Carotid
Artery (CCA)

External Carotid
Artery (ECA)

Internal Carotid
Artery (ICA)

Fig. 8.4 Schematic definition of a carotid arterial bifurcation
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The constitutive parameters of the Carreau-Yasuda model in Equation (8.1) are
modified based on the experimental data, as in the following.

η∞ = 0.0022 Pa · s, η0 = 0.022 Pa · s,
λ = 0.11s, a = 0.644, n = 0.392

(8.9)

Likewise, a parameter of the extended Casson model is modified as C1 =
0.4(dyn/cm2)1/2 for this blood analogy fluid.

The Reynolds number based on the CCA diameter is 270, and the flow divi-
sion ratio of ECA over CCA is 0.45. The inflow in the CCA is assumed to be
fully developed, and multiple outflow boundary conditions for the ICA and ECA
are determined using the AAR algorithm in Equation (8.8) based on the flow divi-
sion ratio. Since both models produced very similar results for this case (Kim et al.,
2004), the Carreau-Yasuda model is used hereafter in all the validation computations
presented for non-Newtonian flows.

There are many options for selecting a flow solver to simulate this problem.
During the early development of CFD codes in the late 1970s and 1980s, many flow
solvers were developed and, later, fully developed commercial software became
available to users. It can be safely assumed that almost all organizations have either
in-house developed or commercial codes available to compute the current problem,
incorporating some of the models discussed above.

Fig. 8.5 Axial velocity profile on the symmetry (upper) and its perpendicular plane (lower) in the
ICA shown in Fig. 8.4 at Re=270, compared with experimental data by Gijsen et al. (1999a)
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For the computations presented here, a parallel version of the INS3D code (see,
for example, Kwak et al., 1986; Rogers et al., 1991a; Kiris et al., 2002) has been
extended with the above numerical modeling approaches. Computed results are
compared with experimental data for both steady and unsteady non-Newtonian
cases. The steady non-Newtonian flow in a carotid bifurcation, illustrated in Fig. 8.4,
was calculated as the first validation problem.

In Fig. 8.5, computed axial velocity profiles are compared to experiments at
five different positions along the centerline of the ICA, equally separated from the
apex by a distance equal to the CCA diameter. Both non-Newtonian and Newtonian
results are plotted. Newtonian results show significantly different velocity profiles
from the non-Newtonian case. Axial velocity profiles are skewed toward the flow
divider, and the increase of the sectional area results in an adverse pressure gradient
in the sinus of the ICA. The flow reaccelerates after passing through the maximum
diameter region.

8.3.2 Circular Tube with 90◦ Bend

For unsteady code validation, the pulsatile non-Newtonian flow in a 90◦ circular
tube was simulated with the same flow condition as in the experiment by Gijsen
et al. (1999). The same blood-analogy fluid used in the steady bifurcating flow dis-
cussed above was also used in this case. The Reynolds number based on the tube
diameter and diastole velocity is 300. The Womersley number based on the tube
radius is 14. The Womersley number (a dimensionless number showing the relation
between pulsatile frequency and the viscous effects) is defined as α = r

√
ω/ν where

ω is the angular frequency of the oscillation. A typical Womersley number for the
human aorta is approximately 15. The geometry for the experiment and the compu-
tation is shown in Fig. 8.6. The tube radius and its centerline radius of curvature are
4 and 24 mm, respectively.

For pulsatile inflow boundary conditions, the experimental waveform is regener-
ated using twelve harmonics based on the Fourier theorem (Nichols and O’Rourke,
1998) as shown in Fig. 8.7. Computed results are compared with the experimen-
tal data at three different phases: end diastole, peak systole, and begin diastole.
In Fig. 8.8, axial velocity profiles are compared between computations and exper-
iments on the plane of symmetry and the plane perpendicular to the symmetry
plane. In all three phases, the computed results compare reasonably well with the
experimental data.

8.3.3 Effect of Arterial Wall Distensibility

To include the wall motion accurately in the flow simulation, the complete fluid-
structure interaction needs to be modeled with anatomically correct representation
of the wall construction. In realistic circulatory systems simulations, however,
an approximate model with thin-wall assumption can be used. Considering the
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Fig. 8.6 Circular tube with 90◦ bend: radius, r = 8 mm; curvature, R/r = 6.0; diastole velocity,
U = 7.8 m/s; KSCN-X density = 1, 410 kg/m3; KSCN-X viscosity = 2.9 cPoise = 0.0029 Pa s; Re
based on tube diameter and diastole velocity = 300

Fig. 8.7 Inflow waveform regenerated using 12 harmonics used for unsteady flow through a
circular tube with 90◦ bend
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Fig. 8.8 Axial velocity profiles on the plane of symmetry and the plane perpendicular to the
symmetry plane at three different phases of a pulse; comparison between computations and
experimental data by Gijsen et al. (1999b)

complexity of the arterial network, in addition to individual variations, having a
simulation model for a reasonable turnaround of analysis tasks will be of consid-
erable value. Here, we illustrate how the simplified process can be used to study
the effect of wall motion using the benchmark problem of pulsating flow through a
carotid bifurcation.

The pulsatile flow of blood-analogy fluid through the carotid bifurcation model
used above was computed with the mean flow rate of 8 ml/s in the common carotid
artery (CCA), with a Reynolds number of 388. Figure 8.9 shows a moving wall grid
at the maximum displacement location. Also shown is the baseline rigid-wall grid
for comparison.

For this carotid bifurcation model, the arterial wall thickness is 0.3 mm for the
CCA, and 0.24 and 0.21 mm for the internal (ICA) and external carotid artery

Fig. 8.9 Distensible wall due to fluid-wall interaction: inner grid–baseline rigid wall grid; outer
grid–distensible wall at its maximum displacement position



232 8 Hemodynamics

(a) (b) (c)

Fig. 8.10 Streaklines through a carotid arterial bifurcation at three different phases in pulsatile
flow rate—the particular time where the particle traces are shown is indicated as a dot in the
pulsatile inflow profile: (a) systolic acceleration phase (t/T = 0.28); (b) systolic deceleration phase
(t/T = 0.36); (c) minimum flow rate phase (t/T = 0.58)

(ECA), respectively. The elastic modulus E is given by 3.0 × 106dyn/cm2 and the
Poisson’s ratio νp is 0.49, which represents a nearly incompressible isotropic wall
property (Steinman and Ethier, 1994; Perktold and Rappitsch, 1995). Wall motion
was computed using Equation (8.4).

The magnitude of wall motion is illustrated in Fig. 8.9, where the maximum dis-
placement position is shown relative to the baseline wall grid. A smooth connectivity
in wall thickness between the CCA and its branches is enforced. The bifurcating
apex is geometrically constrained to prevent unrealistic rigid body motion.

Figure 8.10 shows particle traces at three different points in time to represent dif-
ferent phases of the pulsatile flow: (a) systolic acceleration (b) systolic deceleration
and (c) minimum flow rate. During a pulse cycle, the distensible wall case shows
a maximum displacement of about 8% of the vessel diameter at the sinus of the
ICA. At the systolic deceleration phase, the increased vessel diameter reduces the
axial velocity profiles compared with the rigid wall results. Much like the steady-
state results, a strong skewing occurs toward the flow divider walls. After the peak
systole, a secondary reversed flow occurs and extends along the sinus until the

Fig. 8.11 Temporal wall shear stress during the pulse cycle at three different points around the
ICA sinus (ICA: internal carotid artery, ECA: external carotid artery)
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diastole begins. As shown in Fig. 8.11, the wall distensibility due to the pulse allevi-
ates the amplitude of wall shear stress locally up to 16% compared with the results
under the rigid wall assumption. The temporal wall shear stress at point C in the
ICA sinus indicates the progress of massive flow separation and reattachment on
the outer wall of the sinus during t/T = 0.22 − 0.54in both the distensible and rigid
wall cases.

8.3.4 Effects of Altered Gravity on Blood Circulation

In general, gravity has non-negligible effects on blood circulation. Even on Earth,
blood circulation to the brain, for example, is affected by the posture of a person.
In space flight, altered gravity has even greater impacts on humans. Astronauts
experience a stressful environment of microgravity in which body fluid shifts to
the upper body. Blood circulation as well as body fluid distribution undergoes sig-
nificant adaptation during in-flight and post-flight recovery periods. Much study of
physiological changes under weightlessness has been performed since the early days
of the US space program. In particular, cardiovascular research in conjunction with
the Space Shuttle program has included diverse physiological functions affected
by the nervous system, including heart rate, blood pressure, hormone release, and
respiration. The altered cardiac output, due to deconditioning in space and readjust-
ment on Earth, does impact the blood circulation in the human body. In particular,
the altered blood supply to the brain and consequent oxygen delivery to certain
parts of the brain makes non-negligible impact on the health and safety of astro-
nauts. Thus, it is essential to understand what happens to the arterial wall mechanics
and resulting blood flow patterns under various gravitational forces. Human per-
formance under altered gravity is far more involved a process than altered blood
circulation. However, in this section, altered blood flow under different gravitational
conditions is discussed using the same carotid bifurcation model as reviewed above.

The effect of wall distensibility under different gravity conditions is illustrated
next (Figs. 8.12 and 8.13). Three different cases are computed, namely, under
microgravity (or approximately supine posture under normal gravity), standing, and
hand-standing conditions.

For the standing case, the normal one-G gravity force (1G) is applied downward.
The consequent arterial contraction leads to an increase in the magnitude of flow
velocity to maintain the constant flow rate. For the hand-standing case, the gravity
force is applied toward the head, that is, negative G (or –1G.). The arterial dilatation
results in less flow separation and flow recirculation than observed for the 1G cases.
Figure 8.11 shows temporal wall shear stress distribution at a systolic decelera-
tion phase under three different gravity conditions. Compared with the microgravity
case, the 1G case shows about a 6.2% decrease in the CCA diameter, whereas
the –1G case shows about a 7.2% increase in the CCA diameter. The reverse flow
zone in the ICA sinus becomes narrower as the diameter increases. Throughout the
pulse cycle, it was observed that gravitational variation has a significant influence
on the arterial deformation and on the resulting changes in velocity profile and wall
shear stress distribution.
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Fig. 8.12 Effects of gravitation on wall motion and axial velocity profiles at the systolic
deceleration phase, as indicated with a dot on the pulse cycle

Fig. 8.13 Gravitational effect on wall shear stress distribution during the systolic deceleration
phase. Percent change of diameter with respect to microgravity case is indicated

8.4 Blood Circulation in the Human Brain

Blood circulation in the human brain directly affects the physical ability of an indi-
vidual, and, therefore, circulation simulations of the brain are of significant interest
to performance prediction under altered gravity. From a biomedical point of view,
blood flow in the brain can be directly relevant to explaining the impact of stroke,
which is one of the major causes of death and long-term disability. We discuss
a computational procedure to illustrate a potential application of an incompress-
ible flow simulation approach as applied to brain circulation. This can be regarded
as a building-block for simulating the entire circulatory system for the purpose of
predicting human performance related to space flight.
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Fig. 8.14 Circle of Willis (CoW) in the brain; the arterial network is obtained from a clinical MRI,
which shows the blood vessel from the aorta to the CoW. Source: Tim David, U. Canterbury, NZ

In Fig. 8.14, a clinical MRI shows large arteries extending from heart to brain.
Anatomically, two arterial pairs supply blood from the heart to the brain. One pair
is the internal carotid arteries (ICA) and the other is the vertebral arteries. Some of
the arteries are shown in Fig. 8.15 schematically in an idealized configuration of
the human brain. The vertebral arteries are distally combined into the basilar artery
that ends by dividing into the two posterior cerebral arteries (PCAs). The left and
right ICA and the basilar artery are connected to an important part of the brain, the
so-called Circle of Wills (CoW). The CoW sits at the base of the brain, and its main
function is to distribute blood evenly throughout the brain.

8.4.1 Collateral Circulation Under Auto-Regulation

To provide a fundamental understanding of the mechanism of collateral circula-
tion under auto-regulation, an idealized CoW configuration was designed based on
anatomical measurements (Alpers et al., 1959; Gray, 2000) with minor arteries trun-
cated. The inset in Fig. 8.15 shows a Chimera overset grid with ten domains for this
idealized configuration, which results in a total of 0.3 million-grid points. An over-
set grid approach was used in this simulation, mainly to use the existing flow solver.
However, other grid topologies like an unstructured grid would be very effective for
this type of geometry. Both the ICA and the basilar artery have the same inflow rate
of 3.5 ml/s for this configuration. The Reynolds number based on the ICA diameter
is 240.
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Fig. 8.15 Chimera overset grid with 10 domains for an idealized Circle of Willis configu-
ration. ACA: Anterior Cerebral Artery, ACoA: Anterior Communicating Artery, ICA: Internal
Carotid Artery, MCA: Middle Cerebral Artery, PCA: Posterior Cerebral Artery, PCoA: Posterior
Communicating Artery

Even though the circle is completely connected in the ideal CoW, approximately
50% of the population has an incomplete circle. Anatomical variations in the com-
municating arteries are common, such as a missing or enlarged PCoA or missing
A1 segment. When one or more of the main arteries in the brain is stenosed or even
missing, the distal smaller arteries can receive blood from the other arteries through
the CoW. To simulate this interesting mechanism of “collateral circulation” under
auto-regulation, the left ICA is presumed 20% stenosed. This means that only 80%
of the normal supply of blood is delivered to the CoW through the left ICA, as
shown in Fig. 8.16.

Unlike the balanced configuration case, the mass flux through the posterior
communicating arteries (PCoA) and anterior communicating artery (ACoA) is con-
siderably increased to compensate for the deficiency in the left middle cerebral
artery (MCA). On the other hand, the mass flux through the proximal part (A1
segment) of the left anterior cerebral artery (ACA) is decreased by 26% in order
to distribute the blood as evenly as possible.

In Fig. 8.17, the time-dependent auto-regulatory process is shown using the AAR
algorithm given in Equation (8.8). The ratio of the reference flow rates among the
MCA, PCA, and ACA were set to be 6:4:3 to maintain a negligible mass flux
through the PCoA.

From the computational experiment, it is observed that this AAR algorithm is
robust and consistent for a wide range of physical time steps (dt = 0.05T to 0.25T).
The optimal value for α was chosen to be 8.0 so that the left MCA and ACA
have regained their initial (or reference) flow rates within about 10 s after a sudden
stenosis in the left ICA. The present simulation illustrates how collateral circulation
in the brain occurs under auto-regulation.
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Fig. 8.16 Collateral circulation with the left internal carotid artery 20% stenosed

Fig. 8.17 Percent changes of flow rate in left, middle, and anterior cerebral arteries under auto-
regulation

8.4.2 Extraction of Geometry Data from Anatomical Picture

An anatomically realistic CoW geometry was reconstructed three-dimensionally
from human-specific magnetic resonance angiography (MRA) using image seg-
mentation techniques, as illustrated in Fig. 8.18. First, the raw MRA images were
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Fig. 8.18 Image segmentation from a magnetic resonance image for a human-specific Circle of
Willis (MRA provided by John Fink and Mike Hurrell at Christchurch Hospital, New Zealand)

converted to the RGB graphic file format for efficient numerical treatment. After
extracting the segments of interest by filtering the voxels with intensities below a
certain threshold, a segment-outlining algorithm was used to display the extracted
objects on each sectional layer, using very little computer memory. Then a three-
dimensional CoW was reconstructed, as shown in Fig. 8.19. This process illustrates
just one way of digitizing an image such as those obtained from MRA. Since imag-
ing technology advances rapidly, more advanced methods will become available in
the future.

Fig. 8.19 Three-dimensional
reconstruction of an
anatomical Circle of Willis
configuration
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8.4.3 Effects of Gravitational Variations

To study the impacts of gravitational variations on blood circulation in the brain, a
computational model of a CoW is first constructed from a clinical image. Various
off-the shelf grid generators can be used to generate a grid compatible with a particu-
lar flow solver. In this example, a Chimera overset grid system with 31 domains was
generated. Even though both left and right PCoAs are invisible in the original MRA
because of very low blood flux, they were added to the grid system by artificially
connecting the MCA and PCA in order to obtain a complete Circle of Willis config-
uration. Spatial dimensions are normalized by an ICA diameter of 5.6 mm. The total
grid size was approximately 1.2 million node points. The mean flow rates in the ICA
and the basilar artery are 3.5 and 2.1 ml/s, respectively. The Reynolds number based
on the ICA diameter is 240. At the outflow boundary, the auto-regulation algorithm
given by Equation (8.8) was used.

Computations for microgravity (0G), standing (1G), and hand-standing (−1G)
postures were performed to demonstrate the effects of gravitational variation on the
brain circulation. Figure 8.20 shows the time-averaged velocity magnitude and flow
direction through this subject-specific CoW model under microgravity, standing
(1G), and hand-standing (−1G) postures, respectively. Despite changes in perfu-
sion pressure to a certain extent, the auto-regulation mechanism maintains nearly a
constant blood supply to the brain. Therefore, inflow rates through the left and right
ICA and the basilar artery were assumed the same under three different gravity con-
ditions. For distensible wall motion, local changes of the wall distensibility factor,
Dw in Equation (8.5) were given by introducing different ratios of vessel radius and
wall thickness to each arterial component. Based on the experimental measurement
of Giller et al. (1993), large cerebral arteries are assumed to have about two to four
times smaller Dw compared with smaller arteries such as the ACA. Compared with
the ACA, the wall distensibility factors of the ICA, basilar artery, and MCA are
given by 3.5, 2.5, and 2 times smaller values, respectively. Wall distensibility at the
arterial conjunctions was neglected to avoid unrealistic rigid body motion.

In the standing posture (1G), due to height difference, the static pressure at the
exit boundary in the ACA is lower than that of the heart level by about 30 mmHg.
Compared with the microgravity case, standing posture leads to about a 16.3%
increase in ACA diameter, 6.9% increase in the MCA diameter, and 10% increase
in the PCA diameter (Fig. 8.20). Due to the arterial contraction, the magnitude of
flow velocity in each artery should be increased to supply constant blood flow rates
toward the major parts of the brain. The AAR algorithm was used to simulate the
auto-regulatory blood flow through this realistic CoW model.

On the other hand, compared with the microgravity case, the increased pres-
sure in the hand-standing posture (−1G) causes about a 15% increase in the ACA
diameter, 6.9% increase in the MCA diameter, and 9.6% increase in the PCA
diameter (Fig. 8.20). With the arterial dilatation, the magnitude of flow velocity
in the hand-standing posture was decreased to maintain the same flow rates with
the microgravity and standing-posture cases. Similarly, wall shear stress distribu-
tion under micro- and normal gravity conditions can be compared. Overall, the
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Fig. 8.20 Time-averaged blood flow within compliant walls; changes in vessel diameters are indi-
cated in the figure: (a) microgravity (0G); (b) standing posture (1G); (c) hand-standing posture
(−1G)

standing posture under normal gravity (1G) leads to high wall shear stress values in
the smaller arteries (that is, ACA and PCA) with large wall distensibility. However,
both the left and right PCoAs have very low wall shear stress distribution because of
the negligible flow rate. As already observed in the carotid artery model, it is recon-
firmed that the altered gravity has considerable effects on the arterial deformation
and consequent flow patterns.

This study illustrates the possibility of using numerical simulation to analyze
local blood flow in detail. Combined with an arterial network model, one can probe
local flow phenomena to unravel various performance issues. Even though some
basic building-block steps are explained here, a tremendous amount of research
still lies ahead to develop human performance models during long-duration space
flight, possibly including astronaut-specific anatomical data. It is hoped that this
type of simulation capability can provide a significant part of the so-called “Digital
Astronaut” model in the future.
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8.5 Simulations of Blood Flow in Mechanical Devices

Simulation of blood flow in the presence of artificial devices, such as artificial heart
valves and ventricular assist devices, poses unique challenges where boundary con-
ditions for resolving flow through these devices have been defined from blood flow
in natural hearts and arteries. Many computational technology features developed
for aerospace applications can be extended to device modeling. However, charac-
terization of blood flow involving artificial devices poses different challenges. For
example, artificial devices create turbulence that in turn affects hemolysis (red blood
cell damage), and blood exposed to an artificial surface for a certain period of time
can have damaging effects on blood cells.

Multi-scale issues can be present, since devices can be operated at much differ-
ent scales both in frequency and amplitude from natural organs. Also, the moving
geometry needs to be defined: it can be either prescribed or determined depend-
ing on the force balance between mechanical energy input and physiological input
generated from natural blood flow conditions. In general, however, from a device
development point of view, local blood flow simulation in and around mechanical
devices is better defined in geometry and flow conditions. Overall impacts on the
body circulation with and without a device will require the entire circulatory system
simulation coupled to the specific device under consideration.

Several different types of mechanical devices have been developed to date. Some
of the most frequently used devices are discussed next from the point of view of
how flow simulation can contribute to the development of those devices.

8.5.1 Artificial Heart Valves

Artificial heart valves have been widely used since the early 1960s to replace or to
assist natural ones. However, prosthetic devices are generally less efficient than nat-
ural organs and are accompanied by various problems. Serious problems are often
due to modified a flow field created by these artificial devices. Major problems
related to fluid dynamics include: (1) thrombus formation due to secondary and
recirculation regions; (2) hemolysis or red cell damage due to high shear regions
created by these mechanical devices; and (3) a large pressure drop across these
devices causing additional load on the heart.

Several early experimental studies on commonly used valves, for example by
Yoganathan et al. (1979a, b), pointed out that stagnation and recirculation regions
associated with these devices create adverse effects on blood flow. Although the
experimental studies played an important role in designing mechanical devices,
they can provide flow characteristics for only limited regions of the flow field. In
addition, accurate experimental measurements are difficult because of the moving
boundaries involved in using these devices. To complement this, quantifying the
flow field through numerical simulations will provide design engineers with sig-
nificant insight into the characteristics of the flow field involving these devices. At
the same time, a numerical approach offers valuable opportunity to optimize design
configurations, thereby reducing the number of clinical tests.
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Computational studies of blood flow through hearts and heart valves have been
performed for many decades. Notable work has been done by Peskin and his
co-workers (for example, Peskin, 1982, Peskin and McQueen, 1980, 1989, and
McCracken and Peskin, 1980). Their main focus was on the natural heart and heart
valves, combining Eulerian flow equations and the Lagrangian description of walls
and valves. Readers interested in natural hearts and valves are referred to their work.

Many different types of artificial valves have been developed over many years.
In this section, blood flow problems associated with mechanical valves are dis-
cussed, where body motion is prescribed. To describe the computational procedure,
a tilting disk valve is selected here. There are numerous previous computations on
disk-type valves. For example, Idelsohn et al. (1985) modeled the flow through
the Kay-Shiley caged-disk, Starr-Edwards caged-ball, and Bjork-Shiley tilting disk
valves, and compared their performances. Turbulent flow through tri-leaflet aortic
heart valves was simulated by Stevensen et al. (1985). Many early numerical stud-
ies prior to the mid-1990s neglected valve opening and closing. This is probably
because the simulation technology involving unsteady flow and moving boundaries
was not mature enough at that time, and the computer processor speed was slow for
the unsteady simulation. In addition, the computer processor speed was too low to
simulate the unsteady flow with moving bodies in relative motion.

To illustrate the computational procedure, the Bjork-Shiley tilting-disk heart
valve is computed next. The tilting disk is placed in front of the sinus region (for
example) of the human aorta, as shown in Fig. 8.21. The aortic root has three sinuses
about 120◦ apart. The tilting-disk valve model used in this computation is simplified
by assuming that the sinus region of the aorta has a circular cross section. The cage
and strut holding the free-floating disk inside the sewing ring are not included in the
geometry. It is also assumed that the walls do not have an elastic deformation. The
channel length is taken to be five aorta diameters long.

In Fig. 8.21a, three different positions of a tilting disk valve are shown from a
computational model of a valve similar to the one used in the Pennsylvania State
University artificial heart. The computational procedure of a piston type device is
illustrated using the Penn State heart later in this section. In Fig. 8.21b an over-
lapping grid arrangement is shown to deal with bodies of relative motion. The
main grid covers the entire aorta from entrance to exit and contains 17,199 points,
which are distributed as 63×21×13 in the stream-wise (ξ), circumferential (η),
and radial (ξ) directions, respectively. On this stationary main grid, a secondary

Fig. 8.21 Tilting disk valve: (a) geometry showing three positions of valve motion; (b) illustration
of overset grid arrangement
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grid consisting of 4,725 points distributed as 25×21×9 points in three directions
is overlaid, which wraps around the tilting disk and moves with the disk. In the
Chimera grid-embedding technique, grid points that lie within the disk geometry
and outside the channel grid are excluded from the solution process. These excluded
points are called “hole points,” and the immediate neighbors of the hole points
are called “fringe points.” The information is passed from one grid to another via
fringe and grid boundary points by interpolating the dependent variables. A tri-linear
interpolation scheme is used in the current example.

Computationally, the hole and fringe points are differentiated from regular points
using an IBLANK array in the flow solver. For hole, grid boundary, and fringe points
the IBLANK is set to zero, otherwise it is set to one. In order to exclude the hole and
grid boundary points from the solution procedure, the coefficients of the system of
algebraic equations and the right-hand terms are multiplied by the IBLANK value.
If the grid point is a hole, an outer boundary, or a fringe point, then the value of
(1-IBLANK) is added to the main diagonal of the matrix equation.

Results of the steady flow computations using the overset grid topology described
above are presented next. The computational model is non-dimensionalized using
the entrance diameter as the reference length and the average inflow velocity as
the unit velocity. The inflow and outflow boundaries are truncated shorter than the
experimental studies in order to minimize computational and memory requirements.
In addition, the exact shape of the sinus region of the aorta geometry was approx-
imated since the exact geometry data used in the experiments was not available.
These differences between the experiment and the computational model can add
some uncertainties in comparing the computed results with the measurements.

Steady-state computations are performed for the 30◦ disk orientation for
Reynolds numbers in the range of 2,000–6,000, for which experimental data are
available. A mixing-length model designed for internal flow by Chang and Kwak
(1988a) is used. In Fig. 8.22, the pressure drop across the disk valve is plotted

Fig. 8.22 Pressure drop across the tilting disk valve at 30◦ disk orientation versus steady-state
flow rate
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Fig. 8.23 Comparison of computed and measured axial velocity profiles at 42 mm downstream
from the disk in horizontal plane

against flow rates of various physiological interests. Then the computed and mea-
sured axial velocity profiles at 42 mm downstream from the disk are compared,
as shown in Fig. 8.23. Computations overestimated boundary layer development
compared to experiments.

In Fig. 8.24, general characteristics of the flow field are visualized, where it is
shown that the flow is directed toward the upper part of the aorta generates vortices
in the sinus region of the aorta, and thus generates a large separated region along
the lower wall of the aorta. Since separated and low-flow regions have potential for
thrombus formation, clotting may occur on the upper sinus region and the lower
wall of the aorta. Figriola and Mueller (1981) also presented mean velocity profiles,
which show flow characteristics similar to those indicated in the present computa-
tions, at several locations. Particle traces in Fig. 8.24b indicate that the flow does
not separate adjacent to the tilting disk. The tilting disk divides the flow into a major

(a) (b)

Fig. 8.24 Visualization of computed results for the tilting disk valve at 30◦ orientation: (a) velocity
vector (b) particle traces showing major and minor flow regions
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flow region along the upper wall of the tube and into a minor flow region along the
lower wall. As a result, separation, reverse flow, and swirling motion mostly occur
in the minor flow region. This validation computation gives the basis for applying
the same procedure for simulating the piston-type artificial heart, which includes
similar valves.

8.5.2 Ventricular Assist Devices

Approximately 20 million people worldwide suffer annually from congestive
heart failure (CHF), a quarter of them in America alone. In the United States, an
alarmingly low 2,000–2,500 donor hearts are available each year (c. year 2000).
One potential approach to improve this situation is to use a mechanical device to
boost or create blood flow in patients suffering from hemodynamic deterioration;
that is, loss of blood pressure and lowered cardiac output. The goal of this device
can be to replace the natural heart with a total artificial heart, or to assist an ailing
heart. In either approach, the device can be used to bridge the gap while waiting for
a matching donor heart for transplantation. However, to ease the shortage of donor
hearts, making these devices suitable for long-term or permanent use would be an
ultimate goal.

Another benefit of assist devices is the potential for providing time for the nat-
ural heart to recover. In some patients, it has been observed that the natural heart
can recover by unloading the pumping requirement through the use of a VAD.
In what conditions this might happen is not very well quantified at this time and
should involve the physiological particulars of patients, among other factors. The
challenge is to design a device that can deliver the required blood circulation while
not adversely impacting human physiological conditions. Since the computational
aspects for developing either a total artificial heart or an assist device are largely the
same, mechanical blood pumping devices are represented generically by a VAD in
this chapter.

The requirements of a VAD related to fluid dynamics are demanding, for exam-
ple: simplicity and reliability; small size for ease of implantation; pumping capacity
to supply 5 l/min of blood against 100 mmHg pressure; high pumping efficiency to
minimize power requirements; and minimum hemolysis and thrombus formation.
In addition to fluid dynamics issues, many other important aspects must be taken
care of such as material compatibility to humans, controls, and implantation proce-
dures. Due to the complexity of flow physics and delicate operating conditions, an
empirical approach to quantify the flow phenomena in a VAD is not straightforward,
very time consuming, and expensive—especially to study many design variations.
Herein lies the potential utility of computational simulation tools for the develop-
ment of these devices. In this sub-section, the discussion is focused on how fluid
dynamics issues of the VAD can be resolved via a computational approach.

Computational flow analysis of blood flow through mechanical devices such as
VADs and artificial valves is very challenging (Kiris et al., 1991). Flow is unsteady
and involves moving parts. For a complete analysis of a VAD, human circulatory
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Fig. 8.25 Schematic of mechanical heart assist devices: (a) sketch of a pulsatile device with
diaphragm driven by compressed air; (b) piston type; (c) schematic of an axial flow pump

system simulations have to be coupled to the device in use. However, for the purpose
of developing mechanical components, a truncated circulation system can be mod-
eled. For example, empirical inflow condition can be specified at the inlet of a VAD.
Even with this type of simplification, the computational approach can produce flow
field data in great detail, to help obtain a better understanding of the dominant flow
physics produced by an artificial device. In particular, computational analysis can
be utilized to optimize the design of mechanical devices at a significantly reduced
cost and timeframe than that required by an empirical approach. In addition to the
geometric and operational complexities, these devices introduce a variety of flow
phenomena that do not normally exist in a natural heart. These include transition,
turbulence, boundary layer separation, rotational effects, tip vortex, and reverse flow
phenomena. While a moving wall is one of the great challenges in natural circulatory
system simulation, unnatural flow phenomena are added challenges for simulation
created by insertion of artificial devices in the natural system.

There are largely two types of VADs commonly used to date. As sketched in
Fig. 8.25, these are (1) pulsatile devices, and (2) axial flow pumps. One example
from each category will be discussed in some detail to illustrate the computa-
tional procedure in general. However, readers can apply a similar approach to meet
their specific design and/or analysis task objectives. Since the computational tools
are derived from those developed under aerospace vehicle and propulsion systems
development, tools used for VAD development are extensions of procedures dis-
cussed earlier in this monograph. In the next two sections, we discuss simulation
procedures representing a pulsatile and axial flow pump for the Penn State heart and
De-Bakey VAD.

8.5.2.1 Pulsatile Devices

Some of the earlier models of artificial hearts and assist devices have used a pul-
satile mechanism supposedly mimicking the pumping action by a natural heart.
However, blood pumped by a heart was later found to be more of a wringing action
than piston-type pumping. The success rate of these types of devices has been low,
so understanding the flow phenomena will be of significant value toward finding
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improvements. Here, we attempt to explore how numerical simulation can be used
as one way to expedite development and improvement of these devices.

Background

Since the inception of these types of devices, several problems have been found
related to fluid dynamics of the blood flow created by the pulsatile pumping mech-
anism. Research and development efforts were made to improve the flow quality. In
addition, development of biocompatible material and control systems is essential to
manage blood damage at a low enough level for human applications.

Experimental investigations on these devices are difficult and limited and many
fluid dynamic aspects are yet to be studied. Blood flow simulation through these
devices is very complicated in many respects, especially when a full operational
geometry is to be modeled. The fluid may exhibit significant non-Newtonian charac-
teristics locally. In these devices, the flow can be highly chaotic or become turbulent,
thus red blood cells may be damaged as they go through high-shear or turbulent flow
regions; the downstream region of an artificial valve is an example of this. The flow
is unsteady, possibly periodic, and very viscous and incompressible. This problem
is very much interdisciplinary and an attempt for a complete simulation would be a
very formidable task. However, an analysis based on a simplified model may pro-
vide much-needed physical insight into the mechanics of the blood flow through
these devices.

The formulation of the flow solvers described earlier can be applied to analyze
pulsatile as well as other types of ventricular assist devices. A full simulation of vis-
coelastic flow is very difficult because of the nonlinearities of the fluid. However, as
a first step toward full simulations, non-Newtonian effects of the blood flow can be
simplified by a constitutive model for the viscous stresses, or by the non-Newtonian
model discussed earlier in this chapter.

There are also variations in pumping mechanism. In one approach, the blood
in a diaphragm is pumped by pressurized air supplied externally. In Fig. 8.25, a
VAD arrangement is sketched where different types of devices can perform the
blood-pumping function. Simulation of a pneumatically driven diaphragm requires
a moving boundary procedure where the boundary itself should be determined by
the motion of two fluids. In another approach, a piston-type pusher plate pumps
the blood. One developed at Penn State utilizes an electric motor-drive pusher plate.
This design can be used as an assist device or, when two chambers are combined, can
form a total replacement heart. The present demonstration calculation is performed
on one chamber of the Penn State artificial heart. The geometry of a computer model
and grid topology chosen is described next.

Geometry and Grid of the Penn State Artificial Heart

The model of the Penn State artificial heart in its entirety, including the blood, sack
poses very difficult problems from a computational standpoint. For the present com-
putation, a simplified model is constructed that excludes the internal blood sack. In
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Fig. 8.26 Overset
computational grid
arrangement for the Penn
State artificial heart model,
showing zonal and
overlapped grid regions

Fig. 8.26, surface grids of the chamber, valve region and inflow and outflow tubes
are illustrated. The heart is composed of a cylindrical chamber with two openings
on the side for valves. The pumping action is provided by a cylindrical piston that
moves up and down inside the chamber. The actual heart device has a cylindrical
tube extending out of each of the valve openings. The inflow (mitral) and outflow
(aortic) tubes contain concave tilting disks that open and close to act as valves. As
the piston reaches its bottom-most position, the outflow valve will open and the
inflow valve will close. In the computational model, tilting-disk mitral valve rota-
tional motion in time was obtained from the experimental data provided by Penn
State. The aortic disk valve rotation in time was obtained from mitral valve rotation
with a phase difference.

A pusher plate whose velocity is sinusoidal in time provides the pumping action
in the model. The pusher plate diameter is 7.26 cm, and the stroke length is 2.28 cm.
The problem is non-dimensionalized with the inflow tube diameter of 2.54 cm and
a unit velocity of 20 cm/s. The Reynolds number is based on the unit length and
velocity was 900. The computation was started from rest and requires about four
cycles to reach a periodic flow. For each cycle, the pusher plate motion requires 240
time steps. At each time step, the artificial compressibility method requires 10–20
sub-iterations to drive the maximum divergence of the velocity down to at least two
orders of magnitude (see, for example, Rogers et al., 1989).

In the computations, as the piston reaches its topmost position, the outflow valve
closes and the inflow valve opens instantaneously. In the actual heart device, the
piston moves through the entire chamber volume, which includes most of the valve
openings. One can handle this motion in several ways. In the present computational
example this problem is tackled through use of a Chimera grid scheme (see Benek
et al., 1985). This approach offers the possibility of using an existing flow solver
based on a structured-grid approach at the expense of introducing mesh-related
“bookkeeping” complexity.

Some gridding details are given next. Readers interested in using different
approaches, such as compressing grids, may wish to skip to the discussion on
computed results.
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In order to handle geometric complexity and the moving boundary problem,
a zonal method and an overlapped grid-embedding scheme are employed in the
present example. In the zonal method, the computational domain is divided into
several simple sub-domains. The overlapped grid-embedding scheme allows sub-
domains to move relative to each other, and provides great flexibility when boundary
movement creates large displacements. In the Penn State heart model shown in
Fig. 8.26, Grid 1 is generated for the pusher plate and moves with it, Grid 2
fills the chamber and remains stationary, Grid 3 and Grid 5 are for the inflow
and outflow tube extensions, respectively, and Grid 4 and Grid 6 wrap around
tilting disks and move with the disks. Grid points for the tubes and grid points
for the chamber are overlapped on three common planes where patched zonal
boundary conditions are used. At these interface boundaries, the grid points for
the tubes start three stencils inside the chamber outer boundaries. In general, this
overlapped-grid embedding scheme can be employed in a similar arrangement. To
illustrate the level of grid densities, the breakdown of the grid points for each region
are given here: Grid 1, 39×39×12=18,252; Grid 2, 39×39×43=65,624; Grid 3,
91×27×27=66,339; Grid 4, 35×33×18=20,790; Grid 5, 91×23×23=48,139;
Grid 6, 35×33×18=20,790—which results in a total of 239,713 grid points. The
grid sizes represent grid numbers in the ξ, η and ζ directions in generalized
coordinates, respectively.

Computed Results

The computed results presented here are given just to illustrate one possibility of
how CFD can be utilized for analyzing this type of device. Experiments are diffi-
cult and measured data are not readily available. Considering a wide spectrum of
individual variations, for example, inflow and outflow conditions, even qualitative
comparisons can shed some light on understanding flow characteristics.

Tarbell and his coworkers at Penn State (see, for example, Tarbell et al., 1986;
Baldwin et al., 1989) performed extensive experimental investigations on their arti-
ficial heart. The present computations were performed using one of their models,
and qualitatively compared in Figs. 8.27 and 8.28. At t/T=0.375, the pusher plate
is moving in a downward direction and the mitral valve is in the open position.
Here “T” represents the time for one period. In both experiment and computation,
a strong swirl motion is observed. However, since the velocity vectors are plotted
in two-dimensional planes, three-dimensional structure of the flow in the chamber
could not be reconstructed. In addition, the computational study does not include a
blood sack inside the chamber, so the comparison between experimental and com-
putational results does not have an exact one-to-one correspondence. As can be seen
in the figures, the biggest discrepancy between the two results is the location of the
vortex core. Another difference can be seen in the wake region of the mitral valve
where the computed wake is not as strong as in the experiment. During the second
half of the cycle, the pusher plate moves upward, and the outflow valve is opened.
Here, since the inflow valve is closed, residual eddies are quite large near the disk.
However, they are quickly weakened as the pressure builds up inside the chamber.
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Fig. 8.27 Computed velocity vectors for the Penn State artificial heart chamber: top view in hori-
zontal planes through the center of inflow and outflow tubes and at 3 mm below the top surface of
the chamber: (a) at t/T = 0.375 (b) at t/T = 0.625

Visualizing the computed results is of significant interest for identifying the resi-
dence time of a portion of the flow due to recirculation. When red cells are in contact
with artificial material over a certain threshhold of time, blood cells can be damaged.
Locally turbulent regions can also develop due to the articial environment. When red
cells are exposed to a high shear region for a certain period of time, they can also be
damaged. Visualizing and quantifing the potential adverse effects will be valuable to
developers of mechanical devices. Even though exact prediction of all flow variables
is still a challenge, this information can be utilized during the conceptual and pre-
liminary design phases. Once the design configuration is finalized, more inclusive
geometry and physics can be modeled in conjunction with high-fideity simulations
for fine-tuning the device. Figure 8.29 presents two visualization attempts made
in conjunction with the current computational example. The threshold for the high
shear region in the visualization is artificially defined to illustrate how computed
results can be utilized to identify potential regions of blood damage.

In the present computations, the blood sack is excluded. When the pusher plate
moves up, the excess material of the sack is squeezed along the peripheries of the
chamber. Blood is not completely washed out from the sack and some small amount
still remains in this wrinkled region, causing a potential problem of excess red cell

(a) (b)

Fig. 8.28 Velocity vectors from experiments by Baldwin et al. (1989) corresponding to the
computations in Fig. 8.27
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 (a)  (b)

Fig. 8.29 Visualization of the computed result at t/T = 0.45 as the pusher plate nears the bottom
position: (a) particles are colored by local shear stress (b) 3-D flow visualized by particle traces
colored by the magnitude of velocity

damage. For a more accurate assessment of this device, high-fidelity simulations that
include the detailed geometry of the sack deformation during the pumping cycle are
necessary.

8.5.2.2 Axial Flow Pump

One of the difficulties inherent in pulsatile devices comes from the large stroke
volume required to pump 5 l/min. The maximum speed of a piston-type pusher
plate is mechanically limited. This requires a chamber size big enough to pump the
required blood volume. For an electrical, motor-driven VAD such as the Penn State
artificial heart, the total volume of the VAD and electrical motor becomes fairly
large, requiring a large space in the patient for implantation. For a diaphragm-type
pulsatile device, the pumping is done using compressed air, requiring an external
compressor that limits patient mobility.

One alternative is to pump the blood by a continuously operating axial flow
pump. The conventional idea of mimicking the natural heart’s intermittent pump-
ing mechanism is drastically modified in this concept. One major advantage is that
the size of the axial flow pump can be small, facilitating human implantation and
giving patients mobility. Since the size can be made small, the speed of the pump
must then be made high to achieve the required pumping volume. This, in turn,
can create a high shear region that can damage red blood cells. Since red cells are
resilient against shear stress, an assist device can function as long as the residence
time blood cells exposed to the high shear region can be made short. These fluid
dynamics features will next be discussed next, in conjunction with axial flow pump
development.

Solution Procedure for Axial Flow Pump

As we have said, a small axial pump can be designed—however, to pump the blood
volume required, the rotational speed has to be high. Since the shear stress imposed
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Fig. 8.30 Schematic of a
VAD based on an axial-flow
pump

on blood through this device can be high, the residence time of red cells in the device
has to be made very short to minimize the damage to blood cells. This is the reason
underlying the usage of the axial flow pump as an assist device. An assist device of
this type is placed either external to the heart as illustrated in Fig. 8.30 or within the
heart, to draw blood from an ailing heart and then to pump blood into aorta.

Blood flow in large vessels, as in this arrangement, is believed to behave as nearly
Newtonian fluid. The flow can thus be solved by the incompressible Navier-Stokes
equations with a source term, S, added to the momentum equation, as below:

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
+ S (2.2b)

When the equations are solved in a steady rotating frame of reference, the cen-
trifugal and Coriolis forces are added as source terms to the governing equations.
If the relative reference frame is moving around the x-axis, the source term, S, is
given by:

S =

⎡
⎢⎢⎣

0
0
�(�y + 2w)
�(�z − 2v)

⎤
⎥⎥⎦
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where � is the rotational speed. Relative velocity components are written in terms
of the absolute velocity components ua, va, and wa as:

u = ua

v = va +�z
w = wa −�y

For component analysis, the rotational steady formulation may provide valuable
approximate solutions relatively quickly, compared to full unsteady computations.

DeBakey VAD

To illustrate a step-by-step procedure for developing an axial-flow VAD utilizing
simulation, we next discuss the DeBakey VAD development process. In 1989, the
DeBakey Heart Center of Baylor College of Medicine (BCM) began developing
a new implantable VAD system jointly with NASA Johnson Space Center (JSC)
(Aber et al., 1993). This VAD is based on a fast rotating axial pump. In order
to deliver the required blood flow rate, the rotational speed is in the range of a
rocket pump’s operating condition. For that reason, the CFD procedures presented
earlier, in conjunction with the rocket pump simulation, were applied to this VAD
development.

By probing through computed results, regions of critical design interest were
identified, such as regions of high turbulent shear stress, which can damage the red
blood cells, and regions of recirculation where blood clots may form. The levels of
hemolysis and thrombus formation need to be maintained at a low level in develop-
ing mechanical devices. Therefore, the ability to predict local flow quantities could
expedite the development of the device.

The baseline VAD impeller was initially designed to achieve the required pump-
ing capacity. This baseline design was first analyzed by solving the incompressible
Navier-Stokes equations in a steady rotating frame of reference. This was intended
for quick analysis of axial impeller blade performance. For a complete unsteady
analysis, rotational and stationary components had to be explicitly included. This
required a large amount of computing time and quick turnaround time. For prelim-
inary design studies, quick turnaround is preferred to identify major issues first. In
the present example, a solver based on structured grids was applied, as discussed in
Chapter 7. Zonal multiblock grids were generated in this component analysis.

As shown in Fig. 8.31, the computational domain is divided into five zones with
grid dimensions of 127 × 39 × 33, 127 × 39 × 33, 59 × 21 × 7, 47 × 21 × 5, and
59 × 21 × 7, for Zones 1 through 5, respectively. Zone 1 is the region between
the suction side of the partial blade and the pressure side of the full blade; the
region between the pressure side of the partial blade and the suction side of the
full blade is filled by Zone 2; and Zones 3 through 5 allow tip-leakage effects to be
included in the computational study and occupy the regions between the impeller
blade tip and the casing. At the zonal interfaces, grid points were matched one-
to-one. For all zones, an H-H type grid topology was used. An H-type surface
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Fig. 8.31 Computational grid for the baseline model of the DeBakey VAD: rotational speed =
12,600 rpm; flow rate = 5 l/min

grid was generated for each surface using an elliptic grid generator. The interior
region of the three-dimensional grid was filled using an algebraic grid generator
coupled with an elliptic smoother. Periodic boundary conditions were used at the
end points in the rotational direction. The design flow of this impeller is 5 l/min
and the design speed is 12,600 rpm. The problem was non-dimensionalized by the
tube diameter (0.472 inches) and the impeller tip velocity. The solution was con-
sidered converged when the maximum residual had dropped at least five orders of
magnitude.

For assessing the preliminary design concept, the impeller blade design was first
optimized to obtain a reasonably performing pump design. For a quick validation of
pump performance, a parametric study was done to optimize the impeller blade
shape and tip clearance. In real-world application in humans, the inflow condi-
tion is the same as pulsatile cardiac output. Therefore, optimization using a mean
design speed does not necessarily produce an optimum geometry for the entire
cycle. However, since the blade geometry will be fixed while operating conditions
might vary, this process is expected to produce the sought-after performance, on the
average.

The baseline geometry shown in Fig. 8.31 was analyzed first with different tip
clearances. However, a series of clinical tests using the baseline design showed
that the performance of this configuration (both in blood cell damage level and the
thrombus formation) with varying operating conditions could not be brought up to
the level required for human implantation. This prompted design modifications to
lower the hemolysis level and blood clotting.

A modified designed was developed that added an inducer similar to the ones
used in high-speed rocket pumps. A new design consisting of the baseline impeller
plus an inducer was then investigated (Fig. 8.32). Detailed flow features and pump
performances are compared for the two designs. The pressure gradient across the
blades, and the pressure rise from inflow to outflow were compared. The geometry
was then optimized in conjunction with detailed flow analysis.
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Fig. 8.32 Pressure surfaces
of the baseline (top) and the
new design (bottom)

The new configuration was then optimized in several steps. The blade shape
was been optimized first, using the following process. The original blade design is
referred to as Design I. Design II has less blade curvature than Design I in the trailing
edge region, and Design III has more blade curvature than Design I. In Design IV,
the blade shape for Design I is maintained and the tip clearance is reduced. In Design
V, the hub region has the blade shape for Design I and the tip region has the blade
shape for Design II. In this design, the impeller blades have a backward lean near the
trailing edge region. In Design VI, the blades have a forward lean, which includes
Design III in the hub region and Design I in the tip region. Design VII has a small
tip clearance gap with the Design I blade shape and an inducer added to the result-
ing configuration upstream of the main impeller blades. Not all of these variations
are shown in graphical form here, since they are only intended to demonstrate what
aspects are considered in changing the blade shapes. Automated techniques can be
implemented in the shape optimization of the blades. However, the addition of an
inducer—which has the most impact on performance—is not a part of shape opti-
mization. Therefore, it is to be noted that the conceptual design modifications are
not entirely an automated process.

In Fig. 8.33, hydrodynamic efficiency, defined as the ratio of real head over the
Euler head, is shown for these design variations. The inducer addition (Design VII)
clearly shows substantial improvement in hydrodynamic efficiency, and at the same
time provides a sufficient pressure rise to suppress cavitation. Using a smaller tip
clearance also improves hydrodynamic efficiency. On the other hand, higher blade
curvature decreases efficiency due to the separation that occurred near the suction
side of the trailing edge in the hub region.

Figure 8.34 shows the circumferentially averaged meridional velocity distribu-
tion along the blade height for various designs. All designs, except Design VII,
showed backflow near the hub region. The backflow was reduced with a forward
blade lean. In addition, the effects of a tapered hub and diffuser angle are combined
to minimize the backflow.

As shown in Fig. 8.32, the non-dimensional pressure distributions are compared
between the baseline design (Design I) and the new design with the inducer addition
(Design VII). The pressure is non-dimensionalized by ρv2 where v is the impeller
tip speed.
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Fig. 8.33 Hydrodynamic efficiency distribution along impeller blade height of various designs

One of the major issues in developing mechanical devices is how to prevent
thrombus formation or keep it at an acceptably low level. Therefore, besides improv-
ing the pumping efficiency, the design of the VAD requires good wall washing
near the solid wall by reducing the stagnation regions. One of the critical regions
for potential blood clotting is near the bearing area between the rotating and non-
rotating components, as shown by a narrow gap in Fig. 8.35. Clotting can occur in
the hub area due to either high shear rate or stagnation, depending on the gap and
configuration of the area.

Fig. 8.34 Meridional velocity distribution along impeller blade height of various designs
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Fig. 8.35 Velocity vectors
inside the initial (left) and the
final bearing geometry (right)
of the DeBakey VAD

In Fig. 8.35, velocity vectors are colored by velocity magnitude for different
bearing designs. Design 1 is the original baseline design with the cavity width of
b. This design showed very high shear stresses near the rotating hub face and very
stagnant fluid region in the lower portion of the cavity. Gradually increasing the
cavity width up to 8×b increased circulation in the cavity substantially. In order
to eliminate stagnant areas in the lower portion of the cavity, the hub surface was
then tapered, which reduced the cavity height and accelerated the flow near the hub
region. This resulted in stronger wall washing in the cavity. An optimized version
of this configuration was adopted in the DeBakey VAD design, which has enabled
human implantation.

Figure 8.36 shows a schematic of the final VAD design. Areas where CFD anal-
ysis contributed to improving the design are summarized in rectangular boxes. The
original design goal was to develop a pump that can operate for 2 weeks so that a
patient can survive while searching for a matching donor heart. The performance of
the new design is substantially better than the baseline design in all aspects of hydro-
dynamic performance and anti-thrombogenic characteristics. Both the original and
the final design configurations were tested in the laboratory at Baylor College of
Medicine.

As shown in Table 8.1, red cell damage was reduced by an order of magni-
tude to an acceptable level for human implantation, and pump operation was not
impacted by any thrombus formation. The hemolysis index reported here shows the
amount of hemoglobin generated by the pump in grams per 100 l. Destruction of
the red blood cells results in the release of hemoglobin. The new design shows a
remarkable improvement in performance over the baseline design—a 22% increase
in overall pumping efficiency. The original test run was successfully completed
for 1-month operation. Overall, the performance of the new design was suffi-
ciently improved, resulting in a device implantable in humans. The first human
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Fig. 8.36 Contribution of CFD analysis to the VAD design

implantation was performed successfully in 1998, followed by many successful
implants to other patients since then.

Axial Flow Pump Vs. Pulsatile Device

After a number of human implantations, the longest period the DeBakey VAD has
been used reached more than 1 year. This offers a possibility that the VAD can be
used as a recovery device, as well as a bridge to transplant. One unresolved question
is whether the modified blood pumping, that is, pulsatile vs. continuous pumping,
has any significant long-term impacts on other organs such as the kidneys or brain.
To date, mechanical assist devices are designed to help end-stage patients temporar-
ily. However, to use these devices for long-term recovery without organ transplant,
the impact due to modified pumping needs to be carefully analyzed. Earlier in this
chapter, simulation methods for the human circulatory system were discussed as

Table 8.1 Performance
comparison of the baseline
and improved design of the
DeBakey VAD (laboratory
and clinical test data provided
by R. Benkowski of
MicroMed Technologies and
Baylor College of Medicine)

Requirements Baseline design New design

Pumping efficiency 0.25 0.33
Power required (Watts) 12.60 9.80
Hemolysis index 0.02 0.00
Rotation (RPM) 12,600 10,800
Thrombus formation Yes No
Test run time 2 days 30+ days
Human implantation 12+ months
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a step toward developing a Digital Astronaut model. A similar approach can be
adopted here, this time modified by blood pumping variations instead of altered
gravity. The impacts of altered circulation due to mechanical devices on human
biomedical performance can then be assessed fully. The challenge for a complete
hemodynamic simulation of the human body is enormous, and we have touched just
the very beginnings of it.



Closing Remarks

Combining theoretical studies with incompressible flow solutions to solve real-
world problems for NASA missions has been our greatest passion for over 20 years.
Even more exciting are the fluid dynamics problems that are being solved right now,
and those to come. For example, atmospheric physics within weather and climate
simulation, oceanography, biological flow, astrophysics, fluid engineering, and basic
fluid sciences can also be numerically studied using incompressible flow equations.

We began our discussion with the assumption that unique and valid solutions
exist for viscous incompressible equations, i.e., incompressible Navier-Stokes equa-
tions. Our main interest was in fluid engineering, and, starting with reasonable initial
and boundary conditions we assumed that valid solutions could be obtained. So, we
focused on the ways in which we could quickly obtain solutions to fluid engineering
problems.

Fluid dynamics of viscous incompressible fluid is mathematically rich.
Numerical methods convert mathematical rigor into numerical solutions. We were
fortunate to start our task in the early 1980s, at a time when some of the numerical
methods were already well developed. Of course, the computer power and simu-
lation technology were still primitive compared to what we see today. Even with
those limited capabilities, the computational approach became a viable alternative
to empirical approaches for engineering and science.

Since we are solving fluid mechanical problem using numerical methods, but
not necessarily solving the governing equations in a strict sense, the question of
how to utilize solutions in light of numerical approximations and physical mod-
eling involved is of crucial importance for engineering/mission decisions. This is
still true even with increased computational capability and more mature solvers.
Accordingly, we discussed the entire process of how we could make use of CFD
in solving mission tasks. Our discussions were more from a physics and engineer-
ing point of view than from following mathematical rigor—other than touching on
salient features of the methods we used.

We have tried to make the material in the book self-contained, especially for those
new to incompressible flow methods and simulation procedures, and hope we have
presented a reasonably complete process of obtaining CFD solutions in engineering
tasks through examples.

261D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific
Computation, DOI 10.1007/978-94-007-0193-9, C© US Government 2011
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Future Possibilities and Challenges

There are many important non-aerospace problems we have not discussed where
incompressible flow methods are needed, possibly with some additional capabili-
ties. For example, modeling ocean and atmospheric flows, such as those found in
climate and weather modeling, will require essentially incompressible flow meth-
ods with variable density. Water-cooled nuclear reactor problems can also benefit
from incompressible flow methods, with multi-phase modeling included.

Some pacing challenges remain that must be overcome for the more expanded
role incompressible flow methods can play in the coming years. These include solu-
tion procedures and physics prediction, as well as the human resources aspect and
CFD validation.

Solution Procedures

Flow simulations for engineering, especially for space exploration applications,
generally involve very complex geometries, flow physics, and flight envelopes
requiring substantial computing resources. Specifically, resolving unsteady phe-
nomena is becoming increasingly important in order to fully understand the fluid
dynamics issues involved. A typical process of flow simulation, especially for high-
fidelity unsteady flow, requires large amounts of both computing time and human
involvement in problem set-up and data pre- and post-processing.

Further substantial reductions in overall turnaround time for three-dimensional
unsteady flow simulations are required to enable unsteady CFD to become rele-
vant for tomorrow’s mission-critical decision-making. A portion of this speedup will
come from continued enhancements in computer hardware; however, the remainder
must be contributed by advances in grid generation procedures including solution-
adaptive grid generation, flow solution algorithms including high-accuracy methods,
and more efficient parallel implementations. Some aspects of these are discussed in
this monograph. However, many other aspects of these advances—such as finite dif-
ference and/or finite volume vs. finite element methods; energy conserving schemes;
various grid topologies and variable definitions; assorted iterative schemes; and
programming aspects, such as framework—await further discussion.

Prediction of Physics

In order to push the limits of the operational boundary and try bold new ideas,
more predictive capabilities will be needed in the future, especially for complicated
flows involving transient phenomena, flow separation, tip vortex interactions, and
cavitation.

Currently, the relative inaccuracy of physical models is one of the major bot-
tlenecks. Advanced models for flow physics, such as turbulence and transition,
chemical reaction, and cavitation physics, must be incorporated into modeling
and simulation procedures for accurate prediction of fluid dynamic phenomena.
In addition, other quantities such as thermal stresses and structural loads must be
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coupled to the fluid dynamics models to provide more realistic simulation capabil-
ities in an inherently multi-disciplinary environment. These computations will not
only require large computing resources, but massive data storage, as well as efficient
data management and analysis technologies.

Perhaps one of the most critical issues remaining in physical modeling remains
the turbulence model. These models, routinely used in production CFD codes, are
based on equilibrium turbulence (for example, an eddy viscosity model). However,
as the requirement increases to apply CFD to engineering problems involving com-
plex flow physics, the correct prediction of transition, time-dependent turbulence,
and non-equilibrium phenomena becomes necessary. For example, in aerospace
vehicle and systems design, the most productive aspect of CFD applications has
often been to predict the relative changes among several design variations.

Even for this trend analysis, advanced turbulence modeling is necessary for con-
sistency of solutions. In high-accuracy turbulence modeling, for example, large eddy
simulation could be applied combined with RANS modeling near the wall. For such
applications, grid resolution must be high to match the scales of physical motion as
well as smooth coupling of two different methods. In addition, the numerical dis-
sipation associated with differencing schemes needs to be minimized so as not to
numerically distort large eddy motion. For incompressible flow, kinetic energy con-
serving schemes can be considered instead of up-winding schemes (Arakawa, 1966;
and see Grammeltvedt, 1969, for a review of difference schemes).

These are some of the pacing issues we need to resolve to further expand the
simulation capabilities discussed in this monograph. To make these applications
feasible, high-fidelity computations using supercomputing resources will play an
indispensable role in CFD.

Computational Hemodynamics

One of the most exciting areas we have discussed surrounds the basic computa-
tional and physical issues related to simulating blood flow in humans and through
mechanical devices. We hope to use the human circulatory system simulation to
enhance the biomedical performance prediction capability for astronauts. The so-
called “Digital Astronaut” model will predict an individual astronaut’s performance
for the purpose of developing countermeasures to mitigate risks involved in space
flights—especially long-duration space missions. Computational challenges are still
enormous, ranging from geometry definition to high-fidelity time-dependent blood
flow analysis, preferably in real time. We have barely scratched the surface of the
computational hemodynamics for space flight, and hope that “CFDers” continue this
challenging and very rewarding research.

Human Resources and CFD Validation

The human resources aspect of applying CFD to mission computing must also be
considered. While CFD has advanced remarkably, many challenging cases require
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experts to produce credible solutions and correct analyses. Computer science can
automate a substantial portion of the simulation process, saving significant human
time and effort required to obtain reliable solutions. However, a blind applica-
tion of tools without understanding the capabilities and limitations of the methods
involved could lead to catastrophic engineering results. As in many other science
and engineering disciplines, CFD researchers and practitioners need to understand
the physics and engineering systems being simulated. More rigorous processes
and procedures must be developed to validate the CFD solutions and to provide
engineering error estimation.

In short, for fruitful application of CFD to engineering problems, one needs to
understand the simulation process being applied, and have a thorough understanding
of the modeling involved, whether it is a ground-based experiment or a flight vehi-
cle. Future experts must be cultivated in the application of CFD to think through the
relevant flow physics and apply the appropriate software and tools to the engineering
problem in order to succeed in meeting future challenges.

For Further Reading

Many books and papers related to material are presented in this monograph, but have
not been explicitly cited in our discussion. Some of these are listed in the references
for further reading. While this list is not exhaustive, we have used these materials
during the course of our mission computing tasks and found them highly useful.
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CFD, see Computational fluid dynamics (CFD)
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D
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Discretization, 27–28

geometric quantities, 27–30
mass conservation equation, 30–31
momentum conservation equation, 31–34

Disk valves, 242
Dissipation, 35
Divergence-free velocity, 14, 61
Divergence gradient (DG), 18

E
ECA, see External carotid arteries (ECA)
Eddy viscosities, 8–9, 11, 154, 222
Electric motor-drive pusher plate, 247
Euler equations, 53



Index 281

External and juncture flow, 116
cylinder on flat plate, 116–118
wing-body junction, 118–119
wing-body juncture flow, 119–120
wingtip vortex flow, 120–138

External carotid arteries (ECA), 227–228,
231–232

Extraction of geometry data from anatomical
picture, 237–238

Extrapolation, 215

F
FFX, see Flapping foil experiment (FFX)
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First-order upwind, 35
Flange-to-flange simulation, 200–201
Flapping foil experiment (FFX), 102–103, 105,

113
Flapping foil in duct, 101–103
Flight engine configuration, 4
Flow approximation, 1–2
Flow over circular cylinder, 89–92
Flow simulation, 4

for engineering, 262
Flow solution codes, 80
Flow solvers and validation, 79–80

artificial compressibility codes
INS3D, 80
INS3D-UP, 80–81

codes for engineering applications, 81–82
external and juncture flow, 116

cylinder on flat plate, 116–118
wing-body junction, 118–119
wing-body juncture flow, 119–120
wingtip vortex flow, 120–138

pressure projection code
INS3D-FS, 81

steady internal flow, 82–88
time-dependent flow, 88–89

flapping foil in duct, 101–103
flow over circular cylinder, 89–92
impulsively started flat plate at 90◦,

92–95
oscillating inflow, 98–101
oscillating wall, 95–98
pulsatile flow through a constricted 2-d

channel, 95

Fluid dynamics, 1
of blood circulation, 215

Flux-difference splitting, 80
Flux Jacobian, 63
Flux vectors, 185
Fourier expansion, 16, 57
Fourier theorem, 229
Fourier transform, 16–17
Fourth-order central differencing, 18
Fourth-order dissipation, 34
Fourth-order smoothing, 57
Fractional-step procedure, 14, 34–35
Francis turbine, 181
Fringe points, 105, 243
Fuel-side HGM model, 144

G
Gaussian distribution, 153
Gauss-Seidel line relaxation scheme, 36
Generic pump impeller cross-section, 184
Geometric modeling, 2
Gravitation, 217
Gravitational variations, 239–240
Grid resolution, 123
Grid topologies, 13, 103, 124

H
Hemodynamics, 215–216, 263

blood circulation in human brain, 234–235
collateral circulation under auto-

regulation, 235–237
extraction of geometry data from

anatomical picture, 237–238
gravitational variations, effects of,

239–240
blood flow simulation, 221

arteriolar auto-regulation model,
226–227

blood flow model, 222–223
deformable wall model, 223–224
vascular bed model, 224–226

computational hemodynamics in humans,
216

arterial wall model, 218–219
boundary conditions, 219–220
brain model, 220–221
cardiovascular model, 220
geometry and morphology, 218
human vascular system, 217
non-Newtonian flow, 218
turbulence model, 218

simulation procedure, 227
altered gravity on blood circulation,

effects of, 233–234
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Hemodynamics (cont.)
arterial wall distensibility, effect of,

229–233
carotid bifurcation, 227–229
circular tube with 90◦ bend, 229

simulations of blood flow in mechanical
devices, 241

artificial heart valves, 241–245
ventricular assist devices, 245–259

High-fidelity computations, 219
High-fidelity unsteady flow application to

SSME flowliner, 201–202
computational model and grid system,

203–206
computed results, 206–211
flow simulation task, 202–203

High-pressure fuel turbopump (HPFTP), 191,
195, 202

High-pressure turbopumps, 142
High Reynolds Channel I (HRC I), 157
Hole points, 105, 243
Horseshoe vortex, 116
Hot gas manifold (HGM), 142, 147, 178
H-type elliptic grid, 109
H-type grid topology, 146
Human circulatory systems, 215, 217
Human vascular system, 217
Hybrid LES-RANS approach, 150
Hydraulic turbines, 181

I
IBLANK, 243
ICA, see Internal carotid arteries (ICA)
Impeller simulation, application, 191

advanced impeller, 193–195
SSME impeller, 191–192

Impulsively started flat plate at 90◦, 92–95
Incompressibility, 1, 21, 34
Incompressible flow field, 42
Incompressible Navier–Stokes code, 80
Incompressible Navier-Stokes equations,

13–14
Inlet guide vane (IGV), 195–196
INS3D, 80, 90, 117, 144, 147
INS3D-FS, 81–82, 90, 92–93, 95, 97, 100,

126–127
INS3D-LU, 81
INS3D MPI/OpenMP code, 212
INS3D-UP, 80–82, 90, 92–93, 95, 97, 100, 123
Instantaneous streamlines, 98
Internal carotid arteries (ICA), 227–228,

231–232, 235, 239
Interpolation, 148

Inverse transformation, 17
Iteration process, 45

J
Jacobian, 10, 28, 33, 36, 147
Jacobian matrices, 64

eigenvectors, 53

K
Karman vortex, 92
Kinematic viscosity, 8
Klebanoff’s turbulent boundary layer, 153
Kronecker delta, 32

L
Laplacian operator, 16
Large-Eddy Simulation (LES), 9, 150
Liquid hydrogen (LH2), 201–202
Liquid oxygen (LOX), 116, 141, 144
Liquid-propellant rocket engine, 181
Liquid-propellant rocket engine subsystem,

139–140
computational model for SSME powerhead,

142–143
description, 143–146
grid and geometry effects, 148–150
multiple-zone computation, 146–148

elliptic-duct HGM configuration, 173–179
redesign to flight, 179

flow analysis in SSME, 141–142
history, 140–141
three-circular-duct HGM configuration,

168–173
turbulence modeling, 150–151

axisymmetric U-duct, 163–168
extended Prandtl-Karman mixing

length model, 152–153
pipe and channel flow, 154–156
selection for internal flow, 151–152
strong streamwise curvature, 156–157
two-dimensional U-duct study, 157–163

Lower-upper symmetric-Gauss-Seidel
(LU-SGS) scheme, 54–55, 81

Low-pressure fuel turbopump (LPFTP), 202
Lumen, 223
LU-SGS scheme, see Lower-upper

symmetric-Gauss-Seidel (LU-SGS)
scheme

M
Mach number, 47, 143, 157–158, 163
MAC method, see Marker-and-cell (MAC)

method
Magnetic resonance angiograms (MRA), 220
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Magnetic resonance angiography (MRA),
237–238

Magnetic resonance imaging (MRI), 220
Main propulsion system (MPS), 201–202
Marker-and-cell (MAC) method, 13–15

drawback, 15, 18
pressure field solution for, 15–18

Mass conservation equation, 27, 43
Mathematical models, 8–9
Message-passing interface (MPI), 198
Middle cerebral artery (MCA), 236, 239
Mission computing, 140
Momentum conservation law equation, 31
MPI/OpenMP approach, 198–199
MPI/OpenMP hybrid parallel programming,

211
Multi-block patched grid topology, 104
Multi-grid acceleration procedure, 26
Multi-grid procedure, 38
Multi-level parallelism (MLP), 198, 211

N
NACA 0012 airfoil, 123
NACA 0020, 119
NACA 0025 foils, 103
NACA 0012 wing, 122
Navier-Stokes equations, 1, 7–8, 41–42, 53,

79, 81, 137, 150, 186, 221
Navier-Stokes flow, 143
Navier-Stokes prediction, 162
Navier-Stokes solver, 82, 190
Neuman-type boundary conditions, 25
Newtonian flow, 218
Newtonian modeling, 2
Non-Newtonian flow, 218, 221
Non-Newtonian model, 2, 227
Non-orthogonal coordinate system, 27–28
Normalized shear stress, 43
NUMAlink4, 213
NUMAlink4 interconnects, 214
Numerical dissipation or smoothing, 56–59
Numerical simulation, 79

O
OpenMP directives, 198
OpenMP threads, 212
� operator, 36
Orbiter fuel feedline manifold grid system,

204–205
Orthogonal cylindrical grid system, 165
Oscillating inflow, 98–101
Oscillating wall, 95–98
Overlapped grid topology, 108
Overset-grid top, 81

P
PCA, see Posterior cerebral arteries (PCA)
PCoA, see Posterior communicating arteries

(PCoA)
Penn State artificial heart, 247–249
Phase II+ redesign, 141, 168
Piston-type pusher plate, 247
Poiseuille’s formula, 225
Poiseuille’s theorem, 225
Poisson equation, 13–15, 25

for pressure, 35
Poisson solver, 26, 37–38, 49
Poisson’s ratio, 224
Posterior cerebral arteries (PCA), 235, 239
Posterior communicating arteries (PCoA), 236,

239
Powerhead, 142
Prandtl-Karman mixing length model, 152–153
Pressure-based method, 13, 20

MAC method, 13–15
pressure field solution for MAC-type

method, 15–18
simplified pressure iteration (SIMPLE-

Type) method, 18–20
Pressure contour, 100–101
Pressure drop, 243
Pressure gradient, 14
Pressure-implicit with splitting of operators

(PISO) algorithm, 20
Pressure poisson solver, 34–38
Pressure projection, 23, 25–26, 41, 93

code, INS3D-FS, 81
discretization, 27

geometric quantities, 27–30
mass conservation equation, 30–31
momentum conservation equation,

31–34
formulation in integral form, 26–27
solution procedure, 34

fractional-step procedure, 34–35
pressure poisson solver, 34–38
solution of momentum equations using

an upwind scheme, 35–36
validation of solution procedure, 38–40
See also INS3D-FS

Pressure terms, 12
Primitive variable formulation, 7
Problems solving, methods, 7–8

artificial compressibility method, 20–21
formulation for general geometry, 9–12
mathematical models, 8–9
methods based on derived variables, 21–22

stream function-vorticity, 22
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Problems solving, methods (cont.)
vorticity-velocity method, 22–23

pressure-based method, 13
MAC method, 13–15
pressure field solution for MAC-type

method, 15–18
simplified pressure iteration

(SIMPLE-Type) method, 18–20
solution approaches, 12–13

Pseudo-compressibility, 20, 41
Pseudo speed of sound, 43
Pseudo-time iteration, 50
Pseudo-waves, 41, 46

propagation, 44
Pulsatile devices, 246–251
Pulsatile flow through a constricted 2-d

channel, 95
Pump CFD consortium, 183

R
Radial flow in 90◦ bend, 88
RANS computation, 151
Reynolds number, 13, 34, 58–59, 82, 86, 90,

92–93, 119, 125, 128, 142, 149,
157, 161–163, 166, 186, 193, 206,
209, 218, 228–229, 231, 235, 239,
243

flows, 2
vs. Strouhal number, 91

Reynolds stresses, 8, 150, 166
Riemann invariants, 123
Riemann solver, 63
RMSDQ, 117
Rocketdyne, 179
Rocketdyne inducer, 186–187
Rocketdyne inducer geometry, 186
Rocket propulsion systems, 141
Roleaux, 222
Rotating machinery, 181
Rotorcraft aerodynamics, 120
Round wingtip vortex, 129–138
Runge-Kutta scheme, 34

S
Second computational grid system (Model II),

204
Second-order cross product terms, 52
Shear stress, 43–45, 154

distribution, 239
tensor, 221

Shear-thinning effect of non-Newtonian blood
model, 222

Shear viscosity, 8
Simulation, 2

Simulation procedure, hemodynamics, 227
altered gravity on blood circulation, effects

of, 233–234
arterial wall distensibility, effect of,

229–233
carotid bifurcation, 227–229
circular tube with 90◦ bend, 229

Simulations of blood flow in mechanical
devices, 241

artificial heart valves, 241–245
ventricular assist devices, 245–259

Skin friction coefficient, 137
Space flights and astronauts, 215
Space Shuttle, 142, 209

propulsion systems, 3
Space Shuttle Main Engine (SSME), 80, 116,

141, 181, 183
Space transportation system (STS), 140
Spalart–Allmaras method, 133
Spatial derivative terms, 27
Spatial differencing, 49, 54, 57
Spatial discretization, 25
SSME impeller, 191–192
Staged-combustion engine, 182
Staggered grid arrangement, 15
Staggered grid-based fractional step method,

25
Staggered grid orientation, 26
Steady internal flow, 82–88
Steady-state calculations, 34, 48
Steady-state pressure coefficient (Cp), 107
Steady-state solutions, 7, 47, 49, 88
Straight square duct, 82, 86
Strain-rate tensor, 8
Stream function-vorticity, 7, 22
Sub-grid scale (SGS), 150
Successive line over-relaxation (SLOR), 37
Surface element velocity, 27
Surface skin-friction topology, 137
System-level vibration, 120

T
Taylor expansion, 50
Third-order upwind, 35
Three-circular-duct HGM configuration,

168–173
Three-dimensional incompressible flow, 8
Three-dimensional simulation, 25
Time-advancing scheme, 34
Time-dependent flow, 88–89

flapping foil in duct, 101–103
flow over circular cylinder, 89–92
impulsively started flat plate at 90◦, 92–95
oscillating inflow, 98–101
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pulsatile flow through a constricted 2-d
channel, 95

Time discretization, 115
Tip vortex formation, 133
Tools, computational, 2
Tornado-shaped vortices, 118
Total velocity magnitude contour for

steady-state solution, 107
Transpose operator, 27
Tri-linear interpolation, 243
Tunicia externa, 223
Tunicia intima, 223
Turbomachinery, 183
Turbopumps, 181

blades, 120, 150
complete pump geometry, simulation, 195

flange-to-flange simulation, 200–201
geometry and computational grid,

195–200
high-fidelity unsteady flow application to

SSME flowliner, 201–202
computational model and grid system,

203–206
computed results, 206–211
flow simulation task, 202–203

history, 181–182
impeller simulation, application, 191

advanced impeller, 193–195
SSME impeller, 191–192

in liquid-propellant rocket engines,
182–183

parallel implementation, 211–214
steadily rotating inducer, 186–191
steady rotating frame of reference, 184–186
validation of simulation procedures,

186–191
Turbulence, 88

eddy viscosity, 9
model, 2, 9, 125, 128, 218
model modification, 126
stresses, 221

Turbulent boundary layer, 137, 153

Turbulent kinetic energy, 175
Turnaround duct (TAD), 142, 156
Two-dimensional U-duct, 157
Two elliptic-duct HGM configuration, 173–179

U
Upwind-biased stencil, 36
Upwind scheme, 35–36

V
Vascular bed model, 224–226
Velocity magnitude contours, 112, 134
Velocity vectors, 27, 250

gradient, 33
Ventricular assist devices (VAD), 241, 245–259
Vertebral arteries, 235
Viscous boundary, 42
Viscous reference length, 46
Viscous-stress tensor, 8
Viscous terms, 11
Volume-flux terms, 33
Vortex shedding from a circular cylinder, 91
Vorticity, 12, 22

length, 153
Vorticity-velocity method, 7, 22–23

W
Wall distensibility, 233–234
Wall motion, 232
Wave propagation, 43
Welch’s Marker-and-Cell method, 3
Wing-body junction, 118–119
Wing-body juncture

flow, 119–120
Wing-fuselage juncture, 119
Wingtip vortex flow, 120–138

validation, 138
Womersley number, 229

Z
ZEBRA scheme, 37
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