Scientific Computation

Dochan Kwak
Cetin C. Kiris

Computation
of Viscous
Incompressible

Flows

@ Springer



Computation of Viscous Incompressible Flows



Scientific Computation

Editorial Board

J.-J. Chattot, Davis, CA, USA

P. Colella, Berkeley, CA, USA

R. Glowinski, Houston, TX, USA

Y. Hussaini, Tallahassee, FL, USA

P. Joly, Le Chesnay, France

J.E. Marsden, Pasadena, CA, USA

D.I. Meiron, Pasadena, CA, USA

O. Pironneau, Paris, France

A. Quarteroni, Lausanne, Switzerland
and Politecnico of Milan, Milan, Italy

J. Rappaz, Lausanne, Switzerland

R. Rosner, Chicago, IL, USA

P. Sagaut, Paris, France

J.H. Seinfeld, Pasadena, CA, USA

A. Szepessy, Stockholm, Sweden

E. Weinan, Princeton, NJ, USA

M.F. Wheeler, Austin, TX, USA

For further volumes:
http://www.springer.com/series/718



Dochan Kwak - Cetin C. Kiris

Computation of Viscous
Incompressible Flows

@ Springer



Dochan Kwak

NASA Ames Research Center

NASA Advanced Supercomputing
Division

Mail Stop 258-5 Bldg. 258

94035-0001 Moffet Field

USA

dochan.kwak @nasa.gov

ISSN 1434-8322
ISBN 978-94-007-0192-2
DOI 10.1007/978-94-007-0193-9

Cetin C. Kiris

NASA Ames Research Center

Applied Modeling & Simulations Branch
Mail Stop 258-2 Bldg.258

94035-0001 Moffett Field

USA

cetin.c.kiris@nasa.gov

e-ISBN 978-94-007-0193-9

Springer Dordrecht Heidelberg London New York

© 2011 to the complete printed work by Springer, except as noted.
The U.S. Government retains a nonexclusive and nontransferable license to all exclusive rights provided
by copyright. Any opinions, conclusions, or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of their respective employers.

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my family:

Soonup Kwak

Sally, Nancy & Brian, Lawrence
and our granddaughter Subin



To my family:
Cahide Kiris
Eren



Foreword

Numerical Simulation of incompressible flows has become an essential tool for
studying many important problems in science and engineering, thanks to advances
both in numerical methods and computer technology. In life and earth sciences,
complicated flow phenomena can be simulated today because of such sophisti-
cated tools. For example, in biology the circulation of blood in the human heart
and brain, air in the lungs, and urine in kidneys is the subject of many extensive
studies. Similarly, simulations of oil well and oil field flows provide critical infor-
mation to geologists. Ocean circulation and weather prediction are among the fields
that have become dependent on computer simulations. Engineering applications of
internal and external incompressible flows are plentiful, including laminar and tur-
bulent flows of pipes, pumps and turbines, hydrofoils, and flow around ships and
submarines.

With faster and more powerful computers available every year, scientists and
engineers are running numerical simulations of highly sophisticated problems and
developing efficient numerical methods. To handle complex geometry, overset grids
have proven to be of practical use. Higher order upwinding schemes are used
for high Reynolds number flows, and approximate (LU) factorization methods
and/or relaxation schemes can be used for both structured and unstructured grids.
With these advances, together with enhanced turbulence modeling (algebraic, one-
and two-equation models), commercial software today is being applied to a wide
spectrum of flow simulation problems.

Historically, numerical simulations of compressible and incompressible flows
were based on two different mathematical formulations. For compressible flows,
the density and velocity components are updated using the continuity and momen-
tum equations, respectively, and the pressure is calculated from the energy equation
together with the equation of state. On the other hand, incompressible flow calcu-
lations, where density is constant, are usually based on artificial compressibility or
pressure correction methods. In the first approach, the continuity equation is aug-
mented by an artificial, time-dependent term of the pressure, while in the second
approach, a Poisson’s equation for the pressure is derived by taking the divergence
of the momentum equations with the constraint of mass conservation.

In this book, NASA computational fluid dynamics researchers Dochan Kwak
and Cetin C. Kiris discuss and analyze these two approaches in detail. Moreover,

ix



X Foreword

they introduce a unified approach that is validated for both compressible and
incompressible flows using standard benchmark cases.

The authors present many applications, for both laminar and turbulent flows,
with an emphasis on practical applications that is clear throughout the book. Three
separate chapters are devoted to simulations of liquid propellant rocket engine sub-
systems, turbopumps, and hemodynamics related to simulation of blood circulation
in the human brain and in mechanical heart assist devices.

All calculations presented are based on finite differences or finite volumes,
using structured grids. For complex geometries, overset grids are used. In order to
obtain steady-state solutions in an efficient manner, several methods of convergence
acceleration are included using parallel computations.

Unlike other books on incompressible flow simulations (in particular those based
on finite elements), no abstract mathematics, such as functional analysis or tensors,
are used in the presentation. The authors appeal to more physical approaches. Based
on papers and reports written by the authors and colleagues at NASA and else-
where over the last two decades, this collection of material is very useful for both
researchers and graduate students. The book is easy to read and understand. The
only mathematical prerequisites are first-level courses on linear algebra, calculus,
and differential equations.

This book is a valuable contribution to the subject of incompressible flow simu-
lations, and I am proud to have collaborated with the authors on numerous projects
in this area.

Davis, CA Mohamed Hafez
March 2010
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Chapter 1
Introduction

The field of fluid dynamics offers a plentiful source of mathematical, experimental,
and computational challenges. The computational approach for viscous incompress-
ible flow analysis is a subset of this rich field, and has been the subject of many
books and articles for many decades. This introduction gives readers a summary of
the purpose and the scope of this monograph.

1.1 Flow Physics

Even though nearly all fluids are compressible in an absolute sense, incompressible
flow approximation can be made when the flow speed is insignificant everywhere in
the flow field compared to the speed of sound of the medium. Following this defini-
tion of incompressibility, a large number of fluid dynamic problems can be classified
as incompressible and, in most cases, viscous. To name a few types of incompress-
ible flows, there are problems related to low-speed aerodynamics, hydrodynamics
such as the flow around submerged vehicles, flow through pumps, mixing of the flow
in chemical reactors, coolant flow in nuclear reactors, and blood flow in the human
body. When the flow is assumed to be incompressible, mathematically the flow field
becomes elliptic, which introduces major challenges in computations.

Additional difficulties arise when the flow is viscous. Most notably, complica-
tions come from predicting flow physics involving turbulence and transition. In flow
problems containing incompressible flow regions, physics involving multi-phase,
multi-material, non-Newtonian and stress-supporting media can add complexities
to the incompressible flow computation in a broad sense. Another challenge may
come from resolving multi-scale dynamics such as those encountered in biomedical
applications.

There are several levels of approximations in flow analysis. At a formulation
level, the incompressible Navier-Stokes equations are the most commonly accepted
governing equations. The “incompressibility” assumption in the governing equa-
tions is an approximation for the medium. Other than a small number of laminar
flow problems, most problems of fundamental and engineering interest involves
transition and turbulence. This introduces the question of how to approximate flow

D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific 1
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2 1 Introduction

physics to resolve the flow features involved at a reasonable level of accuracy. In
most cases, a computational approach offers a viable option for flow analysis. The
procedure involving computational modeling, numerical boundary conditions, and
algorithms adds another source of approximation requiring assessment of computa-
tional accuracy. Therefore, it is important to define the relative contributions from
mathematical formulations, physical modeling, and computational procedures to the
accuracy of the analysis results.

1.2 History of Computational Approaches

Since the beginning of the computer age, the computational study of fluid dynamic
problems has been of interest to researchers studying both fundamental problems
and engineering applications. As computer technology progressed, a computational
approach became viable to deal with increasingly complicated flow, eventually
extending the computational technology to industrial problems. At the same time,
flow devices became increasingly sophisticated and highly efficient, pushing the
conventional operating envelope. Vast numbers of real-world problems require
accurate viscous flow solutions to meet requirements for supporting engineering
and science tasks—such as achieving ideal fluid dynamic performances and sat-
isfying cost effectiveness. For example, computational analysis is indispensable,
as well as economical, for developing advanced rocket-engine turbopumps and
biomedical devices handling blood flow in humans. It therefore became of practical
interest to have advanced computational capabilities for simulating these flow prob-
lems. Computational tools are used not only as an alternative or a complementary
means to analytical or empirical approaches, but as a primary basis for preliminary
engineering designs and design optimization.

The demand for advanced methods and new tools prompted a flood of research on
numerical methods, flow solvers, and validation experiments. To solve fluid dynam-
ics problems using these methods and tools requires algorithmic simplifications
as well as geometric modeling. Furthermore, significant physical modeling is also
required, such as turbulence modeling for high-Reynolds number flows and non-
Newtonian modeling for blood flow. Accuracy of the numerical solution of these
flows—especially in three dimensions—needs to be assessed in terms of errors and
uncertainties involving numerical, geometric, and physical modeling. So, numerical
computation of these flows, especially real-world problems in three dimensions, is
often called “simulation” in the literature.

The computational fluid dynamics (CFD) for viscous, incompressible flow
has been of interest for many decades to investigate fundamental fluid dynamic
problems as well as engineering applications. The pioneering work by Harlow and
Welch (1965) opened a new possibility of applying a computational approach to
solving realistic incompressible fluid engineering problems, especially for three-
dimensional problems. Their method of using pressure as a mapping parameter
has been further developed into many variations ever since. Most notably, Patankar
and Spalding (1972) used this approach to develop algorithms and tools especially
useful for engineering applications with heat transfer. Shortly after Harlow and
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Welch’s Marker-and-Cell method was introduced to the incompressible flow
community, Chorin (1967) proposed an artificial compressibility approach that
enables the use of a wide spectrum of algorithms developed for compressible flow
analysis. Some details of these two approaches are discussed in this monograph
(Chapters 2, 3 and 4).

When CFD became a viable option for engineering in early 1970s, vast amounts
of numerical methods and analysis were already available. Many books and reviews
were published in the 1970s and 1980s, and a handful has been added since
then, covering a comprehensive collection of various approaches and methods.
Evolutionary advances and improvements in CFD methods have been made through
the 1990s and beyond. Flow solvers developed in the 1970s and 1980s advanced to
software-level CFD tools, and these became available commercially. Students and
researchers in academia began using commercial codes rather than developing their
own versions.

A vast number of books on CFD have been published, especially in the late
1990s. These cover mathematical formulations, numerical algorithms, and flow sim-
ulation procedures as a whole. For more comprehensive review of computational
methods in general, readers are referred to these authors, to name a few: Roach
(1972, 1998), Peyret and Taylor (1983), Tannehill et al. (1984, 1997), Hirsch (1988),
Gunzburger and Nicolades (1993), Hafez and Oshima (1995, 1998), Gresho and
Sani (1998), Lomax et al. (2001), Ferziger and Peric (2002), Hafez (2002), Chung
(2002), and Drikakis and Rider (2004).

Methods for incompressible flows are usually included as special cases in these
books. In addition to methods cited later in conjunction with those discussed
in this monograph, various methods specific to incompressible flow computa-
tions are reported by numerous authors, for example: Ghia et al. (1977), Raithby
and Schneider (1979), Leonard (1985), Guerran and Gustafsson (1986), Abdallah
(1987a, b), Wesseling et al. (1992), Hafez and Soliman (1993), Chen et al. (1995),
Turek (1999), Hafez (2001), Brown (2002), Glowinski et al. (2002), Gustafsson
et al. (2002), Khosla and Rubin (2002), Kuwahara et al. (2002), Loner et al. (2002),
Morgan et al. (2002), Nikfetrat and Hafez (2002), Satofuka et al. (2002), Tezduyar
(2002), and Wendl and Agarawal (2002). While certainly not exhaustive, this list
illustrates the abundance of literature addressing various aspects of the fundamentals
of CFD and incompressible flows.

One might then question “why another book on computation of incompressible
flow?” In the current environment, it is of crucial importance for users of existing
codes to understand the algorithmic characteristics and underlying assumptions
used in modeling flow physics. Users need to understand engineering issues at hand
and identify what needs to be resolved through numerical simulations. Even in one
code, various algorithm options and physical models are generally available, and
users need to choose the most suitable procedure for the problem being solved. It
is difficult to provide a universal guideline to general problem solving. However,
realistic examples for illustrating the process will offer valuable information not
readily available from existing numerical methods books. In this monograph, we
illustrate “best practices” in solving viscous incompressible flow problems using
real-world problems.



4 1 Introduction
1.3 Scope of this Monograph

Back in the early 1980s, the author’s major interests were roused in conjunc-
tion with industrial applications and mission support activities requiring viscous
incompressible flow analysis. Specifically, our activity began with a mission task to
resolve issues involving the Space Shuttle propulsion system. At that time, the avail-
able supercomputing power was not much more than that offered in later desktop
computers of the early 2000s. However, CFD simulation of a complicated rocket
propulsion system, when combined with engineering ideas, could make significant
contributions to retrofitting a liquid-propellant rocket engine. Since then, both com-
puting power and simulation technology have been much advanced, to the point
that almost every organization has access to large-scale computers for scientific and
mission computing, and CFD software has become available either through local
development or through vendors. When we started with our NASA mission tasks in
the early 1980s, our own applications codes had to be developed.

Our first step was to develop numerical methods and simulation tools, followed
by implementation of these to the analysis of the flight engine configuration. The
problem involved both complex geometry and complex flow physics. Therefore,
application of these tools added another level of approximations in conjunction with
geometry modeling, an engineering model of the real system including truncated
boundary conditions, and flow physics modeling. These engineering tasks required
deep understanding of approximations made for flow physics modeling as well as
numerical methods and solvers. The tasks of generalizing and establishing guide-
lines for applications are difficult and often require expertise and experience to solve
particular, real issues at hand. The authors have experienced these challenges over
many years of developing and utilizing CFD tools, especially related to viscous
incompressible flows, in order to make timely impacts on various projects related to
NASA mission.

The process of utilizing CFD as an engineering tool to design or improve
aerospace vehicles and to develop safe operational procedures is problem dependent
and cannot be easily standardized. Simulation of incompressible flow shares many
of the same fundamental algorithmic needs common to all fluid flow problems.
However, there are features specific to incompressible flow. Basic CFD methods
are referred to in existing literature cited throughout this monograph, so that issues
relevant to incompressible flow problem solving can be addressed in more detail. To
keep the flow of thought more self-contained, some basics specifically pertaining
to incompressible flow computations are included in this monograph. The simula-
tion details for mission computing are then presented to illustrate the entire gamut
of procedures and issues. Among the vast number of application problems, limited
samples—primarily from the author’s experience—have been selected to illustrate
different types of flow issues.

The material presented here illustrates some aspects of incompressible flow sim-
ulation not generally covered in existing CFD textbooks, and yet often encountered
in practice. This monograph is, therefore, intended primarily to give a concise guide
to practitioners and graduate students for applying CFD approaches to real-world
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problems requiring quantification of viscous incompressible flows. Although the
procedural details are given with respect to particular tasks, they are very relevant
to many other problems in fluid engineering. Therefore, issues in applying CFD to
engineering problems are discussed extensively, assuming that readers can get CFD
basics from those references cited.

The design of this monograph is as follows: Chapter 2 gives a brief review of
existing methods using primitive variables. In Chapter 3, the projection method is
explained in some detail, followed by a description of an artificial compressibility
method in Chapter 4, which also presents a unified formulation for obtaining incom-
pressible flow solution from compressible flow formulation. Chapter 5 contains
various validation computations using fundamental problems; this is to illustrate
various issues related to different flow characteristics often encountered in solving
real-world problems. The remainder of the book is devoted to mission applications:
liquid-propellant rocket engine subsystem in Chapter 6, turbopumps in Chapter 7,
and hemodynamics and human modeling in Chapter 8.



Chapter 2
Methods for Solving Viscous Incompressible
Flow Problems

In this chapter, numerical solution approaches for viscous incompressible flow are
briefly compared. Detailed discussions of each approach follow in separate chapters.
All discussions are from an engineering perspective and mathematical formalities
are not emphasized, in keeping with our perspective for this monograph that CFD
is an engineering tool for supporting mission tasks, and thus one can implement
well-founded numerical algorithms and physical models to resolve engineering
issues at hand. To make significant impacts on missions such as aerospace vehi-
cle design and operation, the CFD applications procedure is just as important as tool
development. Here, we present a quick summary of numerical approaches most suit-
able for application to tasks for supporting missions, especially space exploration
missions.

2.1 Overview

The Navier-Stokes equations are generally accepted as the equations governing the
flow of Newtonian fluid in a continuum regime. Mathematically, the compressible
flow equations become singular at the limit where the speed of sound of the medium
becomes infinity or the flow speed becomes insignificant relative to the speed of
sound. This singular nature of the governing equations poses the primary diffi-
culty in solving incompressible Navier-Stokes equations. Physically, the challenge
is maintaining incompressibility during iterative processes for obtaining steady-state
solutions or at each time level for computing time-accurate solutions. Several meth-
ods have been developed in the past (see references cited in Section 1.2) where
the main differences among various approaches come from the way in which the
incompressibility condition is satisfied computationally.

A traditional approach is to start the computational process directly from an
incompressible Navier-Stokes formulation. The primary concern is then how to sat-
isfy the continuity equation. One can use the primitive variables, namely, pressure
and velocities or derived quantities like stream function-voriticy and vorticity-
velocity. For general three-dimensional problems, primitive variable formulation
poses the least complications in imposing physical boundary conditions.

D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific 7
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8 2 Methods for Solving Viscous Incompressible Flow Problems

The summary of methods discussed in this chapter is an outgrowth of the review
given by one of the authors in 1989 as a Von Karman Institute Lecture note. Some
details of derivation of the equations and algorithms are given here, as well as the
physical interpretation of the solution procedures. A large amount of mission sup-
port work has also been performed since the lecture notes were first assembled. The
real-world application experiences show that computational approaches for obtain-
ing engineering solutions require in-depth understanding of flow phenomena as well
as the relative importance of various engineering aspects involved in the task, which
involve far beyond algorithms and software issues. The mathematical foundation
for several well-known approaches for solving incompressible flow equations is
outlined next.

2.2 Mathematical Models

Three-dimensional incompressible flow with constant density is governed by the
following Navier-Stokes equations:

dui
— =0 2.1
oxi

b ) __dp 0%

2.2)
Jat 8xj~ 0x; 3)Cj

where ¢ is the time, xi the Cartesian coordinates, ui the corresponding velocity com-
ponents, p the pressure, and t;; the viscous-stress tensor. Here, all variables are
non-dimensionalized by a reference velocity and length scale. The viscous stress
tensor can be written as follows.

Tjj = 2v8;; (2.3a)

S = l % + % (2 4)
v 2 8Xj 8x,~ ’

Here, v is the kinematic viscosity, and Sj; is the strain-rate tensor. Note that the
bulk viscosity is reduced to “so-called” shear viscosity in the case of incompressible
flow. Using conventional Reynolds decomposition, the viscous stress tensor can be
written as:

T = 2vS; — Ry (2.3b)

where, R;; is the Reynolds stresses, and Equation (2.3b) represents Reynolds-
averaged incompressible Navier-Stokes equations. Various levels of closure models
for R;; are possible. In this discussion on solution approaches, turbulence is
simulated by an eddy viscosity model using a constitutive equation of the following
form:
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Rj; = ngkaij —2v7S; 2.5)

where vy is the turbulent eddy viscosity. By including the normal stress, Ry, in the
pressure, v in Equation (2.3b) can be replaced by (v + v7) as follows:

T =2 (v +vy) Sij = 2vrS;; (2.6)

For the remainder of this chapter, the total viscosity, vy, will be represented
simply by v. Therefore, in discussing solution methods and algorithms, the incom-
pressible Navier-Stokes equations are modified to allow variable viscosity in the
present formulation. The flow solvers described here include turbulent flow cases
as long as turbulence is represented by an eddy viscosity model. Note that in many
real cases, this assumption may not hold, causing inaccuracies in the solution. The
sensitivity of the turbulence modeling on solution accuracy and convergence is prob-
lem dependent. Turbulence modeling on a higher level than eddy viscosity has been
researched for many decades, and continues to be a research area. In lieu of any
general recommendations, application procedures are discussed using an eddy vis-
cosity assumption. Therefore, for flows involving non-equilibrium turbulence, the
eddy viscosity formulation needs to be revisited.

One avenue worth mentioning for resolving this non-equilibrium, time-
dependent turbulent flow is large eddy simulation (LES). The LES approach limits
the modeling to small-scale (sub-grid scale) motion, where some degree of uni-
versality can be assumed. This approach was first used in meteorological flow
simulation and later (starting in the 1970s) extended to general engineering appli-
cations. The usefulness of the LES method has been fairly limited, to date. A full
account of this approach requires a separate discussion, starting with the basic for-
mulation. There are merits to applying LES to practical problems, but they are
not included here, since it is difficult to resolve the boundary layer region and
requires relatively large amounts of computing time for solving realistic geometry
and Reynolds numbers. Turbulence modeling issues in solving engineering prob-
lems will be discussed further, in conjunction with our work on liquid-propellant
rocket propulsion system, in Chapter 6.

2.3 Formulation for General Geometry

In order to numerically solve the governing equations involving general geometry,
one commonly needs to map the entire flow field using a grid system such as a
Cartesian grid, body-conforming curvilinear structured grid, or an unstructured grid
like a triangular or tetrahedral grid. Special techniques exist that do not require a
grid system, but those grid-free approaches do not offer any general advantages over
the grid-based methods, and will not be discussed here. By mapping the coordinate
system to a general coordinate, it becomes easier to handle complex geometry. One
advantage of body-conforming coordinates is the ability to follow the surface of an
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object to follow the boundary layer. For discretization of the governing equations,
such as finite difference or finite volume, it is convenient to transform the governing
equations into general coordinates.

Here, transformation of coordinate system will be presented first, with a discus-
sion of ways to directly integrate the governing equations in general coordinates
handled in a later chapter.

To perform calculations on 3-D arbitrarily shaped geometries, the following
generalized independent variables are introduced, which transform the physical
coordinates (X, y, z) into general curvilinear coordinates (£, 7, ¢).

£ =&6(xy,2,1)
n=nxy,z1)
¢ =¢(x,y,2,0)

The Jacobian of the transformation is defined as:

8(5,%{)_ &x Ey £

J = det =|ne 1y n @.7
R P
0§ 0§
where &, = a, & = a—y, etc.

In actual coding, metric terms can be calculated as follows.

& 1 [ Yn% = Yezn T 1 [ Yoz — e Sx 1 [ Yeze —yez

& | = 7 XeZnp —XpZe ).\ My | = 7 Xezp —xeze |, & ) = 7 XnZe — XeZy

& XnYe — X¢Vn Nz XeYg = XeYe & XgYn = XnY
(2.8)

Xg Xp X¢
Ye Yo Y¢ (2.9)
& I

a(x,y,z

J = det dxy.d =

(.1, %)
Applying the transformation to Equations (2.1) and (2.2) yields the following

governing equations in general curvilinear coordinates, (¢,7, ¢):

d. 0 . D oA\ D .
5u——%(6—eu)—%<f—fu>—&(g—gu)
(2.10)
__i(g._g.)__;
- 851 1 Vi -
el <U—§t> el <V—77t) el (W—Ct)
A o\ J ac \ " J o

Il
o

_i(Ui—(éi)z)
g J

where & =&, n,or ¢ fori=1,20r3
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l—l/t
u=-\|v
J
_W
([ ep+ut]  [aptuV 1| op +uW
e:j qp+voU |, f==|np+vV |, g=~|p+uvW
| §&p +wU np +wV & +wW

U=+ @Eut E)yv+(E)w
V=), + myu+myv+G),w
=)+ O)xut+ )yv+ (), w

11

2.12)

The viscous terms are quite lengthy; for the benefit of new practitioners, the fully

expanded version is given next.

a‘L’,’j 0
— = —2vs;
ax]' 3)Cj
Uy + Uy 9 Uy + Uy 9 U; + wy
=—Vv|Uutu |+ v vtu [+ v uv+w
ox Wy + Uy dy wy + v 9z Wy, + wy

When v is constant, the contribution of the second terms in the bracket sum
up to be zero for incompressible flow, since the velocity field is divergence free.
However, in general, v varies in space and time, such as in the case of eddy viscosity
formulation, and so these terms must be kept. Then, the viscous terms in transformed

coordinates are as follows.

.V v v d v u u Jvu aw
ev—j V& . (5?4' na——f— ¢ C) ;J} +<§xafsi+§ya*§i+5zafsi>
fo=21v <§—+V 9 ! ) . +< ou 31’+ 8w>
v=7 oE Tla oz . Tlxaé__l Ny 9E; Vlzg__

6y, =~ (574_ i-l— V¢ ) Z +(§ + gy 8l>
=71 og o ac) || Mo ’as o

T (2.13a)
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The above fully expanded terms can be simplified if an orthogonal coordinate
system is used.

V%‘i-VSj:O; fOI'i;éj

For constant v (that is, constant density laminar flow), the contribution by the
second group of terms in the parentheses of Equation (2.13a) is zero. Therefore, for
flows with constant v in orthogonal coordinates, the full viscous term in (2.13a) can
be simplified as shown below.

o= (5) (2 +5+2) | v
We

fo= (2) (i 02) | o @.13)
Wy
v ug
b= (5) (G reire)| v
We

Satisfying the mass conservation equation, where the pressure term is decoupled
from the momentum equations, is the primary issue in solving the above set of equa-
tions. Physically, incompressible flow is characterized by elliptic behavior of the
pressure waves, the speed of which, in a truly incompressible medium is infinite. The
pressure field is wanted as a part of the solution. However, the pressure condition has
to be imposed on the boundary for numerical computation that poses the difficulty
in designing numerical boundary conditions for incompressible flow computations.

Instead of using primitive variables, one can utilize other formulations using
derived quantities, such as vorticity, to eliminate the pressure from the boundary
conditions; however, this is at the expense of introducing boundary conditions for
the derived variables. In realistic 3-D problems, these derived quantities are difficult
to define or impractical to use. The primitive variable formulation, namely, using
pressure and velocities as dependent variables, then becomes more convenient and
flexible in 3-D applications. Keep in mind that in this formulation, the pressure
solver has to be designed to satisfy mass conservation while achieving computa-
tional efficiency in obtaining the pressure-field solution. Various techniques have
been developed in the past, none of which have proven to be universally better than
another.

2.4 Overview of Solution Approaches
Depending on the flow features to quantify, the solution method of choice can vary.

For flows involving thin viscous layers, it is advantageous to have large time steps,
possibly using an implicit method. For time accurate solutions, the physical time
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step required to resolve unsteady motion could be very small, in which case, explicit
schemes can be used effectively. For spatial differencing, the usual finite differ-
ence and finite volume schemes can be implemented along with central or upwind
differencing. Stable central differencing schemes need dissipation terms, while
upwind schemes include dissipation automatically in the differencing. The addi-
tion of dissipation effectively lowers the Reynolds number of the flow. In addition,
dissipation is affected by grid effect and turbulence.

Grid topology and the “goodness” of grid can affect the solution accuracy in
significant ways—not only from a numerical dissipation point of view but also
in designing boundary conditions. Requirements on grid density and distribution
are also realistic factors affecting the order of differencing schemes. All these
factors should be considered in developing a flow solver and implementation guide-
lines. Solution procedures discussed below represent different approaches but are
not unique combinations of these methods. A quick overview of the different
approaches is discussed below to give readers a general outline of methods com-
monly used to date. A more detailed discussion on production-oriented methods
will be discussed in separately in later chapters.

2.4.1 Pressure-Based Method

The basic idea of this method is to solve the pressure field such that a divergence-
free velocity field is maintained at every time step. This approach was first started
with the marker-and-cell (MAC) method discussed below, followed by proliferation
in simplified and generalized forms. Several variations of this method have been
developed as computer speed and the numerical methods have advanced.

2.4.1.1 MAC Method

The MAC Method was probably the first primitive variable method for incompress-
ible flow using a derived Poisson equation for pressure to satisfy mass conservation.
The first paper written on this approach was published by Harlow and Welch from
Los Alamos National Laboratory in 1965. They called this the marker-and-cell
(MAC) method, in which the pressure is used as a mapping parameter to satisfy
the continuity equation. This laid the foundation for subsequent variations of the
pressure-based method by many researchers. The MAC method can be viewed as
a special case of the pressure projection method or—from the operator point of
view—one variation of the fractional step method. A pressure projection method in
general coordinates, using a fractional step approach, will be discussed in detail in
Chapter 3.

In a fractional-step procedure, the time-dependant governing equations can be
solved in several steps, which can be convenient for time-dependent computa-
tions of the incompressible Navier-Stokes equations (see Chorin, 1968; Yanenko,
1971; Marchuk, 1975). In this procedure, the time evolution of the flow field can
be approximated through several steps. Operator splitting can be accomplished
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in several ways by treating the momentum equations as a combination of con-
vection, pressure, and viscous terms. The common application of this method to
incompressible Navier-Stokes equations is done in two steps.

The first step is to solve for an auxiliary velocity field using the momentum
equation, in which the pressure-gradient term can be computed from the pressure
in the previous time step (for example, Dwyer et al., 1986) or can be excluded
entirely in this step. In the second step, the pressure is computed, which can map
the auxiliary velocity onto a divergence-free velocity field.

The concept of this approach is illustrated by the following simplified example:

Step 1: Using the following form of the momentum equations (2.2):

i __Op i) Oty Op o (2.22)
Jat 0x; 3)6]' 3Xj 0x;

Calculate the auxiliary or intermediate velocity, i;, for example by:

i —u" Sp "
=——+R] 2.14
At ox; TR ( )

Step 2: Solve for the pressure correction.

n+1 _ 7. § (pt+1 — pn
i VR il ) (2.15)
At 8x;

In the second step the pressure correction is computed. To minimize the pressure
correction in the next time step, the pressure gradient term at the previous time step
can be included. The velocity field has to satisfy the following continuity equation.

V"t =0 (2.16)

The above Equation (2.16), can be satisfied by combining Equations (2.14) and
(2.15), resulting in the following Poisson equation for pressure.

1 84
VZ ( ﬂ+1 _ I’l) — __l 217
p p N 2.17)

Once the pressure correction is computed, new velocities can be obtained.

=-—Vp"l 4R (2.18)

Many researchers have used essentially the same procedure shown above. One
particular aspect of the fractional-step method requiring special care is that of inter-
mediate boundary conditions. Orszag et al. (1986) discussed this extensively. As
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Fig. 2.1 Staggered vs. v A v A
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will be explained in Chapter 3, Rosenfeld et al. (1988) and Kiris and Kwak (2001)
devised a generalized scheme where physical boundary conditions can be used at
intermediate steps.

The original MAC method is based on a staggered-grid arrangement on 2-D
Cartesian coordinates (Fig. 2.1). The staggered grid arrangement conserves mass,
momentum, and Kinetic energy in a natural way and avoids odd-even point decou-
pling of the pressure encountered in a regular collocated grid (Gresho and Sani,
1987). A differencing method using the staggered-grid arrangement is essentially
a finite-volume discretization while the regular grid produces a finite difference
form of discretization. As will be discussed in more detail in Chapter 3, the differ-
ences between these two approaches in Cartesian coordinates become unclear when
using generalized curvilinear coordinates. A more complete presentation of these
grid arrangements can be found in Ferziger and Peric (2002), Abdallah (1987a, b),
and Roach (1998).

The major drawback of the MAC method is the large amount of computing time
required for solving the Poisson equation for pressure. When the physical problem
requires a very small time step, the penalty paid for an iterative solution procedure
for the pressure may be tolerable. But the method as a whole is slow and the pressure
boundary condition is difficult to specify. Although the original method used an
explicit Euler solver, various time advancing schemes can be implemented here.
Since its introduction, numerous variations of the MAC method have been devised
and successful computations have been made. Many more examples can be found
in the literature, for example, Ferziger (1987), and Orszag and Israelli (1974).

2.4.1.2 Pressure Field Solution for MAC-Type Method

One important aspect of the numerical solution of the Poisson equation for pressure
is tied to the spatial differencing of the second derivatives. To satisfy the mass con-
servation in grid space, the difference form of the second derivative in the Poisson
equation has to be constructed consistent with the discretized momentum equation
(Kwak, 1989). To explain this intuitive comment in a more convincing way (primar-
ily for those not experienced with incompressible flow) the following comparison
of various discretization approaches is given.
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Let’s compare the different methods for discretizing the Poisson equation for

pressure.
The equation for pressure is obtained by taking the divergence of the momentum
equation, as shown below:

2 ahi 0 au,-

Vip=—— —— = 2.19
P=%% oty ¢ 2.19)
where
hi _ _8u,-uj %
ax]' ij

Three methods for solving the pressure field are compared, below.
Method 1:
First, an exact form of the Laplacian operator is used in solving Equation (2.19).
The Fourier transform of Equation (2.19) is:
-Kp=37 (2.20a)
where

p = Fourier tranform of p
2124324 32
k= = ky + ky + k;
k)%, kg, kg = wave numbers in the x-, y-, and z-directions
g’ = finite difference approximation to g
&' = Fourier transform of g’

The wave number, k;, in discrete Fourier expansion is defined as below.

2 . . .
ki = mn: wave number in the x;-direction

nz—ﬁ,...O,l,... E—l
2 2

A = mesh space
N = number of mesh points in the x;-direction

By inverse transformation, p can be obtained.
Method 2:

A second approach is to use the difference form of the second derivatives in

Equation (2.19), as below.
82 5 82
_ /
<8x2 * 8y? * 5Z2)p -8
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The Fourier transform of the above equation is:
— kikip = &' (2.20b)
where l~cl~ is the Fourier transform of the difference form of the second derivative.

Method 3:

The finite difference form of the governing equations is:

8ui

— D=0 2.1
(3)(,'

Su; op

= =2 _c 2.2

where #'; is the finite difference form of h;. By applying the divergence operator,
D, to the above equations, the following difference form of the Poisson equation is
obtained.

8Du;

DGp = —Dh; =g,

i
Then, taking the Fourier transform of the above equation:
—kikip=4g (2.20c)

Since the governing equations are solved in difference form, the above three
methods are compared in solving Equations (2.1") and (2.2"). The Fourier transform
of Equation (2.21) is as below.

Sup 4 .
S k= —kip (2.21)

To satisfy the continuity equation in grid space, the following equation has to be
satisfied for a flow that has Du; = 0 at the beginning.

8D
5t
In Fourier space, this is equivalent to kfu; = 0 at the first and next time steps.

Substituting p from the above three methods into Equation (2.21), the following
results are obtained.

For Method 1:
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For Method 2:

For Method 3:

s /A 7 k/k; 7 ’
E (kilxli) = hi — ﬁhj ki =0

The source of error introduced by different choices of the V2 operator in
discretized space can be seen by observing the magnitude of k2, k% and K'2.

For the purpose of comparison, modified wave numbers, k? and k% are given
below, where five-point fourth-order central differencing is applied.

(kp)? = el [15 — 16 cos(Ak;) + cos(2Ak; )]

(2.23)

(/’clf)2 = [65 — 16 cos(Ak;) — 64 cos(2Ak; ) — cos(4Ak;)]

T2A2

The magnitude of these quantities is compared in Fig. 2.2. Method 3 satisfies the
continuity equation at the next time step in grid space, and should be used for the
pressure field solution. Therefore, in the solution method using a Poisson equation
for pressure, the divergence gradient (DG) operator plays an important role in satis-
fying the mass conservation in grid space. As will be explained later in Chapter 4,
this requirement can be relaxed in an artificial compressibility approach.

- 82 5 4
k% = exact, k% = fourth order —, k12 = fourth order DG operator | — —
8x3 3x1 8x1

2.4.1.3 Simplified Pressure Iteration (SIMPLE-Type) Method

The major drawback of the MAC method is that a Poisson equation must be solved
for pressure. A direct solver is practical only for simple 2-D cases. However, for 3-D
problems, an iterative procedure is the best available choice. The strict requirement
of obtaining correct pressure for a divergence-free velocity field in each step sig-
nificantly slows down the overall computational efficiency. Since, for a steady-state
solution, the correct pressure field is needed only when the solution is converged,
then the iteration procedure for the pressure can be simplified such that it requires
only a few iterations at each time step. The best-known method using this approach
is the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) developed
by Caretto et al. (1972); see also Patankar et al. (1972, 1979) or Patankar (1980).
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Fig. 2.2 Comparison of V2 operators for 16 equally spaced mesh points (see Equation 2.23)

This particular method is presented here only for historical reasons and has not been
used for computing any of the examples included in this monograph.

A brief explanation of the SIMPLE method key features begins with a guessed
pressure p*, which is usually assumed to be p" at the beginning of the cycle. Then,
the momentum equation is solved to obtain an intermediate velocity u} as below:

* n non e oy 0"
u; —u; = At fen(u”" V' u"t v — — (2.24)
ox;
The corrected pressure is obtained by setting:
p=p"+p (2.25)

The velocity correction is introduced in a similar manner:
k /
= u; +u; (2.26)

Now the relation between the pressure correction, p’, and the velocity correc-
tion, u;, is obtained from a simplified momentum equation. First, the equation for p’
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and u] is obtained from the linearized momentum equations. Then, by dropping all
terms involving neighboring velocities, the following form of the pressure correction
equation is obtained:

U =w— (2.27)

where @ is a function of the particular differencing scheme chosen. Substituting
Equations (2.26) and (2.27) into the continuity equation, a pressure correction equa-
tion is obtained. This is equivalent to taking the divergence of Equation (2.27). This
procedure in essence results in a simplified Poisson equation for pressure, which
can be solved iteratively, for example, line by line.

The unique feature of this method is the simple way of estimating the velocity
correction u;. This feature simplifies the computation but introduces empiricism into
the method. Despite its empiricism, the method has been used successfully for many
computations, especially when the computing resources were rather limited. Further
details of SIMPLE, SIMPLER, and other variations such as the pressure-implicit
with splitting of operators (PISO) algorithm, can be found in the literature, for exam-
ple, see Patankar (1980) and Issa (1985). As computing power rapidly increases, this
type of simplification has become unnecessary and, moreover, unwanted for more
accurate prediction of physics, especially involving three-dimensional applications.
Subsequently, a rather general formulation called the “pressure-based” approach has
been used more, in practice.

2.4.2 Artificial Compressibility Method

Large advances in the state of the art in CFD have been made in conjunction with
the field of aerodynamics. Therefore, it is of significant interest to be able to use
some of the compressible flow algorithms. To do this, the “artificial compressibility”
approach of Chorin (1967), who first introduced the term, can be used.

Later, the method was fully extended to general three dimensions in the form
presented here by Kwak et al. (1984) and Chang and Kwak (1984). To reflect the
physical nature of the pressure projection in this method more accurately, a new
term “pseudo-compressibility” was then introduced. The two terms, artificial com-
pressibility and pseudo-compressibility have been used interchangeably ever since.

In this formulation, the continuity equation is modified by adding a time-
derivative of the pressure term, resulting in:

1dp Ou;

S S (2.28)

p ot Ox;
where § is an artificial compressibility or a pseudo compressibility parameter.

Together with the unsteady momentum equations, Equation (2.28) forms a

hyperbolic-parabolic type of time-dependent system of equations. Thus, implicit
schemes developed for compressible flows can be implemented. Note that the no
longer represents a true physical time in this formulation.
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Physically, this means that waves of finite speed are introduced into the incom-
pressible flow field as a medium to distribute the pressure. For a truly incompressible
flow, the wave speed is infinite, whereas the speed of propagation of the pseudo
waves introduced by this formulation depends on the magnitude of the artifi-
cial compressibility parameter. In a true incompressible flow, the pressure field is
affected instantaneously by a disturbance in the flow, but with artificial compress-
ibility, there will be a time lag between the flow disturbance and its effect on the
pressure field. Ideally, the chosen value of the artificial compressibility can be as
high as the particular choice of algorithm allows so that incompressibility is recov-
ered quickly. This must be done without lessening the accuracy and the stability
property of the numerical method implemented.

On the other hand, if the artificial compressibility is chosen such that these waves
travel too slowly, then the variation of the pressure field accompanying these waves
is very slow. This will interfere with the proper development of the viscous effects,
such as the boundary layer for wall-bounded flows. In wall-bounded viscous flows,
the behavior of the boundary layer is very sensitive to the stream wise pressure gra-
dient, especially when the boundary layer is separated. If separation is present, a
pressure wave traveling with finite speed will cause a change in the local pressure
gradient, which will affect the location of the flow separation. This change in sepa-
rated flow will feed back to the pressure field, possibly preventing convergence to a
steady state. Especially for internal flow, the viscous effect is important for the entire
flow field, and the interaction between the pseudo pressure-waves and the viscous
flow field becomes very important.

Artificial compressibility relaxes the strict requirement of satisfying mass con-
servation in each step. To utilize this convenient feature, it is essential to understand
the nature of artificial compressibility from both the physical and mathematical
points of view. Chang and Kwak (1984) reported physical characteristics of artificial
compressibility, and suggested some guidelines for choosing the artificial compress-
ibility parameter. An extensive mathematical account of the artificial compressibility
approach is presented by Temam (1979).

Various applications that evolved from this concept were reported for obtaining
steady-state solutions (for example, Steger and Kutler, 1977; Kwak et al., 1984;
Chang et al., 1984, 1985a, b, 1988a, b; Choi and Merkle, 1985). To obtain time-
dependent solutions using this method, an iterative procedure can be applied in each
physical time step such that the continuity equation is satisfied. Merkle and Athavale
(1987) and Rogers and Kwak (1988, 1989, 1991) reported on this pseudo-time
iteration approach. Further details are given in Chapter 4.

2.4.3 Methods Based on Derived Variables

So far, we have outlined various strategies where incompressibility was satisfied
using pressure as a mapping parameter. To avoid solving for pressure directly, other
approaches have been developed that introduce other variables, allowing elimination
of pressure from the formulation. The most commonly used variables are stream
function and vorticity.
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Here, two approaches from those categories are introduced briefly.

2.4.3.1 Stream Function-Vorticity

For two-dimensional flow, introducing a stream function, ¥, as below, the incom-
pressibility condition is identically satisfied.

_ W

dy’ C ox

The vorticity, w, is defined in the conventional way as:
o=V Xxu
then the stream function satisfies:
Vi = —o (2:29)

From the momentum equations, the following vorticity transport equation can be
derived.
0 wj 0 Wil 0 u;

— = wj— 4+ VV? 2.30
or g Yag UV (2.30)

This, essentially, is the stream function-vorticity formulation—an approach used
since the early days of CFD mainly to solve two-dimensional fluid dynamic prob-
lems of fundamental interest. To extend this approach to three dimensions involves
velocity vector potential that adds much complexity to the formulation. Thus, this
approach has not been the method of our choice for three-dimensional real-world
applications. More extensive coverage of this and related approaches is found in the
book by Quartapelle (1993).

2.4.3.2 Vorticity-Velocity Method

Among various methods using derived variables, the vorticity-velocity method has
a good potential for 3-D applications.

A vorticity-velocity method was proposed, for example, by Fasel (1972), to study
the boundary layer stability problems in two dimensions. Other authors have used
this approach to solving incompressible flow problems (for example, Dennis et al.,
1979; Gatski et al., 1982; Osswald et al., 1987; Hafez et al., 1988). However, a
three-dimensional extension of this method has been limited to simple geometries,
to date.

The basic equations can be summarized below. Instead of the momentum equa-
tion, the vorticity transport Equation (2.30), is used. Taking the curl of the above
definition of vorticity and using the continuity equation, the following Poisson
equation for velocity is obtained:
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VZu=-Vxo (2.31)

Equations (2.29) and (2.30) can be solved for velocity and vorticity. Here, the
pressure term and the continuity equation are removed at the expense of introduc-
ing three vorticity equations. This requires vorticity boundary conditions on a solid
surface. As in the pressure projection approach, the computational efficiency of this
method depends on the Poisson solver. In general 3-D applications, overall perfor-
mance will determine the competitiveness of this approach compared to the artificial
compressibility or pressure projection approaches.



Chapter 3
Pressure Projection Method in Generalized
Coordinates

In Chapter 2, a general idea of the pressure projection method is introduced. This
method is described in detail for developing general three-dimensional simulation
capability. While an artificial compressibility approach modifies the nature of gov-
erning equations, the pressure projection method is formulated time accurately, and
so is used both in time-dependant problems and for obtaining steady-state solutions.
In light of successful computations in Cartesian coordinates using its numerous
variants, Rosenfeld et al. (1991a, b, 1992) developed a staggered grid-based frac-
tional step method in general curvilinear coordinates. Later, Kiris and Kwak (2001)
developed a more robust implicit procedure for “not- so-nice” grids using the same
finite-volume framework. Among many variations in projection methods, the details
presented in this chapter are extracted from these activities by the authors and their
colleagues at NASA Ames Research Center.

3.1 Overview

As was pointed out in the previous chapter, in the pressure projection method,
pressure is used as a mapping parameter to satisfy the continuity equation. The
usual computational procedure involves choosing the pressure field at the current
time step such that continuity is satisfied at the next time step. The time step can
be advanced in multiple steps (fractional step method), which is computationally
convenient. However, the governing equations are not coupled as in the artificial
compressibility approach. In the usual fractional step approach, an auxiliary velocity
field is first obtained by solving momentum equations. Then, a Poisson equation for
pressure is formed by taking the divergence of the momentum equations and using
a divergence-free velocity field constraint. The numerical solution of the Poisson
equation for pressure with the Neuman-type boundary conditions exists only if the
compatibility condition is satisfied. In three-dimensional curvilinear coordinates,
efficiently solving the resulting algebraic equations from Poisson and momentum
equations is one of the important features of the pressure projection approach.
Spatial discretization, especially for pressure field solutions, needs special atten-
tion in developing flow solvers in order to satisfy incompressibility conditions in

D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific 25
Computation, DOI 10.1007/978-94-007-0193-9_3, © US Government 2011
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the grid space. In Cartesian coordinates, a staggered grid orientation is convenient
for satisfying the continuity equation. But in general curvilinear coordinates, the
formulation is not straightforward, and geometric quantities have to be discretized
consistently with the flow differencing.

For the Poisson solver, a multi-grid acceleration procedure can be incorporated,
which is consistent with the elliptic nature of incompressible flow equations. In this
respect, the governing equations can be discretized by a finite-volume scheme on a
staggered grid. As for the choice of dependent variables, the volume fluxes across
each face of the computational cells can be used, thereby improving the stability
of the algorithm by treating both convective and viscous fluxes implicitly. In this
way, the discretized mass conservation equation can be satisfied consistently with
the flux-balancing scheme explained later.

In solving the momentum equations, a significant part of the viscous terms is
solved implicitly to minimize the time-step limitation resulting from use of a vis-
cous grid. A staggered grid has favorable properties in Cartesian coordinates, such
as coupling odd-even points. However, it is debatable whether a staggered grid has
clear advantages over a regular grid in generalized curvilinear coordinates since flux
computations in generalized coordinates require various interpolations. In the pro-
cedure discussed below, a staggered arrangement is chosen to simplify the pressure
boundary condition in devising a Poisson solver.

The pressure projection method presented here is formulated time-accurately.
Consequently, the flow solver developed using this particular approach has been
used in time-dependant problems as well as for obtaining steady-state solutions.
The method developed by Rosenfeld et al. (1991a) and Kiris and Kwak (2001) is
presented in some detail to give readers an in-depth understanding involved in this
approach.

3.2 Formulation in Integral Form

The equations governing the flow of isothermal, constant density, incompressible,
viscous fluids in a time-dependent control volume can be written for the conser-
vation of mass with the face area vector S(r) and volume V (). In order to use a
finite-volume discretization, it will be convenient to write the governing equations
in the following integral form:

aVv

at+7§ars-(u—v)=o 3.1)

and for the conservation of momentum:

d _
—/udvzyfds-T (3.2)
ot v S
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where ¢ is the time, u is the velocity vector, v is the surface element velocity resulting
from the motion of the grid, and dS is a surface area vector. The tensor 7 is given
by:

T=—u—vu—pl+v(Vu+ (Vo)) (3.3)

where Vu is the gradient of u while (-)7 is the transpose operator.
The only differences between the fixed and the moving-grid equations are the
terms that include the surface element velocity v and the time dependence of the cell

geometry (volume and face area). The volume conservation of each time-varying
cell requires the following:

oV
— —¢®dS-v=0 34
” ﬁ v 34

where the term dS - v represents the volume swespt out by the face S over the time
increment . Thus, the mass conservation equation has exactly the same form as for
fixed grids.

fds.u:o (3.5)
S

The usual practice is to transform Equations (3.2) and (3.5) into a differential
form. Here, the integral formulation is maintained for convenience in deriving the
finite-volume scheme for arbitrarily moving geometries.

3.3 Discretization
In the present integral formulation, spatial derivative terms are discretized in another

way from the differential formulation described in Chapter 4. In this section, details
of the discretization method for governing equations are discussed.

3.3.1 Geometric Quantities

A general non-orthogonal coordinate system (&, 7, ¢) is defined by the following
equation.

r= l'(é:, n, é',l) (36)

The center of each primary cell is designated by the indices (i, j, k), as shown in
Fig. 3.1.
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Fig. 3.1 Staggered grid in generalized coordinates: primary cell

The surface area of the face [ of a primary cell is given by the vector quantity:

gl or or
= X
od+1) ad+2)

3.7

where the computational coordinates [ = &,n, or ¢ are in cyclic order and x is
the cross product operator. The vector S! has the magnitude of the face area and a
direction normal to it. The equivalent differential formulation is the contravariant
base vector V! scaled by the inverse of the Jacobian 1/J, i.e., St = (1/HVL.

An accurate discretization should satisfy certain geometric identities, as pointed
out by Vinokur (1986). The condition that a computational cell is closed in integral
form is shown below.

f dS =0 (3.80)

N

This condition should be satisfied exactly in discrete form, as well:
Z ) (3.8b)
I

where the summation is over all the faces of the computational cell. Equation (3.8b)
can be satisfied if S' is approximated from Equation (3.7) by a proper approximation
of dr / dl.
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For example, 8¢ is computed at the point (i + % Js k) by using the second order
approximation.

ar | ( n )
—_— =5\, 1 1 =TI 1 1 r 1 1 —T 1 1
2

ar 1 ( n )

—_— = 5 |\TI. 1 — I 1 1 r. 1 1 — I 1 1

85- i+l 2 J_j,k“‘j J_jsk_j J+§,k+§ _H‘j»k—j H‘%
2

The volumes of all discrete computational cells will sum up to the total volume
at a given time. The definition of a cell volume is not unique. However, the volume
of each computational cell can be computed by dividing the cell into three pyramids
having in common the main diagonal and one vertex of the cell, resulting in the
following:

1

§ U S
=3 (Sf—; 54 +Sk—;> (g “Rgipe) 9

For time-varying or moving grids, the volume conservation Equation (3.4) must
be satisfied discretely. This can be done by interpreting the term dS - v in Equation
(3.4) as the rate of the volume swept by the face dS. For example, the volume swept

by the face Sf 41/ €an be computed by a formula similar to Equation (3.9), as shown
below:

e V"1 (e ) ¢ +1
— n | —
(8Vi—§) =3 ((Si_» +BSJ,_% +SSk_£) <ri_5’/+£’k+é ri;‘i%’k»
(3.10)
where the time level is given by n. The quantities <SSJ-"_1 , and <SS]{(_1 ,» are the areas

swept by the motion of the face Sf_l -
The area 8SJ?7_1 »1s computed from:

1
no o _ n+1 _ .n n+l1 _ .n
SSJ'—% 2 ((rk—é rkﬂ) - (rk+5 rk—i))i_lj_l G0
2472

and 8Sl{(71 ,» can be computed in a similar way. The volume of the cell at the time
level (n + 1) is computed from Equation (3.4), as shown below.

n+%

GRS (5v’) (3.12)
l

Here, the summation is over all the faces of the computational cell. Figure 3.2
illustrates the moving grid notations.
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— Time level (n+1)
Time level (n)

Fig. 3.2 Notations for a
time-varying grid

i

Note that §V* / At is the volume flux resulting from the motion of the coordinate
system and has a meaning similar to the volume-flux U/ as defined in the next sec-
tion on the mass conservation equation. An accurate computation of the volume of
each cell at the time level (n + 1) is important for an accurate representation of the
momentum equation.

In our finite volume formulation, no coordinate derivatives appear directly in the
discrete equations, as in the case of finite-difference formulas. Instead, quantities
with clear geometric meaning, such as the volume and the face areas of the compu-
tational cells, are used. The discrete approximation of these quantities satisfies the
geometric conservation laws. A principal difference between the finite-volume and
the finite-difference approaches to moving grids is in the interpretation of the quan-
tity 8V / At. In the finite-volume method, it is treated as a geometric quantity that
expresses the rate of displacement of a cell face, whereas in the finite-difference
method, the grid velocity is combined with the fluid velocity to define a “relative
flow velocity” (see Vinokur, 1986).

3.3.2 Mass Conservation Equation

The discretization of the mass conservation Equation (3.5) over the faces of the
primary computational cells yields:

(SE -u). 1—(S*’E -u). 1+(S'7 ~u)

i+5 i— l_(Sn 'u)

i+ j— +(8° 'u)k+%_(5§ ‘)1 =0

2
(3.13)
Note that the default indices (i, j, k) and the time-level (n + 1) are omitted for

simplicity. Each term on the left-hand side of Equation (3.13) approximates the

[N]
=
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volume-flux over a face of the primary cell. A simple, discretized mass conservation
equation can be obtained by using the following variables as the unknowns instead
of the Cartesian velocity components.

Us =§%-u
U'=S"-u (3.14)
Us=S8°-u

The quantities U, U", and US are the volume fluxes over the £, n, and ¢ faces of
a primary cell, respectively. In tensor algebra nomenclature, these are the contravari-
ant components of the velocity vector scaled by the inverse of the Jacobian (1 / J),
which is equivalent to volume of the computational cell. With this choice of the
dependent variables, the continuity equation takes a form identical to the Cartesian
case as shown below.

2

I 4 3 N gm S  _ S _np.yl_
Ul_+% Uii%—i-UjJr% UJ;%"’_UH% Ukl—D,vU_O (3.15)

This is crucial to satisfying the discrete mass conservation equation. Therefore,
the simple form of Equation (3.15) suggests that the volume fluxes can be chosen
as the dependent variables for fractional step methods. Treating the mass fluxes as
dependent variables in a finite volume formulation is equivalent to using contravari-
ant velocity components, scaled by the inverse of the transformation Jacobian, in
a finite-difference formulation. The choice of mass fluxes as dependent variables
complicates the discretization of the momentum equations. Here, we have chosen
volume fluxes and the pressure fluxes are chosen as the dependent variables.

3.3.3 Momentum Conservation Equation

In order to replace u by the new dependent variables U, the corresponding area
vectors are dotted with the momentum equations. Then, the integral momentum
equation is evaluated on each cell surfaces for the unknown U'.

Each cell has the dimensions of A§ x An x A¢ with the centers of each cell
surface located at (i + 1/2, j, k), (i,j + 1/2.k), and (i, j.k + 1/2) for the U*, U™,
and U’ momentum equations, respectively. In Fig. 3.3, the computational cell for
U -momentum equation is shown with the cell volume, Vir1/2,jk- The staggered
grid orientation eliminates “checkerboard-like” pressure oscillations and provides
more compact stencils.

The derivation of the U¢ -momentum equation is outlined next. The U”- and U%-
momentum equations can be obtained similarly by using cyclic permutation.

Spatial discretization of the momentum conservation law Equation (3.2) for a
computational cell with volume V yields:
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3 L=
8—[(Vu)=ZI:S.T

(3.16)

The dot product of the above equation and the surface vector Sf +172 results in:

9 -
2wty =t . L.
5 (VU®) sj% §l ST

where the summation is over all faces of a computational cell. Note that:
u=S:U* +8,U" + S U*
and
Ul=s".u=¢s"".8s,0"
The invariance of the velocity vector requires:

SI . Sm = 8lm

(3.17)

(3.18)

(3.19)

(3.20)

where 8, is the Kronecker delta, and S’ is the inverse base to S,, and has the dif-
ferential analogue S,, = Jor / om. In terms of tensor algebra, S, is the covariant
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base vector scaled by the Jacobian J while S’ is the contravariant base vector scaled
by 1 / J. A uniform velocity field can be numerically preserved if the base S,, is
computed at each point from the relation:

Sm-‘rl X Sm+2

e (Smit x smi2)

(3.21)

which satisfies (3.20) identically. The variable m is the cyclic permutation of
&.n.0).

In constructing momentum equations, the product S’ - T should be computed for
each face of each momentum equation; see Equation (3.17). For example, the &
face-center for the U5 momentum cell is located at (i, j, k). The flux over this face is
computed from below.

_ ¢
(s¢-T) = <— <U5 _ ) U'S; — SEP+ S5 v (Vu+ (Vu)T))
l’.]?

At i,j,k
(3.22)
The conservative form of the velocity vector gradient is as below.
¢, dSu
Vu="—— (3.23)
v
Applying Equation (3.26) for the computation of Vu; j yields:
Vu; ; —lSS u, - |u 1487 w1 —S" ju_ 4+S° ju_ 1—S u 1)
Lik =, i+l ity Tl Uiy Tl iy =L Tkl Tk k-1 k=3
(3.24)

where only those indices different from (i, j, k) are given.

The 7 or ¢ face-centers are located at (i4+1/2,j—1/2,k) and (i+1/2, j,k—1/2),
respectively. The fluxes over these faces are computed in a similar way. The convec-
tion and diffusion fluxes in Equation (3.22) can be approximated in various ways.
In the present formulation, all of the unknowns at the point (i, j, k) are computed by
simple averaging, and therefore, the scheme is equivalent to the results computed
by second-order central differencing.

The difference between a fixed-grid and a moving-grid case is in the computation
of the convection term, which should include the motion of the grid. For example,
the convection flux of the £-momentum equation on the &-face center (i, j, k) is given
by:

The difference equations are second-order accurate in time if §V¢ would not lag
in time by At / 2 over the volume-flux terms U, The resulting discrete equations
are conservative in any moving coordinate system and are second-order accurate,
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spatially. For high Reynolds number flows, fourth-order dissipation can be added to
eliminate high-frequency components of the solution (Rosenfeld et al., 1991). The
dissipation terms are interpreted in terms of fluxes, and therefore the conservation
properties of the equations are maintained.

3.4 Solution Procedure

In Chapter 2, the basic idea of the pressure projection method was illustrated using
a MAC approach. Similar procedures can be devised, in combination with other
algorithms, in advancing advection terms. From an operator point of view, the MAC
method is a form of the fractional step approach. In this section, other variations we
have implemented in solution procedures are discussed.

3.4.1 Fractional-Step Procedure

The time-advancing scheme can be designed using numerous combinations of exist-
ing algorithms. For example, for computing intermediate velocity, Kiris and Kwak
(2001) used a second-order Runge-Kutta scheme. The procedure employing pres-
sure and volume fluxes as dependent variables combined with the Adams-Bashforth
method was used by Rosenfeld et al. (1988) and Rosenfeld and Kwak (1989). Here
we explain a simple example where the momentum equations are discretized in time
using a three-point-backward difference formula as below.
Rewriting the momentum equation (2.2) for simplicity of explanation as below:

ou;

P ouiu: 9T 9
_ O )  d _ 9p p (2.2a)
Jat 0X; 3Xj ax]‘ 0x;

then:

i(3uf“ — 4+ = _" + RGu¥) (3.25)
At i i i P) Xi i .

where u] denotes the auxiliary velocity field. The R(x]) term in the momentum
equations includes the convective and viscous terms. Note that the time derivatives
can be differenced using the backward Euler formula for steady-state calculations.
The velocity field that satisfies the incompressibility condition is obtained by using

the following correction step:

1
E(unﬂ —u*)=—-Vp/ (3.26)

where p' = p"t! — p". At the n + 1 time level, the velocity field must satisfy the
incompressibility condition that is to satisfy the following continuity equation:
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Vot =0 (3.27)

This is done by using a Poisson equation for pressure.

2. 1 *
Vo = Atv-u (3.28)

The Poisson equation for pressure is obtained by taking the divergence of
Equation (3.26) and using Equation (3.27).

In Equation (3.25), both convective and viscous terms are treated implicitly. In
order to maintain second-order temporal accuracy, the linearization error in the
implicit solution of Equation (3.25) needs to be reduced. This is achieved by using
sub-iterations. In most cases, three sub-iterations are sufficient to reduce the lin-
earization error. Here, the purpose of this sub-iteration procedure is quite different
from that in the artificial compressibility method for time-accurate computations.
The artificial compressibility formulation requires the solution of a steady-state
problem at each physical time step. Therefore, the number of sub-iterations for
time accuracy in an artificial compressibility approach can be an order of magnitude
higher than the number of sub-iterations for the present formulation.

3.4.2 Solution of Momentum Equations Using an Upwind Scheme

The convective and viscous terms in Equation (3.22) can be approximated in various
ways. Rosenfeld et al. (1991) implemented an approximate factorization method.
In order to relax the inherent Courant-Friedrichs-Lewy (CFL) number restriction
in three dimensions and to be able to use the “not so smoothly” varying grids,
Kiris and Kwak (2001) implemented a line relaxation scheme where both convective
and viscous terms are treated implicitly. In this example, the convective flux terms
in Equation (3.22) are computed using a high-order upwind-biased stencil. This
alleviates the need for specifying smoothing terms required for central differencing.
The numerical flux, for the convective terms is given by:

~ 1
For =5 [ @ +r @ -6, ] (3.29)

where ¢, , 1 is a dissipation term. If ¢,, 1 = 0, this represents a second-order central
2 2
difference scheme. A first-order upwind scheme is given by:

iy =817y - 677 330

and a third-order upwind is defined as below.

bt = |AFE — AP, £ AfT, - A (3.31)
iy~ T3 Hied i+} i+} i+3 '

2 H‘j
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A fifth-order accurate, upwind-biased stencil that requires seven points, as
derived by Rai (1987), is as follows:

__1|_ + + + + - _ - — —
$ii1 =~ [ 2A[7, +UIAT ) —6AFT, = 3AFL, +28f s — 1A, +6Af, +3Aﬁ7%]
(3.32)
where Af™ is the flux difference across positive and negative traveling waves. The
flux difference is computed by:

+ 4=
Afl_+% =a (u) AuH_% (3.33)
where the A operator is given by:
Aui+% =W+ — U (3.34)

The plus (minus) Jacobian is computed by:

L 1
a = 2 (a % |al) (3.35)

The Roe properties (1981), which are necessary for a conservative scheme, are
satisfied if the following averaging procedure is employed.

_ 1
u=; (i1 + ;) (3.36)

An implicit delta form approximation applied to the momentum equations,
after linearization in time, results in the following hepta-diagonal scalar matrix
equation:

ESq,'_1 +adq + ¢dqit1 + E(qu_l +edqjt1 +f3qk_1 + 88qr+1 = RHS (3.37)

where §g = U™l — y"anda,b,c, d, E,f,g are diagonals.

The Gauss-Seidel line relaxation scheme by MacCormack (1985) can be
employed to solve the matrix equations. The right-hand-side (RHS) term in
Equation (3.45) can be stored for the entire domain during a relaxation procedure.
The line relaxation procedure is composed of three stages, each involving a scalar
tri-diagonal inversion in one direction. In the first stage, §¢ is solved line-by-line in
one direction at a time. Before the tri-diagonal equation can be solved, off-diagonal
terms are multiplied by the current value of §¢ and are shifted over to the RHS
of the equation. The same procedure is repeated in the second and third stages by
inverting the tri-diagonal matrix in each remaining direction, and treating the off-
diagonal terms for the other two directions in Gauss-Seidel fashion. One forward
and one backward sweep in each computational direction are sufficient for most
problems. However, the number of sweeps can be increased as needed.
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3.4.3 Pressure Poisson Solver

Since the early days of computation, Poisson solvers have been studied exten-
sively, and many variations of iterative approach are available. Efficiency of the
pressure projection method is largely dependant on the computational efficiency of
the pressure Poisson equation. In the particular arrangement of the variable defi-
nition discussed in this chapter, the pressure is defined at the center of each cell.
Computationally, the pressure boundary condition is not needed in this arrangement.
For a general, non-orthogonal coordinate system, the 19-point discrete equations
pose some challenges in solving the Poisson equation. Here, the method employed
by Rosenfeld et al. (1991) is briefly introduced.

In this method, a four-color ZEBRA scheme is used. The three-dimensional
ZEBRA scheme is an iterative scheme that solves implicitly all equations along
one coordinate line—say along £—as in the successive line over-relaxation (SLOR)
method. For the ZEBRA scheme, the order in which the lines are processed is not
the usual order by rows or columns. Rather, a “colored” order is devised such that
the implicit solution of a line is decoupled from the solution of the other lines. For
the non-orthogonal grid discussed here, instead of using the usual two-color order-
ing (red-black scheme), the points in the (£, 1) plane are grouped into four different
color labels (see Fig. 3.4). First, all the “black” lines are swept, then the “red,”
“blue,” and “green” lines, respectively. The implicit solution of one coordinate line
is decoupled from the same color lines. For example, when solving for a “black”
line, all the neighboring lines are of different color. The convergence properties of
this approach are similar to the SLOR method. In typical cases, more than 80% of
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the computational time was required for the Poisson solver. Therefore, a multi-grid
acceleration algorithm was implemented by Rosenfeld and Kwak (1993) to sub-
stantially improve the computational efficiency. The four-color scheme has good
smoothing properties and is a good choice for a multi-grid procedure.

When used in conjunction with the line relaxation scheme, the Poisson solver
does not need to be solved in each sweep. Kiris and Kwak (1996) solved the
Poisson solver after two sweeps in each direction of the Gauss-Seidel line relaxation
procedure. This saves some computational time. In general, however, the pressure
projection method discussed in this chapter is expensive and requires small time
steps. For unsteady flow where flow physics requires small time steps, this approach
can be comparable to others. However, for steady-state computations, this approach
is generally more expensive than the artificial compressibility approach. In the next
chapter, we describe in detail an artificial compressibility method as another option
for solving incompressible flow problems. The two methods will be compared more
extensively using benchmark problems, in Chapter 5.

3.5 Validation of the Solution Procedure

The fractional step procedure presented below, combined with the generalized coor-
dinate systems chosen, involves complicated algebraic manipulation. Therefore, it is
in the readers’ best interest to verify the procedure using a simple idealized problem.
This validation is designed to study the effects of grid quality. The test case selected
by Kiris and Kwak (1996) is a laminar Couette flow with the grid intentionally gen-
erated in a saw-tooth shape to introduce metric discontinuity and non-orthogonality
(Fig. 3.5). Even with this “not-so-smooth” mesh point distribution, the numerical
procedure should be able to produce a linear u-velocity profile that is the exact
solution for the laminar Couette flow.

T
L T . .

Fig. 3.5 Grid (63x63) for
Couette flow
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Fig. 3.6 U-velocity contours
for the Couette flow

The flow is started with free-stream velocity everywhere except at the stationary
wall. The stationary wall has a no-slip condition and the upper wall is moving at
a constant velocity. Periodic conditions are imposed on inflow and outflow bound-
aries. A Courant-Friedrich-Levy (CFL) number of 100 is used for this computation,
where the CFL number is defined as:

CFL = max (|U*| + |U"| + |U%|)" dt/V

Figure 3.6 shows axial (U) velocity contours at steady state. The velocity
contours show very small kinks where metric discontinuities are present in the mesh.
In Fig. 3.7, the U-velocity profile at x/L = 0.5 station is compared with the exact
solution of the Couette flow. This test case shows that our approach presented here
introduces minimal grid effects where a sudden change in the slope of grid lines
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Fig. 3.7 U-velocity profile 0.0 0.2 0.4 0.6 0.8 1.0
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for Couette flow
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occurs. The small errors caused by discontinuity in grid slope have an insignificant
effect on the solution.

The convergence history is plotted in Fig. 3.8. The solid line shows the max-
imum residual of the momentum equations, and the dashed line represents the
maximum divergence of the velocity. The maximum divergence of velocity flat-
tens at about 10-5 because the iteration procedure in the Poisson equation solver
is terminated after achieving 10—5 accuracy. With further iterations in the Poisson
solver, the error in the divergence of velocity can be lowered to machine accuracy.
Since the purpose of this test case is to obtain steady-state solutions, this accuracy
limit is adequate. Moreover, the convergence rate is good for a large CFL number.
In time-accurate calculations, the Poisson solver may need to be converged more
tightly. Further validations where time accuracy and viscous effects are important
are presented in Chapter 5.



Chapter 4
Artificial Compressibility Method

The artificial compressibility method is quite different from the pressure projection
approach in both the nature of the formulation and the subsequent numerical algo-
rithm. In an artificial compressibility method, a fictitious time derivative of pressure
is added to the continuity equation so that the set of equations modified from the
incompressible Navier-Stokes equations can be solved implicitly by marching in
pseudo time. When a steady-state solution is reached, the original equations are
recovered. To obtain time accuracy, an iterative technique can be employed at each
time level, which is equivalent to solving the governing equations for steady state at
each time level. Using a large, artificial compressibility parameter to spread artificial
waves quickly throughout the computational domain, and allowing some residual
level of the mass conservation equation, the computing time requirement for time
accurate solutions may be controlled within approximately one order-of-magnitude
higher than the steady-state computations. In the artificial compressibility approach,
the mass conservation does not have to be strictly enforced at each time step, and
this gives robustness during iteration.

In this chapter, the physical characteristics of the artificial compressibility
method are examined, followed by a more detailed discussion on the solution pro-
cedures developed utilizing this approach. As you will see, the addition of pressure
term in the continuity equation introduces mathematical pressure waves into the
incompressible flow field. This addition is more accurately termed “pseudo-waves”
or “pseudo-compressibility.” However, for historical reason, the term “artificial
compressibility” has been used more frequently. We use both terms interchangeably
throughout.

Some details are presented next. At the end of this chapter, a more general-
ized form stemming from the artificial compressibility idea is included to unify the
compressible and incompressible flow regimes, and some test cases are presented.

4.1 Artificial Compressibility Formulation and Physical
Characteristics

The artificial compressibility method, as shown by Equation (2.28), results in a sys-
tem of hyperbolic-parabolic equations of motion. Physically, this means that waves
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of finite speed are introduced into the incompressible flow field as a medium to
distribute the pressure. For a truly incompressible flow, the wave speed is infinite,
whereas the speed of propagation of these pseudo-waves depends on the magnitude
of the artificial compressibility. Ideally, the value of the artificial compressibility is
to be chosen as high as the particular choice of algorithm allows, so that the incom-
pressibility is recovered quickly. This has to be done without lessening the accuracy
and the stability property of the numerical method implemented. On the other hand,
if the artificial compressibility is chosen such that these waves travel too slowly,
then the variation of the pressure field accompanying these waves is very slow. This
will interfere with the realistic development of the viscous boundary layer, espe-
cially when the flow separates. For internal flow, the viscous effect is important for
the entire flow field, and the interaction between the pseudo pressure-waves and the
viscous flow field also becomes very important.

Artificial compressibility relaxes the strict requirement of satisfying mass conser-
vation in each time step in an iterative process. However, to utilize this convenient
feature, it is essential to understand the nature of the artificial compressibility both
physically and mathematically. A few key questions need to be answered with
respect to this “perturbed” system resulting from the addition of an artificial pressure
term. These are:

e What are the characteristics of the pseudo-waves introduced by the addition of
an artificial pressure term?

e How does this pseudo-wave interact with vorticity due to viscosity?

e When converged, do the modified governing equations become incompressible
flow equations, e.g., incompressible Navier-Stokes equations?

e What are factors affecting the rate of convergence?

These questions can be answered from a mathematical viewpoint with respect
to a system of equations perturbed from the incompressible Navier-Stokes formula-
tion. However, since our primary focus is to develop a CFD capability for solving
real-world problems, these questioned will be examined from a flow physics point
of view.

During the early development of the computational procedure, Chang and Kwak
(1984) reported details of the physical characteristics of this method, of which some
key features are presented below. From a mathematical point of view, this approach
can be viewed as a special case of a preconditioned compressible Navier-Stokes
solution procedure. This will be discussed at the end of the chapter in the context of
a unified formulation with compressible flow.

For simplicity of analysis, the following 1-D form of the governing equations is
used here:

—+B—=0 (4.1a)

=4, (4.1b)
X
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where 7, is the normalized shear stress term, and is equal to (1 / Re)(8%u / 8x2) in the
1-D case. The shear stress term in the 1-D formulation contributes to stream-wise
viscous diffusion, which is small. To investigate the interaction between the pseudo-
wave and vorticity from the wall, the wall shear stress needs to be considered; this
aspect will be discussed later in this section.

4.1.1 Characteristics of Pseudo Waves

In the above governing equations, the normal stress term in the stream-wise direc-
tion contributes to the diffusion of the waves. To study the wave propagation
phenomena, the shear stress term in the above equations is neglected for simplic-
ity, and then linearization around a steady-state velocity component, u, produces the
following system of equations.

ap ap
Jt 0 -8 ) 0x
= _ 4.2)
u ( -1 —2u Ju (
Jat 0x

From this, the following characteristic equation can be obtained:
A 42un—B=0

The corresponding eigenvalues are: A = —it & /u? +
then we can write the 1-D equations without the viscous stress term as:

5 1
[_” N P —0 4.3)

—i|+(17£:|:c)|:

ou 1 ap
at  (ukc) ot

dx | (i+c) ox

and the pseudo speed of sound, c, is given as below:

c=+/u*+p

Relative to this sound speed, the pseudo Mach number, M, can be expressed as
below:

M=% (4.4)

W+ p

It is clear that M is always less than 1 for all 8 > 0; therefore, the artificial com-
pressibility formulation does not introduce artificial shock waves into the system
and the flow remains subsonic with respect to the pseudo-sound speed.
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Equation (4.3) suggests that quantities similar to (# + %) propagate with
u—+c

(u—+c) and (v + _L) propagates with (# — ¢). This is heuristically comparable
u—c

to invariants propagating along characteristic lines in compressible flow. Next, the
nature of the pseudo-wave propagation will be examined further.

4.1.2 Wave-Vorticity Interaction

To understand the main features of interaction between the pseudo-wave propaga-
tion and spreading of the vorticity, such as in boundary layer development, it is of
interest to study one-dimensional linear waves. First, the momentum equation is
locally linearized and then, by cross-differencing equations (4.1a) and (4.1b), the
following equations are obtained:

8°p ) 82 ,3 2p . ﬂazw
o " orox U ox
4.5)
Pu _ﬁ@ _
or 91dx ax? ot
These equations may be expressed as
p 7o
Cratro || Tra-o|(” " (4.6)
— || =+@—c)— = .
ot ot ox | \u 31,y
]

If the shear stress term on the right-hand side of Equation (4.6) were absent,
characteristic equations for the linear waves would take a simple form expressed by:

o a7 (pt
|:8_t + (@+c) ai| <u+) =0 (4.7a)

% I1(r\_
[5 L@ a} (u_) 0 (4.70)

Waves denoted by the “+” sign propagate downstream with a speed |u + c|,
and waves denoted by a “-” sign travel against the stream with a speed |u — c|.
The quantities with “+” or “~” signs are not defined rigorously here, but may be
considered as quantities propagating down- or upstream similar to invariants in com-
pressible flow formulation. For compressible flow, these quantities are functions of
density, while in the artificial compressibility formulation these are related to the
pressure.
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The presence of the shear stress term, however, complicates the wave systems
because the shear stress depends on the velocity field. The coupling between the
pseudo pressure-waves and the vorticity spreading depends on their respective time
scales. An order-of-magnitude analysis can be performed here to obtain a general
guideline for determining the magnitude of artificial compressibility. To investigate
the interaction between the vorticity spreading from the wall and upstream propa-
gating waves, we will consider a channel with width x,,s and length L (normalized
by xyef). This can be studied using the following characteristic equation.

Yt U—0)— = (4.82)

The vorticity development during the iteration process in an artificial compress-
ibility approach resembles the boundary layer being developed from a suddenly
started flow. Therefore, the rate of growth of vorticity thickness, §, can be approxi-
mated as below.

382 4
— Z 49 = —, where Re = il
ot Re

Now we will consider the wave with the lowest wave number with the length
scale of L. Defining the following non-dimensional quantities:

12

2

. x . (w—ox 4 ~
X=—,t= , t,=—t suchthat — =1
L L Re dt,
Equation (4.8) can be written as below.
ou~ n ou~ 4L 0 (.5t (4.8b)
—_— — = | — | — Ty, .
3 ox (u—cReot, "

In this equation, the variation of the wave with respect to X and 7, as well as the
shear stress term with respect to t,,, are of order 1. Therefore, the interaction between
the waves and the vorticity can be decoupled if:

4L
[_} 1 4.9)
(u — c)Re

This relation can be from the following physical reasoning: suppose the distance
from a point in the flow field (such as a point on a flat plate or channel) to the
downstream boundary is xr; then the time required for the upstream propagating
wave to reach that point from the downstream boundary, 7, can be estimated by
the following relation.

L

cC—u

T, =
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The time scale, s, for the viscous effect to spread for a distance, §, can be

estimated as follows.
_ Re( 8 )2
s = —
4 Xref

The pseudo wave introduced by the artificial compressibility formulation must
distribute the pressure such that the viscous boundary layer adjusts to its new
pressure environment properly, and must avoid slow fluctuations of the separation
region when it is present; so it is required that:

T >> T (4.10)

If we set § / Xef to be order 1, we will have the wave-vorticity decoupling relation,
Equation (4.9).

Now, substituting the pseudo-sound speed into Equation (4.9) and letting the
dimensionless flow speed to unity, i.e. # = 1, we obtain the following criterion for
B for obtaining a converged solution for laminar flows.

(<

P <1+4—L>2_1 (“.11)
R .

This gives an estimate of the lower bound of the artificial compressibility param-
eter, 8. Here, § is the length scale for the viscous effect to cover, and can be on
the same order of the viscous reference length, x,.r. For example, in a channel flow,
Xrer can be the channel height. This guideline is based on physical interpretation of
the artificial compressibility formulation. The physical phenomena described above
will be illustrated by numerical experiments later.

4.1.3 Rate of Convergence

The rate at which the solution converges to the incompressible solution depends
on B as well as on the stream-wise length, L, which represents convective flow
geometry such as the channel length. The time required for the pseudo-waves to
travel downstream and back upstream for a total distance of 2L is obtained as
below.

L L

+
c+u c—u

T = (4.12)

To converge the solution to a steady state, pseudo-waves have to travel the length
of the entire flow field at least one complete sweep so that the pseudo pressure-
wave can interact with the viscous layer spreading from the wall into the flow
field. Therefore, the physical time required for an iterative process has to be greater
than 7. Substituting the definition of the pseudo-sound speed, Equation (4.3) into
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Equation (4.12), and taking the reference velocity, u = 1, then the number of
computational time steps required to achieve a steady-state solution is:

N > @% (4.13)

where At is the dimensionless computational time step.

4.1.4 Limit of Incompressibility

It is also of interest to see whether the solution obtained using the present artificial
compressibility method indeed converges to an incompressible solution in the limit.
To look into this, the pressure and velocities are expressed into steady-state part, p
and i;, and transient part due to artificial compressibility, p’ and u/ as below:

p(x,t) =px) +p'(x, 1)

_ 4.14)
u(x,t) = u(x) +u'(x, 1)

Substituting these into the artificial compressibility Equations (4.1a) and (4.1b),
the following equations for fluctuating components are obtained.

AL 4.15)
at ox
W o 1o (4.16)
ot x dx  Re 9x? ’

Moreover, by cross-differencing these equations, the coupling of velocity and
pressure can be eliminated. Solving the decoupled equations, solutions of the
following form can be obtained:

p/+ 052 5
<u’+) ~ flafx — (u+ o)t]} exp [—%(l—i—M )] -0 “4.17)

1= 2
(p/) ~ glafx — (u — co)t]} exp |:_oz_(1 —Mz)} -0 (4.18)
u 2Re

where M is the pseudo Mach number based on #, and « is the wave number. Since
M is always less than 1 for all B > 0, the pseudo-waves vanish as time pro-
gresses, resulting in an incompressible steady-state solution. The rate of decay of
the transient waves depends on their wave numbers. Heuristically speaking, for
a given problem with fixed boundary conditions, any compression waves gener-
ated in the course of computation will always be accompanied by the generation of
expansion waves. When these two families of waves meet, they will either cancel
one another out or break themselves into several waves. The broken waves have
a shorter wave-length that corresponds to larger wave numbers, and therefore will
decay faster.
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4.2 Steady-State Formulation

Now, let’s derive the generalized equations for obtaining steady-state solutions using
an artificial compressibility approach. Artificial compressibility is introduced by
adding a time derivative term for pressure to the continuity equation, resulting in:

Lap 0 (Ui=G) _
Ewa—si(—f )—0 19

In the steady-state formulation the equations are to be marched in a time-like
fashion until the divergence of velocity in Equation (4.19) converges to zero. The
time variable for this process no longer represents physical time, so in the momen-
tum equations ¢ is replaced with 7, which can be thought of as a pseudo-time or
iteration parameter. Combining Equation (4.19) with the momentum equations gives
the following system of equations:

" p=- LBy L —Fy- G- Gy= R 420

5.0 = 35( v) 371( v) ag( v) = (4.20)
where R is the right-hand side of the momentum equation and can be defined as the
residual for the steady-state computations, where:

p
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and for flow with constant v in orthogonal coordinates:

oD
B =(5)E+8+8)7 =nD

0§

. oD
y = (;) (mi +ny + n?)lm% =D
. D (4.21b)
v=(5) @+ G+ DG =wD

0000
. _|oto0
m=10010

0001

This set of equations is to be solved for obtaining a steady-state solution in
generalized coordinates.

4.3 Steady-State Algorithm

This section focuses on iterative schemes. Even though the algorithm is explained
in steady-state formulation, the iterative schemes can be used for a time-accurate
solution procedure, as discussed in Section 4.4.

4.3.1 Difference Equations

For spatial differencing, there are several different ways of defining variables in a
grid system. For example, a standard cell-node oriented grid or a staggered grid
arrangement can be chosen. In Cartesian coordinates, a staggered grid arrangement
has some favorable properties such as natural coupling of variables at odd-even
points. In generalized coordinates, these advantages become obscured because of
the interpolation required. However, a fully conservative differencing scheme can
be devised that maintains the convenience of a staggered arrangement such as in a
Poisson solver (Rosenfeld et al., 1988). Using any grid system, spatial differencing
can be done either in finite-difference (Steger and Kutler, 1977) or finite-volume
form. The finite-volume scheme usually produces better results near geometric sin-
gularities. Since most of the results presented later in this monograph were obtained
using finite-difference schemes, algorithms based on a finite-difference approach are
discussed in this chapter. The numerical procedure using central differencing will
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be discussed in this section and an upwind differencing scheme will be discussed in
a later section.

If the pseudo-time derivative is replaced by a trapezoidal rule finite-differencing
scheme, the time difference term results in:

AN\ N A\ n+1
. . At | [aD ab
D =pr+— | = — o(A7? 422

T3 <8r)+<8r> + (T) (4.22)

where the superscript n refers to the n pseudo-time iteration level. By substituting
Equation (4.20) into Equation (4.22), one obtains the following.

A A A A A A N
D 4+ S50 [8e(E = B 4 6,(F — By 4 5.6 - Gt ]
A (4.23)
T A A N A~ A A
=D -5 [6:(E = Evy' + 8,(F = By + 8.6 = Gy

The objective is to solve for D!, and this is nonlinear in nature since Bt =
E(D™) is a nonlinear function of D" as are £"*! and G"*!. The following
linearization procedure is applied to solve for these quantities. A local Taylor
expansion about " yields:

Entl — fn +An(Dn+l — D"+ O(A‘[2)
Frtl = Fn 4 Byt — DYy + O(AT?) (4.24)
Gn+1 — Gn + 6)1(Dn+1 —-D"Y+ O(A‘Ez)

where fl, B and C are the Jacobian matrices defined as below.

OE o 9F . G

A=—, B=—, = — (4.25)
oD oD oD
The Jacobian matrices can all be represented by the following equation:
0 Lip LB LB
N 1| Ly Q+Lu Lou Liu
Ai = j Ly Liv O+ Lyv Liyv (4.26)
L3 Liw Low 0+ Lzw

where Ai = A, BorCfori= 1,2, or 3, respectively.
QO=Lo+ Liu+ Lyv+ Lsw

Lo = (&), L1 = (Ex, Lo = &)y, L3 = EDw
& =(&,n,or ¢) for (A,B, or é‘)
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Substituting Equation (4.24) into Equation (4.23) results in the governing
equation in delta form:

{1+ iy [8:A" = )+ 8,(B" — ) + 8,(C" — Fs)]} (D" = D"
2 4.27)

= — AT [8:(E = B+ 0,(F — )"+ 8:G - G

where

ri=(5)ve- (vs—é - nai + c—é_)

h = At for trapezoidal differencing
h =2At for Euler implicit scheme

At this point it should be noted that the notation of the form [8§(A — F)]D
refers to:

—(AD) —(FD) dnot Ap_ 2T
T _85 and no oF - oF

4.3.2 Approximate Factorization Scheme

The solution of Equation (4.27) would involve a formidable matrix inversion prob-
lem. With the use of an alternating direction implicit (ADI) type scheme, the
problem could be reduced to the inversion of three matrices of small bandwidth,
for which there exist some efficient solution algorithms. The particular ADI form
used here is known as approximate factorization (AF) (Beam and Warming, 1978);
a similar scheme was developed independently by Briley and McDonald in 1977.
However, it is difficult to apply the AF scheme to Equation (4.27) in its full
matrix form. Noting that at the steady state, the left-hand side of Equation (4.27)
approaches zero, a simplified expression for the viscous term as shown in Equation
(4.21b) is used on the left-hand side. To maintain the accuracy of the solution, the
entire viscous term is used on the right-hand side. Using these terms, the governing
equation becomes:

LeLyLo(D"™' — D") = RHS (4.28a)

where ~
A .
Le = |1+ TTJ”“(Sg(A” - yl)i|

At n+1 nn
Ly = 1+ 52715, = ) (4.28b)

i AT A
L= |1+ TJ"“(S;(C” — m)}
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and RHS is the right-hand side of Equation (4.27). When second-order central dif-
ferencing is used, the solution to this problem becomes the inversion of three block
tridiagonal matrices. Then the inversion problem is reduced to the three inversions
as below.

(Ly)AD = RHS
(Le)AD = AD (4.29)
(Lo)AD™™ = AD

These inversions are carried out for all interior points, and the boundary condi-
tions can be implemented explicitly. Later on, we’ll discuss how to implement the
boundary conditions implicitly.

A guideline for estimating the lower bound of 8 was given by Equation (4.10),
which was derived from physical reasoning. To make the pressure wave travel fast,
it is advantageous to choose B as large as possible. There is, however, a bound of
B that comes from the particular algorithm chosen here; namely, the error intro-
duced by the approximate factorization. In implementing the AF scheme leading to

Equation (4.28), the following second-order cross product terms are introduced into
the following equation.

A o .
<7tJ”+1> [6:A" — Ty B — T+ ... ]

This term must be kept smaller than the original terms in the equation. Including
only the terms that contain S, this restriction can be expressed as:

i i

AT A a
SIS ATSGAT (s6AT. i £
or

A A
TTJ”H(S%A/’.’ <1

Recalling the expression for Af’ given by Equation (4.26), the terms that have g

in them give the following.
AT 85 0&; |
—B% | =) <
2 7%\ ax;

The term to the right of B in this inequality is essentially the change in 1/Ax; in
either the &, n, or ¢ direction. An estimate of the order of magnitude of this term is

given by:
9§
Se | —= )| =2
O[ E (3%‘)}

which puts the restriction on
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O(BAT) < 1 (4.30)

For most problems, the restrictions for 8 given by Equations (4.10) and (4.30)
are satisfied with a value for f in the range from 1 to 10. As will be shown later, this
restriction on the upper value of § can be relaxed if the factorization error involving
B is removed, for example, by implementing a line relaxation scheme.

4.3.2.1 Diagonal Algorithm

To gain computational efficiency, the Jacobian matrices can be diagonalized. In
a diagonal algorithm, a similarity transform can be implemented to uncouple the
governing set of equations. The equations can then be answered by solving scalar
tridiagonal matrices instead of block tridiagonal matrices. A similarity transform,
which symmetrizes and diagonalizes the matrices of the compressible gas dynamic
equations, has been used by Warming et al. (1975) and Turkel (1973). This method
was extended by Pulliam and Chaussee (1981) to produce a diagonal algorithm for
the Euler equations. This method can be applied to the compressible Navier-Stokes
equations to obtain a considerable savings in computing time (Flores, 1985).

Here, similarity transforms for the matrices used in the artificial compressibility
method are presented, which results in a substantial reduction in computer time
(Rogers et al., 1987).

Similarity transformations exist that diagonalize the Jacobian matrices:

A = T AT (4.31)

where A; is a diagonal matrix whose elements are the eigenvalues of the Jacobian
matrices and which is given by:

0 0 0 0
~ |0 0 0 0
Ai= 0 0 O—-Ly/2+c 0 (4.32)
0 O 0 0—-Ly/2—c
and where c is the pseudo-speed of sound, which is given by:
c= \/ (Q+Lo/2)* + B(L} + L5 + L3) (4.33)

The T; matrix is composed of the eigenvectors of the Jacobian matrix. For more
details on the derivation of Tj, its inverse, and eigenvectors, see Rogers et al. (1987).

The implementation of the diagonal scheme involves replacing the Jacobian
matrices in the implicit operators with the product of the similarity transform matri-
ces and the diagonal matrix, as given in Equation (4.31). The identity matrix in
the implicit operators is replaced by the product of the similarity transform matrix
and its inverse. Modification is made to the implicit viscous terms by replacing
the I, matrix with an identity matrix so that the transformation matrices may also
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be factored out of these terms. This implicitly adds an additional viscous dissipa-
tion term to the pressure. Adding higher order smoothing terms for stability, the
transformation matrices are now factored out of the implicit operators to give:

i AT N . 1
Le =T: |1+ 7]55 (Ag — )/1) + &;iVe Ag TS !

i AT n .
Ly =Ty |1+ 578, (By = 72) + vy, | T, (4.34)

i At A . 1
Lo =T, |1+ 7]8; <A§ - )/3) + & Ve Ag T{ !

where the implicit viscous terms are now given by:
.V
Yi= 7V5i - V&5 (4.35)

and V and A represent forward and backward spatial-differencing operators, respec-
tively. The higher order smoothing terms are discussed further in Section 4.3.5.

Since the transformation matrices are dependent on the metric quantities, factor-
ing them outside the difference operators introduces an error. No modification has
been made to the right-hand side of the equation, and therefore, these linearization
errors will not affect the steady-state solution. Only the convergence path toward the
solution is affected using this diagonal algorithm.

The implementation of this algorithm over the block algorithm will result in a
substantial reduction in computational time per iteration because of the decrease
in the number of operations performed. Additionally, considerably less memory is
required to store the elements on the left-hand side. This space can be used in data
and memory management, depending on the computer architecture. For example,
when vector machines were the workhorse systems, this additional memory was
used to further vectorize the existing code. Since the solution of a tri-diagonal block
or scalar matrix is recursive, it is not vectorizable for loops that use the current
sweep direction as the inner do-loop index. However, if a large number of these
matrices are passed into the inversion routines at once, then vectorization can take
place in the “non-sweep” direction. Computer architectures continuously evolve and
coding strategy can also change to accelerate memory speed. Whatever the computer
architecture may be, lower memory requirements from the algorithm can be utilized
in gaining overall computational efficiency.

4.3.3 LU-SGS Scheme

In 1987, Yoon and Jameson developed an implicit lower-upper symmetric-Gauss-
Seidel (LU-SGS) scheme for the compressible Euler and Navier-Stokes equations.
A similar scheme was devised for the artificial compressibility formulation (Yoon
and Kwak, 1989). The LU-SGS scheme is not only unconditionally stable but also
completely vectorizable in three dimensions if a vector computer is used. Spatial
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differencing is equivalent to either central or upwind schemes, depending on the
numerical dissipation model that augments the finite volume method (Yoon and
Kwak, 1988). This scheme is briefly described below.

Starting from an un-factored implicit scheme similar to Equation (4.27):

{1 +37 I:(SgA +8,B+ S;C]} (D" — pm

4.27)
= —Ar[8(E = B+ 8,(F — )+ ;G - Gy
The LU-SGS implicit factorization scheme can be derived as:
LiL;'L,(D"™" — D"y = RHS (4.36a)
where
L=I+ @(5—/%31% +8Ct—A~ =B —C)
1= 2VE n ¢
h A A A A A A

Ly=1+ 5(A+ —A4+BT—B 4+Ct=C) (4.36b)

L,=1+ z(agA— +87B™ + sjc— +AT + BT+ CH)

and where 85_ and 8; are the backward- and forward-difference operators
respectively.

This particular scheme has been coded using finite volume discretization and
second-order central differencing for the viscous fluxes, which require numerical
dissipation terms for stability (Yoon and Kwak, 1989). By choosing different numer-
ical dissipation models and Jacobian matrices, a variety of other schemes can be
developed. For example, when there is no source term, the Jacobian matrices of the
flux vectors can be constructed to yield diagonally dominant approximate Jacobian
matrices. This will eliminate the need for block inversion and enables scalar inver-
sion. This makes the cost per iteration much lower than block inversion and can
accelerate convergence, and thus can be a useful alternative for obtaining steady-
state solutions. However, it is essential to make sure that the accuracy of the solution
does not suffer due to the approximation of the flux Jacobian. In general, approxi-
mations at the algorithm level need to be minimized to enhance prediction capability
for analyzing complex flow physics. Further details of this method are found in the
references cited.

4.3.4 Line Relaxation Scheme

The line-relaxation implicit scheme is formed through an iterative solution process
rather than through factorization of the left-hand-side matrix. The discrete form of
the matrix on the left-hand side of Equation (4.27) is a banded matrix composed
of seven diagonals, where each entry of a diagonal consists of a 4 x 4 block. The
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discrete version of Equation (4.27) is written as:
[T,0,...,0,U,0,...,0,X,Y,Z,0,...,0,V,0,...,0, W]JAD = RHS (4.37)

where T,U,V,W,X,Y and Z are the diagonals, with the Y vector being the main
(center) diagonal. This matrix equation is approximately solved using an iterative
approach. One of the three computational directions is chosen to be the implicit
direction, and sweeping through the domain proceeds in the other two directions.
Using, for example, the & family, a tridiagonal matrix is formed by keeping the X, Y
and Z diagonals on the left-hand side, and multiplying the remaining diagonals by
the latest known iteration of the AD solution vector, and shifting them to the right-
hand side. A forward sweep is composed of solving a block-tridiagonal system of
the form:

[X,Y,Z]AD'"t' = RHS — [T,0,...,0,U]AD"!
—[v,0,...,0,W]AD!

and a backward sweep is similarly composed of solving the following:

[X,Y,Z]ADt' = RHS — [T,0,...,0, UJAD'
—[V,0,...,0, W]AD'!

where the [ superscript denotes the sweep iteration number.

The process is initialized by setting AD? = 0. The algorithm is implemented so
that any or all of the three computational directions can be chosen for the sweep
direction. The optimum direction and number of sweeps is very much problem
dependent. Our experience with this algorithm has revealed that for most problems
it is best to use the wall-normal direction as the implicit direction, and that on the
order of 10 sweeps should be used (Rogers et al., 1991a, b).

4.3.5 Numerical Dissipation or Smoothing

In applying the above factored schemes, it has been found that the stability of the
scheme is dependent on the use of some higher-order smoothing terms. These terms
help to damp out the higher-order oscillations and odd- and even-point decoupling
in the solutions, which are caused by the use of central differencing. The smooth-
ing term can be related to an upwind finite-difference approximation. The idea of
splitting the upwinding scheme into the central differencing scheme plus dissipation
was successfully implemented by Kreiss (1964) and others (for example, Jameson
et al., 1981). Pulliam (1986) discussed an implicit dissipation model extensively.
Later, the dissipation models were unified in the framework of a finite volume total
variation diminishing (TVD) method for high-speed flow. Since for incompressible
flow we are not dealing with shocks, numerical dissipation is added primarily for
stability. However, we generally followed the strategy used for compressible flow
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formulation, and these models were then extended into the artificial compressibility
formulation (Yoon and Kwak, 1989). Here, we focus on only those specifics relevant
to the constant coefficient model.

By including these smoothing terms, Equations (4.28a) and (4.28b) become:

LeLyLe (D" — D) = RHS of (4.27) — .[(Ve Ag)* + (Vy Ap)? 4 (Ve Ar)*1D"

(4.28¢)
where
[ At n+1 An ]
Lg: I+ TJ 55 (Al—]/]>+8ngA§
[ AT (an 1
Ly = |1+ 518, (45— 1) + e, (4.284)
. ) .
Lo=|I+ Trjnﬂag (A% =) + e A

Here, V and A represent forward and backward spatial-differencing operators,
respectively. To preserve the tridiagonal nature of the system, only second-order
smoothing can be used on the left-hand side of the equation, whereas fourth-order
smoothing is used on the right-hand side. When the diagonal algorithm (described
in Section 4.3.2) is used, however, it is feasible to increase the bandwidth of the
system to a pentadiagonal. This makes it possible to use fourth-order smoothing on
the left-hand side of the equation, as well. The AF algorithm will be stable if ¢;
and e, satisfy a certain relation (see Pulliam, 1986; Jameson and Yoon, 1986) as
discussed below.

To study the nature of the numerical smoothing, a 1-D form of the dissipation
terms is represented as below.

[1—&VeAe | (" = p™) = —eu(Ve Ag)*p" (4.38)
Suppose p is represented by the discrete Fourier expansion:
p=>)_plkye™ (4.39)
n
where

21

NAE
n=-NJ/2,...0,1,...(NJ2— 1)

N = number of mesh points

p = Fourier transform of p
k

n = wave number

Then Equation (4.37) can be written as:

[1— ek 1" — ") = —eo(kK)*p" (4.40)
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where
k' = —2+ 2cos(k)
(K)? = 6 — 8 cos(k) + 2 cos(2 k)

From this, the amplification factor can be defined.

An+1 1 =gk — 1% 2
ozﬂnz[ &__%)] (4.41)
D [1 — &ik']

To damp out the numerical fluctuations as time advances, the absolute value of
the amplification factor o has to be less than one for all possible frequencies.

lo| < 1
Noting that k’ is always negative, this requirement leads to the following relation.
e <2(1 — gik)) (4.42a)
It can be shown that the above inequality is always satisfied if:
26, < & (4.42b)

The exact relation between these two coefficients can be determined only by a
nonlinear stability analysis. In the cases presented in this monograph, ¢; is taken to
be three times larger than ¢,. From the expression given in Equation (4.40), it is
clear that if ¢; is too large, the rate of damping will be diminished, so it may not
be advantageous to take a very large value for ¢; over ¢,. The choice of ¢, depends
on the Reynolds number and the grid spacing. However, as discussed later, large
values of ¢, adversely affect the accuracy of the continuity equation, which is why
the magnitude of ¢, is usually taken to be small. If grid sizes are fine enough to
resolve the changes in the flow field, then ¢, can be as small as 1073,

In computing incompressible flow problems, two major sources of inaccuracy
are associated with the numerical dissipation terms, namely: (1) the numerical dis-
sipation terms effectively change the Reynolds number of the flow, and (2) the
explicit smoothing terms added to the continuity equation do not conserve mass.
In particular, the explicit smoothing on the pressure can affect whether or not the
computational procedure converges to an incompressible flow solution. Chang and
Kwak (1984) showed that the pseudo-pressure waves decay exponentially with
time, and vanish as the solution converges. Thus, the change in pressure with time
approaches zero. When there is no explicit smoothing added to the equation, the
divergence of the velocity field identically approaches zero. However, when explicit
smoothing is included, as the change in pressure approaches zero, the divergence of
the velocity approaches the following:

M, el (VeA v, A VA 4.43
Bxi_),BAr[(E £)+ (Vydp) + (Ve A lp (4.43)
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where §/5x; is a difference form of the divergence operator and &, is the explicit
smoothing parameter for the pressure. If ¢, is scaled by h, for example, g, = Ate,,
Equation (4.41) becomes independent of the time step. Depending on the magnitude
of B and the local pressure gradient, this term can deteriorate the conservation of
mass. However, note that in the numerical computations, the central differencing
scheme is modified to include numerical dissipation terms resulting in what is
essentially an upwinding scheme for momentum equations.

4.3.6 Boundary Conditions

Once the flow solver is developed, a boundary condition procedure has to be devised
to be compatible with the solution algorithm. Boundary conditions play an important
part in determining the overall accuracy, stability property, and convergence speed
of the solution process. Different types of boundaries are encountered in numerical
simulation, including solid surface, inflow and outflow, and far-field boundaries,
discussed below.

4.3.6.1 Solid Surface

At a solid surface boundary, the usual no-slip condition is applied. To design a
pressure boundary condition on the boundary in generalized coordinates, the grid
curvature on the boundary needs to be considered. In general, however, the grid
points adjacent to the surface are sufficiently close to the boundary so that constant
pressure normal to the surface in the viscous boundary layer can be assumed. For a
¢ = constant surface, this can be expressed as:

Bp)
PY) —o 4.44
<a§ =1 @49

This approximate boundary condition is good for high Reynolds numbers, and
can be implemented either explicitly or implicitly. The implicit implementation,
however, will enhance the stability of the code. This can be done during the ¢ —
sweep by including the following in the matrix to be inverted:

A

IADjy1 + 5AD/,k,2 =f (4.45)

where

o>
Il

S~y
Il
(@]
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4.3.6.2 Inflow, Outflow and Far-Field Conditions

The inflow and outflow boundary conditions for an internal flow problem and the
far-field boundary conditions for an external flow problem are handled in much the
same way. The incoming flows for both problems are set to an appropriate constant
as dictated by the problem. For example, at the inlet to a pipe, the pressure can be
set to a constant and the velocity profile can be specified as uniform. Downstream
conditions, however, are the most difficult to provide. Simple upwind extrapolation
is not well posed. The best convergence rate is obtained if global mass is conserved.
So to ensure the best results, the velocities and pressure are first updated using a
second-order upwind extrapolation. For an exit at L = LMAX this is written as:

Qn+1 AZZ Qn+1
Imax —1 A [ max —
7 _ <1
leax - Azn
Azy

(4.46)

where

AZ] = Zimax — Zmax —1
AZ) = Zimax — Z/max —2

Then, these extrapolated velocities are integrated over the exit boundary to obtain
the outlet mass flux.

m¥ s = / V. da (4.47)

exit

Next, the velocity components are weighted by the mass flux ratio to conserve
global mass:

nYin -5

vl = 4 (4.48)

nYour

If nothing further is done to update the boundary pressure, this can lead to dis-
continuities in the pressure because momentum is not being conserved. A method
of weighting the pressure by a momentum correction was presented by Chang
et al. (1985a), where the pressure condition is obtained by the mass weighted
velocities:

nt1 i
p=p —z[(wW)"H (WW)"]+ (V;“ V?)[(%ﬁ) —(g—?)] (4.49)

where W is the contravariant velocity. In obtaining this formula, we assume that
the streamlines near the exit plane are nearly straight. Any appreciable devia-
tion will cause a discontinuity in the pressure and may lead to an instability. To
avoid this, we used a momentum-weighted pressure, obtained by 1ntegrat1ng the
momentum-corrected pressure p"*! and the extrapolated pressure p" across the
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exit, as below.

1;7t+1 — f p"'Hd(Al

exit

I;;’: [ p'da

exit
The final outlet pressure is then taken to be:

) I;l+l B
P = p" (4.50)

I

Under these downstream boundary conditions, global conservation of mass and
momentum are ensured. Many practical applications have been solved using the
above procedure. However, the nonreflecting-type boundary conditions, according
to Rudy and Strikwerda (1980), may enhance the convergence speed.

4.4 Time-Accurate Procedure

Time-dependent calculations of incompressible flows are especially time con-
suming due to the elliptic nature of the governing equations. Physically, this
means that any local change in the flow has to be felt by the entire flow field
instantaneously. Numerically, this means that in each time step, the pressure
field has to go through one complete steady-state iteration cycle; for example,
by Poisson-solver-type pressure iteration or the pseudo-compressibility iteration
method.

In transient flow, the physical time step has to be small—consequently the change
in the flow field may be small. In this situation, the number of iterations at each
time step for getting a divergence-free flow field may not be as high as regu-
lar steady-state computations. However, time-accurate computations are in general
extremely time consuming. Therefore, it is particularly useful to develop com-
putationally efficient methods by implementing a fast algorithm and by utilizing
computer characteristics such as parallel processing. In this section, a way of obtain-
ing time-accurate solutions using an artificial compressibility approach is reviewed
(see Rogers and Kwak, 1988, 1989).

Using a second-order, three-point, backward-difference formula, the time deriva-
tives in the momentum equations are differenced:

3ﬁn+1 — A" + i\tn—l

AT =l (4.51)

where the superscript n denotes the quantities at time t = nAt and 7 is the right-hand
side given in Equation (2.10). To solve Equation (4.51) for a divergence-free veloc-
ity at the n + 1 time level, a pseudo-time level is introduced and is denoted by the
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superscript m. The equations are iteratively solved such that #"T!”"+1 approaches
the new velocity &+ as the divergence of &"+!”*1 approaches zero. To drive the
divergence of this velocity to zero, the following artificial compressibility relation
is introduced:

n+1,m+1 _

AT

p pn+l,m

= —BV . rtimtl (4.52)

where t denotes pseudo-time and S is an artificial compressibility parameter.
Combining Equation (4.52) with the momentum equations gives:

I (Dn-l—l,m-‘rl _Dn-‘rl,m) _ _pnttmtl _ Im (1 sirlm _apy 1o Sbn—l)
A\ .

(4.53)
where D is the same vector defined in Equation (4.21), R is the same residual vector
defined in Equation (4.20), I is a diagonal matrix, and I, is a modified identity
matrix given by:

1 151515
I,,:diag[ i|

AT AU AL A
I = diag[0,1,1,1]

Finally, the residual term at the m + 1 pseudo-time level is linearized, giving the
following equation in delta form.

A\ n+1,m
Iﬂ + (3_R> (Dn-H,m-H _ Dn+l,m)
S \ab (4.54)

= —frtlm _ %(1.5#“"" —2D"+0.5D" 1

As can be seen, this equation is very similar to the steady-state formulation given
by Equation (4.27), which can be rewritten for the Euler implicit case as below.

L % ’ n+l _ pny _ pn
|:JA‘C + <8D> j|(D D")=R (4.55)

Both systems of equations will require discretization of the same residual vec-
tor R. The derivatives of the viscous fluxes in this vector are approximated using
second-order central differences. The convective flux terms can be discretized using
central differences, as was done in Section 4.3. This will require numerical dis-
sipation terms for stability. Since, in the artificial compressible formulation, the
governing equations are changed into the hyperbolic-parabolic type, some of the
upwind differencing schemes developed for the compressible Euler and Navier-
Stokes equations by numerous authors (e.g. Roe, 1981; Chakravarthy and Osher,
1985; Steger and Warming, 1981; Harten et al., 1983) can be utilized.
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In this section, the method of Roe (1981) was adopted in differencing the con-
vective terms. Here, the upwind method is biased by the signs of the eigenvalues
of the local flux Jacobian. This is accomplished by casting the governing equa-
tions in their characteristic form and then forming the differencing stencil such that
it accounts for the direction of wave propagation. In this formulation, the set of
numerical equations is solved using a nonfactored line relaxation scheme, similar
to that employed by MacCormack (1985). This implicit scheme, described in the
next section, makes use of large amounts of processor memory for efficient coding.
However, the particulars of coding may vary depending on ever-evolving computer
architectures.

4.5 Time-Accurate Algorithm Using Upwind Differencing

Earlier, in Section 4.3.5, higher order smoothing was explained in conjunction with
the central differencing scheme. Upwind differencing is essentially a combined form
of differencing where numerical dissipation is embedded in the central differenc-
ing. Although the current method is explained in conjunction with time-accurate
calculations, the same method can be used for steady-state problems as well.

4.5.1 Upwind Differencing Scheme

The upwind scheme for the convective flux derivatives is derived from the 1-D
theory, and is then applied to each of the coordinate directions separately. Flux-
difference splitting is used here to structure the differencing stencil, based on the
sign of the eigenvalues of the convective flux Jacobian. The scheme presented here
was originally derived by Roe (1981) as an approximate Riemann solver for the
compressible gas dynamics equations.

The derivative of the convective flux in the &-direction is approximated by:

8_f5 N [Ei+1/2 - EH/z]

7 AL (4.56)

where Ej s2 s a numerical flux and the subscript i is the discrete spatial index for
the &-direction.
The numerical flux is given by:

~ Irs A
Einpp = 3 [EDi) + BO) = ¢is1 2] (4.57)

where the ¢; 11,2 is a dissipation term. For ¢; 11,2 = O this represents a second-order
central difference scheme. A first-order upwind scheme is given by:

Gir1)p = (AElfH PN /2) (4.58)
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where AE* is the flux difference across positive or negative traveling waves. The
flux difference is computed as:

AE* = AX(D)AD;11)2 (4.59)
where the A operator is given by:
ADiy12 = Diy120 — D; (4.60)

The plus (minus) Jacobian matrix has only positive or negative eigenvalues and
is computed from:

AT = X ATX;!

AY = %(Al + A1) o
where the subscript 1 denotes matrices corresponding to the &-direction flux. The
matrices X and X fl are the right and left eigenvectors of the Jacobian matrix of the
flux vector and A is a diagonal matrix consisting of its eigenvalues. All matrices
appearing in the upwind dissipation term must be evaluated at a half-point (denoted
by i+1/2). To do this, a special averaging of the dependent variables at neighboring
points must be performed. The following averaging procedure is employed.

- 1
D = E(Di+l + D)) (4.62)

A scheme of arbitrary order may be derived using these flux differences.
Implementation of higher-order-accurate approximations in an explicit scheme does
not require significantly more computational time if the flux differences AET are
all computed simultaneously for a single line. A third-order upwind flux is then
defined by:

1
biv1/2 = 3 (AEitl/Z - AEz'J:L1/2 + AEi_+1/2 - AEi_+3/2) (4.63)

The primary problem with using schemes of greater than third-order accuracy
occurs at the boundaries. Special treatment is needed, requiring a reduction of
order—or a much more complicated scheme. Therefore, when going to a higher-
order-accurate scheme, compactness is advantageous. Such a scheme was derived
by Rai (1987), using a fifth-order-accurate, upwind-biased stencil. A fifth-order,
fully upwind difference would require 11 points, but this upwind-biased scheme
requires only seven points, and is given below.

3AE]

i+3/2

1
+ + +
isip = =55 [—2AEi_3/2 +11AES, , — 6AES, ,

(4.64)
F2AE] sy — IAE 5 +6AE, , +3AE |
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Next to the boundary, near-second-order accuracy can be maintained by the third-
and fifth-order schemes, by using the following:

b =e (MBS, = AEL, ) (4.65)

For ¢ = 0, this flux leads to a second-order central difference. For ¢ = 1, this is
the same as the first-order dissipation term given by Equation (4.58). By including
a nonzero ¢&, dissipation is added to the second-order, central-difference scheme to
help suppress any oscillations. A value of ¢ = 0.01 is commonly used for many
applications.

To form the delta fluxes used in this scheme, the eigensystem of the convective
flux Jacobian is needed. For the current formulation, a generalized flux vector is
given by Equation (4.21), and the Jacobian matrix A; = dE;/dD of the flux vector
is given by Equation (4.26). The normalized metrics are redefined as:

1 0¢;
@_—jm—hz3
J ox
1 0¢;
@=—£€=L23
J dy
1 9¢;
@=-§Q=Lz3
J 0z
1 9¢;
k, -ﬁm—Lz3
J ot

As explained in conjunction with the diagonal algorithm in the previous section,
a similarity transform for the Jacobian matrix is introduced here:

Ai = X,'A,‘Xl-_l

where A; is defined by Equation (4.39). The matrix of the right eigenvectors is
given by:

Blc—ki/2) —Blc+ki/2)

X = | B ur3 + Bky  uky + Bk (4.66)

Yk Yk VA3 + Bk, vig + Bky
%k WA3+ Bk, wis + Bk
where
ox dy 0z
Xk = s Yk = 5 =
0&i11 0&it1 0&i11
4.67)
ox ay 0z
Xk = . Yk =T, k=
08it2 0&i12 0812
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Er1=n,¢, oré&fori=1,2,and 3 respectively
Eivo = ¢,&, ornfori= 1,2, and 3 respectively

and its inverse can be similarly obtained. Note that this transformation is nonsingular
in any combination of metrics.

4.5.2 Implicit Scheme

Here, we describe the way in which Equations (4.54) and (4.55) are numerically rep-
resented and solved. The first consideration is the formation of the Jacobian matrix
of the residual vector R required for the implicit side of the equation. Applying the
difference formula given in Equation (4.56) to the convective flux vectors and apply-
ing a second-order, central-difference formula to the viscous terms, the residual at a
discrete point (xjjk, yijk, Zijk) is given by:

. Eiv1p0jk — Eic1p2jk - Fijr12x6 — Fij—12k  Gijuir172 — Gijk—1,2
Rij = + +

Ag An A
(B = B) s ()= () (6,0, = (),
. i+1,j.k l—lJ,k+ ij+1.k 1,]—1,k+ ij.k+1 ij.k—1
2AE 2An N

(4.68)

The generalized coordinates are chosen so that A&, An, and A¢ are equal to
one. To limit the bandwidth of the implicit system of equations, the Jacobian of
the residual vector will be formed by considering only first-order contributions
to the upwind numerical fluxes, and the second-order differencing of the viscous
terms. So, the only portion of the residual vector that is actually linearized is the
following:

A 1 /. A
Rijr = 5 (Ei+1,f,k —Ei1jk+ ...

+ - + -
—AE ik FAEL ik T AED ik — AE pig = (469)

i
) ()
i+1/2,.k i—1/2j.k

The exact Jacobian of this residual vector will result in a banded matrix of the
following form.

ﬁ _ 8Rijk 0. 0 akijk o 8Rz'jk BR,‘jk 8Rijk
oD 0Dk 0D;j 1k 0D;1jk 0Djjx 0Dit1jk
0,...0 Rk o . _ORi
0Djj11k 0D k11

(4.70)
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These exact Jacobians can be very costly to form; therefore, approximate
Jacobians of the flux differences as derived and analyzed by both Yee (1986) and
Barth (1987) are used. These are given as follows:

IRk 1 ( . Ay A B
kN~ (=Ciip = CF L 4+ C >_ .
0Dijk—1 2 ijk—1 ijk—1/2 iik—172) = Pijr—172

aieijk U+ + - -
dDi i ~ 5 ( ir/2jk TAC 20 — Aipy2je — Ais12)k

+ + - -
+Biit1 2k T Bij—12k — Bijrj2uk — Bij—12k
4.71)

+ + - -
FCikr12 T Clixoi2 = Cijarre = Cijnmn /2)
+ VD ig172jk T PDijr12x6 + (Pijrr1/2
+ VDic12jk + P2)ij—1/2% T (P3ijk—1,2

At A_ —
Ai+lJ,k - Ai+l/2j,k +Ai+1/2j,k> - (y])i+l/2J,k

ai?,jk N 1 (A

0Dit1jx 2
where A = Al s B= Az and C = ;\3 as given by Equation (4.26), and where only the
orthogonal mesh terms are retained for the implicit viscous terms. This set of matrix
equations can be solved using the line-relaxation method presented in Section 4.3.4.

4.5.3 Boundary Conditions for Upwind Scheme

Implicit boundary conditions at all of the boundaries enable the use of large time
steps. At a viscous no-slip surface, the velocity is specified to be zero, and the pres-
sure at the boundary is obtained by specifying that the pressure gradient normal to
the wall be zero, as discussed for the steady-state solution procedure. The boundary
conditions used for the inflow and outflow regions are based on the method of char-
acteristics. The formulation of these boundary conditions is similar to that given by
Merkle and Tsai (1986), but the implementation we use here is slightly different.

Here, we derive boundary conditions in two-dimensional space, first for a con-
stant £ boundary, with similar results for a constant » or a constant { boundary in
a three-dimensional case. The finite-speed waves that arise with the use of artificial
compressibility are governed by the following:

D dE dEAD . 3D _,0D
= = — = A =-XAX ' =
aT & aD dE & &
Multiplying by X~ gives:
aD aD
X' ==aAx1= 4.72)
dt &
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If the X~! matrix is moved inside the spatial- and time-derivative, for example
for the far field, the result is a system of independent scalar equations, each having
the form of a wave equation. The sign of the eigenvalues in the A matrix determines
the traveling direction of each wave. For a positive or negative eigenvalue, a corre-
sponding wave propagates information in the positive or negative &-direction. The
number of positive or negative eigenvalues determines the number of characteristic
equations propagating information from the interior of the computational domain to
the boundary. Thus, at the boundary, the characteristics equations that bring infor-
mation from the interior will be chosen as part of the boundary conditions. The
rest of the information should come from outside the computational domain, which
leaves some variables to be specified.

Either one or two characteristics will be traveling toward the boundary from the
interior because there is always at least one positive eigenvalue and one negative
eigenvalue. To select the proper waves, Equation (4.72) is multiplied by a diagonal
selection of matrix L, which has an entry of one in the position of the eigenvalue we
wish to select, and zeros elsewhere. Therefore:

E)D oD
LX ' = = —pAx ' — (4.73)
ot o0&
Replacing the time derivative with an implicit Euler time step gives:
Lx! d aD"
=2 Ax! (D”+1 - D”) — _LAX! (4.74)
JAT 9E &

which gives either one or two relations, depending on the number of nonzero ele-
ments in L. To complete the set of equations, some variables must be specified to be
constant. Now define a vector 2 of the variables to be held constant such that:

a2 02 0D a2
=0— =0—

9 (D"“ D") —0 (4.75)
ot 8D 81 BD

Combining Equations (4.74) and (4.75), we obtain:

LX! 9 Q D"
+IAx 'L +55 (D”“ - D") = —rAax' 2 (4.76)
JAT 9k oE

Equation (4.76) can be used to update the variables implicitly at any of the inflow
or outflow boundaries with the proper choice of L and €.

For inflow boundaries, two different sets of specified variables have been used
successfully. One set consists of the total pressure and the cross-flow velocity. This
set is useful for problems in which the inflow velocity profile is unknown. For out-
flow boundaries, static pressures have been specified for computations presented
later in this monograph. The algorithm discussed in this section can also be used for
obtaining steady-state solutions. The only difference is that for steady-state calcu-
lations, only one-time-level iteration is needed. Further discussions can be found in
Rogers and Kwak (1990).
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4.6 Validation of Solution Procedure

The physical interpretation of the artificial compressibility method is given in
Section 4.1, which explains how the artificial wave, brought in by the introduc-
tion of artificial compressibility, interacts with vorticity transport. Therefore, it is of
interest to verify the validity of the guideline given by Equations (4.11) and (4.30)
on the permissible range of the artificial compressibility parameter, 8. To do this, a
validation calculation is performed over a range of § using a simple test problem.
This study is done using the steady-state algorithm as explained in Section 4.3.2.

4.6.1 Two-Dimensional (2-D) Channel Flow

The channel flow is perhaps the simplest internal-flow test problem, where the pres-
sure wave propagates between the in- and out-flow boundaries while the viscous
effect spreads inward from two walls of the channel. The coordinate system of a
2-D straight channel with a width of 1 and length of 15 is illustrated in Fig. 4.1,
which also shows velocity vectors for a converged solution.

To obtain fully developed velocity profiles within a reasonable channel length, a
partially developed boundary layer profile can be imposed at the inflow boundary. In
our numerical experiment, a uniform inlet flow is prescribed, the Reynolds number
based on the duct width and the average velocity is 1,000, and the pseudo-time
step is At = 0.1. Then, the recommended range of § is estimated to be 0.12 <
B < 10. To illustrate the pressure wave propagation phenomena and its effect on
the convergence property, the channel is impulsively started. Here, five different
values of 8 (0.1, 1, 5, 10 and 50) were chosen such that two cases are outside the
recommended range and three values are kept within range.

Pressure contours at three different time levels are shown in Fig. 4.2a for g =5,
which is within the recommended range. The expansion wave from the exit plane
propagates upstream sufficiently fast to balance the spreading of the viscous effect.
The solution converges nicely, in this case. However, as shown in Fig. 4.2b, for
B = 0.1, which is lower than the recommended lower bound of S, the speed of the
upstream propagating pressure wave from the exit plane is very low. Therefore, the
expansion wave is confined near the exit plane while the viscous effect spreads into
the flow field from both upper and lower surfaces. The viscous field is not properly
balanced by the physically correct pressure gradient. This causes the spurious fluc-
tuations to amplify, as shown at T = 2.5—and eventually the computation blows
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Fig. 4.1 Channel flow: velocity profile at Re = 1000, 8 =5, 7 = 0.1
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Fig. 4.2 Pressure contours for developing channel flow during the initial iteration process:
ap=5bp=0.1

up—as shown at T = 4.0. In Fig. 4.2a, b, the pressure contours are shown during
the initial iteration process until § = 0.1 case diverges. When fully converged, the
pressure contours are straight lines for § = 5 case.

The convergence history for these cases is shown in Fig. 4.3. The log of the root-
mean-square of the change in pressure and velocities (RMSDQ) is plotted against
the computation time t. It can be seen that calculations for 8 = 0.1 and 50 become
unstable within 50 steps and start to diverge, whereas other cases converge to a
stable solution. The effect of B values on the incompressibility of the fluid is shown
in Fig. 4.3b in the form of the log of the root-mean-square of the divergence of the
velocity field (RMSDIV) plotted against the pseudo-time t.

Internal flow, especially the current 2-D channel flow, is an excellent example of
an instance where interaction between upstream propagating pressure wave and vor-
ticity transport is visible. For external flows, such as flow over a circular cylinder for
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Fig. 4.3 Convergence history for channel flow at Re = 1000: a RMSDQ, b RMSDIV
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example, the effects of these two are not very discernable. However, the guideline
for the selection of artificial compressibility can still be applied, as will be shown in
the next chapter.

4.6.2 Flow over a Backward-Facing Step

The flow over a 2-D backward-facing step is simple in geometry but offers rich
fluid dynamics phenomena with recirculating zones and separation bubbles on the
opposite wall. Maintaining two-dimensional flow is a challenge in conducting exper-
iment. Even when the cross-flow direction is large using a constant cross section
of backward-facing step like Fig. 4.4, three-dimensional flow can be developed for
high Reynolds numbers. Therefore, for the current study of numerical methods, lam-
inar ranges of Reynolds numbers are computed and compared with experiments.
Figure 4.4 shows the schematic of the problem, where the step height is equal to
the inlet height and the Reynolds number is based on twice the step height. The
upstream boundary is located at the step and a fully developed channel flow is
imposed at the inlet. This problem is very challenging computationally as it involves
a primary and a secondary separation bubble. The size and location of these separa-
tion zones are very sensitive to the pressure gradient, providing a good viscous flow
validation case.

Results obtained using an approximate factorization scheme have been reported
previously by Rogers et al. (1985). The separation lengths were found to be sen-
sitive to the magnitude of the numerical dissipation coefficient at higher Reynolds
numbers. In essence, this is equivalent to changing the effective Reynolds number
of the flow as the Reynolds number approaches 1,000. So, it is quite desirable to
remove the dissipation model dependence on the solution at a high laminar range of
Reynolds numbers. When the flow becomes turbulent, the Reynolds number based
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Fig. 4.4 Geometry of a backward-facing step flow problem
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Fig. 4.5 Separation and Experiment (Armaly et al., 1983)
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on turbulent eddy viscosity is on the order of a few hundred, and thus dissipation
model presented here perform adequately.

More extensive validation has been done by using the upwind discussed in
Section 4.5 and a line relaxation scheme by Rogers (1990). The computed sepa-
ration and reattachment locations are then compared to experimental values given
by Armaly et al. (1983) in Fig. 4.5. For the primary reattachment length, x1,
good agreement is observed between the experiments and the computation—until
the secondary separation appears at a Reynolds number of about 400. At a higher
Reynolds number, the primary separation length, x 1, and the secondary separation
point, x2, deviates from the experimental data. Armaly et al. reported that 3-D flow
was observed near the step when the Reynolds number is greater than 400.

For more complete validation, the numerical simulation needs to contain the
entire experimental configuration, including the possible 3-D effect. In Fig. 4.6, the
convergence history is shown. Using the grid of 100 points in the stream-wise direc-
tion and 53 points in the cross-flow direction, a good converged solution is obtained
within 100 iterations and with less than 11.5 s of computing time on the Cray 2, a
number cruncher during the 1980s.

The two examples shown in this section are used to demonstrate the artificial
compressibility procedure, and are not intended to validate the entire spectrum of
flow problems we are likely to encounter in basic and applied work. In Chapter 5,
more computed cases are presented for the purpose of evaluating capabilities and
performances of different approaches.
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Fig. 4.6 Convergence history for the flow over a backward-facing step: (a) residual, (b) primary
attachment length

4.7 Unified Formulation

Previously, we presented implicit methods for incompressible flow computations.
When the flow field contains a wide range of speed regimes, Mach numbers can
vary from almost zero to the transonic range. In such cases, it will be of practi-
cal interest to have a flow solution method that can cover both the incompressible
and compressible flow regimes. In this section, we discuss a single unified solution
approach that can be applied to flows of both regimes.

The need for a unified formulation for “all-speed” flow becomes apparent when
compressible flow codes break down at low speed regime (see Hafez, 2001).
For example, time-marching methods developed for solving compressible flow
problems become inefficient and lose accuracy when applied to low speed flows.

One idea for designing a unified scheme came from the artificial compressibility
method. Since the artificial compressibility formulation resembles the compressible
Navier-Stokes solver, these two can be combined in such a way that the com-
pressible Navier-Stokes algorithm behaves similarly to the artificial compressibility
approach at a low speed. A series of development work appeared starting in the late
1980s (for example see reviews by, Merkle, 1995; Venkataswaran and Merkle, 1999,
2002).

We show a method using preconditioning that can be applied to compress-
ible flow solvers to overcome difficulties in the low-Mach regime. One such
approach is to extend the time-derivative preconditioning method, used in the
artificial compressibility formulation to the compressible flow equations. The time-
derivative preconditioning method developed by Housman et al. (2009), investigates
both conservative and non-conservative discretizations, where the non-conservative
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approach follows the split coefficient matrix (SCM) method of Chakravarthy et al.
(1980).

4.7.1 Time-Derivative Preconditioning Method

The unified formulation can be applied to both gases and liquids, so no explicit
equation of state is assumed in the derivation. In the present formulation we assume
that the state equations can be expressed as:

p=p(p,T)and h = hip,T) 4.77)

where p is the fluid density, h is the specific enthalpy, p is pressure, and T is temper-
ature. The only other restriction on the equation of state is that the inviscid system
remains hyperbolic in time.

The time-derivative preconditioned system of equations written in strong conser-
vation law form for a non-orthogonal curvilinear coordinate system are written as:

30 9E aF 9G
=4 = =0 4.78
rg t y + — . + — % (4.78)

where
» ol A oV A oW A
. u pUu + Sxp pVu+iw | pWu+ &ip
o=J"|v | E= pUU—i—éyp F= p\:/u—i—ﬁyp G= pVAVU—I-Qp
w pUW+€zp pVw+n:p pWW+§zp
r pUH —&p pVH — fp pWH — {ip

(4.79)

In the system of equations above, (u, v, w) are the Cartesian velocity compo-

nents, (E n, ;) are the inverse Jacobian scaled metric terms, (U, V, W) are the scaled

contravariant velocities, and H=h+(u?+v?) is the total enthalpy. The time-derivative
preconditioning matrix is:

Op 0 0 0 pr
upp p 0 0 upr
r,= v/o;7 0 P 0 vor
wpp 0 0 »p wpr

Hpp,+ phy—1 pu pv pw Hpr+ phr

where the physical material derivatives, (o7, hp, hr) are defined by the equation of
state and the preconditioning parameter ,01’7 is defined locally by:
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1 pr(1 — php)

V2 iy (4.80)

The characteristic velocity scale is:

V, = min(c, max (\/uz 2 + w2, ,3)) 4.81)

where B > 0 is a problem-dependent constant, which avoids division by zero
in the evaluation of p/. This is equivalent to the definition of 8 in the artificial
compressibility method. The physical isentropic speed of sound is defined by:

2= phr
phrpp + pr(1 — phy)

(4.82)

Note that when the characteristic velocity scale approaches the isentropic speed
of sound, the preconditioned equations converge to the non-preconditioned system.
This is the preferred behavior since the standard time-marching system is well con-
ditioned in the transonic limit. A complete derivation of the preconditioned system
is given in Housman et al. (2009).

4.7.2 Numerical Results

The unified formulation is tested using steady-state flow problems over a large range
of Mach numbers by Housman et al. (2009). Here, low-speed liquid flow through a
channel containing a hydrofoil is presented to illustrate the capability of the precon-
ditioned approach. In this case, the conservative and non-conservative approaches
both agree reasonably well with the experiment and are indistinguishable from one
another.

4.7.2.1 Liquid Flow over a NACA 0015 Hydrofoil

The test case considers the flow of water through a channel containing a NACA 0015
hydrofoil. This case was proposed as a benchmark problem for low-Mach com-
pressible flow solvers by Salvetti and Beux (2004) as part of a numerical workshop
conducted for low Mach number flows.

The purpose of this case is to test the capability of the unified formulation to
compute nearly incompressible flow. An experimental study on the same problem
has been performed by Rapposelli et al. (2003). An outline of the geometry with a
structured overset grid arrangement is shown in Fig. 4.7.

Liquid water is assumed to obey a stiffened gas equation of state of the form:

P+ Do
p:

and h = C,T
RT
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Fig. 4.7 Structured overset grid for NACA 0015 hydrofoil at the center of a channel

where the gas constant is defined by R = C,(y — 1)/y. The material properties
are:

y = 1.9276, C, = 8,076.73 J /kg/K,
Poo = 1.137279 x 10° Pa

The inlet conditions P = 59,000 Pa, U = 3.11 m/s, and T = 298 K, correspond
to an inlet Mach number of 0.0021. Figure 4.8a shows the pressure coefficient on
the upper and lower surfaces of the NACA 0015 hydrofoil, comparing the pre-
conditioned Roe (PROE) method and the non-conservative preconditioned split
coefficient matrix (PSCM) method, a potential flow solution, and experimental data.
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Fig. 4.8 Comparison of computed (PROE, PSCM and potential flow solution) and experimental
results for liquid flow over a NACA 0015 hydrofoil: (a) C,, on upper and lower surfaces of NACA
0015 hydrofoil; (b) maximum residual convergence history
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The PROE and PSCM methods converge to identical solutions that match the poten-
tial flow solution up to the trailing edge. At the trailing edge, the O-grid boundary
condition causes additional numerical dissipation, resulting in C;, not dropping com-
pletely. The computed results match the experiment on the upper surface, while the
lower surface is not captured. This is most likely due to the inviscid assumption used
for computing this case.

In Fig. 4.8b convergence of the maximum residual is plotted versus iteration
number for both the conservative PROE and the non-conservative PSCM meth-
ods. Nearly identical convergence rates are obtained and the overall number of
iterations is less than 500. The results of these two test cases suggest that the
unified formulation with the alternating line Jacobi relaxation algorithm is Mach
number-independent regardless of the fluid medium. More comprehensive valida-
tion is necessary to make a definitive conclusion of this approach. However, in
general, a unified approach can be very useful for many engineering applications
where flow speed is in a wide range or where both incompressible and compressible
flow coexist, such as in a multi-material or multi-phase flow.

Further validations of the artificial compressibility method are presented in
Chapter 5.



Chapter 5
Flow Solvers and Validation

Up to this point, we have reviewed numerical algorithms for computing viscous
incompressible flows, primarily using primitive variables along with finite differ-
ence and finite volume frameworks. The solution methods for incompressible flows
are based on the assumption that the flow can be approximated by incompressible
Navier—Stokes equations. Once a solution algorithm is developed, flow solvers and
software procedures need to be developed to compute fluid dynamic problems.
This process includes setting up the problem, solving the flow with the proper
initial and boundary conditions, and then post-processing the computed results.
These solutions include several levels of approximations including algorithmic,
geometry-related and physical-modeling related approximations.

The methods we have chosen for developing flow solvers and solution proce-
dures, namely, pressure projection and artificial compressibility, are discussed in
Chapters 3 and 4, respectively. Our discussions on algorithms in these chapters are
given from a practical utility viewpoint and, of course, other methods and algorithms
are available in the literature.

Once the solution procedure has been developed, numerical simulation can be
used to study fundamental fluid dynamics problems and/or to utilize the software
as a tool for fluid engineering. Geometry definition and grid generation can be rela-
tively simple for fundamental problems. However, for engineering applications, this
step could be very involved and require much human time, as the surface defini-
tion of geometry is often not very well defined and variations in format are diverse.
Depending on the geometry complexity, the grid resolution requirement will vary,
affecting the computational strategy regarding how to divide the computational
domain, what grid resolution is required to capture the correct flow phenomena,
how to utilize particular computer architecture for implementing parallel processing
and data management, and so on.

As computing power has increased, has now become feasible to model more
complete geometries at a very high resolution. So, the programming and computer
science aspects of the flow solvers are important for accomplishing computational
efficiency and decreased solution time. When the problem size is large, data man-
agement such as communication among processors and data transmittal time in and
out of the memory become significant.

D. Kwak, C.C. Kiris, Computation of Viscous Incompressible Flows, Scientific 79
Computation, DOI 10.1007/978-94-007-0193-9_5, © US Government 2011
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In this chapter, the flow solver validation process will be discussed using several
test problems of a fundamental nature. For these problems, the geometry is simple
and we hone in on the accuracy of various algorithms presented earlier. These test
problems cover internal and external flows and steady and time-dependent flows,
selected as building-block validation cases representing flow characteristics encoun-
tered in many real-world applications. Some of these flow features will be illustrated
later when we describe computational examples for supporting specific missions.
The first class of validation cases were chosen in the laminar range of Reynolds
numbers, followed by turbulent flow cases to discuss issues related to physical
modeling.

5.1 Scope of Validation

Computational performance depends not only on the methods implemented but also
on how solvers are coded. The flow solution codes selected here have been devel-
oped and used by the authors and their colleagues at NASA Ames Research Center
over the years, so we trust that solvers used in this chapter are reasonably well coded,
and as such can be used to represent the algorithms explained earlier in Chapters 3
and 4. For convenience, these codes are identified as below.

5.1.1 Artificial Compressibility Codes

5.1.1.1 INS3D

Historically, a flow solver code named INS3D was developed first based on the
steady-state algorithm described in Section 4.3.2. In INS3D, the artificial com-
pressibility approach is implemented using an approximate factorization scheme.
This takes advantage of the advances made in conjunction with compressible flow
computations. The spatial discretization utilizes second-order central differencing
with additional numerical dissipation terms. The code name is derived from the
Incompressible Navier—Stokes code in 3-D generalized coordinates. This code was
developed primarily to obtain steady-state solutions in conjunction with an early
task in the 1980s of redesigning the Space Shuttle main engine. The experience
gained in that project was then extended to the following version using the same
line of approach.

5.1.1.2 INS3D-UP

To obtain time-accurate solutions using the artificial compressibility formulation,
the continuity equation must be satisfied at each time step by sub-iteration in
pseudo-time. In order to use a large time step in the pseudo-time iteration, an upwind
differencing scheme based on flux-difference splitting is used in combination with
an implicit line relaxation scheme. This removes the factorization error and the need
for specifying a numerical dissipation amount. To characterize upwind differencing,
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“.UP” was added to the code. After successful validation of this version, the code
has been used in most applications at NASA and other organizations.

Other variants of INS3D have been tried using the artificial compressibility
approach, including one called INS3D-LU. This code is mainly used to inves-
tigate the LU-SGS scheme for computing incompressible flow, as discussed in
Section 4.3.3. For spatial discretization, a finite volume scheme in conjunction with
either central or upwind differencing is implemented. An LU-SGS implicit algo-
rithm is employed for temporal discretization. Results for steady-state solutions are
compared with other codes in this chapter, but only for limited cases. For time-
accurate solutions, this code has similar characteristics to the original three-factored
scheme. INS3D-LU was created to investigate various algorithmic options, but has
not been much utilized in actual engineering applications.

5.1.2 Pressure Projection Code

5.1.2.1 INS3D-FS

A generalized flow solver based on a pressure projection method using a fractional-
step approach has been developed for time-dependent computations of the incom-
pressible Navier—Stokes equations. The governing equations are discretized conser-
vatively using a finite-volume approach on a staggered grid. Here, the discretized
equations are advanced in time by decoupling the solution of the momentum equa-
tion from that of the continuity equation. This procedure, combined with accurate
and consistent approximations of the geometric quantities, satisfies the discretized
mass conservation equation exactly in a discrete sense. The addition of “-FS” in
the code name represents the fractional step method implemented in the pressure
projection approach. As in the case of “-LU”, this version was primarily used to
compare different approaches.

5.2 Selection of Codes for Engineering Applications

Historically, many research versions of incompressible flow solvers have been
developed at Ames. Practically speaking, not all the results from those codes
can be presented here. Those benchmark problems presented are fundamental
fluid dynamics problems in nature. These problems are geometrically simple, and
approximations related to geometry and grid do not cause significant issues—so,
these problems offer good validation cases for characterizing algorithms and for
comparing the codes’ capabilities in predicting various flow features.

Based on our benchmark test runs and experience gained from other applications,
we have observed the following:

For obtaining steady-state solutions, the artificial compressibility approach
(INS3D-UP) is very effective. Combined with overset-grid topology, this approach
offers the greatest flexibility in modeling complex geometry problems.
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1. For obtaining time-accurate solutions, the artificial compressibility approach
with sub-iterations at the pseudo-time level works very well and offers great
flexibility in modeling complex geometry problems. Even though the implicit
sub-iteration is computationally expensive, since the method does not require
strict enforcement of a divergence-free velocity field in each time step, one can
advance the time without tight convergence in the continuity equation.

2. The pressure projection method (INS3D-FS) offers an alternative to the artifi-
cial compressibility code when the flow physics require a small time step. Even
though the pressure Poisson equation is expensive, when the time step is small,
iterations can be less expensive. Combined with multi-grid acceleration, this can
be a competitive approach.

3. In addition to benchmark problems, the INS3D-UP artificial compressibility
code has been used in engineering applications presented in Chapters 6, 7
and 8. The above observations are presented here first so that readers may
understand why we chose a particular solver in conjunction with applications
for engineering. Several basic validation cases will be presented next with some
detailed discussion.

5.3 Steady Internal Flow: Curved Duct with Square
Cross Section

The flow through a square duct with a 90° bend offers a good test case for a three-
dimensional Navier—Stokes solver. This flow is rich in secondary flow phenomena,
both in the corner regions and through the curvature in a streamwise direction.
Flow through this geometry was studied experimentally by Humphrey et al. (1977)
and Taylor et al. (1981, 1982), and extensive laminar flow data are available. This
particular geometry was used as a steady-state test case for both the artificial com-
pressibility and pressure projection methods discussed in Chapters 3 and 4. The
geometry is shown in Fig. 5.1; the Reynolds number of the flow is set to 790 based
on the unit length and average velocity, which is identical to the experimental cases
mentioned. The problem was non-dimensionalized using the side length, H, of the
square cross section.

Since the flow considered here is laminar, accuracy of the computed results in
this case depends primarily on the algorithm selected, including numerical dissipa-
tion associated with the procedure and grid resolution. For turbulent cases, issues
related to turbulence modeling have to be added to the uncertainties of the results.
Even in this seemingly simple example, the variations in the numerical results
coming from formulations and computational modeling are clear. Two aspects
affecting the computed results will be examined next; namely, grid resolution and
algorithm.

Next, we present the study on the effect of grid resolution from the work by
Rogers and Kwak (1989), where the INS3D-UP artificial compressibility code is
used. However, similar variations in numerical results can be observed with other
codes. For the inflow boundary condition, the velocity was specified to be that of
the fully developed, laminar, straight square duct (see White, 1974).
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Fig. 5.1 Geometry of a
square duct with a 90° bend,
with a grid of 31 x 11 x 11

The velocity is normalized by the average inflow velocity. The computed results
are compared to the experimental results of Humphrey et al. (1977). Three different
grids are used, each with dimensions of 31 x 11 x 11, 61 x 21 x 21, and 121 x
41 x 41. The coarsest grid (31 x 11 x 11) is shown in Fig. 5.1. Both the straight
inflow section before the bend and the outflow section after the bend were set to
a length of five. Computational experiments (Rogers et al., 1991a) show that the
solutions are insensitive to the downstream boundary locations and conditions. As
shown in the figure, the radius of curvature for the inner wall of the bend is set to
be 1.8 units.

To study how the artificial compressibility affects the convergence, the 31 x 11x
11 grid problem is computed using g values ranging from 0.1 to 10,000. The con-
vergence of the maximum residual values is plotted against iteration numbers,
shown in Fig. 5.2a. The values of B, ranging from 1 to 100, leads to excellent
convergence. Therefore, for the remaining computations for this problem, the g
value of 10 is used.

The convergence history of three grid cases is compared in Fig. 5.2b. The max-
imum residual over all grid points vs. iteration number is plotted. The convergence
is shown to be very fast, although it is somewhat slower for the finest grid. It is
expected that finer grid takes longer to converge because the information has to
propagate through a greater distance in computational space.



84 5 Flow Solvers and Validation

102 10?
10° 10°
_ 10727 Beta=0.1 — 10721
(1] 1]
3 ] 10,000 3
@ 1074 ] 2 E; 1074
E o] Q2 £ s
10 ™ 10 ° 1
= =5
g ] 100 E 3
s 1078 s 1078
= ] 1 = ]
10719 10710
1 10 ;
10712 10“21
0 50 100 150 200 0 50 100 150 200
Iteration number Iteration number
(a) (b)

Fig. 5.2 Convergence rate for flow through a square duct with a 90° bend at Re =790: (a) effect
of B on convergence on 31 x 11 x 11 grid; (b) using different grids with 8 = 10

Comparing computed results to experimental data brings up a question on the
location for plotting. Since secondary flow is generated through the bend, comparing
the results on one cross-section could exhibit misleading discrepancies, while over-
all flow quality is fairly well captured by the computations. This will be explained in
more detail later in this section. For the moment, computed results for two grids are
shown in Fig. 5.3 using velocity magnitude contours at the 90-degree cross section
at the end of the bend. As the figure shows, there is very good comparison between
the medium- and fine-grid solutions throughout most of this cross section. In par-
ticular, the location and value of the maximum velocity magnitude agree very well.
Some minor difference occurs in the swirling flow in the region close to the inner
wall where the flow is more dissipated in the medium grid compared to fine grid
solution.

The computed streamwise velocity profiles at various streamwise stations are
then plotted in Fig. 5.4. The plots on the left are from z=0.25, which is halfway
between the x-y plane wall and the x-y symmetry plane. The right-hand side plots
are from the x-y plane at z=0.5, which is the x-y symmetry plane. In both parts of
the figure, the profiles are shown at four positions in the curved section correspond-
ing to 0 equal to 0, 30, 60, and 90°. The symbols represent the experimental results,
and the lines represent computed results.

The results generally follow closely to one another. One exception to that general
trend is the formation of the second maximum in velocity on the inner wall side.
This second maximum is developed farther upstream in the computation than in the
experiment, causing discrepancy at the 6 = 60° location in both plots. At the 6 =90°



5.3 Steady Internal Flow: Curved Duct with Square Cross Section 85

Fig. 5.3 Velocity magnitude Inside wall
contours for fine-grid (121 x 1.9
41 x 41) and medium-grid

(61 x 21 x 21) computations

at0 = 90°

0
Outside wall

location for z = 0.25 plot, three different maxima occur in the computations. Details
of the dynamics can be seen more clearly by observing the entire cross section
rather than from line plots alone. It would be even more illuminating if there were a
convenient way to observe the entire three-dimensional flow. A series of 2-D cross-
sectional views from the fine-grid computation, shown in Fig. 5.5, provides a better
picture for understanding these multiple peaks.
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(@ (b)
Fig. 5.4 Streamwise velocity profile for flow through a square duct with a 90° bend at Re = 790:

(a) x-y plane at z=0.25; (b) x-y plane at z=0.5; r =0 represents inner wall and r = 1 represents
outer wall
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Fig. 5.5 Velocity magnitude contour and cross-sectional velocity vectors at three sections for flow
through a square duct with a 90° bend at Re =790

First, the high-velocity fluid moves toward the outside wall (Fig. 5.5a) as the
flow turns the bend, bringing some of this high-velocity flow toward the inner wall
(Fig. 5.5b), which later forms multiple peaks in velocity near the inner wall. Then, as
seen at the 90-degree location (Fig. 5.5¢), the swirl has wrapped the region of higher
velocity around toward the middle. Therefore, any small change in flow conditions,
such as Reynolds number, grid resolution, and dissipation terms, can change the
magnitude and the exact location of this swirl. Even though the overall comparison
is quite satisfactory, some of the details can best be compared by viewing at least
the entire cross-sectional results, which also requires detailed measured data.

To further illustrate this point, the computed results on the square duct with a
90° bend by McConnaughey et al. (1989) is presented next. In their work, exten-
sive validation of the artificial compressibility method was performed using the
original version of INS3D. Utilizing the detailed inflow measurement by Taylor
et al. (1981, 1982), they investigated various aspect of the flow solver, including
a grid refinement study and a sensitivity study of the numerical dissipation terms.
Computed results on a 90° bend and an S-bend are extensively compared in the same
report.

From the grid resolution study using four successively refined grids, the finest
grid results are shown in Fig. 5.6, using grid dimension of 28 x 52 x 121 for
one-half height by width by length. The figure shows predicted axial flow contours
compared to experimental data, while Fig. 5.7 shows predicted radial flow contours
compared with experimental data. These contours on a cross-sectional plane illus-
trate how the numerical solutions can be compared with experiments. The flow field
details from the cross-sectional view shed more light than studying line plots alone.
At the final plane of data at +2.5H past the bend, the experimental data exhibit more
dissipation than that predicted by computations.

The source of this difference needs further investigation. However, this sug-
gests that computations can be performed for planning experiments. Overall, both
computations and experiments compare very well. As noted by those authors, the
square duct problem offers a good test case for validating secondary flow pre-
diction capability, even though the geometry is simple. Correct prediction of this
phenomenon can play an important role in engineering problems involving com-
plex internal flow geometry such as that encountered in advanced rocket propulsion
systems.
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Fig. 5.6 Predicted axial flow in a 90° bend (McConnaughey et al., 1989, using INS3D) compared
with the experimental data of Taylor et al. (1981)

We have presented how grid resolution and artificial compressibility affect the
quality of solutions, as well as the issue related to post-processing the results. As
explained in Section 5.1, three different flow solver codes have been developed
based on different algorithms and discretization. The performance of these three
approaches is compared in Fig. 5.8 using a medium grid resolution. As the figure
shows, results vary somewhat depending on differencing schemes and the smooth-
ing applied. Again, as explained above, the magnitude of differences in line plots
can be somewhat bigger than magnitude observed in contour plots. However, this
illustrates differences among codes that may be expected in practice. Quantification
of uncertainties or errors as illustrated here is a challenging issue, and generally
accepted criteria have yet to be developed.
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Fig. 5.7 Predicted radial flow in a 90° bend (McConnaughey et al., 1989, using INS3D) compared
with the experimental data of Taylor et al. (1982)

5.4 Time-Dependent Flow

For quantification of fluid dynamic characteristics such as forces and moments
on a vehicle, steady-state solutions are used. For practical applications, using
steady-state solutions as ensemble-averaged quantities is in many cases the most
reasonable approach in design and analysis. However, in many realistic situations,
flow becomes time dependent, either in transitional mode such as in impulsively
started flow or in unsteady fluctuating mode. For example, for the analysis of startup
conditions as encountered in an impulsively started vehicle and for determining



5.4 Time-Dependent Flow 89

Computation (41x21x21 grid)  Experiment
-=-- INS3D-UP + Humphrey et al. (1977)
—-— INS3D-LU
—— INS3D-FS

0 = 60°

g = 30°

0 =0

x=-2.6

Inner Wall Outer Wall
x=-5.0
0 5 1.0 0 5 1.0
(a) ()

Fig. 5.8 Comparison of streamwise velocity distribution along (a) z=0.25, and (b) z=0.5

vibration load due to fluctuating flow, time-accurate computations are necessary,
which are much more expensive than steady-state computations—usually at least
one order of magnitude higher. For the purpose of validating the time accuracy of
the algorithms and processes discussed earlier, a few building block problems are
studied next.

5.4.1 Flow Over a Circular Cylinder

Flow over a circular cylinder has been of interest for many decades, as it offers
a full range of phenomena from laminar, periodic shedding of vortices, transition
to turbulent, and fully turbulent flow regimes (see Morkovin, 1964)—making it a
challenging problem for computational simulation. Computational studies of flow
over a circular cylinder began as early as the 1930s (e.g., Thom, 1933), and this
continues to be a popular subject.

In this section, an impulsively started circular cylinder at Re =40 is first pre-
sented, followed by vortex shedding cases with higher Reynolds numbers up to
1,000. This represents a simple case for external flows, for the purpose of comparing
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artificial compressibility and pressure projection formulations without involving
transition and turbulence modeling.

For external flows in which the computational domain extends a large distance
from the body, the pressure waves originating from the body surface propagate into
the far field. Therefore, to obtain the near-field solution using only an artificial com-
pressibility code, the distance traveled by the waves and the spreading of vorticity
can be considered approximately the same in magnitude. The range of 8 in INS3D
can then be estimated based on this reasoning. For example, at Re =40, if the vis-
cous region is taken to be approximately two diameters away from the body, one
can estimate the following range for S using At = 0.1:

0.1 << pB <10

Physically, for external flows, the pressure wave can quickly travel a short dis-
tance to balance the viscous region close to the body. Therefore, the magnitude
of B is less restrictive than for internal flow cases such as in the channel flow
described in Chapter 4. Results from computations using this range of artificial com-
pressibility produce similar data found in the literature for steady-state computation
at Re =40 (Kwak et al., 1986, INS3D). Far more extensive validation computa-
tions were performed at Re =5, 10, 20, and 40 by Rogers and Kwak (1988) using
INS3D-UP, where computed data showed good agreement with experiments and
other computations (results not illustrated here).

To validate the time accuracy of the pressure projection method, the near-field
detail of transient flow for impulsively started circular cylinders at Re =40 and
200 is computed using the INS3D-FS code (Rosenfeld et al., 1988; Rosenfeld and
Kwak, 1989). In Fig. 5.9, the computed time evolution of the separation length is
compared with experiments by Coutanceau and Bouard (1977). Also plotted are
the computed result by Collins and Dennis (1973). During the initial, short start-up
time period, the flow development is viscous dominated and both methods produced
equivalent results in capturing time accuracy (see Rogers et al., 1985, for INS3D-UP
results).

As the Reynolds number increases above 40, a non-symmetric wake develops
and periodic vortex shedding sets in. Both the artificial compressibility approach
(INS3D-UP) and pressure projection method (INS3D-FS) are validated using this
simple yet challenging problem. In Fig. 5.10, these computations are compared with
other numerical and experimental results.

The calculations using both codes were performed using an O-type grid clustered
near the body. To obtain time-accurate solutions from INS3D-UP, sub-iterations
were carried out at each physical time step. Starting impulsively from rest, over
20 sub-iterations were required during the transient phase. A non-symmetric wake
develops spontaneously, followed by shedding of vortices, without introducing any
artificial disturbance—probably due to biasing in the upwind scheme, which in turn
may have introduced enough disturbance into the flow field. When a central differ-
encing scheme is used (as in INS3D-FS), it is necessary to introduce asymmetric
disturbance to initiate the shedding within a reasonable time. This technique is
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Fig. 5.9 Time evolution of separation length for flow over a circular cylinder at Re = 40

consistent with the natural process where some sort of disturbances trigger vor-
tex shedding. Figure 5.10 plots a Strouhal number versus a Reynolds number from
computed results compared to experiments. Both methods produced comparable
solutions. The Strouhal number is perhaps relatively easier to predict. However, the
time accuracy of the code itself has been validated using other problems with exact
solutions (see Rogers and Kwak, 1990).
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Fig. 5.10 Vortex shedding from a circular cylinder
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Fig. 5.11 Karman vortex street behind a circular cylinder at Re = 105: (a) computed result using
the artificial compressibility method (INS3D-UP code); (b) experimental visualization by Taneda
(see Van Dyke, 1982)

The staggered pattern of the vortex shedding known as Karman’s vortex street
has been a subject of many flow visualization studies. For the purpose of compari-
son, particle traces are generated from the time-dependent solution of flow around a
circular cylinder at a Reynolds number of 105 using INS3D-UP. Figure 5.11a shows
this computed vortex street, while Fig. 5.10b shows an experimental photograph of
the same conditions taken by Taneda in 1972 and reproduced from Van Dyke (1982).
The streaklines in the experiment are shown by electrolytic precipitation in water. As
can be seen, the vortex structure is very similar between the two. The experimental
picture is digitized and displayed on a workstation along with the computation-
ally generated flow visualization image. This example illustrates the potential of
using post-processing of the CFD results for studying fundamental fluid dynamics
phenomena.

5.4.2 Impulsively Started Flat Plate at 90°

To further investigate various algorithm features of the two primary methods
designed for applications, namely the artificial compressibility method (INS3D-UP)
and the pressure projection method (INS3D-FS), an impulsively started flat plate at
90° to the flow direction is solved next. Even though the unsteady flow encountered
in two-dimensional problems does not encompass all the features observed in three-
dimensional problems, such as vortex stretching, current numerical experiments can
provide some basis for selecting methods for real-world applications.

Computed results from both of these methods are compared with the experimen-
tal data by Taneda and Honji (1971). The experiment has been carried out in a water
tank 40 cm wide, where a thin, 3-cm high flat plate was immersed. The flow started
from rest impulsively at the velocity u = 0.495 cm/s. The Reynolds number for this
case is 126 based on the plate height; the computational grid size is 181 x 81 in
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Fig. 5.12 Computational 181x181x3
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the flow and vertical directions, respectively (Fig. 5.12). Recalling that INS3D-FS
is written in a finite volume staggered-grid formulation, one additional ghost cell is
required in each direction.

To visualize the time evolution of the flow, velocity vectors at various non-
dimensional times are plotted in Fig. 5.13. The flow separates at the edge of the
plate and forms a vortex pair. The twin vortices are elongated in flow direction as
time progresses. To quantify the time history, the separation bubble lengths from
computations and experiment (Taneta and Honji, 1971) are compared in Fig. 5.14.
The separation bubble length is defined in the figure. Computations using the artifi-
cial compressibility, pressure projection, and a finite element method (Yoshida and
Nomura, 1985) all produced very similar results.

Although the plate started impulsively in the experiment, it was started slowly
in the computation. Two different ways of starting the flow are used in the compu-
tations, as illustrated in Fig. 5.15. The computed results plotted in Fig. 5.14 used
a slow start procedure with the time interval of 0.5 s, which corresponds to a non-
dimensional time step size of 0.0825. For the finite element computations plotted in
the same figure, Yoshida and Nomura (1985) used the same slow start procedure.

T=0.4 &

T=4.0
T=1.2

Fig. 5.13 Computed velocity vectors at various non-dimensional times (INS3D-FS)
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Fig. 5.14 Computed time
history of separation bubble
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The velocity profile for the slow start case is prescribed as shown in Fig. 5.15b and
the starting time of calculation is shifted to match that of the experiment.

Next, computed results using the INS3D-FS pressure projection code are pre-
sented in some detail. The effect of the starting procedure on the flow development
is shown in Fig. 5.16a. Measurable differences between the two procedures can be
seen in the resulting flows. In Fig. 5.16b, results using different time step sizes and
grid resolution are plotted. Increasing the spatial resolution does not improve the
results significantly, while decreasing the time step size improves agreement with
experiment.

For the artificial compressibility method using INS3D-UP, two important param-
eters affecting time accuracy are the artificial compressibility parameter, § (BETA),
and the number of sub-iterations at each time level to recover the incompressibility
condition. Two different § and sub-iteration numbers have been tested, as shown in
Fig. 5.17. Since a slow start produces more favorable results, as studied above, that
procedure is employed here.

This experiment shows the importance of satisfying incompressibility for time
accurate computations using the artificial compressibility approach. However, a
large number of sub-iterations can impose a heavy burden on computational
resources, in contrast to the small number of time steps required for the pressure
projection approach. In reality, one can limit the sub-iterations to a fixed number. In
that case, users have to determine the level of time accuracy needed for the analysis
at hand, in light of the available computing resources.

u| -
Impulsive start (a)

. . . U -
Fig. 5.15 Prescribed velocity | b
for an impulsive started (a) slow start (b)

and a slow start (b) procedure | U = U (1-cos(nt/T))/2
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Fig. 5.16 Effects of starting procedure and time step size for pressure projection method (INS3D-
FS code)

5.4.3 Pulsatile Flow Through A Constricted 2-D Channel

The next validation cases are designed to test time accuracy for internal flow
using INS3D-FS and INS3D-UP, representing the pressure projection and artificial
compressibility methods, respectively.

5.4.3.1 Oscillating Wall

The first case is intended to model the large-amplitude self-excited oscillations gen-
erated when fluid flows through a collapsible tube, such as blood flow through a
vein. Stephanoff et al. (1983) and Pedley and Stephanoff (1985) performed a series
of flow visualization experiments in which the channel walls were rigid except for
the indented region. The length of an indentation is 10, measured by an unindented
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Fig. 5.17 Effects of starting procedure and effects of time step size

channel height as the reference unit length. The channel starts at a distance of 120
units upstream of the oscillating constriction and is 250 units long. The indentation
is made of a thick rubber membrane and is driven by a piston with a sinusoidal
motion in time and a maximum indentation of 0.38 units. At the beginning of each
cycle the indentation is flush with the wall of the channel.

A computational model for this experiment was constructed with the upstream
boundary placed at 5 units from the oscillating constriction and the downstream
boundary placed at 30 units from the upstream boundary. A grid for this model is
illustrated in Fig. 5.18, with the grid dimension of 31 x 251 in cross-stream and flow
directions, respectively. The grid in the indentation region stretches and compresses
linearly with the moving indentation. Every other grid point is plotted in the figure.
The shape of the indentation is approximated by a hyperbolic tangent, as suggested
by Pedley and Stephanoff (1985). The grid for the upstream side of the indentation
is much coarser compared to the downstream side, making the computational geom-
etry asymmetric. However, numerical experiments show that flow is insensitive to
the upstream geometry of the indentation, so the grid points are more clustered near
the downstream side of the indentation.

A fully developed flow profile is given at the initial and upstream boundaries.
At the downstream boundary, a non-reflecting condition is imposed. In Fig. 5.19,

[v-1—§n—mzni

-15 a 15 x

Fig. 5.18 Grid for channel with an oscillating indentation
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Fig. 5.19 Comparison of
instantaneous streamlines at
t=0.55,Re=610: (a)
experimental results; (b)
computed results (INS3D-FS)

instantaneous streamlines from computations are compared to the experimental
visualization by Stephanoff et al. (1983) at the non-dimensional time of t=0.55,
based on one period. The Strouhal number St=0.038 and the Reynolds number
Re =610 are based on the channel height and average velocity.

The first separation occurs downstream of the sloping wall, followed by a second
large eddy formed on the opposite wall with a secondary separation bubble buried
inside the primary bubble. A similar pattern of weaker vortex pairs repeats as flow
goes downstream. The computed separation length of the first eddy at the upper
wall is under-predicted compared to experiments. However, the distance between
vortices, which are related to the wavelength of the core flow, compare favorably.
Overall, the results are shifted about 0.4 units of the channel height.

To identify the cause of this discrepancy, we conducted a grid refinement study,
and applied the artificial compressibility code INS3D-UP to compute the same
case. Both produced almost identical grid-independent results. This indicates that
it is likely that the modeling of the experimental set up does not exactly match the
experimental conditions.

Evolution of the flow over one complete cycle is shown in Fig. 5.20 for Re = 600
and a Strouhal number, St =0.057. The instantaneous streamlines are plotted at sev-
eral instances over one complete cycle of the indentation. The flow development
is very similar to that observed experimentally by Pedley and Stephanoff (1985).
At the beginning of the cycle, during which the indentation moves downward, the
downstream flow is accelerating and a single separation bubble forms on the sloping
wall behind the indentation, as shown in Fig. 5.20a. As time progresses, the sepa-
ration length increases and a second counter-rotating eddy appears on the opposite
wall downstream of the primary eddy, as shown in Fig. 5.20b. The flow field signif-
icantly changes during the second half of the period, when the indentation moves
upwards and causes deceleration of the flow downstream. A third eddy is formed at
the upper wall further downstream at t =0.55, as shown in Fig. 5.20c. In the third
quarter of the period, the core flow becomes wavy and a series of eddies appear
along the walls. The amplitude of the core flow increases with time up to t=0.75,
as shown in Fig. 5.20g, which corresponds to the maximum deceleration. During the
last quarter of the period, eddies shrink in size and strength and wash downstream.
By the end of the cycle, the residual eddies are quite small. and were found not to
affect the next cycle. Following the experiments by Pedley and Stephnoff (1985),
eddies are labeled alphabetically, as shown in Fig. 5.20d.
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Fig. 5.20 Evolution of instantaneous streamlines computed using INS3D-FS: St =0.55, Re = 600

It is difficult to understand the entire flow field dynamics of this case, especially
from a validation point of view. As a measure of validating time accuracy, the time
evolution of the center of vortices A, B, C, and D is plotted in Fig. 5.21. Computed
results from the two methods and experimental measurements are compared. Even
though this plot is somewhat qualitative, dynamics of eddies generally follow the
experimental trend. For full validation, a grid resolution study along with more
quantitative measurements will be necessary.

5.4.3.2 Oscillating Inflow

In the second case, we model pulsating flow through a constricted channel, such as
in the case of blood flow through stenosed arteries. The computational geometry is
consistent with the experimental setup of Park (1989), and is shown in Fig. 5.22. The
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B Experiment: Pedley and Stephnoff (1985)
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Fig. 5.21 Time evolution of center of vortices

channel height is 7 and has been normalized to unity. The height of the constriction,
a, is 0.57, which is the distance from the top of the wall to the lowest point in
the constriction. The length of the channel upstream of the constriction is given by
L, =7. The length of the channel is L. =4.66 and the length of the straight channel
downstream of the constriction is Lg = 15.34 (Fig. 5.22).

The inflow boundary for the experimental setup was at 100 channel heights
upstream of the constriction. For computational efficiency, the boundary for the
inflow condition was placed at 7 channel heights upstream of the constriction. The
inflow boundary condition is designed to match with experiment (Rosenfeld et al.,
1991b). A parabolic profile was imposed and scaled to match the mass flow from
the experimental setup.

The inflow velocity profile is periodic and is given by the shape function given
in Fig. 5.23. This shape is defined analytically by:

U@ = U 0<t/T<1/2
Un=U;-U, sin(2nt/T) 1/2<t/T<1

v

'Y

Lu=7 |L~c:4.66‘ L4 -15.34 X
h=1 Sarm——— -
Liota1 = 27.0

X=0

Fig. 5.22 Computational model of 2-D constricted channel
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where Uy is the non-dimensional steady component of the average velocity, U, is
the pulsatile component and T is the period. This wave form was created to represent
diastole and systole in a mammalian blood circulatory system and could generically
represent conditions encountered for modeling arteriosclerosis.

Since the wall geometry is fixed, this case offers an opportunity to compare the
two methods in achieving time accuracy. Both methods use pressure as a map-
ping parameter to obtain incompressibility after advancing each time step, and
the iterative processes are very similar. However, it is interesting to observe a
subtle difference between the artificial compressibility method (IS3D-UP) and the
pressure projection method (INS3D-FS). The former shows upstream propagating
waves from the downstream boundary, while the latter changes the pressure in time.
Figure 5.24 shows the evolution of pressure contours during the iteration process
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Fig. 5.24 Evolution of pressure contour during iteration within one time step at t/T=0.5
using At/T=0.01: (a) sub-iteration using INS3D-UP with § =100; (b) Poisson iteration using
INS3D-FS
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(a) (b)

Fig. 5.25 Evolution of pressure contour for one period: computed results using (a) INS3D-UP,
and (b) INS3D-FS

for one time-step advancement. The plots are obtained from two separate computa-
tions and contours are not in the same scale. However, the two show the pressure
propagation phenomena qualitatively during the iteration within one time step.

To compare the time accuracy of results from the two methods, a train of vortices
propagating downstream from the constriction is plotted for one period. This com-
parison, as shown in Fig. 5.25, is qualitative, and also shows how the flow develops
as the vortices convect downstream.

One easily quantifiable physical result is the location of the center of the
B-vortex, defined to be the vortex along the bottom wall of the channel, as shown
in Fig. 5.26; it grows immediately behind the end of the constriction and is shed
downstream. The location of this vortex was examined as function of time. Results
from both the INS3D-UP and INS3D-FS methods are compared to the experimental
results. Both methods produce equivalent results and agreement with experiment is
good for t/T <2.0, but deviates as it goes further downstream after t/T >2.0. At that
point the vortex strength is considerably weaker than at the upstream location, and
thus the uncertainty of measuring the center of the B-vortex increases. This suggests
that more precise measurements can be useful for validating the time accuracy of
these numerical methods and simulation procedures.

5.4.4 Flapping Foil in a Duct

In this section, the time-accurate procedure of the artificial compressibility method
described in Chapter 4 will be validated using a flapping airfoil problem. This next
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Fig. 5.26 Location of B-vortex as it goes downstream in time

validation case has been selected to represent time-dependent flow generated by
bodies in motion relative to stationary components—a class of unsteady flow often
encountered in engineering. For example, the next generation of fluid engineers
may be required to analyze advanced components such as high-lift devices, marine
propulsion systems, turbopumps in liquid-propellant rocket engines, and mechanical
heart valves and assist devices. These advanced devices are likely to require more
efficient and simpler designs with lower manufacturing costs. Accurate and detailed
knowledge of the flow field obtained by unsteady flow calculations can greatly help
designers to reduce cost and improve the reliability of such advanced systems. In
addition to geometric complexities the challenges in these numerical simulations
include turbulent boundary layer separation, wakes, transition, tip vortex resolution,
Reynolds number effects, and moving boundaries.

An ideal validation case for the time-accurate artificial compressibility method
was presented by the Office of Naval Research (ONR) and Massachusetts Institute
of Technology (MIT) at the Unsteady Flow Workshop held March 29-30, 1993.
The ONR/MIT designed a flapping foil experiment (FFX) as a two-dimensional
representation of the interaction between the propeller blade and wake flows. One
purpose of the experiment was to provide detailed experimental data to be used
to evaluate computational methods for marine propulsors. At the ONR/MIT work-
shop, the computed results obtained by various research groups were compared with
experimental measurements. The flappers in the FFX generate high frequency peri-
odic wakes, which impose an unsteady loading on the stationary foil. In addition to
the complexity of the flow physics, the numerical simulation of the FFX requires
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proper domain decomposition and moving boundary procedures. This makes the
FFX a good validation case for a time-accurate numerical procedure. Kiris et al.
(1994a) reported time-accurate computations using the artificial compressibility
approach. Key features of that report are summarized here, from a validation
perspective.

5.4.4.1 Experimental and Computational Models

A schematic of the experimental setup is shown in Fig. 5.27. The stationary foil,
which has an 18-inch chord and a 1.18-degree angle-of-attack, represents a pro-
peller blade embedded in the wake generated by upstream pitching foils. The
upstream flapping foils are NACA 0025 foils of 3-inch chord. The flappers per-
form synchronized sinusoidal motions of 6-degree amplitude at a reduced frequency
of 3.62.

The flappers in the FFX generate periodic wake, which imposes an unsteady
condition on the stationary foil. Velocity and pressure measurements at a Reynolds
number (based on the stationary foil chord and the in-flow mean velocity) of
3.7 x 10° were taken on and around the stationary foil inside the measurement
box shown by the dashed line in Fig. 5.27. The measurements in this box are given
to provide the upstream, downstream, and outer boundary conditions for calcula-
tions of the stationary foil alone. Since the purpose of the current numerical study
is to investigate the moving boundary capability, the computational model includes
the entire domain shown in Fig. 5.27, where experimental inflow and exit conditions
are provided for computation.

Various grid topologies are created for computations, and the computed results
obtained from a time-accurate artificial compressibility formulation are compared
with the experimental data. To simulate the entire configuration, two commonly
used grid topologies in structured-grid approaches are tested, i.e., multi-block
patched and Chimera overlapped grids.

1 Stationary Foil 1
i 1
] c:::T_-——__—__—__-qh‘hﬁhfzx ]
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I Measurement Box
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Water Tunnel Wall
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Fig. 5.27 Schematic of MIT flapping foil experiment (FFX)
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Fig. 5.28 Multi-block patched grid topology for the flapping foil computation

A multi-block patched grid topology applied to the FFX geometry, shown in
Fig. 5.28, consists of four H-grids. The patched grids are point-wise continuous at
the zonal boundaries, and the interfaces have two points of overlap. Each grid has
the dimension of 319 x 63, resulting in a total number of grid points of 80,388.
Alternate grid lines were plotted in all grid-related figures in this section. Grid 1
covers the region between the lower tunnel wall and the lower flapper surface; grid
2 extends between the upper surface of the lower flapper and the pressure side of the
main foil; grid 3 is located between the suction side of the main foil and the bottom
surface of the upper flapper; and grid 4 extends between the top surface of the upper
flapper and the upper tunnel wall.

The advantage of a multi-block patched grid scheme is that the grids remain
point-wise continuous as the bodies move, avoiding any interpolation error at the
interface boundaries. However, the grid does have to be regenerated at each physical
time step to account for the flapper motion. For the FFX, the interface boundaries
between zones move up or down with the flappers and each zone contracts and
expands during the cyclic motion.

An alternative to the multi-block patched grid scheme is the Chimera overlapped
grid scheme. The overlapped grid topology for the FFX is shown in Fig. 5.29a. An
H-grid with a dimension of 253 x 191 (Grid 1) occupies the water tunnel without
considering the foils. Three C-grids are generated for the foils and are overlapped
with the tunnel grid. Grid 2 is generated for the stationary foil with a grid dimen-
sion of 337 x 61. Grids 3 and 4 wrap around the flappers with grid dimensions of
215 x 40 each; these rotate with the flappers. The total number of grid points for
this grid system is 86,080.

The advantage of the overlapped-grid scheme as a moving boundary procedure
is a simplified grid-generation procedure. For the FFX, the grids are generated,
then the flapper grids are rotated relative to the tunnel grid. However, additional
numerical boundary conditions and the data management for time-dependent inter-
polation stencils are introduced. The overlapped grid regions in the near field of
the flapper and in the near field of the stationary foil leading edge are plotted in
Fig. 5.29b.

The individual grids receive information from each other by interpolating the
dependent variable. The grids around the foils have outer boundaries overlapping
the interior region of the tunnel grid, which has an interior boundary surrounding a
hole. A hole-point is a mesh point that is removed from the solution procedure. The
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Fig. 529 (a) A Chimera overlapped grid topology for the flapping foil computation;
(b) Overlapped grid in the near field of the stationary foil and the flapper

immediate neighboring points of the hole-points, called “fringe points,” are updated
from the interpolation procedure. For all computations presented in this section, two
layers of fringe points are used for interior and outer boundaries. The interpolation
of data between the flapper grid and the tunnel grid is time dependent, while the
interpolation of data between the stationary foil grid and the tunnel grid remains
steady in time.

The major differences between the patched and overlapped grid approaches are
the amount of effort required to generate the time-varying grids and the amount
of computation required for interpolation between zonal boundaries. Generating
the time-varying patched grid system for the FFX using the elliptic grid genera-
tor requires an order of magnitude more work than that required to generate the
overlapped grid system and the interpolation database. The overlapped grid sys-
tem provides the flexibility of choosing grid topologies since the grids do not have
boundary constraints. Therefore, the C-type hyperbolic grids can be easily used
around the foils, in which very fine grid resolution is required near the boundary
layer. The patched grid system designed for the FFX requires use of the H-type grid
with constraints at the boundaries. The elliptic grid generator was used for these
H-grids. Obtaining the preferred grid density near the boundary layer is the most
time-consuming part in this procedure, and this process has to be repeated at every
boundary movement.
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Fig. 5.30 Composite grid
topology for the flapping foil
computation

The third grid topology studied is illustrated in Fig. 5.30. This composite grid
combines both patched and overlapped grid schemes. Three H-grids (grids 1, 3
and 4) are patched around the flappers. A C-grid is generated around the station-
ary foil (grid 2), and a hole is cut in grid 1 to accommodate this stationary foil.
Grids 1 and 2 communicate with each other through the Chimera interpolation pro-
cedure. The total number of grid points for this composite grid system is 77,932; the
grids dimensions are 255 x 99, 337 x 61, 255 x 63 and 255 x 63, for grids 1, 2, 3,
and 4, respectively.

5.4.4.2 Computed Results

We have compared the computational procedures for obtaining both steady-state
and time-accurate solutions using these three grid topologies.

Steady-State Solutions

Because experimentally measured data was available for steady flow with station-
ary flappers with 0° angle of attack, we first carried out steady-state calculations
to validate the computational procedures not involving moving grid. The artificial
compressibility coefficient, p, is set to be 10 for all computations in this section.

In Fig. 5.31, the measured and calculated static pressure coefficient, Cp, on the
stationary foil surface, are compared. Symbols represent the experimental measure-
ment. Computed results using three different grid topologies are compared: the
dashed line represents the patched grid results; the solid line represents the over-
lapped grid results; and the chain-dotted line represents the composite grid results.
All results compare well with the measured data. The composite grid system Cp
results are nearly identical to the overlapped grid results.

Total velocity magnitude contours from the overlapped grid calculations are
shown in Fig. 5.32. The wakes from the stationary foil and the flappers are clearly
seen. Contours obtained from two different grids in the overlapped regions match
quite well, indicating that the solution has been converged.

The convergence history for this case is shown in Fig. 5.33. Converged solutions
were obtained after 250 iterations. Very similar convergence behavior was observed
for all grid topologies. Even though the results did not change significantly after
250 iterations, the computation was continued to 600 iterations in order to verify
the convergence characteristics. The solid line in Fig. 5.33 shows the history of the
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Fig. 5.31 Steady-state pressure coefficient (Cp) distribution on the stationary foil

maximum residual of the flow equations. The dashed line shows the history of the
maximum of the divergence of velocity, and the chain-dotted line shows the history
of the RMS of the Baldwin—Barth one-equation turbulence model (1991). This result
indicates that all three measures of convergence behave in a similar fashion.

In Fig. 5.34, the velocity profiles on the suction side boundary layer region of the
stationary foil at the streamwise station of x/c = 0.612 are plotted. These streamwise
velocity plots compare the effects of grid resolution for three different grid topolo-
gies. The dashed and chain-dashed lines represent the results from the patched grid
system, in which each zone has an H-type grid. The elliptic grid generator used
for this grid does not provide the capability to control the grid spacing exactly at
the solid wall boundary. Even though spacing on the order of 10~ was specified as
input to the elliptic grid generator, the resulting wall spacing was typically on the
order of 1073, As a result, the grid resolution near the stationary foil wall is poor in
this calculation. The velocity profile shown with the dashed line does not compare
well with the experimental data.

In order to improve the grid resolution near the wall region, grid points near the
wall are prevented from moving away from the wall in the elliptic grid generator.

Fig. 5.32 Total velocity magnitude contour for steady-state solution
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Fig. 5.33 Convergence history for the overlapped grid topology

The result from this modified grid is shown by the chain-dashed line. Although the
velocity profile shown with the chain-dashed line is improved compared to that of
the dashed line, it still does not compare well with the experimental data.

Next, we performed the overlapped grid computations for the three levels of grid
density. The total number of grid points for the coarse grid system was 38,607
with grid dimension of 127 x 96, 337 x 35, 215 x 34, and 214 x 34 for the
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Fig. 5.35 Velocity profile on the upper surface of the stationary foil

four regions. The total number of grid points for the finest overlapped grid sys-
tem was 97,480 with the grid dimensions of 253 x 191, 337 x 91, 215 x 43, and
215 x 43 for the four regions. The dotted line in Fig. 5.34 represent overlapped
grid results from the coarse grid. The grid spacing near the wall for the coarse
grid is 2.5 x 107%. The overlapped-grid result using the coarse grid (dotted line)
shows better agreement with the experimental data than the patched grid results.
The solid line represent the result obtained by using the finer grid system, and the
dashed line with the x-symbols represent the result obtained by using the composite
grid topology. The grid spacing near the stationary foil wall for these fine grids is
50 x 107,

Both velocity profiles are virtually identical and compare fairly well with the
measured data. These calculations using a C-type hyperbolic grid for the stationary
foil show the flexibility of the overlapped grid approach, compared to the patched
grid approach with an H-type grid over the stationary foil. The amount of work in
generating the H-type elliptic grid increased when the grid resolution in the bound-
ary layer region was increased. Therefore, computation results presented in the
remainder of this section are primarily based on the overlapped grid computations
and the composite grid topology.

Figures 5.35, 5.36 and 5.37 show the velocity profiles at several streamwise
locations on the surfaces and at the stationary foil wake. Symbols represent the
experimental measurements and the solid lines represent numerical results obtained
by using the overlapped grid topology. The velocity profiles from the composite
grid topology are not included here, as they are virtually identical to overlapped
grid results (see Fig. 5.34).

Overall, the computed results compare very well with the measured data at
the boundary layer and at the wake of the stationary foil. The largest discrepancy
between the computed results and the measured data is seen in the wake of the foil
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Fig. 5.36 Velocity profile on the lower surface of the stationary foil

(x/c =1.2). The velocity at the edge of the wake is over-predicted with less than a
couple of percentage points in error range.

To ensure that the steady flow results are grid independent, additional compu-
tations were performed. The order of accuracy for convective terms in coarse grid
calculations was increased from third-order to fifth-order flux difference splitting.
The third-order coarse grid result is indicated by the dashed line and the fifth-order
coarse grid result is indicated by the chain-dashed line in Fig. 5.38. The solid line
and the dotted line with x-marks represent the fine grid third-order and fifth-order
results, respectively. The wake from the fine grid computations clearly shows better
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Fig. 5.37 Velocity profile on the wake of the stationary foil
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agreement with the measured data than the coarse-grid results. Note that the over-
shoot occurring at the edge of the wake in the third-order results does not occur in
the fifth-order results.

In the finest grid computations, the base grid for the stationary foil was refined
by increasing the number of grid points from 61 to 91 in the normal direction. The
velocity profile from the resulting finer grid (91K points total) with third-order differ-
encing is plotted with the chain-dotted line. This fine-grid result is very similar to the
base grid result (86K grid points), indicating that this is close to a grid-independent
solution and that 86K-point grid will provide adequate resolution for the unsteady
calculations.

In fact, the difference between the 86K and the 97K grid results is less than the
oscillations in the measured data. Note that there is a rather large difference between
the measured and computed wake edge velocities. Since this edge velocity is shown
to be grid independent, it is thought that the experimental data used an erroneous
value for the reference velocity. In addition, all computed results have the same
velocity magnitude at the edge of the wake, and fine grid results are self-consistent.
For these reasons, the result shown with the solid line in Fig. 5.38 is considered
to be a grid-independent solution. Validation of the time-dependent procedure is
presented next.

Time-Dependent Solutions

The converged steady solutions were used as the initial conditions for the unsteady
calculations. The motion of flappers was specified as pitching about the mid-chord
point described by o = o, sin (wf), where t is time «,, is 6° and v = 2kUOO/c is
the angular velocity. Here, Uy is the reference velocity specified as 20.62 ft/s and
¢ = 18 inches is the stationary foil chord. The reduced frequency, k, is 3.62 based
on c/2. In all unsteady calculations, one cycle of the flapping foil period consisted
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of 192 physical time steps, which corresponds to a discrete non-dimensional time
step of 4.53 x 1073, We chose a time-step size that is small enough so moving
mesh points in the overlapped grid system do not move more than one cell in a
neighboring grid during one time step. At each physical time step, the maximum of
non-dimensional divergence of velocity was dropped below 10~ for all zones. This
required 15—40 sub-iterations during each time step. Numerical tests indicate that
reducing the divergence of velocity further does not have measurable effects on the
solution accuracy. The pseudo-time step was taken to be the same value as physical
time step. The artificial compressibility coefficient, 8, was set to 10. The periodic
solution was obtained for both grid topologies after six flapping cycles.

Figure 5.39 shows the total velocity magnitude contours at a non-dimensional
time of t/T=0.25 a. Here, T denotes the period of the flapping motion. This quali-
tative comparison shows that the results obtained from two different grid topologies
are very similar. The unsteady wake using the composite grid shows slightly more
detailed features compared to the results using the overlapped grid. Since the grid
boundaries are located in the middle of the oscillating wakes, we found it easier to
increase the grid resolution using the patched grid. However, the difference between
the two results is not easily recognizable from the contours. The quantitative
comparison between the two, along with the experimental data, is presented next.

The mean Cp distributions on the stationary foil surface from the unsteady calcu-
lation are plotted in Fig. 5.40. The symbols represent the experimental mean values,
the solid lines represent the overlapped grid results, and the dashed lines represent
the composite grid results. The computed mean Cp values compare very well with
the experimental measurements, except that there is a slight over-prediction at the
60% chord location on the pressure side of the foil. The mean Cp values from two
different grid topologies are practically identical.

(a) with the overlapped grid topology

Fig. 5.39 Instantaneous

velocity magnitude contours e —
att/T=0.25 (b) with the composite grid topology

| Y
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In Fig. 5.41, the time history of Cp values on the stationary foil is compared with
experimental data at several streamwise locations. The Cp values obtained from
both grid topologies show a very similar time history and compare fairly well with
the measurement. The biggest discrepancies are seen on the pressure side of the foil
at streamwise location x/c =0.611, where Cp is over-predicted, and on the suction
side of the foil at streamwise location x/c =0.972, where Cp is under-predicted.
This is consistent with the mean Cp distribution in Fig. 5.40. The major difference
between the two computed results is that overlapped grid topology produces higher
frequency oscillations compared to the composite grid approach. It should be noted
that the grid movement and the resulting interpolations required in grid boundaries
are quite different between the two grid topologies.

In the overlapped grid, as the flapper grids rotate they move through a relatively
coarse region in the tunnel grid. This mismatch of the grid resolution between the
two overlapped regions can lead to interpolation errors. Considering that different
hole points are being cut at each time step while unsteady wakes from flappers
continuously move through the region, it is difficult to obtain the same degree of
accuracy between the two grids in the overlapped grid topology. In the composite
grid system on the other hand, the mesh points in the tunnel grid move with the
flappers, which maintains relatively fine grid resolution in the near wakes of the
flappers. The FFX problem would offer a good test case for validating any improved
correction schemes in the overset grid arrangement.

The sensitivity and importance of the boundary interpolation scheme for the
composite grid approach are illustrated next. In Fig. 5.42, the effect of interpola-
tion is shown when computing previous time level data for newly created fringe
points. The time history of Cp on the suction side of the foil at streamwise location
x/c =0.810 is reported for the composite grid computation. The symbols represent
the experimental measurements.
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Fig. 5.41 Time history of Cp at various streamwise locations of stationary foil
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The different procedures for updating previous time level data at the fringe
points are compared in Fig. 5.42. Since, in the present computations a second-order
three-point backward differencing scheme is used for time discretization, infor-
mation at time levels n and n—1 is needed to advance to the n+1 time-level. When
a hole-point becomes a fringe point due to moving boundaries, this fringe point
does not have any information from the previous time levels. One way to obtain the
previous time level data is to interpolate the variables from the donor grid (as it is
done for the current time level information). The result obtained by this procedure
is plotted by the dashed line in Fig. 5.42. This shows that very large amplitude
errors occur in the computations.

The source of these fluctuations can be found in the interpolating procedure. The
previous time-level data for the new fringe points is obtained by using the interpo-
lated database at the current time level. However, the grid point locations from the
previous time-level should have been used. Using the current time-level database for
these points results in incorrect interpolation coefficients and incorrect donor points.
When this error was corrected the computed Cp value shown by the solid line in
Fig. 5.42 was obtained. When the previous time-level data is not available for the
newly created boundary points, the time integration for these points is changed to
first-order. The time differencing in the next time step will be second-order back-
ward differencing because the previous time-level information has been established
from the current time-step calculation.

The present flapping foil example illustrates the issues encountered in actual
simulations—especially when bodies of relative motion are involved. The fidelity
of computed results depends not only on algorithm and geometry modeling but also
on computational procedures like interpolation schemes between grids. These are
realistic issues users of CFD tools need to resolve when dealing with real-world
simulations. In addition, physical modeling plays an equally, if not more important
role in computing a wide range of flow regimes. Some of these features are discussed
further in later chapters, in conjunction with examples.



116 5 Flow Solvers and Validation
5.5 External and Juncture Flow

The flow around a cylinder plate or a wing-body juncture produces interesting
viscous phenomena due to the interaction between the boundary layer from the plate
and viscous layer from the cylinder. The 3-D separation of the boundary layer and
subsequent formation of the so-called horseshoe vortex and its development is very
challenging to analyze both experimentally and numerically. This juncture flow
can occur in many practical engineering problems. Flow around a wing-fuselage
junction and around an appendage submarine body are just two examples, and
the flow near the end-wall of turbomachinery blades might be one of the most
complicated juncture flow problems in engineering. One major motivation for
studying this type of juncture flow is related to the flow analysis of the Space
Shuttle main engine (SSME), which will be presented in detail in the next chapter.
In the SSME, liquid oxygen (LOX) posts are densely packed in the main injector
region. Even though a single cylinder-plate flow is an extreme idealization of the
flow in the actual oxygen-post region in the SSME, validating the computational
procedure in this simplified model problem is of considerable value in extending the
simulation procedure to realistic cases where detailed experimental measurements
are very difficult and scarce.

5.5.1 Cylinder on a Flat Plate

Most of the earlier studies on cylinder/flat plate juncture flow have been experi-
mental. Baker (1979) shows that laminar juncture flow is confined to a very limited
region. A similar result was obtained later by Thomas (1987). Eckerle and Langston
(1986) reported a single primary vortex and saddle point contrary to multiple vortex
systems observed earlier by other researchers. Interpretation of the phenomena also
varies (Thomas, 1987; Peake and Tobak, 1980).

Computational simulation of these flows involves distinctively different features
from those of external aerodynamics. For instance, the thickness of the viscous layer
for these types of flows is of the same order as the characteristic flow-field dimen-
sion, while the viscous region tends to be confined in a thin layer near the body
for external flows. Realistic juncture flows under an internal flow environment are
likely to have a large amount of deflection, as in the case of LOX post regions
in the SSME. Several numerical studies on this flow have been attempted. Kaul
et al. (1985) reported a numerical study on a single cylinder-plate flow using the
INS3D code. Highlights of this and other studies were reported by Kwak et al.
(1986). Independently, Kiehm et al. (1986) reported a numerical study of flow
around a single post in a channel. These computational results show qualitatively
similar phenomena. Several representative results using INS3D are summarized
below.

In Fig. 5.43a, the computational domain for a single post on a flat plate is illus-
trated. The upstream boundary layer thickness is varied by using partially and fully
developed channel flow profiles. The convergence characteristics of the flow solver
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are shown in Fig. 5.43b by the history of RMSDQ, which denotes the root-mean-
square value of the change per iteration in the pressure and velocities. The three
curves in the figure show three variations of the INS3D code; namely a block
tri-diagonal, a diagonal version with second-order implicit smoothing terms, and
a diagonal version with fourth-order implicit smoothing terms, as explained in
Chapter 4. The flow solver converges quickly to about four orders of magnitude
reduction in RMSDQ. The computing time per iteration per grid point is 91 s for
the block tri-diagonal version and 32 s for the diagonal version of the code. These
timings were based on computations performed on the Cray 2 supercomputer in the
early days of high-end computing.

In Fig. 5.44, particle traces for a single post at Re = 1,000 are shown. A sad-
dle point separation and a horseshoe vortex can be seen from the traces near the
flat plate. The secondary flow in front of the cylinder wraps around toward the
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Fig. 5.44 Particle traces for a single post on a flat plate at Re = 1,000

wake region and forms a counter-rotating pair of vortex filaments. These spiral-
ing twin vortices demonstrate a striking difference between this type of juncture
flow and a 2-D cylinder. The vortex filaments are washed upward and attenuate
as they interact and move downstream. In reality, vortex shedding and possible
unsteady motion take place at this stage. These tornado-shaped vortices are very
difficult to observe experimentally, and validation of this phenomenon was very
much needed in the 1980s. G. Schewe (1985, private communication, DFVLR, West
Germany) produced oil flow visualization around a single post that shows clear evi-
dence of the twin vortex behind the cylinder, as shown in Fig. 5.45 (special thanks to
Dr. G. Schewe for providing this picture). This experimental observation is qualita-
tively similar to the computed results, shown by the particle traces in Fig. 5.44. This
juncture flow structure will lead to a strong variation in skin friction and pressure
along the cylinder, and hence significantly affects the overall loading on the post.

5.5.2 Wing-Body Junction

Wing-body flow has been of interest for resolving juncture flow and tip vortex roll-
up and propagation. At the junction region, the flow has similar characteristics to the
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Fig. 5.45 Oil flow
visualization around a single
post at Re = 1.85 x 10°

(G. Schewe, DFVLR, 1985)

cylinder on a flat plate shown above. Wing-body juncture flow has been of interest
to airplane designers in resolving the wing-fuselage area that is close to high-lift
devices. For naval hydrodynamics, wing-body is a generic case for a submarine
hull-appendage flow, and thus provides a good validation case for CFD procedures
to be used for the entire submerged vehicle.

5.5.2.1 Wing-Body Juncture Flow

An example case of a wing on a flat plate is discussed next. The results pre-
sented were obtained by Burke (1989). Numerical results were obtained by applying
INS3D and comparing them with the experimental data of Dickinson (1986). The
wing is a hybrid shape consisting of a 1.5:1 elliptic nose and a NACA 0020 tail
joined at the location of maximum thickness. This is a generic configuration char-
acterizing a wing-fuselage juncture of an aircraft or a hull-appendage juncture of
ships or submarines. The Reynolds number of the experiments, based on the chord
length of the wing, is 5 x 10°. The coordinate system is shown in Fig. 5.46.
Turbulence modeling for this type of complex flow is very challenging. A high-
level turbulence model may be necessary for detailed study on the juncture flow
itself. Since our study was done in preparation for extending the flow solver to more
realistic applications, computing efficiency was of major importance. Therefore, the
computational simulation was done by devising a simple algebraic turbulence model
derived from Patankar et al. (1979). Considering the simplicity of the turbulence
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Fig. 5.46 Coordinate system
for the wing-flat plate study 3

model, the results compare quite well with experimental data capturing important
features of the flow. Some of the results are reproduced here.

In Fig. 5.47, surface pressure on a flat plate near the wing is compared with
experiments while, in Figs. 5.48 and 5.49, velocity contours at two different ver-
tical planes are shown. Overall, the computed results compare favorably with the
experimental data. However, in this numerical experiment, some flow details close
to the juncture region are not studied. Also, the Reynolds number for realistic cases
is orders of magnitude higher than the current laboratory experiment, requiring fur-
ther validation. Since the wing has a finite height, another aspect to consider is the
wing tip vortex effect, especially in the wake region. A wing tip vortex roll up and
propagation is presented next.

5.5.3 Wingtip Vortex Flow

The wingtip vortex flow has been of interest in many areas of fluid engineering, and
its significance has been seen in many practical problems. For example, tip vortices
generated by wings of large aircraft have been known to affect other aircraft fol-
lowing closely behind. In rotorcraft aerodynamics, interaction of the tip vortex and
blade can directly affect the acrodynamic performance of the vehicle and can cause
substantial vibration under some flight conditions. On ship propellers or submarine
propulsors, the tip vortex is of great concern in conjunction with cavitation inception
and wake propagation (see, for example, Arndt and Maines, 1994). In liquid rocket
propulsion, tip vortex and cavitation generated from turbopump blades can be very
damaging to the pump, as well create system-level vibration.

Although there has been a great deal of tip vortex work in the form of theoretical,
experimental and computational studies, the current understanding of the intricacies
of this flow is still not very comprehensive. General characteristics of tip vortex
formation are well known; however, the details of their formation, initial roll-up,
and downstream development is still a subject of research.
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Fig. 5.48 Velocity contour for wing on flat plate at x/c =0.18 and Re = 5. x 10°: (a) experiment
(Dickinson, 1986); (b) computation (Burke, 1989: INS3D)

5.5.3.1 Experimental-Computational Validation Approach

Computational studies on tip vortex formation and propagation have been per-
formed perhaps most extensively in conjunction with rotorcraft aerodynamics.
Inaccuracies in computational studies can be attributed to computational procedures
and physical modeling. Accurate modeling of tip vortices requires resolution not
only of the viscous boundary layer region, but also certain areas with high flow gra-
dients such as the core of the vortex region. Sufficient grid density and appropriate
distribution are essential. The inaccuracy caused by poor grid resolution manifests
itself in the form of excessive numerical dissipation. Thus, use of a high-accuracy
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Fig. 5.49 Velocity contours for wing on flat plate at x/c = 0.75 and Re = 5. x 10°: (a) experiment
(Dickinson, 1986); (b) computation (Burke, 1989: INS3D)

scheme can be very helpful. The flow field generated by the tip vortex is highly
three-dimensional and can be highly turbulent, or can be dominated by inviscid
dynamics, as in the wake region.

A computational capability for predicting a detailed flow field, especially the
rollup of the tip vortex, is of interest for validating computational procedures, as well
as for assessing turbulence models being used in conjunction with production codes.
For the purpose of studying tip vortex details, a low-speed experimental study was
performed by Chow et al. (1991) and Zilliac et al. (1993) at NASA Ames Research
Center. The experimental setup is shown in Fig. 5.50. Even though the test was
performed with air, the flow speed is low in the incompressible regime. Therefore,
the experimental results from this study have been used to validate incompressible
flow solvers we discussed earlier.

Outflow [
boundary g gs6e

0

Fig. 5.50 Experimental model: (a) 32-inch x 48-inch low-speed wind tunnel at NASA Ames
Fluid Mechanics Laboratory; (b) NACA 0012 wing with round tip, Re = 4.6 x 100, o = 10°
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The flow domain includes a rectangular wing with a NACA 0012 airfoil section
and a rounded wing tip. The wing has an aspect ratio of 0.75 and is mounted inside
a wind tunnel at 10° angle of attack. The flow is turbulent with a Reynolds number
of 4.6 million based on the chord length. Both the artificial compressibility code,
INS3D-UP, and the pressure projection code, INS3D-FS, are used to study the roll-
up of a vortex in the tip region and the near-field propagation behind the trailing
edge.

5.5.3.2 Geometry

The full computational geometry is a close approximation to the 32 inch x 48
inch low-speed wind tunnel and wing setup, as discussed above. Two major fac-
tors affecting the accuracy of the computation are numerical errors primarily due to
approximation from discretization and lack of grid resolution, and turbulence and
transition modeling. Adequate grid resolution is especially important not only for
the viscous boundary layer region but also for the region with high flow gradients,
such as the vortex core and near-wake region. Sufficient grid density and appro-
priate distribution are essential. Our initial calculations indicated that an extremely
fine mesh is required to resolve the tip vortex flow field. Consequently, a subset
of the full geometry problem is devised that only includes the wake region. This
enables extensive study of several contributing factors to the accuracy of computed
results, such as grid refinement, discretization effects, and sensitivity to turbulence
modeling.

(i) Wake-only Problem
The computational domain for this problem includes the region from the trail-
ing edge to 0.69c downstream of the trailing edge. The experimental velocity
profile in a cross-flow plane at the trailing edge of the wing was imposed at
the inflow of this wake model. The inflow boundary condition for the pressure
was computed based on the method of characteristics using one-dimensional
Riemann invariants. An experimental pressure distribution is prescribed at the
exit boundary. The velocity components at the outflow were calculated by using
one-dimensional Riemann invariants. This information is not what one usually
has available in numerical simulations. For this study, however, the boundary
conditions are set up to resolve vortex roll-up on the wing surface and sub-
sequent propagation in the near field with minimum influence of boundary
procedures.

(ii)) Complete Geometry Problem
The computational domain for the complete geometry case includes a rectangu-
lar half-wing with a NACA 0012 airfoil section and rounded wing tip, as shown
in Fig. 5.50. No slip boundary condition is imposed at the solid surface, and
the normal pressure gradient is set to be zero. The inflow and outflow boundary
conditions are prescribed in the same manner as for the wake-only problem.
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5.5.3.3 Grid

Several different grid generation strategies can be selected, depending on the flow
solver to be used. In the present validation, a single grid topology is chosen for
the entire wing region with an optional embedded grid for the vortex core region.
This will minimize grid-related error. However, in more realistic problems involv-
ing complex geometry, generating single-zone grids may not be straightforward.
Multiple zones, possibly with overlapping regions, are common in structured grid
setups—otherwise unstructured grids can be employed. Equally important is the
grid distribution to resolve flow features of interest. The automatic adaptive grid
method is not discussed here. The base grid for the wing is shown in Fig. 5.51a.

For the wake-only problems, a single grid is generated such that a uniformly
clustered grid covers the vortex region. This is then stretched out to uniform spacing
away from the vortex core region. As one approaches the side and top walls, spacing
is reduced to resolve viscous layers. The grid for the wake-only problem is shown
in Fig. 5.51b.

The generation of a single-block grid for the entire geometry of the experi-
mental setup is not straightforward. Specifically, the restrictions of the outer wind
tunnel walls and corner regions can cause problems because of their closeness to
the wing surface and wingtip. For this reason, a smoothly varying grid is diffi-
cult to obtain. Also, the inflow location of the domain is situated very closely to
the wing.

For the computed results presented here, a single-zone grid of C-O type is chosen
without introducing grid singularity at the tip region. A two-dimensional base grid
is first generated around the airfoil section on the wind tunnel wall using an ellip-
tic grid generator. The volume grid is generated by stacking the 2-D grid along
the straight section of the wing. Then, the grid is wrapped around the rounded
wingtip. Viscous spacing of 1 x 107 ¢ is imposed on the body and root wall,
while viscous spacing of 1 x 10™* ¢ is imposed on the wind tunnel wall. Local
mesh refinement based on the knowledge of the tip vortex location from a previous

(b)

Fig. 5.51 Grid topology: (a) wing region grid 130 x 145 x 73; (b) wake region grid 36 x
82 x 82
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solution is also incorporated. Even though this grid feature adaption was done manu-
ally at the time this computation was performed, more sophisticated grid adaptation
methods are now available that can be coupled to the solution procedures in general
applications.

5.5.3.4 Turbulence Modeling

Varying levels of turbulence models have been used to study vortical flows and
wake vortex problems. Algebraic models such as the Baldwin—Lomax (1978) model
are primarily designed for boundary layer type problems and are not suitable for
complex vortical flow problems. Models of this type do not take into account the
transport and diffusion of turbulence, and history effects are not captured. These
effects are important for wingtip vortex flows, recirculating flows, separated flows,
and interacting shear layers. Higher-level models, such as one- or two-equation
models, have similar deficiencies. However, higher-level models offer a possibility
for adding ad hoc revisions to characterize tip vortex flow.

To study the sensitivity of turbulence models to solution accuracy, a modified
form of the Baldwin—Barth one-equation turbulence model (1991) was experi-
mented with in the current study. The model can be implemented in a straight-
forward manner, since the turbulence length scale is automatically handled in the
model equation. This type of model over-predicts the eddy viscosity level in the
core of a vortex. It attempts to fix this issue by modifying the production term in the
model equation. In the standard Baldwin—Barth one-equation model, the production
term, P, for vR; is approximated by:

P = CivR,X 5.1)

where Cj is a constant, v is the laminar kinematic viscosity, R; is the turbulent
Reynolds number, and X is a scalar measure of the deformation tensor. There
are several choices of X. For example, X can be based on the magnitude of vor-

ticity, |w| = (29,79,]-)1/ > where Q;; is the vorticity tensor, on the strain rate

Is| = (ZS,-jS,-j)]/ > or on the norm of the entire tensor, as discussed by Spalart and
Allmaras (1992). The option of basing X on |w| is the simplest to implement, and
has a theoretical motivation, in that turbulence can be related to vorticity. A similar
idea can be found in the k — w two-equation modeling. A modified form of the pro-
duction term was used by Dacles et al. (1993) and Kiris et al. (2001) for the wake
vortex study presented here. This ad hoc production term combines |w| and |s| as
follows:

P = CvR; (lo| +2min (0, [s| — |w])) (5.2

The modification is devised to reduce the eddy viscosity in the regions where the
vorticity exceeds the strain rate, such as in a vortex core where the flow is nearly
pure rotation. This modification represents an attempt to empirically adjust the pro-
duction term for vortex-dominated flows. Note that the factor 2 in this equation is
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an arbitrary constant that can be adjusted depending on the amount of diffusion the
turbulence model gives.

In addition to this modification, other forms of the production term are also
experimented with using INS3D-FS, such as:

X = |w|
X = min (|0, |s])

This numerical experiment provides information on the sensitivity of the turbu-
lence model on the solution for highly vortical flow. For more general applications,
the turbulence model has to be designed to automatically reflect this change in tur-
bulence production in the vortex core region. Existing one-equation models produce
excessive dissipation regardless of the grid resolution.

Transition to turbulence is dictated by the experimental setup and is set at
s/c =0.0417 from the leading edge. This transition strip is located on the pressure
and suction side of the wing and wraps around the tip. Early computations reveal
that the result, which includes this transition location, is not much different from
that of a fully turbulent assumption for the entire region. Therefore, all computed
results presented here do not include the transition location.

5.5.3.5 Near Wake Computation Using the Artificial Compressibility Method

Computed results by Dacles—Mariani et al. (1993, 1995a, b, c) using the artificial
compressibility code INS3D-UP, are presented next for wake vortex propagation
in the near field. For this wake-only problem, a 35 x 103 x 103 grid (371,000
gird points) is used. We found that the third-order accurate differencing scheme for
the convective terms in the momentum equations was too diffusive. In the numer-
ical experiment, both third-order and fifth-order schemes are compared, combined
with production model modifications in the Baldwin—Barth turbulence model using
Equation (5.2).

As shown in Fig. 5.52a, b, the turbulence model modification has the greatest
impact on velocity at the core during the near-field propagation in the wake. An
additional 5% improvement in accuracy was observed by increasing the differencing
scheme to fifth order. In Fig. 5.52b, the core center velocity is under-predicted by
approximately 25% for the cases with no turbulence model modification. The reason
for this difference can be seen in Fig. 5.52c: the magnitude of eddy viscosity in the
vortex core region between the modified and unmodified models is quite different,
indicating that the turbulence model in use needs improvement to correctly represent
flow physics in highly vortical flow.

Capturing the flow features of the propagation of the tip vortex flow depends
primarily on two factors: numerical procedures including grid resolution and turbu-
lence modeling. The static pressure coefficient in the core region is very sensitive
to numerical accuracy. It also depends on how well the turbulence model represents
the flow in the core region, as briefly illustrated above. More detail can be found in
the references cited.
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Fig. 5.52 (a) Peak velocity magnitude at vortex core; (b) Total velocity magnitude across vortex
core at x/c = 1.241; (c) Eddy viscosity profile across vortex core at x/c = 1.241

5.5.3.6 Near Wake Computation Using the Pressure Projection Method

We computed the same case using the pressure projection code, INS3D-FS. To illus-
trate a validation process and to characterize the near wake computations using a
pressure projection approach with the fractional step procedure, results presented
by Kiris and Kwak (2001) are summarized next.

The computational domain includes the region from the trailing edge of the wing
(x/c=1.0) to 0.673 of the chord-length, c, downstream of the wing using the H-H
grid topology. Extensive experimental data by Chow et al. (1991) are available at
x/c =1.0, 1.12, 1.24, 1.447 and 1.673. The experimental velocity profile at the trail-
ing edge (x/c = 1.0) is imposed as an inflow boundary condition so that we can focus
on wake propagation aspects. Pressure distributions at boundaries are calculated
from the compatibility condition.

As a first step, we performed the computations on a coarse grid with a 36 x
42 x 42 mesh in x, y, z directions (i-, j-, k-directions). The velocity peak at the
vortex core was under-predicted using this grid; therefore, we next increased the
grid dimensions to 36 x 82 x 82—essentially doubling the grid in cross-flow direc-
tions. The peak velocity at the core was improved, but not significantly. This is
consistent with the same computations using the artificial compressibility method by
Dacles—Mariani (1993). The primary reason for this is due to excessive dissipation
in the core region, even with increased grid resolution. Physically, the vortex core
is dominated by dynamics and not much viscous effect exists. To account for this
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physics, the production term in the turbulence model is modified as explained in
Equations (5.1) and (5.2). The sensitivity of this term affecting the solution accuracy,
especially in the core region, is shown in the series of plots presented next.

We have experimented with several combinations of convective term differenc-
ing, grid resolution, and modification of the production term in turbulence modeling.
A list of these test cases and legends used in the figures presenting computed results
are summarized in Table 5.1. First, in Fig. 5.53, axial progression of velocity mag-
nitude and static pressure coefficient C), are shown along the vortex core line in the
wake. As can be seen, even with the best choice of differencing scheme and mod-
ified turbulence model, the accuracy of the solution deteriorates when the grid is
coarse. Using increased resolution and a higher order differencing scheme, the error
in the core region can be reduced to less than 2%.

The amount of dissipation is automatically computed in upwind differencing.
It also depends on grid spacing. Computationally, higher-order schemes are less
expensive to implement compared with increasing the grid resolution to produce
comparable results. These cases are compared in Fig. 5.54 by plotting velocity
magnitude across the wake vortex at three interior stations (x/c =1.12, 1.24 and
1.47) and at the exit boundary (x/c = 1.673). The most sensitive quantity in these
plots is the peak velocity at the vortex core. For our computations, the grid resolu-
tion near the wind tunnel wall boundary layer was not sufficiently high, especially
considering that the Reynolds number is 4.6 million. Also, the turbulent Reynolds
number at the inflow boundary for the computation is set to 1 in the Baldwin—Barth
model. Therefore the computations and the experimental results do not match very
well near the wind tunnel wall, and the discrepancy is largest at the exit plane.

Similarly, the cross-flow velocity across the wake vortex at four different loca-
tions is plotted in Fig. 5.55. Using a different production term in the turbulence
model equation does not have a measurable influence on cross-flow velocity
compared to the velocity magnitude.

Since the cross-flow velocity is zero at the vortex core, the dissipation intro-
duced by the turbulence model, the grid resolution, and the order of accuracy in the
differencing scheme primarily affect the axial flow velocity components.

In Fig. 5.56, the comparison of C, across the wake vortex is shown at three
different locations. Since the pressure has not been prescribed at the inflow

Table 5.1 Legend of computed results in Fig. 5.53 through 5.56

Experiment, Chow et al. (1991)

Computed Convective Grid size Baldwin—Bart model production
results terms diff. Jxkxl term
Third-upwind 36 x 82 x 82 min(|s|, |w|)
Fifth-upwind 36 x 42 x 82 min(|s|, |w|)
Fifth-upwind 36 x 82 x 82 [w| + 2.0 % min(0.0, |s| — |w])
Fifth-upwind 36 x 82 x 82 [w|

Fifth-upwind 36 x 82 x 82 min(|s|, [w])
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Fig. 5.53 Axial progression of flow quantities along vortex core line

boundary, computed C,, values are compared at the inflow and outflow boundaries,
as well. The comparison is quite satisfactory.

In the current pressure projection method, the incompressibility condition is sat-
isfied automatically at each physical time step. This feature makes it possible to use
this method in time-accurate computations.

5.5.3.7 Initial Rollup of Round Wingtip Vortex

Initial rollup of the wingtip vortex flow has been of significant importance because
of its relevance to many practical problems including formation of aircraft wake,
interaction of tip vortex and rotorcraft blades, tip and wake vortex from propellers
of naval vehicles, and tip vortex from turbopump blades and its impact on cavitation.
Tip shape, as well as flow conditions, impact the rollup process. In our experimental-
computational study, only a round tip shape was considered. However, by presenting
a detailed study, we hope to shed some light on how numerical methods and physics
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affect the tip vortex rollup and propagation. In the previous sections, we discussed
how the numerical procedure and turbulence model affect propagation of the wake
vortex in the near field. In this section, the rollup process is studied using the same
wing with a round tip.

The tip vortex formation process for a wing with nearly constant loading is
schematically shown in Fig. 5.57. A discrete vortex forms at the tip fed by vor-
ticity from the boundary layer near the tip. As the vortex moves downstream, it
rolls up more and more of the wing wake, until its circulation is nominally equal
to that of the wing. The rollup distance is small compared to the distance between
interacting lifting surfaces, such as the strake or foreplane, and the main wing on
a close-coupled fighter or consecutive blades on a helicopter rotor. The flow in the
near-field rollup region is therefore important in its own right, as well as in providing
a possible means of controlling the far-wake vortex.

As depicted in Fig. 5.50, the experimental inflow is at 10° of angle of attack. Near
the tip high, cross-flow velocity whips around the wing tip from the pressure side
to the suction side, as sketched in Fig. 5.57. Here, we assume the entire flow field
is turbulent, so a transition model is not considered. For implementing a turbulence
model—either Baldwin—Barth (1991) or Spalart—Allmaras (1992)—the grid spacing
on the boundary layer must be small enough to capture the rollup. In many practical
problems, it is common to use y* = 1.0 for the first grid spacing in the boundary
layer. To resolve the turbulent boundary layer during the initial rollup, we found it
is necessary to use much finer grid spacing, 0.16 < y™ < 0.36, for the one-equation
turbulence model used.
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Fig. 5.57 Schematic of initial rollup of a wingtip vortex for a round tip configuration with an angle
of attack o = 10°

Converging skin  Crossflow
friction lines plane
forming a type of
"local separation”.



134 5 Flow Solvers and Validation

The entire rollup is visualized both by experiment (measured by seven-hole pres-
sure probe) and by computation. The computed results presented here are obtained
using the artificial compressibility code and the Baldwin-Barth turbulence model,
unless otherwise specified. In Fig. 5.58, the velocity magnitude is compared for the
rollup and the near-wake region. The black outline in both figures represents the
outer boundary of the measured planes. The first sign of the vortex rollup can be
seen in the farthest upstream plane in the figure. At the trailing edge, the circula-
tion of the vortex is 87% of its final level (Zilliac et al., 1993). Notice also that the
root vortex (horseshoe vortex region) was captured by the computation designated
here by the blue patch on the root wall. In the experimental image (Fig. 5.58), the
density of measured points near the wall was not enough to accurately map the low
momentum region.

Since the flow is rich in flow physics, visualization of the entire field to cap-
ture all details is a challenge even in this simple geometry problem. In Fig. 5.59,
initial rollup of the tip vortex is visualized using particle traces colored by velocity
magnitude.

To validate the quality of the numerical solution on the wing surface, the surface
pressure contour is compared with experimental data, in Fig. 5.60. The general trend
and pressure levels of the computed and measured results compare quite well. Of
particular interest is the pressure peak induced by the presence of the vortex above
the suction side of the wing (green patch on the outboard portion of the wing near

COMPUTED

Fig. 5.58 Comparison of velocity magnitude contours
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Fig. 5.59 Visualization of computed particle path lines colored by velocity magnitude

the trailing edge). The magnitude and extent of this pressure region are sensitive
to the grid resolution and the turbulence modeling. A chord-wise line plot of the
pressure coefficient, Cp,, is shown in Fig. 5.61 at the location z/c = 0.667, which is
approximately under the tip vortex. Although some differences occur, the vortex-
induced peak is well captured by this numerical procedure.

Fig. 5.60 Comparison of
surface static pressure for
awing tip vortex rollup
problem
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Fig. 5.62 Cross-flow velocity comparison at two streamwise locations
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Figure 5.62 shows a close-up of the cross-flow velocity, depicting details of how
the vortex rolls up, detaches from the surface, and forms free vortex flows. The gen-
eral trends agree well although some of the computed details do not exactly match
the measured contours. In both the computed and measured results, the shear layer
detachment point is on the suction side of the wing tip. This result was expected
because the turbulent boundary layer can withstand a limited amount of adverse
pressure gradients. This illustrates that the choice of turbulence models plays an
important role in accurately predicting a vortex rollup procedure. In the literature
cited, we have experimented extensively using different turbulence models and grid
resolutions, and found that turbulence modeling significantly affects the results.
Since we only present the numerical procedure, we simply emphasize the signifi-
cance of the physical modeling aspects in conjunction with this highly vortical flow
simulation.

An important measure of the validity of the Navier—Stokes computation is
whether the surface skin-friction topology is computed correctly. Figure 5.63 shows
a comparison between the surface skin-friction magnitude and the results of an oil-
flow wind tunnel experiment. As seen in the figure, the location and extent of the
primary and secondary convergence lines agree well with those of the experiment.
The lower surface boundary layer flows around the tip to a line of surface stream-
line confluence or convergence, as shown in the particle traces. The convergence
line indicates the departure of the shear layer from the surface, and occurs as the
fluid moving in a cross-flow direction encounters an adverse pressure gradient. Near
the rear of the wingtip a second convergence line is shown in both the experiment
and computation, indicating the presence of a secondary vortex. On the suction-
side mid-span region of the wing, the computation shows a small area of separation
near the trailing edge. As shown by the skin-friction magnitude level, the shear is

SUCTION-SIDE

MEASURED COMPUTED

Fig. 5.63 Comparison of skin friction coefficient and particle path lines: 115 x 157 x 83 grid
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low upstream of this region. Although not readily visible, this behavior is similarly
reflected in the oil flow pattern.

In this section, we presented a wingtip vortex flow validation to illustrate the
procedures and modeling involved. When this case was first studied in the 1990s—
when computing capability was measured in megaflops—1.5 to 2.5 million grid
points for a small region around a wingtip were unrealistic for real-world problem
solving. Now (in 2010) the case is measured by multiple teraflops and is expected to
go toward petaflops or higher—so even if only a fraction of any computing facility’s
resources are available, it is feasible to attain the grid resolution at the level we
discuss for a CFD simulation of a realistic configuration. Of course, researchers
can also achieve this high-accuracy through a combination of high-order numerical
schemes, grid refinement, and higher-level turbulence models as necessary.

In this chapter we have presented validation cases selected to cover various differ-
ent types of flow features of fundamental nature. We tried to cover both steady and
time-dependent procedures using internal, external and juncture flows. Some of the
algorithmic and physical characteristics presented in conjunction with these cases
will appear in following chapters when we solve real-world engineering problems.



Chapter 6
Simulation of a Liquid-Propellant Rocket
Engine Subsystem

From an engineering point of view, CFD is a tool for preliminary design, design
improvement, risk analysis, mission planning and operations. In this chapter, we
will present engineering aspects of CFD through a task where CFD has played a
significant role in accomplishing the goal of a real mission.

In this chapter, we focus on the engine subsystem related to complex internal
flow. In applications involving real-world problems, CFD simulation is often con-
fined to a truncated geometry, since modeling the entire configuration could be
unrealistic or may not be necessary. Therefore, in addition to the approximations
due to numerical algorithms, uncertainties can come from geometric simplification,
approximate boundary conditions, and assumed initial conditions. Physical model-
ing often involves transition, turbulence, and multi-phase phenomena. Engineering
problems require varying degrees of rigor and accuracy in obtaining flow solutions.
Some of these features can best be discussed through real examples.

Previously, we presented some details of algorithms and computational proce-
dures, including issues related to grid generation and designing boundary condi-
tions, and validation using fundamental fluid dynamics problems. Even when all
these fundamental issues are clarified and usable tools have been developed, it takes
another step to make all these technologies useful to accomplish goals required for
specific missions.

In this and subsequent chapters, some of the issues often encountered in CFD
applications are presented. (Turbopump flow is discussed separately in the next
chapter.) The level of rigor can only be determined depending on the requirements
of particular simulations, whether it be dictated by economy, as in the commer-
cial world, or by enabling computations, as in mission support arenas. This chapter
illustrates the steps required for “mission computing,” a term used for those classes
of problems that require enabling analysis in designing and operating a specific
mission, such as space exploration vehicle development and operation. This is in
contrast to those problems dictated by economy in the commercial world where
similar tasks are repeated with some variations to meet customer requirements.

Even though computing procedures and priorities may vary, this chapter is
intended to illustrate the “next challenges” faced by those who go into real-world
practices after formal training in CFD. The technical issues discussed in this
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chapter are limited to flow simulation aspects. However, for a complete engineering
analysis, fluid dynamic features must be coupled to multidisciplinary aspects.

Typical 3-D CFD applications require a large number of mesh points to solve
complex flow involving multiple zones, which include skewed and stretched grids,
as well as physics modeling. Therefore, for flexibility of setting up computational
models, it is natural to choose a primitive variable approach, which has been the pri-
mary focus of this monograph. We used our flow solvers developed at NASA Ames
Research Center. However, there are a wide variety of algorithms, procedures, and
associated codes available for incompressible flows. These codes and procedures
can be utilized for obtaining results similar to those presented here. Users of off-
the-shelf codes, however, need to be fully aware of the capabilities and limitations
of the tools they choose.

In applying these computational tools (even though computer speed and mem-
ory have increased substantially in the recent past) the turnaround time still dictates
the problem size one can choose for modeling and simulation—a constraint that
will remain for the foreseeable future. In many engineering applications, it is very
important to generate solutions in a timely fashion to have any impact on design and
analysis. However, although varying degrees of solution fidelity, numerical simula-
tions, when combined with engineering and physical understanding of the problem
at hand, can provide valuable complementary information to measured data—thus
reducing the number of experimental trials required for developing advanced flow
devices. And, even when component-level optimization has been performed, a more
sophisticated approach, such as computer optimization of a reasonably complete
design, can be attempted with the increased computer speed through massive paral-
lelism. A specific example related to the Space Shuttle is presented in this chapter.

6.1 Historical Background

The development process of the Space Shuttle as the nation’s primary space trans-
portation system (STS) began in early 1969. The design process, starting from
concept to selection of the major design configuration, was much affected by polit-
ical, budgetary, and technical considerations. Budgetary constraints impacted the
selection of the vehicle configuration. The budgetary considerations included limit-
ing development cost as well as lowering operational cost. The shuttle development
program was subjected to formal economic constraints, perhaps for the first time in
space exploration. Thus, the terminology “mission computing” implicitly includes
cost and effectiveness as well as functionality.

The shuttle design also involved huge challenges of integrating various subsys-
tems as well as coordinating discipline experts in different organizations and tasks.
Eventually, in March 1972, the orbiter configuration comprising solid rocket boost-
ers and external tanks with three engines was adopted, which is similar to that flown
in shuttle missions we have observed. The three-engine configuration was selected
to enhance various abort capability.
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The Space Shuttle main engine (SSME) development work began as a part of
the two-stage-to-orbit vehicle development. The SSME was the first reusable liquid
booster engine requiring performance substantially beyond the engines available at
that time. Successfully developed by Rocketdyne, the SSME has been used in all
shuttle missions starting from the first mission, STS-1, flown on April 12, 1981.

A wide spectrum of fluid dynamics issues has been associated with the SSME
where CFD has been very valuable for analysis and design. However, in the begin-
ning, CFD technology and computing power were at a fundamental development
stage and were not available for any large-scale engineering applications such as
shuttle development. Right after the first flight, several upgrade projects began for
enhancing the safety, reliability, and performance of the shuttle. The SSME power-
head upgrade, called the Phase II+ redesign, was under way in the early 1980s.
At the same time, flow solvers were being developed at NASA, and Cray-class
computers became available. In this chapter, we will discuss how CFD began
making impacts on SSME hardware development in conjunction with integrated
design, experiments, and full-scale tests.

While the CFD application work began with this historical background, the
approaches and application processes discussed in this chapter are relevant to CFD
application processes for “mission computing” in general. It is hoped that the exam-
ples given in this chapter will provide CFD users with some valuable insights into
the potential issues and how CFD can influence real-world applications.

6.2 Flow Analysis in the Space Shuttle Main Engine (SSME)

Rocket propulsion systems using liquid propellant have been used for boosters and
spacecraft starting in the early 1950s. The Space Shuttle became NASA’s workhorse
for the Space Transportation System (STS) in 1981, and has been the primary vehi-
cle for the agency’s human space program ever since. For shuttle launches, three
powerful main engines operate in addition to two solid rocket boosters. The SSME
is 14 feet long, weighs approximately 7,000 pounds, and is 7.5 feet in diameter at
the end of the nozzle. It is propelled by liquid hydrogen and liquid oxygen (LOX),
producing a specific impulse of 453 s and 512,264 pounds of thrust in a vacuum.
In this staged-combustion cycle engine, the fuel and oxidizer are fed by a turbo-
pump. The engines operate for 8.5 min during liftoff and ascent and burn more than
500,000 gal of cryogenic fuel and oxidizer.

The SSME was originally developed without the help of CFD technology.
However, it has been the only operational liquid booster engine designed for human
space flight to date (as of 2009). Since its initial design, NASA has continued to
increase the reliability and safety of shuttle flights through a series of enhance-
ments. Modifications include new high-pressure fuel and oxidizer turbopumps, a
redesigned powerhead, and a new heat exchanger and large-throat main combustion
chamber. These modifications support the increasingly extended role of the shuttle
for scientific and commercial applications. As a part of these activities, the upgrade
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of the SSME powerhead was initiated in the early 1980s to substantially increase
the operating margin and engine durability. To achieve this goal without increasing
the weight and size of the existing engine, it became essential to understand the
dynamics of the hot-gas flow in the powerhead.

Generally, there are three categories of fluid dynamics related sub-elements in
liquid-propellant engine systems: (1) combustion devices, (2) turbopumps, and (3)
complex internal flow subsystems. Analyses of these components offer three cor-
responding categories of simulation challenges: Mixing and chemistry; flow with
cavitation; and complex internal flow in subsystems, respectively.

Because of the complexity of the geometry, an experimental approach is
extremely difficult, time consuming, and expensive. Therefore, computational sim-
ulations have offered an economical alternative to complement experimental work
in analyzing the original SSME powerhead configuration, and to suggest new,
improved design possibilities. During this redesign work, major milestones were
established for the computational effort. Highlights of this task are presented here
to explain features encountered in this mission support application from a CFD
perspective.

The late Werner von Braun said:

... Behind each apparent miracle, however, stands the flawless performance of numerous
highly complex systems. All are important. The failure of only one portion of a launch vehi-
cle or spacecraft may cause failure of an entire mission. But the first to feel this awesome
imperative for perfection are the propulsion systems, especially the engines . ..

If we call the Space Shuttle a great engineering masterpiece, the SSME is
certainly an engineering marvel. We’ll discuss next how CFD can be applied to
meet some of the fluid dynamics challenges encountered in the SSME powerhead
upgrade.

6.3 Flow Analysis Task and Computational Model for the SSME
Powerhead

The SSME hot gas manifold (HGM) is the structural backbone of the engine and
contains two preburners, a main injector, and various propellant and oxidizer ducts
and lines (see Fig. 6.1). It also includes two high-pressure turbopumps, the main
combustion chamber, and a gimbal bearing that attaches the engine to the shuttle
orbiter. Together, all components are called the “powerhead.”

In the SSME staged combustion cycle, the fuel is partially burned at very high
pressure and at relatively high temperature in the preburners. The resulting hot gas
is used to run the two-stage turbines in the high-pressure turbopumps. Hot gas dis-
charged from the gas turbine enters the annular turnaround duct (TAD) and makes a
180° turn to flow back along the outer surface of the pump through the annular fuel
bowl. The fuel-rich hot gas is directed into transfer tubes that link the bowl with the
injector. The hot gas enters the injector and flows across a forest of LOX posts. It
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Fig. 6.1 Sketch of the SSME powerhead indicating various components (courtesy of Rocketdyne,
Canoga Park, California, USA)

enters concentric tubes around the LOX posts and flows into the main combustion
chamber where it burns with the oxygen.

In Fig. 6.1, the bold outlined area from the turbine outlet to the transfer tube
connected to main injector assembly is called the “fuel side” of the hot gas manifold,
and is the focus of the redesign effort discussed in this chapter.

The Reynolds number of the primary flow in the manifold is on the order of 10°
per inch. Because of the high gas temperature, the Mach number is less than 0.12.
The flow is turbulent and is incompressible for all practical purposes. At the time of
the HGM redesign work, our preconditioning technique, as discussed in Chapter 4,
was not mature, so it was not possible to use the compressible Navier-Stokes flow
solver at this low Mach number range. Therefore, we utilized the INS3D incom-
pressible flow solver that was then being developed. Similarly, other low Mach
number flow problems not involving local high-speed compressible flow regions
can be simulated using incompressible flow solvers available today.

6.3.1 Computational Model Description

In the original design of the SSME powerhead components, the gas flows into the
main injector through three transfer ducts on the left side of the powerhead, as
sketched in Fig. 6.1 (fuel preburner side), and enters into the top portion of the



144 6 Simulation of a Liquid-Propellant Rocket Engine Subsystem
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main injector assembly where many liquid oxygen (LOX) posts are bundled (see
Fig. 6.2) on top of the main combustion chamber. On the right side of the power
head (oxidizer preburner side), two transfer ducts are connected to the right side
of the main injector assembly. Around the bottom portion of each LOX post in the
main injector assembly are a number of small holes through which the hot gas flows
into the main combustion chamber. There, it mixes with the oxidizer, which comes
through a circular passage along the centerline of each LOX post.

As a part of the HGM redesign effort, the CFD study began with an analysis of
the hot gas flow in the original powerhead configuration. When this effort began,
only the first version of the INS3D code was available, so the computed results
presented in this section have been obtained using the original version of INS3D.

We have chosen a computational model of the powerhead to analyze critical areas
where the dynamics of the hot gas flow are expected to have a significant effect on
the overall performance of the SSME. As shown in Fig. 6.3, the model starts from
the gas turbine exit on the fuel preburner side, and extends to the main injector
assembly. The main injector consists primarily of a bundle of LOX posts, which
is physically modeled by a porous media. The engine was in operation when the
upgrade effort was initiated, and then it was identified that the modification was
needed on the fuel side of the HGM. Since the hot gas from the oxidizer side and
fuel side meet in the racetrack region in the main injector assembly, the computa-
tional model for the fuel side was truncated at the racetrack where outflow boundary
conditions are imposed.

The fuel-side HGM model geometry and grid topology are shown in Fig. 6.3.
The grids in the horizontal and vertical cross section of the HGM are shown in
Fig. 6.3a, b. The model shows only one half of the fuel-side HGM geometry, as
shown by the B-B cut in Fig. 6.3a. There are three transfer ducts connecting the fuel
bowl and main injector assembly. Shown in the figure are one side duct and half of
the center duct.

The H-grids for these ducts are generated using an algebraic process starting from
a unit circle. Near the duct boundary the grid lines are concentric circles except in
the vicinity of the four singular points. Using the nearly orthogonal grid in this unit
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Fig. 6.3 Geometry and grid of the original SSME three-duct hot gas manifold model:(a) horizontal
view (cross section A-A); (b) vertical view (cross section B-B); (¢) H-grid for circular and elliptic
cross section of transfer duct; (d) unwrapped surface of annular fuel bowl (cross section C-C)
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circle, one can obtain H-grids for tubes or ducts of any given shape and dimension
by a simple linear transformation. These duct-grids are connected to the fuel bowl
and circular racetrack-shaped region (see Fig. 6.2) of the main injector. As shown
on left side of Fig. 6.3c, the original duct design used a circular cross section. On
the right side of Fig. 6.3c, the grid for an elliptic duct is also shown, which allows
a redesign option if deemed beneficial. Note that any geometry modification must
include structural analysis as well as fluid dynamics.

Two approaches can be considered in coupling two computational regions,
namely, the fuel bowl and the transfer ducts. Overlapping grids will require inter-
polation, while perfectly matching grids simplify this at the expense of adding
complexity in grid generation. In our computation, matching grids were employed.
Figure 6.3d shows an unwrapped surface of the annular fuel bowl with openings.
The H-type grid topology for the transfer duct then allows smooth transition from
the axisymmetric TAD to the transfer ducts. This arrangement is also convenient in
clustering the grid near the duct wall. For general development work, overlapping
a grid arrangement may be more convenient for parametric comparison of various
geometric options.

The grid for the entire HGM system is generated by using algebraic functions,
and is written with a high degree of flexibility for changing geometric config-
urations. By specifying the shape, dimension, and preferred number of transfer
ducts, a grid for a variety of new HGM configurations can be obtained in a short
time. The ducts described in this section are connected directly to the fuel bowl
without any fairings, while in the original engine the three transfer ducts were con-
nected smoothly to the annular fuel bowl with fairings. This configuration, with
an abrupt change in geometry, is more demanding computationally than smooth
configurations. At the time this task was performed, the particular grid genera-
tion routine was customized for this particular application, partly because automatic
grid generators were not versatile enough to accommodate this configuration. Now,
commercial packages and software in the public domain are capable of handling
complex geometry gridding and are readily available.

6.3.2 Multiple-Zone Computation

A large number of mesh points are required to solve the 3-D turbulent flow in the
SSME. To facilitate numerical simulations, the domain of interest is divided into
several zones. This requires a special treatment at the zonal interface for a smooth
continuation of the solution between zones.

Figure 6.4 shows a five-zone arrangement for the HGM flow field. Zone 