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Supervisor’s Foreword

In 2009, Gaiotto constructed interesting classes of 4D N ¼ 2 supersymmetric gauge
theories out of the compactification of 6D (2, 0) theories. It implies that the com-
pactification of six-dimensional superconformal theories (6D SCFT) is a useful step
to explore a large class of the four-dimensional superconformal field theories and
the relations among them. Later 6D SCFT was classified by Heckman, Morrison,
and Vafa from the F-theory viewpoint. Motivated by such development, Kantaro
Ohmori, the author of the thesis, together with Y. Tachikawa, H. Shimizu, and
K. Yonekura, studied the simplest compactification of 6D SCFT and explored their
properties. In this thesis, he summarized their works. The main content of the paper
is divided into two chapters (Chaps. 2 and 3).

The study of six-dimensional conformal field theories is difficult since they are
usually strongly coupled and do not have Lagrangian description. It implies that the
perturbative analysis is difficult. In Chap. 2, he argued that a tensor branch effective
theory describes some aspects of the strongly coupled UV physics which enabled
him to calculate anomaly polynomial associated with such system. He also applied
the machinery of brane/singularity engineering to 6d super conformal field theories,
which guarantees the existence of such systems.

In Chap. 3, he focuses on the circle/torus compactification of 6d SCFTs. He
considered two types of 6d SCFT: one is “very-higgsable” theory and the other is
something that can be higgsable to N ¼ ð2; 0Þ theories. He studied the general
properties of such compactifications and identified the 4d-theories with so-called
class S-theories and their combinations.
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Chapter 1
Introduction

1.1 Motivation

1.1.1 General Motivation

Quantum field theory (QFT), the framework that describes our world above the
Planck scale, has been a rich research subject in Physics. Among QFTs, the super-
symmetric ones are extensively studied and many nontrivial facts are discovered
although the real-world QFT, which is the standard model below the electroweak
scale, is non-supersymmetric. The reason to study supersymmetric theories is that
we would like to understand analytically general features of quantum field theory
beyond the level of perturbation, and so far typically we need supersymmetry to
investigate such non-perturbative phenomena in QFT. In particular, the fixed points
of renormalization group (RG) flow of supersymmetric theories, that is superconfor-
mal field theories (SCFTs) are the most important class.

This thesis is devoted in particular to six-dimensional (6d) SCFTs. One of the
reasons to study theories in 6d (, not 4d in which we live,) theories is to think of
“What is quantum field theory?”. In 6d supersymmetric Lagrangian, there is no
classically marginal or relevant coupling. Therefore, all the theories are free in IR on
a generic point of its moduli, and in UV the couplings diverges. In 4d QED, the gauge
coupling is classically marginal but IR-free in the quantum theory, meaning that the
theory suffers from Landau pole and needs additional scale below the Landau pole
that cures the divergence of the gauge coupling. In 6d, every interacting theory looks
like having a Landau pole, therefore it seems that there is no way to cure it.

© Springer Nature Singapore Pte Ltd. 2018
K. Ohmori, Six-Dimensional Superconformal Field Theories
and Their Torus Compactifications, Springer Theses,
https://doi.org/10.1007/978-981-13-3092-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3092-6_1&domain=pdf
https://doi.org/10.1007/978-981-13-3092-6_1


2 1 Introduction

Fascinatingly, this conclusion is not true. String/M-theory constructions [1, 2]
established the existence ofUVcompleted 6d supersymmetricN = (2, 0)1 theories,
if one believes the consistency of the string/M-theory. Further, there is no need to add
scales by hand, but the theory automatically cures itself. In UV, the theory is strongly
coupled and there is no known Lagrangian that describes the UV physics. Still,
the existence of such theories is as believable as the existence2 of string/M-theory
because of various consistencies which have been checked.

The very lesson here is that a QFT is not (necessarily) defined by a Lagrangian,
and 6d SCFTs are good model cases of non-Lagrangian3 theories. We would like to
investigate how to treat such theories and calculate physical observables. Actually,
the author and the collaborators found in [4] that the anomaly polynomial, which
is one of physical observables, of a strongly coupled SCFT can be derived only
from the data of IR nearly-free physics connected with the considered SCFT by
renormalization group flow.

1.1.2 Another Reason: Compactification

Another reason why we study 6d theories, which is closely related to the above, is
that the said dimension is the maximum dimension which admits the superconformal
symmetry [5]. A single 6d SCFT can generate various lower dimensional (including
4d) supersymmetric theories via compactification (or dimensional reduction), there-
fore 6d SCFTs are possibly useful tools to study lower dimensional theories. In fact,
the relation between 6d N = (2, 0) theories and 4d N = 2 theories called class S
theories [6] is known to be much interesting and important.

The final objective of the researches included in this thesis is to generalize this
seminal result to less supersymmetric situations. There are much more 6d N =
(1, 0) SCFTs than N = (2, 0) ones, therefore we expect richer structure among
them and their compactifications.

Class S theoriesNot only a single QFT has profound aspects but also an appropriate
family of QFTs tends to have abundant structures, and such collective features are
attracting more and more attentions.

One of the most important family of QFT is the so-called class S theories, intro-
duced by Gaiotto in 2009 [6]. The class S theories are defined by means of the
six-dimensional N = (2, 0) theory of type G = An, Dn, E6,7,8, which we denote

1The symbolN denotes the number of supersymmetries by the unit ofminimal spinor representation
of the considered dimension, as usual. 6d admits symplectic Majorana-Weyl fermions therefore the
type of the supersymmetry algebra is specified by a pair of integers each represents the number of
supercharges with +/− chiralities. In 6d, N = (1, 0) supersymmetry algebra has 8 supercharges
which is equal to the number of supercharges in 4d N = 2 algebra. A brief explanation is in
Sect. 2.1. For more detail, see, for example, Appendixes of [3].
2Here the word “existence” means theoretical (or mathematical) existence. We are not going to
discuss whether this world is governed by the string/M-theory.
3Again we would like to remark that non-Lagrangian means there is no known Lagrangian now.
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T (2,0)
G . A member of the family is a four dimensionalN = 2 supersymmetric QFT

which can be obtained by compactification of the six-dimensionalN = (2, 0) theory
on a Riemann surface (a smooth two-dimensional surface) C possibly with certain
punctures. The existence of 6d N = (2, 0) is conjectured by the string/M-theory,
and the theory does not admit any Lagrangian description known so far. However,
assuming the existence and a few additional properties deduced easily from string/M-
theory miraculously predicts many properties among the class S theories which is
otherwise very difficult to see.

The easiest case is when the two-dimensional surface C is a torus T 2 with the
flat metric. Then all sixteen supercharges in the 6dN = (2, 0) theory are preserved
and therefore the 4d theory is expected to be the N = 4 Super Yang-Mills theory
(SYM) whose vector field components is described by the Lagrangian

4π2

g2
trF ∧ �F + θ

4
trF ∧ F. (1.1)

where F is the field strength of the G vector field.4 The complex structure τ (ratio of
two period “lengths” of the T 2) is identified with the gauge coupling τ = θ

2π + π i
2g2 .

This realization of the 4d N = 4 SYM is accompanied by a highly nontrivial fact:
from 6d point of view, there is a large diffeomorphism acting on T 2 which sends the
complex structure τ to − 1

τ
, the resulting 4d N = 4 SYM should also be invariant

under the map. This is called S-duality.5,6

Note that the S-duality is the relation between a strongly coupled theory and
a weakly coupled theory, therefore it is very difficult to show the duality starting
from theLagrangian.However, the construction usingmysteriousN = (2, 0) theory
reveals the duality seemingly easily. Yet this is at this stage just that the mystery of
the S-duality is translated to the mystery of the 6d N = (2, 0) theory, but the class
S construction in [6] also provides other highly nontrivial facts about the N = 2
theories. This iswhyGaiotto’s introduction of class S theories is considered a seminal
contribution.

With less supercharges? The aim of the research contained in this thesis is to
generalize the above story on 6d N = (2, 0) SCFTs and 4d N = 2 theories to
theories with less supercharges. In [11, 12], many 6d N = (1, 0) SCFTs (which
have eight supercharges) are engineered and classified in the F-theory language.
While N = (2, 0) theories are classified by simply-laced Dynkin diagrams which
contains two infinite series of AN , DN and three exceptions E6,7,8, there are much
moreN = (1, 0) theories.

4In this thesis the field strength F is multiplied by i
2π compared to the usual notation used in

Physics. With this normalization, F is valued in the integer cohomology when the gauge group is
abelian.
5This statement is not precise. The global structure of 4d gauge group changes under the S-dual,
meaning that the 6d theory is not completely invariant under the large diffeomorphism. See [7].
6The first idea of the S-duality came in [8], and strong evidences for N = 4 case were discovered
in 90’s: e.g. [9]. The relation to 6d theories was proposed in [10] for the abelian case.
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When an N = (1, 0) theory is compactified on a general Riemann surface, half
of the supercharges are broken and thus the resulting 4d theory possesses 4dN = 1
supersymmetry. Such construction might enable us to generate various strongly cou-
pledN = 1 systems probably we have never known, and to reveal duality relation-
ships among them.

1.1.3 What will be Actually Studied in This Thesis

Torus compactificationAlthough our final goal is to investigate puttingN = (1, 0)
theories on general Riemann surfaces, in this thesis we will consider only torus
(T 2) compactifications of them as a starting point. Since T 2 is flat, all the eight
supercharges of a 6d N = (1, 0) theory remains upon the T 2 compactification,
giving us a 4d N = 2 theories.

Intricate M-theory background A byproduct of the recent researches on the 6d
SCFTs was to reveal some intricate facts on M-theory backgrounds [13] which pre-
serves eight supercharges. For example, an M5-brane, which is a six-dimensional
object in M-theory, can split into several parts when trapped in the singularity of
the ALE space C2/�g with g = Dk, E6,7,8. In this thesis we will see some of such
nontrivial physics of M-theory along the way of reviewing the known results on 6d
SCFTs.

We would like to emphasize this byproduct, therefore contents in the review part
Chap. 2 are described mainly in the M-theory language. It is hoped that the a review
part, though it is review, might play a complementary role to the available literature,
because in the literature usually 6d SCFTs are engineered and described mainly by
means of F-theory.

1.2 Structure of the Thesis and Rough Summary

Herewe explain the structure of the thesis and roughly summarize the result. This the-
sis contains four chapters: the first one is this introduction, the second one is devoted
to reviewing known result (containing slightly new considerations) on 6d SCFTs,
the third one includes the main contents about compactifications of 6d SCFTs, and
we conclude in the last. The main chapter is further split into three sections. Each
section correspond to one of the author’s and his collaborators’ paper:

• Section 3.1: “6d N = (1, 0) theories on T 2 and class S theories: Part I” [14]
• Section 3.2: “S1/T 2 compactifications of 6d N = (1, 0) theories and brane
webs” [15]

• Section 3.3: “6d N = (1, 0) theories on T 2 and class S theories: Part II” [16]

Some amount of the results in [14] is also dissolved into Chap.2.
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In Sect. 3.1, wewill consider the torus compactification of a 6dN = (1, 0) SCFT
T which satisfies a condition we call “very-higgsable”. The main result there is

The torus compactification 4dT of a very-higgsable 6d theoryT has a strongly
coupled 4d N = 2 SCFT fixed points. The 4d central charge can be calcu-
lated from 6d anomaly polynomial. The torus modulus τ is not a marginal
deformation of the 4d SCFT 4dT , but it is irrelevant.

This is a generalization ofwell-known relation between the 6dE-string theory and the
E8 theory of Minahan and Nemeschansky. Note that in this case the torus modulus τ

is not a marginal deformation of the 4d theory, as opposed to the case ofN = (2, 0)
theory explained above. This means that the story of class S theory [6] cannot be
naively imported into the whole N = (1, 0) theories.

InSect. 3.2,we investigate concrete examples of very-higgsable 6d theories,which
are higgsable to E-string theory. There we will find

For a theory in the class of very-higgsable theories we consider, the torus
compactification is identified with a class S theory whose Gaiotto curve C is
a three-punctured sphere.

We will extensively use the method of 5d brane webs [17], generalizing the analysis
of [18].

In Sect. 3.3, we study 6d theories which are “higgsable toN = (2, 0) theories”.
An example of a “higgsable to anN = (2, 0) theory” is anN = (2, 0) theory itself.
Those theories are not very-higgsable, and thus the above result for very-higgsable
theories are not applied. The result can be roughly summarized as follows:

For a 6d theory T which is higgsable to an N = (2, 0) theory, its torus
compactification 4dT does not generally have a fixed point composed of a
single coupled 4d SCFT (without turning on Wilson lines along the torus).
Rather, in some examples the 4d theory 4dT has a fixed point containing two
class S theories coupled with each other by IR free gauges fields. The torus
modulus τ is a marginal deformation of one of them. In some special cases,
one of two class S theories happens to be trivial, and the fixed point is a single
class S theory.

AN = (2, 0) is included in the “some special cases”mentioned above, and there are
infinitely many otherN = (1, 0) theories in it. Therefore, we hope many properties
of class S theories can be generalized to those cases when we put on those theories
on general Riemann surfaces, though it is far from the scope of this thesis.
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Possible shortcut This paper is almost linearly organized. However, Sects. 2.5 and
3.2 is somewhat isolated, therefore can be skipped if the contents in Sect. 3.2 is not
needed.

1.3 General Notations and Remarks

Before starting the main part, we need to define some notations which will be fre-
quently used in the thesis.

First, we are going to discuss various 6d theories. A 6d theory will be denoted
by a symbol T . To denote some specific theories, we will modify the symbol T
like T (g,g)

N (the definition of this theory will be given later). In Chap.3, we will talk
about circle/torus compactifications of a 6d theory T . The resulting 5d/4d theories
are denoted by 5dT , 4dT , respectively. If the 6d theory is T (g,g)

N , the compactified
theories are 5dT (g,g)

N , 4dT (g,g)

N .
In the text various Lie algebras/groups appears. The group theoretical constants

and their notations are summarized in Appendix 2.A. We denote 6d gauge groups by
g rather thanG and treat them as Lie algebras. Our consideration will be independent
of global structures of 6d gauge groups, so we will not be careful about them, e.g.
whether the gauge group is SU(N ) or SU(N )/ZN . The notation G will be used for
a type of N = (2, 0) theory, which is classified by G = A, D, E root systems in
Sect. 3.3.

In this thesis we will heavily use the language of differential forms. We use the
notation where Ameans gauge-potential 1-form and F does its field strength 2-form.
The star symbol � denotes the Hodge dual, so that the Yang-Mills action functional
is proportional to

∫
F ∧ �F . We also encounter 2-form field B everywhere in this

thesis, and its field strength 3-from is denoted by H . The convention of theMinkowski
metric is (−,+,+,+,+,+).

Terminologies defining classes of N = (1, 0) SCFTs To study torus compactifi-
cations, it will turn out to be convenient to classify N = (1, 0) SCFTs by the IR
fixed point of the Higgs branch flow triggered by a most generic Higgs branch vev.
The “very-higgsable” theories refers to theories whose Higgs flow ends at the free
fixed point containing only Nambu-Goldstone hypermultiplets. When the generic
Higgs flow of aN = (1, 0) SCFT ends at aN = (2, 0) SCFT up to NG hypers, the
theories is called “higgsable toN = (2, 0) theory”. As a subclass of very-higgsable
theories, theories with Higgs flow go through (higher rank) E-string theory are called
“higgsable to E-string theory” in this thesis.

As explained before, very-higgsble theories are considered in Sect. 3.1, theories
higgsable to E-string theory are in Sect. 3.2, and theories higgsable to N = (2, 0)
theory are in Sect. 3.3. In those sections, the terminologies are used for a bit nar-
rower meaning for technical reasons. The precise definitions of the terminologies
are introduced in each corresponding sections.
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Chapter 2
Six-Dimensional Superconformal Field
Theories

In dimensions d ≤ 4, one might think that it might be best to start from a Lagrangian
theory to study (super) conformal field theories. Some CFTs are weakly coupled,
and many others can be described as an IR limit of Lagrangian theories in these
dimensions. We can exploit many techniques for studying such theories depending
onLagrangian andpath-integral formalism.On the other hand, ind = 5, 6, a coupling
constant in Lagrangian always becomes weakwhen the theory flow into IR, therefore
a non-free fixed point sits at UV. This is a completely different situation from d ≤ 4.

A known good strategy to find such UV fixed points is string theory construction.
Branes in string theory, or an intersection of branes, carry its worldvolume theory on
it, and often there is a limit inwhich theworldvolume theory becomes decoupled from
any scales in the string theory. This limit defines a CFT. Another way of obtaining
a CFT is from a singularity of a compactification geometry. Actually, a singularity
and branes or an intersection of branes are often dual to each other.

While such string theory construction almost ensures the existence of SCFTs (if
we believe the existence of string theory), it does not tell us the physics of obtained
SCFTs clearly at once. As we will see, in the six-dimensional case, what brane
configurations and the singular geometry directly tells us is the low energy effective
particles on the tensor branch. Thus, we need to extract informations about UV fixed
points from IR effective physics. So far, the only quantities which can be read from
general IR effective spectrum is the anomaly polynomial,which is strictly constrained
as we will see.

In this chapter, first we remind ourselves nearly free fields with 6d N = (1, 0)
symmetry, and study anomaly constraints on the IR effective theory. Then, we will
quickly review string theory construction of 6d SCFTs, mainly focusing onM-theory
one.

© Springer Nature Singapore Pte Ltd. 2018
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10 2 Six-Dimensional Superconformal Field Theories

2.1 IR Effective Spectrum and Tensor Branch Anomaly
Matching

As said above, a nontrivial 6d SCFT sits at UV, not IR as in d ≤ 4, and flows to a free
theory in IR. Thus,we have a nearly freeLagrangian theory in near-IR,which consists
of 6d N = (1, 0) super multiplets. There is no relevant deformation preserving
this amount of supersymmetry, therefore a possible flow should be triggered by
a vev of the scalars [1]. Here we focus on one of two types of scalar vev called
the tensor branch, which preserves su(2)R symmetry of the UV theory, and find a
strong anomaly constraint on tensor branch theory. Actually, the strong constraint
also completely determines the anomaly polynomial of the ’t Hooft anomalies with
respect to gravitational backgrounds, R-symmetry backgrounds, flavor symmetry
backgrounds, and their mixtures.

2.1.1 N = (1, 0) Supermultiplets

Let us start from enumerating the 6dN = (1, 0) supermultiplets whose components
have spin no more than 1. A supersymmetry parameter of the 6dN = (1, 0) super-
symmetry transforms as a chirality-plus symplectic-Majorana Weyl spinor εi which
satisfies

ε∗
i = εi j Bε j , �ε j = ε j (2.1)

where i = 1, 2 is the index of the doublet of the su(2)R , εi j is the antisymmetric
tensor, B is a matrix acting on spinors satisfying BMμνB−1 = −Mμν∗ for a Lorentz
generator Mνμ, and � is the chirality operator. The supercharge Qi

α satisfies the
commutation relation

{Qi
α, Q j

β} = 2εi j�μ
αβ∂μ. (2.2)

In this thesis we will not treat this algebra directly. Instead, all the necessary informa-
tion are encoded into the bosonic part of the supersymmetric effective action which
we will see. There are three types of such multiplets, which are tensor, vector, and
hypermultiplets as summarized in Table 2.1.

The onlyN = (1, 0)multiplet unique to six dimensions is the tensor multiplet. A
tensor multiplet consists of a self-dual tensor filed B+

μν , a chirality-plus (Majorana)
fermion ξ+, and a real scalar a. The self-dual condition means the field strength
3-form H is self-dual: H = 
H with 
 being the Hodge star operator under the
Minkowski signature.1 Supersymmetry prohibits a potential for a, and thus each
tensor multiplet is accompanied by a real dimension 1 flat direction, which is called
the tensor branch. The scalar a is not charged under the su(2)R symmetry, so that the

1The relation between H and B can differ from H = dB since the Bianchi identity for H can be
modified. This will be important later for anomaly matching.
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Table 2.1 The names and physical components of 6d N = (1, 0) supermultiplets. The meanings
of letters representing component fields can be found in the main text. The fermions ξ+, λ− in the
tensor and vector multiplets are doublets of su(2)R and the symplectic Majorana-Weyl condition is
imposed, while the fermion ψ+ in the hypermultiplet is neutral under the R-symmetry. As said in
the main text, the complex scalars φ in the hypermultiplet also form a doublet of su(2)R

Components

Tensor B+
μν, ξ+

i , a

Vector A+
μ , λ−

i

Hyper ψ+, φi

tensor branch vev preserves the R-symmetry. A tensor multiplet reduces to a u(1)
vector multiplet in 5d upon circle compactification.

A vector multiplet contains a gauge field Aμ valued in a gauge algebra g, and
a chirality-minus gluino λ− valued in the adjoint representation. Note that a vector
multiplet does not include any scalar field; thus, there is no “Coulomb branch” in
6d.2

Ahypermultiplet is composedof a quaternionic scalarφ and chirality-plus fermion
ψ+,whoseflat direction is called theHiggs branch, as in the case of lower dimensions.
The quaternion scalar φ charged as a doublet under the su(2)R symmetry, and thus
a Higgs vev breaks the R-symmetry.

AN = (2, 0) tensormultiplet, which is the onlyN = (2, 0) supermultiplet with
spin not more than one, can be decomposed into one N = (1, 0) tensor multiplet
and one u(1) vector multiplet.

2.1.2 Tensor Branch Effective Theory and Green–Schwartz
Topological Coupling

We need not only the free supersymmetric spectrum, but also we need possible IR
interactions. Here we consider an RG flow from an UV fixed point caused by a
generic tensor branch vev, so that the IR theory contains at least one tensor multiplet.

Although there is no local Lagrangian description for the self-dual tensor field
B+ without any auxiliary fields and preserving the manifest 6d Lorentz invariance,
in the following we are going to consider “pseudo-actions” for it whose variational
derivatives, formally performed ignoring the self-duality, give equations of motion.
Path-integral formulations using auxiliary fields or non-local action is available in
the literature [2, 3] though the equations of motion are enough in our context.

First, we consider the case with N of tensor multiplets and with none of other
types of supermultiplets. The free pseudo-action for the bosonic part of them is

2Some literature calls the flat direction of a tensor multiplet scalar a the Coulomb branch. In this
thesiswe avoid that to emphasise that the scalar a belongs to a tensormultiplet, not a vectormultiplet.
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−π

∫
ηi j

(
dai ∧ 
da j + Hi ∧ 
Hj

)
(2.3)

with ai being scalars and Hi being tensors field strengths. As the rule to derive an
equation of motion from a pseudo-action, the variation of Hi with respect to Bi is
defined as

δHi (x)

δdB(y) j
= δ(6)(x − y)δi j . (2.4)

The supersymmetry relates the kinetic terms of scalars and tensors. Note that the
kinetic matrix ηi j should be positive definite for the scalars to have kinetic terms
with the correct sign.

The symmetric matrix ηi j is a convention-independent physical quantity when
tensor fields are appropriately normalized as follows. The gauge variance of the
tensor field is

Bi → Bi + dλi (2.5)

where λi is a 1-form gauge parameter. More precisely, λ should be a U(1) connec-
tion on the 6-dimensional manifold X6. This means when we pick a 2-dimensional
submanifold M2, the integral ∫

M2

dλi (2.6)

can take a nontrivial but quantized value when the homology class [M2] is nontrivial.
Wenormalize so that theminimal value of the above integral is 1, therefore the integral
is valued in Z. The theory possesses surface defects with a coupling to B defined by

− 2πqi
def

∫
M2

Bi . (2.7)

Gauge invariance forces that the defect charge qi
def should be integers. With this

defect, The equation of motion and the Bianchi identity become

d 
 Hi = dHi = ηi j q
j
defP.D.[M2], (2.8)

where ηi j is the inverse matrix of ηi j and P.D.[M2] is the Poincaré dual of the
homology class [M2]. In the following we raise and lower the indices i, j using ηi j

and ηi j .
The theory should also be able to contain a dynamical string which also cou-

ples with Bi . We define the dynamical self-dual string charge qi using the coupling
between a dynamical string qi occupying M2 and Bi as

2πηi j qi

∫
M2

Bj . (2.9)
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With this coupling, the Bianchi identity becomes

dHi = −qiP.D.[M2]. (2.10)

We quantize the field strengths Hi so that qi takes values in Z
N with N being the

number of tensor multiplets, and possible qi fills the latticeZ
N .3 Then, the matrix ηi j

describes the difference between the dynamical charge lattice � spanned by qi and
the defect charge lattice�∗ spanned by qi,def = ηi j qi

def. Further, the gauge invariance
of the coupling for any integer charge qi requires

ηi j ∈ Z (2.11)

which is the 6d version of the Dirac-Zwanziger charge quantizaiton [4]. The quotient
�∗/� is an observable of a theory and called the defect group.

Demanding a string/defect preserves a half of the supersymmetry, the supersym-
metric completion of the coupling (2.7) and (2.9) includes4

(∞ − ai )q
i
defvolM2, aiη

i j q jvolM2, (2.12)

where volM2 is the volume ofM2 and we dropped an unimportant overall coefficient.
As seen, the tension of a dynamical string is controlled by the tensor vev ai =
ηi j a j . A dynamical string should become massless at the UV SCFT point where
ai = 0 since the cosmological constant on the dynamical string is prohibited by the
scale invariance of the SCFT. On the other hand, a defect has infinite cosmological
constant as it is not dynamical, though its repose to a change of the tensor vev
ai is meaningful. Later, to determine ηi j for a theory engineered with branes, we
will compare couplings (2.12) for minimally charged defects and minimally charged
strings.

Here, we would like to make an assumption on the tensor branch theory of 6d
SCFT, which we are going to use throughout this thesis. That is:

Given a 6d SCFT, The string charge qi of a dynamical string completely clas-
sifies the type of the string in the tensor branch theory. In other words, no two
distinct types of dynamical strings have the same charges.

3One can formally add anti-self-dual two-form field making the pseudo-action an actual action,
then the quantum consistency requires eiS should be invariant under the gauge transformation.
Or, one can discuss without hand-waving pseudo-action argument in the language of differential
cohomology [3].
4Taking M2 to be the flat plane along the x1, x2 direction, the supersymmetric variation of the
Lagrangian (2.9) is proportional to εi j ε̄i�

12ξ j , which can be canceled by the variation of a that is
proportional to εi j ε̄i ξ j if the parameter εi have a definite chirality along the plane.
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For every concrete theory treated in this thesis, this assumption holds.5 The motiva-
tion is the following. The tensions of two strings which have the same string charges
should be controlled by only one component of the tensor vevs. And changing the
difference M of the worldsheet cosmological constants of the two strings seems
not to contradict to any low-energy consistency. This is an analogy for the relation
between mass parameters and flavor symmetries in 4d N = 2 theories. However,
since the 6d UV SCFT does not have marginal or relevant deformations, there is no
place where such a parameter M arises.6 Since still there might be an unknown UV
mechanism which prohibits the IR parameter M , this argument is not a proof.

Next, we would like to include vector multiplets. The kinetic term for the gauge
field

∫
F ∧ 
F have mass dimension 4, and thus the coupling constant is irrelevant.

Instead, a classically marginal coupling
∫
aF ∧ 
F provides gauge kinetic term via

vev of the scalar a. If we assume that the tensor branch effective theory has a UV
fixed point, the only available scales in the tensor branch theory are the vev of tensor
scalars ai . Therefore, all gauge couplings should be identified with the vev of tensor
scalars. Therefore, the action including bosons in vector and tensor multiplets is

2π
∫

η̃ia

(
ai
1

4
TrFa ∧ 
Fa + Bi

1

4
TrFa ∧ Fa

)
, (2.13)

with Fa (a = 1, . . . , M) being the field strength for a simple component ga of the
whole gauge algebra. We do not assume the tensor branch theory contains abelian
vector multiplets, since the anomaly cancellation condition which will be discussed
later prohibits abelian factor. The coefficients of the two terms are related by super-
symmetry again [5].

We call the topological coupling between B and the characteristic class c2(Fi ) =
1
4TrFi ∧ Fi , which is the second Chern class when the gauge algebra is su, the
6d Green–Schwartz coupling, because these terms will play the same role in the 6d
anomaly cancellationmechanism [6] as the celebrated 10dGreen–Schwartz coupling
does in 10d supergravity anomaly cancellation [7], as we will soon see. Therefore,
the gauge coupling 1/g2 is controlled by the tensor branch vev of ai .

The Green–Schwartz coupling in (2.13) induces a modification of the Bianchi
identity for Hi through the equation of motion and the self-dual condition as

dHi = −ηi j η̃
jac2(Fa), (2.14)

where ηi j is the inverse matrix of ηi j . When a zero-sized (anti-)instanton string in
terms of ga localizes on the two-dimensional subspace M , the class c2(Fa) becomes
−P.D.[M], and the Bianchi identity (2.14) get identical to (2.10), meaning an instan-
ton string for gauge algebra ga carries charges qa

i = −ηi j η̃
ja under the tensor fields

Bi , forming a sublattice �instanton in the charge lattice �. The assumption about

5Further, to the best of the author’s knowledge, there is no known counterexample.
6The 6dUV theory can be a little string theory. In that case, theUV little string theory is accompanied
by a string scale M and therefore the assumption is wrong.
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dynamical string made above requires �instanton should be a rank M sublattice of �

where M is the number of simple components of the gauge algebra.
Further, if a primitive instanton strings have charge V which is not primitive in

� but x times a primitive vector v, there are two distinguishable types of strings
with charge V , one is the instanton, another is coincident x strings with charge v.
Therefore, �instanton should be a primitive sublattice of �. Thus, we can retake a
primitive basis of � which contains primitive basis of �instanton, such that

η̃ia = ηia . (2.15)

For later use, we rewrite the bosonic action for the tensor and vector multiplets:

2π
∫

ηi j

(
−1

2
dai ∧ 
da j − 1

2
Hi ∧ 
Hj + ai

1

4
TrFj ∧ 
Fj + Bic2(Fj )

)
. (2.16)

Here, formally we regard the gauge algebra as a direct product of N gauge algebras
⊕N

i gi , with gi possibly empty.

2.1.3 Anomaly Matching

Classically, any global symmetry in the spectrum and the interactions in a field theory
can be gauged by making backgrounds fields coupled to the symmetry dynamical.
This entail the introduction of the kinetic term for the gauge field when the symmetry
is continuous. Quantum anomaly is the obstruction for this gauging procedure in a
quantized theory.

One should distinguish anomalies for gauge symmetry and anomalies for global
symmetry. The former is a constraint; the gauge anomaly should vanish for the
quantum theory to be consistent. The latter is an observable, and can be though of
as an effective action for non-dynamical backgrounds.

The local anomaly of continuous symmetries, which is called ’t Hooft anomaly,
can be characterized by an anomaly polynomial I8 defined by the descent equation7

I8 = dI (0)
7 , δ I (0)

7 = dI (1)
6 (2.17)

where I6 is the 6-form which determines the variation of the anomaly effective
action W by δW = ∫

X6
I6, and δ is an infinitesimal variation of background fields.

The anomaly polynomial I8 should be an invariant closed 8-form consisting of back-
ground fields.

Assume that the considered 6d IR theory has gauge group gi , flavor group fi , and
R-symmetry group R = su(2). In this thesiswe ignoreU(1)flavor symmetries,which
are anomalous in most cases in 6d, and do not consider U(1) gauge group, therefore

7The descent equations should be regarded as equations on the universal line bundle.
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we assume gi , fi to be semi-simple. The possible terms in the anomaly polynomial 8-
from I8 can be constructed from the characteristic classes TrF F4

fi
, c2(Ffi ) = 1

4TrF
2
fi
,

c2(R) = 1
4TrF

2
R and the Pontryagin classes p1(T ), p2(T ) of the tangent bundle T X6.

For example, I8 can contain

I8 ⊃ Trfi F
4
fi
, c2(Ffi )c2(R), c2(Ffi )p1(T ), p2(T ). (2.18)

How about the terms including the gauge field strength Fgi ? As already told, the
pure gauge anomaly, namely the terms proportional to Trgi F

4
gi

or c2(Fgi )
2 should

vanish for the theory to be consistent. Further, the UV fixed point should be able
to couple with gravity background, which requires that the gauge-gravity anomaly
terms, namely c2(Fgi )p1(T ), in near IR effective theory should be absent. The mixed
R-gauge anomaly c2(Fgi )c2(R) should also vanish, since we require the UV fixed
point has superconformal symmetry, which contains R-symmetry. Finally, as we will
see in string construction, we are also going to assume all non-U(1) classical flavor
symmetry exists after quantization, which requires c2(Ffi )c2(gi ) to be absent. In
summary, we require that all pure- and mixed- anomalies involving gauge field Fgi

should vanish, and this is going to give strong constraints on the IR theory spectrum.
Fermions contained in various multiplets induce ’t Hooft anomaly Inaive from

their 1-loop 4-point Feynman diagram. In our notation, which is summarized in
Appendix 2.A, the anomaly polynomial of Weyl fermions in a representation ρ

becomes
Â(T )trρe

iF , (2.19)

where Â(T ) is the A-roof genus with respect to the tangent bundle T X6 of the
spacetime. For each N = (1, 0) multiplet, the 1-loop contribution for the anomaly
polynomial is also summarized in the Appendix. The important thing is that even for
the vector multiplet with non-abelian gauge group, the gauge anomaly is present in
6d, and it is impossible to cancel the gauge anomaly by adding hypermultiplet. Thus,
we need another source of anomaly that cancels this. This is completely the same
situation as when considering the 10d vector multiplet. Therefore, we expect that the
Green–Schwartz coupling induces additional anomaly IGS, and in the total anomaly
I8 = Inaive + IGS all the anomalies involving gauge field strength might vanish.

As in the 10d Green–Schwartz mechanism, the modified Bianchi identity (2.14)
requires that the definition of the field strength should change into

Hi = dBi − CSk, (2.20)

where CSk is the Chern–Simons 3-form normalized by dCSk = c2(Fk). To this Hi

to be invariant, the tensor field Bi should vary under the gauge transformation as it
cancels the variation of the Chern–Simons form. The variation of B induces variation
of the pseudo-action (2.13), though it is not clear that variation calculates correct
anomaly. Actually, in [8], using mathematical technique of differential cohomology,
it was shown that the contribution to I8 from the topological coupling is
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Table 2.2 Gauge algebras with which the pure SYM theory with one tensor is allowed by the
anomaly can be condition. The number in the second row indicates the coefficient η in IGS which
should be an integer

su(3) so(8) f4 e6 e7 e8

η 3 4 5 6 8 12

1

2
ηi j c2(Fi )c2(Fj ). (2.21)

This 6d version of anomaly contribution was also observed as a required consistency
from string theory in [6].

For example, let us see the case where the number N of tensor multiplets is one,
the gauge algebra is su(3), and there is no hypermultiplet. As stated in Appendix
2.A, the anomaly from fermions in a vector with gauge algebra su(3) and a tensor
multiplet is

Inaive = −3

2
c2(F)2 − 1

4
c2(F)p1(T ) − 3c2(R)c2(F)

− 7

24
c2(R)2 − 7

48
c2(R)p1(T ) − 11p1(T )2

1920
− 7p2(T )

480
.

(2.22)

The pure gauge contribution − 3
2c2(F)2 can be canceled by the Green–Schwartz

contribution (2.21) with η = 3.
The su(3) pure SYM theory with one tensor is the only pure SYM theory allowed

by the anomaly cancellation condition with an su gauge algebra. For su(N ), which
have an independent quartic Casimir, the naive anomaly polynomial contains a term
proportional to TrF4, which cannot be killed by the Green–Schwartz contribu-
tion composed of c2(F). For su(2), the contribution for the pure gauge anomaly
is − 4

3c2(F)2 which is again unable to cancel by (2.21) because η should be an
integer.8

Aside from su(3), exceptional gauge algebras e6,7,8, f4 except for g2 and so(8)
can form pure SYM theory with one tensor. For those algebras TrF4 is related to
c2(F)2, because of non-existence of independent quartic Casimir for exceptional
groups and just an accident for so(8). Moreover, the coefficient η in IGS is integer
for those algebras, as listed in Table 2.2. We will see the UV SCFTs for all of those
theories can be engineered in F-theory.

Along this line, one can classify possible gauge algebras and matter hypers with
which the gauge anomaly canceled by the Green–Schwartz contribution [9]. The
global gauge anomaly coming from the homotopy group π6(G) which exists for
G = SU(2),SU(3) and G2 needs also to be considered, and it constrains the number

8The global gauge anomaly also prohibits su(2) without hypers.
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of hypers charged under the gauge group.9 We do not list up the allowed matter
spectra, since we are rather interested in specific theories which can be engineered
from M-theory. It is easy to check that the will-be-appeared tensor branch matter
spectra satisfy the gauge anomaly cancellation.

As said, the gauge-gravity and gauge-R mixed anomalies should also vanish to
have a UV SCFT. To achieve this, we generalize the Green–Schwartz coupling to
include gravity background and R-symmetry background as

2π
∫

ηi j Bi ∧ I j (2.23)

with
I i = ηi j I j = η̃i j c2(Fj ) + qi

Rc2(R) + q j
grav p1(T ). (2.24)

For a theorywhich admits an F-theory construction (namely all known6dN = (1, 0)
theories), the coefficient q j

grav is calculated to be [11, 12]10

q j
grav = η j j − 2 (no sum in j) (2.25)

Then the Bianchi identity for the field strength H is modified as

dHi = −Ii , (2.26)

and the contribution to the anomaly IGS from this modified tensor field strength is

IGS = 1

2
ηi j Ii I j . (2.27)

Therefore, the whole anomaly polynomial Itot is the sum of the naive one-loop con-
tribution Inavie and the above Green–Schwartz contribution IGS:

Itot = Inaive + IGS (2.28)

For the case of pure su(3)with one tensor (2.22), the cancellation of gauge anomalies
requires

I = c2(F) + c2(R) + 1

12
p1(T ). (2.29)

9When only fundamental hypers are considered, the number of fundamentals should be 4, 0 mod 6
for SU(2),SU(3), and 1 mod 3 for G2 [10].
10There are some theories dropped from the classification of [13, 14]. Such theories still can be
constructed in F-theory when O7+ orientifold is taken into account [15]. For such theories the
calculation [11, 12] is not true because −ηi j differs from the geometrically defined intersection
form, but the result q j

grav = ηi i − 2 still holds.
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The total anomaly polynomial, which is equivalent to the anomaly polynomial of the
UV SCFT by ’t Hooft anomaly matching, is

Itot = Inaive + IGS

= 5

48
c2(R)p1(T ) + 29

24
c2(R)2 + 3

640
p1(T )2 − 7p2(T )

480
.

(2.30)

In general, when the number M of the simple components of the gauge algebra
is maximal, i.e. is equal to the number N of tensor multiplet, the contribution IGS is
completely determined by the gauge anomaly cancellation condition, and the total
anomaly polynomial can be obtained by square-completing Inaive and then subtracting
the constant part. We are going to see other examples in the following. For the case of
M < N , which include the most importantN = (2, 0) case where M = 0, we need
other information on 6d SCFT obtained e.g. from string realization to determine the
total anomaly polynomial.

2.1.3.1 Notation

Here we would like to introduce a notation which appeared in [13, 16]. It often
happens that the tensor branch theory is “linearly shaped”, namely

ηi j =
{
1 |i − j | = 1

0 |i − j | > 1
. (2.31)

In that case, we denote the tensor branch effective theory as

[f2] · · · [fN−1]
[f1] g1 g2 · · · gN−1 gN [fN ]

η11 η22 · · · ηN−1,N−1 ηNN

. (2.32)

The numbers under the i th gauge algebra denotes the diagonal component ηi i of
the charge matrix, and the algebras fi in square brackets mean flavor symmetries,
which will often be abbreviated. gi can be ∅, usp(0) or su(1). ∅ and usp(0) both
means there is nothing other than a tensor multiplet, while su(1) always neighbors
a node with su(2) and there is a “su(1) − su(2) bifundamental” which is actually a
fundamental of su(2).11

The off-diagonal component ηi j is considered 1 when i, j are adjacent and is zero
otherwise. Typically, on a generic point of the tensor branch, there are bifundamental
hypers between adjacent gauge or flavor algebras, otherwise it should be mentioned.

Further, generalizing the notation, if some of ηi j is not 1, we write as follows:

11usp(0) is used as a special case of usp(2N ) with N = 0, and the meaning is the same as ∅. The
notion su(1) means the Kodaira type I1 fiber in the F-theory literature. See [17] for more detail.
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[gL ] g1 g2 · · · gN [gR]
η11 〈η12〉 η22 · · · ηNN . (2.33)

where abbreviated ηi j are still considered to be 1.

2.1.4 Non-generic Point of Tensor Branch

At the origin of the tensor branch where ai = 0 for all i , the UV SCFT TUV arises.
Here we consider the subspace of the tensor branch where ak = 0 for a certain k
while ai �= 0 for i �= k. We use the index ı̂, ĵ which runs the same region as i, j
but ı̂, ĵ �= k. On the subspace, a string with string charge qi = δki becomes massless
while other strings remain massive. Then the IR theory contains both a strongly
coupled SCFT sector which we denote Tk and a weakly coupled Lagrangian sector.

Since the tensor multiplet including ak is contained in the strongly coupled SCFT
sector Tk , there are only N − 1 weakly coupled tensor mode out of N tensor modes
at a generic point. The original kinetic term for tensor scalars is

ηi jda
i ∧ 
da j = ηı̂ ĵda

ı̂ ∧ 
da ĵ + terms includingak, (2.34)

which implies the kinetic matrix η̂ı̂ ĵ for the remaining scalars aı̂ is obtained by just
omitting kth row and column: η̂ı̂ ĵ = ηı̂ ĵ . We define charge matrix η̂ı̂ ĵ by the inverse
matrix of η̂i j . The new charge matrix η̂ı̂ ĵ with upper indices is

η̂ı̂ ĵ = ηı̂ ĵ − ηı̂ kηĵk

ηkk
. (2.35)

Note that when ηkk ≥ 2, η̂i j becomes fractional, meaning the gauge parameters
λ̂i for tensor fields B̂ĵ = η̂ĵ ĵ B ĵ satisfies

∫
M2

λ̂i ∈ ηkk
Z for ηik �= 0. Instead of re-

normalizing B̂, we rather keep this normalization.
Let us rephrasewhat was said using the notation introduced in the previous section

for the case where (2.31) is satisfied. When ak set to be zero, the tensor branch
structure (2.32) reduces to

[gL ] g1 g2 · · · gk−1 gk+1 · · · gN [gR]
η11 η22 · · · η̂k−1,k−1 〈η̂k−1,k+1〉 η̂k+1,k+1 · · · ηNN , (2.36)

and the gk−1 and gk+1 vectors are coupled with the SCFT Tk which should have
gk−1 ⊕ gk+1 flavor. The most frequently seen case is when ηkk = 1.12 In this case the
tensor branch structure reduces like

12This is because in the F-theory language shrinking the cyclewith self-intersection number−ηkk =
−1 does notmake singularity of the base geometryworse. Therefore, such contractions is convenient
to classify possible singularity structure [13].
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gk−1 gk gk+1

ηk−1,k−1 1 ηk+1,k+1 =⇒ gk−1 gk+1

ηk−1,k−1 − 1 ηk+1,k+1 − 1
. (2.37)

We name the subspace of the tensor branch where we can reach through the recursive
uses of the operation (2.37) a contracted subspace. Further, we let the most singular
subbranch in the contracted subspace called the endpoint (although it is not a point)
according to [13]. On the endpoint no diagonal component of the kinetic matrix η̂i j

for not-shrunken tensors is 1.
After shrinking ak , the remaining GS coupling is merely

∫
Bı̂ Iı̂ , and the contribu-

tion to the anomaly polynomial from this remaining GS coupling is ÎGS = 1
2 η̂

ı̂ ĵ Iı̂ Iĵ .
Using the tensor branch structure (2.36) after shrinking ak , the total anomaly poly-
nomial I [TUV] is calculated as

I [TUV] = Înaive + I [Tk] + ÎGS (2.38)

where Înaive is the contribution from Lagrangian matters in (2.36). Compared with
the original formula

I [TUV] = Inaive + IGS, (2.39)

from the tensor branch structure at a generic point, we have

I [Tk] = Inaive,k + IGS − ÎGS

= Inaive,k + 1

2

1

ηkk
I k I k .

(2.40)

with Inaive,k being the one-loop contribution from tensor including ak , vector coupled
with ak , and hypers coupled with the vector. This means in the aı̂ → ∞ keeping ak

finite, the remaining pseudo-action including Bk is

− π

∫
1

ηkk

(
Hk ∧ ∗Hk + 2Bk I k

)
. (2.41)

2.2 Six-Dimensional N = (2, 0) Theories

In the previous section we used a “bottom-up” approach, meaning that we searched
consistency conditions for a Lagrangian IR theory to be UV-completed by an SCFT.
From now on, we are going to use “top-down” approach, namely engineering 6d
SCFT itself with branes/singularities in string/M/F-theory. In this section, we focus
on 6d SCFTs with maximal supersymmetry N = (2, 0).

N = (2, 0) SCFTs are believed to be classified by An, Dn, E6,7,8 root system.We
denote theN = (2, 0) theory of type G byT (2,0)

G where G specifies one of A, D, E
root system. The IR effective theory should be N = (2, 0) tensor multiplets, and
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the kinetic matrix ηi j is thought to be the Cartan matrix of corresponding A, D, E .
Actually the reference [18] argues that the matrix ηi j of a tensor branch kinematic
matrix ηi j of an N = (2, 0) theory should be the Cartan matrix of one of A, D, E
root systems, from anomaly cancellation with respect to the worldsheet theory of the
massive strings in the tensor branch theory.

In the following we will remind M/string constructions of N = (2, 0) theories
and important consequences from the constructions. TheN = (2, 0) theory of type
An or Dn can be constructed by branes in eleven-dimensional M-theory [19]. The
N = (2, 0) theory of type E6,7,8 cannot be engineered by branes in M-theory, but
an orbifold singularity in Type IIB string allows us to construct them [20].

2.2.1 N = (2, 0) Theories of Type A, D from M5-Branes

The M-theory is the (thought-to-exist) UV completion of the 11d supergravity. The
11d supergravity contains a three form field Cμνρ , which is accompanied by two
types of M-theory branes each coupled to the 3-from field C or the dual 6-form field
C∨ with dC∨ = 
dC . The former brane with three dimensions is called M2-brane
and the latter brane with six dimension is called M5-brane.

We can decouple theN = (2, 0) supersymmetric 6d worldvolume theory on M5
branes from the 11d supergravity sector of by taking the limit where the 11d Planck
length �P goes to zero. The worldvolume theory on a single M5-brane is thought to
be a free N = (2, 0) tensor multiplet. When there are two parallel M5-branes at a
distance of ã, there can be an open M2-brane bridging twoM5-branes which looks a
massive string with tension ã/�3P . Thus, if we take the �P → 0 limit with a1 = ã/�3P
fixed, the decoupled theory has massive strings with tension a1 in its spectrum.

The scaled distance a1, which have the mass dimension of a 6d scalar, is nothing
but the tensor branchvevof the decoupled theory.Note that thisa1 shouldbe identified
with a tensor scalar with upper index in our notation since the massive string tension
is determined by ai :(2.12). At the origin a1 = 0 of the tensor branch, the string
becomes massless. Correspondingly, the theory on coincident twoM5-branes should
be a non-free theory. Further, since there is no available scale after taking the �P →
0 limit when the two M5 collides, the worldvolume theory is expected to be an
SCFT. Actually there is the rotational isometry SO(5) emerges around M5-branes in
the M-theory geometry, which is identified with SO(5)R symmetry of N = (2, 0)
supersymmetry, indicating restoration of theN = (2, 0) superconformal symmetry.
The SCFT on coincident twoM5-branes is calledN = (2, 0) theory of type A1 after
ignoring the center-of-mass mode of the two M5s.13 This construction generalizes
to the case of T (2,0)

AN
, namely the worldvolume theory on the coincident N + 1 M5-

branes up to the center-of-mass mode.

13Ignoring the center-of-mass mode makes the theory “meta”, meaning the theory gain discrete
gravitational anomaly. For such a theory, background geometry is not enough to define its partition
function, which is similar to 2d non-modular-invariant chiral CFTs [21].
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Fig. 2.1 The brane
engineering of T (2,0)

A1
. The

tensor vev corresponds to the
distance between M5s and a
string and a defect are
created by M2

M5 M5

M2
M2

a 1

Let us determine the chargematrix ηi j . For simplicity, we consider theT (2,0)
A1

case.
The tensor branch theory is aN = (2, 0) tensor multiplet whose scalar corresponds
to the distance between twoM5-branes scaled by �3P . As said, the massive dynamical
string comes from an M2-brane suspended between the M5-branes, and a defect
comes from a half-infinite M2-brane ending one of the M5-branes as depicted in
Fig. 2.1. From this picture, one can read off the coupling (2.12). When the vev a1

increases by �a1 fixing the center of mass, the length of M2 bridging M5s increases
by the same amount, while the length of a half-infinite M2 decreases only by 1

2�a1.
Therefore, the dynamical string charge is twice of negative of the defect charge,
meaning η = 2. For T (2,0)

AN
, the same consideration reveals

ηi j =

⎧⎪⎨
⎪⎩
2 i = j

−1 |i − j | = 1

0 otherwise

, (2.42)

which is the Cartan matrix of AN type. The non-diagonal component comes from the
fact that the dynamical string coupled with ai+1 behaves as a defect charged under
ai when ai+1 goes infinite.

The important property of the theory T (2,0)
An

is that its compactification on S1 is
the 5d maximally super Yang-Mills(MSYM) with gauge group G = AN . This fact
comes from that an M5 brane wrapping the M-circle is identified with a D4-brane
in the Type IIA string, and the worldvolume theory of coincident N + 1 D4-branes
is the 5d MSYM. The relation between the 5d gauge coupling g and the M-circle
radius R6 is

1

R6
= 8π2

g2
. (2.43)

which identifies the KK-scale and the one-instanton action, since a D0-brane in Type
IIA comes from a momentum along the M-circle.

The tensor branch of the 6d theory goes to the Coulomb branch of 5dMSYM, and
a self-dual string on the tensor branch wrappingM-circle becomes aW-boson. Thus,
the self-dual string charge matrix ηi j should be identified with the charge matrix of
W-bosons under the U(1) gauge symmetries remaining on the tensor branch, and
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thus ηi j should be the Cartan matrix of G = AN , which is consistent with what we
observed.

It is also possible to construct T (2,0)
DN

. M-theory admits a Z2 “orientifold” action
which flips the 5 coordinates x6∼10. It also flips the sign of the three from field
C = Cμνρdxμdxνdxρ . The fixed plane of this action is called MO5-plane, and
becomes O4− when compactified [22]. Therefore, N M5-branes stacked with MO5
the charge matrix ηi j equals the Cartan matrix of G = DN , because when the branes
and the plane wrapping theM-circle are identified with D4-branes and an O4− which
produces 5d DN MSYM. The relation (2.43) also holds for this G = DN case.

2.2.2 N = (2, 0) Theories of Type A, D, E from Orbifold
Singularities in Type IIB String

One might wonder whether an N = (2, 0) theory T (2,0)
G for another root system G

exists. The answer is that G should be simply-laced, and thus other possibilities are
G = E6,7,8. However, no method to engineer G = E6,7,8 case in M-theory frame is
known (so far). Therefore, we should go to another frame by string duality chain to
generalize the above M-theory construction.

To do that, let us first play with G = AN case. We start from N + 1 M5 branes
occupying the directions x0∼5. Compactifying x10 gives Type IIA string theory with
N + 1 NS5 branes occupying x0∼5. We would like to further compactify x9 and take
T-dual with respect to that direction. It is known that an NS5-brane transforms into
a KK monopole in the T-dualized frame, therefore after doing the described duality
chain we obtain the Type IIB stirng on the multi-centered Taub-NUT space.

Colliding the centers of the Taub-NUT space gives a singular space, and the
singularity structure is the same as the singularity of AN -typeALEorbifoldC

2/ZN+1.
Thus, we conclude the duality

N + 1 coincident M5-branes in M-theory
duality⇔ Type II B on C

2/ZN+1 (2.44)

after taking CFT-decoupling limits in both sides.
How are the tensor branch parameters realized in the Type IIB frame? The sin-

gularity of C
2/ZN+1 admits blow-up resulting in a smooth space with the excep-

tional divisor consisting of N irreducible components Ci each isomorphic to CP
1

depicted in Fig. 2.2. In the above duality (2.44), the distance between M5 branes, or
the tensor branch vev ai , is mapped to the sizes of irreducible components of the
exceptional divisor. The kinetic matrix ηi j of the scalars ai is related to that of scalars
bi = i

∫
Ci

B10d by supersymmetry with B10d being the NSNS two-form field, which
can be read from

∫
X6×C2/ZN+1

dB10d ∧ 
dB10d =
∫
X6

∑
i, j

(−Ci · C jdbi ∧ 
db j ) (2.45)
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Fig. 2.2 The exceptional divisor of the singularityC
2/ZN+1. It contains N irreducible components

each isomorphic to CP
11, and they are linearly aligned so that an irreducible component intersects

with neighbor components

Fig. 2.3 The exceptional divisor of the singularityC
2/�E8 . The irreducible components are aligned

along the E8 Dynkin diagram. This pattern holds also for other ALE singularities

where Ci · C j = ∫
Ci
P.D.[C j ] is the intersection form of the 2-cycles. Thus, for the

duality to be consistent, Ci · C j should be the minus of the Cartan matrix of AN root
system.

A massive string on the tensor branch is realized by a D3-brane wrapping the
exceptional divisor in the Type IIB frame. A D3-brane filling 4-manifold M4 has
a charge for the anti-self-dual 5-form field strength F5 so that the Bianchi identity
becomes

dF5 = −P.D.[M4]. (2.46)

Compactifying Type IIB string on the resolved C
2/ZN , the localized modes of F5

can be described by the self-dual 3-form field strengths Hi related to F5 by

dF5 =
∑
i

Hi ∧ P.D.[Ci ], (2.47)

which mean a D3-brane wrapping Ci and filling two-dimensional subspace M trans-
verse to the resolved C

2/ZN has Hi charge as

dHi = P.D.[M], (2.48)

as expected.
This Type IIB orbifold construction ofN = (2, 0) theories can be generalized to

more general ALE orbifoldC
2/�G where �G is a finite subgroup of SU(2) acting on

C
2 labeled by a simply-laced root systemvia theMcKay correspondence. Concretely,

�AN is ZN+1, �DN is the binary dihedral group of order 4N − 8, and �E6,7,8 is binary
tetrahedral, octahedral, icosahedral group, respectively. The intersection form of 2-
cycles in resolved C

2/�G is known to be equal to minus of the Cartan matrix of the
root system of type G, so is the charge matrix of corresponding N = (2, 0) theory.
For example, the exceptional divisor of C

2/�E8 can be depicted as Fig. 2.3.
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For G = DN , we have both M-theory brane construction and Type IIB orbifold
construction and we expect those are dual:

N M5-branes stacked with OM5-plane in M-theory
duality⇔ Type II B on C

2/�DN

(2.49)
and actually the orientifold process in M-theory producing OM5 is mapped to orb-
ifoldingwith respect to aZ2 isometry of themulti-centeredTaub-NUTspace resulting
in a singularity isomorphic to the singularity of C

2/�DN .
For G = E6,7,8, we cannot go to the M-theory frame which was convenient to

read off the S1 compactified theory. However, we still expect that the compactified
theory is the 5d MSYM with gauge group G, since D3-branes wrapping Ci × S1

have the same charge matrix as the W-bosons of gauge group G.

2.2.3 Anomaly Polynomials for N = (2, 0) Theories

The anomaly polynomial for A-typeN = (2, 0) is first derived in [23, 24] by calcu-
lating the anomaly-inflow into N + 1 M5-branes filling X6 of M-theory spacetime
X11 = X6 × R

5. In brief, the Chern–Simons coupling of the M-theory,

2π
∫
X11

(
1

6
C ∧ G ∧ G − C ∧ I8

)
, I8 = 1

48

(
p2(T X11) − 1

4
(p1(T X11))

2

)
,

(2.50)

together with the coupling between N + 1 M5-branes and the C field

2πN
∫
X6

C∨ (2.51)

induces anomalous variation in terms of SO(5) rotation symmetry of the transverse
R

5 ,which should be the anomaly of the worldvolume theory of N + 1 M5-branes.
The resulting anomaly 8-form of T (2,0)

AN
with the center-of-mass N = (2, 0) tensor

multiplet is

I [N + 1 M5-branes] = I [T (2,0)
AN

] + I [N =(2, 0) tensor]

= (N + 1)3

24
p2(SO(5)R) − (N + 1)I8

(2.52)

with identifying pi (T X11) = pi (T X6) + pi (SO(5)R)where pi (SO(5)R) is the Pon-
tryagin class of the SO(5)R bundle coming from the transverse R

5. Note that the
characteristic N 3 behavior cannot be reproduced by a gauge theory and therefore
such contribution should come from intricate physics of massless strings.

The reference [25] conjectured the following formula for general T (2,0)
G :
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I [T (2,0)
G ] = h∨

GdG
24

p2(SO(5)R) + rG I [N =(2, 0) tensor]. (2.53)

For G = DN this conjecture is confirmed by anomaly-inflow calculation in [26]. In
the following we would like to derive this in an almost field-theoretical way, where
the only information from string/M-theory is that the S1 compactification is the 5d
MSYM [12].

As we studied in the Sect. 2.1.3, the anomaly polynomial should decompose as

I [T (2,0)
G ] = rG I [N =(2, 0) tensor] + IGS (2.54)

where the Green–Schwartz contribution is

IGS = 1

2
ηi j Ii I j . (2.55)

Therefore, what we should know is the Green–Schwartz coupling Ii . Since the IR
theory of an N = (2, 0) theory does not contain any vector multiplet, we cannot
determine Ii by gauge anomaly cancellation condition. Instead, we use the S1 com-
pactification as mentioned.

Upon S1 compactification with radius R6, T
(2,0)
G becomes the 5d MSYM with

gauge group G, and on its Coulomb branch, which comes from the 6d tensor branch,
we have U(1)rG vector multiplets and massive states with masses proportional to the
Coulomb branch vev. The Coulomb branch vectors A5d

i come from the 6d tensors
with relation A5d

i,μ = 1
R6
Bi,μ5. The Green–Schwartz coupling (2.23) turns into the 5d

Chern–Simons coupling

2π
∫

ηi j A5d
i ∧ I j , (2.56)

with unknown 4-forms I j . The vev break the SO(5)R symmetry down to SU(2)R ×
SU(2)L, and thus I j depends on SU(2)R and SU(2)L backgrounds.

Since we have a Lagrangian UV description of the 5d theory which is MSYM as
opposed to the 6d thoery itself, the above CS coupling in the Coulomb branch IR
theory is calculable from the UVMSYM. Actually, integrating out massive fermions
creates CS terms through the triangle Feynman diagram [27]. A fermion with mass
term coefficient m (with its sign meaningful), U(1) charge q, and having the rep-
resentation ρ under a background non-abelian field strength FBG, which is now the
su(2) R-symmetry background, produces the CS term

2π
∫

1

2
(signm)q A5d ∧ (

1

2
trρF

2
BG + dρ

1

24
p1(T )). (2.57)

The characteristic class 1
2 trρF

2
BG + dρ

1
24 p1(T ) counts the number of zero modes of

φ in the presence of the background instantons, and 1
2 (signm)q is the shift of U(1)

charge of the to instantons. (2.57) can also be recognized as the CS coupling in the
instanton worldline action.
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All the remaining things to do is enumerate massive fermions and their charges
in the Coulomb branch theory. For each root α of the 5d gauge group G, there is a
massive N = 2 vector multiplet with mass |v · α| and charges under the unbroken
U(1)rG determined by α. To see the sign of the mass term of massive fermions in the
multiplet, note that the Yukawa coupling of the N = 2 multiplet is

ψ� Iφ I · αψ (2.58)

where � I is the Gamma matrices of SO(5)R symmetry with I being the index of
it, and ψ is charged under the R-symmetry as a spinor. We give vev to only one
of φ I , say φ I=5 = v, breaking SO(5)R into SO(4) � SU(2)R × SU(2)L . Then the
components ofψ with SO(5)R-chirality-minus hasmass coefficient−v · α and forms
a SU(2)R doublet, while those with SO(5)R-chirality-plus has mass coefficient +v ·
α and forms a SU(2)L doublet. Under this identification of N = 1 subgroup of
N = 2 supersymmetry algebra, the SO(5)R-chirality-minus fermions are considered
to belong to N = 1 massive hypermultiplets since they are charged under SU(2)R ,
while other fermions belong to massive vector multiplets.

Substituting these informations into (2.57), the CS coupling is

2π
∫

ηi j A5d
i ∧

∑
α:root

1

4
α j sign(v · α)(c2(L) − c2(R)) (2.59)

and from (2.58) the GS coupling is

Ii =
∑
α:root

1

4
αi sign(v · α)(c2(L) − c2(R))

=
∑

v·α>0

1

2
αi (c2(L) − c2(R))

= ρi (c2(L) − c2(R)),

(2.60)

with ρi being the Weyl vector. The last ingredient we need is “the strange formula
of Freudenthal and de Vries”:

ηi jρiρ j = 1

12
h∨
GdG, (2.61)

which reproduces the formula (2.53) with identifying (c2(L) − c2(R))2 with
p2(SO(5)). Note that this method using CS coupling induced by massive fermions
is applicable even to T (2,0)

E6,7,8
.



2.3 E-String Theory 29

2.3 E-String Theory

From this section we start to generalize the construction of N = (2, 0) theories
into N = (1, 0) by introducing additional orientifolds, orbifolds, or branes which
preserve half of the supersymmetry. First, we consider theN = (1, 0) theory called
E-string theory and its higher rank generalization. The theory can be most simply
defined as a worldvolume theory of a zero-sized E8 instanton in E8 × E8 heterotic
string [28], though here other frames related by string duality chains are convenient.
After explaining some duality frames, we generalize the calculation of the anomaly
polynomial to the E-string case.

2.3.1 Heterotic M-Theory Description of E-String Theory

It is hard to find the tensor branch mode of the E-string theory defined as a zero-
sized instanton in the heterotic string theory frame. To detect the tensor branch, we
go to the M-theory frame with two Hořava-Witten domain walls [29, 30] which is
dual to E8 × E8 heterotic string. The Hořava-Witten domain wall, also known as the
M9-brane, is the ten-dimensional fixed plane of the orientifold action

x10 → −x10, C → −C. (2.62)

Hořava and Witten argued that the M-theory CS coupling (2.50) induces anomaly
localized on the fixed plane, and therefore the plane should support a 10d matter
system. The anomaly-inflow into the M9-brane can be canceled by a 10d N = 1
vector multiplet with gauge group E8. When the x10 direction is compactified, there
are two M9-branes both have E8 vectors, and the system, which is called heterotic
M-theory, is considered to be the strong coupling limit of the E8 × E8 heterotic
string.

In heterotic M-theory, we can consider an M5-brane localized along x10 direction
near one of the M9-branes as pictured in Fig. 2.4. Since the M5 brane can be incor-
porated into the M9 brane as an E8 instanton, the world volume theory on the M5
probing M9 is identified with the E-string theory. The instanton moduli space which
make the M5-brane non-zero size instanton is recognized as the Higgs branch of the
E-string theory. When the M5-brane is separated from the M9-brane, an M2 brane
suspended between the M5- and M9-brane behaves as a massive string with mass
proportional to the distance between theM5- andM9-brane.When theM5 is attached
to the M9, the string becomes massless and the nontrivial SCFT arises. Since the M9
brane supports 10d E8 vector field, the SCFT potentially have E8 flavor symmetry. In
addition to that, the SCFT posesses SO(4) ∼ SU(2)R × SU(2)L symmetry coming
from rotation of directions transverse to both M9 and M5. The SU(2)R subgroup is
regarded as the R-symmetry of N = (1, 0) algebra, and the remaining SU(2) is a
(non-R) flavor.
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M5

M9

(a) Tensor branch

M5

M9

(b) SCFT point

instanton

M9

(c) Higgs branch

M5 M5 M5

M9

(d) Higher rank theory

Fig. 2.4 The E-string theory is the worldvolume theory on an M5-brane probing an M9-brane.
Higgs branch is identified with instanton moduli. The higher rank generalization refers to multiplet
M5-branes probing M9

Est
N

Est
N 1 tensor2,0

AN 1
tensor 2,0

AN i 1

Est
i tensor

Est
N 1 hyper

aN 0
a i 0

a 1 0

Higgs

Fig. 2.5 RG flows from T Est
N . ai denotes the tensor vev of i th tensor mode counting from the left

of Fig. 2.4d. On 1 dimensional subset of the tensor branch, the theory flows to sum of anN = (2, 0)
theory, an E-string theory and a Nambu–Goldston tensor mode. On the Higgs branch, the theory
flows to the E-string theory with less rank plus NG hyper modes

This construction can easily be generalized to the higher rank case, namely multi-
pleM5-branes probingM9.We denote the rank N E-string theory,which corresponds
to N M5s on M9, by T Est

N . On the tensor branch, there are N tensor modes com-
ing from positions of M5 transverse to M9, and N − 1 hyper modes coming from
positions of M5 tangent to M9. The center of mass hyper mode tangent to M9 is
decoupled from T Est

N .
The higher rank theory has various RG flows as shown in Fig. 2.5. When N − i of

total N M5-branes on the M9 are moved away from theM9, the theory flows into the
sum of T (2,0)

AN−i−1
, T Est

i and a Nambu–Goldstone tensor mode. For the Higgs branch,
when one of M5s is dissolved into the M9, the theory flows into the E-string theory
with one less rank accompanied by a NG hyper mode.

The charge matrix ηi j for T Est
N is also determined by this M-theory construction

aswe did forT (2,0)
AN

. This time increasing the tensor branch parameter a1 corresponds
to moving M5 while fixing M9, not the middle point between M5 and M9. Thus, the
dynamical string charge is the same as negative of the defect charge, namely η = 1.
For higher rank theory, we have

ηi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 i = j = 1

2 i = j �= 1

−1 |i − j | = 1

0 otherwise

. (2.63)
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Or, if we use the notation explained in Sect. 2.1.3.1 we have,

[e8] ∅ su(1) · · · su(1)
1 2 · · · 2

. (2.64)

Let us determine the S1 compactified theory of the rank N E-string theory. Upon
compactification, the M5 becomes D4 as before, and the M9 becomes O8− stacked
with 7 D8-branes and 1 D8-brane separated from O8− so that the string coupling
diverges at O8− [31]. When we introduce the Wilson line in terms of E8 gauge field
on M9 breaking E8 down to SO(16), in the Type IIA frame all the eight D8 branes
are located on top of the O8−. At the origin of the 5d Coulomb branch where the N
D4-brane touches the O8−-D8 stack, the theory of the open strings on the D4-branes
is the 5dN = 1USp(2N ) gauge theorywith 8 fundamental hypers charged under the
SO(16) flavor symmetry and a hyper in the irreducible antisymmetric representation
of the gauge group. Thus, the potential E8 flavor symmetry of the E-string theory
cannot be trivial. The fundamentals come from D4-D8 strings, and the irreducible
antisymmetric representation come from strings between D4 and themselves or their
mirror.

2.3.2 Anomaly Polynomials for E-String Theories

The anomaly polynomial of the E-string theory is first obtained in [32] using anomaly
inflow in the heterotic-M frame. The calculation is just a combination of the anomaly
inflow for M5 and anomaly inflow for M9. Here, instead, we generalize the “field
theoretical” method in Sect. 2.2.3.

In Sect. 2.2.3, we worked on a generic point of the tensor branch of T (2,0)
G . Here,

since we already know I [T (2,0)
AN

], it is enough to use the non-generic tensor branch

flowT Est
N → T (2,0)

AN
+ tensor with only a1 having nonzero vev. Since the NG tensor

mode have GS coupling with backgrounds, the total anomaly can be written as

I [T Est
N ] = I [T (2,0)

AN
] + I [tensor] + IGS. (2.65)

Among thewholeGScoupling2π
∫

ηi j Bi ∧ I j = 2π
∫

ηi j Bi ∧ I j at a generic point,
the contribution containing I j , j �= 1 is included in I [T (2,0)

AN
], and therefore

IGS = 1

2
η11 I

1 I 1 = N

2
I 1 I 1. (2.66)

Here we used the fact that the inverse matrix ηi j of the matrix (2.63) is

ηi j = N + 1 − max(i, j). (2.67)
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To calculate I from 5d CS coupling induced by massive fermions, we compactify
T Est

N with Wilson line breaking flavor E8 into its maximal rank subgroup SO(16) so
that we obtain the Lagrangian theory as explained. When compactified, the 6d flow
induces the 5d Coulomb branch flow

USp(2N ) with 8 flavor + 1 irred. antisymmetric → SU(N − 1) MSYM + N =1 U(1) vector.
(2.68)

All the fundamental hypers becomes massive. They have U(1) charge 1, and behaves
as N copies of the vector representation of SO(16). From the irreducible antisymmet-
ric representation breaks down to the adjoint of SU(N − 1) leaving N 2 − N massive
hypers with U(1) charge 2. There are also N 2 + N massive vectors, also have U(1)
charge 2. As before, the fermions in massive hypers are charged under SU(2)R and
fermions in massive vectors are charged under SU(2)L .

Collecting these informations and using the formula (2.57), one get

η11 I
1 = N 2

2
χ4 + N I4, I4 = c2(FE8) + 1

4
(p1(T ) − 2(c2(L) + c2(R))) (2.69)

with χ4 = c2(L) − c2(R) being the Euler class of the SO(4) bundle. We have used
the fact that the embedding of SO(16) into E8 have the embedding index 1 and thus
c2(FSO(16)) = c2(FE8). Using (2.28), we get the anomaly polynomial

I [T Est
N ] + I [hyper] = N 3

6
χ2
4 + N 2

2
χ4 I4 + N

(
1

2
I 24 − I8

)
, (2.70)

which agrees with the result of the anomaly inflow [32].

2.4 Conformal Matters

To construct the E-string theory, we have considered the M-theory orientifold whose
fixed-plane is 10-dimensional. Here, instead we would like to think on ALE-orbifold
in M-theory, namely M-theory on R

1,6 × C
2/�g with �/g being the finite subgroup

of SU(2) labeled by aADE root system g. InM-theory, anM2-brane canwrap a cycle
of the resolved ALE-orbifold producing a 7d massive vector multiplet charged under
the 7d U(1) vector whose scalar superpartner is the size of the cycle. The charges of
the massive vectors coming from M2-branes are determined by the Dynkin diagram
associated to g, therefore in the limit where all cycles vanish there is the 7d g vector
multiplet on the singular locus.

To construct 6dN = 1 SCFTs, we further introduce N + 1M5 branes as pictured
in Fig. 2.6. The resulting SCFTs, after ignoring the center-of-mass tensor mode, are
called conformal matters [16] and we call themT (g,g)

N . Each segment of the singular
locus bounded by two M5-branes supports 6d dynamical g vector multiplet, and
half-infinite singular loci support g flavor. Moving an M5 away from the singular
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M5 M5 M5 2
g

Fig. 2.6 M-theory brane construction of conformal matter T (g,g)
N . N + 1 M5-branes are probing

the singular locus of the ALE-orbifold

locus corresponds to a Higgs vev. When all the M5-branes are located away from
the singular locus, the theory flows into theN = (2, 0) theoryT (2,0)

AN
. The case with

N = 0, which is called minimal, the theory is very higgsable, meaning that it has
a Higgs flow into some hypers. This property, which we call “higgsable to T (2,0)

AN
”,

become important in the next chapter. Consequently, the charge matrix ηi j should be
the same as that of T (2,0)

AN
.

The finite group�g is a finite subgroup of the SU(2)L subgroup of the SO(5) rotat-
ing transverse direction of M5s. When g = A, U(1) subgroup of SU(2)L remains,
though we will ignore it for simplicity in the following.

When g = D, E , an M5 brane on top of the singular locus can be “fractionated”,
and between fractionalM5branes a vectormultipletwith lower rank (possible empty)
gauge group arises. Before mentioning those complicated situations, we discuss the
g = A case.

The anomaly polynomial can be calculated by anomaly inflow as demonstrated
in an Appendix of [12], and the result is

I [T (g,g)
N−1 ] + I [tensor] = N 3|�g|2

24
c2(R) − N I8

− N |�g|
2

c2(R)(J4,L + J4,R) − 1

2
(I [vector,FgL ] + I [vector,FgR ])

(2.71)

with

I8 = 1

48

(
p2(T ) − p1(T )c2(R) − 1

4
p1(T )2

)
(2.72)

J4 =
rg + 1 − 1

|�g|
48

(4c2(R) + p1(T )) + c2(F). (2.73)

We are going to see how to get the same result from the method of Sect. 2.1.3 which
was also proposed in the same paper [12].
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Fig. 2.7 Type IIA

description of T (Ak−1,Ak−1)

N

NS5 NS5 NS5
k D6 branes

2.4.1 (A, A) Conformal Matter

2.4.1.1 Type IIA Frame Description

Wheng = Ak−1,we can go to theType IIA frame as follows. Instead of theALE space
C

2/Zk , the same singularity can be realized in N + 1-centered Taub-NUT space as
we saw in Sect. 2.2.2. Then far from the singularity the geometry is asymptotically
R

3 × S1, therefore the system admit a Type IIA description. The Ak−1 singularity
on which 7d su(k) vector multiplet lives is replaced by k of D6-branes, and M5s
becomes NS5s as depicted in Fig. 2.7.

The tensor branch theory is a linear quiver accompanied with tensor multiplets.
Namely, in addition to N of su(k)vectormultiplets live in segments ofD6spartitioned
by NS5s, strings striding over an NS5 behave as bifundamental hypers charged under
adjacent su(k) vectors. In particular, T (Ak−1,Ak−1)

0 is just a bifundamental hyper. In
the notation explained in Sect. 2.1.3.1 the tensor branch structure is

[su(k)L ] su(k)1 su(k)2 · · · su(k)N [su(k)R]
2 2 · · · 2

. (2.74)

2.4.1.2 Anomaly Polynomial

Since all tensor modes are coupled with vectors, the method in Sect. 2.1.3 can be
applied. Just enumerating the naive contributions from thematter spectrum and doing
square completion is needed, and the result agrees with (2.71).

For later use, we would like to determine each GS coupling I i . Each I i have the
form

I i = η̃i J c2(FJ ) + qi
Rc2(R) + qi

grav p1(T ). (2.75)

where the index J runs both gauge and flavor algebras. Note that a gauge or flavor
zero-sized instanton in the vectors on the singular locus can be regarded as an M2-
brane inside the locus, and therefore qi J should be the charges of dynamical strings
or defects corresponding to M2-branes. The charge can be read by the method we
discussed in Sect. 2.2.1 and we get η̃i J = ηi J for gauge instantons and η̃i J = −1
for flavor instantons. Then, gauge anomaly cancellation condition forces qi

R = k,
qi
grav = 0.
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2.4.1.3 Weakly Gauged Higgs Branch of T (Ak−1,Ak−1)
0

As said, theminimal conformalmatterT (Ak−1,Ak−1)

0 , which is the worldvolume theory
on an M5 probing C

2/Zk , is just a bifundamental. How can we relate the mere
bifundamental of su(k) and the ALE C

2/Zk orbifold?
There are two different type of Higgs branchi of T (g,g)

N : One is a Higgs vev
preserving both gL ,R flavors, and the other breaks. Then, the former corresponds to
moving an M5 away from the singular locus, since the flavor gauge backgrounds
living on the half-infinite singular locus as 7d vectors do not acquire masses in the
process. This subbranch of the Higgs branch can be regarded as the Higgs branch of
T (g,g)

N with both flavors infinitesimally weakly gauged. Therefore, when the number
of M5s is one, the weakly gauged Higgs vev should be identified with position of
the M5, and thus the weakly gauge Higgs branch of T (g,g)

0 should be C
2/�g. For

the su(k) bifundamental T (Ak−1,Ak−1)

0 , this can be easily realized.
The scalars in the bifundamental are arranged into Qi

a and Q̃a
i each of which is

in the representation (k,k) and (k,k) of the su(k)⊕2 subalgebra of the whole flavor
u(2k). su(k)⊕2 invariant combination of these scalars are

B = detQ, B̃ = detQ̃, M = 1

k
trQQ̃. (2.76)

The scalar components of each su(k) flavor current multiplet, called moment maps,
are

μi
j = Qa

j Q̃
i
a − Mδij , μ̃a

b = Qa
i Q̃

i
b − Mδab . (2.77)

Since μ, μ̃ are charged under su(k)⊕2, we would like to set μ = μ̃ = 0, or QQ̃ =
M1k×k = Q̃Q as an equation of k × k matrices with 1k×k being the identity matrix.
Taking determinant, we have

B B̃ = Mk (2.78)

which is the algebraic equation describing the singularity C
2/Zk .

Instead, we can turn on the Higgs vev μ, μ̃ as

μ = μ̃ = diag(m1, . . . ,mk), (2.79)

then the relation (2.78) becomes

B B̃ =
k∏
i

(M + mi ), (2.80)

which describes C
2/Zk with deformed complex structure. Therefore, the Higgs vev

μ = μ̃ corresponds to the complex structure deformation of the M-theory geometry.
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2.4.2 (D, D) Conformal Matter

2.4.2.1 Type IIA Description and Fractional M5

When g = Dk , we can still go to a Type IIA description. We again replace the ALE
space with the ALF space of Dk type, which have the same singularity structure as
the ALE space and asymptotically is R

3 × S1. Since on the singular locus supports
so(2k) gauge group, in Type IIA frame we should see a stack of an O6−-plane and
2k D6-branes.

This time, an M5 brane probing the singular locus corresponds to twoNS5 branes
on theO6−-plane. TheO6-D6-NS5 system is known to engineer so(2k)-usp(2k − 8)
alternating quiver gauge theory, and therefore the type ofO6-plane should be different
between left and right of an NS5. The number 8 comes from the D6-charge ±4 of
O6±-plane. Thus, one NS5 brane cannot escape from O6-plane. On the other hand,
in the M-theory frame an M5 brane can freely move away from the singularity,
concluding that an M5 cannot be the M-theory uplifting of one NS5-brane trapped
in an O6-plane.

This fact implies that an M5 brane on the D-type ALE singularity can be fraction-
ated; an M5-brane can split into two of half-M5-branes, each of which becomes an
NS5-brane in the Type IIA frame: see Fig. 2.8. A half of the segments of the singular
locus of C

2/�Dk should support usp(2k − 8) gauge rather than so(2k). This is a
“frozen” version of the C

2/�Dk singularity, meaning that 8 of Kähler parameters are
prohibited by a nontrivial discrete C-flux [33, 34]. The half-M5-brane is a domain
wall between frozen and non-frozen singularities. We will see that this fractionation
continues to the case with g = e6,7,8.

M5 M5 M5 2
Dk

fractionate
1
2M5 1

2M5 1
2M5 1

2M5 1
2M5 1

2M5

go to Type IIA

NS5 NS5 NS5 NS5 NS5 NS5
O6 O6 O6 O6 O6 O6 O6

O6+D6

Fig. 2.8 M-theory and Type IIA brane construction of conformal matter T (Dk ,Dk )
N . Since the D6

brane charges of O6± is different by eight, the number of D6 branes stacked with O6± should be
adjusted so that the total D6 charge is the same between left and right side of each NS5 brane. Thus,
the tensor branch theory is read to be an so(2k)-usp(2k − 8) alternating quiver
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We can also consider N + 1M5s probing C
2/�Dk+8 with the discreteC-flux. The

theory has usp(2k) ⊕ usp(2k) flavor, and we denote it T (usp(2k),usp(2k))
N . It is also

higgsable to T (2,0)
AN

.

2.4.2.2 Tensor Branch Structure

The vector and hypermatters are the so(2k) − usp(2k − 8) quiver as said. The charge
matrix ηi j can be read off from the Type IIA description, though a bit trickier than
T (2,0)

AN
case. Consider T (Dk ,Dk )

0 case. In Type IIA frame, there are 2 NS5s that inter-
sects with O6-D6 stack. Between the NS5s, the type of the orientifold is O6+ and
the number of D6s is 2k − 8 (counting the mirror images), and outside the segment
between NS5s the type of the orientifold is flipped to O6− and the number of D6s
is 2k. The point is that O6+-plane admits a half-D2-brane embedded within it while
O6− does not.14 Therefore, a minimal dynamical string corresponds to a half-D2-
brane bridging NS5s while a minimal defect is created by half-infinite one (full)
D2-brane, concluding η11 = 1. When k = 4, the gauge algebra is usp(0) = ∅, and
thus the tensor branch structure of T (D4,D4)

0 is the same as that of T Est
1 therefore

we might expect T (D4,D4)
0 = T Est

1 identifying the so(8) ⊕ so(8) flavor of T (D4,D4)
0

as the subgroup of the e8 flavor of T Est
1 . Actually, both the O6-NS5 system and the

O8-D8-NS5 system can be dualized into the same F-theory frame [16].
Next, let us think about T (usp(2k),usp(2k))

0 . This time a defect comes from a half-
infinite half-D2-brane, while a dynamical string does from a suspended full D2. The
charge counting concludes η11 = 4. In the same manner, for general rank conformal
matter T (Dk ,Dk )

N , the tensor branch structure is

[so(2k)] usp(2k − 8) so(2k) · · · usp(2k − 8) so(2k) usp(2k − 8) [so(2k)]
1 4 · · · 1 4 1

,

(2.81)
and for T (usp(2k),usp(2k))

N it is

[usp(2k)] so(2k + 8) usp(2k) · · · so(2k + 8) usp(2k) so(2k + 8) [usp(2k)]
4 1 · · · 4 1 4

.

(2.82)
The Higgs branch to T (2,0)

AN
is not open at a generic point of tensor branch of

T (Dk ,Dk )
N , but only where each half-M5 brane collides with another to form a full

M5-brane, or in field theory language where ai = 0 with gi = usp(2k − 8). On that
subbranch, which we call the “root to T (2,0)

AN
”, the tensor branch structure is

[so(2k)L ] so(2k)1 · · · so(2k)N [so(2k)L ]
2 · · · 2

, (2.83)

14This can be understood from +-type orientifold projection realizes SO group on D2 branes while
−-type projection does USp, and USp(n)with odd n does not exist. Another reasoning can be found
in the footnote in Sect. 2.4.3.
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and between adjacent so(2k) there areminimal conformalmattersT (Dk ,Dk )
0 behaving

like “(so(2k), so(2k)) bifundamentals”.

2.4.2.3 Anomaly Polynomial

Calculating the anomaly polynomial for T (Dk ,Dk )
N from the tensor branch structure

(2.81) and checking the agreement with (2.71) is easy. Instead, for N ≥ 1, we can
work on the subbranch (2.83) and calculate the anomaly polynomial as

I [T (Dk ,Dk )
N ] =

N∑
i=1

I [so(2k)ivector] +
N∑
i=0

I [T (Dk ,Dk )
0 {so(2k)i , so(2k)i+1}] + IGS

(2.84)
where IGS is the Green–Schwartz contribution only from the tensors remaining in
(2.83). The bracket {} specifies flavor or gauge algebras in (2.83) with so(2k)0 =
so(2k)L , so(2k)N+1 = so(2k)R . The Green–Schwartz couplied IGS is identified to
be 1

2η
i j Ii I j with ηi j being the Cartan of AN type and

ηi j = I i = η̃i J c2(FJ ) + (2k − 2)c2(R), (2.85)

where η̃i J is the same as that in (2.75).

2.4.3 (E, E) Conformal Matter

The ramining conformal matters are of type E . As we have seen for the g = D case,
the tensor branch structure of T (g,g)

0 encodes the fractionation of an M5 probing
C

2/�g. Therefore studyingT
(E,E)
0 is interesting also from theM-theory perspective.

Indeed, the fractionation pattern ismuchmore complicated thang = D case.Wehave
investigated T (g,g)

N for g = A, D using the Type IIA frame with which it is easy to
read off the IR gauge theory description. For g = E , the generalization of the above
Type IIA frame is not known, and therefore we should go along another way. In
[16], the analysis was achieved by dualizing into the F-theory frame and blowing-up
procedure. Here instead we insist on understanding in the M-theory frame.

2.4.3.1 Fractionation Patterns and Discrete C-Flux on C
2/�E6,7,8

As said, an ALE singularity of type D, E can admit discrete C-flux, and we expect
that a fractional M5-brane behaves as a domain wall between regions with different
C-fluxes. The possible discrete C-flux is [33–35]
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Table 2.3 Possible nontrivial values of discreteC-flux aroundC
2/�E6,7,8 singularities and remain-

ing gauge algebras after freezing

g E6 E7 E8

r 1
3 , 2

3
1
2

1
4 , 3

4
1
3 , 2

3
1
2

1
6 , 5

6
1
5 , 2

5 , 3
5 , 4

5
1
4 , 3

4
1
3 , 2

3
1
2

gr ∅ su(3) ∅ su(2) so(7) ∅ ∅ su(2) g2 f4

∫
S3/�g

C = n

d
=: r mod. 1 (2.86)

where S3/�g is an orbifolded unit sphere surrounding the singularity, d is one of the
Dynkin label in the Dynkin diagram of type g and n is coprime with d. We refer the
remaining gauge group after freezing with discreteC-flux r as gr , and the singularity
with the flux as gr type singularity. We order the possible value of r by its value so
that r0 = 0 < r1 < r2 < · · · < rm = 1 with m being the number of the possible r .
The possible r and gr are listed in Table 2.3 for g = E6,7,8. Later we will give a
derivation of this table.

Consider a domain wall between gr and gr ′ type singularity. TheM5-brane charge
of the domain wall can be calculated by

∫
S4/�g

dC = r ′ − r mod. 1 (2.87)

regarding the S4/�g surrounding the domain wall as S3/�g times an interval. Thus,
we expect one M5 brane probing C

2/�g split into n fractional branes with charge

ri − ri−1. Therefore, the theory T
(E6,7,8,E6,7,8)

0 on a full M5-brane probing C
2/�E6,7,8

has m − 1 tensor branch. The tensor branch structures for T (E6,7,8,E6,7,8)

0 is

T (E6,E6)
0 : [e6] ∅ su(3) ∅ [e6]

6 1 3 1 6
, (2.88)

T (E7,E7)
0 : [e7] ∅ su(2) so(7) su(2) ∅ [e8]

8 1 2 3 2 1 8
, (2.89)

T (E8,E8)
0 : [e8] ∅ ∅ su(2) g2 ∅ f4 ∅ g2 su(2) ∅ ∅ [e8]

12 1 2 2 3 1 5 1 3 2 2 1 12
. (2.90)

The numbers can be determined by F-theory technique [16] or can be read fromM2-
brane realization of strings/defects under an assumption about the minimal fractional
M2-brane probing gr singularity as we will see soon. Anomaly cancellation requires
that between su(2) and so(7) there should be a 1

2 (2, 8spin) hyper, and between su(2)
and g2 there should be a 1

2 (2, 7 + 1) hyper. The number under flavor algebras are used

for generalization to N ≥ 1. For example, the tensor branch structure of T (E6,E6)
1 is
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T (E6,E6)
1 : [e6] ∅ su(3) ∅ e6 ∅ su(3) ∅ [e6]

1 3 1 6 1 3 1
. (2.91)

Though the anomaly cancellation also fixes the charge matrix ηi j , here we would
like to read off from the M-theory brane physics. As we saw that for g = Dk an M2-
brane probing so(2k)1/2 = usp(2k − 8) singularity can be fractionated into half-M2-
branes, it is also expected that anM2probing gr singularitywith r �= 0 is fractionated.
Let us assume that the minimal charge of a fractional M2 is 1

d when r = n
d .

15 This
assumption correctly reproduce the matrix ηi j .

For example, let us determine η22 of T (E7,E7)
0 . r2 = 1

3 , g2 = su(2), and the frac-
tional M5-brane between r1 and r2 region have charge 1

12 , the one between r2 and r3
region have charge 1

6 . We call the former fractional M5 brane M512, and the latter
M523. When the distance (normalized by �3P ) between M512 and M523 increases
by �a2 fixing the center-of-mass of M512 and M523, M512 moves by 2

3�a2 and
M523 does 1

3�a2, since the mass of a fractional M5-brane is proportional to its
charge because of the supersymmetry. Therefore, while the change of the tension of
a dynamical string coming from a fractional M2-brane with charge 1

3 bridging M513
and M523 is 1

3�a2, the tension of a defect coming from a half-infinite fractional M2-
brane ending on M512 or M523 changes by 1

4
2
3�a2 = 1

2
1
3�a2 = 1

6�a2, concluding
η22 = 2.

2.4.3.2 Remarks on Tensor Branch Physics

The tensor branch structures (2.88)–(2.90) contain tensor modes without a vector.
As in the case of T (D4,D4)

N , those tensor modes are expected to become E-string
theories when their vev are turned off keeping other vev non-zero. Therefore, the
theory on that subbranch can be considered as a linear quiver gauge theory with non-
perturbative E-string matters. Concretely, for T (E6,E6)

0 , when vev without vector are
deactivated, the structure (2.88) becomes

T (E6,E6)
0 : [e6] ∅ su(3) ∅ [e6]

1 3 1
−→ [e6] su(3) [e6]

1
. (2.92)

The dynamical su(3) coupleswith twoT Est
1 through the embedding su(3) ⊕ e6 ⊂ e8,

and each remaining flavor e6 becomes the left and right e6 flavors. For T
(E7,E7)
0 the

same shrinking procedure gives

15According to [35, 36], a frozen singularity inM-theory is dual toF-theorywithZd shift-orientifold,
namely the Zd acts on a S1 as 2

d π translation and on a plane as 2
d π rotation. A fractional M2 is

dualized to a D3 wrapping 1
d of S1 and trapped at the origin of the plane, which means that the

fractional charge is 1
d .
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T (E7,E7)
0 : [e7] ∅ su(2) so(7) su(2) ∅ [e8]

1 2 3 2 1
−→ [e7] su(2) so(7) su(2) [e8]

1 3 1
.

(2.93)
The su(2) gauges the subgroup of the flavor of a E-string theory T Est

1 .
For T (E8,E8)

0 , since the tensor branch structure (2.90) contains the substructure
equivalent to that of T Est

2 , after shrinking all the tensors without vectors we have

[e8] su(2) g2 f4 g2 su(2) [e8]
1 2 3 2 1

, (2.94)

where each su(2) vector couples with the su(2) flavor of T Est
2 , and between g2 and

f4 there is an E-string theory T Est
1 with its g2 ⊕ f4 ⊂ e8 flavor subalgebra gauged.

A higher rank conformal matter T (g,g)

N should be able to be Higgsed into T (2,0)
AN

when the fractional branes are combined to form a fullM5. This situation corresponds
to all the tensor vev except for those coupled with g vectors are set to be zero. For
the theory T (g,g)

N to be higgsable to T (2,0)
AN

, the charge matrix should be the same as

that of T (2,0)
AN

. To check this, an easy way is to recursively shrink down the tensor

vev with ηi i = 1. For T (E6,E6)
1 , this procedure goes

[e6] ∅ su(3) ∅ e6 ∅ su(3) ∅ [e6]
1 3 1 6 1 3 1

−→ [e6] su(3) e6 su(3) e6
1 4 1

−→ [e6] e6 [e6]
2

.

(2.95)
One can also check that the similar but slightly longer procedure gives that the desired
subbranch structures for T (E7,8,E7,8)

1 are

[e7] e7 [e7]
2

,
[e8] e8 [e8]

2
, (2.96)

which are consistent with the fact that those theories are higgsable to T (2,0)
A1

. For
N ≥ 2, the same operation results in

[g] g · · · g [g]
2 · · · 2 , (2.97)

which is the root to T (2,0)
AN

.

2.4.3.3 T 3 Compactification and Frozen Gauge Algebras

Here we would like to understand the freezing pattern in Table 2.3 along the line of
[37]. To do that, we consider T 3 compactification of T (g,g)

0 . The M-theory space
times is R

1,2 × T 3 × R × C
2/�g, and an M5 wrapping T 3 probes the singularity.

Regarding one dimension of T 3 as theM-circle, we get Type IIA onR
1,2 × T 2 × R ×
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C
2/�g with a D4 wrapping T 2 on the singularity. After taking T-duality twice which

transforms D4 into D2 and go up to M-theory, the space time becomes topologically
the same as the starting point, but an M2 brane probing the singularity.

Since the singular locus filling R
1,2 × R × T 3 supports the T 3 compactified 7d

SYMwith gauge group g, anM2 brane can be absorbed into the SYM as an instanton
on R × T 3. We denote the coordinate on this R by t (regarded as if it were “time”).
We can define the CS invariant CS(t) along {t} × T 3, and existence of an instanton
requires CS(∞) − CS(−∞) = 1. If fractionation of an M5 in the original frame
translated into that of a triply periodic instanton, the M5 charge in the original frame
becomes the difference of the CS invariant. Thus, we expect a g-bundle on T 3 can
admit fractional CS invariant.

Fractional CS invariant on T 3 can be realized by imposing nontrivial Wilson line
along the three independent cycles of T 3 [38]. The Wilson line along T 3 determined
by three elements g = (g1, g2, g3) commuting each other of the Lie group G is,
called a commuting triple. Let us denote the conjugacy class of g by [g], and the set
of [g] by T G. We introduce an order into T G by the CS invariant CS[gi ] modulo
1 on T 3 with Wilson line g.

At t = −∞, the Wilson line is trivial. Suppose that at t = t0 a nontrivial Wilson
line (g1, g2, g3) is suddenly turned on, then after shrinking T 3 the point t = t0 looks
to support and domain wall with charge CS(t = t0 + 0) − CS(t = t0 − 0). At t =
t0 + 0, the gauge algebra g is broken to the commutant g[g] of g = (g1, g2, g3).
Therefore, at a generic point of the triply periodic instanton moduli, we have a 3d
gauge theory with gauge algebra

⊕
[gi ]∈T G\{[(1,1,1)]} g[gi ].

From the data in [38], the possible values of CS[gi ] coincide with (2.86), and
the corresponding remaining gauge algebra g[gi ] is the Langlands dual of algebra
listed inTable 2.3 (though all algebras inTable 2.3 except for so(7) are self-Langlands
dual). This is because we did T-dual twice which effectively acts on the gauge algebra
as an S-dual.

2.4.3.4 Anomaly and GS Coupling

Using the tensor branch structures (2.92)–(2.94) after tensor vev in E-string sub-
systems are turned off and the information on I [T Est

N ] (2.70), it is tedious the but

straightforward to check (2.71) for T (E6,7,8,E6,7,8)

0 .
For general N , it is convenient to consider the configuration (2.97). As we saw in

the case with g = Dk , the anomaly polynomial can be calculated by

I [T (ek ,ek )
N ] =

N∑
i=1

I [(ek)ivector] +
N∑
i=0

I [T (Dk ,Dk )
0 {(ek)i , (ek) j } + IGS (2.98)



2.4 Conformal Matters 43

with (ek)i denoting the i th ek gauge algebra. One can also check that the GS coupling
I i = ηi j I j is

I i = ηi J c2(FJ ) + h∨(g)c2(R), (2.99)

which is also valid for g = A, D.

2.4.4 Circle Compactification and Generalized Base-Fiber
Duality

Though a 6dN = (1, 0) SCFT usually does not admit a Lagrangian description (at
the origin of the tensor branch), its circle compactification into a 5d theory tends
to have a Lagrangian even at the origin of the 5d Coulomb branch and can become
weakly coupled on some parameter region. We have seen that N = (2, 0) reduces
to the MSYM, and an E-string theory reduces to a 5dN = 1 usp gauge theory with
some matters when the flavor is appropriately broken by Wilson lines.

The conformal matters T (g,g)

N also have similar situation. Since all tensor modes
are coupledwith vectors on a generic point of the tensor branch, those vectors become
strongly coupled at the origin and the compactified theory is expected to flow into a
5d fixed point 5dT (g,g)

N . Thus, to have a 5d weakly coupled Lagrangian, all the gauge
fields should become massive and decouple by introducing Wilson line.

TheM-theory orbifold-brane construction again tells us about the 5d theory. Com-
pactifying the M5s on a circle, we get the Type IIA configuration where N + 1 D4
branes probing the orbifold singularity C

2/�g. This system is nothing but what con-
sidered in [39]. The Wilson line parameter corresponds to the expectation value of
bi = ∫

�i
B10d, the integration of the 10d NSNS 2-form B10d over a vanishing cycle

�i . Their orbifold analysis concludes that the 5d theory is a quiver gauge theory
whose quiver shape is the affine Dynkin diagram of type ĝ, with ĝ being the affine
version of g. At each node of the affine Dynkin diagram there exists a 5d N = 1
vector multiplet with gauge algebra su((N + 1)di ) where di is the Dynkin label
corresponding to that node, and at each edge there sits a bifundamental. The gauge
coupling 8π2

g2i
of the gauge group on the i th node is proportional to bi , and the sum of

the gauge couplings
∑

i
8π2

g2i
including the affine node is the inverse 1

R6
of the circle

radius R6. A more detailed analysis will be made in Sect. 3.3.

2.4.5 Closing the Flavors of (A, A) Conformal Matters

A conformal matter T (g,g)

N has two flavors [g⊕2] each of which couples with 7d g
SYM. The boundary condition of the 7d SYM is the Dirichlet boundary condition,
which preserves the g 7d gauge symmetry. Instead, we can impose a half-BPSNahm-
pole boundary condition which is specified by a nilpotent element μ of the complex
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NS5 NS5 NS5 NS5

D8 D8
Hanany-Witten

D8 D8

m 1m 0

Fig. 2.9 Type IIA description of T (A2,A2)
3 {F, YR} with F = [1, 1, 1], YR = [2, 1]. The right edge

of the stack of D6s is ended on two D8s in the way specified by the Young diagram YR . The dotted
lines represents D6 segments removed by the Higgsing operation. Moving the left D8 across two
NS5 branes causes Hanany–Witten effect resulting in the left configuration. Between two D8s,
the Romans mass m become −1, meaning an NS5 tend to move to the right therefore balancing
condition at the NS5 is changed as depicted. The tensor branch gauge theory can be read off
from this configuration as an su(3)1-su(3)2-su(2) quiver with 3 su(3)1 fundamentals, one su(3)2
fundamental and one su(2) fundamental

algebra gC [40]. The nilpotent orbits of left and right flavor algebras constitute a
Higgs subbranch, and the Higgs flow defines a new 6d SCFT T (g,g)

N {μL , μR} after
ignoring NG hyper modes. This operation is called (partial) closing.16 The theory
only depends on the conjugacy classes of μL , μR . The flavor symmetries of this
theory are commutants of μL , μR .

The tensor branch structure of T (g,g)

N {μL , μR} can also be determined using F-
theory techniques, though we here analyze it using Type IIA brane construction for
g = A case along the line of [41–43]. For g = D, E case, we will see some examples
in Sect. 3.3.3. A systematic study is in [44].

A nilpotent orbit in su(k) is determined by a k × k Jordan standard form, which
is specified by a partition Y = [y1, y2, . . .] of k with yi being the size of the i th
largest Jordan block. We also regard Y as a Young diagram whose i th column has
height yi . We denote the nilpotent orbit labeled by a Young diagram Y by OY ,
and letT (Ak−1,Ak−1)

N {YL ,YR} meanT (Ak−1,Ak−1)

N {μL , μR} with μL ,R ∈ OYL ,R . A brane
realization of the nilpotent Higgs vev can be achieved by introducing D8 branes into
the Type IIA construction of T (Ak−1,Ak−1)

N as depicted in Fig. 2.9.
The zero Higgs vev corresponds to Y = [1k], and we denote that Young diagram

F . When μ is in the principal orbit, which is defined as the largest nilpotent orbit
and corresponds to Y = [k] =: C , the flavor algebra is completely broken and the
Higgsing is called the full-closing.

The situation is almost parallel to Type IIA brane construction of 4d N = 2
quiver gauge theory and its closing, and thus the tensor branch gauge theory can
be identified using the Hanany-Witten effect as in 4d case.17 A simple example
is illustrated also in Fig. 2.9. In general, the gauge groups can be calculated as
follows. Let denote elements of the transpose Y� of Y as Y� = [�1, . . . �y1 ] with
�1 ≥ �2 ≥ · · · ≥ �y1 > �y1+1 := 0, and definemi := �i − �i+1, Li = ∑i

j=1 � j . Then

16This name is originally for flavors of 4d class S theories.
17One also can do a field theoretical analysis which we skip.
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when N ≥ y1, the tensor branch structure of T (g,g)

N {F,Y } is

[su(my1)] [su(my1−1)] · · · [su(m2)]
[su(k)L ] su(k) · · · su(k = Ly1) su(Ly1−1) · · · su(L2) su(L1) [su(m1)]

2 · · · 2 2 · · · 2 2
,

(2.100)
where su(k) repeats N + 1 − y1 times. When the charge matrix ηi j is an A-type
Cartan, the gauge anomaly cancellation requires every su(n) gauge algebras to have
2n flavors, and actually this condition is satisfied.

The gauge algebras near the right edge become smaller due to the Higgsing, and
gradually becomes larger when going to the left. In particular, when Y = C = [k]
the above tensor branch structure is read as

[su(k)] su(k) · · · su(k) su(k − 1) · · · su(2) su(1)
2 · · · 2 2 · · · 2 2

. (2.101)

Taking account of the u(1) flavors ignored above, the total (non-anomalous) flavor
algebra coming from the original [su(k)R]flavor before closing is theLevi subalgebra
s(

⊕
i u(mi )) of su(k) whose element commutes with an element in OY .

When both [su(k)L ,R] are closed, the “ramp” structure appears on the both sides,
and the total flavor algebra is the direct sum of two Levi subalgebras of [su(k)L ,R]
each specified by YL ,YR , when N + 1 is lager than the sum of heights of two
Young diagrams YL ,R . Otherwise, the theory T (Ak ,Ak )

N {μL , μR} degenerates into

T
(Ak′ ,Ak′ )
N {Y ′

L ,Y
′
R} with some k ′ < k.

2.5 Higgsable to E-String Theories

We have seen that an important class of theories T (g,g)

N which is higgsable to
N = (2, 0) theories can be realized as N + 1M5-branes probingC

2/�g singularity.
Here we introduce M9 in addition, constructing a class of theories higgsable toT Est

N
whose compactification will be investigated in Sect. 3.2. The system was studied in
the reference [45] in the F-theory frame. The analysis here using M-theory and Type
I’ frames is motivated by (and most of them are essentially already presented in )
[14, 16, 46].

2.5.1 M-Theory Construction

In [45], the theory of E8 small instantons probing C
2/�g was investigated. Using

the heterotic-M duality, the same system can be described as N M5 branes probing
the intersection of M9 and the singular locus of C

2/�g as depicted in Fig. 2.10. We
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Fig. 2.10 M-theory
construction of T (M9,g)

N with
N = 3

M9

2
g

call the theory T (M9,g)

N . The theory has E8 ⊕ g flavor symmetry, where the former
is charged under the 10d E8 vector on M9 and the latter is charged under the 7d g
vector of the half-infinite singular locus.

Moving N M5 branes away from the singularity along M9 we get the rank N
E-string theory, which indicates that there is a Higgs branch flow

T (M9,g)

N
Higgs−−→ T Est

N . (2.102)

Since T Est
N is very-higgsable, T (M9,g)

N is also very-higgsable.
Instead of the above Higgs branch flow, we can move N M5 branes away from

M9 along the singular locus, which corresponds to a tensor branch flow. On the
tensor branch, the M-theory system is very similar to that of the conformal matter
T (g,g)

N−1 . However, this time one side of the singular locus ends on M9, which might
impose nontrivial boundary condition on the 7d SYM living on the singular locus.
Therefore, supposing that boundary condition is the Nahm-pole boundary condition
with nilpotent orbit O0, the tensor branch flow is

T (M9,g)

N
tensor−−−→ T (g,g)

N−1 {O0, F}. (2.103)

Then the tensor branch structure should look like

[e8] g1 g2 · · ·
1 η22 · · · (2.104)

with some subalgebra g1 of g which commute with O0, where the part

[g1] g2 · · ·
η22 · · · (2.105)

is the tensor branch structure of [T (g,g)

N−1 {O0, F}]. In the following we denote this
situation by

[e8] g1
1

[T (g,g)

N−1 {O0, F}]. (2.106)

To be consistent with the e8 flavor, the tensor mode with ηkk = 1 is supposed to
produce the rank 1 E-string theory because we do not know another example of rank
1 6d SCFT with e8 flavor. Therefore, we conclude that g1 = ∅ and the commutant
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of O0 does not contain non-abelian subgroup. Further, in [16, 45] the tensor branch
structure is derived from the F-theory frame. From their result, the tensor branch
structure of T (M9,su(k))

N with N ≥ k is

[e8] ∅ su(1) su(2) · · · su(k) · · · su(k) [su(k)]
1 2 2 · · · 2 · · · 2

, (2.107)

which impliesO0 is the maximal orbit meaning the full-closing of [gL ]. The result in
the references are also consistent withO0 being the maximal orbit for g = Dk, E6.18

Aswe did forT (g,g)

N , we can partially close the gflavor on the half-infinite singular
locus. On the other hand, since the e8 flavor does not come from 7d SYM but 10d
SYM on M9, the flavor admits different operation. In the M-theory construction,
the M9 occupying C

2/�g admits nontrivial E8 flat bundle without breaking any
supersymmetry. Those flat bundles are classified by homomorphisms

ρE8 : �g → E8. (2.108)

The e8 flavor is broken down to the subgroup commuting with the image of ρE8 .
Therefore, we have defined a variant of T (M9,g)

N labeled by a homomorphism ρE8

and a nilpotent orbit O of g, and we denote it T (M9,g)

N {ρE8 ,O}. We abbreviate O
when O is trivial. The flavor symmetry is Z(e8, ImρE8) ⊕ Z(g,O), where Z(g, g′)
is the subalgebra of g commuting with subspace g′ ⊂ g.

A flat bundle with nontrivial ρE8 should also determine a certain boundary con-
dition of the 7d g SYM at the intersection point, and therefore we expect there is a
mysterious map

{hom. �g → E8} → {Nilpotent orbits of g}. (2.109)

Denoting the image of ρE8 under the above map byOρE8
, the tensor branch structure

of T (M9,g)

N {ρE8} should be

[f] g1
1

[T (g,g)

N−1 {OρE8
, F}], (2.110)

with some flavor f and some gauge algebra g1. f should be a (possibly empty) sub-
algebra of Z(e8, ImρE8), g1 should be a simple subalgebra of Z(g,OρE8

) or empty,
and they should satisfy Z(Z(g,OρE8

), g1) ⊕ f = Z(e8, ImρE8).
The map (2.109) was investigated in [14], and determined for g = su(k) with

small k where Z(e8, ImρE8) uniquely determines ρE8 . Furthermore, the tensor branch
structure (2.110) is identified in [47] for any ρE8 with g = su(k). The method there

18The gauge algebras remaining in the “root toT Est
N ” can be obtained by colliding simple punctures

in class S of type Dk , E6. We do not have enough information about punctures in class S of type
g = E7,8.
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NS5 NS5 NS5 NS5
D8O8 7D8

Hanany-Witten NS5 NS5 NS5 NS5
D8O8 7D8

Fig. 2.11 Type I’ brane construction of T (M9,su(k))
N with k = 3, N = 4. After causing Hanany-

Witten effect, the tensor branch structure (2.107) can be read off

is basically guess works, and how M-theory or heterotic string theory realizes those
tensor beranch theories when given a flat bundle remains to be unexplored.

2.5.2 Type I’ Description for Cases with SU Gauge Groups

Instead of directly determining the map (2.109), we can explore possible tensor
branch structure for the case where g = su which can be constructed in Type I’
frame using the result of [41, 42], which is the strategy of [46].

2.5.2.1 g1 = ∅ Case with O8−

First, we focus on the case with g1 in (2.110) is empty, which was the interest of [48]
and will be treated in Sect. 3.2. As said, the M9 in M-theory becomes the O8−-8D8
stack and the C

2/�su(k) singularity becomes k of D6s in the Type I’ frame. When
ρE8 is trivial, the whole E8 flavor should remain, and possible brane configuration
with surviving E8 symmetry constructed of by O8−, 8D8s, k of D6s and NS5s is
what is depicted in Sect. 2.11.

As a generalization, the k D6s can end on 8 D8-branes near the O8− with a pattern
specified by a young diagram Y with no more than 8 columns, resulting in a theory
T (M9,su(k))

N {ρE8} with a certain ρE8 which satisfies OρE8
= OY . The tensor branch

structure is
[e9−�1] ∅

1
[T (su(k),su(k))

N−1 {Y, F}]. (2.111)

where [T (su(k),su(k))
N−1 {Y, F}] is (2.100) (after flipping the left and the right). For

small k, ek means e5 = so(10), e4 = su(5), e3 = su(3) ⊕ su(2), e2 = su(2) ⊕ su(2),
e1 = su(2). The e8 flavor on M9 is broken down to

e8 ⊃ e9−�1 ⊕ su(�1) ⊃ e9−�1 ⊕ s

(
y1⊕
i=1

u(mi )

)
, (2.112)
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Fig. 2.12 Type I’ brane construction of T (M9,su)
N {ui } [41, 42]. The × mark represents an NS 5

brane, the horizontal line represents the stack of D6 branes, and the vertical lines represent D8
branes or the stack of O8-- plane and D8 branes. The symbols in the circles are the numbers of the
branes there. Themi D8 branes intersecting with ui D6 segments supports su(mi ) flavor symmetry.
The gauge anomaly cancellation requires mi = 2ui − ui−1 − ui+1. From: [48]

with Y� = [�1, �2, . . . , �y1 ] and mi = �i − �i+1. Note that the Levi subgroup which
is the flavor ofT (su(k),su(k))

N−1 {Y, F} also comes from the e8 vector fields on M9 in the
M-theory construction, not from the 7d vectors on C

2/�Ak−1 singular locus.
Combining with the closing of the [su(k)] flavor, one can engineer a theory with

tensor branch structure

[e9−u1 ] ∅ su(u2) su(u3) · · · su(uN )

1 2 2 · · · 2
, (2.113)

where ui satisfies u2 ≤ 8, 2ui − ui−1 − ui+1 ≥ 0 ( u1 = uN+1 := 0). The Type I’
construction is depicted in Fig. 2.12. We call the theory T (M9,su){ui }. Their com-
pactification will be investigated in Sect. 3.2.

2.5.2.2 O8∗-Plane

In the discussion so far, we use the O8− plane in the brane construction. However, we
can have an alternative orientifold 8-plane in Type I’ brane engineering: O8∗ plane
[31, 46, 49].

In [31, 49], the theory of a D4 brane probing the stack of O8− plane and n ≤ 8 D8
branes was investigated. When the dilaton background at O8− diverges, the theory
has en+1 flavor symmetry and called En+1 theory. Moreover, it was found that the
E2 theory has two distinct mass deformations which keep the dilaton background
infinite; one is called E1 theorywith e1 = su(2)flavor symmetry and another is called
Ẽ1 theory with ẽ1 = u(1) symmetry. The Ẽ1 theory has further mass deformation to
the E0 theory which has no flavor symmetry.

This indicates that there are two distinct ways of splitting one D8 brane out of the
stack of O8− plane and one D8 brane. They are realized using the different kind of
orientifold 8-plane called O8∗ in [46] as follows:
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O8− + D8 → O8−,D8
↘ O8∗ + D8,D8 → O8∗,D8,D8.

(2.114)

Here + denotes the stack of two objects, while a comma means that the two objects
exist separately. As a consequence, the flavor symmetry living on the O8− plane with
the divergent dilaton background is e1, while that for O8∗+D8 is ẽ1.

Using O8∗-plane, we can engineer a theory with the tensor branch structure

[ẽ9−u1 ] ∅ su(u2) su(u3) · · · su(uN )

1 2 2 · · · 2
, (2.115)

which we call T (M9,su)∗ {ui }. When u2 ≤ 7 the theory is identical to T (M9,su){ui }
since O8∗+2D8=O8−+D8, therefore we impose u2 ≥ 8whenwewriteT (M9,su)∗ {ui }.
Note that the two theoriesT (M9,su){u2 = 8, u3 = 8, . . .} andT (M9,su)∗ {u2 = 8, u3 =
8, . . .}, which are

[e1] ∅ su(8) su(8) · · ·
1 2 2 · · ·,

[ẽ1] ∅ su(8) su(8) · · ·
1 2 2 · · ·, (2.116)

are different theories because the gauged su(8) subalgebra of the e8 flavor of the E-
string is different. In the former case the su(8) subalgebra is embedded into e8 through
the maximal subgroup su(8) ⊕ su(2), while in the later case the su(8) subalgebra is
embedded through the maximal subgroup su(9).

2.5.2.3 g = su,g1 �= ∅ Case

Here we will see some examples of the case with g1 in (2.110) is not empty. To
engineer such theories in Type I’, D6 branes should intersect with the O8-plane.
There are three distinct way of intersecting D6 with the O8:

1. Even number (2k) of D6 directly intersect with O8−. The orientifold project the
su(2k) onto usp(2k).

2. An NS5 brane sits on the intersecting point. The su(k) gauge fields on the D6s
ending on the 1

2 NS5 possesses a rank 2 antisymmetric hyper.
3. D6 branes are intersecting with O8∗.

As an example of case 1., when 2k D6 intersect with O8−-8D8 stack coming from
M9 and NS5 are probing the D6s, the theory looks

[so(16)] usp(2k) su(2k) · · · su(2k) [su(2k)]
1 2 · · · 2

. (2.117)

The usp(2k) gauge group should have 2k + 8 fundamental hypers because of the
anomaly cancellation, with 2k of them being gauges by the neighboring su(2k).
When a 1

2 NS5 is trapped at the intersection point (in this case the number of D6 can



2.5 Higgsable to E-String Theories 51

be odd), the theory becomes

[su(8)] su(k) su(k) · · · su(k) [su(k)]
1 2 · · · 2

. (2.118)

In this case the orientifold projection acts on a bifundamental hyper, therefore the
leftmost su(k) have 8 + k fundamental plus one rank-2 antisymmetric hyper. The
gauge anomaly still cancels thanks to the element η11 of the charge matrix is 1.

The case 3. is intricate [46]. Here we only mention that using this configuration
we can engineer, for example,

[su(9)] su(6) su(6) [su(6)]
1 2 2

(2.119)

where the leftmost su(6) possesses 15 fundamentals and a half-hyper with rank-3
totally antisymmetric tensor representation.

Understanding those three cases from the M-theory point of view would be inter-
esting. Those cases just come from different choices of the E8 flat bundle ρE8 . The
case 2. suggest that with some ρE8 the intersecting point of C

2/Zk singular locus
and M9 have intrinsic M5 charge, but with other flat bundles realizing case 1. the
intersection point does not have M5 charge.

Appendix: Group Theory Constants and Notations

In this Appendix we summarize the anomaly polynomials for multiplets of 6d
N = (1, 0) supersymmetry, and other group theoretic notations. In this paper we
do not concern about subtleties arise from global structures of gauge groups and be
careless about whether we are talking about groups or algebras.

In this paper we use the notation in which the anomaly polynomials of Weyl
fermions in a representation ρ becomes

Â(T )trρe
iF . (2.120)

where Â(T ) is the A-roof genus. In particular, F is anti-Hermitican and include a
(2π)−1 factor in its definition compared to the usual one. The anomaly polynomials
forN = (1, 0) multiplets are the following:

• Hypermultiplet with representation ρ

I [ρ hyper] = trρF4

24
+ trρF2 p1(T )

48
+ dρ

7p21(T ) − 4p2(T )

5760
(2.121)

• Vector multiplet with group G
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Table 2.4 Group theoretical constants defined for all G. Those constants are cited from Appendix
of [50]

G SU(k) SO(k) USp(2k) G2 F4 E6 E7 E8

rG k − 1 �k/2� k 2 4 6 7 8

h∨
G k k − 2 k + 1 4 9 12 18 30

dG k2 − 1 k(k − 1)/2 k(2k + 1) 14 52 78 133 248

dfnd k k 2k 7 26 27 56 248

sG
1
2 1 1

2 1 3 3 6 30

tG 2k k − 8 2k + 8 0 0 0 0 0

uG 2 4 1 10
3 5 6 8 12

I [G vector] = − tradjF4 + 6c2(R)tradjF2 + dGc2(R)2

24
− (tradjF2 + dGc2(R))p1(T )

48

− dG
7p21(T ) − 4p2(T )

5760

• Tensor multiplet

I [tensor] = c2(R)2

24
+ c2(R)p1(T )

48
+ 23p1(T )2 − 116p2(T )

5760
(2.122)

where dρ and dG are the dimensions of representation ρ and group G, respectively.
It is convenient to define the symbolTrG to be the trace in the adjoint representation

divided by the dual Coxeter number h∨
G of the gauge group G, listed in Table 2.4.

One of the properties of Tr is that 1
4

∫
TrF2 is one when there is one instanton on a

four-manifold. Moreover, if we have subgroup G ′ in a group G with Dynkin index
of embedding 1, for an element f of universal enveloping algebra of Lie algebra of
G ′ , the following equation holds:

TrG ′ f = TrG f. (2.123)

All the embeddings we consider in this paper have the embedding index 1, so we
always omit the subscriptionG in TrG . Further, we define a characteristic class c2(F)

by

c2(F) = 1

4
TrF2, (2.124)

which is the second Chern class when the gauge group of the considered bundle is
SU.

To convert the above anomaly polynomials to a convenient form, we define some
constants and write those values in Table 2.4.We define the constant sG which relates
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Table 2.5 Group theoretical constants defined only for G without independent quartic Casimir

G SU(2) SU(3) G2 F4 E6 E7 E8

wG
8
3 3 10

3 5 6 8 12

xG
1
6

1
6

1
3 1 1 2 12

the trace of F2 in the fundamental representation19 and TrF2 as trfundF2 = sGTrF2.
Then we have

tradjF
2 = h∨

GTrF
2 = 4h∨c2(F), trfundF

2 = 4sGc2(F), (2.125)

where the first equation is just the definition of Tr. For trace of F4, we define tG and
uG by

tradjF
4 = tG trfndF

4 + 12uGc2(F)2 (2.126)

For gauge groups G = SU(2),SU(3) and all exceptional groups, there are no
independent quartic Casimir operators, so we can relate trρF4 and (TrF2)2 by

tradjF
4 = 12wGc2(F)2, trfundF

4 = 12xGc2(F)2 (2.127)

These constants are tabulated in Table 2.5. Note that because tSO(8) = 0, we can also
relate tradjF4 to (TrF2)2 for G = SO(8).

All representations we use in this paper are fundamental or adjoint, except for the
spin representation 8 of SO(7). The conversion constant for this representation is

tr8F
2 = TrF2 = 4c2(F),

tr8F
4 = −1

2
trfundF

4 + 6c2(F)2. (2.128)

Finally, let us note that the finite subgroup �G of SU(2) of type G = An, Dn and
En has the following order:

|�SU(k)| = k, |�SO(2k)| = 4k − 8, |�E6 | = 24, |�E7 | = 48, |�E8 | = 120.
(2.129)

19Here, fundamental representation mean the defining representation for classical groups, and
7, 26, 27, 56 and 248 for G2, F4, E6, E7 and E8, respectively.
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Chapter 3
Circle and Torus Compactifications

In Chap.2, we have reviewed some basic properties of some examples of 6d SCFTs.
In this chapter, we would like to investigate torus compactifications of the theories
which appeared in the previous chapter.

As said in Chap.1, the torus compactification of theN = (2, 0) theory of type G
gives 4dN = 4 SYMwith gauge group G. In this case, two important properties are

1. The theory is superconformal at the origin of its moduli, and
2. the torus modulus τ is identified with the (exactly) marginal coupling τ ofN = 4

SYM. In particular, the SL(2, Z) modular group act as the S-duality on N = 4
SYM.1

It is not obvious these properties are universal for torus compactification of
N = (1, 0) theories.

Actually, in Sect. 3.1, for a very-higgsable theory, which is defined as a theory
which is at a generic point of Higgs branch the system is gapped or hypers, we will
find the following claim:

When a 6d N = (1, 0) theory T is very-higgsable, its torus compactifica-
tion 4dT has a superconformal point on its moduli, and the torus modulus τ

corresponds to an irrelevant operator on the superconformal fixed point. In
particular, the SL(2, Z) modular group acts trivially on the superconformal
fixed point.

1N = 4 SYM is not self-dual under the S-duality even when G = SU(N ) since its Langlands dual
is SU(N )/ZN . The global data depends on choice of basis of cycle, and this is because the “meta”-
ness of the AN−1 N = (2, 0) theory [1]. This subtlety exists also for N = (1, 0) theories which is
not very-higgsable though we will not study further in this direction.
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Awell-known example isT = T Est
N [2]. In that case the compactified theory 4dT Est

N
is the higher rank generalization of the E8 theory ofMinahan–Nemeschansky, which
does not have a marginal deformation. Another example of a very-higgsable theory
is T (g,g)

0 , and we will observe that the torus compactified theory 4dT (g,g)
0 can be

identified with a class S theory of type g. Further, we study torus compactifications
of theories which is higgsable toT Est

N in Sect. 3.2 using web diagrams, and conclude
the compactified theory can be also described as a class S theory of type AK−1 with
some K when the theory satisfies certain additional conditions.

Finally, wewill generalize the analysis forT (g,g)
0 to generalT (g,g)

N and its closing
T (g,g)

N {μL , μR} in Sect. 3.3. Those theories are higgsable to N = (2, 0) theory2 of
type AN , and the most of analysis will be also generalized to theories higgsable to
N = (2, 0) theories of D, E type. There, we will observe that:

when a 6d N = (1, 0) theory T is higgsable to T (2,0)
G , the torus compactifi-

cation 4dT can be decomposed as

4dT = 4dS {G}/Gτ (3.1)

with some 4d N = 2 theory 4dS {G} with flavor G, where /Gτ denotes the 4d
N = 2 gauging of the G flavor of 4dS {G} with marginal gauge coupling τ .
The theory 4dS {G} is further decomposed as

4dS {G} = (4dU {G, H} × 4dV {H})/HIRF (3.2)

where 4dU , 4dV are certain 4d N = 2 SCFTs whose flavors are indicated
in the bracket, and /HIRF denotes the gauging of the diagonal of H flavors
of the two 4d SCFTs with an IR free gauge coupling. Therefore, in general,
the 4d theory decouples into two SCFTs at the most singular point of the
Coulomb moduli space.3 When the tensor branch structure on the root to
T (2,0)

G includes su(1) or ∅ gauge algebra, 4dV {H} = ∅ and H = ∅, and
therefore 4dS {G} = 4dU {G} is superconformal.

For T (Ak ,Ak )
N {μL , μR} and T (Dk ,Dk )

N {μL , μR}, the theories 4dU and 4dV will be
identified with certain class S theories, and in some cases we find that H and 4dV

2Here, we focus on the case where we can go to the root to N = (2, 0) theory by recursively
shrinking tensor vev ak with ηkk = 1. In other words, the root to N = (2, 0) is the endpont. A
counterexample of this restriction is T (usp,usp)

N .
3Here we do not introduce Wilson lines along the torus. When generic Wilson lines are turned on,
the situation is different [3].
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happens to be trivial. Therefore, in such cases, the two properties of compactification
ofN = (2, 0) theories posed above are also satisfied and a generalization ofGaiotto’s
class S story to this case might be expected to exist.4

3.1 Compactification of Very-Higgsable Theories: E-String
Theories and Minimal Conformal Matters

In this section, we investigate torus compactification 4dT of a 6d very-higgsable
theoryT . Actuallywewould like to set a stronger condition than just being higgsable
to free hypers, which is the following:

• All tensor vev can be turned off using only the procedure (2.37) recursively. Using
the terminology introduced below (2.37), the endpoint is trivial.

• The charge matrix ηi j satisfies (2.31).

By the term very-higgsable, we mean these conditions in the following. An example
with nontrivial defect group but being higgsable to a hyper is T (usp,usp)

0 . Further,
we are going to use the empirical fact

• In the GS coupling 2π
∫
Bi ∧ I i at a point in the contracted subspace of the tensor

branch , the coefficient qi
grav of

1
4 p1(T ) in I i is always ηi i − 2:

I i ⊃ qi
grav

1

4
p1(T ), qi

grav = ηi i − 2. (3.3)

which is derived from (2.31) and the empirical equation (2.25). As said there, this fact
holds for all F-theory-constructible theories which includes all the known theories.

First, we study the torus compactification of a general very-higgsable theory T ,
and prove

• The 4d theory has a superconformal point, and the SCFT does not have marginal
coupling, and

• the 4d central charges a, c can be written as a linear combination of the coefficients
of the 6d anomaly polynomial of T .

In particular when T = T Est
N , the formula obtained correctly recovers the known

central charges of the rank N E8 theory of Minahan and Nemeschansky.
Further, we consider the case ofT = T (g,g)

0 and identify the compactified theory
4dT (g,g)

0 as a class S theory of type g using string dualities in Sect. 3.1.2. We will
also do consistency checks.

4Instead, if we allow ourselves to turn onWilson lines as we discussed in Sect. 2.4.4 for T (g,g)
N , the

two properties are satisfied when compactified further to 4d, since the affine quiver is conformal
in 4d. In fact the generalization to compactification by general Riemann surfaces with nontrivial
flavor bundles gives 4dN = 1 SCFTs [4], and g = Ak−1 case which is called class Sk is somewhat
extensively studied [3, 5].
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The contents of this section was originally appeared in [6] by the author of this
thesis and his collaborators.

3.1.1 General Properties and Central Charges of Torus
Compactified 6d SCFTs

3.1.1.1 Subbranch H of the 4d Coulomb Branch

First we define a subbranch H of the Coulomb branch of 4dT . On the contracted
subspace of the tensor branch of a very-higgsable theoryT , the tensor branch struc-
ture looks

· · · gk−1 gk gk+1 · · ·
ηk−1,k−1 1 ηk+1,k+1 . (3.4)

Between gk and gk±1, there might be a Lagrangian or non-Lagrangian matter. For
example, the structure expressed in the most right part of (2.92) is in the contracted
space, and su(3) and [e6] are coupled with an E-string trough the embedding su(3) ⊕
e6 ⊂ e8, which is non-Lagrangian.

Let us focus on the tensor mode ak with ηkk = 1 associated with gk . When com-
pactified on T 2, the tensor scalar ak and the 4d scalar

bk =
∫

T 2
Bk (3.5)

coming from the 6d self-dual tensor field Bk forms a 4d Coulomb branch (complex)
scalar

u ∼ exp(ak + 2π ibk). (3.6)

This classical description of u is valid where ak � volT 2. The metric of the u-
space is that of cylinder there, since bk is identified with bi by the 6d large gauge
transformation. It is not obvious whether it is meaningful to talk about u where ak

is not large, because a priori the scalar u can mix with the scalars coming from
other tensors and scalars from 6d vector.5 However, we will see later that the gauge
algebra gk is IR free in 4d, and thuswe can separate u fromother Coulomb parameters
even quantum mechanically when the couplings of gauge fields with gauge algebra
other than gk are sufficiently weak. We let H denote the complex one-dimensional
subbranch spanned by u.

Further, the IR free-ness of gk ensures that the structure ofH is invariant under the
Higgs flow. Since Higgs branch does not admit quantum correction, the gauge field
associated to gk can be Higgsed. Then, the resulting theory is the T 2 compactified

5The Higgs branch is robust under the compactification thanks to eight supercharges, thus u does
not mix with Higgs scalars.
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O7

O7

D7sD7s D3
Restoring E8

E8 brane

Fig. 3.1 Depiction of the brane realization of the Coulomb branch H of rank 1 E-string theory.
The left shows perturbative configuration where E8 flavor is broken. The geometry depicted is a
cylinder divided by the orientifold Z2, and the gray curve between O7s are identified with the other
curve between them. Colliding O7s and 6 D7,they non-perturbatively become an E8 brane, and the
Coulomb branch looks like the right picture. The position of the D3 corresponds to the Coulomb
branch coordinate u, the E8-brane represents the superconformal point where the E8 theory of
Minahan and Nemeschansky is realized, and the remaining 2 D7-branes represents two free-hyper
point inH . Far away from the singular points, the Coulomb branch is a cylinder described by (3.6)

rank 1 E-string (plus other decoupled modes) [2]. Therefore, the special structure,
in particular the positions of singularities, of the subbranch H is the same as those
of the Coulomb branch of the compactified E-string theory.6

3.1.1.2 Structure of H

As said above, the structure ofH is universal among any tensor mode with ηkk = 1.
Therefore, the problem of determining the structure of H is reduced to the case of
the rank 1 E-string theory T Est

1 .
An easy way to capture the singularity structure of H is to consider the brane

construction of the E-string theory. The rank-1 E-string theory is the worldvolume
theory on one M5 brane probing the M9. When compactified on S1, this M-theory
system reduces to the Type IIA system with a stack of O8−and eight of D8s coming
from the M9 and one D4 coming from the M5. Further compactify and taking T-dual
along that compactifying circle, we get a Type IIB system with 2 O7−, 8D7, one D3,
which is depicted in Fig. 3.1.

It is known from the F-theory analysis [7, 8] that 2 O7−-planes and 6 D7-branes
can be combined to become an E8 7-brane. Therefore, the restoration of the E8 flavor
of the E-string theory T Est

1 should corresponds to this emergence of the E8-brane.
As also illustrated in Fig. 3.1, there are two additional D7-branes, and the position
space of D3, which is identified with the Coulomb branch H , is the cigar with one
E8 superconformal point and two of points where a D7-D3 free hyper emerges. We
set the coordinates of those singular points to be u = 0, 1, λ with a complex number
λ by a linear fractional transformation on u fixing the infinity. Since the modulus τ

of the torus is just related to the position λ of a D7 relative to the E8-brane, it does
not affect the superconformal physics at the E8 point.

6Instead, asymptotic behavior (3.6) is enough to constrain the special geometry as said in [6].
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Let us determine the special geometry ofH assuming that the associated Seiberg–
Witten geometry is a torus fibration:

y2 = x3 + x f (u) + g(u). (3.7)

The special coordinates a and its dual aD are

da

du
=

∫

A

dx

y
,

daD
du

=
∫

B

dx

y
(3.8)

where A, B are cycles of the elliptic curve (3.7). Since the complex structure τ(u) =
daD
da should be asymptotically equal to the complex structure of the compactifying
torus when |u| → ∞, f, g behave as f → u4n, g → u6n (ignoring the coefficient)
with some integer n in the limit. The fact that the metric ds2 = Im(da∗daD) on H
should be asymptotically cylinder, because of (3.6), determines n to be 1.

Therefore, f (u), g(u) are polynomial of order 4, 6 respectively, and thus the
discriminant � = 27 f 2 + 4g2 has generically 12 zeros. 7 However, when the E8

flavor restores, we expect only three zeros are separated, and at the two hyper points
the order of vanishing of � should be one. Imposing that the worst singularity sits
at u = 0, the only possibility is

f (u) = u4, g(u) = u5 + u6, (3.9)

up to coefficients.
TheR-charge R[u] of u at the superconformal point u = 0 can also be determined.

From (3.7) and (3.9), the R-charge of x, y are

R[x] = 5

3
R[u], R[y] = 5

2
R[u]. (3.10)

The Seiberg differential λ is determined by ∂λ
∂u = dx

y , and has R-charge 2. Thus, we

have 2 − R[u] = R[x] − R[y] = − 5
6 R[u], and conclude R[u] = 12.

3.1.1.3 Method to Calculating Central Charges

Here we briefly describe the method of calculating the 4d central charges of a 4d
N = 2 SCFT with one-dimensional Coulomb branch, that was developed in [9]. The
generalization to theories with multi dimensional Coulomb branch is straightforward
and can be found in the reference. The method relies on the topological twisting of
4d N = 2 with (topologically nontrivial) background metric and flavor fields [10].

7This number is related to the fact that an O7− is actually a non-pertubative bound-state of (1, 1)
and (1,−1) 7-branes and thus there are 12 branes in the left of Fig. 3.1. We are going to heavily use
this fact in Sect. 3.2.
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After twisting and integrating out massive modes, the partition function should look
like

Z =
∫

Coulomb branch
[dμ] A(u)χ B(u)σ

∏

i

Ci (u)ni Zgen(μ), (3.11)

where [dμ] is the measure for the vector multiplet μ to which u belongs, Zgen(u)

is the contribution coming from integrating out all modes but the multiplet μ, and
topological invariants χ, σ, ni are the Euler number, the signature 1

3

∫
p1(T ) and

the instanton number
∫
c2(Ffi ) with respect to the i th flavor fi . Zgen(u) is calculated

using the spectrum away from singular points in the Coulomb moduli. Other terms
depending on backgrounds are prohibited by the topological invariance, and, to keep
the twisted BRST invariance, the “functions” A(u), B(u),Ci (u) of the Coulomb
branch modulus u should be holomorphic. The reason of the quotation mark is
explained just below.

As said in [10], the measure [dμ] is not invariant under the S-duality that maps
the special coordinate a to aD and vector multiplet fields μ to μD , but

[dμ] = τ− χ

2 [dμD], τ = daD
da

. (3.12)

For the partition function Z to be invariant, the “function” A(u)χ should absorb this
modular anomaly, therefore A(u) is actually a function on the SL(2, Z) cover of the
Coulomb branch determined by the torus fibration on it (B,C are also not single
valued, but still functions on a finite cover). Therefore, we can write A(u) as

A(u) = Â(u)

(
dτ

du

) 1
4

(3.13)

with Â(u) being invariant under the S-duality, since

(
dτD
du

) 1
4

= τ− 1
2

(
dτ

du

) 1
4

(3.14)

where τD = − 1
τ
.8

At a superconformal point u = u∗, the N = 2 U(1)R and SU(2)R symmetries
should restore, and their (non-gauge) ’t Hooft anomalies are known to be related to
conformal central charges a, c and flavor levels ki with respect to flavor algebras fi
[11–13]. ForN = 2 theories, the U(1)R-grav2, U(1)R-SU(2)2R and U(1)R-f2i ’t Hooft
anomalies is related to the a, c, ki as

d 
 JU(1)R = 2(c − a)p1(T ) + 4(c − 2a)c2(R) +
∑

i

ki c2(Ffi ). (3.15)

8In fact, in general A(u) though to be equal to ( ∂u
∂a )

1
2 . The later calculation will be simplified when

this formula is assumed [9].
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This equation is for the untwisted theory, and the twisting forces

c2(R) = −1

2
χ4 − 1

4
p1(T ) (3.16)

withχ4 being theEuler density. Therefore, after twisting, the anomaly (3.15) becomes

d 
 JU(1)R = 2(2a − c)χ4 + cp1(T ) +
∑

i

ki c2(Ffi ). (3.17)

Comparing the variation δ log Z obtained from this anomaly equation and from the
Eq. (3.11) around the considered superconformal point, we obtain

a = 1

4
R[A|u∗] + 1

6
R[B|u∗] + agen (3.18)

c = 1

3
R[B|u∗] + cgen (3.19)

ki = R[C |u∗] + ki,gen (3.20)

where agen, cgen, ki,gen are contribution from Zgen(u) and R[A, B,C |u∗] are the
charges of A, B,C with respect to the U(1)R restored at u = u∗. We define
δap, δcp, δki,p by the difference between the central charges of the CFT arises at
u = p and agen, cgen, ki,gen.

3.1.1.4 Central Charges of the E8 Theory of Minahan
and Nemeschansky

Next, let us derive the central charges of the superconformal point of T 2 compactified
T Est

1 , as a warming up, by investigating the behaviors of the functions A, B,C
defined above. We will almost repeat the calculation appeared in [9] though slightly
change it to fit with the later calculation. We let AE , BE ,CE denote the functions
A, B,C for the case of 4dT Est

1 . Soon we generalize this analysis to general very-
higgsable theories.Note that since theU(1)R symmetry at the superconformal point is
emergent at low-energy, we cannot obtain the 4d anomaly polynomial just integrating
the 6d anomaly polynomial. However, the method we have reviewed above enables
us to calculate 4d central charges a, c, which are linearly related with coefficients of
the 4d anomaly polynomial by supersymmetry. The necessary ingredients are using
the SW geometry of H and the 6d GS coupling

2π
∫

B ∧ I, I = c2(FE8) − c2(R) + 1

4
p1(T ). (3.21)
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The asymptotic behavior of the functions AE , BE ,CE around |u| ∼ ∞ can be
easily read from the GS coupling (3.21). Upon compactification and twisting the GS
coupling becomes the 4d coupling

∫
I log u, I = 1

2
χ4 + 1

2
p1(T ) + c2(FE8) (3.22)

where |u| ∼ ∞, and therefore the asymptotic behaviors of the functions A, B,C are
determined to be

AE ∼ u
1
2 , BE ∼ u

3
2 , CE ∼ u (where |u| ∼ ∞). (3.23)

Since BE ,CE are free from modular anomaly, it is easy to determine their behav-
iors around the superconformal point from the argument principle. At u = p = 1, λ,
just a massless hyper arises; therefore, we have δpa = 1

24 , δpc = 1
12 δpk = 0,

R[u] = 2. From (3.18)–(3.20), we get

ordp AE = 0, ordp BE = 1

8
, ordpCE = 0 (3.24)

for the hyper points p = 1, λ with ordp meaning the order of the zero at p. Thus,
from (3.23), the argument principle says

ord0BE = 5

4
, ord0CE = 1. (3.25)

Then, from (3.19), (3.20) and the fact R[u|0] = 12, we have

δ0c = 5, δ0k = 12. (3.26)

To use the argument principle for AE (u), we should know the behavior of dτ
du

around u = 0, 1, λ,∞ which can be determined only by the special geometry of
H . Around the infinity, the j-invariant j = 4 f 3

�
behaves like j ∼ 1 + u−1 (ignoring

coefficients), and the function τ(u) goes to the non-singular τ(∞) which is equal to
the modulus of the compactifying torus; therefore the asymptotic behavior of dτ

du is

dτ

du
= dτ

d j

d j

du
∼ u−2, (u ∼ ∞). (3.27)

Around the hyper points u ∼ p = 1, λ, τ ∼ log(u − p) [14] from the one-loop com-
putation. Near the E8 superconformal point u ∼ 0, the j invariant behaves j ∼ u2.
There is a formula for τ :

τ ∝ 2F1(
1
6 ,

5
6 , 1; 1 − α)

2F1(
1
6 ,

5
6 , 1;α)

(3.28)
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with j = 1
4α(1−α)

and the hypergeometric function 2F1. Using the asymptotic behav-

ior of the hypergeometric function which is 2F1(a, b, c; z) ∼ z−a + z−b where
z ∼ ∞, we have

dτ

du
∼ u− 1

3 , (u ∼ 0). (3.29)

Then it is straightforward to find the orders of the function ÂE (u) = AE ( dτdu )− 1
4 .

From (3.23), (3.24) and the behavior of dτ
du , we have

ÂE ∼ u, (u ∼ ∞), ordp ÂE = 1

4
, (p = 1, λ), (3.30)

concluding

ord0 ÂE = 1

2
, ord0AE = 5

12
, R[AE |0] = 5. (3.31)

Substituting obtained R-charges R[AE , BE ,CE |0] and agen = 5
24 , cgen = 1

12 com-
ing from the vector multiplet μ, which is the only massless modes at a generic point,
into (3.18)–(3.20), we obtain the central charges of the superconformal point of
4dT Est

1 , which is thought to be the E8 theory of Minahan and Nemeschansky, as

a = 95

24
, c = 31

6
, kE8 = 12. (3.32)

This agrees with the holographic calculation [15], although it is not completely sure
that the holographic calculation is valid for N = 1.

3.1.1.5 Recursive Calculation of 4d Central Charges

Now, we are ready to compute the central charges a, c, ki for general T 2 compact-
ified very-higgsable theory 4dT . We are going to recursively prove the following
proposition P[N :

• P[N ]: For any very-higgsable theory T with rank (the number of tensor modes)
less than or equal to N , the 4d central charges of the compactified theory 4dT is

a = 24α − 12β − 18γ

c = 64α − 12β − 8γ

ki = 48κi ,

(3.33)

where α, β, γ, κi are the coefficients of the 6d anomaly polynomial I [T ] defined
as

I [T ] ⊃ αp1(T )2 + βp1(T )c2(R) + γ p2(T ) +
∑

i

κi p1(T )c2(Ffi ). (3.34)



3.1 Compactification of Very-Higgsable Theories: E-String … 67

The (3.33) can be directly checked for free hypers, tensors, vectors. In particular, the
proposition P[0] holds, since a free hyper is the very-higgsable theory.

To prove P[N + 1] with assuming P[N ], we consider a rank N + 1 very-
higgsable theory T+. Because of being very-higgsable, there is a one-dimensional
subspace of the tensor branch of T+ where the theory looks like

[f] g T
1

(3.35)

with some (possibly empty) gauge algebra g and a rank N very-higgsable theory
T (possibly consists of multiple coupled component) coupled with the tensor mode
(ak, Bk) with ηkk = 1. When g �= ∅ the rank N theory T should have g flavor and
gauged by the dynamical vector multiplet, while if g = ∅ a defect of T should be
charged under the tensor mode Bk so that after shrinking ak we get the coupled
SCFT T+.

Then, first we prove that g is IR free in 4d when g �= ∅, which was postponed to
prove, using the formula (3.33) for T . The GS coupling of Bk is

2π
∫

Bk ∧ I, I = −c2(Fg) + c2(Ff) + dc2(R) + 1

4
p1(T ) (3.36)

from (2.16) and the empirical assumption (3.3). The 6d gauge anomaly cancellation
condition for g tells that

I [g] + I [T ] + 1

2
I 2 ⊃

(

−h∨
g

48
+ κg − 1

16

)

p1(T )c2(Fg) = 0. (3.37)

Using P[N ], the 4d flavor central charge k4dT
g of 4dT is k

4dT
g = 4h∨

g + 12 therefore
the beta function of g in 4d on a generic point is (positively) proportional to

k
4dT
g − 4h∨

g = 12 ≥ 0, (3.38)

and thus the gauge field with algebra g is IR free in 4d.
Knowing that g is IR free if not empty, we can isolate the subbranchH of the 4d

Coulomb branch spanned by the complex Coulomb scalar u coming from (ak, Bk),
and the SW structure ofH is identified with that of 4dT Est

1 , as seen in the previous
part of this subsection. Therefore, we can repeat the analysis for 4dT Est

1 that we have
already done. The only deference here from the previous case is that the coefficient
of c2(R) in I can be different from that in (3.21). The values δ0a, δ0c, δ0k are now

δ0a = 3

4
− 3d, δ0c = 2 − 3d, δ0kf = 12, δ0kg = −12. (3.39)
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The total kg is 0 at the superconformal point, which is consistent with the fact that
at the point the R-symmetry should be non-anomalous. The difference of anomaly
polynomials of T and T+ is

I [T+] − I [T ] = I [g] + I [tensor] + 1

2
I 2,

1

2
I 2 ⊃ 1

32
p1(T )2 + 1

4
dp1(T )c2(R) + 1

4
c2(Ff),

=: δαp1(T )2 + δβp1(T )c2(R) + δκfc2(Ff).

(3.40)

Using the fact that (3.33) holds also for free tensor and vector multiplets and

δ0a = 24δα − 12δβ,

δ0c = 64δα − 12δβ,

δ0kf = 48δκf,

(3.41)

one can completes the proof of P[N + 1].

3.1.1.6 Example: T Est
N

Let us apply the formula (3.33) to the case with T = T Est
N . Substituting the 6d

anomaly polynomial (2.70), the 4d central charges are

a = 3

2
N 2 + 5

2
N − 1

24
, c = 3

2
N 2 + 15

4
N − 1

12
,

kE8 = 12N , kSU(2)L = 6N 2 − 5N − 1,
(3.42)

which agree with the result of [9] for the rank N E8 theory.9

3.1.2 Torus Compactifications of Minimal Conformal
Matters and Class S

In this subsection wewill find that the torus compactification of a minimal conformal
matterT (g,g)

0 (g = A, D, E) canbe identifiedwith aClassS theorybyusing thebrane
construction of the conformal matters and string dualities, and do some consistency
checks utilizing methods developed in the previous part of this section.

9The method here is never independent of the method of [9]. This is just a consistency check.
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3.1.2.1 String Duality to Class S Theory

We start from the M-theory realization of T (g,g)
0 which is one M5-brane probing

the C
2/�g singularity with trivial discrete C-flux. Compactifying on a torus, going

down to the Type IIA and taking T-dual to the Type IIB frame, the 4d theory 4dT (g,g)
0

can be described by a D3-brane probing the same C
2/�g singularity in Type IIB on

R
1,3 × R × S1 × C

2/�g. The geometry of the singular locus is R
1,3 × R × S1 and

it shares the flat 4d space R
1,3 with the D3.

Since the position modulus of the D3 is decoupled as the center of mass mode,
the D3 probing C

2/�g should behave as a codimension-2 defect of the N = (2, 0)
theory of type g, which lives on the singular locus. Regarding two infinities of R × S1

as full punctures, we predict the 4d theory is a class S theory, namely

4dT (g,g)
0 = Tg{F, X, F} (3.43)

where Tg{O1,O2,O3} means the class S theory with CP
1 with 3 punctures each

labeled by a nilpotent orbit Oi of g, F is the full puncture corresponding to the
trivial orbit, and X is a certain puncture coming from the D3. Determining X is the
remaining task.

When g = Ak−1, we know T
(Ak−1,Ak−1)

0 is a 6d su(k)⊕2 bifundamental hyper,
therefore 4dT

(Ak−1,Ak−1)

0 is the 4d version of that. It is known that TAk−1{F, S, F}with
S being the simple puncture corresponding to the subregular (the second largest)
orbit [k − 1, 1] is the bifundamental hyper, therefore (3.43) is true with g = Ak−1,
X = S. Also, for general g = A, D, E , we are tempted to conjecture that

4dT (g,g)
0 = Tg{F, S, F}. (3.44)

In the following we would like to do some consistency checks listed below:

• the 4d central charges,
• the dimension of the Coulomb branch, and
• the geometry of the Higgs branch.

In [16], the statement (3.44) is verified using an F-theory construction ofT (g,g)

N and
the mirror maps.

As a corollary of (3.44), since the closing of g⊕2 flavors in 6d should resulting in
the same closing in 4d, we have

4dT (g,g)
0 {OL ,OR} = Tg{OL , S,OR}. (3.45)
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3.1.2.2 4d Central Charges

Using the formulas (2.71) and (3.33), the 4d central charges of 4dT (g,g)
0 are

a = 1

24
(1 + 6χ�g

|�g| − 5dg), c = 1

12
(1 + 3χ�g

|�g| − 2dg), kg = 2h∨
g ,

(3.46)
with χ�g

= 1 + rg − 1
|�g| . To compare, the formula of 4d central charges a, c for

Tg{O1,O2,O3} can be found in [17], which are

a = −1

3
h∨
gdg − 5

24
rg +

∑

i=1,2,3

a(Oi ) (3.47)

c = −1

3
h∨
gdg − 1

6
rg +

∑

i=1,2,3

c(Oi ) (3.48)

with a(Oi ), c(Oi ) being contributions from the puncture Oi , given by

a(F) = 1

24

(

4h∨
gdg − 5

2
dg + 5

2
rg

)

, a(S) = 1

24
(6|�g|χ�g

+ 1), (3.49)

c(F) = 1

12
(2h∨

gdg − dg + rg), c(S) = 1

12
(3|�g|χ�g

+ 1) (3.50)

forO = F, S. The flavor central charge for the g flavor associated to the full puncture
is

kg = 2h∨
g . (3.51)

It is straightforward to check the agreement between the central charges calculated
from the description 4dT (g,g)

0 and from the class S description.

3.1.2.3 Coulomb Branch Dimension

The4dCoulombbranch (complex) dimensiond of 4dT (g,g)
0 canbedirectly calculated

from the tensor branch quiver ofT (g,g)
0 . Instead, it is convenient to further compactify

the theory and take themirror. The3d theory is identifiedwith theworldvolume theory
of an instanton in the 7d SYM theory on R × T 3 as we have seen in Sect. 2.4.3. The
Higgs branch of the 3d mirror theory is thus the g one-instanton moduli on R × T 3

modulo center of mass mode whose quaternionic dimension is calculated by the
Atiyah–Patodi–Singer index theorem [18] as

d = h∨
g − rg − 1. (3.52)

Therefore, the complex dimension of the 4d Coulomb branch is equal to this d.
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The Coulomb branch dimension formula for the class S theory Tg{O1,O2,O3} is
also in [17], which is

d =
∑

i=1,2,3

dim d(Oi ) − dg (3.53)

where d(Oi ) is the Spaltenstein dual of Oi . For O = F, S, we have

dim d(F) = dg − rg, dim d(S) = 2(h∨
g − 1). (3.54)

Substituting these, we recover (3.52).

3.1.2.4 Higgs Branch Geometry

As the final check, we match the complex geometry of weakly gauged Higgs branch,
which is introduced in Sect. 2.4.1, of both side in (3.44). The weakly gauged Higgs
branch ofT (g,g)

0 is C
2/�g which is manifest from the M-theory brane construction.

Thus, our task is to determine the complex geometry of the weakly gauged Higgs
branch of Tg{F, S, F}. We have already done that for g = A in Sect. 2.4.1 when
the class S theory is merely hypers. Let Xg denote the full Higgs branch of Tg =
T{F, F, F} acted by the flavor groups G3 =: G1 × G2 × G3. The Higgs branch Xg

is equipped with three corresponding holomorphic moment maps

μ1,2,3 : XG → gC. (3.55)

The key relation among them is [19, 20]

trμk
1 = trμk

2 = trμk
3 (3.56)

for any positive integer k. Further, the index analysis in [19] shows that all the G3

invariant Higgs branch operators are generated by μ1 and μ2. Weakly gauging in
terms of G1 × G3 corresponds to the hyperKähler quotient by the groups, where
μ1, μ3 are imposed to be zero μ1 = μ2 = 0. This operation forces μ2 ∈ N where
N is the total nilpotent orbit in gC. Therefore, the weakly gauged Higgs branch of
Tg is the nilpotent orbit N .

Then we partially close one of F by a nilpotent vev e ∈ OS where OS is the
subregular orbit corresponding to the puncture S and e should be a generic element
of OS . e can be represented as ρ(σ+) with some homomorphism ρ : su(2) → g and
the ladder operator σ+ of su(2). In the partial closure operation we remove NG hyper
modes which are of the form [e, x] with some x ∈ gC. The remaining modes of the
image of the moment map μ2 is

Se := {x + e|[x, ρ(σ−)] = 0} (3.57)
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which is called the Slodowy slice. Therefore, the weakly gauged Higgs branch of
Tg{F, S, F} is Se ∩ N . Then the theorem in [21, 22] concludes

Se ∩ N = C
2/�g (3.58)

as a complex geometry when e is a generic element of OS , which is what we wanted
to prove.

3.2 Compactification of Theories Higgsable to E-String
Theories

In this section, which is devoted to explain the paper [23], we investigate circle/torus
compactification of a class of 6d SCFTs T (M9,su){ui }, T (M9,su)∗ {ui } introduced in
Sect. 2.5.2 whose tensor branch quivers are

[f1] ∅ su(u2) su(u3) · · · su(uN )

1 2 2 · · · 2
. (3.59)

u2 shouldbenomore than8 forT (M9,su){ui } andnomore than9 forT (M9,su)∗ {ui }, and
the flavor f1 is e9−u2 for T

(M9,su){ui } and ẽ9−u2 for T
(M9,su)∗ {ui }. For other theories

which is higgsable to E-string theories with su gauge groups briefly examined in the
last part of Sect. 2.5.2, basically the same method is applied in [24].10

Our main claim here for the S1/T 2 compactification 5dT (M9,su){ui }, 4dT (M9,su){ui }
is

5dT (M9,su){ui } = T̂K {Y1,Y2,Y3}, (3.60)

where T̂K {Y1,Y2,Y3} is the 5d uplifting of the 4dClass S theoryTK {Y1,Y2,Y3}
of type AK−1, whose UV curve is the sphere with three punctures Y1, Y2,
and Y3.

K denotes 6N + n7 + n8, where nI = #{i = 2, 3, . . . , N |ui+1 − ui ≥ I }.
Y2 and Y3 are the partitions of K defined by Y2 = [2N + n7 + n8, 2N , 2N ]
and Y3 = [3N + n7, 3N + n8]. Let Y T

1 = [�1, . . . , �N ] be the partition of K
obtained by taking the transpose of the Young diagram Y1, then

10The paper [24] coincidently appeared on arXiv with [23]. The basic strategy is almost the same,
and the former covers more general cases than the latter.
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⎧
⎪⎨

⎪⎩

�i = 0 (i ≥ N − n6 + 1)

�N−i+2 = 6 − ui + ui−1 (i = 2, . . . , N − n6)

�1 = 6 + uN .

(3.61)

The 4d version of the statement

4dT (M9,su){ui } = TK {Y1,Y2,Y3} (3.62)

automatically follows.

When ui = 0 for all i = 2, . . . , N , T 6d{ui = 0} is the rank N E-string theory, and
the corresponding class S theory is T̂6N {[N 6], [2N , 2N , 2N ], [3N , 3N ]} which is
proposed in [25] as the S1 compactification of the rank N E-string theory.11 Thus,
our claim generalizes the result of them. For the compactifications of T 6d∗ {ui }, the
claim is

5dT (M9,su)
∗ {ui } = T̂K∗ {Y1,Y ∗

2 ,Y ∗
3 }, (3.63)

4dT (M9,su)
∗ {ui } = TK∗ {Y1,Y ∗

2 ,Y ∗
3 }, (3.64)

where K∗ = 6N + n7 + n8 + n9, Y ∗
2 = [2N + n7, 2N + n8, 2N + n9], and

Y ∗
3 = [3N + n7 + n8 + n9, 3N ]. Y1 is defined by the same equations as the

former case. When u2 ≤ 7, K∗ = K ,Y ∗
2 = Y2 and Y ∗

3 = Y3 holds.

Note that a single 4d SCFT might admit multiple class S constructions, and thus the
above class S descriptions are not necessarily unique.

In Sect. 3.2.1.3, by T-dualizing the Type I’ brane construction, we will find the
5-braneweb describing the 5d SCFT obtained by the S1 compactification. The result-
ing web has three external legs of 5-branes terminated at 7-branes [25],and from the
webs we will show the results (3.60) and (3.63). Then, it follows that the T 2 com-
pactification is given by the A-type 6d N = (2, 0) theory on a sphere with three
punctures, confirming (3.62) and (3.64).

In Sect. 3.2.2.2, we will provide further evidence for the 4d version of our main
claims (3.62) and (3.64) by calculating 4d conformal and flavor central charges
in two ways. First the charges are obtained from the 6d tensor branch structure
and the formula (3.33) we derived, and then we get the same quantities from the
corresponding class S description by using the methods developed in [17, 27].

11When ui = 1 for i = 2, . . . , N , T 6d{ui = 1} is the rank N E-string theory plus a decoupled
hyper, and the corresponding theory is T̂6N {[N 5, N − 1, 1], [2N , 2N , 2N ], [3N , 3N ]}, which was
firstly observed by the index calculation [26].
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Fig. 3.2 The 5-brane web configuration introduced in [25]. It has three legs made up of K 5-branes
of type (1, 0), (0, 1) and (1,−1) respectively. The 5-branes in each leg terminate on 7-branes of the
same type. The ending pattern of each leg at the 7-branes determines the Young diagram Yi . Since
the internal 5-brane web configuration is determined (up to flop transitions) by the boundary data
K and Yi (i = 1, 2, 3), we do not write it explicitly. The 5d SCFT from this web is the 5d uplift
T̂K {Y1, Y2, Y3} of the class S theory TK {Y1, Y2, Y3}. From: [23]

3.2.1 IIB Web Diagrams

In this section, we establish the dualities (3.60), (3.62), (3.63) and (3.64). First of
all, we briefly recall a class of 5d SCFTs introduced in [25] as 5d uplifts of some
class S theories. Each of them is engineered by a junction of 5-branes with three legs
which consist of K 5-branes with charges (1, 0), (0, 1) and (1,−1) respectively,
as illustrated in Fig. 3.2. They are terminated at 7-branes of type (1, 0), (0, 1) and
(1,−1), respectively. The ending pattern of the 5-branes at the 7-branes specifies a
partition of K and then we associate a Young diagram Yi (i = 1, 2, 3) for each leg.

When we shrink the internal part of the web to a single point, we obtain the 5d
SCFT T̂K {Y1,Y2,Y3}, the right hand side of (3.60). Upon further reduction to 4d,
this 5d theory becomes the class S theory TK {Y1,Y2,Y3} in (3.62).

To connect this 5-brane web construction of the 5d SCFT T̂K {Y1,Y2,Y3} with
the Type I’ brane engineering in Sect. 2.5, we utilize T-duality and Hanany–Witten
effect. This proceeds as follows. First, we T-dualize the Type I’ brane configuration
in Sect. 2.5 to obtain the Type IIB brane configuration with 5-branes and 7-branes,
which corresponds to the S1 compactification of T (M9,su)

(∗) {ui }. Second, by taking a
mass decoupling limit, we find the web configuration which describes the 5d SCFT
5dT (M9,su)

(∗) {ui } obtained by the zero radius limit R6 → 0. This mass deformation is
achieved by moving one 7-brane toward the infinity without creating 5-branes due
to Hanany–Witten effect.

Finally, we move the remaining 7-branes toward the infinity. During the process,
Hanany–Witten effect creates additional 5-branes. We find that the resulting 5-brane
web configuration is that of Fig. 3.2, a three pronged junction of 5-branes terminated
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at 7-branes. Thus, we establish the results (3.60), (3.62), (3.63) and (3.64). In the
rest of this section, we explain the strategy outlined above more concretely.

3.2.1.1 Notations on 7-Branes

Before moving to the concrete process, we summarize notations and conventions we
use in the rest of this section about 7-branes in Type IIB [25, 28–31]. Let X[P,Q]
denotes the 7-brane with charge [P, Q] where P, Q are coprime. We use the fol-
lowing aliasesA = X[1,0],B = X[1,−1],C = X[1,1], andN = X[0,1]. Themonodromy
matrix K (X[P,Q]) = K[P,Q] of the 7-brane X[P,Q] is

K[P,Q] =
(
1 + PQ −P2

Q2 1 − PQ

)

. (3.65)

A 5-brane with charge (p, q), when anti-clockwise crossing the branch cut of the
7-brane X[P,Q], becomes a (p′, q ′) 5-brane where

(
p′
q ′

)

= K[P,Q]
(
p
q

)

=
(
p
q

)

− (Pq − Qp)

(
P
Q

)

. (3.66)

When a 7-brane X[P,Q] crosses a (p, q) 5-brane as in the Fig. 3.3, the Hanany–
Witten effect attaches (P, Q) 5-branes to the 7-brane. The number of the emergent
(P, Q) 5-branes should be |Pq − Qp| so that the tension balances at the trivalent
point.

When there are some 7-branes X[P1,Q1],X[P2,Q2], . . . ,X[Pn ,Qn ] arranged anti-
clockwise in this ordering, we denote the configuration by just writing them as

X[P1,Q1]X[P2,Q2] · · ·X[Pn ,Qn ], (3.67)

and the corresponding monodromy matrix as

K (X[P1,Q1]X[P2,Q2] · · ·X[Pn ,Qn ]) = K[Pn ,Qn ]K[Pn−1,Qn−1] · · · K[P1,Q1]. (3.68)

Fig. 3.3 The Hanany–Witten effect between a 7-brane and a 5-brane. From: [23]
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We can rearrange two 7-branes X[P1,Q1],X[P2,Q2] by the following rule:

X[P1,Q1]X[P2,Q2] = X[P2,Q2]X[P ′
1,Q

′
1] = X[P ′

2,Q
′
2]X[P1,Q1], (3.69)

where (
P ′
1

Q′
1

)

= K[P2,Q2]
(
P1
Q1

)

,

(
P ′
2

Q′
2

)

= K[P1,Q1]
(
P2
Q2

)

. (3.70)

We name some important 7-brane configurations such as

EN = AN−1BCC = ANX[3,−1]N, (3.71)

ÊN = ENX[3,1] = AN−1BCBC = ANBX[1,2]X[2,1]. (3.72)

Here we assume that N ≥ 2. When N = 1, we cannot equate E1 = BCC to
AX[3,−1]N by the operations (3.69); therefore, the latter is an inequivalent configu-

ration which is denoted as Ẽ1. We define E0 by X[3,−1]N. The configuration ̂̃E1 and
Ê0 is again given by Ẽ1X[3,1] and E0X[3,1] respectively.

3.2.1.2 Warm Up: T-Dual of E-String Theory

To begin with, we start from the case where all the gauge algebras are empty in
(3.59), where the 6d theory is now the rank-N E-string theory. While the result of
this section was first obtained in [25], we adopt the T-duality argument from [32].

We start from the Type I’ brane configuration where we have seven D8 branes on
top of the O8− plane and one D8 brane slightly away from the O8− plane. There are
also N NS5 branes away from that O8−-D8 system where the Romans mass is 0.

After the S1 compactification, we can take the T-dual of the brane system to obtain
the Type IIB O7−-D7-NS5 system, as illustrated in Fig. 3.4. Note that this T-dual is

Fig. 3.4 T-dual of the Type I’ brane configuration realizing S1 compactified higher rank E-string
theory. The O8− plane wrapping S1 becomes two O7− planes and the eight D8s become eight D7
branes, while the NS5 branes in type I’ remain to be NS5. From: [23]
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Fig. 3.5 The Type IIB brane
configuration in Fig. 3.4 seen
from the left. The O7−
planes splits into B and C
branes, therefore there are
twelve 7-branes wrapped by
the N circles of 5-branes.
From: [23]

valid because in the Type I’ configuration, the Romans mass is 0 far from the O8−
plane, and thus the dual Type IIB geometry should asymptotically be the cylinder.

Since the O7− plane is the bound state of two 7-branes of type B and C [33] and
the D7 brane is of type A, the system is equivalent to N 5-branes encircling twelve
7-branes Ê9 = A8BCBC as shown in Fig. 3.5, which is considered in [34]. Note that
since each 7-brane has deficit angle 1

6π , the total deficit angle of twelve 7-branes is
2π , and therefore the metric of the diagram Fig. 3.5 is that of the cylinder outside of
where 7 branes sit. The same fact is also related to the fact K (Ê9) = 1.

Mass decoupling of Kaluza–Klein modes. The configuration in Fig. 3.5 engineers
the theory with Kaluza–Klein modes [34]. To obtain the 5d SCFT with e8 × su(2)
global symmetry from the E-string theory on S1, we need to decouple the Kaluza–
Klein modes by taking R6 → 0 preserving the global symmetry.

This can be achieved by rearranging the 7-branes by BCBC = BCCX[3,1] and
movingX[3,1] toward the infinity, leaving theE9 7-brane inside the circles of 5-branes.
Here we show that we can make this decoupling without introducing additional 5-
branes coming from the Hanany–Witten effect.

To this end, we note that each 7-brane inside the circle has a branch cut that runs
toward the infinity. When the circle of 5-brane crosses the cut, the (p, q) charge of
the 5-brane which makes up the circle changes to (p′, q ′) according to the formula
(3.70). The fact K (Ê9) = 1 ensures that the charge of the 5-brane comes back to
its original value after crossing all the cuts from the 7-branes, as required by the
consistency. We can choose the charge at a small segment in the circle to be (3, 1).
Then, we can move the 7-brane X[3,1] to the infinity through that segment without
Hanany–Witten effect.

Pulling out 7-branes. In order to obtain the 5-brane web as in Fig. 3.2, we rearrange
the 7-branes and pull them out from the circles. We rearrange the five 7-branes
E3 = A2BCC in the remaining 7-branes E9 inside the circles as

E3 = A2BCC = BN2C2 = BNA2N = B3N2, (3.73)
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where we used AB = BN,NC = AN and NA = BN. Note that this rearrangement
is nothing but moving two A branes from the leftmost to the rightmost in E3.

Then, wemove the three types of 7-branesA,B andN toward the infinity. To count
the number of additional 5-branes created by Hanany–Witten effect, we concretely
keep track of the charges of the circle of 5-brane.When decoupling the 7-braneX[3,1],
we take the charge in the segment of the circle to be (3, 1). Then, using (3.70) the
change of the charge is given as

(3, 1)
A−→ (2, 1)

A−→ · · · A−→ (−3, 1)
B−→ (−1,−1)

B−→ (1,−3)
B−→ (3,−5)

N−→ (3,−2)
N−→ (3, 1), (3.74)

where the symbols on top of the arrows represents the fact that 5-brane crosses the
cut emanating from the 7-brane of the corresponding type. The 5-brane charge goes
back to the initial value (3, 1), as already mentioned.

Then, we pull out the 7-branes from the inside of the circle along the cut. The
formula (3.66) and the change in the 5-brane charge (3.74) give the number of
5-branes created by Hanany–Witten effect when the 7-brane crosses the circle of
5-brane. We have one extra (1, 0) 5-brane attached to A, extra two (1,−1) 5-branes
attached toB, and extra three (0, 1) 5-branes attached toN respectively after crossing
a circle of 5-brane.

Finally, we have a three-pronged junction of 5-branes where each legs have 6N
5-branes terminated at 7-branes as shown in Fig 3.6. The patterns of terminations cor-
respond to the Young diagrams Y1 = [N 6], Y2 = [2N , 2N , 2N ] and Y3 = [3N , 3N ].
For example, N (1, 0) 5-branes are grouped into a bunch and are terminated at a
single A.

Fig. 3.6 Pulling out eleven 7-branes A6B3N2 from the inside of the N circles of 5-brane creates
the 5-brane junction with three legs due to Hanany–Witten effect. Each leg consists of 6N 5-branes.
These 5-branes are grouped as shown in the right hand side of the figure and each group is terminated
at a 7-brane. From: [23]
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This 5-brane web describes the 5d theory T̂K {Y1,Y2,Y3} [25]. Thus, we have
shown using T-duality and Hanany–Witten effect that the S1 compactification of
rank-N E-string theory is the 5d uplift of the class S theory.

3.2.1.3 T-Dual of 6d Theory T (M9,su)
(∗) {ui }

Next we would like to generalize the result of Sect. 3.2.1.2 to T (M9,su){ui }. To this
end,we takeT-dual of theType I’ brane configurationwe studied inSect. 2.5.2.Before
taking T-dual, it is (just technically) convenient to cause Hanany Witten transitions
as depicted in Fig. 3.7. Then, after taking T-dual, the resulting Type IIB configuration
is illustrated in Fig. 3.8. We note that the case considered in Sect. 3.2.1.2 corresponds
to n7 = n8 = 0 and Y1 = [N 6].

TheO8− plane and twoD8 branes at x6 = 0 become six 7-branes Ê3 = A2BCBC.
The NS5 branes become the N circles of 5-branes wrapping the six 7-branes Ê3 =
A2BCBC. We also have D6 branes in the Type I’ configuration, which become extra
(1,0) 5-branes in the Type IIB setup. n7 and n8 (1,0) 5-branes are attached to two
A 7-branes wrapped by the N circles of 5-branes respectively. These extra 5-branes
extend toward the infinity and we have 6N + n7 + n8 5-branes out of the circles due
to Hanany–Witten effect. They are terminated at A type 7-branes, which come from
6 + uN D8 branes sitting where x6 is very large in the Type I’ configuration. The
ending pattern is specified by the Young diagram Y1 in (3.61).

Fig. 3.7 Upper: The same as Fig. 2.12. Lower: Type I’ configuration after the pre-processing
Hanany–Witten transitions. There are two D8 branes near the O8− plane, each has n7 and n8
D6 branes ending on it, and uN + 6 D8 branes on the right side of the N th NS5 brane. The
K = n8 + n7 + 6N D6 branes end on the stack of uN + 6 D8 branes, and the pattern of the ending
is specified by the Young diagram Y1 (3.61) [35]. From: [23]
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Fig. 3.8 The Type IIB web for the 6d theory T (M9,su){ui } on S1 with Kaluza–Klein modes. We
have N circles of 5-branes. Outside the circles, we have a leg of 6N + n7 + n8 5-branes terminated
at 7-branes as specified by the partition Y1. Inside the circle, we have six 7-branes A2BCBC. n7
and n8 5-branes are attached to the two A 7-branes respectively. From: [23]

Fig. 3.9 The 7-brane rearrangement inside the circle of 5-branes. Extra n7 and n8 5-branes attached
to two A create the junction of 5-branes due to the Hanany–Witten effect. First, we move two A
across the cut of B. A becomes N and we obtain the middle configuration. Second, we move two
Cs through the branch cuts of Ns. After that process, C2 becomes B2 since they cross the cuts from
two N. Finally, by moving one B along its cut, we obtain the configuration in right. From: [23]

The setup in Fig. 3.8 includes the Kaluza–Klein modes. The decoupling of these
modes can be done as in Sect. 3.2.1.2 by rewriting Ê3 = E3X[3,1] and moving X[3,1]
toward the infinity. Again, no additional 5-branes are created during the decoupling
and we have five 7-branes E3 = A2BCC inside the circles.

Pulling out 7-branes. In order to obtain the 5-brane web as in Fig. 3.2, we rearrange
the 7-branes inside the circles and pull them out toward the infinity. The rearrange-
ment can be done by moving the 7-branes as in (3.73). We carefully keep track the
effect from the extra n7 and n8 (1, 0) 5-branes attached to the two A type 7-branes
in Fig. 3.9. After the rearrangement, one of the three Bs has new n7 + n8 5-branes
and the two Ns have new n7 and n8 5-branes attached to it respectively.

Then, we pull all the 7-branes out of the circles. As in Sect. 3.2.1.2, we have
one extra (1, 0) 5-brane attached to A, extra two (1,−1) 5-branes attached to B, and
extra three (0, 1) 5-branes attached toN respectively after crossing a circle of 5-brane.
The result is shown in Fig. 3.10. We again have a three-pronged junction of 5-branes
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Fig. 3.10 Pulling the eleven 7-branes from the inside of the circles of 5-branes, we again obtain
the junction of 5-branes with three external legs. From: [23]

where each leg has K = 6N + n7 + n8 5-branes terminated at 7-branes. The patterns
of terminations are given by the Young diagrams Y1, Y2 = [2N + n7 + n8, 2N , 2N ]
and Y3 = [3N + n7, 3N + n8].

This is the 5-brane web which describes the 5d uplift T̂K {Y1,Y2,Y3} of the class
S theory TK {Y1,Y2,Y3}. Thus we have shown (3.60) using T-duality and Hanany-
Witten effect.

Case with O8∗ plane. Next we consider the S1 compactification of the 6d theory
T (M9,su)∗ {ui }whose Type I’ brane engineering uses the O8∗ plane. To begin with, let
us consider the T-dual of the O8∗ plane. As in Eq. (2.114), the O8∗ can be obtained
by pulling two D8 branes from O8−+D8. Noting that the T-dual of O8−+D8 is Ê2,
the operation corresponding to (O8−+D8→O8∗, 2D8) in the Type IIB frame should
be

Ê2 = ẪE1 = A2Ê0. (3.75)

Therefore, we conclude that the T-dual of the O8∗ plane is Ê0.
It is now straightforward to take T-dual of the 6d theoryT (M9,su)∗ {ui }. The config-

uration is illustrated in Fig 3.11. There are N circles of 5-brane and there is a leg of
6N + n7 + n8 + n9 5-branes outside the circles. The six 7-branes inside the circles
are now A3Ê0 where Ê0 = X[3,−1]NX[3,1].

The decoupling of Kaluza–Klein modes can be done by moving X[3,1] toward the
infinity. Again, no additional 5-branes are created during the decoupling and we have
AAAE0 where E0 = X[3,−1]N inside the circles.

In order to obtain the 5-brane web as in Fig. 3.2, we rearrange the 7-branes and
pull them out from the circles. The required rearrangement is given as

AA2X[3,−1]N = ABA2N = BNA2N = B3N2. (3.76)
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Fig. 3.11 The Type IIB web for the 6d theory T
(M9,su)∗ {ui } on S1 with Kaluza–Klein modes.

We have N circles of 5-brane. Outside the circles, we have a leg of 6N + n7 + n8 + n9 5-branes
terminated at 7-branes. Inside the circles, we have six 7-branes A3X[3,−1]NX[3,1]. n7, n8 and n9
5-branes are attached to three A 7-branes respectively. From: [23]

Fig. 3.12 The 7-brane rearrangement inside the circle of 5-branes. Extra 5-branes attached to the
three A branes create the junction of 5-branes due to the Hanany–Witten effect. From: [23]

Taking account for the fact that there are extra n7,8,9 5-branes attached to the three
As in Eq. (3.76), the brane rearrangement is illustrated in Fig 3.12.

By pulling all the 7-branes out of the circles, we again have a three-pronged
junction of 5-branes where each leg has K∗ = 6N + n7 + n8 + n9 5-branes. Now
we have three Young diagrams Y1, Y ∗

2 = [2N + n7, 2N + n8, 2N + n9] and Y ∗
3 =

[3N + n7 + n8 + n9, 3N ]. Therefore, we have shown the result (3.63).
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3.2.2 4d Conformal Anomalies

In this sectionwe compute the conformal and flavor central charges for the 4d theories
T 4d{ui } and TK {Y1,Y2,Y3}, and find the agreement. This provides another evidence
for our claims (3.62) and (3.64).

In this section we assume ui ≥ 1 for i = 2, . . . , N . Otherwise, the 6d theory is
the higher rank E-string theory and the agreement of the central charges was already
checked in [6, 25].

3.2.2.1 Central Charges of T 4d
(∗) {ui } from 6d Anomaly Polynomial

The conformal anomalies a, c and the flavor central charge ki for the flavor symmetry
fi were calculated in [6] for the 4d N = 2 theory T 4d{ui }. They are given as

a = 24α − 12β − 18γ, c = 64α − 12β − 8γ, ki = 48σi , (3.77)

where α, β, γ and σi are the coefficients of the anomaly polynomial 8-form I 6d of
the 6d theory T 6d{ui }, defined by12

I 6d ⊃ αp1(T )2 + βp1(T )c2(FR) + γ p2(T ) +
∑

i

σi p1(T )c2(Ffi ). (3.78)

Here, pi (T ) is the i th Pontryagin class of the tangent bundle and c2(F) = 1
4TrF

2

is the second Chern class of the R- or flavor symmetry bundle, where Ffi is the
background field strength for the global symmetry fi . It is convenient to define the
effective numbers nv and nh of vector and hypermultiplets by

nv = 8a − 4c = −16(4α + 3β + 7γ ), nh = 20c − 16a = 16(56α − 3β + 8γ ).
(3.79)

The algorithm for computing I 6d was provided in [37]. The anomaly polynomial
I 6d splits into two parts as

I 6d = I one-loop + IGS, (3.80)

where I one-loop is the naive one-loop contribution from the massless matter contents
at a generic point on the tensor branch. IGS is the contribution from the 6d Green–
Schwarz term given by

IGS = 1

2
ηi j Ii I j , (3.81)

where Ii are 4-forms topologically coupled to the self-dual two forms Bi by the
action

12Our normalizations for central charges and anomaly polynomial are those of [6, 36]
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ηi j
∫

Bi I j . (3.82)

Here ηi j is the kinetic matrix in the effective Lagrangian for the tensor multiplet
scalars ai and the gauge field strengths Fgi ;

2π
∫

ηi j

(
1

4
aiTrFj ∧ 
Fj − 1

2
dai ∧ 
da j

)

. (3.83)

For our case, ηi j is determined to be

ηi j =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −1
−1 2 −1

−1 2 −1
. . . −1
−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3.84)

by the F-theory construction [38, 39] or the anomaly cancellation.
Using the formulas in [37, 40], we can determine the Green–Schwarz coupling

Ii and the kinetic matrix ηi j for the 6d theory T 6d
(∗) {ui }, which is given as

I i = ηi j I j = ηi j c2(Fg j ) − 1

4
K i p1(T ) + h∨(gi )c2(FR) − c2(Ffi ). (3.85)

In our case, K i = 2 − ηi i is given as K 1 = 1, K i = 0 (i ≥ 2) and h∨(gi ) is h∨(g1) =
1, h∨(gi ) = h∨(su(ui )) = ui (i ≥ 2).

Then the relevant part of the Green–Schwarz contribution IGS is

IGS ⊃ 1

32
ηi j K

i K j p1(T )2 − 1

4
ηi j K

i h∨(g j )p1(T )c2(FR) + 1

4
ηi j K

i c2(Ff j )

= N

32
p1(T )2 − 1

4

(

N +
N∑

i=2

(N + 1 − i)ui

)

p1(T )c2(FR)

+ 1

4

N∑

i=1

(N + 1 − i)p1(T )c2(Ffi ).

(3.86)
Here we have used the explicit form of the inverse ηi j of the matrix ηi j ;

ηi j =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

N N − 1 N − 2 · · · 1
N − 1 N − 1 N − 2 · · · 1
N − 2 N − 2 N − 2 · · · 1

...
...

...
. . .

...

1 1 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.87)
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Therefore, the Green–Schwarz contribution to the 4d conformal anomalies are

δnv = −2N + 12

(

N +
N∑

i=2

(N + 1 − i)ui

)

, (3.88)

δnh = 28N + 12

(

N +
N∑

i=2

(N + 1 − i)ui

)

, (3.89)

δki = 12(N + 1 − i). (3.90)

Adding the contribution from the massless multiplets, the total 4d conformal anoma-
lies are

nv = 11N +
N∑

i=2

(
u2i − 1 + 12(N + 1 − i)ui

)
, (3.91)

nh = 40N +
N∑

i=2

(
2u2i + 12(N + 1 − i)ui

) −
N−1∑

i=2

uiui+1, (3.92)

ki = 12(N + 1 − i) + 2ui (i = 1, . . . , N ). (3.93)

Additionally, the complex dimension of the Coulomb branch of T 4d{ui } is just
the sum of the number of 6d tensors and the ranks of the gauge groups;

dimCCoulomb =
N∑

i=2

(ui − 1) + N = 1 +
N∑

i=2

ui . (3.94)

3.2.2.2 Central Charges of TK {Y1,Y2,Y3} from Class S Formulas

In this subsection we calculate the conformal anomalies of the class S theory
TK {Y1,Y2,Y3}. First, we briefly recall the central charge formulas in [17, 27].

Let Y T = [�1, . . . , �N ] be the partition of K obtained by taking the transpose of
the Young diagram Y . The pole structure {pk}, k = 1, . . . ,Y − m of Y is defined by

⎧
⎪⎨

⎪⎩

p1 = 0,

pk+1 − pk = 0 if k is equal to �i for some i,

pk+1 − pk = 1 otherwise,

(3.95)

which can be summarized as

{pk} = {0, 1, 2 · · · , �1 − 1, �1 − 1, �1, . . . , �1 + �2 − 2, . . . , K − m}. (3.96)
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For the class S theory TK {Y1,Y2,Y3}, the number dk of the Coulomb branch
operators with dimension k is given as13

dk = 1 − 2k +
3∑

i=1

p(i)
k (3.97)

where {p(i)
k } is the pole structure of Yi . The effective number of vectors nv is

nv =
K∑

k=2

(2k − 1)dk, (3.98)

and the formula for nh is

nh = −4

3
(K 3 − K ) +

3∑

n=1

f (Yn), (3.99)

f (Y ) = 1

2

(

−K +
∑

i

�2i

)

+
K∑

k=2

(2k − 1)pk . (3.100)

Let us apply the formulas (3.97)–(3.99) to the class S theory TK {Y1,Y2,Y3}
where K = 6N + n7 + n8, Y1 is defined by (3.61), Y2 = [2N + n7 + n8, 2N , 2N ]
and Y3 = [3N + n7, 3N + n8]. After some calculation, we obtain

nv = 10N + 1 +
N∑

i=2

(u2i + 12(N + 1 − i)ui ), (3.101)

nh = 40N +
N∑

i=2

(
2u2i + 12(N + 1 − i)ui

) −
N−1∑

i=2

uiui+1, (3.102)

dimCCoulomb =
K∑

k=2

dk = 1 +
N∑

i=2

ui , (3.103)

which agree with the results (3.91), (3.92) and (3.94).
We can also check the agreement of flavor groups and their central charges. As

explained in [17], the theory TK {Y1,Y2,Y3} has the flavor group (up to u(1) factors)

su(�1 − �2)2�1 × su(�2 − �3)2L2 × · · · × su(�N−n6)12N × su(2)12N , (3.104)

13The formulas below are valid only when
∑

i p
(i)
k ≥ 2k − 1. When ui = 0 which corresponds to

the higher rank E8 Minahan–Nemeschansky theory, the pole structure for the class S description
violates this bound. That case was studied well in [25] as already mentioned.
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where the subscripts denote the flavor central charges and Li is defined by Li =∑i
j=1 � j . There is an additional su(2)2K when n7 = n8, and moreover su(2)12N

enhances to su(3)12N when n7 = n8 = 0. When n8 �= n7 �= 0, su(�N−i+1 −
�N−i+2)2LN−i+1 = su(2ui − ui+1 − ui−1)12(N+1−i)+2ui is nothing but the flavor group
fi and its central charge of T 4d{ui }, and su(2)12N should be identified with f1. One
can also match the flavor groups and central charges for other cases.

In the discussion so far, we only considered the 4d theory TK {Y1,Y2,Y3}. It is
straightforward to compute those quantities for the 4d theory TK∗ {Y1,Y ∗

2 ,Y ∗
3 } and

check the agreement with the results in Sect. 3.2.2.1.

3.3 Compactification of Theories Higgsable to N = (2, 0)
Theories

In this section, we investigate S1 and T 2 compactification of a 6d SCFTT higgsable
to T (2,0)

G with some A, D, E root system G. At first, we will make a claim about
compactifications of a general theory higgsable to T (2,0)

G :

When a 6d N = (1, 0) theory T is higgsable to T (2,0)
G , the circle compactifi-

cation 5dT can be decomposed as

5dT = 5dS {G}/GR6 (3.105)

where 5dS {G} is a 5d N = 1 SCFT with G (or larger) flavor, and /GR6

denotes the N = 1 gauging with coupling 8π2

g2 = 1
R6

with R6 being the circle
radius. On the torus compactification, we have

4dT = 4dS {G}/Gτ (3.106)

with 4dS {G} being the circle compactification of the 5d SCFT 5dS {G},
and /Gτ denotes 4d N = 2 gauging with marginal coupling τ .

At this stage we do not know whether 4dS is superconformal or not.
Further, for conformal matter T (g,g)

N−1 , we observe

The theory 4dS {G} can be further decomposed as

4dS {G} = (4dU {G, H} × 4dV {H})/HIRF (3.107)
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with a certain 4d N = 2 SCFTs 4dU and 4dV whose flavors are indicated
in the bracket, and the gauging /HIRF with respect to a certain IR free gauge
group H .

We expect that this property is common for general theories higgsable to T (2,0)
G .

An important consequence is

The 4d theory 4dT flows to a fixed point composed of two SCFTs:

4dT
flow−−→ 4dU {G, H}/Gτ × 4dV {H} plus free matters (3.108)

at the most singular point of the Coulomb branch, when none of Wilson lines
are introduced, if 4dV is not empty.

For the (A, A) conformalmatterT (su(k),su(k))
N−1 , the SCFTs 4dU , 4dV are identified

with certain class S SCFTs:

When the 6d theory T is the (A, A) conformal matter T (su(k),su(k))
N−1 with

k < N, the 4d SCFTs 4dU , 4dV are

4dU = Tk{F, F, F}, 4dV = TN {[N − k, 1N ], F, F}. (3.109)

Therefore, the 4d theory 4dT (su(k),su(k))
N−1 is

4dT (su(k),su(k))
N−1 = Tk{F, F, F} × SN 〈T 2

τ 〉{[N − k, 1N ]}
diag.of SU(k)

, (3.110)

where SN 〈C〉{O} denotes the class S theory whose Gaiotto curve is C with
puncture O .

Also for k = N and k > N cases, the 4d theories are determined. Further, the
(D, D) conformal matter case will be also studied in detail.

Closing one of the su(k) flavors of both side of (3.110), one obtain

4dT (su(k),su(k))
N−1 = SN 〈T 2

τ 〉{[N − k, 1N ]} (3.111)

since the class S theory T{F, F}, whose Gaiotto curve is a sphere with only two
punctures, is gapped. This result leads us to the observation:
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When the endpoint tensor branch quiver contains a tensor mode (ak, Bk)

which is not coupled with any vector fields by the coupling akTrF ∧ 
F, then
the torus compactified theory 4dT flow into a fixed point composed of a single
4d SCFT.

Actually this is shown for 6d theories higgsable toT (2,0)
G with G = A, D in [36],

although the proof will not be exposed in this thesis.

3.3.1 General Structure of Theories Higgsable to N = (2, 0)
Theories

In this subsection, we explain the structure of 6d N = (1, 0) theories we want to
compactify and give general arguments for the S1/T 2 compactification of these
theories. The results in this section will be checked using several examples in the
following sections.

3.3.1.1 6d SCFTs Higgsable to T (2,0)
G

We have seen concrete examples of 6d SCFTs Higgsbale to T (2,0)
G with G = Ak in

Sect. 2.4, which was the conformal mattersT (g,g)

N and their variantT (g,g)

N {OL ,OR}.
Here we briefly summarize general properties of a 6d SCFT T higgsable to T (2,0)

G .
Most of them have already been recognized in the concrete cases in Sect. 2.4.

First of all, by the term a 6d SCFTT higgsable toT (2,0)
G , wemean that at themost

singular point of the contracted subspace (where one can reach from a generic point
by shrinking only the tensor modes with ηkk = 1) of the tensor branch, which we call
the endpoint according to [38], the charge matrix ηi j in terms of the remaining (not
shrunken) tensor modes is the Cartan matrix of type G = A, D, E . For example, the
endpoint configuration of the conformal matter T (g,g)

N is (2.97) with N remaining
tensor modes. Between two nodes of (2.97), a minimal conformal matter T (g,g)

0
exists as a generalized bifundamental matter. The charge matrix is the Cartan of AN

type. We can Higgs all the flavor and gauge algebras g obtaining the N = (2, 0)
theory T (2,0)

AN
.

As a technical assumption, we do not consider theories like T (usp,usp)

N , which is
supposed to have a Higgs flow into T (2,0)

AN
, although the endpoint configuration is

not (2.97).
There is also theories higgsable toN = (2, 0) theory T (2,0)

G with G = D, E [38,
41].When all gauge algebras are su type and the charge matrix ηi j is a Cartan matrix,
the gauge anomaly cancellation condition requires that every su(k) gauge algebra
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should have 2k fundamentals.14 Therefore, for example, there is a theory whose
tensor branch structure is

su(k) su(2k) su(2k) su(2k) [su(2k)]
2 2 2 2

2
su(k)

, (3.112)

which is higgsable toT (2,0)
D5

. There are also E6,7,8 shaped quiverswhich are higgsable

to T (2,0)
E6,7,8

.
If we allowourselves to use gauge algebras other than su, one example of solutions

for the anomaly cancellation is

su(2) so(7) usp(0) so(9) usp(2) [so(11)]
2 3 1 4 1

2
su(2)

(3.113)

where the su(2) ⊕ so(7) ⊕ su(2) gauge subalgebra has a half-hyper with the rep-
resentation (2, 8, 1) ⊕ (1, 8, 2) with 8 being the spin representation of so(7). The
endpoint configuration is

su(2) so(7) so(9) [so(11)]
2 2 2

2
su(2)

, (3.114)

which indicates the theory is higgsable to T (2,0)
D4

. Note that in this case between
so(2k − 1) and so(2k + 1) gauge of flavor algebra with k = 4, 5 there are minimal
conformal matters T (so(2k),so(2k))

0 behave as generalized bifundamentals.
In general, the endpoint configuration of a theoryT which is higgsable toT (2,0)

G
can be recognized as G-shaped generalized quiver with gauge groups gi with gener-
alized bifundamental matterHi j charged under gi ⊕ g j and generalized mattersHi

charged under gi . Since at the endpoint the tensor modes of those generalized mat-
ters should be completely shrunk, those are very-higgsable. The generalized matter
theories can be determined using F-theory [39, 41], and a (not necessarily complete)
list of possible combinations (gi , g j ,Hi j ) is given in Table 3.1. A generalized singly
charged matter Hi can be either fundamental hypers or E-string theories.

14This condition is the same as the conformality condition of 4dN = 2 quiver theory with su gauge
algebras. Intuitive understanding of this coincidence seems to be absent.
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Table 3.1 The generalized hyperHi . The boldface number means a hyper with the representation
with the specified dimension, and 1

2 before the representation mean a half-hyper. Maybe only a
subalgebra of gi ⊕ g j is gauged by dynamical vector multiplets, and in that case the commutant
of the gauged subalgebra behave as a flavor algebra. Note that the minimal conformal matters
T

(su(k),su(k))
0 and T

(so(2k),so(2k))
0 has flavor symmetry su(2k) and so(4k) respectively which are

larger than what is obvious from theM-theory construction (but still obvious from the tensor branch
structure at a generic point), therefore the first two lines are possible when k1 �= k2
gi g j Hi j

su(k1) su(k2) (k1,k2)

so(2k1) so(2k2) T
(so(2k),so(2k))
0 (k =

�(k1 + k2)/2�)
su(2) g2

1
2 (2, 7 ⊕ 1)

su(2) so(7) 1
2 (2, 8)

ek ek T
(ek ,ek )
0

3.3.1.2 Non-higgsable Component and Non-renormalization

If we go to the Higgs branch of the theory as far as possible from the endpoint
configuration, we get a non-higgsable theory which is the N = (2, 0) theory of the
typeG. The Higgs branch is the same in any dimensions, and the Higgs moduli fields
and the tensor/Coulomb moduli fields do not mix with each other in the effective
action. We can consider a subspace CT of the tensor/Coulomb moduli space where
only the moduli which originate from the tensor multiplets of the 6d theory get
vev.15 Then, the effective action (or more specifically the kinetic terms) of moduli
fields parameterizing CT in 6d/5d/4d is the same as that of the N = (2, 0) theory in
6d/5d/4d because these two theories are smoothly connected by a Higgs deformation
which does not affect the tensor/Coulomb effective action.

The difference between the general theory we are considering and theN = (2, 0)
theory is that the general theory contains more massless degrees of freedom other
than the moduli fields of CT. However, we emphasize again that the effective action
of CT moduli fields and in particular the position of the singular loci on CT are
the same as in the N = (2, 0) theory. In other words, the moduli fields of CT are
not renormalized by the existence of additional massless degrees of freedom. Due
to N = (2, 0) supersymmetry of the Higgsed theory, they are not renormalized at
all. This is quite similar situation to what we saw about very-higgsable theories in
Sect. 3.1.1.

15Since the 6d theory has the Higgs branch on which the theory flows to the N = (2, 0) theory
along CT, there is also a subspace of the 5d/4d Coulomb branch where the corresponding branch
opens. This clearly defines the subspace CT in 5d/4d.
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3.3.1.3 S1 Compactification to Five Dimensions at the Origin

Let us fix a 6d theory T 6d that can be Higgsed to an N = (2, 0) theory of type G,
and consider its S1 compactification. We go to the origin of the moduli space of the
6d theory at which we get the 6d SCFT, and compactify it on a circle with radius R.
We do not include any Wilson lines on S1 which correspond to mass deformations
in 5d. In this setup, our conjecture is the following:

The 5d theory 5dT obtained by the S1 compactification at the most singular
point of the moduli and parameter space is given by anN = 1 vector multiplet
of gauge group G which is coupled to a 5d SCFT we denote as 5dS {G}, whose
G symmetry is gauged by the vector multiplet:

5dT = 5dS /GR . (3.115)

The gauge coupling of the vector multiplet is given by 8π2/g2G = R−1.

Here, the groups listed inside {· · · } are the flavor symmetries, and our normal-
ization of the gauge coupling is such that 8π2/g2G is the one-instanton action. We
also note here that, when all gi are su gauge algebras and all matters connecting su
gauge algebras are hypers, 5dS {G} actually has G × G symmetry. In that case, the
G flavor symmetry in the notation 5dS {G} denotes the diagonal subgroup of the
G × G symmetry.

The main reason behind this conjecture is the following. In 6d, we can higgs the
theory to obtain the N = (2, 0) theory of type G. If we compactify it on this Higgs
branch, we getN = 2 super Yang-Mills in 5d with gauge group G, and in particular,
we get a vector multiplet with gauge coupling 8π2/g2G = R−1. Now we slowly turn
off the Higgs vev. The important point is that the Higgs moduli and Coulomb moduli
do not mix with each other. Then the existence of the vector multiplet with the gauge
coupling 8π2/g2G = R−1 does not change in the process of turning off the Higgs vev,
and hence the vector multiplet exists even at the origin of the moduli space. This
establishes the fact that the vector multiplet with gauge group G and gauge coupling
8π2/g2G = R−1 exists in the 5d theory after compactification of the 6d SCFT.

The existence of the vector multiplet can be regarded as a kind of no-go theorem;
the 5d theory cannot be completely superconformal, because we always have the IR
free vectormultiplet. Our conjecture is that this vectormultiplet is the only non-SCFT
component in 5d, and the rest of the theory is really an SCFT which we denoted as
5dS {G}. When G is trivial, that is, when there are no (−2)-curves in the endpoint,
the 6d theory is very higgsable. In this case, our conjecture above says that the 5d
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theory obtained by S1 compactification of a 6d very higgsable theory is really a 5d
SCFT. This statement has been indeed established in the previous section.16

In the case of the N = (2, 0) theory, our 5d SCFT is just a hypermultiplet in
the adjoint representation of G. The story of the general case is quite similar to the
case of theN = (2, 0) theory by replacing the adjoint hypermultiplet with a strongly
coupled 5d SCFT 5dS {G}. For example, instantons of the G vector field is expected
to correspond to the Kaluza–Klein modes of the S1 compactification as in [42, 43].

Tensor branch effective action in 5d We want to discuss the consequences of our
conjecture. Before doing that, we mention the 5d effective action on the endpoint
configuration.

In 6d, the tensors and vectors remaining in the endpoint configuration have the
effective (pseudo-)action (2.16) with ηi j being the Cartan matrix of G. After dimen-
sional reduction to 5d, we define �i = Rai and F tens

i,μν = RHi,μν5 and obtain

∫
ηi j

(
−4π2

2R
(d�i ∧ 
d� j + F tens

i ∧ 
F tens
j ) + 2π�i

(
1

4
TrFj ∧ 
Fj

)

+ 2π Atens
i c2(Fj )

)
.

(3.116)
where Atens

i is the vector potential of F test
i . Do not confuse the field strength Fi the

non-abelian gauge algebra gi which exists in 6d with the abelian field strength F tens
i

coming from the 6d tensor Hi .
The configuration of (−2)-curves defines a Dynkin diagram. Let Hi be the Cartan

element of the SU(2) subalgebra of the node i normalized as tr(Hi H j ) = ηi j , where
tr is normalized in such a way that it coincides with the trace in the fundamental
representation in SU(2) subalgebras. Then �i and F tens

i can be identified as the
Cartan part of the vector multiplet of the 5d gauge group G as �G = Hi�i and
FG = 2Hi F tens

i . Then the above action can be rewritten as

∫ (

− 4π2

g2G
tr(d�G ∧ 
d�G + FG ∧ 
FG ) + 2π tr(H j�G )

(
1

4
TrFj ∧ 
Fj

)

+ 2π tr(H j AG )c2(Fj )

)

,

(3.117)
where 8π2/g2G = R−1. This action is valid when the Coulomb vev of �G is generic.
The first two terms are the action of the vector multiplet for the gauge group G (on
the Coulomb branch), while the last two terms are the action of the gauge groups gi
exist in the endpoint configuration.

Mass deformation of 5d SCFT and 5d quiver. Now let us see the implication of
our conjecture. On the 6d tensor branch, we have a quiver gauge theory with gauge
groups gi . Bifundamentals and fundamentalsHi j are generalized matters which are
very higgsable. If we compactify this tensor branch theory to 5d, we get the same
quiver theory in 5d plus U(1)rG vectors. The gauge couplings are determined by the

16There, it was shown that the T 2 compactification of very higgsable theory is a 4d SCFT, and the
structure of the singularities on its Coulomb branch was also completely fixed. Taking the limit of
very thin T 2, we can obtain the singularity structure of the Coulomb branch of the 5d theory, which
shows that the origin of the 5d theory is superconformal.
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vev of �G as in (3.117). The bifundamentals and fundamentals are 5d version of the
very higgsable theories.

On the other hand, we conjectured that the 5d theory at the origin of the moduli
space is a system in which a 5d SCFT 5dS {G} is coupled to theG gauge field. Going
to the tensor branch in 6d corresponds to giving vev to the adjoint scalar �G of the
vector multiplet. The adjoint vev gives mass deformation of this 5d SCFT 5dS {G}.
If we take R → 0 limit, the remaining 5d U(1)rG vectors just decouples. Therefore,
our conjecture requires that the mass deformation of the 5dS {G} flows under RG
flow to the 5d quiver,

5dS {G} mass deformation−−−−−−−−→ the 5d quiver theory , (3.118)

where the quiver theory is the one obtained from the 6d tensor branch. Furthermore,
(3.117) tells us that the gauge coupling of the gauge field with gauge algebra gi at
the quiver node i is given by the mass deformation 〈�G〉 = mG as

8π2

g2i
= tr(HimG), (3.119)

where we have used the fact that our normalization is such that 1
4TrF

2 is 1 in one-
instanton.

Let us state the above process in the opposite direction ofRGflows.Our conjecture
requires that the 5d quiver gauge theory must have a UV fixed point. Furthermore,
there must be an enhanced global G symmetry in the UV fixed point whose Cartan
part is identified with the topological U(1) symmetries associated to instantons of
gauge groups in the IR quiver.

Let us focus our attention to the case in which the gauge group gi on the i th node
of the endpoint quiver is su(Ni ) where the rank Ni can take arbitrary values as long
as anomaly cancellation condition is satisfied. In this case, the corresponding 5d
quiver theory is expected to have a UV fixed point. The enhanced global symmetry
in the UV fixed point is actually two copies of G [44, 45]. We can take the diagonal
subgroup Gdiag, and deform the UV SCFT by mass deformation of Gdiag by mG .
One of G flavor comes from instanton U(1) symmetries as mentioned above, and the
other comes from the U(1) symmetries that act on bifundamental matters between
adjacent su gauge groups in the quiver. Then the IR gauge coupling of the quiver is
really given by the equation (3.119)17 Therefore, our conjecture works very well in
this class of theories.

More general case involves strongly interacting generalizedmatters. Then, it is not
straightforward to study their 5d quivers.Nevertheless, aswewill discuss examples of
T (g,g)

N in Sect. 3.3.3.3 , such a quiver theory with generalized bifundamentals is dual
to more conventional SU(N ) quiver gauge theories with ordinary hypermultiplets.
Existence of such examples supports our general conjecture.

17See the last equation in Sect. 3.4 of [45]. The m± in that paper is taken to be mG here, and Hi
there is 1

2 H
i here.
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3.3.1.4 T 2 Compactification to Four Dimensions

Let us denote by 4dS {G} the theory which is obtained by the S1 compactification of
the 5d SCFT 5dS {G}. This 4d theory 4dS {G} may be an SCFT or may contain IR
free gauge groups; we will discuss this point in detail later. Then, by compactifying
the 5d theory of the previous subsection further on S1, we get a theory in which the
4d vector multiplet of the gauge group G is coupled to 4dS {G}. This is the theory
we obtain by T 2 compactification. Therefore, the problem of T 2 compactification
of the 6d SCFT is reduced to the problem of S1 compactification of the 5d SCFT
5dS {G}.

Let us determine the gauge coupling of the G gauge field. For this purpose, we
again use the reasoning of the previous subsections.We can higgs the theory to obtain
N = 4 super Yang-Mills in 4d. The Higgs and Coulomb moduli do not mix, so the
higgsing does not affect the gauge coupling of the G gauge field. The gauge field of
N = 4 super Yang-Mills is conformal with the gauge coupling given by the complex
modulus τ of the T 2. Therefore, the G gauge group before higgsing must also be
conformal (i.e., has vanishing beta function) with the gauge coupling τ . The SL(2, Z)

of the T 2 acts on τ , so the 4d theory has a nontrivial SL(2, Z) S-duality group. The
fact that G gauge group is conformal means that the theory 4dS {G} contributes to
the beta function by the same amount as that of one adjoint hypermultiplet.

Quiver on the tensor branch. By going to the tensor branch in 6d and compacti-
fying it on T 2, or equivalently by giving a vev to the adjoint scalar of the G vector
multiplet and mass-deforming 4dS {G} by that vev, we get a quiver gauge theory
with generalized matters. The Cartan of the G gauge field becomes U(1)rankG free
vector fields.

We now show that gauge groups of the quiver are conformal. For this purpose, it
is enough to concentrate on a single tensor mode and the gauge field coupled to it in
the endpoint. A little more generally, let g be a gauge group supported on a tenser
mode (ak, Bk) with ηkk = n. The generalized matters coupled to this gauge group
is very-higgsable, and we denote the 6d anomaly polynomial of this very-higgsable
theory as I [gen. matter]. Then the part of the anomaly polynomial of the total system
containing the field strength of g is given as

I [gen. matter] + I [g vector] + IGS, (3.120)

IGS is the Green–Schwarz contribution. From (2.122), (2.24), (2.25), (2.40) they
contain

I [g vector] ⊃ −h∨
g

12
p1(T )c2(Fg), (3.121)

IGS ⊃ 1

2n
(
2 − n

4
p1(T ) − nc2(Fg))

2 ⊃ −2 − n

4
p1(T )c2(Fg). (3.122)

The terms containing c2(Fg) must be cancelled in the total anomaly, so we get
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I [gen. matter] ⊃ 1

48
(4h∨

g + 12(2 − n))p1(T )c2(Fg). (3.123)

Using (3.33), 4d g flavor central charge of the compactified very-higgsable general-
ized matter is kg = 4h∨

g + 12(2 − n). This kg is the contribution of the generalized
matter theory to the 4d beta function of the g gauge group, in the normalization
that the vector multiplet contribution is −4h∨

g . Therefore, the beta function of g is
proportional to kg − 4h∨

g = 12(2 − n).
From this we find the following fact: pick a tensor mode (ak, Bk) with ηkk = n,

supporting a gauge multiplet g which is coupled to very-higgsable matters. In the 4d
theory obtained by the T 2 reduction, this gauge multiplet is

• IR free when n = 1,
• conformal when n = 2, and
• asymptotic free when n > 2.

The n = 1 case was already shown in Sect. 3.1.1. The n = 2 case which is relevant
to us here means the gauge groups on the endpoint tensor branch quiver are all
conformal in 4d.

The gauge couplings of these conformal gauge groups are determined by the vev
of the adjoint scalar �G . When this vev is turned off, we get a more singular theory
4dS {G} coupled to the non-abelianG group.We stress that the flow from 4dS {G} to
the quiver is mass deformation rather than exactly marginal deformation, and hence
some information is lost in the quiver theory because massive degrees of freedom
are integrated out.

3.3.2 Conformal Matters and Class S Theories: Type A

In this subsection and the next, we give concrete examples of the general discussions
of the previous section. We focus on conformal matters T (g,g)

N and their deforma-
tion T (g,g)

N {OL ,OR}. Some properties of the circle compactified theory 5dT (g,g)

N is
already mentioned in Sect. 2.4.4.

3.3.2.1 Conformal Matter of A-Type

As said in Sect. 2.4.4, if we compactify the conformal matter T (g,g)

N on S1 with
generic Wilson lines in the diagonal subgroup of the flavor symmetry gL × gR , we
get the quiver gauge theory [46] whose nodes form an affine Dynkin diagram of
type ĝ and each node k of the affine Dynkin diagram has the gauge group SU(dg

k N ),
where dg

k are the so-called marks of the Dynkin diagram such that the highest root
is given by

∑
k d

g
k αk where αk is the k-th simple root. However, our main focus in

this paper is to study the most singular theory obtained without flavor Wilson lines.
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Here we first consider the A-type conformal matter T (su(k),su(k))
N−1 whose tensor

branch structure is
[su(k)L ] su(k) · · · su(k) [su(k)R]

2 · · · 2
. (3.124)

The theory is higgsable to T (2,0)
G with G = SU(N ).

Five dimensions. Following our general discussions of the previous section, we
consider a 5d version of the quiver gauge theory of the form (3.124). This is a 5d
SU(k)N−1 quiver theory with k flavors at each end, and the properties of this theory
can be easily read off from the brane web construction of this theory [28, 31, 47] as
a D5-NS5 system. The theory has a UV fixed point which we denote as 5dSk,N . This
5d theory has global symmetry SU(k)L × SU(k)R × SU(N )L × SU(N )R , where
SU(N )L × SU(N )R is the enhanced symmetry.

The theory 5dSk,N itself is an SCFT, but by deforming it by mass term mSU(N ) in
the Cartan of the diagonal subgroup of SU(N )L × SU(N )R , we get the IR SU(k)N−1

quiver theory

5dSk,N
SU(N ) mass deform−−−−−−−−−−→ [SU(k)L ] − SU(k) − · · · − SU(k) − [SU(k)R]. (3.125)

The gauge coupling is determined by the general formula (3.119) which in this case
is given by 8π2/g2i = mSU(N ),i − mSU(N ),i+1 (i = 1, . . . , N − 1), where mSU(N ) =
diag(· · · ,mSU(N ),i , . . .). This is precisely as expected from the brane construction
of this theory. Furthermore, this theory has a duality k ↔ N which can be readily
seen from the brane construction. Therefore, if we deform the theory by masses in
the Cartan of the diagonal subgroup of SU(k)L × SU(k)R , we get the IR SU(N )k−1

quiver theory,

5dSk,N
SU(k) mass deform−−−−−−−−−−→ [SU(N )L ] − SU(N ) − · · · − SU(N ) − [SU(N )R],

(3.126)
where SU(N )L ,R are flavor symmetries, and there are k − 1 SU(N ) gauge groups.

Now, our claim is that the compactification of the conformal matterT (su(k),su(k))
N−1

on S1 is given by the theory 5dSk,N with the diagonal subgroup of SU(N )L ×
SU(N )R gauged,

T (su(k),su(k))
N−1

S1−→ 5dSk,N {SU(k)L ,SU(k)R,SU(N )L ,SU(N )R}/SU(N )diag
(3.127)

where the notation of the right hand side means that we are gauging the diagonal
subgroup SU(N )diag ⊂ SU(N )L × SU(N )R by the SU(N ) vector multiplet.

Let us consider two types of deformation of this 5d theory. The first one is to go to
the Coulomb branch of the SU(N ) gauge group by giving a vev to the adjoint scalar
�SU(N ). Then, this gives mass deformation of the theory 5dSk,N , and we exactly get
the dimensional reduction of the 6d quiver (3.124).
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Next, let us consider mass deformation of the diagonal subgroup of the flavor
symmetry SU(k)L × SU(k)R at the origin of the Coulomb moduli space. This corre-
sponds to introducing flavor Wilson lines on S1. In this case, the mass deformation
of 5dSk,N is given by (3.126), but the diagonal subgroup of SU(N )L × SU(N )R
is gauged by the gauge group SU(N ) as in (3.127). Therefore, we get an SU(N )k

necklace quiver theory. This is exactly the one obtained by putting N D4-branes on
the Ak−1 singularity with generic B-flux. In this way, two different 5d IR theories
follow from the single strongly interacting 5d SCFT 5dSk,N .

Four dimensions. The T 2 compactification of the conformal matterT (su(k),su(k))
N−1 is

now given as

T (su(k),su(k))
N−1

T 2−→ 4dSk,N {SU(k)L ,SU(k)R,SU(N )L ,SU(N )R}/SU(N )τdiag
(3.128)

where 4dSk,N is the 4d theory obtained by the S1 compactification of 5dSk,N , and
the notation of the right hand side means that we are gauging the diagonal sub-
group SU(N )diag ⊂ SU(N )L × SU(N )R by the SU(N ) vector multiplet with gauge
coupling τ . Thus, the problem of T 2 compactification of the conformal matter
T (su(k),su(k))

N−1 is reduced to the problem of S1 compactification of 5dSk,N .
Because of the symmetry k ↔ N of this theory,we assume N ≥ k for themoment.

For the purpose of studying 4dSk,N , we consider the mass deformation (3.125) and
(3.126) in 4d. The right hand side of (3.125) is a class S theory of Ak−1 type on a
Riemann spherewith two full punctures and N simple punctures.As discussed above,
the gauge couplings are determined by the mass deformation. Then, by tuning the
SU(N ) mass deformation, we can collide the N simple punctures at a single point
and obtain [48],

Tk{[1k], [1k], [1k]} − SU(k) − · · · − SU(k) − SU(k − 1) − · · · − SU(1), (N ≥ k)
(3.129)

where there are N − k + 1 SU(k)’s, and each gauge group is coupled to additional
fundamentals if necessary so that the gauge group becomes conformal. The SU(1)
is introduced formally. The leftmost SU(k) is coupled to one of the full punctures
of Tk{[1k], [1k], [1k]}. On the other hand, the right hand side of (3.126) is a class
S theory of type AN−1 on a Riemann sphere with two full punctures and k simple
punctures. Then, by tuning the SU(k) masses so that colliding simple punctures, we
get (when N ≥ k),

TN {[1N ], [1N ], [N − k, 1k]} − SU(k) − SU(k − 1) − · · · − SU(1), (N ≥ k)
(3.130)

where SU(k) is coupled to the puncture [N − k, 1k].
From the above results, we expect that the theory 4dSk,N contains both of the the-

ories Tk{[1k], [1k], [1k]} and TN {[1N ], [1N ], [N − k, 1k]} when N ≥ k. We propose
that this theory is given by
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4dSk,N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

TN {[1N ], [1N ], [N − k, 1k ]} − SU(k) − Tk{[1k ], [1k ], [1k ]} (N > k)

TN {[1N ], [1N ], [1N ]} − [SU(N ) + one fund.] − TN {[1N ], [1N ], [1N ]} (N = k)

TN {[1N ], [1N ], [1N ]} − SU(N ) − Tk{[1k ], [1k ], [k − N , 1N ]} (N < k)
(3.131)

where in the N = k case there is one fundamental representation coupled to the
middle SU(N ) gauge group.

The contribution of the TN {[1N ], [1N ], [N − k, 1k]} theory to the beta function
of the SU(k) is the same as that of k + 1 fundamentals when k < N . So in each case,
the gauge group SU(k) or SU(N ) appearing in the above equation has IR free beta
function. We will give other justifications of the appearance of the IR free gauge
group later in this paper.

We will give more checks of (3.131) below, but before doing that, let us com-
plete our task of determining the 4d theory obtained by compactification of the 6d
conformal matter T (su(k),su(k))

N−1 . The 4d theory is obtained by gauging the diagonal
subgroup SU(N )diag ⊂ SU(N )L × SU(N )R of the 4dSk,N . This can be easily done
in the class S theory. We just need to replace TN {[1N ], [1N ],Y } (Y = [N − k, 1k]
or [1N ]) by the theory on a torus SN 〈T 2

τ 〉{Y }, where SN 〈T 2
τ 〉{Y } means the class S

theory of type AN−1 whose Gaiotto curve is a torus with modulous τ and a puncture
labeled by Y . Therefore, the final result is

T
(su(k),su(k))
N−1

T 2−→
⎧
⎨

⎩

SN 〈T 2
τ 〉{[N − k, 1k ]} − SU(k) − Tk{[1k ], [1k ], [1k ]} (N > k)

SN 〈T 2
τ 〉{[1N ]} − [SU(N ) + one fund.] − TN {[1N ], [1N ], [1N ]} (N = k)

SN 〈T 2
τ 〉{[1N ]} − SU(N ) − Tk{[1k ], [1k ], [k − N , 1N ]} (N < k)

(3.132)
This theory has the SL(2, Z) S-duality group acting on SN 〈T 2

τ 〉{[1N ]}, and has man-
ifest SU(k)L × SU(k)R flavor symmetry from the two full punctures [1k].

To give further checks of the above proposal, we need a mass deformation of the
theoryTN {[1N ], [1N ],Y }. The following facts, which hold in both 4d and 5d versions
of the theory TN {[1N ], [1N ],Y }, are known [49, 50].

Let us give generic masses to the diagonal subgroup of SU(N )L × SU(N )R of
the full punctures. Then this theory flows in the IR to a linear quiver

TN {[1N ], [1N ],Y } SU(N )diag mass deform−−−−−−−−−−−−→ SU(v1) − SU(v2) − · · · − SU(vN−1)

(3.133)
In this quiver, each gauge group is coupled to additional fundamentals if necessary
so that each gauge group becomes conformal. The vi are determined as follows. The
Y is specified by a partition of N as Y = [m1,m2, . . . ,m�]. This partition Y defines a
Young diagram. Then we can consider the transpose of the Young diagram Y , which
we denote as Y T = [n1, . . . , nk] where n1 ≥ · · · ≥ nk . We also define ni = 0 for
i > k. Then vi is determined by

vi−1 − vi = 1 − ni , vN−1 = 1. (3.134)
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If Y is given by Y = [N − k, 1k] with N > k, then Y T = [k + 1, 1N−k−1] and
hence n1 = k + 1, ni = 1 for 2 ≤ i ≤ N − k and ni = 0 for i > N − k. Then vi = k
for i ≤ N − k and vi = N − i for N − k ≤ i ≤ N − 1, and the quiver becomes

[SU(k)] − SU(k) − · · · − SU(k) − SU(k) − · · · − SU(1). (3.135)

The [SU(k)] is a flavor symmetry coming from the fundamentals coupled to the
leftmost SU(k). This [SU(k)] is identified with the flavor symmetry of the puncture
Y = [N − k, 1k]. There are N − k SU(k) gauge groups. Similarly, if Y = [1N ] we
get

[SU(N )] − SU(N − 1) − SU(N − 2) − · · · − SU(1). (3.136)

Now we can discuss mass deformation of 4dSk,N in (3.131). Let us mass-deform
the diagonal subgroup of SU(N )L × SU(N )R in (3.131). When N ≥ k, by using
(3.135) one can see that we precisely get the theory (3.129). Similarly, if we deform
the SU(k)L × SU(k)R in (3.131), then by using (3.136) with N replaced by k, we
precisely get the theory (3.130). This gives a strong check of our proposal (3.131). In
particular, note that the IR free gauge group appearing in (3.131) becomes conformal
after the mass deformation of either SU(N ) or SU(k). The conformality of gauge
groups after the deformation of SU(N ) was indeed shown in our general discussion
of the previous section from the 6d point of view.

We have seen that (3.129) and (3.130) can be obtained by mass deformation of
SU(N ) and SU(k) in (3.131), respectively. By going back the duality, we can also
get the 4d version of the right hand side of (3.125) and (3.126), respectively. In
the compactification ofT (su(k),su(k))

N−1 , the diagonal subgroup of SU(N )L × SU(N )R
is gauged. In this way, we get two theories; one is a linear SU(k)N−1 quiver with
the gauge coupling determined by the vev of �SU(N ), and the other is a necklace
SU(N )k quiver. These are the theories discussed in [16]. Now we can see that these
two theories flow from the single 4d theory (3.132) which has manifest SL(2, Z)

S-duality and SU(k)L × SU(k)R flavor symmetry.

3.3.2.2 M-Theory Interpretation

Here we try to understand (3.132) in terms of M5 branes in M-theory. As mentioned
above, the A-type conformal matter is realized in M-theory by putting N coincident
M5branes on Ak−1 singularity. Ifwe realize this Ak−1 singularity byTaub-NUTspace
and go to type IIA string theory, we get a system of N coincident NS5 branes and k
coincident D6 branes intersecting with each other. The A-type conformal matter is
realized on the intersection.

Now we compactify the theory on T 2 so that we get a T 2 compactification of
the conformal matter. Taking T-dual twice, we get N coincident NS5 branes and k
coincident D4 branes. Uplifting to M-theory, we get N coincident M5 branes and k
coincident M5 branes intersecting on 4-dimensional subspace.
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Table 3.2 Directions in which M5 branes extend

R
1,3 T 2 (or S1 × R) S1 × R R

3

N M5 branes
• •

k M5 branes
• •

The directions in which M5 branes are extending after the above duality chain
are listed in Table 3.2. They are intersecting on the space R

1,3 . Furthermore, N M5
branes are compactified on T 2, and k M5 branes are compactified on S1 × R.

Let us focus on the N M5 branes. This is compactified on T 2, so it is a class S
theory of AN−1 type on T 2. From the point of view of this N M5 branes, the k M5
branes look like a codimension 2 defect, and hence it is a kind of puncture. So it is
natural to obtain a theorySN 〈T 2

τ 〉{Y }, where Y is specified by the k M5 branes. Next,
let us focus on the k M5 branes. This is compactified on S1 × R, but this space can
be regarded as a sphere with two full punctures in class S theory. So this is a class S
theory of type Ak−1 on a Riemann sphere with two full punctures and one puncture
Y ′ specified by the N M5 branes which look like a puncture from the point of view
of the k M5 branes. Hence, we get the theory Tk{[1k], [1k],Y ′}. These observations
partly explain the structure of (3.132). Conversely, our results tell us what exactly
happens in this setup of M5 branes.

When N = 1, oneM5brane is a simple puncture from the point of viewof the kM5
branes [51]. This was also found in minimal conformal matters of general ADE type
[6]. Our result is consistent with this because in this case [k − N , 1N ] = [k − 1, 1]
is a simple puncture.

It is also clear that if we replace the T 2 of table 3.2 by S1 × R, the theory we
obtain from the M5 branes’ intersection should be 4dSk,N in (3.131). This is a little
progress in the understanding of M-theory and N = (2, 0) theory. In general, it is
very interesting to study what happens when two bunches of M5 branes intersect
with each other along 4-dimensional subspace. This is a difficult problem to answer
if the M5 branes are intersecting in flat R

1,10 space, because the N = (2, 0) theory
is intrinsically strongly coupled and hence there is no clear separation between the
bulk N = (2, 0) theory and the 4d theory living on the intersection. However, if we
compactify theM5 branes on S1, we get 5dN = 2 super Yang-Mills which is weakly
coupled in the IR limit. Then it becomes a well-defined question to ask what theory
is living on the intersection. If we compactify the system on S1 which is common to
both N M5 branes and k M5 branes, the system is reduced to a well-known situation
in which D4 branes are intersecting and we just get free hypermultiplets in 3d.
Instead, if we compactify the system on two S1’s as in Table 3.2 with the replacement
T 2 → S1 × R, the intersection looks like a codimension-one domain wall from the
point of view of each of the 5dN = 2 super Yang-Mills theories. What we found is
that the theory living on this domain wall is the 4d theory 4dSk,N in (3.131). Flavor
symmetries SU(N )L × SU(N )R and SU(k)L × SU(k)R are naturally coupled to the
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gauge groups of 5d SU(N ) and SU(k) N = 2 super Yang-Mills theories on the two
sides of the domain walls, respectively.

3.3.2.3 Nilpotent vev

It is obvious to generalize the above result to the case ofT (su(k),su(k))
N−1 {YL ,YR} intro-

duced in Sect. 2.4.5. The tensor branch quiver is exposed in (2.100) for the casewhere
YL is full F = [1k], and it is straightforward to generalize it for the case with general
YL and YR as mentioned below the equation.

As already discussed in the general arguments of the previous section, the 5d ver-
sion of the quiver (2.100) is expected to have a UV fixed point 5dSk,N {YL ,YR}
with enhanced SU(N )L × SU(N )R symmetry. Then the S1 compactification of
T 6d

k,N {YL ,YR} is given by this 5dSk,N {YL ,YR}with the diagonal subgroup of SU(N )L
× SU(N )R gauged.

It is also easy to determine the 4d theory. We just need to higgs the moment maps
μL and μR of the theory (3.132) by nilpotent vev. The result is

T
(su(k),su(k))
N−1 {YL , YR} T 2−−→

⎧
⎨

⎩

SN 〈T 2
τ 〉{[N − k, 1k ]} − SU(k) − Tk {[1k ], YL , YR} (N > k)

SN 〈T 2
τ 〉{[1N ]} − [SU(N ) + one fund.] − TN {[1N ], YL , YR} (N = k)

SN 〈T 2
τ 〉{[1N ]} − SU(N ) − Tk {[k − N , 1N ], YL , YR} (N < k)

(3.137)

3.3.2.4 Cases Without IR-Free Gauge Group

There is actually a special subclass of theories in which the IR free gauge group does
not appear. We take k = N and YL = [N ] (Y T

L = [1N ]). For simplicity, let us first
consider the case YR = [1N ] (Y T

R = [N ]). Then the 6d theory is given by

su(N − 1) · · · su(2) su(1)
2 · · · 2 2

+ one fund. of flavor su(N ), (3.138)

where additional free hypermultiplet can be seen from the type IIA construction.
Such a non-interacting hypermultiplet charged under the remaining flavor symme-
try exists for any YR , and we call the interacting part T 6d

N ,N {[N ],YR}int. In the 4d
theory, one of the punctures YL is completely higgsed and this puncture disappears.
It is called the closing of the puncture. After this, we get a theory TN [[1N ], [1N ]]
with two full punctures, or equivalently a theory on a tube (with Dirichlet boundary
conditions at the two ends when theN = (2, 0) theory is reduced to 5dN = 2 super
Yang-Mills). This theory is actually not an interacting SCFT. The SU(N ) × SU(N )

symmetries associated to the full punctures are automatically broken down to the
diagonal subgroup [52]. Then, when the SU(N ) is gauged, the gauge group is com-
pletely higgsed by this theory TN [[1N ], [1N ]] and only the flavor SU(N )R survives
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by mixing with the gauge group. By applying these facts to (3.137), we get

T 6d
N ,N {[N ], [1N ]} T 2−→ SN 〈T 2

τ 〉{[1N ]} + one fund. (3.139)

Here, one can check that there are N free decoupled hypermultiplets in 4d after
the process of nilpotent higgsing as can be checked by the method of [53], and
these decoupled hypermultiplets are identified with the additional hypermultiplets in
(3.137) in the fundamental representation of SU(N ) which is higgsed. Subtracting
the hypermultiplets form both side, we get

su(N − 1) · · · su(2) su(1)
2 · · · 2 2

conformal−−−−−→
point

T 6d
N ,N {[N ], [1N ]}int T 2−→ SN 〈T 2

τ 〉{[1N ]}.
(3.140)

In the same way, we can also consider general YR := Y . The interacting part of
the 6d theory is

su(v1) · · · su(vN−1)

2 · · · 2
(3.141)

where vi are defined by (3.134). Note that vN−1 = 1. We can simply partially close
[1N ] in the above equation to obtain

su(v1) · · · su(vN−1)

2 · · · 2
conformal−−−−−→

point
T 6d

N ,N {[N ],Y }int T 2−→ SN 〈T 2
τ 〉{Y } (3.142)

for arbitrary Y . In this class of theories, the corresponding 4d theory is conformal
without any IR free gauge group.

We can also derive the above results much more directly. As already described
in Sect. 3.3.2.1, the 5d version of the quiver (3.141) has a fixed point which is a
5d version of the TN -like theory, T5d

N {[1N ], [1N ],Y }. Thus, in our notation above,
we find that 5dSN ,N {[N ],Y } = T5d

N {[1N ], [1N ],Y }. The S1 compactification of
T 6d

N ,N {[N ],Y }int is thus the T5d
N {[1N ], [1N ],Y } theory with the diagonal subgroup

of SU(N )L × SU(N )R coming from the full punctures gauged. By reducing this
theory further to 4d, we immediately get (3.142).

3.3.3 Conformal Matters and Class S Theories, General Type

Next, let us discuss the 6d theory T (g,g)

N−1 on the worldvolume of N M5-branes on
C

2/�g singularity, where g can be Dk or Ek . The author have not been able to
obtain as full an answer for g = Ek case, as in the case of g = Ak−1, but we can still
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understand quite a lot18. Also, even for g = Ak−1, the analysis in this section sheds
some new light.

3.3.3.1 Structure of the 5d Reduction

On the tensor branch in 6d, the quiver is of the form

[g] g · · · g [g]
2 · · · 2 (3.143)

where the bifundamental ‘matter’ of g × g is a nontrivial 6d very-higgsable SCFT.
First let us compactify on S1 without anyWilson line. Fromour general discussion,

its S1 compactification is given by a 5d SU(N ) gauge theory coupled to a strongly-
coupled SCFT 5dS {g, g,SU(N )}, which is the strongly-coupled SCFT limit of the
5d quiver

[gL ] − g − · · · − g − [gR], . (3.144)

where bifundamentals are nontrivial 5d conformal theories. To the knowledge of the
authors, no study has been done on such quivers with generalized matters in 5d,
but our general discussion in Sect. 3.3.1 requires that there is an enhancement of
the flavor symmetry of (3.144) from U(1)N−1 instanton symmetries to SU(N ), just
as in the case when g is of type A where the matter fields are free bifundamental
hypermultiplets.

The same 5d SCFT 5dS {g, g,SU(N )} can be identified as follows. If we instead
compactify the 6d theory on S1 with generic Wilson lines in the diagonal subgroup
of the flavor symmetry gL × gR , we get a 5d ordinary quiver theory whose nodes
form the affine Dynkin diagram of type g as seen in Sect. 2.4.4. The gauge group is

rankg∏

a=0

SU(daN ) (3.145)

where d0 = 1 corresponds to the affine node and the vector (da) is in the kernel of the
affine Cartan matrix. There is as always the bifundamental matter fields for the edges
of the Dynkin diagram. The SU(N ) at the extended node is our G vector multiplet
of the general discussion.

In summary, we have two theories. One is the theory (3.144) and the other is the
theory

finite Dynkin quiver of type g with the gauge group
rankg∏

a=1

SU(daN ). (3.146)

18The full answer for g = Dk case was obtained after publishing [36], and appears nowhere in the
literature.
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g,g
N

5d ĝ quiver with su N 1 di

gauge algebras
6d linear quiver with g gauge
groups and g,g

0 matters
5d g,g,SU N SU N R 1

5d linear quiver with g gauge
groups and 5d g,g

0 matters
5d g quiver with su N 1 di

gauge algebras

S1 reduction

Tensor branch vev in root to 2,0
AN

S1 compactification
and Wilson line

S1 reduction R6 0

Base-fiber duality

Fig. 3.13 Relation between T
(g,g)
N and 6d and 5d gauge theories. After taking R6 → 0 limit

and decoupling the 5d G = SU(N ) vector, Wilson line and tensor vev becomes different mass
deformations (denoted by dashed lines) of the 5d SCFT 5dT

(g,g)
N , and this relation is nothing but

the base-fiber duality when g = A

These theories (3.144) and (3.146) should have a common UV fixed point
S 5d{g, g,SU(N )}, with the flavor symmetry gL × gR × SU(N ). Only gL × gR
is manifest in (3.144), which is obtained by mass deformation in SU(N ) of
S 5d{g, g,SU(N )}, while only SU(N ) is manifest in (3.146) which is obtained by
mass deformation in the diagonal subgroup of gL × gR . In this sense, these two IR
theories (3.144) and (3.146) are dual to each other. This is the precise version of the
“novel 5d duality” of [39]. The case of N = 1 and g = Dn was studied explicitly
in [6].

Summarizing, the compactification on S1 of the 6d theoryT 6d
N {g, g} has the struc-

ture shown in Fig. 3.13. The 5d theory becomes a generalized quiver on the part of
the 5d Coulomb branch that corresponds to the 6d tensor branch, and becomes a
standard affine quiver when mass deformed.

3.3.3.2 Structure of the 4d Reduction

Now let us compactify one further dimension and identify 4dS {g, g,SU(N )}. The
question can be approached either from the point of view of the theory (3.144) or
(3.146). Here we choose to use (3.144).

The deformation of 4dS {g, g,SU(N )} by the mass parameter for SU(N ) is the
4d quiver

[gL ] − g − · · · − g − [gR]. (3.147)

where the generalized bifundamental Bg of g × g comes from the T 2 reduction of
the very higgsable SCFT in 6d. As studied Sect. 3.1, this generalized bifundamental
is given by a class S theory Bg := Tg{g,Ysimple, g}, i.e. the class S theory of type
g on a sphere with two full punctures and a simple puncture. Therefore, the quiver
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(3.147) theory itself is a class S theory of type g on a sphere with two full punctures
and N simple punctures, which we denote as

Tg{F, S, . . . , S, F}, (3.148)

where F, S denote full and simple punctures. The N − 1 cross ratios are the IR
remnant of the mass parameters of the SU(N ) flavor symmetry 4dS {g, g,SU(N )}.

Tg{S, . . . , S, F, F}, (3.149)

meaning the simple punctures are near to each other while the two full punctures are
apart from them. In Sect. 3.3.3.3 below, we will determine the resulting quiver for
g = Ak−1, Dk, E6 using the known data, and we will find that the outcome has the
form, when N is sufficiently large,

a 4d generalized quiver − g − Tg (3.150)

where the 4d quiver part on the left turns out to be exactly the T 2 reduction of the
quiver theory of the 6d conformal matter with a full-closing: T (g,g)

N−1 {C, F}.
Let us denote the 6d theory as T (g,∅)

N−1 for short. Its T 2 reduction is, from the

general discussion in Sect. 3.3.1, given by a 4d theory 4dT (g,∅)

N−1 {SU(N ), g} whose
SU(N ) flavor symmetry is gauged by an SU(N ) multiplet with SL(2, Z) duality
symmetry.

Therefore, we conclude that the T 2 compactification of the theoryT (g,g)

N−1 , i.e. the
theory on N M5-branes probing the C

2/�g singularity, has the structure

4dT (g,g)

N−1 =
4dT (g,∅)

N−1 {SU(N ), gT } × Tg{gB, gL , gR}
SU(N )τ × (diag. of gT × gB)

(3.151)

where SU(N ) is conformal, when N is sufficiently large.19 For smaller N , one of the
punctures and its symmetry gB of the second factor Tg become smaller.

For g = su(k) case, the first component 4dT (su(k),∅)
N−1 was conformal and the g =

su(k) gauge group was IR-free. In Sect. 3.3.3.4 we will see these properties also
holds for g = Dk , and therefore we expect this structure of the 4d theory

4dS {G} = (4dU {G, H} × 4dV {H})
Gτ × HIRF

(3.152)

with 4dU , 4dV both being 4d SCFTs and HIRF being a IR-free gauge multiplet is
universal for any 6d theory T higgsable to T (2,0)

G . Actually, in the paper [36] it is
shown for G = A, D case, though the proof is not contained in this thesis. The paper

19Note that we have gT = gB = gL = gR = g here. The subscripts are there to distinguish various
factors.
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[36] also provides the way of calculating the 4d central charges of T (g,∅)

N−1 from the
6d anomaly polynomial which is similar recursive calculation we did in Sect. 3.1.1,
though much complicated.

3.3.3.3 Detailed Class S Analysis

Now what is left is to present a class S analysis for the (3.149) for g = Ak−1, Dk ,
and E6.

When g = Ak−1, the resulting quiver is

su(1) − su(2) − su(3) − · · · − su(k − 1) − su(k) − su(k) − · · · − Tk (3.153)

where we have bifundamentals between neighboring groups and one additional fun-
damental at the leftmost su(k), as by now well-known and originally derived in [48].
This is indeed the T 2 reduction of the (∅, su(k)) matter, see (6.5) of [39].

When g = Dk , the resulting quiver can be found by the data compiled in [54]. We
find

su(1) − usp(2) − g2 − so(9) − so(11) − · · · − so(2k − 1) − so(2k) − so(2k) − · · · − TDk

(3.154)
where the matters are, from the left,

• a half-hyper in the doublet,
• a half-hyper in 2 ⊗ 7,
• the E8 Minahan–Nemeschansky theory whose g2 × so(9) ⊂ g2 × f4 ⊂ e8 is
gauged,

• the D5 generalized bifundamentalBD5 whose so(9) × so(11) ⊂ so(20) symmetry
is gauged, …,

• the Dk generalized bifundamental BDk whose so(2k − 1) × so(2k) symmetry is
gauged, etc.

This is indeed the T 2 reduction of the (∅, so(2k))matter, see the un-numbered equa-
tion at the top of p. 34 of [39].Note that the theoryBDk = TDk {so(2k), so(2k),Ysimple}
has an enhanced flavor symmetry so(4k) compared to what is apparent in the class S
description, and its subgroup so(2k − 1) × so(2k + 1) is gauged in this construction.

When g = E6, the resulting quiver can be found by the data compiled in [55]: we
find

su(1) − usp(2) − g2 − f4 − e6 − e6 · · · − · · · − TE6 (3.155)

where the matters are, from the left,

• a half-hyper in the doublet,
• a half-hyper in 2 ⊗ 7,
• the E8 Minahan–Nemeschansky theory whose g2 × f4 ⊂ e8 is gauged,
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• the E6 generalized bifundamental BE6 whose f4 × e6 symmetry is gauged.

This is indeed the T 2 reduction of the (∅, e6) matter, see (6.7) of [39].

When g = E7 and E8, the class S data for g = E7 and E8 are not yet available.
Nonetheless, we consider the agreement we found so far is convincing enough that
this correspondence works for all g. This can also be considered as a prediction for
the repeated collision of the simple punctures in the class S theory of type E7 and
E8. From the structure of (∅, En=7,8) conformal matters given in (6.8) and (6.9), our
prediction is that the class S theories of type En=7,8 with multiple simple punctures
and two full punctures have a duality frame of the form

su(1) − usp(2) − g2 − f4 − en − en · · · − · · · − TEn (3.156)

where the matters are, from the left,

• a half-hyper in the doublet,
• a half-hyper in 2 ⊗ 7,
• the E8 Minahan–Nemeschansky theory whose g2 × f4 ⊂ e8 is gauged,
• a certain SCFT with F4 × En flavor symmetry, which comes from the 6d very
higgsable theory with the structure

[f4] g2 su2 [e7]
1 3 2 1 for E7,

[f4] g2 sp1 [e8]
1 3 2 2 1 for E8, (3.157)

• and the En generalized bifundamentalsBEn which is the class S theory on a sphere
with two full punctures and a simple puncture.

3.3.3.4 Determining the 4d Theory for g = Dk

Here, as a final part of the body of this thesis, we determine the 4d theory 4dT (g,g)

N−1
for g = Dk . To do this, we remind ourselves that when S1 compactified with Wilson
lines the theory becomes the 5d Dk-shaped Dynkin quiver

SU(N )− SU(2N )− · · · −SU(2N )−SU(N )

| |
[SU(N )] SU(N )

. (3.158)

The point is that the 4d version of this quiver admits a class S construction with Z2

twisted punctures20 [56]:

T2N {[2N ], S, . . . , S, TM, TM} (3.159)

20A puncture of class S of type G theory can be twisted by a nontrivial outer-automorphism of G.
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where TM is the twisted minimal puncture and the number of simple punctures S
is k. We denote a twisted puncture with a symbol dressed by an underline. Tuning
the couplings of the SU gauge groups to be strong corresponds to pushing simple
punctures S towards one of TM . The resulting configuration is

a 4d (generalized) quiver − T2N {Ok, [2N ], TM} (3.160)

whereOk is the twisted puncture obtained by colliding k simple punctures S and one
twisted minimal puncture TM .21 When k ≥ N ≥ 3, Ok is the twisted full puncture
TF which have a SO(2N + 1) symmetry.

Therefore, we can identify the 4dT (g,∅)

N−1 in (3.151) with T2N {Ok, [2N ], TM}:

4dT (g,g)

N−1 = T2N {Ok, [2N ], TM} × Tg{gB, gL , gR}
SU(N )τ × (diag. of gT × gB)

, (3.161)

where gT is the symmetry of Ok and (diag. ofgT × gB) means the diagonal of max-
imal common subgroups of the two algebras. The superconformal SU(N )τ gauge
field can be absorbed into the twisted class S theory and giving

4dT (g,g)

N−1 = T2N {Ok, TM, TM, TM} × Tg{gB, gL , gR}
(diag. of gT × gB)

. (3.162)

The torus modulus τ becomes the cross ratio of four twisted punctures of the class
S theory T2N {Ok, TM3}.
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Chapter 4
Conclusion

4.1 Recapitulation and Summary

As a conclusion, we would like to summarize what we have seen.
In Chap. 3, we investigated torus compactifications of 6d SCFTs which are very-

higgsable, or higgsable to N = (2, 0). When the considered 6d theory T is an
N = (2, 0) theory T (2,0)

G , the 4d theory 4dT is (in IR) the 4d N = 4 SYM, and
important properties are

1. 4dT (which is N = 4 SYM) is conformal (and coupled), and
2. the modulus τ of compactifying torus is the marginal coupling of 4dT .

We wanted to know these properties were common in 6d SCFTs. We found that

1. is true but 2. is false for very-Higgisable theories, and 1. is false in general
for higgsable toN = (2, 0) theories.

In Sect. 3.2, the 4d theories are identified with class S theories without a marginal
deformation for a large class of very-higgsable theories

However, we also observe that

When the endpoint tensor branch quiver contains a tensormode (ak , Bk)which
is not coupled with any vector field by the coupling akTrF ∧ �F , then the torus
compactified theory 4dT satisfies both above properties 1. and 2.
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When the 6d theory is T (su(k),su(k))
N−1 {C, F}, whose tensor branch quiver is

su(1) su(2) · · · su(k) · · · su(k) [su(k)]
2 2 · · · 2 · · · 2

, (4.1)

the 4d theory is a class S theory:

4dT (su(k),∅)
N−1 = TN {F, F, F}

SU(N )τ
= SN 〈T 2

τ 〉{F}. (4.2)

In summary, torus compactifications of 6d SCFTs do not always satisfies the
conditions 1. and 2. posed above, and the behavior under the torus compactifications
is more-or-less characterized by the 6d fixed point of the flow triggered by a generic
Higgs vev.

4.2 Future Directions

As emphasized in Chap. 1, our motivation to study compactifications of 6d theories
is to generalize the story of class S theory [1] to less supersymmetric situation. To
this objective, considering putting T (su(k),∅)

N−1 on a general Riemann surface might
look attracting. Nevertheless, the torus compactified theory (4.2) is already non-
Lagrangian, therefore it is hard to naively generalize the analysis of class S theory
to this case.

There is another way found by Gaiotto himself and his collaborator: [2]. Consider
an (A, A) conformal matter, and introduce Wilson lines in terms of the diagonal of
flavor groups su(k)⊕2 breaking them down to u(1)⊕(2k−2). Then the torus compact-
ified theory is the affine quiver as we reviewed, and therefore that compactification
satisfies above properties 1. and 2. Putting on a general Riemann surface with generic
su(k) flat bundle, the theory is expected to define a 4d N = 1 theory. Pursuing this
direction [3, 4] is definitely interesting. In addition, what happens when the su(k)
flat bundle tuned to be trivial might also be interesting, from the point of view of this
thesis.

In this thesis we focus on compactifications of subclasses of 6d SCFTs. Oth-
ers, including T (usp(2k),usp(2k))

N−1 case should also be studied. Some cases are already
investigated in [5] using the mirror symmetry technique, and recast their result into
the language we have been using might be helpful.

Aside from issues of compactifications, it is also intriguing to study 6d theories
itself, in particular as a probe of M-theory. We saw some intricate M-theory physics
is encoded in the consistency conditions of 6d SCFTs. There should be other facts
about M-theory which can be observed from relationships between M-theory and 6d
SCFTs like the unknown map (2.109).
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