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Introduction

Sabino Matarrese

The dark side of the Universe

This book aims at presenting a thorough and up-to-date introduction to the fun-
damental theoretical and observational aspects of the two dark components of the
Universe: the dark matter and the dark energy.

During the last decades, many independent observations have provided grow-
ing evidence that the Universe is filled with two “dark” ingredients, a collisionless
component, able to cluster on sub-horizon scales, called dark matter and an almost
uniform component with negative pressure, called dark energy, whose physical na-
ture is still largely unknown. The dark matter component yields almost one-quarter
of the total cosmic energy today, while the dark energy is responsible for about
70%. The sum of their contribution to the present-day cosmic energy budget is just
impressive: around 96% of the total. The visible material, to which physicists and
astronomers paid all of their attention for millennia, appears now as a sort of minor
“detail” in the cosmos. Indeed, even the majority of the overall ordinary, baryonic
material is invisible to our telescopes: we have indications that at least half of it
is concentrated in a network of thin interconnected large-scale filaments/sheet-like
structures, the so-called Warm-Hot Inter-Galactic Medium, which we hope to detect
with the next generation of X-ray satellites.

The discovery that almost three-quarters of the present cosmic energy density is
to be ascribed to an almost uniform dark energy component able to produce, via
its negative isotropic pressure, the accelerated expansion of the Universe, represents
the most severe crisis of contemporary physics. At the same time, this discovery
opens the door to new theoretical speculations and represents the new frontier for
observational cosmology, in the joint effort to constrain the dynamical properties of

Sabino Matarrese
Dipartimento di Fisica “G. Galilei”, Università degli Studi di Padova and INFN, Sezione di Padova
via Marzolo 8, I-35131 Padova, Italy
e-mail: sabino.matarrese@pd.infn.it
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the dark cosmic components and to unveil their physical nature. In this sense, the
discovery of the “dark side” of the Universe, represents a formidable challenge for
the cosmological research of the 21st Century.

The evidence that the vast majority of the Universe’s energy is due to dark com-
ponents appears as a sort of extreme consequence of the Copernican Principle: not
only did we human beings have to accept that we do not live at the center of the
Universe, but we are also gradually getting acquainted with the idea that the “or-
dinary” matter we are made of represents a negligible ingredient in the Universe’s
composition, playing a minor role in the global dynamics of the Universe.

The very fact that cosmologists had to change so radically their view on the
Universe’s matter content is also having a strong impact on the more general prob-
lem of cosmological model building. Indeed, many cosmologists recently started to
question the strict validity of the standard model of the Universe based on the spa-
tially homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker (here-
after FLRW) solution of Einstein’s field equations and considered more general/less
symmetric background solutions as a viable possibility. The motivation for this new
direction of investigation is twofold: observationally based and purely theoretical.
From the observational point of view, some large angular scale “anomalies” de-
tected in the Cosmic Microwave Background anisotropy pattern triggered the anal-
ysis of alternative background models, such as the homogeneous but anisotropic
Bianchi solutions. On the theoretical side, the search for an alternative interpretation
of the cosmic acceleration at late times, not requiring dark energy at a fundamen-
tal level, stimulated several groups to wonder whether our observable patch of the
Universe could be better described by some inhomogeneous and anisotropic back-
ground metric. The underlying idea of such an approach is that by averaging over a
large (e.g. Hubble radius-size) spatial volume such a non-FLRW metric and fitting
it to a FLRW cosmology one unavoidably obtains extra “back-reaction” terms in the
effective Friedmann equations (or, alternatively, in cosmological observables, such
as the luminosity distance-redshift relation), that would possibly mimic a dark en-
ergy component. Whether such a back-reaction effect has the right equation of state
(with negative pressure) and is large enough to explain the present-day accelerated
phase of the cosmic expansion is a matter of controversy: much work has to be done
yet before we can have have a realistic inhomogeneous and anisotropic alternative
to the FLRW model able to recover the many successes of the standard cosmology
and at the same time to explain the cosmic acceleration/dark energy puzzle.

Outline of the book

The book is organized in three, largely complementary, parts.
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I Cosmology

The first part of the book starts with a chapter by Norbert Straumann, devoted to the
introduction of some fundamental concepts in modern cosmology: cosmic inflation,
a phase of accelerated expansion in the early Universe, which plays a fundamental
role in providing a causal mechanism for the generation of cosmological pertur-
bations, the seeds which gave rise to all cosmic structures, and to the anisotropies
in temperature and polarization of the Cosmic Microwave Background (hereafter
CMB) radiation. An introduction to the theory of linear gauge-invariant perturba-
tions and of CMB anisotropies is also provided. This general introduction serves
as a background to the analysis of the most important cosmological observables:
the CMB and the large-scale structure distribution of matter, as revealed by the
spatial clustering of galaxies, which are discussed in the chapter by Licia Verde.
Another important cosmological observable, i.e. the gravitational lensing of light
by the intervening matter distribution is introduced in the following chapter, written
by Alan Heavens. These cosmological observables play a crucial role in constrain-
ing the amount and type of dark matter, but they also allow us to place formidable
constraints on the physical properties of the dark energy component and of possi-
ble alternatives to the latter in the form of modifications of the theory of gravitation
with respect to general relativity. This part of the book ends with a chapter, by Lauro
Moscardini and Klaus Dolag, which presents an introduction to the techniques and
the main results of numerical simulations of the matter distribution in the Universe,
the so-called N-body simulations and their extension to include baryons, the hydro-
dynamical simulations.

II Dark Matter

The second part of this book deals with dark matter both from the astrophysical point
of view and from the point of view of particle physics. There are indeed different
perspectives under which the many phenomena associated to dark matter can be
analyzed. The chapter written by Guido D’Amico, Marc Kamionkowski and Kris
Sigurdson presents a review of the astrophysical and cosmological evidence for the
existence of dark matter from the galactic to the largest cosmological scales. They
also discuss the properties of Weakly Interacting Massive Particles (WIMPS) and
of other dark matter candidates, like axions and sterile neutrinos. Antonio Masiero,
in his chapter, analyzes the dark matter problem from the particle physics point of
view, discussing some aspects of the Standard Model of particle physics and the
motivations to go beyond it, and introduces the most likely particle dark matter
candidates. The final chapter of this part, by Andrea Giuliani, reviews the status of
the direct and indirect searches for the dark matter particles.
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III Dark Energy

The third and final part of the book, written by Shinji Tsujikawa, present a very
complete and up-to-date introduction to dark energy, both from the phenomenolog-
ical and from the theoretical point of view. Starting from the observational bounds
on dark energy coming from Type Ia Supernovae, CMB and Baryonic Acoustic
Oscillations, the chapter reviews the various explanations proposed so far for the
dominant component of the Universe today; these include a cosmological constant,
several dynamical variants, such as quintessence, k-essence, coupled dark energy
and unified models of dark matter and dark energy based on a scalar field compo-
nent. Possible modifications of gravity, such as f (R) theories are also discussed. The
idea that the back-reaction of cosmic inhomogeneities could provide an alternative
to dark energy at the fundamental level is also discussed.
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Chapter 1
Relativistic Cosmology

Norbert Straumann

1.1 Introduction

I shall review in two opening sections the Standard Model of cosmology. This
includes a brief introduction to inflation, a key idea of modern cosmology. More
on this can be found at many places, for instance, in the recent textbooks on cos-
mology [1], [2], [3], [4], [5], [6], [7]. A recent treatise that concentrates mainly on
the theoretical aspects of the cosmic microwave background physics is [8].

After this warm up, we shall develop the somewhat involved cosmological per-
turbation theory. The general formalism will later be applied to two main topics:
(1) the generation of primordial fluctuations during an inflationary era and (2) the
evolution of these perturbations during the linear regime.

A working knowledge of general relativity (GR) is assumed [9].
At the very beginning, one should presumably reflect a bit about cosmology as a

physical discipline. I will not do that, apart from the following few comments.
For some people, cosmology is the science of the “Universe as a whole.” I doubt

that this is really a scientific concept. By “Universe” I always mean that part of the
world which is in principle accessible to us through direct or indirect observations.
This restriction is nowadays often abandoned when people talk seriously about par-
allel universes with other laws of physics and even other spacetime dimensions.
Should we then not also include “Heaven” and “Hell” as possible ground states of
the string landscape? I have nothing against natural philosophy, but cosmologists
should always be aware that there is a real danger to be drifted into some modern
form of mythology. I am, however, sure that this danger is absent during this school.

Norbert Straumann
Institute for Theoretical Physics, University of Zurich, Winterthurerstrasse 190, CH–8057 Zurich,
Switzerland, e-mail: norbert.straumann@gmail.com
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1.2 Essentials of Friedmann–Lemaître Models

For reasons explained in the Introduction I treat in this opening section some stan-
dard material that will be needed in the main parts of these notes.

Let me begin with a few historical remarks. It is most remarkable that the simple,
highly symmetric cosmological models, which were developed more than 80 years
ago by Friedmann and Lemaître, still play such an important role in modern cosmol-
ogy. After all, they were not put forward on the basis of astronomical observations.
When the first paper by Friedmann appeared in 1922 (in Z.f.Physik), astronomers
had only knowledge of the Milky Way. In particular, the observed velocities of stars
were all small. Remember, astronomers only learned later that spiral nebulae are
independent star systems outside the Milky Way. This was definitely established
when in 1924 Hubble found that there were Cepheid variables in Andromeda and
also in other galaxies.

Friedmann’s models were based on mathematical simplicity, as he explicitly
states. This was already the case with Einstein’s static model of 1917, in which
space is a metric 3-sphere. About this Einstein wrote to de Sitter that his cosmo-
logical model was intended primarily to settle the question “whether the basic idea
of relativity can be followed through its completion, or whether it leads to contra-
dictions.” And he adds whether the model corresponds to reality was another mat-
ter. Friedmann writes in his dynamical generalization of Einstein’s model about the
metric ansatz that this cannot be justified on the basis of physical or philosophical
arguments.

Friedmann’s two papers from 1922 to 1924 have a strongly mathematical charac-
ter. It was too early to apply them to the real Universe. In his second paper, he treated
the models with negative spatial curvature. Interestingly, he emphasizes that space
can nevertheless be compact, an aspect that has only recently come again into the
focus of attention. It is really sad that Friedmann died already in 1925, at the age of
37. His papers were largely ignored throughout the 1920s, although Einstein studied
them carefully and even wrote a paper about them. He was, however, convinced at
the time that Friedmann’s models had no physical significance.

The same happened with Lemaître’s independent work of 1927. Lemaître was
the first person who seriously proposed an expanding universe as a model of the
real Universe. He derived the general redshift formula we all know and love, and he
showed that it leads for small distances to a linear relation, known as Hubble’s law.
He also estimated the Hubble constant H0 based on Slipher’s redshift data for about
40 nebulae and Hubble’s 1925 distance determinations to Andromeda and some
other nearby galaxies, and he found 2 years before Hubble a value only somewhat
higher the one of Hubble from 1929. (Actually, Lemaître gave two values for H0.)

The general attitude is well illustrated by the following remark of Eddington at a
Royal Society meeting in January, 1930: “One puzzling question is why there should
be only two solutions. I suppose the trouble is that people look for static solutions.”

Lemaître, who had been for a short time in 1925 a postdoctoral student of
Eddington, read this remark in a report to the meeting published in Observatory
and wrote to Eddington pointing out his 1927 paper. Eddington had seen that paper,



1 Relativistic Cosmology 5

but had completely forgotten about it. But now, he was greatly impressed and rec-
ommended Lemaître’s work in a letter to Nature. He also arranged for a translation
that appeared in MNRAS. It is a curious fact that the crucial paragraph describing
how Lemaître estimated H0 and assessed the evidence for linearity were dropped in
the English translation. Because of this omission, Lemaître’s role is not sufficiently
known among cosmologists who cannot read French.

Hubble, on the other hand, nowhere in his famous 1929 paper even mentions an
expanding universe, but interprets his data within the static interpretation of the de
Sitter solution (repeating what Eddington wrote in the second edition of his relativity
book in 1924). In addition, Hubble never claimed to have discovered the expanding
universe, he apparently never believed this interpretation. That Hubble was elevated
to the discoverer of the expanding universe belongs to sociology, public relations,
and rewriting history.

The following remark is also of some interest. It is true that the instability of
Einstein’s model is not explicitly stated in Lemaître’s 1927 paper, but this was
an immediate consequence of his equations. In the words of Eddington: “...it was
immediately deducible from his [Lemaître’s] formulae that Einstein’s world is
unstable so that an expanding or a contracting universe is an inevitable result of
Einstein’s law of gravitation.”

Lemaître’s successful explanation of Slipher’s and Hubble’s observations finally
changed the viewpoint of the majority of workers in the field. For an excellent,
carefully researched book on the early history of cosmology, with a very positive
foreword by Allan Sandage, see [10].

1.2.1 Friedmann–Lemaître Spacetimes

There is now good evidence that the (recent as well as the early) Universe1 is – on
large scales – surprisingly homogeneous and isotropic. The most impressive support
for this comes from extended redshift surveys of galaxies and from the truly remark-
able isotropy of the cosmic microwave background (CMB). In the Two Degree Field
(2dF) Galaxy Redshift Survey2, completed in 2003, the redshifts of about 250’000
galaxies have been measured. The distribution of galaxies out to 4 billion light years
shows that there are huge clusters, long filaments, and empty voids measuring over
100 million light years across. But the map also shows that there are no larger struc-
tures. The more extended Sloan Digital Sky Survey (SDSS) has produced similar
results and will in the end have spectra of about a million galaxies3.

1 By Universe, I always mean that part of the world around us which is in principle accessible to
observations. In my opinion, the “Universe as a whole” is not a scientific concept. When talking
about model universes, we develop on paper or with the help of computers, I tend to use lowercase
letters. In this domain we are, of course, free to make extrapolations and venture into speculations.
2 Consult the Home Page: http://www.mso.anu.edu.au/2dFGRS .
3 For a description and pictures, see the Home Page: http://www.sdss.org/sdss.html .
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One arrives at the Friedmann–Lemaître (–Robertson–Walker) spacetimes by pos-
tulating that for each observer, moving along an integral curve of a distinguished
4-velocity field u, the Universe looks spatially isotropic. Mathematically, this means
the following: Let Isox(M) be the group of local isometries of a Lorentz manifold
(M,g), with fixed point x ∈M, and let SO3(ux) be the group of all linear transfor-
mations of the tangent space Tx(M) that leave the 4-velocity ux invariant and induce
special orthogonal transformations in the subspace orthogonal to ux, then

{Txφ : φ ∈ Isox(M), φ�u = u} ⊇ SO3(ux).

(φ� denotes the push-forward belonging to φ ; see [9], p. 550). In [11], it is shown
that this requirement implies that (M,g) is a Friedmann spacetime, whose structure
we now recall. Note that (M,g) is then automatically homogeneous.

A Friedmann spacetime (M,g) is a warped product of the form M = I×Σ , where
I is an interval of R, and the metric g is of the form

g =−dt2 + a2(t)γ, (1.1)

such that (Σ ,γ) is a Riemannian space of constant curvature k = 0,±1. The distin-
guished time t is the cosmic time, and a(t) is the scale factor (it plays the role of
the warp factor (see Appendix B of [9])). Instead of t, we often use the conformal
time η , defined by dη = dt/a(t). The velocity field is perpendicular to the slices of
constant cosmic time, u = ∂/∂ t.

1.2.1.1 Spaces of Constant Curvature

For the space (Σ ,γ) of constant curvature4, the curvature is given by

R(3)(X ,Y )Z = k [γ(Z,Y )X − γ(Z,X)Y ] ; (1.2)

in components:

R(3)
i jkl = k(γikγ jl− γilγ jk). (1.3)

Hence, the Ricci tensor and the scalar curvature are

R(3)
jl = 2kγ jl , R(3) = 6k. (1.4)

For the curvature two-forms we obtain from (1.3) relative to an orthonormal triad
{θ i}

Ω (3)
i j =

1
2

R(3)
i jkl θ

k ∧θ l = k θi∧θ j (1.5)

(θi = γikθ k). The simply connected constant curvature spaces are in n dimensions
the (n+1)-sphere Sn+1 (k = 1), the Euclidean space (k = 0), and the pseudosphere
(k = −1). Nonsimply connected constant curvature spaces are obtained from these

4 For a detailed discussion of these spaces I refer – for readers knowing German – to [12] or [14].
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by forming quotients with respect to discrete isometry groups. (For detailed deriva-
tions, see [12].)

1.2.1.2 Curvature of Friedmann Spacetimes

Let {θ̄ i} be any orthonormal triad on (Σ ,γ). On this Riemannian space, the first
structure equations read5 (we use the notation in [9]; quantities referring to this
3-dimensional space are indicated by bars)

dθ̄ i + ω̄ i
j ∧ θ̄ j = 0. (1.6)

On (M,g), we introduce the following orthonormal tetrad:

θ 0 = dt, θ i = a(t)θ̄ i. (1.7)

From this and (1.6), we get

dθ 0 = 0, dθ i =
ȧ
a
θ 0∧θ i−a ω̄ i

j ∧ θ̄ j. (1.8)

Comparing this with the first structure equation for the Friedmann manifold implies

ω0
i∧θ i = 0, ω i

0∧θ 0 +ω i
j ∧θ j =

ȧ
a
θ i∧θ 0 + a ω̄ i

j ∧ θ̄ j, (1.9)

whence

ω0
i =

ȧ
a
θ i, ω i

j = ω̄ i
j. (1.10)

The worldlines of comoving observers are integral curves of the 4-velocity field
u = ∂t . We claim that these are geodesics, i.e., that

∇uu = 0. (1.11)

To show this (and for other purposes), we introduce the basis {eμ} of vector fields
dual to (1.7). Since u = e0 we have, using the connection forms (1.10),

∇uu = ∇e0 e0 = ωλ
0(e0)eλ = ω i

0(e0)ei = 0.

1.2.1.3 Einstein Equations for Friedmann Spacetimes

Inserting the connection forms (1.10) into the second structure equations, we readily
find for the curvature 2-forms Ωμ

ν :

5 Readers who are not familiar with the Cartan calculus should derive the result (1.13) – (1.15) in
the traditional way.
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Ω 0
i =

ä
a
θ 0∧θ i, Ω i

j =
k + ȧ2

a2 θ i∧θ j. (1.12)

A routine calculation leads to the following components of the Einstein tensor rela-
tive to the basis (1.7)

G00 = 3

(
ȧ2

a2 +
k
a2

)
, (1.13)

G11 = G22 = G33 =−2
ä
a
− ȧ2

a2 −
k
a2 , (1.14)

Gμν = 0 (μ �= ν). (1.15)

In order to satisfy the field equations, the symmetries of Gμν imply that the
energy-momentum tensor must have the perfect fluid form (see [9], Sect. 1.4.2):

T μν = (ρ + p)uμuν + pgμν , (1.16)

where u is the comoving velocity field introduced above.

Now, we can write down the field equations (including the cosmological term):

3

(
ȧ2

a2 +
k
a2

)
= 8πGρ+Λ , (1.17)

−2
ä
a
− ȧ2

a2 −
k
a2 = 8πGp−Λ . (1.18)

Although the “energy-momentum conservation” does not provide an independent
equation, it is useful to work this out. As expected, the momentum “conservation”
is automatically satisfied. For the “energy conservation,” we use the general form
(see (1.37) in [9])

∇uρ =−(ρ + p)∇ ·u. (1.19)

In our case, we have for the expansion rate

∇ ·u = ωλ
0(eλ )u0 = ω i

0(ei),

thus with (1.10)

∇ ·u = 3
ȧ
a
. (1.20)

Therefore, Eq. (1.19) becomes

ρ̇ + 3
ȧ
a
(ρ + p) = 0. (1.21)

This should not be considered, as it is often done, as an energy conservation law.
Because of the equivalence principle, there is in GR no local energy conservation.
(For more on this, see Sect. 1.2.3.)
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For a given equation of state, p = p(ρ), we can use (1.21) in the form

d
da

(ρa3) =−3pa2 (1.22)

to determine ρ as a function of the scale factor a. Examples: (1) For free massless
particles (radiation), we have p = ρ/3, thus ρ ∝ a−4. (2) For dust (p = 0), we get
ρ ∝ a−3.

With this knowledge, the Friedmann equation (1.17) determines the time evolu-
tion of a(t). It is easy to see that (1.18) follows from (1.17) and (1.21).

As an important consequence of (1.17) and (1.18), we obtain for the acceleration
of the expansion

ä =−4πG
3

(ρ + 3p)a +
1
3
Λa. (1.23)

This shows that as long as ρ +3p is positive, the first term in (1.23) is decelerating,
while a positive cosmological constant is repulsive. This becomes understandable if
one writes the field equation as

Gμν = κ(Tμν + TΛ
μν) (κ = 8πG), (1.24)

with

TΛ
μν =− Λ

8πG
gμν . (1.25)

This vacuum contribution has the form of the energy-momentum tensor of an ideal
fluid, with energy density ρΛ = Λ/8πG and pressure pΛ = −ρΛ . Hence, the com-
bination ρΛ + 3pΛ is equal to −2ρΛ and is thus negative. In what follows we shall
often include in ρ and p the vacuum pieces.

1.2.1.4 Redshift

As a result of the expansion of the Universe, the light of distant sources appears
redshifted. The amount of redshift can be simply expressed in terms of the scale
factor a(t).

Consider two integral curves of the average velocity field u. We imagine that
one describes the worldline of a distant comoving source and the other that of an
observer at a telescope (see Fig. 1.1). Since light is propagating along null geodesics,
we conclude from (1.1) that along the worldline of a light ray dt = a(t)dσ , where dσ
is the line element on the 3-dimensional space (Σ ,γ) of constant curvature k = 0,±1.
Hence, the integral on the left of∫ to

te

dt
a(t)

=
∫ obs.

source
dσ , (1.26)

between the time of emission (te) and the arrival time at the observer (to), is inde-
pendent of te and to. Therefore, if we consider a second light ray that is emitted at
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Source (te)

Observer (to)

Integral curve of uμdt 
= a(

t) 
dσ

Fig. 1.1 Redshift for Friedmann models.

the time te +Δ te and is received at the time to +Δ to, we obtain from the last equation∫ to+Δ to

te+Δ te

dt
a(t)

=
∫ to

te

dt
a(t)

. (1.27)

For a small Δ te, this gives
Δ to

a(to)
=

Δ te
a(te)

.

The observed and the emitted frequencies νo and νe, respectively, are thus related
according to

νo

νe
=

Δ te
Δ to

=
a(te)
a(to)

. (1.28)

The redshift parameter z is defined by

z :=
νe−νo

νo
, (1.29)

and is given by the key equation

1 + z =
a(to)
a(te)

. (1.30)

One can also express this by the equation ν ·a = const along a null geodesic.

1.2.1.5 Cosmic Distance Measures

We now introduce a further important tool, namely operational definitions of three
different distance measures, and show that they are related by simple redshift
factors.
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If D is the physical (proper) extension of a distant object and δ is its angle sub-
tended, then the angular diameter distance DA is defined by

DA := D/δ . (1.31)

If the object is moving with the proper transversal velocity V⊥ and with an apparent
angular motion dδ/dt0, then the proper-motion distance is by definition

DM :=
V⊥

dδ/dt0
. (1.32)

Finally, if the object has the intrinsic luminosity L and F is the received energy
flux, then the luminosity distance is naturally defined as

DL := (L /4πF )1/2. (1.33)

Here, we show that these three distances are related as follows:

DL = (1 + z)DM = (1 + z)2DA. (1.34)

It will be useful to introduce on (Σ ,γ) “polar” coordinates (r,ϑ ,ϕ) (obtained by
stereographic projection), such that

γ =
dr2

1− kr2 + r2dΩ 2, dΩ 2 = dϑ 2 + sin2ϑdϕ2. (1.35)

One easily verifies that the curvature forms of this metric satisfy (1.5). (This follows
without doing any work by using in [9] the curvature forms (3.9) in the ansatz (3.3)
for the Schwarzschild metric.)

To prove (1.34), we show that the three distances can be expressed as follows, if
re denotes the comoving radial coordinate (in (1.35)) of the distant object and the
observer is (without loss of generality) at r = 0:

DA = rea(te), DM = rea(t0), DL = rea(t0)
a(t0)
a(te)

. (1.36)

Once this is established, (1.34) follows from (1.30).

From Fig. 1.2 and (1.35), we see that

D = a(te)reδ , (1.37)

hence the first equation in (1.36) holds.

To prove the second one, we note that the source moves in a time dt0 a proper
transversal distance

dD = V⊥dte = V⊥dt0
a(te)
a(t0)

.
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rea(to)

r 
=

 r
e

to

r 
=

 r
e

dte D

r 
=

 0
Fig. 1.2 Spacetime diagram for cosmic distance measures.

Using again the metric (1.35), we see that the apparent angular motion is

dδ =
dD

a(te)re
=

V⊥dt0
a(t0)re

.

Inserting this into the definition (1.32) shows that the second equation in (1.36)
holds. For the third equation, we have to consider the observed energy flux. In a
time dte, the source emits an energy L dte. This energy is redshifted to the present
by a factor a(te)/a(t0) and is now distributed by (1.35) over a sphere with proper
area 4π(rea(t0))2 (see Fig. 1.2). Hence, the received flux (apparent luminosity) is

F = L dte
a(te)
a(t0)

1
4π(rea(t0))2

1
dt0

,

thus

F =
L a2(te)

4πa4(t0)r2
e
.

Inserting this into the definition (1.33) establishes the third equation in (1.36). For
later applications, we write the last equation in the more transparent form

F =
L

4π(rea(t0))2

1
(1 + z)2 . (1.38)

The last factor is due to redshift effects.

Two of the discussed distances as a function of z are shown in Fig. 1.3 for two
Friedmann models with different cosmological parameters. The other two distance
measures will be introduced in Sect. 1.3.2.
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Dprop
Dcom
Dang
Dlum

Ω0 = 1, ΩΛ = 0 Ω0 = 0.2, ΩΛ = 0.8

(H
0/

c)
 D

(0
,z

)

4

3

2

1

0

0 0.5 1.0 1.5 2.0
z

0 0.5 1.0 1.5 2.0

Fig. 1.3 Cosmological distance measures as a function of source redshift for two cosmological
models. The angular diameter distance Dang ≡ DA and the luminosity distance Dlum ≡ DL have
been introduced in this Section. The other two will be introduced in Sect. 1.3.2.

1.2.2 Thermal History Below 100 MeV

1.2.2.1 Overview

Below the transition at about 200 MeV from a quark-gluon plasma to the confine-
ment phase, the Universe was initially dominated by a complicated dense hadron
soup. The abundance of pions, for example, was so high that they nearly overlapped.
The pions, kaons, and other hadrons soon began to decay and most of the nucleons
and antinucleons annihilated, leaving only a tiny baryon asymmetry. The energy
density is then almost completely dominated by radiation and the stable leptons
(e±, the three neutrino flavors and their antiparticles). For some time, all these parti-
cles are in thermodynamic equilibrium. For this reason, only a few initial conditions
have to be imposed. The Universe was never as simple as in this lepton era. (At this
stage, it is almost inconceivable that the complex world around us would eventually
emerge.)

The first particles that freeze out of this equilibrium are the weakly interacting
neutrinos. Let us estimate when this happened. The coupling of the neutrinos in the
lepton era is dominated by the reactions:

e−+ e+ ↔ ν + ν̄, e±+ν→ e±+ν, e±+ ν̄→ e±+ ν̄.

For dimensional reasons, the cross-sections are all of magnitude

σ 
G2
F T 2, (1.39)
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where GF is the Fermi coupling constant (� = c = kB = 1). Numerically, GF m2
p 


10−5. On the other hand, the electron and neutrino densities ne,nν are about T 3. For
this reason, the reaction rates Γ for ν-scattering and ν-production per electron are
of magnitude c · v ·ne 
 G2

FT 5. This has to be compared with the expansion rate of
the Universe

H =
ȧ
a

 (Gρ)1/2.

Since ρ 
 T 4, we get
H 
 G1/2T 2, (1.40)

and thus
Γ
H

 G−1/2G2

FT 3 
 (T/1010 K)3. (1.41)

This ration is larger than 1 for T > 1010 K 
 1 MeV , and the neutrinos thus remain
in thermodynamic equilibrium until the temperature has decreased to about 1 MeV .
But even below this temperature, the neutrinos remain Fermi distributed,

nν(p)d p =
1

2π2

1

ep/Tν + 1
p2d p , (1.42)

as long as they can be treated as massless. The reason is that the number density
decreases as a−3 and the momenta with a−1. Because of this, we also see that the
neutrino temperature Tν decreases after decoupling as a−1. The same is, of course,
true for photons. The reader will easily find out how the distribution evolves when
neutrino masses are taken into account. (Since neutrino masses are so small, this is
only relevant at very late times.)

1.2.2.2 Chemical Potentials of the Leptons

The equilibrium reactions below 100 MeV , say, conserve several additive quantum
numbers6, namely the electric charge Q, the baryon number B, and the three lepton
numbers Le,Lμ ,Lτ . Correspondingly, there are five independent chemical potentials.
Since particles and antiparticles can annihilate to photons, their chemical potentials
are oppositely equal: μe− =−μe+ , etc. From the following reactions

e−+ μ+→ νe + ν̄μ , e−+ p→ νe + n, μ−+ p→ νμ + n,

we infer the equilibrium conditions

μe− − μνe = μμ− − μνμ = μn− μp. (1.43)

6 Even if B,Le,Lμ ,Lτ should not be strictly conserved, this is not relevant within a Hubble time
H−1

0 .
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As independent chemical potentials, we can thus choose

μp, μe− , μνe , μνμ , μντ . (1.44)

Because of local electric charge neutrality, the charge number density nQ van-
ishes. From observations (see Sect. 1.2.2.3), we also know that the baryon number
density nB is much smaller than the photon number density (∼ entropy density sγ ).
The ratio nB/sγ remains constant for adiabatic expansion (both decrease with a−3;
see the next section). Moreover, the lepton number densities are

nLe = ne− + nνe−ne+−nν̄e, nLμ = nμ− + nνμ −nμ+−nν̄μ , etc. (1.45)

Since in the present Universe, the number density of electrons is equal to that of the
protons (bound or free), we know that after the disappearance of the muons ne− 

ne+ (recall nB � nγ ), thus μe− (= −μe+) 
 0. It is conceivable that the chemical
potentials of the neutrinos and antineutrinos cannot be neglected, i.e., nLe is not
much smaller than the photon number density. In analogy to what we know about the
baryon density, we make the reasonable assumption that the lepton number densities
are also much smaller than sγ . Then we can take the chemical potentials of the
neutrinos equal to zero (|μν |/kT � 1). With what we said before, we can then put
the five chemical potentials (1.44) equal to zero because the charge number densities
are all odd in them. Of course, nB does not really vanish (otherwise we would not be
here), but for the thermal history in the era we are considering they can be ignored.

1.2.2.3 Constancy of Entropy

Let ρeq, peq denote (in this subsection only) the total energy density and pressure
of all particles in thermodynamic equilibrium. Since the chemical potentials of the
leptons vanish, these quantities are only functions of the temperature T . According
to the second law, the differential of the entropy S(V,T ) is given by

dS(V,T) =
1
T

[d(ρeq(T )V )+ peq(T )dV ]. (1.46)

This implies

d(dS) = 0 = d

(
1
T

)
∧d(ρeq(T )V )+ d

(
peq(I)

T

)
∧dV

= −ρeq

T 2 dT ∧dV +
d

dT

(
peq(T )

T

)
dT ∧dV,

i.e., the Maxwell relation

d peq(T )
dT

=
1
T

[ρeq(T )+ peq(T )]. (1.47)
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If we use this in (1.46), we get

dS = d

[
V
T

(ρeq + peq)
]
,

so the entropy density of the particles in equilibrium is

s =
1
T

[ρeq(T )+ peq(T )]. (1.48)

For an adiabatic expansion, the entropy in a comoving volume remains constant:

S = a3s = const. (1.49)

This constancy is equivalent to the energy equation (1.21) for the equilibrium part.
Indeed, the latter can be written as

a3 d peq

dt
=

d
dt

[a3(ρeq + peq)],

and by (1.48), this is equivalent to dS/dt = 0.

In particular, we obtain for massless particles (p = ρ/3) from (1.47) again ρ ∝T 4

and from (1.48) that S = constant implies T ∝ a−1.

It is sometimes said that for a Friedmann model the expansion always proceeds
adiabatically because the symmetries forbid a heat current to flow into a comov-
ing volume. Although there is indeed no heat current, entropy can be generated if
the cosmic fluid has a nonvanishing bulk viscosity. This follows formally from gen-
eral relativistic thermodynamics. Eq. (B.36) in Appendix B of [13] shows that the
divergence of the entropy current contains the term (ζ/T )θ 2, where ζ is the bulk
viscosity and θ the expansion rate (=3(ȧ/a) for a Friedmann spacetime).

Once the electrons and positrons have annihilated below T ∼me, the equilibrium
components consist of photons, electrons, protons and – after the big bang nucle-
osynthesis – of some light nuclei (mostly He4). Since the charged particle number
densities are much smaller than the photon number density, the photon temperature
Tγ still decreases as a−1. Let us show this formally. For this we consider beside the
photons an ideal gas in thermodynamic equilibrium with the black body radiation.
The total pressure and energy density are then (we use units with � = c = kB = 1; n
is the number density of the nonrelativistic gas particles with mass m):

p = nT +
π2

45
T 4, ρ = nm+

nT
γ−1

+
π2

15
T 4 (1.50)

(γ = 5/3 for a monoatomic gas). The conservation of the gas particles, na3 = const.,
together with the energy equation (1.22) implies, if σ := sγ/n,

d lnT
d lna

=−
[

σ + 1
σ + 1/[3(γ−1)]

]
.
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For σ� 1, this gives the well-known relation T ∝ a3(γ−1) for an adiabatic expansion
of an ideal gas.

We are, however, dealing with the opposite situation σ 
 1, and then we obtain,
as expected, a ·T = const.

Let us look more closely at the famous ratio nB/sγ . We need

sγ =
4

3T
ργ =

4π2

45
T 3 = 3.60nγ , nB = ρB/mp = ΩBρcrit/mp. (1.51)

From the present value of Tγ 
 2.7 K and (1.89), ρcrit = 1.12×10−5 h2
0(mp/cm3),

we obtain as a measure for the baryon asymmetry of the Universe

nB

sγ
= 0.75×10−8(ΩBh2

0). (1.52)

It is one of the great challenges to explain this tiny number. So far, this has
been achieved at best qualitatively in the framework of grand unified theories
(GUTs).

1.2.2.4 Neutrino Temperature

During the electron-positron annihilation below T = me, the a-dependence is com-
plicated since the electrons can no more be treated as massless. We want to know at
this point what the ratio Tγ/Tν is after the annihilation. This can easily be obtained
by using the constancy of comoving entropy for the photon-electron-positron sys-
tem, which is sufficiently strongly coupled to maintain thermodynamic equilibrium.

We need the entropy for the electrons and positrons at T 
 me, long before
annihilation begins. To compute this, note the identity∫ ∞

0

xn

ex−1
dx−

∫ ∞

0

xn

ex + 1
dx = 2

∫ ∞

0

xn

e2x−1
dx =

1
2n

∫ ∞

0

xn

ex−1
dx,

whence ∫ ∞

0

xn

ex + 1
dx = (1−2−n)

∫ ∞

0

xn

ex−1
dx. (1.53)

In particular, we obtain for the entropies se,sγ the following relation

se =
7
8

sγ (T 
 me). (1.54)

Equating the entropies for Tγ 
 me and Tγ � me gives

(Tγa)3
∣∣
be f ore

[
1 + 2× 7

8

]
= (Tγa)3

∣∣
a f ter×1
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because the neutrino entropy is conserved. Therefore, we obtain

(aTγ)
∣∣
a f ter =

(
11
4

)1/3

(aTγ)
∣∣
be f ore . (1.55)

But (aTν)|a f ter = (aTν)|be f ore = (aTγ)
∣∣
be f ore, hence we obtain the important relation

(
Tγ
Tν

)∣∣∣∣
a f ter

=
(

11
4

)1/3

= 1.401. (1.56)

1.2.2.5 Epoch of Matter-Radiation Equality

In the main sections of this book, the epoch when radiation (photons and neutri-
nos) has about the same energy density as nonrelativistic matter (dark matter and
baryons) plays a very important role. Let us determine the redshift, zeq, when there
is equality.

For the three neutrino and antineutrino flavors, the energy density is according to
(1.53)

ρν = 3× 7
8
×

(
4

11

)4/3

ργ . (1.57)

Using
ργ
ρcrit

= 2.47×10−5h−2
0 (1 + z)4, (1.58)

we obtain for the total radiation energy density, ρr,

ρr

ρcrit
= 4.15×10−5h−2

0 (1 + z)4, (1.59)

Equating this to
ρM

ρcrit
= ΩM(1 + z)3, (1.60)

we obtain

1 + zeq = 2.4×104ΩMh2
0. (1.61)

Only a small fraction of ΩM is baryonic. There are several methods to deter-
mine the fraction ΩB in baryons. A traditional one comes from the abundances of
the light elements. This is treated in most texts on cosmology. (German-speaking
readers find a detailed discussion in my lecture notes [14], which are available in
the Internet.) The comparison of the straightforward theory with observation gives
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a value in the range ΩBh2
0 = 0.021±0.002. Other determinations are all compatible

with this value7. For instance, it will be shown in other chapters that ΩB can be
obtained from the CMB anisotropies. The striking agreement of different methods,
sensitive to different physics, strongly supports our standard big bang picture of the
Universe.

1.2.2.6 Recombination and Decoupling

The plasma era ends when electrons combine with protons and helium ions to form
neutral atoms. The details of the physics of recombination are a bit complicated,
but for a rough estimate of the recombination time one can assume thermodynamic
equilibrium conditions. (When the ionization fraction becomes low, a kinetic treat-
ment is needed.) For simplicity, we ignore helium and study the thermodynamic
equilibrium of e−+ p � H + γ . The condition for chemical equilibrium is

μe− + μp = μH , (1.62)

where μi (i = e−, p,H) are the chemical potentials of e−, p, and neutral hydrogen
H. These are related to the particle number densities as follows: for electrons,

ne =
∫

2d3 p
(2π)3

1

e(Ee(p)−μe)/T + 1



∫
2d3 p
(2π)3 e−(μe−me)/T e−p2/2mT ,

in the nonrelativistic and nondegenerate case. In our problem, we can thus use

ne = 2e(μe−me)/T
(

meT
2π

)3/2

, (1.63)

and similarly for the proton component

np = 2e(μp−mp)/T
(

mpT

2π

)3/2

. (1.64)

For a composite system like H statistical mechanics gives

nH = 2e(μH−mH )/T Q

(
mHT
2π

)3/2

, (1.65)

where Q is the partition sum of the internal degrees of freedom

Q =∑
n

gne−εn/T

7 For a critical discussion, see, e.g., [15].
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(εn is measured from the ground state). Usually only the ground state is taken into
account, Q
 4.

For hydrogen, the partition sum of an isolated atom is obviously infinite, as
a result of the long-range of the Coulomb potential. However, in a plasma, the
latter is screened, and for our temperature and density range, the ground state
approximation is very good (estimate the Debye length). Then, we obtain the Saha
equation:

nenp

nH
= e−Δ/T

(
meT
2π

)3/2

, (1.66)

where Δ is the ionization energy Δ = 1
2α

2me 
 13.6 eV. (In the last factor, we have
replaced mp/mH by unity.)

Let us rewrite this in terms of the ionization fraction xe := ne/nB, nB = np +nH =
ne + nH:

x2
e

1− xe
=

1
nB

(
meT
2π

)3/2

e−Δ/T . (1.67)

It is important to see the role of the large ratio σ := sγ/nB = 4π2

45 T 3/nB given in
(1.56). In terms of this, we have

x2
e

1− xe
=

45
4π2σ

(
meT
2π

)3/2

e−Δ/T . (1.68)

So, when the temperature is of order Δ , the right-hand side is of order 109(me/T )3/2

∼ 1015. Hence xe is very close to 1. Recombination only occurs when T drops far
below Δ . Using (1.56), we see that xe = 1/2 for(

Trec

1 eV

)−3/2

exp(−13.6 eV/Trec) = 1.3 ·10−6ΩBh2
0.

For ΩBh2
0 
 0.02, this gives

Trec 
 3760 K = 0.32 eV, zrec 
 1380.

Decoupling occurs roughly when the Thomson scattering rate is comparable to
the expansion rate. The first is neσT = xempnBσT /mp = xeσTΩBρcrit/mp. For H, we
use Eqs. (1.90) and (1.91) below: H(z) = H0E(z), where for large redshifts E(z)

Ω 1/2

M (1 + z)3/2[1 +(1 + z)/(1 + zeq)]1/2. So, we get

neσT

H
=

xeσTΩB

H0Ω
1/2
M

ρcrit

mp
(1 + z)3/2[1 +(1 + z)/(1 + zeq)]1/2. (1.69)

For best-fit values of the cosmological parameters, the right-hand side is for z 

1000 about 102xe. Hence, photons decouple when xe drops below ∼ 10−2.
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Kinetic Treatment

For an accurate kinetic treatment, one has to take into account some complications
connected with the population of the 1s state and the Ly-α background. We shall add
later some remarks on this, but for the moment, we are satisfied with a simplified
treatment.

We replace the photon number density nγ by the equilibrium distribution of tem-
perature T . If σrec denotes the recombination cross section of e−+ p→ H + γ , the
electron number density satisfies the rate equation

a−3(t)
d
dt

(nea3) =−nenp〈σrec · ve〉+ neq
γ nH〈σion · c〉. (1.70)

The last term represents the contribution of the inverse reaction γ + H → p + e−.
This can be obtained from detailed balance: For equilibrium, the right-hand side
must vanish, thus

neq
e neq

p 〈σrec · ve〉= neq
γ neq

H 〈σion · c〉. (1.71)

Hence,
dxe

dt
= 〈σrec · ve〉

[
−x2

enB +(1− xe)
neq

e neq
p

neq
H

]
(1.72)

or with the Saha-equation

dxe

dt
= 〈σrec · ve〉

[
−nBx2

e +(1− xe)
(

meT
2π

)3/2

e−Δ/T

]
; (1.73)

The recombination rate 〈σrec · ve〉 for a transition to the nth excited state of H is
usually denoted by αn. In Eq. (1.74) we have to take the sum

α(2) :=
∞

∑
n=2

αn, (1.74)

ignoring n = 1 because transitions to the ground state level n = 1 produce photons
that are sufficiently energetic to ionize other hydrogen atoms.

With this, the rate equation (1.74) takes the form

dxe

dt
=−nBα(2)x2

e +β (1− xe), (1.75)

where

β := α(2)
(

meT
2π

)3/2

e−Δ/T . (1.76)

In the relevant range one finds with Dirac’s radiation theory the approximate formula

α(2) 
 10.9
α2

m2
e

(
Δ
T

)1/2

ln

(
Δ
T

)
. (1.77)
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Our kinetic equation is too simple. Especially, the relative population of the 1s
and 2s states requires some detailed study in which the two-photon transition 2s→
1s+2γ enters. The interested reader finds the details in [1], Sect. 6 or [7], Sect. 2.3.

A tiny residual ionization played an important role in the formation of the first
stars.

1.2.3 Luminosity-Redshift Relation

In 1998 the Hubble diagram for Type Ia supernovae gave, as a big surprize, the
first serious evidence for a currently accelerating Universe. This will be discussed in
detail in a later chapter of this book. Here, we develop some theoretical background.

If the comoving radial coordinate r is chosen such that the Friedmann–Lemaître
metric takes the form

g =−dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ 2
]
, k = 0,±1, (1.78)

then the luminosity distance of a source at redshift z is according to (1.36)

DL(z) = a0(1 + z)r(z) (a0 ≡ a(t0)). (1.79)

We need the function r(z). From

dz =−a0

a
ȧ
a

dt, dt =−a(t)
dr√

1− kr2

for light rays, we obtain the two differential relations

dr√
1− kr2

=
1
a0

dz
H(z)

=− dt
a(t)

(
H(z) =

ȧ
a

)
. (1.80)

Now, we make use of the Friedmann equation

H2 +
k
a2 =

8πG
3

ρ . (1.81)

Let us decompose the total energy-mass density ρ into nonrelativistic (NR), rela-
tivistic (R), Λ , quintessence (Q), and possibly other contributions

ρ = ρNR +ρR +ρΛ +ρQ + · · · . (1.82)

For the relevant cosmic period, we can assume that the energy equation

d
da

(ρa3) =−3pa2 (1.83)
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also holds for the individual components X = NR,R,Λ ,Q, · · · . If wX ≡ pX/ρX is
constant, this implies that

ρX a3(1+wX ) = const. (1.84)

Therefore,

ρ =∑
X

(
ρX a3(1+wX )

)
0

1

a3(1+wX) =∑
X

(ρX)0(1 + z)3(1+wX). (1.85)

Hence the Friedmann equation (1.81) can be written as

H2(z)
H2

0

+
k

H2
0 a2

0

(1 + z)2 =∑
X
ΩX (1 + z)3(1+wX), (1.86)

where ΩX is the dimensionless density parameter for the species X ,

ΩX =
(ρX)0

ρcrit
, (1.87)

where ρcrit is the critical density:

ρcrit =
3H2

0

8πG

= 1.88×10−29 h2
0 g cm−3 (1.88)

= 8×10−47h2
0 GeV 4.

Here, h0 denotes the reduced Hubble parameter

h0 = H0/(100 km s−1 Mpc−1)
 0.7. (1.89)

Using also the curvature parameter ΩK ≡−k/H2
0 a2

0, we obtain the useful form

H2(z) = H2
0 E2(z;ΩK ,ΩX), (1.90)

with
E2(z;ΩK ,ΩX) = ΩK(1 + z)2 +∑

X

ΩX(1 + z)3(1+wX). (1.91)

Especially for z = 0 this gives

ΩK +Ω0 = 1, Ω0 ≡∑
X
ΩX . (1.92)

If we use (1.90) in (1.80), we get∫ r(z)

0

dr√
1− kr2

=
1

H0a0

∫ z

0

dz′

E(z′)
(1.93)
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and thus
r(z) = S (χ(z)), (1.94)

where

χ(z) =
1

H0a0

∫ z

0

dz′

E(z′)
(1.95)

and

S (χ) =

⎧⎨⎩
sinχ : k = 1

χ : k = 0
sinhχ : k = 1.

(1.96)

Inserting this in (1.79) gives finally the relation we were looking for

DL(z) =
1

H0
DL(z;ΩK ,ΩX ), (1.97)

with

DL(z;ΩK ,ΩX ) = (1 + z)
1

|ΩK|1/2
S

(
|ΩK |1/2

∫ z

0

dz′

E(z′)

)
(1.98)

for k = ±1. For a flat universe, ΩK = 0 or equivalently Ω0 = 1, the
“Hubble-constant-free” luminosity distance is

DL(z) = (1 + z)
∫ z

0

dz′

E(z′)
. (1.99)

Astronomers use as logarithmic measures of L and F the absolute and apparent
magnitudes8, denoted by M and m, respectively. The conventions are chosen such

that the distance modulus μ := m−M is related to DL as follows

m−M = 5log

(
DL

1 Mpc

)
+ 25. (1.100)

Inserting the representation (1.97), we obtain the following relation between the
apparent magnitude m and the redshift z:

m = M + 5logDL(z;ΩK ,ΩX ), (1.101)

where, for our purpose, M = M− 5logH0 + 25 is an uninteresting fit parameter.
The comparison of this theoretical magnitude redshift relation with data will lead
to interesting restrictions for the cosmological Ω -parameters. In practice often only
ΩM and ΩΛ are kept as independent parameters, where from now on the subscript
M denotes (as in most papers) nonrelativistic matter.

The following remark about degeneracy curves in the Ω -plane is important in this
context. For a fixed z in the presently explored interval, the contours defined by the
equations DL(z;ΩM,ΩΛ ) = const have little curvature, and thus we can associate an

8 Beside the (bolometric) magnitudes m,M, astronomers also use magnitudes mB, mV , . . . referring
to certain wavelength bands B (blue), V (visual), and so on.



1 Relativistic Cosmology 25

approximate slope to them. For z = 0.4, the slope is about 1 and increases to 1.5-2
by z = 0.8 over the interesting range of ΩM and ΩΛ . Hence even quite accurate data
can at best select a strip in the Ω -plane, with a slope in the range just discussed.

In this context, it is also interesting to determine the dependence of the deceler-
ation parameter

q0 =−
(aä

ȧ2

)
0

(1.102)

on ΩM and ΩΛ . At an any cosmic time we obtain from (1.23) and (1.85) for the
deceleration function

q(z)≡− äa
ȧ2 =

1
2

1
E2(z)∑X

ΩX (1 + z)3(1+wX)(1 + 3wX). (1.103)

For z = 0 this gives

q0 =
1
2∑X

ΩX (1 + 3wX) =
1
2
(ΩM−2ΩΛ + · · ·). (1.104)

The line q0 = 0 (ΩΛ =ΩM/2) separates decelerating from accelerating universes at
the present time. For given values of ΩM,ΩΛ , etc, (1.103) vanishes for z determined
by

ΩM(1 + z)3−2ΩΛ + · · ·= 0. (1.105)

This equation gives the redshift at which the deceleration period ends (coasting
redshift).

Remark

Without using the Friedmann equation one can express the luminosity distance
DL(z) purely kinematically in terms of the deceleration variable q(z). With the help
of the previous tools, the reader may derive the following relations for a spatially
flat Friedmann spacetime:

H−1(z) = H−1
0 exp

{
−

∫ z

0

1 + q(z′)
1 + z′

dz′
}

, (1.106)

DL(z) = (1 + z)H−1
0

∫ z

0
dz′ exp

{
−

∫ z′

0
[1 + q(z′′)] d ln(1 + z′′)

}
. (1.107)

It has been claimed that the existing supernova data imply an accelerating phase at
late times [16].

Generalization for Dynamical Models of Dark Energy

If the vacuum energy constitutes the missing two-thirds of the average energy den-
sity of the present Universe, we would be confronted with the following cosmic
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coincidence problem: Since the vacuum energy density is constant in time – at
least after the QCD phase transition – while the matter energy density decreases
as the Universe expands, it would be more than surprising if the two are compara-
ble just at about the present time, while their ratio was tiny in the early Universe
and would become very large in the distant future. The goal of dynamical models
of dark energy is to avoid such an extreme fine-tuning. The ratio p/ρ of this com-
ponent then becomes a function of redshift, which we denote by wQ(z) (because
so-called quintessence models are particular examples). Then the function E(z) in
(1.91) gets modified.

To see how, we start from the energy equation (1.83) and write this as

d ln(ρQa3)
d ln(1 + z)

= 3wQ.

This gives

ρQ(z) = ρQ0(1 + z)3 exp

(∫ ln(1+z)

0
3wQ(z′)d ln(1 + z′)

)
or

ρQ(z) = ρQ0 exp

(
3
∫ ln(1+z)

0
(1 + wQ(z′))d ln(1 + z′)

)
. (1.108)

Hence, we have to perform on the right of (1.91) the following substitution:

ΩQ(1 + z)3(1+wQ) →ΩQ exp

(
3
∫ ln(1+z)

0
(1 + wQ(z′))d ln(1 + z′)

)
. (1.109)

As indicated above, a much discussed class of dynamical models for Dark Energy
are quintessence models. In many ways, people thereby repeat what has been done
in inflationary cosmology. The main motivation there was (see Sect. 1.3) to avoid
excessive fine tunings of standard big bang cosmology (horizon and flatness prob-
lems). It has to be emphasized, however, that quintessence models do not solve the
vacuum energy problem, so far also not the coincidence puzzle.

Finally, I mention another theoretical complication. In the analysis of the data,
the luminosity distance for an ideal Friedmann universe was always used. But the
data are taken in the real inhomogeneous Universe. This may perhaps not be good
enough, especially for high-redshift standard candles. The magnitude-redshift rela-
tion for a perturbed Friedmann model has been derived in [19] and was later used to
determine the angular power spectrum of the luminosity distance [20]. One of the
numerical results was that the uncertainties in determining cosmological parameters
via the magnitude-redshift relation caused by fluctuations are small compared with
the intrinsic dispersion in the absolute magnitude of Type Ia supernovae.

This subject was recently taken up in [21] as part of a program to develop the
tools for extracting cosmological parameters, when much extended supernovae data
become available.



1 Relativistic Cosmology 27

1.3 Inflationary Scenario

1.3.1 Introduction

The horizon and flatness problems of standard big bang cosmology are so serious
that the proposal of a very early accelerated expansion, preceding the hot era dom-
inated by relativistic fluids, appears quite plausible. This general qualitative aspect
of “inflation” is now widely accepted. However, when it comes to concrete model
building the situation is not satisfactory. Since we do not know the fundamental
physics at superhigh energies not too far from the Planck scale, models of inflation
are usually of a phenomenological nature. Most models consist of a number of scalar
fields, including a suitable form for their potential. Usually there is no direct link to
fundamental theories, like supergravity, however, there have been many attempts in
this direction. For the time being, inflationary cosmology should be regarded as an
attractive scenario, and not yet as a theory.

The most important aspect of inflationary cosmology is that the generation
of perturbations on large scales from initial quantum fluctuations is unavoidable
and predictable. For a given model, these fluctuations can be calculated accurately
because they are tiny and cosmological perturbation theory can be applied. And,
most importantly, these predictions can be confronted with the cosmic microwave
anisotropy measurements. We are in the fortunate position to witness rapid progress
in this field. The results from various experiments, most recently from WMAP, give
already strong support of the basic predictions of inflation. Further experimental
progress can be expected in the coming years.

1.3.2 The Horizon Problem and the General Idea of Inflation

I begin by describing the famous horizon puzzle, which is a very serious causality
problem of standard big bang cosmology.

Past and Future Light Cone Distances

Consider our past light cone for a Friedmann spacetime model (Fig. 1.4). For a radial
light ray, the differential relation dt = a(t)dr/(1− kr2)1/2 holds for the coordinates
(t,r) of the metric (1.78). The proper radius of the past light sphere at time t (cross
section of the light cone with the hypersurface {t = const}) is

lp(t) = a(t)
∫ r(t)

0

dr√
1− kr2

, (1.110)
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lf(t')

t

lp(t)

trec

t'

t    0~

Physical distance

Fig. 1.4 Spacetime diagram illustrating the horizon problem.

where the coordinate radius is determined by∫ r(t)

0

dr√
1− kr2

=
∫ t0

t

dt ′

a(t ′)
. (1.111)

Hence,

lp(t) = a(t)
∫ t0

t

dt ′

a(t ′)
. (1.112)

We rewrite this in terms of the redhift variable. From 1 + z = a0/a, we get dz =
−(1 + z)Hdt, so

dt
dz

=− 1
H0(1 + z)E(z)

, H(z) = H0E(z).

Therefore,

lp(z) =
1

H0(1 + z)

∫ z

0

dz′

E(z′)
. (1.113)

Similarly, the extension l f (t) of the forward light cone at time t of a very early
event (t 
 0, z
 ∞) is

l f (t) = a(t)
∫ t

0

dt ′

a(t ′)
=

1
H0(1 + z)

∫ ∞

z

dz′

E(z′)
. (1.114)

For the present Universe (t0), this becomes what is called the particle horizon dis-
tance

Dhor = H−1
0

∫ ∞

0

dz′

E(z′)
, (1.115)

and gives the size of the observable Universe .
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Analytical expressions for these distances are only available in special cases. For
orientation, we consider first the Einstein-de Sitter model (K = 0, ΩΛ = 0, ΩM = 1),
for which a(t) = a0(t/t0)2/3 and thus

Dhor = 3t0 = 2H−1
0 , l f (t) = 3t,

lp

l f
=

( t0
t

)1/3
−1 =

√
1 + z−1. (1.116)

For a flat universe, a good fitting formula for cases of interest is (Hu and White)

Dhor 
 2H−1
0

1 + 0.084lnΩM√
ΩM

. (1.117)

It is often convenient to work with “comoving distances,” by rescaling distances
referring to time t (like lp(t), l f (t)) with the factor a(t0)/a(t) = 1 + z to the present.
We indicate this by the superscript c. For instance,

lc
p(z) =

1
H0

∫ z

0

dz′

E(z′)
. (1.118)

This distance is plotted in Fig. 1.3 as Dcom(z). Note that for a0 = 1 : lc
f (η) =

η , lc
p(η) = η0−η . Hence, (1.114) gives the following relation between η and z:

η =
1

H0

∫ ∞

z

dz′

E(z′)
.

The Number of Causality Distances on the Cosmic Photosphere

The number of causality distances at redshift z between two antipodal emission
points is equal to lp(z)/l f (z), and thus the ratio of the two integrals on the right of
(1.113) and (1.114). We are particularly interested in this ratio at the time of last
scattering with zrec 
 1100. Then, we can use for the numerator a flat universe with
nonrelativistic matter, while for the denominator we can neglect in the standard hot
big bang model ΩK and ΩΛ . A reasonable estimate is already obtained by using

the simple expression in (1.116), i.e., z1/2
rec ≈ 30. A more accurate evaluation would

increase this number to about 40. The length l f (zrec) subtends an angle of about
1 degree (Exercise). How can it be that there is such a large number of causally
disconnected regions we see on the microwave sky all having the same temperature?
This is what is meant by the horizon problem and was a troublesome mystery before
the invention of inflation.

Vacuum-Like Energy and Exponential Expansion

This causality problem is potentially avoided, if l f (t) would be increased in the very
early Universe as a result of different physics. If, for instance, a vacuum-like energy
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density would dominate, the Universe would undergo an exponential expansion.
Indeed, in this case the Friedmann equation is(

ȧ
a

)2

+
k
a2 =

8πG
3

ρvac, ρvac 
 const, (1.119)

and has the solutions

a(t) ∝

⎧⎨⎩
cosh Hvact : k = 1

eHvact : k = 0
sinh Hvact : k = 1,

(1.120)

with

Hvac =

√
8πG

3
ρvac . (1.121)

Assume that such an exponential expansion starts for some reason at time ti and
ends at the reheating time te, after which standard expansion takes over. From

a(t) = a(ti)eHvac(t−ti) (ti < t < te), (1.122)

for k = 0 we get

lc
f (te)
 a0

∫ te

ti

dt
a(t)

=
a0

Hvaca(ti)

(
1− e−HvacΔ t

)

 a0

Hvaca(ti)
,

where Δ t := te − ti. We want to satisfy the condition lc
f (te) 
 lc

p(te) 
 H−1
0 (see

(1.117)), i.e.,

aiHvac � a0H0 ⇔ ai

ae
� a0H0

aeHvac
(1.123)

or

eHvacΔ t 
 aeHvac

a0H0
=

Heqaeq

H0a0

Hvacae

Heqaeq
.

Here, eq indicates the values at the time teq when the energy densities of nonrela-
tivistic and relativistic matter were equal. We now use the Friedmann equation for
k = 0 and w := p/ρ = const. From (1.84), it follows that in this case

Ha ∝ a−(1+3w)/2,

and hence we arrive at

eHvacΔ t 

(

a0

aeq

)1/2(aeq

ae

)
= (1+zeq)1/2

(
Te

Teq

)
= (1+zeq)−1/2 TPl

T0

Te

TPl
, (1.124)

where we used aT = const. So the number of e-folding periods during the inflation-
ary period, N = HvacΔ t, should satisfy
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N 
 ln

(
TPl

T0

)
− 1

2
lnzeq + ln

(
Te

TPl

)

 70 + ln

(
Te

TPl

)
. (1.125)

For a typical GUT scale, Te ∼ 1014 GeV , we arrive at the condition N 
 60.

Such an exponential expansion would also solve the flatness problem, another
worry of standard big bang cosmology. Let me recall how this problem arises.

The Friedmann equation (1.17) can be written as

(Ω−1−1)ρa2 =− 3k
8πG

= const.,

where

Ω(t) :=
ρ(t)

3H2/8πG
(1.126)

(ρ includes vacuum energy contributions). Thus,

Ω−1−1 = (Ω−1
0 −1)

ρ0a2
0

ρa2 . (1.127)

Without inflation, we have

ρ = ρeq

(aeq

a

)4
(z > zeq), (1.128)

ρ = ρ0

(a0

a

)3
(z < zeq). (1.129)

According to (1.85), zeq is given by

1 + zeq =
ΩM

ΩR

 104 Ω0h2

0. (1.130)

For z > zeq, we obtain from (1.127) and (1.128)

Ω−1−1 = (Ω−1
0 −1)

ρ0a2
0

ρeqa2
eq

ρeqa2
eq

ρa2 = (Ω−1
0 −1)(1 + zeq)−1

(
a

aeq

)2

(1.131)

or

Ω−1−1 = (Ω−1
0 −1)(1 + zeq)−1

(
Teq

T

)2


 10−60(Ω−1
0 −1)

(
TPl

T

)2

. (1.132)

Let us apply this equation for T = 1MeV, Ω0 
 0.2−0.3. Then |Ω−1 |≤ 10−15,
thus the Universe was already incredibly flat at modest temperatures, not much
higher than at the time of nucleosynthesis.

Such a fine tuning must have a physical reason. This is naturally provided by
inflation because our observable Universe could originate from a small patch at te.
(A tiny part of the Earth surface is also practically flat.)
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Beside the horizon scale l f (t), the Hubble length H−1(t) = a(t)/ȧ(t) also plays
an important role. One might call this the “microphysics horizon” because this is the
maximal distance microphysics that can operate coherently in one expansion time.
It is this length scale that enters in basic evolution equations, such as the equation
of motion for a scalar field (see Eq. (1.139) below).

We sketch in Figs. 1.5 – 1.7 the various length scales in inflationary models
that are for models with a period of accelerated (e.g., exponential) expansion. From
these, it is obvious that there can be – at least in principle – a causal generation
mechanism for perturbations. This topic will be discussed in great detail in later
parts of this chapter.

lp(t)

Physical distance

lf(t)

trec

ti

t

tR

lf(t)>>lp(t)

0

Inflation
period

Fig. 1.5 Past and future light cones in models with an inflationary period.

t

trec

tR

ti

H-1(t)

H-1(t)

d: Physical distance
    (wavelength)

lf(t)  (Causality horizon)

Physical distance

Fig. 1.6 Physical distance (e.g., between clusters of galaxies), Hubble distance, and causality hori-
zon in inflationary models.
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tR

t

dc

H-1(t)

Comoving distance

H-1(t)

Fig. 1.7 Part of Fig. 3.3 expressed in terms of comoving distances.

Exponential inflation is just an example. What we really need is an early phase
during which the comoving Hubble length decreases (Fig. 1.7). This means that (for
Friedmann spacetimes) (

H−1(t)/a
)·

< 0. (1.133)

This is the general definition of inflation; equivalently, ä > 0 (accelerated expan-
sion). For a Friedmann model, Eq. (1.23) tells us that

ä > 0⇔ p <−ρ/3. (1.134)

This is, of course, not satisfied for “ordinary” fluids.

Assume, as another example, power-law inflation: a ∝ t p. Then ä > 0⇔ p > 1.

1.3.3 Scalar Field Models

Models with p < −ρ/3 are naturally obtained in scalar field theories. Most of the
time, we shall consider the simplest case of one neutral scalar field ϕ minimally
coupled to gravity. Thus, the Lagrangian density is assumed to be

L =
M2

pl

16π
R[g]− 1

2
∇μϕ∇μϕ−V (ϕ), (1.135)

where R[g] is the Ricci scalar for the metric g. The scalar field equation is

�ϕ = V,ϕ , (1.136)

and the energy-momentum tensor in the Einstein equation

Gμν =
8π
M2

Pl

Tμν (1.137)
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is
Tμν = ∇μϕ∇νϕ + gμνLϕ (1.138)

(Lϕ is the scalar field part of (3.26)).
We consider first Friedmann spacetimes. Using previous notation, we obtain from

(1.1)

√
−g = a3√γ, �ϕ =

1√−g
∂μ(
√
−ggμν∂νϕ) =− 1

a3 (a3ϕ̇)·+
1
a2�γϕ .

The field equation (1.136) becomes

ϕ̈ + 3Hϕ̇− 1
a2�γϕ =−V,ϕ(ϕ). (1.139)

Note that the expansion of the Universe induces a “friction” term. In this basic equa-
tion one also sees the appearance of the Hubble length. From (1.138), we obtain the
energy density and the pressure of the scalar field

ρϕ = T00 =
1
2
ϕ̇2 +V +

1
2a2 (∇ϕ)2, (1.140)

pϕ =
1
3

T i
i =

1
2
ϕ̇2−V − 1

6a2 (∇ϕ)2. (1.141)

(Here, (∇ϕ)2 denotes the squared gradient on the 3-space (Σ ,γ).)
Suppose the gradient terms can be neglected, and that ϕ is during a certain phase

slowly varying in time, then we get

ρϕ ≈V, pϕ ≈−V. (1.142)

Thus pϕ ≈−ρϕ , as for a cosmological term.
Let us ignore for the time being the spatial inhomogeneities in the previous equa-

tions. Then, these reduce to

ϕ̈ + 3Hϕ̇+V,ϕ(ϕ) = 0; (1.143)

ρϕ =
1
2
ϕ̇2 +V, pϕ =

1
2
ϕ̇2−V. (1.144)

Beside (1.143), the other dynamical equation is the Friedmann equation

H2 +
K
a2 =

8π
3M2

Pl

[
1
2
ϕ̇2 +V(ϕ)

]
. (1.145)

Equations (1.143) and (1.145) define a nonlinear dynamical system for the dynami-
cal variables a(t),ϕ(t), which can be studied in detail (see, e.g., [22]).

Let us ignore the curvature term K/a2 in (1.145). Differentiating this equation
and using (1.143) shows that
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Ḣ =− 4π
M2

Pl

ϕ̇2. (1.146)

Regard H as a function of ϕ , then

dH
dϕ

=− 4π
M2

Pl

ϕ̇ . (1.147)

This allows us to write the Friedmann equation as(
dH
dϕ

)2

− 12π
M2

Pl

H2(ϕ) =−32π2

M4
Pl

V (ϕ). (1.148)

For a given potential V (ϕ), this is a differential equation for H(ϕ). Once this func-
tion is known, we obtain ϕ(t) from (1.147) and a(t) from (1.146).

1.3.3.1 Power-Law Inflation

We now proceed in the reverse order, assuming that a(t) follows a power law

a(t) = const. t p. (1.149)

Then H = p/t, so by (1.146)

ϕ̇ =
√

p
4π

MPl
1
t
, ϕ(t) =

√
p

4π
MPl ln(t)+ const.,

hence

H(ϕ) ∝ exp

(
−
√

4π
p

ϕ
MPl

)
. (1.150)

Using this in (1.148) leads to an exponential potential

V (ϕ) = V0 exp

(
−4

√
π
p

ϕ
MPl

)
. (1.151)

1.3.3.2 Slow-Roll Approximation

An important class of solutions is obtained in the slow-roll approximation (SLA),
in which the basic Eqs. (1.143) and (1.145) can be replaced by

H2 =
8π

3M2
Pl

V (ϕ), (1.152)

3Hϕ̇ = −V,ϕ . (1.153)
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A necessary condition for their validity is that the slow-roll parameters

εV (ϕ) : =
M2

Pl

16π

(
V,ϕ

V

)2

, (1.154)

ηV (ϕ) : =
M2

Pl

8π
V,ϕϕ

V
(1.155)

are small:
εV � 1, | ηV |� 1. (1.156)

These conditions, which guarantee that the potential is flat, are, however, not suffi-
cient.

The simplified system (1.152) and (1.153) implies

ϕ̇2 =
M2

Pl

24π
1
V

(
V,ϕ

)2
. (1.157)

This is a differential equation for ϕ(t).
Let us consider potentials of the form

V (ϕ) =
λ
n
ϕn. (1.158)

Then, Eq. (1.157) becomes

ϕ̇2 =
n2M2

Pl

24π
1
ϕ2 V. (1.159)

Hence, (1.152) implies
ȧ
a

=− 4π
nM2

Pl

(ϕ2)·,

and so

a(t) = a0 exp

[
4π

nM2
Pl

(ϕ2
0 −ϕ2(t))

]
. (1.160)

We see from (1.159) that 1
2 ϕ̇

2 �V (ϕ) for

ϕ 
 n

4
√

3π
MPl. (1.161)

Consider first the example n = 4. Then, (1.159) implies

ϕ̇
ϕ

=

√
λ
6π

MPl ⇒ ϕ(t) = ϕ0 exp

(
−
√

λ
6π

MPl t

)
. (1.162)
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For n �= 4:

ϕ(t)2−n/2 = ϕ2−n/2
0 + t

(
2− n

2

)√
nλ
24π

M3−n/2
Pl . (1.163)

For the special case n = 2 this gives, using the notation V = 1
2 m2ϕ2, the simple

result

ϕ(t) = ϕ0−
mMPl

2
√

3π
t. (1.164)

Inserting this into (1.160) provides the time dependence of a(t).

1.3.3.3 Why did Inflation Start?

Attempts to answer this and related questions are very speculative indeed. A rea-
sonable direction is to imagine random initial conditions and try to understand how
inflation can emerge, perhaps generically, from such a state of matter. A.Linde first
discussed a scenario along these lines, which he called chaotic inflation. In the
context of a single scalar field model, he argued that typical initial conditions cor-
respond to 1

2 ϕ̇
2 ∼ 1

2(∂iϕ)2 ∼ V (ϕ) ∼ 1 (in Planckian units). The chance that the
potential energy dominates in some domain of size > O(1) is presumably not very
small. In this situation, inflation could begin and V (ϕ) would rapidly become even
more dominant, which ensures continuation of inflation. Linde concluded from such
considerations that chaotic inflation occurs under rather natural initial conditions.
For this to happen, the form of the potential V (ϕ) can even be a simple power law
of the form (1.158). Many questions remain, however, open.

The chaotic inflationary Universe will look on very large scales – much larger
than the present Hubble radius – extremely inhomogeneous. For a review of this
scenario, I refer to [23]. A much more extended discussion of inflationary models,
including references, can be found in [3].

1.3.3.4 The Trans-Planckian Problem

Another serious worry is this: If the period of inflation lasted sufficiently long (see
the inequality (1.125)), then the scales inside today’s Hubble radius started out at
the beginning of inflation with physical wavelengths smaller than the Planck scale.
In this domain, classical GR can most probably no more be trusted.

Optimistically, one can hope that observations of primordial spectra may turn out
to be a window to unknown physics not far from the Planck scale.

1.4 Cosmological Perturbation Theory

The astonishing isotropy of the CMB radiation provides direct evidence that the
early Universe can be described in a good first approximation by a Friedmann
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model. At the time of recombination, deviations from homogeneity and isotropy
have been very small indeed (∼ 10−5). Thus, there was a long period during which
deviations from Friedmann models can be studied perturbatively, i.e., by lineariz-
ing the Einstein and matter equations about solutions of the idealized Friedmann–
Lemaître models.

Cosmological perturbation (CPT) theory is a very important tool that is by now
well developed. (Some reviews are [24], [25], and [26].) Here, I give an abbreviated
version of my Combo-Lectures [27] where the detailed derivations (and sometimes
rather lengthy calculations) can be found.

The formalism, developed in this part, will later be applied to two main problems:
(1) The generation of primordial fluctuations during an inflationary era. (2) The
evolution of these perturbations during the linear regime. A main goal will be to
determine the CMB power spectrum as a function of certain cosmological param-
eters. Among these, the fractions of Dark Matter and Dark Energy are particularly
interesting.

In this section, we develop the model independent parts of CPT. This forms the
basis of much that follows. The development is in principle quite straightforward.
Unfortunately, a lot of symbols have to be introduced, to a large extent because of
the gauge freedom implied by the diffeomorphism invariance of GR.

1.4.1 Generalities

For the unperturbed Friedmann models, the metric is denoted by g(0) and has the
form

g(0) =−dt2 + a2(t)γ = a2(η)
[
−dη2 + γ

]
; (1.165)

γ is the metric of a space with constant curvature K. In addition, we have matter
variables for the various components (radiation, neutrinos, baryons, cold dark matter
[CDM], etc). We shall linearize all basic equations about the unperturbed solutions.

1.4.1.1 Decomposition into Scalar, Vector, and Tensor Contributions

We may regard the various perturbation amplitudes as time-dependent functions on
a three-dimensional Riemannian space (Σ ,γ) of constant curvature K. Since such a
space is highly symmetric, we can perform two types of decompositions.

Consider first the set X (Σ) of smooth vector fields on Σ . This module can be
decomposed into an orthogonal sum of “scalar” and “vector” contributions

X (Σ) = X S
⊕

X V , (1.166)

where X S consists of all gradients and X V of all vector fields with vanishing
divergence. The scalar product of two vector fields ξ i and η j is defined by
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(ξ ,η) =
∫
Σ
γi jξ iη jdvγ . (1.167)

(Prove the claimed orthonormality.)

Similarly, we can decompose a symmetric tensor t ∈S (Σ) (= set of all symmetric
tensor fields on Σ ) into “scalar,” “vector,” and “tensor” contributions:

ti j = t(S)
i j + t(V)

i j + t(T)
i j , (1.168)

where

t(S)
i j =

1
3

tk
kγi j +(∇i∇ j−

1
3
γi j∇2) f , (1.169)

t(V )
i j = ∇iξ j +∇ jξi, (1.170)

t(T )
i j : t(T )i

i = 0; ∇ jt
(T)i j = 0. (1.171)

In these equations, f is a function on Σ and ξ i a vector field with vanishing diver-
gence. In what follows ∇2 always denotes γ i j∇i∇ j on (Σ ,γ). (Note that this does
not agree with the Laplace–Beltrami operator for differential forms, except for func-
tions. But for tensor fields, this is the natural extension of the Laplace operator on
functions.) Show that the three components are orthogonal to each other with respect
to the obvious generalization of the scalar product (1.167). This fact implies that the
decomposition of ti j is unique. A rigorous existence proof is given in [28].

In addition, these decompositions are respected by the covariant derivatives. For
example, if ξ ∈X (Σ), ξ = ξ∗+∇ f , ∇ ·ξ∗ = 0, then

∇2ξ = ∇2ξ∗+∇
[
∇2 f + 2K f

]
(1.172)

(prove this as an exercise). Here, the first term on the right has a vanishing diver-
gence (show this), and the second term (the gradient) involves only f . For other
cases, see Appendix B of [24]. Is there a conceptual proof based on the symmetries
of (Σ ,γ)?

1.4.1.2 Decomposition into Spherical Harmonics

In a second step, we perform a harmonic decomposition. For K = 0, this is just
Fourier analysis. In this case, the spherical harmonics {Y} of (Σ ,γ) are the functions
Y (x;k) = exp(ik ·x) (for γ = δi jdxidx j). The scalar parts of vector and symmetric
tensor fields can be expanded in terms of

Yi : = −k−1∇iY, (1.173)

Yi j : = k−2∇i∇ jY +
1
3
γi jY, (1.174)

and γi jY .
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There are corresponding complete sets of spherical harmonics for K �= 0. They
are eigenfunctions of the Laplace operator on (Σ ,γ):

(∇2 + k2)Y = 0. (1.175)

Indices referring to the various modes are usually suppressed. By making use of
the Riemann tensor of (Σ ,γ), one can easily derive the following identities (using
repeatedly the Ricci identity):

∇iY
i = kY,

∇2Yi = −(k2−2K)Yi,

∇ jYi = −k(Yi j−
1
3
γi jY ),

∇ jYi j =
2
3

k−1(k2−3K)Yi,

∇ j∇mYim =
2
3
(3K− k2)(Yi j−

1
3
γi jY ),

∇2Yi j = −(k2−6K)Yi j,

∇mYi j−∇ jYim =
k
3

(
1− 3K

k2

)
(γimYj− γi jYm). (1.176)

The main point of the harmonic decomposition is, of course, that different modes
in the linearized approximation do not couple. Hence, it suffices to consider a
generic mode.

For the time being, we consider only scalar perturbations. Tensor perturbations
(gravity modes) will be studied later. For the harmonic analysis of vector and tensor
perturbations, I refer again to [24].

Exercise

Verify some of the relations in (1.176).♦

1.4.1.3 Gauge Transformations, Gauge Invariant Amplitudes

In GR, the diffeomorphism group of spacetime is an invariance group. This means
that we can replace the metric g and the matter fields by their pull-backs φ�(g), etc.,
for any diffeomorphism φ , without changing the physics. Consider, in particular, the
flow φλ of a vector field ξ . By definition of the Lie derivative Lξ , we have for the
pull-back of a physical variable Q (metric g, etc)

φ∗λQ = Q+λLξQ+O(λ 2).

If
Q = Q(0) +λQ(1) +O(λ 2)
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is the expansion of Q into background plus perturbations, we have

φ∗λQ = Q(0) +λQ(1) +λLξQ(0) +O(λ 2).

So, the first-order perturbation of φ∗λQ is λ (Q(1) + LξQ(0)). In other words, Q(1)

transforms as
Q(1) → Q(1) + LξQ(0).

This shows that for small-amplitude departures in

g = g(0) + δg, etc., (1.177)

we have the gauge freedom

δg→ δg + Lξg(0) , etc., (1.178)

where ξ is any vector field and Lξ denotes its Lie derivative. (For further explana-
tions, see [9], Sect. 4.1). These transformations will induce changes in the various
perturbation amplitudes. It is clearly desirable to write all independent perturbation
equations in a manifestly gauge invariant manner. In this way one can, for instance,
avoid misinterpretations of the growth of density fluctuations, especially on super-
horizon scales. Moreover, one gets rid of uninteresting gauge modes.

I find it astonishing that it took so long until the gauge invariant formalism was
widely used.

1.4.1.4 Parametrization of the Metric Perturbations

The most general scalar perturbation of the metric can be parametrized as follows:

δg = a2(η)
[
−2Adη2−2B,i dxidη +(2Dγi j + 2E|i j)dxidx j] . (1.179)

The functions A(η ,xi), B, D, E are the scalar perturbation amplitudes; E|i j denotes
∇i∇ jE on (Σ ,γ). Thus, the true metric is

g = a2(η)
{
−(1 + 2A)dη2−2B,i dxidη +[(1 + 2D)γi j + 2E|i j]dxidx j} .

(1.180)

Let us work out how A,B,D,E change under a gauge transformation (1.178),
provided the vector field is of the “scalar” type9:

ξ = ξ 0∂0 + ξ i∂i, ξ i = γ i jξ| j. (1.181)

9 It suffices to consider this type of vector fields, since vector fields from X V do not affect the
scalar amplitudes; check this.
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(The index 0 refers to the conformal time η .) For this, we need (’≡ d/dη)

Lξa2(η) = 2aa′ξ 0 = 2a2H ξ 0, H := a′/a,

Lξ dη = dLξη = (ξ 0)′dη + ξ 0
|idxi,

Lξdxi = dLξ xi = dξ i = ξ i, j dx j +(ξ i)′dη = ξ i, j dx j + ξ ′|idη ,

implying

Lξ
(
a2(η)dη2) = 2a2{(H ξ 0 +(ξ 0)′)dη2 + ξ 0

|idxidη
}

,

Lξ
(
γi jdxidx j) = 2ξ|i jdxidx j + 2ξ ′|idxidη .

This gives the transformation laws:

A→ A+H ξ 0 +(ξ 0)′, B→ B+ξ 0−ξ ′, D→ D+H ξ 0, E → E +ξ . (1.182)

From this, one concludes that the following Bardeen potentials

Ψ = A− 1
a

[
a(B + E ′)

]′
, (1.183)

Φ = D−H (B + E ′), (1.184)

are gauge invariant.
Note that the transformations of A and D involve only ξ 0. This is also the case

for the combinations
χ := a(B + E ′)→ χ + aξ 0 (1.185)

and

κ :=
3
a
(H A−D′)− 1

a2∇
2χ (1.186)

−→ κ +
3
a

[
H (H ξ 0 +(ξ 0)′)− (H ξ 0)′

]
− 1

a2∇
2ξ 0. (1.187)

Therefore, it is good to work with A,D,χ ,κ . This was emphasized in [29]. Below
we will show that χ and κ have a simple geometrical meaning. Moreover, it will
turn out that the perturbation of the Einstein tensor can be expressed completely in
terms of the amplitudes A,D,χ ,κ .

Exercise

The most general vector perturbation of the metric is obviously of the form

(
δgμν

)
= a2(η)

(
0 βi

βi Hi| j + Hj|i

)
,

with Bi
|i = Hi

|i = 0. Derive the gauge transformations for βi and Hi. Show that Hi

can be gauged away. Compute R0
j in this gauge. Result:
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R0
j =

1
2

(
∇2β j + 2Kβ j

)
. ♦

1.4.1.5 Geometrical Interpretation

Let us first compute the scalar curvature R(3) of the slices with constant time η with
the induced metric

g(3) = a2(η)
[
(1 + 2D)γi j + 2E|i j

]
dxidx j. (1.188)

If we drop the factor a2, then the Ricci tensor does not change, but R(3) has to be
multiplied afterwards with a−2.

For the metric γi j + hi j, the Palatini identity (Eq. (4.20) in [9])

δRi j =
1
2

[
hk

i| jk−hk
k|i j + hk

j|ik−∇2hi j

]
(1.189)

gives
δRi

i = hi j
|i j−∇2h (h := hi

i), hi j = 2Dγi j + 2E|i j.

We also use

h = 6D+ 2∇2E, E |i j
|i j = ∇ j(∇2∇ jE) = ∇ j(∇ j∇2E−2K∇ jE)

= (∇2)2E−2K∇2E

(we used (∇i∇2−∇2∇i) f =−R(0)
i j ∇

j f , for a function f ). This implies

hi j
|i j = 2∇2D+ 2((∇2)2E−2K∇2E),

δRi
i = −4D−4K∇2E),

whence
δR = δRi

i + hi jR(0)
i j =−4∇2D+ 12KD.

This shows that D determines the scalar curvature perturbation

δR(3) =
1
a2 (−4∇2D+ 12KD). (1.190)

Next, we compute the second fundamental form10 Ki j for the time slices. We
shall show that

κ = δKi
i, (1.191)

10 This geometrical concept is introduced in Appendix A of [9].
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and

Ki j−
1
3

gi jK
l
l =−(χ|i j−

1
3
γi j∇2χ). (1.192)

Derivation

In the following derivation, we make use of Sect. 2.9 of [9] on the 3 + 1 formalism.
According to Eq. (2.287) of this reference, the second fundamental form is deter-
mined in terms of the lapse α , the shift β = β i∂i, and the induced metric ḡ as follows
(dropping indices)

K =− 1
2α

(∂t −Lβ )ḡ. (1.193)

To first order, this gives in our case

Ki j =− 1
2a(1 + A)

[
a2(1 + 2D)γi j + 2a2E|i j

]′ −aB|i j. (1.194)

(Note that βi =−a2B,i , β i =−γ i jB, j.)

In zeroth order, this gives

K(0)
i j =−1

a
H g(0)

i j . (1.195)

Collecting the first-order terms gives the claimed Eqs. (1.191) and (1.192). (Note
that the trace-free part must be of first order because the zeroth order vanishes
according to (1.195).)

Conformal Gauge

According to (1.182) and (1.185), we can always chose the gauge such that
B = E = 0. This so-called conformal Newtonian (or longitudinal) gauge is often
particularly convenient to work with. Note that in this gauge

χ = 0, A =Ψ , D = Φ, κ =
3
a
(H Ψ −Φ ′).

1.4.1.6 Scalar Perturbations of the Energy-Momentum Tensor

At this point, we do not want to specify the matter model. For a convenient
parametrization of the scalar perturbations of the energy-momentum tensor

Tμν = T (0)
μν + δTμν , we define the four-velocity uμ as a normalized time-like eigen-

vector of T μν :
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T μ
νuν = −ρuμ , (1.196)

gμνuμuν = −1. (1.197)

The eigenvalue ρ is the proper energy-mass density.
For the unperturbed situation, we have

u(0)0 =
1
a
, u(0)

0 =−a, u(0)i = 0, T (0)0
0 =−ρ (0), T (0)i

j = p(0)δ i
j, T (0)0

i = 0.

(1.198)

Remark. There may be additional contributions to the unperturbed T (0)
μν , for in-

stance from the Λ term or unclustered dark energy. These change only the back-
ground evolution, but not the perturbation equations (as long as only the general
form of the background equations is used).

Setting ρ = ρ (0) + δρ , uμ = u(0)μ + δuμ , etc, we obtain from (1.197)

δu0 =−1
a

A, δu0 =−aA. (1.199)

The first-order terms of (1.196) give, using (1.198),

δT μ
0u(0)0 + δ μ

0u(0)0δρ +
(

T (0)μ
ν +ρ (0)δ μ

ν

)
δuν = 0.

For μ = 0 and μ = i, this leads to

δT 0
0 = −δρ , (1.200)

δT i
0 = −a(ρ (0) + p(0))δui. (1.201)

From this, we can determine the components of δT 0
j :

δT 0
j = δ

[
g0μg jνT ν

μ
]

= δg0kg(0)
i j T (0)i

k + g(0)00δg0 jT
(0)0

0 + g(0)00g(0)
i j δT i

0

=
(
− 1

a2 γ
kiB|i

)
(a2γi j)p(0)δ i

k +
(
− 1

a2

)
(−a2B| j)(−ρ (0))− γi jδT i

0.

Collecting terms gives

δT 0
j = a(ρ (0) + p(0))

[
γi jδui− 1

a
B| j︸ ︷︷ ︸

a−2δu j

]
. (1.202)

Scalar perturbations of δui can be represented as

δui =
1
a
γ i jv| j. (1.203)

Inserting this above gives
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δT 0
j = (ρ (0) + p(0))(v−B)| j. (1.204)

The scalar perturbations of the spatial components δT i
j can be represented as

follows

δT i
j = δ i

j δ p + p(0)
(
Π |i

| j−
1
3
δ i

j ∇2Π
)

. (1.205)

Let us collect these formulae (dropping (0) for the unperturbed quantities ρ (0),
etc):

δu0 = −1
a

A, δu0 =−aA, δui =
1
a
γ i jv| j ⇒ δui = a(v−B)|i;

δT 0
0 = −δρ ,

δT 0
i = (ρ + p)(v−B)|i, δT i

0 =−(ρ + p)γ i jv| j,

δT i
j = δ p δ i

j + p

(
Π |i

| j−
1
3
δ i

j ∇2Π
)

. (1.206)

Sometimes, we shall also use the quantity

Q := a(ρ + p)(v−B),

in terms of which the energy flux density can be written as

δT 0
i =

1
a
Q,i , (⇒ Tt

i = Q,i). (1.207)

For fluids, one often decomposes δ p as

pπL := δ p = c2
sδρ + pΓ , (1.208)

where cs is the sound velocity
c2

s = ṗ/ρ̇. (1.209)

Γ measures the deviation between δ p/δρ and ṗ/ρ̇ . One can show [30] that the
divergence of the entropy current is proportional to Γ .

As for the metric, we have four perturbation amplitudes:

δ := δρ/ρ , v , Γ , Π . (1.210)

Let us see how they change under gauge transformations:

δT μ
ν→ δT μ

ν +(LξT (0))μν , (LξT (0))μν = ξλT (0)μ
ν,λ−T (0)λ

νξ μ
,λ +T (0)μ

λξ λ
,ν .

(1.211)
Now,

(LξT (0))0
0 = ξ 0T (0)0

0,0 = ξ 0(−ρ)′,

hence
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δρ → δρ +ρ ′ξ 0 ; δ → δ +
ρ ′

ρ
ξ 0 = δ −3(1 + w)H ξ 0 (1.212)

(w := p/ρ). Similarly (ξ i = γ i jξ| j):

(LξT (0))0
i = 0−T (0) j

iξ 0
| j + T (0)0

0ξ 0
,i =−ρξ 0

|i− pξ 0
|i;

so
v−B→ (v−B)− ξ 0. (1.213)

Finally,

(LξT (0))i
j = p′δ i

jξ 0,

hence

δ p → δ p + p′ξ 0, (1.214)

Π → Π . (1.215)

From (1.208), (1.212), and (1.214), we also obtain

Γ → Γ . (1.216)

We see that Γ , Π are gauge invariant. Note that the transformation of δ and v−B
involves only ξ 0, while v transforms as

v→ v− ξ ′.

For Q, we get
Q→Q−a(ρ + p)ξ 0. (1.217)

We can introduce various gauge invariant quantities. It is useful to adopt the
following notation: For example, we use the symbol δQ for that gauge invariant
quantity, which is equal to δ in the gauge where Q = 0, often called the comoving
gauge. Thus,

δQ = δ − 3
aρ

H Q = δ −3(1 + w)H (v−B). (1.218)

Similarly, gauge invariant perturbations related to the zero-shear gauge χ = 0 are

δχ = δ + 3
(1 + w)H

a
χ = δ + 3H (1 + w)(B + E ′); (1.219)

V : = (v−B)χ = v−B + a−1χ = v + E ′ =
1
a

(
χ +

1
ρ + p

Q

)
; (1.220)

Qχ = Q+(ρ + p)χ = a(ρ + p)V. (1.221)
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Another important gauge invariant amplitude, often called the curvature perturba-
tion (see (1.190)), is

R := DQ = D+H (v−B) = Dχ +H (v−B)χ = Dχ +H V. (1.222)

1.4.2 Explicit form of the Energy-Momentum Conservation

After these preparations, we work out the consequences ∇ ·T = 0 of Einstein’s field
equations for the metric (1.180) and T μ

ν as given by (1.198) and (1.206). The details
of the calculations are presented in Sect. 3.5 of [27].

The energy equation reads:

(ρδ )′+ 3H ρδ + 3H pπL +(ρ + p)
[
∇2(v + E ′)+ 3D′

]
= 0 (1.223)

or, with (ρδ )′/ρ = δ ′ −3H (1 + w)δ and (1.220),

δ ′+ 3H (c2
s −w)δ + 3H wΓ =−(1 + w)(∇2V + 3D′). (1.224)

This gives, putting an index χ , the gauge invariant equation

δ ′χ + 3H (c2
s −w)δχ + 3H wΓ =−(1 + w)(∇2V + 3D′χ). (1.225)

Conversely, Eq. (1.224) follows from (1.225): the χ-terms cancel, as is easily veri-
fied by using the zeroth-order equation

w′ =−3(c2
s −w)(1 + w)H , (1.226)

that is easily derived from the Friedman equations in Sect. 1.1.3. From the defini-
tions, it follows readily that the last factor in (1.224) is equal to −(aκ − 3H A−
∇2(v−B)).

The momentum equation becomes

[(ρ + p)(v−B)]′+ 4H (ρ + p)(v−B)+ (ρ+ p)A + pπL +
2
3
(∇2 + 3K)pΠ = 0.

(1.227)
Using (1.208) in the form

pπL = ρ(c2
sδ + wΓ ), (1.228)

and putting the index χ at the perturbation amplitudes gives the gauge invariant
equation

[(ρ + p)V ]′+ 4H (ρ + p)V +(ρ + p)Aχ +ρc2
sδχ +ρwΓ +

2
3
(∇2 + 3K)pΠ = 0

(1.229)
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or11

V ′+(1−3c2
s )H V +Aχ +

c2
s

1 + w
δχ +

w
1 + w

Γ +
2
3
(∇2 +3K)

w
1 + w

Π = 0. (1.230)

For later use, we write (1.227) also as

(v−B)′+(1−3c2
s)H (v−B)+ A +

c2
s

1 + w
δ +

w
1 + w

Γ +
2
3
(∇2 + 3K)

w
1 + w

Π = 0

(1.231)
(from which (1.230) follows immediately).

1.4.3 Einstein Equations

A direct computation of the first order changes δGμ
ν of the Einstein tensor for

(1.179) is complicated. It is much simpler to proceed as follows: Compute first
δGμ

ν in the longitudinal gauge B = E = 0. (That these gauge conditions can be
imposed follows from (1.182).) Then, one can write the perturbed Einstein equa-
tions in a gauge invariant form. It is then easy to rewrite these equations without
imposing any gauge conditions, thus obtaining the equations one would get for the
general form (1.179). For the details, we refer again to [27].

Below, we collect the first-order Einstein equations, valid in any gauge (indicat-
ing also their origin). As perturbation amplitudes, we use A,D,χ ,κ (metric func-
tions) and δ ,Q,Π ,Γ (matter functions) because these are either gauge invariant or
their gauge transformations involve only the component ξ 0 of the vector field ξ μ .

• definition of κ :

κ = 3(HA− Ḋ)− 1
a2 ∇

2χ ; (1.232)

• δG0
0:

1
a2 (∇2 + 3K)D+ Hκ =−4πGρδ ; (1.233)

• δG0
j:

κ +
1
a2 (∇2 + 3K)χ =−12πGQ; (1.234)

• δGi
j− 1

3δ
i

j δGk
k:

χ̇ + Hχ−A−D = 8πGa2pΠ ; (1.235)

• δGi
i− δG0

0:

κ̇ + 2Hκ =−
(

1
a2∇

2 + 3Ḣ

)
A + 4πG(1 + 3c2

s)ρδ + 12πGpΓ︸ ︷︷ ︸
4πGρ(δ+3wπL)

; (1.236)

11 Note that h := ρ + p satisfies h′ =−3H (1+ c2
s )h.
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• T 0ν
;ν (Eq. (1.224)):

δ̇ + 3H(c2
s −w)δ + 3HwΓ = (1 + w)(κ−3HA)− 1

ρa2∇
2Q (1.237)

or

(ρδ )·+ 3Hρ(δ + wπL︸︷︷︸
c2

sδ+wΓ

) = (ρ + p)(κ−3HA)− 1
a2∇

2Q; (1.238)

• T iν
;ν = 0 (Eq. (1.227)):

Q̇ + 3HQ =−(ρ + p)A− pπL−
2
3
(∇2 + 3K)pΠ . (1.239)

These equations are, of course, not all independent. Putting an index χ or Q,
etc., at the perturbation amplitudes in any of them gives a gauge invariant equation.
We write these down for Aχ ,Dχ , · · · (instead of Qχ we use V ; see also (1.225) and
(1.230)):

κχ = 3(HAχ− Ḋχ); (1.240)

1
a2 (∇2 + 3K)Dχ + Hκχ =−4πGρδχ; (1.241)

κχ =−12πGQχ ; (1.242)

Aχ + Dχ =−8πGa2pΠ ; (1.243)

κ̇χ + 2Hκχ =−
(

1
a2∇

2 + 3Ḣ

)
Aχ + 4πG(1 + 3c2

s)ρδχ + 12πGpΓ︸ ︷︷ ︸
4πGρ(δχ+3wπL)

; (1.244)

δ̇χ + 3H(c2
s −w)δχ + 3HwΓ =−3(1 + w)Ḋχ−

1 + w
a

∇2V ; (1.245)

V̇ +(1−3c2
s)HV =−1

a
Aχ−

1
a

[
c2

s

1 + w
δχ +

w
1 + w

Γ +
2
3
(∇2 + 3K)

w
1 + w

Π
]
.

(1.246)

Harmonic Decomposition

We write these equations once more for the amplitudes of harmonic decompositions,
adopting the following conventions. For those amplitudes which enter in gμν and
Tμν without spatial derivatives (i.e., A,D,δ ,Γ ), we set

A = A(k)Y(k) ,etc ; (1.247)

those which appear only through their gradients (B,v) are decomposed as
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B =−1
k

B(k)Y(k) ,etc , (1.248)

and, finally, we set for E and Π , entering only through second derivatives,

E =
1
k2 E(k)Y(k) (⇒ ∇2E =−E(k)Y(k)). (1.249)

The reason for this is that we then have, using the definitions (1.173) and (1.174),

B|i = B(k)Y(k)i, Π|i j−
1
3
γi j∇2Π = Π(k)Y(k)i j. (1.250)

The spatial part of the metric in (1.180) then becomes

gi jdxidx j = a2(η)
[
γi j + 2(D− 1

3
E)γi jY + 2EYi j

]
dxidx j. (1.251)

The basic equations (1.232) – (1.239) imply for A(k),B(k), etc12, dropping the
index (k),

κ = 3(HA− Ḋ)+
k2

a2 χ , (1.252)

−k2−3K
a2 D+ Hκ =−4πGρδ , (1.253)

κ− k2−3K
a2 χ =−12πGQ, (1.254)

χ̇ + Hχ−A−D = 8πGa2 pΠ/k2, (1.255)

κ̇ + 2Hκ =
(

k2

a2 −3Ḣ

)
A + 4πG(1 + 3c2

s)ρδ + 12πGpΓ︸ ︷︷ ︸
4πGρ(δ+3wπL)

, (1.256)

(ρδ )·+ 3Hρ(δ + wπL︸︷︷︸
c2

sδ+wΓ

) = (ρ + p)(κ−3HA)+
k2

a2 Q, (1.257)

Q̇+ 3HQ =−(ρ + p)A− pπL +
2
3

k2−3K
k2 pΠ . (1.258)

For later use, we also collect the gauge invariant Eqs. (1.240) – (1.246) for the
Fourier amplitudes:

κχ = 3(HAχ− Ḋχ), (1.259)

−k2−3K
a2 Dχ + Hκχ =−4πGρδχ, (1.260)

12 We replace χ by χ(k)Y(k), where according to (1.185) χ(k) =−(a/k)(B− k−1 E ′); Eq. (1.252) is
then just the translation of (1.186) to the Fourier amplitudes, with κ → κ(k)Y(k). Similarly, Q →
Q(k)Y(k), Q(k) =−(1/k)a(ρ + p)(v−B)(k) .
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κχ =−12πGQχ

(
Qχ =−a

k
(ρ + p)V

)
, (1.261)

k2(Aχ + Dχ) =−8πGa2pΠ , (1.262)

κ̇χ + 2Hκχ =
(

k2

a2 −3Ḣ

)
Aχ + 4πG(1 + 3c2

s)ρδχ + 12πGpΓ︸ ︷︷ ︸
4πGρ(δχ+3wπL)

, (1.263)

δ̇χ + 3H(c2
s −w)δχ + 3HwΓ =−3(1 + w)Ḋχ− (1 + w)

k
a

V, (1.264)

V̇ +(1−3c2
s)HV =

k
a

Aχ +
c2

s

1 + w
k
a
δχ +

w
1 + w

k
a
Γ − 2

3
w

1 + w
k2−3K

k2

k
a
Π . (1.265)

1.4.3.1 Alternative Basic Systems of Equations

From the basic equations (1.232) – (1.246), we now derive another set which is
sometimes useful, as we shall see. We want to work with13 δQ,V and Dχ .

The energy equation (1.237) with index Q gives

δ̇Q + 3H(c2
s −w)δQ + 3HwΓ = (1 + w)(κQ−3HAQ). (1.266)

Similarly, the momentum equation (1.239) implies

AQ =− 1
1 + w

[
c2

sδQ + wΓ +
2
3
(∇2 + 3K)wΠ

]
. (1.267)

From (1.234), we obtain

κQ +
1
a2 (∇2 + 3K)χQ = 0. (1.268)

But from (1.220), we see that
χQ = aV, (1.269)

hence,

κQ =−1
a
(∇2 + 3K)V. (1.270)

Now, we insert (1.267) and (1.270) in (1.266) and obtain

δ̇Q−3HwδQ =−(1 + w)
1
a
(∇2 + 3K)V + 2H(∇2 + 3K)wΠ . (1.271)

13 A detailed analysis in [31] shows that the equations for δQ ,V and Dχ are for pressureless fluids,
but general scales, of the same form as the corresponding Newtonian equations.
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Next, we use (1.246) and the relation

δχ = δQ + 3(1 + w)HV, (1.272)

which follows from (1.218), to obtain

V̇ + HV =−1
a

Aχ −
1

a(1 + w)

[
c2

sδQ + wΓ +
2
3
(∇2 + 3K)wΠ

]
. (1.273)

Here we make use of (1.243), with the result

V̇ + HV = 1
a Dχ − 1

a(1+w)

[
c2

sδQ + wΓ −8πGa2(1 + w)pΠ + 2
3 (∇2 + 3K)wΠ

]
.

(1.274)

From (1.240), (1.242), (1.243), and (1.221), we find

Ḋχ + HDχ = 4πGa(ρ+ p)V −8πGa2H pΠ . (1.275)

Finally, we replace in (1.241) δχ by δQ (making use of (1.272)) and κχ by V
according to (1.242), giving the Poisson-like equation

1
a2 (∇2 + 3K)Dχ =−4πGρδQ. (1.276)

The system we were looking for consists of (1.271), (1.274), (1.275), or (1.276).

From these equations, we now derive an interesting expression for Ṙ. Recall
(1.222):

R = DQ = Dχ + aHV = Dχ + ȧV. (1.277)

Thus,
Ṙ = Ḋχ + äV + ȧV̇ .

On the right of this equation, we use for the first term, Eq. (1.275); for the second
term, the following consequence of the Friedmann equations (1.17) and (1.23)

ä =−1
2
(1 + 3w)a

(
H2 +

K
a2

)
; (1.278)

and for the last term, we use (1.274). The result becomes relatively simple for K = 0
(the V -terms cancel):

Ṙ =− H
1 + w

[
c2

sδQ + wΓ +
2
3

w∇2Π
]
.

Using also (1.276) and the Friedmann equation (1.17) (for K = 0) leads to

Ṙ =
H

1 + w

[
2
3

c2
s

1
(Ha)2 ∇

2Dχ −wΓ − 2
3

w∇2Π
]
. (1.279)
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This is an important equation that will show, for instance, that R remains constant
on superhorizon scales, provided Γ and Π can be neglected.

As another important application, we can derive through elimination a second-
order equation for δQ . For this, we perform again a harmonic decomposition and
rewrite the basic equations (1.271), (1.274), (1.275), and (1.276) for the Fourier
amplitudes:

δ̇Q−3HwδQ =−(1 + w)
k
a

k2−3K
k2 V −2H

k2−3K
k2 wΠ , (1.280)

V̇ + HV =− k
a

Dχ +
1

1 + w
k
a

[
c2

sδQ + wΓ −8πG(1 + w)
a2

k2 pΠ − 2
3

k2−3K
k2 wΠ

]
(1.281)

k2−3K
a2 Dχ = 4πGρδQ, (1.282)

Ḋχ + HDχ =−4πG(ρ+ p)
a
k

V −8πGH
a2

k2 pΠ . (1.283)

Through elimination, one can derive the following important second-order equa-
tion for δQ (including the Λ term)

δ̈Q +(2 + 3c2
s−6w)H δ̇Q +

[
c2

s
k2

a2 −4πGρ(1 + w)(1 + 3c2
s)

−3Ḣ(w+ c2
s )+ 3H2(3c2

s −5w)
]
δQ = S , (1.284)

where

S =−k2−3K
a2 wΓ −2

(
1− 3K

k2

)
HwΠ̇

−
(

1− 3K
k2

)[
−1

3
k2

a2 + 2Ḣ +(5−3c2
s/w)H2

]
2wΠ . (1.285)

This is obtained by differentiating (1.280) and eliminating V and V̇ with the help of
(1.280) and (1.281). In addition, one has to use several zeroth-order equations. We
leave the details to the reader. Note that S = 0 for Γ = Π = 0.

For the special case of dust (c2
s = w =Π = Γ = 0) and K = 0, we get for (1.280)

– (1.282) and (1.284) the same equations as in Newtonian theory:

δ̇Q =− k
a

V, V̇ + HV =− k
a
Φ,

k2

a2 Φ = 4πGρδQ,

δ̈Q + 2Hδ̇Q−4πGρδQ = 0.
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1.5 Some Applications of CPT

In this section, we discuss some applications of the general formalism. More rele-
vant applications will follow in later chapters.

Before studying realistic multicomponent fluids, we consider first the simplest
case when one component, for instance CDM, dominates. First, we study, however,
a general problem.

Let us write down the basic equations (1.280) – (1.283) in the notation adopted
later (Aχ =Ψ ,Dχ = Φ,δQ = Δ ):

Δ̇ −3HwΔ =−(1 + w)
k
a

k2−3K
k2 V −2H

k2−3K
k2 wΠ , (1.286)

V̇ + HV =− k
a
Φ +

1
1 + w

k
a

[
c2

sΔ + wΓ

−8πG(1 + w)
a2

k2 pΠ − 2
3

k2−3K
k2 wΠ

]
, (1.287)

k2−3K
a2 Φ = 4πGρΔ , (1.288)

Φ̇ + HΦ =−4πG(ρ+ p)
a
k

V −8πGH
a2

k2 pΠ . (1.289)

Recall also (1.262):

Φ +Ψ =−8πG
a2

k2 pΠ . (1.290)

Note that Φ =−Ψ for Π = 0.

From these perturbation equations, we derived through elimination the second-
order equation (1.284) for Δ , which we repeat for Π = 0 (vanishing anisotropic
stresses) and Γ = 0 (vanishing entropy production):

Δ̈ +(2 + 3c2
s−6w)HΔ̇ +

[
c2

s
k2

a2 −4πGρ(1 + w)(1 + 3c2
s)

−3Ḣ(w+ c2
s )+ 3H2(3c2

s −5w)
]
Δ = 0. (1.291)

Remarkably, this can be written as [31]

1 + w
a2H

[
H2

a(ρ + p)

(
a3ρ
H

Δ
)·]·

+ c2
s

k2

a2Δ = 0 (1.292)

(Exercise).

Sometimes it is convenient to write this in terms of the conformal time for the
quantity ρa3Δ . Making use of (ρa3)· =−3Hw(ρa3) (see (1.22)), one finds
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(ρa3Δ)′′+(1 + 3c2
s)H (ρa3Δ)′+

[
(k2−3K)c2

s −4πG(ρ+ p)a2](ρa3Δ) = 0.
(1.293)

Using (1.288) we obtain from (1.293) the following compact second-order equation
for Φ:

ρ + p
H

[
H2

a(ρ + p)

( a
H
Φ
)·]·

+ c2
s

k2

a2Φ = 0. (1.294)

With (1.222) and (1.289), it is easy to see that for K = 0 and Π = 0 the curvature
perturbation can be written as

R =
H2

4πGa(ρ+ p)

( a
H
Φ
)·

. (1.295)

Hence (1.294) again implies that R remains constant on large scales (csk/(aH)� 1).

1.5.1 Nonrelativistic Limit

It is instructive to first consider a one-component nonrelativistic fluid. The nonrela-
tivistic limit of the second-order equation (1.291) is

Δ̈ + 2HΔ̇ = 4πGρΔ− c2
s

(
k
a

)2

Δ . (1.296)

From this basic equation, one can draw various conclusions.

The Jeans Criterion

One sees from (1.296) that gravity wins over the pressure term ∝ c2
s for k < kJ ,

where

k2
J

(cs

a

)2
= 4πGρ (1.297)

defines the comoving Jeans wave number. The corresponding Jeans length (wave
length) is

λJ =
2π
kJ

a =
(
πc2

s

Gρ

)1/2

,
λJ

2π

 cs

H
. (1.298)

For λ < λJ , we expect that the fluid oscillates, while for λ 
 λJ an over-density
will increase.

Let us illustrate this for a polytropic equation of state p = const ργ . We consider,
as a simple example, a matter dominated Einstein-de Sitter model (K = 0), for which
a(t) ∝ t2/3, H = 2/(3t). Eq. (1.296) then becomes (taking ρ from the Friedmann
equation, ρ = 1/(6πGt2))

Δ̈ +
4
3t
Δ̇ +

(
L2

t2γ−2/3
− 2

3t2

)
Δ = 0, (1.299)
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where L2 is the constant

L2 =
t2γ−2/3c2

s k2

a2 . (1.300)

The solutions of (1.299)are

Δ±(t) ∝ t−1/6J∓5/6ν

(
Lt−ν

ν

)
, ν := γ− 4

3
> 0. (1.301)

The Bessel functions J oscillate for t � L1/ν , whereas for t 
 L1/ν the solutions
behave like

Δ±(t) ∝ t−
1
6±

5
6 . (1.302)

Now, t > L1/ν signifies c2
s k2/a2 < 6πGρ . This is essentially again the Jeans criterion

k < kJ . At the same time, we see that

Δ+ ∝ t2/3 ∝ a, (1.303)

Δ− ∝ t−1. (1.304)

Thus, the growing mode increases like the scale factor. This means that the growth
factor in linear theory from recombination to redshifts of a few is only about 103.
So, initial fluctuations of ∼ 10−5 cannot become of order unity until the present.
Since long, this is considered as strong evidence for the existence of a dominant
dark matter component, whose fluctuations could grow already long before recom-
bination.

1.5.2 Large-Scale Solutions

Consider, as an important application, wavelengths larger than the Jeans length, i.e.,
cs(k/aH)� 1. Then, we can drop the last term in Eq. (1.294) and solve for Φ in
terms of quadratures:

Φ(t,k) = C(k)
H
a

∫ t

0

a(ρ + p)
H2 dt +

H
a

d(k). (1.305)

We write this differently by using in the integrand the following background equa-
tion (implied by (1.17)) and (1.18))

a(ρ + p)
H2 =

( a
H

)·
−a

(
1− K

ȧ2

)
.

With this, we obtain

Φ(t,k) = C(k)
[

1− H
a

∫ t

0
a

(
1− K

ȧ2

)
dt

]
+

H
a

d(k). (1.306)
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Let us work this out for a mixture of dust (p = 0) and radiation (p = 1
3ρ). We

use the “normalized” scale factor ζ := a/aeq, where aeq is the value of a when the
energy densities of dust (CDM) and radiation are equal. Then (see Sect. 1.1.3),

ρ =
1
2
ζ−4 +

1
2
ζ−3, p =

1
6
ζ−4. (1.307)

Note that

ζ ′ = kxζ , x :=
Ha
k

. (1.308)

From now on, we assume K = 0, Λ = 0. Then, the Friedmann equation gives

H2 = H2
eq
ζ + 1

2
ζ−4, (1.309)

thus

x2 =
ζ + 1
2ζ 2

1
ω2 , ω :=

1
xeq

=
k

(aH)eq
. (1.310)

In (1.306), we need the integral

H
a

∫ t

0
adt = Haeq

1
ζ

∫ η

0
ζ 2dη =

√
ζ + 1
ζ 3

∫ ζ

0

ζ 2√
ζ + 1

dζ .

As a result, we get for the growing mode

Φ(ζ ,k) = C(k)

[
1−

√
ζ + 1
ζ 3

∫ ζ

0

ζ 2√
ζ + 1

dζ

]
. (1.311)

From (1.288) and the definition of x, we obtain

Φ =
3
2

x2Δ , (1.312)

hence with (1.310)

Δ =
4
3
ω2C(k)

ζ 2

ζ + 1

[
1−

√
ζ + 1
ζ 3

∫ ζ

0

ζ 2√
ζ + 1

dζ

]
. (1.313)

The integral is elementary. One finds that Δ is proportional to

Ug =
1

ζ (ζ + 1)

[
ζ 3 +

2
9
ζ 2− 8

9
ζ − 16

9
+

16
9

√
ζ + 1

]
. (1.314)

This is a well-known result.

The decaying mode corresponds to the second term in (1.306) and is thus pro-
portional to
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Ud =
1

ζ
√

ζ + 1
. (1.315)

Limiting approximations of (1.314) are

Ug =
{

10
9 ζ 2 : ζ � 1

ζ : ζ 
 1.
(1.316)

For the potential Φ ∝ x2Δ , the growing mode is given by

Φ(ζ ) = Φ(0)
9

10
ζ + 1
ζ 2 Ug. (1.317)

Thus,

Φ(ζ ) = Φ(0)
{

1 : ζ � 1
9
10 : ζ 
 1.

(1.318)

In particular, Φ stays constant both in the radiation and in the matter dominated
eras. Recall that this holds only for cs(k/aH)� 1. We shall later study Eq. (1.294)
for arbitrary scales.

1.5.3 Solution for Dust

Using the Poisson equation (1.288), we can write (1.294) in terms of Δ

1 + w
a2H

[
H2

a(ρ + p)

(
a3ρ
H

Δ
)·]·

+ c2
s

k2

a2Δ = 0. (1.319)

For dust, this reduces to (using ρa3 = const)[
a2H2

(
Δ
H

)·]·
= 0. (1.320)

The general solution of this equation is

Δ(t,k) = C(k)H(t)
∫ t

0

dt ′

a2(t ′)H2(t ′)
+ d(k)H(t). (1.321)

This result can also be obtained in Newtonian perturbation theory. The first term
gives the growing mode and the second term the decaying mode.

Let us rewrite (1.321) in terms of the redshift z. From 1 + z = a0/a, we get dz =
−(1 + z)Hdt, so by (1.90)

dt
dz

=− 1
H0(1 + z)E(z)

, H(z) = H0E(z). (1.322)
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Therefore, the growing mode Dg(z) can be written in the form

Dg(z) =
5
2
ΩME(z)

∫ ∞

z

1 + z′

E3(z′)
dz′. (1.323)

Here, the normalization is chosen such that Dg(z) = (1 + z)−1 = a/a0 for ΩM =
1, ΩΛ = 0. This growth function is plotted in Fig. 7.12 of [4].

1.5.4 A Simple Relativistic Example

As an additional illustration, we now solve (1.293) for a single perfect fluid with
w = c2

s = const, K =Λ = 0. For a flat universe, the background equations are then

ρ ′+ 3
a′

a
(1 + w)ρ = 0,

(
a′

a

)2

=
8πG

3
a2ρ .

Inserting the ansatz
ρa2 = Aη−ν , a = a0(η/η0)β ,

we get
β 2

η2 =
8πG

3
Aη−ν ⇒ ν = 2, A =

3
8πG

β 2.

The energy equation then gives β = 2/(1 + 3w) (= 1 if radiation dominates). Let
x := kη and

f := xβ−2Δ ∝ ρa3Δ .

Also note that k/(aH) = x/β . With all this, we obtain from (1.293) for f[
d2

dx2 +
2
x

d
dx

+ c2
s −

β (β + 1)
x2

]
f = 0. (1.324)

The solutions are given in terms of Bessel functions:

f (x) = C0 jβ (csx)+ D0nβ (csx). (1.325)

This implies acoustic oscillations for csx
 1, i.e., for β (k/aH)
 1 (subhorizon
scales). In particular, if the radiation dominates (β = 1)

Δ ∝ x[C0 j1(csx)+ D0n1(csx)], (1.326)

and the growing mode is soon proportional to xcos(csx), whereas the term going
with sin(csx) dies out.

On the other hand, on superhorizon scales (csx� 1), one obtains

f 
Cxβ + Dx−(β+1),
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and thus

Δ 
 Cx2 + Dx−(2β−1),

Φ 
 3
2
β 2(C + Dx−(2β+1),

V 
 3
2
β
(
− 1
β + 1

Cx + Dx−2β
)

. (1.327)

We see that the growing mode behaves as Δ ∝ a2 in the radiation dominated phase
and Δ ∝ a in the matter dominated era.

The characteristic Jeans wave number is obtained when the square bracket in
(1.293) vanishes. This gives

λJ =
(
πc2

s

Gh

)1/2

, h = ρ + p. (1.328)

Exercises

1. Derive the exact expression for V . 2. Specialize the differential equation (1.292)
for Φ to the model of this section and solve the resulting equation for w = c2

s = 1/3
(radiation). Discuss the result. ♦

Remark

Equation (1.291) for radiation domination (w = c2
s = 1/3) and K = 0 =Λ becomes

Δ̈ + HΔ̇ +
1
3

k2

a2Δ =−16π
3

GρΔ .

As was pointed out in [31], several textbooks arrive instead at an incorrect equation.
Later, we shall study more complicated coupled fluid models that are important

for the evolution of perturbations before recombination. In the next part, the gen-
eral theory will be applied in attempts to understand the generation of primordial
perturbations from original quantum fluctuations.

1.6 CPT for Scalar Field Models

We begin by repeating the set up of Sect. 1.3.3.
We consider a minimally coupled scalar field ϕ , with Lagrangian density

L =−1
2

gμν∂μϕ∂νϕ−U(ϕ) (1.329)
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and corresponding field equation

�ϕ = U,ϕ . (1.330)

As a result of this, the energy-momentum tensor

T μ
ν = ∂ μϕ∂νϕ− δ μ

ν

(
1
2
∂λϕ∂λϕ +U(ϕ)

)
(1.331)

is covariantly conserved. The unperturbed quantities ρϕ , etc., are

ρϕ = −T 0
0 =

1
2a2 (ϕ ′)2 +U(ϕ), (1.332)

pϕ =
1
3

T i
i =

1
2a2 (ϕ ′)2−U(ϕ), (1.333)

hϕ = ρϕ + pϕ =
1
a2 (ϕ ′)2. (1.334)

Furthermore,

ρ ′ϕ =−3
a′

a
hϕ . (1.335)

It is not very sensible to introduce a “velocity of sound” cϕ .

1.6.1 Basic Perturbation Equations

Now, we consider small deviations from the ideal Friedmann behavior:

ϕ → ϕ0 + δϕ , ρϕ → ρϕ + δρ , etc. (1.336)

(The index 0 is only used for the unperturbed field ϕ .) Since Lξ ϕ0 = ξ 0ϕ ′0, the gauge
transformation of δϕ is

δϕ → δϕ + ξ 0ϕ ′0. (1.337)

Therefore,

δϕχ = δϕ− 1
a
ϕ ′0χ = δϕ−ϕ ′0(B + E ′) (1.338)

is gauge invariant (see (1.185)). Further perturbations are

δT 0
0 = − 1

a2

[
−ϕ ′20 A +ϕ ′0δϕ

′+U,ϕa2δϕ
]
, (1.339)

δT 0
i = − 1

a2ϕ
′
0δϕ,i, (1.340)

δT i
j = − 1

a2 [ϕ
′2
0 A−ϕ ′0δϕ

′+U,ϕa2δϕ ]δ i
j. (1.341)
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This gives (recall (1.207)).

δρ =
1
a2 [−ϕ ′20 A +ϕ ′0δϕ

′+ a2U,ϕδϕ ], (1.342)

δ p = pπL =
1
a2 [ϕ ′0δϕ

′ −ϕ
′2
0 A−a2U,ϕδϕ ], (1.343)

Π = 0, Q =−ϕ̇0δϕ . (1.344)

Einstein Equations

We insert these expressions into the general perturbation equations (1.232) – (1.239)
and obtain

κ = 3(HA− Ḋ)− 1
a2∇

2χ , (1.345)

1
a2 (∇2 + 3K)D+ Hκ =−4πG[ϕ̇0δ ϕ̇− ϕ̇2

0 A +U,ϕδϕ ], (1.346)

κ +
1
a2 (∇2 + 3K)χ = 12πGϕ̇0δϕ , (1.347)

A + D = χ̇ + Hχ . (1.348)

Equation (1.236) is in the present notation

κ̇ + 2Hκ =−
(

1
a2∇

2 + 3Ḣ

)
A + 4πG[δρ+ 3δ p],

with
δρ + 3δ p = 2(−2ϕ̇2

0 A + 2ϕ̇0δ ϕ̇−U,ϕδϕ).

If we also use (recall (1.278))

Ḣ =−4πGϕ̇2
0 +

K
a2 ,

we obtain

κ̇ + 2Hκ =−
(
∇2 + 3K

a2 + 4πGϕ̇2
0

)
A + 8πG(2ϕ̇0δ ϕ̇−U,ϕδϕ). (1.349)

The two remaining equations (1.238) and (1.239) are

(δρ)·+ 3H(δρ + δ p) = (ρ + p)(κ−3HA)− 1
a2 ∇

2Q, (1.350)

and
Q̇ + 3HQ =−(ρ + p)A− δ p, (1.351)
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with the expressions (1.342) – (1.344). Since these last two equations express
energy-momentum “conservation,” they are not independent of the others if we add
the field equation for ϕ ; we shall not make use of them below.

Equations (1.345) – (1.349) can immediately be written in a gauge invariant
form:

κχ = 3(HAχ− Ḋχ), (1.352)

1
a2 (∇2 + 3K)Dχ + Hκχ =−4πG[ϕ̇0δ ϕ̇χ − ϕ̇2

0 Aχ +U,ϕδϕχ ], (1.353)

κχ = 12πGϕ̇0δϕχ , (1.354)

Aχ + Dχ = 0 (1.355)

κ̇χ + 2Hκχ =−
(
∇2 + 3K

a2 + 4πGϕ̇2
0

)
Aχ + 8πG(2ϕ̇0δ ϕ̇χ −U,ϕδϕχ). (1.356)

From now on, we set K = 0. Use of (1.355) then gives us the following four basic
equations:

κχ = 3(Ȧχ + HAχ), (1.357)

1
a2 ∇

2Aχ −Hκχ = 4πG[ϕ̇0δ ϕ̇χ − ϕ̇2
0 Aχ +U,ϕδϕχ ], (1.358)

κχ = 12πGϕ̇0δϕχ , (1.359)

κ̇χ + 2Hκχ =− 1
a2∇

2Aχ −4πGϕ̇2
0Aχ + 8πG(2ϕ̇0δ ϕ̇χ −U,ϕδϕχ). (1.360)

Recall also
4πGϕ̇2

0 =−Ḣ. (1.361)

From (1.357) and (1.359), we get

Ȧχ + HAχ = 4πGϕ̇0δϕχ . (1.362)

The difference of (1.360) and (1.358) gives (using also (1.357))

(Ȧχ + HAχ)·+ 3H(Ȧχ + HAχ) = 4πG(ϕ̇0δ ϕ̇χ −U,ϕδϕχ)

i.e.,

Äχ + 4HȦχ +(Ḣ + 3H2)Aχ = 4πG(ϕ̇0δ ϕ̇χ −U,ϕδϕχ). (1.363)

Beside (1.362) and (1.363), we keep (1.358) in the form (making use of (1.361))

1
a2∇

2Aχ −3HȦχ− (Ḣ + 3H2)Aχ = 4πG(ϕ̇0δ ϕ̇χ +U,ϕδϕχ). (1.364)
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Scalar Field Equation

We now turn to the ϕ equation (1.330). Recall (the index 0 denotes in this subsection
the t-coordinate)

g00 = −(1 + 2A), g0 j =−aB, j, gi j = a2[γi j + 2Dγi j + 2E|i j];

g00 = −(1−2A), g0 j =−1
a

B, j, gi j =
1
a2 [γ i j−2Dγ i j−2E |i j];

√
−g = a3√γ(1 + A + 3D+∇2E.

Up to first order, we have (note that ∂ jϕ and g0 j are of first order)

�ϕ =
1√−g

∂μ(
√
−ggμν∂νϕ) =

1√−g
(
√
−gg00ϕ̇)·+

1
a2 ∇

2δϕ− 1
a
ϕ̇0∇2B.

Using the zeroth-order field equation (1.143), we readily find

δ ϕ̈ + 3Hδ ϕ̇+
(
− 1

a2∇
2 +U,ϕϕ

)
δϕ =

(Ȧ−3Ḋ−∇2Ė + 3HA− 1
a
∇2B)ϕ̇0− (3Hϕ̇0 + 2U,ϕ)A.

Recalling the definition of κ ,

κ = 3(HA− Ḋ)− 1
a
∇2(B + aĖ),

we finally obtain the perturbed field equation in the form

δ ϕ̈ + 3Hδ ϕ̇+
(
− 1

a2∇
2 +U,ϕϕ

)
δϕ = (κ + Ȧ)ϕ̇0− (3Hϕ̇0 + 2U,ϕ)A. (1.365)

By putting the index χ at all perturbation amplitudes, one obtains a gauge invariant
equation. Using also (1.357), one arrives at

δ ϕ̈χ + 3Hδ ϕ̇χ +
(
− 1

a2∇
2 +U,ϕϕ

)
δϕχ = 4ϕ̇0Ȧχ −2U,ϕAχ . (1.366)

Our basic – but not independent – equations are (1.362), (1.363), (1.364), and
(1.366).

1.6.2 Consequences and Reformulations

In (1.222), we have introduced the curvature perturbation (recall also (1.344))

R := DQ = Dχ −
H
ϕ̇0

δϕχ = D− H
ϕ̇0

δϕ . (1.367)
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It will turn out to be convenient to work also with

u =−zR, z :=
aϕ̇0

H
, (1.368)

thus

u = a

[
δϕχ −

ϕ̇0

H
Dχ

]
= a

[
δϕ− ϕ̇0

H
D

]
. (1.369)

This amplitude will play an important role because we shall obtain from the previous
formulae the simple equation

u′′ −∇2u− z′′

z
u = 0. (1.370)

This is a Klein–Gordon equation with a time-dependent mass.

We next rewrite the basic equations in terms of the conformal time:

∇2Aχ −3H A′χ − (H ′+ 3H 2)Aχ = 4πG(ϕ ′0δϕ
′
χ +U,ϕa2δϕχ), (1.371)

A′χ +H Aχ = 4πGϕ ′0δϕχ , (1.372)

A′′χ + 3H A′χ +(H ′+ 2H 2)Aχ = 4πG(ϕ ′0δϕ
′
χ −U,ϕa2δϕχ), (1.373)

δϕ ′′χ + 2H δϕ ′χ −∇2δϕχ +U,ϕϕa2δϕχ = 4ϕ ′0A′χ −2U,ϕa2Aχ . (1.374)

Let us first express u (or R) in terms of Aχ . From (4.40), (4.39) we obtain in a
first step

4πGzu = 4πGz2Aχ + 4πG
z2H

ϕ ′0
δϕχ .

For the first term on the right, we use the unperturbed equation (see (1.361))

4πGϕ
′2
0 = H 2−H ′, (1.375)

and in the second term, we make use of (1.372). Collecting terms gives

4πGzu =
(

a2Aχ

H

)′
. (1.376)

Next, we derive an equation for Aχ alone. For this, we subtract (1.371) from
(1.373) and use (1.372) to express δϕχ in terms of Aχ and A′χ . Moreover, we make
use of (1.375) and the unperturbed equation (1.143),

ϕ ′′0 + 2H ϕ ′0 +U,ϕ(ϕ0)a2 = 0. (1.377)
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Detailed Derivation

The quoted equations give

A′′χ + 6H A′χ −∇2Aχ + 2(H ′+ 2H 2)Aχ =

−8πGU,ϕa2δϕχ =
2
ϕ ′0

(ϕ ′′0 + 2H ϕ ′0)(A
′
χ +H Aχ),

thus
A′′χ + 2(H −ϕ ′′0 /ϕ ′0)A

′
χ −∇2Aχ + 2(H ′ −H ϕ ′′0 /ϕ ′0)Aχ = 0.

Rewriting the coefficients of Aχ ,A′χ slightly, we obtain the important equation:

A′′χ + 2
(a/ϕ ′0)′

a/ϕ ′0
A′χ−∇2Aχ + 2ϕ ′0(H /ϕ ′0)

′Aχ = 0. (1.378)

Now, we return to (1.376) and write this, using (1.375), as follows:

u
z

= Aχ +
A′χ +H Aχ

L
, (1.379)

where

L = 4πG
z2H

a2 = 4πG(ϕ ′0)
2/H = H −H ′/H . (1.380)

Differentiating (1.379) implies(
u
z

)′
= A′χ +

A′′χ +(H Aχ)′

L
−

A′χ +H Aχ

L2 L′

or, making use of (4.52) and (4.50),

L

(
u
z

)′
= (H −H ′/H )A′χ −2

(a/ϕ ′0)′

a/ϕ ′0
A′χ +∇2Aχ

−2ϕ ′0(H /ϕ ′0)
′Aχ +(H Aχ)′ − (A′χ +H Aχ)

(ϕ ′20 /H )′

ϕ ′20 /H
.

From this, one easily finds the simple equation

4πG
H z2

a2

(
u
z

)′
= ∇2Aχ . (1.381)

Finally, we derive the announced Eq. (1.370). To this end, we rewrite the last
equation as

∇2Aχ = 4πG
H

a2 (zu′ − z′u),
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from which we get

∇2A′χ = 4πG

(
H

a2

)′
(zu′ − z′u)+ 4πG

H

a2 (zu′′ − z′′u).

Taking the Laplacian of (4.51) gives

4πG
H

a2 z∇2u = L∇2Aχ +∇2A′χ +H ∇2Aχ .

Combining the last two equations and making use of (1.380) shows that indeed
(1.370) holds.

Summarizing, we have the basic equations

u′′ −∇2u− z′′

z
u = 0, (1.382)

∇2Aχ = 4πG
H

a2 (zu′ − z′u), (1.383)(
a2Aχ

H

)′
= 4πGzu. (1.384)

We now discuss some important consequences of these equations. The first con-
cerns the curvature perturbation R =−u/z (original definition in (1.367)). In terms
of this quantity, Eq. (1.383) can be written as

Ṙ

H
=

1
1−H ′/H 2

1
(aH)2 (−∇2Aχ). (1.385)

The right-hand side is of order (k/aH)2, hence very small on scales much larger
than the Hubble radius. It is common practice to use the terms “Hubble length”
and “horizon” interchangeably and to call length scales satisfying k/aH � 1 to be
super-horizon. (This can cause confusion; “super-Hubble” might be a better term,
but the jargon can probably not be changed anymore.)

We have studied Ṙ already at the end of Sect. 1.4.3. I recall (1.279):

Ṙ =
H

1 + w

[
2
3

c2
s

1
(Ha)2 ∇

2Dχ −wΓ − 2
3

w∇2Π
]
. (1.386)

This general equation also holds for our scalar field model, for which Π = 0, Dχ =
−Aχ . The first term on the right in (1.386) is again small on super-horizon scales.
So the nonadiabatic piece pΓ = δ p− c2

sδρ must also be small on large scales. This
means that the perturbations are adiabatic. We shall show this more directly further
below, by deriving the following expression for Γ :

pΓ =− U,ϕ

6πGHϕ̇
1
a2 ∇

2Aχ . (1.387)
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After inflation, when relativistic fluids dominate the matter content, Eq. (1.386)
still holds. The first term on the right is small on scales larger than the sound hori-
zon. Since Γ and Π are then not important, we see that for super-horizon scales R
remains constant also after inflation. This will become important in the study of
CMB anisotropies.

Later, it will be useful to have a handy expression of Aχ in terms of R. According
to (1.222) and (1.221), we have

R = Dχ +
H

a(ρ + p)
Qχ . (1.388)

We rewrite this by combining (1.240) and (1.242)

R = Dχ −
H

4πGa2(ρ + p)
(H Aχ −D′χ). (1.389)

At this point, we specialize again to K = 0 and use the background equation

4πGa2(ρ + p) = H 2(1−H ′/H 2)

to obtain

R = Dχ −
1

εH
(H Aχ −D′χ), (1.390)

where
ε := 1−H ′/H 2. (1.391)

If Π = 0, then Dχ =−Aχ , so

−R = Aχ +
1

εH
(H Aχ + A′χ), (1.392)

I claim that for a constant R

Aχ =−
(

1−H

a2

∫
a2dη

)
R. (1.393)

We prove this by showing that (1.393) satisfies (1.392). Differentiating the last equa-
tion gives by the same equation and (1.391) our claim.

As a special case, we consider (always for K = 0) w = const. Then, as shown in
Sect. 1.5.4,

a = a0(η/η0)β , β =
2

3w+ 1
. (1.394)

Thus,
H

a2

∫
a2dη =

β
2β + 1

,
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hence,

Aχ =−3(w+ 1)
3w+ 5

R. (1.395)

This will be important later.
Derivation of (1.387): By definition

pΓ = δ p− c2
sδρ , c2

s = ṗ/ρ̇⇒ pΓ =
ρ̇δ p− ṗδρ

ρ̇
. (1.396)

Now, by (1.335) and (1.333)

ρ̇ =−3Hϕ̇2, ṗ = ϕ̇(ϕ̈−U,ϕ) =−ϕ̇(3Hϕ̇ + 2U,ϕ),

and by (1.342) and (1.343)

δρ =−ϕ̇2A + ϕ̇δ ϕ̇ +U,ϕδϕ , δ p = ϕ̇δ ϕ̇− ϕ̇2A−U,ϕδϕ .

With these expressions, one readily finds

pΓ =−2
3

U,ϕ

Hϕ̇
[−ϕ̈δϕ + ϕ̇(δ ϕ̇− ϕ̇A)]. (1.397)

Till now, we have not used the perturbed field equations. The square bracket on
the right of the last equation appears in the combination (1.346)-H· (1.347) for the
right-hand sides. Since the right-hand side of (1.397) must be gauge invariant, we
can work in the gauge χ = 0, and obtain (for K = 0) from (1.346), (1.347)

1
a2 ∇

2A = 4πG[−ϕ̈δϕ + ϕ̇(δ ϕ̇− ϕ̇A)],

thus (1.387) since in the longitudinal gauge A = Aχ .
Application. We return to Eq. (1.385) and use there (1.387) to obtain

Ṙ = 4πG
ρ p

U̇
Γ . (1.398)

As a result of (1.387), Γ is small on super-horizon scales and hence (1.398) tells
us that R is almost constant (as we knew before).

The crucial conclusion is that the perturbations are adiabatic, which is not obvi-
ous (I think). For multifield inflation this is, in general, not the case (see, e.g., [32]).

1.7 Quantization, Primordial Power Spectra

The main goal of this section is to derive the primordial power spectra that are
generated as a result of quantum fluctuations during an inflationary period.
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1.7.1 Power Spectrum of the Inflaton Field

For the quantization of the scalar field that drives the inflation, we note that the
equation of motion (1.370) for the scalar perturbation (1.369),

u = a

[
δϕχ −

ϕ̇0

H
Dχ

]
= a

[
δϕχ +

ϕ ′0
H

Aχ

]
, (1.399)

is the Euler–Lagrange equation for the effective action

Se f f =
1
2

∫
d3xdη

[
(u′)2− (∇u)2 +

z′′

z
u2

]
. (1.400)

The normalization is chosen such that Se f f reduces to the correct action when grav-
ity is switched off. (In [25], this action is obtained by considering the quadratic piece
of the full action with Lagrange density (1.135), but this calculation is extremely
tedious.)

The effective Lagrangian of (1.399) is

L =
1
2

[
(u′)2− (∇u)2 +

z′′

z
u2

]
. (1.401)

This is just a free theory with a time-dependent mass m2 = −z′′/z. Therefore, the
quantization is straightforward. Once u is quantized, the quantization ofΨ = Aχ is
then fixed (see Eq. (1.383)).

The canonical momentum is

π =
∂L

∂u′
= u′, (1.402)

and the canonical commutation relations are the usual ones:[
û(η ,x), û(η ,x′)

]
=

[
π̂(η ,x), π̂(η ,x′)

]
= 0,

[
û(η ,x), π̂(η ,x′)

]
= iδ (3)(x−x′).

(1.403)

Let us expand the field operator û(η ,x) in terms of eigenmodes uk(η)eik·x of Eq.
(1.370), for which

u′′k +
(

k2− z′′

z

)
uk = 0. (1.404)

The time-independent normalization is chosen to be

u∗ku′k−uku′∗k =−i. (1.405)

In the decomposition

û(η ,x) = (2π)−3/2
∫

d3k
[
uk(η)âkeik·x + u∗k(η)â†

ke−ik·x
]
, (1.406)
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the coefficients âk, â
†
k are annihilation and creation operators with the usual com-

mutation relations:

[âk, âk′ ] = [â†
k, â

†
k′ ] = 0, [âk, â

†
k′ ] = δ (3)(k−k′). (1.407)

With the normalization (1.405), these imply indeed the commutation relations
(1.403). (Translate (1.406) with the help of (1.383) into a similar expansion of Ψ ,
whose mode functions are determined by uk(η).)

The modes uk(η) are chosen such that at very short distances (k/aH → ∞), they
approach the plane waves of the gravity free case with positive frequencies

uk(η)∼ 1√
2k

e−ikη (k/aH 
 1). (1.408)

In the opposite long-wave regime, where k can be neglected in (1.404), we see that
the growing mode solution is

uk ∝ z (k/aH � 1), (1.409)

i.e., uk/z and thus R is constant on super-horizon scales. This has to be so on the
basis of what we saw in Sect. 1.6.2. The power spectrum is conveniently defined in
terms of R. We have (we do not put a hat on R)

R(η ,x) = (2π)−3/2
∫

Rk(η)eik·xd3k, (1.410)

with

Rk(η) =
[

uk(η)
z

âk +
u∗k(η)

z
â†
−k

]
. (1.411)

The power spectrum is defined by (see also Appendix A)

〈0|RkR
†
k′ |0〉=:

2π2

k3 PR(k)δ (3)(k−k′). (1.412)

From (1.411), we obtain

PR(k) =
k3

2π2

|uk(η)|2
z2 . (1.413)

Below we shall work this out for the inflationary models considered in Chap. 1.6.
Before, we should address the question why we considered the two-point corre-
lation for the Fock vacuum relative to our choice of modes uk(η) (often called
the Bunch–Davies vacuum). A priori, the initial state could contain all kinds of
excitations, for instance a thermal distribution. These would, however, be red-
shifted away by the enormous inflationary expansion, and the final power spec-
trum on interesting scales, much larger than the Hubble length, should be largely
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independent of possible initial excitations. Plausibility arguments for the choice of
the Bunch–Davies vacuum state are discussed in [33].

There is also the important question of how the quantum fields and (vacuum)
expectations of products of them can be reinterpreted on large scales at the end of
inflation in terms of classical random fields. There must be some kind of decoher-
ence at work, but it is not obvious how this happens. A necessary condition is that
the commutator [û(x,η), û(x′,η ′)] can be neglected. It is easy to express this as
a Fourier integral of products of the mode functions uk(η) for different times η .
Using expressions for these valid well outside the horizon, e.g. (1.423) below, one
can see explicitly that such modes do not contribute to the commutator. Unfortu-
nately, I cannot say more about this issue.

1.7.1.1 Power Spectrum for Power-Law Inflation

For power-law inflation, one can derive an exact expression for (1.413). For the
mode equation (1.404), we need z′′/z. To compute this, we insert in the definition
(1.368) of z the results of Sect. 1.3.3.1, giving immediately z∝ a(t)∝ t p. In addition,
(1.149) implies t ∝ η1/1−p, so a(η) ∝ η p/1−p. Hence,

z′′

z
=

(
ν2− 1

4

)
1
η2 , (1.414)

where

ν2− 1
4

=
p(2p−1)
(p−1)2 . (1.415)

Using this in (1.404) gives the mode equation

u′′k +
(

k2− ν2−1/4
η2

)
uk = 0. (1.416)

This can be solved in terms of Bessel functions. Before proceeding with this, we
note two further relations that will be needed later. First, from H = p/t and a(t) =
a0t p, we get

η =− 1
aH

1
1−1/p

. (1.417)

In addition,
z
a

=
ϕ̇
H

=
√

p
4π

MPl/t
(p/t)

=
1√
4π p

MPl,

so

ε :=− Ḣ
H2 =

1
p

=
4π
M2

Pl

z2

a2 . (1.418)
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Let us now turn to the mode equation (5.18). According to [34], 9.1.49, the func-

tions w(z) = z1/2Cν (λ z), Cν ∝ H(1)
ν ,H(2)

ν , ... satisfy the differential equation

w′′+
(
λ 2− ν2−1/4

z2

)
w = 0. (1.419)

From the asymptotic formula for large z ([34], 9.2.3),

H(1)
ν ∼

√
2
πz

ei(z− 1
2 νπ−

1
4π) (−π < argz < π), (1.420)

we see that the correct solutions are

uk(η) =
√
π

2
ei(ν+ 1

2 ) π2 (−η)1/2H(1)
ν (−kη). (1.421)

Indeed, since −kη = (k/aH)(1− 1/p)−1, k/aH 
 1 means large −kη , hence
(1.421) satisfies (1.408). Moreover, the Wronskian is normalized according to
(1.405) (use 9.1.9 in [34]).

In what follows, we are interested in modes that are well outside the horizon:
(k/aH)� 1. In this limit, we can use (9.1.9 in [34])

iH(1)
ν (z)∼ 1

π
Γ (ν)

(
1
2

z

)−ν
(z→ 0) (1.422)

to find

uk(η)
 2ν−3/2ei(ν−1/2)π/2 Γ (ν)
Γ (3/2)

1√
2k

(−kη)−ν+1/2. (1.423)

Therefore, by (1.417) and (1.418)

|uk|= 2ν−3/2 Γ (ν)
Γ (3/2)

(1− ε)ν−1/2 1√
2k

(
k

aH

)−ν+1/2

. (1.424)

The form (1.424) will turn out to hold also in more general situations studied below,
however, with a different ε . We write (1.424) as

|uk|= C(ν)
1√
2k

(
k

aH

)−ν+1/2

, (1.425)

with

C(ν) = 2ν−3/2 Γ (ν)
Γ (3/2)

(1− ε)ν−1/2 (1.426)

(recall ν = 3
2 + 1

p−1).
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The power spectrum is thus

PR(k) =
k3

2π2

∣∣∣∣uk(η)
z2

∣∣∣∣2 =
k3

2π2

1
z2 C2(ν)

1
2k

(
k

aH

)1−2ν
. (1.427)

For z, we could use (1.418). There is, however, a formula which holds more gener-
ally: From the definition (1.149) of z and (1.147), we get

z =−M2
Pl

4π
a
H

dH
dϕ

. (1.428)

Inserting this in the previous equation, we obtain for the power spectrum on super-
horizon scales

PR(k) = C2(ν)
4

M4
Pl

H4

(dH/dϕ)2

(
k

aH

)3−2ν
. (1.429)

For power-law inflation, a comparison of (1.418) and (1.428) shows that

M2
Pl

4π
(dH/dϕ)2

H2 =
1
p

= ε. (1.430)

The asymptotic expression (1.429), valid for k/aH � 1, remains, as we know,
constant in time14. Therefore, we can evaluate it at horizon crossing k = aH:

PR(k) = C2(ν)
4

M4
Pl

H4

(dH/dϕ)2

∣∣∣∣
k=aH

. (1.431)

We emphasize that this is not the value of the spectrum at the moment when the
scale crosses outside the Hubble radius. We have just rewritten the asymptotic value
for k/aH � 1 in terms of quantities at horizon crossing.

Note also that C(ν) 
 1. The result (1.431) holds, as we shall see below, also in
the slow-roll approximation.

1.7.1.2 Power Spectrum in the Slow-Roll Approximation

We now define two slow-roll parameters and rewrite them with the help of (1.146)
and (1.147):

14 Let us check this explicitly. Using (1.430), we can write (1.429) as

PR(k) = C2(ν)
1

πM2
Pl

H2

ε

(
k

aH

)3−2ν

,

and we thus have to show that H2(aH)2ν−3 is time independent. This is indeed the case since
aH ∝ 1/η , H = p/t, t ∝ η1/(1−p) ⇒ H ∝ η−1/(1−p).
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ε = − Ḣ
H2 =

4π
M2

Pl

ϕ̇2

H2 =
M2

Pl

4π

(
dH/dϕ
H(ϕ)

)2

, (1.432)

δ = − ϕ̈
Hϕ̇

=
M2

Pl

4π
d2H/dϕ2

H
(1.433)

(| ε |, | δ |� 1 in the slow-roll approximation). These parameters are approximately
related to εU ,ηU introduced in (1.154) and (1.155), as we now show. From (1.145)
for K = 0 and (1.146), we obtain

H2(1− ε
3
) =

8π
3M2

Pl

U(ϕ). (1.434)

For small | ε |, we obtain from this the following approximate expressions for the
slow-roll parameters:

ε 
 M2
Pl

16π

(
U,ϕ

U

)2

= εU , (1.435)

δ 
 M2
Pl

8π
U,ϕϕ

U
− M2

Pl

16π

(
U,ϕ

U

)2

= ηU − εU . (1.436)

(In the literature, the letter η is often used instead of δ , but η is already occupied
for the conformal time.)

We use these small parameters to approximate various quantities, such as the
effective mass z′′/z.

First, we note that (1.432) and (1.428) imply the relations15

ε = 1− H ′

H 2 =
4π
M2

Pl

z2

a2 . (1.437)

According to (1.433), we have δ = 1−ϕ ′′/ϕ ′H . For the last term, we obtain from
the definition z = aϕ ′/H

ϕ ′′

ϕ ′H
=

z′

zH
− (1−H ′/H 2).

Hence,

δ = 1 + ε− z′

zH
. (1.438)

15 Note also that
ä
a
≡ Ḣ +H2 = (1− ε)H2,

so ä > 0 for ε < 1.
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Next, we look for a convenient expression for the conformal time. From (1.437),
we get

ε
aH

da = εdη = dη− (H ′/H 2)dη = dη + d

(
1

H

)
,

so

η =− 1
H

+
∫ ε

aH
da. (1.439)

Now, we determine z′′/z to first order in ε and δ . From (1.438), i.e., z′/z =
H (1 + ε− δ ), we get

z′′

z
−

(
z′

z

)2

= (ε ′ − δ ′)H +(1 + ε− δ )H ′,

hence,

z′′/z = H 2
[
ε ′ − δ ′

H
+(1 + ε− δ )(2− δ )

]
. (1.440)

We can consider ε ′,δ ′ as of second order: For instance, by (1.437)

ε ′ =
4π
M2

Pl

2zz′

a2 −2εH

or
ε ′ = 2H ε(ε− δ ). (1.441)

Treating ε,δ as constant, Eq. (1.439) gives η =−(1/H )+ εη , thus

η =− 1
H

1
1− ε

. (1.442)

This generalizes (1.417), in which ε = 1/p (see (1.418)). Using this in (1.440), we
obtain first order

z′′

z
=

1
η2 (2 + 2ε−3δ ).

We write this as (1.414), but with a different ν:

z′′

z
=

(
ν2− 1

4

)
1
η2 , ν :=

1 + ε− δ
1− ε

+
1
2
. (1.443)

As a result of all this, we can immediately write down the power spectrum in the
slow-roll approximation. From the derivation it is clear that the formula (1.431) still
holds, and the same is true for (1.426). Since ν is close to 3/2, we have C(ν) 
 1.
In sufficient approximation, we thus finally obtain the important result:

PR(k) =
4

M4
Pl

H4

(dH/dϕ)2

∣∣∣∣
k=aH

=
1

πM2
Pl

H2

ε

(
k

aH

)3−2ν
. (1.444)
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This spectrum is nearly scale-free. This is evident if we use the formula (1.429),
from which we get

n−1 :=
d lnPR(k)

d lnk
= 3−2ν = 2δ −4ε, (1.445)

so n is close to unity.

Exercise

Show that (1.445) follows also from the first equation in (1.444).
Solution: In a first step, we get

n−1 =
d

dϕ
ln

[
H4

(dH/dϕ)2

∣∣∣∣
k=aH

]
dϕ

d lnk
.

For the last factor, we note that k = aH implies

d lnk =
da
a

+
dH
H
⇒ d lnk

dϕ
=

H
ϕ̇

+
dH/dϕ

H

or, with (1.146),

d lnk
dϕ

=
4π
M2

Pl

H
dH/dϕ

[
M2

Pl

4π

(
dH/dϕ

H

)2

−1

]
.

Hence, using (1.432),
dϕ

d lnk
=

M2
Pl

4π
dH/dϕ

H
1

ε−1
.

Therefore,

n−1 =
M2

Pl

4π
dH/dϕ

H
1

ε−1

[
4

dH/dϕ
H

−2
d2H/dϕ2

dH/dϕ

]
=

1
ε−1

(4ε−2δ )

by (1.432) and (1.433).♦

1.7.1.3 Power Spectrum for Density Fluctuations

Let PΦ(k) be the power spectrum for the Bardeen potential Φ = Dχ . The latter is
related to the density fluctuation Δ by the Poisson equation (1.167),

k2Φ = 4πGρa2Δ . (1.446)

Recall also that for Π = 0, we have Φ = −Ψ (= −Aχ), and according to (1.395),
the following relation for a period with w = const.
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Φ =
3(w+ 1)
3w+ 5

R, (1.447)

and thus,

P1/2
Φ (k) =

3(w+ 1)
3w+ 5

P1/2
R (k). (1.448)

Inserting (1.444) gives for the primordial spectrum on super-horizon scales

PΦ(k) =
[

3(w+ 1)
3w+ 5

]2 4

M4
Pl

H4

(dH/dϕ)2

∣∣∣∣
k=aH

. (1.449)

From (1.446), we obtain

Δ(k) =
2(w+ 1)
3w+ 5

(
k

aH

)2

R(k), (1.450)

and thus for the power spectrum of Δ :

PΔ (k) =
4
9

(
k

aH

)4

PΦ(k) =
4
9

[
3(w+ 1)
3w+ 5

]2 ( k
aH

)4

PR(k). (1.451)

During the plasma era until recombination, the primordial spectra (1.444) and
(1.449) are modified in a way that will be studied in Part III of this book. The
modification is described by the so-called transfer function16 T (k,z), normalized
such that T (k) 
 1 for (k/aH)� 1. Including this, we have in the (dark) matter
dominated era (in particular at the time of recombination)

PΔ (k) =
4

25

(
k

aH

)4

Pprim
R (k)T 2(k), (1.452)

where Pprim
R (k) denotes the primordial spectrum ((1.444) for our simple model of

inflation).

Remark

The fact that R is constant on super-horizon scales allows us to establish the relation
between ΔH(k) := Δ(k,η) |k=aH and Δ(k,η) on these scales. From (1.450), we see
that

Δ(k,η) =
(

k
aH

)2

ΔH(k). (1.453)

16 For more on this, see Sect. 1.8.2.4, where the z-dependence of T (k, z) is explicitly split off.
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In particular, if |R(k) |∝ kn−1, thus | Δ(k,η) |2= Akn+3, then

| ΔH(k) |2= Akn−1, (1.454)

and this is independent of k for n = 1. In this case, the density fluctuation for
each mode at horizon crossing has the same magnitude. This explains why the case
n = 1 – also called the Harrison-Zel’dovich spectrum – is called scale free.

1.7.2 Generation of Gravitational Waves

In this section, we determine the power spectrum of gravitational waves by quantiz-
ing tensor perturbations of the metric.

These are parametrized as follows:

gμν = a2(η)[γμν + 2Hμν ], (1.455)

where a2(η)γμν is the Friedmann metric (γμ0 = 0, γi j: metric of (Σ ,γ)), and Hμν
satisfies the transverse traceless (TT) gauge conditions

H00 = H0i = Hi
i = Hi

j
| j = 0. (1.456)

The tensor perturbation amplitudes Hi j remain invariant under gauge transforma-
tions (1.178). Indeed, as in Sect. 1.4.1.4, one readily finds

Lξ g(0) = 2a2(η)
{
−(H ξ 0 +(ξ 0)′)dη2 +(ξ ′i − ξ 0

|i)dxidη

+(H γi jξ 0 + ξi| j)dxidx j} .

Decomposing ξ μ into scalar and vector parts gives the scalar and vector contribu-
tions of Lξ g(0), but there are obviously no tensor contributions.

The perturbations of the Einstein tensor belonging to Hμν are derived in the Ap-
pendix to this chapter. The result is

δG0
0 = δG0

j = δGi
0 = 0,

δGi
j =

1
a2

[
(Hi

j)′′+ 2
a′

a
(Hi

j)′+(−∇2 + 2K)Hi
j

]
. (1.457)

We claim that the quadratic part of the Einstein–Hilbert action is

S(2) =
M2

Pl

16π

∫ [
(Hi

k)′(Hk
i)′ −Hi

k|lH
k

i
|l−2KHi

kHk
i

]
a2(η)dη

√
γd3x. (1.458)

(Remember that the indices are raised and lowered with γi j.) Note first that
√−gd4x =√γa4(η)dηd3x+ quadratic terms in Hi j because Hi j is traceless. A direct derivation

of (1.458) from the Einstein–Hilbert action would be extremely tedious (see [25]).
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It suffices, however, to show that the variation of (1.458) is just the linearization of
the general variation formula (see Sect. 2.3 of [9])

δS =−M2
Pl

16π

∫
Gμνδgμν

√
−gd4x (1.459)

for the Einstein–Hilbert action

S =
M2

Pl

16π

∫
R
√
−gd4x. (1.460)

Now, we have after the usual partial integrations,

δS(2) =−M2
Pl

8π

∫ [
(a2Hi

k)′)′

a2 +(−∇2 + 2K)Hi
k

]
δHk

ia
2(η)dη

√
γd3x.

Since δHk
i = 1

2δgk
i this is, with the expression (1.457), indeed the linearization of

(1.459).
We absorb in (1.458), the factor a2(η) by introducing the rescaled perturbation

Pi
j(x) :=

(
M2

Pl

8π

)1/2

a(η)Hi
j(x). (1.461)

Then S(2) becomes, after another partial integration,

S(2) =
1
2

∫ [
(Pi

k)′(Pk
i)′ −Pi

k|lP
k

i
|l +

(
a′′

a
−2K

)
Pi

kPk
i

]
dη
√
γd3x. (1.462)

In what follows, we take again K = 0. Then, we have the following Fourier
decomposition: Let εi j(k,λ ) be the two polarization tensors, satisfying

εi j = ε ji, ε i
i = 0, kiεi j(k,λ ) = 0, εi

j(k,λ )ε j
i(k,λ ′)∗ = δλλ ′,

εi j(−k,λ ) = ε∗i j(k,λ ), (1.463)

then
Pi

j(η ,x) = (2π)−3/2
∫

d3k∑
λ

vk,λ (η)ε i
j(k,λ )eik·x. (1.464)

In terms of vk,λ (η), the action becomes

S(2) =
1
2

∫
dη∑

λ

∫
d3k

[
|v′k,λ |2−

(
k2− a′′

a

)
|vk,λ |2

]
as for two scalar fields in Minkowski spacetime, each with an effective mass a′′/a.
The field is now quantized by interpreting vk,λ (η) as the operator

v̂k,λ (η) = vk(η)âk,λ + v∗k(η)â†
−k,λ , (1.465)
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where vk(η)εi j(k,λ )eik·x satisfies the field equation17 corresponding to the action
(1.462), that is (for K = 0)

v′′k +
(

k2− a′′

a

)
vk = 0. (1.466)

(Instead of z′′/z in (1.404), we now have the “mass” a′′/a.)
In the long-wavelength regime, the growing mode now behaves as vk ∝ a, hence

vk/a remains constant.
Again, we have to impose the normalization (1.405):

v∗kv′k− vkv′∗k =−i, (1.467)

and the asymptotic behavior

vk(η)∼ 1√
2k

e−ikη (k/aH 
 1). (1.468)

The decomposition (1.464) translates to

Hi
j(η ,x) = (2π)−3/2

∫
d3k∑

λ
ĥk,λ (η)ε i

j(k,λ )eik·x, (1.469)

where

ĥk,λ (η) =
(

8π
M2

Pl

)1/2 1
a

v̂k,λ (η). (1.470)

We define the power spectrum of gravitational waves by

2π2

k3 Pg(k)δ (3)(k−k′) =∑
λ
〈0|ĥk,λ ĥ†

k′,λ |0〉, (1.471)

thus

∑
λ
〈0|v̂k,λ v̂†

k′,λ |0〉=
M2

Pla
2

8π
2π2

k3 Pg(k)δ (3)(k−k′). (1.472)

Using (1.465) for the left-hand side, we obtain instead of (1.413)18

Pg(k) = 2
8π

M2
Pla

2

k3

2π2 |vk(η)|2. (1.473)

17 We ignore possible tensor contributions to the energy-momentum tensor.
18 In the literature, one often finds an expression for Pg(k) which is four times larger because the
power spectrum is defined in terms of hi j = 2Hi j .
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The factor 2 on the right is due to the two polarizations. Note that

〈Hi j(η ,x)Hi j(η ,x)〉=
∫

dk
k

Pg(η ,k). (1.474)

1.7.2.1 Power Spectrum for Power-Law Inflation

For the modes vk(η), we need a′′/a. From

a′′

a
= (aH )′/a = H 2 +H ′ = 2H 2

[
1− 1

2
(1−H ′/H 2)

]
and (1.437), we obtain the generally valid formula

a′′

a
= 2H 2(1− ε/2). (1.475)

For power-law inflation, we had ε = 1/p, a(η) ∝ η p/(1−p), thus

H =
p

p−1
1
η

and hence,

a′′

a
=

(
μ2− 1

4

)
1
η2 , μ :=

3
2

+
1

p−1
. (1.476)

This shows that for power-law inflation, vk(η) is identical to uk(η). Therefore,
we have by Eq. (1.425)

|vk|= C(μ)
1√
2k

(
k

aH

)−μ+1/2

, (1.477)

with

C(μ) = 2μ−3/2 Γ (μ)
Γ (3/2)

(1− ε)μ−1/2. (1.478)

Inserting this in (1.473) gives

Pg(k) =
16π
M2

Pl

k3

2π2

1
a2 C2(μ)

1
2k

(
k

aH

)1−2μ
(1.479)

or

Pg(k) = C2(μ)
4
π

(
H

MPl

)2 ( k
aH

)3−2μ
. (1.480)
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Alternatively, we have

Pg(k) = C2(μ)
4
π

H2

M2
Pl

∣∣∣∣
k=aH

. (1.481)

1.7.2.2 Slow-Roll Approximation

From (1.475) and (1.442), we obtain again the first equation in (1.476), but with a
different μ :

μ =
1

1− ε
+

1
2
. (1.482)

Hence, vk(η) is equal to uk(η) if ν is replaced by μ . The formula (1.481), with C(μ)
given by (1.478), remains therefore valid, but now μ is given by (1.482), where ε is
the slow-roll parameter in (1.432) or (1.437). Again C(μ)
 1.

The power index for tensor perturbations,

nT (k) :=
d lnPg(k)

d lnk
, (1.483)

can be read off from (1.480):
nT 
−2ε, (1.484)

showing that the power spectrum is almost flat19.

Consistency Equation

Let us collect some of the important formulas:

P1/2
R (k) = 2

H2

M2
Pl|dH/dϕ |

∣∣∣∣
k=aH

, (1.485)

P1/2
g (k) =

2√
π

H
MPl

∣∣∣∣
k=aH

, (1.486)

n−1 = 2δ −4ε, (1.487)

nT = −2ε. (1.488)

19 The result (1.485) can also be obtained from (1.481). Making use of an intermediate result in
the solution of the Exercise at the end of Sect. 1.7.1.2 and (1.432), we get

nT =
d lnH2

dϕ
dϕ

d lnk
=

2ε
ε−1


−2ε .
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The relative amplitude of the two spectra (scalar and tensor) is thus given by

r :=
4Pg

PR
= 16ε. (1.489)

More importantly, we obtain the consistency condition

nT =−8r, (1.490)

which is characteristic for inflationary models. In principle, this can be tested with
CMB measurements, but there is a long way before this can be done in practice.

For attempts to discriminate among various single-field inflationary models on
the basis of WMAP and SDSS data, see for example [35].

1.7.2.3 Stochastic Gravitational Background Radiation

The spectrum of gravitational waves, generated during the inflationary era and
stretched to astronomical scales by the expansion of the Universe, contributes to
the background energy density. Using the results of the previous section, we can
compute this.

I first recall a general formula for the effective energy-momentum tensor of grav-
itational waves. (For detailed derivations, see Sect. 4.4 of [9].)

By “gravitational waves,” we mean propagating ripples in curvature on scales
much smaller than the characteristic scales of the background spacetime (the Hubble
radius for the situation under study). For sufficiently high-frequency waves, it is
meaningful to associate them – in an averaged sense – an energy-momentum tensor.
Decomposing the full metric gμν into a background ḡμν plus fluctuation hμν , the
effective energy-momentum tensor is given by the following expression

T (GW)
αβ =

1
32πG

〈
hμν|αhμν

|β
〉
, (1.491)

if the gauge is chosen such that hμν
|ν = 0, hμ

μ = 0. Here, a vertical stroke indicates
covariant derivatives with respect to the background metric, and 〈· · ·〉 denotes a
four-dimensional average over regions of several wavelengths.

For a Friedmann background, we have in the TT gauge for hμν = 2Hμν :
hμ0 = 0, hi j|0 = hi j,0, thus

T (GW )
00 =

1
8πG

〈
Ḣi jḢ

i j〉 . (1.492)

As in (1.469), we perform (for K = 0) a Fourier decomposition

Hi j(η ,x) = (2π)−3/2
∫

d3k∑
λ

hλ (η ,k)εi j(k,λ )eik·x. (1.493)
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The gravitational background energy density, ρg, is obtained by taking the space-
time average in (1.492). At this point, we regard hλ (η ,k) as a random field, indi-
cated by a hat (since it is on macroscopic scales equivalent to the original quantum
field ĥλ (η ,k)), and replace the spatial average by the stochastic average (for which
we use the same notation). Clearly, this is only justified if some ergodicity property
holds. This issue is discussed in Appendix C of [27].

The power spectrum at time η is defined by

〈
ĥλ (η ,k)ĥ∗λ ′(η ,k′)

〉
= δλλ ′δ (3)(k−k′)

π2

k3 Pg(k,η). (1.494)

The normalization is chosen such that (1.474) holds. The time evolution of the
stochastic variable ĥλ (η ,k) is determined by that of the mode functions
hk(η):

ĥλ (η ,k) =
hk(η)
hk(ηi)

ĥλ (ηi,k),

where ηi is some early time. Therefore, we obtain for ρg

ρg =
2

8πGa2(2π)3

∫
d3k

〈∣∣∣∣ h′k(η)
hk(ηi)

∣∣∣∣2
〉
∑
λ

π2

k3 Pg(k,ηi), (1.495)

where from now on 〈· · ·〉 denotes the average over several periods. For the spectral
density, this gives

k
dρg(k)

dk
=

M2
Pl

8πa2

〈∣∣∣∣ h′k(η)
hk(ηi)

∣∣∣∣2
〉

Pg(k,ηi). (1.496)

When the radiation is well inside the horizon, we can replace h′k by khk.

The differential equation (1.466) reads in terms of hk(η)

h′′+ 2
a′

a
h′+ k2h = 0. (1.497)

For the matter dominated era (a(η) ∝ η2), this becomes

h′′+
4
η

h′+ k2h = 0.

Using 9.1.53 of [34], one sees that this is satisfied by j1(kη)/kη . Furthermore,
by 10.1.4 of the same reference, we have 3 j1(x)/x→ 1 for x→ 0 and(

j1(x)
x

)′
=−1

x
j2(x) → 0 (x→ 0).
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So the correct solution is
hk(η)
hk(0)

= 3
j1(kη)

kη
(1.498)

if the modes cross inside the horizon during the matter dominated era. Note also that

j1(x) =
sinx
x2 − cosx

x
. (1.499)

For modes which enter the horizon earlier, we introduce a transfer function Tg(k) by

hk(η)
hk(0)

=: 3
j1(kη)

kη
Tg(k), (1.500)

that has to be determined numerically from the differential equation (1.497)20. We
can then write the result (1.496) as

k
dρg(k)

dk
=

M2
Pl

8π
k2

a2 Pprim
g (k)|Tg(k)|2

〈[
3 j1(kη)

kη

]2
〉

, (1.501)

where Pprim
g (k) denotes the primordial power spectrum. This holds in particular at

the present time η0 (a0 = 1). Since the time average 〈cos2 kη〉= 1
2 , we finally obtain

for Ωg(k) := ρg(k)/ρcrit

dΩg(k)
d lnk

=
3
2

Pprim
g (k)|Tg(k)|2

1
(kη0)2(H0η0)2 . (1.502)

Here, one may insert the inflationary result (1.481), giving

dΩg(k)
d lnk

=
6
π

H2

M2
Pl

∣∣∣∣
k=aH

|Tg(k)|2
1

(kη0)2(H0η0)2 . (1.503)

Numerical Results

Since the normalization in (1.481) cannot be predicted, it is reasonable to choose
it, for illustration, to be equal to the observed CMB normalization at large scales.
(In reality, the tensor contribution is presumably only a small fraction of this; see
(1.489).) Then, one obtains the result shown in Fig. 1.8, taken from [36]. This shows
that the spectrum of the stochastic gravitational background radiation is predicted
to be flat in the interesting region, with dΩg/d ln(kη0)∼ 10−14. Unfortunately, this
is too small to be detectable by the future LISA interferometer in space.

20 After neutrino decoupling, an accurate treatment should include tensor contributions to the
energy-momentum tensor due to neutrino free-streaming. This would lead to an integro-differential
equation. (This has been solved numerically for instance in [37].)
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Fig. 1.8 Differential energy density (5.108) of the stochastic background of inflation-produced
gravitational waves. The normalization of the upper curve, representing the scale-invariant limit,
is arbitrary. The blue curves are normalized to the COBE quadrupole and show the result for
nT =−0.003, −0.03, and -0.3. (Adapted from [36].)
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Fig. 1.9 GW spectra for ΛCDM models. Obviously, the background is too small to be within reach
by wide-band detectors. From [38].

It would be of great importance if one day the stochastic gravitational wave back-
ground could be detected because it has been formed in the very early Universe. In
the high-frequency region, accessible to wide-band interferometers, the spectrum
depends on the expansion rate after inflation and thus on poorly known physics.
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For a recent review, we refer to [38]. Fig. 1.9, taken from this reference, shows
the spectrum of relict gravitational radiation for a minimal ΛCDM scenario for
various values of r. For orientation, recall that νeq := keq/2π 
 10−17 Hz and
νp = kp/2π 
 10−18 Hz, where kp is the “pivot” wave-number used by WMAP
(corresponding to l ≈ 30). The Ligo/Virgo frequency band is ∼ 10–100 Hz.

This relic spectrum was obtained from a numerical integration of the evolutionary
equations for the transfer function and the background geometry across the matter-
radiation transition. The coupling to the anisotropic neutrino stress (see Appendix E)
is included.

Exercise

Consider a massive free scalar field φ (mass m) and discuss the quantum fluctuations
for a de Sitter background (neglecting gravitational back reaction). Compute the
power spectrum as a function of conformal time for m/H < 3/2.

Hint: Work with the field aφ as a function of conformal time.
Remark: This exercise was solved at an astonishingly early time (∼ 1940) by

E. Schrödinger.♦

1.7.3 Appendix to Section 1.7: Einstein Tensor for Tensor
Perturbations

In this appendix, we derive the expressions (1.457) for the tensor perturbations of
the Einstein tensor.

The metric (1.455) is conformal to g̃μν = γμν +2Hμν . We first compute the Ricci
tensor R̃μν of this metric and then use the general transformation law of Ricci ten-
sors for conformally related metrics (see Eq. (2.264) of [9]).

Let us first consider the simple case K = 0 that we considered in Sect. 1.7.2.
Then, γμν is the Minkowski metric. In the following computation of R̃μν , we drop
temporarily the tildes.

The Christoffel symbols are immediately found (to first order in Hμν )

Γ μ
00 = Γ 0

0i = 0, Γ 0
i j = H ′

i j, Γ i
0 j = (Hi

j)′,

Γ i
jk = Hi

j,k + Hi
k, j−Hjk

,i. (1.504)

So these vanish or are of first-order small. Hence, up to higher orders,

Rμν = ∂λΓ λ
νμ − ∂νΓ λ

λμ . (1.505)

Inserting (1.504) and using the TT conditions, (1.456) readily gives

R00 = 0, R0i = 0, (1.506)
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Ri j = ∂λΓ λ
i j− ∂ jΓ λ

λ i = ∂0Γ 0
i j + ∂kΓ k

i j− ∂ jΓ 0
0i− ∂ jΓ k

ki

= H ′′
i j +(Hk

i, j + Hk
j,i−Hi j

,k),k.

Thus,
Ri j = H ′′

i j−∇2Hi j. (1.507)

Now, we use the quoted general relation between the Ricci tensors for two met-
rics related as gμν = e f g̃μν . In our case e f = a2(η), hence

∇̃μ f = 2H δμ0, ∇̃μ ∇̃ν f = ∂μ(2H δν0)−Γλ
μν2H δλ0

= 2H ′δμ0δν0−2H H ′
μν , ∇̃2 f = g̃μν∇̃μ∇̃ν f = 2H ′.

As a result, we find

Rμν = R̃μν +(−2H ′+ 2H 2)δμ0δν0 +(H ′+ 2H 2)g̃μν + 2H H ′
μν , (1.508)

thus

δR00 = δR0i = 0,

δRi j = H ′′
i j−∇2Hi j + 2(H ′+ 2H 2)Hi j + 2H H ′

i j. (1.509)

From this, it follows that

δR = g(0)μνδRμν + δgμνR(0)
μν = 0. (1.510)

The result (1.457) for the Einstein tensor is now easily obtained. For the generaliza-
tion to K �= 0, see [27]

1.8 Tight Coupling Phase

Long before recombination (at temperatures T > 6000K, say), photons, electrons,
and baryons were so strongly coupled that these components may be treated together
as a single fluid. In addition to this, there is also a dark matter component. For all
practical purposes, the two interact only gravitationally. The investigation of such a
two-component fluid for small deviations from an idealized Friedmann behavior is
a well-studied application of CPT and will be treated in this section.

At a later stage, when decoupling is approached, this approximate treatment
breaks down because the mean free path of the photons becomes longer (and finally
“infinite” after recombination). Although the electrons and baryons can still be
treated as a single fluid, the neutrinos, photons and their coupling to the electrons
have to be described by the general relativistic Boltzmann equation. The latter is,
of course, again linearized about the idealized Friedmann solution. Together with
the linearized fluid equations (for baryons and cold dark matter, say) and the lin-
earized Einstein equations, one arrives at a complete system of equations for the
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various perturbation amplitudes of the metric and matter variables. (For detailed
derivations, we refer again to [27].)

We now discuss in detail the strong coupling phase. As already emphasized, pho-
tons, electrons, and baryons are so strongly coupled that these components may be
treated as a single fluid, indexed by r in what follows. Beside this, we have to include
a CDM component for which we we use the index d (for “dust” or dark). Since these
two fluids interact only gravitationally, the extension of the perturbation theory in
Sect. 1.5 is easy. (Note that we neglect fluctuations of the neutrinos.)

1.8.1 Basic Equations

Let T μ
(α)ν denote the energy-momentum tensor of species (α). The total T μ

ν is
assumed to be just the sum

T μ
ν = ∑

(α)
T μ
(α)ν , (1.511)

and is, of course, “conserved”. For the unperturbed background, we have, as in
(1.198),

T (0)
(α)μ

ν = (ρ (0)
α + p(0)

α )u(0)
μ u(0)ν + p(0)

α δμν (1.512)

with (
u(0)μ

)
=

(
1
a
,0
)

. (1.513)

The divergence of T μ
(α)ν does, in general, not vanish. This is, however, the case

for our two-component system α = (r,d) during the tight coupling phase. (The
phenomenological description of general multicomponent systems is, for instance,
described in [24] and [27].) From

T ν
(α)μ;ν = 0. (1.514)

we obtain for the background

ρ̇ (0)
α =−3H(ρ (0)

α + p(0)
α ) =−3Hhα , (1.515)

where
hα = ρ (0)

α + p(0)
α . (1.516)

Clearly,

ρ (0) =∑
α
ρ (0)
α , p(0) =∑

α
p(0)
α , h := ρ (0) + p(0) =∑

α
hα . (1.517)

We again consider only scalar perturbations and proceed with each component
as in Sect. 1.4.1.6. In particular, Eqs. (1.196), (1.197), (1.206), and (1.208) become
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T μ
(α)νuν(α) =−ρ(α)u

μ
(α), (1.518)

gμνuμ
(α)u

ν
(α) =−1, (1.519)

δu0
(α) = −1

a
A, δui

(α) =
1
a
γ i jvα | j ⇒ δu(α)i = a(vα −B)|i,

δT 0
(α)0 = −δρα ,

δT 0
(α) j = hα(vα −B)| j, T i

(α)0 =−hαγ i jvα | j,

δT i
(α) j = δ pαδ i

j + pα

(
Π |i

α | j−
1
3
δ i

j∇2Πα

)
,

δ pα = c2
αδρα + pαΓα ≡ pαπLα , c2

α := ṗα/ρ̇α . (1.520)

In (1.520) and in what follows, the index (0) is dropped.
Summation of these equations give (δα := δρα/ρα):

ρδ = ∑
α
ραδα , (1.521)

hv = ∑
α

hαvα , (1.522)

pπL = ∑
α

pαπLα , (1.523)

pΠ = ∑
α

pαΠα . (1.524)

We turn to the gauge transformation properties. As long as we do not use the
zeroth-order energy equation (1.515), the transformation laws for δα ,vα ,πLα ,Πα
remain the same as those in Sect. 1.4.1.6 for δ ,v,πL, and Π . Thus, using (1.515)
and the notation wα = pα/ρα , we have

δα → δα +
ρ ′α
ρα

ξ 0 = δα −3(1 + wα)H ξ 0,

vα −B → (vα −B)− ξ 0,

δ pα → δ pα + p′αξ
0,

Πα → Πα ,

Γα → Γα . (1.525)

The quantity Q, introduced below (1.206), will also be used for each component:

δT 0
(α)i =:

1
a
Qα |i, ⇒ Q =∑

α
Qα |i. (1.526)

The transformation law of Qα is

Qα →Qα −ahαξ 0. (1.527)
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For each α , we define gauge invariant density perturbations (δα)Qα
,(δα)χ and

velocities Vα = (vα −B)χ . Because of the modification in the first of Eq. (1.525),
we have instead of (1.218)

Δα := (δα)Qα
= δα −3H (1 + wα)(vα −B). (1.528)

Similarly, adopting the notation of [24], Eq. (1.219) generalizes to

Δsα := (δα)χ = δα + 3(1 + wα)Hχ . (1.529)

If we replace in (1.528) vα −B by v−B, we obtain another gauge invariant density
perturbation

Δcα := (δα)Q = δα −3H (1 + wα)(v−B), (1.530)

which reduces to δα for the comoving gauge: v = B.
The following relations between the three gauge invariant density perturbations

are useful. Putting an index χ on the right of (1.528) gives

Δα = Δsα −3H (1 + wα)Vα . (1.531)

Similarly, putting χ as an index on the right of (1.530) implies

Δcs = Δsα −3H (1 + wα)V. (1.532)

For Vα , we have, as in (1.220),

Vα = vα + E ′. (1.533)

From now on, we use similar notations for the total density perturbations:

Δ := δQ, Δs := δχ (Δ ≡ Δc). (1.534)

Let us translate the identities (1.521) – (1.524). For instance,

∑
α
ραΔcα =∑αραδα + 3H (v−B)∑

α
hα = ρδ + 3H (v−B)h = ρΔ .

We collect this and related identities:

ρΔ = ∑
α
ραΔcα (1.535)

= ∑
α
ραΔα , (1.536)

ρΔs = ∑
α
ραΔsα , (1.537)

hV = ∑
α

hαVα , (1.538)

pΠ = ∑
α

pαΠα . (1.539)
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We would like to write also pΓ in a manifestly gauge invariant form. From (using
(1.521), (1.523), and (1.520))

pΓ = pπL− c2
sρδ =∑

α
pαπLα︸ ︷︷ ︸

c2
αραδα+pαΓα

−c2
s ∑

α
ραδα =∑

α
pαΓα +∑

α
(c2

α − c2
s )ραδα ,

we get

pΓ = pΓint + pΓrel, (1.540)

with

pΓint =∑
α

pαΓα (1.541)

and

pΓrel =∑
α

(c2
α − c2

s )ραδα . (1.542)

Since pΓint is obviously gauge invariant, this must also be the case for pΓrel . We
want to exhibit this explicitly. First note, using (1.517) and (1.515) that

c2
s =

p′

ρ ′
=∑

α

p′α
ρ ′

=∑
α

c2
α
ρ ′α
ρ ′

=∑
α

c2
α

hα
h

, (1.543)

i.e.,

c2
s =∑

α

hα
h

c2
α . (1.544)

Now, we replace δα in (1.542) with the help of (1.530) and use (1.543), with the
result

pΓrel =∑
α

(c2
α − c2

s )ραΔcα . (1.545)

One can write this in a physically more transparent fashion by using (1.543) again,
as well as (1.517),

pΓrel = ∑
α ,β

(c2
α − c2

β )
hβ
h
ραΔcα ,

or

pΓrel =
1
2 ∑α ,β

(c2
α − c2

β )
hαhβ

h
Sαβ ; (1.546)

Sαβ : =
Δcα

1 + wα
−

Δcβ

1 + wβ
. (1.547)

Note that δα/(1 + wα )− δβ/(1 + wβ ) is gauge invariant, and thus agrees with
Sαβ .
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Dynamical Equations

We now turn to the dynamical equations that follow from

δT ν
(α)μ;ν = 0, (1.548)

and the expressions for δT ν
(α)μ;ν given in (1.520). Obviously, we obtain equations

(1.223) and (1.227) for each component. We write these in a harmonic decomposi-
tion. From (1.223) and the last line in (1.520), we get

(ραδα)′+ 3
a′

a
ραδα + 3

a′

a
pαπLα + hα(kvα + 3D′ −E ′) = 0. (1.549)

In the longitudinal gauge, we have Δsα = δα ,Vα = vα ,E = 0, and A = Aχ ,D = Dχ .
We also note that, according to the definitions (1.183) and (1.184), the Bardeen
potentials can be expressed as

Aχ =Ψ , Dχ = Φ. (1.550)

Equation (1.549) can thus be written in the following gauge invariant form

(ραΔsα)′+ 3
a′

a
ραΔsα + 3

a′

a
pα

(
c2
α

wα
Δsα +Γα

)
+ hα(kVα + 3Φ ′) = 0. (1.551)

Similarly, we obtain from (1.227) the momentum equation

[hα(vα −B)]′+ 4
a′

a
hα(vα −B)− khαA− kpαπLα

+
2
3

k2−3K
k

pαΠα = 0. (1.552)

The gauge invariant form of this is

(hαVα)′+ 4
a′

a
hαVα− kpα

(
c2
α

wα
Δsα +Γα

)
−khαΨ +

2
3

k2−3K
k

pαΠα = 0. (1.553)

Equations (1.551) and (1.553) constitute our basic system describing the dynamics
of matter. It will be useful to rewrite the momentum equation by using

(hαVα)′ = hαV ′α +Vαh′α , h′α = ρ ′α(1 + c2
s) =−3

a′

a
(1 + c2

α)hα .
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Using also (1.516), we obtain

V ′α −3
a′

a
(1 + c2

α)Vα + 4
a′

a
Vα − k

pα
hα

(
c2
α

wα
Δsα +Γα

)
− kΨ +

2
3

k2−3K
k

pα
hα

Πα = 0

or

V ′α +
a′

a
Vα = kΨ + 3

a′

a
c2
αVα

+k

[
c2
α

1 + wα
Δsα +

wα
1 + wα

Γα
]
− 2

3
k2−3K

k
wα

1 + wα
Πα . (1.554)

Here, we use (1.531) in the harmonic decomposition, i.e.,

Δα = Δsα + 3(1 + wα)
a′

a
1
k

Vα , (1.555)

and finally get

V ′α +
a′

a
Vα = kΨ + k

[
c2
α

1 + wα
Δα +

wα
1 + wα

Γα
]
− 2

3
k2−3K

k
wα

1 + wα
Πα . (1.556)

Below it will be useful to have an equation for Vαβ := Vα −Vβ . We derive
this for Γα = 0 (⇒ Γint = 0), since this is a good approximation. From (1.556),
we get

V ′αβ +
a′

a
Vαβ = +k

[
c2
α

1 + wα
Δα −

c2
β

1 + wβ
Δβ

]
− 2

3
k2−3K

k
Παβ , (1.557)

where
Παβ =

wα

1 + wα
Πα −

wβ

1 + wβ
Πβ . (1.558)

Beside (1.555), we also use (1.532) in the harmonic decomposition,

Δcα = Δsα + 3(1 + wα)
a′

a
1
k

V, (1.559)

to get

Δα = Δcα + 3(1 + wα)
a′

a
1
k
(Vα −V). (1.560)

From now on, we consider only a two-component system α,β . (The generaliza-
tion is easy; see [24].) Then, Vα −V = (hβ/h)Vαβ , and therefore the second term
on the right of (1.557) is
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k

[
c2
α

1 + wα
Δα −

c2
β

1 + wβ
Δβ

]
=

k

[
c2
α

1 + wα
Δcα −

c2
β

1 + wβ
Δcβ

]
+ 3

a′

a

(
c2
αVαβ

hβ
h

+ c2
βVαβ

hα
h

)
. (1.561)

At this point, we use the identity21

Δcα

1 + wα
=

Δ
1 + w

+
hβ
h

Sαβ . (1.562)

Introducing also the abbreviation

c2
z := c2

α
hβ
h

+ c2
β

hα
h

(1.563)

the right-hand side of (1.561) becomes k(c2
α − c2

β ) Δ
1+w + kc2

z Sαβ + 3 a′
a c2

zVαβ . So
finally, we arrive at

V ′αβ +
a′

a
(1−3c2

z)Vαβ

= k(c2
α − c2

β )
Δ

1 + w
+ kc2

z Sαβ −
2
3

k2−3K
k

Παβ . (1.564)

For the generalization of this equation, without the simplifying assumptions, see
(II.5.27) in [24].

Under the same assumptions, we can simplify the energy equation (1.551). Using(
ραΔsα

hα

)′
=

1
hα

(ραΔsα)′ − h′α
hα

ρα
hα

Δsα ,
h′α
hα

ρα
hα

=−3
a′

a
(1 + c2

α)
1

1 + wα

in (1.551) yields (
Δsα

1 + wα

)′
=−kVα −3Φ ′. (1.565)

From this, (1.559) and the defining equation (1.547) of Sαβ , we obtain the useful
equation

S′αβ =−kVαβ . (1.566)

21 From (1.547), we obtain for an arbitrary number of components (making use of (1.535))

∑
β

hβ

h
Sαβ =

Δcα

1+wα
−∑

β

hβ

h
1

1+wβ︸ ︷︷ ︸
ρβ /h

Δcβ =
Δcα

1+wα
− ρ

h
Δ =

Δcα

1+wα
− Δ

1+w
.
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It is sometimes useful to have an equation for (Δcα/(1+wα))′. From (1.559) and
(1.565), we get (

Δcα
1 + wα

)′
=−kVα −3Φ ′+ 3

(
a′

a
1
k

V

)′
.

For the last term make use of (1.278), (1.281), and (1.262). If one also uses the
following consequence of (1.259) and (1.261)

a′

a
Ψ −Φ ′ = 4πGρa2(1 + w)k−1V =

3
2

[(
a′

a

)2

+ K

]
(1 + w)k−1V, (1.567)

one obtains after some manipulations(
Δcα

1 + wα

)′
= −kVα + 3

K
k

V + 3
a′

a
c2

s
Δ

1 + w
+ 3

a′

a
w

1 + w
Γ

− 3
a′

a
w

1 + w
2
3

(
1− 3K

k2

)
Π . (1.568)

Let us summarize the basic equations for the two-component fluid for K = 0 and
Γα = 0 (no intrinsic entropy production of each component r and d). In addition, it
is certainly a good approximation to neglect in the tight coupling era the anisotropic
stresses Πα . Then,Ψ =−Φ and since Γint = 0 the amplitude Γ for entropy produc-
tion is proportional to

S := Sdr =
Δcd

1 + wd
− Δcr

1 + wr
,

w
1 + w

Γ =
hdhr

h2 (c2
d− c2

r)S. (1.569)

We also recall the definition (1.563)

c2
z =

hr

h
c2

d +
hd

h
c2

r . (1.570)

The energy and momentum equations are

Δ ′ −3
a′

a
wΔ = −k(1 + w)V, (1.571)

V ′+
a′

a
V = kΨ + k

c2
s

1 + w
Δ + k

w
1 + w

Γ . (1.572)

By (1.566), the derivative of S is given by

S′ =−kVdr, (1.573)

and that of Vdr follows from (1.564):

V ′dr +
a′

a
(1−3c2

z)Vdr = k(c2
d− c2

r )
Δ

1 + w
+ kc2

z S. (1.574)
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In the constraint equation (1.282), we use the Friedmann equation for K = 0,

8πGρ
3H2 = 1, (1.575)

and obtain

Φ =−Ψ =
3
2

(
Ha
k

)2

Δ . (1.576)

It will be convenient to introduce the comoving wave number in units of the
Hubble length x := Ha/k and the renormalized scale factor ζ := a/aeq, where aeq

is the scale factor at the “equality time” (see Sect. 1.2.2.5). Then, the last equation
becomes

Φ =−Ψ =
3
2

x2Δ . (1.577)

Using ζ ′ = kxζ and introducing the operator D := ζd/dζ , we can write (1.571) as

(D−3w)Δ =−1
x
(1 + w)V. (1.578)

Similarly, (1.572) (together with (1.569)) gives

(D+ 1)V =
Ψ
x

+
c2

s

x
Δ

1 + w
+

1
x

hdhr

h2 (c2
d− c2

r )S. (1.579)

We also rewrite (1.573) and (1.574)

DS =−1
x

Vdr, (1.580)

(D+ 1−3c2
z)Vdr =

1
x
(c2

d− cr)
Δ

1 + w
+

1
x

c2
z S. (1.581)

It will turn out to be useful to work alternatively with the equations of motion for
Vα and

Xα :=
Δcα

1 + wα
(α = r,d). (1.582)

From (1.556), we obtain

V ′α +
a′

a
Vα = kΨ + k

c2
α

1 + wα
Δα , (1.583)

Here, we replace Δα by Δcα with the help of (1.531) and (1.532), implying (in the
harmonic decomposition)

Δα = Δcα + 3(1 + wα)
a′

a
1
k
(Vα −V). (1.584)
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We then get

V ′α +
a′

a
(1−3c2

α)Vα = kΨ + kc2
αXα −3

a′

a
c2
αV. (1.585)

From (1.568), we find, using (1.569),

X ′α =−kVα + 3
a′

a
c2

s
Δ

1 + w
+ 3

a′

a
hdhr

h2 (c2
d− c2

r )S. (1.586)

Rewriting the last two equations as above, we arrive at the system

(D+ 1−3c2
α)Vα =

Ψ
x

+
c2
α
x

Xα −3c2
αV, (1.587)

DXα = −Vα

x
+ 3c2

s
Δ

1 + w
+ 3

hdhr

h2 (c2
d− c2

r)S. (1.588)

This system is closed since by (1.569), (1.191), and (1.538)

S = Xd−Xr,
Δ

1 + w
=∑

α

hα
h

Xα , V =∑
α

hα
h

Vα . (1.589)

Also, note that according to (1.562)

Δ
1 + w

= Xr +
hd

h
S = Xd−

hr

h
S. (1.590)

From these basic equations, we now deduce second-order equations for the pair
(Δ ,S), respectively, for Xα (α = r,d). For doing this, we note that for any function
f , f ′ = (a′/a)D f , in particular (using Ḣ =−4πG(ρ+ p) and (1.226))

Dx =−1
2
(3w+ 1)x, Dw =−3(1 + w)(c2

s −w). (1.591)

The result of the somewhat tedious but straightforward calculation is [39]:

D2Δ +
[

1−3w
2

+ 3c2
s −6w

]
DΔ

+
[

c2
s

x2 −3w+ 9(c2
s−w)+

3
2
(3w2−1)

]
Δ =

1
x2

hrhd

ρh
(c2

r − c2
d)S,

(1.592)

D2S +
[

1−3w
2

−3c2
z

]
DS +

c2
z

x2 S =
c2

r − c2
d

x2(1 + w)
Δ (1.593)

for the pair Δ ,S, and
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D2Xα +
[

1−3w
2

−3c2
α

]
DXα

+
{

c2
α

x2 −
hα
h

[
3
2
(1 + w)+

3
2
(1−3w)c2

α + 9c2
α(c2

s − c2
α)+ 3Dc2

α

]}
Xα

= 3
hβ
h

[
(c2

β − c2
α)D+

1 + w
2

+
1−3w

2
c2
β + 3c2

β(c2
s − c2

β )+ Dc2
β

]
Xβ

(1.594)

for the pair Xα .

Alternative System for Tight Coupling Limit

Instead of the first-order system (1.585) and (1.586), one may work with similar
equations for the amplitudes Δsα and Vα . From (1.554), we obtain instead of (1.585)
for Πα = 0

V ′α +
a′

a
(1−3c2

α)Vα = kΨ + k
c2
α

1 + wα
Δsα . (1.595)

Beside this, we have Eq. (1.272)(
Δsα

1 + wα

)′
=−kVα −3Φ ′. (1.596)

To this, we add the following consequence of the constraint equations (1.288),
(1.289), and the relations (1.272), (1.537), and (1.538):

k2Ψ =−4πGa2∑
α

[
ραΔsα + 3

aH
k

ρα(1 + wα)Vα

]
. (1.597)

Instead one can also use, for instance for generating numerical solutions, the fol-
lowing first-order differential equation that is obtained similarly

k2Ψ + 3
a′

a
(Ψ ′+

a′

a
Ψ) =−4πGa2∑

α
ραΔsα . (1.598)

Adiabatic and Isocurvature Perturbations

These differential equations have to be supplemented with initial conditions. Two
linearly independent types are considered for some very early stage, for instance, at
the end of the inflationary era:

• adiabatic perturbations: all Sαβ = 0, but R �= 0;

• isocurvature perturbations: some Sαβ �= 0, but R = 0.



102 Norbert Straumann

Recall that R measures the spatial curvature for the slicing Q = 0. According to
the initial definition (1.222) of R and the Eqs. (1.577) and (1.578), we have

R = Φ− xV =
x2

1 + w

[
D+

3
2
(1−w)

]
Δ . (1.599)

Explicit forms of the Two-Component Differential Equations

At this point, we make use of the equation of state for the two-component model
under consideration. It is convenient to introduce a parameter c by

R :=
3ρb

4ργ
=

ζ
c
⇒ Ωd

Ωb
=

3c
4
−1. (1.600)

We then have for various background quantities

ρd

ρeq
=

1
2

(
1− 4

3c

)
1
ζ 3 , pd = 0,

ρr

ρeq
=

2
3
ζ + 3c/4

c
1
ζ 4 ,

pr

ρeq
=

1
6

1
ζ 4 ,

ρ
ρeq

=
1
2
(ζ + 1)

1
ζ 4 ,

p
ρeq

=
1
6

1
ζ 4 ,

hr

h
=

4
3

ζ + c
c(ζ + 4/3)

,
hd

h
=

(
1− 4

3c

)
ζ

ζ + 4/3
,

w =
1

3(ζ + 1)
, wr =

c
4ζ + 3c

, wd = 0,

c2
d = 0, c2

r =
1
3

c
ζ + c

, c2
s =

4
9

1
ζ + 4/3

, c2
z =

1
3

(c−4/3)ζ
(ζ + c)(ζ + 4/3)

,

H2 = H2
eq
ζ + 1

2
1
ζ 4 , x2 =

ζ + 1
2ζ 2

1
ω2 , ω :=

1
xeq

=
(

k
aH

)
eq

. (1.601)

Since we now know that the dark matter fraction is much larger than the baryon
fraction, we write the basic equations only in the limit c→∞. (For finite c, these are
given in [39].) Equation (1.594) leads to the pair

D2Xr +
(

1
2

ζ
1 + ζ

−1

)
DXr

+
{

2
3
ω2ζ 2

1 + ζ
+

4
3

1
ζ + 4/3

[
ζ

ζ + 4/3
−2

]}
Xr =

[
3
2

ζ
ζ + 1

− ζ
ζ + 4/3

D

]
Xd ,

(1.602){
D2 +

1
2

ζ
1 + ζ

D− 3
2

ζ
1 + ζ

}
Xd =

4
3

1
ζ + 4/3

[
D+ 2− ζ

ζ + 4/3

]
Xr. (1.603)
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From (6.24) and (6.25), we obtain on the other hand

D2Δ +
(
−1 +

5
2

ζ
ζ + 1

− ζ
ζ + 4/3

)
DΔ

+

{
−2 +

3
4
ζ +

1
2

(
ζ

ζ + 1

)2

− 3ζ 2

ζ + 1
+

9ζ 2

4(ζ + 4/3)

}
Δ

=
8
9
ω2 ζ 2

(ζ + 1)2(ζ + 4/3)
[ζS− (ζ + 1)Δ ] , (1.604)

D2S +
(

1
2

1
ζ + 1

− 1
ζ + 4/3

)
ζDS

+
2
3
ω2 ζ 3

(ζ + 1)(ζ + 4/3)
S =

2
3
ω2 ζ 2

ζ + 4/3
Δ . (1.605)

We also note that (1.599) becomes

R =
1

2ω2

ζ + 1
ζ 2(ζ + 4/3)

[
(ζ + 1)D+

3
2
ζ + 1

]
Δ . (1.606)

We can now define more precisely what we mean by the two types of primor-
dial initial perturbations by considering solutions of our perturbation equations for
ζ � 1.

• adiabatic (or curvature) perturbations: growing mode behaves as

Δ = ζ 2
[

1− 17
16

ζ + · · ·
]
− ω2

15
ζ 4[1−· · ·],

S =
ω2

32
ζ 4

[
1− 28

25
ζ + · · ·

]
; ⇒R =

9
8ω2 (1 +O(ζ )). (1.607)

• isocurvature perturbations: growing mode behaves as

Δ =
ω2

6
ζ 3

[
1− 17

10
ζ + · · ·

]
,

S = 1− ω2

18
ζ 3 [1−· · ·]; ⇒R =

1
4
ζ (1 +O(ζ )). (1.608)

From (1.589) and (1.590), we obtain the relation between the two sets of pertur-
bation amplitudes:

Xr =
ζ + 1

ζ + 4/3
Δ − ζ

ζ + 4/3
S, Xd =

ζ + 1
ζ + 4/3

Δ +
4
3

1
ζ + 4/3

S, (1.609)

Δ =
1

ζ + 1

(
4
3

Xr + ζXd

)
, S = Xd−Xr. (1.610)
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Let us also write the alternative system (1.595) – (1.598) explicitly in terms of
the independent variable ζ . As before one finds

D

(
Δsα

1 + wα

)
= −Vα

x
−3DΦ, (1.611)

(D+ 1−3c2
α)Vα = −Φ

x
+

1
x

c2
α

1 + wα
Δsα , (1.612)

and for Φ:

Φ + 3x2(DΦ +Φ) =
3
2

x2∑
α

ρα
ρ

Δsα , (1.613)

Φ =
3
2

x2∑
α

ρα
ρ

[Δsα + 3x(1 + wα)Vα ]. (1.614)

With (1.601), i.e.,

x2 =
ζ + 1
2ζ 2

1
ω2 ,

ρd

ρ
=

1
2

ζ
ζ + 1

,
ρr

ρ
=

1
2

1
ζ + 1

,

everything is explicit. The initial conditions for the growing modes follow from
the expansions (1.607) and (1.608), once we have expressed the five amplitudes
Δsα(ζ ), Vα(ζ ), Φ(ζ ) in terms of Δ and S.

Φ is related to Δ by (1.577). From (1.559), we obtain

Δsα
1 + wα

= Xα −3xV.

For the last term, we use (1.578), which implies

3xV =−3
x2

1 + w
(D−3w)Δ . (1.615)

The amplitudes Xα are given in terms of Δ , S by (1.609).

From these equations, it is now easy to determine the initial conditions for our
first-order differential equations. For adiabatic perturbations, one finds for the grow-
ing modes

Φ(0) =
2
3
R, Δsd(0) = R, Δsr(0) =

4
3
R, Vd(0) = Vr(0) = 0. (1.616)

Note that, as a result of (1.580), the difference Vd −Vr must vanish for small ζ as
O(ζ 3).
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1.8.2 Analytical and Numerical Analysis

The system of linear differential equations (1.602)–(1.605) has been discussed ana-
lytically in great detail in [39]. One learns, however, more about the physics of the
gravitationally coupled fluids in a mixed analytical-numerical approach.

1.8.2.1 Solutions for Super-Horizon Scales

For super-horizon scales (x
 1), Eq. (1.580) implies that S is constant. If the mode
enters the horizon in the matter dominated era, then the parameter ω in (1.601) is
small. For ω � 1, Eq. (1.604) reduces to

D2Δ +
(
−1 +

5
2

ζ
ζ + 1

− ζ
ζ + 4/3

)
DΔ

+

{
−2 +

3
4
ζ +

1
2

(
ζ

ζ + 1

)2

− 3ζ 2

ζ + 1
+

9ζ 2

4(ζ + 4/3)

}
Δ

=
8
9
ω2 ζ 3

(ζ + 1)2(ζ + 4/3)
S. (1.617)

For adiabatic modes, we are led to the homogeneous equation already studied in
Sect. 1.5.1, with the two independent solutions Ug and Ud given in (1.314) and
(1.315). Recall that the Bardeen potentials remain constant both in the radiation
and in the matter dominated eras. According to (1.318), Φ decreases to 9/10 of the
primordial value Φ prim.

For isocurvature modes, we can solve (1.609) with the Wronskian method and
obtain for the growing mode [39]

Δiso =
4
15

ω2Sζ 3 3ζ 2 + 22ζ + 24 + 4(3ζ + 4)
√

1 + ζ
(ζ + 1)(3ζ + 4)[1 +(1 + ζ )1/2]4

. (1.618)

Thus,

Δiso 

{ 1

6ω
2Sζ 3 : ζ � 1

4
15ω

2Sζ : ζ 
 1.
(1.619)

1.8.2.2 Horizon Crossing

We will now study the behavior of adiabatic modes more closely, in particular, what
happens in horizon crossing.
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Crossing in Radiation Dominated Era

When the mode enters the horizon in the radiation dominated phase, we can neglect
in (1.604) the term proportional to S for ζ < 1. As long as the radiation dominates
ζ is small, whence (1.604) gives in leading order

(D2−D−2)Δ =−2
3
ω2ζ 2Δ . (1.620)

(This could also be directly obtained from (1.592), setting c2
s 
 1/3, w
 1/3.) Since

D2−D = ζ 2d2/dζ 2, this perturbation equation can be written as[
ζ 2 d2

dζ 2 +
(

2
3
ω2ζ 2−2

)]
Δ = 0. (1.621)

Instead of ζ , we choose independent variable the comoving sound horizon rs

times k. We have

rs =
∫

csdη =
∫

cs
dη
dζ

dζ ,

with cs 
 1/
√

3, dζ/dη = kxζ = aHζ = (aH)/(aH)eq)(k/ω)ζ 
 (k/ω
√

2), thus
ζ 
 (k/

√
2ω)η and

u := krs 

√

2
3
ωζ 
 kη/

√
3. (1.622)

Therefore, (1.621) is equivalent to[
d2

du2 +
(

1− 2
u2

)]
Δ = 0. (1.623)

This differential equation is well known. According to 9.1.49 of [34], the functions

w(x) ∝ x1/2Cν (λx), Cν ∝ H(1)
ν ,H(2)

ν satisfy

w′′+

(
λ −

ν2− 1
4

x2

)
w = 0. (1.624)

Since jν (x) =
√

π/2xJν+1/2(x) and nν(x) =
√

π/2xYν+1/2(x), we see that Δ is a
linear combination of u j1(u) and un1(u):

Δ(ζ ) = Cu j1(u)+ Dun1(u); u =

√
2
3
ωζ (u = krs =

kη√
3
). (1.625)

Now,

x j1(x) =
1
x

sinx− cosx, xn1(x) =−1
x

cosx− sinx. (1.626)
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On super-horizon scales u = krs � 1 and u j1(u) ≈ u ∝ a, while un1(u) ≈ −1/u ∝
1/a. Thus, the first term in (1.625) corresponds to the growing mode. If we only
keep this, we have

Δ(ζ ) ≈C

(
1
u

sinu− cosu

)
. (1.627)

Once the mode is deep within the Hubble horizon only the cos-term survives. This
is an important result because if this happens long before recombination, we can use
for adiabatic modes the initial condition

Δ(η) ∝ cos[krs(η)]. (1.628)

We conclude that all adiabatic modes are temporally correlated (synchronized),
while they are spatially uncorrelated (random phases). This is one of the basic rea-
sons for the appearance of acoustic peaks in the CMB anisotropies. Note also that,
as a result of (1.577) and (1.601), Φ ∝ Δ/ζ 2 ∝ Δ/u2, i.e.,

Ψ = 3Ψ (prim)
[

sin u−ucosu
u3

]
. (1.629)

Thus, If the mode enters the horizon during the radiation dominated era, its potential
begins to decay.

As an exercise show that for isocurvature perturbations, the cos in (1.628) has to
be replaced by the sin (out of phase).

We could have used in the discussion above the system (1.602) and (1.603). In
the same limit, it reduces to(

D2−D−2 +
2
3
ω2ζ 2

)
Xr 
 0, D2Xd 
 (D+ 2)Xr. (1.630)

As expected, the equation for Xr is the same as for Δ . One also sees that Xd is driven
by Xr and is growing logarithmically for ω 
 1.

The previous analysis can be improved by not assuming radiation domination and
also including baryons (see [39]). It turns out that for ω 
 1, the result (1.628) is
not much modified: The cos-dependence remains, but with the exact sound horizon;
only the amplitude is slowly varying in time ∝ (1 + R)−1/4.

Since the matter perturbation is driven by the radiation, we may use the potential
(1.629) and work out its influence on the matter evolution. It is more convenient to
do this for the amplitude Δsd (instead of Δcd) making use of the Eqs. (1.595) and
(1.596) for α = d:

Δ ′sd =−kVd−3Φ ′, V ′d =−a′

a
Vd− kΦ. (1.631)

Let us eliminate Vd:

Δ ′′sd =−V ′d−3Φ ′′ =
a′

a
kVd + k2Φ−3Φ ′′ =

a′

a
(−Δ ′sd−3Φ ′)+ k2Φ−3Φ ′′.
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The resulting equation

Δ ′′sd +
a′

a
Δ ′sd = k2Φ −3Φ ′′ −3

a′

a
Φ ′ (1.632)

can be solved with the Wronskian method. Two independent solutions of the homo-
geneous equation are Δsd = const. and Δsd = ln(a). These determine the Green’s
function in the standard manner. One then finds in the radiation dominated regime
(for details, see [4], p.198)

Δsd(η) = AΦ prim ln(Bkη), (1.633)

with A
 9.0, B
 0.62.

Matter Dominated Approximation

As a further illustration, we now discuss the matter dominated approximation. For
this (ζ 
 1), the system (1.602) and (1.603) becomes(

D2− 1
2

D+
2
3
ω2ζ

)
Xr =

(
−D+

3
2

)
Xd , (1.634)(

D2 +
1
2

D− 3
2

)
Xd = 0. (1.635)

As expected, the equation for Xd is independent of Xr, while the radiation perturba-
tion is driven by the dark matter. The solution for Xd is

Xd = Aζ + Bζ−3/2. (1.636)

Keeping only the growing mode, (1.634) becomes

d
dζ

(
ζ

dXr

dζ

)
− 1

2
dXr

dζ
+

2
3
ω2

(
Xr−

3A
4ω2

)
= 0. (1.637)

Substituting

Xr =:
3A

4ω2 + ζ−3/4 f (ζ ),

we get for f (ζ ) the following differential equation

f ′′ =−
(

3
16

1
ζ 2 +

2
3
ω2

ζ

)
f . (1.638)

For ω 
 1, we can use the WKB approximation

f =
ζ 1/4
√
ω

exp

(
±i

√
8
3
ωζ 1/2

)
,
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implying the following oscillatory behavior of the radiation

Xr =
3A

4ω2 + B
1√
ωζ

exp

(
±i

√
8
3
ωζ 1/2

)
. (1.639)

A look at (1.610) shows that this result for Xd ,Xr implies the constancy of the
Bardeen potentials in the matter dominated era.

1.8.2.3 Sub-Horizon Evolution

For ω 
 1, one may expect on physical grounds that the dark matter perturbation
Xd eventually evolves independently of the radiation. Unfortunately, I cannot see
this from the basic equations (1.602) and (1.603). Therefore, we choose a different
approach, starting from the alternative system (1.595) – (1.597). This implies

Δ ′sd = −kVd−3Φ ′, (1.640)

V ′d = −a′

a
Vd− kΦ, (1.641)

k2Φ = 4πGa2[ρdΔsd + · · ·]. (1.642)

As an approximation, we drop in the last equation the radiative22 and velocity con-
tributions that have not been written out. Then, we get a closed system which we
again write in terms of the variable ζ :

DΔsd = −1
x

Vd−3DΦ, (1.643)

DVd = −Vd−
1
x
Φ, (1.644)

Φ 
 3
4

1
ω2

1
ζ
Δsd . (1.645)

In the last equation, we used ρd = (ζ/ζ + 1)ρ , (1.575) and the expression (1.601)
for x2.

For large ω , we can easily deduce a second-order equation for Δsd : Applying D
to (1.643) and using (1.644) gives

D2Δsd = −1
x

DVd +
1
x2 (Dx)Vd−3D2Φ

=
1
x2 Φ +

1
2
(1−3w)

1
x

Vd−3D2Φ

=
1
x2 Φ−

1
2
(1−3w)DΔsd−

3
2
(1−3w)DΦ−3D2Φ.

22 The growth in the matter perturbations implies that eventually ρdΔsd > ρrΔsr even if Δsd < Δsr.
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Because of (1.645), the last two terms are small, and we end up (using again (1.601))
with {

D2 +
1
2

ζ
1 + ζ

D− 3
2

ζ
1 + ζ

}
Δsd = 0 (1.646)

known in the literature as the Meszaros equation. Note that this agrees, as was to be
expected, with the homogeneous equation belonging to (1.603).

The Meszaros equation can be solved analytically. On the basis of (1.636), one
may guess that one solution is linear in ζ . Indeed, one finds that

Xd(ζ ) = D1(ζ ) = ζ + 2/3 (1.647)

is a solution. A linearly independent solution can then be found by quadratures. It is
a general fact that f (ζ ) := Δsd/D1(ζ ) must satisfy a differential equation, which is
first order for f ′. One readily finds that this equation is

(1 +
3ζ
2

) f ′′+
1

4ζ (ζ + 1)
[21ζ 2 + 24ζ + 4] f ′ = 0.

The solution for f ′ is

f ′ ∝ (ζ + 2/3)−2ζ−1(ζ + 1)−1/2.

Integrating once more provides the second solution of (1.646)

D2(ζ ) = D1(ζ ) ln

[√
1 + ζ + 1√
1 + ζ −1

]
−2

√
1 + ζ . (1.648)

For late times, the two solutions approach to those found in (1.636).
The growing and the decaying solutions D1,D2 have to be superposed such that

a match to (1.633) is obtained.

1.8.2.4 Transfer Function and Numerical Results

According to (1.317) and (1.318), the early evolution of Φ on super-horizon scales
is given by23

Φ(ζ ) = Φ(prim) 9
10

ζ + 1
ζ 2 Ug 


9
10

Φ(prim) , f or ζ 
 1. (1.649)

At sufficiently late times in the matter dominated regime, all modes evolve iden-
tically with the growth function Dg(ζ ) given in (1.323). I recall that this function is
normalized such that it is equal to a/a0 when we can still ignore the dark energy (at
z > 10, say). The growth function describes the evolution of Δ , thus by the Poisson

23 The origin of the factor 9/10 is best seen from the constancy of R for super-horizon perturbations
and Eq. (1.395).
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equation (1.288) Φ grows with Dg(a)/a. We, therefore, define the transfer function
T (k) by (we choose the normalization a0 = 1)

Φ(k,a) = Φ(prim) 9
10

Dg(a)
a

T (k) (1.650)

for late times. This definition is chosen such that T (k)→ 1 for k→ 0 and does not
depend on time.

At these late times ρM = ΩMa−3ρcrit , hence the Poisson equation gives the fol-
lowing relation between Φ and Δ

Φ =
(a

k

)2
4πGρMΔ =

3
2

1
ak2 H2

0ΩMΔ .

Therefore, (1.650) translates to

Δ(a) =
3
5

k2

ΩMH2
0

Φ(prim)Dg(a)T (k). (1.651)

The transfer function can be determined by solving numerically the pair (1.592)
and (1.593) of basic perturbation equations. One can derive even a reasonably
good analytic approximation by putting our previous results together (for details,
see again [4], Sect. 7.4). For a CDM model, the following accurate fitting for-
mula to the numerical solution in terms of the variable q̃ = k/keq, where keq is
defined such that the corresponding value of the parameter ω in (1.601) is equal
to 1 (i.e., keq = aeqHeq =

√
2ΩMH0/

√
aeq, using (1.90)) was given in [40]:

TBBKS(q̃) =
ln(1 + 0.171q̃)

0.171q̃
[1 + 0.284q̃+(1.18q̃)2 +(0.399q̃)3 +(0.490q̃)4]−1/4.

(1.652)
Note that q̃ depends on the cosmological parameters through the combination24

ΩMh0, usually called the shape parameter Γ . In terms of the variable,
q = k/(Γ h0Mpc−1) (1.652) can be written as

TBBKS(q) =
ln(1 + 2.34q)

2.34q
[1 + 3.89q +(16.1q)2+(5.46q)3 +(6.71q)4]−1/4.

(1.653)
This result for the transfer function is based on a simplified analysis. The tight

coupling approximation is no more valid when the decoupling temperature is ap-
proached. Moreover, anisotropic stresses and baryons have been ignored. It will, of
course, be very interesting to compare the theory with available observational data.
For this, one has to keep in mind that the linear theory only applies to sufficiently
large scales. For late times and small scales, it has to be corrected by numerical
simulations for nonlinear effects.

24 Since k is measured in units of h0 Mpc−1 and aeq = 4.15×10−5/(ΩMh2
0).
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For a given primordial power spectrum, the transfer function determines the
power spectrum after the “transfer regime” (when all modes evolve with the growth
function Dg). From (1.651), we obtain for the power spectrum of Δ

PΔ (z) =
9

25
k4

Ω 2
MH4

0

P(prim)
Φ D2

g(z)T
2(k). (1.654)

We choose P(prim)
Φ ∝ kn−1 and the amplitude such that

PΔ (z) = δ 2
H

(
k

H0

)3+n

T 2(k)
(

Dg(z)
Dg(0)

)2

. (1.655)

Note that PΔ (0) = δ 2
H for k = H0. The normalization factor δH has to be determined

from observations (e.g., from CMB anisotropies at large scales). Comparison of
(1.654) and (1.655) and use of (1.448) implies

P(prim)
R (k) =

9
4

P(prim)
Φ (k) =

25
4
δ 2

H

(
ΩM

Dg(0)

)2 ( k
H0

)n−1

. (1.656)

Exercise

Write the Eqs. (1.595) – (1.598) in explicit form, using (1.601) in the limit when
baryons are neglected (c → ∞). (For a truncated subsystem, this was done in
(1.643) – (1.645)). Solve the five first-order differential equations (1.595), (1.596)
for α = d,r and (1.598) numerically. Determine, in particular, the transfer function
defined in (1.650). (A standard code gives this in less than a second.) ♦

1.9 General Relativistic Boltzmann Equation

For the description of photons and neutrinos before recombination, we need the
general relativistic version of the Boltzmann equation.

1.9.1 One-Particle Phase Space, Liouville Operator

For what follows, we first have to develop some kinematic and differential geometric
tools. Our goal is to generalize the standard description of Boltzmann in terms of
one-particle distribution functions.

Let g be the metric of the spacetime manifold M. On the cotangent bundle T ∗M =⋃
p∈M T ∗p M, we have the natural symplectic 2-form ω , which is given in natural
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bundle coordinates25(xμ , pν) by

ω = dxμ ∧d pμ . (1.657)

(For an intrinsic description, see Chap. 6 of [41].) So far, no metric is needed. The
pair (T ∗M,ω) is always a symplectic manifold.

The metric g defines a natural diffeomorphism between the tangent bundle TM
and T ∗M, which can be used to pull ω back to a symplectic form ωg on TM. In
natural bundle coordinates, the diffeomorphism is given by (xμ , pα) �→ (xμ , pα =
gαβ pβ ), hence

ωg = dxμ ∧d(gμν pν). (1.658)

On T M, we can consider the “Hamiltonian function”

L =
1
2

gμν pμ pν (1.659)

and its associated Hamiltonian vector field Xg, determined by the equation

iXgωg = dL. (1.660)

It is not difficult to show that in bundle coordinates

Xg = pμ ∂
∂xμ

−Γ μ
αβ pα pβ

∂
∂ pμ (1.661)

(Exercise). The Hamiltonian vector field Xg on the symplectic manifold (T M,ωg)
is the geodesic spray. Its integral curves satisfy the canonical equations:

dxμ

dλ
= pμ , (1.662)

d pμ

dλ
= −Γ μ

αβ pα pβ . (1.663)

The geodesic flow is the flow of the vector field Xg.
Let Ωωg be the volume form belonging to ωg, i.e., the Liouville volume

Ωωg = const ωg∧ · · ·∧ωg,

or (g = det(gαβ ))

Ωωg = (−g)(dx0∧dx1∧dx2∧dx3)∧ (d p0∧d p1∧d p2∧d p3)

≡ (−g)dx0123∧d p0123. (1.664)

25 If xμ are coordinates of M, then the dxμ form in each point p ∈ M is a basis of the cotangent
space T ∗p M. The bundle coordinates of β ∈ T ∗p M are then (xμ ,βν ) if β = βνdxν and xμ are the
coordinates of p. With such bundle coordinates, one can define an atlas, by which T ∗M becomes a
differentiable manifold.
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The one-particle phase space for particles of mass m is the following submani-
fold of T M:

Φm = {v ∈ T M | v future directed, g(v,v) =−m2}. (1.665)

This is invariant under the geodesic flow. The restriction of Xg to Φm will also be
denoted by Xg. Ωωg induces a volume form Ωm (see below) on Φm, which is also
invariant under Xg:

LXgΩm = 0. (1.666)

Ωm is determined as follows (known from Hamiltonian mechanics): Write Ωωg in
the form

Ωωg =−dL∧σ ,

(this is always possible, but σ is not unique), then Ωm is the pull-back of Ωωg by the
injection i : Φm → T M,

Ωm = i∗σ . (1.667)

Although σ is not unique (one can, for instance, add a multiple of dL), the form
Ωm is independent of the choice of σ (show this). In natural bundle coordinates, a
possible choice is

σ = (−g)dx0123∧ d p123

(−p0)

because

−dL∧σ = [−gμν pμd pν + · · ·]∧σ = (−g)dx0123∧gμ0 pμd p0∧ d p123

p0
= Ωωg .

Hence,
Ωm = η ∧Πm, (1.668)

where η is the volume form of (M,g),

η =
√
−gdx0123, (1.669)

and

Πm =
√
−g

d p123

|p0|
, (1.670)

with p0 > 0 and gμν pμ pν =−m2.

We shall need some additional tools. Let Σ be a hypersurface of Φm transversal
to Xg. On Σ , we can use the volume form

volΣ = iXgΩm | Σ . (1.671)

Now, we note that the 6-form
ωm := iXgΩm (1.672)
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on Φm is closed,
dωm = 0, (1.673)

because
dωm = diXgΩm = LXgΩm = 0

(we used dΩm = 0 and (1.666)). From (1.668), we obtain

ωm = (iXgη)∧Πm +η ∧ iXgΠm. (1.674)

In the special case, when Σ is a “time section,” i.e., in the inverse image of a
space-like submanifold of M under the natural projection Φm →M, then the second
term in (1.674) vanishes on Σ , while the first term is on Σ according to (1.661) equal
to ipη ∧Πm, p = pμ∂/∂xμ . Thus, we have on a time section26 Σ

volΣ = ωm | Σ = ipη ∧Πm. (1.675)

Let f be a one-particle distribution function on Φm, defined such that the number
of particles in a time section Σ is

N(Σ) =
∫
Σ

fωm. (1.676)

The particle number current density is

nμ(x) =
∫

Pm(x)
f pμΠm, (1.677)

where Pm(x) is the fiber over x in Φm (all momenta with 〈p, p〉= −m2). Similarly„
one defines the energy-momentum tensor, etc.

Let us show that
nμ

;μ =
∫

Pm

(
LXg f

)
Πm. (1.678)

We first note that (always in Φm)

d( fωm) =
(
LXg f

)
Ωm. (1.679)

Indeed, because of (1.673), the left-hand side of this equation is

d f ∧ωm = d f ∧ iXgΩm =
(
iXg d f

)
∧Ωm =

(
LXg f

)
Ωm.

Now, let D be a domain in Φm, which is the inverse of a domain D̄ ⊂M under the
projectionΦm→M. Then, we have on the one hand by (1.674), setting iXη ≡Xμσμ ,∫

∂D
fωm =

∫
∂ D̄

σμ

∫
Pm(x)

pμ fΠm =
∫
∂ D̄

σμnμ =
∫
∂ D̄

inη =
∫

D̄
(∇ ·n)η .

26 Note that in Minkowski spacetime, we get for a constant time section volΣ = dx123∧dp123.
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On the other hand, by (1.679) and (1.668)∫
∂D

fωm =
∫

D
d( fωm) =

∫
D

(
LXg f

)
Ωm =

∫
D̄
η
∫

Pm(x)

(
LXg f

)
Πm.

Since D̄ is arbitrary, we indeed obtain (1.678).
The divergence of the energy-momentum tensor

T μν =
∫

Pm

pμ pν fΠm (1.680)

is given by

T μν
;ν =

∫
Pm

pμ (LXg f
)
Πm. (1.681)

This follows from the previous proof by considering instead of nν the vector field
Nν := vμT μν , where vμ is geodesic in x.

1.9.2 The General Relativistic Boltzmann Equation

Let us first consider particles for which collisions can be neglected (e.g., neutrinos
at temperatures much below 1 MeV). Then, the conservation of the particle number
in a domain that is comoving with the flow φs of Xg means that the integrals∫

φs(Σ)
fωm,

Σ as before a hypersurface of Φm transversal to Xg, are independent of s. We now
show that this implies the collisionless Boltzmann equation

LXg f = 0. (1.682)

The proof of this expected result proceeds as follows. Consider a “cylinder” G ,
sweping by Σ under the flow φs in the interval [0,s] (see Fig. 1.10), and the integral∫

G
LXg fΩm =

∫
∂G

fωm

(we used Eq. (1.679)). Since iXgωm = iXg(iXgΩm) = 0, the integral over the man-
tle of the cylinder vanishes while those over Σ and φs(Σ) cancel (conservation of
particles). Because Σ and s are arbitrary, we conclude that (1.682) must hold.

From (1.678) and (1.679) we obtain, as expected, the conservation of the particle
number current density: nμ

;μ = 0.
With collisions, the Boltzmann equation has the symbolic form

LXg f = C[ f ] , (1.683)
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integral
curve of
Xg

ϕs(Σ)

Σ

G

Fig. 1.10 Picture for the proof of (1.682).

where C[ f ] is the “collision term.” For the general form of this in terms of the invari-
ant transition matrix element for a two-body collision, see (B.9). In the appendix,
we also work this out explicitly for photon-electron scattering.

By (1.681) and (1.683), we have

T μν
;ν = Qμ , (1.684)

with
Qμ =

∫
Pm

pμC[ f ]Πm. (1.685)

1.9.3 Gauge Transformations

We consider again small deviations from Friedmann models and set correspondingly

f = f (0) + δ f . (1.686)

How does δ f change under a gauge transformation? This is derived in detail in [27]
and allows us to introduce the gauge invariant perturbations (δ f )χ , (δ f )Q , etc.

1.9.4 Liouville Operator in the Longitudinal Gauge

We want to determine the action of the Liouville operator L := LXg on (δ f )χ . The
simplest way to do this is to work in the longitudinal gauge B = E = 0. In what
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follows, we always assume K = 0. The metric is then

g = a2(η)
{
−(1 + 2A)dη2 +(1 + 2D)δi jdxidx j} . (1.687)

It is convenient to introduce an adapted orthonormal (to first order) tetrad

e0̂ =
1

a(1 + A)
∂η , ek̂ =

1
a(1 + D)

∂k. (1.688)

From pμ̂eμ̂ = pμ∂μ , we get

p0 =
p0̂

a(1 + A)
, pk =

pk̂

a(1 + D)
.

Let p :=
√

∑k(pk̂)2. In what follows, we consider the case of rest mass zero27 and

leave the generalization m �= 0 to the reader. Then p0̂ = p, and in terms of the
comoving momentum q = ap, we have

p0 =
q
a2 (1−A), pi =

q
a2 (1−D)γ i, (1.689)

where γ i denotes the unit vector pî/p.
We consider the distribution function as a function of the independent variables

η ,xi,q,γ i. To determine the action of the Liouville operator, we compute the total
derivative of f along a geodesic motion28:

d f
dη

=
∂ f
∂η

+
∂ f
∂xi

dxi

dη
+

∂ f
∂q

dq
dη

+
∂ f
∂γ i

dγ i

dη
.

The last term in this equation is obviously of second order. For the further evalu-
ation, we need dxi/dη and dq/dη . Let λ be the affine parameter in the geodesic
equations (1.662) and (1.663). We have

dxi

dη
=

dxi

dλ
dλ
dη

,
dx0

dη
= 1 =

dx0

dλ
dλ
dη

= p0 dλ
dη

,

27 For this case, the following calculations become a bit simpler if one makes use of the general
fact that null geodesics remain null geodesics under conformal changes of the metric.
28 Recall that the Lie derivative (directional derivative) LX of a function f on a manifold with
respect to a vector field X can be obtained from the total derivative along an integral curve x(λ ) of
X from the relation

d
dλ

f (x(λ )) = (LX f )(x(λ )).
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so dλ
dη = 1/p0. Hence, with (1.689),

dxi

dη
=

pi

p0 = γ i(1−D+ A),

= γ i in zeroth order. Since ∂ f/∂xi is of first order, we obtain to first order

d f
dη

=
∂ f
∂η

+ γ i ∂ f
∂xi +

∂ f
∂q

dq
dη

. (1.690)

Computation of dq/dη .

We start from the μ = 0 component of (1.663). The left-hand side is with (1.689)

d p0

dλ
=

d p0

dη
dη
dλ

=
d

dη

[ q
a2 (1−A)

] q
a2 (1−A),

thus,

d
dη

[ q
a2 (1−A)

]
=−a2

q
(1 + A)Γ 0

αβ pα pβ .

This gives

dq
dη

= q(∂ηA + γ i∂iA−
1 + 2A

q
a4Γ 0

αβ pα pβ + 2H q. (1.691)

For the metric (1.687), we obtain

(1 + 2A)Γ 0
αβ pα pβ = − 1

2a2

{
−∂0[a2(1 + 2A)](p0)2−2∂i[a2(1 + 2A)]p0pi}

+
1

2a2 ∂0[a2(1 + 2D)]δi j p
i p j.

One readily verifies that dq/dη vanishes in zeroth order (as expected). Therefore,
we have to work out the first order of the last expression, i.e., of

1
2a2 ∂0[a2(1 + 2A)]

q2

a4 (1−2A) +
1
a2 ∂i[a2(1 + 2A)]

q2

a4 γ
i(1−A)(1−D)

+
1

2a2∂0[a2(1 + 2D)]
q2

a4 (1−2D).

Here, the time derivatives of a2 give no first-order contributions, so we obtain for
the first-order part:

q2

a4 [∂0A + ∂0D+ 2γ i∂iA].
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Using this in (1.691) gives to first order

dq
dη

=−q(γ i∂iA + D′). (1.692)

Therefore,

d f
dη

= f ′+ γ i∂i f −q
∂ f (0)

∂q
(D′+ γ i∂iA). (1.693)

Note that d f/dη = 0 in zeroth order for an equilibrium situation. According to the
previous footnote, the right-hand side of (1.693), as a function of phase space, is
equal to LXg f , up to the factor p0, due to dη/dλ = p0.

As a first application, we consider the collisionless Boltzmann equation for
m = 0:

(∂η + γ i∂i)δ f −
[
D′+ γ i∂i(A)

]
q
∂ f (0)

∂q
= 0. (1.694)

It is obvious how to write this in gauge invariant form

(∂η + γ i∂i)(δ f )χ =
[
Φ ′+ γ i∂i(Ψ)

]
q
∂ f (0)

∂q
. (1.695)

(From this, the collisionless Boltzmann equation follows in any gauge; write this
out.)

In terms of the Fourier amplitudes, we get, with μ := k̂ · γ,

(δ f )′χ + iμk(δ f )χ =
[
Φ ′+ ikμΨ

]
q
∂ f (0)

∂q
. (1.696)

This equation can be used for neutrinos as long as their masses are negligible (the
generalization to the massive case is easy).

1.9.5 Boltzmann Equation for Photons

The collision term for photons due to Thomson scattering on electrons will be de-
rived later (Sect. 1.9.7). We shall find that in the longitudinal gauge, ignoring polar-
ization effects29,

C[ f ] = xeneσT p

[
〈δ f 〉− δ f −q

∂ f (0)

∂q
γ i∂ivb +

3
4

Qi jγ iγ j

]
. (1.697)

29 I refer to [8] for a detailed treatment that includes the polarization dependence of Thomson
scattering; see also [27], especially Appendix E.
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On the right, xene is the unperturbed free electron density (xe = ionization fraction),
σT is the Thomson cross section, and vb is the scalar velocity perturbation of the
baryons. Furthermore, we have introduced the spherical averages

〈δ f 〉 =
1

4π

∫
S2
δ f dΩγ , (1.698)

Qi j =
1

4π

∫
S2

[γiγ j−
1
3
δi j]δ f dΩγ . (1.699)

(Because of the tight coupling of electrons and ions, we can take ve = vb.)
The linearized Boltzmann equation thus becomes

(∂η + γ i∂i)δ f −
[
D′+ γ i∂iA

]
q
∂ f (0)

∂q

= axeneσT

[
〈δ f 〉− δ f −q

∂ f (0)

∂q
γ i∂ivb +

3
4

Qi jγ iγ j

]
.

(1.700)

This can immediately be written in a gauge invariant form, by replacing

δ f → (δ f )χ , vb →Vb, A→Ψ , D→Φ. (1.701)

In our applications to the CMB, we work with the gauge invariant (integrated)
brightness temperature perturbation

Θχ(η ,xi,γ j) =
∫

(δ f )χq3dq
/

4
∫

f (0)q3dq. (1.702)

(The factor 4 is chosen because of the Stephan–Boltzmann law, according to which
δρ/ρ = 4δT/T.) It is simple to translate the Boltzmann equation for Fs to a kinetic
equation forΘs. Using ∫

q
∂ f (0)

∂q
q3dq =−4

∫
f (0)q3dq,

we obtain for the convective part (from the left-hand side of the Boltzmann equation
for (δ f )χ )

Θ ′
χ + γ i∂iΘχ +Φ ′+ γ i∂iΨ .

The collision term gives

τ̇(θ0−Θχ + γ i∂iVb +
1

16
γ iγ jΠi j),

with τ̇ = xeneσT a/a0, θ0 = 〈Θχ〉 (spherical average), and

1
12

Πi j :=
1

4π

∫
[γiγ j−

1
3
δi j]Θs dΩγ . (1.703)
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The basic equation forΘχ is thus

(Θχ +Ψ)′+ γ i∂i(Θχ +Ψ) =

(Ψ ′ −Φ ′)+ τ̇(θ0−Θχ + γ i∂iVb +
1

16
γ iγ jΠi j). (1.704)

This equation clearly also holds for the (unintegrated) brightness temperature fluc-
tuation, (δT/T )(η ,xi,q,γ i), defined by

δ f =−q
∂ f (0)

∂q
(δT/T ),

since the Thomson cross section is energy independent.
In a mode decomposition, we get (I drop from now on the index χ on Θ ):

Θ ′+ ikμ(Θ +Ψ) =−Φ ′+ τ̇[θ0−Θ − iμVb−
1
10

θ2P2(μ)] (1.705)

(recall Vb → −(1/k)Vb). The last term on the right comes about as follows. We
expand the Fourier modes Θ(η ,ki,γ j) in terms of Legendre polynomials

Θ(η ,ki,γ j) =
∞

∑
l=0

(−i)lθl(η ,k)Pl(μ), μ = k̂ · γ, (1.706)

and note that
1
16

γ iγ jΠi j =− 1
10

θ2P2(μ) (1.707)

(Exercise). The expansion coefficients θl(η ,k) in (1.706) are the brightness mo-
ments30. The lowest three have simple interpretations. We show that in the notation
of Sect. 1.5:

θ0 =
1
4
Δsγ , θ1 = Vγ , θ2 =

5
12

Πγ . (1.708)

Derivation of (1.708)

We start from the general formula (see Sect. 1.9.1)

T μ
(γ)ν =

∫
pμ pν f (p)

d3 p
p0 =

∫
pμ pν f (p)pd p dΩγ . (1.709)

According to the general parametrization (1.520), we have

δT 0
(γ)0 =−δργ =−

∫
p2δ f (p)pd p dΩγ . (1.710)

Similarly, in zeroth order

30 In the literature, the normalization of the θl is sometimes chosen differently: θl → (2l +1)θl .
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T (0)0
(γ) 0 =−ρ (0)

γ =−
∫

p2 f (0)(p)pd p dΩγ . (1.711)

Hence,
δργ
ρ (0)
γ

=
∫

q3δ f dq dΩγ∫
q3 f (0)dq dΩγ

. (1.712)

In the longitudinal gauge, we have Δsγ = δργ/ρ
(0)
γ , Fs = δ f , and thus by (1.702)

and (1.706)

Δsγ = 4
1

4π

∫
Θ dΩγ = 4θ0.

Similarly,

T i
(γ)0 =−hγv|iγ =

∫
pi p0δ f pd p dΩγ

or

v|iγ =
3

4ρ (0)
γ

∫
γ iδ f p3d p dΩγ . (1.713)

With (1.711) and (1.702), we get

V |iγ =
3

4π

∫
γ iΘ dΩγ . (1.714)

For the Fourier amplitudes, this gauge invariant equation gives (Vγ →−(1/k)Vγ)

−iVγ k̂
i =

3
4π

∫
γ iΘ dΩγ

or

−iVγ =
3

4π

∫
μΘ dΩγ .

Inserting here the decomposition (1.706) leads to the second relation in (1.708).
For the third relation, we start from (1.520) and (1.709)

δT i
(γ) j = δ pγδ i

j + p(0)
γ

(
Π |i

γ| j−
1
3
δ i

j∇2Πγ

)
=

∫
pi p jδ f p d p dΩγ .

From this and (1.710), we see that δ pγ = 1
3δργ , thus Γγ = 0 (no entropy production

with respect to the photon fluid). Furthermore, since p(0)
γ = 1

3ρ
(0)
γ we obtain with

(1.703)

Π |i
γ| j−

1
3
δ i

j∇2Πγ = 4 ·3 1
4π

∫
[γ iγ j−

1
3
δ i

j]Θ dΩγ = Π i
j.

In momentum space (Πγ → (1/k2)Πγ ) this becomes

−(k̂ik̂ j−
1
3
)Πγ = Π i

j

or, contracting with γiγ j and using (1.707), the desired result.
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Hierarchy for Moment Equations

Now, we insert the expansion (1.706) into the Boltzmann equation (1.705). Using
the recursion relations for the Legendre polynomials,

μPl(μ) =
l

2l + 1
Pl−1(μ)+

l + 1
2l + 1

Pl+1(μ), (1.715)

we obtain

∞

∑
l=0

(−i)lθ ′l Pl + ik
∞

∑
l=0

(−i)lθl

[
l

2l + 1
Pl−1 +

l + 1
2l + 1

Pl+1

]
+ ikΨP1

= −Φ ′P0− τ̇

[
∞

∑
l=1

(−i)lθlPl− iVbP1−
1

10
θ2P2

]
.

Comparing the coefficients of Pl leads to the following hierarchy of ordinary differ-
ential equations for the brightness moments θl(η):

θ ′0 = −1
3

kθ1−Φ ′, (1.716)

θ ′1 = k
(
θ0 +Ψ − 2

5
θ2

)
− τ̇(θ1−Vb), (1.717)

θ ′2 = k
(2

3
θ1−

3
7
θ3

)
− τ̇

9
10

θ2, (1.718)

θ ′l = k
( l

2l−1
θl−1−

l + 1
2l + 3

θl+1

)
, l > 2. (1.719)

A lot could be said in connection with this hierarchy. Here, we consider only Eq.
(1.717) and rewrite it with (1.708) as

V ′γ = kΨ +
k
4
Δsγ −

1
6

kΠγ +H Fγ , (1.720)

where
H Fγ =−τ̇(Vγ −Vb). (1.721)

This agrees with (1.554), apart from the last term H Fγ that describes the momen-
tum transfer due to the interaction with the baryon fluid (Thomson scattering). For
the baryons, we have to add in (1.554) also a term H Fb to account for the back-
reaction. This momentum transfer can immediately be obtained from the require-
ment that the sum of the two momentum equations for γ and b has to agree with the
total momentum equation (1.230). This implies that

hγFγ + hbFb = 0, Fb =−4ργ
3ρb

Fγ . (1.722)
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The momentum equation of the baryon fluid then becomes

V ′b =−aHVb + kc2
bδb + kΨ + τ̇(θ1−Vb)/R, (1.723)

with R = 3ρb/4ργ .

1.9.6 Tensor Contributions to the Boltzmann Equation

Considering again only the case K = 0, the metric (1.455) for tensor perturbations
becomes

gμν = a2(η)[ημν + 2Hμν ], (1.724)

where the Hμν satisfy the TT gauge conditions (1.456):

H00 = H0i = Hi
i = Hi

j
| j = 0. (1.725)

We introduce again an adapted orthonormal tetrad

e0̂ =
1
a
∂η , ek̂ =

1
a

(∂k−Hl
k∂l). (1.726)

From pμ̂eμ̂ = pμ∂μ , we get

p0 =
p0̂

a
, pk =

1
a
(pk̂− pl̂Hk

l)

or in terms of the comoving momentum q:

p0 =
q
a2 , pk =

q
a2 (γk− γ lHk

l). (1.727)

The first equation implies dη/dλ = q/a2. To first order we have again (1.690) for
d f/dη , and we proceed as for scalar perturbations in computing dq/dλ . Instead of
(1.691), we now obtain

dq
dη

=−1
q

a4Γ 0
αβ pα pβ + 2H q. (1.728)

As before, one verifies that this vanishes in first order, and a straightforward calcu-
lation gives now

dq
dη

=−qH ′
i jγ iγ j. (1.729)

For tensor perturbations, we thus obtain

d f
dη

= f ′+ γ i∂i f −q
∂ f (0)

∂q
H ′

i jγ
iγ j. (1.730)
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For the temperature (brightness) perturbation this gives, if we neglect collisions,

(∂η + γ i∂i)Θ =−H ′
i jγ iγ j. (1.731)

(Collisions can be included without much effort; Exercise.)

This equation describes the influence of tensor modes on Θ . The evolution of
these tensor modes is described according to (1.457) by

H ′′
i j + 2H H ′

i j−∇2Hi j = 0, (1.732)

if we neglect tensor perturbations of the energy-momentum tensor. We decompose
Hi j as in Sect. 1.7.2:

Hi j(η ,k) = ∑
λ=±2

hλ (η ,k)εi j(k,λ ), (1.733)

where the polarization tensor satisfies (1.463). The mode functions hλ (η ,k) satisfy
the homogeneous linear differential equation

h′′+ 2
a′

a
h′+ k2h = 0. (1.734)

At very early times, when the modes are still far outside the Hubble horizon, we
can neglect the last term in (1.734), whence h is frozen. For this reason we solve
(1.734) with the initial condition h′(ηi,k) = 0. Moreover, we are only interested
in growing modes. For the matter or the radiation dominated eras, one can solve
(1.734) analytically in terms of Bessel functions (Exercise). It is, however, more
instructive to discuss this mode equation approximately.

On scales smaller than the Hubble horizon, we can use a WKB approximation.
Without the damping term, due to the cosmological expansion, h(η) is a linear
combination of cos(kη) and sin(kη). In the WKB ansatz, we multiply this with
a slowly varying amplitude A(η). Neglecting A′′, the differential equation shows
that A ∝ 1/a. We, therefore, expect that the tensor contributions to the CMB power
spectra fall off rapidly on scales smaller than the Hubble horizon.

1.9.7 Collision Integral for Thomson Scattering

The main goal of this appendix is the derivation of Eq. (1.697) for the collision
integral in the Thomson limit.

When we work relative to an orthonormal tetrad the collision integral has the
same form as in special relativity. So lets first consider this case.
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Collision Integral for Two-Body Scattering

In SR, the Boltzmann equation (1.683) reduces to

pμ∂μ f = C[ f ] (1.735)

or

∂t f + vi∂i f =
1
p0 C[ f ]. (1.736)

In order to find the explicit expression for C[ f ] things become easier if the following
nonrelativistic normalization of the one-particle states |p,λ 〉 is adopted:

〈p′,λ ′|p,λ 〉= (2π)3δλ ,λ ′δ (3)(p′ −p). (1.737)

(Some readers may even prefer to discretize the momenta by using a finite volume
with periodic boundary conditions.) Correspondingly, the one-particle distribution
functions f are normalized according to∫

f (p)
gd3 p
(2π)3 = n, (1.738)

where g is the statistical weight (= 2 for electrons and photons), and n is the particle
number density.

The S-matrix element for a two-body collision p,q → p′,q′ has the form (sup-
pressing polarization indices)

〈p′,q′|S−1|p,q〉=−i(2π)4δ (4)(p′+ q′ − p−q)〈p′,q′|T |p,q〉. (1.739)

Because of our noninvariant normalization, we introduce the Lorentz invariant ma-
trix element M by

〈p′,q′|T |p,q〉= M

(2p02q02p′02q′0)1/2
. (1.740)

The transition probability per unit time and unit volume is then (see, e.g., Sect. 64
of [42])

dW = (2π)4 1
2p02q0 |M|

2δ (4)(p′+ q′ − p−q)
d3 p′

(2π)32p′0
d3q′

(2π)32q′0
. (1.741)

Since we ignore in the following polarization effects, we average |M|2 over all po-
larizations (helicities) of the initial and final particles. This average is denoted by
|M|2. Per polarization, we still have the formula (1.741), but with |M|2 replaced by
|M|2. From time reversal invariance, we conclude that |M|2 remains invariant under
p,q↔ p′,q′.
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With the standard arguments, we can now write down the collision integral. For
definiteness, we consider Compton scattering γ(p)+ e−(q)→ γ(p′)+ e−(q′) and
denote the distribution functions of the photons and electrons by f (p) and f(e)(q),
respectively. In the following expression, we neglect the Pauli suppression factors
1− f(e), since in our applications the electrons are highly nondegenerate. Explic-
itly, we have

1
p0 C[ f ] =

1
2p0

∫
2d3q

(2π)32q′0
2d3q′

(2π)32q′0
2d3 p′

(2π)32p′0
(2π)4|M|2δ (4)(p′+ q′ − p−q)

×
{
(1 + f (p)) f (p′) f(e)(q

′)−
(
1 + f (p′)

)
f (p) f(e)(q)

}
. (1.742)

At this point, we return to the normalization of the one-particle distributions
adopted in Sect. 1.9.1. This amounts to the substitution f → 4π3 f . Performing this
in (1.735) and (1.742), we get for the collision integral

C[ f ] =
1

16π2

∫
d3q
q0

d3q′

q′0
d3 p′

p′0
|M|2δ (4)(p′+ q′ − p−q)

×
{(

1 + 4π3 f (p)
)

f (p′) f(e)(q
′)−

(
1 + 4π3 f (p′)

)
f (p) f(e)(q)

}
.

(1.743)

The invariant function |M|2 is explicitly known and can for instance be expressed in
terms of the Mandelstam variables s,t,u (see Sect. 86 of [42]).

The integral with respect to d3q′ can trivially be done

C[ f ] =
1

16π2

∫
d3q
q0

1
q′0

d3 p′

p′0
δ (p′0 + q′0− p0−q0)|M|2×{· · ·}. (1.744)

The integral with respect to p′ can most easily be evaluated by going to the rest
frame of qμ . Then,∫

d3 p′
1

p′0q′0
δ (p′0 +q′0− p0−q0) · ··=

∫
dΩp̂′

∫
d|p′| |p

′|
q′0

δ (m+q′0− p0−q0) · · · .

We introduce the following notation: With respect to the rest system of qμ , let ω :=
p0 = |p|, ω ′ := p′0 = |p′|, E ′ =

√
q′2 + m2. Then, the last integral is equal to

ω ′

E ′
1

|1 + ∂E ′/∂ω ′| =
ω ′2

mω
.

In getting the last expression, we have used energy and momentum conservation.
So far, we are left with

C[ f ] =
1

16π2m

∫
d3q
q0

∫
dΩp̂′

ω ′2

ω
|M|2×{· · ·}. (1.745)

In the rest system of qμ , the following expression for |M|2 can be found in many
books (for a derivation, see [43])
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|M|2 = 3πm2σT

[
ω ′

ω
+

ω
ω ′
− sin2ϑ

]
, (1.746)

whereϑ is the scattering angle in that frame. For an arbitrary frame, the combination
dΩp̂′

ω ′2
ω |M|2 has to be treated as a Lorentz invariant object.

At this point, we take the nonrelativistic limit ω/m→ 0, in which ω ′ 
 ω and
C[ f ] reduces to the simple expression

C[ f ] =
3

16π
σTωne

∫
dΩp̂′(1 + cos2ϑ)[ f (p′)− f (p)]. (1.747)

Derivation of (1.697)

In Sect. 1.9.4, the components pμ of the four-momentum p refer to the tetrad eμ
defined in (1.688). Relative to this, we introduced the notation pμ = (p, pγ i). The
electron four-velocity is according to (1.520) given to first order by

u(e) =
1
a
(1−A)∂η +

1
a

vi
(e)∂i = e0 + vi

(e)ei; vi
(e) = v(e)i = ∂iv(e). (1.748)

Now ω in (1.747) is the energy of the four-momentum p in the rest frame of the
electrons, thus

ω =−〈p,u(e)〉= p[1− ∂iv(e)γ i]. (1.749)

Similarly,
ω ′ =−〈p′,u(e)〉= p′[1− ∂iv(e)γ ′i]. (1.750)

Since in the nonrelativistic limit ω ′ = ω , we obtain the relation

p′[1− êi(v(e))γ ′i] = p[1− ∂iv(e)γ i]. (1.751)

Therefore, to first order

f (p′,γ ′i) = f (0)(p′)+ δ f (p′,γ ′i)

= f (0)(p)+
∂ f (0)

∂ p
(p′ − p)+ δ f (p,γ ′i)

= f (0)(p)+ p
∂ f (0)

∂ p
∂iv(e)(γ ′i− γ i)+ δ f (p,γ ′i). (1.752)

Remember that the surface element dΩp̂′ in (1.747) also refers to the rest system.
This is related to the surface element dΩγ ′ by31

dΩp̂′ =
(

p′

ω ′

)2

dΩγ ′ = [1 + 2∂iv(e)γ ′i]dΩγ ′ . (1.753)

31 Under a Lorentz transformation, the surface element for photons transforms as

dΩ = (ω ′/ω)2dΩ ′

(Exercise).
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Inserting (1.752) and (1.753) into (1.747) gives to first order, with the notation of
Sect. 1.9.5,

C[ f ] = neσT p

[
〈δ f 〉− δ f − p

∂ f (0)

∂ p
∂iv(e)γ i +

3
4

Qi jγ iγ j

]
, (1.754)

that is the announced equation (1.697).
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Chapter 2
Cosmology with Cosmic Microwave Background
and Large-Scale Structure Observations

Licia Verde

2.1 Introduction

Cosmology aims at obtaining a physical description of the Universe including its
global dynamics and content. Having a standard cosmological model provides a
good framework to do that. In this framework, we aim to measure cosmological
parameters (the parameters of the model) and to develop a fundamental understand-
ing of them. We also want to understand the origin and evolution of cosmic structure
and to probe the physics of the early Universe. Typical energies of the early universe
were very high: the physics of the early Universe had deep links with fundamental
particle physics.

The basic framework of the cosmological model relies on the following:

• The Cosmological principle: the Universe on average is described by the
Friedman–Robertson–Walker metric

• Hot big bang and big bang nucleosynthesis
• Structure formation is described by a perturbed Friedman–Robertson–Walker

metric
• Initial perturbations were seeded by inflation
• Physical laws as we know them are valid throughout the Universe: general rela-

tivity + atomic, particle, thermal, radiation physics

These can be considered as “assumptions” underlying the standard cosmological
model. They are supported by observations: the Hubble diagram, the light elements
abundances, the Cosmic Microwave Background (CMB) etc., however, sometimes
it is good to challenge the underlying assumptions. There is work in the literature
about this, but we will not discuss it in this Chapter.

Licia Verde
ICREA &ICCUB, e-mail: liciaverde@icc.ub.edu
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The parameters of the standard model can be grouped into different types.
Parameters that describe the smooth Universe. These are parameters that govern

the global geometry of space-time and parameters that govern the expansion rate the
current expansion rate; H0 and the matter density parameter Ωm, which is the total
of the cold dark matter component Ωc and the baryonic component Ωb and radia-
tion Ωrad which is unimportant for the recent history but not in the early Universe.
There is also a neutrino component, given that neutrino oscillations indicated that
neutrinos have mass Ωnu, although in the standard cosmological model it is assumed
to be zero as current cosmological observations have –reliably – only given upper
limits to Ωnu. In the standard model, all these components are sub-dominant as
the Universe is dominated by dark energy in the form of a cosmological constant
ΩΛ . Finally, Ωk describes the global geometry, which in the standard cosmological
model is 0. Often explored deviations from the standard cosmological models are
the nonflat case Ωk �= 0 and dark energy deviating from a cosmological constant,
i.e., a cosmic fluid with negative equation of state parameter w, but not necessarily
w≡−1. w is often assumed to be constant, but in many cases, its redshift evolution
is also considered.

Parameters that describe the inhomogeneous Universe. These are parameters that
characterize the properties of the inhomogeneities: σ8, the power spectrum spec-
tral slope n for scalar perturbations. The primordial power spectrum is assumed
to be a power law, n = 1 will give a so-called Harrison–Zeldovich or scale-invariant
power spectrum. Deviations from a power law, in the form of a running of the
spectral index dnd lnk are also considered as deviations from the standard cosmo-
logical model and are expected to be small in simple inflation models. In the stan-
dard cosmological model, perturbation are expected to be scalar. However, inflation
produces a background of gravity waves; for cosmology, these give tensor per-
turbations. The parameter r describes the tensor to scalar perturbation amplitude,
and in simple inflationary model, the tensor perturbations also have a power-law
power spectrum with slope given by the tensors consistency relation nt = −r/8.
Parameters parameterizing our ignorance. Typical examples τ optical depth to the
last scattering surface. In principle if we knew exactly how reionization happens,
we should be able to compute τ from all the other parameters, but we can’t do that.
Another example is galaxy bias.

A similar grouping can be made about observations: there are observations
that probe the global space-time geometry and expansion rate such as Super-
novae luminosity distance diagrams (see Tsujikawa’s Chapter) and baryon acous-
tic oscillations (BAO), observations that probe the inhomogeneities such as
large-scale structures -see below- and, in part, gravitational lensing –see chapter 3
by Heavens.

In this chapter, I will review what we have learned recently from CMB and large-
scale structure results and what we hope to learn with forthcoming experiments.
I will concentrate on some of the challenges these data sets offer and how the cos-
mological information is extracted from the survey data. I will then move on to the
subject of large-scale structure where I will pay special attention to the relatively
new subject of BAO.
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2.2 Cosmic Microwave Background and Other Data Sets:
What have we Learned About Cosmology?

The standard cosmological model is extremely successful: with only six parameters,
it can fit observations of the Universe from z = 1100 to today. The first three param-
eters are energy density of cold dark matter, energy density of baryons (the Uni-
verse is spatially flat with dark energy in the form of a cosmological constant that
makes it flat), and present-day expansion rate. In this model, the initial conditions
are Gaussian, the perturbations are scalar and generated in the inflationary scenario:
amplitude and slope of the primordial power spectrum fully characterize the statis-
tics of the initial perturbations. The sixth parameter is the optical depth to the last
scattering surface. This model was first proposed more than a decade ago but has
survived, virtually unchanged, the avalanche of high-precision cosmological data
of the past decade. Interestingly, we can determine the parameters of this model
from Cosmic Microwave Background (CMB) data alone and then extrapolate the
prediction for this model to observations of the late Universe (large-scale structure
clustering, supernovae data etc.). We find that the extrapolated model provides an
extremely good fit to the late Universe observations (See Fig. 2.1 and 2.2). When
external data sets are added to WMAP5 data, the recovered value of the cosmologi-
cal parameter do not shift significantly, also indicating consistency. This is summa-
rized in the following table (Table 2.1).

2.2.0.1 Polarization

Although most of the cosmological information on cosmological parameters, such
as Ωb or Ωm, comes from the CMB temperature anisotropy, the CMB light is
polarized and the CMB polarization can open a new window into the early Universe.
Shortly after the CMB was first detected, M. Rees [40] showed that the CMB should

Fig. 2.1 Left:WMAP5 temperature angular power spectrum and best-fit LCDM model. This is
consistent with data from recent small-scale CMB experiments. Right: luminosity-distance rela-
tionship predicted for the best-fit WMAP5-only model. The points show binned supernova obser-
vations from the Union compilation. Figures reproduced from [6]
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Fig. 2.2 Power spectrum from the Luminous Red Galaxies SDSS DR7. Also, shown are the best-
fit LCDM model for WMAP5 data with large-scale structure data (solid line) and the underlying
linear dark matter power spectrum. In the inset, the power spectrum is divided by a smooth fit to
enhance the BAO feature.

Parameter WMAP5 WMAP5 + CMB WMAP5 + LRG WMAP5 + SN WMAP5 + BAO

H0 71.9±2.7 72.5±2.6 69.4±1.6 69.6±1.7 70.1±1.5
Ωb×102 4.40±0.30 4.30±0.30 4.71±0.12 4.672±0.20 4.6±0.12

Ωm 0.214±0.027 0.207±0.026 0.289±0.019 0.238±0.018 0.278±0.018
τ 0.087±0.017 0.086±0.017 0.087±0.017 0.083±0.016 0.086±0.016
ns 0.963±0.014 0.960±0.014 0.961±0.013 0.959±0.014 0.961±0.013
σ8 0.796±0.036 0.783±0.035 0.824±0.025 0.820±0.028 0.813±0.028

Table 2.1 Cosmological parameters constraints for a flat, power-law LCDM model, for the fol-
lowing data sets and data sets combinations WMAP5 [20, 6], WMAP5 + CBI, VSA, and ACBAR
[39, 5, 23], WMAP5 + power spectrum of SDSS LRG galaxies [41], WMAP5 + Union Supernovae
sample [21], WMAP5 + Baryon Acoustic Oscillations (BAO)[38].

be polarized; but it was only in 2002 that the DASI collaboration[22, 24] first statis-
tically detected the CMB anisotropies in polarization, although WMAP in 2003 had
detected the cross correlation between temperature and polarization [2, 19]. In 2006,
WMAP provided the first full sky map of CMB polarization [32]. The temperature



2 Cosmology with CMB and LSS 137

quadrupole at the surface of last scatter generates polarization through Thompson
scattering off free electrons. During the evolution of the Universe, free electrons are
available to polarize the CMB radiations twice. The first time is at the last scattering
surface (because recombination is not instantaneous). The second time in the evolu-
tion of the Universe where free electrons can generate polarization is at the end of
the dark ages (during reionization by the first stars).

Keeping this in mind, the observed properties of the polarization pattern are the
result of different physical processes, depending on scale (see Fig. 2.3). On small
sub-horizon scales, the local dipole seen by the free electrons at the last scattering
surface is given by local (primordial) density perturbations, yielding a radial (tan-
gential) pattern around hot(cold) spots.

On super-horizon scales, the dipole is created by velocities generated from
adiabatic perturbations, thus polarization anisotropies on these scales should be
anticorrelated to the temperature anisotropies (the extrema of density corresponds
to minimum of velocity fluctuations and vice versa [47]). This was clearly seen
in the WMAP data [19], and although this anticorrelation is not useful to constrain
cosmological parameters in the standard cosmological model, it is an important con-
firmation of the assumed paradigm [33].

On very large scales � < 10, the polarization signal is dominated by the reioniza-
tion signature. Recall that in the standard LCDM cosmology, all reionization physics
effects on the CMB are summarized by a single parameter τ , the optical depth to

Fig. 2.3 Left: Temperature-polarization angular power spectrum from WMAP 1st year data (sym-
bols, plotted in bandpowers of Δ� = 10. The large-angle TE power spectrum predicted in primor-
dial adiabatic models (solid line), primordial isocurvature models (dashed line), and causal scaling
seed models (dotted line) is shown. Right:The WMAP 5-year-TE power spectrum. The green curve
is the best-fit theory spectrum from the WMAP5 data. The clear anticorrelation between the pri-
mordial plasma density (corresponding approximately to T) and velocity (corresponding approxi-
mately to E) in causally disconnected regions of the sky indicates that the primordial perturbations
must have been on a superhorizon scale. The enhanced correlation at large angular scales is the
reionization feature.
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the last scattering surface, and quantities are computed using that assumption of
instantaneous (step) reionization. Even if we are not interested in reionization, this
parameter cannot be neglected: in fact from temperature data alone, the determi-
nation of the primordial power spectrum spectral slope, ns, is severely degenerate
with value for τ . While for WMAP 1st year data, the polarization signal was not
good enough to disentangle the two parameters, with WMAP 3 and 6-years-data,
this degeneracy is lifted.

While in the standard LCDM model, primordial perturbations are scalar pertur-
bations (vorticity modes are expected to decay rapidly), the inflationary paradigm
is also expected to generate a stochastic background of gravity waves. The amplitude,
such as the gravity waves in the background, is closely related to the energy
scale of inflation. As CMB photons travel in a metric perturbed by gravity waves,
the stretching of space-time caused by gravity waves cause the photons to pro-
duce a quadrupole intensity distribution. Thompson scattering thus leads to
polarization.

It has been shown that the CMB polarization pattern on the sphere can be
decomposed in two modes called E and B modes that are analogous to the E and B
field in electromagnetism, with E being the curl-free and B being the curl compo-
nents [16, 48]. Density perturbations, to linear order in perturbation theory1, can-
not produce B-mode polarization, but gravity waves can. This can be understood
by considering a single Fourier mode of the density perturbation: being the den-
sity perturbation, a scalar field has some symmetries: a rotational symmetry around
the k vector of the Fourier mode and reflection along any plane that include the
k vector (no curl). So the polarization pattern must also satisfy this symmetry. This
is not the case for the gravity waves (tensor-model) perturbations. The primordial
gravity waves amount is parameterized by r, the so-called tensor to scalar ratio.
Since most models predict power-law power spectra for tensor and scalar perturba-
tions and also a relation between the scalar and the tensor spectral slope, r is defined
as the ratio between the two power spectra at a given k (usually 0.002 Mpc/h).

Unfortunately, the galaxy around us (and our detectors) emits strong polarized
light, and it emits roughly equally E and B modes. Any (primordial) polarization
measurement must take into account the polarized emission from foregrounds, even
when applying a galactic cut to the maps. The effect of this on the angular power
spectrum of CMB polarization is shown in Fig. 2.4. Foreground emission has a fre-
quency dependence distinct from that of the CMB, palso, for galactic foregrounds, it
is expected to have a spatial pattern somewhat related to the structure and properties
of our own galaxy. Ultimately, foreground subtraction relies on these two features,
and it often relies on templates constructed from a combination of data at different
frequencies and from modeling and our knowledge about the structure of our galaxy
(see also Sec. 2.3.5).

1 Perturbations at the CMB epoch are very small and linear theory is an excellent approximation.
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Fig. 2.4 Left: (From WMAP3 years data) The absolute value of the EE (solid, violet through
green) and BB (dashed, violet through green) polarization spectra as s function of frequency for
the region outside the Galactic mask. The best-fit LCDM model with τ = 0.09 and an additional
tensor contribution with r = 0.3 is shown in black. Right: Plots of signal for TT (black), TE (red),
and EE (green) for the best-fit LCDM model. The dashed line for TE indicates areas of anticor-
relation. The cosmic variance is shown as a light swath around each model. The blue line shows
the BB contribution for a model with r = 0.3, and the blue short-dashed line show the contribu-
tion from gravitational lensing which moves power from E to B. The foreground contribution from
synchrotron and dust at 65 GHz (close to the minimum emission) is shown as long-dashed lines:
green for EE and blue for BB. From [32].

2.2.1 Testing Inflation: Status and the Prospects

The inflation paradigm was introduced and formulated in the 80s it postulates a
period of accelerated expansion in the very early Universe, driven by a slowly rolling
-potential dominated- scalar field; with this, inflation solves the problems of the
classical big bang theory: the horizon problem and the flatness problem. In addition,
it gives a natural set up for cosmological perturbations: they arise from quantum
fluctuations stretched by the expansion which then evolve classically. Although the
Universe becomes opaque beyond the last scattering surface (z ∼ 1100), there are
ways of seeing indirectly beyond redshift 1100. Information on the shape of the
inflaton potential is enclosed in the shape and amplitude of the primordial power
spectrum of perturbations. Information about the energy scale of inflation (the height
of the inflaton potential), however, can only be obtained by the addition of B-modes
polarization amplitude.

In general, the flatness, horizon, and homogeneity of the Universe gives an
“observational” constraint of a number of inflationary e-foldings greater than 50.
This requires the potential to be flat enough to generate enough e-foldings, imply-
ing that not every scalar field can be the inflaton. Detailed measurements of the
shape of the primordial power spectrum can rule in or out different potentials.
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Let us start by reviewing the generic predictions of inflation and the current
observational status on these, we will then move on to more quantitative tests.
Generic predictions of inflation are as follows:

• Flat Universe. The latest measurements using WMAP 5-years-data and H0 con-
straints are [20] −0.052 < Ωk < 0.013 at the 95% confidence level and from
WMAP 5 year + clustering of LRG galaxies for SDSS DR5[41] −0.027 < Ωk <
0.003 at the 95% confidence level.

• Gaussianity: [20] reports constraints on the local non-Gaussianity parameter
fNL consistent with Gaussianity: −9 < fNL < 111 (for equilateral type of non-
Gaussianity, the constraint is −151 < f EQ

NL < 253).
• Power spectrum nearly scale invariant: WMAP 5-years-data yields: ns = 0.963±

0.015 and the combination with LRG yields: 0.959±0.014 [41].
• Adiabatic initial conditions.
• Super-horizon fluctuations. The large-scale anticorrelation of the temperature-E-

mode polarization cross correlation indicates that initial conditions are consistent
with being adiabatic and super-horizon (upper limits can be imposed on extra
nonadiabatic contributions).

We, therefore, conclude that WMAP5 observations (and in general CMB obser-
vations alone and in combination with external data sets) are consistent with the
simplest inflationary models. The near-scale invariance was evident since the time
of COBE, indications for flatness were present in TOCO, Boomerang, Maxima,
Archeops data well before WMAP. Interesting constraints on Gaussianity and
on adiabatic and super-horizon fluctuations, however, became available only with
WMAP data. The precision of current data sets enables us to go beyond this and
to critically test specific inflationary models. It is interesting to note that the con-
straints one obtains depend on how the reconstruction is performed and on the cho-
sen parameterization. The two main approaches used thus far are (1) Since simple
inflationary models predict that the primordial power spectrum should be close to a
power law, parameterize the primordial power spectrum shape as 2

P(k) = A

(
k
k0

)ns(k0)+ 1
2

dns
d lnk ln

(
k

k0

)
, (2.1)

where A denotes the primordial amplitude, k0 is called the pivot point, ns(k0) is the
spectral slope at the pivot, and dns/d lnk ≡ d2 lnP(k)/d lnk2 is called running of
the spectral index and it is assumed not to depend on scale. It is customary to use
k0 = 0.002Mpc−1, but sometimes k0 = 0.05Mpc−1 is also used. However, depend-
ing on the data set used, there will be a k∗ where the errors on amplitude and ns

2 Sometimes, the primordial amplitude is rescaled and related to the primordial curvature pertur-
bations as follows: Δ 2

R(k0) = 2.95× 10−9A(k0), where Δ 2
R = 1/(2π2)k3PR(k) and the curvature

perturbation R is related to the potential perturbation Φ by Φ =−3/5R. Also, recall that the den-
sity power spectrum and the potential power spectrum are related by PΦ ∝ 1/k4Pδ .
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are decorrelated, thus some authors do not stick with the two “customary” options
above. To convert between any two pivot conventions, say, k1 and k0:

A(k1) = A(k0)
(

k1

k0

)ns(k0)+ 1
2

dns
d lnk ln

(
k1
k0

)
(2.2)

and, since ns ≡ d lnP(k)/d lnk

n(k1) = n(k0)+
dns

d lnk
ln(k1/k0) . (2.3)

The parameters ns, dns/d lnk, and r can be related to the so-called potential
slow-roll parameters as outlined in e.g., [28, 27, 26]

Δ2
R =

V

M4
P

1
24π2εV

, (2.4)

r = 16εV , (2.5)

ns−1 = −16εv + 2ηV , (2.6)

dns

d lnk
= −2

3
[(ns−1)2−4η2

V ]−2ξV , (2.7)

where mP = 1.22×1019GeV denotes the Planck mass, MP = mP/
√

8π and

εV ≡
M2

P

2

(
V ′

V

)2

, (2.8)

ηV ≡ M2
P

V ′′

V
, (2.9)

ξV ≡ M4
P

(
V ′V ′′′

V 2

)
. (2.10)

In single-field inflationary models, there is a consistency relation relating the
tensor tilt to the tensor amplitude itself nt =−r/8.

(2) The other approach is to use the so-called Hubble slow-roll parameters. This
approach goes under the name of slow-roll reconstruction. For inflation driven by
a single, minimally coupled scalar field, the equation of motion can be written as a
function of the inflaton field φ e.g., [17, 9, 33]:

φ̇ = −m2
P

4π
H(φ) (2.11)

[
H ′(φ)

]2− 12π
m2

P

H2(φ) = −32π2

m4
P

V (φ) (2.12)
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from where the Hubble slow-roll parameters can be defined by the infinite hierarchy
of differential equations:

εH(φ) ≡ m2
P

4π

[
H ′(φ)
H(φ)

]2

, (2.13)

�λH ≡
(

m2
P

4π

)
(H ′)�−1

H�

d(�+1)H

dφ (l+1) : �≥ 1. (2.14)

This hierarchy can be truncated at order N so that �λH = 0 for all � > N; then, the
hierarchy can be solved explicitly and an exact expression for the inflaton potential
can be obtained. The Hubble slow-roll parameters then are εH as defined above,
ηH =1 λH and ξH =2 λH . [25] stated that this is then equivalent to parameterize
H(φ) as a polynomial of order N + 1 H(φ) = Ho(1 + A1φ + A2φ2 + ...), with the
�λH related to the A� coefficients and that thus the corresponding potential V (φ) can
also be written in term of these coefficients. Still it should be clear that while there
are relations between the potential slow-roll parameters and the Hubble slow-roll
parameters, the two parameterizations are different and using flat priors on one pa-
rameterization does not correspond to using flat priors on the other. If a bayesian
analysis is performed (as it is customary in cosmology) and if simple priors on the
minimum required number of e-folding is then applied, the constraints on observ-
able quantities ns and dns/d lnk need not coincide as illustrated in Fig. 2.5.

Different inflationary models “live” in different parts of this parameter space.
However, note that by measuring the shape of the scalar perturbations spectrum,
one cannot extract information about the absolute scale of inflation. In order to do
that, constraints on the tensor to scalar ratio r are needed. This is the main goal of the

Fig. 2.5 The joint 68% (inner) and 95% (outer) bounds on the power law spectral parameters at the
fiducial scale k0 = 0.02 Mpc−1 obtained by transforming the constraints on the Hubble slow-roll
parameters into this parameter space. The blue constraints are derived from WMAP 5-year-data
alone, and the red constraints are derived from the WMAP5 + SN data combination. The dotted
contours come from slow-roll reconstruction applying an e-fold prior assuming a reheating tem-
perature Treh > 10 TeV. For comparison, the dashed contours show an analysis using the empirical
power-law prescription in terms of ns , r, and dns/d lnk at a pivot scale of 0.02 Mpc−1, using
WMAP5 data. From [34].
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Fig. 2.6 Present and future constraints on the ns r plane along with classification of inflationary
models. The green contours show the WMAP current constraints, the dark red curves show the
forecasted Planck constraints, and the light red oval curves show the forecasted CMBPol con-
straints for a fiducial model of r = 0.01 and ns = 0.97. r > 0.01 requires a displacement of the
field during inflation larger than MP (large field models), small field models need a smaller dis-
placement (smaller r). Also shown are the predictions of few representative models of single-field
slow-roll inflation: chaotic inflation λφ p for general p (thin solid line) and for few representative
values (bullets); natural inflation where the inflaton potential has to form V0[1−cos(φ/μ)], hill top
inflation with potential V0[1− (φ/μ)2] + ..., and models with very small tensor amplitudes (very
small filed inflation).

next generation of CMB-polarization missions. A good introduction and theoretical
motivation for such an experimental effort can be found e.g., in [1]. Here, in Fig. 2.6,
we report an adapted figure from that paper with present and future constraints on
the r n plane and some inflationary models.

2.2.2 Beyond the Standard Cosmological Model

While the standard LCDM, six-parameters model is extremely successful; cosmo-
logical data can be (and should be) used also to test for deviations from this minimal
model. In the previous section, we have seen that an a couple of extra parameters
were introduced: the running of the spectral index and the tensor to scalar ratio. Thus
far, there are only upper limits on the tensor-to-scalar ratio: r < 0.43 for WMAP5
years alone at 95% CL, r < 0.22 from WMAP + BAO + SN also at the 95% CL. On
the other hand, there have been claims for detection of nonzero running though not
at high statistical significance. Clearly, a large running for a nearly scale-invariant
spectrum implies that ξ is nonnegligible while ε and η are still relatively small (or
fine tuned so that the cancel out in the expression for ns). In any case, it implies that
the potential is not flat (or, equivalently that the Hubble parameter during inflation
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is not nearly constant) and so that slow roll cannot be sustained and such model,
if it is a standard, single field, inflation, will not have many e-foldings. At least 50
e-foldings are needed to explain the flatness problem and the horizon problem: a
large running would imply troubles for the simplest standard slow-roll inflationary
scenarios.

The flatness assumption can also be relaxed to obtain constraints on the curvature
parameter Ωk, which were briefly discussed in §2.2.1, as well as possible deviations
from Gaussian initial conditions. Note that the CMB alone is not sensitive to Ωk

and to H0 at the same time: a CMB constraint on H0 can be obtained assuming a flat
universe and a constraint on Ωk can be obtained only by combining CMB with H0

measurement (or other measurements of the low redshift expansion history such as
the supernovae luminosity distance).

There are also other additional cosmological parameters that can be considered.
Let us begin by relaxing the assumption that the dark energy is a cosmological con-
stant. The simplest (and probably dummest) way to do that is to assume that the dark
energy has an equation of state parameter pDE/ρDE = w �=−1, where pDE denotes
the dark energy pressure and ρDE its density; a cosmological constant has by defini-
tion w =−1. w is then assumed to be constant. In this case, the dark energy density
evolves slightly in redshift so that ρDE = ρ0(1 + z)3(1+w). Again, the CMB alone
is not sensitive to the w parameter, but constraints can be obtained in combination
with low redshift probes such as supernovae, BAO, and H0 determination.

In the standard model, one assumes that there are three massless neutrino
species, so limits can be imposed from cosmological data on the sum of neutrino
masses or on the effective number of neutrino species. Cosmology is sensitive
to the physical energy density in relativistic particles in the early Universe ωrel

which, in the standard model (for cosmology), includes only photons and neutri-
nos ωrel = ωγ + Ne f fων , where ωγ is the energy density in photons and ων is the
energy density in one active neutrino. As ωγ is extremely well constrained by CMB
observations, ωrel can be used to constrain neutrino properties; deviations from
Ne f f = 3.046 would signal nonstandard neutrino features or additional relativistic
relics. Free-streaming relativistic particles affect the CMB mainly through their rel-
ativistic energy density, which alters the epoch of matter-radiation equality. Because
the redshift of matter-radiation equality is well constrained by the ratio of the third
to first CMB peak height, this effect defines a degeneracy between Ωmh2 and Ne f f :
1 + zeq = (Ωmh2)/(Ωγh2)[1 + 0.227Ne f f ]−1. Any additional constraints on Ωm and
or h from external data set will the break such degeneracy. Neutrinos with mass ≤ 1
eV become nonrelativistic after the epoch of recombination probed by the CMB
so that allowing massive neutrinos alters matter-radiation equality for fixed Ωmh2.
Their radiation-like behaviour at early times changes the expansion rate, shifting the
peak positions, but this is somewhat degenerate with other cosmological parameters.
Therefore, WMAP5 alone constrains ∑mν < 1.3 eV at the 95% confidence inter-
val in a flat LCDM universe. After the neutrinos become nonrelativistic, their free-
streaming damps power on small scales and therefore modifies the matter power
spectrum in the low-redshift universe. This effect can be tested by low-redshift data
such as galaxy clustering.
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Parameter WMAP5 WMAP5 + H0 WMAP5 + LRG WMAP5 + SN

Ωk (95% CL) – 0.014 < Ωk < 0.009 0.027 < Ωk < 0.003 −0.0316 < Ωk < 0.0078

w (68% CL) – −1.12±0.12 0.75±0.15 −1.04+0.066
−0.064

Ne f f (68% CL) – 4±2 4.8+1.8
−1.7 –

∑mν (95% CL) 1.3 eV < 0.6 eV < 0.62 eV –

Table 2.2 Cosmological parameters constraints for one-parameter deviations from the standard
LCDM model for the following data sets and data sets combinations WMAP5 [20, 6], WMAP5 +
H0 determination from [42], WMAP5 + Power spectrum of SDSS LRG galaxies [41], WMAP5 +
Union Supernovae sample [21].

Constraints on these additional parameters from a combination of several data
sets is reported in Table 2.2.

It is clear that the combination of CMB and large-scale structure data is very
powerful not only in constraining cosmological parameters but also in testing the
standard cosmological model.

In the next section, I will try to explain or at least give an idea of how this
information is extracted from the data. Textbooks and classical cosmology courses
concentrate in illustrating how the cosmological information is encoded in the
CMB maps and power spectra. There are also publicly available codes –CMBFAST,
CAMB, CMBEASY– that given a set of cosmological parameters will provide the
theory angular temperature power spectrum expected. I will, therefore, take the com-
plementary approach and try to illustrate the challenges and outline solution for the
issue of how to estimate the angular power spectrum of the primary CMB and how
to constrain cosmological parameters from it.

2.3 CMB: How is the Information Extracted?

In the standard cosmological model and in standard models of inflation, the ini-
tial perturbations were nearly Gaussian. For Gaussian initial conditions, the power
spectrum completely characterizes the statistical properties of the CMB tempera-
ture fluctuations. Therefore, the information enclosed in the megapixel CMB maps
is compressed into a CMB angular power spectrum:

C� =
1

(2�+ 1)∑m
|a�m|2, (2.15)

where a�m denote the coefficients of the spherical harmonics expansion of the tem-
perature fluctuations. Unfortunately, one can never measure this directly. Several
real-world effects come into play, which we will be briefly outlined below. Once
these effects can be accounted for, the cosmological information is thus encoded
in CMB the angular power spectrum. Note that there are temperature spectra, CT T

� ,
polarization spectra CEE

� (in principle also CBB
� ), and cross spectra CT E

� . CT B
� and

CEB
� should vanish in a universe that conserves parity [16, 49, 48]; thus, these are

used mostly to check for systematic effects (but see e.g., discussion in [20]). There
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are publicly available codes –CMBFAST, CAMB, CMBEASY– that given a set of
cosmological parameters will provide the theory angular temperature power spec-
trum expected. So here, I will try to illustrate the challenges and outline solution of
how to estimate the angular power spectrum of the primary CMB and I will illustrate
how to constrain cosmological parameters from it.

Note that in principle, it is also possible to extract cosmological information
directly from CMB maps without going through the C� measurement. In fact, the
likelihood function for the temperature fluctuation observed by a noiseless experi-
ment with full sky coverage has the form:

L (T|θ ) ∝
exp[−(TS−1T/2]√

detS
(2.16)

where T denotes the temperature map, θ denotes the array of cosmological
parameters and the elements of the signal matrix S are given by Si j = ∑�(2� + 1)
Cth

� (θ )P�(nin j)/(4π). However, in practice, this procedure is slow and prohibitively
expensive for high-resolution maps, and it has thus far been used only in exceptional
cases (see e.g., [6] and references therein).

2.3.1 Real-World Effects

A realistic CMB map is affected by instrumental noise, finite resolution, and,
because of the galactic foregrounds, not the full sky can be used for cosmology. Of
course, additional real-world effects may as well be present (correlated inhomoge-
neous noise, anisotropic beam etc.,), but the effects of noise (uniform) of beam and
of sky cut need to be included even when forecasting the performance of an idealized
experiments with some given (ideal) characteristics. Here, we start by follwing [18].

2.3.1.1 Noise

Every detector has a noise that is then superimposed to the signal. Today’s detec-
tors are so good that they are photon-noise limited, thus the only way to reduce the
noise is to use multiple detectors and even to make detectors arrays. In the presence
of noise, the measured temperature in a given direction in the sky Tmeas is given by
Tmeas = T +noise, thus a�m = asignal

�m +anoise
lm . Since the noise is not expected to corre-

late with the signal, this is a superposition of two independent processes, thus the re-
sulting power spectrum is the sum of the two power spectra: Cmeas

� = Csignal
� +Cnoise

� .
Thus, this is a biased estimator of the signal because, in general, 〈Cnoise

� 〉 �= 0:
〈anoise

lm 〉 = 0 but 〈anoise2
lm 〉 �= 0. Here and hereafter, 〈.〉 denotes ensamble average.

There is one way to make Cnoise
� = 0: computing Cmeas

� from the cross correlation
of different (uncorrelated) detectors. We call these cross-power spectra, in contrast
to auto-power spectra. One needs to subtract the noise from the auto-power spectra.
For an experiment with a detector sensitivity of s (usually expressed in μk

√
s), the
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rms per sky (or map) pixel is given by σpix = s/
√

tpix, where tpix is the observing
time spent on each pixel. Note that for detecting a polarized signal, the instrument
needs to “split the photons” and so the sensitivity s is at least a factor sqrt2 worst for
a polarization-sensitive detector than for one sensitive to T only (all other charac-
teristics being equal). Thus, for an experiment with negligible beam smearing (i.e.,
beam smearing much smaller than the pixel size), the noise spectrum per multipole
becomes w = (σ2

pixΩpix)−1, where Ωpix s the pixel solid angle: Ωpix = 4π fsky/Npix,
where Npix is the number of pixels in the observed map. Thus, Cnoise

� = w−1.

2.3.2 Beam

Every experiment has a finite resolution, in optical astronomy this is called point
spread function; in radio, it is called beam and is characterized by its solid angle
Ωbeam. The resulting maps are then pixelized and the pixel size (or Ωpix) must be
matched to the beam size. The effect of this, if we neglect the effect of noise, is
that the temperature in the sky at a given position (pixel) is given by Ti =

∫
dΩ ′T (n̂)

b(|n̂− n̂′|), where b denotes the beam profile. This is often assumed to be (or is
actually very close to a ) Gaussian, in this case its full width at half maximum
(FWHM) specifies σb = 0.425FWHM, thus Cmeas

� = Csignal
� exp[−�2σ2

b ].
Note that the noise is intrinsic to the detector and thus does not “see” the beam,

therefore: Cmeas
� = Csignal

� exp[−�2σ2
b ]+Cnoise

� ; but if one now deconvolves for the

beam to estimate the signal, one obtains: Cmeas
� = Csignal

� +Cnoise
� exp[�2σ2

b ]. That is,
the noise appears to “explode” exponentially at high �, as shown in Fig. 2.7.
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Fig. 2.7 E- and B-mode power spectra for a tensor-to-scalar ratio saturating current bounds, r =
0.3 and for r = 0.01. Also, shown are the experimental sensitivities for WMAP, Planck, and two
different realizations of CMBPol (EPIC-LC and EPIC-2m). (Figure from[1]).
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2.3.3 Sky Cut

The galactic emission dominates the CMB signal, thus even full sky experiments
cannot use the entire sky for cosmological analysis. In the presence of a sky
cut (i.e., regions of the sky with pixels set to zero “by hand” either because of
contamination or for lack of data), the measured spherical harmonic coefficients
are related to the underlying temperature fluctuation filed by a convolution with
the mask: ã�m =

∫
dΩ ′

nT (n̂)W (n̂)Y ∗�m(n̂) and for a pixelized map this becomes
ã�m = Ωp∑p TpWpY ∗�m(n̂p). If one ignores the effect and computes the C� using ã�m

instead of a�m, one obtains the so-called pseudo-C� ([13]). Clearly, C̃� �= C�, how-
ever, it can be shown that 〈C̃�〉 = ∑� G��′ 〈C�′ 〉. The function G describes the mode
coupling introduced by the sky cut and is related to the coefficients of the spher-
ical harmonic transform of the mask W�m and to the mask power spectrum W� by
W� = (2�+ 1)−1∑m |W�m|2;

G��′ =
2�′+ 1

4π ∑
�′′

(2�′′+ 1)W�′′

(
��′�′′
00 0

)
. (2.17)

If one could invert G and if one could say that 〈C�〉 ≡C�, then one could estimate
C� = ∑�′ G

−1
��′ C̃�′ . This is the gist of the paper of [13]. Note that the same description

is valid also if the original mask W (n̂) does not only take values 0 or 1 but also if it
takes other continuous values in between: usually a weight is used, which could be
related for example to the number of time a pixel was observed or to the pixel noise
in case of nonhomogenous noise etc.

2.3.4 How Do You Make a CMB Map in the First Place?

The first question one may ask before starting on a cosmological analysis with CMB
data is: how do the raw data look like and do you get them in the form of a map?
The “raw” data are usually collected as time-ordered data (TOD). A TOD is shown
in Fig. 2.8, which is taken from reference [30] from the Archeops experiment. In the
x-axis, there is time t and in the y-axis, there is the signal recorded by the detector
d. As the beam scans the sky with time, following what is called a scanning strat-
egy, spatial frequencies along the scan map into temporal variations in the detector
(shown in the y-axis). One needs also to store some extra information (pointing)
telling where in the sky one was pointing at each time t to be able to then recon-
struct a sky map. So how does one makes a map from a TOD like the one shown
in Fig. 2.8? I will give here a brief introduction, this is a broad subject where many
smart algorithms are continuously being developed.

The goal here is to make maps from TOD. The problem can be recast in terms of
operation of matrices on vectors.

d = g[M(T + Tf g)]+ gdetn + c, (2.18)
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Fig. 2.8 Example of a TOD: In the x-axis, there is time t and in the y-axis, there is the signal
recorded by the detector d. As the beam scans the sky with time, following what is called a scanning
strategy, spatial frequencies along the scan map into temporal variations in the detector (shown in
the y-axis). Note the low-frequency signal, which is mostly due to variations in gain, atmospheric
loading, calibration drift, etc., and high-frequency signal (CMB and noise). The low-frequency
signal should be taken out: in the figure, the low-frequency signal estimated by two different pro-
cedures are shown.[ A&A 459, 987-1000 (2006)]Macias Perez, Bourachot; fig 11]

d is the raw TOD vector, its length is Nd , it can have additional information associ-
ated, such as temperature, humidity (for ground-based observations), etc. Note that
element i, di and element i+ 1 are usually separated by a tiny fraction of a second.
It is easy to figure out the sheer size of the problem by thinking that observations
may last for years.

g denotes the gain. This is also an Nd-long vector. The gain is expected to vary
much more slowly than the signal. In g, the total gain, there are several contribu-
tions: detector, receiver, etc. (g = gdet×grec.× ...), gdet , e.g., denotes the gain of the
detector only.

c denotes the baseline vector also Nd-long; this also varies more slowly than the
signal, and it depends on the details of the instrument.

T is the CMB temperature map vector. It is a vector Nt -long, where Nt is the num-
ber of pixels in the map. For completeness, I have included a foreground component
to the temperature signal t f g, which has a frequency dependence that differs from
that of the CMB blackbody. Some map-making approaches use this information at
this stage to separate out foregrounds (see Sec. 2.3.5)

M is the pointing matrix, its dimensions are Nt ×Nd and it is a sparse matrix.
n is the noise vector also Nd-long; it should be that 〈n〉 = 0, but one can char-

acterize the noise via the noise matrix: N = 〈nnT 〉. The noise is often gaussian and
piecewise stationary in the time domain (it varies much more slowly than the sig-
nal, so this should be a good approximation). It can thus be described by its power
spectrum of correlation function N.
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One solves for the noise correlation as follows:

= const i f Δ t = 1

N(Δ t) = F(t) i f 1 < Δ t < Δ tmax (2.19)

= 0 i f Δ t > Δ tmax,

(2.20)

whereΔ tmax is a time interval such that the noise is uncorrelated on scales larger than
Δ tmax. F(t) is some smooth-fitting function where parameters can be fit iteratively.
The same procedure can be followed for g, c etc.

Note that if Eq (2.18) were simpler: d = Mt + n, then one could immediately
define a maximum likelihood estimator:

T̂ = (MT N−1M)−1(MT N−1d). (2.21)

Although (MT N−1d) can be computed directly once N is characterized,
(MT N−1M)−1 can be solved by conjugate gradient with preconditioner. In prac-
tice, define to = Mt N−1d and note that To = (MT N−1M)t̂ ≡ Σ−1t̂. Here, Σ is the
pixel-to-pixel noise correlation matrix, and by conjugate gradient, one can find
t̂ iteratively. The preconditioner makes the iterative process to converge faster:
imagine there exist a matrix S such that SΣ−1 is diagonal. Then, if you solve for
SΣ−1T̂ = STo, the calculation can be performed much faster.

Unfortunately, one does not start with Eq. 2.21, one starts with 2.18, so the map
making (finding the solution of Eq. 2.18) must be done as an iterative process.

It is at this point that cross linking (i.e., an observing pattern with interlocking
scans) really helps the process of mapmaking.

There is also the issue of calibration. Let us consider that the CMB average tem-
perature is about 3K, but the signal we are after are variations of one part in 1000000.
The response (gain) of the detector is expected to be exquisitely linear in this tiny
range, but it needs to be known much more precisely than it can be calibrated in
the laboratory. Any small systematic change will give a calibration uncertainty.
Full sky experiments like WMAP calibrate on the dipole: the dipole (due to the
combined motion of the local group toward the great attractor, the motion of our
galaxy in the local group, the motion of the sun around the galaxy and of the Earth
and/or the satellite) is a large signal of a well-determined dependence on the posi-
tion on the sky. Partial sky experiments could calibrate on well-known point sources
or planets, although now they tend to calibrate on WMAP. Calibration can be done
best directly from the time-ordered data.

2.3.5 Foregrounds

Outside the galactic plane, the CMB is the dominant signal in the radio part of
the spectrum. Synchrotron emission resulting from the acceleration of cosmic ray



2 Cosmology with CMB and LSS 151

electrons in the magnetic field of the Galaxy increases at low frequencies and is
highly polarized. The other dominant foreground is thermal emission from dust.
This component increases with frequency and is also polarized. Other sub-dominant
(but nonnegligible) foregrounds, are free-free (bremsstrahlung emission from ther-
mal electrons) and a possible component of spinning dust. Among extragalactic
foregrounds, we find point sources (i.e., radio galaxies): while the known ones and
the brightest ones can be masked out, there always remain an unresolved popu-
lation contaminating the signal. As CMB experiments push to higher resolution,
secondary anisotropies could contaminate the primary signal. Although the CMB
follows a blackbody, foregrounds show a different frequency dependence. This is
the key information used to clean foregrounds from CMB maps. The cleaning
can be done either at the map-making stage (see Tf g term in Eq. 2.18) exploit-
ing their frequency dependence or at the map stage using foregrounds templates.
Foreground cleaning is particularly crucial for polarization: the temperature signal
exceeds the galactic foregrounds outside the galactic cut over a wide range of fre-
quencies (∼ 50 to ∼ 100 GHz) however, the polarization signal is dominated by
foregrounds at all frequencies and on all scales. Foregrounds have their specific
scale and frequency dependent and their specific sky pattern: foreground cleaning,
especially for polarization should be done either at the TOD stage or at the map
stage but NOT at the power spectrum stage. The only exception for this may be the
unresolved point sources contribution. Bright, resolved point sources can be taken
out by masking the relevant pixels. If a point source catalog is available, it can be
used to build a better point source mask. Eventually, for numerous and dim sources,
either external catalogs are not available or the sources large number along with
the experiment pixel size may mean that to mask then one would need to masks
most of the surveyed sky. In this case, one may want to leave the unresolved sources
signal in the maps and subtract it at the power spectrum level. If the point sources
statistics clustering can be modeled by a Poisson distribution (i.e., they are assumed
to be unclustered), their contribution to the power spectrum is readily computed. In
addition their frequency dependence helps in modeling and subtracting their contri-
bution. Note, however, that not all point sources are well modeled by a population
without intrinsic clustering. This may well be a major limitation for high-resolution
CMB experiments that try to observe into the damping tail and/or to observe sec-
ondary anisotropies.

Only to give an idea of the expected level of galactic foregrounds contamination,
below we report the parameters describing the foregrounds power spectra as char-
acterized by early 2009, see [7, 1] for details and references therein. The relevant
equations are

For synchrotron:

CS,XY
� (ν) = As

(
ν
νo

)2αS
(

�

�o

)βS

, (2.22)

where X,Y denotes T, E B; αs = −3, βS = −2.6, νo = 30GHz, �o = 350, and
As = 4.7×10−5 μK2.
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For dust:

CD,XY
� (ν) = p2AD

(
ν
νo

)2αD
(

�

�o

)βD
[

e
hνo
kT −1

e
hν
kT −1

]2

, (2.23)

where αD = 2.2, νo = 94GHz, �o = 10, AD = 1μ K2, βXY
D = −2.5 and the dust

polarization fraction p = 5%. Note that in principle the various parameters A, α ,
and β do not need to be the same for T E and B.

2.3.5.1 Atmosphere

Sub-orbital experiments have the additional complication of the atmosphere. The
atmosphere is opaque to electromagnetic radiation except for few atmospheric win-
dows (in the frequency range of interest around 30 and 90 to 140 GHz), where
transmission can be higher or lower depending on the water vapor presence in the
atmosphere (less water vapor corresponds to better transparency). This is why a
good location for ground-based CMB experiments is the South Pole: the South Pole
is high (3000 m) and, despite all the ice, because of the low temperatures, the air
is very dry. The high plateau in the Atacama desert is also a good place for CMB
observations. Even for observations done from high and dry places and in the atmo-
spheric windows, spatial fluctuations in the atmospheric transparency are introduced
by wind, turbulence etc., and they cause cause variations in the detector timestreams,
referred to as “atmospheric noise.” This acts as extra noise contribution, which is
expected to dominate all other sources of noise at large angular scales (low � but to
become increasingly less important at high �). Sophisticated techniques are under
developement to “solve” for the atmospheric noise contribution to the signal and
subtract it out as much as possible from the TOD.

Fig. 2.9 Atmospheric transition from the Clover experiment: note the atmospheric “windows”
(below 50 GHz and around 100, 150, and 220 GHz) well suited to observe the CMB.
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2.3.6 Estimation of the C�

For an ideal experiment (full sky, no noise), the C� can be obtained as

C� = ∑m |a�m|2
2�+ 1

. (2.24)

This is the maximum likelihood estimator. In practical applications (if the noise is
Gaussian), the covariance matrix of the data C = 〈ddT 〉, where d denotes the data
(vector of the temperature fluctuation in the pixels map). C = S+N, where N stands
for the noise covariance and S is the signal covariance. Its harmonic transform is
related to the C� as follows:

S�′m′
�m = 〈ameas

�m ameas∗
�′m′ 〉= C̃�δD(�m�′m′). (2.25)

Note that C̃� here includes the effect of the beam, then

Si j = ∑
�m�′m′

T m
� S�′m′

�m Y ∗m
′

�′ . (2.26)

The angular power spectrum can then in principle be estimated from the map by
maximizing the likelihood function: a multivariate Gaussian of the d data with the
C matrix as the covariance. This operation, however, is computationally prohibitive
for large maps. Various approaches have been proposed. They can be characterized
in two classes:

• Exploit possible symmetries in the observational strategy and still maximize the
likelihood as explained above. e.g., [31].

• Use an approximated algorithm that filters the data, compute the spectra on
the masked sky, and de-bias the resulting estimate via Monte-carlo simulations,
e.g., [13].

The second method is sub-optimal especially at low �. A third approach has recently
been proposed and has demonstrated to be very promising, see [10].

2.3.7 Likelihoods

Assuming that the CMB multipoles are Gaussainly distributed, the likelihood for an
ideal, noiseless CMB experiment with full sky coverage is thus (see Eq. 2.16 and
transform to spherical harmonics)

L = Π�m
exp[−1/2sC−1s]√

detC
, (2.27)
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where s� = (aT
� ,aE

� ,aB
� ) and aell denotes the spherical harmonic coefficients for

temperature, E and B model polarization. The covariance matrix C� is then
given by

C� =

⎛⎝CT T
� CT E

� 0
CT E

� CEE
� 0

0 0 CBB
�

⎞⎠ , (2.28)

where C� denotes the angular CMB power spectrum.
Since the Universe is assumed to be isotropic, the likelihood function is indepen-

dent of m and summing over it, one obtains, up to a constant:

−2lnL = ∑
�

(2�+ 1)

{
ln

(
CBB

�

Ĉ�
BB

)
+ ln

(
CT T

� CEE
� − (CTE

� )2

Ĉ�
T T

Ĉ�
EE − (Ĉ�

T E)2

)
+ (2.29)

ˆCT T
� CEE

� +CTT
�

ˆCEE
� −2CTE

�
ˆCT E
�

CT T
� CEE

� − (CTE
� )2

+
ˆCBB
�

CBB
�

−3

}
, (2.30)

where the likelihood has been normalized with respect to the maximum likeli-

hood value, where CXY
� = Ĉ�

XY
, X ,Y = T,E,B.

In case of an experiment with partial sky coverage (of a sky fraction fsky) and
noise

lnL −→ fsky lnL , CXY
� −→CXY

� +N XY
� , (2.31)

where N XY
� denotes the noise power spectrum and it is added to both CXY

�

and Ĉ�
XY

.

2.4 The Dark Side of Large-Scale Structures

The primordial perturbations seeded from inflation are believed to grow by grav-
itational instability to form the large-scale structures, LSS, (as traced by galaxies
and galaxy clusters) observed at low redshift. The structure of the Universe on large
scales is largely determined by the force of gravity, which we believe we know
well, and not too much by complex mechanisms (baryonic physics, galaxy forma-
tion), which we do not know well. At this point, we should bear in mind that there
are theories of nonstandard gravity to explain e.g., the accelerated expansion of the
Universe, and in these theory the growth of large-scale structure is modified. (See
S. Carroll contribution and references therein).

From this, we can infer that “precision cosmology” has different meaning when
talking about the CMB (where the underlying physics is simple, extremely well
known and robust) and when talking about LSS at lower redshift. The system-
atic effect inherent to the imperfect modeling of the observations are much larger
for LSS; while gravitational lensing circumvents a lot of this (see the chapter by
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A. Heavens on page xxx.), the direct observation of clustering is much more sen-
sitive to these uncertainties. Nevertheless, LSS and CMB are highly complemen-
tary probes since most of the statistical power from primary CMB temperature
anisotropies has basically been harvested already, it is important to try to do the
best in pursuing “precision cosmology” from LSS data.

2.4.1 Basic Tools for Large-Scale Structure

Let us start by defining the (dark matter) overdensity field δ (r) = (ρ(r− ρ̄)/ρ̄ .
The assumption of homogeneity and isotropy implies that the expectation values

of the field are the same in all volumes. Each volume is a realization of the global
statistical process and, therefore, will have properties that differ from the global
average. To recover the global properies, there are two options: (1) average over
many realizations (not easily doable as we have only one observable universe, but
doable with simulations) and (2) average over many (large enough) volumes. The
“axiom” of ergodicity tell us that (1) and (2) are equivalent.

The basic tool of large scale structure studies is the power spectrum for two
reasons: for a Gaussian random field, it specifies completely the statistical properties
if the field and because it is what is predicted from theory. Even if initial conditions
were Gaussian, the late time overdensity field will not be Gaussian, but theory (e.g.,
inflation) still gives clean predictions for the linear power spectrum. So still, one
can try to map a linear power spectrum to a nonlinear one and thus compare with
observation. Even in this case, the power spectrum is a very, very useful tool. The
Fourier transform of the overdensity field is

δk = A
∫

d3rδ (r)exp[−ikṙ], (2.32)

and its inverse is

δ (r) = B
∫

d3kδk exp[ikṙ], (2.33)

with Dirac delta function

δD
k = AB

∫
d3r exp[±ikṙ]. (2.34)

Different Fourier transform convention uses different values for A and B; we adopt
A = 1, B = 1/(2π)3. Recall that the two-point correlation function is ξ (x) =
〈δ (r)δ (r + x)〉 and dependent only on the modulus of x because of isotropy and
〈〉 denotes the ensamble average.

The power spectrum P(k) is thus

〈δkδk′ 〉= (2π)3P(k)δD(k+ k′). (2.35)
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Since δ (r) is real, we have δ ∗k =−δ−k, where the superscript ∗,

〈δkδ ∗k′ 〉= (2π)3P(k)δD(k−k′) = (2π)3
∫

d3xξ (x)exp[−ik ·x]δD(k−k′)] (2.36)

and power spectrum and correlation function are Fourier transform pairs and
related by

ξ (x) =
1

(2π)3

∫
d3kP(k)exp[ik ·x] (2.37)

P(k) =
∫

d3xξ (x)exp[−ik ·x]. (2.38)

(2.39)

Thus, the same amount of information is enclosed in P(k) and ξ (x), at least at this
stage.

It is useful to define the variance of the overdensity field:

σ2 = 〈δ 2(x)〉= ξ (0) =
1

(2π)3

∫
d3kP(k)≡

∫
Δ2(k)d lnk, (2.40)

where in the last equality, we have defined the variance per log-k Δ2(k) =
(2π)−1k3P(k). Note that the numerical value of Δ2(k) does not depend on the
Fourier transform convention. However, σ2 depends on the filtering scale. When
reporting σ2, the density filed is first convolved with a smoothing filter; two typical
choices are

• Gaussian filter:

f =
1

(2π)3/2R3
G

exp[−x2/(2R2
G)] ; fk = exp[−k2R2

G/2] (2.41)

• Top hat

f =
1

4πR3
T

Θ(x/RT ) ; fk =
3

(kRT )3 [sin(kRT )− kRT cos(kRT )]. (2.42)

The relation between the two smoothing radii is R + t 

√

5RG. Also, note the os-
cillatory scale of fk in the top hat case. The quantity σ8 defined as the rms fluc-
tuation of the field smoothed with a top hat window on scales of RT = 8Mpc/h
has contribution from relatively large k, but most of the signal comes from scales
k ∼ 0.14 h/Mpc.

So, the initial conditions generated by inflation are characterized by a given
power spectrum, but how do they evolve after that? In short, in linear theory,
when δ � 1, different Fourier modes evolve independently and thus a Gaussian
filed remains Gaussian; P(k) changes in amplitude but not in shape. There are two
exceptions: in the radiation dominated era and for the imprint of the BAO on the



2 Cosmology with CMB and LSS 157

dark matter distribution. These two effects are taken in account by the transfer func-
tion; otherwise, the linear growth can be derived as follows.

Start by assuming that dark matter is pressureless that only sub-horizon scales
are considered well after recombination (and radiation drag), then one can write the
following set of equations:

Dρ
Dt

= −ρ∇ ·ucontinuity equation, (2.43)

Du
Dt

= −∇Φ Euler equation, (2.44)

∇2Φ = 4πGρ Poisson equation, (2.45)

(2.46)

where u denotes the velocity field and Φ the gravitational potential. Since

D
Dt

=
∂
∂ t

+ u ·∇, (2.47)

this can be rewritten like

∂ρ
∂ t

+ ∇ ·ρu = 0, (2.48)

∂u
∂ t

+ (u ·∇) ·u−∇Φ = 0, (2.49)

∇2Φ − 4πGρ = 0, (2.50)

(2.51)

If there are no perturbations and using Birkhoff’s theorem, we find, as expected,
that

ρ(t) = ρ0a(t)−3, (2.52)

r = a(t)x, (2.53)

u =
ȧ
a

r = Hr, (2.54)

where x denotes the comoving coordinate and a is the scale factor, usually normal-
ized to be 1 at present time.

Let us now introduce small perturbations: ρ(x,t)= ρ̄(t)[1+δ (x,t)]; u = ȧx+aẋ.
In the last equation, the first term of the RHS is the Hubble flow and the second term
is the peculiar velocity, v. By substituting these equations in 2.51, using Eq. 2.54 and
assuming that δ � 1, we obtain the following linearized second-order differential
equation:

∂ 2δ
∂ t2 + 2

ȧ
a
∂δ
∂ t
−4πGρ̄δ = 0. (2.55)
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The solution is (you can verify it)

δ (1) = D(t)δ (x,t = 0)+ decaying mode, (2.56)

where D(z) = a(z)g(z) and g = 1 in an Einstein de Sitter universe. You can also see
that (perhaps unsurprisingly) perturbations do not grow in an empty universe.

In general, the linear growth function g(a) can be well fitted by (e.g.,[29]):

g(a) = exp[
∫ a

0

da′

a′
(Ωm(a)γ −1)], (2.57)

where γ = 0.55 for a standard LCDM model; γ = 0.55 + 0.022(1 + w) for a dark
energy model and it deviated from these values for nonstandard models.

2.4.1.1 Transfer Function

The primordial power spectrum is well approximated by a power law: then why
is it that the large scale structure power spectrum is not and in particular, has a
characteristic scale as clearly seen in Fig. 2.2? The main effect (enclosed in the
transfer function and not described by the approach of the previous section) is due
to a suppression of growth at small scales. A perturbation of wavelenght λ enters
the horizon when λ < dH (with dH being close to the Hubble radius). For scales
that enter the horizon before matter radiation equality λ < dH(aeq), the expansion
time-scale is shorter than the collapse time (i.e., they are larger than the Jeans length
at that time). Take δ to be the matter (nonrelativistic) overdensity and define y =
ρnr/ρr the ratio between relativistic and nonrelativistic densities. Since ρnr ∝ a−3

and ρr ∝ a−4, we have y = a/aeq. The linearized perturbation equation 2.55 can be
rwerittn as

d2δ
dy

+
2 + 3y

2y(1 + y)
dδ
dy
− 3δ

2y(1 + y)
= 0. (2.58)

Try to find a solution of the type a + byn to obtain a growing mode δ = 1 + 3/2y.
Thus, the growing solution between y = 0 (i.e., initial conditions) and y = 1(i.e.,
matter radiation equality) is only a factor of 5/2: effective perturbations that enter
the horizon in radiation domination are frozen; in other words and as illustrated in
Fig 2.10, perturbations that are of small enough scales to enter the horizon before
aeq get their growth suppressed by a factor

f =
(

aenter

aeq

)2

=
(

k0

k

)2

, (2.59)

thus, the power spectrum is suppressed by a factor k4. Any effect that changes the
matter radiation equality will, therefore, leave its imprint in the shape of the matter
power spectrum on large scales.
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Fig. 2.10 Sketch of the effect of the matter-radiation equality on the growth of perturbation of a
particular scale. This effect gives the transfer function and its characteristic shape.

Another effect comes in if some of the dark matter is hot that it is has some
nonzero intrinsic velocity v. In this case, perturbations can be washed out on scales
smaller than the free streaming length, defined as

λFS = a(t)
∫ t

0

v(t ′)
a(t ′)

dt ′ . (2.60)

This is the case for neutrinos: since neutrino oscillations indicate that neutrinos
have mass, they are a (subdominant) contribution to the dark matter, but they are
“hot.” They, thus, suppress fluctuations on scales smaller than

kmν 
 0.026
( mν

1eV

)1/2
Ω 1/2

m hMpc−1 (2.61)

and give a small-scale suppression to the power spectrum of

ΔP
P

−8

Ων
Ωm

=−0.085
Ωmh2

∑mnu

1eV
. (2.62)

Although the two effects described thus far yield broadband effects on the power
spectrum shape, on scales 0.01 < k < 0.3 Mpc/h the photon-baryon coupling in the
early Universe leaves its characteristic acoustic imprint in the dark matter power
spectrum. This effect goes under the name “Baryon Acoustic Oscillations,” and it is
an extremely hot subject. We will get back to this in Sect. 2.4.6.
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2.4.1.2 Real-World Effects

Thus far, we have considered the matter overdensity field δ and the matter power
spectrum. In reality, large-scale galaxy surveys measure the galaxy overdensity field
which may not be identical to the matter one. This is an extremely wide subject, so
here we just introduce the basic idea and motivation of why the galaxy field may be a
biased tracer of the dark matter. To do so, we sketch the classic demonstration of [14]
that in a Gaussian random field, high peaks are more clustered than the underlying
distribution: they are biased tracers. If one then makes the identification of high
peaks of the initial (Gaussian) field with dark matter halos, which are the structure
that host galaxies..., the conclusion is that galaxies are biased tracers. The proof
is simple: compute the correlation function of regions of a Gaussian field above a
threshold. Consider a Gaussian field smoothed on some scale R, with correlation
function ξ and rms σ . The probability that a random point is above a threshold
νσ 3 is

P1 =
∫ ∞

νσ
PGauss(y)dy, (2.63)

and the probability that two random points are above the threshold is

P12 =
∫ ∞

νσ
PGauss(y1,y2)dy1dy2, (2.64)

where P(y1,y2) is the bivariate Gaussian distribution.

P(y1,y2 > νσ) = P1P2[1 + ξ>νσ ], (2.65)

where ξ>νσ denotes the correlation function of peaks above the threshold and

[1 + ξ>νσ ] =

√
2
π

er f c

(
ν√
2

)−2

∫ ∞

ν
exp[−y2/2]er f c

(
ν− yξ (r)/ξ (0)√
2[1− ξ 2(r)/ξ 2(0)]

)
dy. (2.66)

Despite the apparent complication of the expression, it is easy to see that for ξ << 1
and ν >> 1

ξ>νσ =
ν2

σ2 ξ . (2.67)

At this point, a dubious step can be made to interpret Eq. 2.67 that is to relate
the galaxy overdensity to the matter overdensity as δg = bδ , which is the equation
defining linear bias with b being the linear bias factar. This relation implies that
ξg = b2ξ with the interpretation b = ν/σ . Note, however, that while linear bias
implies Eq. 2.67 the converse is not true.

3 Please do not confuse this ν with neutrinos: in keeping with the literature, we use the same
symbol, the meaning should be clear from the context.
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Of course, identifying the peaks of a Gaussian field with halos and galaxies may
be a bit of a stretch. Although the modeling of galaxy bias is still a open issue,
the modeling of halo bias is under control. The halo-model approach to clustering
developed in the late 1990s–early 2000s along with the extended Press–Shecther
theory offers a really good modeling of it. For more details, see [4].

2.4.1.3 Shot Noise

Thus far, when characterizing inhomogeneities via the power spectrum, we have
considered a continuous dark matter field. In practice, a discrete distribution of
galaxies is observed: how does this affect the clustering? We have seen above that if
galaxies form on high peaks, the field in linearly bias and that in general galaxy bias
will be more complicated. However, there is an additional contribution coming from
discreteness. The number of galaxies at a given point is space is given by

n(x) = n̄[1 + δ (x)] =∑
i

δD(x−xi) where n̄ = 〈∑
i

δD(x−xi)〉, (2.68)

where the index i runs through the galaxies. To describe discreteness, one usually
makes the assumption of Poisson sampling that is galaxies are a Poisson sampling
of the underlying dark matter distribution. This is only an approximation, however.
It has become clear recently that the Poisson assumption cannot hold in details.
For example, dark matter halos exclusion (halos tend to avoid each other on scales
comparable to the halo Lagrangian radius) gives a shot noise that cannot be fully
Poisson, it will be sub-Poisson. On the other hand, if galaxies preferentially oc-
cupy halos and many galaxies occupy the same halo, this will give a super-Poisson
contribution. The Poisson assumption, however, works quite well on large scales
and is a useful work-horse tool to describe discreteness. Thus, divide the volume in
infinitesimal cells so that each cell contains either one or no galaxies, but the prob-
ability for one cell to include two galaxies is fully negligible. Thus, the probability
of having one galaxy in a volume δV is δ pP1 = n̄δV , and the probability of finding
no galaxy is δP0 = 1− n̄δV . In addition, when averaging over nonempty volume
elements, 〈ni〉= 〈n2

i 〉= n̄δV . To obtain the two-point correlation function, we start
by computing the probability of finding galaxies in cells 1 and 2 as function of their
distance:

〈n1n2〉= 〈∑
i j
δD(x1−x1)δD(x2−x j)〉= n̄2(1 + ξ12)+ n̄δD(x1−x2), (2.69)

where the second term comes from the zero-lag pairs. So, if we were to define a
correlation function for our discrete field ξ d as 〈n1n2〉 ≡ n̄2(1 + ξ d), then ξ d =
ξ + 1/n̄δD(x1−x2). In Fourier space, this becomes

〈δk1δk2〉= (2π)3
(

P(k1)+
1
n̄

)
δD(k1 + k2). (2.70)
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Before we leave shot noise aside, let us note that this contribution is not Gaussian;
it is only n the large numbers limit that a Poisson distribution is well approximated
by a Gaussian. Therefore, as long as the galaxy density is high enough and the shot
noise correction is small, the modeling of discreteness can be that of a superposition
of two independent random processes, the clustering one and the white noise contri-
bution coming from the Poisson sampling, which amplitude depends on n̄. For any
practical application, the goodness of these assumptions will have to be tested.

2.4.2 Window and Selection Function

Galaxy surveys are usually magnitude limited, which means that as you look further
away you start missing some galaxies. The selection function tells you the proba-
bility for a galaxy at a given distance (or redshift z) to enter the survey. It is a
multiplicative effect along the line of sight in real space. On the other hand, you can
never observe a perfect (or even better infinite) squared box of the Universe, and
in CMB studies, you can never have a perfect full sky map (we live in a galaxy...).
The mask (sky cut in CMB jargon) is a function that usually takes values of 0 or
1 and is defined on the plane of the sky (i.e., it is constant along the same line of
sight). The mask is also a real space multiplication effect. In addition, sometimes in
CMB studies, different pixels may need to be weighted differently, and the mask is
an extreme example of this where the weights are either 0 or 1. Also, this operation
is a real space multiplication effect.

Let’s recall that a multiplicaton in real space (where W (x) denotes the effects of
window and selection functions)

δ true(x)−→ δ obs(x) = δ true(x)W (x) (2.71)

is a convolution in Fourier space:

δ true(k)−→ δ obs(k) = δ true(k)∗W(k) (2.72)

the sharper W (r) is the messier and delocalized W (k) is. As a result, it will couple
different k-modes even if the underlying ones were not correlated!

Thus (if there is no shot noise),

〈|δ obs(k)|2〉= (2π)3
∫

d3k′P(k−k′)|W (k′)|2, (2.73)

where the kernel W has the effect of coupling modes, if the survey has a typical
size L, then W (k) has a width Δk ∼ 1/L. Another consequence of this is that one
cannot measure the P(k) directly, one will end up with an estimator of it which
includes effects from the mask and the selection function. Deconvolution is always
a nast business. While in CMB, one often tries to deconvolve the effects of the mask
from the C�; in large-scale structure, one usually decides to keep a P(k) estimator
that includes the mode coupling and apply the same operation to the theory before



2 Cosmology with CMB and LSS 163

comparing it to observations. However, note that this mode coupling does not only
affect the signal but also the covariance (error) estimation. In practice, these effects
are estimated from mock realizations of the survey.

2.4.3 Weighting Schemes to Account for all that and More

In the presence of window and selection function, one can devise a weighting
scheme that optimizes the performance of your estimator of the power spectrum.
Here, I will review the approach of [11]: it is not the only one but it is useful and
simple enough so that the gist of it can be explained in a page.

Instead of working with δ (x) or n(x), one defines a new quantity

F(x) =
w(x)[ng(x)−αnsyn(x)]
[
∫

d3xn2(x)w2(x)]1/2
. (2.74)

Here ng denotes the number density of galaxies and nsyn denotes a synthetic cat-
alog with the same angular and selection function as the real survey but without
clustering. This synthetic catalog needs to have as many “points” as possible in or-
der not to introduce additional shot noise. α is a dilution factor: the number density
of the synthetic catalog is 1/α that of the survey. As it will be clear below, α needs
to be small (well below 0.01) so that the number density of the synthetic catalog is
much higher than that of the survey. w is the weighting: it can be chosen to minimize
variance, to give an unbiased estimator etc. Thus, we can write

〈ng(x)ng(x′)〉 = n̄(x)n̄(x′)[1 + ξ ]+ n̄(x)δD(x−x′), (2.75)

〈nsyn(x)nsyn(x′)〉 = α−2n̄(x)n̄(x′)+α−1n̄(x)δD(x−x′), (2.76)

〈ng(x)nsyn(x′)〉 = α−1n̄(x)n̄(x′). (2.77)

By substituting this in the equation for F and taking its Fourier transform, we see
that

〈|F(k)2|〉=

=
∫

d3xd3x′w(x)w(x′)〈[ng(x)−αnsyn(x)][ng(x′)−αnsyn(x′)]〉exp[ik · (x−x′)∫
d3xn̄2(x)w2(x)

=
∫

d3k′

(2π)3 P(k′)|G(k−k′)|2 +(1 +α)
∫

d3xn̄(x)w2(x)∫
d3xn̄2(x)w2(x)

, (2.78)

where we have assumed that there is no correlation between the mask and the clus-
tering. This equation defines the function G:

G(k) =
∫

d3xn̄wexp(ik ·x)

[
∫

d3xn̄2w2]1/2
. (2.79)
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If the window function of the survey is well behaved then the width of G is ∼ 1/L
for a survey of typical size L. Thus, on scales where k
 1/L, we see that

〈|F(k)|2〉 
 P(k)+ Pshot noise (2.80)

from where one can trivially estimate P(k). The expression for the coupling between
modes is

〈F(k)F∗(k′)〉 =
1

(2π)3

∫
P(k′′)G(k−k′′)G(k′ −k′′)d3k′′

+(1 +α)
∫

d3xn̄(x)w2(x)∫
d3xn̄2(x)w2(x)

. (2.81)

If one takes the weight w ∝ 1/n̄g, [11] points out, weight is given to distant parts
of the survey where n̄ is low. They show that the optimum weight is

w(x) = [1 + n̄(x)P(k)]−1 . (2.82)

If the survey includes different galaxy populations with different values of bias, then
one may want to select the weight, not to minimize the variance on P(k) but to min-
imize instead any possible distortion of the recovered P(k) shape, as shown by [36].

2.4.4 Redshift-Space Distortions

The issue of galaxy bias could be bypassed if one could observe directly the dark
matter distribution. This would not bypass the nonlinearities, window, selection
function, etc. But we are more confident that these effects can be reliably mod-
eled if not analytically at least with n-body simulations. Beyond weak lensing, the
next best thing is offered by the velocity field. If galaxies can be treated as test parti-
cles in the total gravitational field, their peculiar velocities should be directly related
to the total matter distribution. Although peculiar velocities are difficult to observe
directly, they leave a clear imprint in the observed galaxy distribution. In fact when
a galaxy redshift is interpreted as its distance, the resulting galaxy maps will be
distorted in the line of sight direction by peculiar velocities. From the linearized
continuity equation

∂δ
∂ t

=−1
a
∇ ·v =

1
a

ik ·v, (2.83)

where

v = a
∂δ
∂ t

k
ik2 =

Hak
ik2

(
a
δ
∂δ
∂a

)
δ = f (Ω ,z)

Hak
ik2 δ , (2.84)

where

f =
d lnδ
d lna


Ωγ . (2.85)
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Recall that this function is crucial to constrain dark energy models and devia-
tions from the standard cosmology. Clearly, velocities, if they can be measured,
offer a direct handle to it. The issue is that (1) velocities are very difficult to
measure directly and (2) that f comes in the relation between (dark matter) den-
sity and velocity, leaving us to deal with the bias issue. Nevertheless let’s push
on. Let us recall that u = Hr + vrad , where the line of sight peculiar velocity is
vrad = [v(r)−v(0)] · r. In galaxy redshift surveys, the redshift coordinate is used as
distance

s =
u
H

= r[1 + vrad/H]. (2.86)

One also need to take into account that density in redshifts space (indicated by
subscript s) is related to that in real space by ρsd3s−ρd3r, thus

d3s = d3r
(

1 +
rrad

Hr

)2
(

1 +
1
H

∂vrad

∂ r

)
. (2.87)

If at cosmological distances vrel/(Hr) � ∂vrad/∂ r, we can write that ρs(r) =
ρ(r)(1−1/H∂vrad∂ r). For small overdensities, we obtain

δs = δ − 1
H

∂vrad

∂ r
. (2.88)

At this point, it is useful to go to Fourier space. Recall that vk = iHk/k2 fδk, where
deltak ∝ exp[−ik ·r]. We obtain that ∂vrad∂ r 
−Hcos2(θkr) fδ with θkr being the
angle between k and the line of sight and therefore

δs(k) = δ (k)(1 + fμ2), (2.89)

where μ = cos(θkr). This implies that on large scales, the power spectrum gets
enhanced by a factor (1+ fμ2)2. This is called “Kaiser effect” from the paper [15].
Note that this factor depends on the direction with respect to the line of sight: clus-
tering does not appear isotropic any more. Now, using a Fourier expansion in this
context makes not much sense because redshift-space distortions are radial: the nat-
ural decomposition should be in spherical harmonics. In this case, the maths are not
for the faint of heart [12, 35]. However, one can (at least for illustration purposes)
adopt the distant observer approximation: if the survey volume considered is far
enough from the observer so that it subtends a small angle, then the line of sight di-
rection can be considered constant across the survey and a Fourier expansion works
well. In this case, the angle-averaged effect of the redshift-space boosting of power
becomes

Ps(k) = P(k)average(1 + 2 fμ2 + f 2μ4) = P(k)(1 + 2/3 f + 1/5 f 2). (2.90)

Of course, δ for the dark matter cannot be directly observed. In the case of linear,
deterministic bias where gelaxy and dark matter overdensities are connected the
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simple relation δg = bδ , it is easy to see that redshift-space distortions expressions
get modified as

δs(k) = bδ (k)(1 +
f
b
μ2). (2.91)

The combination f/b is often indicated by the letter β . Clearly [46] the combina-
tion σ8,gβ is independent of galaxy bias in the case of local linear deterministic
bias.

2.4.5 Nonlinearities etc.

Thus far, we have assumed that δ � 1; what happens when this assumption does
not hold? First, let us notice that the linear, local, deterministic bias assumption even
mathematically and for a Gaussian field can hold only in the regime where δ � 1.
In fact by definition δ ≥−1, but if δg = bδ for high b it may make δg <−1, which
is nonsense.

For the same reason, as δ grows by gravitational evolution when δ is no longer
<< 1, the field cannot remain Gaussian: it must generate some skewness where pos-
itive overdensities can grow at will but negative underdensities are always ≥ −1.
Thus, while in the linear regime, different Fourier modes evolved independently, in
the nonlinear regime, modes gets coupled. As a consequence, the power spectrum
will change its shape. One can go quite a long way in describing nonlinearites with
analytical approaches, such as perturbation theory or variations of thereof, but ulti-
mately the process can be modeled quite accurately resorting to n-body simulations
(see Moscardini contribution). An extremely promising approach was pioneered
by [45]; it consists in finding a possibly physically motivated model to interpolate
results from N-body simulations.

A word of warning is, however, necessary regarding nonlinear redshift-space
distortions. Although nonlinearities in real space give a scale-dependent boost of
power, nonlinearites in redshift space give a scale dependent and anisotropic sup-
pression of power. In fact, imagine to observe a fairly massive cluster with velocity
dispersion of the order of 1000 km/s. If galaxies in the cluster have this kind of
random velocities, their positions in redshift space will be smeared out to scales
larger than 10 Mpc/h i.e., on scales that are naively assumed to be linear or quasi-
linear. This effect is called “fingers-of-God” for obvious reasons as it can be seen
in Fig. 2.11. To model the small-scale smearing effect on the power spectrum, it
is common to multiply the redshift space P(k) by a scale and μ-dependent sup-
pression factor D(kσpμ), where σp is a parameter quantifying the strength of the
fingers-of-God effect, two typical choices are exponential or Gaussian velocity
distributions:

D =
1

1 +(kσpμ)2/2
or D = exp[−k2σ2

pμ
2/2]. (2.92)
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Fig. 2.11 Redshift-space distortions effects. On the top panels, all galaxies in a slice of the SDSS
DR5 main survey catalog are shown, whereas while on the bottom panel, only galaxies identified as
being part of clusters. On the left-hand side, galaxies are shown as the appear in redshift space: on
the right-hand side, the fingers-of-God have been collapsed to a spherically symmetric structure.
Note that after the fingers-of-God have been collapsed, clustering is still enhanced along the line of
sight on large scales (note the appearance of “great walls” ). This is the “Kaiser” effect. [Tegmark
et al 2004, fig 7]

In this case, σp is interpreted as the line-of-sight pairwise velocity dispersion. Note
that this effect is very difficult to model in Fourier space. In this particular example,
only few clusters will display this effect: the line-of-sight smearing will be depen-
dent on environment, type of galaxies selected, etc. As an aside, let us note here
that any error in determining the galaxies redshifts can be modeled in a similar way,
especially if the redshift errors are Gaussianly distributed. Both these effects (non-
linear redshift-space distortions and redshift errors) are shown in Fig. 2.13 along
with the large-scale boost of power. As before, as long as galaxies can be considered
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Fig. 2.12 Left: linear (solid) and halofit nonlinear (dashed) power spectra for the dark matter dis-
tribution at z = 0 in a LCDM model. At small, k > 0.1 Mpc/h, scales nonlinearities modify the
shape of the power spectrum giving a scale-dependent boost.

Fig. 2.13 Power spectra at z = 0 for a LCDM model: Linear dark matter power spectrum (dot-
ted), angle-averaged galaxy redshift space power spectrum assuming a linear bias of b = 1.5 (dot-
dashed), linear dark matter underlying power spectrum, and σp = 600 km/s; the same but only
for modes along the line of sight (dashed); typical shot noise level for a densely sampled galaxy
population (solid line).
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as test masses tracing the dark matter velocity field, all these effects can, in princi-
ple, be accurately modeled: one can go a long way with perturbation theory-based
approaches or simulate it with n-body simulation or use some hybrid approach. Pos-
sibly, then the fundamental limitation remaining in interpreting large-scale structure
galaxy surveys will be nonlinear bias. Two date, the simultaneous modeling of non-
linearities and nonlinear bias has been attempted in two different ways.

• A phenomenological model. This was first used in [3] for the 2dFGRS galaxy
survey. In this model, calibrated on n-body simulations, the relation between
the galaxy redshift space power spectrum and the underlying dark matter linear
power spectrum is given by

Pgal(k) =
1 + Qk2

1 + ak
Plinear matter(k). (2.93)

It is crucial to calibrate the numbers a and Q in this expression to the particu-
lar survey under consideration keeping in mind both the survey redshift and the
galaxy population considered. For the 2dF galaxies (effective redshift ∼ 0.15)
in redshift space, A = 1.4 and Q = 4.0. If one is to apply this prescription to
different type of galaxies (e.g., LRG’s), a new calibration will be needed.

• Reconstructing the halo density field. The idea is to single out what galaxies
belong to the same dark matter halo and instead of collapsing their finger-of-God
into a spherically symmetric overdensity, count all of them as one single object
(a dark matter halo). This has been pioneered in [41].

The details of this modeling are important, especially if one is interested in
extracting cosmological information enclosed in the broadband shape of the power
spectrum. Although the BAO signal yields information on the expansion history of
the Universe, the broadband shape can also offer information on, e.g., the mecha-
nism that generated the perturbations in the early Universe.

In the remainder of this contribution, we will concentrate on the relatively new
subject of BAO.

2.4.6 Baryon Acoustic Oscillations (BAO)

Cosmological perturbations in the early Universe excite sound waves in the photon-
baryon fluid. After recombination, these BAO became frozen into the distribution
of matter in the Universe imprinting a preferred scale, the sound horizon. This de-
fines a standard ruler whose length is the distance sound can travel between the
Big Bang and recombination. The BAO are directly observed in the CMB angular
power spectrum and have been observed in the spatial distribution of galaxies by
the 2dFGRS survey and the SDSS survey [8, 3, 37]. The BAO, observed at dif-
ferent cosmic epochs, act as a powerful measurement tool to probe the expansion
of the Universe, which in turns is a crucial handle to constrain the nature of dark
energy. The underlying physics which sets the sound horizon scale (∼150 Mpc
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comoving) is well understood and involves only linear perturbations in the early
Universe. The BAO scale is measured in surveys of galaxies from the statistics of
the three-dimensional galaxy positions. Only recently have galaxy surveys such as
SDSS grown large enough to allow for this detection. The existence of this natu-
ral standard measuring rod allows us to probe the expansion of the Universe. The
angular size of the oscillations in the CMB revealed that the Universe is close to
being flat. Measurement of the change of apparent acoustic scale in a statistical
distribution of galaxies over a large range of redshift can provide stringent new con-
straints on the nature of dark energy. The acoustic scale depends on the sound speed
and the propagation time. These depend on the matter to radiation ratio and the
baryon-to-photon ratio. CMB anisotropy measures these and hence fixes the oscil-
lation scale. A BAO survey measures the acoustic scale along and across the line of
sight. At each redshift, the measured angular (transverse) size of oscillations, Δθ ,
corresponds with the physical size of the sound horizon, where the angular diameter
distance DA is an integral over the inverse of the evolving Hubble parameter, H(z).
r⊥ = (1+ z)DA(z)δθ . In the radial direction, the BAO directly measures the instan-
taneous expansion rate H(z), through r‖ = (c/H(z))Δz, where the redshift interval
(Δz) between the peaks is the oscillation scale in the radial direction. As the true
scales, r⊥ and r‖ are known (given by rs the sound horizon at radiation drag, well
measured by the CMB) this is not an Alcock–Paczynsky test but a “standard ruler”
test. Note that in this standard ruler test, the cosmological feature used as the ruler
is not an actual object but a statistical property: a feature in the galaxy correlation
function (or power spectrum). An unprecedented experimental effort is undergoing
to obtain galaxy surveys that are deep, larger, and accurate enough to trace the BAO
feature as a function of redshift. Before these surveys can even be designed, it is cru-
cial to know how well a survey with given characteristic will do. This was illustrated
very clearly in [43], which we follow closely here. To forecast the cosmological con-
straints achievable from a survey of given characteristics, we will adopt the Fisher
matrix approach. To start, we need to compute the statistical error associated to a
determination of the galaxy power spectrum P(k). In what follows, we will ignore
effects of nonlinearities and complicated biasing between galaxies and dark matter:
we will assume that galaxies, at least on large scales, trace the linear matter power
spectrum in such a way that their power spectrum is directly proportional to the dark
matter one: P(k) = b2PDM(k), where b stands for galaxy bias. At a given wavevector
k, the statistical error of the power spectrum is a sum of a cosmic variance term and
a shot noise term:

σP(k)
P(k)

=
P(k)+ 1/n̄

P(k)
. (2.94)

Here n̄ denotes the average density of galaxies and 1/n̄ is the white noise contribu-
tion from the fact that galaxies are assumed to be a Poisson sampling of the underly-
ing distribution. When written in this way, this expression assumes that n̄ is constant
with position. While in reality, this is not true for forecasts one assumes that the sur-
vey can be divided in shells in redshifts and that the selection function is such that
n is constant within a given shell. Since P(k) is also expected to change in redshift,
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then one should really implicitly assume that there is a z dependence in Eq. 2.94. In
general, P(k,z) = b(z)2G2(z)PDM(k), where G(z) denotes the linear growth factor:
i.e., the bias is expected to evolve with redshift as well as clustering does, not only
because galaxy bias changes with redshift but also because at different redshifts one
may be seeing different type of galaxies that may have different bias parameter. We
do not know a priori the form of b(z), but given a fiducial cosmological model, we
know G(z). Preliminary observations seem to indicate that the z evolution of b tends
to cancel that of G(z), so it is customary to assume that b(z)G(z)∼ constant, but we
should bear in mind that this is an assumption. Also let us recall that this is some-
what a naive modeling as halos (and this galaxies) may not necessarily be related to
the dark matter by a linear, deterministic bias!

An extra complication arises because of redshift space distortions. Note that red-
shift space distortions only affect the line-of-sight clustering (it is a perturbation to
the distances) not the angular clustering. Since these distortions are created by clus-
tering they carry, in principle, important cosmological information. To write this
dependence explicitly (assuming linear theory):

P(k,μ ,z) = b(z)2G(z)2PDM(k)(1 +βμ)2 (2.95)

In the linear regime, the cosmological information carried by the redshift space
distortions is enclosed in the f (z) = β (z)b(z) combination.

For finite surveys, P(k) at nearby wavenumbers are highly correlated, the correla-
tion length is related to the size of the survey volume: for large volumes the cell size
over which modes are correlated is (2π)3/V , where V denotes the comoving survey
volume. Only over distances in k-space larger than that modes can be considered
independent. Therefore, if one wants to count over all the modes anyway (e.g., by
transforming discrete sums into integrals in the limit of large volumes), then each
k needs to be downweighted, to account the fact that all k are not independent. In
addition, one should keep in mind that Fourier modes k and−k are not independent
(the density field is real-valued!), giving an extra factor of 2 in the weighings. We
can thus write the error on a band power centered around k,

σP

P
= 2π

√
2

V k2δkΔμ

(
1 + nP

nP

)
. (2.96)

In the spirit of the Fisher approach, we now assume that the Likelihood function
for the band-powers P(k) is Gaussian, thus we can approximate the Fisher matrix by

Fi j =
∫ kmax

kmin

∂ lnP(k)
∂θi

∂ lnP(k)
∂θ j

Ve f f (k)
dk

2(2π)3 . (2.97)

The derivatives should be evaluated at the fiducial model and Ve f f denotes the
effective survey volume given by

Ve f f (k) = Ve f f (k,μ) =
∫ [

n(z)P(k,μ)
n(z)P(k,μ)+ 1

]2

dz =
[

nP(k,μ)
nP(k,μ)+ 1

]2

V, (2.98)
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where n = 〈n(z)〉. Equation 2.97 can be written explicitely as a function of k and μ as

Fi j =
∫ 1

−1

∫ kmax

kmin

=
∂ lnP(k,μ)

∂θi

∂ lnP(k,μ)
∂θ j

Ve f f (k,μ)
k2dkdμ
2(2π)2 . (2.99)

In writing this equation, we have assumed that over the entire survey extension
the line-of-sight direction does not change: in other words, we made the flat sky
approximation. For forecasts, this encloses all the statistical information anyway;
but for actual data analysis application, the flat sky approximation may not hold. In
this equation, kmin is set by the survey, volume: for future surveys, where the survey
volume is large enough to sample, the first BAO wiggle the exact value of kmin does
not matter, however, recall that for surveys of typical size L (where L ∼ V 1/3), the
largest scale probed by the survey will be corresponding to k = 2π/L. Keeping in
mind that the first BAO wiggle happens at ∼ 150 Mpc, the survey size needs to be
L
 150 Mpc for kmin to be unimportant and for the “large volume approximation”
made here to hold. As anticipated above, one may want to sub-divide the survey
in independent redshift shells, compute the Fisher matrix for each shell and then
combine the constraints. In this case, L will be set by the smallest dimension of the
volume (typically the width of the shell), so one needs to make sure that the width
of the shell still guarantees a large volume and large L. kmax denotes the maximum
wavevector to use. One could, for example, impose a sharp cut to delimit the range
of validity of linear theory. In [44], this is improved as we will see below.

Before we do that, let us note that there are two ways to interpret the parameters
θi j in Eq. (2.99). One could simply assume a cosmological model, say e.g., a flat
quintessence model where the equation of state parameter w(z) is parameterized
by w(z) = w(0) + wa(1− a) and take derivatives of P(k,μ) with respect to these
parameters. Alternatively, one could simply use as parameters the quantities H(zi)
and DA(zi), where zi denote the survey redshift bins. These are the quantities that
govern the BAO location and are more general: they allow one not to choose a
particular dark energy model until the very end. Then, one must also consider the
cosmological parameters that govern the P(k) shape Ωmh2, Ωbh2, and ns. Of course,
one can also consider G(zi) as free parameters and constrain these either through
the overall P(k) amplitude (although one would have to assume that b(z) is known,
which is dicey) or through the determination of G(z) and β (z). The safest and most
conservative approach, however, is to ignore any possible information coming from
G(z), β (z), or ns and to only try to constrain expansion history parameters.

The piece of information still needed is how the expansion history information
is extracted from P(k,μ). When one converts ra, dec, and redshifts into distances
and positions of galaxies of a redshift survey, one assumes a particular reference
cosmology. If the reference cosmology differs from the true underlying cosmology,
the inferred distances will be wrong and so the observed power spectrum will be
distorted:

P(k⊥,k‖) =
Da(z)2

re f H(z)true

DA(z)2
trueH(z)re f

Ptrue(k⊥,k‖). (2.100)
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Note that since distances are affected by the choice of cosmology and k vectors,
kre f ,‖ = H(z)re f /H(z)truektrue,‖ and kre f ,⊥ = DA(z)true/DA(z)re f ktrue,⊥, Eq. 2.100
can be written as

Ptrue(k⊥,k‖,z) = b(z)2

(
1 +β (z)

k2
true,‖

k2
true,⊥+ k2

true,‖

)2 [
G)(z)
G(zo)

]2

PDM(k,zo), (2.101)

where zo is some reference redshift where to normalize P(k) typical choices
can be the CMB redshift or redshift z = 0. Note that from these equations, it
should be clear that what the BAO actually measure directly is H(z)rs and DA/rs,
where rs is the BAO scale; the advantage is that rs is determined exquisitely from
the CMB.

How would then one convert these constraints on those on a model parameter?
Clearly, one then projects the resulting Fisher matrix on the dark energy parame-
ters space. In general, if you have a set of parameters θi with respect to which the
Fisher matrix has been computed, but you would like to have the Fisher matrix for
a different set of parameters φi, where the θi are functions of the φi, the operation to
implement is

Fφi,φ j =∑
mn

∂θn

∂φi
Fθn,θm

∂θm

∂φ j
. (2.102)

The full procedure for the BAO survey case is illustrated in Fig. 2.14. The slight
complication is that one starts off with a Fisher matrix (for the original parameter
set θi), where some parameters are nuisance and need to be marginalized over, so
some matrix inversions are needed.

Thus far, non-linearities have been just ignored. It is, however, possible to in-
clude then at some level in this description. [44] proceeds by introducing a distri-
bution of Gaussianly distributed random displacements parallel or perpendicular to
the line-of-sight coming from nonlinear growth (in all directions) and from nonlin-
ear redshift space distortions (only in the radial direction). The publicly available
code that implements all this (and more) is available at the web site
http://cmb.as.arizona.edu/ eisenste/acousticpeak/bao−forecast.html. In order to use
the code, keep in mind that [44] models the the effect of nonlinearities is to convolve
the galaxy distribution with a redshift-dependent and μ-dependent smoothing ker-
nels. The effect on the power spectrum is to multiply P(k) by exp[−k2Σ(k,μ)/2],
where Σ(k,μ) = Σ2

⊥− μ2(Σ2
‖ −Σ2

⊥). As a consequence, the integrand of the Fisher
matrix expression of Eq. (2.99) is multiplied by

exp[−k2Σ2
⊥− k2μ2(Σ2

‖ −Σ2
⊥)], (2.103)

where, to be conservative, the exponential factor has been taken outside the deriva-
tives, which is equivalent to marginalize over the parameters Σ‖ and Σ⊥ with large
uncertainties.
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Fig. 2.14 Steps to implement once the Fisher matrix of Eq.2.99 has been computed to obtain error
on dark energy parameters.

Note that Σ‖ and Σ⊥ depends on redshift and on the chosen normalization for
PDM(k). In particular,

Σ⊥(z) = Σ0G(z)/G(z0), (2.104)

Σ‖(z) = Σ0G(z)/G(z0)(1 + f (z)), (2.105)

Σ0 ∝ σ8 . (2.106)

If in your convention z0 = 0, then Σ0(z = 0) = 8.6h−1σ8,DM(z = 0)/0.8.
As an example of an application of this approach for survey design, it may be

interesting to ask the question of what is the optimal galaxy number density for a
given survey. Taking redshifts is expensive and for a given telescope time allocated,
only a certain number of redshifts can be observed. Thus, it is better to survey more
volume but have a low number density or survey a smaller volume with higher num-
ber density? You can try to address this issue using the available code. For a cross
check, Fig. 2.15 shows what you should obtain. Here, we have assumed σ8 = 0.8 at
z = 0, b(z = 0) = 1.5 and we have assumed that G(z)b(z) = constant. To interpret
this figure note that with the chosen normalizations, P(k) in real space at the BAO
scale k ∼ 0.15 h/Mpc is 6241(Mpc/h)3, boosted up by large-scale redshift space
distortions to roughly 104(Mpc/h)3, so n = 10−4 corresponds to nP(k = 0.15) = 1.
Note that the “knee” in this figure is, therefore, around nP = 1. This is where this
“magic number” of reaching nP∼> 1 in a survey comes from. Of course, there are
other considerations (mainly related to the fast that galaxies may not be exactly a
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Fig. 2.15 Percent error on H(z)rs and Da/rs as a function of the galaxy number density of a BAO
survey. This figure assumes full sky coverage fsky = 1 (errors will scale like 1/

√
fsky) and redshift

range from z = 0 to z = 2 in bins of Δz = 0.1.

Poisson sampling of the dark matter distribution) that would tend to yield an optimal
nP bigger than unity and of order of few.

2.5 Conclusions

Although certainly not complete and exhaustive, this chapter aimed at giving an
overview of what has been learned by combining CMB and large-scale structure
observations and the potential of this combination for future surveys. I have also
tried to explain, in part, how the cosmological information is encoded in these data
sets and how it can be extracted. I have concentrated on some of the aspects that are
not those more frequently discussed in summer schools. These lecture notes are no
substitute for reading and studying the relevant papers, but hopefully it would help
putting them in context of the big picture.
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Chapter 3
Cosmology with Gravitational Lensing

Alan Heavens

Abstract In this chapter, I give an overview of gravitational lensing, concentrating
on theoretical aspects, including derivations of some of the important results. Topics
covered include the determination of surface mass densities of intervening lenses,
as well as the statistical analysis of distortions of galaxy images by general inhomo-
geneities (cosmic shear), both in 2D projection on the sky and in 3D where source
distance information is available. 3D mass reconstruction and the shear ratio test are
also considered, and the sensitivity of observables to Dark Energy is used to show
how its equation of state may be determined using weak lensing. Finally, the article
considers the prospect of testing Einstein’s General Relativity with weak lensing,
exploiting the differences in growth rates of perturbations in different models.

3.1 Introduction

Gravitational lensing has emerged from being a curiosity of Einstein’s General Rel-
ativity to a powerful cosmological tool. The reasons are partly theoretical, partly
technological. The traditional tool of observational cosmology, the galaxy redshift
survey, has become so large that statistical errors are very small, and questions about
the fundamental limitations of this technique were raised. Fundamentally, studies of
galaxy surveys will be limited by uncertain knowledge of galaxy formation and
evolution—we will probably never know with high accuracy where galaxies should
exist, even statistically, in a density field. Since it is the density field that is most
directly predictable from fundamental theories (with some caveats), gravitational
lensing is attractive as it is a direct probe. Furthermore, statistical analysis shows
that large weak lensing surveys covering large fractions of the sky to a median red-
shift of around unity are in principle extremely powerful and can lead to error bars

Alan Heavens
Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ,
U.K., e-mail: afh@roe.ac.uk
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on cosmological parameters that are very small. In particular, the subtle effects of
dark energy and even modifications to Einstein’s General Relativity are potentially
detectable with the sort of surveys that are being planned for the next decade. The
limitations of lensing are likely to be in systematic errors arising from the ability
to measure accurately shapes of galaxy images, physical effects aligning galaxies
themselves, uncertain distances of sources, and uncertainties in the theoretical dis-
tribution of matter on small scales where baryon physics becomes important. Spe-
cially designed instrumentation and telescopes with excellent image quality help
the situation a lot, and understanding of the physical systematics is now quite good.
These notes will not be concerned very much with the practical issues, but more
with the theoretical aspects of how lensing works, how it can be used to determine
surface densities of clusters of galaxies (testing the dark matter content), how it can
be used statistically on large scales (testing the dark energy properties) and how
the combination of geometrical measurements and the growth rate of perturbations
can probe the gravity law (testing so-called dark gravity). It is not a comprehen-
sive review, and in particular does not cover the observational developments, which
have seen the typical size of lensing surveys increase from 1 (past) → 100 (now)
→ 104 (near future) square degrees. For more comprehensive recent reviews, see
e.g., [62, 31] or the excellent SAAS-FEE lecture notes [65]. The structure of this
review is as follows: section 2 covers basic lensing results, section 3 (Dark) Matter
mapping, section 4 lensing on a cosmological scale, section 5 3D lensing and Dark
Energy, and section 6 Dark Gravity.

3.2 Basics of Lensing

We begin with some basic results on light bending and derive results for the bending
of light by an intervening lens with an arbitrary surface density.

3.2.1 The Bend Angle

The basic mechanism for gravitational lensing is that a point mass M will deflect a
light beam through an angle

α̃(r) =
4GM
rc2 point mass, (3.1)

where G is Newton’s gravitation constant, c is the speed of light, and r is the distance
of closest approach of the ray to the mass. This deflection angle is calculated using
Einstein’s General Theory of Relativity (GR), but is simply a factor two larger than
Newtonian theory would predict if one treats the photon as a massive particle. The
light path is curved, but if we are looking at a source which is far beyond the lens, the
light path can be approximated by two straight lines, with a bend angle α̃ between
them. This is the thin-lens approximation.
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The bend angle for a point mass equation (3.1) can be used to calculate the bend
angle for an arbitrary mass distribution. For example, the bend angle for a thin lens
whose mass distribution projected on the sky is circularly symmetric depends on
the projected mass enclosed within a circle centred on the middle of the lens and
extending out to the projected radius R of the ray:

α̃(R) =
4GM(< R)

Rc2 circularly symmetric mass, (3.2)

where M(< R) is the mass enclosed within a projected radius R.

3.2.2 The Lens Equation

The lens equation relates the true position on the sky of a source to the position of its
image(s). We can get the basic idea of gravitational lensing by considering a point
mass or a circularly symmetric mass distribution. Figure 3.1 shows the geometry of
the situation. The lens equation comes simply by noting that PS1 = PS+SS1 (where
P is the unmarked point directly above L). If we denote the observer-source distance
by DS, the lens-source distance by DLS, the position on the sky of the image by an
angle θ , and the position on the sky of the unlensed source by β , then, for small
angles, this translates to

DSθ = DSβ + DLSα̃, (3.3)

Fig. 3.1 The geometry for a thin lens (adapted from J. Wambsganss).
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and we note that the bend angle is a function of the distance of the impact parameter
of the ray R, α̃ = α̃(R = DLθ ), where DL is the distance to the lens. For cosmolog-
ical applications, the Di are angular diameter distances.

For convenience, we define the scaled bend angle by

α =
DLS

DS
α̃. (3.4)

This gives us the lens equation
β = θ −α. (3.5)

Note that for a given source position β , this is an implicit equation for the image
position(s) θ , and for general circularly symmetric mass distributions, the lens equa-
tion cannot be solved analytically. There may indeed be more than one solution
leading to multiple images of the same source. The lens equation is, however, an
explicit equation for the source position given an image position. This is a useful
feature that can be exploited for ray-tracing simulations of thin-lens systems, when
one can ray-trace backwards from the observer to the sources.

3.2.2.1 Point Mass Lens: Multiple Images and Einstein Rings

The generic possibility of multiple images can be illustrated nicely by a point mass
lens, where the implicit lens equation can be solved analytically for the image posi-
tions. For a point mass M, the bend angle is α̃(R) = 4GM/(Rc2) = 4GM/(DLθc2),
so the lens equation is

β = θ − 4GM
c2θ

DLS

DLDS
, (3.6)

which is a quadratic for θ :

θ 2−β θ −θ 2
E = 0, (3.7)

where we have defined the Einstein angle

θE ≡
√

4GM
c2

DLS

DLDS
. (3.8)

There are evidently two images of the source for a point mass lens, one either side
of the lens, at angles of

θ± =
β
2
±

√
β 2

4
+θ 2

E . (3.9)

The solutions are the intersections of the line α(θ ) and the straight line θ −β . For
θ < 0, the bend is in the opposite direction, so α < 0. We see that, with the point
mass, there are inevitably two solutions for β �= 0.

There is a special case when the observer, lens, and source are lined up (β = 0),
when one singular solution is the straight-line path, and the other, at θ = θE , is an
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Einstein ring. Clearly, from the rotational symmetry of the arrangement, the image
will appear at θE in all directions round the lens. A near-perfect Einstein ring is
shown in the colour plate section.

Notice that if |β | 
 θE , then the main image is perturbed only slightly, at
β +θ 2

E/β +O(β−3), and the second image is very close to the lens at θ− 
−θ 2
E/β .

As we will see shortly, this second image is very faint. θE is a useful ballpark angle
for determining whether the deflection of the source rays is significant or not. Typ-
ically, it is about an arcsecond for lensing by large galaxies at cosmological dis-
tances and microarcseconds for lensing of stars in nearby galaxies by stars in the
Milky Way.

3.2.2.2 Magnification and Amplification

As we have seen, simple lenses alter the positions of the image of the source and
may indeed produce multiple images. Another important, and detectable, effect
is that the apparent size and the brightness of the source will change when its
light undergoes a lensing event. The gravitational bending of light preserves sur-
face brightness, so the change in apparent size is accompanied by a similar change
in brightness.

For the circularly symmetric lenses, the ratio of the solid angle of the source and
that of the image gives the amplification of an infinitesimally small source:

A =
θ
β

dθ
dβ

. (3.10)

For a point lens, the amplifications of the two images are obtained straightforwardly
by differentiating Eq. (3.9):

A± =
1
2

⎛⎝1± β 2 + 2θ 2
E

β
√

β 2 + 4θ 2
E

⎞⎠ . (3.11)

Note that the amplification can be negative. This corresponds to an image that is
flipped with respect to the source.

In some cases, such as microlensing, where the two images are unresolved, one
can only measure the total amplification,

Atotal = |A+|+ |A−|=
β 2 + 2θ 2

E

β
√

β 2 + 4θ 2
E

(3.12)

and we note that the difference of the amplifications of images by a point lens is
unity. In the limit |β | 
 θE , A+ → 1 +(θE/β )4 and A− →−(θE/β )4, so the inner
image is extremely faint in this limit.
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3.2.3 General Thin Lens Mass Distributions

For a general distribution of mass, the bend angle is a 2D vector on the sky, α. The
lens equation then generalises naturally to a vector equation

β = θ−α. (3.13)

For a thin lens with surface density Σ(θ ′), the bend due at θ to a small element
of mass dM = Σ(θ ′)d2θ ′ is evidently in the direction θ−θ′ and has a magnitude
4GdM/(c2|θ−θ ′|), so the total bend angle is

α(θ) =
4GDLDLS

DSc2

∫
d2θ ′

Σ(θ ′)(θ−θ ′)
|θ−θ ′|2 . (3.14)

The bend angle can be expressed as the (2D) gradient of the (thin lens) lensing
potential, α = ∇φ , where

φ(θ) =
4GDLDLS

c2DS

∫
d2θ ′Σ(θ ′) ln(|θ−θ ′|) (thin lens). (3.15)

This potential satisfies the 2D Poisson equation

∇2φ(θ) = 2κ(θ), (3.16)

where ∇ is a 2D gradient, with respect to angle. κ is the convergence κ(θ) ≡
Σ(θ)/Σcrit, with

Σcrit ≡
c2DS

4πGDLDLS
(3.17)

being the critical surface density. The 2D Poisson equation is extremely useful, as
it allows us to estimate the surface mass density of an intervening lens from lensing
measurements, as we shall see later.

3.2.3.1 Convergence, Magnification, and Shear for General Thin Lenses

For a general distribution of mass within a thin lens, the magnification and distortion
of an infinitesimal source are given by the transformation matrix from the source
position β to the image position(s) θ. From the vector lens Eq. (3.13). The (inverse)
amplification matrix is

Ai j ≡
∂βi

∂θ j
= δi j−φi j, (3.18)

where φi j ≡ ∂ 2φ/∂θi∂θ j. We see that A is symmetric, and it can be decomposed
into an isotropic expansion term and a shear. A general amplification matrix also
includes a rotation term (the final degree of freedom being the rotation angle), but
we see that weak lensing does not introduce rotation of the image and has only



3 Cosmology with Gravitational Lensing 183

3 degrees of freedom, rather than the four possible in a 2×2 matrix. We decompose
the amplification matrix as follows:

Ai j =
(

1−κ 0
0 1−κ

)
+

(
−γ1 −γ2

−γ2 γ1

)
, (3.19)

where κ is called the convergence and

γ = γ1 + iγ2 (3.20)

is the complex shear. For weak lensing, both |κ | and |γi| are � 1. A nonzero κ
represents an isotropic expansion or contraction of a source; γ1 > 0 represents an
elongation of the image along the x-axis and contraction along y. γ1 < 0 stretches
along y and contracts along x. γ2 �= 0 represents stretching along x =±y directions.
The effects are shown in Fig. 3.2.

Making the decomposition, we find that

κ =
1
2

(φ11 +φ22) (3.21)

γ1 =
1
2

(φ11−φ22)≡ D1φ

γ2 = φ12 ≡ D2φ .

which defines the two operators D1,2, and it is straightforward to prove that

DiDi = (∇2)2, (3.22)

where the summation is over i = 1,2.

e

e

t

r

Fig. 3.2 The effect of shear distortions on a circular source. In the notation of the current chapter,
et and er are the real and imaginary parts of the ellipticity (or shear). From [79].
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Note that κ > 0 corresponds to magnification of the image. Lensing preserves
surface brightness, so this also amounts to amplification of the source flux. The
magnification is

A =
1

detAi j
=

1
(1−κ)2−|γ|2 . (3.23)

We see that we may have infinite amplifications if κ ≥ 1. Such effects apply only for
infinitesimal sources, and places in the source plane, which lead to infinite magni-
fications, are referred to as caustics, and it leads to highly distorted images along
lines called critical lines in the lens plane. The giant arcs visible in images of some
rich clusters lie on or close to critical lines. For cosmic shear, due to the general
inhomogeneities along the line-of-sight, κ and |γ| are typically 0.01, and the lensing
is weak.

It is worth noting that the amplification matrix may be written

Ai j = (1−κ)
(

1−g1 −g2

−g2 1 + g1

)
, (3.24)

where g ≡ γ/(1−κ) is called the reduced shear. Since the 1−κ multiplier affects
only the overall size (and hence brightness) of the source, but not its shape, we see
that shear measurements can determine only the reduced shear and not the shear
itself. For weak lensing, κ � 1, so the two coincide to linear order.

Note that a rotation of π/4 in the coordinate system changes a real shear into an
imaginary shear - i.e., the complex shear rotates by π/2, twice the angle of rotation
of the coordinate system. This behaviour is characteristic of a spin-weight 2 field,
and is encountered also in microwave background polarisation and gravitational
wave fields.

The shear field is in principle observable, so let us see how it can be used to
estimate the surface mass density of a lens.

3.2.3.2 Estimating Shear

The estimation of shear from galaxy image data is a complex business, and I will
give no more than a highly simplified sketch. For more details, see reviews such as
[62, 79, 31]. One way to estimate shear is to measure the complex ellipticity e of a
galaxy, which can be defined in terms of moments [46] even if the galaxy image is
not elliptical in shape. Figure 3.2 shows how simple shapes map onto ellipticity. In
the limit of weak distortions, the observed ellipticity is

e =
es + γ

1 + γ∗es , (3.25)
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where es is the undistorted source ellipticity. The source ellipticity has a dispersion
〈|es|2〉 
 0.3, whereas γ itself is usually much smaller, 0.01–0.1. If we average over
some sources,

〈e〉= γ (3.26)

so we can use the average ellipticity as an estimator of shear.
Two points to note:
1. The estimator is noisy, dominated by the intrinsic dispersion of e, so γ has a

variance∼ 〈|es|2〉/N if N sources are averaged.
2. In these notes, the formulae will often refer to γ; it should be noted that in

reality it will be e, a noisy estimate of γ , which is used in practice.
The main practical difficulty of lensing experiments is that the atmosphere and

telescope affect the shape of the images. These modifications to the shape may arise
due to such things as the point spread function, or poor tracking of the telescope. The
former needs to be treated with great care. Stars (whose images should be round)
can be used to remove image distortions to very high accuracy, although a possibly
fundamental limitation may arise because of the finite number of stars in an image.
Interpolation of the anisotropy of the PSF needs to be done carefully, and examples
of how this can be done in an optimal way are given in [80]. Bayesian methods are
beginning to be used, with lensfit [61, 51] showing very promising results.

3.3 Dark Matter

Theoretical work with numerical simulations indicates that in the absence of the
effects of baryons, virialised Dark Matter haloes should follow a uniform “NFW”
profile, ρ(r) = ρs(rs/r)(1 + r/rs)−2 [63], if the Dark Matter is cold (CDM). Sim-
ulations also predict how the physical size of the clusters should depend on mass,
characterised by the concentration index cs ≡ rvir/rs, where rvir is defined as the
radius within which the mean density is 200 times the background density. Roughly,
cs ∝ M−0.1. This can be tested by measuring the shear signal and stacking the results
from many haloes to increase signal-to-noise.

3.3.1 2D Mass Surface Density Reconstruction

We wish to take a map of estimated shear (ellipticities) and estimate the surface
mass density of the intervening lens system. For simplicity here, we assume the
sources are at the same distance. The classic way to do this was given by [45].

In some respects, it is easier to work in Fourier space. Expanding

κk ≡
∫

d2θ κ(θ) exp(ik.θ) (3.27)
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etc, then evidently

κk = −1
2

k2φk (3.28)

γ1k = −1
2
(k2

1− k2
2)φk

γ2k = −k1k2φk,

where k2 = k2
1 + k2

2 = |k|2.

We see that the following are estimators of κk:

γ1k
k2

k2
1− k2

2

; γ2k
k2

2k1k2
. (3.29)

In practice, we use the shapes of galaxies to estimate shear, so our estimates of γik
are dominated by noise in the form of scatter in the intrinsic shapes of galaxies.
Thus, the variance of each of these estimators is determined by the variances in
|eik|2. The variance of the first estimator is, therefore, proportional to k4/(k2

1−k2
2)

2,
and the second estimator to k4/(2k1k2)2. The optimal estimator for κk is given by
the standard inverse variance weighting, giving

κk =
(

k2
1− k2

2

k2

)
γ1k +

(
2k1k2

k2

)
γ2k. (3.30)

Since this is the sum of two terms, each of which is a multiplication in k space, it
represents a convolution in real space. (An exercise for the enthusiastic reader is to
Fourier transform to find the real-space convolution). In fact, it is easier to find the
convolution by noting that

γi = Diφ (3.31)

= 2Di∇−2κ
⇒ κ = 2Di∇−2γi,

where the last line follows from Eq. 3.22. Now, we know the solution to the 2D
Poisson equation—it is given in Eq. 3.15:

∇−2γi(θ) =
1

2π

∫
d2θ′γi(θ′) ln |θ′ −θ|. (3.32)

Upon differentiation with Di and summation, we find

κ(θ) =
2
π

∫
d2θ′

[γ1(θ′)cos(2ψ)+ γ2(θ′)sin(2ψ)]
|θ′ −θ|2 , (3.33)

where ψ is the angle between θ and θ′.
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Fig. 3.3 2D reconstruction of surface matter density from the COMBO17 A901 study (contours;
[21]) superimposed on galaxy surface density.

It is quite tempting to work with Eq. 3.33 in its discrete form, replacing the
integral by a sum over shear estimates at the galaxy locations g, i.e., considering the
following estimator for κ :

κ̂(θ) =
1
n̄∑g

[γ1(θg)cos(2ψ)+ γ2(θg)sin(2ψ)]
|θg−θ|2 , (3.34)

where n̄ is the mean surface density of sources. This estimator would, however, be
a mistake. It is unbiased, but it has the awkward and undesirable property of having
infinite noise. This can be seen as follows:

The fourier transform of Eq. 3.34 is

κ̂k =
1
n̄

[(
k2

1− k2
2

k2

)
∑
g
γ1(θg)exp(ik.θg)+

(
2k1k2

k2

)
∑
g
γ2(θ)exp(ik.θg)

]
.

(3.35)
If we assume (not quite correctly—see a later discussion on intrinsic alignments;
but this will do here) that the galaxy shapes are uncorrelated, then

〈κ̂kκ̂∗k〉=
〈|e2|〉

2n̄
, (3.36)

where 〈|e2|〉 is the dispersion in galaxy ellipticities. Note that as usual, the estimate
of the shear is dominated by the intrinsic ellipticity. If we use Parseval’s theorem,
we see that the variance in the recovered convergence, being the integral of Eq. 3.36
over k, diverges.
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Fig. 3.4 Excess surface density from stacked galaxy clusters from the SDSS survey, with best-
fitting NFW profiles. N200 is a measure of the richness of the clusters. From [58].

The solution is to smooth the field, which can be done at any stage—either by
smoothing the estimated shears (or averaging them in cells) or by working in Fourier
space and introducing a filter, or even by smoothing the estimated noisy convergence
field. The amount of smoothing required can prevent high-resolution maps of all but
the richest clusters, but the advent of high-surface densities with space telescopes
has improved this situation considerably.

Finally, we note that the estimate of the zero-wavenumber coefficient κ0 is unde-
termined by Eq. 3.35. We cannot determine the mean surface density this way. This
feature is an example of the so-called “mass-sheet degeneracy”. Other measure-
ments (amplification/magnification or by observing sources at different distances
behind the lens) can alleviate this problem or one can assume that κ → 0 as one
goes far from the lens centre.

3.3.2 Testing the Navarro–Frenk–White Profile of CDM

Figure 3.4 shows the average radial surface density profiles for clusters identified in
the sloan digital sky survey (SDSS), grouped by number of cluster galaxies, and
Navarro–Frenk–White (NFW) fits superimposed [58]. Figure 3.5 shows that the
observed concentration indices are close to the theoretical predictions, but some
tension exists. Broadly, weak lensing data on clusters, therefore, support the CDM
model. We will consider 3D mapping later, but unfortunately, the limited accuracy
of photo-zs (∼ 0.03
 100h−1 Mpc typically) means the 3D mass map is smoothed
heavily in the radial direction, and this limits the usefulness of 3D mapping for
testing the NFW profile.
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Fig. 3.5 Concentration indices from SDSS clusters as a function of mass, compared with simula-
tion (dotted, for different cosmologies). Dashed regions show range assuming a power law cs−M
relation. From [58].

A more radical test of theory has been performed with the Bullet Cluster [15],
actually a pair of clusters which have recently passed through each other. There
are two clear peaks in the surface density of galaxies, and X-ray emission from hot
shocked gas in between. In the standard cosmological model, this makes perfect
sense, as the galaxies in the clusters are essentially collisionless. If the (dominant)
Dark Matter is also collisionless, then we would expect to see surface mass con-
centrations at the locations of the optical galaxy clusters, and this is exactly what
is observed. In MOND or TeVeS models without Dark Matter, one would expect
the surface mass density to peak where the dominant baryon component is—the
X-ray gas. This is not seen. A caveat is that it is not quite the surface density which
is observed, rather the convergence, which is related to the distortion pattern of
the galaxy images and which is proportional to surface density in GR, but not in
MOND/TeVeS. However, no satisfactory explanation of the bullet cluster has been
demonstrated without Dark Matter.

3.4 Cosmological Lensing

Gravitational lensing is strong if the distortions to the images are substantial and
weak if the distortions are small. Weak lensing of background images can be used
to learn about the mass distribution in individual objects, such as galaxy clusters,
but we concentrate now on weak lensing on a cosmological scale, which is usually
analysed in a statistical way. Reviews of this area include [62, 31, 6, 69, 79].
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The basic effect of weak lensing is for the clumpy matter distribution to perturb
slightly the trajectories of photon paths. By considering how nearby light paths are
perturbed, one finds that the shapes of distant objects are changed slightly. Asso-
ciated with the size change is a change in the brightness of the source. Size and
magnitude changes can, in principle, be used to constrain the properties of the mat-
ter distribution along the line-of-sight (and cosmological parameters as well), but
it is the change in shape of background sources that has almost exclusively been
used in cosmological weak lensing studies. The reason for this is simply that the
signal-to-noise is better. These notes will concentrate on shear (=shape changes),
but the magnification and amplification of sources can also be used and will prob-
ably be used in future when the surveys are larger. The great promise of lensing
is that it acts as a direct probe of the matter distribution (whether dark or not)
and avoids the use of objects that are assumed to trace the mass distribution in
some way, such as galaxies in large-scale structure studies. Theoretically, lensing
is very appealing, as the physics is very simple and very robust, direct connec-
tions can be made between weak lensing observables and the statistical properties of
the matter distribution. These statistical properties are dependent on cosmological
parameters in a known way, so weak lensing can be employed as a cosmological
tool. The main uncertainties in lensing are observational – it is very challenging
to make images of the necessary quality. In this section, we concentrate here on
the weak effects on a cosmological scale of the nonuniform distribution of matter
all the way between the source and observer, an effect often referred to as cosmic
shear.

3.4.1 Distortion of Light Bundles

The distortion of a light bundle has to be treated with GR, but if one is prepared to
accept one modification to Newtonian physics, one can do without GR.

In an expanding universe, it is usual to define a comoving coordinate x, such
that “fundamental observers” retain the same coordinate. Fundamental observers are
characterised by the property of seeing the Universe as isotropic; the Earth is not
(quite) a fundamental observer, as from here the Cosmic Microwave Background
looks slightly anisotropic. The equation of motion for the transverse coordinates
(about some fiducial direction) of a photon in a flat universe is

d2xi

dη2 =− 2
c2

∂Φ
∂xi

. i = 1,2 (3.37)

We assume a flat universe throughout, but the generalisation to nonflat universes is
straightforward (there is an extra term in the equation above, and some r symbols
need to be changed to an angular diameter distance).

The equation of motion can be derived using General Relativity(GR) see
Appendix for details). We will use xi, i = 1,2 for coordinates transverse to the
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line-of-sight, and r to indicate the radial coordinate. η is the conformal time, related
to the coordinate t by dη = cdt/R(t) and R(t) is the cosmic scale factor, equal to
R0 at the present time. Φ(xi,r) is the peculiar gravitational potential related to the
matter overdensity field δ ≡ δρ/ρ by Poisson’s equation

∇2
3DΦ =

3H2
0Ωm

2a(t)
δ , (3.38)

where H0 is the Hubble constant, Ωm is the present matter density parameter, and
a(t) = R(t)/R0 = (1 + z)−1, where z is redshift.

The equation of motion is derived in the Appendix from General Relativity, in a
(nearly flat) metric given in the Newtonian gauge by

ds2 = (1+2Φ/c2)c2dt2− (1−2Φ/c2)R2(t)(dr2 + r2dθ 2 + r2 sin2 θdϕ2). (3.39)

From a Newtonian point-of-view, Eq. 3.37 is understandable if we note that time is
replaced by η (which arises because we are using comoving coordinates), and there
is a factor 2 that does not appear in Newtonian physics. This same factor of two
gives rise to the famous result that in GR the angle of light bending round the Sun
is double that of Newtonian theory.

The coordinates xi are related to the (small) angles of the photon to the fiducial
direction θ = (θx,θy) by xi = rθi.

3.4.2 Lensing Potential

The solution to (3.37) is obtained by first noting that the zero-order ray has ds2 =
0⇒ dr =−dη , where we take the negative root because the light ray is incoming.
Integrating twice and reversing the order of integration gives

xi = rθi−
2
c2

∫ r

0
dr′

∂Φ
∂x′i

(r− r′). (3.40)

We now perform a Taylor expansion of ∂Φ/∂x′i and find the deviation of two nearby
light rays is

Δxi = rΔθi−
2
c2 Δθ j

∫ r

0
dr′r′(r− r′)

∂ 2Φ
∂x′i∂x′j

, (3.41)

which we may write as

Δxi = rΔθ j(δi j−φi j), (3.42)

where δi j is the Kronecker delta (i = 1,2) and we define

φi j(r)≡
2
c2

∫ r

0
dr′

(r− r′)
rr′

∂ 2Φ(r′)
∂θi∂θ j

. (3.43)
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The integral is understood to be along a radial line (i.e. r ‖ r′); this is the Born
approximation, which is a very good approximation for weak lensing [8, 66, 78]. In
reality, the light path is not quite radial.

It is convenient to introduce the (cosmological) lensing potential, which controls
the distortion of the ray bundle:

φ(r) ≡ 2
c2

∫ r

0
dr′

(r− r′)
rr′

Φ(r′) (cosmological; flat universe). (3.44)

Note that φi j(r) = ∂ 2φ(r)/∂θi∂θ j . So, remarkably, we can describe the distortion
of an image as it passes through a clumpy universe in a rather simple way. The shear
and convergence of a source image is obtained from the potential in the same way
as the thin lens case (Eq. 3.22), although the relationship between the convergence
and the foreground density is more complicated, as we see next.

3.4.2.1 Relationship to Matter Density Field

The gravitational potential Φ is related to the matter overdensity field δ ≡ δρ/ρ by
Poisson’s equation (3.38). The convergence is then

κ(r) =
3H2

0Ωm

2c2

∫ r

0
dr′

r′(r− r′)
r

δ (r′)
a(r′)

. (3.45)

Note that there is an extra term ∂ 2Φ/∂ r′2 in ∇2
3D, which integrates to zero to the

order to which we are working.

3.4.2.2 Averaging Over a Distribution of Sources

If we consider the distortion averaged over a distribution of sources with a radial
distribution p(r) (normalised such that

∫
dr p(r) = 1), the average distortion is again

obtained by reversing the order of integration:

Δxi = rΔθ j

(
δi j−

2
c2

∫ r

0

dr′

r′
g(r′)

∂ 2Φ(r′)
∂θi∂θ j

)
, (3.46)

where

g(r)≡
∫ ∞

r
dr′ p(r′)

r′ − r
r′

. (3.47)

In order to estimate p(r), surveys began to estimate distances to source galaxies
using photometric redshifts. This has opened up the prospect of a full 3D analysis
of the shear field, which we will discuss briefly later in this article.
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3.4.2.3 Convergence Power Spectrum and Shear Correlation Function

The average shear is zero, so the most common statistics to use for cosmology are
two-point statistics, quadratic in the shear. These may be in “configuration” (“real”)
space or in transform space (using Fourier coefficients or similar). I will focus on
two quadratic measures, the convergence power spectrum and the shear–shear cor-
relation function.

To find the expectation value of a quadratic quantity, it is convenient to make
use of the matter density power spectrum, P(k), defined by the following relation
between the overdensity Fourier coefficients:

〈δkδ ∗k′ 〉= (2π)3δD(k−k′)P(k), (3.48)

where δD is the Dirac delta function. P(k) is evolving, so we write it as P(k;r) in
future, where r and t are related through the lookback time. (This r-dependence
may look strange; there is a subtlety: (3.48) holds if the field is homogeneous and
isotropic, which the field on the past light cone is not, since it evolves. In the radial
integrals, one has to consider the homogeneous field at the same cosmic time as the
time of emission of the source). The trick is to get the desired quadratic quantity
into a form, which includes P(k;r).

For the convergence power spectrum, we first transform the convergence in a 2D
Fourier transform on the sky, where � is a 2D dimensionless wavenumber:

κ� =
∫

d2θκ(θ)e−i�.θ, (3.49)

= A
∫ ∞

0
dr r

g(r)
a(r)

∫
d2θδ (rθ,r)e−i�.θ, (3.50)

where A≡ 3H2
0Ωm/2c2. We expand the overdensity field in a Fourier transform,

δ (rθ,r) =
∫

d3k
(2π)3 δkeik‖reik⊥.rθ (3.51)

and substitute into (3.50). We form the quantity 〈κ�κ∗�′ 〉, which, by analogy with
(3.48), is related to the (2D) convergence power spectrum by

〈κ�κ∗�′ 〉= (2π)2δD(�− �′)Pκ(|�|). (3.52)

Straightforwardly,

〈κ�κ∗�′ 〉 = A2
∫ ∞

0
dr G(r)

∫ ∞

0
dr′G(r′)

∫
d2θd2θ′

d3k
(2π)3

d3k′

(2π)3 (3.53)

〈δkδ ∗k′ 〉exp(ik‖r− ik‖
′r′)exp(ik⊥.θ− ik′⊥.θ′)exp(−i�.θ+ i�′.θ′),

where G(r) ≡ rg(r)/a(r). Using (3.48), we remove the k′ integration, introducing

the power spectrum P(k) = P(
√

k2
‖+ |k⊥|2). For small-angle surveys, most of the
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signal comes from short wavelengths, and the k‖ is negligible, so P(k) 
 P(|k⊥|).
The only k‖ term remaining is the exponential, which integrates to (2π)δD(r− r′).
The integrals over θ and θ′ give (2π)2δD(�− rk⊥) and (2π)2δD(�′ − rk⊥′), respec-
tively, so the whole lot simplifies to give the convergence power spectrum as

Pκ(�) =
(

3H2
0Ωm

2c2

)2 ∫ ∞

0
dr

[
g(r)
a(r)

]2

P(�/r;r). (3.54)

An exercise for the reader is to show that the power spectrum for the complex shear
field γ is the same: Pγ = Pκ . The shear correlation function, for points separated by
an angle θ is

〈γγ∗〉θ =
∫

d2�

(2π)2 Pγ(�)ei�.θ (3.55)

=
∫

�d�

(2π)2 Pκ(�)ei�θ cosϕdϕ

=
∫

d�

2π
�Pκ(�)J0(�θ ),

where we have used polar coordinates, with ϕ the angle between � and θ, and we
have exploited the isotropy (Pκ depends only on the modulus of �). J0 is a Bessel
function.

Other quadratic quantities (examples are shear variances on different scales,
Aperture Mass (squared)) can be written similarly as integrals over the power spec-
trum, with different kernel functions.

3.4.3 Matter Power Spectrum

As we have seen, the two-point statistics of the shear and convergence fields de-
pend on the power spectrum of the matter, P(k;t). The power spectrum grows in a
simple way when the perturbations in the overdensity are small, |δ | � 1, and when
the power spectrum grows in amplitude while keeping the same shape as a function
of k. However, gravitational lensing can still be weak, even if the overdensity field
is nonlinear. Poisson’s equation still holds provided we are in the weak-field limit
as far as GR is concerned, and this essentially always holds for cases of practical
interest. In order to get as much statistical power out of lensing, one must probe the
nonlinear regime, so it is necessary for parameter estimation to know how the power
spectrum grows. Through the extensive use of numerical simulations, the growth of
dark matter clustering is well understood down to quite small scales, where uncer-
tainties in modelling, or uncertain physics, such as the influence of baryons on the
dark matter [81], make the predictions unreliable. Accurate fits for the nonlinear
power spectrum have been found [71] up to k > 10hMpc−1, which is far beyond the
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Fig. 3.6 The nonlinear power spectrum from numerical simulations, along with fitting functions
(from [71].

linear/nonlinear transition k ∼ 0.2hMpc−1. Figure 3.6 shows fits for a number of
CDM models. For precision use, one must make sure that the statistics do not have
substantial contributions from the high-k end where the nonlinear power spectrum
is uncertain. This can be explored by looking at the kernel functions implicit in the
quantities, such as the shear correlation function (3.56).

3.4.4 Intrinsic Alignments

The main signature of weak lensing is a small alignment of the images, at the level
of a correlation of ellipticities of∼ 10−4. One might be concerned that physical pro-
cesses might also induce an alignment of the galaxies themselves. In the traditional
lensing observations, the distances of individual galaxies are ignored, and one sim-
ply uses the alignment on the sky of galaxies, and one might hope that the galaxies
will typically be at such large separations along the line-of-sight that any physical
interactions would be rare and can be ignored. However, the lensing signal is very
small, so the assumption that intrinsic alignment effects are sufficiently small needs
to be tested. This was first done in a series of papers by a number of groups in
2000–2001 e.g., [23, 18, 16, 13], and the answer is that the effects may not be neg-
ligible. The contamination by intrinsic alignments is highly depth-dependent. This
is easy to see, since at fixed angular separation, galaxies in a shallow survey will be
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physically closer together in space, and hence more likely to experience tidal inter-
actions, which might align the galaxies. In addition to this, the shallower the survey,
the smaller the lensing signal. In a pioneering study, the alignments of nearby galax-
ies in the SuperCOSMOS survey were investigated [11]. This survey is so shallow
(median redshift ∼ 0.1) that the expected lensing signal is tiny. A nonzero align-
ment was found, which agrees with at least some of the theoretical estimates of the
effect. The main exception is the numerical study of Jing [44], which predicts a
contamination so high that it could dominate even deep surveys. For deep surveys,
the effect, which is sometimes called the “II correlation,” is expected to be rather
small, but if one wants to use weak lensing as a probe of subtle effects, such as the
effects of altering the equation of state of dark energy, then one has to do something.
There are essentially two options – either one tries to calculate the intrinsic align-
ment signal and subtract it or one tries to remove it altogether. The former approach
is not practical, as, although there is some agreement as to the general level of the
contamination, the details are not accurately enough known. The latter approach is
becoming possible, as lensing surveys are now obtaining estimates of the distance to
each galaxy, via photometric redshifts (spectroscopic redshifts are difficult to obtain
because one needs a rather deep sample, with median redshift at least 0.6 or so, and
large numbers, to reduce shot noise due to the random orientations of ellipticities).
With photometric redshifts, one can remove physically close galaxies from the pair
statistics (such as the shear correlation function)[26, 48]. Thus, one removes a sys-
tematic error in favour of a slightly increased statistical error. The analysis in [27]
is the only study that has explicitly removed close pairs.

Another effect that is more subtle is the correlation between the orientation or a
foreground galaxy and the orientation of the lensed image of a background galaxy.
The latter is affected gravitationally by the tidal field in the vicinity of the former
(as well as the tidal fields all the way along the line-of-sight), and if the orientation
of the foreground galaxy is affected by the local tidal field, as it surely must at some
level, then there can be a contamination of the cosmological lensing signal by what
is sometimes referred to as the “GI correlation”. This was first pointed out in [30],
and it seems to be likely to be a significant effect [29]. It is less easy to deal with
than the second correlation, but modelling and nulling methods exist, at the price of
diminished signal-to-noise [10, 40].

3.4.5 E/B Decomposition

Weak gravitational lensing does not produce the full range of locally linear distor-
tions possible. These are characterised by translation, rotation, dilation, and shear,
with six free parameters. Translation is not readily observable, but weak lensing is
specified by three parameters rather than the four remaining degrees of freedom per-
mitted by local affine transformations. This restriction is manifested in a number of
ways: e.g., the transformation of angles involves a 2× 2 matrix that is symmetric,
so it is not completely general, see Eq. (3.18). Alternatively, a general spin-weight 2
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E mode

B mode

Fig. 3.7 Example patterns from E-mode and B-mode fields (from [79]). Weak lensing only pro-
duces E-modes at any significant level, so the presence of B-modes can indicate systematic
errors.

field can be written in terms of second derivatives of a complex potential, where
as the lensing potential is real. There are many other consistency relations that
have to hold if lensing is responsible for the observed shear field. In practice, the
observed ellipticity field may not satisfy the expected relations, if it is contaminated
by distortions not associated with weak lensing. The most obvious of these is optical
distortions of the telescope system, but it could also involve physical effects such as
intrinsic alignment of galaxy ellipticities, which we will consider later.

A convenient way to characterise the distortions is via E/B decomposition, where
the shear field is described in terms of an “E-mode,” which is allowed by weak
lensing, and a “B-mode,” which is not. These terms are borrowed from similar
decompositions in polarisation fields. In fact, weak lensing can generate B-modes,
but they are expected to be very small [67], so the existence of a significant B-mode
in the observed shear pattern is indicative of some nonlensing contamination. The
easiest way to introduce a B-mode mathematically is to make the lensing potential
complex:

φ = φE + iφB. (3.56)

There are various ways to determine whether a B-mode is present. A neat way is to
generalise a common statistic called the aperture mass to a complex M = Map+ iM⊥,
where the real part picks up the E-modes, and the imaginary part the B-modes.
Alternatively, the ξ± can be used [17, 68]:

Pκ±(�) = π
∫ ∞

0
dθ θ [J0(�θ )ξ+(θ )± J4(�θ )ξ−(θ )], (3.57)

where the± power spectra refer to E- and B-mode powers. In principle, this requires
the correlation functions to be known over all scales from 0 to ∞. Variants of this
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(see e.g., [17]) allow the E/B-mode correlation functions to be written in terms of
integrals of ξ± over a finite range:

ξE(θ ) =
1
2

[
ξ−(θ )+ ξ ′+(θ )

]
(3.58)

ξB(θ ) = −1
2

[
ξ−(θ )− ξ ′+(θ )

]
,

where

ξ ′+(θ ) = ξ+(θ )+ 4
∫ θ

0

dθ ′

θ ′
ξ+(θ ′)−12θ 2

∫ θ

0

dθ ′

θ ′3
ξ+(θ ′). (3.59)

This avoids the need to know the correlation functions on large scales, but it needs
the observed correlation functions to be extrapolated to small scales; this was one of
the approaches taken in the analysis of the CFHTLS data [32]. Difficulties with
estimating the correlation functions on small scales have led others to prefer to
extrapolate to large scales, such as in the analysis of the GEMS [28] and William
Herschel data [59]. Note that without full sky coverage, the decomposition into
E- and B-modes is ambiguous, although for scales much smaller than the survey it
is not an issue.

3.4.6 Results

The first results from cosmic shear were published in 2000 [3, 77, 47, 82], so as an
observational science, cosmological weak lensing is very young. Till date, the sur-
veys have been able to show clear detections of the effect and reasonably accurate
determination of some cosmological parameters, usually the amplitude of the dark

Fig. 3.8 E- and B-modes from an early analysis of CFHTLS data [7]. Top points are the E-modes
and bottom points are the B-modes.
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Fig. 3.9 Cosmological parameters from an early analysis of CFHTLS data [7]

matter perturbations (measured by the rms fractional fluctuations in an 8h−1Mpc
sphere and denoted σ8), and the matter density parameter Ωm. Current surveys can-
not lift a near-degeneracy between these two, and usually a combination (typically
σ8Ω 0.5

m ) is quoted. This makes sense—it is difficult, but certainly not impossible, to
distinguish between a highly clumped low-density universe and a modestly clumped
high-density universe. There is no question that the surveys do not yet have the size
or the careful control of systematics required to compete with the microwave back-
ground and other techniques used for cosmological parameter estimation. However,
this situation is changing fast, particularly with the CFHT Legacy Survey, which
is now complete, and Pan-STARRS 1, which is underway. Future surveys such as
proposed by Euclid, JDEM, and LSST should be much more powerful. Early results
from CFHTLS are shown in Figs. 3.8 and 3.9.

3.5 Lensing in 3D

Knowing the redshift distribution of sources is vital to interpret 2D lensing statis-
tics, and to help with this, recent lensing surveys have obtained multicolour data to
estimate distances using photo-zs. With photo-zs for sources, it makes sense to use
the information individually, and this opens up the possibility of 3D lensing.

3.5.1 3D Potential and Mass Density Reconstruction

As we have already seen, it is possible to reconstruct the surface density of a lens
system by analysing the shear pattern of galaxies in the background. An interesting
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question is then whether the reconstruction can be done in three dimensions, when
distance information is available for the sources. It is probably self-evident that
mass distributions can be constrained by the shear pattern, but the more interesting
possibility is that one may be able to determine the 3D mass density in an essentially
nonparametric way from the shear data.

The idea [73] is that the shear pattern is derivable from the lensing potential
φ(r), which is dependent on the gravitational potential Φ(r) through the integral
equation

φ(r) =
2
c2

∫ r

0
dr′

(
1
r′
− 1

r

)
Φ(r′), (3.60)

where the integral is understood to be along a radial path (the Born approximation),
and a flat universe is assumed in Eq. (3.60). The gravitational potential is related
to the density field via Poisson’s equation (3.38). There are two problems to solve
here: one is to construct φ from the lensing data, the other is to invert Eq. (3.60).
The second problem is straightforward: the solution is

Φ(r) =
c2

2
∂
∂ r

[
r2 ∂
∂ r

φ(r)
]
. (3.61)

From this and Poisson’s equation ∇2Φ = (3/2)H2
0Ωmδ/a(t), we can reconstruct

the mass overdensity field

δ (r) =
a(t)c2

3H2
0Ωm

∇2
{

∂
∂ r

[
r2 ∂
∂ r

φ(r)
]}

. (3.62)

The construction of φ is more tricky, as it is not directly observable, but must be
estimated from the shear field. This reconstruction of the lensing potential suffers
from a similar ambiguity to the mass-sheet degeneracy for simple lenses. To see
how, we first note that the complex shear field γ is the second derivative of the
lensing potential:

γ(r) =

[
1
2

(
∂ 2

∂θ 2
x
− ∂ 2

∂θ 2
y

)
+ i

∂ 2

∂θx∂θy

]
φ(r). (3.63)

As a consequence, since the lensing potential is real, its estimate is ambiguous up to
the addition of any field f (r) for which

∂ 2 f (r)
∂θ 2

x
− ∂ 2 f (r)

∂θ 2
y

=
∂ 2 f (r)
∂θx∂θy

= 0. (3.64)

Since φ must be real, the general solution to this is

f (r) = F(r)+ G(r)θx + H(r)θy + P(r)(θ 2
x +θ 2

y ), (3.65)
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where F , G, H, and P are arbitrary functions of r ≡ |r|. Assuming these functions
vary smoothly with r, only the last of these survives at a significant level to the mass
density and corresponds to a sheet of overdensity

δ =
4a(t)c2

3H2
0Ωmr2

∂
∂ r

[
r2 ∂
∂ r

P(r)
]
. (3.66)

There are a couple of ways to deal with this problem. For a reasonably large survey,
one can assume that the potential and its derivatives are zero on average, at each r,
or that the overdensity has average value zero. For further details, see [4]. Note that
the relationship between the overdensity field and the lensing potential is a linear
one, so if one chooses a discrete binning of the quantities, one can use standard
linear algebra methods to attempt an inversion, subject to some constraints such as
minimising the expected reconstruction errors. With prior knowledge of the signal
properties, this is the Wiener filter. See [35], for further details of this approach.

This method was first applied to COMBO-17 data [74] and recently to COSMOS
HST data [60]—see Fig. 3.10.

3.5.2 Tomography

In the case where one has distance information for individual sources, it makes sense
to use the information for statistical studies. A natural course of action is to divide
the survey into slices at different distances and perform a study of the shear pattern
on each slice. In order to use the information effectively, it is necessary to look at
cross-correlations of the shear fields in the slices, as well as correlations within each

Fig. 3.10 3D reconstruction of matter density from the COSMOS ACS data [60].
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slice [33]. This procedure is usually referred to as tomography, although the term
does not seem entirely appropriate.

We start by considering the average shear in a shell, which is characterised by a
probability distribution for the source redshifts z = z(r), p(z). The shear field is the
second derivative of the lensing potential [12]

γ(r) =
1
2
∂̃ ∂̃ φ(r)
 1

2
(∂x + i∂y)2φ(r), (3.67)

where the derivatives are in the angular direction, and the last equality holds in the
flat-sky limit. If we average the shear in a shell, giving equal weight to each galaxy,
then the average shear can be written in terms of an effective lensing potential

φeff(θ ) =
∫ ∞

0
dz p(z)φ(r), (3.68)

where the integral is at fixed θ , and p(z) is zero outside the slice (we ignore errors in
distance estimates such as photometric redshifts; these could be incorporated with
a suitable modification to p(z)). In terms of the gravitational potential, the effective
lensing potential is

φeff(θ ) =
2
c2

∫ ∞

0
drΦ(r)g(r), (3.69)

where reversal of the order of integration gives the lensing efficiency to be

g(r) =
∫ ∞

z(r)
dz′ p(z′)

(
1
r
− 1

r′

)
, (3.70)

z′ = z′(r′) and we assume flat space. If we perform a spherical harmonic transform
of the effective potentials for slices i and j, then the cross power spectrum can be
related to the power spectrum of the gravitational potential PΦ(k) via a version of
Limber’s equation:

〈φ (i)
�mφ

∗( j)
�′m′ 〉= Cφφ

�,i j δ�′�δm′m, (3.71)

where

Cφφ
�,i j =

(
2
c2

)2 ∫ ∞

0
dr

g(i)(r)g( j)(r)
r2 PΦ(�/r;r) (3.72)

is the cross power spectrum of the lensing potentials. The last argument in PΦ allows
for evolution of the power spectrum with time or equivalently distance. The power
spectra of the convergence and shear are related to Cφφ

�,i j by [34]

Cκκ
�,i j =

�2(�+ 1)2

4
Cφφ

�,i j (3.73)

Cγγ
�,i j =

1
4

(�+ 2)!
(�−2)!

Cφφ
�,i j.
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Fig. 3.11 The power spectra of two slices, their cross power spectrum, and their correlation
coefficient. From [33]

The sensitivity of the cross power spectra to cosmological parameters is through
various effects, as in 2D lensing: the shape of the linear gravitational potential power
spectrum is dependent on some parameters, as is its nonlinear evolution; in addition,
the z(r) relation probes cosmology, via

r(z) = c
∫ ∞

0

dz′

H(z
. (3.74)

The reader is referred to standard cosmological texts for more details of the depen-
dence of the distance-redshift relation on cosmological parameters.

Hu [33] illustrates the power and limitation of tomography, with two shells
(Fig. 3.11). As expected, the deeper shell (2) has a larger lensing power spec-
trum than the nearby shell (1), but it is no surprise to find that the power spectra
from shells are correlated, since the light from both passes through some common
material. Thus, one does gain from tomography, but, depending on what one wants
to measure, the gains may or may not be very much. For example, tomography adds
rather little to the accuracy of the amplitude of the power spectrum, but far more to
studies of dark energy properties. One also needs to worry about systematic effects,
as leakage of galaxies from one shell to another, through noisy or biased photometric
redshifts, can degrade the accuracy of parameter estimation [36, 57, 1, 50, 52].

3.5.3 The Shear Ratio Test

The shear contributed by the general large-scale structure is typically about 1%, but
the shear behind a cluster of galaxies can far exceed this. As always, the shear of a
background source is dependent on its redshift, and on cosmology, but also on the
mass distribution in the cluster. This can be difficult to model, so it is attractive to
consider methods that are decoupled from the details of the mass distribution of the
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cluster. Various methods have been proposed (e.g. [41, 9]). The method currently
receiving the most attention is simply to take ratios of average tangential shear in
different redshift slices for sources behind the cluster.

The amplitude of the induced tangential shear is dependent on the source redshift
z, and on cosmology. via the angular diameter distance-redshift relation Sk[r(z)]
by [75]

γt(z) = γt(z = ∞)
Sk[r(z)− r(zl)]

Sk[r(z)]
, (3.75)

where γt,∞ is the shear which a galaxy at infinite distance would experience and
which characterises the strength of the distortions induced by the cluster, at redshift
zl . Evidently, we can neatly eliminate the cluster details by taking ratios of tangential
shears, for pairs of shells in source redshift:

Ri j ≡
γt,i

γt, j
=

Sk[r(z j)]Sk[r(zi)− r(zl)]
Sk[r(zi)]Sk[r(z j)− r(zl)]

. (3.76)

In reality, the light from the more distant shell passes through an extra pathlength
of clumpy matter, so suffers an additional source of shear. This can be treated as
a noise term [75]. This approach is attractive in that it probes cosmology through
the distance-redshift relation alone, being (at least to good approximation) inde-
pendent of the growth rate of the fluctuations. Its dependence on cosmological
parameters is, therefore, rather simpler, as many parameters (such as the ampli-
tude of matter fluctuations) do not affect the ratio except through minor side effects.
More significantly, it can be used in conjunction with lensing methods that probe
both the distance-redshift relation and the growth rate of structure. Such a dual
approach can in principle distinguish between quintessence-type dark energy mod-
els and modifications of Einstein gravity. This possibility arises because the effect
on global properties (e.g., z(r)) is different from the effect on perturbed quanti-
ties (e.g., the growth rate of the power spectrum) in the two cases. The method
has a signal-to-noise that is limited by the finite number of clusters, which are
massive enough to have measurable tangential shear. In an all-sky survey, the
bulk of the signal would come from the 105 − 106 clusters above a mass limit
of 1014M�.

3.5.4 Full 3D Analysis of the Shear Field

An alternative approach to take is to recognise that, with photometric redshift
estimates for individual sources, the data one is working with is a very noisy 3D
shear field, which is sampled at a number of discrete locations, and for whom the
locations are somewhat imprecisely known. It makes some sense, therefore, to deal
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with the data one has and to compare the statistics of the discrete 3D field with
theoretical predictions. This was the approach of [22, 12, 24, 49]. It should yield
smaller statistical errors than tomography, as it avoids the binning process that loses
information.

In common with many other methods, one has to make a decision whether to
analyse the data in configuration space or in the spectral domain. The former, usually
studied via correlation functions, is advantageous for complex survey geometries,
where the convolution with a complex window function implicit in spectral methods
is avoided. However, the more readily computed correlation properties of a spectral
analysis are a definite advantage for Bayesian parameter estimation, and we follow
that approach here.

The natural expansion of a 3D scalar field (r,θ ,φ) that is derived from a poten-
tial is in terms of products of spherical harmonics and spherical Bessel functions,
j�(kr)Y m

� (θ). Such products, characterised by 3 spectral parameters (k, �,m), are
eigenfunctions of the Laplace operator, thus making it very easy to relate the expan-
sion coefficients of the density field to that of the potential (essentially via−k2 from
the ∇2 operator). Similarly, the 3D expansion of the lensing potential,

φ�m(k)≡
√

2
π

∫
d3rφ(r)k j�(kr)Y m

� (θ), (3.77)

where the prefactor and the factor of k are introduced for convenience. The expansion
of the complex shear field is most naturally made in terms of spin-weight 2 spheri-
cal harmonics 2Y m

� and spherical Bessel functions since γ = 1
2 ∂̃ ∂̃ φ and ∂̃ ∂̃ Y m

� ∝
2Y m

� :

γ(r) =
√

2π∑
�m

∫
dk γ�m k j�(kr) 2Y m

� (θ). (3.78)

The choice of the expansion becomes clear when we see that the coefficients of the
shear field are related very simply to those of the lensing potential:

γ�m(k) =
1
2

√
(�+ 2)!
(�−2)!

φ�m(k). (3.79)

The relation of the φ�m(k) coefficients to the expansion of the density field is readily
computed, but more complicated as the lensing potential is a weighted integral of
the gravitational potential. The details will not be given here, but relevant effects
such as photometric redshift errors, nonlinear evolution of the power spectrum, and
the discreteness of the sampling are easily included. The reader is referred to the
original papers for details.

In this way, the correlation properties of the γ�m(k) coefficients can be related
to an integral over the power spectrum, involving the z(r) relation, so cosmological
parameters can be estimated via standard Bayesian methods from the coefficients.
Clearly, this method probes the dark energy effect on both the growth rate and the
z(r) relation.
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Fig. 3.12 The accuracy expected from the combination of experiments dedicated to studying Dark
Energy properties. Marginal 1σ , 2-parameter regions are shown for the experiments individually
and in combination. The supernova study fills the plot, the thin diagonal band is Planck, the near-
vertical band is BAO, and the ellipse is the 3D lensing power spectrum method. The small ellipse
is from combined. From [24].

3.5.5 Dark Energy with 3D Lensing Methods

In this section, we summarise some of the forecasts for cosmological parameter
estimation from 3D weak lensing. We concentrate on the statistical errors that should
be achievable with the shear ratio test and with the 3D power spectrum techniques.
Tomography should be similar to the latter. We show results from 3D weak lens-
ing alone, as well as in combination with other experiments. These include CMB,
supernova, and baryon oscillation (BAO) studies. The methods generally differ not
only in the parameters that they constrain well but also in terms of the degeneracies
inherent in the techniques. Using more than one technique can be very effective at
lifting the degeneracies, and very accurate determinations of cosmological parame-
ters, in particular dark energy properties, may be achievable with 3D cosmic shear
surveys covering thousands of square degrees of sky to median source redshifts of
order unity.

Figures 3.5 and 3.13 show the accuracy that might be achieved with a number of
surveys designed to measure cosmological parameters. We concentrate here on the
capabilities of each method, and the methods in combination, to constrain the dark
energy equation of state, and its evolution, parametrised by [14]

w(a) =
p

ρc2 = w0 + wa(1−a), (3.80)
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Fig. 3.13 As in Fig. 3.12, but with the shear ratio test as the lensing experiment. Supernovae fill
the plot, Planck is the thin diagonal band, BAO the near-vertical band, and the shear ratio is the
remaining 45 degree band. The combination of all experiments is in the centre. From [75].

where the behaviour as a function of scale factor a is, in the absence of a compelling
theory, assumed to have this simple form. w = −1 would arise if the dark energy
behaviour was actually a cosmological constant.

The assumed experiments are as follows: a 5-band 3D weak lensing survey, anal-
ysed either with the shear ratio test or with the spectral method, covering 10,000
square degrees to a median redshift of 0.7, similar to the capabilities of a ground-
based 4 m-class survey with a several square degree field; the Planck CMB exper-
iment (14-month mission); a spectroscopic survey to measure BAO in the galaxy
matter power spectrum, assuming constant bias, and covering 2000 square degrees
to a median depth of unity, and a smaller z = 3 survey of 300 square degrees, similar
to WFMOS capabilities on Subaru; a survey of 2000 Type Ia supernovae to z = 1.5,
similar to SNAPs design capabilities.

We see that the experiments in combination are much more powerful than indi-
vidually, as some of the degeneracies are lifted. Note that the combined experiments
appear to have rather smaller error bars than is suggested by the single-experiment
constraints. This is because the combined ellipse is the projection of the product
of several multidimensional likelihood surfaces, which intersect in a small volume.
(The projection of the intersection of two surfaces is not the same as the intersection
of the projection of two surfaces). The figures show that errors of a few percent on
w0 are potentially achievable, or, with this parametrisation, an error of w at a “pivot”
redshift of z
 0.4 of under 0.02. This error is essentially the minor axis of the error
ellipses. These graphs include statistical errors only; systematic errors, from, e.g.,
bias in the photo-z distribution, are expected to degrade errors by ∼

√
2 [50].
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3.6 Dark Gravity

In addition to the possibility that Dark Energy or the cosmological constant drives
acceleration, there is an even more radical solution. As a cosmological constant,
Einstein’s term represents a modification of the gravity law, so it is interesting
to consider whether the acceleration may be telling us about a failure of GR.
Although no compelling theory currently exists, suggestions include modifications
arising from extra dimensions, as might be expected from string-theory braneworld
models. Interestingly, there are potentially measurable effects of such exotic grav-
ity models which weak lensing can probe, and finding evidence for extra dimen-
sions would of course signal a radical departure from our conventional view of the
Universe.

Weak lensing is useful as it probes not just the distance-redshift relation but also
the growth rate of perturbations (see, e.g., Eqs. 3.70 and 3.72). This is important
because in principle measures which use only the r(z) relation suffer from a degen-
eracy between a different gravity law and the equation of state of the contents of the
Universe. To see this, first note that a modified gravity law will lead to some sort of
Hubble relation H(a). If we combine the Friedmann equation

H2(a)+
k
a2 =

8πGρ
3

(3.81)

and

d
da

(
ρa3) =−pa2 =−w(a)ρa2, (3.82)

we find that

w(a) =−1
3

d
d lna

[
1

Ωm(a)
−1

]
. (3.83)

So we see that any modified gravity law can be mimicked, as far as the distance-
redshift relation is concerned, by GR with an appropriate equation of state.

To analyse other gravity laws, we consider scalar perturbations in the conformal
Newtonian gauge (flat for simplicity), ds2 = a2(η)

[
(1 + 2ψ)dη2− (1−2φ)dx2

]
,

where ψ is the potential fluctuation, and φ the curvature perturbation, and η being
the conformal time. Information on the gravity law is manifested in these two poten-
tials. For example, in GR and in the absence of anisotropic stresses (a good approx-
imation for epochs when photon and neutrino streaming are unimportant) φ = ψ .
More generally, the Poisson law may be modified, and the laws for ψ and φ may dif-
fer. This difference can be characterised [19] by the slip, ϖ . This may be scale- and
time-dependent: ψ(k,a) = [1 +ϖ(k,a)]φ(k,a), and the modified Poisson equation
may be characterised by Q, an effective change in G [2]:

−k2φ = 4πGa2ρmδmQ(k,a). (3.84)
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Fig. 3.14 The projected marginal 68% and 95% likelihood contours for the slip, ϖ , assuming
ϖ = ϖ0(1+ z)−3, for WMAP 5-year data (blue), adding current weak lensing and ISW data (red).
Yellow is mock Planck CMB data, and green adds weak lensing from a 20,000 square degree
survey [19].

Different observables are sensitive to ψ and φ in different ways [42]. For example,
the integrated Sachs–Wolfe effect depends on ψ̇ + φ̇ , but the effect is confined to
large scales and cosmic variance precludes accurate use for testing modified gravity.
Peculiar velocities are sourced by ψ . Lensing is sensitive to ψ + φ , and this is the
most promising route for next-generation surveys to probe beyond-Einstein gravity.
The Poisson-like equation for ψ +φ is

−k2(ψ +φ) = 2Σ
3H2

0Ωm

2a
δm, (3.85)

where Σ ≡Q(1+ϖ/2). For GR, Σ = 1,ϖ = 0. The DGP braneworld model [20] has
Σ = 1, so mass perturbations deflect light in the same way as GR, but the growth rate
of the fluctuations differs. Thus, we have a number of possible observational tests,
including probing the expansion history, the growth rate of fluctuations, and the
mass density-light bending relation. Future WL surveys can put precise constraints
on Σ [2] and on ϖ (see Fig. 3.14) [19].

By probing the growth rate and the expansion history, weak lensing can lift
a degeneracy that exists in methods, that consider the distance-redshift relation
alone since the expansion history in a modified gravity model can always be
mimicked by GR and Dark Energy with a suitable w(a). In general, however,
the growth history of cosmological structures will be different in the two cases
(e.g., [53, 37], but see [54]).
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3.6.1 Growth Rate

Although not the most general, the growth index γ [55] (not to be confused with the
shear) is a convenient minimal extension of GR. The growth rate of perturbations in
the matter density ρm, δm ≡ δρm/ρm, is parametrised as a function of scale factor
a(t) by

δm

a
≡ g(a) = exp

{∫ a

0

da′

a′
[
Ωm(a′)γ −1

]}
, (3.86)

In the standard GR cosmological model, γ 
 0.55, whereas in modified gravity theo-
ries it deviates from this value. E.g. the flat DGP braneworld model [20] has γ 
 0.68
on scales much smaller than those where cosmological acceleration is apparent [56].

Measurements of the growth factor can in principle be used to determine the
growth index γ , and it is interesting to know if it is of any practical use. In contrast to
parameter estimation, this is an issue of model selection—is the gravity model GR
or is there evidence for beyond-Einstein gravity? This question may be answered
with the Bayesian evidence, B [70], which is the ratio of probabilities of two or
more models, given some data. Following [25], Fig. 3.15 shows how the Bayesian
evidence for GR changes with increasing true deviation of γ from its GR value for
a combination of a future WL survey and Planck. From the WL data alone, one
should be able to distinguish GR decisively from the flat DGP model at lnB
 11.8,
or, in the frequentist view, 5.4σ [25]. The combination of WL + Planck + BAO
+ SN should be able to distinguish δγ = 0.041 at 3.41 sigma. This data combina-
tion should be able to decisively distinguish a dark energy GR model from a DGP
modified-gravity model with expected evidence ratio lnB
 50. An alternative is to

Fig. 3.15 Expected Bayesian evidence B vs. deviation of the growth index from GR, for a future
WL survey + Planck [25]. If modified gravity is the true model, GR will still be favoured by the
data to the left of the cusp. The Jeffreys scale of evidence [43] is labeled.
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Survey ν | lnB|

DES+Planck+BAO+SN 3.5 1.28 substantial
DES+Planck 2.2 0.56 inconclusive
DES 0.7 0.54 inconclusive

PS1+Planck+BAO+SN 2.9 3.78 strong
PS1+Planck 2.6 2.04 substantial
PS1 1.0 0.62 inconclusive

WLNG+Planck+BAO+SN 10.6 63.0 decisive
WLNG+Planck 10.2 52.2 decisive
WLNG 5.4 11.8 decisive

Table 3.1 The evidence ratio for the three weak lensing experiments considered with and without
Planck, supernova, and BAO priors. W LNG is a next-generation space-based imaging survey such
as proposed for DUNE or SNAP. zm is the median redshift, n0 is the number of sources per square
arcminute, and σz is the assumed photometric redshift error. For completeness, we also list the fre-
quentist significance νσ with which GR would be expected to be ruled out, if the DGP braneworld
were the correct model.

parametrise geometry and growth with two separate effective values of w and look
for (in)consistency [39, 72, 76, 83].

One caveat on all of these conclusions is that WL requires knowledge of the non-
linear regime of galaxy clustering, and this is reasonably well understood for GR,
but for other models, further theoretical work is required. This has already started
[64]. The case for a large, space-based 3D weak lensing survey is strengthened, as it
offers the possibility of conclusively distinguishing Dark Energy from at least some
modified gravity models.

3.7 The Future

The main promise of weak lensing in the future will come from larger surveys
with optics designed for excellent image quality. Currently, the CFHTLS is the state-
of-the-art, covering ∼ 170 square degrees to a median redshift in excess of one. In
the near future, Pan-STARRS, VST, and DES promise very small PSF distortions
and large areal coverage, and in the far future, LSST on the ground and satellites,
such as Euclid or JDEM, may deliver extremely potent lensing surveys. In parallel
with these developments, the acquisition of photometric redshifts for the sources has
opened up the exciting possibility of analysing weak lensing surveys in 3D. Each
source represents a noisy estimate of the shear field at a location in 3D space, and
this extra information turns out to be extremely valuable, increasing substantially the
statistical power of lensing surveys. In particular, it can lift the degeneracy between
σ8 and Ωm, measure directly the growth of Dark Matter clustering [5] and, more
excitingly still, it represents a powerful method to measure the equation of state of
Dark Energy [22, 41, 24]—surely one of the most important remaining questions
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in cosmology. In addition, photometric redshifts allow the possibility of direct 3D
Dark Matter mapping [73, 4, 74], thus addressing another of the unsolved problems.
Finally, there is the interesting prospect that we may be able to find evidence for
extra dimensions in the Universe, from braneworld models, or other cosmological
models, from the effect they have on the gravity law and the growth rate of perturba-
tions. Most excitingly, it seems that this may be within reach for ambitious lensing
surveys planned for the next decade.

3.8 Appendix: The Propagation of Light through a Weakly
Perturbed Universe

3.8.1 The Geodesic Equation

The geodesic equation governs the worldline xλ (λ = 0,1,2,3) of a particle and is
readily found in textbooks on General Relativity (e.g., [38]). It is

d2xλ

d p2 +Γλ
μν

dxμ

d p
dxν

d p
= 0, (3.87)

where p is an affine parameter and Γ λ
μν is the affine connection, which can be

written in terms of the metric tensor gμν as

Γ λ
μν =

1
2

gσλ
{
∂gμν

∂xσ
+

∂gσν
∂xμ

− ∂gμσ

∂xν

}
. (3.88)

For weak fields, the interval is given by

ds2 =
(

1 +
2Φ
c2

)
c2dt2−

(
1− 2Φ

c2

)
R2(t)

[
dr2 + S2

k(r)dβ
2] , (3.89)

where Φ is the peculiar gravitational potential, R(t) is the scale factor of the Uni-
verse, and r,θ ,ϕ are the usual comoving spherical coordinates. The angle dβ =√

dθ 2 + sin2 θdϕ2. Sk(r) depends on the geometry of the Universe, being given by

Sk(r) =

⎧⎨⎩ sinhr, if k < 0;
r, if k = 0;
sinr, if k > 0.

The curvature k = −1,0,1 corresponds to open, flat, and closed universes,
respectively. We are interested in the distortion of a small light bundle, so we can



3 Cosmology with Gravitational Lensing 213

concentrate on a small patch of sky. If we choose the polar axis of the coordinate
system to be along the centre of the light bundle, we can define angles θx ≡ θ cosϕ
and θy ≡ θ sinϕ . For convenience, we also use the conformal time, defined by
dη = cdt/R(t), in place of the usual time coordinate. With these definitions, the
interval is more simply written as

ds2 = R2(t)
{(

1 +
2Φ
c2

)
dη2−

(
1− 2Φ

c2

)[
dr2 + S2

k(r)(dθ
2
x + dθ 2

y )
]}

.

The metric tensor for weakly perturbed flat Friedmann–Robertson–Walker metric
is then

R2(t)

⎛⎜⎜⎝
1 + 2Φ/c2 0 0 0

0 −
(
1−2Φ/c2

)
0 0

0 0 −r2
(
1−2Φ/c2

)
0

0 0 0 −r2
(
1−2Φ/c2

)
⎞⎟⎟⎠ .

We are interested in how the angles of the ray, (θx,θy) change as the photon moves
along its path, responding to the varying gravitational potential. The unperturbed,
radial, path is set by 0 = ds2 
 dη2−dr2, i.e., For a radial incoming ray,

dr
dη

=−1.

With gμν defined as the inverse of gμν (so gμνgνα = δ α
μ ), the affine connections

are readily computed.
The parametrised equation forη is required only to zero-order inΦ and reduces to

d2η
d p2 =−2

Ṙ
R
η̇ ,

where a dot here denotes d/d p. By choosing the unit of p appropriately, we find

dη
d p

=
1

R2 .

We can also relate the radial coordinate to the conformal time, again to zero-order
in Φ: The first-order equations governing θx and θy are obtained from the geodesic
equation, or by the variational methods (see, e.g., d’Inverno (1992), Sect. 7.6 [38])

∂L2

∂xμ
− d

d p

(
∂L2

∂ ẋμ

)
= 0,

where L2 ≡ (ds/d p)2. With xμ = θx,

R2 2
c2

∂Φ
∂θx

η̇2 +
2
c2 R2 ∂Φ

∂θx

(
ṙ2 + r2θ 2

x + r2θ 2
y

)
− d

d p

[
−2R2r2

(
1− 2Φ

c2

)
θ̇x

]
= 0.
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With the zero-order solutions for dη/d p and dr/dη , to first order this reduces
simply to

d2θx

dη2 −
2
r

dθx

dη
=− 2

c2r2

∂Φ
∂θx

.

It is convenient to write this as an equation for the comoving displacement of the
ray from a fiducial direction,

xi ≡ rθi. i = 1,2

and the equation for θx and a similar one for θy simplify to

d2x
dη2 =− 2

c2∇Φ,

where ∇ here is a comoving transverse gradient operator (∂x,∂y).
We see that the propagation equation for the displacement looks similar to what

one would guess from a Newtonian point-of-view; the presence of η (instead of t) in
the acceleration term on the left is a result of the expansion of the Universe and the
choice of comoving coordinates. The right-hand side looks like the gradient of the
potential, but it is larger than the naıve gradient by a factor of two. This is the same
factor of two which leads to the classic result of GR, famously tested by Eddington’s
1919 solar eclipse observations, that the angle of light bending by the Sun is double
what Newtonian theory predicted.
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Chapter 4
Cosmology with Numerical Simulations

Lauro Moscardini and Klaus Dolag

Abstract The birth and growth of cosmic structures is a highly nonlinear phe-
nomenon that needs to be investigated with suitable numerical simulations. The main
goal of these simulations is to provide robust predictions, which, once compared to
the present and future observations, allows us to constrain the main cosmological
parameters. Different techniques have been proposed to follow both the gravita-
tional interaction inside cosmological volumes and the variety of physical processes
acting on the baryonic component only. In this chapter, we review the main char-
acteristics of the numerical schemes most commonly used in the literature, discuss
their pros and cons, and summarize the results of their comparison.

4.1 Introduction

Numerical simulations have become in the last years one of the most effective tools
to study and to solve astrophysical problems. The computation of the mutual grav-
itational interaction between a large set of particles is a problem that cannot be
investigated with analytical techniques only. Therefore, it represents a good exam-
ple of a problem where computational resources are absolutely fundamental.

Thanks to the enormous technological progress in the recent years, the available
facilities allow us now to afford the problem of gravitational instability, which is the
basis of the accepted model of cosmic structure formation, with a very high mass
and space resolution. Moreover, the development of suitable numerical techniques
permits to include a realistic treatment of the majority of the complex physical
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processes acting on the baryonic component, which is directly related to observa-
tions. For this reason, the numerical simulations are now used not only to better
understand the general picture of structure formation in the Universe but also as
a tool to validate cosmological models and to investigate the possible presence of
biases in real data. In some sense, they substitute the laboratory experiments which
are in practice impossible for cosmology, given the uniqueness of the Universe.

The chapter is organized as follows. In Section 4.2, we will discuss the schemes
proposed to follow the formation and evolution of cosmic structures when the
gravity only is in action: in particular, after presenting the model equations in
Section 4.2.1, we will introduce the Particle–Particle method (Section 4.2.2), the
Particle–Mesh method (Section 4.2.3), the Tree code (Section 4.2.4), and the
so-called Hybrid methods (Section 4.2.5). Section 4.3 is devoted to the presenta-
tion of the numerical codes used to solve the hydrodynamical equations related to
the baryonic component, introduced in Section 4.3.1. More in detail, Section 4.3.2
discusses the characteristics of the most used Lagrangian code, the Smoothed Parti-
cle Hydrodynamics, while Section 4.3.3 introduces the bases of the methods based
on grids, the Eulerian codes.

4.2 N-Body Codes

4.2.1 The Model Equations

In order to write the equations of motion determining the gravitational instability
leading to the formation and evolution of cosmic structures, it is necessary to choose
the underlying cosmological model, describing the expanding background universe,
where a = 1/(1+z). In the framework of General Relativity, this means to assume a
Friedmann–Lemaître model, with its cosmological parameters, namely the Hubble
parameter H0 and the various contributions coming from baryons, dark matter, and
dark energy/cosmological constant to the total density parameter Ω0.

Many different observations are now giving a strong support to the idea that
the majority of the matter in the Universe is made by cold dark matter (CDM),
i.e., nonrelativistic collisionless particles, which can be described by their mass m,
comoving position x, and momentum p. The time evolution of the phase-space dis-
tribution function f (x,p,t) is given by the coupled solution of the Vlasov equation

∂ f
∂ t

+
p

ma2∇ f −m∇Φ
∂ f
∂p

= 0 (4.1)

and of the Poisson equation

∇2Φ(x,t) = 4πGa2 [ρ(x,t)− ρ̄(t)] . (4.2)
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Here, Φ represents the gravitational potential and ρ̄(t) represents the mean back-
ground density. The proper mass density

ρ(x,t) =
∫

f (x,p,t)d3 p (4.3)

is the integral over the momenta p = ma2ẋ.
The solution of this high-dimension problem is standardly obtained by using a

finite set of Np particles to trace the global matter distribution. For these tracers, it is
possible to write the usual equations of motion, which in comoving coordinates read:

dp
dt

=−m∇Φ (4.4)

and

dx
dt

=
p

ma2 . (4.5)

Introducing the proper peculiar velocity v = aẋ, these equations can be written as

dv
dt

+ v
ȧ
a

=−∇Φ
a

. (4.6)

The time derivative of the expansion parameter, ȧ, is given by the Friedmann equa-
tion, once the cosmological parameters are assumed.

In the following subsections, we will present some of the standard approaches
used to solve the N-body problem.

4.2.2 The Particle–Particle (PP) Method

This is certainly the simplest possible method because it makes direct use of the
equations of motion plus the Newton’s gravitational law. In this approach, the forces
on each particle are directly computed by accumulating the contributions of all
remaining particles.

At each time-step Δ t, the following operations are repeated:

• clearing of the force accumulators: Fi = 0 for i = 1, ...,Np, where Np is the num-
ber of particles;

• accumulation of the forces considering all Np(Np− 1) pairs of particles: Fi j ∝
mim j/r2

i j, where ri j is the distance between two particles having masses mi and
mj, respectively:

Fi = Fi +∑Fi j; Fj = Fj +∑Fi j; (4.7)
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• integration of the equations of motion to obtain the updated velocities vi and
positions xi of the particles:

vnew
i = vold

i + FiΔ t/mi , (4.8)

xnew
i = xold

i + viΔ t ; (4.9)

• updating of the time counter: t = t +Δ t.

Even if implementing this code is extremely easy from a numerical point of view
(see an example in the Appendix of [3]), its computational cost is quite large, being
proportional to N2

p: for this reason, its application is in practice forbidden for prob-
lems with a very large number of particles.

Notice that in principle this method would compute the exact Newtonian force,
used then to estimate the particles’ acceleration: for this reason, the PP method can
be considered the most accurate N-body technique. However, in order to avoid the
divergence at very small scales, the impact parameter must be reduced by introduc-
ing a softening parameter ε in the equation for the gravitational potential Φ:

Φ =−Gmp/(r2 + ε2)1/2. (4.10)

In some sense, this corresponds to assign a finite size to each particle, which can
be considered as a statistical representation of the total mass distribution. Typical
choices for ε range between 0.02 and 0.05 times the mean interparticle distance. As
a consequence, the frequency of strong deflections is also reduced, decreasing the
importance of the spurious two-body relaxation, which is generated by the neces-
sarily small number of particles used in the simulations, many orders of magnitude
smaller than the number of collisionless dark matter particles really exist in the
Universe.

As said, the largest limitation of this method is its scaling as N2
p . An attempt

to overcome this problem has been done by building a special-purpose hardware,
called GRAPE (GRAvity PipE) [13]. This hardware is based on custom chips that
compute the gravitational force with a hardwired force law. Consequently, this
device can solve the gravitational N-body problem adopting the direct sum with
a computational cost that is extremely smaller than for traditional processors.

Few words, which are valid also for most of the following methods, must be
spent about time-stepping and integration. In general, the accuracy obtained when
evolving the system depends on the size of the time step Δ t and on the integrator
scheme used. Finding the optimum size of time step is not trivial. A possible choice
is given by

Δ t = α
√

ε/|F/mp| , (4.11)

where the force is the one obtained at the previous time step, ε is a length scale
associated to the gravitational softening, and α is a suitable tolerance parameter.
Alternative and more accurate criteria are discussed in [19]. To update velocities and
then positions, it is necessary to integrate first-order ordinary differential equations,
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once the initial conditions are specified: many methods, classified as explicit or
implicit, are available, ranging from the simplest Euler’s algorithm to the more
accurate Runge–Kutta method (see, e.g., [20] for an introduction to these methods).

4.2.3 The Particle–Mesh (PM) Method

In this method, a mesh is used to describe the field quantities and to compute their
derivatives. Thanks to the structure of the Poisson equation and to the assumption
that the considered volume is a fair sample of the whole universe, it is convenient to
re-write all relevant equations in the Fourier space, where we can take advantage of
the Fast Fourier Techniques: this will allow a strong reduction of the CPU time nec-
essary for each time step. This improvement in the computational cost is, however,
paid with a loss of accuracy and resolution: the PM method cannot follow close
interactions between particles on small scales. In fact, using a grid to describe the
field quantities (like density, potential and force) does not allow a fair representation
on scales smaller than the intergrid distance.

Since the introduction of a computational mesh is equivalent to a local smoothing
of the field, for the PM method, it is not necesssary to adopt the softening parameter
in the expression of the force and/or gravitational potential.

Going in more detail, each time step for the PM method is composed of the
following operations:

• computation of the density at each grid point starting from the particles’ spatial
distribution;

• solution of the Poisson equation for the potential;
• computation of the force on the grid points;
• estimation of the force at the positions of each particle using a suitable interpo-

lation scheme;
• integration of the equations of motion.

If the computational volume is a cube of side L and Np is the number of particles
having equal mass mp, a regular three-dimensional grid with M nodes per direction
is built: therefore, the grid spacing is Δ ≡ L/M. Each grid point can be identified
by a term of integer numbers (i, j,k), such that its spacial coordinates are xi, j,k =
(iΔ , jΔ ,kΔ), with i, j,k = 1, ...,M.

4.2.3.1 Density Computation

The particle mass decomposition at the grid nodes represents one of the critical steps
for the PM method, both in terms of resolution and computational cost. The mass
density ρ at the grid point xi, j,k can be written as

ρ(xi, j,k) = mpM3
Np

∑
l=1

W (δxl) , (4.12)
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where W is a suitable interpolation function and δxl = xl − xi, j,k is the distance
between the position of the l-th particle and the considered grid point.

The choice of W is related to the accuracy of the required approximation: of
course, the higher the number of grid points involved in the interpolation, the better
the approximation. For problems in higher dimensions, it is possible to write the
function W as product of more functions, each of them depending only on the dis-
placement in one dimension: Wi, j,k = wiwjwk. In order of increasing accuracy, the
most commonly adopted interpolation functions are as follows:

• “nearest-grid-point” (NGP): in this case, the mass of each particle is totally
assigned to the nearest grid point only. As a consequence, the density shows a
discontinuity every time a particle crosses the grid borders. The NGP interpola-
tion function reads

wi = 1, M |δxi| ≤ 1/2 ; (4.13)

• “cloud-in-cell” (CIC): the mass of each particle is assigned to two (i.e., 23 = 8
in the 3D case) nearest points in an inversely proportional way with respect to its
distance from the grid point: in this way, the density varies with continuity when
a particle crosses a cell border, but its gradient is still discontinuous. The CIC
interpolation function can be written as

wi = 1−M |δxi| , M |δxi| ≤ 1 ; (4.14)

• “triangular-shaped-cell” (TSC): the mass decomposition involves three (i.e.,
33 = 27 in the 3D case) nearest points. In this way, the density gradient also
varies smoothly during the cell border crossing; on the contrary, the second
derivative remains discontinuous. The TSC interpolatation function can be
expressed as

wi =
{

3/4−M2 |δxi|2 M |δxi| ≤ 1/2
(1/2)(3/2−M |δxi|)2 1/2≤M |δxi| ≤ 3/2

. (4.15)

Of course, the interpolating functions can be easily extended to higher orders,
providing gradually continuous derivatives of higher orders and better accuracy.
However, because of the increasing number of involved grid points, the resulting
interpolation would be more computationally demanding.

Notice that, in order to conserve the momentum, the same interpolation schemes
W adopted here for the density computation have to be used to obtain the compo-
nents of the force at the position of each particle, once the force on the mesh will be
obtained (see above). In this case,

Fx(xl) = mp

M

∑
i, j,k=1

W (δxl)Fx(xi, j,k) ; (4.16)
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Fy(xl) = mp

M

∑
i, j,k=1

W (δxl)Fy(xi, j,k) ; (4.17)

Fz(xl) = mp

M

∑
i, j,k=1

W (δxl)Fz(xi, j,k) . (4.18)

4.2.3.2 Poisson Equation

The application of the Fast Fourier Transforms (FFTs) allows to solve the Poisson
equation in a much easier way in the Fourier space, where it becomes

Φk = Gkδk ; (4.19)

here, Φk and δk are the Fourier transforms of the gravitational potential and of the
density contrast, respectively. In the previous equation, Gk represents a suitable
Green function for the Laplacian, for which, in the case of a continuous system,
a good expression is given by Gk ∝ k−2; alternative expressions for the Laplacian
giving a better approximation are also available. Using a discrete system on a grid
introduces errors and anisotropies in the computation of the force. In order to reduce
this problem, it is necessary to find an expression for Gk, which corresponds to the
desired shape for the particles in the configuration space and which minimizes the
errors with respect to a reference force: for this reason, the optimal Green function
depends on the chosen shape and interpolation scheme.

4.2.3.3 Force Calculation

In a typical PM scheme, the computation of the forces at each grid point requires
differentiating the potential Φ to derive the i-th force component:

Fi(x) =−mp
dΦ
dxi

. (4.20)

This can be done using the finite difference schemes, largely adopted to numeri-
cally solve differential equations. The approximation depends on the number of grid
points involved in the computation. As examples, at the lowest order (“two-point
centered”), the x-component of the force can be obtained as

Fx(xi, j,k)
mp

=
Φ(xi−1, j,k)−Φ(xi+1, j,k)

2Δ
, (4.21)

while the four-point approximation is given by

Fx(xi, j,k)
mp

=
2
(
Φ(xi+1, j,k)−Φ(xi−1, j,k)

)
3Δ

− Φ(xi+2, j,k)−Φ(xi−2, j,k)
12Δ

. (4.22)
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It is possible to increase the resolution of a PM scheme by computing the force
on a grid shifted with respect to the one used for the computation of potential. For
example, in the case of the “two-point centered” approximation (see Eq. 4.21), this
“staggered mesh” technique reads

Fx(xi, j,k)
mp

=
Φ(xi−1/2, j,k)−Φ(xi+1/2, j,k)

Δ
. (4.23)

It is well known that the finite difference schemes introduce truncation errors in
the solutions. A way to avoid this problem and to gain a better accuracy is to obtain
the forces directly from the gravitational potential in Fourier space: Fk =−ikΦk. In
this case, it is necessary to inverse-transform separately each single component of
the force, using more frequently the FFT routines.

4.2.3.4 Pros and Cons

The big advantage of the PM method is its high computational speed: in fact, the
number of operations scales as Np + Nglog(Ng), where Np is the number of parti-
cles and Ng = M3 is the number of grid points. The small dynamical range, strongly
limitated by the number of grid points and by the corresponding memory occupa-
tion, represents the largest problem of the method: only adopting hybrid methods
(see above), it is possible to reach the sufficient resolution necessary in cosmologi-
cal simulations.

4.2.4 Tree Codes

Thanks to its computational performance and accuracy, this method represents today
the favorite tool for cosmological N-body simulations. The idea to solve the N-body
problem is based on the exploitation of a hierarchical multipole expansion, the
so-called tree algorithm. The speed up is obtained by using, for sufficiently dis-
tant particles, a single multipole force, in spite of computing every single distance,
as required for methods based on direct sum. In this way, the sum ideally reduces
to Np log(Np) operations, even if, for gravitationally evolved structures, the scaling
can be less efficient.

In practice, the multiple expansion is based on a hierarchical grouping that is
obtained, in the most common algorithms, by subdividing in a recursive way the
simulation volume. In the approach suggested by [2], a cubical root node is used
to encompass the full mass distribution. This cube is then repeatedly subdivided
into eight daughter nodes of half the side-length each, until one ends up with “leaf”
nodes containing single particles. The computation of the force is then done by
“descending” the tree. Starting from the root node, the code evaluates, by applying
a suitable criterion, whether or not the multipole expansion of the node provides an
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accurate enough partial force: in case of a positive answer, the tree descent is stopped
and the multipole force is used; in the negative case, the daughter nodes are consid-
ered in turn. Usually, the opening criterion is based on a given fixed angle, whose
choice controls the final error: typically one assumes the angle to be ≈ 0.5 rad.
Obviously, the smaller and the more distant the particles’ groups, the more accurate
the assumption of multipole expansion.

4.2.5 Hybrid Methods

Having the previous techniques quite different numerical properties with oppo-
site pros and cons, it is possible to combine them to build new algorithms (called
hybrid methods), possibly mantaining the positive aspects only. A first attempt
has been done with the P3M code, which combines the high accuracy of the
direct sum implemented by the PP method at small scale with the speed of the
PM algorithm to compute the large-scale interactions. An improved version of
this code has also been proposed, where spatially adaptive mesh refinements are
possible in regions at very high density. This algorithm, called AP3M [6], has
been used to run several cosmological simulations, including the Hubble Volume
simulations [9].

In the last-generation codes like GADGET[23], hybrid codes are built by
replacing the direct sum with tree algorithms: the so-called TreePM. In this case,
the potential is explicitly split in Fourier space into a long-range and a short-range
part according to Φk = Φ long

k +Φshort
k , where

Φ long
k = Φk exp(−k2r2

s ) ; (4.24)

here, rs corresponds to the spatial scale of the force-split. The long-range potential
can be computed very efficiently with mesh-based Fourier methods, like in the PM
method. The short-range part of the potential can be solved in real space by noting
that for rs� L, the short-range part of the real-space solution of the Poisson equation
is given by

Φshort(x) =−G∑
i

mi

ri
erfc

(
ri

2rs

)
. (4.25)

In the previous equation, ri is the distance of any particle i to the point x. Thus, the
short-range force can be computed adopting the tree algorithm, except that the force
law is modified by a long-range cut-off factor.

This approach allows to largely improve the computational performance com-
pared with ordinary tree methods, maintaining all their advantages: the very large
dynamical range, the insensitivity to clustering, and the precise control of the soft-
ening scale of the gravitational force.
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4.2.6 Initial Conditions and Simulation Setup

As said, the N-body simulations are a tool often used to produce, once a given cos-
mological model is assumed, the predictions, which can be directly compared with
real observational data to falsify the model itself. For this reason, it is necessary
to have a robust method to assign to the Np particles the correct initial conditions,
corresponding to a fair realization of the desired cosmological model. The standard
inflationary scenarios predict that the initial density fluctuations are a random field
with an almost Gaussian distribution (for non-Gaussian models and the correspond-
ing initial conditions, see e.g., [11]). In this case, the field is completely defined
by its power spectrum P(k), whose shape is related to the choices made about the
underlying cosmological model and the nature of dark matter.

The generation of initial conditions with a Gaussian distribution and a given P(k)
can be easily obtained exploiting the characteristics of a Gaussian distribution. In
fact, as discussed by [1], in order that a generic field F(x) to be strictly Gaussian,
all its different Fourier spatial modes Fk have to be reciprocally independent, to
have random phases θk and to have amplitude distributed according to a Rayleigh
distribution:

P(|Fk|,θk)d|Fk|dθk = exp

(
− |Fk|2

2P(k)

)
|Fk|d|Fk|

P(k)
dθk

2π
. (4.26)

The real and imaginary parts of Fk are then reciprocally independent and Gaussian
distributed. Consequently, it is sufficient to generate complex numbers with a phase
randomly distributed in the range [0,2π ] and with an amplitude normally distributed
with a variance given by the desired spectrum.

To obtain the perturbation field corresponding to this density distribution, it is
then necessary to multiply it by a suitable Green function to obtain the poten-
tial which can be then differentiated. The following application of the Zel’dovich
approximation [26] enables us to find the initial positions and velocities for a given
particle distribution. A more detailed description of the algorithms to create cosmo-
logical initial conditions can be found in [8]. Notice that the main limitations of this
method are essentially due to the use of a finite computational volume: the wave-
lengths close to the box size are badly sampled while those larger are not present
at all!

Two further complications should be mentioned. Using a perfectly regular grid
to distribute the unperturbed particles can introduce on the resulting density power
spectrum discreteness effects which can be reduced by starting from an amorphous
fully relaxed particle distribution. As suggested by [25], this can be constructed
by applying negative gravity to a system and evolving it for a long time until it
reaches a relaxed state. Second, when interested to studies of individual objects like
galaxy clusters, we have to recall that also large-scale tidal forces have an important
role in determining their final properties. To include these effects, one can apply
the so-called “zoom” technique [24]: a high-resolution region is self-consistently
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embedded in a larger scale cosmological volume at low resolution. This allows an
increase of the dynamical range up to two orders of magnitude while keeping the
full cosmological context. For galaxy simulations, it is even possible to apply this
technique on several levels of refinements to further improve the dynamical range
of the simulation.

As important as the initial conditions is the problem of the optimal setup for
cosmological simulations. For example, the number of particles necessary to reach
the numerical convergence in the description of a given region of interest depends
on the astrophysical quantity of interest, ranging from ≈ 30−50 for the halo mass
function to some thousands for the density profile in the central regions. Recently,
[19] presented a comprehensive series of convergence tests designed to study the
effect of numerical parameters on the structure of simulated dark matter haloes. In
particular, this paper discusses the influence of the gravitational softening, the time
stepping algorithm, the starting redshift, the accuracy of force computations, and the
number of particles in the spherically-averaged mass profile of a galaxy-sized halo.
The results were summarized in empirical rules for the choice of these parameters
and in simple prescriptions to assess the effective convergence of the mass profile
of a simulated halo, when computational limitations are present.

In general, it is important to notice that both the size and the dynamical range or
resolution of the N-body simulations have been increasing very rapidly over the last
decades, in a way that, thanks to improvements in the algorithms, is faster than the
underlying growth of the available CPU power.

4.2.7 Code Comparison

Thanks to the analysis of very recent data regarding the cosmic microwave back-
ground, the galaxy surveys, and the high-redshift supernovae, we entered the era
of the so-called high-precision cosmology, with very stringent constraints (i.e., at
the per cent accuracy level) on the main parameters. In the perspective of even bet-
ter data as expected in upcoming projects, the theoretical predictions, in order to
be a useful and complementary tool, must reach a similar level of precision, that,
particularly in the highly nonlinear regime, represents a real challenge.

A first step in this direction is the launch of an extensive program of comparison
between the different numerical codes available in the community. An example is
the work presented in [12], where ten different codes adopting a variety of schemes
(tree, APM, tree-PM, etc.) have been tested against the same initial conditions. In
general, the comparison has been very satisfactory, even if the variance between
the results is still too large to make predictions suitable for the next-generation of
galaxy surveys. In particular, the accuracy in the determination of the halo mass
function is always better than 5 per cent, while the agreement for the power spectrum
in the nonlinear regime is at the 5− 10 per cent level, even on moderate spatial
scales around k = 10h Mpc−1. Considering the internal structure of halos in the outer
regions of ∼ R200, it also appears to be very similar between different simulation



228 Lauro Moscardini and Klaus Dolag

codes. Larger differences between the codes in the inner region of the halos occur
only if the halo is not in a relaxed state.

4.3 Hydrodynamical Codes

4.3.1 The Model Equations

Even if the dark matter component represents the dominant contribution to the total
matter distribution in the Universe, it is quite important to have also a fair represen-
tation of baryons: in fact, most of the astrophysical signals are originated by physical
process related to them.

In general, the description of the baryonic component is based on the assumption
of an ideal fluid, for which the time evolution is obtained by solving the following
set of hydrodynamical equations: the Euler equation,

dv
dt

=−∇P
ρ
−∇Φ; (4.27)

the continuity equation,

dρ
dt

+ρ∇v = 0; (4.28)

the first law of thermodynamics,

du
dt

=−P
ρ
∇ ·v. (4.29)

In the previous equations, P and u represent the pressure and the internal energy (per
unit mass), which under the assumption of an ideal monatomic gas, are related by the
equation of state: P = 2/3ρu. Notice that for the moment, we neglect the effect pro-
duced by radiative losses, usually encrypted by the cooling functionΛ(u,ρ) (see the
discussion in Sect. 4.3.5).

In the recent years, different techniques have been proposed to solve the cou-
pled equations of dark and baryonic matter. All of them treat the gravitational term
related to ∇Φ with the same kinds of technique described in the previous section.
For the hydrodynamical part, they adopt different strategies that can be classified
in two big categories: Lagrangian and Eulerian techiques. The former are methods
based on a finite number of particles used to describe the mass distribution, while
the latter are methods that adopt a mesh to discretize the simulation volume. Before
reviewing in the following subsections the main characteristics of their most impor-
tant prototypes, we notice here that considering self-gravity, as necessary in cosmo-
logical applications, introduces a much higher level of complexity, with respect to
standard hydrodynamical simulations. In fact the formation of very evolved density
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structures induces motions, which are often extremely supersonic, with the presence
of shocks and discontinuities. Moreover, in order to have reliable simulations, the
process of structure formation must be accurately followed on a very large range of
scales, covering many order of magnitudes in space, in time, and in the interesting
physical quantities (temperature, pressure, energy, etc.). Finally, we need to include
the expansion of the Universe, which modifies the previous set of equations as

∂v
∂ t

+
1
a
(v ·∇)v +

ȧ
a

v =− 1
aρ

∇P− 1
a
∇Φ, (4.30)

∂ρ
∂ t

+
3ȧ
a
ρ +

1
a
∇ · (ρv) = 0 (4.31)

and

∂
∂ t

(ρu)+
1
a

v ·∇(ρu) =−(ρu + P)
(

1
a
∇ ·v+ 3

ȧ
a

)
. (4.32)

4.3.2 Smoothed Particle Hydrodynamics (SPH)

The most popular Lagrangian method is certainly SPH that has a very good spatial
resolution in high-density regions, while its performance in underdense region is
unsatisfactory. Another charcateristic of SPH is the fact that it adopts an artificial
viscosity, which does not allow to reach a sufficiently high resolution in shocked
region. Even if in general, it is not able to treat dynamical instabilities with the same
accuracy of the Eulerian methods presented in the next subsection, thanks to its
adaptive nature, SPH is still the preferred method for cosmological hydrodynamical
simulations.

Here, we introduce the basic idea of the technique. We refer to [16] for a more
extended presentation of the method. Unlike in the Eulerian algorithms, in SPH, the
fluid is represented using mass elements, i.e., a finite set of particles. This choice
originates the different performance in high- and low-density regions: in fact, where
the mean interparticle distance is smaller, the fluid is less sparsely sampled, with
a consequent better resolution; the opposite holds when the interparticle distance
is large.

4.3.2.1 Basics of SPH

As said, in SPH, the fluid is discretized using mass elements (i.e., a finite set of
particles), unlike in Eulerian codes where the discretization is made using volume
elements. Thanks to an adaptive smoothing, the mass resolution is kept fixed. In
more detail, a generic fluid quantity A is defined as

〈A(x)〉=
∫

W (x−x′,h)A(x′)dx′, (4.33)
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where the smoothing kernel W is suitably normalized:
∫

W (x,h)dx = 1. Moreover,
W , assumed to depend only on the distance modulus, collapses to a delta function if
the smoothing length h tends to zero.

Using a set of particles with mass mj and position x j, the previous integral can
be done in a discrete way, replacing the volume element of the integration with the
ratio of the mass and density m j/ρ j of the particles:

〈Ai〉=∑
j

m j

ρ j
A jW (xi−x j,h) . (4.34)

If one adopts kernels with a compact support (i.e., W (x,h) = 0 for |x|> h), it is
not necessary to do the summation over the whole set of particles, but only over the
neighbours around the i-th particle under consideration, namely the ones inside a
sphere of radius h. The following kernel represents an optimal choice in many cases
and it has been used often in the literature:

W (x,h) =
8

πh3

⎧⎪⎨⎪⎩
1−6

(
x
h

)2 + 6
(

x
h

)3
0≤ x/h < 0.5

2
(
1− x

h

)3
0.5≤ x/h < 1

0 1≤ x/h

. (4.35)

If the quantity A is the density ρi, Eq. 4.34 becomes simpler:

〈ρi〉=∑
j

m jW (xi−x j,h). (4.36)

The big advantage of SPH is that the derivatives can be easily calculated as

∇〈Ai〉=∑
j

m j

ρ j
A j∇iW (xi−x j,h), (4.37)

where ∇i denotes the derivative with respect to xi. A pairwise symmetric formula-
tion of derivatives can be obtained by exploiting the identity

(ρ∇) ·A = ∇(ρ ·A)−ρ · (∇A), (4.38)

which allows one to re-write a derivative as

∇〈Ai〉=
1
ρi
∑

j
m j(A j−Ai)∇iW (xi−x j,h). (4.39)

Another symmetric representation of the derivative can be alternatively obtained
from the identity

∇A
ρ

= ∇
(

A
ρ

)
+

A
ρ2∇ρ , (4.40)
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which then leads to

∇ 〈Ai〉= ρi∑
j

m j

(
A j

ρ2
j

+
Ai

ρ2
i

)
∇iW (xi−x j,h). (4.41)

By applying the previous identities, one can re-write the Euler equation as

dvi

dt
=−∑

j
m j

(
Pj

ρ2
j

+
Pi

ρ2
i

+Πi j

)
∇iW (xi−x j,h), (4.42)

while the term −(P/ρ)∇ ·v in the first law of thermodynamics can be written as

dui

dt
=

1
2∑j

m j

(
Pj

ρ2
j

+
Pi

ρ2
i

+Πi j

)
(v j−vi)∇iW (xi−x j,h). (4.43)

In order to have a good reproduction of shocks, in the previous equations it has
been necessary to introduce the so-called artificial viscosity Πi j, for which different
forms have been proposed in the literature (see, e.g., [17]): most of them try to
reduce its effects in the regions where there are no shocks, adopting a specific articial
viscosity for each particle.

To complete the set of fluid equations, we notice that the continuity equation
does not represent a problem for Lagrangian methods like SPH, being automatically
satisfied thanks to the conservation of the number of particles.

4.3.2.2 The Smoothing Length

Usually, each individual particle i has its own smoothing length h, which is deter-
mined by finding the radius hi of a sphere which contains Nnei neighbours. A
large value for Nnei would allow better estimates for the density field but with
larger systematics; vice versa small Nnei would lead to larger sample variances.
In the literature standard choices for Nnei range between 32 and 100. The pres-
ence of a variable smoothing length in the hydrodynamical equations can break
their conservative form: to avoid it, it is necessary to introduce a symmetric kernel
W (xi− x j,hi,h j) = W̄i j, for which the two main variants used in the literature are
the kernel average,

W̄i j = (W (xi−x j,hi)+W(xi−x j,h j))/2 , (4.44)

and the average of the smoothing lengths

W̄i j = W (xi−x j,(hi + h j)/2) . (4.45)

Note that when writing the derivatives, we assumed that h is independent of the
position x j. Thus, if the smoothing length hi is variable for each particle, one would
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formally introduce the correction term ∂W/∂h in all the derivatives. An elegant way
to do that is using the formulation which conserves numerically both entropy and
internal energy, described in the next subsection.

4.3.2.3 Conserving the Entropy

In adiabatic flows, the entropic function A = P/ργ is conserved. The quantity A is
related to the internal energy per unit mass:

ui =
Ai

γ−1
ργ−1

i . (4.46)

Shocks, which can be captured in SPH thanks to the artificial viscosity Πi j, can
originate an evolution of A:

dAi

dt
=

1
2
γ−1

ργ−1
i

∑
j

m jΠi j (v j−vi)∇iW̄i j. (4.47)

The Euler equation can be derived starting by defining the Lagrangian of the fluid as

L(q, q̇) =
1
2∑i

miẋ2
i −

1
γ−1∑i

miAiργ−1
i , (4.48)

which represents the entire fluid and has the coordinates q = (x1, ...,xN ,h1, ...,hN).

The next important step is to define constraints, which allow an unambiguous
association of hi for a chosen number of neighbours. This can be done by requiring
that the kernel volume contains a constant mass for the estimated density,

φi(q) =
4π
3

h3
i ρi−nmi = 0. (4.49)

The equation of motion can be obtained as the solution of

d
dt

∂L
∂ q̇i

− ∂L
∂qi

=∑
j

λ j
∂φ j

∂qi
, (4.50)

which, as demonstrated by [21], can be written as

dvi

dt
=−∑

j
m j

(
f j

Pj

ρ2
j

∇iW (xi−x j,h j)+ fi
Pi

ρ2
i

∇iW (xi−x j,hi) (4.51)

+Πi j∇iW̄i j) .



4 Cosmology with Numerical Simulations 233

In the previous equation, we notice the additional term due to the artificial viscosity
Πi j, which is needed to capture shocks.

The coefficients fi, defined as

fi =
(

1 +
hi

3ρi

∂ρi

∂hi

)−1

, (4.52)

incorporate fully the variable smoothing length correction term. For a detailed
derivation of this formalism and its conserving capabilities, see [21].

4.3.3 Eulerian Methods

These methods solve the hydrodynamical equations adopting a grid, which can be
fixed or adaptive in time. The first attempts were based on the so-called central dif-
ference schemes, i.e., schemes where the relevant hydrodynamical quantities were
only represented by their values at the center of the grid, and the various derivatives
were obtained by the finite-difference representation. This approach was not satis-
factory: in fact, the schemes were only first-order accurate and they made use of
some artificial viscosity to treat discontinuities, similarly to SPH. In more modern
codes (like, e.g., the piecewise parabolic method, PPM), the shape of the hydrody-
namical quantities fn,u(x) is recovered with much higher accuracy thanks to the use
of several neighbouring cells. This allows to calculate the total integral of the given
quantity over the grid cell, divided by the volume of each cell (e.g., cell average, ûn),
rather than pointwise approximations at the grid centres (e.g., central variables, un):

ûn =

xn+0.5∫
xn−0.5

fn,u(x)dx . (4.53)

This global shape is also used to estimate the values at the cell boundaries
(e.g., ul

n±0.5,ur
n±0.5, the so-called interfaces), which can be used later as initial con-

ditions of a Riemann problem, e.g., the evolution of two constant states separated by
a discontinuity. Once the Riemann is analytically solved (see, e.g., [7]), it is possible
to compute the fluxes across these boundaries for the time interval and then to update
the cell averages ûn. Notice that for high-dimensional problems, this procedure has
to be repeated for each coordinate direction separately.

In general, the Eulerian methods suffer from limited spatial resolution, but they
work extremely well in both low- and high-density regions, as well as in treating
shocks. In cosmological simulations, accretion flows with large Mach numbers are
very common. Here, following the total energy in the hydrodynamical equations can
produce inaccurate thermal energy, leading to negative pressure, due to discretisa-
tion errors when the kinetic energy dominates the total energy. In such cases, the
numerical schemes usually switch from formulations solving the total energy to for-
mulations based on solving the internal energy in these hypersonic flow regions.
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4.3.4 Code Comparison

The hydrodynamical schemes presented in the previous sections are based on quite
different approaches, having for construction very different characteristics (in prac-
tice, particles against grid). For this reason, in order to be validated, they must be
tested against problems with known solutions and then one has to compare their
results, once the same initial conditions are given. The first standard test is the
reproduction of the shock tube problem: in this case, codes able to capture the
presence of shocks, like the most sophisticated Eulerian methods, have certianly
better performances. Another possible test is the evolution of an initially spherical
perturbation.

In general, a code validation in a more cosmological context is difficult. A first
attempt of comparison between grid-based and SPH-based codes can be found in
[14]. More recently, [18] compared the thermodynamical properties of the inter-
galactic medium predicted by the Lagrangian code GADGET and by the Eulerian
code ENZO.

In the case of simulations for single cosmic structures, the most complete code
comparison is the one provided by the Santa Barbara Cluster Comparison Project
[10], where 12 different groups ran the own codes (including both Eulerian and
Lagrangian schemes), starting from the same identical initial conditions correspond-
ing to a massive galaxy cluster. In general, the agreement for the dark matter proper-
ties was satisfactory, with a 20 per cent scatter around the mean density and velocity
dispersion profiles. A similar agreement was also obtained for many of the gas prop-
erties, like the temperature profile or the ratio of the specific dark matter kinetic
energy to the gas thermal energy; somewhat larger differences are found in the
temperature or entropy profiles in the innermost regions. One of the most worry-
ing discrepancies is certainly when the total X-ray luminosity is considered: in this
case, the spread can be also a factor 10. Most of the problem originates from a too
low resolution in the central core, where the gas density (which enters as squared
in the estimate of the X-ray luminosity) reaches its maximum. Another large differ-
ence between the results of different hydro-codes is related to the predicted baryon
fraction and its profile within the cluster.

In general, we can conclude that Lagrangian and Eulerian schemes are providing
compatible results, with some spread due to their specific weaknesses. However, we
have to remind that these comparisons have been done in the nonradiative regime,
i.e., excluding a long list of complex physical processes acting on baryons (see the
following section), processes whose implementation is mandatory for a complete
description of the formation of cosmic structures.

4.3.5 Extra Gas Physics

We know very well that the formation and evolution of cosmic structures is not
determined only by the gravity due to the total matter distribution and by the
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adiabatic behavior of gas: many other important processes are in action, in partic-
ular on the baryonic component, influencing the final (physical and observational)
properties of the structures. Here, we briefly list these processes, discussing their
importance and pointing out the related numerical issues.

• Cooling. Its standard implementation is made by adding the cooling function
Λ(u,ρ) in the first law of thermodynamics, under the assumptions that the
gas is optically thin and in ionization equilibrium, and that only two-body
cooling processes are important. Considering a plasma with primordial com-
position of H and He, these processes are collisional excitation of H I and
He II, collisional ionization of H I, He I, and He II, standard recombination of
H II, He II, and He III, dielectric recombination of He II, and free-free emis-
sion (Bremsstrahlung). Being the collisional ionization and recombination rates
depending only on the temperature, when the presence of a ionizing background
radiation is excluded, it is possible to solve the resulting rate equation analyti-
cally; alternatively, the solution is obtained iteratively (see a discussion in [15]).
When also the metallicity is implemented in the code, the number of possible pro-
cesses becomes so large that it is necessary to use pre-computed tabulated cooling
function. Finally, we notice that for pratical reasons the gas cooling is followed
as “sub time step” problem, decoupled from the hydrodynamical treatment.

• Star formation. The inclusion of the cooling process originates two numerical
problems. First, since the cooling is a runaway process, in the central regions
of clusters the typical cooling time becomes significantly shorter than the Hub-
ble time, causing the so-called overcooling problem: the majority of baryons can
cool down and condense out of the hot phase. Second, since cooling is propor-
tional to the square of the gas density, its efficiency is strongly related to the
number of the first collapsed structures, whose good representation in simula-
tions depends on the assumed numerical resolution. To avoid these problems, it
is necessary to include the process of star formation starting from the cold and
dense phase of the gas. These stellar objects, once the phase of supernova explo-
sion is reached, can inject a large amount of energy (the so-called feedback) in
the gas, increasing its temperature and possibly counteracting the cooling catas-
trophe. From a numerical point of view, this process is implemented via simple
recipes (see, e.g., [15]), based on the assumptions that the gas has a convergent
flow, it is Jeans unstable and, most important, it has an overdensity larger than
the threshold corresponding to collapsed regions. This procedure allows to com-
pute the fraction of gas converted into stars. For computational and numerical
reasons, the star formation is done only when a significant fraction of the gas
particle mass is interested by the transformation: at this point, a new collisionless
“star” particle is created from the parent star-forming gas particle, whose mass
is reduced accordingly. This process takes place until the gas particle is entirely
transformed into stars. In order to avoid spurious numerical effects, which arise
from the gravitational interaction of particles with widely differing masses, one
usually restricts the number of star particles spawned by a gas particle to be rel-
atively small, typically 2−3.
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• Supernova feedback. Assuming a specific initial mass function, it is possible to
estimate the number of stars ending their lifes as type II supernovae and then to
compute the total amount of energy (typically 1051 erg per supernova) that each
star particle can release to the surrounding gas. Assuming that the typical lifetime
of massive stars is smaller than the typical simulation time step, the feedback
energy is injected in the surrounding gas in the same step (instantaneous recy-
cling approximation). Improvements with respect to this simple model include
an explicit sub-resolution description of the multiphase nature of the interstellar
medium, which provides the reservoir of star formation. Such a subgrid model
tries to model the global dynamical behavior of the interstellar medium in which
cold, star-forming clouds are embedded in a hot medium (see, e.g., the self-
regulated model proposed by [22] and a general critical discussion in [4]).

• Chemical enrichment. A possible way to improve the previous models is the
inclusion of a more detailed description of stellar evolution and of the corre-
sponding chemical enrichment. In particular, it is possible to follow the release
of metals also from type Ia supernovae and low-and intermediate-mass stars,
avoiding the instantaneous recycling approximation (see the discussion in [5]).

• Other processes. The baryons present in the cosmic structures undergo other
physical processes that can have an important role in their modeling a nonex-
austive list includes the effects related to thermal conduction, radiative transfer,
magnetic fields, relativistic particles, black holes, and extra sources of feed-
back (like, for instance, AGN). The first attempts at implementing the corre-
sponding physics in cosmological simulations have been made, even if in some
cases the results are not yet convergent. Having a robust implementation of all
these phenomena represents the more difficult and changelling frontier for future
numerical experiments.
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Chapter 5
Dark Matter Astrophysics

Guido D’Amico, Marc Kamionkowski, and Kris Sigurdson

Abstract This chapter is intended to provide a brief pedagogical review of dark
matter for the newcomer to the subject. We begin with a discussion of the astro-
physical evidence for dark matter. The standard weakly interacting massive particle
(WIMP) scenario—the motivation, particle models, and detection techniques—is
then reviewed. We provide a brief sampling of some recent variations to the stan-
dard WIMP scenario, as well as some alternatives (axions and sterile neutrinos).
Exercises are provided for the reader.

5.1 Introduction

Dark matter is an essential ingredient in a good fraction of the literature on extra-
galactic astronomy and cosmology. Since dark matter cannot be made of any of the
usual standard model particles (as we will discuss below), dark matter is also a cen-
tral focus of elementary-particle physics. The purpose of this review is to provide a
pedagogical introduction to the principle astrophysical evidence for dark matter and
to some of the particle candidates.

Rather than present a comprehensive survey of the vast and increasingly precise
measurements of the amount and distribution of dark matter, we will present very
simple (“squiggly-line”) arguments for the existence of dark matter in clusters and
galaxies, as well as the arguments for why it is nonbaryonic. The aim will be to

Guido D’Amico
SISSA, via Beirut 2-4, 34014 Trieste, Italy; e-mail: damico@sissa.it

Marc Kamionkowski
California Institute of Technology, Mail Code 350-17, Pasadena, CA 91125, USA;
e-mail: kamion@caltech.edu

Kris Sigurdson
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1,
Canada; e-mail: krs@phas.ubc.ca

241



242 Guido D’Amico, Marc Kamionkowski, and Kris Sigurdson

provide insight into the evidence and arguments, rather than to summarize results
from the latest state-of-the-art applications of the techniques.

Likewise, construction of particle-physics models for dark matter has become a
huge industry, accelerated quite recently, in particular, with anomalous cosmic-ray
and diffuse-background results [1, 2]. Again, we will not attempt to survey these
recent developments and focus instead primarily on the basic arguments for particle
dark matter. In particular, there has developed in the theoretical literature over the
past 20 years a “standard” weakly-interacting massive particle (WIMP) scenario, in
which the dark matter particle is a particle that arises in extensions (e.g., supersym-
metry [3] or universal extra dimensions [4]) of the standard model that are thought
by many particle theorists to provide the best prospects for new-physics discover-
ies at the Large Hadron Collider (LHC). We, therefore, describe this basic scenario.
More detailed reviews of WIMP, the main subject of this article, can be found in
Refs. [3, 5, 6].

After describing the standard WIMP scenario, we provide a brief sampling of
some ideas for “nonminimal” WIMPs, scenarios in which the WIMP is imbued with
some additional properties, beyond simply those required to account for dark matter.
We also briefly discuss some other attractive ideas (axions and sterile neutrinos) for
WIMPs. Exercises are provided throughout.

5.2 Astrophysical Evidence

It has been well established since the 1930s that there is much matter in the Universe
that is not seen. It has also been long realized, and particularly since the early
1970s, that much of this matter must be nonbaryonic. The evidence for a significant
quantity of dark matter accrued from galactic dynamics, the dynamics of galaxy
clusters, and applications of the cosmic virial theorem. The evidence that much
of this matter is nonbaryonic came from the discrepancy between the total matter
density Ωm 
 0.2− 0.3 (in units of the critical density ρc = 3H2

0 /8πG, where H0

is the Hubble parameter), obtained from such measurements, and the baryon den-
sity Ωb 
 0.05 required for the concordance between the observed light-element
(H, D, 3He, 4He, 7Li) abundances with those predicted by big-bang nucleosynthesis
(BBN) [7], the theory for the assembly of light elements in the first minutes after
the big bang.

Rather than review the historical record, we discuss the most compelling argu-
ments for nonbaryonic dark matter today, as well as some observations, most
relevant to astrophysical phenomenology of dark matter today.

5.2.1 Galactic Rotation Curves

The flatness of galactic rotation curves has provided evidence for dark matter
since the 1970s. These measurements are particularly important now not only for
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establishing the existence of dark matter, but particularly for fixing the local
dark-matter density, relevant for direct detection of dark matter. We live in a
typical spiral galaxy, the Milky Way, at a distance ∼ 8.5 kpc from its center.
The visible stars and gas in the Milky Way extend out to a distance of about
10 kpc. From the rotation curve, the rotational velocity vc(r) of stars and gas as
a function of Galactocentric radius r, we can infer the mass M<(r) of the Galaxy
enclosed within a radius r. If the visible stars and gas provided all the mass
in the Galaxy, one would expect that the rotation curve should decline at radii
larger than the 10 kpc extent of the stellar disk according to the Keplerian rela-
tion v2

c = GMobs/r. Instead, one observes that vc(r) remains constant (a flat rota-
tion curve) out to much larger radii, indicating that M<(r) ∝ r for r 
 10 kpc and
thus that the Galaxy must contain far more matter than contributed by the stars and
the gas.

Assuming a spherically symmetric distribution of matter, the mass inside a radius
r is given by

M<(r) = 4π
∫ r

0
ρ(r′)r′2dr′. (5.1)

Fig. 5.1 Measured rotation curve of NGC6503 with best fit and contributions from halo, disk, and
gas. From Ref. [8]
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An estimate for the distribution of dark matter in the Galaxy can be obtained from
the behavior of the rotation curve in the inner and outer galaxy. For example, the
density distribution for the cored isothermal sphere, given by,

ρ(r) = ρ0
R2 + a2

r2 + a2 , (5.2)

where R∼ 8.5 kpc is our distance from the Galactic center and ρ0 is the local dark
matter density, provides a qualitatively consistent description of the data. For large
r, ρ ∼ r−2 ⇒ M(r) ∝ r ⇒ v ∼ const, while for small r, ρ ∼ const ⇒ M(r) ∝
r3 ⇒ v ∝ r. Equation (5.2) describes a 2-parameter family of density profiles and
by fitting the observed data one finds a scale radius a ∼ 3− 5 kpc and local mat-
ter density ρ0 ∼ 0.4GeVcm−3; the uncertainties arise from standard error in the
rotation-curve measurements and from uncertainties in the contribution of the stel-
lar disk to the local rotation curve. Because the dark matter is moving in the same
potential well, the velocity dispersion of the dark matter can be estimated to be〈
v2

dm

〉1/2 ∼ 300 km/sec. The simplest assumption is that the dark matter has a

Maxwell–Boltzmann distribution with f (v)∼ e−v2/2v̄2
, where v̄∼ 220km/sec.

Exercise 1. Explain/estimate how ρ0 would be affected if

• (a) the halo were flattened, keeping the rotation curve unaltered;
• (b) the profile were of the Navarro–Frenk–White (NFW) type: ρ(r) ∝ ρc/[r(r +

rc)2], keeping the local rotation speed the same;
• (c) the stellar contribution to the rotation curve was either increased or decreased.

5.2.2 Galaxy Clusters

Galaxy clusters are the largest gravitationally bound objects in the Universe. They
were first observed as concentrations of thousands of individual galaxies, and early
application of the virial theorem v2 ∼ GM/R (relating the observed velocity disper-
sion v2 to the observed radius R of the cluster) suggested that there is more matter in
clusters than the stellar component can provide [9]. It was later observed that these
galaxies are embedded in hot x-ray–emitting gas, and we now know that clusters are
the brightest objects in the x-ray sky. The x-rays are produced by hot gas excited to
virial temperatures T ∼ keV of the gravitational potential well of the dark matter,
galaxies, and gas. A virial temperature T ∼ keV corresponds to a typical velocity
for the galaxies of v∼ 103 km/sec.

Observations of clusters come from optical and x-ray telescopes and more
recently from the Sunyaev–Zeldovich effect [10]. Several independent lines of
evidence from clusters indicate that the total mass required to explain observations
is much larger than can be inferred by the observed baryonic content of galaxies
and gas.
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5.2.2.1 Lensing

Galaxy clusters exhibit the phenomenon of gravitational lensing [11, 12]. Because
the gravitational field of the cluster curves the space around it, light rays emitted
from objects behind the cluster travel along curved rather than straight paths on their
way to our telescopes [13]. If the lensing is strong enough, there are multiple paths
from the same object, past the cluster, that arrive at our location in the Universe; this
results in multiple images of the same object (e.g., a background galaxy or active
galactic nucleus). Furthermore, because the light from different sides of the same
galaxy travels along slightly different paths, the images of strongly lensed sources
are distorted into arcs. For instance, HST observations of Abell 2218 show arcs and
multiple images as shown in Fig. 5.2. If the lensing is weak, the images may become
slightly elongated, even if they are not multiply imaged.

For a lensing cluster with total mass M and impact parameter d the deflection
angle is of order

α ∼
(

GM
dc2

)1/2

. (5.3)

Thus, from measurements of the deflection angle and impact parameter (which can
be inferred by knowing the redshift to the lensing cluster and source), one can infer
that the total mass M of a cluster is much larger than the observed baryonic mass Mb.

Exercise 2. Suppose a massive particle with velocity v is incident, with impact
parameter b, on a fixed deflector of mass M. Calculate the deflection angle (us-
ing classical physics) due to scattering of this particle via gravitational interaction

with the deflector. Show that you recover α =
(
GM/dc2

)1/2
in the limit v → c,

Fig. 5.2 Image of the galaxy cluster Abel 2218. Credits: NASA, Andrew Fruchter, and the ERO
team.
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the velocity at which light rays propagate. Actually, the correct general relativistic
calculation recovers this expression, but with an extra factor of 2.

Exercise 3. Estimate the deflection angle α for lensing by a cluster of M ∼ 1015M�
and for an impact parameter of 1 Mpc.

5.2.2.2 Hydrostatic Equilibrium

In a relaxed cluster, the temperature profile T (r) of gas, as a function of radius r, can
be inferred using the strength of the emission lines, and the electron number density
ne(r) can be inferred using the the x-ray luminosity L(r). Combined, these obser-
vations give an estimate of the radial pressure profile p(r) ∝ ne(r)kBT (r). In steady
state, a gravitating gas will satisfy the equation of hydrostatic equilibrium,

d p
dr

=−G
M<(r)ρgas(r)

r2 . (5.4)

Here, M<(r) is the total (dark matter and baryonic gas) mass enclosed by a radius
r and ρgas(r) is the density at radius r. Equation (5.4) can be used to determine the
total mass M of the cluster. Comparison with the observed baryonic mass Mb again
shows that M 
 Mb. In particular, observations using the x-ray satellites XMM-
Newton and Chandra indicate that the ratio of baryonic matter to dark matter in
clusters is Ωb/Ωm ∼ 1/6. Additional constraints to the cluster-gas distribution can
be obtained from the Sunyaev–Zeldovich (SZ) effect. This is the upscattering of
cosmic microwave background (CMB) photons by hot electron gas in the cluster;
the magnitude of the observed CMB-temperature change is then proportional to the
integral of the electron pressure through the cluster (see, e.g., [10]).

Exercise 4. Estimate, in order of magnitude, the x-ray luminosity LX for a cluster
with total mass M ∼ 1015M� and a baryon fraction 1/6 in hydrostatic equilibrium
with maximum radius R∼Mpc.

Exercise 5. Assume the cluster in Exer. 4 is isothermal (T (r) = T = const.) with a
dark matter distribution consistent with an NFW profile with rc 
 R/10. Neglecting
the self-gravity of the gas:

• (a) Show the properly normalized dark matter density profile is approximately
ρ(r) 
 (233/45)Mc/[r(r + rc)2], where Mc = M<(rc) is the mass enclosed
within the scale radius rc. Determine M<(r) and Mc and in terms of M for this
cluster.

• (b) Using your results from (a) solve Eq. 5.4 and show that the gas density profile
in such an NFW cluster takes the form ρgas(r) ∝ (1 + r/rc)Γ rc/r, where Γ ∝
(GMcμmp/rc)/(kBT ).
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5.2.2.3 Dynamics

According to the virial theorem, the velocity dispersion of galaxies is approximately
v2(r)∼ GM<(r)/r, where M<(r) is the mass enclosed within a radius r. Therefore,
from measurements of the velocity dispersion and size of a cluster (which can be
determined if the redshift and angular size of the cluster are known), one can infer
the total mass M. Once again, the total mass is much larger than the baryonic mass
M 
Mb.

Cluster measurements are by now well established, with many well-studied and
very well-modeled clusters, and there is a good agreement of estimates of M from
dynamics, lensing, x-ray measurements, and the SZ effect. The current state of the
art actually goes much further: one can now not only establish the existence of dark
matter but also map its detailed distribution within the cluster.

Exercise 6. Following Zwicky [14], use the virial theorem to find an approximate
formula relating the average mass of a galaxy in a galaxy cluster to the observed size
and velocity dispersion of the cluster assuming that the system is self-gravitating
(and assuming only that the observed galaxies contribute to the mass of the sys-
tem). What answer would Zwicky have found for the Coma cluster with modern
data?

5.2.3 Cosmic Microwave Background and Large-Scale Structure

Measurements of the CMB radiation and large-scale structure (LSS) of the Universe
provide perhaps the most compelling evidence that the dark matter is nonbaryonic
and the most precise measurements of its abundance.

One obtains from CMB maps the angular power spectrum C� of CMB tempera-
ture anisotropies as a function of multipole �. If the temperature T (n̂) is measured
as a function of position n̂ on the sky, then one can obtain the spherical-harmonic
coefficients a�m =

∫
dn̂T (n̂)Y ∗�m(n̂). The C�’s are then simply the variance of the

spherical-harmonic coefficients: C� = 〈|a�m|2〉. Theoretical predictions for the power
spectrum depend on the values of cosmological parameters like the matter density
Ωmh2, the baryon density Ωbh2, the cosmological constant Λ , the scalar spectral
index ns, the optical depth τ due to reionization, and the Hubble parameter H0.
One can thus determine these cosmological parameters by fitting precise measure-
ments of the C�s to the theoretical predictions [16]. Current measurements provide
detailed information on C� over the range 2 < l < O(1000), thus providing precise
constraints to the cosmological parameters.

In 2000, data from the Boomerang and MAXIMA experiments (with supernova
measurements) gave Ωmh2 = 0.13±0.05 with error bars that shrink to±0.01 taking
into account other measurements or assumptions (e.g., LSS, Hubble-constant, and
supernova measurements, and/or the assumption of a flat Universe) [17]. Now, with
WMAP, Ωmh2 = 0.133±0.006 and Ωbh2 = 0.0227±0.0006 [18].
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Fig. 5.3 Dependence of the CMB power spectrum on the cosmological parameters. From
Ref. [15].

Exercise 7. Suppose that the temperature is measured with a Gaussian noise σT 

25 μK in Npix ∼ 106 pixels on the sky. Estimate the rms temperature

〈
(δT/T )2

〉1/2

that results.

5.3 Basic Properties of Dark Matter

Having established the existence of dark matter and presented the case that it is non-
baryonic, we now consider the requirements for a dark-matter candidate and discuss
some possibilities. Every dark-matter candidate should satisfy several requirements:

• Dark matter must be dark, in the sense that it must generically have no (or
extremely weak) interactions with photons; otherwise, it might contribute to the



5 Dark Matter Astrophysics 249

dimming of quasars, create absorption lines in the spectra of distant quasars [19],
or emit photons. One way to quantify this is by assuming that dark-matter parti-
cles have a tiny charge f e (where e is the electron charge and f � 1), which can
be quantitatively constrained [20].

• Self-interactions of the dark matter should be small. We can estimate the cross
section for DM–DM scattering in the following way: if DM particles scatter less
than once in the history of the Universe, then the mean free path is less than
λ = vDMH−1

0 ∼
(
3×107cm/sec

)(
1017 sec

)
∼ 3×1024 cm. Then, if the galactic-

halo density is ρDM ∼ 10−24g/cm3, the opacity for self-scattering in the galactic
halo is κ = (ρDMλ )−1 = σ/m∼ cm2/g. Thus, if the elastic-scattering cross sec-
tion is σ >∼ 10−24 (m/GeV)cm2, then κ >∼ 1 and the typical halo–dark-matter
particle scatters more than once during the history of the Universe. If dark mat-
ter self-scattered, it would suffer gravothermal catastrophe: that is, in binary
interactions of two dark-matter particles, one particle can get ejected from the
halo, while the other moves to a lower energy state at smaller radius. As this
occurs repeatedly, much of the halo evaporates and the remaining halo shrinks.
Although a variety of arguments can constrain dark-matter self-interactions,
stringent and very transparent constraints come from observations of the Bullet
Cluster, the merger of two galaxy clusters, in which it is seen (from gravitational-
lensing maps of the projected matter density) that the two dark-matter halos have
passed through each other while the baryonic gas has shocked and is located
between the two halos [21].

• Interactions with baryons must also be weak. Suppose baryons and dark matter
interact. As an overdense region collapses to form a galaxy, baryons and dark
matter would fall together, with photons radiated from this baryon-DM fluid.
This would result in a baryon-DM disk, in contradiction with the more diffuse
and extended dark-matter halos that are observed. If DM interacted with baryons
other than gravitationally in the early Universe, the baryon-photon fluid would
be effectively heavier (have a higher mass loading relative to radiation pressure)
even before recombination so that the baryon acoustic oscillations in the matter
power spectrum and the CMB angular power spectrum would be modified [22].

• Dark matter cannot be made up of Standard Model (SM) particles since most
leptons and baryons are charged. The only potentially suitable SM candidate
is the neutrino, but it cannot be dark matter because of the celebrated Gunn-
Tremaine bound [23], which imposes a lower bound on the masses of dark mat-
ter particles that decoupled when relativistic. The argument is the following: The
momentum distribution in the galactic halo is roughly Maxwell–Boltzmann with
a momentum uncertainty Δ p ∼ mν〈v〉 (〈v〉 ∼ 300km/sec), while the mean spac-

ing between neutrinos is Δx∼ n−1/3
ν ∼ (ρν/mν)−1/3. The Heisenberg uncertainty

principle gives ΔxΔ p >∼ �, which translates into a lower bound mν >∼ 50eV. (This
Heisenberg bound can actually be improved by a factor of 2 by using arguments
involving conservation of phase space.) Stronger bounds (mν >∼ 300eV) can be
obtained from dwarf galaxies which have higher phase-space densities. As dis-
cussed below, there will be a cosmological density of neutrinos left over from
the big bang, with a density Ωνh2 ∼ 0.1(mν/10eV). The neutrinos of mass
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mν >∼ 300eV consistent with the Gunn-Tremaine bound would overclose the
Universe. Thus, neutrinos are unable to account for the dark matter.

5.4 Weakly Interacting Massive Particles (WIMPs)

Perhaps the most attractive dark matter candidates to have been considered are
WIMPs. Many theories for new physics at the electroweak scale (e.g., supersym-
metry, universal extra dimensions) introduce a new stable, WIMP, with a mass of
order Mχ ∼ 100GeV.

For example, in supersymmetric (SUSY) theories, the WIMP is the neutralino

χ̃ = ξγ γ̃ + ξZZ̃0 + ξh1h̃0
1 + ξh2h̃0

2, (5.5)

a linear combination of the supersymmetric partners of the photon, Z0 boson, and
neutral Higgs bosons. Neutralinos are neutral spin-1/2 Majorana fermions. In theo-
ries with universal extra dimensions there are Kaluza–Klein (KK) states γKK , Z0

KK ,
H0

KK , which are neutral KK bosons. The candidates are stable (or quasi-stable; i.e.,
lifetimes greater than the age of the Universe τ 
 tU ) and particle-theory models
suggest masses Mχ ∼ 10−103 GeV.

In typical theories, two WIMPs can annihilate to SM particles. For example, for
a neutralino, we have the tree-level diagram in Fig. 5.4, where mq̃,l̃ ∼ 100GeV so

that σ ∼ α2m−4
q̃, l̃

M2
χ ∼ 10−8 GeV−2.

5.4.1 WIMP Freezeout in Early Universe

We now estimate the relic abundance of WIMPs in the standard scenario of thermal
production (see, e.g., Ref. [24]). In the early Universe, at temperatures T 
 Mχ ,
WIMPs are in thermal equilibrium and are nearly abundant as lighter particles, like

√
αχ q, �

√
α

q̃, �̃

χ q̄, �̄

Fig. 5.4 An example of a Feynman diagram for annihilation of two WIMPs χ (neutralinos in
this case) to fermion-antifermion pairs (where the fermions are either quarks q or leptons l) via
exchange of an intermediate-state squark q̃ or slepton l̃.
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photons, quarks, leptons, etc. Their equilibrium abundance is maintained via rapid
interconversion of χχ pairs and particle-antiparticle pairs of SM particles. When the
temperature falls below the WIMP mass, however, the WIMP abundances become
Boltzmann suppressed, and WIMPs can no longer find each other to annihilate. The
remaining WIMPs constitute a primordial relic population that still exists today.

We now step through a rough calculation. To do so, we assume that the WIMP
is a Majorana particle, its own antiparticle (as is the case for the neutralino, for
example), although the calculation is easily generalized for WIMPs with antiparti-
cles (e.g., KK WIMPs).

The annihilation rate for WIMPs is Γ (χχ ↔ qq̄, ��̄, . . .) = nχ〈σv〉, where σ is
the cross section for annihilation of two WIMPs to all lighter SM particles, v is the
relative velocity, and the angle brackets denote a thermal average. The expansion
rate of the Universe is H = (8πGρ/3)1/2 ∼ T 2/MPl during the radiation era, where
ρ ∝ T 4. In the spirit of “squiggly lines,” we have neglected factors like the effective
number of relativistic degrees of freedom g∗ in the expansion rate, which the careful
reader can restore for a more refined estimate.

By comparing these two rates, one can identify two different regimes:

• At early times, when T 
 Mχ , nχ ∝ T 3 and Γ 
 H: particles scatter and
annihilate many times during an Hubble time and this maintains chemical
equilibrium.

• At late times, when T �Mχ , nχ ∝ T 3/2e−Mχ/T (note that the chemical potential
μX = 0 in the case of Majorana particles such as the neutralino) andΓ �H: there
can be no annihilations, and the WIMP abundance freezes out (the comoving
number density becomes constant).

This sequence of events is illustrated in Fig. 5.5, which shows the comoving number
density of WIMPs as a function of the inverse temperature in equilibrium (solid
curve) and including freezeout (dashed curves).

Freezeout occurs roughly when Γ (Tf ) ∼ H(Tf ). For nonrelativistic particles,

nχ = gχ
(
MχT/2π

)3/2
e−Mχ/T , so the freezeout condition becomes

(
MχTf

)3/2
e−Mχ/Tf ∼

T 2
f

MPl
⇒ Tf

Mχ
∼ ln

⎡⎣MPlM
3/2
χ 〈σv〉

T 1/2
f

⎤⎦ , (5.6)

where the mass parameters are in GeV. Taking 〈σv〉 ∼ α2/M2
χ , and taking as a first

guess Tf ∼Mχ , we finally find

Tf

Mχ
∼

{
ln

[
MPlα2

(MχTf )1/2

]}−1

∼
{

ln

[
101910−4

100

]}−1

∼ 1
25

+ log corrections,

(5.7)

where the numerical values are characteristic electroweak-scale parameters (i.e.,
σ ∼ 10−8 GeV−2, Mχ ∼ 100GeV).
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Fig. 5.5 Equilibrium (solid curve) and relic abundance (dashed curves) of WIMP particles. From
Ref. [3].

At freezeout, the abundance relative to photons is

nχ

nγ
=

Γ (Tf )/〈σv〉
T 3

f

=
H(Tf )/〈σv〉

T 3
f

∼
T 2

f

MPl〈σv〉T 3
f

∼ 1
MPl〈σv〉Tf

∼ 25
MPl〈σv〉Mχ

. (5.8)

Today, we know that

Ωχ =
ρχ
ρc
∼

n0
χ

n0
γ

Mχn0
γ

ρc
∼ 25

MPl〈σv〉
400cm−3

10−6 GeVcm−3 , (5.9)

with no explicit dependence on the particle mass.
We thus obtain the observed abundance Ωχh2 ∼ 0.1 for σ ∼ 104 (0.1× 1019×

10−6)−1 GeV−2 ∼ 10−8 GeV−2, which turns out to be nearly exact, even though we
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have been a bit sloppy. A more precise calculation (including all the factors we have
dropped) gives

Ωχh2 ∼ 0.1

(
3×10−26 cm3/sec

〈σv〉

)
+ log corrections, (5.10)

a remarkable result, as it implies that if there is a new stable particle at the elec-
troweak scale, it is the dark matter.

As an aside, note that partial-wave unitarity of annihilation cross sections re-
quires σ <∼M−2

χ , which means Ωχh2 >∼
(
Mχ/300TeV

)2
. This thus requires Ωχh2 <∼

0.1, Mχ <∼ 100TeV, without knowing anything about particle physics [25]. More
precisely, this bound applies for point particles and does not apply if dark matter
particles are bound states or solitons. If the interactions are strong, α ∼ 1, the bound
is already saturated.

Although our arguments have been rough, one finds in SUSY and KK models
that there are many combinations of reasonable values for the the SUSY or KK
parameters that provide a WIMP with Ωχh2 ∼ 0.1 for 10GeV <∼Mχ <∼ 1TeV.

Exercise 8. Equation (5.10) was derived assuming that the annihilation cross section
〈σv〉 is temperature-independent. Redo the estimate for Ωχh2 assuming that 〈σv〉∝
T n, where n = 1,2,3, · · · .

5.4.2 Direct Detection

If WIMPs make up the halo of the Milky Way, then they have a local spatial den-
sity nχ ∼ 0.004(Mχ/100GeV)−1cm−3 (roughly one per liter) and are moving with
velocities v ∼ 200 km sec−1. Moreover, there is a crossing symmetry between
the annihilation χχ → qq̄ and the elastic scattering χq → χq processes—apart
from some kinematic factors, the diagrams are more or less the same (as shown
in Fig. 5.6)—so one expects roughly that the cross section σ(χq→ χq)∼ σ(χχ→
qq̄)∼ 10−36 cm2. One can, therefore, hope to detect a WIMP directly by observing
its interaction with some target nucleus in a low-background detector composed,
e.g., of germanium, xenon, silicon, sodium, iodine, or some other element.

At low energies, quarks are bound into nucleons and nucleons in turn are bound
into nuclei, so the cross section one actually needs is σ(χN → χN) (where N here

χ

χ

q

q̄

q̃
q̃

χ

qq

χ

⇐⇒

Fig. 5.6 Crossing symmetry between annihilation and scattering diagrams.
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stands for a nucleus). The calculation relating the χq interaction to the χN interac-
tion requires both QCD and nuclear physics. It is complicated but straightforward.
Here, we will simply assume, for illustration, that σ(χN → χN)∼ σ(χq→ χq).

The rate at which a nucleus in the detector is hit by halo WIMPs is then

R∼ nχσv∼ (0.004cm−3)(10−36 cm2)
(

3×107 cm
sec

)
∼ 10−24yr−1; (5.11)

if there are 6×1023 M/(Ag) nuclei in a detector, for an atomic number A∼ 100, we
expect to see R∼ 10/kg/ yr events.

Let us estimate the recoil energy of a nucleus struck by a WIMP. If a WIMP
of Mχ ∼ 100GeV runs into a nucleus with A ∼ 100, the momentum change is
Δ p ∼ Mχv, and the nucleus recoils with an energy of order E ∼ (Δ p)2/2m ∼
(100GeV10−3)2(100GeV)−1 ∼ 100keV.

To do things more carefully, one has to account for the fact that the cross section
one actually needs the interaction cross sections with nuclei, and via the following
steps,

σ(χq)−→
QCD

σ(χn),σ(χ p) −→
nuclear physics

σ(χN),

some theoretical uncertainties are introduced. One also finds that σ(χN) is reduced
relative to σ(χq) by several orders of magnitude.

Qualitatively, there are two different types of interactions, axial and scalar (or
spin-dependent and spin-independent). The first is described by the Lagrangian,

Laxial ∝ χ̄γμγ5χ q̄γμγ5q, (5.12)

which couples χ to the spin of unpaired nucleons; this works only for nuclei with
spin, and the coupling is different for unpaired protons or neutrons. Through this
interaction one expects σ ∝ s̄2, where s̄ is the average spin ∼ 1/2 of the unpaired
proton or neutron in nuclei with odd atomic number.

The second interaction is described by the Lagrangian,

Lscalar ∝ χ̄χ q̄q, (5.13)

which couples χ to the mass of the nucleus, thus giving a cross section σ ∝ M2 ∝ A2

(where M and A are the nuclear mass and atomic number), which implies higher
cross sections for larger A. However, this scaling is only valid up to a limit. In fact,
the momentum exchanged is Δ p ∼ (100GeV)(10−3) ∼ 0.1GeV, and the nuclear
radius is roughly r ∼ A1/310−13 cm, so from the uncertainty principle one has
rΔ p >∼ 1, when

(0.1GeV)(10−13 cm)
2×10−14 GeVcm

A1/3 >∼ 1 =⇒ A >∼ 10. (5.14)

Detailed calculations show that the cross section for WIMP-nucleus elastic scatter-
ing does not increase much past A >∼ 100.
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Fig. 5.7 Exclusion plot for the spin-independent dark-matter parameter space. The region favored
by the DAMA annual modulation is inconsistent with the current bound (solid curve) from CDMS.
The broken curves are forecasts for future experiments. We also show, for illustrative purposes
only, predictions for a WIMP model with a lightest-Higgs-boson mass of mh = 150 GeV.

In experiments, people usually draw exclusion curves for the WIMP-nucleon
cross section versus the WIMP mass Mχ . The exclusion curves are less constrain-
ing both for low Mχ because of the low recoil energy, and for large Mχ because
(for fixed local energy density ρχ) of the number density nχ ∝ M−1

χ . Till date, only
the DAMA experiment has reported a positive signal [26]. They used NaI, in which
both nuclei have spin, one with an unpaired proton and the other with an unpaired
neutron. The interpretation of their signal in terms of a WIMP with scalar interac-
tions was ruled out by null results (at the time) from CDMS. An interpretation of
their signal in terms of a spin-dependent WIMP-neutron interaction was ruled out
by the null search in their Xe detector [27]. Although the interpretation in terms of
spin-dependent WIMP-proton scattering was consistent with null results from other
direct searches [27], it was ruled out by null searches for energetic neutrinos from
the Sun (see Fig. 5.8), as we explain below. The interpretation in terms of spin-
dependent scattering is now also ruled out directly by null results from the COUPP
experiment [28].

5.4.3 Energetic ν’s from the Sun

The escape velocity at the surface of the Sun is vs ∼ 600km/sec, while at the
center it is vc ∼ 1300km/sec. If in passing through the Sun, a WIMP from the
galactic halo scatters from a nucleus (most likely a proton) therein to a velocity
less than the escape velocity, then it is gravitationally trapped within the Sun. As
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Fig. 5.8 The shaded region shows the parameter space (in WIMP mass versus SD WIMP-proton
cross section) implied by the DAMA annual modulation for a WIMP with exclusively SD interac-
tions with protons and no interaction with neutrons. The solid curve indicates the upper bound to
the SD WIMP-proton cross section from null searches for neutrino-induced upward muons from
the Sun; thus the cross-hatched region is excluded [27].

the gravitationally-trapped WIMP passes through the Sun subsequently, it loses
energy in additional nuclear scatters and thus settles to the center of the Sun.
In this way, the number of WIMPs in the center of the Sun is enhanced. These
WIMPs can then annihilate to SM particles, through the same early-Universe
processes that set their relic abundance [29]. Decays of the annihilation prod-
ucts (e.g., W +W−,Z0Z0,τ+τ−,tt̄,bb̄,cc̄, . . . ) to neutrinos will produce energetic
neutrinos that can escape from the center of the Sun. The neutrino energies are
Eν ∼ [(1/3)− (1/2)]Mχ ∼ 100GeV and so cannot be confused with ordinary solar
neutrinos, which have energies ∼MeV. At night, these neutrinos will move up
through the Earth. If the neutrino produces a muon through a charged-current inter-
action in the rock below a neutrino telescope (e.g., super-Kamiokande, AMANDA,
or IceCube), the muon may be seen. In this way, one can search for these
WIMP-annihilation–induced neutrinos from the Sun.

5.4.4 Cosmic Rays from DM Annihilation

In the galactic halo, one expects the annihilation processes χχ→···→ e+e−, pp̄,γγ;
detection of these products can be a signal of the presence of dark matter.
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Fig. 5.9 The positron fraction, as a function of electron-positron energy, from annihilation of a
120 GeV neutralino WIMP to gauge bosons. The different curves are for different cosmic-ray-
propagation models, and in both cases, the annihilation rate has been boosted by a factor of ten
relative to the canonical (smooth-halo) value. From Ref. [30].

Exercise 9. Show that the annihilation process χχ → e+e− is suppressed for
Majorana WIMPs as the relative velocity v→ 0.

5.4.4.1 Positrons

Because of Galactic magnetic fields, cosmic-ray positrons and antiprotons do not
propagate in straight lines and will thus appear to us as a diffuse background. Con-
tinuum e+’s from WIMP annihilation are difficult to separate from ordinary cosmic-
ray positrons. It has been argued that indirect processes, such as the annihilation
χχ → W +W− → e+νe−ν̄ [30], will produce a distinctive bump in the positron
spectrum at energies Ee <∼Mχ (direct annihilation of Majorana WIMPs to electron-
positron pairs is suppressed at galactic relative velocities), as illustrated in Fig. 5.9,
and there has been tremendous excitement recently with the reported detection by
the PAMELA experiment of such a bump [31]. However, it may be that nearby
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pulsars can also produce a bump in the positron spectrum [32], and more recent
results from the Fermi telescope [33] call the PAMELA result into questions. It will
thus be important to understand the possible pulsar signal, as well as the data, more
carefully before the PAMELA excess can be attributed to WIMP annihilation.

5.4.4.2 Antiprotons

Likewise, it has also been argued that low-energy antiprotons from WIMP annihi-
lation can be distinguished, through their energy spectrum, from the more prosaic
cosmic-ray antiprotons produced by cosmic-ray spallation. Antiprotons can be pro-
duced by the decay of the standard WIMP-annihilation products, and the energy
spectrum of such antiprotons is relatively flat at low energies. On the other hand, the
energy spectrum of low-energy cosmic-ray antiprotons due to cosmic-ray spallation
decreases at energies E <∼GeV. This is because the process p̄+ pISM → p+ p+ p̄+ p̄
has an energy threshold, in the center of mass, of ECM > 4mp. This requires the
primary cosmic-ray momentum to be very high. Production of an antiproton with
Ep̄ <∼GeV, therefore, requires that the antiproton be ejected with momentum oppo-
site to that of the initial cosmic-ray proton, and the phase-space for this ejection
is small.

5.4.4.3 Gamma Rays

A final channel to observe WIMP annihilation is via gamma rays from WIMP
annihilation. Direct annihilation of WIMPs to two photons, χχ → γγ , through loop
diagrams such as those shown in Fig. 5.10, produce monoenergetic photons, with
energies equal to the WIMP mass. For v ∼ 10−3c, the photon energies would be
Eγ = Eχ

(
1±10−3

)
, and one would see a narrow γ-ray line with Δν/ν ∼ 10−3,

superposed on a continuum spectrum produced by astrophysical processes; such a
line would be difficult to mimic with traditional astrophysical sources. Decays of
WIMP-annihilation products also produce a continuum spectrum of gamma rays at
lower energies.

q̃ q

χ

χ

γ

γ

q

q̄

Fig. 5.10 Example of a Feynman diagram for annihilation of two neutralinos to two photons
through a quark-squark loop.
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The other advantage of gamma rays is that they propagate in straight lines. This
opens up the possibility to distinguish gamma rays from WIMP annihilation from
those from traditional sources through directionality—there should be a higher flux
of WIMP-annihilation photons from places where WIMPs are abundant; e.g., the
Galactic center. Another possibility is dwarf galaxies, which represent regions of
high dark-matter density in the Milky Way halo. In general, the γ-ray flux (the num-
ber of photons per unit time-area–solid-angle) is given by

dF
dΩ

=

〈
σχχ→γγv

〉
4πM2

χ

∫ ∞

0
ρ2(l)dl, (5.15)

where the integral is taken along a given line of sight, l is the distance along that line
of sight, and ρ(l) is the dark-matter density at that distance. (Note that if ρ(r)∝ r−1

with galactocentric radius r, as in an NFW profile, the intensity formally diverges,
but the flux form any finite angular window around r = 0 is finite.)

Exercise 10. Estimate the γ-ray flux from WIMP annihilation, for a given annihila-
tion cross section (times relative velocity) 〈σv〉ann, in an angular window of radius
∼ 5 degrees around the galactic center. Estimate a characteristic 〈σv〉 for WIMPs
and evaluate your result for the γ-ray flux for that value. How does it compare, in
order of magnitude, with the sensitivity of the Fermi Gamma Ray Telescope?

5.4.4.4 Galactic Substructure and Boost Factors

The rate for annihilation, per unit volume, at any point in the Galactic halo is pro-
portional to ρ2, the square of the density at that point. The total annihilation rate in
the halo, or in some finite volume of the halo, is then proportional to

∫
dV ρ2, the

integral, over that volume, of the density squared. In the canonical model, the halo
density is presumed to vary smoothly with position in the galaxy with some density
profile; e.g., the isothermal profile in Eq. (5.2).

However, a Galactic halo forms as part of a recent stage in a sequence of
hierarchical structure formation. In this scenario, small objects undergo gravitational
collapse first; they then merge to form more massive objects, which then merge to
form even more massive objects, etc. If some of these substructures remain partially
intact as they merge into more massive halos, then any given halo (in particular, the
Milky Way halo) may have a clumpy distribution of dark matter. This is in fact seen
in simulations. What this implies is that the annihilation rate in the halo may be
enhanced by a “boost factor” B ∝ 〈ρ2〉/〈ρ〉2, where the averages are over volume in
the halo [34]. It may be possible to see angular variations in the γ-ray signal from
WIMP annihilation, due to this substructure [35, 36]. It has even been suggested
that proper motions of nearby substructures may be visible [37], although Ref. [38]
disputed this claim.

As we will see below, the first gravitationally-collapsed objects in WIMP models
have masses in the range 10−6− 100 Earth masses [39]. These objects may have
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densities several hundred times those of the mean halo density today. If so, and if
these Earth-mass substructures survive intact through all subsequent generations of
structure formation, then the boost factor B may be as large as several hundred,
implying much larger cosmic-ray fluxes than the canonical model predicts.

Such large boost factors are, however, unlikely. Simulations of recent genera-
tions in the structure-formation hierarchy show that while the tightly bound inner
parts of halos may survive during merging, the outer parts are stripped. Ref. [40]
developed an analytic model, parametrized in terms of a halo-survival fraction, to
describe the (nearly) scale-invariant process of hierarchical clustering. This model
then provided the boost factor B in terms of that survival fraction. By comparing
the results (cf., Fig. 5.11) of the analytic model for the local halo-density proba-
bility distribution function with subsequent measurements of the same distribution
in simulations (Fig. 1 in Ref. [41]), one infers a small halo-survival fraction. The
analytic model of Ref. [40] then suggests for this survival fraction no more than a
small boost factor, B <∼few.

Fig. 5.11 The probability distribution function P(ρ), due to substructure, for the local dark-matter
density ρ , due to substructure, in units of the local halo density for a smooth halo. The different
curves are for different substructure-survival fractions. The power-law tail is due to substructures.
From Ref. [40].
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5.5 Variations and Additions

What we have described this far may be referred to as the minimal-WIMP scenario.
In this scenario, the dark matter is a thermal relic with electroweak-scale cross sec-
tions. It is neutral and scatters from baryons with cross sections ∼ 10−40 cm2 (to
within a few orders of magnitude). It has no astrophysical consequences in the post-
freezeout Universe beyond its gravitational effects. However, the recent literature is
filled with a large number of astrophysical anomalies for which explanations have
been proposed in terms of nonminimal WIMPs, WIMPs endowed with extra in-
teractions or properties. This is a vast literature, far too large to review here. We,
therefore, provide here only a brief sampling, focusing primarily on those that we
have worked on.

5.5.1 Enhanced Relic Abundance

The calculation above of the freezeout abundance is the standard one in which it is
assumed that the Universe is radiation-dominated at Tf ∼ 10−100GeV. However,
we have no empirical constraints to the expansion rate before big bang nucleosyn-
thesis, which happens later, at TBBN ∼ 1MeV.

One can imagine other scenarios in which the WIMP abundance changes. For
instance, suppose the pre-BBN Universe is filled with some exotic matter which has
a stiff equation of state, ps = ρs. This results in a scaling of the energy density of
this stuff ρs ∝ a−6 with scale factor a [42]. Such an equation of state may arise if the
energy density is dominated by the kinetic energy of some scalar field. The equation
of motion of a scalar field with a flat potential is

ϕ̈ + 3Hϕ̇ = 0 =⇒ ln ϕ̇ ∝−3lna, (5.16)

which means that

ρ =
1
2
ϕ̇2 ∝ a−6 . (5.17)

A stiff equation of state, or something that behaves effectively like it, may also
arise, e.g., in scalar-tensor theories of gravity or if there is anisotropic expansion in
the early Universe.

Big-bang nucleosynthesis constrains the energy density of some new compo-
nent of matter at a temperature T ∼MeV to be (ρ6/ργ) <∼ 0.1 (T/MeV)2. Since
ρs/ρrad ∝ T 2, the expansion rate with this new stiff matter will at earlier times be
H(T ) <∼ Hst(T )(T/MeV), where Hst(T ) is the standard expansion rate. Neglect-
ing the logarithmic dependence of the freezeout temperature Tf ∝ ln[Hρ6nγ ] on the
expansion, the WIMP abundance with this new exotic matter will be

nχ

nγ
=

1
nγ

Γ
σv

=
1
nγ

H
σv

<∼
(

nχ

nγ

)
st

(
T

MeV

)
∼

(
nχ

nγ

)
st

(
Mχ/25

MeV

)
. (5.18)
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Thus, e.g., the relic abundance of an Mχ ∼ 150GeV WIMP can be increased by as
much as ∼ 104 in this way [42, 43].

Exercise 11. Show that anisotropic expansion gives rise to a Friedmann equation that
looks like that for a universe with a new component of matter with ρ ∝ a−6. To do so,
consider a universe with metric ds2 = dt2− [ax(t)]2dx2− [ay(t)]2dy2− [az(t)]2dz2,
with ax(t), ay(t), and az(t) different, and then derive the Friedmann equation for a
universe filled with homogeneous matter of density ρ .

5.5.2 Kinetic Decoupling

There are two different kinds of equilibrium for WIMPs in the primordial bath. One
is chemical equilibrium, which is maintained by the reactions

χχ↔ f f̄ ;

the other is kinetic equilibrium, maintained by the scattering

χ f ↔ χ f .

The first reaction freezes out before the second since n f 
 nχ , where f is
any kind of light degree of freedom. However, σ(νχ ↔ νχ) ∝ E2

ν since the ν’s
are Yukawa coupled, and σ(γχ ↔ γχ) ∝ E2

γ since the photons are coupled by
εμνρσkμkνερεσ [44]. This means that Γ (χ f ↔ χ f ) drops rapidly and so kinetic
freezeout happens not too much later than chemical freezeout.

Detailed calculations of the kinetic-decoupling temperature Tkd show that Tkd

varies over 6 orders of magnitude in scans of the SUSY and UED parameter
spaces [39]. During the time particles are chemically but not kinetically decou-
pled, they have the same temperature of the thermal bath, which scales as Tγ ∝ a−1,
and after that, Tχ = p2

χ/2Mχ ∝ a−2. So, density perturbations δρχ/ρχ are sup-
pressed on λphys ∼ H−1 while the WIMPs are kinetically coupled. The cutoff in
the power spectrum P(k) is at physical wavenumber kc = H(Tkd), so if Tkd de-
creases, also kc decreases. We expect power suppressed at mass scales M < Mc,
where Mc ∼ 10−4−102M⊕ is the mass enclosed in the horizon at Tkd , as shown in
Fig. 5.12 [39].

Exercise 12. Derive the mass Mkd enclosed within the horizon at a temperature Tkd .

5.5.3 Particle Decay and Suppression of Small-Scale Power

It might be the case that dark matter is produced by the decay of a metastable particle
that was once in kinetic equilibrium with the thermal bath. For instance, although
the dark matter cannot be a charged particle, it might be produced by the decay of
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Fig. 5.12 The wavenumber and mass scale at which the primordial power spectrum is cut off due
to kinetic decoupling of WIMPs in supersymmetric and UED models for WIMPs. From Ref. [39].

a charged particle. The growth of perturbation modes that enter the horizon prior to
the decay of the charged particle will be suppressed relative to the standard case due
to the coupling to the thermal bath: growth of charged-particle density perturbations
is suppressed since charged particles cannot move through the baryon-photon fluid.
If one has χ+ → χ0 + e+, with τ ∼ 3.5 yr (z ∼ 107), then the matter power spec-
trum P(k) is suppressed on k >∼ Mpc−1 [45], while for shorter lifetimes structure
will be suppressed for larger k (smaller length scales). Models exhibiting charged-
particle decay can be found in the parameter space of standard or minimal exten-
sions of canonical WIMP (e.g., supersymmetric) scenarios [46]. While limits on
energy injection and the formation of exotic bound states in big bang nucleosynthe-
sis (BBN) constrain the fraction of the Universe bound up in charged particles [47],
the suppression of power due to particle decay in the Universe remains a potentially
observable effect of metastable particles. It is possible the metastable particle might
remain in kinetic equilibrium via another interaction, or even if the particle is out of
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kinetic equilibrium the energy released in the decay process may impart the dark-
matter particle with a velocity high enough to erase small-scale structure via free
streaming [48].

Future measurements of high-redshift cosmic 21-cm fluctuations may provide
a direct probe of modifications to the small-scale dark-matter power spectrum and
other aspects of fundamental physics (see, e.g., [46, 49]).

Exercise 13. Derive the comoving wavenumber k that enters the horizon at the time
a particle of lifetime τ decays.

5.5.4 Dipole Dark Matter

Although dark matter cannot be a charged particle, it may (via higher order inter-
actions) be endowed with an electric or magnetic dipole moment interactions of the
form [22, 19],

Ldipole ∝ χ̄iσμν (μi j + γ5Di j)χ jF
μν , (5.19)

Here, diagonal interaction terms (i = j) are the magnetic (μ) or electric (D) dipole
moments of a particle χ , while off-diagonal terms (i �= j) are referred to as tran-
sition moments between the lightest WIMP state i and another, slightly heavier,
WIMP state j. Such a dipole coupling to photons alters the evolution of dark-matter
density perturbations and CMB anisotropies [22], although the strongest constraints
to dipole moments comes from precision tests of the Standard Model for WIMP
masses Mχ <∼ 10 GeV and direct-detection experiments for Mχ >∼ 10 GeV [22, 50];
see Fig. 5.13 for the full constraints.

It may be possible to explain the results of the DAMA experiment using low-
mass dipolar dark matter with a transition moment [50]. It may also be possible to
look for the effects of a transition dipole moment in the absorption of high-energy
photons from distant sources [19].

Exercise 14. Calculate the cross section for elastic scattering of a particle with an
electric dipole moment of magnitude d from a nucleus with charge Ze.

5.5.5 Gravitational Constraints

It is generally assumed that although dark matter may involve new physics, the grav-
itational interactions of the dark matter are standard. In other words, it is generally
assumed that the gravitational force between two DM particles and between a dark
matter particle and a baryon is the same as that between two baryons. More pre-
cisely, the Newtonian gravitational force law between baryons that has been tested
in the laboratory and in the Solar System reads Fb1b2 = Gm1m2/d2. We then usually
assume that the force between baryons and DM is Fbd = Gmbmd/d2 and also that
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Fig. 5.13 Constraints to the dipole-mass parameter space for dark matter with an electric or mag-
netic dipole. From Ref. [22].

the gravitational DM–DM force law is Fd1d1 = Gdmd1md2/d2 with Gd = G. How-
ever, there is no empirical evidence that this is true at more than the order-unity level
[51], and it has even been postulated that Gd = 2G in order to account for the void
abundance [52]. A similar behavior (an increase in the DM–DM force law) could
also arise if there were a new long-range interaction mediated by a nearly massless
scalar field ϕ with Yukawa interactions ϕψ̄ψ with the DM field ψ . The difficulty
in providing empirical constraints to this model is that measurements (e.g., gravita-
tional lensing or stellar/galactic dynamics) of the dark-matter distribution determine
only the gravitational potential Φ due to the dark-matter distribution, represented by
some density ρd(r), obtained through the Poisson equation ∇2Φ = 4πGρd . How-
ever, the same Φ can be obtained by replacing ρd → (1/2)ρd if we simultaneously
replace G→ 2G.

It turns out, though, that this exotic interaction can be constrained by looking
at substructures in the Milky Way halo [53, 54]. The Sagittarius dwarf galaxy, is
dark-matter dominated, and it follows an elongated orbit around the Milky Way.
When the dwarf reaches its point of closest approach to the Milky Way, the tidal
forces it experiences in the Milky Way potential are largest. Stars are then stripped
from the innermost and furthermost edge of the dwarf. Those from the innermost
parts move at slightly larger velocities in the Galactic halo and at slightly smaller
galactocentric radii; they thus subsequently run ahead of the Sagittarius dwarf and
form the leading tidal tail of the Sagittarius dwarf that is observed. Conversely, those
stripped from the outer edge subsequently lag behind forming the trailing tidal tail
that is observed. Observationally, the leading and trailing tails have roughly the same
brightness, as expected. Suppose now that the DM–DM force law were modified to
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Gd = f G with f > 1. The dark-matter halo of the Sagittarius dwarf would then be
accelerated toward the Milky Way center more strongly than the stellar component
of the Sagittarius dwarf. The stellar component would then slosh to the furthermost
edge. Then, when the dwarf reaches its point of closest approach to the Milky Way,
stars are still stripped from the outer edge, forming a trailing tail. However, there
are now no stars in the innermost edge to form the leading tail. The evacuation of
stars from the leading tail is inconsistent with observations, and this leads, with
detailed calculations, to a bound Gd = G(1±0.1) to Newton’s constant for DM–
DM interactions. In other words, dark matter and ordinary matter fall the same way,
to within 10%, in a gravitational potential well.

Although Ref. [55] has more recently claimed to run a simulation of the tidal
tails of the Sagittarius dwarf consistent with Gd = 2G, Ref. [56] has argued that the
initial conditions for that simulation are self-inconsistent. References [57, 58] argue
that a new long-range DM–DM force law implies, under fairly general conditions,
a weaker long-range DM-baryon force law, and they discuss and compare possible
tests of such a scenario.

5.5.6 Electromagnetic-Like Interactions for Dark Matter?

Another possibility is that dark matter experiences long-range electromagnetic-like
forces mediated by a dark massless photon that couples only to gravity. Of course, if
the fine-structure constant αd associated with this dark U(1) symmetry is too large,
then long-range dark forces will induce the dark matter to be effectively collisional.
This constrains αd <∼ 0.005(Mχ/TeV)3/2 [59]. Far more restrictive constraints may
arise from the development of plasma instabilities that may arise if there are (dark)
positively- and negatively-charged dark-matter particles, but precise calculations of
these effects remain to be done. See Refs. [59, 60] for more discussion of these
models.

Exercise 15. Estimate the relic abundance of a dark-matter particle with dark charge
αd assuming that it annihilates to dark-photon pairs and assuming that the dark
sector has the same temperature as the rest of the primordial plasma.

5.6 Some Other Particle Dark-Matter Candidates

WIMP models are interesting for a number of reasons: (1) The correct relic density
arises naturally if there is new physics at the electroweak scale; (2) there are good
prospects for detection of these particles, if they are indeed the dark matter; and
(3) there is synergy with the goals of accelerator searches (especially at the LHC)
for new electroweak-scale physics.

Still, there are a large number of other particle candidates for dark matter. Here
we discuss two, the sterile neutrino and the axion, which may also arise in extensions
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of the standard model and for which there are clear paths toward detection if they
make up the dark matter.

5.6.1 Sterile Neutrinos

A convenient mechanism to introduce neutrino masses and explain their smallness
by a minimal extension of the Standard Model is to add 3 right-handed neutrinos,
which are singlets under the SM gauge group. The mass matrix is taken to be of the
form (for simplicity we consider only one family),

νL νR

νL

νR

(
0 MD

MD M

)
,

(5.20)

where the νL and νR are left-handed and right-handed (weakly interacting and
sterile, respectively) fields. In the see-saw mechanism, the Dirac mass is assumed to
be tiny compared with the Majorana mass: i.e., MD �M. The mass eigenstates then
have masses M1 
M2

D/M�M and M2 
M. For our purposes, it is advantageous to
map the two-dimensional MD−M parameter space onto the Ms−θ parameter space,
where Ms is the mass of the sterile (heavier) neutrino and θ is the mixing angle
between the two states. The active and sterile mass eigenstates can then be written

|νa〉= cosθ |νL〉+ sinθ |νR〉 , (5.21)

|νs〉=−sinθ |νL〉+ cosθ |νR〉 , (5.22)

where θ = MD/M.
Sterile neutrinos can be produced in the early Universe and have both (1) a life-

time longer than the age of the Universe and (2) a cosmological density Ωs ∼ 0.2 if
the sterile-neutrino mass is in the ∼keV regime [61].

The main decay mode of the sterile neutrino is then νS → ννν̄ , through the
exchange of a Z0 boson, as shown in Fig. 5.14. The decay rate and lifetime are

Γ =
G2

FM5
S

96π3 θ 2 ⇒ τS =
�

Γ
∼ 1020 sec

(
MS

keV

)5

θ−2. (5.23)

If the sterile neutrinos constitute the dark matter, then it must be that τS 

1017 sec, which is possible if MS ∼ O(1)keV. This mass cannot, however, be
too small because of the Gunn–Tremaine limit from dwarf-spheroidal galaxies,
which is MS >∼ 0.3keV. A stronger constraint to the model comes from the X-ray
emission in the radiative decay νS → νγ , through the diagram in Fig. 5.15. This
produces an x-ray line that can be sought in the spectrum of, e.g., a galaxy clus-
ter. Although null searches for such lines (and from the diffuse cosmic x-ray
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Z0
ν

ν̄

θνS

ν

Fig. 5.14 Main decay channel for sterile neutrinos.

νS e νe

W

γ

Fig. 5.15 Loop diagram for the decay νs → νγ .

background) provide [62, 63] stringent constraints to the model, there are still
some regions in the Ms− θ parameter space that remain consistent with current
constraints. This region may be probed, however, with future more sensitive x-ray
searches. One interesting extended application of sterile neutrino dark matter was
its use as a potential mechanism for generating momentum-anisotropy during su-
pernova to drive pulsar kicks [64]. See, for instance, Refs. [65, 66], for the current
status of sterile neutrino dark matter.

5.6.2 Axions

Axions arise in the Peccei-Quinn (PQ) solution to the strong-CP problem [67].
A global U(1)PQ symmetry is spontaneously broken at a scale fa, and the CP-
violating phase θ in the QCD Lagrangian becomes a dynamical field with a flat
potential. At temperatures below the QCD phase transition, nonperturbative quan-
tum effects break explicitly the symmetry and produce a nonflat potential that is
minimized at θ → 0. The axion is the pseudo-Nambu–Goldstone boson of this
near-global symmetry, the particle associated with excitations about the minimum at
θ = 0. The axion mass is ma
 eV(107 GeV/ fa), and its coupling to ordinary matter
is ∝ f−1

a .
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The Peccei-Quinn solution works equally well for any value of fa. However, a
variety of astrophysical observations and laboratory experiments constrain the axion
mass to be ma ∼ 10−4 eV. Smaller masses would lead to an unacceptably large cos-
mological abundance. Larger masses are ruled out by a combination of constraints
from supernova 1987A, globular clusters, laboratory experiments, and a search for
two-photon decays of relic axions.

Curiously enough, if the axion mass is in the relatively small viable range, the
relic density is Ωa ∼ 1, and so the axion may account for the halo dark matter. Such
axions would be produced with zero momentum by a misalignment mechanism in
the early Universe and, therefore, act as cold dark matter. During the process of
galaxy formation, these axions would fall into the Galactic potential well and would,
therefore, be present in our halo with a velocity dispersion near 270 km sec−1.

It has been noted that quantum gravity is generically expected to violate global
symmetries, and unless these Planck-scale effects can be suppressed by a huge fac-
tor, the Peccei-Quinn mechanism may be invalidated [68]. Of course, we have at
this point no predictive theory of quantum gravity, and several mechanisms for for-
bidding these global-symmetry violating terms have been proposed [69]. Therefore,
discovery of an axion might provide much needed clues to the nature of Planck-scale
physics.

There is a very weak coupling of an axion to photons through the triangle
anomaly, a coupling mediated by the exchange of virtual quarks and leptons. The
axion can, therefore, decay to two photons, but the lifetime is τa→γγ ∼ 1050 s
(ma/10−5 eV)−5 which is huge compared with the lifetime of the Universe and
therefore unobservable. However, the aγγ term in the Lagrangian is Laγγ ∝ aE ·B,
where E and B are the electric and magnetic field strengths. Therefore, if one im-
merses a resonant cavity in a strong magnetic field, Galactic axions that pass through
the detector may be converted to fundamental excitations of the cavity, and these
may be observable [70]. Such an experiment is currently underway [71] and has
already begun to probe part of the cosmologically interesting parameter space (see
the Figure in Reference. [72]), and it should cover most of the interesting region
parameter space in the next few years.

Axions, or other light pseudoscalar particles, may show up astrophysically or
experimentally in other ways. For example, the PVLAS Collaboration [73] reported
the observation of an anomalously large rotation of the linear polarization of a laser
when passed through a strong magnetic field. Such a rotation is expected in quan-
tum electrodynamics, but the magnitude they reported was in excess of this expec-
tation. One possible explanation is a coupling of the pseudoscalar FF̃ of electro-
magnetism to a low-mass axion-like pseudoscalar field. The region of the mass-
coupling parameter space implied by this experiment violates limits for axions from
astrophysical constraints, but there may be nonminimal models that can accom-
modate those constraints. Reference [74] reviews the theoretical interpretation and
shows how the interactions of axions and other axion-like particles may be tested
with x-ray re-appearance experiments. Although the original PVLAS results have
now been called into question Ref. [75], variations of the model may still be worth
investigating.



270 Guido D’Amico, Marc Kamionkowski, and Kris Sigurdson

5.7 Conclusions

Here, we have reviewed briefly the basic astrophysical evidence for dark matter,
some simple astrophysical constraints to its physical properties, and the canoni-
cal WIMP model for dark matter. We then discussed a number of variations of the
canonical model, as well as some alternative particle dark-matter candidates. Still,
we have only scratched the surface here, surveying only a small fraction of the possi-
bilities for nonminimal dark matter. Readers who are interested in learning more are
encouraged to browse the recent literature, where they will find an almost endless
flow of interesting possibilities for dark matter, beyond those we have reviewed here.
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Chapter 6
Dark Matter: the Particle Physics View

Antonio Masiero

Abstract This is an elementary introduction to some issues of Dark Matter, partic-
ularly devoted to readers who are not familiar with the particle physics background
needed to address this chapter of astroparticle physics.

6.1 Introduction

The electroweak standard model (SM) is by now more than 40, years old, and it
enjoys a full maturity with an extraordinary success in reproducing the many elec-
troweak tests that have been going on since its birth. Not only have its characteristic
gauge bosons, W and Z, been discovered and also has the top quark been found in
the mass range expected by the electroweak radiative corrections, but the SM has
been able to account for an impressively long and very accurate series of measure-
ments. Indeed, in particular at LEP, some of the electroweak observables have been
tested with precisions better than the per milli level without finding any discrep-
ancy with the SM predictions. We can safely state that LEP has fully established
the validity of the SM as a quantum field theory. At the same time, the SM has
successfully passed another very challenging class of exams, namely it has so far
accounted for all the very suppressed or forbidden processes where flavor changing
neutral currents (FCNC) are present.

Hence, we can firmly state that no matter which physics should lie beyond the
SM, necessarily such New Physics, has to reproduce the SM with great accuracy
at energies of O (100 GeV). This represents a major breakthrough in our exciting
progress toward a unified picture of fundamental interactions.

And, yet, in spite of all this glamorous success of the SM in reproducing the
impressive set of experimental electroweak results, we are deeply convinced of the
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existence of New Physics beyond this model. We see two main classes of motiva-
tions pushing us beyond the SM.

First, we have theoretical reasons to believe that the SM is not the whole story.
The SM does not truly unify the elementary interactions (if nothing else, gravity
is left out of the game), it does not provide a rationale for the structured pattern
of fermion masses and mixings (flavor problem), and it exhibits the gauge hierar-
chy problem in the scalar sector (namely, the scalar Higgs mass is not protected by
any symmetry and, hence, it would tend to acquire large values of the order of the
energy scale at which New Physics sets in). Together with these theoretical com-
plaints comes a set of “observational” reasons pushing us beyond the SM: neutrino
masses, dark matter (DM), dark energy (DE), the cosmic matter-antimatter asym-
metry (baryogenesis), and the need for an inflationary epoch.

Therefore, in particle physics, the discovery and subsequent understanding of the
New Physics (NP) beyond the SM is a priority. Most of us are convinced that such
NP should be linked to the electroweak symmetry breaking, hence it should set in
at an energy scale close to the 100–1000 GeV benchmark we mentioned above as
the border of our actual knowledge of fundamental interactions thus far. The reason
of this conviction rests upon the crucial point (technically known as the “gauge
hierarchy problem”) that we need a mechanism to stabilize the energy scale at which
the electroweak symmetry breaking occurs, i.e., the TeV scale. The LHC, which is
now operating at CERN is the accelerator machine having all the potentialities to
get access to such low-energy NP.

The status of our present understanding of cosmology can play an important role
in driving the investigation beyond the SM hand understanding the nature of NP.
Undoubtedly, the major breakthrough in physics in these last two decades has been
represented by the amazing changes we went through in the way we see the Universe
and its major, fundamental constituents. In a few years, thanks to a breathtaking
progress in observational cosmology, we have been driven to a new Standard Model
of Cosmology, the so-called “ΛCDM” model. This is characterized by a critically
dense universe where ordinary matter (baryons) constitute only 5% (at most) of the
entire energy density. The remaining 95% is in exotic forms, which still demand to
be theoretically understood and experimentally revealed. This overwhelming part of
the Universe is it is usually divided into two components: dark matter (DM) and dark
energy (DE) with a ratio roughly one to three between DM and DE. Moreover, even
considering only the baryonic component, a new puzzle emerges, namely that of the
overwhelming dominance of baryons over anti baryons in the present Universe.

The (rather strangely looking) picture of the Universe summarized above addre-
sses profound and severe questions to particle physics. What are the sources of DM
and DE? Are they related? How can we experimentally reveal them? Can present
observations find an explanation within General Relativity (GR) or do they ask for an
extension of it? How was the asymmetry between matter and anti matter produced?

Finding an answer to (some of) these questions in the particle physics context
implies that we envisage NP beyond the SM of particle physics. As a matter of fact,
within the SM there is neither an adequate DM candidate nor any theoretical clue
to understand the nature of DE. Moreover, there is no way to generate a cosmic
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matter-antimatter asymmetry starting from a symmetric initial condition. In other
words, today we witness a serious clash between the SM of particle physics and
the “ΛCDM” model, whose solution calls for NP and represents one of the greatest
challenges in modern science.

It would be a stunning breakthrough if at the LHC, together with the first signals
of a (possibly unexpected) TeV NP, we could also collect the first hints to a deeper
comprehension of the most fundamental constituents of the whole Universe.

From a cosmological point of view, the most promising candidate for DM was
recognized to be a weakly interacting massive particle (WIMP) with a mass in the
tens or hundreds of GeV. On the other hand, theoretical research in particle physics
leads to the discovery that extensions of the SM introducing New Physics at the
electroweak scale were offering, as a “bonus,” interesting WIMP candidates (for
instance, the lightest supersymmetric (SUSY) particle (LSP) in SUSY extensions
of the SM or the lightest Kaluza–Klein mode in theories with extra dimensions). In
view of the amazing coincidence between particle physics and cosmology param-
eters making the WIMP so interesting from the DM point of view, we think that
it is nowadays compelling to explore all the possible, rich aspects of the interplay
between LHC and DM searches from the WIMP perspective.

Differently from DM, DE is unlikely to call for a particle candidate. Indeed, the
accelerated expansion of the Universe demands DE to exhibit a negative pressure,
while particle fluids lead to a non-negative pressure. The Einstein cosmological con-
stant can presently account for the data. An interesting alternative is that DE, instead
of being a quantity which remains constant, has its own evolution in time, i.e., we
have a Dynamical DE (DDE). The prototype of such a proposal is provided by a
scalar field with a suitable potential whose energy density keeps varying with time.
One of the main goals of next generation experiments on DE is just to ascertain a
possible dynamics in DE evolution. This means that we should be able to get infor-
mation on the accelerated expansion of the Universe at different redshifts establish-
ing whether DE has to be attributed to a cosmological constant or to an evolving
DDE. Both the constant and the dynamical interpretations of DE share the problem
of the extreme tuning of the energy scale associated to DE (of the millielectron-
volt order) with respect to common particle physics scales. Together with it, we
have a series of maybe equally profound problems, which can be gathered under
the name of “coincidence” questions. Why DM and baryons have comparable den-
sities? Why also DE has a comparable density and has it just in the present cosmic
epoch? Motivated in part by the attempt to address these questions, the possibil-
ity of an interaction between DDE and DM and/or baryons has also attracted great
interest. In particular, it was realized that, even in the absence of a direct DM-DE
interaction, the presence of DE could have a major impact on the nature and present
abundance of DM. Indeed, the scalar field responsible for the DDE could lead to sig-
nificant departures from the standard cosmological evolution based on GR, in par-
ticular at its the early stages. The most remarkable examples are provided by DDE
models based on ST theories of gravity, or by the so-called “kination” scenarios, in
which the kinetic energy of the DDE scalar field dominates over the radiation energy
density for a period in the early Universe. In particular, in the ST case, it was shown



276 Antonio Masiero

that, even taking into account all the increasingly severe constraints on departures
from GR (from big-bang nucleosynthesis BBN, CMB, and the solar system tests),
the expansion rate in the decisive moment when the WIMP DM decouples from the
thermal bath could have been strongly different from the standard one. This can radi-
cally change the predicted abundances of the different DM candidates in a particular
model, bringing about phenomenological implications of utmost relevance.

Within the SM, both the amount of CP and the nature of the electroweak phase
transition preclude any possibility to have an efficient dynamical mechanism to orig-
inate a cosmic matter-antimatter asymmetry. When proceeding beyond the SM, a
very interesting mechanism has been suggested: baryogenesis through leptogenesis.
In this case, use is made by the CP violating out-of-equilibrium decay of the (heavy)
right-handed neutrino entering the so-called “see-saw” mechanism, which is based
on a large Majorana mass for the right-handed neutrino.

Leptogenesis makes it possible to link two apparently unrelated observations: the
matter-antimatter asymmetry of the Universe in cosmology and neutrino masses and
mixing in particle physics. It is intriguing that the measured values are in agreement
in a nontrivial way, with some interesting bounds on the involved parameters. In
this context, it becomes very attractive to try to tie together leptogenesis, violation
of lepton number, and lepton flavor violation (LFV).

In this chapter, I will briefly review the following:

• the main features of the SM such as its spectrum, the Lagrangian and its symme-
tries, the Higgs mechanism, the successes and shortcomings of the SM;

• two major particle physics candidates for DM: massive (light) neutrinos and the
lightest SUSY particle in SUSY extensions of the SM with R parity (to be defined
later on). Light neutrinos and the lightest particle are “canonical” examples of
the hot and cold DM (CDM), respectively. This choice does not mean that these
are the only interesting particle physics candidates for DM. For instance, axions
are still of great interest as CDM candidates and their experimental search is
proceeding at full steam;

• I’ll revisit the DM issue in the context of cosmological scenarios where the ex-
pansion rate of the Universe can (even drastically) differ from the standard one
at temperatures higher than the MeV scale. i.e., before nucleosynthesis starts.

This chapter is meant to be an introduction to some DM issues for readers who
are not familiar with the subject and, in particular, who need an introduction to the
particle physics aspects of the DM problem. No discussion on the searches for DM
will be presented in this chapter.

6.2 The Standard Model of Particle Physics

In particle physics, the fundamental interactions are described by the Glashow–
Weinberg–Salam Standard Theory (GWS) for the electroweak interactions [1, 2, 3]
(for a review see [4]) and QCD for the strong one. GWS and QCD are gauge theories
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Fermions Generations SU(2)L⊗U(1)Y

I II III

EbL ≡
(

νb

e−b

)
L

(
νe

e−

)
L

(
νμ
μ−

)
L

(
ντ
τ−

)
L

(2,−1)

ebR e−R μ−R τ−R (1,−2)

QbL ≡
(

ub

db

)
L

(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

(2,1/3)

ubR uR cR tR (1,4/3)

dbR dR sR bR (1,−2/3)

Table 6.1 The fermionic spectrum of the SM.

based respectively on the gauge groups SU(2)L×U(1)Y and SU(3)c where L refers
to left, Y to hypercharge, and c to colour. We recall that a gauge theory is invariant
under a local symmetry and requires the existence of vector gauge fields living in the
adjoint representation of the group. Therefore, in our case, we have the following:

1. three gauge fields W 1
μ , W 2

μ , W 3
μ for SU(2)L;

2. one gauge field Bμ for U(1)Y ;
3. eight gauge bosons λ a

μ for SU(3)c.

The SM fermions live in the irreducible representations of the gauge group and
are reported in Table 1: the indices L and R indicate the left and right fields respec-
tively, b = 1,2,3 the generation, the colour is not shown.

The Lagrangian of the SM is dictated by the invariance under the Lorentz and
the gauge groups and the request of renormalizability. It is given by the sum of the
kinetic fermionic part LKmat and the gauge one LKgau : L = LKmat +LKgau. The
fermionic part reads for one generation

LKmat = iQLγμ
(
∂μ + igWa

μTa + i g′
6 Bμ

)
QL + idRγμ

(
∂μ − i g′

3 Bμ

)
dR

+iuRγμ
(
∂μ + i 2g′

3 Bμ

)
uR + iELγμ

(
∂μ + igWa

μTa− i g′
2 Bμ

)
EL

+ieRγμ
(
∂μ − ig′Bμ

)
eR, (6.1)

where the matrices Ta = σa/2, σa are the Pauli matrices, g and g′ are the cou-
pling constants of the groups SU(2)L and U(1)Y , respectively. The Dirac matrices
γμ are defined as usual. The colour and generation indices are not specified. This
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Lagrangian LKmat is invariant under two global accidental symmetries, the leptonic
number and the baryonic one: the fermions belonging to the fields EbL and ebR are
called leptons and transform under the leptonic symmetry U(1)L while the ones
belonging to QbL, ubR and dbR baryons and transform under U(1)B.

The Lagrangian for the gauge fields reads as follows:

LKgau = − 1
4(∂μW a

ν − ∂νW a
μ + εabcW b

μW c
ν )(∂ μW νa− ∂νW μa + εab′c′W b′

ν W c′
μ )

− 1
4(∂μBν − ∂νBμ)(∂ μBν − ∂νBμ). (6.2)

6.2.1 The Higgs Mechanism and Vector Boson Masses

The gauge symmetry protects the gauge bosons from having mass. Unfortunately,
the weak interactions require massive gauge bosons in order to explain the exper-
imental behaviour. However, adding a direct mass term for gauge bosons breaks
explicitly the gauge symmetry and spoils renormalizability. To preserve such nice
feature of gauge theories, it is necessary to break spontaneously the symmetry. This
is achieved through the Higgs mechanism. We introduce in the spectrum a scalar
field H, which transforms as a doublet under SU(2)L, carries hypercharge while is
colourless. The Higgs doublet has got the following potential VHiggs, kinetic terms
LKH , and Yukawa couplings with the fermions LH f :

VHiggs = −μ2H†H +λ (H†H)2

LKH = −
(
∂μH + igWa

μTaH + i
g′

2
BμH

)† (
∂μH + igWa

μTaH + i
g′

2
BμH

)

LH f = −
gener.

∑
b,c

(λ d
bcQLbHDRc +λ u

bcQLbH̃URc +λ e
bcELbHERc)+ h.c. (6.3)

where the parameters μ e λ are real constants, and λ d
bc, λ u

bc and λ e
bc are 3×3 matrices

on the generation space. H̃ indicates the charge conjugated of H: H̃a = εabH†
b .

Although the Lagrangian is invariant under the gauge symmetry, the vacuum is
not and the neutral component of the doublet H develops a vacuum expectation
value (vev):

< H0 > =
(

0
v

)
. (6.4)

This breaks the symmetry SU(2)L ⊗U(1)Y down to U(1)EM. We recall that
when a global symmetry is spontaneously broken, in the theory appears a massless
Goldstone boson; if the symmetry is local (gauge), these Goldstone bosons become
the longitudinal components of the vector bosons (it is said that they are eaten up
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by the gauge bosons). The gauge bosons relative to the broken symmetry acquire a
mass as shown in LMgauge:

LMgauge =−1
2

v2

4

[
g2(W 1

μ )2 + g2(W 2
μ )2 +(−gW3

μ + g′Bμ)2] . (6.5)

Therefore, there are three massive vectors W±
μ and Z0

μ :

W±
μ = 1√

2
(W 1

μ ∓ iW2
μ ), (6.6)

Z0
μ = 1√

g2+g′2
(gW 3

μ −g′Bμ), (6.7)

whose masses are given by

mW = g v
2 , (6.8)

mZ =
√

(g2 + g′2) v
2 , (6.9)

while the gauge boson Aμ ≡ 1√
g2+g′2

(gW 3
μ + g′Bμ), relative to U(1)EM, remains

massless as imposed by the gauge symmetry. Such mechanism is called Higgs mech-
anism and preserves renormalizability.

6.2.2 Fermion Masses

Fermions are spinors with respect to the Lorentz group SU(2)⊗SU(2). Weyl spinors
are two component spinors which transform under the Lorentz group as

χL as ( 1
2 ,0) (6.10)

ηR as (0, 1
2 ) (6.11)

and, therefore, are said to be left-handed and right-handed, respectively.
A fermion mass term must be invariant under the Lorentz group. We have two

possibilities as follows:

1. a Majorana mass term couples just one spinor with itself:

χαχβεαβ or ηα̇ηβ̇ εα̇β̇ . (6.12)

It’s not invariant under any local or global symmetry under which the field trans-
forms not trivially;

2. a Dirac mass term involves two different spinors χL and ηR:

χαη̄β εαβ or χ̄ α̇ηβ̇ εα̇β̇ . (6.13)

It can be present even if the fields carry quantum numbers.
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In the SM, Majorana masses are forbidden by the gauge symmetry in fact we
have that for example,

eLeL ⇒ Q �= 0

νLνL ⇒ SU(2)L �=,

and SU(2)L forbids Dirac mass terms:

eLeR ⇒ SU(2)L �= . (6.14)

Therefore, no direct mass term can be present for fermions in the SM.
However, when the gauge symmetry breaks spontaneously the Yukawa couplings

provide Dirac mass terms to fermions which read as follows:

LMmat = +
1√
2
λ evēLeR +

1√
2
λ uvūLuR +

1√
2
λ dvd̄LdR + h.c. (6.15)

with masses:

me = 1√
2
λev

mu = 1√
2
λuv

md = 1√
2
λdv. (6.16)

We notice that neutrinos are massless and so remain at any order in perturbation
theory:

1. lacking of the right component they cannot have a Dirac mass term;
2. belonging to a SU(2)L doublet, they cannot have a Majorana mass term.

However, from experimental data, we can infer that neutrinos are massive and
that their mass is very small compared with the other mass scales in the SM. The
SM cannot provide such mass to neutrinos and hence this constitutes a proof of the
existence of physics beyond the SM. The problem of ν masses will be addressed in
more detail in Sect. 6.4.1.

6.2.3 Successes and Difficulties of the SM

It is remarkable that the relatively simple structure of the SM succeeds to pass the
innumerable experimental tests ranging from the high-energy frontier (high-energy
accelerator physics) to the high-intensity frontier (high-precision electroweak
physics and flavor physics). However, we see good reasons to expect the existence
of Physics beyond the SM. From a theoretical point of view, the SM cannot give an
explanation of the existence of three families, of the hierarchy present among their
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masses, of the fine tuning of some of its parameters, of the lacking of unification of
the three fundamental interactions (considering the behaviour of the coupling con-
stants, we see that they tend to unify at a scale MX ∼ 1015 GeV where a unified
simple group might arise) of the hierarchy problem of the scalar masses which tend
to become as large as the highest mass scale in the theory. From an experimental
point of view, the nin-vanishing neutrino masses are a proof of Physics beyond the
SM. Also cosmo-particle physics gives strong hints in favor of Physics beyond the
SM: in particular, baryogenesis cannot find a satisfactory explanation in the SM,
inflation is not predicted by SM and finally we have the DM problem.

6.3 The DM Problem: Experimental Evidence

Let’s define Ω (for a review see [5] and [6]) as the ratio between the density ρ and

the critical density ρcrit = 3H2
0

8πG = 1.88h2
0× 10−29g cm−3, where H0 is the Hubble

constant, and G is the gravitational constant:

Ω =
ρ

ρcrit
. (6.17)

The Ωlum due to the contribution of the luminous matter (stars, emitting clouds
of gases) is given by

Ωlum ≤ 0.01. (6.18)

First evidences of DM come from observations of galactic rotation curves (cir-
cular orbital velocity vs. radial distance from the galactic center) using stars and
clouds of neutral hydrogen. These curves show an increasing profile for little val-
ues of the radial distance r while for bigger ones it becomes flat, finally decreasing
again. According to Newtonian mechanic, this behaviour can be explained if the en-
closed mass rises linearly with galactocentric distance. However, the light falls off
more rapidly and, therefore, we are forced to assume that the main part of matter
in galaxies is made of nonshining matter or DM, which extends for a much bigger
region than the luminous one. The limit on Ωgalactic which can be inferred from the
study of these curves is

Ωgalactic ≥ 0.1. (6.19)

The simplest idea is to suppose that the DM is due to baryonic objects which do
not shine. However, both BBN and very precise determinations of the acoustic peaks
in cosmic background radiation (CBR) (WMAP results) point out that ΩB cannot
exceed 5%, hence making it impossible to account for the whole amount of DM.

One-third of the BBN baryon density is given by stars, cold gas, and warm
gas present in galaxies. The other two-third are probably in hot intergalactic gas,
warm gas in galaxies and dark stars such as low-mass objects which do not shine
(brown dwarfs and planets) or the result of stellar evolution (neutron stars, black
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holes, white dwarfs). These last ones are called MAssive Compact Halo Objects
(MACHOS) and can be detected in our Galaxy through microlensing.

From cluster observations, from the evolution of the abundance of clusters and
measurements of the power spectrum of large-scale structures and from the WMAP
data on CBR, we obtain a very significant and puzzling result: the energy density of
DM accounts for roughly one fourth of the critical energy density.

Hence the major part of DM is nonbaryonic. The crucial point is that the SM
does not possess any candidate for such nonbaryonic relics of the early Universe.
Hence the demand for non baryonic DM implies the existence of New Physics
beyond the SM. Nonbaryonic DM divides into two classes ([5] and [6]): CDM
(e.g., neutral heavy particles called WIMPS or very light ones as axions) and hot
DM (HDM)(example: the light neutrinos of the SM)

6.4 Lepton Number Violation and Neutrinos as HDM
Candidates

The first candidate for DM we will review are neutrinos which can account for
HDM: particles that were relativistic at their decoupling from the thermal bath when
their rate of interaction became smaller then the expansion rate and they freeze out
(or, to be more precise, at the time Galaxy formation starts at T ∼ 300 eV). The SM
has no candidate for HDM; however, it is now well established from experimental
data that neutrinos are massive and very light. Therefore, they can account for HDM.
We briefly discuss their characteristics.

6.4.1 Neutrino Masses in the SM and Beyond

The SM cannot account for neutrino masses: we cannot construct either a Dirac
mass term as there’s only a left-handed neutrino and no right-handed component, or
a Majorana mass term because such mass would violate the lepton number and the
gauge symmetry.

To overcome this problem, many possibilities have been suggested:

• Within the SM spectrum, we can form an SU(2)L singlet with νL using a triplet
formed by two Higgs field H as νLνLHH. When the Higgs field H develops a
VEV this term gives raise to a Majorana mass term. However, this term is not
renormalizable, breaks the leptonic symmetry, and do not give an explanation of
the smallness of neutrino masses;

• We can introduce a new Higgs triplet Δ and produce a Majorana mass term as in
the previous case when Δ acquires a vacuum expectation value;

• However, the most economical way to extend the SM is to introduce a right-
handed component NR, singlet under the gauge group, which couples with the
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left-handed neutrinos. The lepton number L can be either conserved or violated.
In the former option, neutrinos acquire a “regular” Dirac mass like for all the
other charged fermions of the SM. The left- and right-handed components of
the neutrino combine together to give rise to a massive four-component Dirac
fermion. The problem is that the extreme lightness of neutrinos (in particular of
the electron neutrino) requires an exceedingly small neutrino Yukawa coupling
of O(10−11) or so. Although quite economical, we do not consider this option
particularly satisfactory.
The other possibility is to link the presence of neutrino masses to the violation of
L. In this case, one introduces a new mass scale, in addition to the electroweak
Fermi scale, in the problem. Indeed, lepton number can be violated at a very
high- or a very low-mass scale. The former choice represents, in our view, the
most satisfactory way to have massive neutrinos with a very small mass. The idea
(see-saw mechanism) is to introduce a right-handed neutrino in the fermion mass
spectrum with a Majorana mass M much larger than MW . Indeed, being the right-
handed neutrino a singlet under the electroweak symmetry group, its mass is not
chirally protected. The simultaneous presence of a very large chirally unprotected
Majorana mass for the right-handed component together with a “regular” Dirac
mass term (which can be at most of O(100 GeV) gives rise to two Majorana
eigenstates with masses very far apart.
The Lagrangian for neutrino masses is given by

Lmass =−1
2
(νL N

c
L)

(
0 mD

mD M

)(
νc

R
NR

)
+ h.c. (6.20)

where νc
R is the CP-conjugated of νL and Nc

L of NR. It holds that mD � M. Di-
agonalizing the mass matrix, we find two Majorana eigenstates n1 and n2 with
masses very far apart:

m1 

m2

D

M
, m2 
M.

The light eigenstate n1 is mainly in the νL direction and is the neutrino that we
“observe” experimentally while the heavy one n2 is in the NR one. The key-point
is that the smallness of its mass (in comparison with all the other fermion masses
in the SM) finds a “natural” explanation in the appearance of a new, large mass
scale where L is violated explicitly (by two units) in the right-handed neutrino
mass term.

6.4.2 Thermal History of Neutrinos

Let us consider a stable massive neutrino (of mass less than 1 MeV) (see, e.g., [5]).
If its mass is less than 10−4 eV, it is still relativistic today and its contribution to
ΩM is negligible. In the opposite case, it is nonrelativistic and its contribution to
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the energy density of the Universe is simply given by its number density times its
mass. The number density is determined by the temperature at which the neutrino
decouples and, hence, by the strength of the weak interactions. Neutrinos decouple
when their mean free path exceeds the horizon size or equivalently Γ < H. Using
natural units (c = � = 1), we have that

Γ ∼ σνne± ∼ G2
F T 5 (6.21)

and H ∼ T 2

MPl
(6.22)

so that Tνd ∼M−1/3
Pl G−2/3

F ∼ 1 MeV, (6.23)

where GF is the Fermi constant, T denotes the temperature, and MPL is the Planck
mass. Since this decoupling temperature Tνd is higher than the electron mass, then
the relic neutrinos are slightly colder than the relic photons which are “heated”
by the energy released in the electron-positron annihilation. The neutrino number
density turns out to be linked to the number density of relic photons nγ by the
relation:

nν =
3
22

gνnγ , (6.24)

where gν = 2 or 4 according to the Majorana or the Dirac nature of the neutrino,
respectively.

Then, one readily obtains the ν contribution to ΩM:

Ων = 0.01×mν(eV)h−2
0

gν
2

(
T0

2.7
)3. (6.25)

Imposing Ωνh2
0 to be less than one (which comes from the lower bound on the

lifetime of the Universe), one obtains the famous upper bound of 200(gν)−1 eV on
the sum of the masses of the light and stable neutrinos:

∑
i

mνi ≤ 200(gν)−1 eV. (6.26)

Clearly from Eq.(6.25), one easily sees that it is enough to have one neutrino
with a mass in the 1−20 eV range to obtain Ων in the 0.1−1 range of interest for
the DM problem.

However, the data on neutrino oscillations point to neutrino masses definitely
smaller than 1 eV; to be more precise, this is certainly true if we consider schemes
where neutrinos possess hierarchical masses (with a direct or inverse hierarchy). In
the case of depenerate neutrino masses, one could barely consider neutrinos to be
in the eV region. However, as we are going to see below, the data on the large-scale
structures disfavor neutrinos with masses > 1eV; indeed, such cosmological data
provide the best bound we have so far on the sum of the masses of the stable, light
neutrinos.
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6.4.3 HDM and Structure Formation

Hence massive neutrinos with mass in the eV range are very natural candidates
to contribute an ΩM larger than 0.1. The actual problem for neutrinos as viable
DM candidates concerns their role in the process of large-scale structure formation.
The crucial feature of HDM is the erasure of small fluctuations by free streaming:
neutrinos stream relativistically for quite a long time till their temperature drops to
T ∼ mν . Therefore, a neutrino fluctuation in order to be preserved must be larger
than the distance dν travelled by neutrinos during such interval. The mass contained
in that space volume is of the order of the supercluster masses:

MJ,ν ∼ d3
νmνnν(T = mν)∼ 1015M�, (6.27)

where nν is the number density of the relic neutrinos and M� is the solar mass.
Therefore, the first structures to form are superclusters and smaller structures as
galaxies arise from fragmentation in a typical top-down scenario. Unfortunately, in
these schemes, one obtains too many structures at super large scales. Hence schemes
of pure HDM are strongly disfavored by the demand of a viable mechanism for
large-structure formation.

As I mentioned above, not only are such cosmological data ruling out the light
neutrinos as being the main source of DM but also they constitute the most powerful
way we have at our disposal to put an upper bound on their masses. From the WMAP
and the large-scale structure data, we infer that the sum of the light, stable neutrinos
has to be less than 1 eV; indeed, if one includes all possible restrictions coming from
the LSS data, one should conclude that such mass is <0.2 eV [7].

6.5 Low-energy SUSY and DM

Another kind of DM, widely studied, called CDM is made of particles which were
nonrelativistic at their decoupling. Natural candidates for such DM are WIMPs,
which are very heavy if compared with neutrinos. The SM does not have nonbary-
onic neutral particles, which can account for CDM and, therefore, we need to con-
sider extensions of the SM as SUSY SM in which there are heavy neutral particles
remnants of annihilations such as neutralinos (for a review, see [10]).

6.5.1 Neutralinos as the LSP in SUSY Models

One of the major shortcomings of the SM concerns is the protection of the scalar
masses once the SM is embedded into some underlying theory (and at least at the
Planck scale such New Physics should set in to incorporate gravity into the game).
Since there is no typical symmetry protecting scalar masses (while for fermions
there is the chiral symmetry and for gauge bosons there are gauge symmetries),
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the clever idea which was introduced in the early 80s to prevent scalar masses to
get too large values was to have a SUSY unbroken down to the weak scale. Since
fermion masses are chirally protected and as long as SUSY is unbroken, there must
be degeneracy between the fermion and scalar components of a SUSY multiplet,
then having a low-energy SUSY, it is possible to have an “induced protection” on
scalar masses (for a review, see [8, 9]).

However, the mere supersymmetrization of the SM faces an immediate problem.
The most general Lagrangian contains terms that violate baryon and lepton numbers
producing a too fast proton decay. To prevent this catastrophic result, we have to
add some symmetry which forbids all or part of these dangerous terms with L or
B violations. The most familiar solution is the imposition of a discrete symmetry,
called R matter parity, which forbids all these dangerous terms. It reads over the
fields contained in the theory:

R = (−1)3(B−L)+2s. (6.28)

R is a multiplicative quantum number reading −1 over the SUSY particles and +1
over the ordinary particles. Clearly in models with R parity, the lightest SUSY par-
ticle can never decay. This is the famous LSP (lightest SUSY particle) candidate
for CDM.

Notice that proton decay does not call directly for R parity. Indeed this decay
entails the violation of both B and L. Hence, to prevent a fast proton decay one may
impose a discrete symmetry that forbids all the B violating terms in the SUSY La-
grangian, while allowing for terms with L violation (the vice versa is also viable).
Models with such alternative discrete symmetries are called SUSY model, with bro-
ken R parity. In such models, the stability of the LSP is no longer present and the
LSP cannot be a candidate for stable CDM. We will comment later on these alterna-
tive models in relation to the DM problem, but we turn now to the more “orthodox”
situation with R parity. The favorite LSP is the lightest neutralino.

6.5.2 Neutralinos in the Minimal SUSY Standard Model

If we extend the SM in the minimal way, adding for each SM particle a SUSY
partner with the same quantum numbers, we obtain the so-called minimal super-
symmetric standard model (MSSM). In this context—the neutralinos are the eigen-
vectors of the mass matrix of the four neutral fermions partners of the W3,B,H0

1 ,
and H0

2 called, respectively, wino W̃3, bino B̃, higgsinos H̃0
1 and H̃0

2 . There are four
parameters entering the mass matrix, M1,M2,μ , and tanβ :

M =

⎛⎜⎜⎝
M2 0 mZ cosθW cosβ −mZ cosθW sinβ
0 M1 −mZ sinθW cosβ mZ sinθW sinβ

mZ cosθW cosβ −mZ sinθW cosβ 0 −μ
−mZ cosθW sinβ mZ sinθW sinβ −μ 0

⎞⎟⎟⎠ ,

(6.29)
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where mZ = 91.19±0.002 GeV is the mass of the Z boson, θW is the weak mixing
angle, tanβ ≡ v2/v1 with v1, v2 vevs of the scalar fields H0

1 and H0
2 , respectively.

In general, M1 and M2 are two independent parameters, but if one assumes that a
grand unification scale takes place, then at grand unification M1 = M2 = M3, where
M3 is the gluino mass at that scale. Then, at the MW scale one obtains:

M1 = 5
3 tan2 θW M2 
 M2

2 , (6.30)

M2 = g2
2

g2
3
mg̃ 
 mg̃/3, (6.31)

where g2 and g3 are the SU(2) and SU(3) gauge coupling constants, respectively,
and mg̃ is the gluino mass.

The relation (6.30) between M1 and M2 reduces to three the number of inde-
pendent parameters that determine the lightest neutralino composition and mass:
tanβ ,μ , and M2. The neutralino eigenstates are denoted usually by χ̃0

i being χ̃0
1 the

lightest one.

If |μ |> M1,M2, then χ̃0
1 is mainly a gaugino and in particular a bino if M1 > mZ ;

if M1,M2 > |μ |, then χ̃0
1 is mainly a higgsino. The corresponding phenomenology

is drastically different leading to different predictions for CDM.

For fixed values of tanβ , one can study the neutralino spectrum in the (μ ,M2)
plane. The major experimental inputs to exclude regions in this plane are the request
that the lightest chargino be heavier than mZ/2 and the limits on the invisible width
of the Z hence limiting the possible decays Z → χ̃0

1 χ̃
0
1 , χ̃0

1 χ̃
0
2 . Moreover, if the

GUT assumption is made, then the relation (6.30) between M2 and mg̃ implies a
severe bound on M2 from the experimental lower bound on mg̃ of Tevatron. The
theoretical demand that the electroweak symmetry be broken radiatively, i.e., due
to the renormalization effects on the Higgs masses when going from the superlarge
scale of supergravity breaking down to MW , further constrains the available (μ ,M2)
region. The first important outcome of this analysis is that the lightest neutralino
mass exhibits a lower bound of roughly 30 GeV. The actual bound on the mass of
the lightest neutralino χ̃0

1 from LEP2 is

mχ̃0
1
≥ 40 GeV (6.32)

for any value of tanβ . This bound becomes stronger if we put further constraints on
the MSSM, like, for instance, in the Constrained MSSM (CMSSM) where we have
only four independent SUSY-parameters plus the sign of the μ parameter.

It should be reminded that all the above bounds on the lightest neutralino take
into account a situation where some unification of the gaugino masses occurs, hence
making it possible to limit the mass parameter M1 through the severe experimental
bounds on M2 as derived from LEP physics. If one removes such unification con-
dition of the gaugino masses, then it is possible to have neutralinos as light as few
GeVs [12].
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6.5.3 Thermal History of Neutralinos and ΩCDM

Let us focus now on the role played by χ̃0
1 as a source of CDM. The lightest neu-

tralino χ̃0
1 is kept in thermal equilibrium through its electroweak interactions not

only for T > mχ̃0
1
, but even when T is below mχ̃0

1
. However, for T < mχ̃0

1
the num-

ber of χ̃0
1 s rapidly decreases because of the appearance of the typical Boltzmann

suppression factor exp(−mχ̃0
1
/T ). When T is roughly mχ̃0

1
/20 the number of χ̃0

1

diminished so much that they do not interact any longer, i.e., they decouple. Hence
the contribution to ΩCDM of χ̃0

1 is determined by two parameters: mχ̃0
1

and the tem-

perature at which χ̃0
1 decouples (Tχd) which fixes the number of surviving χ̃0

1 s. As
for the determination of Tχd itself, one has to compute the χ̃0

1 annihilation rate and
compare it with the cosmic expansion rate.

Several annihilation channels are possible with the exchange of different SUSY
or ordinary particles, f̃ , H, Z, etc. Obviously, the relative importance of the channels
depends on the composition of χ̃0

1 .

In the MSSM, there are five new parameters in addition to those already present
in the non-SUSY case. Imposing the electroweak radiative breaking further reduces
this number to four. Finally, in simple supergravity realizations, the soft parameters
A and B are related. Hence, we end up with only three new, independent parameters.
One can use the constraint that the relic χ̃0

1 abundance provides a correct ΩCDM

to restrict the allowed area in this three-dimensional space. Or, at least, one can
eliminate points of this space which would lead to Ωχ̃0

1
> 1, hence overclosing the

Universe.

There exists a vast literature on the subject of SUSY WIMPs and accelerator
physics. To review such material is beyond the scope of this chapter. I refer the
interested reader to the thorough and broad review of Jungman et al., [10] and the
original papers therein quoted for a general discussion of SUSY in the MSSM and
to the works in [11] for an updated analysis.

Finally a comment on models without R parity. From the point of view of
DM, the major implication is that in this context the LSP is no longer a vi-
able CDM candidate since it decays. There are very special circumstances un-
der which this decay may be so slow that the LSP can still constitute a CDM
candidate.

6.6 Changing the Expansion Rate in the Past

In a standard flat FRW universe described by GR, the expansion rate of the
Universe, HGR ≡ ȧ/a, is set by the total energy density, ρ̃tot, according to the
Friedmann law,

H2
GR =

1
3M2

p
ρ̃tot , (6.33)
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where Mp is the Planck mass, related to the Newton constant by Mp = (8πG)−1/2.
If the total energy density is dominated by relativistic degrees of freedom, the ex-
pansion rate is related to the temperature through the relation

HGR 
 1.66 g1/2
∗

T 2

Mp
, (6.34)

with g∗ the effective number of relativistic degrees of freedom.

We will modify the above H–T relation by considering a modification of GR in
which an effective Planck mass, different from Mp appears in (6.34). This can be
realized in a fully covariant way in ST theories . We will consider the class of ST
theories, which can be defined by the following action [13],

S = Sg +∑
i

Si, (6.35)

where Sg is the gravitational part, given by the sum of the Einstein–Hilbert and the
scalar field actions,

Sg =
M2
∗

2

∫
d4x
√
−g

[
R + gμν∂μϕ∂νϕ−

2
M2∗

V (ϕ)
]
, (6.36)

where V (ϕ) can be either a true potential or a (Einstein frame) cosmological con-
stant, V (ϕ) = V0. The Si’s are the actions for separate “matter” sectors

Si = Si[Ψi,A
2
i (ϕ)gμν ] , (6.37)

with Ψi indicating a generic field of the i-th matter sector, coupled to the metric
A2

i (ϕ)gμν . The actions Si are constructed starting from the Minkowski actions of
Quantum Field Theory, for instance the SM or the MSSM ones, by substituting the
flat metric ημν everywhere with A2

i (ϕ)gμν .

The emergence of such a structure, with different conformal factors A2
i for the

various sectors can be motivated in extra-dimensional models, assuming that the
two sectors live in different portions of the extra-dimensional space.

We consider a flat FRW space-time

ds2 = dt2−a2(t) dl2 ,

where the matter energy-momentum tensors, T i
μν ≡ 2(−g)−1/2δSi/δgμν admit the

perfect-fluid representation

T i
μν = (ρi + pi) uμuν − pi gμν , (6.38)

with gμν uμuν = 1.
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The cosmological equations then take the form

ä
a

=− 1
6M2∗

[
∑

i
(ρi + 3 pi)+ 2M2

∗ ϕ̇2−2V

]
, (6.39)

(
ȧ
a

)2

=
1

3M2∗

[
∑

i
ρi +

M2
∗

2
ϕ̇2 +V

]
, (6.40)

ϕ̈ + 3
ȧ
a
ϕ̇ =− 1

M2∗

[
∑

i
αi(ρi−3pi)+

∂V
∂ϕ

]
, (6.41)

where the coupling functions αi are given by

αi ≡
d logAi

dϕ
. (6.42)

The Bianchi identity holds for each matter sector separately, and reads,

d(ρi a3)+ pi da3 = (ρi−3 pi) a3d logAi(ϕ), (6.43)

implying that the energy densities scale as

ρi ∼ Ai(ϕ)1−3wia−3(1+wi) , (6.44)

with wi ≡ pi/ρi the equation of state associated to the i-th energy density (assuming
wi is constant).

6.6.1 GR as a Fixed Point

To start, consider the case of a single matter sector, SM. In order to compare the
ST case with the GR one of Eqs. (6.33, 6.34), it is convenient to Weyl-transform to
the so-called Jordan Frame (JF), where the energy-momentum tensor is covariantly
conserved. The transformation amounts to a rescaling of the metric according to

g̃μν = A2
M(ϕ)gμν , (6.45)

keeping the comoving spatial coordinates and the conformal time dη = dt/a fixed.
The JF matter energy-momentum tensor, T̃ M

μν ≡ 2(−g̃)−1/2δSM/δ g̃μν , is related to

that in Eq. (6.38) by T̃ M
μν = A−2

M T M
μν , so that energy density and pressure transform as

ρ̃M = A−4
M ρM , p̃M = A−4

M pM , (6.46)
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while the cosmic time transforms as dt̃ = AMdt. One can easily verify that the
above-defined quantities satisfy the usual Bianchi identity, that is Eq. (6.43) with
vanishing RHS, and that, as a consequence, ρ̃M ∼ ã−3(1+wM). The expansion rate,
HST ≡ d log ã/dt̃, is given by

HST =
1 +αM(ϕ)ϕ ′

AM(ϕ)
ȧ
a

, (6.47)

where we have defined αM according with Eq. (6.42), and (·)′ ≡ d(·)/d loga.
Using (6.47) and (6.46) in (6.40), we obtain the Friedmann equation in the ST
theory,

H2
ST =

A2
M(ϕ)
3M2

∗

(1 +αM(ϕ)ϕ ′)2

1− (ϕ ′)2/6

[
ρ̃M + Ṽ

]
, (6.48)

where Ṽ ≡ A−4
M V . Comparing with Eq.(6.33), we see that apart from the extra con-

tribution to ρ̃tot from the scalar field potential, the ST Friedmann equation differs
from the standard one of GR by the presence of an effective, field-dependent Planck
mass,

1
3M2

p
→ A2

M(ϕ)
3M2

∗

(1 +αM(ϕ)ϕ ′)2

1− (ϕ ′)2/6

 A2

M(ϕ)
3M2

∗
, (6.49)

where the last equality holds with very good approximations for all the choices of
Ai functions considered in the present paper.

If the conformal factor A2
M(ϕ) is constant, then the full action Sg + SM is just

that of GR (with Mp = M∗/AM) plus a minimally coupled scalar field. Therefore,
the coupling function αM , defined according to Eq. (6.42), measures the “distance”
from GR of the ST theory, αM = 0 being the GR limit. Changing AM, and, there-
fore, changing the effective Planck mass, opens the way to a modification of the
standard relation between H and ρ̃ , or T . In order to study the evolution of AM(ϕ),
one should come back to Eq. (6.41). Considering an initial epoch deeply inside ra-
diation domination, we can neglect the contribution from the potential on the RHS.
The other contribution, the trace of the energy-momentum tensor (ρM − 3 pM) is
zero for fully relativistic components but turns on to positive values each time the
temperature drops below the mass threshold of a particle in the thermal bath. As-
suming a mass spectrum – e.g., that of the SM or of the MSSM – one finds that
this effect is effective enough to drive the scalar field evolution even in the radiation
domination era [14].

The key point to notice is that if there is a field value, ϕ0, such that αM(ϕ0) = 0,
this is a fixed point of the field evolution . Moreover, if α ′M is positive (negative), the
fixed point is attractive (repulsive). Since αM = 0 corresponds to the GR limit, we
see that GR is a – possibly attractive – fixed point configuration.

The impact on the DM relic abundance of a scenario based on this mechanism of
attraction towards GR was considered in [14, 15].
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6.7 Implications for DM in the CMSSM

A modification of the Hubble rate at early times has impact on the formation of
DM as a thermal relic, if the particle freeze-out occurs during the period of mod-
ification of the expansion rate. ST cosmologies with a Hubble rate increased with
respect to the GR case have been discussed in Refs. [14, 15, 16], where the ef-
fect on the decoupling of a cold relic was discussed and bounds on the amount of
increase of the Hubble rate prior to BBN have been derived from the indirect de-
tection signals of DM in our Galaxy. For cosmological models with an enhanced
Hubble rate, the decoupling is anticipated, and the required amount of cold DM is
obtained for larger annihilation cross-sections: this, in turn, translates into larger in-
direct detection rates, which depend directly on the annihilation process. In Refs.
[15, 16], we discussed how low-energy antiprotons and gamma–rays fluxes from
the galactic center can pose limits on the admissible enchancement of the pre-BBN
Hubble rate. We showed that these limits may be severe: for DM particles lighter
than about a few hundred GeV antiprotons set the most important limits, which are
quite strong for DM masses below 100 GeV. For heavier particles, gamma-rays are
more instrumental in determining significant bounds.

In the case of the cosmological models which predict a reduced Hubble rate, the
situation is opposite: a smaller expansion rate implies that the cold relic particle re-
mains in equilibrium for a longer time in the early Universe, and, as a consequence,
its relic abundance turns out to be smaller than the one obtained in GR. In this case,
the required amount of DM is obtained for smaller annihilation cross-sections, and
therefore, indirect detection signals are depressed as compared with the standard
GR case: as a consequence, no relevant bounds on the pre-BBN expansion rate can
be set. On the other hand, for those particle physics models which typically predict
large values for the relic abundance of the DM candidate, this class of ST cosmolo-
gies may have an important impact in the selection of the regions in parameter space
which are cosmologically allowed.

A typical and noticeable case where the relic abundance constraint is very strong
is offered by minimal SUGRA models. A reduction of the expansion rate will have
a crucial impact on the allowed regions in parameter space, which are, therefore,
enlarged. The potential reach of accelerators like the LHC or the International Linear
Collider (ILC) on the search of supersymmetry may, therefore, be affected by this
broadening of the allowed parameter space, especially for the interesting situation
of looking for SUSY configurations able to fully explain the DM problem.
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Chapter 7
Dark Matter Direct and Indirect Detection

Andrea Giuliani

Abstract Cosmological and astrophysical observations show with outstanding
evidence that more than 80% of the matter density in the Universe is nonluminous.
Attractive candidates for the composition of this dark cosmic component are still
undetected, neutral, heavy particles, which were non-relativistic, or “cold,” when
they decoupled from ordinary matter. This paper will review the direct and indi-
rect detection methods of these hypothetical particles, with a major emphasis on the
previous approach. In the direct search, sophisticated instruments look for the scat-
tering of dark matter particles off nuclei in ultra-low background, deep underground
experiments. In the indirect search, space-based and ground-based observatories aim
to detect secondary particles that could originate from annihilations of dark matter
candidates in various locations in the Milky Way or in close galaxies. Emphasis is
given to the most recent developments and to the status of close-future projects.

7.1 Introduction

The concept of dark matter was introduced to solve serious discrepancies between
two classes of estimates of the masses of astrophysical objects: from one hand, those
based on the luminous and visible parts, and from the other hand, those based on the
dynamical behaviour of the components. At almost every cosmic scale, observations
infer a larger dynamic mass than a visible mass, implying a significant dark matter
contribution to the gravitational potential. The mass-to-light ratio, M/L is used to
quantify this discrepancy, with M/L∼ 1 for a star like the Sun.

Andrea Giuliani
Department of Physics and Mathematics, University of Insubria, Via Valleggio 11, I-22100 Como,
Italy, e-mail: andrea.giuliani@mib.infn.it
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7.1.1 Dark Matter at the Various Scales

At the galactic scale, in most cases, it is possible to observe a clear dark matter com-
ponent. In spiral galaxies, the stellar motions are dominated by rotation within the
disk [1]. The luminous component decreases exponentially from the center, with a
characteristic radius of a few kiloparsec. One expects, therefore a Keplerian decline
of the star rotation velocities, which should scale as r−1/2 outside this radius. On the
contrary, star rotation curves usually remain flat far from galactic centers, typically
beyond 30− 40 kpc. Quantitatively, this behaviour translates into a mass-to-light
ratio M/L∼ 5−10. In elliptical galaxies, where the dynamical equilibrium is dom-
inated by pressure rather than the rotation motion, observations indicate an even
larger dark matter contribution, with M/L∼ 10−25. Considering the various galaxy
types, two are particularly dominated by dark matter: the low-surface brightness
galaxies (LSB) and the dwarf spheroidal galaxies (DSph). These objects are often
characterized by a huge mass-to-light ratio M/L > 100 at the border of the field
of stars. This feature makes them very attractive sources for indirect dark matter
searches, looking in particular for the annihilation γ-rays that they are expected
to emit.

At the galaxy-cluster scale, it is worth mention the first claim for the existence
of dark matter, which traces back to the famous Zwicky’s article in 1933 [2]. In this
historical paper, the virial theorem was used to reconstruct the gravitational potential
of the Coma cluster concluding that a huge amount of matter was invisible. There
are today several other different methods that come to the same conclusion indepen-
dently, such as x-ray measurements of inter-cluster gas temperature, weak/strong
lensing, luminous arcs, and multiple images. They all confirm the presence of dark
matter at higher fractions than in galaxies, typically with M/L ∼ 200 [3]. Globally,
these observations translate, in terms of matter density with respect to the critical
density, into Ωm ∼ 0.2−0.3.

The recent cosmological-scale measurements, like the cosmic microwave back-
ground (CMB) [4], large-scale structure, and supernovae surveys (for instance,
SNLS) [5], confirm this matter density and favor the so-called “cosmological con-
cordance model,” according to which we live in a cold dark matter (CDM) Universe
dominated by a cosmological acceleration term. Quantitatively, the model predicts
that the Universe is flat and made of 4% baryons, 20% non-baryonic dark matter
(topic of this chapter), and 76% dark energy [6].

7.1.2 The Nature of Dark Matter

On the basis of the observed discrepancies between the visible amounts of baryonic
matter and the estimates from big bang nucleosynthesis, we know that dark baryons
exist. However, the size of these discrepancies is by far not able to account for
the dark matter amount required by the concordance model. Therefore, we con-
clude that the dark matter in the Universe is essentially nonbaryonic, at the extent
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specified in the previous section. The theories and the simulations about hierar-
chical structure formation indicate that the nonbaryonic dark matter assumes the
form of a gas of cold and weakly interacting massive particles (WIMPs). There
is no viable candidate in the standard mode (SM) of particle physics to the com-
position of this (CDM) gas. There, are however, theories beyond the SM, which
have been developed specifically to solve problems inherent to elementary particle
physics (such as the unification of the gauge couplings at high energy and the hierar-
chy and naturalness problems), that comprise very attractive dark matter candidates.
(Extensive reviews on this subject can be found in literatures [7, 8]; we shall pro-
vide here a concise summary in Sects. 7.1.2.1 and 7.1.2.2.) In particular, the relic
density of these candidates can be estimated, and it turns out almost automatically
that their present contribution to the expected nonbaryonic dark matter density lies
in the right range [9, 10]. This conspiracy is often referred to as “WIMP miracle.”
Presently, the most popular candidates for WIMPs come from the supersymmet-
ric and extra-dimensional theories, which are briefly outlined below. In addition to
WIMPs, another viable candidate is the axion [11], a particle proposed in the 1970s
as an extension to the SM in order to solve the so-called strong CP problem, which
is posed by the nonobservation of an electric dipole moment of the neutron. The
axion has to be very light, ∼ 10−5 eV. A review of the experimental searches for
axions is beyond the scope of this chapter and will not be given here.

7.1.2.1 SUSY Particles as WIMPs

Supersymmetry (SUSY) is a symmetry between bosons and fermions, which is
broken at the presently accessible energy scale. The association of known fermions
and bosons in super-multiplets requires to add at least one extra bosonic/fermionic
superpartner (called sparticle) to each standard fermion/boson. Therefore, a copious
spectrum of new particles would appear if SUSY were a fundamental symmetry of
the nature. SUSY is expected to show off beyond the electroweak energy scale, in
the range∼ 0.1− 1 TeV.

The minimal supersymmetric extension of the standard model (MSSM) provides
a coherent frame for the unification of interactions (except gravity) at the high
energy scale, breaks the electroweak symmetry dynamically, and solves partly the
hierarchy and naturalness problems. With the implementation of a discrete symme-
try called R-parity, which ensures the conservation of B−L quantum number and
proton stability, SUSY particles are bound to be created in pairs, and the lightest
supersymmetric particle (LSP) is stable. In this framework, among the dark matter
candidates, two have been widely studied for the last two decades: the lightest of
the four neutralinos (which will be referred to as simply the neutralino chi) [12]
and the gravitino. The neutralino is a linear combination of the Majorana fermionic
superpartners of the gauge and Higgs bosons (gauginos—bino and wino—and
higgsinos) [13], while the gravitino is the superpartner of the graviton, appear-
ing when one requires the local invariance of SUSY, which involves automatically
gravity. From fundamental considerations, these different phenomenologies can be
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shown to be connected with the SUSY breaking scenarios. The most popular simpli-
fied model, called the minimal supergravity model (mSUGRA), assumes universal
gaugino masses m1/2 and universal scalar masses m0 at high energy scale. In this
scenario, the MSSM can be described with only five parameters at this scale: the
unified scalar masses m0, the unified gaugino masses m1/2, the universal trilinear
coupling A0, and the Higgs doublet vacuum expected value ratio, tanβ = v2/v1 and
the sign of the Higgs mass mixing parameter μ . In most of the parameter space of
this model, the neutralino is the LSP. Its mass is related to those of bino, wino, and
two higgsino fields (respectively, M1, M2, and the Higgs mixing μ). In mSUGRA,
the neutralino is mainly bino-like, with its mass related to the unified gaugino mass
as mχ < M1 < 0.43m1/2 < M2, μ .

Another scenario of SUSY breaking invokes conformal anomalies without any
additional hidden sector: the anomaly-mediated SUSY breaking scenario (AMSB).
We refer to specialized papers for more insight into these models. We just remark
that in AMSB models, the neutralino is usually the LSP, but with a strong wino
component.

Finally, gauge-mediated supersymmetry breaking (GMSB) models mediate the
breaking to the observable sector from a hidden sector through messenger fields that
have gauge interactions. In this scenario, the LSP is mostly the gravitino.

7.1.2.2 Theories with Extradimensions

Modern extradimension (ED) theories derive from the historical approach followed
by Kaluza in 1919 [14], who tried to explain electromagnetism as a consequence of
the curvature of an additional dimension to the classical 4D space-time. He noticed
that by extending general relativity to a 5D space-time, the resulting equations split
up to the standard 4D gravitation with an extra term equivalent to Maxwell’s equa-
tion: a sort of unification of electromagnetism and gravity. In 1926, Klein applied
this approach to quantum mechanics [15], suggesting that the extra dimension
should be compactified to a very small radius, as small as the Planck scale. These
ideas revived in modern string theories, which foresee models with 26 (bosonic
strings) or 10 (superstrings) dimensions. Basing on these assumptions, it is possible
to build phenomenological models providing solutions to the hierarchy and natu-
ralness problems without introducing SUSY. In general, ED theories introduce new
physical states beyond the SM as a consequence of compactification of the EDs.
These new particles correspond to excitations in the bulk of all fields which prop-
agate in the compactified EDs. These fields are expanded into a complete series of
modes, thus building the so-called Kaluza-Klein (KK) tower.

Today, there are several classes of extradimension models [16]. Those assum-
ing that gravity is the only interaction mediated in the extradimensions (called the
“bulk”) gives no detectable dark matter candidates. Other scenarios assume that the
whole field content of the theory may propagate in all dimensions. Such models
define the class called universal extradimensions (UED), which contrasts with pre-
vious ED theories by allowing translation invariance along the EDs. Without going
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into the details, the main point here is that in UED, a new discrete symmetry appears,
named KK parity. In analogy with SUSY, the consequence of KK parity conserva-
tion is the stability of the lightest KK particle (LKP). In these models, the first KK
excitation B(1) of the hypercharge gauge boson and of the neutrino ν(1) are viable
WIMP candidates.

7.1.2.3 Detection Techniques and Distribution of WIMPs in the Galaxy

Two basic methods can be used to detect dark matter, either direct or indirect. Direct
searches are based on the detection of dark matter particles actually passing through
detectors and physically interacting with them. Chardin [17] provides an exhaustive
review (even if not very recent) of the direct detection concepts and experiments.
Indirect searches look for secondary products originated when dark matter particles
annihilate each other elsewhere, typically in the Galaxy. Our discussion about indi-
rect detection is based mainly on a very comprehensive review of this field [18], even
if not containing yet the recent important PAMELA observations. The two methods,
being very different, are complementary. Positive evidence seen with these distinct
approaches would provide convincing confirmation of the discovery of CDM. Fur-
thermore, in some cases, the two methods are sensitive in different regions of the
parameter phase space for the nature of the CDM particle. For both approaches, the
distribution of the WIMPs in the Galaxy is crucial. The local density, at the Sun
position, is important for direct detection. For indirect detection through the obser-
vation of γ-rays or cosmic rays, it is directly the distribution of matter in the halo
of the Galaxy, which is relevant. For neutrino searches, the relevant density is that
concentrated in the centers of the various possible sources, which is itself related to
the halo density at the position of the concentrating body.

The estimate of the WIMP density ρW involves both observational and theoret-
ical astrophysics. The density profile can be constrained with galaxy star rotation
curves, which allow the reconstruction of the mass profile and by disentangling the
baryon contribution, constrain the dark matter distribution. This technique first led
to empirical laws for the density distribution, referred to as isothermal profiles [19],
with constant rotation velocities and spherical r−2 density distributions. Neverthe-
less, it is rather difficult to estimate the dark matter profile at the center of galaxies;
from the observational point of view, the centers are often difficult to observe and
characterize, and from the theoretical point of view the determination of the pro-
file involves highly nonlinear calculations. The current theoretical understanding
of hierarchical cosmologies and related numerical simulations lead to estimates of
galactic halo profiles often based on the formula:

ρW (r) = ρ0

(r0

r

)γ
(

rα0 + aα

rα + aα

)ε
, (7.1)

where ρ0 = ρ(r0) is a convenient normalization (a frequent choice is r0 = RSun

in our Galaxy), while a fixes the scale radius below which the profile goes as r−γ .
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Normally, two profiles are considered: one [20] profile characterized by the param-
eter set [γ = 1,α = 1,ε = 2], and the other profile [21] by [γ = 3/2,α = 1,ε = 3/2].
These profiles differ mainly in the central region. Nevertheless, the resolution of
these early simulations was not good enough to scrutinize the very center of any
CDM halo and the logarithmic coefficient γ was extrapolated down to small radii.
More recent work shows that the profile seems to become shallower toward the cen-
ter of galaxies, and this is supported by a number of observations, especially of LSB
galaxies and DSph. In particular, the presence of a supermassive central black hole
(SBH) at the center of a galaxy could also steepen the central dark matter profile
depending on the cross interaction between stars, DM, and the SBH itself. Without
forgetting the many uncertainties that affect the shape profile and the mass distribu-
tion in the halo (in addition, a substantial component could be of baryonic origin in
the form of MACHOs), a reasonable starting point for discussing direct detection
experiments are the following standard assumptions for the local halo density [22],
the WIMP density and the WIMP velocity distribution:

• ρ0 = 0.3 GeV cm−3, where ρ0 is the local (Sun position) halo density.
• ρWIMP = ξρ0, with ξ < 1 being the WIMP fraction of the local halo density;
• The WIMP velocity distribution is unknown, but the standard assumption is that

it is Maxwellian:

dn ∝ (πv2
0)
− 3

2 exp

[
−
(

v
v0

)2
]

d3v. (7.2)

To be more exact, v2 should be replaced by |v + vE |2, where vE is the Earth
velocity with respect to the dark matter distribution. In addition, the Maxwellian
should be truncated at |v + vE | = vesc, vesc being the galactic escape veloc-
ity. Usual assumptions for the Maxwellian parameters are v0 = 230 km/s and
vesc = 600 km/s.

An important point for dark matter direct detection concerns the motion of the
Earth inside the dark matter distribution. This motion is the composition of the Sun
motion in the Galaxy and of the orbital terrestrial motion. The velocity of the Sun in
the halo affects the WIMP flux as seen by a terrestrial detector (one speaks about a
“WIMP wind”); in addition, the terrestrial orbital velocity adds to the Sun velocity
in summer and subtracts from it in winter. (Here and in the following, summer and
winter refer to the northern terrestrial hemisphere.) This determines an expected
seasonal modulation [23] (typically up to 7%, but with an important dependence on
the halo models [24]) in the WIMP interaction rate in terrestrial detectors, with a
maximum on 2nd June. As discussed later, this modulation may be a signature for
dark matter identification.

The rotational motion of the Earth can also be responsible for a diurnal modu-
lation in the average impact direction of the WIMPs. This effect, more difficult to
detect but also much more pronounced (the modulation would be of the order of
some 10%), can be a precious tool for dark matter detection as well.
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7.2 Direct Detection of WIMPs via Scattering off Ordinary
Matter

The hypothetical particles composing dark matter and described in Sects. 7.1.2.1
and 7.1.2.2 interact with ordinary matter by scattering off atomic nuclei as a dom-
inant mechanism [25]. Postponing more detailed calculations, it is instructive to
anticipate here order-of-magnitude estimates. For WIMPs with masses of approx-
imately 100 GeV, the local density is about 3000 WIMP per cubic meter and a
flux of 6× 104 WIMPs is traversing each cm2 of our body every second. Another
important aspect is that the average kinetic energy of these WIMPs is 20 keV. This
energy is much larger than the ∼ eV scale binding energy of nuclei in a solid. In
direct searches, the collisions are detected by the measurement of the energy of the
recoiling nucleus, as its kinetic energy is deposited in the detector medium.

7.2.1 Rate and Features of the WIMP-Nucleus Interactions

In order to estimate the rate of collisions between WIMP and nucleons, one needs
to define which elementary force mediates these interactions. Gravitational forces
between a single WIMP and a single nucleus are negligible. Electromagnetic inter-
actions are excluded, since it would mean that WIMP could emit or absorb light.
Indeed, the “WIMP miracle” quoted in Sect. 7.1.2 takes place only assuming that
the behaviour of the dark matter particles throughout the big bang up to now is
ruled by their participation to the weak interactions. If this is the case, this leads to
an estimate of the probability of a collision with a nucleus.

7.2.1.1 WIMP-Nucleus and WIMP-Nucleon Interaction

In particle and nuclear physics, the probability of an interaction is usually expressed
as deriving from a cross-section, with units of surface. If dN/dt is the number of
WIMP-nucleus interactions per unit time, Φ is the WIMP flux and Nt is the number
of target nuclei per volume, we have:

dN
dt

= ΦσANt , (7.3)

where σA is the cross-section for a WIMP-nucleus collision. A typical cross-section
for a collision on a A∼ 100 nucleus involving the nuclear force only is of the order
of the size of this nucleus: 10−24 cm−2 = 1 b. If the nuclear weak force is involved,
the cross-section is at most 1 pb. Typical weak cross-sections on single nucleon
(a proton or a neutron) are even lower than this (∼ 10−7 pb). With such cross-
sections, the interaction rate with the WIMP flux can be expected to be at most one
collision per kilogram of matter per day, possibly as low as one per year and per ton
of detector.
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The reason why the weak cross-section on a A = 100 nucleus is not simply
100 times that on a single nucleon is that the wavelet associated to the momentum
transfer corresponding to a A = 100 nucleus with 20 keV kinetic energy is approx-
imately 3 fm, about the size of the entire nucleus. In this case, one must evaluate
whether the interaction goes through a spin-dependent or scalar (spin-independent)
process. In the first case, only the unpaired nucleon will contribute significantly to
the inter-action, as the spins of the A nucleons in a nucleus are systematically anti-
aligned. In the second case, all nucleon contributions add coherently: the total ampli-
tude scales as A and the total scattering probability as A2. Another mass-dependence
hidden in the scaling from σn to σA is that interaction probability depends on the
density of states in the final state, which in this case implies that σA/σn = μ2

A/μ2
n ,

where μA (μn) is the invariant mass of the WIMP-nucleus (WIMP-nucleon) system.
In summary, the A-dependence of WIMP-nucleus cross-section is:

σA =
μ2

A

μ2
n
σnA2 (7.4)

for the spin-independent case, and

σA =
μ2

A

μ2
n
σnCJ(J + 1) (7.5)

for the spin-dependent case, where C is a factor that depends on the details of the
structure of the nucleus. It cannot be expressed in a simple form, but it is generally
less than unity.

As μ2
A/μ2

n ∼ A2, the interaction rate per kilogram of target mass is proportional
to A3 in the case of spin-independent interactions and only to A in the case of spin-
dependent interactions. Direct searches try to benefit from this scaling by using
targets with as large A as possible. In any model where some part of the interaction
involves spin-independent interactions, this term dominates the cross-section.

It is sometimes stated that the advantageous A2 scaling of the spin-independent
cross-section arises from the fact that the wavelength associated with the momentum
transfer is comparable to the size of the nucleus. To be more precise, full coherence
is only achieved when the associated wavelength is much larger than the nucleus
size. In this case, one has to take into account interference effects that can be calcu-
lated rather precisely using the known form factors. Behind these calculations, there
are detailed nuclear structure models. Here, it suffices to say that the net effect in
most commonly used target material is to reduce the interaction rate by a factor of
2 to 4, which damps the increase due to the A2 dependence when A∼ 100.

7.2.1.2 Effects of WIMP Interactions with Terrestrial Detectors

The interaction of the WIMPs with ordinary matter determines a nuclear recoil
rate in a terrestrial detector. In case of elastic scattering, isotropic in the center of
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mass, the differential energy spectrum of the nuclear recoil dR/dER can be easily
evaluated [22]:

dR
dER

=
R0

E0r
exp

[
−
(

ER

E0r

)]
, (7.6)

where ER is the recoil energy, R0 is the total rate, r is a kinematic factor given by

r =
4MWIMPMN

(MW IMP + MN)2 , (7.7)

MW IMP being the WIMP mass, MN the target nucleus mass, and E0 a characteristic
WIMP velocity expressed by

E0 =
1
2

MW IMPv2
0. (7.8)

When the finite velocity of the Earth in the Galaxy is accounted for, Eq. (7.6) holds
no longer and must be replaced by a more complicate expression, which preserves
anyway an almost exponential shape. Therefore, the expected energy spectrum is
featureless and dangerously similar to any sort of radioactive background, which can
often be well represented by an exponential tail at low energies. The typical energies
over which the spectrum extends can be estimated from the expected MW IMP and
from the nuclear target mass. It is easy to check with Eq. (7.6) that most of the counts
are expected below 20 keV in typical situations, for example, with MW IMP ∼ 50 GeV
and A =∼ 100. This means that the spectrum must be searched for in a region very
close to the physical threshold of most of the conventional nuclear detectors. In the
simplified assumptions that vE = 0 and vesc = ∞, the total recoil rate is given by:

R0 =
(

2

π
1
2

)(
Nav1000

A

)(
ρWIMPv0

MW IMP

)
σ0 (7.9)

where, after a numerical factor, we can identify the number of targets in 1 kg (second
factor), the neutralino flow (third factor), and the cross-section for each target (last
factor). Equation (7.9) predicts rates so low to represent a formidable challenge for
experimentalists. Since WIMPs relevant for the solution of the dark matter problem
are expected to have nucleon cross-section lower than 10−41 cm2, total rates lower
than 1 events/ (day kilogram) and than 10−3 events / (day kilogram) are predicted
for SI and SD couplings, respectively. Figure 7.1 shows the energy recoil spectra for
three different nuclear targets in case of SI coupling.

7.2.1.3 The Seasonal Modulation

As pointed out in Sect. 7.1.2.3, the seasonal modulation of the WIMP interaction
due to the Earth revolution is a possible clue to disentangle WIMP-induced events
from the background [26]. A short simplified discussion of this effect is given here
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Fig. 7.1 Expected energy recoil spectra induced on different targets by a WIMP with M=100 GeV
and σn = 2×10−7 pb (spin-independent interaction), corresponding approximately to the present
sensitivities. Total rates are indicated as well. Nuclear form factors are taken into account.

[27]. Details can be found in other reviews. This point is of paramount importance
since it is at the center of a controversial experimental observation.

In presence of halo WIMP interactions, a component of the background must
present a seasonal modulation with very specific features, hard to mimic with fake
effects:

• Modulation present only in a definite energy region.
• Modulation ruled by a cosine function.
• Proper period: T = 1 y.
• Proper phase: 152.5th day in the year (2nd June).
• Proper modulation amplitude: < 7 % in the maximum sensitivity region.

The features of the expected seasonal modulation are illustrated in Fig. 7.2.
In order to have a signal at 1 σ level, we require:

Ssum + Bsum− (Swin + Bwin) > (Ssum + Bsum + Swin + Bwin)
1
2 , (7.10)

where Ssum and sum are the signal and background counts in summer, while Swin

and Bwin represent the corresponding observables in winter. Equation (7.10) assures
that the difference between the summer and winter number of counts is statistically
significant. If one assumes that:

Bsum = Bwin

Ssum−Swin = a(dR/dE)MdetTΔE

Ssum + Swin = 2(dR/dE)MdetTΔE

Bsum + Bwin = 2(dR/dE)MdetTΔE, (7.11)
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Fig. 7.2 Typical expected behaviour of the recoil rate as a function of time in a 1 year of data
taking. The mechanism inducing the seasonal modulation is illustrated in the inset, showing the
inclined Earth’s orbital plane and the Sun motion in the galactic plane.

where a is the relative modulation amplitude, B is a background coefficient expressed
in events/ (day kilogram keV), dR/dE is an average signal rate per unit mass and
energy, also expressed in events/ (day kilogram keV), Mdet is the detector mass,
T is the experiment duration, and ΔE is the energy range relevant for the signal
expressed in keV. Inserting these observables in (7.10), one gets as a condition on a:

a >

[
2

(dR/dE)MdetTΔE

] 1
2
[

1 +
B

(dR/dE)Mdet

] 1
2 1

(MdetT )

1
2
. (7.12)

The second term in the disequality (7.12) represents the lower limit for the modu-
lation amplitude. Therefore, the sensitivity of the experiment scales as (Mdet T )1/2

since the signal, growing as (MdetT ), is in competition with background fluctuations
growing as (Mdet T )1/2.

Unlike experiments aiming at exclusion plot production, searches for a real sig-
nal imply large detectors and long exposition time. Of course, the same set up can
produce an exclusion plot both from a background measurement and from the non
observation of a modulation amplitude. Increasing the detector mass and the exposi-
tion time, the second method becomes more stringent than the first, since in the first
case, the sensitivity is constant, while in the second case it grows with (Mdet T )1/2.
If we take for example A = 127, energy threshold 20 keV, B∼ 1.5 events/(day kilo-
gram keV), a modulation analysis requires a detector mass around 100 kg to get the
same sensitivity as a simple background analysis, assuming MW IMP ∼ 40 GeV.
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7.2.2 Status of the Experimental Search for WIMPs

A large range of techniques and target materials are currently being used to directly
search for WIMPs. After a general presentation of the strategies aiming at the mea-
surements of the WIMP interactions, a review will be given of the most recent and
significant results.

7.2.2.1 Design of a WIMP Detector

From the above-mentioned discussion, it is immediate to identify the general
features of an instrument able to detect the scattering of WIMPs with ordinary
matter. The appropriate tool is a low-energy nuclear detector with the following
characteristics:

• Very low-energy threshold for nuclear recoils (given the nearly exponential shape
of the spectrum, a gain in threshold corresponds to a relevant increase in sensi-
tivity). Thresholds of ∼10 keV are reachable with conventional devices, while
with phonom-mediated detectors, thresholds down to 300 eV have already been
demonstrated.

• Very low raw radioactive background at low energies. In general, it requires a
hard work in terms of material selection and cleaning to reduce raw background
below 1 events / (day kilogram keV). Backgrounds lower than 10−1 events / (day
kilogram keV) have already been demonstrated. Furthermore, an underground
site is necessary to host high sensitivity experiments, since cosmic rays produce
a huge number of counts at low energies.

• Sensitivity to a recoil-specific observable. This allows to reject the ordinary γ
and β background for which the energy deposition comes from a primary fast
electron. When such an observable is available, the only relevant background
source left consists in fast neutrons, which gives rise to slow nuclear recoils as
the hypothetical WIMPs.

• Sensitivity to a WIMP-specific observable. It is necessary for an indisputable
signature and may consist in the seasonal modulation of the rate, in the diurnal
modulation of the nuclear recoil directions (see Sect. 7.1.2.3), and in the cor-
rect scaling with A of the target of the candidate WIMP-induced spectrum (see
Sect. 7.2.1.1), either using a multi-target detector or comparing experiments with
different detectors.

A simple measurement of a background level performed with a low-energy
nuclear detector produces information on the WIMPs in the galactic halo. Usually,
this information is expressed in the form of an exclusion plot in a (σn, MWIMP) plane.
The challenge is to test those regions in this plane, which are populated by points
corresponding to WIMPs viable for dark matter composition, in the sense explained
in Sects. 7.1.2.1 and 7.1.2.2. A simple background measurement cannot prove the
existence of neutralinos or KK WIMPs; it can only exclude particles with given
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features. The parameters that affect the shape of the exclusion plot are the thresh-
old, the background spectrum and the target mass. The exclusion plot is constructed
by fixing first a WIMP mass: given the nuclear target mass, this allows to deter-
mine the recoil spectrum shape apart from a normalization factor, using the exact
version of Eq. (7.6); the value of σn, which leads the recoil spectrum to touch the
background spectrum at least in one energy bin constitutes the upper limit to σn for
that WIMP mass. (Higher values of σn would produce a recoil spectrum with more
counts in that energy bin than those experimentally observed.) The repetition of this
procedure over the whole mass range provides the exclusion plot.

The effect on the exclusion plot of the relevant detector parameters can be so
summarized:

• reducing the background improves the exclusion plot for any WIMP mass;
• reducing the nuclear target mass, the exclusion plot improves at low WIMP

masses, but worsens at high WHVIP masses;
• reducing the threshold improves the exclusion plot mainly at low WIMP masses.

It is not popular nowadays to operate detectors with low target masses (say
A < 50) since, in this case the region with higher sensitivity is already excluded by
accelerator constraints. It is important to point out that the exclusion plot does not
improve with longer exposition times, once the background level has settled down
to its intrinsic value, or with higher detector masses. Relevant results can, therefore,
be achieved even with small detectors and short measurements, provided that the
background level is low.

7.2.2.2 Double Read-Out WIMP Detectors

As pointed out in Sect. 7.2.2.1, the first ingredient of an effective WIMP detec-
tor is a very low raw background close to the energy threshold, which needs to
be around a few keV. The hypothetical WIMP-induced events are in strong com-
petition with the background events determined by particles that interact electro-
magnetically, such as charged particles and γs originated by residual radioactive
contamination or cosmic radiation. In order to extract a nuclear recoil spectrum
from this dominant electromagnetic background, it is essential to set up a method
enabling to distinguish nuclear recoils from the electron recoils induced by the
electromagnetic background. If this operation is successful, the only background
source left arises from fast neutrons, which determine slow nuclear recoils as well.
The neutron background can be kept under control by combining proper shield-
ing with detector granularity or space resolution. In fact, since the mean free path
of fast neutron is normally in the cm / tens of cm range, there is a high chance
that a fast neutron, unlike WIMPs, undergoes multiple scattering in a large enough
detector.

The event-by-event identification of nuclear recoils can be realized by means of
the so-called “double read-out” detectors and can be performed with three different
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approaches. Without entering the details of the physics of the interaction of radi-
ation with matter, it will be enough to recall here that a fast elementary particle
depositing energy in a material produces in all generality three types of elemen-
tary excitations in the target medium: electron-hole or electron-ion pairs, phonons,
and scintillation photons. The last case requires special properties of the target
(an effective scintillation mechanism and acceptable transparency to the emitted
light). In order to simplify the terminology, we will refer to the three excitation
classes as charge (or ionization), phonons (or heat) and scintillation (or light) in the
following.

Normally, a nuclear detector measures the energy deposited by a particle through
a signal proportional to the amount of elementary excitations belonging to just one
of the three classes. We have for example Ge or Si diodes, which are sensitive to
ionization; bolometers, which are sensitive to heat; scintillators, which are sensitive
to light. In these single-channel devices, the distinction between an event corre-
sponding to an electron recoil and that corresponding to a nuclear recoil is quite
difficult (even if not impossible in particular for scintillators, where different tem-
poral structures of the signal may be used for this purpose). The scenario changes
completely if an instrument is able to provide two distinct signals, proportional to
two distinct classes of excitations. With these hybrid devices, it is possible to form
the ratio between the two signal amplitudes and hence to identify nuclear recoils.
The logic of the double-readout approach is represented by the scheme reported in
Fig. 7.3.

Fig. 7.3 The philosophy of the double read-out approach in a WIMP detector is depicted schemat-
ically. Representative experiments for each class are indicated, together with relevant experimental
parameters (electron-equivalent energy threshold in keV, nuclear recoil energy collection effici-
ency, and operation temperatures of the cryogenic devices).
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To be more quantitative, let us define Sc, Sh, and Sl are the signal amplitudes
related to charge, heat, and ionization, respectively. We can form three ratios,
depending on which type of hybrid detector is involved:

Rc+h ≡
Sc

Sh
for charge + heat hybrid detectors

Rl+h ≡
Sl

Sh
for light+ heat hybrid detectors

Rc+l ≡
Sc

Sl
for charge + light hybrid detectors, (7.13)

These ratios are very useful and represent recoil-specific observables in the sense
specified in Sect. 7.2.2.1. In fact, it happens that in all the three cases R is differ-
ent for events, which determine nuclear recoils from those that determine electron
recoils. In particular,

Rc+h,l+h,c+l[nuclear recoil]
Rc+h,l+h,c+l[electron recoil]

� 1. (7.14)

Usually, the ratios R are taken equal to 1 by construction for electron recoils, and
therefore, a nuclear recoil can be identified when its corresponding R is less than 1
with statistical significance. The distribution of R for electron and nuclear recoils
tend to merge at low energies, when the signal-to-noise ratio is low. If the separation
is good at energies of interest for WIMP-induced recoil, the method enables to reject
efficiently electromagnetic background.

The reasons why the ratios defined in Eq. (7.13) identify nuclear recoils are read-
ily explained. In general, slow nuclei are very inefficient in producing ionization
with respect to fast electrons. A suppression of the light signal is expected too, but
to a less extent. This accounts for the low values of Rc+h and Rc+l for nuclear recoils.
On the contrary, slow nuclei produce a high phonon yield since the energy is directly
delivered to the medium elastic field in this case. This explains the low value of Rl+h

and once more that of Rc+h.
Now we will describe the general features of three classes of double read-out

devices belonging to the three cases discussed above.

1. Charge + Heat. The detectors consist of arrays of large Ge or Si diodes operated
as conventional semiconductor devices (providing the charge signal Sc) with an
additional phonon sensor for the heat signal S− h. The latter element may be
either a properly doped Ge crystal, sensitive to thermal phonons through a strong
dependence of the resistivity on the temperature, or a set of thin superconducting
films sensitive to the out-of-equilibrium phonons produced in first instance by
the impinging particle. The detectors must be operated at very low temperatures,
typically in the range 10–100 mK, in order to work as bolometers and to be sensi-
tive to the phonon signal. It is useful if the total mass is large enough to make the
research competitive in terms of seasonal modulation sensitivity (WIMP-specific
observable). Therefore, the array should consist of tens of individual elements,
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providing also the granularity necessary to reject/assess residual neutron back-
ground. The raw background and the energy threshold must be conveniently
low. The double readout provides the recoil-specific observable Rc+h. Experi-
ments using this approach are CDMS (and its future expansion SuperCDMS)
and EDELWEISS.

2. Light + Heat. The detectors consist of an array of large scintillators with an addi-
tional phonon sensor (these devices are often defined “scintillating bolometer”).
The phonon sensor provides the charge signal Sc. The same considerations as
above repeat for the phonon sensor and for the total mass, threshold, background
and operational temperatures. Light detector converts the scintillation photon in
a signal Sl . A remarkable technical difficulty consists of the necessity to oper-
ate this light detector at very low temperatures, with a very low threshold, in
the few-photon range. Currently, these light detectors have been implemented
through auxiliary bolometers consisting of thin wafers of low specific heat ma-
terials and provided with proper phonon sensors. The light signal is, therefore,
converted into a temperature signal. In this case, the double readout provides
the recoil-specific observable Rl+h. Experiments based on this technology are
CRESST, and ROSEBUD. EDELWEISS, CRESST, and ROSEBUD are joining
their efforts in view of a unified large European cryogenic experiment named
EURECA.

3. Charge + Light. The detectors use liquid noble elements as dark matter target.
These materials are ideal to build large, homogeneous, and position-sensitive
devices. Liquified noble gases are intrinsic good scintillators and have high ion-
ization yields. If a high electric field (∼ 1 kV/cm) is applied, ionization electrons
can also be detected, either directly or through the secondary process of propor-
tional scintillation. In the latter case, the ionization electrons are drifted out of the
liquid in a double phase arrangement, and they are detected through a scintilla-
tion signal produced in the vapor. In this application, a prompt scintillation signal
gives Sl and corresponds to the interaction of the impinging particle in the liq-
uid, while a delayed scintillation signal provides Sc and is proportionally related
to the amount of ionization electrons drifting in the vapor. The recoil-specific
observable Rc+l allows to distinguish between electron and nuclear recoils. Sev-
eral experiments use noble elements for WIMP search: CLEAN, ArDM, WARP,
DEAP, XENON10 and XENON100, ZEPLIN-II and ZEPLIN-III, LUX, and
XMASS.

7.2.2.3 Review of Experiments for Direct Dark Matter Detection

In this section, we will provide a short review of the experiments searching for the
direct interaction of WIMPs and presenting the current more stringent limits. Then,
we will discuss the prospects for the future. Given the large number of projects
searching for dark matter, this review will be incomplete. We will focus on the most
sensitive and relevant searches; however, aiming, at covering the full spectrum of
the technical approaches.
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When renouncing a recoil-specific observable, it is possible to realize detectors
with a simpler structure with respect to those described in Sect. 7.2.2.2. In order
to be competitive, this single-readout devices need to exhibit a very low raw back-
ground spectrum and, at least in prospect, a large total mass, to be sensitive to the
WIMP-specific observable represented by annual modulation (see Sect. 7.2.1.3) and
to compensate in this way the lack of a method for nuclear recoil identification.
Scintillating crystals like sodium iodine (NaI) are a convenient solution to accumu-
late large masses on detector material. However it is difficult to achieve radiopurity
comparable to Ge. NaI-based searches, such as DAMA-LIBRA [28], ELEGANT
[29], or NAIAD [30], originally attempted to use pulse shape discrimination to sta-
tistically identify a WIMP component in their observed rate. It was found that the
low number of detected scintillation photon per keV of incident energy restricts the
usefulness of this method at low energies.

The limitation of pulse shape analysis at low energy enticed the DAMA col-
laboration to turn to a WIMP discrimination based on annual modulation. With a
data set of 290 kg·y recorded with a 87.3 kg array of NaI scintillators over 8 years
in the Laboratori Sotterranei del Gran Sasso (Italy), DAMA reported the observa-
tion of a modulation originally interpreted as a WIMP with a mass of 52 GeV and
σn = 7.2×10−42 cm2. Such a result corresponds to a total rate of approximately 1
nuclear recoil per kg·day above a threshold of 2 keV (over an energy scale calibrated
with electrons). The effective threshold for a iodine nucleus recoil is 22 keV since,
in this case, it holds for the so-called quenching factor Q:

Q =
Sl[nuclear recoil]
Sl[electron recoil]

= 0.09. (7.15)

This result was confirmed by the subsequent expansion of the DAMA experiment,
named LIBRA, comprising 232.8 kg of NaI detectors (see Fig. 7.4). With a much
higher statistics corresponding to 530 kg·y, the modulation effect was confirmed at
a 8.3 σ confidence level [31]. The period of the modulation (T = 0.998±0.003 y),
its phase (t0 = 144±8 days), and the involved energy region (2-6 keV with electron

Fig. 7.4 The controversial annual modulation of the counting rate observed by the DAMA/LIBRA
experiment in the Gran Sasso Laboratory, first with 83.7 kg (larger error bars), later with 232.8 kg
detector mass (small error bars). (Figure adapted from e-Print arXiv:0804.2741v1.)
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calibration) correspond exactly to what expected by the interaction with particles
composing the galactic halo, as pointed out in Sect. 7.2.1.3. The rate can be fitted
by the relationship:

R(E,t) = S0(E)+ Sm(E)cos[ω(t− t0)] (7.16)

with Sm = (0.0215± 0.0026) counts/(day kg keV). In spite of these remarkable
correspondences between the experimental results and the expected signature for
WIMP detection, reconciliating the reported modulation effect with the published
exclusion limits based on other direct and indirect searches requires very strong ex-
cursions from the usual supersymmetric neutralino scenario depicted in Sect. 7.1.2.1.
The DAMA-LIBRA collaboration has put forward several possible explanations
of this effect, pointing at more exotic models for dark matter particles, that could
interact electromagnetically and result, therefore, invisible for searches that reject
electromagnetic background through the double-readout approach. An independent
cross-check with NaI will be provided by ANAIS [32] (Laboratorio Subterràneo de
Canfranc, Spain) with more than 100 kg of NaI detectors. The DAMA-LIBRA result
will be also scrutinized with a similar technology by the Korean group KIMS [33],
which is developing low background CsI crystal detectors with low threshold for the
direct WIMP search.

Among the searches based on a single-readout approach, it is worth mention
experiments based on pure ionization Ge detectors with a very low threshold and
an impressively low raw background (TEXONO [34] and CoGeNT [35]). In spite
of their inability to identify nuclear recoils, these searches reach excellent sensi-
tivities at low WIMP masses, both for the spin independent and spin dependent
channels. A recent result achieved by CoGeNT [36] is particularly relevant. An
irreducible exponential background at low energy, close to the record threshold of
400 eV (electron-calibrated energy scale), is compatible with the signal expected by
a light WIMP (7-11 GeV) with spin independent coupling. It has been proposed [37]
that a population of relic neutralinos can fit these results, the DAMA/LIBRA data
on the annual modulation effect, and a tiny effect observed by the CDMS collabo-
ration, discussed later. This coincidence needs to be further investigated in searches
sensitive to low mass region.

We shall review now experiments based on bolometers. As already pointed out
in Sect. 7.2.2.2, cryogenic calorimeters [38] are meeting crucial characteristics of a
successful WIMP detector: low-energy threshold (< 5 keV), excellent energy reso-
lution (< 1% at 10 keV), and the ability to differentiate nuclear from electron recoils
on an event-by-event basis. Their development was driven by the exciting possibil-
ity of doing a calorimetric energy measurement down to very low energies with
unsurpassed energy resolution. Because of the T 3 dependence of the heat capacity
of a dielectric crystal, at low temperatures, a small energy deposition can signifi-
cantly change the temperature of the absorber. The signal is recorded either after
the phonons reach equilibrium, or thermalize, or when they are still out of equilib-
rium, or athermal, the latter providing additional information about the location of
an event.
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CDMS [39] and SuperCDMS [40] belong to class 1 “charge + heat” of the
three introduced in Sect. 7.2.2.2. The Cold Dark Matter Search experiment operates
30 low-temperature Ge and Si detectors at the Soudan Underground Laboratory in
Minnesota (USA). The dark matter targets are high-purity Ge and Si crystals with
a flat cylindrical shape, 1 cm thick, and 7.6 cm in diameter. The single crystal mass
is 250 g and 100 g, respectively. Charge electrodes are used for the ionization mea-
surement. They are divided into an inner disk, covering 85% of the cylinder base,
and an outer ring, which is used to reject events near the edges of the crystal, where
background interactions are more likely to occur. Superconducting transition edge
sensors photolitographically patterned onto one of the crystal base detect the ather-
mal phonons from particle interactions, providing ∼1-mm space resolution in the
x-y plane. If an event occurs close to the detector’s base, the phonon signal is faster
than for events far from the surface, because of phonon interactions in the thin metal-
lic films. The risetime of the phonon pulses and the time difference between the
charge and phonon signals, allow to reject surface events caused by electron recoils.
This spacial resolution in the z coordinate is crucial, since close-to-surface elec-
tron recoils may give rise to incomplete charge collection and mimic nuclear recoils
(see Fig. 7.5). Presently, together with XENON, CDMS has set the most stringent
limit on WIMPs, publishing a spin-independent WIMP-nucleon cross-section of
(3.8×10−44 cm2 at 70 GeV mass. This limit does not come from a zero-background

Fig. 7.5 Rejection power for electron recoils of the CDMS detector. The top graph shows the
ionization yield (a quantity proportional to Rc+h defined in the text) as a function of the recoil
energy without cuts on the pulse risetime. The red lines define the low Rc+h region corresponding
to nuclear recoils. The bottom graph shows the same parameter space after application of the time
cuts described in the text, which reject surface events mimicking nuclear recoils. No counts in the
signal band is registered above 10 keV threshold (dashed blue line) in an exposure of 121.3 kg·day.
(Figure adapted from e-Print arXiv:0802.3530v2.)
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exposure. Two events in the WIMP acceptance region at recoil energies of 12.3 keV
and 15.5 keV were observed. The probability to have observed two or more surface
events in this exposure is 20.

The EDELWEISS experiment operates Ge bolometers at ∼20 mK in the Lab-
oratoire Souterrain de Modane (France) [41]. This search uses the “charge + heat”
approach as well. The bolometers simultaneously detect the phonon and the ioniza-
tion signals, allowing a discrimination against bulk electron recoils of better than
99.9% above 15 keV recoil energy. The charge signal is measured by Al elec-
trodes sputtered on each side of the crystals, while the phonon signal is recorded
by a Ge neutron transmutation-doped (NTD) heat sensor glued onto one of the
charge collection electrodes. The NTD sensors read out the thermal phonon sig-
nal on a time scale of about 100 ms, and cannot provide space information as in the
CDMS case. Therefore, EDELWEISS has the problem to reject close-to-surface
events. In the past, much effort was dedicated to a design based on NbSi thin-
film sensors. These films, being sensitive to the athermal phonon component of
the signal, show a strong difference in the pulse shape, depending on the interaction
depth of an event. Now, a very promising new design of the charge collection elec-
trodes, based on an interdigit pattern [42], has allowed to reject with high-efficiency
surface events using the ionization channel. Thanks to these additional tools, the
present sensitivity of EDELWEISS is expected to be very high and competitive
with XENON and CDMS. This expectation has been confirmed by the initial results
of EDELWEISS-II [43], which has brought this experiment into the leading group
with a limit of ∼ 10−43 cm2 at !0 GeV mass. The EDELWEISS-II set-up uses a
specially developed 50 liter low-radioactivity dilution refrigerator, able to house up
to 120 detectors. The collaboration seems to have in its hands the technology and
the means to achieve a sensitivity below 10−44 cm2 in the next years.

The CRESST collaboration has developed cryogenic detectors based on CaWO4

crystals [44], which show a higher light yield at low temperatures compared with
other scintillating materials. The detectors are also equipped with a separate, cryo-
genic light detector, presently consisting of a sapphire wafer of 40 mm diameter and
0.4 mm thickness, with an epitaxially grown silicon layer on one side for photon
absorption. The light detector is mounted close to a flat surface of the scintillat-
ing crystal. The temperature rise in both CaWO4 and light detector is measured
with tungsten superconducting phase transition thermometers, kept around 10 mK,
across their transition between the superconducting and normal conducting state.
A nuclear recoil in the 300 g CaWO4 detector has a different scintillation light
yield than an electron recoil of the same energy, allowing to discriminate between
the two type of events according to the principles exposed in Sect. 7.2.2.2 for the
second “light + heat” detector class. The advantage of the CRESST approach is the
low-energy threshold in the phonon signal, and the fact that no light yield degrada-
tion for surface events has been detected so far. The limitation is in that only a few
tens of photons are emitted per keV electron recoil, a number that is further dimin-
ished for nuclear recoils, because of the involved quenching factors. The experiment,
located in the Laboratori Nazionali del Gran Sasso (Italy), was recently upgraded
with a 66-channels SQUID readout system, with a neutron moderator made out of
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polyethylene, and with a scintillator muon veto. The whole structure, cooled down
to 10 mK, can accommodate 33 detector modules, for a total target mass of about
10 kg. Data obtained with two detector modules for a total exposure of 48 kg·days
show only three events in the tungsten recoils acceptance region, corresponding to
a rate of 0.063 per kg·day. Standard assumptions on the dark matter flux, coher-
ent or spin-independent interactions, yield a limit for WIMP-nucleon scattering of
4.8×10−43 cm2, at MW IMP ∼ 50 GeV. The few events observed in the nuclear recoil
region are not compatible with the neutron background estimated with Monte Carlo
simulations. There is at the moment no conclusive explanation for these few candi-
date events from conventional radioactive or particle sources.

The expertize developed by EDELWEISS, CRESST, and ROSEBUD [45]
(another class 2 experiment at the Laboratorio Subterràneo de Canfranc) represents
the basis for the proposed design study EURECA (European Underground Rare
Event search with Calorimeter Array), aiming at the development of a 100 kg-1 ton
cryogenic, multi-target experiment located in the Laboratoire Souterrain de Modane
(France) [46].

We shall move now to experiments belonging to class 3 “charge + light”, dis-
cussed in Sect. 7.2.2.2. The XENON collaboration has operated a 15 kg (active
mass) dual phase detector time projection chamber in the Laboratori Nazionali del
Gran Sasso, named XENON10 [47]. It uses two arrays of UV-sensitive photomul-
tipliers (PMTs) to detect the prompt and proportional light signals induced by par-
ticles interacting in the sensitive xenon volume. The bottom array of 41 PMTs is
located below the cathode, fully immersed in LXe, and mainly detects the prompt
light signal. The 48 PMTs of the top array are located in the cold gas above the
liquid, detecting the proportional light. XENON10 has full 3D position sensitivity:
the time separation between the two pulses of direct and proportional light (with a
of maximum 75 μs) provides the event depth of an interaction (< 1 mm resolution),
the hit pattern in the top PMT array providing the x-y position (few mm resolution).
In addition to the recoil-specific observable Rc+l , the position sensitivity, along with
the self-shielding of liquid xenon, serves as an important background rejection fea-
ture. Based on calibration and on a period of nonblind WIMP search data, the WIMP
search region was defined between 4.5 and 29.6 keV nuclear recoil energy, 3σ be-
low the mean of the nuclear-recoil band (thus, at 50% nuclear recoil acceptance).
The rejection power can be appreciated in Fig. 7.6. From a total of 1800 events
in the 58.6 live days of blind WIMP search data, 10 events were observed in the
WIMP search region, with 7.0+1.4

−1.0 events expected based on statistical (Gaussian)
leakage alone. Given the uncertainty in the number of estimated leakage events
from electron recoils (no neutron = induced recoil events were expected for above
exposure), conservative limits with no background subtraction were calculated for
spin-independent WIMP cross-sections. The 90% C.L. upper limit for MWIMP ∼
100 GeV is 8.8×10−44 cm2, the most stringent ever obtained together with CDMS.
The XENON collaboration has now installed in Gran Sasso XENON100 [48]
with an active target of 62 kg of ultrapure liquid xenon. The global detector con-
figuration is substantially a scaling up of the XENON10 structure. However, the
raw background is about two orders of magnitude better, because of the selection
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Fig. 7.6 Rejection power for electron recoils of the XENON detector. The top graph shows Rc+l

in log scale as a function of the nuclear recoil equivalent energy, with events generated by a γ
calibration source. The bottom graph shows the same parameter space with nuclear recoil events
generated by a neutron source. The separation between the two event classes is apparent, even if not
so complete as in the phonon + ionization detectors. A high rejection power (> 99.5%) is obtained
only by defining an acceptance box at low Rc+l with 50% efficiency for nuclear recoils.(Figure
adapted from e-Print arXiv:0706.0039v2.)

of low-activity materials and the location of the cryocooler (a possible source of
radioactive background) outside the shields and the veto. The dark matter search
has started at the end of 2009, and the first preliminary results are very promising,
with a limit of 3.4×10−44 cm2 for 55 GeV WIMP mass. Its expected sensitivity
extends down to cross-sections of the order of 2×10−45 cm2 for standard WIMPs
inducing nuclear recoils. In addition, the preliminary runs exhibit a very low raw
background, of the order of 0.02 counts/(kev kg day) below 10 keV with 50 kg fidu-
cial volume. This performance could enable XENON100 to switch off the recoil
identification mode and to look at the raw spectrum in order to check if a seasonal
modulation appears, as in the DAMA experiment, when searching for particles with
electromagnetic interactions. On the contrary, the capability of XENON100 to con-
strain low WIMP masses, as those to which CoGeNT is sensitive, is controversial,
due to a confuse experimental situation about the light yield of slow nuclear recoils
in liquid xenon. For recent measurements of this parameter, see [49] and references
therein.

Other searches, here only mentioned, exploit the charge + light mode to reject
nuclear recoils. Besides XENON, LUX [50] and ZEPLIN-III use xenon as sensitive
material as well. The recent results of ZEPLIN-III are competitive with the best
ever obtained with double-readout experiments [51]. WARP [52] and ArDM [53] are
based on a double-phase argon target. With respect to xenon, argon has an additional
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tool able to perform nuclear vs. electron recoil discrimination, that is pulse shape
analysis in the primary scintillation signal. However, the lower A makes cross-
section for spin-independent interaction significantly lower. Other experiments use
liquid target without recoil discrimination, aiming at a very low raw background and
a large mass, like the Japanese XMASS [54] (xenon as target), CLEAN [55] (neon
as target) and DEAP [56] (argon as target).

It is worth mention also a more exotic approach, which might lead to an
unexpected breakthrough in the direct search for dark matter. The idea is to build
large WIMP detectors using superheated liquids. An energy deposition can destroy
the metastable state, leading to the formation of bubbles, which can be detected
and recorded both acoustically and optically. Since a minimal energy deposition is
required to induce a phase-transition, these detectors are so-called threshold devices.
The operating temperatures and pressure can be adjusted such that only nuclear
recoils (large stopping powers dE/dx) lead to the formation of bubbles. COUPP
[57], PICASSO [58], and SIMPLE [59] belong to this class of experiments.

Finally, directional experiments deserve a special mention. As pointed out in
Sect. 7.1.2.3, a diurnal modulation is expected, since all the nuclear recoils induced
by WIMP events should globally point at the Cygnus constellation direction due
to the Earth motion in the Galaxy. A strong forward/backward asymmetry is then
expected, once taking into account the Earth rotation. This is a powerful signature,
which cannot be mimicked by any conceivable background source. The challenge is
to measure 3D tracks of low-energy nuclear recoils with directional detectors based
on low-pressure gas chambers. Low pressures (of the order of few tens of torr)
are required for the slow nuclear recoil to have an appreciable range. This makes
quite difficult to increase the sensitive mass. However, order of 10 events would
be sufficient to provide a sgnificant signal. The projects belonging to this class are
DRIFT-II [60], DM-TPC [61], NEWAGE [62], and MIMAC [63].

Summarizing, the experiments with the current higher sensitivities to WIMPs
are CDMS and XENON. They represent the two most promising appoaches to this
search in terms of discovery potential (charge + heat and charge + light). The future
will tell us which method is more effective to reach sensitivities in the 10−46 cm2

range, necessary to explore most of the parameter space for SUSY and KK WIMPs.
The competition between these two collaborations and technologies can be appre-
ciated in Fig. 7.7, showing the SI cross-section experimental bounds. The limits
shown there will be improved soon, since both collaborations are performing runs
with higher statistics and improved apparatus. In addition, other searches have the
potential to get similar or better performance, e.g., EDELWEISS-II [43], whose new
results are expected at the end of 2009 or beginning of 2010.

7.3 Indirect Detection via Annihilation of Dark Matter Particles

The self-annihilation rate of WIMPs is proportional to the square of the particle
density. Therefore, the rates and experimental sensitivities for all indirect searches
depend heavily on the dark matter distribution. The most obvious annihilation
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Fig. 7.7 Spin-independent WIMP-nucleon cross-section σn upper limits (90% C.L.) as a function
of the WIMP mass, with CDMS results compared with the present most sensitive searches. The
CDMS data are reported in three curves: the lower solid curve (black) is the combined analysis of
all the data; the upper solid curve (red) refers to the last set of data, released in 2009; the upper curve
(dash dot) is the result of a re-analysis of CDMS data taken in 2008. The calculated sensitivity
of the CDMS experiment is reported as well. Parameter ranges expected from supersymmetric
models described in two different theoretical papers are also reported.(Figure adapted from e-Print
arXiv:0912.3592v1.)

source is the center of the Galaxy, where the dark matter density is expected to
rise substantially, even though the shape of the density profile is controversial (see
Sect. 7.1.2.3). The hypothesized accumulation of dark matter around the central
black hole of the Galaxy is rather contested. A model predicts a dark matter spike
with a distribution ρ(r) ∝ r−A, with 2.25 < A < 2.5 [64], which could provide large
fluxes in particular in neutrino searches. There has been an extensive discussion
about the existence of this dark matter spike and the situation remains unclear, at
the point that a null search for annihilation radiation from the galactic center could
not be interpreted as evidence against WIMP dark matter, due to the uncertainty on
this matter distribution.

Other sources are considered besides the galactic centers. Enhancements of the
dark matter annihilation rate are often discussed, arising from the existence of dark
matter substructures within halos of galaxies, named clumps. In terms of the observ-
able cosmic-ray flux, the presence of such over-densities are often translated into a
so-called boost factor applied to the whole primary spectrum [65]. However, the
situation is rather unclear and controversial concerning the possible values of this
boost factor.

The accumulation of dark matter in massive objects is less controversial and is
proposed for the Sun and the Earth for any WIMP-like particle. After the encounter
of a WIMP with a massive celestial object, it may happen that the WIMP velocity
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becomes less than the escape velocity and the particle gets gravitationally trapped.
The particles then migrate and accumulate at the core of the massive object. At
the core, the density of WIMPs is such that annihilations take place and the bal-
ance between accumulation and annihilation can lead to equilibrium in very massive
bodies such as the Sun. In the case of less massive bodies, such as the Earth, this
equilibrium is not yet attained and the lower density continues to increase.

7.3.1 Introduction to Annihilation Mechanisms and Products

In order to be able to self-annihilate, any dark matter candidate must either be a
Majorana particle or a Dirac particle with no matter-antimatter asymmetry. The
weak interaction cross-section required by the cosmology constraints (the so-called
“WIMP miracle”) implies that a high local density of the particles is essential to
have an experimentally observable rate, the annihilation rate being related quadrati-
cally to the density. In all the possible annihilation sites, the relative velocity of the
WIMPs is low and usually annihilation rates are calculated in the null velocity limit.
In this limit, the annihilation products at the leading order in perturbation theory are
mostly pairs of standard model fermions/antifermions and neutral pair combinations
of gauge or Higgs bosons of all types. Any annihilation product χ + χ → A + B
is potentially created if kinematically allowed, i.e., 2mχ > mA + mB. The particle
species observed in the experiments are the results of decays and hadronization of
the tree level final state particles. Further, mainly for the charged particle species, it
is crucial to take into account propagation and interaction effects between the source
and the Earth.

7.3.1.1 Annihilation Channel in SUSY

In supersymmetric WIMPs, the features of the annihilation mechanism are strictly
related to the gaugino/higgsino content of the neutralino. Only the higgsino and
wino parts of the neutralino allow couplings to the gauge bosons, so that only
mixed, higgsino- or wino-like neutralinos can annihilate into massive gauge and
Higgs bosons (Z0Z0, W+W−, Z0h(H), Z0A, W+/−H−/+, H+H−, and pair combi-
nations of A, h, H). We remind that H+, H−, A, h, and H are the five Higgs bosons
expected in MSSM (see Sect. 7.1.2.1). These configurations occur in the general
MSSM when the Higgs mass parameter μ ≤ M1, M2, as well as in the mSUGRA
when the unified scalar mass, m0, is in the multi-TeV range (the so-called focus
point regions).

For annihilation in fermion/antifermion pairs and in the low velocity limit,
annihilation at rest prevents neutralinos from having their spins parallel, due to Pauli
blocking. This results at the end into the helicity suppression of low mass and mass-
less fermion/antifermion pairs in the final state. For massive fermions, this favors
the pair creation of down-type quarks, with an enhancement factor of tanβ , whereas
there is a (tanβ )−1 suppression factor for up-type quark pair production. Hence, the
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bottom dominates over the top quark final states and the τ is the only charged lepton
created.

Since mSUGRA neutralinos are bino-like in most of the parameter space, they
will mainly annihilate into bb̄ pairs with pair production of τ also often relevant.
When massive enough and when carrying a higgsino or wino component, neutrali-
nos will annihilate into massive gauge bosons, for instance, in the general MSSM, in
focus point regions of mSUGRA, in nonunified gaugino mass models and in AMSB
models.

7.3.1.2 Annihilation Channel in Theories with Extradimensions

As already pointed out in Sect. 7.1.2.2, the LKP in UED is generally the B(1), the
first KK excitation of the hypercharge boson and, therefore, a vector particle. As
such, it does not suffer the constraint of helicity suppression of low mass final
fermion states in the annihilation rates. Moreover, the annihilation amplitudes are
simply proportional to the square of the hypercharge of the generated particles,
leading to a neat phenomenology if compared with SUSY. The annihilation gives
rise mainly to pairs of charged leptons (∼ 20% per generation), in up-type quarks
(∼ 11% per generation), Higgs bosons (∼ 2.3%), neutrinos (∼ 1.2% per gener-
ation), and down-type quarks (∼ 0.7% per generation). Since the preferred mass
range is above 400 GeV for LKPs, all standard model particles are created through
annihilation.

In other ED models, the annihilation products depend on the WIMP mass. Once
again, for low masses, these products are mainly quarks, neutrinos, and charged
leptons, while the dominant channels are tt̄, W +W− and Zh for high masses.

In a sentence, the most significant difference in the annihilation channels in ED
theories is the possibility of creating charged lepton and neutrino pairs that are sup-
pressed in SUSY phenomenologies.

7.3.1.3 Energy Spectrum of Final Annihilation Products

Indirect detection is based on precise signatures, which derive from a detailed
knowledge of the injected cosmic-ray spectrum. In the case of γ-rays and neutri-
nos, the propagation is direct, and the detected spectrum can only be affected by
absorption and also by oscillations for neutrinos. On the contrary, charged particles
are sensitive to diffusion in magnetic turbulence and details of their shapes are likely
to be deformed during their travel to the Earth. Spectral information is in any case
essential to extract a primary signature of dark matter annihilation from a conven-
tional cosmic-ray background.

The clearest signatures for a detection would be single energy lines in γ-ray,
neutrino or charged lepton cosmic ray spectra, which would give unambiguous
information about the WIMP mass as well. However, γ-ray lines are suppressed
in all models considered here, making them a weak signal. In ED theories,
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due to lepton/antilepton pair production, neutrino lines could emerge from the
continuum contribution. Electron/positron pairs can also be produced with signif-
icant branching ratios up to 20%, so distorting clearly the primary spectrum despite
propagation effects.

All annihilation mechanisms resulting into quark/antiquark pairs or massive
bosons are followed by parton fragmentation, which gives rise to charged and neu-
tral pions sharing equally the energy budget. These hadronic cascades give rise to a
continuum spectrum for γ-rays, neutrinos, and for antimatter cosmic rays (positrons,
antiprotons, antideuterons). The spectrum details can be estimated either with Monte
Carlo simulations or directly from parameterized fragmentation functions with sim-
ple phase space arguments. In both cases, the resulting spectra generally exhibit
a simple dependence on the WIMP mass.

The W+W− decays are recognizable; thanks to particular spectral features for
positron and neutrino production due to the large branching ratios of W → νl.

7.3.2 Indirect Search Exploiting the Antimatter Component
in Cosmic Rays

The indirect dark matter searches aim at detecting rare species of particles in the
cosmic-ray extra-atmospheric flux, generally antimatter components, which are not
expected to be involved in the cosmic acceleration mechanisms. Of course, sec-
ondary interactions take place during the propagation of the primary cosmic rays
and generate antiparticles. Therefore, in order to observe an indirect dark matter sig-
nal in the data, it is essential to have accurate background estimates of the antimatter
component. The efficacy of the indirect searches relies on the confidence of the flux
and energy spectra used in these background calculations. The data on charged par-
ticle spectra in cosmic rays come from experiments in the high atmosphere flying in
balloons or above it in satellites.

Positrons are a rare component in cosmic rays. Electrons themselves represent
only 1–2% of the total of the cosmic-ray flux reaching the Earth, and the positron
component is only ∼ 10% of the electron flux at ∼1 GeV. As above mentioned
it is expected that the bulk of electrons are primary particles injected and acceler-
ated, in cosmic accelerators, while the positrons are secondary interaction products
originated by nuclear collisions in interstellar matter. Antiprotons are an even rarer
component of the cosmic-ray flux than positrons: the antiproton/proton flux ratio is
only 10−5 at 1 GeV. As for the positron case, antiprotons are mainly produced in
collisions of primary cosmic-rays with the interstellar medium.

A historical balloon experiment looking for positrons in the cosmic-ray flux is
the high-energy antimatter telescope [66], which reported a longly disputed excess
in the positron data with respect to the estimated background. Presently, the leader
apparatus in this search is the space-based PAMELA [67] (which can provide also
antiproton measurements), whose results will be discussed in Sect. 7.3.3.1, together
with those about the global cosmic ray electron spectrum achieved by ATIC [68]
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and PPB-BETS [69] (balloon), and now Fermi-LAT (space) [70]. At very high
energy, the ground-based experiment H.E.S.S. [71] can measure the electron com-
ponent through the identification of the initial electromagnetic nature of the atmo-
spheric cascades. Precise antiproton data were copiously collected previously by
the balloon-borne experiment with a superconducting spectrometer (BESS) detec-
tor [72], while other data came from AMS-01 [73] and CAPRICE [74] experiments.
In the future, AMS-02 will provide a formidable wealth of information given its
complex and complete structure [75]. It is an actual high-energy particle physics
experiment in space, scheduled to be launched in 2010 for a 3-year mission. The
AMS-02 detector is a complete particle spectrometer with different elements de-
signed to measure particle type and kinematic parameters.

7.3.3 Indirect Search with γ-rays and Neutrinos

The great advantage in searching for dark matter through annihilation to γ rays is
that this channel retains the information of the source location, in contrast to charged
cosmic rays that are diffused by the galactic magnetic turbulence. Hence, γ-rays
provide an additional experimental signature in the indirect dark matter searches,
and further, γ-rays allow searches beyond the Milky Way into other galaxies in
the local cluster. The experiments performing dark matter searches with γ-rays are
space-based for low energies and ground-based for high energies. Of course, even
in this case, the signal has to be disantangled from a background represented by a
continuum in the energy spectrum.

The main γ-ray production mechanism that contributes to this diffuse flux, at
energies from 100 MeV to tens of GeV, is the interaction of charged cosmic rays
with the interstellar matter, which produces π0 and consequently γ-rays via their
decay: π0 → γ γ . Other sources are the inverse Compton scattering of cosmic-
ray electrons off the interstellar photons and the electron bremsstrahlung in the
interstellar medium. The complexity of the involved phenomena explain why the
γ-ray background calculations contain significant uncertainties, which complicate
the interpretation of the experiments searching for dark matter in this channel.

A historical survey of the γ-ray sky was made by the space-based instrument
EGRET [76] in the 1990s. Even in this case, an excess with respect to background
prediction was interpreted as a possible dark matter signal, even if not conclusively.
At very high energies, the γ-ray telescopes CANGAROO [77], Whipple [78], and
the already quoted HESS have observed γs coming from the galactic center regions.
In the low-energy region (∼ MeV), most of the information in the past was col-
lected by the experiment INTEGRAL [79]. Presently, the γ-ray sky is observed by
the satellite AGILE [80] (up to 50 GeV) and by the already mentioned Fermi-LAT
(prepared and launched with the name GLAST), which has extended the energy
range up to 300 GeV.

As γ-rays, neutrinos are not deviated by magnetic fields and so point back to
their source. In addition, their weakly interacting nature allows them to exit from
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annihilation sources embedded inside dense matter distributions such as the centers
of the Sun and the Earth. Unfortunately, this same nature implies that very massive
detectors are needed to detect neutrinos. With the present and projected generation
of neutrino telescopes (ANTARES [81], NESTOR [82], NEMO [83], Baikal [84],
AMANDA [85], ICECUBE [86], KM3NET [87]), only dark matter concentrations
in massive bodies could give detectable annihilation fluxes and those from the galac-
tic halo are negligible.

7.3.3.1 The PAMELA Effect

The PAMELA telescope [88] is a complete particle detector containing a magnetic
spectrometer, a silicon tracker, a time-of-flight system, an electromagnetic calorime-
ter and also a neutron detector. The geometrical acceptance of the detector is
∼20 cm2 sr. The detector was launched from Baikonour on June 15, 2006 on the
Russian Resurs DK1 satellite.

Recently, the data collected by PAMELA generated discussions and expectations
inside the cosmic-ray and dark-matter scientific communities [90, 91]. The reason is
that the PAMELA positron fraction data exhibit a very clear excess above∼10 GeV,
as reported in Fig. 7.8. This feature cannot be explained by secondary production.

Fig. 7.8 The positron fraction observed by PAMELA [67] compared with a theoretical model
[89]. The solid line shows a calculation for pure secondary production of positrons induced by the
propagation of cosmic-rays in the Galaxy. Between 5–10 GeV, the PAMELA positron fraction is
compatible with other measurements, not shown here. The PAMELA data at low energies (below
10 GeV) differ from the theoretical model because of solar modulation effects. (Figure adapted
from e-Print arXiv:0810.4995.)
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The data show also a change in the positron fraction data below ∼10 GeV (when
compared with previous searches), which is probably due to the solar modulation
and change in the polarity of the solar magnetic field with respect to the previous
cycle. These results were and are interpreted in terms of annihilation of dark matter
particles in our Galaxy. However, this is not the only interpretation, and further, it
is not the most convincing. Therefore, the PAMELA collaboration has resisted to
the temptation to claim the discovery of dark matter. There are actually competing
astrophysical sources, such as pulsars, that can originate an additional relevant flux
of primary positrons and electrons.

It is worth mention that an independent confirmation about an anomalous
behaviour of the lepton component in cosmic rays comes from measurements of
high-energy electrons. The cosmic-ray electron flux was not measured very pre-
cisely in the past, in particular at high energies because of the very steep spectrum,
that requires a high rejection power and long exposure.

Simulations of the electron propagation from local sources has shown that fea-
tures in the electron spectrum may be expected in the TeV range where the flux of
Galactic cosmic-ray electrons gradually steepens. On the other hand, annihilation of
KK particles may produce spectral features in sub-TeV range. The first indication
of a feature (or excess) in the electron spectrum at a few hundred GeV came from
PPB-BETS flight a couple of years ago, while a recent confirmation of the excess by
ATIC gives more confidence that we are not in presence of an instrumental artifact.

The anomalies registered by PAMELA and complemented by ATIC / PPB-BETS
observations (an unexpected bump in the total electron + positron flux in the
300–600 GeV energy range) need to be integrated with the very recent results of
Fermi-LAT about the electron–positron component in cosmic rays. This experiment
has reported high precision measurements of the energy spectrum of these particles
between 20 GeV and 1 TeV. The spectrum shows no prominent spectral features,
and is significantly harder than that inferred from several previous experiments.

The combined analysis of the available recent results show that, while the
reported Fermi-LAT data alone can be interpreted in terms of a single component
scenario, when considering other complementary experimental results several com-
binations of parameters, involving both the pulsar and dark matter scenarios, allow
a consistent description of the observations. These complementary results are, in
particular, the positron fraction reported by PAMELA and the cosmic ray electron
spectrum measured by H.E.S.S.

A logic path to the interpretation of the observations consists of a first step which
takes into account only the Fermi-LAT, H.E.S.S., and low-energy electron data [91].
The spectra can be reasonably explained by a conventional cosmic ray diffusion
model. The agreement between data and observations improve either by following
a “statistical” approach, which tries to estimate the effect of the stochasticity of the
sources (assumed as active supernova remnants), or by trying to model the contri-
bution of actually observed nearby sources.

The second step involves the consideration of the positron PAMELA data. Here,
a serious problem occurs: the positron fraction foreseen by the conventional diffu-
sion model, corrected with any possible source effect, is totally inconsistent with
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Fig. 7.9 The positron fraction observed by PAMELA [67] and other experiments compared with
a calculation (black dotted line) for pure secondary production of positrons induced by the propa-
gation of cosmic-rays in the Galaxy (large-scale galactic component) and with a calculation taking
into account observed pulsars with distance <1 kpc (blue continuous line) [91]. Two close pulsars
(Monogem and Geminga) give a dominant contribution. The PAMELA anomaly can be accounted
for considering the nearby pulsar contributions. (Figure adapted from e-Print arXiv:0905.0636v3.)

the PAMELA results. In particular, the precise measurements provided by Fermi
with its hard ∼ E−3 observed electron spectrum aggravate the inconsistency with
respect to the pre-Fermi situation. The models which explain the Fermi data do not
account for the rise in the positron fraction seen by PAMELA. Some additional
sources of positrons are required. However, no new physics is needed to concil-
iate data and models. In particular, pulsars are undisputed sources of relativistic
electrons and positrons, believed to be produced in the magnetosphere and possi-
bly reaccelerated by the pulsar winds or the supernova remnant shocks. At energies
between 100 GeV and 1 TeV, the electron flux reaching the Earth may be the sum
of an almost homogeneous and isotropic cosmic-ray component produced by galac-
tic supernova remnants plus the local contribution of a few pulsars, with the latter
expected to contribute more and more significantly as the energy increases [91]. The
quantitative predictions based on this assumption are in remarkable agreement with
the whole set of data (see Fig. 7.9).

Of course, a dark matter annihilation contribution to the observed positron effect
cannot be totally excluded. A dark matter interpretation of the Fermi-LAT and of
the PAMELA data is an open possibility. However, this interpretation is disfavored
for at least the three following reasons [91]:

1. Astrophysical sources can explain both the observed spectral features and the
positron ratio measurement: no exotic mechanism is actually required to fit the
data.



326 Andrea Giuliani

2. Dark matter annihilation produces antiprotons and protons in addition to elec-
trons and positrons. However, the antiproton data collected by PAMELA and
BESS are consistent with each other and with the antiproton flux predicted by
the standard secondary production. This sets very stringent constraints on the
dominant dark matter annihilation modes. In particular, for ordinary particle dark
matter models, such as neutralino dark matter (see Sect. 7.1.2.1) or the lightest
KK particle of UED (see Sect. 7.1.2.2), the antiproton bound rules out most of
the parameter space.

3. Assuming that dark matter particles are weakly interacting and that their
production in the early Universe was due to an ordinary freeze-out process
involving the same annihilation mechanism that dark matter would undergo
in today’s cold Universe (see Sect. 7.1.2), the annihilation rate in the Galaxy
would be roughly two orders of magnitude too small to explain the anoma-
lous electron–positron observation. On the other hand, a highly clumpy Galac-
tic dark matter density profile, or the presence of a nearby concentrated clump,
can provide sufficient enhancements to the rate of dark matter annihilation (see
Sect. 7.1.2.3).

In spite of these caveats, we conclude remarking that there is a copious literature on
possible dark matter interpretation of the excess high-energy electrons and positrons
(e.g., see references in [91]). Although the pulsar explanation looks perfectly in
line with the Fermi-LAT data, a clear discrimination between the pulsar and the
dark matter scenarios is not possible on the basis of the currently available data and
requires to consider additional complementary observations.

7.4 Conclusions

The candidates to the composition of dark matter are actively pursued by physicists
using three different complementary methods. First, a vast international program to
detect the tiny energy deposited by WIMP scattering in an ultra-low background
detector is underway. After decades of technological developments, experiments
operating deep underground have now reached the sensitivities to test realistic par-
ticle physics models. In parallel, an arsenal of different instruments, space-based
and ground-based, are analyzing with increasing precision the composition of the
extra-atmospheric cosmic rays in a wide energy range, with the chance to detect
above the background the secondary particles emitted by dark matter annihilation.
Finally, in the LHC era, the possibility is open to produce directly in the labo-
ratory the elusive particles that hundreds of scientists are chasing in the Cosmos
or in underground installations. The concurrence of these three approaches, sepa-
rate in terms of involved technologies and science communities but unified by a
common fundamental goal, represents an extraordinary intellectual adventure that
could soon culminate into the discovery of the dominant form of matter in our
Universe.
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Part III
Dark Energy



Chapter 8
Dark Energy: Investigation and Modeling

Shinji Tsujikawa

Abstract Constantly accumulating observational data continue to confirm that
about 70% of the energy density today consists of dark energy responsible for the
accelerated expansion of the Universe. We present recent observational bounds on
dark energy constrained by the type Ia supernovae, cosmic microwave background,
and baryon acoustic oscillations. We review a number of theoretical approaches that
have been adopted thus far to explain the origin of dark energy. This includes the
cosmological constant, modified matter models (such as quintessence, k-essence,
coupled dark energy, unified models of dark energy and dark matter), modified
gravity models (such as f (R) gravity, scalar-tensor theories, braneworlds), and
inhomogeneous models. We also discuss observational and experimental constraints
on those models and clarify which models are favored or ruled out in current
observations.

8.1 Introduction

The discovery of the late-time cosmic acceleration reported in 1998 [1, 2] based on
the type Ia supernovae (SN Ia) observations opened up a new field of research in
cosmology. The source for this acceleration, dubbed dark energy [3], has been still
a mystery in spite of tremendous efforts to understand its origin over the last decade
[4–12]. Dark energy is distinguished from ordinary matter in that it has a negative
pressure whose equation of state wDE is close to −1. Independent observational
data such as SN Ia [13–18], Cosmic Microwave Background (CMB) [19–22], and
Baryon Acoustic Oscillations (BAO) [23–25] have continued to confirm that about
70% of the energy density of the present Universe consists of dark energy.

The simplest candidate for dark energy is the so-called cosmological constant Λ
whose equation of state is wDE = −1. If the cosmological constant originates from
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a vacuum energy of particle physics, its energy scale is significantly larger than the

dark energy density today [26] (ρ (0)
DE 
 10−47 GeV4). Hence we need to find a mech-

anism to obtain the tiny value of Λ consistent with observations. Several efforts have
been made in this direction under the framework of particle physics. For example,
the recent development of string theory shows that it is possible to construct de Sitter
vacua by compactifying extra dimensions in the presence of fluxes with an account
of non-perturbative corrections [27].

The first step toward understanding the property of dark energy is to clarify
whether it is a simple cosmological constant or it originates from other sources
that dynamically change in time. The dynamical dark energy models can be distin-
guished from the cosmological constant by considering the evolution of wDE. The
scalar field models of DE such as quintessence [28–38] and k-essence [39–41] pre-
dict a wide variety of variations of wDE, but still the current observational data are
not sufficient to provide some preference of such models over the Λ -Cold-Dark-
Matter (ΛCDM) model. Moreover, the field potentials need to be sufficiently flat
such that the field evolves slowly enough to drive the present cosmic acceleration.
This demands that the field mass is extremely small (mφ 
 10−33 eV) relative to
typical mass scales appearing in particle physics [42, 43]. However, it is not entirely
hopeless to construct viable scalar-field dark energy models in the framework of
particle physics. We note that there is another class of modified matter models
based on perfect fluids–so-called (generalized) the Chaplygin gas model [44, 45].
If these models are responsible for explaining the origin of dark matter as well as
dark energy, then they are severely constrained from the matter power spectrum in
galaxy clustering [46].

There exists another class of dynamical dark energy models that modify General
Relativity (GR). The models that belong to this class are f (R) gravity [47, 49–52]
( f is a function of the Ricci scalar R), scalar-tensor theories [53–57], and Dvali,
Gabadadze, and Porrati (DGP) braneworld model [58]. The attractive feature of
these models is that the cosmic acceleration can be realized without recourse to
a dark energy component. If we modify gravity from General Relativity, however,
there are stringent constraints coming from local gravity tests as well as a number of
observational constraints such as large-scale structure (LSS) and CMB. Hence the
restriction on modified gravity models is in general very tight compared with mod-
ified matter models. We shall construct viable modified gravity models and discuss
their observational and experimental signatures.

In addition to the above-mentioned models, there are attempts to explain the
cosmic acceleration without dark energy. One example is the void model in which
an apparent accelerated expansion is induced by a large spatial inhomogeneity
[59–63]. Another example is the so-called backreaction model in which the back-
reaction of spatial inhomogeneities on the Friedmann–Lemaître–Robertson–Walker
(FLRW) background is responsible for the real acceleration [64–66]. We shall dis-
cuss these models as well.

This review is organized as follows. In Section 8.2, we provide recent obser-
vational constraints on dark energy obtained by SN Ia, CMB, and BAO data. In
Section 8.3, we review theoretical attempts to explain the origin of the cosmological
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constant consistent with the low-energy scale of dark energy. In Section 8.4, we
discuss modified gravity models of dark energy—including quintessence, k-essence,
coupled dark energy, and unified models of dark energy and dark matter. In Section
8.5, we review modified gravity models and provide a number of ways to distinguish
those models observationally from the ΛCDM model. Section 8.6, is devoted to the
discussion about the cosmic acceleration without using dark energy. We conclude
in Section 8.7.

We use units such that c = � = 1, where c is the speed of light and � is the reduced
Planck’s constant. The gravitational constant G is related to the Planck mass mpl =
1.2211× 1019 GeV via G = 1/m2

pl and the reduced Planck mass Mpl = 2.4357×
1018 GeV via κ2 ≡ 8πG = 1/M2

pl, respectively. We write the Hubble constant today

as H0 = 100 h km sec−1 Mpc−1, where h describes the uncertainty on the value H0.
We use the metric signature (−,+,+,+).

8.2 Observational Constraints on Dark Energy

The late-time cosmic acceleration is supported by a number of independent obser-
vations, such as (i) supernovae observations, (ii) Cosmic Microwave Background
(CMB), and (iii) Baryon acoustic oscillations (BAO). In this section, we discuss
observational constraints on the property of dark energy.

8.2.1 Supernovae Ia Observations

In 1998, Riess et al. [1] and Perlmutter et al., [2] independently reported the
late-time cosmic acceleration by observing distant supernovae of type Ia (SN Ia).
The line-element describing a 4-dimensional homogeneous and isotropic Universe,
which is called the FLRW space-time, is given by [67]

ds2 = gμνdxμdxν =−dt2 + a2(t)
[

dr2

1−Kr2 + r2(dθ 2 + sin2 θ dφ2)
]

, (8.1)

where a(t) is the scale factor with cosmic time t, and K = +1,−1,0 corresponds
to closed, open, and flat geometries, respectively. The redshift z is defined by
z = a0/a−1, where a0 = 1 is the scale factor today.

In order to discuss the cosmological evolution in the low-redshift regime
(z < O(1)), let us consider nonrelativistic matter with energy density ρm and
dark energy with energy density ρDE and pressure PDE, satisfying the continuity
equations

ρ̇m + 3Hρm = 0 , (8.2)

ρ̇DE + 3H(ρDE + PDE) = 0 , (8.3)
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which correspond to the conservation of the energy-momentum tensor Tμν for each
component (∇μT μν=0, where ∇ represents a covariant derivative). Note that a dot
represents a derivative with respect to t. The cosmological dynamics is known by
solving the Einstein equations

Gμν = 8πGTμν , (8.4)

where Gμν is the Einstein tensor. For the metric (8.1), the (00) component of the
Einstein equations gives [67]

H2 =
8πG

3
(ρm +ρDE)− K

a2 , (8.5)

where H ≡ ȧ/a is the Hubble parameter. We define the density parameters

Ωm ≡
8πGρm

3H2 , ΩDE ≡
8πGρDE

3H2 , ΩK ≡−
K

(aH)2 , (8.6)

which satisfy the relation Ωm +ΩDE +ΩK = 1 from Eq. (8.5). Integrating Eqs. (8.2)
and (8.3), we obtain

ρm = ρ (0)
m (1 + z)3 , ρDE = ρ (0)

DE exp

[∫ z

0

3(1 + wDE)
1 + z̃

dz̃

]
, (8.7)

where “0” represents the values today and wDE = PDE/ρDE is the equation of state
of dark energy. Plugging these relations into Eq. (8.5), it follows that

H2(z) = H2
0

[
Ω (0)

m (1 + z)3 +Ω (0)
DE exp

{∫ z

0

3(1 + wDE)
1 + z̃

dz̃

}
+Ω (0)

K (1 + z)2
]
. (8.8)

The expansion rate H(z) can be known observationally by measuring the luminosity
distance dL(z) of SN Ia. The luminosity distance is defined by d2

L ≡ Ls/(4πF ),
where Ls is the absolute luminosity of a source and F is an observed flux. It is a
textbook exercise [9, 12, 67] to derive dL(z) for the FLRW metric (8.1):

dL(z) =
1 + z

H0

√
Ω (0)

K

sinh

(√
Ω (0)

K

∫ z

0

dz̃
E(z̃)

)
, (8.9)

where E(z) ≡ H(z)/H0. The function fK(χ) ≡ 1/

√
Ω (0)

K sinh(
√

Ω (0)
K χ) can be

understood as fK(χ) = sinχ (for K = +1), fK(χ) = χ (for K = 0), and fK(χ) =
sinhχ (for K = −1). For the flat case (K = 0), Eq. (8.9) reduces to dL(z) = (1 + z)∫ z

0 dz̃/H(z̃), i.e.,

H(z) =
[

d
dz

(
dL(z)
1 + z

)]−1

. (8.10)
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Hence the measurement of the luminosity distance dL(z) of SN Ia allows us to find
the expansion history of the Universe for z < O(1).

The luminosity distance dL is expressed in terms of an apparent magnitude m and
an absolute magnitude M of an object, as

m−M = 5log10

(
dL

10 pc

)
. (8.11)

The absolute magnitude M at the peak of brightness is the same for any SN Ia under
the assumption of standard candles, which is around M
−19 [1, 2]. The luminosity
distance dL(z) is known from Eq. (8.11) by observing the apparent magnitude m.
The redshift z of an object is known by measuring the wavelength λ0 of light relative
to its wavelength λ in the rest frame, i.e., z = λ0/λ −1. The observations of many
SN Ia provide the dependence of the luminosity distance dL in terms of z.

Expanding the function (8.9) around z = 0, it follows that

dL(z) =
1

H0

[
z+

{
1− E ′(0)

2

}
z2 +O(z3)

]

=
1

H0

[
z+

1
4

(
1−3wDEΩ

(0)
DE +Ω (0)

K

)
z2 +O(z3)

]
, (8.12)

where a prime represents a derivative with respect to z. Note that, in the second line,

we have used Eq. (8.8). In the presence of dark energy (wDE < 0 and Ω (0)
DE > 0), the

luminosity distance gets larger than that in the flat Universe without dark energy. For

smaller (negative) wDE and for larger Ω (0)
DE, this tendency becomes more significant.

The open Universe without dark energy can also give rise to a larger value of dL(z),
but the density parameter Ω (0)

K is constrained to be close to 0 from the WMAP data

(more precisely,−0.0175 < Ω (0)
K < 0.0085 [21]). Hence, in the low redshift regime

(z < 1), the luminosity distance in the open Universe is hardly different from that in
the flat Universe without dark energy.

As we see from Eq. (8.12), the observational data in the high redshift regime
(z > 0.5) allow us to confirm the presence of dark energy. The SN Ia data released by
Riess et al. [1] and Perlmutter et al. [2] in 1998 in the redshift regime 0.2 < z < 0.8
showed that the luminosity distances of observed SN Ia tend to be larger than those
predicted in the flat Universe without dark energy. Assuming a flat Universe with a
dark energy equation of state wDE =−1 (i.e., the cosmological constant), Perlmutter
et al. [2] found that the cosmological constant is present at the 99% confidence level.
According to their analysis, the density parameter of non-relativistic matter today

was constrained to be Ω (0)
m = 0.28+0.09

−0.08 (68% confidence level) in the flat Universe
with the cosmological constant.

Over the past decade, more SN Ia data have been collected by a number of
high-redshift surveys such as SuperNova Legacy Survey (SNLS) [13], Hubble
Space Telescope (HST) [14, 15], and “Equation of State: SupErNovae trace Cos-
mic Expansion” (ESSENCE) [16, 17] survey. These data also confirmed that the
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Fig. 8.1 68.3%, 95.4%, and 99.7% confidence level contours on wDE and Ω (0)
m (denoted as w and

Ωm in the figure) constrained by the Union08 SN Ia data set. The equation of state wDE is assumed
to be constant. From Ref. [18].

Universe entered the epoch of cosmic acceleration after the matter-dominated
epoch. If we allow the case in which dark energy is different from the cosmological

constant (i.e., wDE �=−1), then observational constraints on wDE and Ω (0)
DE (or Ω (0)

m )

are not so stringent. In Fig. 8.1, we show the observational contours on (wDE,Ω (0)
m )

for constant wDE obtained from the “Union08” SN Ia data by Kowalski et al. [18].
Clearly, the SN Ia data alone are not yet sufficient to place tight bounds on wDE.

In the flat Universe dominated by dark energy with constant wDE, it follows from

Eq. (8.8) that H2 
 H2
0Ω

(0)
DE(1 + z)3(1+wDE) ∝ a−3(1+wDE). Integrating this equation,

we find that the scale factor evolves as a ∝ t2/(3(1+wDE)) for wDE > −1 and a ∝ eHt

for wDE = −1. The cosmic acceleration occurs for −1 ≤ wDE < −1/3. In fact,
Fig. 8.1 shows that wDE is constrained to be smaller than −1/3. If wDE < −1,
which is called phantoms or ghosts [68], the solution corresponding to the expand-
ing Universe is given by a ∝ (ts− t)2/(3(1+wDE)), where ts is a constant. In this case,
the Universe ends at t = ts with a so-called big rip singularity [69, 70] at which
the curvature grows toward infinity.1 The current observations allow the possibility
of the phantom equation of state. We note, however, that the dark energy equation
of state smaller than −1 does not necessarily imply the appearance of the big rip

1 There are other classes of finite-time singularities studied in Refs. [71–79]. In some cases,
quantum effects can moderate such singularities [75, 80–82]
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singularity. In fact, in some of modified gravity models such as f (R) gravity, it is
possible to realize wDE <−1 without having a future big rip singularity [83].

If the dark equation of state is not constant, we need to parametrize wDE as a
function of the redshift z. This smoothing process is required because the actual
observational data have discrete values of redshifts with systematic and statistical
errors. There are several ways of parametrizations proposed so far. In general, one
can write such parametrizations in the form

wDE(z) = ∑
n=0

wnxn(z) , (8.13)

where n’s are integers. We show a number of examples for the expansions:

(i) Redshift : xn(z) = zn , (8.14)

(ii) Scale factor : xn(z) = (1−a)n =
(

z
1 + z

)n

, (8.15)

(iii) Logarithmic : xn(z) = [ln(1 + z)]n . (8.16)

The parametrization (i) was introduced by Huterer and Turner [3] and Weller and
Albrecht [84] with n ≤ 1, i.e., wDE = w0 + w1z. Chevalier and Polarski [85] and
Linder [86] proposed the parametrization (ii) with n≤ 1, i.e.,

wDE(z) = w0 + w1(1−a) = w0 + w1
z

1 + z
. (8.17)

This has a dependence wDE(z) = w0 +w1 for z→ ∞ and wDE(z)→ w0 for z→ 0. A
more general form, wDE(z) = w0 +w1z/(1+ z)p, was proposed by Jassal et al. [87].
The parametrization (iii) with n≤ 1 was introduced by Efstathiou [88]. A functional
form that can be used for a fast transition of wDE(z) was also proposed [89, 90]. In
addition to the parametrization of wDE, a number of authors assumed parametric
forms of dL(z) [91], or H(z) [92–94]. Many works placed observational constraints
on the property of dark energy by using such parametrizations [95–109].

In Fig. 8.2, we show the SN Ia constraints combined with other measurements
such as the WMAP 7-year [22] and the BAO data [25]. The parametrization (8.17)
is used in this analysis. The Gaussian prior on the present-day Hubble constant
[110], H0 = 74.2± 3.6 km sec−1 Mpc−1 (68% confidence level), is also included
in the analysis (obtained from the magnitude-redshift relation of 240 low-z SN Ia
at z < 0.1). In Fig. 8.2, “DΔ t” means a constraint coming from the measurement of
gravitational lensing time delays [111]. The joint constraint from WMAP + BAO +
H0 + DΔ t + SN gives the bound

w0 =−0.93±0.13 , w1 =−0.41+0.72
−0.71 , (8.18)

at the 68% confidence level. Hence the current observational data are consistent with
the flat Universe in the presence of the cosmological constant (w0 =−1,w1 = 0).
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Fig. 8.2 Observational constraints on the parameters w0 and w1 (denoted as wa in the figure) for
the parametrization (8.17). The contours show the 68% and 95% confidence level from WMAP +
H0 + SN (red), WMAP + BAO + H0 + SN (blue), and WMAP + BAO + H0 + DΔt + SN (black),
for a flat Universe. From Ref. [22].

8.2.2 CMB

The temperature anisotropies in CMB are affected by the presence of dark energy.
The position of the acoustic peaks in CMB anisotropies depends on the expansion
history from the decoupling epoch to the present. Hence the presence of dark energy
leads to the shift for the positions of acoustic peaks. There is also another effect
called the Integrated Sachs-Wolfe (ISW) effect [112] induced by the variation of
the gravitational potential during the epoch of the cosmic acceleration. Since the
ISW effect is limited to large-scale perturbations, the former effect is typically more
important.

The cosmic inflation in the early Universe [113–116] predicts nearly scale-
invariant spectra of density perturbations through the quantum fluctuation of a scalar
field. This is consistent with the CMB temperature anisotropies observed by COBE
[117] and WMAP [19]. The perturbations are “frozen” after the scale λ = (2π/k)a
(k is a comoving wave number) leaves the Hubble radius H−1 during inflation
(λ > H−1) [118, 119]. After inflation, the perturbations cross inside the Hubble
radius again (λ < H−1) and they start to oscillate as sound waves. This second hori-
zon crossing occurs earlier for larger k (i.e., for smaller scale perturbations).

We define the sound horizon as rs(η) =
∫ η

0 dη̃cs(η̃), where cs is the sound speed
and dη = a−1dt. The sound speed squared is given by

c2
s = 1/[3(1 + Rs)] , Rs = 3ρb/(4ργ) , (8.19)
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where ρb and ργ are the energy densities of baryons and photons, respectively. The
characteristic angle for the location of CMB acoustic peaks is [120]

θA ≡
rs(zdec)

d(c)
A (zdec)

, (8.20)

where d(c)
A is the comoving angular diameter distance related with the luminosity

distance dL via the duality relation d(c)
A = dL/(1 + z) [12, 67], and zdec 
 1090 is

the redshift at the decoupling epoch. The CMB multipole �A that corresponds to the
angle (8.20) is

�A =
π
θA

= π
d(c)

A (zdec)
rs(zdec)

. (8.21)

Using Eq. (8.9) and the background equation 3H2 = 8πG(ρm +ρr) for the redshift
z > zdec (where ρm and ρr are the energy density of non-relativistic matter and radi-
ation, respectively), we obtain [121, 122]

�A =
3π
4

√
ωb

ωγ

[
ln

(√
Rs(adec)+ Rs(aeq)+

√
1 + Rs(adec)

1 +
√

Rs(aeq)

)]−1

R , (8.22)

where ωb ≡ Ω (0)
b h2 and ωγ ≡ Ω (0)

γ h2, and R is the so-called CMB shift parameter
defined by [123]

R ≡

√√√√Ω (0)
m

Ω (0)
K

sinh

(√
Ω (0)

K

∫ zdec

0

dz
E(z)

)
. (8.23)

The quantity Rs = 3ρb/(4ργ) can be expressed as

Rs(a) = (3ωb/4ωγ)a . (8.24)

In Eq. (8.22), adec and aeq correspond to the scale factor at the decoupling epoch
and at the radiation-matter equality, respectively.

The change of cosmic expansion history from the decoupling epoch to the present
affects the CMB shift parameter, which gives rise to the shift for the multipole �A.
The general relation for all peaks and troughs of observed CMB anisotropies is given
by [124]

�m = �A(m−φm) , (8.25)

where m represents peak numbers (m = 1 for the first peak, m = 1.5 for the first

trough, ...) and φm is the shift of multipoles. For a given cosmic curvature Ω (0)
K , the

quantity φm depends weakly on ωb and ωm ≡Ω (0)
m h2. The shift of the first peak can
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be fitted as φ1 = 0.265 [124]. The WMAP 5-year bound on the CMB shift parameter
is given by [21]

R = 1.710±0.019 , (8.26)

at the 68% confidence level. Taking R = 1.710 together with other values
ωb = 0.02265, ωm = 0.1369, and ωγ = 2.469× 10−5 constrained by the WMAP
5-year data, we obtain �A 
 300 from Eq. (8.22). Using the relation (8.25) with
φ1 = 0.265, we find that the first acoustic peak corresponds to �1 
 220, as observed
in CMB anisotropies.

In the flat Universe (K = 0), the CMB shift parameter is simply given by

R =
√

Ω (0)
m

∫ zdec
0 dz/E(z). For smaller Ω (0)

m (i.e., for larger Ω (0)
DE), R tends to

be smaller. For the cosmological constant (wDE = −1), the normalized Hubble

expansion rate is given by E(z) = [Ω (0)
m (1+ z)3 +Ω (0)

DE ]1/2. Under the bound (8.26),

the density parameter is constrained to be 0.72 < Ω (0)
DE < 0.77. This is consis-

tent with the bound coming from the SN Ia data. One can also show that, for

increasing wDE, the observationally allowed values of Ω (0)
m get larger. However,

R depends weakly on the wDE. Hence the CMB data alone do not provide a tight
constraint on wDE. In Fig. 8.3, we show the joint observational constraints on
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Fig. 8.3 68.3%, 95.4% and 99.7% confidence level contours on wDE and Ω (0)
m (denoted as w and

Ωm in the figure, respectively) for a flat Universe. The left panel illustrates the individual constraints
from SN Ia, CMB, and BAO, as well as the combined constraints (filled gray contours, statistical
errors only). The upper right panel shows the effect of including systematic errors. The lower right
panel illustrates the impact of the Supernova Cosmology Project (SCP) Nearby 1999 data. From
Ref. [18].
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wDE and Ω (0)
m (for constant wDE) obtained from the WMAP 5-year data and the

Union08 SN Ia data [18]. The joint observational constraints provide much tighter
bounds compared with the individual constraint from CMB and SN Ia. For the flat
Universe, Kowalski et al. [18] obtained the bounds wDE = −0.955+0.060+0.059

−0.066−0.060 and

Ω (0)
m = 0.265+0.022+0.018

−0.021−0.016 (with statistical and systematic errors) from the combined
data analysis of CMB and SN Ia. See also Refs. [95, 125–133] for related observa-
tional constraints.

8.2.3 BAO

The detection of BAO first reported in 2005 by Eisenstein et. al. [23] in a spectro-
scopic sample of 46,748 luminous red galaxies observed by the Sloan Digital Sky
Survey (SDSS) has provided another test for probing the property of dark energy.
Since baryons are strongly coupled to photons prior to the decoupling epoch, the
oscillation of sound waves is imprinted in baryon perturbations as well as CMB
anisotropies.

The sound horizon at which baryons were released from the Compton drag of
photons determines the location of BAO. This epoch, called the drag epoch, occurs
at the redshift zd . The sound horizon at z = zd is given by rs(zd) =

∫ ηd
0 dη cs(η),

where cs is the sound speed. According to the fitting formula of zd by Eisenstein
and Hu [134], zd and rs(zd) are constrained to be around zd ≈ 1020 and rs(zd) ≈
150 Mpc.

We observe the angular and redshift distributions of galaxies as a power spectrum
P(k⊥,k‖) in the redshift space, where k⊥ and k‖ are the wave numbers perpendicular
and parallel to the direction of light, respectively. In principle, we can measure the
following two ratios [135]

θs(z) =
rs(zd)

d(c)
A (z)

, δ zs(z) =
rs(zd)H(z)

c
, (8.27)

where the speed of light c is recovered for clarity. In the first equation, d(c)
A is the

comoving angular diameter distance related with the proper angular diameter dis-

tance dA via the relation d(c)
A = dA/a = dA(1 + z). The quantity θs(z) characterizes

the angle orthogonal to the line of sight, whereas the quantity δ zs corresponds to the
oscillations along the line of sight.

The current BAO observations are not sufficient to measure both θs(z) and δ zs(z)
independently. From the spherically averaged spectrum, one can find a combined
distance scale ratio given by [135]

[
θs(z)2δ zs(z)

]1/3 ≡ rs(zd)
[(1 + z)2d2

A(z)c/H(z)]1/3
, (8.28)
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or, alternatively, the effective distance ratio [23]

DV (z)≡
[
(1 + z)2d2

A(z)cz/H(z)
]1/3

. (8.29)

In 2005, Eisenstein et al. [23] obtained the constraint DV (z) = 1370±64 Mpc at the
redshift z = 0.35. In 2007, Percival et al. [24] measured the effective distance ratio
defined by

rBAO(z)≡ rs(zd)/DV (z) , (8.30)

at the two redshifts: rBAO(z = 0.2) = 0.1980±0.0058 and rBAO(z = 0.35) = 0.1094
±0.0033. This is based on the data from the 2-degree Field (2dF) Galaxy Redshift
Survey. These data provide the observational contour of BAO plotted in Fig. 8.3.
From the joint data analysis of SN Ia [18], WMAP 5-year [21], and BAO data [24],
Kowalski et al. [18] placed the constraints wDE =−0.969+0.059

−0.063(stat)+0.063
−0.066(sys) and

Ω (0)
m = 0.274+0.016

−0.016(stat)+0.013
−0.012(sys) for the constant equation of state of dark energy.

The recent measurement of the 2dF as well as the SDSS data provided the
effective distance ratio to be rBAO(z = 0.2)= 0.1905±0.0061 and rBAO(z = 0.35)=
0.1097± 0.0036 [25]. Using these data together with the WMAP 7-year data [22]
and the Gaussian prior on the Hubble constant H0 = 74.2± 3.6 km sec−1 Mpc−1

[110], Komatsu et al. [22] derived the constraint wDE = −1.10± 0.14 (68% confi-
dence level) for the constant equation of state in the flat Universe. Adding the high-z
SN Ia in their analysis they found the most stringent bound: wDE =−0.980±0.053
(68% confidence level). Hence the ΛCDM model is well consistent with a number
of independent observational data.

Finally, we should mention that there are other constraints coming from the cos-
mic age [136], large-scale clustering [137–139], gamma ray bursts [140–144], and
weak lensing [145–150]. So far, we have not found strong evidence for supporting
dynamical dark energy models over the ΛCDM model, but future high-precision
observations may break this degeneracy.

8.3 Cosmological Constant

The cosmological constantΛ is one of the simplest candidates of dark energy, and as
we have seen in the previous section, it is favored by a number of observations. How-
ever, if the origin of the cosmological constant is a vacuum energy, it suffers from
a serious problem of its energy scale relative to the dark energy density today [26].
The zero-point energy of some field of mass m with momentum k and frequency ω
is given by E = ω/2 =

√
k2 + m2/2. Summing over the zero-point energies of this

field up to a cut-off scale kmax (
 m), we obtain the vacuum energy density

ρvac =
∫ kmax

0

d3k
(2π)3

1
2

√
k2 + m2 . (8.31)
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Since the integral is dominated by the mode with large k (
 m), we find that

ρvac ≈
∫ kmax

0

4πk2dk
(2π)3

1
2

k =
k4

max

16π2 . (8.32)

Taking the cut-off scale kmax to be the Planck mass mpl, the vacuum energy density
can be estimated as ρvac 
 1074 GeV4. This is about 10121 times larger than the

observed value ρ (0)
DE 
 10−47 GeV4.

Before the observational discovery of dark energy in 1998, most people believed
that the cosmological constant is exactly zero and tried to explain why it is so.
The vanishing of a constant may imply the existence of some symmetry. In su-
persymmetric theories, the bosonic degree of freedom has its Fermi counter part,
which contributes to the zero point energy with an opposite sign2. If supersym-
metry is unbroken, an equal number of bosonic and fermionic degrees of freedom
is present such that the total vacuum energy vanishes. However, it is known that
supersymmetry is broken at sufficient high energies (for the typical scale MSUSY ≈
103 GeV). Therefore, the vacuum energy is generally nonzero in the world of broken
supersymmetry.

Even if supersymmetry is broken, there is a hope to obtain a vanishingΛ or a tiny
amount of Λ . In supergravity theory, the effective cosmological constant is given by
an expectation value of the potential V for chiral scalar fields ϕ i [151]:

V (ϕ ,ϕ∗) = eκ
2K

[
DiW (Ki j∗)(D jW )∗ −3κ2|W |2

]
, (8.33)

where K and W are the so-called Kähler potential and the superpotential, respec-
tively, which are the functions of ϕ i and its complex conjugate ϕ i∗. The quantity
Ki j∗ is an inverse of the derivative Ki j∗ ≡ ∂ 2K/∂ϕ i∂ϕ j∗ , whereas the derivative
DiW is defined by DiW ≡ ∂W/∂ϕ i +κ2W (∂K/∂ϕ i).

The condition DiW �= 0 corresponds to the breaking of supersymmetry. In this
case, it is possible to find scalar field values leading to the vanishing potential
(V = 0), but this is not in general an equilibrium point of the potential V . Nev-
ertheless, there is a class of Kähler potentials and superpotentials giving a sta-
tionary scalar-field configuration at V = 0. The gluino condensation model in
E8 × E8 superstring theory proposed by Dine [153] belongs to this class. The
reduction of the 10-dimensional action to the 4-dimensional action gives rise to
a so-called modulus field T . This field characterizes the scale of the compactified
6-dimensional manifold. Generally one has another complex scalar field S corre-
sponding to 4-dimensional dilaton/axion fields. The fields T and S are governed by
the Kähler potential

K(T,S) =−(3/κ2) ln (T + T ∗)− (1/κ2)ln(S + S∗) , (8.34)

2 The readers who are not familiar with supersymmetric theories may consult the books [151, 152].
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where (T + T ∗) and (S + S∗) are positive definite. The field S couples to the gauge
fields, while T does not. An effective superpotential for S can be obtained by inte-
grating out the gauge fields under the use of the R-invariance [154]:

W (S) = M3
pl [c1 + c2 exp(−3S/2c3)] , (8.35)

where c1,c2, and c3 are constants.
Substituting Eqs. (8.34) and (8.35) into Eq. (8.33), we obtain the field potential

V =
1

(T + T ∗)3(S + S∗)
(DSW )KSS∗(DSW )∗

=
M4

pl

(T + T ∗)3(S + S∗)

∣∣∣∣c1 + c2 exp(−3S/2c3)
{

1 +
3

2c3
(S + S∗)

}∣∣∣∣2 , (8.36)

where, in the first line, we have used the property (DTW )KT T ∗(DTW )∗ = 3κ2|W |2
for the modulus term. This potential is positive because of the cancellation of the last
term in Eq. (8.33). The stationary field configuration with V = 0 is realized under the
condition DSW = ∂W/∂S−W/(S+S∗) = 0. The derivative, DTW =κ2W∂K/∂T =
−3W/(T + T ∗), does not necessarily vanish. When DTW �= 0, the supersymmetry
is broken with a vanishing potential energy. Therefore, it is possible to obtain a
stationary field configuration with V = 0 even if supersymmetry is broken.

The above discussion is based on the lowest-order perturbation theory. This pic-
ture is not necessarily valid to all finite orders of perturbation theory because the
nonsupersymmetric field configuration is not protected by any symmetry. More-
over, some nonperturbative effect can provide a large contribution to the effective
cosmological constant [43]. The so-called flux compactification in type IIB string
theory allows us to realize a metastable dS vacuum by taking into account a non-
perturbative correction to the superpotential (coming from brane instantons) as well
as a number of anti D3branes in a warped geometry [27]. Hence it is not hopeless
to obtain a small value of Λ or a vanishing Λ even in the presence of some non-
perturbative corrections.

Kachru, Kallosh, Linde, and Trivedi (KKLT) [27] constructed dS solutions in
type II string theory compactified on a Calabi–Yau manifold in the presence of flux.
The construction of the dS vacua in the KKLT scenario consists of two steps. The
first step is to freeze all moduli fields in the flux compactification at a supersym-
metric Anti de Sitter (AdS) vacuum. Then, a small number of the anti-D3-brane is
added in a warped geometry with a throat so that the AdS minimum is uplifted to
yield a dS vacuum with broken supersymmetry. If we want to use the KKLT dS
minimum derived above for the present cosmic acceleration, we require that the
potential energy VdS at the minimum is of the order of VdS 
 10−47 GeV4. Depend-
ing on the number of fluxes, there are a vast of dS vacua, which opened up a notion
called string landscape [155].

The question why the vacuum we live in has a very small energy density among
many possible vacua has been sometimes answered with the anthropic principle
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[156, 157]. Using the anthropic arguments, Weinberg put the bound on the vacuum
energy density [158]

−10−123 m4
pl <∼ ρΛ <∼ 3×10−121m4

pl . (8.37)

The upper bound comes from the requirement that the vacuum energy does not dom-
inate over the matter density for the redshift z >∼ 1. Meanwhile, the lower bound
comes from the condition that ρΛ does not cancel the present cosmological density.
Some people have studied landscape statistics by considering the relative abundance
of long-lived, low-energy vacua satisfying the bound (8.37) [159–162]. These sta-
tistical approaches are still under study, but it will be interesting to pursue the pos-
sibility to obtain high probabilities for the appearance of low-energy vacua.

Even in 1980s, there were some pioneering works for finding a mechanism to
make the effective cosmological constant small. For example, let us consider a
4-form field Fμνλσ expressed by a unit totally antisymmetric tensor εμνλσ , as
Fμνλσ = cεμνλσ (c is a constant). Then, the energy density of the 4-form field
is given by FμνλσFμνλσ/(2 ·4!) = c2/2. Taking into account a scalar field φ with a
potential energy V (φ), the total energy density is Λ = V (φ)+ c2/2. In 1984, Linde
[163] considered the quantum creation of the Universe and claimed that the final
value of Λ can appear with approximately the same probability because V (φ) can
take any initial value such that Λ ≈ m4

pl.
In 1987–1988, Brown and Teltelboim [164, 165] studied the quantum creation of

closed membranes by totally antisymmetric tensor and gravitational fields to neu-
tralize the effective cosmological constant with small values. The constant c appear-
ing in the energy density of the 4-form field can be quantized in integer multiples
of the membrane charge q, i.e., c = nq. If we consider a negative bare cosmologi-
cal constant−Λb (as in the KKLT model) in the presence of the flux energy density
n2q2/2, then the effective gravitational constant is given by Λ =−Λb +n2q2/2. The
field strength of the 4-form field is slowly discharged by a quantum Schwinger pair
creation of field sources [nq→ (n−1)q]. However, in order to get a tiny value of Λ
consistent with the dark energy density today, the membrane change q is constrained
to be very small (for natural choices of Λb) [166].

In 2000, Bousso and Polchinski [167] considered multiple 4-form fields that arise
in M-theory compactifications and showed that the small value of Λ can be ex-
plained for natural choices of q. More precisely, if we consider J(> 1) 4-form fields
as well as J membrane species with charges q1,q2, · · · ,qJ and the quantized flux
Fμνλσ

i = niqiεμνλσ , the effective cosmological constant is given by

Λ =−Λb +
J

∑
i=1

n2
i q2

i /2 . (8.38)

Bousso and Polchinski [167] showed that, for natural values of charges (qi <
O(0.1)), there exists integers ni such that 2Λb < ∑J

i=1 n2
i q2

i < 2(Λb + ΔΛ) with
ΔΛ ≈ 10−47 GeV4. This can be realized for J > 100 and Λb ≈ m4

pl.
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There are some interesting works for decouplingΛ from gravity. In the cascading
gravity scenario proposed in Ref. [168], the cosmological constant can be made
gravitationally inactive by shutting off large-scale density perturbations. In
Ref. [169], an incompressible gravitational Aether fluid was introduced to degravi-
ate the vacuum. In Refs. [170, 171], Padmanabhan showed an example to gauge
away the cosmological constant from gravity according to the variational principle
different from the standard method. See also Refs. [172–184] for other possibil-
ities to solve the cosmological constant problem. If the cosmological constant is
completely decoupled from gravity, it is required to find alternative models of dark
energy consistent with observations.

In the subsequent sections, we shall consider alternative models of dark energy,
under the assumption that the cosmological constant problem is solved in such a
way that it vanishes completely.

8.4 Modified Matter Models

In this section, we will discuss “modified matter models” in which the energy-
momentum tensor Tμν on the r.h.s. of the Einstein equations contains an exotic
matter source with a negative pressure. The models that belong to this class are
quintessence, k-essence, coupled dark energy, and generalized Chaplygin gas.

8.4.1 Quintessence

A canonical scalar field φ responsible for dark energy is dubbed quintessence
[36, 37] (see also Refs. [28–34] for earlier works). The action of quintessence is
described by

S =
∫

d4x
√
−g

[
1

2κ2 R− 1
2

gμν∂μφ∂νφ −V(φ)
]

+ SM , (8.39)

where R is a Ricci scalar, and φ is a scalar field with a potential V (φ). As a mat-
ter action SM , we consider perfect fluids of radiation (energy density ρr, equation
of state wr = 1/3) and nonrelativistic matter (energy density ρm, equation of state
wm = 0).

In the flat FLRW, background radiation and non-relativistic matter satisfy the
continuity equations ρ̇r + 4Hρr = 0 and ρ̇m + 3Hρm = 0, respectively. The energy
density ρφ and the pressure Pφ of the field are ρφ = φ̇2/2 +V(φ) and Pφ = φ̇2/2−
V (φ), respectively. The continuity equation, ρ̇φ + 3H(ρφ + Pφ ) = 0, translates to

φ̈ + 3Hφ̇ +V,φ = 0 , (8.40)
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where V,φ ≡ dV/dφ . The field equation of state is given by

wφ ≡
Pφ
ρφ

=
φ̇2−2V(φ)
φ̇2 + 2V(φ)

. (8.41)

From the Einstein equations (8.4), we obtain the following equations

H2 =
κ2

3

[
1
2
φ̇2 +V(φ)+ρm +ρr

]
, (8.42)

Ḣ = −κ2

2

(
φ̇2 +ρm +

4
3
ρr

)
. (8.43)

Although {ρr,ρm} 
 ρφ during radiation and matter eras, the field energy den-
sity needs to dominate at late times to be responsible for dark energy. The condi-
tion to realize the late-time cosmic acceleration corresponds to wφ < −1/3, i.e.,
φ̇2 < V (φ) from Eq. (8.41). This means that the scalar potential needs to be flat
enough for the field to evolve slowly. If the dominant contribution to the energy
density of the Universe is the slowly rolling scalar field satisfying the condition
φ̇2 �V (φ), we obtain the approximate relations 3Hφ̇ +V,φ 
 0 and 3H2 
 κ2V (φ)
from Eqs. (8.40) and (8.42), respectively. Hence the field equation of state in
Eq. (8.41) is approximately given by

wφ 
−1 + 2εs/3 , (8.44)

where εs ≡
(
V,φ/V

)2
/(2κ2) is the so-called slow-roll parameter [118]. During the

accelerated expansion of the Universe, εs is much smaller than 1 because the poten-
tial is sufficiently flat. Unlike the cosmological constant, the field equation of state
deviates from −1 (wφ >−1).

Introducing the dimensionless variables x1 ≡ κφ̇/(
√

6H), x2 ≡ κ
√

V/(
√

3H),
and x3 ≡ κ√ρr/(

√
3H), we obtain the following equations from Eqs. (8.40)–(8.43)

[9, 35, 185, 186]:

x′1 =−3x1 +
√

6
2

λx2
2 +

1
2

x1(3 + 3x2
1−3x2

2 + x2
3) , (8.45)

x′2 =−
√

6
2

λx1x2 +
1
2

x2(3 + 3x2
1−3x2

2 + x2
3) , (8.46)

x′3 =−2x3 +
1
2

x3(3 + 3x2
1−3x2

2 + x2
3) , (8.47)

where a prime represents a derivative with respect to N = lna, and λ is defined by
λ ≡−V,φ/(κV). The density parameters of the field, radiation, and non-relativistic
matter are given by Ωφ = x2

1 + x2
2, Ωr = x2

3 and Ωm = 1− x2
1− x2

2− x2
3, respectively.

One has constant λ for the exponential potential [35]

V (φ) = V0e−κλφ , (8.48)
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in which case the fixed points of the system (8.45) (8.47) can be derived by setting
x′i = 0 (i = 1,2,3). The fixed point that can be used for dark energy is given by

(x1,x2,x3) =
(
λ/
√

6,
√

1−λ 2/6,0

)
, wφ =−1 +λ 2/3 , Ωφ = 1 . (8.49)

The cosmic acceleration can be realized for wφ <−1/3, i.e., λ 2 < 2. One can show
that in this case the accelerated fixed point is a stable attractor [35]. Hence the
solutions finally approach the fixed point (8.49) after the matter era [characterized
by the fixed point (x1,x2,x3) = (0,0,0)].

If λ varies with time, we have the following relation

λ ′ =−
√

6λ 2(Γ −1)x1 , (8.50)

where Γ ≡ VV,φφ/V 2
,φ . For monotonically decreasing potentials, one has λ > 0 and

x1 > 0 for V,φ < 0 and λ < 0 and x1 < 0 for V,φ > 0. If the condition

Γ =
VV,φφ

V 2
,φ

> 1 , (8.51)

is satisfied, the absolute value of λ decreases toward 0 irrespective of the signs of
V,φ [38]. Then, the solutions finally approach the accelerated “instantaneous” fixed
point (8.49) even if λ 2 is larger than 2 during radiation and matter eras [185, 186].
In this case, the field equation of state gradually decreases to −1, so the models
showing this behavior are called “freezing” models [187]. The condition (8.51) is
the so-called tracking condition under which the field density eventually catches up
that of the background fluid.

A representative potential of the freezing model is the inverse power-law
potential V (φ) = M4+nφ−n (n > 0) [31, 38], which can appear in the fermion con-
densate model as a dynamical supersymmetry breaking [188]. In this case, one has
Γ = (n + 1)/n > 1 and hence the tracking condition is satisfied. Unlike the cos-
mological constant, even if the field energy density is not negligible relative to the
background fluid density around the beginning of the radiation era, the field even-
tually enters the tracking regime to lead to the late-time cosmic acceleration [38].
Another example of freezing models is V (φ) = M4+nφ−n exp(αφ2/m2

pl), which has
a minimum with a positive energy density at which the field is eventually trapped.
This potential is motivated in the framework of supergravity [189].

There is another class of quintessence potentials called “thawing” models [187].
In thawing models, the field with mass mφ has been frozen by the Hubble friction
(i.e., the term Hφ̇ ) until recently and then it begins to evolve after H drops below mφ .
At early times, the equation of state of dark energy is wφ 
−1, but it begins to grow
for H < mφ . The representative potentials that belong to this class are (i) V (φ) =
V0 +M4−nφn (n > 0) and (ii) V (φ) = M4 cos2(φ/ f ). The potential (i) with n = 1 was
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originally proposed by Linde [190] to replace the cosmological constant by a slowly
evolving scalar field. In Ref. [191], this was revised to allow for negative values
of V (φ). The Universe will collapse in the future if the system enters the region
with V (φ) < 0. The potential (ii) is motivated by the Pseudo-Nambu-Goldstone
Boson (PNGB), which was introduced in Ref. [192] in response to the first tentative
suggestions for the existence of the cosmological constant. The small mass of the
PNGB model required for dark energy is protected against radiative corrections, so
this model is favored theoretically. In fact, there are a number of interesting works
to explain the small energy scale M ≈ 10−3 eV required for the PNGB quintessence
in supersymmetric theories [193–196]. See Refs. [197–208] for the construction of
quintessence potentials in the framework of supersymmetric theories.

The freezing models and the thawing models are characterized by the conditions
w′φ ≡ dwφ/dN < 0 and w′φ > 0, respectively. More precisely, the allowed regions for
the freezing and thawing models are given by 3wφ (1+wφ ) <∼ w′φ <∼ 0.2wφ (1+wφ )
and 1+wφ <∼ w′φ <∼ 3(1+wφ ), respectively [187] (see Ref. [209] for details). These
regions are illustrated in Fig. 8.4. Although the observational data available till now
are not sufficient to distinguish freezing and thawing models by the variation of wφ ,
we may be able to do so with the next decade high-precision observations.

Fig. 8.4 The allowed region in the (wφ ,w′φ ) plane for thawing and freezing models of quintessence
(wφ is denoted as w in the figure). The thawing models correspond to the region between two
curves: (a) w′φ = 3(1+wφ ) and (b) w′φ = 1+wφ , whereas the freezing models are characterized by
the region between two curves: (c) w′φ = 0.2wφ (1+wφ ) and (d) w′φ = 3wφ (1+wφ ). The dotted line
shows the border between the acceleration and deceleration of the field (φ̈ = 0), which corresponds
to w′φ = 3(1+wφ )2. From Ref. [187].
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There is also another useful measure called “statefinder” [210] by which the quin-
tessence models can be distinguished from the ΛCDM model (see also Ref. [211]).
The statefinder parameters are defined by

r ≡ 1
aH3

d3a
dt3 , s≡ r−1

3(q−1/2)
, (8.52)

where q = −ä/(aH2) is the deceleration parameter. Let us consider the case in
which the dark energy density ρDE satisfies the continuity equation ρ̇DE + 3H
(1 + wDE)ρDE = 0. In Einstein gravity in which the Friedmann equation 3H2 =
κ2(ρDE +ρm) holds, we obtain

r = 1 +
9wDEΩDE

2
s , s = 1 + wDE−

ẇDE

3HwDE
, (8.53)

where ΩDE ≡ κ2ρDE/(3H2). TheΛCDM model (wDE =−1) corresponds to a point
(r,s) = (1,0) in the (r,s) plane, but the quintessence models are characterized by
the curves in the region r < 1 and s > 0 [93]. The Chaplygin gas model we discuss
in Sec. 8.4.4 gives rise to the curves in the region r > 1 and s < 0. Hence one
can distinguish between dark energy models by using the statefinders defined in
Eq. (8.52).

It is possible to reconstruct quintessence potentials from the observational data

of SN Ia. Neglecting the contribution of radiation and using the relation ρm = ρ (0)
m

(1 + z)3 for nonrelativistic matter, we get the following equations from Eqs. (8.42)
and (8.43) [91, 92, 212, 213]:

κ2

2

(
dφ
dz

)2

=
1

1 + z
dln E(z)

dz
− 3Ω (0)

m

2
1 + z
E(z)2 , (8.54)

κ2V

3H2
0

= E(z)− 1 + z
6

dE(z)2

dz
− 1

2
Ω (0)

m (1 + z)3 , (8.55)

where E(z) = H(z)/H0. Note that we have changed the time derivative to the deriva-
tive with respect to the redshift z, by using the relation dt = −dz/[H(1 + z)]. Inte-
grating Eq. (8.54), the field φ is known as a function of z. Inverting φ(z) to z(φ)
and plugging it into Eq. (8.55), one can reconstruct the potential V with respect to
φ by using the information of the observationally known values of H(z) and H ′(z)
as well as Ω (0)

m . We caution, however, that the actual observational data (such as

some smoothing process for reconstructing the potential V (φ) and the field equation
of state wφ (z). This smoothing was already discussed in Sec. 8.2.1.

From the viewpoint of particle physics, the quintessence energy density can be
comparable to the background fluid density in the early Universe. It is possible
to construct quintessence models in which the field energy density is propor-
tional to the fluid density during radiation and matter eras. For the exponential

the luminosity distance) are obtained at discrete values of redshifts. Hence we need
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potential (8.48), there is a fixed point giving a constant field density parame-
ter Ωφ = 3(1 + wM)/λ 2 with wφ = wM , where wM is the fluid equation of state
[35]. This is called a scaling solution, which is stable for λ 2 > 3(1 + wM). During
radiation and matter eras one has Ωφ = 4/λ 2 and Ωφ = 3/λ 2, respectively. The big
bang nucleosynthesis (BBN) places the bound Ωφ < 0.045 (95% confidence level)
around the temperature T = 1 MeV [214], which gives the bound λ > 9.4. In this
case, however, the scalar field does not exit to the accelerated fixed point given by
Eq. (8.49).

There are several ways to allow a transition from the scaling regime to the
epoch of cosmic acceleration. One of them is to introduce a field potential that
becomes shallow at late times, V (φ) = c1e−κλφ + c2e−κμφ with λ 2 > 3(1 + wM)
and μ2 < 2 [215] (see Refs. [214, 216–221] for related works). For this dou-
ble exponential potential, the field equation of state of the final attractor is given
by wφ = −1 + μ2/3. Another way is to consider multiple scalar fields with ex-
ponential potentials, V (φ1,φ2) = c1e−κλ1φ1 + c2e−κλ2φ2 [222, 223]. In this case,
the phenomenon called assisted inflation [224] occurs for the multi-field exponen-
tial potential, even if the individual field has too steep a potential to lead to cos-
mic acceleration. The scalar field equation of state finally approaches the value
wφ =−1+λ 2

eff/3, where λeff = (1/λ 2
1 +1/λ 2

2 )−1/2 is smaller than each λi (i = 1,2).
In the presence of three assisting scalar fields, it is possible to realize the observa-
tional bound wφ (z = 0) <−0.8 today [225].

There is a class of models dubbed quintessential inflation [226] in which a sin-
gle scalar field φ is responsible for both inflation and dark energy. One example
of quintessential inflation is given by V (φ) = λ (φ4 + M4) for φ < 0 and V (φ) =
λM4/ [1 +(φ/M)n] (n > 0) for φ ≥ 0. In the regime φ < 0 with |φ | 
 M, the
potential behaves as V (φ) 
 λφ4, which leads to inflation. In the regime φ > 0
with φ 
M, one has V (φ) 
 λM4+nφ−n, which leads the late-time cosmic accel-
eration. Since the potential does not have a minimum, the reheating after inflation
proceeds with a gravitational particle production. Although this process is not effi-
cient in general, it may be possible to make the reheating more efficient under the
instant preheating mechanism proposed in Ref. [227]. See Refs. [228–239] about
related works on quintessential inflation.

8.4.2 k-Essence

Scalar fields, with non-canonical kinetic terms often appear in particle physics. In
general the action for such theories can be expressed as

S =
∫

d4x
√
−g

[
1

2κ2 R + P(φ ,X)
]
+ SM , (8.56)

where P(φ ,X) is a function in terms of a scalar field φ and its kinetic energy
X =−(1/2)gμν∂μφ∂νφ , and SM is a matter action. Even in the absence of the field
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potential V (φ), it is possible to realize the cosmic acceleration due to the kinetic
energy X [240]. The application of these theories to dark energy was first carried
out by Chiba et al. [39]. In Ref. [40], this was extended to more general cases and
the models based on the action (8.56) were named “k-essence.” The action (8.56)
includes a wide variety of theories listed below.

• (i) Low-energy effective string theory
The action of low-energy effective string theory in the presence of a higher-order
derivative term (∇̃φ)4 is given by [241, 242]

S =
1

2κ2

∫
d4x̃

√
−g̃

[
F(φ)R̃ +ω(φ)(∇̃φ)2 +α ′B(φ)(∇̃φ)4 +O(α ′2)

]
, (8.57)

which is derived by the expansion in terms of the Regge slope parameter α ′ (this
is related to the string mass scale Ms via the relation Ms =

√
2/α ′). The scalar

field φ , dubbed a dilaton field, is coupled to the Ricci scalar R with the strength
F(φ). This frame is called the Jordan frame, in which the tilde is used in the
action (8.57). Under a conformal transformation, gμν = F(φ)g̃μν , we obtain the
action in the Einstein frame [240]

SE =
∫

d4x
√
−g

[
1

2κ2 R + K(φ)X + L(φ)X2 + · · ·
]

, (8.58)

where K(φ) = 3(F,φ/F)2−2ω/F and L(φ) = 2α ′B(φ)/κ2.

• (ii) Ghost condensate
The theories with a negative kinetic energy −X generally suffers from the vac-
uum instability [243, 244], but the presence of the quadratic term X2 can evade
this problem. The model constructed in this vein is the ghost condensate model
characterized by the Lagrangian [245]

P =−X + X2/M4 , (8.59)

where M is a constant. A more general version of this model, called the dilatonic
ghost condensate [246], is

P =−X + eκλφX2/M4 , (8.60)

which is motivated by a dilatonic higher-order correction to the tree-level action
[as we have discussed in the case (i)].

• (iii) Tachyon
A tachyon field appears as an unstable mode of D-branes non-Bogomol’nyi-
Prasad–Sommerfield [non-BPS] branes. The effective 4-dimensional Lagrangian
is given by [247–249]

P =−V (φ)
√

1−2X , (8.61)
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where V (φ) is a potential of the tachyon field φ . Although the tachyon model
is difficult to be compatible with inflation in the early Universe because of the
problem for ending inflation [250–252], one can use it for dark energy provided
that the potential is shallower than V (φ) = V0φ−2 [253–258].

• (iv) Dirac-Born-Infeld (DBI) theory
In the so-called “D-cceleration” mechanism in which a scalar field φ parametrizes
a direction on the approximate Coulomb branch of the system in N = 4 super-
symmetric Yang Mills theory, the field dynamics can be described by the DBI
action for a probe D3-brane moving in a radial direction of the AdS space-time
[259, 260]. The Lagrangian density with the field potential V (φ) is given by

P =− f (φ)−1
√

1−2 f (φ)X + f (φ)−1−V(φ) , (8.62)

where f (φ) is a warped factor of the AdS throat. In this theory, one can realize the
acceleration of the Universe even in the regime where 2 f (φ)X is close to 1. The
application of this theory to dark energy has been carried out in Refs. [261–263].

For the theories with the action (8.56), the pressure Pφ and the energy density ρφ
of the field are Pφ = P and ρφ = 2XP,X −P, respectively. The equation of state of
k-essence is given by

wφ =
Pφ
ρφ

=
P

2XP,X −P
. (8.63)

As long as the condition |2XP,X | � |P| is satisfied, wφ can be close to −1. In the
ghost condensate model (8.59), we have

wφ =
1−X/M4

1−3X/M4 , (8.64)

which gives −1 < wφ < −1/3 for 1/2 < X/M4 < 2/3. In particular, the de Sitter
solution (wφ = −1) is realized at X/M4 = 1/2. Since the field energy density is
ρφ = M4/4 at the de Sitter point, it is possible to explain the cosmic acceleration
today for M 
 10−3 eV.

In order to discuss stability conditions of k-essence in the ultraviolet (UV)
regime, we decompose the field into the homogenous and perturbed parts as φ(t,x)=
φ0(t)+ δφ(t,x) in the Minkowski background and derive the Lagrangian and the
Hamiltonian for perturbations. The resulting second-order Hamiltonian reads [246]

δH = (P,X + 2XP,XX)
(δ φ̇ )2

2
+ P,X

(∇δφ)2

2
−P,φφ

(δφ)2

2
. (8.65)

The term P,φφ is related with the effective mass of the field, which is unimportant in
the UV regime as long as the field is responsible for dark energy. The positivity of
the first two terms in Eq. (8.65) leads to the following stability conditions

P,X + 2XP,XX ≥ 0 , P,X ≥ 0 . (8.66)
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The phantom model with a negative kinetic energy−X with a potential V (φ), i.e.,
P = −X−V(φ), do not satisfy the above conditions. Although the phantom model
with P =−X−V(φ) can lead to the background cosmological dynamics allowed by
SN Ia observations (wφ <−1) [243, 264, 265], it suffers from a catastrophic particle
production of ghosts and normal fields because of the instability of the vacuum
[243, 244] (see Refs. [136, 266–280] for related works). This problem is overcome
in the ghost condensate model (8.59) in which the conditions (8.66) are satisfied for
X/M4 > 1/2 3. Thus, the successful k-essence models need to be constructed to be
consistent with the conditions (8.66), while the field is responsible for dark energy
under the condition |2XP,X | � |P|.

The propagation speed cs of the field is given by [282]

c2
s =

Pφ ,X

ρφ ,X
=

P,X

P,X + 2XP,XX
, (8.67)

which is positive under the conditions (8.66). The speed cs remains sub-luminal
provided that

P,XX > 0 . (8.68)

This condition is ensured for the models (8.59–8.62).
There are some k-essence models proposed to solve the coincidence problem of

dark energy. One example is [40, 41]

P =
1
φ2

(
−2.01 + 2

√
1 + X + 3 ·10−17X3−10−24X4

)
. (8.69)

In these models, the solutions can finally approach the accelerating phase even if
they start from relatively large values of the k-essence energy density Ωφ in the
radiation era. In such cases, however, there is a period in which the sound speed
becomes superluminal before reaching the accelerated attractor [283]. Moreover, it
was shown that the basins of attraction of a radiation scaling solution in such models
are restricted to be very small [284]. We stress that these problems arise only for the
k-essence models constructed to solve the coincidence problem.

8.4.3 Coupled Dark Energy

Since the energy density of dark energy is the same order as that of dark matter in
the present Universe, this implies that dark energy may have some relation with dark
matter. In this section, we discuss the cosmological viability of coupled dark energy
models and related topics such as scaling solutions, the chameleon mechanism, and
varying α .

3 It is possible that the dilatonic ghost condensate model crosses the cosmological constant bound-
ary wφ =−1, but the quantum instability problem is present in the region wφ <−1. This crossing
does not occur for the single-field k-essence Lagrangian with a linear function of X [281].
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8.4.3.1 The Coupling between Dark Energy and Dark Matter

In the flat FLRW cosmological background, a general coupling between dark energy
(with energy density ρDE and equation of state wDE) and dark matter (with energy
density ρm) may be described by the following equations

ρ̇DE + 3H(1 + wDE)ρDE = −β , (8.70)

ρ̇m + 3Hρm = +β , (8.71)

where β is the rate of the energy exchange in the dark sector.
There are several forms of couplings proposed so far. Two simple examples are

given by

(A) β = κQρmφ̇ , (8.72)

(B) β = α Hρm , (8.73)

where Q and α are dimensionless constants. The coupling (A) arises in scalar-tensor
theories after the conformal transformation to the Einstein frame [285–288]. In gen-
eral, the coupling Q is field-dependent [289, 290], but Brans–Dicke (BD) theory
[291] (including f (R) gravity) gives rise to a constant coupling [292]. The coupling
(B) is more phenomenological, but this form is useful to place observational bounds
from the cosmic expansion history. Several authors studied other couplings of the
forms β = (αmρm +αDEρDE)H [293–295], β = αΩDEH [296–298], and β = Γρm

[299–301]. See also Refs. [302–318] for related works.

(A) The Coupling (A)

Let us consider the coupling (A) in the presence of a coupled quintessence
field with the exponential potential (8.48). We assume that the coupling Q is
constant. Taking into account radiation uncoupled to dark energy (ρr ∝ a−4) the
Friedmann equation is given by 3H2 = κ2(ρDE +ρm + ρr), where ρDE = φ̇2/2 +
V (φ). Introducing the dimensionless variables x1 = κφ̇/(

√
6H), x2 = κ

√
V/(

√
3H),

and x3 = κ√ρr/(
√

3H) as in Sec. 8.4.1, we obtain

x′1 =−3x1 +
√

6
2

λx2
2 +

1
2

x1(3 + 3x2
1−3x2

2 + x2
3)−

√
6

2
Q(1− x2

1− x2
2− x2

3) , (8.74)

and the same differential equations for x2 and x3 as given in Eqs. (8.46) and (8.47).
For this dynamical system, there is a scalar-field dominated fixed point given in
Eq. (8.49) as well as the radiation point (x1,x2,x3) = (0,0,1). In the presence of
the coupling Q, the standard matter era is replaced by a “φ -matter-dominated epoch
(φMDE)” [287] characterized by

(x1,x2,x3) = (−
√

6Q/3,0,0) , Ωφ = 2Q2/3 , wφ = 1 . (8.75)
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Defining the effective equation of state

weff =−1−2Ḣ/(3H2) , (8.76)

one has weff = 2Q2/3 for the φMDE, which is different from 0 in the uncoupled
case. Provided that 2Q2/3 < 1, the φMDE is a saddle followed by the accelerated
point (8.49) [287].

The evolution of the scale factor during the φMDE is given by a ∝ t2/(3+2Q2),
which is different from that in the uncoupled quintessence. This leads to a change to
the CMB shift parameter defined in Eq. (8.23). From the CMB likelihood analysis,
the strength of the coupling is constrained to be |Q| < 0.1 [287]. The evolution of
matter density perturbations is also subject to change by the effect of the coupling.
Under a quasi-static approximation on sub-horizon scales, the matter perturbation
δm obeys the following equation [319, 320]

δ̈m +(2H + Qφ̇)δ̇m−4πGeffρmδm 
 0 , (8.77)

where the effective gravitational coupling is given by Geff = (1+2Q2)G. During the
φMDE, one can obtain the analytic solution to Eq. (8.77), as δm ∝ a1+2Q2

. Hence
the presence of the coupling Q leads to a larger growth rate relative to the uncoupled
quintessence. We can parameterize the growth rate of matter perturbations, as [321]

f ≡ δ̇m

Hδm
= (Ωm)γ , (8.78)

where Ωm ≡ κ2ρm/(3H2) is the density parameter of nonrelativistic matter. In
the ΛCDM model the growth index γ can be approximately given by γ 
 0.55
[322, 323]. In the coupled quintessence, the growth rate can be fitted to the numer-
ical solution by the formula f = (Ωm)γ (1 + cQ2), where c = 2.1 and γ = 0.56 are
the best-fit values [324]. Using the galaxy and Lyman-α power spectra, the growth
index γ and the coupling Q are constrained to be γ = 0.6+0.4

−0.3 and |Q| < 0.52 (95%
confidence level), respectively. This is weaker than the bound coming from the CMB
constraint [324]. We also note that the equation for matter perturbations has been
derived for the coupled k-essence scenario with a field-dependent coupling Q(φ)
[325, 326]. In principle, it is possible to reconstruct the coupling from observations
if the evolution of matter perturbations is known accurately [327].

There is another interesting coupled dark energy scenario called mass-varying
neutrino [328–332] in which the mass mν of the neutrino depends on the quintessence
field φ . The energy density ρν and the pressure Pν of neutrinos can be determined
by assuming a Fermi-Dirac distribution with the neglect of the chemical potential.
It then follows that the field φ obeys the equation of motion [331]

φ̈ + 3Hφ̇ +V,φ =−κQ(φ)(ρν −3Pν) , (8.79)

where Q(φ) ≡ d lnmν (φ)
dφ . In the relativistic regime in which the neutrino mass mν is

much smaller than the neutrino temperature Tν , the r.h.s. of Eq. (8.79) is suppressed
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because of the relation ρν 
 3Pν . In the nonrelativistic regime with mν 
 Tν , the
pressure Pν is much smaller than the energy density ρν , in which case the field
equation (8.79) mimics Eq. (8.70) with the coupling (A). In the mass-varying neu-
trino scenario, the field-dependent mass of neutrinos determines the strength of the
coupling Q(φ). In the nonrelativistic regime, the neutrino energy density is approxi-
mately given by ρν 
 nνmν (φ), where nν is the number density of neutrinos. Then,
the effective potential of the field is given by Veff(φ) 
 V (φ) + nνmν(φ), which
gives rise to a minimum for a runaway quintessence potential V (φ). Since the field
equation of state in this regime is wφ 
−V (φ)/[V (φ)+nνmν(φ)], one has wφ 
−1
for nνmν �V (φ). See Refs. [333–338] for a number of cosmological consequences
of the mass-varying neutrino scenario.

(B) The Coupling (B)

Let us consider the coupling (B) given in Eq. (8.73). For constant δ , one can

integrate Eq. (8.71) as ρm = ρ (0)
m (1 + z)3−α , where z is a redshift. If the equation of

state wDE is constant, one obtains the following integrated solution for Eq. (8.70):

ρDE = ρ (0)
DE(1+z)3(1+wDE)+ρ (0)

m
α

α + 3wDE

[
(1 + z)3(1+wDE)− (1 + z)3−α

]
. (8.80)

The Friedmann equation, 3H2 = κ2(ρDE + ρm), gives the parametrization for the
normalized Hubble parameter E(z) = H(z)/H0, as

E2(z) = Ω (0)
DE(1 + z)3(1+wDE) +

1−Ω (0)
DE

α + 3wDE

[
α(1 + z)3(1+wDE) + 3wDE(1 + z)3−α

]
.

(8.81)
This parametrization can be used to place observational constraints on the coupling
α . The combined data analysis using the observational data of the 5-year Supernova
Legacy Survey (SNLS) [13], the CMB shift parameter from the 3-year WMAP [20],
and the BAO [23] shows that α and wDE are constrained to be−0.08 <α < 0.03 and
−1.16 < wDE < −0.91 (95% confidence level) [298]. In Ref. [300], it was shown
that, for constant wDE, cosmological perturbations are subject to nonadiabatic insta-
bilities in the early radiation era. This problem can be alleviated by considering the
time-dependent wDE satisfying the condition wDE >−4/5, at early times [317].

It is also possible to extend the analysis to the case in which the coupling α varies

in time. Dalal et al. [296] assumed the scaling relation, ρDE/ρm = (ρ (0)
DE/ρ (0)

m )aξ ,
where ξ is a constant. For constant wDE, the coupling α is expressed in the form

α(z) =
α0

Ω (0)
DE +(1−Ω (0)

DE)(1 + z)ξ
, (8.82)

where α0 = −(ξ + 3wDE)Ω (0)
DE. If ξ > 0, α(z) decreases for higher z. In this case,

the Hubble parameter can be parametrized as

E2(z) = (1 + z)3
[
1−Ω (0)

DE +Ω (0)
DE(1 + z)−ξ

]−3wDE/ξ
. (8.83)
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The combined data analysis using the SNLS, WMAP 3-year, and the BAO gives the
bounds−0.4 < α0 < 0.1 and −1.18 < wDE <−0.91 (95% confidence level) [298].
The ΛCDM model (α = 0, wDE =−1) remains a good fit to the data.

8.4.3.2 Coupled Dark Energy and Coincidence Problem

In the coupled quintessence with an exponential potential (V (φ) = V0e−κλφ with
λ > 0), the φMDE scaling solution with Ωφ = 2Q2/3 = constant replaces the stan-
dard matter era. In this model, there is another scaling solution given by [287, 306]

(x1,x2,x3) =

( √
6

2(Q+λ )
,

√
2Q(Q+λ )+ 3

2(Q+λ )2 ,0

)
, Ωφ =

Q(Q+λ )+ 3
(Q+λ )2 ,

wφ =− Q(Q+λ )
Q(Q+λ )+ 3

, weff =− Q
Q+λ

. (8.84)

In the presence of the coupling Q, the condition for the late-time cosmic acceler-
ation, weff < −1/3, is satisfied for Q > λ/2 > 0 or Q < −λ < 0. Then, the scal-
ing solution (8.84) can give rise to the global attractor with Ωφ 
 0.7. The φMDE
solution (8.75) followed by the accelerated scaling solution (8.84) may be used for
alleviating the coincidence problem because dark energy and dark matter follow the
same scaling relation from the end of the radiation era. In Ref. [287] it was shown,
however, that the coupled quintessence with an exponential potential does not allow
for such cosmological evolution for the viable parameter space in the (Q,λ ) plane
consistent with observational constraints.

It is possible to extend the analysis to coupled k-essence models described by
the action (8.56) in the presence of the coupling (8.72). From the requirement that
the density parameter Ωφ ( �= 0) and the equation of state wφ are constants to realize
scaling solutions, one can show that the Lagrangian density takes the following form
[246, 339]

P = X g(Xeκλφ) , (8.85)

where λ is a constant, and g is an arbitrary function in terms of Y ≡ Xeκλφ .
The result (8.85) is valid for constant Q, but it can be generalized to a field-
dependent coupling Q(φ) [340]. The quintessence with an exponential potential
(P = X − ce−κλφ ) corresponds to g(Y ) = 1− c/Y . Since the dilatonic ghost con-
densation model (8.60) corresponds to g(Y ) = −1 +Y/M4, this model has a scal-
ing solution. We can also show that the tachyon field with the Lagrangian density
P =−V(φ)

√
1−2X also has a scaling solution for the potential V (φ) ∝ φ−2 [257].

Even when the Hubble parameter squared H2 is proportional to the energy density
ρn, it is possible to obtain the Lagrangian density having scaling solutions in the
form P = X1/ng(Xenκλφ) [339]. The cosmological dynamics of scaling solutions in
such cases (including the high-energy regime [341, 342] in the Randall-Sundrum
scenario [343, 344]) have been discussed by a number of authors [345–347].
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For the Lagrangian density (8.85), there are two fixed points relevant to dark
energy. Defining the dimensionless variables x≡ φ̇/(

√
6H) and y≡ e−λφ/2/(

√
3H)

(in the unit of κ2 = 1), they are given by [348]

• (A) Scalar-field dominated solution

xA =
λ√
6P,X

, Ωφ = 1 , weff = wφ =−1 +
λ 2

3P,X
. (8.86)

• (B) Scaling solution

xB =
√

6
2(Q+λ )

, Ωφ =
Q(Q+λ )+ 3P,X

(Q+λ )2 .

weff =− Q
Q+λ

, wφ =− Q(Q+λ )
Q(Q+λ )+ 3P,X

. (8.87)

The points (A) and (B) are responsible for the cosmic acceleration for (A) λ 2/P,X <
2 and (B) Q > λ/2 > 0 or Q < −λ < 0, respectively. From the stability analysis
about the fixed points it follows that, when the point (A) is stable, the point (B) is
not stable, and vice versa [348].

The φMDE corresponds to a fixed point at which the kinetic energy of the
field dominates over the potential energy, i.e., x �= 0 and y = 0. Since the quan-
tity Y = Xeκλφ can be expressed as Y = x2/y2, the function g(Y ) cannot be singular
at y = 0 for the existence of the φMDE. Then, the function g(Y ) should be expanded
in negative powers of Y , i.e.,

g(Y ) = c0 + ∑
n>0

cnY−n = c0 + ∑
n>0

cn(y2/x2)n , (8.88)

which includes the quintessence with an exponential potential. For this form of g(Y ),
there is the following φMDE point (C):

(xC,yC) =

(
−
√

6Q
3c0

,0

)
, Ωφ = weff =

2Q2

3c0
, wφ = 1 , (8.89)

together with the purely kinetic point (x,y) = (±1/
√

c0,0) and Ωφ = 1 for c0 > 0.
An ideal cosmological trajectory that alleviates the coincidence problem of dark

energy should be the φMDE (C) followed by the point (B). However, it was shown
in Ref. [340] that such a trajectory is not allowed because the solutions cannot cross
the singularity at x = 0 as well as another singularity associated with the sound
speed. For example, when c0 > 0, we find that xB > 0 and xC < 0 for Q > λ/2 > 0,
whereas xB < 0 and xC > 0 for Q < −λ < 0. These points are separated between
the line x = 0 at which the function (8.88) diverges. The φMDE solution chooses
the accelerated point (A) as a final attractor. The above discussion shows that the
coincidence problem is difficult to be solved even for the general Lagrangian density
(8.85) that has scaling solutions. This problem mainly comes from the fact that
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a large coupling Q required for the existence of a viable scaling solution (B) is not
compatible with a small coupling Q required for the existence of the φMDE. We
need a rapidly growing coupling to realize such a transition [349].

8.4.3.3 Chameleon Mechanism

If a scalar field φ is coupled to baryons as well as dark matter, this gives rise to a
fifth force interaction that can be constrained experimentally. A large coupling of
the order of unity arises in modified gravity theories as well as superstring theories.
In such cases, we need to suppress such a strong interaction with baryons for the
compatibility with local gravity experiments. There is a way to screen the fifth force
under the so-called chameleon mechanism [350, 351] in which the field mass is
different depending on the matter density in the surrounding environment. If the
field is sufficiently heavy in the regions of high density, a spherically symmetric
body can have a “thin shell” around its surface such that the effective coupling
between the field and matter is suppressed outside the body.

The action of a chameleon scalar field φ with a potential V (φ) is given by

S =
∫

d4x
√
−g

[
1

2κ2 R− 1
2

gμν∂μφ∂νφ −V(φ)
]

+
∫

d4xLM(g(i)
μν ,Ψ

(i)
M ) , (8.90)

where g is the determinant of the metric gμν (in the Einstein frame) and LM is a

matter Lagrangian with matter fields Ψ (i)
M coupled to a metric g(i)

μν . The metric g(i)
μν

is related to the Einstein frame metric gμν via g(i)
μν = e2κQiφgμν , where Qi are the

strengths of the couplings for each matter component with the field φ . The typical
field potential is chosen to be of the runaway type (such as V (φ) = M4+nφ−n). We
also restrict the form of the potential such that |V,φ | → ∞ as φ → 0.

Varying the action (8.90) with respect to φ , we obtain the field equation

φ −V,φ =−∑
i
κQie

4κQiφgμν
(i) T (i)

μν , (8.91)

where T (i)
μν =−(2/

√
−g(i))δLM/δgμν

(i) is the stress-energy tensor for the i-th form

of matter. For non-relativistic matter, we have gμν
(i) T (i)

μν =−ρ̃i, where ρ̃i is an energy

density. It is convenient to introduce the energy density ρi ≡ ρ̃ie3κQiφ , which is con-
served in the Einstein frame. In the following, let us consider the case in which the
couplings Qi are the same for all species, i.e., Qi = Q. In a spherically symmetric
space-time under the weak gravitational background (i.e., neglecting the backreac-
tion of gravitational potentials), Eq. (8.91) reads

d2φ
dr2 +

2
r

dφ
dr

=
dVeff

dφ
, (8.92)



8 Dark Energy: Investigation and Modeling 361

where r is a distance from the center of symmetry, and Veff is the effective potential
given by

Veff(φ) = V (φ)+ eκQφρ (8.93)

and ρ ≡ ∑iρi. For the runaway potential with V,φ < 0, the positive coupling Q
leads to a minimum of the effective potential. In f (R) gravity, the negative cou-
pling (Q = −1/

√
6) gives rise to a minimum for the potential with V,φ > 0 (as we

will see in Sec. 8.5.1.3).
We assume that a spherically symmetric body has a constant density ρ = ρA

inside the body (r < rc) and that the energy density outside the body (r > rc) is
ρ = ρB. The mass Mc of the body and the gravitational potential Φc at the radius
rc are given by Mc = (4π/3)r3

cρA and Φc = GMc/rc, respectively. The effective
potential Veff(φ) has two minima at the field values φA and φB satisfying V ′eff(φA) = 0
and V ′eff(φB) = 0, respectively. The former corresponds to the region with a high
density that gives rise to a heavy mass squared m2

A ≡ V ′′eff(φA), whereas the latter
to the lower density region with a lighter mass squared m2

B ≡ V ′′eff(φB). When we
consider the “dynamics” of the field φ according to Eq. (8.92), we need to consider
the inverted effective potential (−Veff) having two maxima at φ = φA and φ = φB.

The boundary conditions for the field are given by dφ
dr (r = 0) = 0 and φ(r →

∞) = φB. The field φ is at rest at r = 0 and begins to roll down the potential when
the matter-coupling term κQρAeκQφ becomes important at a radius r1 in Eq. (8.92).
As long as r1 is close to rc so that Δrc ≡ rc− r1 � rc, the body has a thin shell
inside the body. Since the field acquires a sufficient kinetic energy in the thin shell
regime (r1 < r < rc), it climbs up the potential hill outside the body (r > rc). The
field profile can be obtained by matching the solutions of Eq. (8.92) at the radius
r = r1 and r = rc. Neglecting the mass term mB, we obtain the thin shell field profile
outside the body [350–352]

φ(r) 
 φB−
2Qeff

κ
GMc

r
, (8.94)

where

Qeff = 3Qεth , εth ≡
κ(φB−φA)

6QΦc
. (8.95)

Here, εth is called the thin shell parameter. Under the conditions Δrc/rc � 1 and
1/(mArc)� 1, the thin shell parameter is approximately given by εth 
 Δrc/rc +
1/(mArc) [352]. As long as εth � 1, the amplitude of the effective coupling Qeff

can be much smaller than 1. Hence it is possible for the large coupling models
(|Q| = O(1)) to be consistent with local gravity experiments if the body has a thin
shell.

Let us study the constraint on the thin shell parameter from the possible violation
of the equivalence principle (EP). The tightest bound comes from the solar system
tests of weak EP using the free-fall acceleration of Moon (aMoon) and Earth (a⊕)
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toward Sun [351]. The experimental bound on the difference of two accelerations is
given by [353, 354]

|aMoon−a⊕|
(aMoon + a⊕)/2

< 10−13 . (8.96)

If Earth, Sun, and Moon have thin shells, the field profiles outside the bodies are
given by Eq. (8.94) with the replacement of corresponding quantities. The acceler-
ation induced by a fifth force with the field profile φ(r) and the effective coupling
Qeff is afifth = |Qeff∇φ(r)|. Using the thin shell parameter εth,⊕ for Earth, the accel-
erations a⊕ and aMoon toward Sun (mass M�) are [351]

a⊕ 

GM�

r2

[
1 + 18Q2ε2

th,⊕
Φ⊕
Φ�

]
, (8.97)

aMoon 

GM�

r2

[
1 + 18Q2ε2

th,⊕
Φ2
⊕

Φ�ΦMoon

]
, (8.98)

where Φ� 
 2.1×10−6, Φ⊕ 
 7.0×10−10, and ΦMoon 
 3.1×10−11 are the gravi-
tational potentials of Sun, Earth, and Moon, respectively. Hence the condition (8.96)
translates into

εth,⊕ < 8.8×10−7/|Q| . (8.99)

Since the condition |φB| 
 |φA| is satisfied for the field potentials under consid-
eration, one has εth,⊕ 
 κφB/(6QΦ⊕) from Eq. (8.95). Then, the condition (8.99)
translates into

|κφB,⊕|< 3.7×10−15 . (8.100)

For example, let us consider the inverse power-law potential V (φ) = M4+nφ−n.
In this case, we have φB,⊕ = [(n/Q)(M4

pl/ρB)(M/Mpl)n+4]1/(n+1)Mpl, where we re-
covered the reduced Planck mass Mpl = 1/κ . For n and Q of the order of unity,
the constraint (8.100) gives M < 10−(15n+130)/(n+4)Mpl. When n = 1, e.g., one has
M < 10−2 eV. If the same potential is responsible for dark energy, the mass M is con-
strained to be larger than this value [355]. For the potential V (φ) = M4 exp(Mn/φn),
however, we have that V (φ) ≈M4 + M4+nφ−n for φ > M, which is responsible for
dark energy for M ≈ 10−3 eV. This can be compatible with the mass scale M con-
strained by (8.100) [355]. See Refs. [356–363] for a number of cosmological and
experimental aspects of the chameleon field.

8.4.3.4 Varying α

So far we have discussed the coupling between dark energy and non-relativistic
matter. In this section, we discuss the case in which dark energy is coupled to an
electromagnetic field. In fact, a temporal variation of the effective fine structure
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“constant” α has been reported by a number of authors. The variation of α con-
strained by the Oklo natural fission reactor is given by −0.9× 10−7 < Δα/α ≡
(α−α0)/α0 < 1.2×10−7 at the redshift z≈ 0.16, where α0 is the value of α today
[364]. From the absorption line spectra of distant quasars, we have the constraints
Δα/α = (−0.574±0.102)×10−5 over the redshift range 0.2 < z < 3.7 [365, 366]
and Δα/α = (−0.06±0.06)×10−5 for 0.4 < z < 2.3 [367]. Although the possibil-
ity of systematic errors still remains [368], this may provide important implications
for the existence of a light scalar field related with dark energy.

The Lagrangian density describing such a coupling between the field φ and the
electromagnetic field Fμν is given by

LF(φ) =−1
4

BF(φ)FμνFμν . (8.101)

The coupling of the form BF(φ) = e−ζκ(φ−φ0) was originally introduced by
Bekenstein [369], where ζ is a coupling constant and φ0 is the field value today.
There are also other choices of the coupling, see e.g., Refs. [370–377]. The fine
structure “constant” α is inversely proportional to BF(φ) so that this can be ex-
pressed as α = α0/BF(φ), where α0 is the present value. The exponential coupling
BF(φ) = e−ζκ(φ−φ0) has a linear dependence BF(φ)
 1−ζκ(φ−φ0) in the regime
|ζκ(φ −φ0)| � 1 so that the variation of α is given by

Δα
α

=
α−α0

α0

 ζκ(φ −φ0) . (8.102)

Using the constraint Δα/α 
 −10−5 around z = 3 [366] obtained from quasar
absorption lines, the coupling ζ can be expressed as

ζ 
− 10−5

κφ(z = 3)−κφ(z = 0)
. (8.103)

Let us consider the case in which the scalar field has a power-law dependence in
terms of the scale factor a, i.e.,

φ = φ0 ap = φ0(1 + z)−p . (8.104)

In fact, in the so-called tracking regime of the matter-dominated era [38], the inverse
power-law potential V (φ) = M4+nφ−n gives rise to a constant field equation of state:
wφ = −2/(n + 2), which corresponds to the field evolution (8.104) with p = 3/
(n + 2). Using Eq. (8.104), the coupling ζ in Eq. (8.103) reads

ζ 
 10−5

1−4−p (κφ0)
−1 . (8.105)

Since κφ0 is of the order of unity in order to realize the present cosmic acceleration
[38], the coupling ζ is constrained to be ζ ≈ 10−5 for p of the order of 1.
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The above discussion is valid for the potentials having the solution (8.104) in the
tracking regime. The variation of α for other quintessence potentials was discussed
in Ref. [376]. There is also a k-essence model in which a tachyon field is coupled to
electromagnetic fields [378].

8.4.4 Unified Models of Dark Energy and Dark Matter

There are a number of works to explain the origin of dark energy and dark mat-
ter using a single fluid or a single scalar field. Let us first discuss the generalized
Chaplygin gas (GCG) model as an example of a single fluid model [44, 45]. In this
model, the pressure P of the perfect fluid is related to its energy density ρ via

P =−Aρ−α , (8.106)

where A is a positive constant. The original Chaplygin gas model corresponds to
α = 1 [44].

Plugging the relation (8.106) into the continuity equation ρ̇+3H(ρ+P) = 0, we
obtain the integrated solution

ρ(t) =
[

A +
B

a3(1+α)

]1/(1+α)

, (8.107)

where B is an integration constant. In the early epoch (a � 1), the energy density
evolves as ρ ∝ a−3, which means that the fluid behaves as dark matter. In the late
epoch (a
 1), the energy density approaches a constant value A1/(a+α) and hence
the fluid behaves as dark energy. A fluid with the generalized Chaplygin gas there-
fore interpolates between dark matter and dark energy.

Although this model is attractive to provide unified description of two dark
components, it is severely constrained by the matter power spectrum in large-scale
structure. The gauge-invariant matter perturbation δm with a comoving wave num-
ber k obeys the following equation of motion [46]

δ̈m +
(
2 + 3c2

s−6w
)

Hδ̇m−
[

3
2

H2(1−6c2
s −3w2 + 8w)−

(
csk
a

)2
]
δm = 0 ,

(8.108)

where w = P/ρ is the fluid equation of state, and cs is the sound speed given by

c2
s =

dP
dρ

=−αw . (8.109)

Since w→ 0 and c2
s → 0 in the limit z
 1, the sound speed is much smaller than

unity in the deep matter era and starts to grow around the end of it. Since w is
negative, c2

s is positive for α > 0 and negative for α < 0.
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From Eq. (8.108), the perturbations satisfying the following condition grow via
the gravitational instability

|c2
s |<

3
2

(
aH
k

)2

. (8.110)

When |c2
s |> (3/2)(aH/k)2, the perturbations exhibit either rapid growth or damped

oscillations depending on the sign of c2
s . The violation of the condition (8.110)

mainly occurs around the present epoch in which |w| is of the order of unity and
hence |c2

s | ∼ |α|. The smallest scale relevant to the galaxy matter power spectrum
in the linear regime corresponds to the wave number around k = 0.1h Mpc−1. Then
the constraint (8.110) gives the upper bound on the values of |α| [46]:

|α| <∼ 10−5 . (8.111)

Hence the generalized Chaplygin gas model is hardly distinguishable from the
ΛCDM model. In particular, the original Chaplygin gas model (α = 1) is excluded
from the observations of large-scale structure. Although nonlinear clustering may
change the evolution of perturbations in this model [379, 380], it is unlikely that the
constraint (8.111) is relaxed significantly.

The above conclusion comes from the fact that in the Chaplygin gas model, the
sound speed is too large to match with observations. There is a way to avoid this
problem by adding a non-adiabatic contribution to Eq. (8.108) to make cs van-
ish [381]. It is also possible to construct unified models of dark energy and dark
matter using a purely kinetic scalar field [382]. Let us consider k-essence models
in which the Lagrangian density P(X) has an extremum at some value X = X0,
e.g., [382]

P = P0 + P2(X −X0)2 . (8.112)

The pressure Pφ = P and the energy density ρφ = 2XP,X −P satisfy the continuity
equation ρ̇φ + 3H(ρφ + Pφ) = 0, i.e.,

(P,X + 2XP,XX) Ẋ + 6HP,XX = 0 . (8.113)

The solution around X = X0 can be derived by introducing a small parameter
ε = (X − X0)/X0. Plugging Eq. (8.112) into Eq. (8.113), we find that ε satis-
fies the equation ε̇ = −3Hε at linear order. Hence we obtain the solution X =
X0

[
1 + ε1(a/a1)−3

]
, where ε1 and a1 are constants. The validity of the above

approximation demands that ε1(a/a1)−3 � 1. Since Pφ 
 P0 and ρφ 
 −P0 +
4P2X2

0 ε1(a/a1)−3 in the regime where X is close to X0, the field equation of state is
given by

wφ 
−
[

1− 4P2

P0
X2

0 ε1

(
a
a1

)−3
]−1

. (8.114)

Since wφ → −1 at late times, it is possible to give rise to the cosmic accelera-
tion. One can also realize wφ ≈ 0 during the matter era, provided that the condi-
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tion 4P2X2
0 /|P0| 
 1 is satisfied. The sound speed squared defined in Eq. (8.67) is

approximately given by

c2
s 


1
2
ε1

(
a
a1

)−3

, (8.115)

which is much smaller than unity. Hence the large sound speed problem can
be evaded in the model (8.112). In Ref. [383], it was shown that the above purely
k-essence model is equivalent to a fluid with a closed-form barotropic equation
of state plus a constant term that works as a cosmological constant to all orders
in structure formation. See Refs. [384–388] for generalized versions of the above
model.

8.5 Modified Gravity Models

There is another class of dark energy models in which gravity is modified from
GR. We review a number of cosmological and gravitational aspects of f (R) gravity,
Gauss–Bonnet (GB) gravity, scalar-tensor theories, and a braneworld model. We
also discuss observational signatures of those models to distinguish them from other
dark energy models.

8.5.1 f (R) Gravity

The simplest modification to GR is f (R) gravity with the action

S =
1

2κ2

∫
d4x
√
−g f (R)+

∫
d4xLM(gμν ,ΨM) , (8.116)

where f is a function of the Ricci scalar R, and LM is a matter Lagrangian for
perfect fluids. The Lagrangian LM depends on the metric gμν and the matter fields
ΨM. We do not consider a direct coupling between the Ricci scalar and matter (such
as f1(R)LM studied in Refs. [389–391]).

8.5.1.1 Viable f (R) Dark Energy Models

In the standard variational approach called the metric formalism, the affine connec-
tions Γ λ

μν are related with the metric gμν [67]. In this formalism, the field equation
can be derived by varying the action (8.116) with respect to gμν :

F(R)Rμν(g)− 1
2

f (R)gμν −∇μ∇νF(R)+ gμν F(R) = κ2Tμν , (8.117)
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where F(R)≡ ∂ f/∂R, and Tμν =−(2/
√−g)δLM/δgμν is the energy-momentum

tensor of matter. Note that there is another way for the variation of the action
called the Palatini formalism in which the metric and the connections are treated
as independent variables. In Sec. 8.5.1.4, we shall briefly mention the application of
Palatini f (R) gravity to dark energy. The trace of Eq. (8.117) is given by

3 F(R)+ F(R)R−2 f (R) = κ2T , (8.118)

where T = gμνTμν = −ρM + 3PM. Here ρM and PM are the energy density and the
pressure of matter, respectively.

The de Sitter point corresponds to a vacuum solution at which the Ricci scalar is
constant. Since F(R) = 0 at this point, we obtain

F(R)R−2 f (R) = 0 . (8.119)

The model f (R) = αR2 satisfies this condition and hence it gives rise to an exact
de Sitter solution. In fact the first model of inflation proposed by Starobinsky [113]
corresponds to f (R) = R +αR2, in which the cosmic acceleration ends when the
term αR2 becomes smaller than R. Dark energy models based on f (R) theories can
be also constructed to realize the late-time de Sitter solution satisfying the condition
(8.119).

The possibility of the late-time cosmic acceleration in f (R) gravity was first sug-
gested by Capozziello [47] in 2002. An f (R) dark energy model of the form f (R) =
R− μ2(n+1)/Rn (n > 0) was proposed in Refs. [49–52] (see also Refs. [392–397] ),
but it became clear that this model suffers from a number of problems such as the
matter instability [398], absence of the matter era [399, 400], and inability to satisfy
local gravity constraints [401–406]. This problem arises from the fact that f,RR < 0
in this model.

In order to see why the models with negative values of f,RR are excluded,
let us consider local fluctuations on a background characterized by a curvature
R0 and a density ρ0. We expand Eq. (8.118) in powers of fluctuations under a
weak field approximation. We decompose the quantities F(R), gμν , and Tμν into
the background part and the perturbed part: R = R(0) + δR, F = F(0)(1 + δF),
gμν = ημν + hμν , and Tμν = T (0)

μν + δTμν , where we have used the approximation

that g(0)
μν corresponds the metric ημν in the Minkowski space-time. Then, the trace

equation (8.118) reads [403, 404](
∂ 2

∂ t2 −∇2
)
δF + M2 δF =− κ2

3F(0) δT , (8.120)

where δT ≡ ημνδTμν , and

M2 ≡ 1
3

[
f,R(R(0))
f,RR(R(0))

−R(0)

]
=

R(0)

3

[
1

m(R(0))
−1

]
. (8.121)
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Here the quantity m = R f,RR/ f,R characterizes the deviation from the ΛCDM
model ( f (R) = R− 2Λ ). In the homogeneous and isotropic cosmological back-
ground (without a Hubble friction), δF is a function of the cosmic time t only and
Eq. (8.120) reduces to

δ̈F + M2δF =
κ2

3F (0)ρ , (8.122)

where ρ ≡ −δT . For the models where the deviation from the ΛCDM model is
small, we have m(R(0)) � 1 so that |M2| is much larger than R(0). If M2 < 0,
the perturbation δF exhibits a violent instability. Then, the condition M2
 f,R(R(0))/
(3 f,RR(R(0))) > 0 is needed for the stability of cosmological perturbations. We
also require that f,R(R(0)) > 0 to avoid antigravity (i.e., to avoid that the graviton
becomes a ghost). Hence the condition f,RR(R(0)) > 0 needs to hold for avoiding a
tachyonic instability associated with the negative mass squared [407–411].

For the consistency with local gravity constraints in solar system, the function
f (R) needs to be close to that in the ΛCDM model in the region of high density (in
the region where the Ricci scalar R is much larger than the cosmological Ricci scalar
R0 today). We also require the existence of a stable late-time de Sitter point given
in Eq. (8.119). From the stability analysis about the de Sitter point, one can show
that it is stable for 0 < m = R f,RR/ f,R < 1 [412–414]. Then, we can summarize the
conditions for the viability of f (R) dark energy models:

• (i) f,R > 0 for R≥ R0.
• (ii) f,RR > 0 for R≥ R0.
• (iii) f (R)→ R−2Λ for R
 R0.
• (iv) 0 < R f,RR/ f,R < 1 at the de Sitter point satisfying R f,R = 2 f .

The examples of viable models satisfying all these requirements are [415–417]

(A) f (R) = R− μRc
(R/Rc)2n

(R/Rc)2n + 1
with n,μ ,Rc > 0 , (8.123)

(B) f (R) = R− μRc

[
1−

(
1 + R2/R2

c

)−n
]

with n,μ ,Rc > 0 , (8.124)

(C) f (R) = R− μRctanh(R/Rc) with μ ,Rc > 0 , (8.125)

where μ , Rc, and n are constants. Models similar to (C) were proposed in Refs. [418,
419]. Note that Rc is roughly of the order of the present cosmological Ricci scalar
R0. If R
 Rc, the models are close to the ΛCDM model ( f (R)
 R− μRc), so that
GR is recovered in the region of high density. The models (A) and (B) have the
following asymptotic behavior

f (R) 
 R− μRc
[
1− (R/Rc)−2n] , (R
 Rc) , (8.126)

which rapidly approaches the ΛCDM model for n >∼ 1. The model (C) shows an
even faster decrease of m in the region R
 Rc. The model f (R) = R−μRc(R/Rc)n

(0 < n < 1) proposed in Refs. [414, 420] is also viable, but it does not allow the
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rapid decrease of m in the region of high density required for the consistency with
local gravity tests.

For example, let us consider the model (B). The de Sitter point given by the
condition (8.119) satisfies

μ =
x1(1 + x2

1)
n+1

2[(1 + x2
1)n+1−1− (n + 1)x2

1]
, (8.127)

where x1 ≡ R1/Rc and R1 is the Ricci scalar at the de Sitter point. The stability
condition (0 < m < 1) at this point gives [416]

(1 + x2
1)

n+2 > 1 +(n + 2)x2
1 +(n + 1)(2n + 1)x4

1 . (8.128)

The condition (8.128) gives the lower bound on the parameter μ . When n = 1, one
has x1 >

√
3 and μ > 8

√
3/9. Under Eq. (8.128), one can show that the conditions

f,R > 0 and f,RR > 0 are also satisfied for R≥ R1.

8.5.1.2 Observational Signatures of f (R) Dark Energy Models

In the flat FLRW space-time, we obtain the following equations of motion from
Eqs. (8.117) and (8.118):

3FH2 = κ2ρm +(FR− f )/2−3HḞ , (8.129)

2FḢ = −κ2ρm− F̈ + HḞ , (8.130)

where, for the perfect fluid, we have taken into account only the nonrelativistic mat-
ter with energy density ρm. In order to confront f (R) dark energy models with SN
Ia observations, we rewrite Eqs. (8.129) and (8.130) as follows:

3AH2 = κ2 (ρm +ρDE) , (8.131)

−2AḢ = κ2 (ρm +ρDE + PDE) , (8.132)

where A is some constant and

κ2ρDE ≡ (1/2)(FR− f )−3HḞ + 3H2(A−F) , (8.133)

κ2PDE ≡ F̈ + 2HḞ− (1/2)(FR− f )− (3H2 + 2Ḣ)(A−F) . (8.134)

By defining ρDE and PDE in this way, one can easily show that the following conti-
nuity equation holds

ρ̇DE + 3H(ρDE + PDE) = 0 . (8.135)
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We define the dark energy equation of state wDE ≡ PDE/ρDE, which is directly
related to the one used in SN Ia observations. From Eqs. (8.131) and (8.132), it is
given by [83, 421]

wDE =− 2AḢ + 3AH2

3AH2−κ2ρm
=

weff

1− (F/A)Ω̃m
, (8.136)

where Ω̃m ≡ κ2ρm/(3FH2). The viable f (R) models approach the ΛCDM model
in the past, i.e., F → 1 as R→ ∞. In order to reproduce the standard matter era in
the high-redshift regime we can choose A = 1 in Eqs. (8.131) and (8.132). Another
possible choice is A = F0, where F0 is the present value of F . This choice is suitable
if the deviation of F0 from 1 is small (as in scalar-tensor theory with a massless
scalar field [422, 423]). In both cases, the equation of state wDE can be smaller than
−1 before reaching the de Sitter attractor [83, 415, 417, 419, 424]. This originates
from the fact that the presence of non-relativistic matter makes the denominator
in Eq. (8.136) smaller than 1 (unlike Refs. [425, 426] in which the authors did not
take into account the contribution of non-relativistic matter). Thus, f (R) dark energy
models give rise to a phantom equation of state without violating stability conditions
of the system. The models (A) and (B) are allowed from the SN Ia observations
provided that n is larger than the order of unity [427–430].

The modification of gravity manifests itself in the effective gravitational coupling
that appears in the equation of cosmological perturbations. The full perturbation
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Fig. 8.5 Evolution of the dark energy equation of state wDE for the model (B) with A = 1 in
Eqs. (8.131) and (8.132). The phantom equation of state and the cosmological constant boundary
crossing are realized. From Ref. [424].
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equations in f (R) gravity are presented in Refs. [431–433]. When we confront f (R)
models with the observations of large-scale structure, the wave numbers k of inter-
est are sub-horizon modes with k/a 
 H. We can employ a so-called quasi-static
approximation under which the dominant terms in perturbation equations corre-
spond to those including k2/a2, δρm, and M2 [9, 91, 423, 434]. Then, the matter
density perturbation δm approximately satisfies the following equation [434, 435]

δ̈m + 2Hδ̇m−4πGeffρmδm 
 0 , (8.137)

where ρm is the energy density of nonrelativistic matter, and

Geff =
G
f,R

1 + 4mk2/(a2R)
1 + 3mk2/(a2R)

, (8.138)

where m ≡ R f,RR/ f,R. This approximation is accurate for viable f (R) dark energy
models as long as an oscillating mode of the scalar-field degree of freedom is sup-
pressed relative to the matter-induced mode [416, 417, 436–439].

In the regime where the deviation from the ΛCDM model is small such that
mk2/(a2R) � 1, the effective gravitational coupling Geff is very close to the
gravitational constant G. Then, the matter perturbation evolves as δm ∝ t2/3 dur-
ing the matter dominance. Meanwhile, in the regime mk2/(a2R) 
 1, one has
Geff 
 4G/(3 f,R), so that the evolution of δm during the matter era is given by

δm ∝ t(
√

33−1)/6 [416, 417]. The transition from the former regime to the latter
regime occurs at the critical redshift [440]

zk 

[(

k
a0H0

)2 2n(2n + 1)
μ2n

(2(1−Ω (0)
m ))2n+1

(Ω (0)
m )2(n+1)

]1/(6n+4)

−1 , (8.139)

where “0” represents the values today. The time tk at the transition has a scale-
dependence tk ∝ k−3/(6n+4), which means that the transition occurs earlier for larger
k. The matter power spectrum Pδm = |δm|2 at the onset of cosmic acceleration (at
time tΛ ) shows a difference compared with the case of the ΛCDM model [416]:

Pδm

Pδm
ΛCDM =

(
tΛ
tk

)2
(√

33−1
6 − 2

3

)
∝ k

√
33−5

6n+4 . (8.140)

The ratio of the two power spectra today, i.e., Pδm(t0)/Pδm
ΛCDM(t0), is in general dif-

ferent from Eq. (8.140), but the difference is small for n of the order of unity [417].
The modified evolution of perturbations for the redshift z < zk gives rise to the

integrated Sachs-Wolfe (ISW) effect in CMB anisotropies [420, 441–443], but this is
limited to very large scales (low multipoles). Since the CMB spectrum on the scales
relevant to the large-scale structure (k >∼ 0.01h Mpc−1) is hardly affected by this
modification, there is a difference between the spectral indices of the CMB spectrum
and the galaxy power spectrum: Δns = (

√
33−5)/(6n+4). Observationally, we do
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not find any strong signature for the difference of slopes of the two spectra. If we
take the mild bound Δns < 0.05, we obtain the constraint n > 2.

The growth index γ defined in Eq. (8.78) can be as close as 0.4 today in viable
f (R) models given in Eqs. (8.123)–(8.125) [421]. Depending on the epoch at
which the perturbations cross the transition redshift zk, the spatial dispersion of
the growth index γ0 ≡ γ(z = 0) appears in the range of values 0.40 < γ < 0.55.
There are also regions in parameter space for which γ0 converges to values around
0.40 < γ < 0.43 [440]. These unusual dispersed or converged spectra will be use-
ful to distinguish between f (R) gravity models and the ΛCDM model in future
high-precision observations. Since the modified evolution of matter perturbations
directly affects the shear power spectrum in weak lensing, this is another important
test for probing f (R) gravity observationally [444–448]. We also note that the non-
linear evolution of matter perturbations in f (R) gravity (corresponding to the scales
k >∼ 0.1h Mpc−1) has been studied in Refs. [449–457].

8.5.1.3 Local Gravity Constraints

Let us discuss local gravity constraints on f (R) dark energy models. In the region of
high density where gravitational experiments are carried out, the linear expansion of
R in terms of the cosmological value R(0) and the perturbation δR is no longer valid
because of the violation of the condition δR� R(0). In such a nonlinear regime, the
chameleon mechanism [350, 351] can be at work to suppress the effective coupling
between dark energy and nonrelativistic matter. In order to study how the chameleon
mechanism works in f (R) gravity, we transform the action (8.116) to the Einstein
frame action under the conformal transformation g̃μν = Fgμν : [458]

SE =
∫

d4x
√
−g̃

[
1

2κ2 R̃− 1
2

g̃μν∂μφ∂νφ −V(φ)
]

+
∫

d4xLM(gμν ,Ψm) , (8.141)

where κφ ≡
√

3/2 lnF , V (φ) = (RF− f )/(2κ2F2), and a tilde represents quanti-
ties in the Einstein frame.

The action (8.141) is the same as (8.90) with the correspondence that gμν in the

Jordan frame is equivalent to g(i)
μν in the action (8.90). Since the quantity F is given

by F = e−2κQφ with Q = −1/
√

6 in metric f (R) gravity, the field φ is coupled to
non-relativistic matter (including baryons and dark matter) with a universal cou-
pling Q =−1/

√
6. Let us consider the models (8.123) and (8.124), which behave as

Eq. (8.126), in the region of high density (R
 Rc). For the functional form (8.126),
the effective potential defined in Eq. (8.93) is

Veff(φ) 
 μRc

2κ2 e−4κφ/
√

6

[
1− (2n + 1)

(
−κφ√

6nμ

)2n/(2n+1)
]

+ρe−κφ/
√

6 , (8.142)
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where

F = e2κφ/
√

6 = 1−2nμ(R/Rc)−(2n+1) . (8.143)

Inside and outside a spherically symmetric body, the effective potential (8.142) has
the following minima given, respectively, by

κφA 
−
√

6nμ
(

Rc

κ2ρA

)2n+1

, κφB 
−
√

6nμ
(

Rc

κ2ρB

)2n+1

. (8.144)

One has |φB| 
 |φA| provided that ρA 
 ρB.
The bound (8.100) translates into

nμ
x2n+1

1

(
R1

ρB

)2n+1

< 1.5×10−15 , (8.145)

where x1 = R1/Rc and R1 is the Ricci scalar at the de Sitter point. Let us consider
the case in which the Lagrangian density is given by (8.126) for R ≥ R1. In the
original models of Hu and Sawicki [415] and Starobinsky [416], there are some
modification to the estimation of R1, but this change is not significant when we
place constraints on model parameters. The de Sitter point for the model (8.126)
corresponds to μ = x2n+1

1 /[2(x2n
1 −n−1)]. Substituting this relation into Eq. (8.145),

we find

n

2(x2n
1 −n−1)

(
R1

ρB

)2n+1

< 1.5×10−15 . (8.146)

The stability of the de Sitter point requires that m(R1) < 1, which translates into
the condition x2n

1 > 2n2 + 3n + 1. Then, the term n/[2(x2n
1 − n− 1)] is smaller than

0.25 for n > 0. Using the approximation that R1 and ρB are of the orders of the
present cosmological density 10−29 g/cm3 and the baryonic/dark matter density
10−24 g/cm3 in our galaxy, respectively, we obtain the following constraint from
(8.146): [459]

n > 0.9 . (8.147)

Thus, n does not need to be much larger than unity. Under the condition (8.147), the
deviation from the ΛCDM becomes important as R decreases to the order of Rc.

From (8.143), we find that there is a curvature singularity with R → ∞ (and
M2 → ∞) at φ = 0 for the models (8.123) and (8.124). At this singularity, the field
potential is finite, while its derivative goes to infinity. This singularity can be acces-
sible as we go back to the past [460], unless the oscillating mode of the scalar-field
degree of freedom is suppressed. This amounts to the fine-tuning of initial condi-
tions for the field perturbation [416]. This past singularity can be cured by taking
into account the R2 term [461]. The model of the type f (R) = R−αRc ln(1+R/Rc)
was also proposed to address this problem [462], but it satisfies neither local grav-
ity constraints [463] nor observational constraints of large-scale structure [464].



374 Shinji Tsujikawa

Frolov [460] anticipated that the curvature singularity may be accessed in a strong
gravitational background such as neutron stars. Kobayashi and Maeda [465, 466]
showed the difficulty of obtaining static spherically symmetric solutions because of
the presence of the singularity. On the other hand, the choice of accurate boundary
conditions confirms the existence of static solutions in a strong gravitational back-
ground with Φc <∼ 0.3 [467–470].

8.5.1.4 Palatini f (R) Gravity

In the so-called Palatini formalism of f (R) gravity, the connections Γ λ
μν are treated

as independent variables when we vary the action (8.116) [471–477]. Variation of
the action (8.116) with respect to gμν gives

F(R)Rμν(Γ )− 1
2

f (R)gμν = κ2Tμν , (8.148)

where F(R) = ∂ f/∂R, Rμν (Γ ) is the Ricci tensor corresponding to the connections
Γ λ
μν , and Tμν is the energy-momentum tensor of matter4. Rμν(Γ ) is in general differ-

ent from the Ricci tensor calculated in terms of metric connections Rμν(g). Taking
the trace of Eq. (8.148), we find

F(R)R−2 f (R) = κ2T , (8.149)

where T = gμνTμν . The trace T directly determines the Ricci scalar R(T ), which is
related with the Ricci scalar R(g) = gμνRμν(g) in the metric formalism via [482]

R(T ) = R(g)+
3

2( f ′(R(T )))2 (∇μ f ′(R(T )))(∇μ f ′(R(T )))

+
3

f ′(R(T ))
f ′(R(T )) , (8.150)

where a prime represents a derivative in terms of R(T ). Variation of the action
(8.116) with respect to the connection leads to the following equation

Rμν(g)− 1
2

gμνR(g) =
κ2Tμν

F
− FR(T )− f

2F
gμν +

1
F

(∇μ∇νF−gμν F)

− 3
2F2

[
∂μF∂νF− 1

2
gμν(∇F)2

]
. (8.151)

Unlike the trace equation (8.118) in the metric formalism, the kinetic term F
is not present in the corresponding Eq. (8.149) in the Palatini formalism. Since the
time derivatives of the scalar-field degree of freedom do not appear in Palatini f (R)

4 There is another way for the variation of the action, known as the metric-affine formalism [478],
in which the matter Lagrangian LM depends not only on the metric gμν but also on the connection
Γ λ
μν . See Refs. [479–481] for the detail of such an approach.
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gravity, cosmological solutions are not plagued by the dominance of the oscillating
mode in the past. In fact, the sequence of radiation, matter, and de Sitter epochs can
be realized even for the model f (R) = R−α/Rn (n > 0) [483–489]. The combined
data analysis of SN Ia, BAO, and the CMB shift parameter places the bound n ∈
[−0.23,0.42] on the model f (R) = R−α/Rn (n >−1) [489].

Although the background cosmology is well behaved in Palatini f (R) gravity,
the evolution of non-relativistic matter perturbations exhibits a distinguished fea-
ture relative to that in the ΛCDM model [435, 490–492]. Under the quasi-static
approximation on sub-horizon scales, the equation of matter perturbations is given
by [435]

δ̈m + 2Hδ̇m−
κ2ρm

2F

[
1 +

mk2/(a2R)
1−m

]
δm 
 0 . (8.152)

Although the matter perturbation evolves as δm ∝ t2/3 in the regime |m|k2/(a2R)
� 1, the evolution of δm in the regime |m|k2/(a2R)
 1 is completely different
from that in GR. After the perturbations enter the regime |m|k2/(a2R) >∼ 1, they
exhibit violent growth or damped oscillations depending on the signs of m [435].
The f (R) models are consistent with observations of LSS if the perturbations do not
enter the regime |m|k2/(a2R) >∼ 1 by today. This translates into the condition

|m(z = 0)| <∼ (a0H0/k)2 . (8.153)

If we take the maximum wave number k ≈ 0.2h Mpc−1 (i.e., k ≈ 600a0H0),
Eq. (8.153) gives the bound |m(z = 0)| <∼ 3× 10−6. Hence the f (R) models in the
Palatini formalism are hardly distinguishable from the ΛCDM model.

There are also a number of problems in Palatini f (R) dark energy models associ-
ated with the non-dynamical nature of the scalar-field degree of freedom. The dark
energy model f (R) = R− μ4/R is in conflict with the Standard Model of particle
physics [475–477, 493–497] because of large non-perturbative corrections to the
matter Lagrangian. If we consider the models f (R) = R−μ2(n+1)/Rn, the only way
to make such corrections small is to choose n very close to 0 [433]. Hence the devia-
tion from the ΛCDM model needs to be very small. It was also shown that, for f (R)
dark energy models, a divergent behavior arises for the Ricci scalar at the surface
of a static spherically symmetric star with a polytropic equation of state P = cρΓ

0
(3/2 < Γ < 2), where P is the pressure and ρ0 is the rest-mass density [497, 498].
These results show that Palatini f (R) dark energy models are difficult to be compat-
ible with observational and experimental constraints, although this may not be the
case for f (R) models close to the Planck scale [499–501].

8.5.2 Gauss–Bonnet Dark Energy Models

It is possible to extend f (R) gravity to more general theories in which the Lagrangian
density f is an arbitrary function of R, P≡ RμνRμν , and Q ≡ RμναβRμναβ , where
Rμν and Rμναβ are Ricci tensor and Riemann tensor respectively [502, 503]. The
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appearance of spurious spin-2 ghosts can be avoided by taking a Gauss–Bonnet
(GB) combination [504–507]

G = R2−4RμνRμν + RμναβRμναβ . (8.154)

A simple dark energy model motivated from low-energy effective string theory
[242] is given by [508]

S =
∫

d4x
√
−g

[
1

2κ2 R− 1
2

gμν∂μφ∂νφ −V(φ)− f (φ)G
]

+ SM , (8.155)

where V (φ) and f (φ) are functions of a scalar field φ , and SM is a matter action.
The coupling f (φ)G allows the presence of a de Sitter solution even for a runaway
field potential V (φ) [509–512]. For the exponential potential V (φ) = V0e−κλφ and
the coupling f (φ) = ( f0/μ)eμκφ , it was shown in Refs. [509, 510] that a scaling
matter era can be followed by the late-time de Sitter solution for μ > λ .

Koivisto and Mota [509] found that the parameter λ in this model is constrained
to be 3.5 < λ < 4.5 (95% confidence level) from the observational data of SN Ia
and WMAP 3-year. The parameter λ is constrained to be 3.5 < λ < 4.5 at the 95%
confidence level. In the second paper [511], they showed that the model is strongly
disfavored from the combined data analysis including the constraints coming from
BBN, LSS, BAO, and solar system data. It was shown in Refs. [510, 513] that, when
the GB term dominates the dynamics, tensor perturbations are subject to negative
instabilities. Amendola et al. [514] studied local gravity constraints on the above
model and showed that the energy contribution coming from the GB term needs to
be strongly suppressed for the consistency with solar system experiments. The above
results imply that the GB term with the scalar-field coupling f (φ)G can hardly be
the source for dark energy.

The dark energy models based on the Lagrangian density L = R/(2κ2)+ f (G ),
have been studied by a number of authors [515–524]. In the presence of a perfect
fluid with an energy density ρM , the Friedmann equation is given by [515, 516]

3H2 = G f,G − f −24H2 f,G G Ġ +ρM . (8.156)

The Hubble parameter H = H1 at the de Sitter point satisfies 3H2
1 = G1 f,G (G1)−

f (G1), where G1 = 24H4
1 . The stability of the de Sitter point requires the condition

0 < H6
1 f,G G (H1) < 1/384 [520]. In order to avoid the instability of solutions during

radiation and matter eras, we also need the condition f,G G > 0. In Ref. [520], the
authors presented a number of f (G ) models that are cosmologically viable at the
background level. One of such viable models is given by

f (G ) = λ
G√
G∗

arctan

(
G

G∗

)
−αλ

√
G∗ , (8.157)
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where α , λ , and G∗ are constants. This model can satisfy solar system constraints
for a wide range of parameter space [523].

If we consider cosmological perturbations, however, there is a UV instability in
f (G ) models associated with a negative propagation speed squared of a scalar-field
degree of freedom [516, 524]. This growth of perturbations gets stronger on smaller
scales, which is difficult to be compatible with the observed galaxy spectrum unless
the deviation from GR is very small. Thus, f (G ) dark energy models are effectively
ruled out as an alternative to the ΛCDM model.

8.5.3 Scalar-Tensor Theories

There is another class of modified gravity called scalar-tensor theories in which
the Ricci scalar R is coupled to a scalar field ϕ . One of the simplest examples is
Brans–Dicke (BD) theory [291] with the action

S =
∫

d4x
√
−g

[
1
2
ϕR− ωBD

2ϕ
(∇ϕ)2−U(ϕ)

]
+ SM(gμν ,ΨM) , (8.158)

whereωBD is the BD parameter, U(ϕ) is the field potential, and SM is a matter action
that depends on the metric gμν and matter fields Ψm. The original BD theory [291]
does not have the field potential U(ϕ).

The general action for scalar-tensor theories can be written as

S =
∫

d4x
√
−g

[
1
2

f (ϕ ,R)− 1
2
ω(ϕ)(∇ϕ)2

]
+ SM(gμν ,ΨM) , (8.159)

where f is a general function of the scalar field ϕ and the Ricci scalar R, ω is a
function of ϕ . We choose the unit κ2 = 1. We consider theories of the type

f (ϕ ,R) = F(ϕ)R−2U(ϕ) . (8.160)

Under the conformal transformation g̃μν = Fgμν , the action in the Einstein frame
is given by [458]

SE =
∫

d4x
√
−g̃

[
1
2

R̃− 1
2
(∇̃φ)2−V(φ)

]
+ SM(gμν ,ΨM) , (8.161)

where V = U/F2. We have introduced a new scalar field φ in order to make the field
kinetic term canonical:

φ ≡
∫

dϕ

√
3
2

(
F,ϕ

F

)2

+
ω
F

. (8.162)
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We define the coupling between dark energy and non-relativistic matter, as

Q≡−F,φ

2F
=−F,ϕ

F

[
3
2

(
F,ϕ

F

)2

+
ω
F

]−1/2

. (8.163)

In f (R) gravity, we have ω = 0 and hence F = exp(
√

2/3φ) from Eq. (8.162). Then,
the coupling is given by Q = −1/

√
6 from Eq. (8.163). If Q is constant as in f (R)

gravity, the following relations hold from Eqs. (8.162) and (8.163):

F = e−2Qφ , ω = (1−6Q2)F
(

dφ
dϕ

)2

. (8.164)

In this case, the action (8.159) in the Jordan frame reads [292]

S =
∫

d4x
√
−g

[
1
2

F(φ)R− 1
2
(1−6Q2)F(φ)(∇φ)2−U(φ)

]
+ SM(gμν ,Ψm) .

(8.165)

In the limit that Q→ 0, the action (8.165) reduces to the one for a minimally cou-
pled scalar field φ with the potential U(φ). The transformation of the Jordan frame
action (8.165) under the conformal transformation g̃μν = e−2Qφgμν gives rise to the
Einstein frame action (8.161) with a constant coupling Q.

One can compare (8.165) with the action (8.158) in BD theory. Setting ϕ = F =
e−2Qφ , one finds that two actions are equivalent if the parameter ωBD is related to Q
via the relation [351, 292]

3 + 2ωBD =
1

2Q2 . (8.166)

Using this relation, we find that the General Relativistic limit (ωBD → ∞) corre-
sponds to the vanishing coupling (Q→ 0). Since Q = −1/

√
6 in f (R) gravity, this

corresponds to the BD parameter ωBD = 0 [525, 526, 401]. One can show that the
field equation (8.151) in Palatini f (R) gravity is equivalent to the one derived in BD
theory with ωBD =−3/2 [482, 433]. Hence Palatini f (R) gravity corresponds to the
infinite coupling (Q2 → ∞).

There are also other scalar-tensor theories that give rise to field-dependent cou-
plings Q(φ). For a nonminimally coupled scalar field with F(ϕ) = 1− ξϕ2 and
ω(ϕ) = 1 in the action (8.159) with (8.160), the coupling is field dependent, i.e.,
Q(ϕ) = ξϕ/[1−ξϕ2(1−6ξ )]1/2. The cosmological dynamics of dark energy mod-
els based on such theories have been studied by a number of authors [286, 527–532].

Let us consider BD theory with the action (8.165). In the absence of the potential
U(φ) the BD parameterωBD is constrained to be ωBD > 4.0×104 from solar-system
experiments [354]. This bound also applies to the case of a nearly massless field
with the potential U(φ), in which the Yukawa correction e−Mr is close to unity
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(where M is the scalar field mass and r is an interaction length). Using the bound
ωBD > 4.0×104 in Eq. (8.166), we find

|Q|< 2.5×10−3 . (8.167)

In this case, the cosmological evolution for such theories is hardly distinguishable
from the Q = 0 case. Even for scalar-tensor theories with such small couplings, it
was shown that the phantom equation state of dark energy can be realized without
the appearance of a ghost state [533–536].

In the presence of the field potential, it is possible for large coupling models
(|Q| = O(1)) to satisfy local gravity constraints under the chameleon mechanism,
provided that the mass M of the field φ is sufficiently large in the region of high
density. In metric f (R) gravity (Q =−1/

√
6), the field potential U(φ) in Eq. (8.165)

corresponds to U = (FR− f )/2 with φ =
√

3/2 lnF . The viable f (R) dark energy
models (8.123) and (8.124) have the asymptotic form (8.126), in which case the
field potential is given by

U(φ) =
μRc

2

[
1− 2n + 1

(2nμ)2n/(2n+1)

(
1− e2φ/

√
6
)2n/(2n+1)

]
. (8.168)

For BD theories with the constant coupling Q, one can generalize the potential
(8.168) to the form

U(φ) = U0
[
1−C(1− e−2Qφ)p] (U0 > 0, C > 0, 0 < p < 1) . (8.169)

As φ → 0, the potential (8.169) approaches the finite value U0 with a divergence
of the field mass squared M2 = U,φφ →∞. This model has a curvature singularity at
φ = 0 as in the case of the f (R) models (8.123) and (8.124). The mass M decreases
as the field evolves away from φ = 0. The late-time cosmic acceleration can be
realized by the potential (8.169) provided that U0 is of the order of H2

0 .
Since the action (8.161) in the Einstein frame is equivalent to the action (8.90),

the chameleon mechanism can be at work even for BD theories with large cou-
plings (|Q| = O(1)). Considering a spherically symmetric body with homogenous
densities ρA and ρB inside and outside bodies respectively, the effective potential
Veff = V (φ)+ eQφ ρ in the Einstein frame (where V (φ) = U(φ)/F2) has two min-
ima characterized by

φA 

1

2Q

(
2U0 pC
ρA

)1/(1−p)

, φB 

1

2Q

(
2U0 pC
ρB

)1/(1−p)

. (8.170)

Using the experimental bound (8.100) coming from the violation of equivalence
principle together with the condition for realizing the cosmic acceleration today, we
obtain the constraint [292]

p > 1− 5
13.8− log10 |Q|

. (8.171)
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When |Q|= 10−2 and |Q|= 10−1, we have p > 0.68 and p > 0.66, respectively. In
f (R) gravity, the above bound corresponds to p > 0.65, which translates into n > 0.9
for the model (8.126).

The evolution of cosmological perturbations in scalar-tensor theories has been
discussed in Refs. [292, 423, 434, 537, 538]. Under the quasi-static approximation
on sub-horizon scales, the matter perturbation δm for the theory (8.165) obeys the
following equation of motion [292, 538]

δ̈m + 2Hδ̇m−4πGeffρmδm 
 0 , (8.172)

where the effective (cosmological) gravitational coupling is

Geff =
G
F

(k2/a2)(1 + 2Q2)F + M2

(k2/a2)F + M2 . (8.173)

Here, M2 ≡ U,φφ is the field mass squared. In the “General Relativistic” regime
characterized by M2/F 
 k2/a2, one has Geff 
G/F and δm ∝ t2/3. In the “scalar-
tensor” regime characterized by M2/F� k2/a2, it follows that Geff
 (1+2Q2)G/F

and δm ∝ t(
√

25+48Q2−1)/6. If the transition from the former regime to the latter
regime occurs during the matter era, this gives rise to a difference between the spec-
tral indices of the matter power spectrum and of the CMB spectrum on the scales
0.01h Mpc−1 <∼ k <∼ 0.2h Mpc−1 [292]:

Δns =
(1− p)(

√
25 + 48Q2−5)
4− p

. (8.174)

Under the criterion Δns < 0.05, we obtain the bounds p > 0.957 for Q = 1 and
p > 0.855 for Q = 0.5. As long as p is close to 1, the model can be consistent with
both cosmological and local gravity constraints.

For the perturbed metric ds2 =−(1+2Ψ)dt2 +a2(t)(1−2Φ)δi jdxidx j, the grav-
itational potentials obey the following equations under a quasi-static approximation
on sub-horizon scales [292]

k2

a2Ψ 
−4πG
F

(k2/a2)(1 + 2Q2)F + M2

(k2/a2)F + M2 ρmδm , (8.175)

k2

a2Φ 
−
4πG

F
(k2/a2)(1−2Q2)F + M2

(k2/a2)F + M2 ρmδm , (8.176)

where we have recovered the gravitational constant G. The results (8.175) and
(8.176) include those in f (R) gravity by setting Q =−1/

√
6. In the regime M2/F�

k2/a2, the evolution ofΨ and Φ is subject to change compared with that in the GR
regime characterized by M2/F 
 k2/a2. In general, the difference from GR may be
quantified by the parameters q and ζ [444]:

k2

a2Φ =−4πGqρmδm ,
Φ−Ψ
Φ

= ζ . (8.177)
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In the regime M2/F � k2/a2 of scalar-tensor theory (8.165), it follows that
q
 (1−2Q2)/F and ζ 
−4Q2/(1−2Q2).

In order to confront dark energy models with the observations of weak lensing,
it may be convenient to introduce the following quantity [444]

Σ ≡ q(1− ζ/2) . (8.178)

From the definition (8.177), we find that the weak lensing potential ψ = Φ +Ψ can
be expressed as

ψ =−8πG
a2

k2 ρmδmΣ . (8.179)

In scalar-tensor theory (8.165), one has Σ = 1/F . The effect of modified gravity
theories manifests itself in weak lensing observations in at least two ways. One is the
multiplication of the term Σ on the r.h.s. of Eq. (8.179). Another is the modification
of the evolution of δm. The latter depends on two parameters q and ζ , or equivalently,
Σ and ζ . Thus, two parameters (Σ ,ζ ) will be useful to detect signatures of modified
gravity theories from future surveys of weak lensing. See Refs. [539–551] for related
works about testing gravitational theories in weak lensing observations.

8.5.4 DGP Model

In the so-called Dvali, Gabadadze, and Porrati (DGP) [58] braneworld, it is possi-
ble to realize a “self-accelerating Universe” even in the absence of dark energy. In
braneworlds standard model, particles are confined on a 3-dimensional (3D) brane
embedded in the 5-dimensional bulk space-time with large extra dimensions. In the
DGP braneworld model [58], the 3-brane is embedded in a Minkowski bulk space-
time with infinitely large extra dimensions. Newton gravity can be recovered by
adding a 4D Einstein DGP Hilbert action sourced by the brane curvature to the
5D action. Such a 4D term may be induced by quantum corrections coming from
the bulk gravity and its coupling with matter on the brane. In the DGP model, the
standard 4D gravity is recovered for small distances, whereas the effect from the
5D gravity manifests itself for large distances. The late-time cosmic acceleration
can be realized without introducing a dark energy component [552, 553] (see also
Ref. [554] for a generalized version of the DGP model).

The action for the DGP model is given by

S =
1

2κ2
(5)

∫
d5X

√
−g̃ R̃+

1

2κ2
(4)

∫
d4X

√
−gR−

∫
d5X

√
−g̃LM , (8.180)

where g̃AB is the metric in the 5D bulk and gμν = ∂μXA∂νXBg̃AB is the induced
metric on the brane with XA(xc) being the coordinates of an event on the brane
labelled by xc. The 5D and 4D (reduced) gravitational constants, κ2

(5) and κ2
(4), are



382 Shinji Tsujikawa

related with the 5D and 4D Planck masses, M(5) and M(4), via κ2
(5) = 1/M3

(5) and

κ2
(4) = 1/M2

(4). The first and second terms in Eq. (8.180) correspond to Einstein–
Hilbert actions in the 5D bulk and on the brane, respectively. The matter action con-
sists of a brane-localized matter whose action is given by

∫
d4x
√−g(σ +L brane

M ),
where σ is the 3-brane tension and L brane

M is the Lagrangian density on the brane.
Since the tension is not related to the Ricci scalar R, it can be adjusted to be zero.

The Einstein equation in the 5D bulk is given by G(5)
AB = 0, where G(5)

AB is the
5D Einstein tensor. Imposing the Israel junction conditions on the brane with a Z2

symmetry, we obtain the 4D Einstein equation [555]

Gμν −
1
rc

(Kμν −Kgμν) = κ2
(4)Tμν , (8.181)

where Kμν is the extrinsic curvature on the brane and Tμν is the energy-momentum
tensor of localized matter. The cross-over scale rc is defined by rc ≡ κ2

(5)/(2κ2
(4)).

The Friedmann equation on the flat FLRW brane takes a simple form [552, 553]

H2− ε
rc

H =
κ2

(4)

3
ρM , (8.182)

where ε = ±1, and ρM is the energy density of matter on the brane (with pressure
PM) satisfying the continuity equation

ρ̇M + 3H(ρM + PM) = 0 . (8.183)

If rc is much larger than the Hubble radius H−1, the first term in Eq. (8.182)
dominates over the second one. In this case, the standard Friedmann equation,
H2 = κ2

(4)ρM/3, is recovered. Meanwhile, in the regime rc < H−1, the presence of
the second term in Eq. (8.182) leads to a modification to the standard Friedmann
equation. In the Universe dominated by non-relativistic matter (ρM ∝ a−3), the
Universe approaches a de Sitter solution for ε = +1: H → HdS = 1/rc. Hence it
is possible to realize the present cosmic acceleration provided that rc is of the order
of the present Hubble radius H−1

0 .
Although the DGP braneworld is an attractive model allowing a self-acceleration,

the joint constraints from SNLS, BAO, and CMB data shows that this model is dis-
favored observationally [556–561]. There is a modified version of the DGP model
characterized by the Friedmann equation H2−Hα/r2−α

c = κ2
(4)ρm/3, where ρm is

the energy density of non-relativistic matter [562]. In Fig. 8.6, we show 1σ and 2σ
contours in the (Ω (0)

m ,α) plane constrained from the joint data analysis of SN Ia,
BAO, CMB, gamma ray bursts, and the linear growth factor of matter perturbations
[561]. The parameter α is constrained to be α = 0.254± 0.153 (68% confidence
level) and hence the flat DGP model (α = 1) is incompatible with observations.

The evolution of density perturbations in the DGP model has been studied in
Refs. [563–571]. Under the quasi-static approximation on sub-horizon scales, the
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Fig. 8.6 Combined observational constraints on the modified DGP model characterized by the
Friedmann equation H2 −Hα/r2−α

c = κ2
(4)ρm/3. The two curves show 1σ and 2σ contours in

the (Ω (0)
m ,α) plane. The original DGP model (α = 1) is incompatible with observations. From

Ref. [561].

linear matter perturbation δm (with a homogenous density ρm) obeys the following
equation

δ̈m + 2Hδ̇m−4πGeffρmδm = 0 , Geff = [1 + 1/(3β )]G , (8.184)

where β ≡ 1− 2Hrc[1 + Ḣ/(3H2)]. In the deep matter era (Hrc 
 1), β is largely
negative (|β | 
 1). In this regime, the matter perturbation evolves as δm ∝ t2/3 as
in GR. Around the late-time de Sitter solution, one has β 
 1− 2Hrc 
 −1 and
1+1/(3β )
 2/3, so that the growth rate of δm gets smaller than that in the ΛCDM
model. The growth index γ defined in Eq. (8.78) is given by γ ≈ 0.68 [323].

In the massless regime (M2/F � k2/a2) in BD theory, the effective gravitational
coupling (8.173) is given by Geff = (1 + 2Q2)G/F = (4 + 2ωBD)/(3 + 2ωBD)G/F ,
where we used the relation (8.166). Comparing this with the effective coupling
(8.184), we find that the DGP model is related to BD theory via ωBD = (3/2)(β−1)
with F = 1. Since β < 0 for the self-accelerating DGP solution, this implies that
ωBD <−3/2 and hence the DGP model contains a ghost mode. It is, however, pos-
sible to construct a generalized DGP model free from the ghost problem by embed-
ding our visible 3-brane with a 4-brane in a flat 6D bulk [168].

In the DGP model, a brane bending mode φ in the bulk corresponds to a scalar-

incompatible with local gravity experiments, but the presence of a self-interaction
of φ allows the so-called Vainshtein mechanism [572] to work within a radius

field degree of freedom. In general, such a field can mediate a long-range fifth force
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r∗ = (rgr2
c )

1/3 (rg is the Schwarzschild radius of a source). The DGP model can
be consistent with local gravity constraints under some range of conditions on the
energy-momentum tensor [573–575].

The DGP model stimulated other approaches for constructing ghost-free theories
in the presence of nonlinear self-interactions of a scalar field φ . It is important to
keep the field equations at second order in time derivatives to avoid that an extra de-
gree of freedom gives rise to a ghost state. In particular, Nicolis et al. [577] imposed
a constant gradient-shift symmetry (“Galilean” symmetry), ∂μφ → ∂μφ + bμ , to
restrict the equations of motion at second order, while keeping a universal grav-
itational coupling with matter. In the 4-dimensional Minkowski space-time, they
found five terms Li (i = 1, · · ·5) giving rise to equations of motion satisfying the
Galilean symmetry. The first three terms are given by L1 = φ , L2 = ∇μφ∇μφ , and
L3 = φ∇μφ∇μφ . The term L3 is the nonlinear field derivative that appears in
the DGP model, which allows the possibility for the consistency with solar system
experiments through the Vainshtein mechanism. Deffayet et al. [578, 579] derived
the covariant expression of the terms Li (i = 1, · · ·5) by extending the analysis to
the curved space time.

Silva and Koyama [580] considered BD theory (without a field potential) in the
presence of a nonlinear derivative term ξ (φ) φ∇μφ∇μφ , i.e.,

S =
∫

d4x
√
−g

[
1
2
φR− ωBD

2φ
(∇φ)2 + ξ (φ) φ∇μφ∇μφ

]
+ SM , (8.185)

where SM is the matter action. Although the nonlinear derivative term does not sat-
isfy the Galilean invariance in the FLRW cosmological background, the field equa-
tion of motion remains at second order (see also Ref. [581]). This term also arises
as one of higher-order derivative corrections to low-energy effective string theory.
Interestingly, for the function ξ (φ) = 1/(M2φ2), there exists a dS solution respon-
sible for dark energy (provided that M ≈ H0). Moreover, because of the presence
of the nonlinear interaction, the problems of the appearance of ghosts and insta-
bilities can be avoided for the BD parameter ωBD smaller than −2 [580]. At early
times, General Relativity can be recovered by the cosmological Vainshtein mech-
anism. A number of interesting observational signatures, such as modified growth
of matter perturbations as well as a distinguished ISW effect, have been studied in
Refs. [580, 582, 583].

8.6 Cosmic Acceleration without Dark Energy

There are attempts to explain the apparent cosmic acceleration by inhomogeneities
in the distribution of matter without recourse to a dark energy component (see
Ref. [584] for review).

One of such approaches is the void model in which the presence of underdense
bubbles leads to the faster expansion of the Universe compared with the outside. In



8 Dark Energy: Investigation and Modeling 385

other words, we live in the middle of a huge spherical region and we interpret the
evolution of this underdense region as an apparent cosmic acceleration. Originally,
Tomita [59, 60] introduced a local homogenous void separated from the outside
described by a homogenous FLRW space with a singular mass shell. The analysis
was extended to the models with a continuous transition between the inside and
outside the void [63]. This can be described by a class of the Lemaître–Tolman–
Bondi (LTB) spherically symmetric models. Theoretical and observational aspects
of the LTB model have been extensively studied as an alternative to dark energy
[61–63, 585–610].

The second approach is based on the backreaction of cosmological perturbations
arising from perturbing the homogeneous Universe [64–66]. Unlike the void model,
this tries to explain a real cosmic acceleration by arranging inhomogeneities that
come from the deviation of the FLRW metric.

There is another approach for explaining the apparent cosmic acceleration based
on the “Ultra Strong” version of equivalence principle [611, 612]. In this model,
the standard geometric description of space-time as a metric manifold holds as a
small distance approximation and hence General Relativity can be modified on large
scales by a curvature-dependent subleading effect. Although the original model pro-
posed in Ref. [613] do not explain the observational data of SN Ia very well, its
modified version can be consistent with the SN Ia data with a rather low value of
the Hubble constant, H0 ≈ 50 km sec−1 Mpc−1.

In the following, we shall briefly review the first two approaches.

8.6.1 Inhomogeneous LTB Model

In order to discuss a spherical inhomogeneity in local regions, we take the LTB
metric given by

ds2 =−dt2 + X2(t,r)dr2 + R2(t,r)dΩ 2 , (8.186)

where the expansion factor along the radial coordinate r is different relative to the
surface line element dΩ 2 = dθ 2 + sin2 θ dφ2. Solving the (0,1) component of the
Einstein equation G01 = 0 for the fluid at rest, it follows that X(t,r) is separable
as X(t,r) = R′(t,r)/

√
1 +β (r). Here a prime represents a partial derivative with

respect to r and β (r) is a function of r. Then, the metric (8.186) is given by

ds2 =−dt2 +
[R′(t,r)]2

1 +β (r)
dr2 + R2(t,r)dΩ 2 . (8.187)

The metric (8.187) recovers the one in the FLRW space-time by the choice R =
a(t)r and β = −Kr2, where K is a cosmic curvature. In other cases, the metric
(8.187) describes a spherical inhomogeneity centered on the origin. We define the
transverse Hubble function H⊥ and the radial Hubble function H||, as H⊥ ≡ Ṙ′/R′
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and H⊥ = Ṙ/R. The Einstein equations in the presence of nonrelativistic matter
(energy density ρm) give [63]

H2
⊥+ 2H||H⊥−

β
R2 −

β ′

RR′
= 8πGρm , (8.188)

6
R̈
R

+ 2H2
⊥−2

β
R2 −2H||H⊥+

β ′

RR′
= −8πGρm . (8.189)

Eliminating the term ρm from Eqs. (8.188) and (8.189), we obtain the relation 2RR̈+
Ṙ2 = β (r). Integrating this equation, it follows that

H2
⊥ =

α(r)
R3 +

β (r)
R2 , (8.190)

where α(r) is an arbitrary function of r. From this, we can introduce the today’s
effective density parameters of matter and the spatial curvature, respectively, as

Ω (0)
m (r)≡ α(r)

R3
0H2
⊥0

, Ω (0)
K (r) = 1−Ω (0)

m (r) =
β (r)

R2
0H2
⊥0

. (8.191)

We define the time t = 0 at the decoupling epoch (the redshift z 
 1090) with
R(r,t = 0) = 0. Introducing the conformal time η as dη = (

√
β/R)dt, we obtain

the following parametric solutions of Eqs. (8.188) and (8.189) for β > 0 [63]:

R =
α(r)
2β (r)

(coshη−1) =
R0Ω

(0)
m (r)

2[1−Ω (0)
m (r)]

(coshη−1) , (8.192)

t =
α(r)

2β 3/2(r)
(sinhη−η) =

Ω (0)
m (r)

2[1−Ω (0)
m (r)]3/2H⊥0

(sinhη−η) . (8.193)

The structure of the void with an under density can be accommodated by choosing

Ω (0)
m (r) and h ≡ H⊥0/(100 km sec−1 Mpc−1) in the following form [598] (see also

Ref. [63] for another choice)

Ω (0)
m (r) = Ωout +(Ωin−Ωout) f (r,r0,Δ) , (8.194)

h(r) = hout +(hin−hout) f (r,r0,Δ) , (8.195)

where the function f (r,r0,Δ)= [1− tanh((r−r0)/2Δ)]/[1+ tanh(r0/2Δ)] describes
a transition of a shell of radius r0 and thickness Δ (“in” and “out” represent
quantities inside and outside the void, respectively).

The trajectory of photons arriving at r = 0 today is characterized by a path t = t̂(r)
satisfying [590]

dt̂
dr

=− R′(r, t̂)√
1 +β

. (8.196)
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Then, one can show that the redshift z = z(r) of photons obeys the differential
equation [62]

dz
dr

= (z+ 1)
Ṙ′(r, t̂)√

1 +β
, (8.197)

with z(r = 0) = 0. The luminosity distance dL(z) is related to the diameter distance
dA(z) = R(r, t̂) according to the usual duality relation

dL(z) = (1 + z)2R(r, t̂) . (8.198)

Now, we are ready to confront the inhomogeneous LTB model with the SN Ia
observations. From the requirement that the CMB acoustic peak is not spoiled, we
require that local density parameter Ωin is in the range 0.1–0.3, whereas Ωout = 1 as
predicted by inflation. The observed local value of H is around hin ≈ 0.7, whereas
outside the void one requires h ≈ 0.5 to be consistent with Ωout = 1. Then, the
two parameters r0 and Δ are constrained by the SN Ia data. In Ref. [598], it was
shown that the inhomogeneous LTB model can be consistent with the SN Ia data for
r0 = 2.3±0.9 Gpc and Δ/r0 > 0.2.

We note, however, that one can place other constraints on the void model. If we
do not live around the center of the void, the observed CMB dipole becomes much
larger than that allowed by observations. The maximum distance rc to the center is
constrained to be smaller than 10–20 Mpc [590, 605]. Even if we happen to live very
close to the center of the void, we observe distant off-centered galaxy clusters. Such
off-centered clusters should see a large CMB dipole in their reference frame. For
us, this manifests itself observationally as a kinematic Sunyaev–Zeldovich effect.
Using the observational data of only nine clusters, the inhomogeneous LTB model
with void sizes greater than 1.5 Gpc can be ruled out [599, 604]. This is already in
mild conflict with the constraint derived by the SN Ia data. It remains to see whether
the void model can be ruled out or not in future observations.

8.6.2 Backreaction of Cosmological Perturbations

Let us finally discuss the possibility of realizing a real cosmic acceleration by the
backreaction of inhomogeneities to the FLRW space–time. In general, averaging
the inhomogeneities and then solving the Einstein equations (the standard approach)
might not be the same as solving the full inhomogeneous Einstein equations first and
then averaging them. In other words, the expected value of a nonlinear function of
x is not the same as the nonlinear function of the expected value of x. The argument
is complicated and controversial, so we mention the basic ideas only briefly. The
readers who are interested in the detail of this line of research may have a look at
the original papers [64–66, 614–628].

Let us decompose the Einstein tensor Gμν and the energy-momentum tensor
Tμν into the background (0-th order FLRW Universe) and the perturbed parts, as
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Gμν = G(0)
μν + G(1)

μν and Tμν = T (0)
μν + T (1)

μν , respectively. Then, the (00) component
of the Einstein equation (8.4) gives

G(0)
00 = 8πG(T (0)

00 + T (1)
00 )−G(1)

00 . (8.199)

Identifying the average matter density at this order as 〈ρ〉= T (0)
00 +T (1)

00 and averag-
ing over Eq. (8.199), we obtain

〈G(0)
00 〉= 8πG〈ρ〉− 〈G(1)

00 〉 , (8.200)

where G(0)
00 = 3H2 in the FLRW background. This shows that 3H2 �= 8πG〈ρ〉 in

general because of the presence of the term 〈G(1)
00 〉. If we first average the metric as

〈g(1)
μν〉 = 0, it then follows that G(1)

00 = G00(〈g(1)
μν 〉) = 0 and hence 3H2 = 8πG〈ρ〉.

The above argument can be extended to the second order, i.e.,

〈G(0)
00 〉= 8πG〈ρ〉− 〈G(1)

00 + G(2)
00 〉 . (8.201)

The cosmological evolution depends on the averaging procedure. For example,
if we take the average of the function f (t,x) as [65]

〈 f 〉(t) =
∫

d3x
√

γ(t,x) f (t,x)∫
d3x

√
γ(t,x)

, (8.202)

where γ corresponds to the determinant of the perturbed metric of spatial constant-

time hypersurfaces, then the second-order term G(2)
00 contributes to the expansion

rate of the Universe (which is typically of the order of 10−5). If we use other ways
of averaging, the amplitude of such a term is subject to change [616]. Also the
results are affected by adding the contributions higher than the second order. In fact,
Ref. [614] pointed out the danger of arbitrarily stopping at some order by showing
several examples in which many contributions cancel each other.

The backreaction scenario is very attractive if it really works because it is the
most economical way of explaining the cosmic acceleration without using dark
energy. We hope that further progress will be expected in this direction.

8.7 Conclusions

We summarize the results presented in this review.

• The cosmological constant (wDE = −1) is favored by a number of observations,
but theoretically, it is still challenging to explain why its energy scale is very
small.

• Quintessence leads to the variation of the field equation of state in the region
wφ > −1, but the current observations are not sufficient to distinguish between
quintessence potentials.
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• In k-essence, it is possible to realize the cosmic acceleration by a field kinetic
energy while avoiding the instability problem associated with a phantom field.
The k-essence models that aim to solve the coincidence problem inevitably leads
to the superluminal propagation of the sound speed.

• In coupled dark energy models, there is an upper bound on the strength of the
coupling from the observations of CMB, large-scale structure and SN Ia.

• The generalized Chaplygin gas model allows the unified description of dark
energy and dark matter, but it needs to be very close to the ΛCDM model to
explain the observed matter power spectrum. There is a class of viable unified
models of dark energy and dark matter using a purely k-essence field.

• In f (R) gravity and scalar-tensor theories, it is possible to construct viable mod-
els that satisfy both cosmological and local gravity constraints. These models
leave several interesting observational signatures such as the modifications to the
matter power spectrum and to the weak lensing spectrum.

• The dark energy models based on the Gauss-Bonnet term are in conflict with a
number of observations and experiments in general and hence they are excluded
as an alternative to the ΛCDM model.

• The DGP model allows the self-acceleration of the Universe, but it is effectively
ruled out from observational constraints and the ghost problem. However, some
of the extension of works such as Galileon gravity allow the possibility for avoid-
ing the ghost problem while satisfying cosmological and local gravity constraints.

• The models based on the inhomogeneities in the distribution of matter allow
the possibility for explaining the apparent accelerated expansion of the Universe.
The void model can be consistent with the SN Ia data, but it is still challeng-
ing to satisfy all other constraints coming from the CMB and the kinematic
Sunyaev–Zeldovich effect.

When the author submitted a review article [9] on dark energy to International
Journal of Modern Physics D in March 2006, we wrote in concluding section
that “over 900 papers with the words ‘dark energy’ in the title have appeared on
the archives since 1998, and nearly 800 with the words ‘cosmological constant’
have appeared.” Now in April 2010, I need to change the sentence to “over 2250
papers with the words ‘dark energy’ in the title have appeared on the archives since
1998, and nearly 1750 with the words ‘cosmological constant’ have appeared.” This
means that over 4000 papers about dark energy and cosmological constant have been
already written, with more than 2300 papers over the past 4 years. Many cosmol-
ogists, astrophysicists, and particle physicists have extensively worked on this new
field of research after the first discovery of the cosmic acceleration in 1998. We hope
that the future progress of both theory and observations will provide some exciting
clue to reveal the origin of dark energy.
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