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Preface

The realm of particle physics is vast: multidisciplinary knowledge across several
domains of physics and mathematics is required to understand the reactions that
occur when patrticles collide and to master the functioning of the experiments built
to study these reactions: classical and quantum mechanics, special relativity,
electrodynamics, thermodynamics, chemistry, atomic and nuclear physics, quantum
field theory, electronics, analysis, geometry, group theory, probability, informatics,
among the others. Large-scale particle experiments, like those hosted in the main
laboratories around the world, are perhaps the best example of how multidisci-
plinary this field can become: the successful operation of these complex structures
relies on the synergetic work of hundreds of scientists and engineers; it is only the
combination of their individual expertise that makes it possible to cover all the
needs.

Thanks to the maturity of this field (more than one hundred years old!), a huge
collection of textbooks, topical schools, academic classes, and scientific literature is
available, where both the theoretical and experimental foundations of particle
physics can be elucidated to the desired level of detail. Yet, as for all the other
domains of physics, particle physics should be more about solving problems rather
than knowing concepts! The path towards a solid understanding of this discipline
passes through the capability of solving exercises. This book collects a sample of
about 240 solved problems about particle physics in general. About half of the
exercises are drawn from the public exams that have been proposed by the Italian
National Institute for Nuclear research (INFN) to select its scientific staff over the
last decade. Additional material inspired by my personal experience as an under-
graduate student at Scuola Normale Superiore di Pisa, researcher in the CMS
experiment, and teaching assistant at ETH Ziirich complements the selection.
Throughout this book, the main emphasis is put on experimental problems,
although some more theoretical ones are also included. Thus, this book is mostly
addressed to experimentalists.

The proposed exercises span several subjects in particle physics, although I must
acknowledge that it has not been possible to be truly exhaustive. Several topics
have been unfortunately, yet necessarily, discarded or only marginally mentioned.

vii



viii Preface

In particular, cosmology, dark matter, beyond-standard model theories will not be
much discussed here. Also, a personal cultural bias towards an LHC-centric vision
of the field may have driven the focus towards the high-energy frontier at the
expenses of other equally lively sectors of research, like neutrino physics, rare
decays, hadron spectroscopy, B physics. Much attention is devoted to the opera-
tional principles of particle detectors, from the more classical ones to the more
recent technologies. Particle detectors cannot be understood without first mastering
the basics of the interaction between particles and matter, which therefore repre-
sents another topic of foremost interest. Given that particle detectors typically
provide electric outputs, which need to be processed, stored, and cleaned from the
noise, electronics, informatics, and data analysis enter naturally into the game, and a
basic knowledge of both subjects is therefore required. Furthermore, an experiment
in particle physics usually starts by scattering particles: acceleration of particles in
stable and repeatable beams is therefore another important topic. Finally, a proper
scientific maturity demands also an overall picture of the field: what is known, what
is still unknown but important to study, what are the technologies at hand, and what
the future lines of research. Several exercises go along this direction by discussing
the state of the art on the field, including ongoing or planned measurements and
new experimental techniques.

The exercises are grouped by subject into five chapters, where the main topic of
discussion is first introduced in an academic fashion. Within each chapter, the
exercises are organised as much as possible according to a logical order, so that
each exercise can be propaedeutic to those that follow. Some of the exercises are
used as prototypes for a class of problems. In this case, the relevant concepts and
the general-purpose formulas are derived once and recalled afterwards by pointing
to the master exercise. Other exercises are instead chosen to introduce a particular
topic, which is then explained in some more detail by dedicated mini-lectures.
References to the scientific literature and topical textbooks are then provided to help
the reader go into the various subjects in greater detail. Consistency of notation
throughout the text is pursued to reduce at a minimum the confusion introduced by
the abundance of acronyms and conventional symbols peculiar to this field. Some
exercises require a few lines of calculations, others one or more pages. Whenever
possible, one should always try to derive the symbolic solution analytically and
carry out the numerical computation without the help of pocket calculators, as to
train one's capability to handle simple calculations using approximations or
order-of-magnitude estimates. Indeed, experience teaches that there exist a few
constants and formulas that are really worth keeping in mind! In other situations,
one should better rely on computers rather than try the analytical approach. In the
latter case, examples of simple computer routines written in open-source pro-
gramming languages are also proposed.

Per aspera ad astra: solving problems is the most difficult and painful task for
students, but also one that unveils the true degree of comprehension of the subject.
We hope that this book can serve as supporting material to back up existing and
more complete textbooks on experimental and theoretical particle physics. At the
same time, it should provide a test bench for undergraduate students and young



Preface ix

researchers to validate their level of preparation and hopefully stimulate their
curiosity on the field.

I am much indebted to INFN for allowing me to profit from a large number
of the exercises contained in this book. The richness and variety of topics covered
in this immense reservoir of knowledge have been fundamental to shape this work.
I also want to heartily thank the Institute for Particle Physics of ETH Ziirich for
granting me the time to work on this book and for the fantastic teaching experience
I enjoyed amid its brilliant and lively students.

Pisa, Italy Lorenzo Bianchini
September 2017
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Chapter 1
Kinematics

Abstract The first chapter is dedicated to the kinematics of relativistic particles. The
starting point is the introduction of the Lorentz group through its representations.
Large emphasis then is given to the transformation properties of velocities and angles.
The centre-of-mass dynamics is studied in detail for two-to-two scattering and for
two- and three-body decays. The last part of the chapter is devoted to the concept of
cross section, which plays a central role in particle physics.

1.1 Lorentz Transformations

The set of space-time transformations under which the laws of physics are postu-
lated to be invariant form the so-called Poincaré group: they comprise four space-time
translations, three spatial rotations, and three velocity transformations. Space rota-
tions and velocity transformations (the latter are often referred to as boosts) form the
sub-group of Lorentz transformations. Rotations are determined by the three usual
Euler angles, while boosts are determined by the three components of the velocity v of
the new reference frame %’ as measured by an observed at rest in the initial reference
frame Z, or, equivalently, by the dimensionless boost vector = v/c. Rotations and
boosts change both the four-momentum and the spin vector of a particle. Since these
transformations form a group, it is possible to find a representation of each element
in terms of square matrices acting on vector spaces: the four-dimensional space of
four-vectors and the (25 + 1)-dimensional space of spin vectors for a particle of
spin S.

The space of four-vectors p = (py, . . ., p3) in endowed with the Minkowski norm
defined by:

3
P> =pupeg"’ =po— D_ni» (1.1)

i=1

with g*¥ = diag(1, —1, —1, —1). By construction, the Lorentz transformations pre-
serve the Minkowski norm of Eq. (1.1). Any function of four-vectors that has the
same form in all reference frames related by a transformation of the Poincaré group
is called an invariant: the squared norm of Eq. (1.1) provides an example.

© Springer International Publishing AG 2018 1
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2 1 Kinematics

The three-momentum of a particle can be embedded into a four-vector (E, p),
called four-momentum. For a particle of mass m, the four-momentum is subject to
the mass-shell constraint:

pPP—m*=0 = E=E,=+|p]*+m?. (1.2)

The velocity and gamma-factor of a particle are then defined as

-1 K
Po=—-> sz(l_ﬂ;)'zzp

(1.3)

In the four-momentum space, each Lorentz transformation is represented by a 4 x 4
matrix which transforms p into a new four-momentum p’. The boost vector defines a
privileged direction in space, and indeed the transformation distinguishes between the
component parallel (||) and orthogonal (L) to 8. In terms of these two components,
the generic boost transformation is given by:

EN_(v -Br\(E ;o
(p],)_(—ﬂy v )(P)’ PL=pL (44

with 8 = [B]land y = (1 — ,3)’%. Notice that y is a function of g, although the
explicit dependence is often omitted in the calculations. The variables at the left-hand
side of Eq. (1.4) are the four-momenta components measured in the reference frame
' that moves with velocity ¢ with respect to Z. This way of writing the transfor-
mation corresponds to the so-called passive transformation, as opposed to the active
transformation that changes the vector components in the same reference frame. The
generic boost can be also written in a compact vectorial form, see Problem 1.17. For
most of the applications it is however enough to remember the matrix version of
Eq. (1.4).

Given that y2 — (—By)> = 1 and that y > 1, the first of Eq. (1.4) can be
equivalently written as:

(E/) B ( cosh o —sinhoe) (E)

, ) = . (1.5)
P —sinho cosha D

with @ = atanh 5. Were not for the imaginary “angle” o = i6 and the same-sign off-
diagonal elements, Eq. (1.5) would be the transformation of a normal vector under a
spatial rotation. The differences accounts for the fact that the transformation has to
preserve the Minkowski norm E?— pﬁ, and not the Euclidean norm EZ + pﬁ, as done
by ordinary rotations.

A final word of caution: 8 and y in Eq. (1.4) are the parameters of a transformation,
and should not be confused with the velocity and gamma-factor of a particle as
measured in a given reference frame: the suffix “p” in the latter thus reminds that
these quantities are different from the boost parameters. However, when no such
ambiguity can arise, the suffix can be safely dropped to simplify the notation.



1.1 Lorentz Transformations 3

Problems

Problem 1.1 Express the MKS units [kg, m, s] in natural units. Using the results
thus obtained, write down the following quantities in natural units:

1. across section ¢ = 1 pb;
2. the decay rate of the ¢ meson 1/7 = 6.47 x 10?! s71;
3. the electric charge e.

Discussion

Natural units are of the greatest help in simplifying the calculations. In natural units,
any dimensionful quantity is expressed in powers of the energy unit, taken to be
the eV or one of its multiple. The underlying idea is to trade off the usual MKS
units [kg, m, s] by the three dimensionful units [eV, &, c], and then to “silence” the
result with respect to & and ¢ by setting them equal to unity. In order to convert the
result back into the MKS system, one needs to multiply the number obtained by a
factor h* cf where a and 8 are chosen such that the overall dimension comes out right.

Solution

Remembering that m c? is an energy, we can write:

2 8. —1\2 16 9x 10 36
kg =kgB3x10°ms )" =9x 10" )= —— eV =056 x 107 eV,
1.6 x 1019
kg =0.56 x 10*° eV = kg =0.56 x 10> GeV. (1.6)

To convert the metre, it proves useful to remember the MKS value of the constant
he:

hic =197 MeV fm = 1.97 x 107" meV,
m=0.507 x 10’ hiceV™! = m=0.507 x 10'"® GeV~!. (1.7)

Finally, we can convert the second by simply using that:

| _3x10°

c=3x10ms™", s (0.507 x 10" hceV™)

s=152x10%heV!' = s=1.52x10**GeV . (1.8)

The inverse transformations into the MKS system laws are also very useful, since
a theoretical calculation performed in natural unitswill yield the result as a power
of GeV. In particular, one often needs to convert lengths, cross sections, and time
intervals into MKS:



4 1 Kinematics

[length] GeV~!=1.97 fm
[cross section] GeV~2 = 0.389 mbarn (1.9)
[time] GeV ™' = 0.66 x 107** s

Let’s now apply the results above to the three cases of interest.

1. From Eq. (1.7) it follows that:

1pb=10"*"m? = 107%° (0.507 x 10" eV™1)? = 0.26 x 1078 GeV 2.
(1.10)

2. From Eq. (1.8) we have:

Iy =647 x 10*' s7! = 6.47 x 10*' (1.52 x 10**)"! GeV = 4.26 MeV.
(1.11)

3. From the definition of the fine structure in Heaviside—Lorentz units, such that the
first of Maxwell’s equation becomes V - E = p and [e] = kg'/?> m s, we have:

¢ L ~ [ 0303 (1.12)
Az he 137 €Nz T :

Problem 1.2 Prove that the two measures d*p = dE d°p and d°p/ Ep, where (E, p)

form a four-vector and E,, = /|p|> + m?, are invariant under a generic transforma-
tion of the Lorentz group.

Solution
Let’s consider first the d4p measure. As discussed in the introduction, the Lorentz

transformations preserves the Minkowski norm of Eq. (1.1). Then, for every four-
vector p and boost A it must hold:

(P"AT) g (Ap) =P p,g" =pupvg" =p"gp = ATgA=g. (113)
The last equation implies (det A)? = 1. In particular, the proper Lorentz transforma-
tion are defined by the condition det A = +1, as it is the case for Eq. (1.4). Hence,
under a generic boost we have:

d*p’ = |det A|d*p = d*p, (1.14)

while under a space rotation, d°p’ = d°p and dE' = dE, which proves that the
measure is indeed invariant under the Lorentz group.
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Let’s now consider the second measure. Without loss of generality, we can assume
the x-axis to be aligned with the boost direction, so that:

d*p’_ d[y . — BdEy)| dpydp: _ y (dp. — Bp./Epdp) dpydp. _ d°p
E, y (Ep — Bp) y (Ep — Bpx) Ep
(1.15)

Invariance under space rotation follows again from the fact that d°p’ = d°p and
El/) = E,. Alternatively, we can write this measure in a way that if manifestly Lorentz-
invariant. Indeed:

d’p d’p

@(Ep)5(P2 —mz)d4 = ‘WZ_T = SE (1.16)
e P
9E

+E,

where the Heaviside function & selects the positive root. Since the left-hand side of
Eq. (1.16) is manifestly Lorentz-invariant,' such must be the right-hand side.

Problem 1.3 Prove that the scalar function:

I(p1,p2) = \/(Ezpl —Eip2)’ — (p1 X p2)° (1.17)

where p; = (E;, p;) are a pair of four-vectors, is invariant under rotations and boosts.

Solution

The invariance of the right-hand side of Eq. (1.17) under rotations follows from
the fact that a rotation leaves unchanged both the Oth component of the four-vector
and the relative angle between the three-vectors. The invariance under boosts is less
trivial and has to be proved explicitly. The best way to do it is to find an equivalent
expression for [ that is manifestly Lorentz-invariant. To this purpose, it is convenient
to take the square at both sides, obtaining:

I1(p1,p2)? = (Eip2 — Exp1)> — (p1 x p2)° =
= EZpa2l* + E3|pi | — 2E 1 Eapy - p2 — i PIp2* + (p1 - p2)? =
= E{E; — 2E\Epy - pa+ (p1 - p2)* —Eips + E3|piI* — [piPIpal” =
(P1p2)?
= (p1p2)” — (Ip1* + pDp3 + (2> + P Ipi* — 1 Plp2)* =
= (p1p2)* = Pip3- (1.18)

Tt can be proved that the sign of the Oth component is also a Lorentz invariant.
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Since the left-hand side of Eq. (1.18) is invariant under boosts, so must be the
I(p1, p2). The special case p; o p, gives rise to a simpler expression, where the
effect of a finite Lorentz transformation can be studied explicitly. By using the matrix
form of Eq. (1.5), we get:

1Py, py) = |Eiph, — Expl | =
= |(cosha E; + sinh« py,)(sinha E; 4+ cosha py ) —
— (cosha E, + sinha py ) (sinha E; + cosha py )|

= |(cosh? a — sinh® @)E ps, — (cosh? a — sinh® @) Eypy | =
= |E1p2x — Exp1x|l = 1(p1, p2). (1.19)

Discussion
When the four-vectors are specialised to be the current densities® of two beams, i.e.:

ji = (pi, pivi), where p; is a space density ([p] = m~>) and p;v; is a density flux
([pv] = m2s71), then Eq. (1.17) becomes:

1G1. o) = Plpzx/ (B, — B2)" — (B1 x B2) = p1oavia (1.20)

where f; are the particle velocities in units of ¢, and v, is called relative velocity
between the two particles, although this is not a proper velocity (indeed, it can also
exceed c in some reference frames). The interpretation of v, in terms of particle
velocities will be elucidated in Problem 1.11. The invariant / finds application in the
general formula of the cross section, see e.g. Eq. (1.293).

Problem 1.4 Prove the identity:

dp, dp" . .

where p is the four-momentum of particle of mass m accelerated by external forces,
7 is the proper time of the particle, while the time derivatives and the velocities are
measured in a generic frame.

Solution

We first express the four-momentum components in terms of the particle velocity 8,
namely:

2The fact that j is a Lorentz-vector can be proved by noticing that the continuity equation 9, p +
divxpv = 0 has to be invariant since it states the conservation of mass, which as to hold for any
frame. The latter can be written in covariant notation as d,j* = 0, hence j, has to transform as a
covariant vector since 9, is contravariant.
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p = (Ep, p) = (my, myB). (1.22)

Hence, we get:

dpudp’ (A (dp\' _ o o[ (dr) _ (4B

dt dt dt dt dt dt
where we have made use of the relation df = y dt. By applying the chain rule for
the derivative of composite functions, we get:

2
(%) =(8-B)’=7v°(8-B) (1.24)
d 2 . ; )
((d%ﬂ)) = (1B+vB) =" (Y’ B-PIB+B) =

=*(B-B) B +2v" (B-B) + 7B =

— -1 (B-B) B +2v (B-B) + 7B =

=y (B-B) +7*(B-B) +vB (1.25)
Inserting these identities in Eq. (1.23), we obtain:

dp,, dp" . .
=y [ (B-B) +B] =

= -y [B28° — (B x B+ B - )] =
= —myS [,’92 — (B x 3)2] , (1.26)

which proves the identity of Eq. (1.21). Since the left-hand side is manifestly Lorentz-
invariant, so has to be the right-hand side.

Discussion
Equation (1.21) gives the Lieanard formula for the power P emitted by a charged par-

ticle accelerated by an external force. Indeed, one can prove that P o« —e?(dp/dt)?,
where e is the electric charge of the particle [1].

Problem 1.5 Work out a heuristic representation of the boost generators K in dimen-
sion d = 2 starting from the finite boost transformation of Eq. (1.5).

Solution

Let’s denote by (x1, x2) the four-vector components that transform non-trivially
under boosts. We then rewrite Eq. (1.5) in an exponentiated form as to make the
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generators explicit:

x| _ cosh 5§ —sinh § XY _
X3 —sinh 5 cosh § X2
_ a (10 @ (01 (0 i (10 X1
o () 2 ()0 (550 ()2
NS .. NS i(—i%).
= [cos (15) 1 —isin (15)6 ~na] (;;) =i (2) (1.27)

where |n,| = 1. By defining the transformation parameter as «/2, we could get
directly the correct normalisation for the generators. Since a generic element of a
group can be always parametrised as exp{iK - a}, where K are the generators, an
immediate comparison with Eq. (1.27) yields the result:

o
K=-i—. 1.28
i3 (1.28)
Discussion
The six generators of the Lorentz group satisfy the Lie algebra:
Vi, Jil = iii, Ui, Kl = iepKe, [Ki, Kjl = —igjiti (1.29)

where J; are the generators of the space rotations and K; of the boosts. The com-
binations J1+ = (J £iK)/2 commute among themselves and satisfy individually
the algebra of SU(2). For d = 2, we know that the ¢ /2 matrices provide a fun-
damental representation of the generators of SU(2). Given that J = J; + J_ and
K = —i(J+ — J-), and considering the commutation rules in Eq. (1.29), one can
easily verify that J = o0 /2 and K = —io /2 provide a representation of the gener-
ators. Notice that K = +io /2 provides an equally valid representation, since the
commutation rules are all invariant under K — —K.

The existence of two inequivalent representations of the boost vector in dimension
d = 2, the so-called (%, 0) and (0, %), which are related one-to-another by a parity
operation,® has important implication for the quantisation of spin-1/2 fields (Weil
spinors). The latter can indeed exist in two chiralities, depending under which rep-
resentation of the Lorentz group they transform: right-handed (RH) and left-handed
(LH) spinors.

Problem 1.6 Prove that all RH (LH) spin-1/2 particles of mass m have helicity
h=41/2 (h = —1/2) in the limit |p| > m.

3K is a vector under rotations, see e.g. the second of Eq. (1.29), and it also transforms as a vector
under parity transformations, since a parity operation must change the direction of the boost.
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Discussion

The helicity operator is defined as:
h=""%, (1.30)

and it acts on the spin vector of the wave function. Notice that % is not a priori
Lorentz-invariant, since, for a massive particle, it is always possible to find a refer-
ence frame where the momentum of the particle flips direction. This is not the case
for massless particles, for which the helicity is instead a conserved quantum number.

Solution

As discussed in Problem 1.5 there are two inequivalent representation of the Lorentz
group in dimension d = 2, which is the space suitable to construct the spin states for
spin-1/2 particles. The generic passive transformation A(f, &) can be written as:

A@®, @) = KD - [e"p [i5 -0 - (1.31)

exp[i% -0+

[SICISIS]

The spin operator is represented by the matrix § = o /2. Let’s denote the spinor in the
centre-of-mass frame by £* for the RH fermion and by n* for the LH fermion. Let’s
also chose the basis of eigenvectors of o, where the z-axis is assumed to be aligned
with the boost direction. The spinors & and 7 in the laboratory frame, where the
particle three-momentum is p, can be obtained by applying a boost with parameter
o = —o e, giving:

£ = A(@)é* = (cosh £1 —sinh %0 - (—e;)) £* = (cosh %1 + sinh $0;) £*
n = A(a)n* = (cosh $1 + sinh %o - (—e,)) n* = (cosh $1 — sinh $0_) n*
(1.32)

If we now take the spinor in the rest frame £* and n* to a generic admixture of :I:%
eigenstates, i.e. (cos %, sin %), the polarisation in the laboratory frame will be:

R.L _ pRL 24 o a2 i 028 a a2
Pl — P2y cos” S(cosh § £ cosh 5)° —sin” §(cosh § Fcosh 5)°

Pﬁ’lL/z + P’j’lL/z cos? %(cosh § & cosh §)% + sin? %(cosh g F cosh £)2

(cosh? 5+ sinh? 5)cos$ & 2 sinh 5 cosh 5 cos § & tanh o
cosh? ¢ +sinh? & £ 2sinh & cosh ¢ cosd 1+ tanhacoss
coséd £

=" (1.33)
1+ Bcoséd
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The last equality makes use of Eq. (1.5) to relate the boost parameter to the velocity
in the laboratory frame. It can be noticed that this expression is identical to the trans-
formation law of the cosine of the polar angle of a massless four-vector under a boost
B, if one interprets & as the polar angle in the centre-of-mass frame, see Eq. (1.40).
In particular, if 8 — 1, as it is the case for |p| > m, the polarisation tends to %1
for 0 < § < 7 and to O for § = 0, . For an unpolarised state in the centre-of-mass
(8 = m/2), the polarisation in the laboratory frame is given by 4 for RH fermions
and by — 8 for LH. Therefore, ultra-relativistic spin-1/2 particles of a given chirality
will also have a net helicity, independently from their spin state in the centre-of-mass
frame: the helicity is positive for right-handed fermions and negative for left-handed.

Suggested Readings

The reader is addressed to a more complete textbook on quantum field theory. See
e.g. Chap.3 of Ref. [2] or Chap.9 of Ref. [3].

Problem 1.7 The A(1232) resonance can be produced by scattering pions of appro-
priate energy against a proton target. Assume the protons to be unpolarised. Deter-
mine the angular distribution of the scattered pions in the centre-of-mass frame.

Discussion

As discussed in the introduction, the Lorentz group comprises the set of spatial rota-
tions. Invariance of the dynamics under rotations becomes an important selection rule
when the particles involved carry spin, since the latter transforms non trivially under
rotations. A useful tool to investigate the behaviour of spin states under rotations is
provided by the so-called rotation matrix, & (6), defined by:

m',m

exp [—i0J - e,] lj. m) = Zd’ LO, m) (1.34)

Here, the vectors |j, m) are the eigenstates of the angular momentum operators J>

and J,. As made evident by Eq. (1.34), the elements of the rotation matrix are the

linear coefficients of the rotated of the generic eigenstate by an angle 6 around an
axis orthogonal to the quantisation axis z. It can be also shown that:

_ —m' 3 _ g

w=E=D""d, = d

—m, —m’

(1.35)

see e.g. Ref. [4]. The rotation matrix proves very useful when one wants to analyse
transition probabilities between states related by a spatial rotation.
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Solution

When the centre-of-mass energy approaches 1.2 GeV, the 7 p scattering becomes
resonant due to a baryonic bound-state, called A. The A baryons are members of
the j = 3/2 decuplet. At the resonance, the dominant state participating in the
scattering can be therefore assumed to have j = 3/2. The eigenvalue of jz, where 7
is the axis defined by the initial centre-of-mass momentum of the proton, p, can take
the values m = =£1/2, since only the proton can contribute to J, through its spin.
The assumption of unpolarised protons implies that the two configurations must be
equally likely. When the A resonance is produced, it decays into a new m p state with
centre-of-mass momentum p’. Let the angle between p and p’ be denoted by 6. The
decay amplitude is fully determined by angular momentum conservation. Indeed,
the final state corresponds to the rotated by 0 of either |%, +%) or |%, —%). The two
corresponds to orthogonal states, so the probability of decaying to an angle 0 is given
by the sum of the probabilities:

1 drI _1 Ldlu=—1pp 1 ldFm:_H/z_
I'dcos® 2 I dcosf 2 I dcos

2
3/2 3/2
Zm’ dm/, —-1/2 ‘ Zm’ dm’, +1/2

3cosf—1 6\ 3cosf+1 . 0)°
=|\——F——cosz ) +|\——F—sm<- ) =
2 2 2 2
1 0 (7] 1+3 20
:Z|:9cos29+1—6cos@(coszi—sin2—)]:&_

2 4
(1.36)

Notice that we have made use of Eq. (1.35) to simplify the calculations. The angular
distribution in the centre-of-mass frame will therefore feature a dependence on the
polar angle 6 of the form ~(1 4 3 cos? ).

Suggested Readings

The reader is addressed to the original paper by E. Fermi et al. [5] about the evidence
of the A resonance and to the determination of its spin based on the distribution of
the scattering angles. A compendium of formulas for the rotation matrices can be
found in Table 43 of Ref. [4].

Problem 1.8 A massless spin-1/2 particle scatters elastically against a much heav-
ier particle that can be assumed to be always at rest. The two particles exchange
force through an helicity-conserving interaction which does not change the spin of
the target particle, if any. Prove that the light particle cannot be scattered exactly
backwards.
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Discussion

In the SM, the interaction between spin-1/2 particles and gauge bosons are helicity-
conserving, since they only involve combinations of vector V and axial A currents.
When the theory is not symmetric for RH and LH particles, it is said to be chiral,
since it distinguishes between the two chiralities. The SU (2);, interaction that under-
lies the EWK force is chiral, since it only involves LH fermions. On the contrary,
QCD and the EM interaction treat RH and LH fermions on the same footing, see
Sect.5.2.

Solution

A massless spin-1/2 particle can be in only one helicity state, depending on its chiral-
ity. If the interaction conserves the chirality, the particle will have the same helicity
before and after the scattering. If the target particle does not participate to the inter-
action through its spin, it will also conserve its projection along the scattering axis.
If the projectile were to scatter exactly backwards, it would imply a change of the
overall angular momentum projection along the scattering axis by |Am| = 1, which
would violate angular momentum conservation. In terms of the rotation matrices of
Eq. (1.34), we can argument that the scattering amplitude at an angle 6 should be
proportional to dli/f/l 412 = COS %, which indeed vanishes at 6 = 7.

Suggested Readings

The reader is addressed to Chap. 1 of Ref. [2] for a deeper discussion on this subject.

Problem 1.9 Determine the relativistic Doppler effect and the law of aberration of
light for an observer moving with velocity v = B¢ with respect to the light source.

Solution

The invariance under Lorentz transformations requires the phase of a light wave to
be the same for two reference frames % and %', moving one with respect to the
other with constant velocity fc. In the frame %, the frequency of the wave is w
and its direction of propagation n, while in &, the same quantities are @’ and n'.
Synchronising the two clocks so that at the time + = ¢ = 0 the wave has a phase
¢ = 0 at the origin r = r’ = 0, we have:

ot,r)=¢'({,¥) & owit—m-r)=o (¢ —n'-r). (1.37)

The coordinates (7, r) can be expressed in terms of (¢, r’) by using the transformation
of Eq. (1.4), with the only modification § — —f, since Z, the frame where the
light source is at rest, moves with velocity —f as seen from %’. It is convenient to
choose the coordinate system so that 8 is aligned along the x-axis. We also write


http://dx.doi.org/10.1007/978-3-319-70494-4_5
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n = cos fe, + sin fe,. By equating the coefficients of the space-time coordinates in
Eq. (1.37), we obtain the following system of equations:

o =wy (1l —pBcosd)=wy (1 —B- -n)
' cosf’ = wy (cosd — B) (1.38)
' sinf’ = wsin 6

The first equation gives the relativistic Doppler effect. Taking the ratio of the last two
equations:
w' sin 6’ , sin 6

=tanh = ———, (1.39)
' cos b’ y(cos6 — B)

which describes the aberration of light. It is useful to write explicitly the two other
trigonometric relations:

, cosf — 8 Y sin 6
cosf = ——. sin = ———, (1.40)
1 — Bcos6 y (1 — BcosB)

which can be derived from Eq. (1.38), or even Idirectly from Eq. (1.39) by using the
trigonometric identity cos @ = £ (1 + tan?6) 2.

Problem 1.10 Derive the transformation law for the velocity v of a massive particle
under a generic Lorentz transformation.

Solution

Let the particle velocity in the reference frame % be denoted by v. The reference
frame &’ in which we want to calculate the particle velocity moves with velocity
B as seen from Z. It’s convenient to choose the coordinate system so that § is
aligned along the x-axis. From the Lorentz transformations Eq. (1.4) applied to the
four-vector (¢, r), one has:

dt' = y (dt — Bdx)
dx' =y (—Bdt + dx)
dy =dy

d7 =dz

(1.41)
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Taking the ratios:

i —Bdt+dx v, —B

ST T Ta—Bdx 11— B,
dy’ d
V) = d—y, - y W (1.42)
v y(dt—pBdx)  y(l—pw)
,d? dz v,
y, —m — —= =
Codt y(di—Bdx)  y(1—Br)
from which we can derive the transformation of polar angle:
in 0
tanf = — 0 (1.43)

y (cosf — B/Iv])’

which agrees with Eq. (1.39) for the case |v| = 1.

Let’s now consider the two distinct cases for [v| < 1, namely: |v|] < B and
|[v] = B. For later consistency, we redefine the variables using the same notation
that will be adopted to study the kinematics in the centre-of-mass frame, namely we
replace |[v| — B* and § — —f. With this choice, Eq. (1.43) becomes:

sin 6%
tan 6 = . (1.44)
y(cos0* + B/B*)

First, we notice that, for §/8* < 1, we have:

lim tanf =0, (1.45)

6*—>m

which means that a particle moving backwards in %Z* will also appear moving back-
wards in Z. This is not the case for 8/8* > 1, because, in the same limit, tan§ — 0.
Since tanf = 0 for * = 0, by Rolle’s theorem there must be an angle 6}, giv-
ing the largest opening angle in Z. To find such an angle, we first use the relation
cosx = £(1 + tan? x)’% to express cos 6 as a function of 6%, and then set its first
derivative to zero to find the maximum:

1 y(cos0* + B/B*)

cosh = =+ =4
1+ tan?6 Vy2(cos0* + B/B*) + (1 — cos2 6%)

(1.46)

The choice of the “+” sign is motivated by the fact that for § > B*, tan 6 is always
positive, so that & < 7 and cos & > 0. For sake of notation, we define cos 6, = x

and B/B* = &. Then, we get:
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Fig. 1.1 Relation between
the cosine of the polar angle
in two reference frames
related by a boost § = 0.8
for three different values of
the particle velocity *: 0.6
(top), 0.9 (middle), and 1

(bottom)
2 2 —x2— _2GHE) 2
0= dcosf . \/y @+E) +1-x x+ g)2«/y2(x+4%)2+1—x2
o dx e, V2 +E2+1—x2 ’
0=y (@+E+1 - — @+ x+8& —x]=1+xE, (1.47)
from which:
cosOr = —%. (1.48)

At this centre-of-mass angle, the opening angle in the laboratory frame is given by:

D5 D] =i
O = /1 — (= .z S 1.49
tan (/3 y 5 +,3* TP pe ( )

Figure 1.1 shows a graph of cos 6 as a function of cos 6* for a boost § = 0.8 and
three representative values of §*.

Problem 1.11 Consider two particles with velocity v4 and vg. Determine the veloc-
ity of particle B in the rest frame of A.

Solution

It is convenient to first write Eq. (1.42) in a vectorial form. Taking into account both
the longitudinal and transverse components, we have:

it r-1 1.50
v_V(l—v-ﬂ)[v+( p2 V"g_y)ﬁ] (159
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To express the velocity vp4 of the particle B in the rest frame of A, we need to
perform a boost with parameter = v4, so that Eq. (1.50) becomes:

1 YA
VBA= VBt |7 vVa'VB—va]Va|,
ya(l —va - vp) [val

(ra—1? )
YA =va - vp) 2 Ivgal® = Vg7 + val® | == (va - vp)* — = vy vp 4y
[val [val
-1
+2vg - vp) A 5~ —2VAvVA VB =
[Val
a—D* 20 -1
= a-vp)? | A AT = 2va - va [yaGa — D+ ya] + Va1 + val?yd =
Val IVal
=3[ =va-ve? = (= vaHa = vaP)].
(L—1val®)(L = Ivg1®)  V(va — vp)E — (v4 x vp)? 151
lvpjal = /1 - 5 = . (L51)
(1 —=v4-vp) (1—vy-vp)

The last equality is easy to prove since |v4 x vg|> = |v4|?|V|*>—(v4-vp)?. This expres-
sion is symmetric with respect to A <> B, therefore we also have |vga| = [va;5].

Discussion

From an immediate comparison with Eq. (1.20), we notice that:

Vrel

L (1.52)
1-— Vp - VB

[Vgial =

If we now multiply this expression by the density flux of B times the density of A in
the rest frame of A, we obtain:

PAA P
PalA PBIA [VBAl = M\/(VA —vp)?2 — (V4 x vp)? =
Ya(l — vy - Vp)
= pa PV (Ya — V)2 — (Va X V), (1.53)

where we have used the fact that pp is the transformed of the density pp in the rest
frame of A, whereas y4 p44 is the density of A in the laboratory frame. This can be
seen as another proof that the scalar variable I of Eq. (1.20) is Lorentz-invariant,
since all the quantities at the left-hand side of Eq. (1.53) are defined in a particular
reference frame, i.e. the rest frame of either A or B.

Problem 1.12 Determine the minimum and the maximum opening angle between
the two massless particles produced in the decay of a particle of mass m and momen-
tum p.
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Fig. 1.2 Representation of a
boost B from the laboratory
frame Z to the
centre-of-mass frame #*

Solution

In the centre-of-mass frame, the two massless particles have momenta +p* and
energy E* = |p*| = m/2. We choose the reference frame so that the x-axis is
aligned along the direction of p and the decay takes place in the x—y plane. Let 6*
be the polar angle of the photon moving along the y > 0 direction, so that the other
photon makes an angle of = —6*. Seen from the laboratory frame, the centre-of-mass
frame moves with velocity 8 = |p|/Ep, see Fig. 1.2. The momentum components in
the laboratory frame are therefore given by Eq. (1.4), with the modification § — —§:

E =y (E* £ B|p*|cos8*) =y E*(1 &+ BcosO*)
Pi, =y (BE* £|p*|cos0) =y E*(B £ cos0”) (1.54)
pi, = Ip*|sin6*

Pis sin 6*

= tanbj = 5 = —————, 1.55
ano2 pia v (BEcosh) (159)

which agrees with Eq. (1.39). It is convenient to express cos 0; » in terms of cos ™.
To this purpose, we could either use Eq. (1.40) directly, or notice that cosf;, =
pfz/Elyg, so that:

B + cosO* sin 0%

cosf = ——, sinfy = ——— (1.56)
1 4+ B cos6* y (1 + BcosO*)
— cosf* in 6*
costy = P80 g o SO (1.57)
1 — BcosO* y(1 — BcosB*)

Let’s define the opening angle between the two particles in the laboratory frame by
¢. Then:

cos ¢ = cos (0 + 6,) = cos B cos b, — sin B sinf, =
B% — cos? 6* sin® 6* 26 — 1 — pcos? 6%

= 5 (=) =

1 — B2 cos? 9% 1 — B2 cos? 9* 1 — B2 cos? 9*

1 - B
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The right-hand side of Eq. (1.58) in a monotonously decreasing function of cos? #* €
[0, 1], so that:

2
COS(¢maX) - r%in(cos ¢) =1- 2% 00329*=1= 1
= Pnx =00 =0,1)=7 (1.59)
1—p? )
c0S(@min) = max(cos ¢) = 1 — ZW gy 2B

= Pnin =00 = %) = arccos(Zﬂ2 — 1) =2arccos(B) (1.60)

An interesting case is when |p| > m, so that 8§ =~ 1 and ¢, is small. By Taylor-
expanding the cosine around zero, we obtain:

2
. 2
27— 1 = cosg ~ 1 - 0 bon =2/T=F == (16D

For large boosts, the opening angle between the two photons is therefore contained
in the range [2/y, ]. Notice that, for massless particles, it is always possible for one
of them to move backwards with respect to the direction of the mother particle. For
large boosts, however, the backward-emitted photon gets increasingly red-shifted,
see the first of Eq. (1.54), or equivalently the first of Eq. (1.38), so that it eventually
becomes of vanishing energy for y > 1.

Problem 1.13 Determine the minimum and the maximum opening angle between
two particles with mass m; and m, produced in the decay of a particle of mass m and
momentum p.

Solution

This exercise is analogous to Problem 1.12. We can therefore start from Eq. (1.54)
for the more general case m;, m, > 0, giving an equation for tan 6, , as in Eq. (1.44).
From this expression, we can compute the tangent of the opening angle ¢:

tan 6, + tan 6,
t; = —-—-----—
an(¢) 1 — tan 6, tan 6,
BEE /T cos?67
_ v BiB . (1 62)

L B2e02 g% Bi—p3 * B> _ 2
B?cos? 0 +’3/§Tﬁ§2 cosf +<ﬁ?ﬁ§‘ 1+,3)

where B, = |p*|/ET , are the velocities of two particles in the centre-of-mass frame.
The denominator D(cos 6*) at the right-hand side of Eq. (1.67) is a second-degree
polynomial with negative concavity. Let’s study its value for cos 6* = +£1:
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B2 B _ B
4+ —F — —1. 1.63
Bips T B BT (1.69

D(E1) =

These expressions are two parabola in 8 with roots [—8, 5] and [—B5, B;], respec-
tively. Since the concavity is positive, we have:

D(+1) >0, D(=1) > 0 if B* > B},
D(+1) > 0, D(—1) <0 if B* > BF and B* < B}
D(+1) <0, D(—1) > 0 if B* < B and B* > B}
D(+1) <0, D(=1) <0 if B* < B,

(1.64)

Hence, if B > max{g], 85}, then D(cos 6*) > 0 for every angle 8*. Consequently,
tan ¢ in Eq. (1.62) is limited and has a global maximum for some value cos 6}, .
Conversely, if at least one among B; and B; is larger than §, the denominator has
to vanish at some point, as for Rolle’s theorem, and then it flips sign, so that tan ¢
eventually approaches 0~ as cos 8* — 1. If instead both 8} and B; exceed 8, then
D can be either always negative, or vanish twice. We can summarise the various cases

as follows:

e B > max{B, B5}: the maximum opening angle ¢, corresponds to atan (Xmax),
where cos 6. is the value that maximises the right-hand side of Eq. (1.62). We
can easily see that such value does not correspond, in general, to 6* = 7 /2. One
can find a numerical solution for ¢n,y, for example using Newton’s method to
iteratively maximise tan ¢. Appendix 1.3 provides an example of how to deter-
mine numerically argmax {tan ¢} by using a computer program in Python.* The
case B = B5 = B* allows to simplify further Eq. (1.67). First one notices that
tan(¢) becomes an even function of cos 6*, hence we the maximum has to occur
at cos 0* = 0. At this angle, we have:

2y pB*
)/2,32 _13*2'

The minimum opening angle is ¢, = 0, corresponding to a pair of collinear
particles in the laboratory frame.

e Byy > B, Bip < B: the backward emission in the centre-of-mass frame of
a particles with velocity larger than 8, corresponds to a backward-propagating
particle in the laboratory frame, hence ¢n,x = 7. Instead, since * < B for the
other particle, the solution with cos* = —1 corresponds instead to a pair of
collinear particles in the laboratory frame, hence ¢, = O.

e B < min{p}, B;}. In this case, ¢ = 7 like the previous scenario, while @iy is
strictly larger than zero, and it can be computed, again numerically, starting from
Eq. (1.62).

tan(¢max)ﬁ]*:ﬁ§ = (165)

4For example, using the input values 8 = 0.8, ;" = 0.3 and B; = 0.5, one gets cos 6, = 0.392,
which is in agreement with the numerical evaluation in Fig. 1.3.
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Fig. 1.3 The trigonometric Pr=p2=1
tangent of the opening angle H

¢ in the laboratory frame
between the decay products
of a massive particle with
velocity 8 = 0.8, shown as a
function of cos 6*, where 0*
is the polar angle in the
centre-of-mass frame. Three
different cases are
considered: B, =1 > B,
B; > B > B}, and i, > B,
where B , are the
centre-of-mass velocities of
the two particles

10y tan(e) . B1=03

Figure 1.3 shows tan ¢ as a function of cos#*, assuming 8 = 0.8 and for three
representative cases: i, = 1> g, 85 > B > By and B}, > B.

Bando n. 18211/2016

Problem 1.14 An electromagnetic calorimeter is able to separate the showers
induced by high-energy photons when the separation angle between the two photons
is larger than 5°. The calorimeter is then used to detect 7°’s. What is the largest 7°
energy such that any 7° decay can be reconstructed as a pair of distinct photons?

Solution

Given that a detector resolution of 5° is small, we can use the approximate formula
of Eq. (1.61) to express the minimum opening angle between the two photons as a
function of the ° energy. The condition that all the 7%’s get reconstructed as two
separate photons amounts to require that the minimum opening angle exceeds the
resolution of the detector, that is to say:

2 _ 2 mo b4 2 mo

min =— — = 5°- E T om . 11
Puin =0 =~ > g0 7 E<Ggrx 10

~ 3.1 GeV, (1.66)

where we have used the PDG value m;0 = 135 MeV [4].

Problem 1.15 A particle of mass m and momentum p decays to a pair of massless
particles. In the rest frame of the mother particle, the angular distribution of the decay
products is described by the probability density (I"*)~'dI"* /d cos 6*, where 0* is the
polar angle with respect to p. What is the corresponding density I"~'dI"/d cos 6 in
the laboratory frame? Find out an approximate formula valid for an isotropic decay
in the limit |p| > m.
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Solution

If the decay distribution in the centre-of-mass frame is described by the density
(I'*)~'dI'*/d cos #*, in the laboratory frame one has:

1 dr 1 ar*
I'dcos® ~ I'* dcos6*

d cos6*

. 1.67
dcost ( )

The relation between cos 6* and cos 6 can be obtained from Eq. (1.56), giving:

‘dcos@* _ |=(Bcos® — 1) — (B — cosH)B| _
dcosf | (1 — Bcosh)? N
1 — g2 1 1

T (01— Bcos)?  y2(l—Bcosh)?’ (1.68)

where B = |p|/+/|p|? + m?. Inserting this expression into the right-hand side of
Eq. (1.67), we obtain:

1 dr 1 1 1 dre
|: :| (1.69)

T dcoso y2 (1 — BcosB)? | I'* dcosh*

The Jacobian factor at the right-hand side of Eq. (1.68) implies that the angular
distribution in the laboratory frame will be skewed towards the boost direction. The
ratio between the Jacobian factor for backward- and forward-emitted photons is
(1= B)2/(1+ B)2 = [(1 + B)y]™": already for y = 5, this ratio is 10~*.

Let’s now consider in more detail the case |p| >> m. In this limit, we can approx-
imate:

1
1—-B=1-[1-—~—. (1.70)
%

As already discussed, Eq. (1.68) implies a forward-peaked angular distribution, so
that, for all practical purposes, we can assume 6 < 1 and consider only the first-order
Taylor expansion of cos . With this approximation, Eq. (1.67) can be simplified to:

1 1 dr* 4?1 dr

1 dr 1
N2 x 2 57
2(1—ﬂ+/307') I'*dcosf (1+y262)* I dcosf

T dcoso y

~
~

(1.71)

A case of special interest is for an isotropic angular distribution, which is the appro-
priate case for spin-0 particles or unpolarised beams. The angular distribution and
the energy of the particle in the laboratory frame are then given respectively by:
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1dr 2y%6 E* 2y

©) y(1—Bcosh) 1+ 262 (1.72)

where E* is the energy of the massless particle in the centre-of-mass frame. The mean
angle (6) and RMS oy can be computed from the first of Eq. (1.72) by assuming that
the approximation is valid up to the maximum laboratory angle 6 = m:

T 1dr b4 1
)= [ aoe (%%) - [longn I (%)} (1.74)
5 2 1 2 72 1
o9 = +/(62) — (6) =;|:log(y n—l—l)—l—i-T]—i-ﬁ’(ﬁ) (1.75)

The cumulative distribution F(8) can be obtained by integrating the differential
distribution in Eq. (1.72). It can be used to determine the laboratory angle containing
a given fraction « of the decay particles:

1
FO)=1— 55— Oy = — . 1.76
© Y202 +1 = yVi—«a (1.76)

Problem 1.16 A particle of mass M and three-momentum along the z-axis decays
into a pair of massless particles. Let the angular distribution of the decay products
in the rest frame be described by the density (I"*)~'dI"*/d cos 8*. Show that the
transverse momentum distribution I"~'dI" /d|pr| develops an integrable singularity
at |pr| = |p*|, where the trasverse momentum pr is defined as the projection of p
onto the plane perpendicular to the z-axis, and p* is the centre-of-mass momentum
of the decay particle. Consider now the transverse mass mr of the two daughter
particles, defined as:

my = (Er1 + Er2)” — (Pr1 +pr2)* = 2[pr1llpral (1 — cos(Ag)) (177
Show that the distribution I"~'dI" /dmr features a singularity at mr = M.

Solution

The assumption that the momentum of the decaying particle purely longitudinal
allows to relate the centre-of-mass kinematics to the transverse variables in laboratory
frame through simple formulas, since:
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IpT1l = IPT2| = IPT| = Ip*lm

1 drr 1 dI'* |dcos0™| 1 dI'” [prl _
Cdlpr|  T*dcos6* | dlpr| |  I'*dcos6* |p*2,/1 — |pr|?/|p*|?

1 drx 4
I'*dcos0* \ M2,/1 — 4|pr|2/M?

where we have used the relation |p*| = M /2, see Eq. (1.90). Therefore, the trans-
verse momentum distribution features a singularity at |pr| = |p*| = M /2, which is
entirely due to the change of variables, hence the name of Jacobian peak. Notice that
the singularity is integrable, since dI"/d|pr| ~ (1 — 4|pr|>/M?)~2, which in the
neighbourhood of the singularity goes like ~g&~ 7, where we have pute = |p*| —|pT1l.
In terms of the transverse mass of Eq. (1.77), we have:

m3 = 2|pr1l|pr2l(1 — cos(A¢)) = 4|pr|*

1 dr 1 dr

T dmr — T d|pr|

1 ar¢ my (1.79)

" TI'*dcos6* M2 /1 —m%/MZ

Thus, the transverse mass features a Jacobian peak located at the mass of the decay-
ing particle.

dlpr|
me

Discussion

The appearance of a Jacobian peak in both the transverse momentum and the trans-
verse mass distribution of the decay products of a heavy resonance provides a power-
ful handle to distinguish such events from a non-resonant background. For example,
the transverse mass has been extensively used at hadron colliders as the single most-
efficient signature to identify the decay of W bosons into a charged lepton and a
neutrino. While the charged lepton momentum can be fully reconstructed (if the
lepton is either e or w), the neutrino does not interact with the detector. An indirect
evidence of its production is however provided by the momentum imbalance in the
transverse plane, which, in the absence of other invisible particles, is just given by
the neutrino transverse momentum. Thus, even in the presence of invisible particle,
the transverse mass of Eq. (1.77) can be computed.

Two remarks are due here. Firstly, in real experiments, the Jacobian peak is
smeared by the finite detector resolution and by the natural width of the decay-
ing particle, see e.g. Ref. [6] for the effect of the W boson width. Secondly, the
expressions in Egs. (1.78) and (1.79) have been derived under the assumption that
the momentum of the decaying particle is purely longitudinal: if that is not true,
i.e. if the particle has a momentum component orthogonal to the z-axis, the formula
change. Differently from the transverse momentum, the transverse mass variable is
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less affected by a finite transverse momentum of the decaying particle. This is further
elaborated in Problem 1.17.

Problem 1.17 Show that the transverse momentum distribution I"~'dI"/d|pt| of
Eq. (1.78) for a particle of mass M decaying to massless particles, receives &(8)
corrections when the decaying particle velocity § has a transverse component, while
for the transverse mass distribution I"~'d " /dmr such corrections start at & (B?).

Solution

All transverse variables are invariant under longitudinal boosts, as one can easily
verify. We then study their properties under transverse boosts. We first write Eq. (1.4)
in a vectorial form as:

= . A -1

P/=(VP'ﬂ)ﬂ—ﬂVEﬂ+P—(P'ﬁ)ﬂ=P+[(yﬁz )p-ﬂ—yE}ﬁ
(1.80)

E=yE—-yp-B (1.81)

If B is a small transverse vector, and the momentum p is almost longitudinal, we can
work out the transformation properties of pr:

Pr

(1.82)
[Pt

pr~pr—EB = Slprl=-EB-

hence the transverse momentum changes already at the first order in 8. The transverse
mass for two massless particles is defined as:

m3 = 2|pr1l|pr2l — 2P11 - Pr2- (1.83)

This expression resembles closely the invariant mass squared m> = 2p;p, for two
transverse vectors, but it has not the same properties under transverse Lorentz boosts.
This can be proved by noticing that

\/|PT||2 +P§1\/|PT2|2 +p2, = Pr1 - Pr2 — P:1P22 (1.84)

is invariant under both longitudinal and transverse boosts, since it coincides with the
invariant mass squared (p; 4 p»)?. Since p. is invariant under transverse boosts, then
it must hold:

S(pr1-Pr2) =38 (\/|PT||2 +P§1\/|PT2|2 +P§2)

1) 1)
_ pr1l |PT1|E2 + [pr2l |PT2|E1.
E, E,

(1.85)
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Fig. 1.4 Distribution of the transverse momentum |pr| (left) and transverse mass mt (right)
obtained from a set of toy MC events where an unpolarised resonance of mass M decays into
a pair of massless particles. Four different velocities 8 of the mother particle are assumed, differing
by the component on the transverse plane. The dashed histogram corresponds to a purely longitudi-
nal velocity, while the other three distributions correspond to increasingly larger transverse boosts

Br

Using Eq. (1.82) and (1.85), we get:

Pr2 Pri
dmy = (Ipr2lEy — [prilE2) B - ( — ) , (1.86)
|pT2 [pr1]
which vanishes because, in the centre-of-mass frame, E; = E, and |pt1| = |pr2l.

Hence, at first order in 8, the transverse mass does not change. This is however
not true at second order, as one can readily verify by considering the &'(8?) term.

The response of the transverse momentum and transverse mass under boosts can
be studied by using toy events generated with MC techniques, see Problem 4.5, in
which the decay of an unpolarised resonance of mass M is simulated. A simple ROOT
macro that performs the toy generation is illustrated in Appendix 1.3. The results
are shown in Fig. 1.4. As expected, the mr variable is found to be significantly more
stable against transverse boosts compared to |pr|. An other interesting feature of
the mr variable is that the location of the Jacobian peak location is not affected by
boosts; this is clearly not the case for the transverse momentum, whose peak value
is significantly smeared by transverse boosts.

Problem 1.18 A particle of mass m and momentum p scatters against an identical
particle of mass m, initially at rest. Compute the minimum opening angle between
the two particle directions after the scattering.
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Discussion

This problem is a prototype for studying the kinematics of a fixed-target experiment.
To be more general, we can assume the two masses to be different, with particle
(1) having momentum p and particle (2) at rest. The energy and momenta in the
centre-of-mass frame are given by:

Vs=El+E5= \/m%—i—m%—i—ZElmz (1.87)

Ip*| :\/ETZ’_mf:\/E;Z—m%. (1.88)

The last equation, in particular, implies:

Ef? —mi=Ey* —mi, (B} +ED(E] — E5) = m} —m,
s +m% — m%

2s

An analogous result for E5 can be obtained by changing 1 < 2. Inserting Eq. (1.89)
into the second of (1.87), and symmetrising the expression for 1 <> 2 exchange, we
get:

VSEf—Js+E)=m?—m} = Ef= (1.89)

. 1 [ (s+m?—m?)? (s +m2 — m2)?
pPr=-|——2 -+ —2 Y | =

2 4s 45
1

= — [2s +2(m1 —mz) —4sm1 4sm2]

= E [s2 + (my — mz) (my +m2) — 2sm1 2sm2]
1

= [(s + (my 4+ m2)?) (s + (my — m)?)], (1.90)

from which:

. \/(s—(ml—i—mz)z) (s—(m1 —I”I/lg)z) \/(s—m%—m§)2—4m%m§
Ip*l = NG = NG .

(1.91)

A special case is provided by m; = m, = m, for which:

2
|p*|_*[1—4— E*:?, B* = ,/1—4”’— (1.92)

Notice that, after doing the algebra, the numerator of Eq. (1.91) assumes a completely

symmetric form under exchange of s <> m? <> m3:



1.1 Lorentz Transformations 27

\/sz +mi +m5 — 2s2m} — 2s2m} — 2mIm? \/A(s, m3, m3)
2./s N 2./s

where A(a, b, ¢) is known as the triangular function. The boost parameter to the
centre-of-mass frame, 8, can be easily obtained by noticing that, in this frame, particle
(2), which has momentum component along the boost direction —|p*| and energy
E3, has to come to a rest under an inverse boost — g, that is to say:

p*l = (1.93)

0=y(=Ip"l+BE) = ﬂ=|g—*|=ﬂ§‘, (1.94)
2

which implies that g is also the velocity of particle (2) in the centre-of-mass frame,
as one would have expected. Besides, by definition of centre-of-mass frame, the two
particles must have equal and opposite momentum under this boost, i.e.:

Ip*| =y (Ip| — BE1)) =y Bma, (1.95)
from which we can derive the two relations:

Ipl _Ei+m

'3=E1+m2’ Y NG

(1.96)

The latter follows from:
_ 1 _ Ei +my _Ei+m
\/1_/32 \/m%+m%+2m2E1 ‘/E

v (1.97)

Equation (1.96) thus implies that the boost to the centre-of-mass is the velocity of a
“particle” of mass /s and total momentum p. Furthermore, combining Egs. (1.95)
and (1.96), one can relate the centre-of-mass momentum to the momentum in the
laboratory frame as:

|P*|=)/,3m2=m2%- (1.98)

Solution

We can use directly Eq. (1.43) to express the velocities in terms of the momenta and
energies. Also, since m; = my = m, we have E = /|p*| + m? = Ej = E*. Let’s
define the opening angle by ¢. With reference to Fig. 1.5, we then get:

|p*| sin O
Y (BE* + |p*| cos 6%)

|p*| sin 6}
Y (BE* — |p*| cos 6%)’

tan 6, = tan 6, = (1.99)
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Fig. 1.5 Elastic scattering
between two identical
particles of mass m

P1

m

tan0) +tan6,

l —tanf tan6,

_ 2By E*|p*|sin 0™ (1.100)
Y2(B2E? — |p*?) + [p*[2(y2 — 1) sin® 6*

tan ¢ = tan (6; + 6;) =

By using Eq. (1.94), we see that the first term at the denominator vanishes. The
right-hand side is a monotonously decreasing function of 6*, hence the minimum of
¢ occurs for 0* = 7. Still using Eq. (1.94), and the first of Eq. (1.96), the expression
can be simplified to:

2y 2J/1 =82 21— |p*2/(m+E"?  22m? + 2mE*
) =T T T T R mr By Bom
(1.101)

Finally, using a trigonometric identity, we can further simplify the expression as:

p \/ (E* — m)? E*¥—m

Ccos in = = .

e /—1+tan Dmin E*2 —2mE* +m?+8mE* +8m?  E*+3m
(1.102)

Problem 1.19 Consider the decay of the Kg meson into a pair of opposite-charge
pions: calculate the energy and momenta of the charged pions in the Kg rest frame.
Consider now a monochromatic beam of Kg decaying as before. Determine the
energy distribution of the charged pions in the laboratory frame as a function of the
beam momentum.

Solution

Since the Kg particle decays to a pair of particles of identical mass, we can use
Eq. (1.92) with /s = my to derive the energy E* and momentum |p*| of the pions
in the centre-of-mass frame:
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2
Er="K _o48Mev, |pl="K [1—4 (ﬁ) =206 MeV, (1.103)
2 2 mg

where we have used the PDG values mg = 497 MeV and m, = 139 MeV [4].
The laboratory energy E, of either of the two pions can be expressed in terms of
the centre-of-mass polar angle 6* via:

1
E;(cos0*) = E*y (1 + BB*cosb*) = > (E + |p|B* cos@*) , (1.104)

where E and |p| are the laboratory energy and momentum of the kaon, and g* =
|p*|/E* &~ 0.829 is the centre-of-mass velocity of the pions. Since the K is a spin-
0 particle, it’s decay into pions is isotropic in the rest frame, see Problem 1.15.
Furthermore, Eq. (1.104) shows that the energy in the laboratory frame is a linear
function of cos 8%, so that it’s distribution will be also uniformly distributed in the
range [E, (—1), E (D)]:

(1.105)

Ldar | (plpH™" if 5 (E—[pIBY) < Ex < 5 (E+[plB")
I dE, 0 otherwise

Discussion

The fact that an isotropic distribution in the rest frame for a decay 1 — 2 gives rise to
a rectangular distribution for the energy in the laboratory frame holds irrespectively
of the mother energy and of the daughter mass, since it only depends on E,; being a
linear function of cos 6*. Notice that the momentum |p| is not uniformly distributed,
since E is not a linear function of |p|, whereas the kinetic energy 7 = E — m is. If
the mother particle is relativistic, i.e. E > m, and the mass of the daughter particles
is small compared to m, then Eq. (1.105) becomes:

—— Ex ] (1.106)
I dE, 0  otherwise

| ar N[L if0 S Er <E

For example, the t lepton has a mass of about 1.7 GeV, and can decay via 7 —
T vy, with m;, m, < m;. At colliders, t leptons are abundantly produced from the
decay of Z° or W bosons, so that E; > 40 GeV > m,. Although it is a spin-1/2
particle and the EWK dynamics is chiral, see Problem 1.8, one can usually consider
unpolarised ensembles of t leptons, for example by averaging over the pion charge,
so that the decay distribution in the 7 rest frame can be still considered as isotropic.
Then, the energy spectrum of the charged pion features an approximate rectangular
distribution as in Eq. (1.106).
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Another intriguing property of the energy distribution of Eq. (1.105) will be dis-
cussed in Problem 1.20.

Problem 1.20 Show that for a two-body decay B — A a of an unpolarised particle
B of mass mp, into a pair of particles A and a, where the latter is assumed mass-
less, the energy spectrum of a in the laboratory frame has a global maximum at E7}
irrespectively of the momentum of B.

Solution

Let’s consider the decay B — A a in the rest frame of B, and let’s denote by 6* the
polar angle of a with respect to the direction of flight of B in the laboratory. It follows
that:

E,=yE(1+ Bcos6*) (1.107)

where y = yp and B = fp are the gamma-factor and velocity of B in the laboratory
frame. The centre-of-mass energy of a is given by Eq. (1.89), namely E = (mlzg -
mi) /2my. Since E, is a linear function of cos 6%, it follows that

E,elyE;(1-8), yE;(1+ )],

E,
x= el =y =V - Ly+Vr-] (1.108)

Furthermore, since y —/y% — 1 < land y ++/y% — 1 > 1 forany y, it follows that
x = 1 is contained in all intervals I,,. It is also the only value featuring this property,

since for x # 1, one can always find a y such that x ¢ I,,. Indeed, for a fixed x, the
condition x € I, can be obtained by solving the system:

{x>y— y2—1

1 1
= >—lx+-). 1.109
x<y+Jy2-—1 Y Z(X x) ( )

The assumption that B is unpolarised implies that E, has a rectangular distribution,
see Problem 1.19, hence x is uniformly distributed in ,,. If we assume that the boost
factors of B are described by a distribution g(y ), the distribution of x will be given
by:

1dr > g
_E g(y) = dy —=—_. 1.110
T e / vf(xly)-g() /;(HQ Y a1 (1.110)
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The derivative of Eq. (1.110) is given by:

L) e L)

X

_sign(l —x) l l
=— g(2 (x—l—x)). (1.111)

Therefore: if g(1) = 0,thenx = 1isthe unique maximum of Eq. (1.110);if g(1) # 0,
the derivative flips sign at x = 1, hence this point represents a cusp in the distribution
of x. In both cases, x = 1 is a global maximum. An alternative way to convince
oneself that x = 1 is indeed a maximum is to notice that this value is the only one
that is contained by all intervals /,,, hence it must have the highest probability density.
The same conclusion would hold, under some more restrictive conditions, also for
m, > 0. In the latter case, Eq. (1.109) gets modified to:

=
[
3| &

[1)%2 _ [yx2
el, = |:y — - 1’/71, y+ -y — 1”)/—1} (1.112)

with y* = E%/m,. The condition 1 € I, is then satisfied provided that:

*2_]
V—VV2—1V—<1 &S oy <2y -1 (1.113)

*

As expected, this condition is satisfied for any y in the limit m, — 0, since
y* — 400 and the inequality becomes y < +o00.

Discussion

This subtle property offers the possibility of measuring the mass of the parent particle
mg regardless of both the kinematic of B and A, which plays here no role other than
determining the centre-of-mass energy E. The latter can be directly measured from
the mode of the distribution of E, from the relation:

mp = Ef + /m% —m2 + (E})2. (1.114)

Figure 1.6 shows the simulated spectrum of log E,, for the case where particle a is
the b-jet produced in the decay of a top quark.

Suggested Readings

This problem is inspired by Ref. [8], from which the notation and the mathematical
proof have been also taken. The idea of using the peak position of the energy spectrum
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Fig. 1.6 Fitted log E, 8 TeV
distribution in a simulated
sample of 77 events with a
mass hypothesis of

172.5 GeV. The Gaussian fit
yields a log E, peak position
of 4.199 + 0.002,
corresponding to an
uncalibrated value of

m; = 171.01 £0.25 GeV
using Eq. (1.114) (taken
from Ref. [7])
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of the b-jets to measure the mass of the top quark, which decays viat — b W, has
been first suggested by the same authors and first pursued at the CMS experiment [7].

Problem 1.21 A K*~ meson with momentum |p| = 5.5 GeV decays via K*~ —
K~ 7°. In the rest frame of the mother particle, the K~ momentum forms an angle
6* = 55° with respect to p. What is the opening angle between the K~ and 7°
momenta in the laboratory frame? Which are the centre-of-mass angles 6., and 63,
for which the opening angle is, respectively, the largest and smallest?

Solution

We can use the results derived in Problem 1.12. In particular, the opening angle ¢
depends on the centre-of-mass angle 8* and on the velocity of the mother particle in
the laboratory frame, k-, and the velocities of the two daughter particles in the rest
frame of the mother particle, 5 and 8. The velocity and gamma factor of the K*~
meson in the laboratory frame are respectively given by:

_1 1
Mg 2 2 |p| 212
B=|1-(— =0987, y=|1+ =6.25 (1.115)

Ip| Mg«

where we have used the PDG value mg- = 892 MeV [4]. The velocities of the daugh-
ter particles in the rest frame of the mother particle can be computed from Egs. (1.89)
and (1.91). In order to make the numerical computation less error prone when using
a calculator, it is convenient to write the formula in terms of the dimensionless ratios
Iy = mg/mg- = 0.554 and r;, = m, /mg- = 0.151, that is:
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,3* |p*| \/(mlz(* - (mn + m[()z) (m%(* — (mﬂ — mK)2)
Ko — =

* 2 2 2
EK,;T Mg« + myg + mx

JOU = +r0?) (1= 2 = 0% (0502 K
- — = (1.116)
T2 572 0.906 7

We can then use Eq. (1.67) to derive ¢ as a function of 6%, or equivalently use
Eq. (1.44) to calculate 0k and 6, separately. Following the latter approach, we get:

sin 55° [0.0516 K
tan QK,T[ = —
6.25 - (:l: c0s 55° + (;;ﬁ) 0254 x
K.
¢ = atan(0.0516) + atan(0.254) = 17.2°. (1.117)

Since B+ > min{Bf, B}, there must be a maximum opening angle ¢ < 7,
whose tangent can be found by numerically maximising Eq. (1.67) with respect to
cos 0*. By using the numerical routine of Appendix 1.3, we get a value:

argmax {tan ¢} = 0.906 = Pmax = 86°. (1.118)

Bando n. 13705/2010

Problem 1.22 A beam of K™ mesons with energy E propagates along the z-axis.
Consider the decay K™ — p"v, with massless neutrinos. Determine:

the angular distribution of the muons in the centre-of-mass frame;

the polar angle that contains 50% of the neutrinos;

the fraction of neutrinos emitted with negative velocity;

the beam energy threshold for which all muons move forwards;

which are the implications of the weak interaction for the muon helicity when the
latter is emitted forwards or backwards along the z axis.

AR

Solution

1. Since the K™ meson has spin-0, the decay products are isotropically distributed
in the centre-of-mass frame, i.e.:

1 arx 1
- - - (1.119)
I'*dcos6*dep* 4w

2. As seen in Problem 1.10, and in particular Eq. (1.56), for massless particles the
polar angle in the laboratory frame, 6, is a monotonously increasing function of
0*. Indeed:
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dcos6 1 — B2
- > 0, (1.120)
dcos* (1 + Bcosh*)?

where B is the Kt velocity in the laboratory frame. Therefore, the transformed to
the laboratory frame of the polar angle 6* giving the 50% quantile in the centre-
of-mass frame, which is trivially 7 /2 for an isotropic decay, will also give the
same quantile in the laboratory frame, since a monotonous mapping preserves
the quantiles. Hence:

cos 5 + B

0509, = acos | —————
0% (ﬁcos%—i—l

) = acos B = acos,/1 — (%)2 (1.121)

. For the neutrino to be emitted backwards, one has the condition:

Pl =y (p;+BE)) =y E;(cosf*+p) <0 = cosb* <—-p. (1.122)
Hence, the fraction ap of backward-emitted neutrinos as a function of E is given
by:

2

- 1 dr 1 [F 1—J1— (™
aB=/ dcosf* — :—/ dcose*z—(E)
1 I'dcos6* 2 J)_, 2

(1.123)

For the muon to always move forward, one needs:

pl=v @, +BE,) =y E,(B cost0"+B)>0 V0" & p>p,

2 mE —m? 2
1_(%) > K E>Ey=t 1+(@) = 1.20 GeV.
E my + m?, 2 m,
(1.124)

The V — A structure of the charged-weak interaction implies that the neutrino is a
pure left-handed particle, and since it is massless, it is also in a helicity eigenstate
with eigenvalue i, = —1/2, see Problem 1.6. Since the K™ is a spin-0 particle,
the muon and neutrino needs to be in opposite helicity eigenstate in the centre-of-
mass frame, as to conserve the angular momentum in the z direction. If the muon
moves backwards along z in the laboratory frame, then it must have h, = —1/2
as to compensate for the forward-moving neutrino with 4, = —1/2. If instead
the muon moves forward, we should consider separately the case where the K™
energy is below the threshold Ey, of Eq. (1.124) (in which case, the neutrino
moves backwards and hence h, = —1/2), from the case E > Ejy,. In the latter
case, the neutrino can move either backwards or forwards, depending on the
observed muon momentum, and then 4, can take both values of 1/2.
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Problem 1.23 Consider the decay chain C — B b, followed by B — A a, where a
and b are massless particles, whereas A, B, and C have non-zero masses my, mp, and
mc, respectively. Determine the lower and upper bounds on the invariant mass m,,
as a function of the mass of the three other particles. Assume now that the decay of B
is isotropic in its rest frame: what is the expected distribution of m,;, in the laboratory
frame?
Solution
We study the problem in the rest frame of C, where b has a fixed energy: since m.;™*
is an invariant, the results obtained in this particular frame will hold true for any other
frame. The minimum invariant mass m™" corresponds to a and b moving collinear,
which can always happen if m, = mj, = 0, see Problem 1.10. Hence: m®" = 0.
The maximum invariant mass corresponds instead to a and b moving back-to-back,
since this configuration will also maximise the energy of a. We can use Eq. (1.89) to
express the energy of b, which is identical to the momentum of B since the former is
assumed massless:

2 2 2 2
E, = |pg| = u’ Ep = w. (1.125)
ch 2mc

The same equation with the replacement C — B and B — A will also give the
energy E of particle a in the rest frame of B. We can transform it back to the C rest
frame by applying a boost of magnitude Bg, which is the velocity of B in the rest
frame of C:

E™ =y B* (1 + Bp) = (m%er%) (mfg —mf\) (1 N mg. —mzzs) _

2mcempg 2mp m% + m%;

e mp —mj (1.126)
mp 2m3 ’ '

from which we get the result:

o — o — i)

max __ / Frmax —
mg, =2 Ea Eb— g

(1.127)

To study the distribution of m,;,, we first write it explicitly as a function of the
kinematics of a and b:

m2, =2E,E, (1 +cos,), (1.128)
where 6, is the angle of a with respect to the direction of B in the rest frame of C,

see Fig. 1.7. Then, we write cos 6, as a function of E,, as to obtain an expression
which depends only on the latter. We do so because we know that E, is uniformly
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Ppb
b

Fig. 1.7 Representation of the decay chain C — B b, followed by B — A a in the rest frame of C

distributed, if such is the angular distribution in the centre-of-mass frame, see e.g.
Eq. (1.105). Given that E is constant, we get:

E,—E* EgE,—mgE*
E; =ypE, (1 — Bpcosb,), cos9a=yB a” Za _ ZBTRa T B
Brys Ea |pa|E,

(1.129)

Inserting this expression into Eq. (1.128) we get:

Ea+EpEa—mgEL\ _ 2
m, = 2E,E) (IPBI ad b e T ") :

= —> [Es (Ep + Ipgl) —mpE}| =
Ip5| Ea |PB|[ “ a]

=2mc Eq — (mg — m3), (1.130)

where the last equality has been obtained by means of Eqs. (1.89) and (1.125). It is
easy to verify that Eq. (1.128) can be recovered by using the expression at the right-
hand side of Eq. (1.126). Since m?, is a linear function of E,, which is uniformly
distributed, it follows that m,;, has a triangular distribution:

2
1 dr (ﬁ) i max

- — o mgp if 0 Smg = m_, (1131)
I" dmyy, 0 otherwise

Discussion

Searching for end-points in the invariant mass spectrum of light particles provides
an experimental technique to measure new heavy particles that decay to intermediate
states, for example the supersymmetric partners of the SM particles. Figure 1.8 shows
the spectrum of opposite-sign dilepton masses measured by the CMS experiment in
proton-proton collisions at /s = 8 TeV [9]. A putative signal like the one discussed
in this exercise would manifest itself as an edge in the mass distribution (dashed
green line). Furthermore, the edge location provides a constraint on the mass-scale
of the new particles as shown by Eq. (1.127).
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Fig. 1.8 Invariant mass CMS 19.4 fb™' (8 TeV)
distribution of same-flavour 200 g
opposite-sign lepton pairs 180 t Data
(ete™, ut ™) measured by 160F- —Fit
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collisions at /s = 8 TeV. > E DY 1
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Problem 1.24 A non-relativistic particle of mass m and initial velocity v scatters
elastically against a particle of mass A m, where A is a positive coefficient, assumed
to be initially at rest. Determine, as a function of A, what is the range of kinetic
energy T’ in which the projectile particle can be found after the scattering.

Solution

We first consider the generic scattering in the centre-of-mass frame. Here, the kine-
matics is fully specified by the polar angle 6* with respect to v. The velocity of the
centre-of-mass in the laboratory frame, vcy, is given by:

m-ry+Am-ry v
— o A4 R — 1.132
fem A+rDm M= AT (1.132)

In the c.0.m frame, the velocity of the incoming particle before and after the collision
are v* and v*’, and since the collision is elastic, we have:

V| = v = [v — veum| = [v]. (1.133)

A+1
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Expressing v’ back into the laboratory frame, we obtain:

V=v"'+vem, V= IV + Iveml? 4 21V [[vem| cos 6%,
A\ 1\’ 24
712 2 2 2 *
=(— - = 0*,
A (A+1) vl +(A+1) M +A+1|V| €os
A2 + 1+ 2A cos 0* A—1)\?
o AT EASY e (22 T, (1.134)
(A+1)2 A+1

Equation (1.134) implies that the maximum energy transfer, i.e. the largest recoil
energy transferred to the target particle, is:

A-1Y 4A
AThmax =T —Thin = | 1 = | —— T=—"—T. (1.135)
A+1 A+1)?

Let’s now specify the relative energy exchange for the cases A <« 1, A = 1, and
A> 1

4/A ifA 1

AT |74 HA>

T =11 ifA=1 (1.136)
4A ifA K1

Inparticular, ATy« /T — OforA > 1,is maximal forA = 1, and is proportional to A
for low values of the target mass. In particular, the last limit implies that the maximum
velocity of the target after the scattering is twice the velocity of the incoming particle.
This is easy to prove, since we have:

1 1
5(Am)|v;,|2=4A-§m|v|2 = |V, =2V (1.137)

Discussion

The dependence of the relative energy transfer on the mass ratio between the projectile
and the target has important implications on the possibility of slowing-down parti-
cles by elastic collisions, like e.g. neutrons produced in fission reactions. Indeed,
if A > 1, an elastic scattering implies only a very small energy loss per binary
collision: massive elements are not efficient velocity moderators. On the contrary,
elements with comparable mass are more effective in reducing the energy of the
incoming particles, since the energy transfer AT can reach larger values, as for from
Eq. (1.134), so that it will take on average fewer binary collisions to achieve the
desired moderation. For example, H,O is a good neutron moderator thanks to the
presence of free protons in the molecule.
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Suggested Readings

For further details on this subject, the reader is addressed to Sect.2.8.1 of Ref. [10].

Problem 1.25 Consider the elastic scattering of a massless particle against a particle
of mass m, initially at rest. Determine the largest energy transfer from the massless
particle to the target.

Solution

Differently from Problem 1.24, the initial particle is now. It is most convenient to
use the covariant formalism. For this purpose, let the four-momenta of the massless
particle before and after the scattering be denoted by k = (E, k) and k' = (E', K),
respectively, and let 0 the angle between the two momenta. The target initially has
four-momentum P = (m, 0), which becomes P’ after the scattering. Conservation of
energy-momentum implies:

k+P=k+P, P=k—k+P, m*=m>+2kk+2mE—-E),
0= —2EE'(1 —cos8)+2m(E —E)=E'[m+ (1 —cos0)E] —mE,
E

B e e 1.138
1+ £ —cos) ( )
The energy E’ is at a minimum for back-scattering, cos & = —1, and the correspond-
ing energy transfer is:
, 1 2E/m 2k
ATpox =E—-E@=m)=E|1- =F =E .
1+2E/m 1+2E/m 1+2k
(1.139)
with k = E/m.
Discussion

The Compton scattering of a photon against atomic electrons falls into this class
of problems. The existence of a maximum energy transfer leads to a characteristic
threshold in the energy distribution of the recoil electrons, called Compton peak, see
Sect. 2.1 for more details.

Suggested Readings

For further details on this subject, the reader is addressed to Sect.2.7 of Ref. [10].
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Problem 1.26 A particle of mass M and momentum p interacts elastically with a
particle of mass m, initially at rest. Determine the maximum possible energy transfer
involved in the scattering. In particular, specialise the formula for the case of a non-
relativistic particle, M > |p|, and for the case of an initial massless particle, M = 0.

Discussion

The results derived in this exercise will be useful when discussing the energy lost by
a charged particle in the collision with the atomic electrons, as described by the so-
called Bethe formula, see Eq. (2.1). The maximum energy transfer to an atomic elec-
tron, usually denoted by Wi, provides a natural energy scale for this kind of prob-
lems, the other being the work needed to extract an electron from its orbital. It is also
interesting to see how the maximum energy transfer in the non-relativistic approxi-
mation and in the Compton scattering, whose derivation Problems 1.24 and 1.25 was
based on specific assumptions (classical kinematics for the former, massless initial
particle for the latter), can be obtained as a special case of a more general formula,
valid in all regimes, provided that m > 0 (otherwise there would be no frame where
the target is at rest).

Solution

It’s convenient to study the kinematics of the scattering in the centre-of-mass frame.
Here the projectile has a momentum p* and the target has opposite momentum
—p*. The largest energy transfer to the target in the laboratory frame corresponds
to its back-scattering in the centre-of-mass frame. We can then calculate the corre-
sponding energy in the laboratory frame by making a Lorentz transformation with
boost parameter 8. We can use the results obtained in Problem 1.18, and in partic-
ular Eqgs. (1.89), (1.96), and (1.98), to express all quantities in terms of the energy-
momentum in the laboratory frame. The projectile energy in the laboratory frame is
given by E = /|p|? + M2. In the laboratory frame, the target energy for the case of
back-scattering is given by:

" N E+m(s—M*+m? Ipl m
Ey=y(E, +BIP'D = NG NG +E+mlplx,

_E+m 2m? + 2Em m|p|? _m 2 )
G ( NG +(E+m)¢§)_?((E+m)+'p')’
m
s

= ? (E> 4 2mE +m> + pl® + M* — M?) = = (s + 2|p])

2
=m(1+2ﬁ). (1.140)

N
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Hence, the maximum energy transfer is given by:

2mpl® _ 2m (Bpyp)?
s 1+ (m/M)* +2(m/M) /(Bpyp)? + 1

Let’s now specialise Eq. (1.141) to the following cases:

ATmax = (1.141)

1. M > |p|. In this approximation, E =~ M and |p| & M|v|, where v is the projectile
velocity the laboratory frame. Hence:

2
AT max & M = (1M|V|2) 4%2’ (1.142)
(M + m)? 2 (m/M + 1)

which agrees with Eq. (1.135) since A = m/M in the current notation. It’s worth
noticing that no assumption was made on the target being relativistic or not after
the scattering. Indeed, Eq. (1.135) was derived under the sole assumption that
only the projectile is non-relativistic, while the target plays no role other than to
specify the boost parameter.

2. M = 0. In this case, |p| = E and Eq. (1.141) becomes:

2mE? _E 2E/m

AT pax = = ,
T m2 4+ 2mE 1+2E/m

(1.143)

which agrees with Eq. (1.139). Figure 1.9 shows the ratio AT,«/T between the
maximal energy transfer and the kinetic energy of the projectile as a function of
E /m. Four different cases are considered: y, ~ 1, y, = 2, ¥p = 10, and the case
M =0.

Fig. 1.9 Ratio AT /T
between the maximal energy
transfer and the total energy
of the projectile as a function
of E/m, where m is the mass
of the target. Four different
cases are considered: yp ~ 1
(non-relativistic limit),

¥p = 2, ¥p = 10, and the
case of massless projectile,
M=0

E/m
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Suggested Readings
The reader is addressed to Chap.33 of Ref. [4], the PDG review dedicated to the

passage of particles through matter, where the maximum energy transfer in a single
collision is discussed. See also Sect.2.2.2 of Ref. [10].

Problem 1.27 A charged particle of unknown mass M and momentum |p| much
larger than the electron mass m,, crosses a detector. At a certain depth inside the
active material, an atomic electron is knocked out by the incoming particle, for
which the polar angle 6, with respect to p and the energy E, are measured. Show that
the mass M can be estimated from the following formula:

1

Ee e
Rl coszee—l] : (1.144)

Ee_me

M=|p|[

Solution

Let the four-momentum of the unknown particle be P, and the four-momenta of the
electron before and after the scattering be k and k’. After the scattering, the incoming
particle will have four-momentum P’. With a convenient choice of the reference
frame, we can write:

P = (VIpl*+M?, |pl, 0, 0)

k = (m(¢'7 05 0’ O)

(1.145)
k' = (E,, \/E? — m? cos0,, \/E> —m2 sin6,, 0)
PP=P+k—Fk

Squaring the last of Eq. (1.145), we get rid of the unknown kinematics, obtaining:
P'? = P* + 2Pk — 2Pk + k* + k' — 2kK/,

M?* = M? + 2(m, — E,)\/|p|* + M? + 2|p|\/ E? — m2 cos 6, + 2m,(m, — E,),

Ee e
0=+|pl|?>+M?—|p| /Eﬂcosee—i—me,
e — Mg
M2 E
02\/1+_2_/Mcosge+@
|P| Ee_me |P|

1
EE e 2 TE 2 e
M~ |p| [E +m 005296—1] — Ip| [ﬂcosm—l} C o (1.146)

e — M,
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where the factor m,/|p| has been neglected, and we have introduced the kinetic
energy T, = E, — m,.

Discussion

This formula was used by Leprince-Ringuet and collaborators to estimate the mass of
anew long-lived particles discovered in cosmic rays. A magnetised nuclear emulsion
had been exposed to cosmic rays on the top of the french Alps. Among the others, it
recorded an event that could be interpreted as a charged particle, identified as such
by the bubble density of the track impressed on the emulsion, transferring a sizable
fraction of its momentum to a single atomic electron, a so-called §-ray. The latter
was identified as a spiraling track originating from the kink of the primary track, and
its momentum, like the momentum of the unknown particle, could be measured from
the radius of curvature of the track. With these measurements at hand, the mass of
the unknown could be measured with enough accuracy to establish the discovery of
a new particle, later identified as the charged kaon.

Suggested Readings

The reader is addressed to the paper by Leprince-Ringuet and Crussard [11], reporting
the first evidence for a particle with a mass of about one-thousand times the electron
mass contained in cosmic rays. The rather precise estimation of the particle mass
was based on the kinematics of a fully-reconstructed event. This experiment is also
discussed in Ref. [12].

Problem 1.28 A high-energy positron beam on a fixed-target experiment can pro-
duce the reaction et e~ — f f, where f and f have the same mass M. Show that M
can be estimated using the formula:

1 6, — 6\ Ip| :
M= —|2m, 1—{ — 1— 0,6 , 1.147
2|:mll>|( (91+92))( 2me12 ( )

where |p| is the beam momentum, assumed to be much larger than m, and M, and 6;
are the polar angles of f and f with respect to the beam direction.

Solution

Let’s denote the momenta of the outgoing particles by p; and p,. Momentum con-
servation along the beam and its orthogonal axis implies:

i|p1| sinfy = |py|sin 6, (1.148)

[p1]cos &y + [p2| cos B> = |p|
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We now work in the assumption 6; < 1, which is indeed justified if |p| > m., M
because of the large boost of the centre-of-mass frame, see Problem 1.15. With this
approximation:

Ip1161 = [p2[0
[ e - (1.149)
P11l = 3) + [p2l(1 = 7) = pl
Inserting the first equation into the second:
» 66 03 01 +0, 2
—= — 1——=|= o0 | =Ipl,
Ipzl[ - tl=> =kl 5t 7)) | = Ipl
Ipil = Ip|
= [ P 9‘*‘)’ P (1.150)
|p2| = 914_92 Ipl

Let’s now denote the four-momentum of the positron, electron, and of two outgoing
particles by k, P, py, p», respectively. We can treat the electron/positron as massless.
Energy-momentum conservation implies:

pi+pr=k+P,  2M*+2pipy =2m,pl,
M+ (VIp1I* + M2 (V/Ip2 |2 + M?) — |pi1|p2l cos(8s + 65) = m.|pl,

M? M? 0 + 6,)2
M2+[(|p1|+—) (|P2|+ )} — IplIp2l(1 = 2=21) = m,pl,
2/pi| 2/ps| 2

L (Ip2]  Ip1l (61 + 6,)?
M? |1+ 2 22 S ) | = melpl — [pallpal
pil  Ip2 2

0, 6 Ipl
1 —mp| (1 - ,
[+2(92+9)] m'p'( 2m,

(61 + 6,)* Ip|
M> 12992 = m,|p |(1 )

6, —0
ol (B =2 — mlp| Ipl
01 + 6 2m
1
1 6 — 60\’ Ip| '
M= —|2m, 11— —— 1-— 6,0, . 1.151
2|:m|p|( (01+92))( om, 102 ( )

Discussion

This formula was used by the NA7 Collaboration in a fixed-target experiment
aiming at measuring the pion form factor in the time-like region in the range
0.1 < ¢*/GeV? < 0.18, where ¢*> = 2m,|p| [13]. These values of ¢> correspond to
beam energies ranging from 100 up to 175 GeV. The experimental apparatus con-
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sisted in a liquid hydrogen target followed by a planes of MWPC, see Problem 2.52,
giving an angular resolution of 0.02 mrad for particles emerging from the target
within 7 mrad from the beam direction. A magnetic spectrometer, complemented by
electromagnetic calorimeters, allowed to separate electrons/positrons from muons
and pions. The latter two were further separated by performing an angular analysis
of the two polar angles 6; and 6,, since the two angles are correlated by the mass of the
produced particle. The comparison between the cross sections for et e™ — u* u~
and et e~ — 7w+ 7~ allowed to extract the pion form factor F,; (¢) in the ¢> region
corresponding to the available beam energies.

Suggested Readings

The reader is addressed to the NA7 paper [13], where the angular analysis used to
disentangle between pions and muons is discussed in detail.

Problem 1.29 The rapidity of a particle of momentum p and mass m is defined as:

1 (E+p.
y=—In(2FPe) (1.152)
2 E—p,

—_

. How does y transform under a boost § = fe,?

2. Write down the phase-space measure d3p/Ep in terms of new set of variables
(Iptl, ¢, y), where |pr|> = p)% + p% and ¢ is the azimuthal angle around the
Z-axis.

3. Show that, in the limit |p| > m, the rapidity reduces to the purely geometrical

quantity, n, called pseudorapidity. Express n in terms of the polar angle 6.

Solution

We first derive a set of equations that will prove useful in the following. The rapidity
y can be also expressed as:

1 (E+p, g
y=an(2FP2) ) €T by, y=atanh (’ﬁ). (1.153)
2 E—p, E e +e E

By introducing the transverse mass mr = /|pr|> + m?, we also get:

1. (E+p\ 1. ((E+p,) E+p;
y== In{——)=-In{————})=In{——),
2 E —p. 2 E? —p? mr
mre’ —p, = \/m3 +p2, —2p.¢’ =mr(l —e¥),  p,=mrsinhy. (1.154)

If the particle momentum p is aligned with the z-axis, Eq. (1.153) gives:
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1 1
y=—In Th) _ atanh B,, (1.155)
2 1—Bp
from which:
Bp = tanhy, ¥p =coshy  Bpyp = sinhy. (1.156)

1. Afteraboost f = Be,, the rapidity expressed in the new reference frame becomes:

y = ! In (u) — l]n(V(E—,sz)-i-)/(—,BE—i—pZ)) _
E—p,) 2 \y(E—-Bp)—y (—BE+po)

E+p\(1=BY)_ 1. (1+8)
ln((E—pz)(lJrﬂ))_y_2ln(l—ﬁ)_y atanh f,

(1.157)

N = N

so that the difference Ay between the rapidity of two particles is an invariant
under longitudinal boosts, as are differences between azimuthal angles, A¢.

2. We want to find the Jacobian J = |3 (px, py, p.)/3(IPtl, ¢, )| of the transforma-
tion:

Px = |pr|cos ¢
Px = |prlsing (1.158)

p. = /m? + |pr|*sinhy

To this purpose, we first notice that dp, dp, = |pr|d|pt| d¢, so that all we are left
to do is to compute dp,/dy. By using the fact that 0E,/dp; = p;/Ep, we get:

87)’ N 1 (Ep_Pz) (Pz/Ep+1)(Ep_Pz)—(Ep +Pz)(Pz/Ep_ D B 1

op; S 2 Ep +p: (Ep _pz)2 B EP’
(1.159)
hence:
dp i _ 1 2 _ 2
T = |prld|pT| do dy = §d|PT| d¢ dy = m d|pr|”dy (1.160)
p

The last equality in Eq. (1.160) holds under integration over the azimuthal angle.
3. Let’s now consider the case E >> m. The momentum |p| can be Taylor-expanded
around E to give:

2
_1l E—l—EcosG—%cos@%—.uw11 1+ cos6 _11 Coszg
y_inE—ECOSG—i-m—ZcosG—i— a2t 1 —cos6 —2" sin? £
S 3
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=—In (tan%) =7 (1.161)

From Eq. (1.161), we also get two more useful trigonometric relations:

1 1 0
n= 3 In (ﬂ) = atanh (cos 6), cos@ = tanhy, sinf =

1 —cosf coshy’

(1.162)

Discussion

Rapidity is a useful variable in hadron colliders thanks to its transformation prop-
erties: a partonic differential cross section do /dy, computed in any reference frame
(e.g. the centre-of-mass frame of the parton-parton scattering), has the same form
in any other frame, provided one replaces y by the linearly transformed value as for
Eq. (1.157).

Differential cross sections at hadron colliders are often forward-peaked due to the
large longitudinal momentum of the initial-state partons, see Problem 1.15. When
expressed in terms of the rapidity, differential cross sections become more smooth
for large boost factors y . Indeed, for an isotropic process in the centre-of-mass frame,
and assuming y & 7, we have:

do do |dcosf 1 1 do dtanhy
d_yzd0059’ dy ‘:?(1—ﬂcose)2dcose*. dy
_ 1 1 1 _
" 292 (1 — Btanhy)? cosh®y
2 1

T2 -Bl e 1+ —2(1+p) +4 (1.163)

where we have used Eq. (1.161). This expression simplifies in the limit 8 — 1 to:

do 2 1
dy — y?(1—B)e¥ +de’

(1.164)

which goes to zero for y > 1 and has a maximum at y = In(2y). Figure 1.10 shows
do/dcos 8 and do/dy, superimposed on the same axis for illustration purposes. A
comparison between the two shows that, for a scattering process characterised by a
large boost factor y, the differential cross section in y is a smooth and broad function,
whereas the differential cross section in cos 6 is squeezed around cos 6 = 1.
Another reason of interest for y (or n) at hadron colliders is due to the fact that a
variety of soft processes, like the productions of particles in minimum bias hadron-
hadron collisions, turns out to be almost uniformly distributed in 5, see e.g. by
Fig. 1.11. This variable then becomes the relevant metric when designing a detector
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Fig. 1.10 Comparison
between the differential
cross section do’/d cos 6 and
do /dy for a scattering
process which is isotropic in
the centre-of-mass frame,
superimposed on the same
axis for illustration. The
boost factor of the
centre-of-mass is taken to be
y=>5

Fig. 1.11 Distributions of
the pseudorapidity density of
charged hadrons in the
region |n| < 2 in inelastic pp
collisions at 13 TeV
measured in data (markers)
and predicted by two of LHC
event generators (curves).
This plot has been taken
from Ref. [14]
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Problem 1.30 Write down the invariant mass m?, of two particles with four-
momentum p; and p, in terms of their transverse momenta pr, transverse mass
mr, and rapidity y with respect to the same axis. Find out an approximate formula
for my, valid in the case that the mass of the two particles is small compared to their

energy and the momenta are almost collinear.

Solution

We can replace the canonical variables by the transverse variables by means of

Eq. (1.154), giving:
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miy =mi +m3 +2(E\Ey —py - p2) = m} +mi+
+2[mr1 (" — sinhyr) mra(e”? — sinhy2) — mr 1 mrasinhy; sinhys — pr1 - pri]
Y2 _ o2 VI _ oVl
=m} +m} +2[mT1 mr2 (ey'ey2 - 2€ i 2e e’vz) —PTI -PTz]

= m} + mj + 2[mr1 mra cosh(yi —y2) — pr1 - pra).- (1.165)

In the limit |p;| > m; and 0;; < 1, we have:

my2 X | 2pr1pr2 | cosh(An) —cos(A¢) = /pr1pr2 Rz, (1.166)
N— ——
EIEL-N B

where we have exploited the fact that y; — 5, in this limit, see Problem 1.29, and
we have introduced the Euclidean metric R, in the (1, ¢) space, defined by:

Riz =/ (m — n)* + (g1 — ¢2)™. (1.167)
Discussion

The Euclidean metric R;; in the (7, ¢) space is widely used at hadron colliders to
define the geometric “distance” between two particles. Jet-clustering algorithm often
rely on R;; to quantify the distance between two particles such that they can be asso-
ciated with the same jet. The level of isolation of a particle is usually defined by
energy collected within a cone of radius R centered around the particle direction.

Suggested Readings

For an application of the R metric in jet-clustering algorithms, the reader is addressed
to Ref. [15].

Problem 1.31 A particle of mass M and momentum p parallel to the z-axis is pro-
duced at the interaction point of an accelerator and then decays to a pair of identical
particles of mass m. The interaction point is surrounded by a cylindrical detector
around the z-axis, whose geometrical coverage is however limited to the pseudora-
pidity region |n| < n,e. Determine the largest rapidity of the mother particle for
which the experiment is sensitive to the mother particle, assuming two definitions of
acceptance:

1. atleast one of the daughter particles is within acceptance;
2. both daughter particles are within acceptance.
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Solution

Since the problem has cylindrical symmetry, it’s enough to consider the case p, > 0
and get an upper bound on y: symmetry will then imply that the same bound, in
absolute value, will hold for |y|. The velocity B* of the daughter particles in the
centre-of-mass frame in given by Eq. (1.92) with /s = M, while the velocity of
the mother particle in the laboratory frame is 8, and the rapidity is y = atanh g, see
Eq. (1.155).

If B < B*, it is always possible to find a polar angle 6* in the centre-of-mass
frame such that one of the two particles emerges at an angle larger than 6, =
2tan~! (e‘”m) in the laboratory frame, see e.g. Problem 1.10. Since the other particle
is emitted at an angle 7 — 6* in the centre-of-mass frame, it will emerge at an even
larger polar angle in the laboratory frame: the experiment therefore is sensitive to
a non-zero fraction of decays up to y = atanh §*, regardless of the definition of
acceptance.

When g > B*, the polar angle 6 is bounded by a maximum angle 6,,,x satisfying
Eq. (1.49). The condition that at least one of the daughter particles is within the
detector acceptance amounts to require

Oace < max{fy, 62} < Omax. (1.168)

By using a trigonometric identity and Eq. (1.47), the condition that none of the
daughter particles fall within the acceptance translates to Opax < Gycc, OT:

1_p
—In (tan emax) =1 il =In LVPR =
2 V1 + tan? Opae — 1 +L £

y2 B>

VB vB

n =In
yB —yy*VB* — B sinhy — y*/tanh?> y — B*2 cosh y

where Eq. (1.156) has been used to express y and By in terms of the rapidity y.
To obtain the maximum rapidity y such that both particles have 0 > 0,.., we
notice that 6* = /2 plays a special role, since:

o if 0% € [0, /2], then 6; <0(6* = F) =0.;
o if0* € (w/2,60% ], then6; >0, ,butd, <6,;

max

o if0* € (0* ,m),then6, < 0,.

max’

1

> Nace, (1.169)

Hence, in order to have both daughter particles within the acceptance, one needs:
Qacc = min{el, 92} = HJ_- (1170)

The condition that none of the daughter particles fall within the acceptance translates
t0 0 < Oy, OT:
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Fig. 1.12 Maximum Nacc
detector pseudorapidity 7acc 6
as a function of the particle
rapidity ymax such that the
detector is sensitive to

Y > Ymax, for two definitions
of acceptance: requiring that
both daughter particles have
N < Nacc (solid curve) or
requiring that at least one has
N < Nacc (dashed curve)

Particles in acceptance:
both
————— at least one

35
Ymax
—1In (tan 9—l) =1In tan 6, =1In p/vb =
2 V1+tan?0, —1 /14_)/%"2_”;;_1
=1In p (1.171)

—— 3 > Nace-
V/sinh*y + B*2 —sinhy

Figure 1.12 shows a graph of the functions at the left-hand side of Eqs. (1.169)
and (1.171) for a few values of *. The case 8* = 1 (massless particles) corresponds
t0 ¥ < Naec: the maximum particle rapidity for which both daughter particles are
within the acceptance coincides with the pseudorapidity range of the detector. For
smaller centre-of-mass velocities, the maximum rapidity becomes smaller than 7.

Discussion

Although we have arrived at an analytical result, this exercise offers an example of
how problems in particle physics are often better tackled by using Monte Carlo meth-
ods. Indeed, the problem could have been studied by a MC program that (1) generates
particle decays in the centre-of-mass for random values of 6* and for discrete values
of B8*, (2) applies the Lorentz boost to the laboratory frame for some values of 8,
and (3) saves the values (1, n2) in a binned 2D-histogram, or in a n-tuple. For a
sufficiently large number of toy events, we can then get the acceptance map for the
tested values of (8, 8*) by studying the joint distribution of (1, 12).

Problem 1.32 A beam made of pions and muons of momentum |[p| = 170 MeV are
produced from a short proton pulse against a fixed target. The beams are detected
by a detector located d = 21 m downstream of the primary target. Determine which
fraction of undecayed pions and muons arrives to the detector, and the difference
between the time of flight and kinetic energy of the two particles.
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Discussion

Unstable particles are associated with a mean life-time 7, defined as the inverse of
the decay probability per unit of proper time, i.e. the time measured in the rest frame
of the particle. It is customary to define particle any quantum state with T above
some conventional lower bound (e.g. ~10~'® s), while states with smaller lifetimes
are more frequently referred to as resonance, and the natural width I" = h/z, is
reported instead. In some cases, it is more convenient to quote the length ct in place
of T. While 7 is a constant, a time interval is however not a Lorentz invariant, and
one often wants to express a survival probability, which, for the proper time obeys
an exponential law with time constant 7, in a different reference frame, like the lab-
oratory frame where particles have |p| > 0.

Solution

In the rest frame of an unstable particle, the probability P(#* | t) that the particle
survive up to time #*, given that at time t* = 0 it has not decayed, is provided by the
cumulative of the exponential p.d.f.:

P(t* | t) =exp (—t*/r) . (1.172)

In our case, we need to compute the probability that the beam particles have survived
over the time ¢ that takes them to travel the whole length d in the laboratory frame.
This time interval corresponds to a proper time:

N t 1 /d md m
Yy ¥ \Bc mpByc  |p|

It is easy to see that a consistent use of ¢t together with masses in units of GeV/c?
and momenta in units of GeV/c gives the correct numerical result:

J exp (—106MeV_2im_\ _ (98
p(—ﬂ—) _ [ P (=170 Mev 5ox Tt m) ® (1.174)

139 MeV 21 m\ __
Ipl T exp (- 170 MeV 7.8 ) =0.11

T

where we used the values ¢t = 6.6 x 10> m for muons and 7.8 m for pions, and
masses m,, = 106 MeV and m,- = 139 MeV [4].

Finally we can compute the difference between the TOF for the two beams, which
is given by:

2
21 18 = 82.
d _d | (m) m [118 82505 0 oo

pl) T 3x10°m/s | 1.29 =904 ns
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from which | At| = 8.2 ns. The kinetic energy is given by:

139 MeV - 0.58 = 80.6 MeV 7
(1.176)

2
106 MeV - 0.89 = 94.3 MeV
e E 1+(|pl)_1 :’06 eV-0.89 =943 MeV

from which |AT| = 14.1 MeV.

Bando n. 18211/2016

Problem 1.33 A neutrino beam is produced by a 120 GeV proton accelerator. A
magnetic selector filters positively charged particles of momentum |p| = 20+£5 GeV,
which then decay inside a pipe filled with helium. We want the beam to be as pure
as possible in v,. Estimate the length of the pipe and at least one process that can
reduce the beam purity.

Solution

The selected beam consists of 7+ and K. Both mesons decay with lifetimes of order
1078 s. The main decay reactions giving rise to a v, are

at = utv, K'—=utv, K —=a%utv, (1.177)
where the last decay (K :3) is suppressed with respect to the direct decay by a factor of

20. For a fixed beam momentum, the probability of decay per unit length is constant,
thus giving a beam profile and probability of survival up to distance d:

Prob [x > d] = exp [— d:| (1.178)

Iplct

If we want this probability to be small, thus allowing for a sizable fraction of the
mesons to be decayed, the pipe length L needs to be larger than the decay length

bl [ 78m=1100+£300m 7+
LZ =T =1 20ds Gev N (1.179)
m m-3.7m=150:|:40m K

The beam purity can be affected by the presence of v, and v,.. These particles are
produced in the decay reaction:

ut— et v, ,. (1.180)

The mean muon energy in the two main decays can be estimated from Eq. (1.109)
giving
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2
My K my, 16 GeV 7™
E, )~ 1+ ~ 1.181
(En) ~ yrx = [ <m,,,K) } [10 Gev K+ (1.181)
The probability of muon decay over a distance of order L as given by Eq. (1.179) is
therefore:
(E_f) o 1% T (1.182)
m,) L 0.2% K*

where we have used ct, = 660 m. Electron neutrinos can be also produced directly
by the helicity-suppressed decays 7+ — e v, and KT — e™ v,, although with a
probability about 10~* = 10> smaller than for the corresponding muonic decays.
For kaons, the decay reaction K* — 7% ¢* v, (BR = 5%) represents the largest

source of background.

Bando n. 18211/2016

Problem 1.34 A proton and an electron, both of energy E = 2 GeV, pass through
two scintillators separated by a distance d = 30 m. What is the time of flight between
the two scintillators for the two particles?

Solution

Since the velocity is constant, the TOF is simply given by:

E (1.183)

= — = — =
3 x 108 m/s

Bc ¢

d d : (m)2 . 30 m 1.00 electrons
1.13 protons

giving approximately 0.100 s and 0.113 s for electrons and protons, respectively.

1.2 Center-of-Mass Dynamics and Particle Decays

The position and three-momenta of the particles (r;, p;) define a set of canonical
phase-space variables. In practice one is usually concerned with the measurement or
the prediction of transition probabilities per unit volume, and between free-particle
states, i.e. quantum states of definite three-momentum p;. Therefore, the measure in
the phase-space (r;, p;) comes out quite naturally in calculations. The relativistic-
invariant phase-space measure for a system of n particles of prescribed energy and
momentum is defined by

n

dp,
A0 P pro-p) = 0o =30 [ (ZH)EZE (1.184)
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The factor of 2E, at the denominator comes from the conventional free-particle
normalisation:

(plp) = 2E, 27)° 8*(p — p). (1.185)

which makes d®,, Lorentz-invariant, see Problem 1.2. The volume factor d°r; is here
omitted because it usually cancels and is not much relevant in practice. The presence
of a §* function in Eq. (1.184) implies that not all of the 3n variables are independent,
since the allowed states only live in a hyper-surface such that > p; — P = 0: all other
states have null measure, i.e. they cannot be “visited” by the system.

The differential decay width of a particle with total four-momentum P in the initial
state |i) into a channel |f) is given by the formula:

1
dI—‘l*)f(Pv plv "'vpn) = ﬁ"%ﬁ(Pvplv vpn)|2d¢n(P’ plv--~spn) (1186)

where:

o ./} is the relativistic matrix element of the interaction Hamiltonian between the
initial and final state. When the theory is perturbative, Feynman’s rules help organ-
ising the perturbative expansion of i.# and calculate the various terms up to the
desired perturbative order.

e d®, is the phase-space measure of Eq. (1.184).

Due to the factor of (2E)~! at the denominator of Eq. (1.186), the differential width
transforms like the inverse of a time. The fotal width I" is obtained by integrating
the differential width in the rest mass of the particle over the full phase-space and
over all decay channels. Given a particle decay, the probability of falling into a given
channel |f) is called branching ratio (BR):

n»f
I = dli_r, BR(i = — 1.187
; / ’ (—f)=—F (1.187)
Problems

Problem 1.35 Express the relativistic two-body phase-space measure d @, as a func-
tion of:

1. the solid angle of particle (1) in the centre-of-mass frame, and in particular for
the two cases p7 = p3 and p? # 0, p3 = 0;

2. the solid angle of particle (1) in the laboratory frame;

3. the Mandelstam invariant t = (p. — p,)? for a scattering a + b — ¢ + d.
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Solution

At the price of adding some burden to the notation, we will write Egh m = Pi 1> + m?,
and use the notation EY for the centre-of-mass energy of the i-th particle as in
Eq. (1.89). In order to reduce the phase-space measure into a measure on a sub-
set of phase-space variables, one has to integrate out the remaining ones and perform
suitable changes of variables.

1. In the centre-of-mass frame, |p;| = |pz2| = |p*|, so that Eq. (1.184) becomes:
_ dp; dpy
dPy(P; pr.p2) = Q) 28(S5 = Epy,my — Epy, m)3(01 +p2) o — P2
ZEpl,ml 2EP2,M2
1
...d3p2= 8 (/s — Ep — E_p+ d3p1=
/ 1) 4Ep+ ) E—p*, my ( pr.m pe.m2)

1
= 2
167 ~EYE5

/ dlp*| = :
P e 2E TS

3 (V5= bt = it 3 ) 1 Pl ase

Ip* | R )
) R T 1672 s
EF T OB Vs

(1.188)

Two special cases are worth being considered:

J1—4m 42 — g dD for my=my=m
dd, = s 3272 3272 1 2 (1.189)

2 *
(—’"—)% for m =0, m =m

s

where B* is the velocity of both particles in the centre-of-mass frame, see
Eq. (1.92).

2. This second parametrisation is useful for treating e.g. fixed-target scatterings,
where one is interested in one particle only (the projectile), and wants to integrate-
out the degrees of freedom of the struck target. Let the total four-momentum be
(E, P). Starting from Eq. (1.184) we get:

_ dpi dpy
doy(P; pr.p2) = 2m) 28(E — Epy,my — Epy,my)8(P —p1 —p2) B 9E
p1.my <Epy,my
" 1
...d3p2= 8 (E—Ep,m; —Ep— d3p1=
/ Gy e B~ Frpm)

1
:ma(E*JIPH“m%fJImeIHm%) Ip11*dIp11ds2,

! p1 ! [P
...d|p1|= d.91=77d91.
2 — 5 2 )
/ 1672 E, ’Igi\ + lpiI=IPleos) ’ 1672 g — £y 1) cos )

[p1]
(1.190)
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It remains to express |p| as a function of cos 8;. This is best achieved by using
the equation of conservation of four-momentum, and squaring it in order to get

rid of the struck target kinematics:

p2 =P —py, m%:s—i—mf—Zp]P,

s+mi —m3
P11 +mi = IpiIP|cos 6 + ———,
|P| .
0=Ip| 1——c0s 01 ) = 2Ipil | 7 ) cosOiET — IpI",

% cos 0, +\/Ip |2 + ‘EZ m? cos? 0

1— 'P‘ cos2 0,

Ip1l = , (1.191)

where E} and |p*| are given by Eqs. (1.89) and (1.91), respectively.

It is interesting to study Eq. (1.190) in the non-relativistic limit |p;| < E & m;.
To fix the ideas, we can imagine that the projectile is a classical particle, so that
E; ~ my,and dE|/d|p;| ~ 2E|/|p:| while the target is a heavy nucleus at rest of
mass m;. In this case:

d®>(P; p1,p2) ~

2m)* 1
LIPS :[ 2m) ]_mllplldgl_ (1.192)

1672 my 2my(27)3 | 2my (27)3

Modulo the numerical factor within parentheses, which accounts for the phase-
space of the struck particle and the (277)* factor in front of the delta function, and
the factor of (2m;)~' that comes from the relativistic normalisation of the wave
function of Eq. (1.185), this expression coincides with the relativistic version
of the density of states dNnr /dE for a non-relativistic particle of momentum p,
since:

dNxg _ IPilPd2idip] il _ mlpil
dE ~ (7))} dE,  2E (2n)3 T (2n)3

ds2;. (1.193)

3. In the centre-of-mass frame, the momentum magnitude before and after the scat-
tering is in general different if there is some inelasticity. Indicating the centre-of-
mass momentum before (after) the scattering by pJ; (p%;), we have:

2 2 2 * * 1 *
= (pc —pa)” = my +my — 2[pyllpa! ﬁ*ﬂ*—cosé‘ ,

dt = 2\p},||p%,| d cos 0*. (1.194)
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We then use Eq. (1.188) and get rid of cos 6* in favour of ¢, obtaining:

1 |pyl  dt 1 dt
_d¢t = ————— d¢". (1.195)
1672 /s 2|pklIpkl 1672 2|pk, |/

dd, =

Notice that ¢* in the formula above stands for the azimuthal angle around p;
in the ab rest frame, so this formula remains valid (modulo ¢* — ¢) in any
reference frame where p, and p, are collinear.

Suggested Readings

The PDG review on kinematics, Chap.47 of Ref. [4], offers a complete summary of
the most important results for two-body phase-space. Beware that the definition of
d®,, may differ by a factor of (277)* due to the normalisation of the four-momentum
conserving é function.

Problem 1.36 Explicate the three-body phase-space measure d @3 in the centre-of-
mass frame by using the known expression of d®,.

Discussion

The phase-space measure d®,, for an arbitrary particle multiplicity n can be con-
structed with the recursive formula:

d.
d®,(P; p1,...,pn) =dPi(q; p1,...,p)dPn_j1(P; CI,Pj+1,~-.,Pn)i
(1 196)

In order to prove it, we introduce twice the identity into Eq. (1.184) in a suitable
form, which, for sake of clarity, will be introduced between square brackets.

. T dei
2m)* (P — Zp’) ll_[ (271)32Ep
4 n
A d*q 4 B _ i _
|:(27T) 3(q — Zl’t o )4:| x (2m)"8(P —q Z 2 zl_[ (27‘[)32E

i=j+1

=d®i(q; pi1.....pp) x Qn)*$(P —q - § Pi)¥
i=j+1
n

dp;  dYq _ A2y a.2] =
x']'[ Gyt 2@~ 01D e’ =
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o . Z”: ) ﬁ dp; d3q  dg?
= i(q; ey Pi T -4 i o
i(q5 LD 1= 2. Pi ity @m32Ep, (2m)32Eq 21
i=j+1 =j !
d
=doj(q; p1,...,pj)dP;(P; q,pj+],..,,pn)i (1.197)

where we have made use of Eq. (1.16) to transform §(¢*> — u?) d*q into d>q/2E,.

Solution
We can apply Eq. (1.196) to the two-body phase-space (1.188) and obtain:

LIpal o L IPEL o dmdy
16 2[ 1672 my, ' 27w

d®3(P; p1,p2,p3) =

(2 o)y 8f|p1||p3|dm12d9 ds2s (1.198)

To conclude, one needs to express |pj| and |p3| as a function of m,. This can be
done by means of Eq. (1.91), with the replacements /s — m; for the former, and
m; — mip, my — mj for the latter.

Problem 1.37 Determine the three-body phase-space measure d @3 as a function of
the centre-of-mass energies of two of the particles, after integrating over all angles.

Solution

Let’s start from Eq. (1.184) and specialise the four-momenta of the three particles in
their centre-of-mass frame:

dD3(P; p1.p2.p3) = Q) >8(/5 = E = Eny oy — Epys my)8(P} + D5 +P5)x
d3pl d3p§ d3p§

* *
“ 2k vt ms 2Eps oy 2Ep3,my

/...d3p§:8(x/E—\/IpTIZ—i-m%—\/Ip§|2+m%—\/lp7+p§|2+m§)><
Qm)>

X SEFEXER
17273

/ ds2} des =8(ﬁ—\/lp’flz-i-m%—\/lpﬁlz—i—m%—\/IpT+p§|2+m§) x

2027) 73 |pt 121512
BE}ESE}

Ipi 1% dIpf| d2} ps1* dIps| ds2;

d|pildip}|dcos 6},
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[ acoss; _ 200 piPps diefldiesl 1 epesl
12 = SETESET ‘M "~ 4@2n)3 EJE} pilaip;
Ej
dE} dE}
_ | (1.199)
4(27)3

where 6}, is the angle between p5 and pj, and where we have used the fact that
dE,/d|p| = |pl/Ep = Bp. Finally, one notices that P = p; + p, + p3 implies that:

my = (P —po? =s = 2[5 +m; = dn=—25dE] for i#j#k.
(1.200)

Hence, the phase-space volume (d®3) expressed in terms of the mi becomes:

(dbs) — dm?, dm3, _ dm?, dms, _ dm?, dm?,
16(27)3s 16(2)3s 16(27)3s

(1.201)

Equation (1.201) shows that the three-body phase-space is uniform over the invariant
masses of any two-pairs of particles.

The border of the domain in the (m%z, m§3) space is, in general, a non-trivial curve.
First of all, one notices that:

(mi +my)* < mg < (Vs —m)*, (1.202)

where the boundaries correspond to particles (i) being at rest in their centre-of-mass
frame, and particle k be at rest in the three-body centre-of-mass frame, respectively.
Without loss of generality, we can consider the first of Eq. (1.201). Equation (1.202)
implies that the domain is contained within the rectangle [(m; + my)?, (Vs— m3)?] x
[(ma +m3)?, (Vs —my )21, whose sides are also tangent to the domain boundary. At a
given value of m,, the range of my3 can be determined by requiring the momentum
of particle (3) in the rest frame of (12) to be either parallel or antiparallel to the
momentum of particle (2), all other cases giving values of m,; that are, respectively,
larger or smaller. In this frame, the energy of particles (2) is given by Eq. (1.89), while
the energy of particle (3) can be obtained by applying a boost from the three-body
rest frame to the rest frame of (12):

miy + m3 —mj

ES? = (1.203)

2mip
a _ . 8. (—iptN) =
E = v, (E5 = By, (<103D) =

by nd (sowhbmd P2
2/smy2 2\/s s+ m%z - m%
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smdy—md (5=t [s= Oma=m?][s = oma+ma)?]
2 /smyp 2./s 2./s(s + m%2 — m%)

1
" 4smyn

2 2
§—my, —mj

(2s2 —25(m?, + m§>) - (1.204)

2m3
The last result could have been obtained way more easily by noticing that, in the

rest frame of (12), the kinematics looks like the one of a fixed-target experiment, for
which Eq. (1.87) gives m3, + m? + 2E{'?my = s. Hence:

2 2 2\ 2
s—ml+m2—m3) B

>
miy(mi2) 2 ( ZT

2

N e

2m12 2m12

(1.205)
where the two signs correspond to the lower and upper bound, respectively.
Discussion

If the matrix element squared is uniform over ml.zj, the differential decay probabilities
dI"/dm3,dm3; is uniform in the domain of (m},, m3;). Such a distribution for a
three-body decay is called Dalitz plot. Non-uniformities of the amplitude squared
over either of the mi variables, would lead to a non-uniform distribution of the
experimental points. For example, this is the case if the decay can be mediated by
an intermediate resonance: indeed, if a narrow resonance of mass mq and width 15
is present in e.g. the (12)-channel, then:

1 T
2 2 22
(myy —my)>+ms Iy molp

| |* 8(my — md), (1.206)

and the corresponding Dalitz plot will feature a cluster of experimental points around

: 2 2
the line my, = mg.

Problem 1.38 Prove that in the centre-of-mass of a three-body decay, the maximum
value of the three-momentum is taken by the particle with the largest mass.
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Solution
The centre-of-mass momentum of particle & is given by Eq. (1.91):

(s = g +m)) (5= (my = m)?)

4s

Ip;l* = : (1.207)

where my; is the invariant mass of the (ij) pair and s is the mass squared of the mother
particle. Modulo some positive constants, the derivative of |p; |> with respect to m,
is:

alp;l? 2 2
. oc—m,j(s—(mij—mk) ) —mij(s—(mij+mk) )—
mij
— my (s — (my; — mk)z) + my (s — (my + mk)z) . (1.208)

The last row of Eq. (1.208) is always negative since (m; — m)? < (m;; + m)2.
Hence, |p;| is a decreasing function of m;;, so that the maximum value corresponds
to the minimum value of my;, i.e. (m; 4+ m;). Therefore:

(s — (mi +m; + mk)z) (S — (mi 4 m; — mk)z)
4s

2
|pZ|max =

, (1.209)

and for any pair of indices i, k we have:

|p]t|max = |p;k|max i (mi + m; — mk)z =5 — (mj + my — mi)2
m; +m; — my < m; + my — m;,
20m; —my) <0, my > m. (1.210)

Therefore, the particle that can take the maximum centre-of-mass momentum is also
the one with the largest mass. Experimentally, this value corresponds to the end-point
of the |p}| distribution over several decays.

Problem 1.39 Consider the S-decay A — A’ e~ ., where A and A’ are two heavy
nuclei and my — my — m, = Q is large compared to m,. Assume that the non-
relativistic matrix element squared |.#xg|* for this transition is approximately con-
stant. Show that the decay width is proportional to Q.

Solution

Let’s denote the three momenta of the decay particles by p,, p. and p,. Since the
non-relativistic matrix element is a pure constant, it is more convenient to write
Eq. (1.186) using the non-relativistic normalisation
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(pIp)) = 2n)’8*(p — p). (1.211)

With this convention, the differential decay width becomes:

d3pA’ d3pe d3Pv
dI' = | NRI1*(27)* 83 (Par + Pe + Pv)S(mp — Exr — Eo — E =
[ ZNR |7 (270) 787 (Par + Pe + Pv)S(my A e V) (27_[)3 (271)3 (271)3

| ANR I
- (27‘[)5 S\ma— \/lpe +pv|2 -l—mi - \/|pe|2 +mZ —Ipvl ) x
x [pel® dIpel dS2¢ Ipy I dIpy| d2, =
2
4|.8R?
= =S Ipel® [ ma —mar —me ~Te | dipl (1.212)
2m) —_—

0

Let’s see in more details the approximations that went into Eq. (1.212). Firstly, it
was assumed that the electron energy is much smaller than the proton mass, which is
indeed a good approximation since 7,"** = Q; this approximation allows to neglect
the recoil energy taken by the nucleus. The other assumption is that the neutrino
mass is negligible, which is perfectly fine here. Equation (1.212) can be also written
as:

1 dr
[PV dlp.|

=0-T.. (1.213)

The left-hand side of Eq. (1.213) is the so-called Kurie plot, which is a linear function
of the electron energy with an end-point related to the Q-value of the reaction. Coming
back to Eq. (1.212), we can integrate over the electron momenta. Since the intagrand
grows like |p,|?, the integral is dominated by the high-energy part of the electron
spectrum. If we then make the approximation m, = 0, the integration is trivial,
giving:

R € | P s (111
r~ [ el el (02 = 200pel +Ipel?) = D07 (5= 5+ 5) =

23 3 25
| #NRI*Q°
= AR ¥ 1.214
6073 ( )

Equation (1.214) shows that the total decay width is proportional to the fifth power
of the Q-value, a property know as Sargent rule.

Discussion
One may wonder whether this result could have been obtained by plugging in

the phase-space measure of Eq. (1.199), corrected for the non-relativistic normal-
isation (1.211). Indeed, one can notice that the two measures are different, since
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Eq. (1.199) is linear in the two energies (after introducing the non-relativistic nor-
malisation), while Eq. (1.212) is quadratic in |p|. Indeed, looking back at Eq. (1.199),
one can see that the integration over the polar angle between the two momenta 6;,
lied on the assumption that there exists only one such angle so that the energy con-
servation is satisfied for a given value of |[p}| and |p5|. However, if the third particle
is much heavier than the maximum energy available to the two lighter particles, so
that it can be considered at rest for what concerns the energy balance, the equation
of conservation of energy becomes nearly independent of 6y, and the integration of
the last delta function is not valid anymore. Therefore, if m3 > m, », and the matrix
element is constant, then the two light particles momenta are uncorrelated in direc-
tion and fully anti-correlated in modulus, since Ey + E, =m — E3 & m —m3 = Q:
the phase-space measure is therefore given by the product of the two particle phase-
spaces, which are just the number of states inside a spheric layer of radius |p|.

Suggested Readings

The reader is addressed to Sect.7.3 of Ref. [16] for another derivation of the Kurie
plot of B-decays.

Problem 1.40 A heavy nucleus of mass M*, initially at rest in the laboratory frame,
decays to the ground state of mass M by emitting a photon. Determine the photon
energy E, . Discuss a possible technique to suppress the energy shift due to the nuclear
recoil.

Solution

Let’s denote the photon energy in the laboratory by E, and the energy gap between
the two nuclear levels by &, such that M* = M + ¢. In the assumption ¢/M < 1,
which is generally the case since the nuclear transitions produce photons with energy
of order 0.1 - 1 MeV, whereas nuclear masses are at least three orders of magnitude
larger, we have:

2

E
— A~ Y
M+e=E,+ /M2+E5~EV+M+w, (1.215)
E £, e -
r=em g~ = (1 )

Hence, the photon energy is smaller than the energy gap by a fraction ¢/2M < 1
due to the nuclear recoil.

Discussion

If the width of the excited level is much smaller than the recoil energy taken by the
nucleus, the emitted photon won’t be anymore at the resonance. However, when the
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nucleus is bound inside a crystal, the crystal lattice behaves as a collective object,
resulting in a much larger effective mass M and thus no recoil energy will be taken
away: the emitted photon is then capable of inducing the inverse reaction y + M —
M* with an enhanced cross section. This behaviour is called Mossbauer effect and
is vastly employed in spectroscopy.

Problem 1.41 Consider the decay of a particle of mass M into three particles of
identical mass m, assumed to be non-relativistic in the rest frame of the decaying
particle. The phase-space for this decay can be represented inside an equilateral
triangle centred around the origin of a cartesian coordinate system (x, y), such that
the kinetic energy of each particle in units of the Q-value, |p;|?/2mQ, is equal to the
distances of the point from the sides. Show that the allowed kinematic configurations

live inside a circle of equation 2+ y2 — é <0.

Solution

Consider an equilateral triangle of unit height centred around the origin of a cartesian
coordinate system (x, y). Let the vertices of the triangle be located at

2 3 1 3 1
r, = (0, +§) , Ip= (—\/T_, —g), r; = (-f-\/T_, —5) (1.216)

as shown in Fig. 1.13. The sides of the triangle are then defined by the three straight
line equations:

Fig. 1.13 The phase-space for a three-body decay into non-relativistic particles of energy &; and
same mass m, represented as an equilateral triangle centred around the origin of a cartesian coordi-
nate system (x, y), such that the kinetic energy of each particle in units of the Q-value, |p,~|2 /2m Q,
is equal to the distances of the point from the sides. Only the shaded circle is however compatible
with the three-momentum conservation
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+¢%+y—§ 0
—rxty—2=0 (1.217)
y+5=0

The distances of a given point (xg, yo) inside the triangle from the three sides are
therefore given by:

|++/3x0+y0— % V3

o = Sl iyt |
&ztﬁgwizgm_bﬁﬁ = e +e+e=1, (1218)
83=y0+%

which shows that an equilateral triangle of unit height is the geometric locus of points
for which the sum of the distances from the three sides is equal to unity.
Let’s denote the adimensional quantity |p,-|2 /2mQ =¢;,i=1,2,3,sothat:

2 2 2
P el sl 0 6 e tete =1 (1219
2m 2m 2m

Therefore, the phase-space points live inside an equilateral triangle such that the
distances of its internal points from the sides are given by ¢;. However, conservation
of momentum implies that p; 4+ p2 + p3 = 0, so that Eq. (1.219) can be also written
as:

281 +2ey +2/e162c0801, =1, (1.220)

where 6}, is the angle between two of the particles. This condition, being more
restrictive than Eq. (1.219), places additional constraints on the allowed phase-space
points. In particular:

2g =2 220) a2y +loo
COS =\ ————— & & E1E) — &1 — €& - .
12 ) B = 1 2 1e2 1 2 4=

(1.221)

By inserting any pair of equations in (1.218), say the first and the last, we can now
express the inequality above in terms of the coordinates (x, y), namely:

2
V3 o111 1\’ Vi o1 o1 1
(‘?“5”5 +(y+§) 72 2¥ 3 (”5)‘

V301 1 1 1
I L T “)+-<o0 1.222
( R f+3 G+ )+4_ ( )
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After some straightforward algebra, a large number of cancellations occurs and one
gets:

1
x2+y2_ 5 <0, (1.223)
which describes a circle of radius 1/3 centred around the origin and tangent to the

three sides of the triangle in their middle points. This is shown by the solid circle in
Fig.1.13.

Discussion

As discussed in Problem 1.37, under some suitable assumptions on the matrix-
element, in a three-body decay the phase-space points are evenly distributed in the
(Ey, E») plane, where E;| and E, are the energies of any two particles. The (x, y)
variables introduced in this exercise transform a tiny square of area dE| dE, into a
parallelogram uniformly in E; and E,, so that the (x, y) points will be still evenly
distributed. The representation of decay events in this plane has been very popular in
the early years of particle physics as a tool to infer the properties of the interaction
responsible for the decay. A famous example is provided by the study of the decays of
a long-lived particle, originally called t and later-on identified as the charged kaon,
into three pions, namely K™ — ztmztm~.

Suggested Readings

More details on the so-called -t puzzle for the three-charged pion decay of charged
kaons, can be found in Chap. 3 of Ref. [12]. In particular, one can find there interesting
considerations on how different matrix elements would affect the distribution of
events in the (x, y) plane.

Problem 1.42 The thrust is an event-shape variable which, in the centre-of-mass
frame of a n-particle event is defined as

> Ipi-m|
T(Pi1,...,Ps) = max =t——.
n Zi Ipi |

with |n| = 1. Consider a three-particle decay and assume the three particles to
be massless. Prove that T = max{xi, x2, x3}, where x; = 2|p;|/+/s and /s is the
centre-of-mass energy.

(1.224)

Solution

Let’s denote the three-momenta of the involved particles by p;, such that >_ p; = 0.
Let n be the direction that maximises 7. By definition, we must have:
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[61p1 + 6202 — 65 (p1 + p2)] - 610
ﬁ 9

where 6; = %1 are signs such that the individual scalar products are all positive. For
any choice of the signs 6}, the vector inside the square brackets is proportional to one
of the particle momentum. Since fi - i = 0, it also follows that i has to be parallel
to either p;, or p,, or ps, so that:

0= 58T (h) =

(1.225)

T = max{T (e;), T(ez), T(e3)}, (1.226)

where e; are the directions of the three momenta. For example, for i = ej, one has:

(Ip1l +er-p2+ |p1l + e -p2)) _

T(e) = 7
+2 =, ifpipr <0, piops <0
=1 - <x ifp P <0, p-ps>0 (1.227)
2e;-p3

—=5 =% ifp1-p2>0

Similarly, we find:

<xi ifpr-p2<0, pr-p3>0

T(e)y=x ifp1-p2<0, p2-p3 <0 (1.228)
<ux3 ifp;-p2>0

<xi ifp3-p1 <0, p3-p>>0

T(e3) }<x» ifps-p1 >0 (1.229)
=x3 ifp3-p1 <0, p3-p2<0

Then, we notice that the angles o, a»3, 13 between three vectors py, p2, p3 such
that >, p; = 0 satisfy oj» + ap3 + 13 = 27 and a;; < m; therefore, if a; < /2,
then the other two opening angles must be larger than 7 /2. In this latter case, it
follows that

| = \/Ipil2 +1pj1* +2p; - p; = max{|p;l, p;l}, (1.230)

i.e. the vector that “recoils” against the two vectors with opening angle smaller than
/2 has also the largest modulus among the three. If we now consider all possible
cases, we obtain:
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T(e)) <x3, T(ex) <x3, T(e3) =x3 >x1, xp ifp;-p2>0
T(e)) <x2, T(e2) =x2 > x1, x3, T(e3) <xp ifp;-p3>0
T(e)) =x1 > xz, x3, T(e2) <xi, T(e3) <x; ifpy-p3>0
T(e)) =x1, T(ex) =x2, T(e3) =x3 ifp;-p; <0 Vi,j

(1.231)

For all the above cases (which exhaust all the possibilities), it always holds that:
T = max{x, x2, x3}. (1.232)
Suggested Readings

More informations on the thrust can be found in Ref. [17].

Problem 1.43 Event-shape variables are widely used to describe the structure of
the hadronic events and to test perturbative chromo-dynamics (pQCD). Consider the
three event-shape variables:

T — max 2P0l (1.233)
n Zi |Pz|
C = 3(AA2 + A1A3 + A2A3), A eigenvalues of © = Zl ||pi‘| (1.234)
i 1Pi
3 (pi 2
S = —minz’(p—xzn). (1.235)
2 2P
1. Show that T and the C are infrared-safe observables.
2. Show that the S is not.
Discussion
An observable I,(py, ..., p,), which is a function of the four-momenta p; of an
arbitrary number of partons, is said to be infrared-safe (IR-safe) if:
In 5oy nao =In sy Pn
+1(p1 Pn, 0) (P Pn) (1.236)

Livi(p1, o Apn, (1= )py) =11, ..., Pa)

for any particle n. This is equivalent to requiring that the observable does not dis-
tinguish between configurations related to each other by a soft gluon emission or by
the collinear splitting of a parton. For QCD, the Kinoshita—Lee—Nauenberg theorem
ensures that inclusive-enough observables are IR-safe, see e.g. Sect. 3.5 of Ref. [18].
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Solution

In order to prove that T is IR-safe, we need to verify the conditions (1.236) for an
arbitrary set of four-momenta:

2.7 Ipi-n[+10-n]

Tht11, - - -, Pn, 0) = max =Tu(p1, - -, Pn)
n+ n ) ;121 |pi| ) n n
n—1
; i-n| 4+ A -n|+ (1 -2 ‘n
Thr1(@1, -5 Apn, (1 — A)py) = max zl n'i)i | [P -0l + ( )P - ml —
n i=1 [pil + Alpnl + (1 — A)[Pp1]
=Tu@1,--->Pn) (1.237)

The variable C is proportional to the second invariant of the symmetric tensor ©.
Indeed:

1
0=det(® — Al) = 1> — Tr{®}\* + 3 [(Tr{®})? — Tr{@*}] —det® (1.238)

()»1)»2+)»2)»3+M)»3)=%

where A; are the eigenvalues of @. To study the IR properties of C, it suffices to
verify that the ® tensor satisfies the conditions (1.236):

Z” PP, +0
i |pl
S yeesP,0) = =———=6,01, ...,
n+1(pl Pn ) Zi:] |pl| +0 1(P1 pn)
n—1 pip} 1 1-2)°p.py
SR B G
@n l(ply"")\fpnj(l_)\’)pn)z - Pi Pl Pn —
" S IRl + Alpal + (1= Ml
= O,(P1,....Pn) (1.239)
Finally, we notice that S can be also written as:
;xn): 3 p?
§= 3 min 2R3 2P (1.240)
2 n ZP 20 3P

where p is the momentum component orthogonal to the direction n. We now intro-
duce an auxiliary tensor W defined as:

T
W = % s (1.241)
iPi
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For any vector n, it holds:

2
2Pl _ 2Pl
P P

n' Wn=

(1.242)

Hence, minimising S(n) is equivalent to maximise the quadratic form n™ W n subject
to the constraint n"n = 1:

0=Va[n"Wn—-2(1-n"n)] & Wn=in (1.243)

This implies that n is the eigenvector of the W tensor corresponding to the largest of
its three eigenvalues A; > A, > A3:

S = %(1 — A1) (1.244)

To study the IR properties of S, we need to test whether W satisfies the condi-
tions (1.236):

n T
i PiP; +0
Wn+1(P1,~--,Pm0)=%=Wn@1,-n,m) (1.245)
i=1 i
S el + 22 pr + (1 — 2)%p, py
> IpF + A2 P2 4 (1 — 1)2|p2
£ Wo(p1s -+ s Po)- (1.246)

Wn+l(pla ey )xpm (1 - A)pn) =

The last inequality is a consequence of the non-linear dependence of W on the particle
momenta. Another way to see that S is not collinear-safe is to consider the case where
n is aligned with one of the particle momenta p: in this case, a collinear splitting of
that particle would not change the numerator (n x p = 0), but it would change the
denominator due to the quadratic dependence on the momenta.

We conclude by mentioning that, differently from the sphericity, the event-shape

variable:
4\? 1p;
. (_) i (Z: [pi x _“'), (1.247)
T n Z,‘ [p:l

called sphericity, is instead IR-safe.
Suggested Readings

See Refs. [17, 18] for more details on IR properties of observables relevant for
experimental tests of pQCD.
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Problem 1.44 Consider the parton-level reaction e™ e~ — ¢ g g, where all final-
state partons are assumed to be massless. Define the adimensional parameters x; =
2p;P/s with p; = ¢q,q, g and P = >, p;. Show that the allowed values for the x;
parameters are located inside a triangle in the plane (x,, x5). Consider now the metric
Yij = 2pip;/s. An event is said to contain three jets if min;; y; > y for some value of
the jet parameter y. Determine the geometric locus of three-jet events in the (x4, x3)
plane as a function of y.

Discussion

In this problem, the concept of jet is introduced. A jet is defined by a jet-finding algo-
rithm that determines how to cluster together an ensemble of particles in an iterative
procedure based on a definition of distance between particles. Metrics based on the
R;; distance of Eq. (1.167) are quite popular at hadron colliders, while the Lorentz-
invariant metric of the exercise, also known ad JADE distance, are more popular at
lepton colliders. Observables related to a jet-finding algorithm should be predictable
within a given theory, if one wishes to compare its predictions to the experiment.
A problem which often occurs in theories of massless particles like QCD and QED
is connected with the divergences associated with soft or collinear splitting of the
massless particles, see Problem 1.47. These divergences can be consistently cate-
gorised and re-absorbed for IR-safe observables, see Problem 1.43. The replacement
of parton-level observables with jet-based ones allows to recover a well-posedness
necessary to carry out the perturbative calculations. A jet algorithm can be studied in
an experiment by using as input the experimental signature of the theoretical particles.

Solution

Ify> %, then the event contains exactly two jets. This is easy to prove since:

2[ j ( i i)z
yiz +y13 +y23=z%=z—p=1, (1.248)

s
i#]

hence at least one of the three measures has to be smaller than 1/3. The algorithm

will then cluster the two “closest” partons, leaving two resolved jets. We then focus

on the more interesting case 0 <y < %, where three-jet configurations can arise. It

is also interesting to notice that for three partons:

. [(PH-PJ')ZI . [S—2ka
min{ ———} =min { ———
i#] N k s

]:mkin{l—xk}zl—ml?x{xk}:l—T,

(1.249)

where T is the thrust parameter introduced in Problem 1.42. The three x; parameters
are not independent since they satisfy the relation:
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2q+3+9P _
N

Xq+x5+x, = 2. (1.250)
Each event can be parametrised by two energy fractions x, and x. In the (x,, x;)
plane, the allowed points lie in the geometric locus defined by:

x, <1
x; <1 (1.251)

X +x; > 1.

which identifies a rectangular triangle in the (x4, x5) plane. The top-side (left) of this
triangle corresponds to x; = 1 (x;, = 1), i.e. a collinear emission of the gluon by the
quark (antiquark). The top-right vertex of the triangle corresponds instead to a soft
gluon emission, since x; +x; — 2 implies x, — 0 as for Eq. (1.250). For a three-jet
event one has instead:

krr}i513{1 =X} >y = 1—X45¢ >, (1.252)

The three-jet events are therefore associated with points located inside a triangle
similar to Eq. (1.251), but with shorted sides defined by:

2y<x,<1-y
2y <xz<1l-y (1.253)
Xg+xz;=>14y.

Figure 1.14 shows the triangle for a generic value of y. Notice that for y > 0, the
sides of the larger triangle are excluded from the three-jet parameter space. Since all

Fig. 1.14 The phase-space g
representation of a ggg event A

in terms of the ! allg
Lorentz-invariants variables r\
x; = 2p;P/s computed in the -y ‘ \
centre-of-mass frame. The |
domain corresponding to
3-jet events according to the
JADE algorithm with
parameter y is the one
delimited by the light lines

alle
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the divergence related to a soft or collinear splitting are located on the top and right
side of the triangle, the three-jet phase-space is free from IR divergences.

Suggested Readings

A detailed calculation of the LO three-jet cross section with the JADE algorithm can
be found in Ref. [18].

Bando n. 13705/2010

Problem 1.45 The reaction K~ p — 7% A®is studied in a fixed-target experiment.
Determine the beam energy for which the A° baryon can be produced at rest in the
laboratory frame.

Solution

Let’s denote the four-momenta of the involved particles by pg, p,, pr and p 4. In the
laboratory frame, they can be written as:

pK = (EK5 pK)5 pp = (mp’o)a pA = (m/\’o)5 prr = (E7T7 pk)‘ (1'254)

Conservation of energy and momentum implies that px 4+ p, = pr + pa. Since
nothing is known about the 7° kinematics after the scattering, we get rid of it by
squaring the 7° four-momentum:

Pr ZPK"‘prr —PAa,

mjo =m%(+mz+m%1 +2Exm, —2Eg mp — 2m, my,

2Eg (mp — my) =m%( —I—mf, —{-mi —2m,my —mfr,
_ 2 2 .2
E = M M) mg =y (1.255)

2(my — my)
Discussion

Equation (1.255) has the same form of the centre-of-mass energy in a two-body
decay with \/s = m, — m,, see Eq. (1.89). Indeed, we could have guessed this
result by noticing that this scattering reaction is kinematically identical to the decay
A% — p K= 70, with the proton at rest, which is analogous to a two-body decay
where only a centre-of-mass energy /s = m — my, is available for the two mesons.

Notice that not all scatterings at energy Ex produce A’s at rest in the laboratory.
Indeed, this particular configuration corresponds to a A emitted forward (6* = 0)
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in the centre-of-mass frame: for any other angle 6*, a different kinematics in the
laboratory will arise.

Bando n. IN/R3/SUB/2005

Problem 1.46 A proton beam of energy E; = 20 GeV collides head-on against an
other beam of protons of energy E; = 5 GeV. Determine:

1.
. the velocity of the centre-of-mass in the laboratory frame;
. the angle in the laboratory of a relativistic particle produced at 90° in the centre-

the centre-of-mass energy of a binary pp collision;

of-mass;

. the energy that a proton beam must have in order to generate the same centre-of-

mass energy in a fixed-target collision.

Solution

1. Let’s denote the four-momenta of the colliding protons by p; = (E;, p;). The

centre-of-mass energy is given by the square-root of the Mandelstam variable:

s=(p1+p2)’ =2m) +2(EE; + |pillp2)) =

2 2
m m
=2m> +2E\E, | 1 1—(=2 1—(=2 . 1.256
R +/ (El)\/ (Ez) (120

The proton mass m,, = 0.938 GeV is small compared to either of the two energies,
so that a first-order expansion of the square roots is accurate enough for most
purposes, giving /s = 20 GeV. A complete calculation yields /s = 19.95 GeV.
The velocity of the centre-of-mass frame is the velocity of a “particle” of four-
momentum p; + pa, see Eq. (1.96), hence:

E —m = B =] 1507 Gev
B = Vi - P 220200 0,603, (1.257)
Ei + E, 25 GeV

. A relativistic particle with centre-of-mass velocity §* ~ 1 and polar angle 6* =

7 /2 with respect to the beam direction, will emerge at an angle 6 in the laboratory
frame given by Eq. (1.44). If we chose the direction of the x axis as aligned with
the most energetic proton, then, the boost parameter to the laboratory frame is
given by —f. We can therefore use Eqgs. (1.44) and (1.257) to get:

sin(7/2) s s 19.95GeV
y(cos(m/2)+B)  /sBy Ipl—Ipil  15.07 GeV
0 = atan(1.32) = 52.9°. (1.258)

tanf = = 1.32,
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4. For a proton collision against a fixed-target at the same centre-of-mass energy,
the beam momentum Ejgx must satisfy:

2m]% + 2mp Eqy = \/Ev Zmp (mp + Eﬁx) =39,

s—2m;  (19.95 GeV)? — (0.938 GeV)>

Eq, =
T om, 2-0.938 GeV

=211GeV, (1.259)

which is more than one order of magnitude larger than the highest proton energy for
head-on collisions.

Bando n. IN/R3/SUB/2005, Bando n. 13153/2009

Problem 1.47 Can a photon decay to an electron-positron pair in vacuum? Can a
particle radiate a photon in vacuum? Consider a photon conversion in the following
two cases: y — et e~ in the electromagnetic field of a heavy nucleus of mass my,
initially at rest, and y — e e~ in the neighbourhood of an electron, also at rest. For
both cases, determine the threshold energy of the photon such that the reaction can
take place.

Discussion
The four-momentum p of a particle is either time-like (p*> > 0) or light-like (p*> = 0).
In both cases, the sum of two such four-vectors is always time-like. Indeed, if at least
one of the particles is massive, say particle a, one can make a boost to its rest frame
and compute explicitly the invariant:
(Pa+Pv)* =P} + Dy + 2papy = m; + mj, + 2mE) >
> m? 4+ m} + 2mamy, = (m, + mp)* > 0. (1.260)

If instead both particles are massless, then in any frame (p, + pp)> = 2E, E, (1 —
cos8,,) > 0. By iteratively clustering pairs of four-momenta, it then follows that

Pa+Db+pe+ )= (Mg +mp+me +..)% (1.261)
The right-hand side of this inequality is the tightest lower bound and corresponds

to a configuration where all particles are at rest in their centre-of-mass frame. For a
reactiona + b — ¢ +d + .. ., with b at rest in the laboratory frame, we then have:

§ = (pa +pb)2 = (pc +Pd+---)27
m2 4+ mi +2E,my = (e +pa+...)° = (me+mg +...)% (1.262)

Since the laboratory energy of E, is a linear function of s, its minimum value cor-
responds to the minimum possible value of s, which is given by the left-hand side
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of Eq. (1.261). The threshold condition for a fixed-target scattering corresponds to a
beam energy such that:

(mc—i—md—}—...)z—mg—mg
2m;, ’

EM = (1.263)

Solution

Let’s consider the reaction y — et e™, where p,,, p,+, and p,- are the four-momenta
of the tree particles. Conservation of energy and momentum implies:

Py =Pet +Per Py =2m; +2pepe.  O=m, +pope.  (1.264)

In the rest frame of the electron, the Lorentz-invariant product p,+p,- is E,, m, > 0,
hence the last equality in Eq. (1.264) cannot be satisfied. Notice that this is not the
case if m, were zero: in this latter case, either a collinear splitting with p,.- parallel to
P.+, or the emission of an infinitely soft electron or positron, would allow Eq. (1.264)
to be still fulfilled. Let’s now consider the reaction e~ — e~ y. Like in the previous
case, one gets the condition:

Pe=Pe+py  Pr=PrAP, 20, O=pp,.  (1265)

In the rest frame of the final electron, p,p, = E)’, m, > 0. Notice that the only
possibility for Eq. (1.265) to be satisfied is again through a collinear splitting in the
limit m, — 0, or through an infinitely soft photon emission.

As seen from Eq. (1.264), photon conversion in vacuum is not allowed, whereas
photon conversion in the presence of a spectator particle is kinematically allowed.
Let’s consider the reaction y X — e™ e~ X, where X can be either an electron or a
heavy nucleus at rest in the laboratory frame. The reaction can occur if the photon
energy is above the threshold for e™e™ production, namely:

2me+me)’ —mg
Qmeme) —me gy electron

2m,
Cme+my)’—m} _ my [ 4m, me ~
T =75 m_N —+ ﬁ W ~ 2me nucleus

E;‘“ = (1.266)

Thus, photon conversion in the electromagnetic field of a heavy nucleus requires a
factor of two smaller threshold energy compared to the conversion in the electron
field.

Problem 1.48 A photon converts to ¥y — eTe™ in the electromagnetic field of

a heavy nucleus of mass my. Calculate the minimum momentum transfer to the
nucleus |q| when the photon has an initial energy E,, = 1 GeV. Estimate an order of
magnitude for the opening angle between the two leptons in the laboratory frame.
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Discussion

The process by which a photon converts in matter is known as Bethe—Hadler, after
the authors who first computed its theoretical cross section. It can be heuristically
explained like follows. A photon has four-momentum p, = (E,, E, e,), which
gives p)Z/ = E)% - E]% = 0. In order to transmute into a pair of massive electrons, the
photon needs to “acquire” a mass. This can be achieved by transfering a quantity
q of its momentum to the nearby nucleus with no energy loss, provided that the
total four-momentum is conserved. In this way: p, — px = (E, E — |q|) and Py is
now positive. Exchanging three-momentum with a negligible energy loss is indeed
possible if my > E,, .

Solution

Conservation of energy-momentum implies that p, + py = pe+ + pe- + pjy. Let’s
define:

PX =Det + P q=py, —px =Py —pn = (/14> +my —my,q) (1.267)

If the energy of the photon is much smaller than the nuclear mass my, then the
exchanged momentum |q| is also much smaller than my, so that:

2
q~ (&,Q)- (1.268)

2mN

From the momentum conservation equation py = p, — g, it follows:

|q|4 E)/ 2 2

1+ —2E 0 + my ~

pes . lq| yldlcos 0 + my

lq|* — 2E, |q| cos 8 + my = 0, (1.269)

where 6 is the angle of q with respect to the photon direction. Terms suppressed
by powers of my have been neglected. From Descartes’ rule of sign, we see that
Eq. (1.269) admits a valid solution only if cos @ > 0. Explicitly:

lql+ = E, cosG:I:‘/E)% cos? 6 — my. (1.270)

It can be easily verified that d|q|+/dmy < 0 and d|q|+/d cosf = 0, so that the
minimum momentum transfer corresponds to a nucleus recoil parallel to the incoming
photon momentum and to the minimum possible invariant mass of the e*e™ pair,
which is given by mi" = 2m,, see Eq. (1.261). Hence:
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4m2 2m?
19| min = E, (1 e E% )% E, ~ (0.5 KeV. (1.271)
We now estimate the typical size of the opening angle ¢ between the electron and
positron. If my = 2m,, the velocity of the two particles in their rest frame is zero
as for Eq. (1.92): any boost from the reference frame to the laboratory frame will
maintain the two momenta parallel to each other, hence ¢ = 0. The largest opening
angle for a two-body decay as a function of the velocity 8 of the mother particle (X
in our case) and on the velocity 8* of the daughter particles in their c.o.m frame is

given by Eq. (1.65):
2y BB 2|px|,/m)2(—4m§

max) = = . 127
tan(¢ ) ]/2 ﬁz _ ‘3*2 |pX|2 — (m)z( — 41"’[2) ( 7 )

Since pair-production is an electromagnetic process where, at leading order, a virtual
photon is exchanged between the nucleus and a virtual electron, one can expect the
differential cross section to feature the typical ~1/|q|* behaviour, so that the bulk of
the conversions will have |q| 2 |q|min, Or equivalently my = f - 2m,, with f of order
one. Since |q|min K E,,, for small transfered momenta, the momentum |px| of the
ete™ pairis [px| ~ E, . Equation (1.273) then gives

b~ | Pmax ;¢min| ~ %\/Jﬁ: O(mrad). (1.273)
14

The possibility to measure the opening angle, and thus to determine the decay plane
of lepton pair, opens the possibility to use the Bethe—Hadler process as a polarimeter
of the incoming photon, since the orientation of the decay plane is correlated with
the polarisation of the photon.

Suggested Readings

Reference [19] provides a complete review of the photo-production mechanism of
lepton-antilepton pairs. The idea of using the double photon-conversion for the mea-
surement of the CP properties of the Higgs boson in the H — y y channel has been
investigated by the phenomenological work of Ref. [20].

Bando n. 13153/2009

Problem 1.49 The strong reaction p p — X K+ K~ is studied in laboratory,
where X denotes an unknown particle. Determine the values of the electric charge,
strangeness, and baryon number of X. Let the mass of X be twice the proton mass.
Determine the minimal energy in the laboratory frame necessary to produce X in a
fixed target experiment.
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Solution

Since the strong interaction conserves the electric charge (Q), the strangeness (S), and
the baryon number (B), it follows that Ox = +2, Sy = 0, and By = 2. See Chap.5

for more details. If my = 2m,,, the threshold energy for a fixed-target collision is
given by Eq. (1.263):

2m, + 2mg)? — 2m? 2
e _ @M+ 2m5) L —m, [1 +4 (%) +2 (@) =3.43 GeV,
m

P 2my,
(1.274)

where we have used the PDG values m, = 0.938 GeV and mg = 0.494 GeV [4].

Problem 1.50 Determine the threshold energy for the antiproton production p p —
p p p p, when using a proton beam on a liquid-hydrogen target. Consider now the
case that the target consists of a heavy material, so that the target proton is actually
a bounded nucleon. Assume a Fermi energy Er = 30 MeV. By how much does the
threshold energy get reduced by the nuclear motion?

Solution

Let’s first consider the case where the target consists of liquid hydrogen. The thermal
motion, being characterised by an energy kg7 = 25 meV (7/300 K), is totally
negligible, so that the target proton can be safely assumed at rest. The threshold
energy is therefore given by Eq. (1.263):

(4mp)2 — ng

hr
EWr —
P
2m,

=7m, = 6.56 GeV, (1.275)

or, in terms of kinetic energy, T;h’ = 6m, = 5.6 GeV.

If the target proton is bounded inside a nucleus, its momentum can be as large as
the Fermi momentum |pg|. Since Ep < m,,, the bounded nucleon can be treated as
classical. The most favourable kinematical configuration corresponds to a nucleon
of momentum |pg| moving against the incoming proton. The threshold condition of
Eq. (1.262) gets modified to:

Ipr|?
2m,

2m; 4+ 2E" (m,, + ) +2,/(EP)? — m2|pg| = (4my)°. (1.276)

Introducing the adimensional parameter ¢ = |pg|/m, = \/2Eg/m, ~ 0.23, we can
simplify the above equation by neglecting terms of &'(g?):
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2
&
(ES™Y? — 14my, (1 + 2) + (Tmp)? + ?m’ =0

2
&
ENT = Tm, (1 + 2) - \/(7mp)2(1 +e2) = (Tmp)> — e2mj =

2
€ Er
= 7mp(1 + 2) —/48mZ &2 =Tm) (1 + m—p) — /96 mp Ep = 5.24 GeV,
(1.277)

corresponding to a proton kinetic energy T;,hr = 4.3 GeV, i.e. about 1.3 GeV less
than that necessary with a hydrogen target.

Suggested Readings
This reaction was first produced in laboratory by a E. Segre et al. at the AGS accel-

erator at Berkeley. The reader is encouraged to study the discovery paper [21]. A
guided discussion on the experimental set up can be also found in Ref. [12].

Bando n. 18211/2016

Problem 1.51 Given the Boltzman constant kg = 8.6 x 107° eV K’l, estimate
the typical wavelength of the cosmic background radiation. Which part of the EM
spectrum does it belong to?

Solution

The cosmic microwave background (CMB) features a black-body spectrum with
temperature 7 ~ 2.7 K. The energy density per unit of frequency is given by Planck’s
law

dE  8mh 3

ar _ omh v . (1.278)

dv 3 exp (hv/kgT) — 1

The peak frequency mode has an energy of about 3k 7', so that:
ST =ho = € 5=l
= V= -_, = =
? hi 3ksT
6.6x1073*Js-3x 108 ms™!

~ 1.7 mm, (1.279)

T 3.86x105K 1-1.6x10-°J-27K

corresponding to a frequency v = 160 GHz. The typical radiation spectrum is there-
fore located in the microwave domain.

Bando n. 13705/2010
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Problem 1.52 A proton of the cosmic radiation can produce 7% by interacting with
the cosmic microwave background (CMB) at 3 K. You can assume that the CMB
photons are uniformly distributed in space with an energy density p,, = 0.38eV/cm?,
and have an average energy £, = 0.7 meV. What is the proton energy threshold?
At the energy threshold, what fraction of the proton energy gets lost, and what is
the minimum angle between the two photons in the 79 decay? Let us assume that
the photo-absorption cross section above threshold is o, = 200 pbarn. Provide an
estimate of the proton mean free path.

Discussion

The existence of a threshold energy for the inelastic reaction p ycmp — p 7°, where
ycMmB 1S a photon of the cosmic microwave radiation, implies a suppression of the
cosmic ray spectrum above that threshold, known as the GZK cut-off.

Solution

The lowest proton energy threshold corresponds to a CMB photon of energy E,
moving against the proton. For this configuration, one has:

m 4 2my my +m = m> + 2EE, + 2|p,|E, . (1.280)

Since EIEhr /my, ~ mqo/E, > 1, it can be safely assumed that |p,| ~ E,,. Therefore:

2m,, + Mo (2-0.938 + 0.135) GeV
EN = o =L —" —0.135 GeV =
r =T E, AT 47X 105 Gev
=0.9 x 108 eV. (1.281)

At the threshold, both the proton and the neutral pion are produced at rest in their
centre-of-mass frame. The gamma factor of the centre-of-mass is given by y =
(E[‘,hr +E,)/(m, +myo0) ~ E[t)hr /(my, +mo). The relative energy loss suffered by the
proton after the photon absorbtion is therefore given by:

thr _ pv/
mp g Ep Ep My

S EEE— = ~ 0.12. 1.282
my, + o P E[t,hr my, + myo ( )

E;:)/mpz

The minimum open angle between the two photons from the 7° decay is given by
Eq. (1.61):

2 2
i = — = M ~2 x 107" rad. (1.283)
Y E

Given a process with cross section o, the interaction length A is defined as the
inverse of the probability of interaction per unit length and per incoming particle,
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see Eq. (1.291). Since both the proton and the CMB photon are moving in opposite
direction at speed c, the relative velocity is v; = 2c¢, see Eq. (1.20). By definition of

cross section, the number of interactions per unit time and unit volume is given by:

dN,, dN

didPAde PP Py Viel = Oyp: Typ = (cppd®Adx)-2p, 0yp = d®ydx -2 py oyp,
ANy =2py0 = A= ! = ! -
(dPpdt) dx r 2 py ayp 27&%%@?&1 -2 x 10728 cm?

=5x 10* cm = 1.5 x 10° parsec, (1.284)

Here, d®,, in the intermediate calculations is the flux of incoming proton entering
the infinitesimal volume d”A dx, so that dN,, /d®, dt is the number of interactions
per incoming proton.

1.3 Cross Section

The cross section o of a scattering process a b — X, where a is a moving projectile
and b is at rest, is defined as the number of reactions X measured per unit time, per
unit scattering center, and per unit of incoming flux density:

1 dNx
o=— ,
J, dt dN,

(1.285)

where dN, is the number of scattering centers in an infinitesimal volume d°r irradiated
by the flux density J,,. The latter is defined as the number of particles a crossing per
unit time and unit area the normal surface at the position of the volume d°r:

Jo = NalVal, (1.286)

where n, and |v,| are the particle density ([n] = m~>) and velocity, respectively. The
dimension of o is therefore [6] = cm?. The definition (1.285) can be generalised
to an arbitrary kinematics of the involved particles, so that the distinction between
projectile and target can be ultimately ignored. Firstly, we introduce the particle
density of the target, ny,, and write:

B (dNx/dt dr) - d°r B (dNx /dt d°r) (1287)
O T ) mava | mpnalVal '

where we have introduced at the numerator the number of reactions X observed per
unit time and unit volume. The quantity n, n, |v,| at the denominator can be written
in terms of the density and velocity in the generic reference frame by means of the
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relative velocity of Eq. (1.20), so that:

dNy /dt dr dNy /dt dPr
o= (dNx/ ) _ [N/ ), (1.288)
Ng nb\/(va - Vb)2 — (Vg X Vb)z/c2 Ta p Vrel

see Problem 1.11. Under a generic boost the numerator of Eq. (1.288) is invariant,
since dNy is a pure number and d*x = dt d’r is invariant under transformations of
the Poincaré group, see Problem 1.2. The same holds for the combination n, 1 vy,
as discussed in Problem 1.3: the cross section is therefore a Lorentz-invariant.

‘We now come back to the early definition of Eq. (1.285) and introduce the useful
concept of interaction length. Let’s consider a uniform flux density J, = @,/A,
with @, being the total flux across the surface A ([@] = s~!) irradiating a target of
thickness éx and uniform particle density n,. From Eq. (1.285) we have:

dNy &,
X T (- A-8x) -0 = Bu(np 8x) 0. (1.289)
dt A ———
A

The quantity n,, 8x is the surface density of the target, and once multiplied by the flux,
it gives the luminosity £ of a fixed target experiment. Notice that [.#] = cm™2 s,
For different beam structure, the luminosity can be still defined from Eq. (1.288) as
the coefficient of proportionality between the total event rate and the cross section,
see Sect. 3.3.

Dividing both sides of Eq. (1.290) by the incoming flux @,, the probability of

interaction per incoming particle is obtained:

1 dN.
- dtx = probability of interaction per particle = (n,0) - éx, (1.290)

so that n;, o is the probability of interaction per particle and per unit length, and its

inverse |
A= —, (1.291)
n,o

is called interaction length of the process under consideration. Since A ! is a prob-
ability of interaction per incoming particle and per unit length, in the presence of
multiple exclusive processes of interaction between a and b, the probability of any
such interaction is given by the sum of all probabilities, and the total interaction
length is therefore given by the inverse of the sum of all inverse interaction lengths.

The differential cross section for a scattering p; p» — p3 ... p, canbe calculated
theoretically using the formula:

|1, P> dPu(p1 + P2i D3y s Pn)
(1.292)

do(p1,p2; P3s---»Pn) =
Y 41y p)
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where the incoming and outgoing particles are asymptotic states of the free Hamil-
tonian, i.e. eigenstates of the linear momentum and spin, and:

e [(p1, p2) is the invariant discussed in Problem 1.3, and accounts for the incoming
particle flux. Indeed, the factor 41 = (2E;) (2E3) vy is just but the product of
the two beam densities times their relative velocity as in Eq. (1.288). For a free
particle, the space density is given by the squared norm of the wave function
[¥p(r) > = 2E,. The choice of wave function normalisation is convention as long
as it is used consistently. For example, another popular normalisation is the non-
relativistic normalisation of Eq. (1.211);

e ./ is the relativistic scattering amplitude, see Eq. (1.186);

e d®, is the relativistic phase-space measure of Eq. (1.184).

Spin indices are omitted in Eq. (1.293) to simplify the notation, although one should
always remember that the cross section depends in general on the spin vectors 7; of
the scattered particles. When the incoming particles are unpolarised and spin is not
observed, one can replace the matrix element squared in Eq. (1.293) by

J— /4 2
Z|%| Zrl ..... n | | (1293)

S 2S + DS, + )

which has often the virtue of greatly simplifying the calculations.

Problems

Problem 1.53 Prove that the differential cross section for a2 — 2 scattering in the
centre-of-mass frame can be written as:

do 1 |P}k|
= M, 1.294
d2*  64n2s |p;"|| | ( )

where |p}| and | pj’f| are the centre-of-mass momenta before and after the scattering.

Solution
The relativistic invariant / at the denominator of Eq. (1.293) can be also written as:

—m2 — 22 4+ 4m2 m2
P = (pips)? +mimd = &M mi) I _ e, (1.295)

where the identity has been proved in Eq. (1.91). By making use of the two-
body phase-space measure expressed in terms of the centre-of-mass solid angle,
see Eq. (1.188), we get:

1 1 Ipfl do 1 Ip;l
|2 f = f

= ” |.# — d*
4|p7| \/E

— M, (1.296
1672 /s ds2* 64n2s|p7|| I )

do
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If the scattering amplitude is normalised using a non-relativistic normalisation, then
the above expression becomes:

1 @le_ 1 (ZET)(ZE;‘)(ZE;‘)(ZEI)@‘ 2
64725 p?] T 64n2 (Ef +EDEL+ED Ipfl B
1 1 Ip?IMZ 2| o 12 el
T2 (1, N[ L, R T (v [+ va)) (V3| + [v NR
7 (et ) ( + ) 7] 72 (V1] + V2D (V3] + [val)
2
1 Ip}l
- if‘/ | R %, (1.297)
Vrel Vrel

where the relative velocity has been used.
Discussion

Consider the 2 — 2 scattering a b — ¢ d. Suppose that both this reaction, denoted
by (1), and its time-reversed ¢ d — a b, denoted by (2), can be performed in the
laboratory under controlled conditions. In particular, if the two reactions are studied
at the same centre-of-mass energy, and if the scattering particles are unpolarised and
the measurement is inclusive with respect to the spin of the final-state particles, then
Eq. (1.293) together with Eq. (1.296) implies

(1.298)

(do)/d$2*) _ (2Sc+1)@Sa+1) (|p:d|)2
(dow/d27) — @S+ D@S, + D \Ipil)

where one has to further assumed that the interaction is invariant under time-reversal
so that the spin-averaged matrix element squared for (1) and (2) are identical at the
same centre-of-mass angle cos 8*. If the spin of three of the four particles is known,
the spin of the fourth can be measured by comparing the event rates of (1) and (2).
As an example, this technique was employed by Steinberger et al. [22] to measure
the spin of the charged pion profiting from the reaction 7+ d — p p and its inverse
p p — nt d, which could be both obtained in fixed-target collisions.

Suggested Readings

The measurement of the pion spin from detailed balance arguments is documented
in Ref. [22]. An introduction to the same topic can be found in Chap. 2 of Ref. [12].

Problem 1.54 What is the 7 ™ p cross section at the peak of the A(1232) resonance?
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Discussion

When the centre-of-mass energy E* approaches the mass Ej of a resonance of spin
J and width I, the scattering cross section between two unpolarised particles with
spin S; and S, detected in the channel f, is described by the Breit—Wigner formula:

TP @S+ DS, + 1) (B — Eo) + /4

o (E™) BR; BRy, (1.299)

where BR; s are the branching ratio of the resonance into the initial and final state
particles, respectively, and p* is the centre-of-mass momentum given by Eq. (1.91).

Solution

According to the Breit—Wigner formula of Eq. (1.299), the cross section at the peak
is independent of the width I" and depends only on the resonance mass Ey:

Ry 4 327 m?
UA - = =
P> [m] — (mp +my)?] [m% — (my — my)?]
= 485 GeV 2 = 188 mbarn, (1.300)

where we have used the values BR;+, = 1,J =3/2,S5, =1/2, and S; = 0. In the
last row of Eq. (1.300), we have made use of Eq. (1.9) to convert the result into SI
units. This result is in good agreement with the experimental data, see e.g. Fig.2.11
of Ref. [16].

Suggested Readings

A concise summary of the Breit—Wigner scattering can be found in the PDG review
dedicated to kinematics, Chap.47 of Ref. [4].

Bando n. 18211/2016

Problem 1.55 How was it possible to measure the number of SM neutrino families
at LEP by studying the Z° resonance?

Discussion

In the neighbourhood of the 79 mass, the cross section for et ¢~ — Z° — hadrons
for unpolarised electron-positron beams features an energy dependence described by
a relativistic Breit—Wigner:
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© 127 T, Thaa sy
Ohad($) = s
“ msz T} (s—md)?+ 202 /m’

(1.301)

where Iy is the width at the Z° mass, see Ref. [4]. In Eq. (1.301), the Breit—
Wigner width grows with s. Notice that the kinematic part of Eq. (1.301) reduces to
Eq. (1.299) when s ~ m%, Indeed:

sI"Z2 ~ m% FZZ — FZZ/4 .
(s=m)2+ 527 /my (s —mp (s +m)?+mil;  (Js—mp)?+T7/4
(1.302)

Radiative corrections due to soft and collinear photon radiation from the incoming
leptons distort the lineshape by inducing an asymmetric tail and by reducing the peak
cross section to a value:

peak __ 127 Fe Fhad
had — 2 2
my 17

(1 = 8raa) = 0pg (1 = Braa). (1.303)

In the SM, the Z° boson width is given by the sum of the hadronic, leptonic, and
neutrino partial widths:

Iz = Thaa + Ny I+ B+ 817, (1.304)

where N, is the number of neutrino families that couple to the Z° and 8, is a phase-
space corrections that accounts for the large T mass.

Solution

There are three main methods to measure at LEP the number of light and active
neutrinos, i.e. charged under the SM group.

The first method is based on subtracting the leptonic and hadronic width from
the total visible width I';. This can be best implemented as fit to the lineshape of
the hadronic cross section oy,q(s) of Eq. (1.301) measured at different value of /s.
By taking the SM values for 644, Ihad, v, and I, the only unknown parameters
in the fit are mz and N,,, which can be therefore simultaneously extracted from the
fit. It should be noticed that the sensitivity to I, arises from both the width of the
Breit—Wigner and from the cross section value at the peak. The result published by
the ALEPH Collaboration in 1989 gave a result

N,=327+030 and N, <4 at98% CL. (1.305)
The lineshape-based analysis relies on model assumptions for the partial widths

and on the lineshape itself. Part of these assumptions can be relieved by using addi-
tional observables measured at the Z° peak. The ratio between the hadronic and
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leptonic decay widths, R? = Thad/ 1%, is an observable that could be measured to
large accuracy at LEP. By assuming universality of the charged lepton coupling to
the Z° boson, the ratios Rg, R?L, and R‘T) can be assumed identical, modulo the mass-
related corrections for t leptons, encoded in a correction factor R?/RY = 1+ §.. By
using the hadronic cross section at the peak, Ut?ad’ one can therefore express the ratio

ng = [}/ I, as a function of my, a}?ad, and R? as:
o0 127 I, Thag _ 127 R?
had T2 P m% (RO, +3+ 68, +R9)?’
1
127 RO\ ?
Ry, = (2—()l) —R) — (34 6,). (1.306)
M7 Ohad

If one further assumes that the total width arises from neutrinos, the value of R?
thus obtained can be related to the number of active light neutrinos as:

R _ ML = N,=R° I (1.307)
inv — I—wZSM L 11\ Fv M .

The combined result from the four LEP experiments is N, = 2.984 &+ 0.008 [23].

The third method is based on a direct measurement of the invisible width I7%,
from the cross section of the process e™ e~ — v v v, where the final-state radiation
(FSR) photon is required to trigger the event. The combined LEP measurement gave
aresult of N, = 2.92 & 0.05, compatible with the method of Eq. (1.307), although
plagued by larger uncertainties.

Suggested Readings

The measurement of the number of light neutrino families from the Z° lineshape is
documented in Ref. [24]. The details on the combined LEP measurement of N, can
be found in Ref. [23]. See also the dedicated PDG review on this subject [4] for more
details.

Problem 1.56 A neutral narrow resonance X of mass M, natural width I", and
spin J, is produced in proton-proton collisions at a centre-of-mass energy /s and
detected through its decay to a pair of photons. Two partonic channels contribute to
the resonance production: g g — X and g g — X. Write down the LO cross section
for pp — X — y y in terms of the resonance parameters and of the proton PDF.

Solution

At LO in perturbation theory, the production amplitude is described by the s-channel
diagrams gg — X and g g — X, followed by the disintegration of X into a pair of
photons. For values of the partonic centre-of-mass energy § in the neighbourhood of
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M?, the partonic cross section is described by the relativistic Breit—-Wigner similar
to Eq. (1.301). In high-energy hadron-hadron interactions, the cross section can be
factorised into a short-distance component, characterised by an energy scale §, and a
long-distance component that accounts for the parton distribution inside the protons,
described by the gluon, quark, and antiquark PDF’s:

ij i( 7,\) ( 7A) A A
=/dx1 dx, |:ij ?_:af el :|a(s =X1X5),

. lér 2+ 1) T, Iy M*r?
with 6 = 1on @+ D) Ly T n (1+8;) (1.308)
M?2 Pi Pj 2 (S _ M2)2 +M21"2

Here, f;(x, 5) is the PDF of parton i evaluated at the momentum fraction x and at a
factorisation scale §, see e.g. Ref. [18]. All of the short-distance physics is encoded in
the partonic cross section &, which is parametrised as in Eq. (1.301). For unpolarised
initial-states, one has to average over the possible configurations of quantum numbers
as described by the appropriate density matrix, resulting in a dilution factor p; and
p;j- The symmetry fractor (1 + 8;) accounts for the undistinguishability of the initial-
state particles. An heuristic motivation for this extra factor will be provided later.
Notice that the energy-dependence of the width has been suppressed because we can
work under the assumption that I <« M, so that § ~ M 2 Under this narrow-width
assumption, we can further approximate the Breit—Wigner by a delta function:

1 T
G-—M)2+M2T2 ML

5G — M. (1.309)

The factor of 7 at the numerator ensures the proper normalisation, as one can readily
verify by integrating both sides of Eq. (1.309) over 5. The total cross section thus
become:

162 27 + 1) > ifilx1, 9 fi(x2, 9)
o = MF 0 P} (1 +3u)Fyy ij /d)CI dXZ |:/1+8Uji| (S(X] XS _MZ)
@/ +1 1) 1672
= MTs Iy ljz / M2 f,(x s)ﬁ(— s)
=Cji(1)
QI+ M?
= nfrs’9yz;cﬁ(j~)”f (1.310)

The long-distance physics in fully encoded into the parton luminosity factor C;(t).
Specialising Eq. (1.310) to the case of interest, we have:

—(2J+1)1" X[Fggx_frx g g
= Yy

(%) gg—~ X
MT's I x 2 [T (g0 (2

)+a@q(%)] 99> X
(1.311)
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Table 1.1 Numerical value of the parton luminosity factors C(t) evaluated at T = M?/s with
M = 750 GeV and JE = 13 TeV, and factorisation scale /Lz = M2, using the MSTW2008NLO
PDF set

Cui Cui Css Cez Cp Cese
627 1054 83 36 15 2137

To derive this result, we have used the fact that the sum over the gluon PDF’s is
symmetric under i <> j, and that the density factors are

1 1 1 1
23N — 8 — 256 88

p:[le‘_ L (1.312)
228z — 7@ — 36 14

For example, at a resonance mass M = 750 GeV and at a centre-of-mass energy
A/s = 13 TeV, the parton luminosities using the MSTW2008NLO PDF set are
reported in Table 1.1. In one further assumes that one production channel dominates
over the others (for example, due to the largeness of C;(t) or of the partial width
I;), then, by measuring o, M, and I, one can constrain the product of the branching
ratios into photons and into the channel ij in the combination:

BR(X — yy) -BR(X — ij) =

os M (1.313)
= .

27+ 1)y
Discussion

We now give an heuristic motivation for the symmetry factor (1 + §;;) appearing in
the Breit—Wigner of Eq. (1.308). Consider for example the case of a spin-0 particle
produced in the s-channel by massless particles a, and decaying to a pair of massless
particles b. The cross section can be computed directly from Eq. (1.293) using the
spin-average of Eq. (1.293):

1 1 1
= ——— [ d®,y | 4,7 My =
g Z Z 24|p*|\/§/ 2| al (S—M2)2+F2M2 | b'

r1,12 13,74 Pa

propagator
1 1 5 1 M 1 5
- M — ddy |4, SN e
2M2p27" 2M Zl/ 2 17| [(s—M2)2+r2M2] @, 2Mrlzr2| al"®2
Fb Iy
2(®5)"! BR,BR M2r?
_ 2(#2)7 BR(BR, , (1314)
M2 p:  (s—M>2+T12M?

where we have approximated |p*| = M /2 and /s = M. The two-body phase-space
for massless particles is given by Eq. (1.189). If the particles are distinguishable, one
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has to integrate over the full solid angle, giving &, = 1/8m, and the usual factor
of 16z at the numerator, whereas identical particles give a factor of two smaller
phase-space, hence the symmetry factor (1 4 §;) of Eq. (1.308).

Suggested Readings

A putative new high-mass resonance decaying to a pair of photons at a mass of about
750 GeV was reported by both the ATLAS and CMS Collaborations in December
2016 [25, 26]. The analysis of additional data, however, disproved the excess, which
was then attributed to a mere statistical fluctuation of the background, dominated by
prompt diphoton production, see e.g. Ref. [27]. A lot of theoretical speculation was
stimulated by the early observation, see e.g. Ref. [28] for further details.

Bando n. 18211/2016

Problem 1.57 An excited state of >’ Fe decays by emitting a 14.4 keV photon (t; ), =
68 ns). Determine the FWHM of the energy distribution of the emitted photon.

Solution

The spectral width I" and decay time 7 are related by the relation I" = h/t, see
Eq. (1.187), or, in natural units, I" = t~'. By using Eq. (1.8), we can express 2 in
keV~!, giving:

. In2 12
r=1t"= = 6.7 x 107 “ keV, (1.315)
12

If a Breit—-Wigner distribution as in Eq. (1.299) is assumed, the full-width-at-half-
maximum is given by I'ewuam = I” = 0.7 x 107! ke V. The relative width Iewum/E
is therefore of order 10~!2, and thus too small to be measured in spectroscopy.

Discussion

The natural width of spectral lines is generally very small. In hot media, the energy
resolution is dominated by other effects, like collisional and Doppler broadening.

Problem 1.58 In classical mechanics, the differential cross section do/dS2 of a
particle of mass m and momentum p scattered by a central potential is given by the

formula:
do b |db

-z =1, 1.316
das2 sin@ |do ( )

where dS2 = d¢ d cos 6 is the solid angle parametrised by the polar and azimuthal
angles with respect to p, and b = b(9, |p|) is the so-called impact parameter, i.e. the
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Fig. 1.15 Cartoon showing o

the classical scattering of a

particle against a central /

potential N T
p > P - -

do = 27bdb

distance from the polar axis at time t = —oo of those particles that get scattered at
an angle 6 at time ¢ = 4-00. Use this formula to derive the Rutherford cross section
for a particle of charge e scattered by a heavy nucleus with charge Z e.

Discussion

It is easy to verify that Eq. (1.316) gives the correct result. Let’s imagine that the
source of the potential is located at the origin of the reference frame. Those particles
that at time 1 = 400 are scattered at a polar angle 6 have momentum p’ = |p| e,.
Since the potential is central, angular momentum with respect to the origin is con-
served: all particles with impact parameter b will end up at the same polar angle 9,
hence it’s possible to define a function b = b(60, |p|), see Fig. 1.15. By definition,
do = d*b = bdbdé¢ is the infinitesimal cross section for scattering at the polar
angle centred around (6, ¢), hence:

(1.317)

= —bdh = —
do

do do _ b |db
do dpdcos®  siné

If the classical source is replaced by a pointlike source of finite mass M, Eq. (1.317)
still holds provided that the polar angle 6 is measured in the centre-of-mass frame,
and m and |p| gets replaced by the reduced mass u = m M /(M + m) and centre-of-
mass momentum, respectively.

Solution

We need to compute b(6, |p|) for the Coulomb potential. To this purpose, it is con-
venient to exploit the time-invariance of L = r x p. In the orbital plane, with
the x-axis parallel to the initial momentum, the momentum after the scattering is
p’ = |pl(cos 8, sin §). The angular momentum for a particle with impact parameter
b is given by
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m|r|?
[plb

do
Ll = —mief— =plb = di=- do. (1.318)

The Coulomb potential V (r) and its Fourier transform \7(q) for a point-like source
of charge Z e at the origin are given by

(1.319)

so that

7 2 2 7 2
dpy = 2% sing (="M g9 = 2 Gigas
T Axr? Iplb 4r|plb

Ip|sin6 /gd mZ e /nde’ e’ = "Z€ (1 4 cost),  (1320)
sin = pv=— Sin = COS , .
«  Amiplb Jo 47|plb

from which we get the relation:

mZe* 1+ cosh mZe?

b(0, = - = .
@, Iph Az|p2 sin@ 4n|p|2tan§

(1.321)

Using Eq. (1.317), we thus obtain:

do 1 mZe*
d2  siné 47 |p|? tan §

mZe? 1 1
4r|pl? \ tan?% ) 2 cos? §
2
1 (mZeZ)2 1 [ zamo (1322)
4 \4x|pl?) sin* g | 4T sin? g ’
where T = |p|?>/2m is the kinetic energy of the particle and o = e? /(47 hc), which

reproduces the well-known non-relativistic Rutherford’s formula. See Problem 1.59
for its relativistic generalisation. In natural units, Rutherford’s formula becomes:

2

do Zo

a2 - |:4Tsin2 ’i} ’ (1.323)
2

and the conversion into MKS units can be done by either remembering that o« —
(1/137) - 197 MeV fm, or by using the conversion GeV~2 — mbarn of Eq. (1.9).
The above result, which has been obtained according to the laws of classical
mechanics, coincides with the (non-relativistic) quantum-mechanical expectation
from the exchange of a virtual photon. Indeed, the amplitude squared for the scattering
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is | R |? = |V(q)|* = Z%*/|q|*, where q is the four-momentum exchange. Since
that the reaction is elastic, the velocity and centre-of-mass momenta are identical
before and after the scattering, and Eq. (1.297) gives:

do 1 |p*]?Z2%e*
i@ " g A (20

rel

For the Rutherford scattering, |q| = 2|p| sin6/2, v; = |V|, and the centre-of-mass
frame coincides with the laboratory frame if m << M, M being the mass of the source
generating the potential. Hence, Eq. (1.324) can be written as:

(1.325)

2
do 4 Z2 et |p*|? . VA
d2 — (4m)? 16|v]2|p*|*sin* § | 4Tsin?§ |

which agrees with Eq. (1.323).

Problem 1.59 The differential cross section of a spin-1/2 particle of mass m scat-
tering against a point-like heavy particle is described by the Mozt formula:

2
do o 2 > o0
MU =1, 1.326
10 |:2|p|2 o %:| (m + |pl~cos 5 ( )

where p is the electron momentum.

e Show that the formula reduces to the Rutherford cross section in the classical limit
Ip| < m.

e What is the value of the total cross section ¢ ?

e Show that in the ultra-relativistic limit the formula reduces to:

do , arcos’s (1.327)
10 S ImaE :
ds2  4E%sin®

where E is the total relativistic energy. What is the reason behind the cos®6/2
dependence of the cross section, which is not present in Rutherford’s formula?

Discussion

The well-known Rutherford’s formula applies to the non-relativistic scatettering
between two charged particles, a moving projectile and a steady target, the latter
being much heavier than the former so that the scattering occurs without any energy
transfer, see Fig. 1.16. Indeed, the very same formula can be obtained by using the
classical picture of a point-like charged particle interacting with the static electric
field of the target, see Problem 1.58.
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Fig. 1.16 Cartoon of the
scattering of an electron off a
much heavier particle of
mass M

Solution

In the limit |p| < m, the formula of Eq. (1.326) reduces to:

2 2
do o ) o (1.328)
— x| — | M= — |, .

ds2 2(mv)? sin? % AT sin® %

where T is the kinetic energy, T = E — m.
The total cross section is obtained by integrating the differential cross section over
the full solid angle. For 6 € [0, €], ¢ < 1, the integral goes like:

/st in 6 ! /adee —/8d9—+ (1.329)
sinf —— ~ — = — = 4o00. )
0 sin4§ 0 04 0 63

This is a consequence of the electromagnetic interaction range being infinite.
In the ultrarelativistic limit |p| & E > m, the Mott formula reduced to:

2
do acos § a’cos? §
et | = (1.330)
as2 2E sin” 3 4E?sin” 5

The cos 6/2 term at the numerator arises from the spin-1/2 nature of the electron:
since the electromagnetic interaction does not change the chirality, an initial rela-
tivistic fermion of a given chirality will also have a fixed helicity & as discussed in
Problems 1.6 and 1.8. A left-handed electron with 7 = —1/2 cannot be scattered
exactly backward, since this configuration would result in a spin-flipped state, thus
changing the J, component of the state along the scattering axis.

Problem 1.60 Two ion beams, one composed of ‘Z‘HeJr ions and the other of ?Li*
ions of unknown mass number A, collide against a fixed gold target. A velocity
selector filters ions of the same initial velocity |v| = 0.1 c¢. The two beams provide
the same integrated flux. A particle detector, located at a polar angle 6 with respect
to the beam direction, counts the number of scattered ions. The ratio between the
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number of countings for the two beams is R = Nye/Nr; = 3.0 £ 0.1. What is the
most probable mass number A of the lithium ions?

Solution

Given that the target nuclei are much heavier than any of the two ions, and that
the ion velocity is small enough to treat the scattering particles as classical, we can
use Rutherford’s formula (1.323). Under the conditions assumed by the problem,
deviations between the two event counts can only arise from differences in the mass,
velocity, or charge of the two beams, i.e.:

N CIvul? Zee ). (A
R= He:(’”L Vil He):(_), A=+vR -4=693. (1.331)

Ny Mye [Vhe|? Z1; 4
By propagating the error on the ratio, we find

A 18R
—_— ==, (1.332)
A 2 R

from which we estimate A = (6.93 &£ 0.11), which is compatible with the closest
integer to the 1o level. The most probable value for the mass number of the lithium
ions is therefore A = 7, which corresponds indeed to a stable isotope.

Problem 1.61 A beam of alpha particles of energy 7 = 0.1 GeV collides against a
fixed target of aluminium (density p = 2.7 gcm™, molar mass A = 27 g/mol) of
thickness of d = 1 cm. The beam flux at the target is @ = 10° s~!. A scintillating
detector is placed at an angle 6 = 30° from the beam axis, and L = 1 m away from
the target. The active surface of the detector has a cross section of 1 cm x 1 cm as
seen from the target. Estimate the counting rate measured by the detector.

Solution
The instantaneous luminosity .Z of the experimental set-up is given by Eq. (1.290):

2.7 =3.6.02 x 10* mol™!
d=10"s". gem ><1 ™ iem
27 g mol™

~6x 10° em™2s7 . (1.333)

N,
gijp A

Using the Rutherford’s cross section formula (1.323), we get:

do ZqZy o 22132 (1/137)?
0O = T = =502 GeV~2/std =
d.Q( ) 1672 sin*S  16-0.12- Sin4(30-n2/180) /

(1.334)
=1.95-1072° cm?/std. (1.335)
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The last equality in Eq. (1.334) comes from the conversion GeV~2 — cm?, see
Eq. (1.9). The integrated cross section in a small solid angle A2 = (1 cm X
1 cm)/1 m? = 10~* std is therefore given by:

d
o~ 22 0). A2 =1.95 x 10730 cm?. (1.336)
a2

Using the instantaneous luminosity of Eq. (1.333), we therefore expect an average

rate of
dN
s = %0 ~ 120 Hz. (1.337)

Problem 1.62 A beam made of 7™ and Kt with momentum |p| = 5 GeV is directed
towards a bubble chamber filled with liquid hydrogen. Events where an energetic -
ray is produced are selected and the energy of the emitted electron is measured with
negligible uncertainty. Determine the minimum kinetic energy T of the §-ray such
that the incoming particle can be unambiguously identified as a pion. Estimate the
probability of such events if the chamber has a total length L = 1 m.

Solution

The discrimination between pions and kaons is possible because the maximum energy
transfer at fixed momentum |p| decreases with the mass of the incoming particle, see
Problem 1.26. Indeed, according to Eq. (1.141), we have

Tmux =

2 m,|p|2 1.05GeV 7t
[Pl [ evr (1.338)

m2+ M2+ 2mo/IpP + M2 | 103MeV K+

Therefore, any §-ray with energy above 103 MeV can be assumed to originate from
a pion scattering.

To compute the probability of a §-ray emission with energy TX < T < T7  we
integrate the differential cross section. This is best done by expressing the differential

cross section as a function of the four-momentum transfer ¢2, giving:

0 dodq®
F=—lqP =—dpPsinl = agr=209 (1.339)
2 2|p*|
Inserting this last expression into Eq. (1.324), we get:
d 1 *|2 ZZ 4 4 Z2 2
o_ L Wize = _dnZa (1.340)

q4 |p>k|2 V*Z q4 ’

dg*  4m? v?Z -

rel

where v, is the relative velocity in the centre-of-mass frame frame. The latter can
be expressed in terms of the velocity v of the beam particles in the laboratory frame
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through Eq. (1.52):
Vier = [VI(L+ 87 B), (1.341)

where B and B are the velocities in the centre-of-mass frame. The latter can be
computed from Egs. (1.91) to (1.89). Since the pion mass is much larger than the
electron mass, we can approximate:

s —m?2 m. E

~1, * A T~ =0.12. 1.342
Pa s+m:  m:+4+mkE ( )

Ss—m

g0

ﬂ*%
e

S

S—m

Furthermore, if we denote the four-momentum of the initial (final) electron by & (k’),
it follows that
2m, "

K=k+q — m=ml+2mqo+q. qo (1.343)

Since gy = T, we can easily transform Eq. (1.340) into a cross section differential
in the kinetic energy of the recoiling electron:

do _ 27 Z%2a? 1
dar = vZ?m, T*

rel

(1.344)

The total cross section for 7 in the range [TX

max’

/Tn’iax do  2nZ%a? ( 1 1 )
g = —_—= _— =
Tk dT V;-kezl me Trlrgax Tglax

max

2
27 - (11?)2(]97)2 MeV2 10726 cm? (1 + m%/|p|2) MeV—! MeV—!
B 0.511 MeV (1+0.12)2 103 1.05 x 103

T7 ] is therefore given by:

=18 x 1072 cm?2. (1.345)

The probability p of such an emission across a length L = 1 m can be estimated by
introducing the interaction length of Eq. (1.291):

L N,
p%—:L ()'IO A =
A A

0.06 gcm™ - 6.02 x 10% mol !

P =6.5x 1077
g mo

10> cm - 1.8 x 107 cm?

(1.346)

where we have used the value p = 0.06 g cm™ for the mass density of liquid
hydrogen. Notice that this probability comes out to be small, thus justifying the use
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of Eq. (1.346) to estimate the probability of interaction (otherwise we should have
taken the cumulative of the exponential distribution, see Problem 2.14).

Discussion

According to Eq. (1.344), the probability of emitting an electron of energy equal or
larger than T follows an approximate 7~! law, see e.g. Fig. 1.17 taken from Ref. [4].
This property is relevant in gaseous detectors which detect the passage of a particle
by the ionisation trail left behind by the passage of a charged particle, see Chap. 2.
The emission of energetic electrons, whose range scales like T2 (see Problem 2.3),
sets an intrinsic limitation to the position accuracy achievable by such detectors.

Suggested Readings
This problem is inspired from a similar exercise that can found in Ref. [16], Chap. 11.

The reader is recommended to study in detail that chapter to find more information
on the subject.

Bando n. 13705/2010

Problem 1.63 A neutron beam passes through a chamber of length d = 1 m which
can be either empty or filled with hydrogen at 20°C and 760 mmHg. The neutrons
are detected by a counter located at the end of the cylinder. By using the same beam,
5 x 10° countings are measured when the chamber is empty, and 4.6 x 10® when the
chamber is filled with H,. Estimate the neutron-proton cross section and its statistical
uncertainty.

Solution

Let’s denote the detection efficiency of the detector by &. The number of countings
for the two set-up is given by Eq. (1.290), namely:


http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_2
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(1.347)
N2 = N() &

[Nl =Noe (1 —2ndo)
where Nj is the total number of neutrons entering the chamber, n is the molecular
density of the gas when the chamber is filled, and o is the total neutron-proton cross
section. The factor of two in front of the gas density accounts for the fact that each
hydrogen molecule contains two protons. The molecular density n can be obtained
from the law of ideal gases PV = A R T, with .4 = N /Ny, from which:

N PNy 760-133Pa-6.02 x 10% mol™! N
n——=— = I = =25x10" cm™".
V.  RT 8.314Jmol™' K'.293 K
(1.348)

Taking the ratio between the two countings, the unknown efficiency € cancels, giving:

N N, —N 1
L =1-2ndo, a:(;)
N,

s N ) 2nd ~
5.0 x 10° — 4.6 x 10° 1 16 b (1.349)
= = arn. )
5.0 x 1006 2:25%x 10 cm=3 - 10?2 cm

The event counts are uncorrelated and large enough so that the Gaussian statistics
applies, see Problem 4.11. By standard error propagation, see Sect.4.2, it follows

that:
o (M oo (LY o= () (L4 L
(80) O((IVIZ) (6Ny) +(171) (6Ny)” = N, N1+N2 s

5 No VNI + N
00 _ [Nt N e 102, (1.350)
o Nl Nz—Nl

hence: 0 = (16 £ 1) barn.

Bando n. IN/R3/SUB/2005

Problem 1.64 A neutrino beam of mean energy (E,) = 20 GeV is produced from
the decay of charged pions. Estimate:

e the energy of the pion beam (assumed monochromatic) that has generated the
neutrino beam;

e the divergence of the neutrino beam at the far-end detector located at a distance
d = 100 km downstream of the beampipe;

e the order-of-magnitude for the neutrino-nucleon cross section;

e the mean free path of the neutrinos in a detector with the density of water;

e the ratio between the cross section on protons and on electrons.


http://dx.doi.org/10.1007/978-3-319-70494-4_4
http://dx.doi.org/10.1007/978-3-319-70494-4_4
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Solution

From Problem 1.19 and (1.109), we know that the energy of the neutrino in the
laboratory frame is uniformly distributed in the range EX(y + /¥* — 1), where
Ef = (m: — mi) /2my is the centre-of-mass energy of the neutrino in the most
probable decay 7" — ut v,, and y = E, /m,. The mean energy is therefore:

E”) = 2D _ g6 Gev.

E)=yE == > E =
() =y (mﬂ 2my, T 1 — (my,/my)?

(1.351)

For a massless neutrino, the polar angle in the laboratory frame can range up to
radians. However, for large boosts, the probability of decaying at an angle 6 > 1/y
is negligible. Since y ~ 670 > 1, we can make use of Eqgs. (1.73) and (1.76) to
obtain:

0)~23%x 1073, 0, ~49x1073,  Oggq ~ 4.5 x 1072, (1.352)

Taking the 90% quantile as an estimator of the beam divergence of the far-end detector
located at d = 100 km, we get a beam spread of about 450 m along the transverse
coordinate.

The charged-current (CC) neutrino cross section on an isoscalar target in the deep
inelastic scattering (DIS) regime, appropriate for this value of the neutrino energy,
can be computed by using the effective Fermi Lagrangian of Eq. (2.82), giving:

_ Gis _ Gis(1+cos6)’
Ovd = &5 > Oy = EE—
472 472 4
1 G? 0
= ow=73 (0w +0w) = —LME, [Q + %} , (1.353)
T

where 0 = [ dxxq(x)(Q = [ dxx g(x))is the average momentum carried by quarks
(antiquarks) inside the proton, and M indicates the average nucleon mass. See e.g.
Ref. [4] for more informations. For anti-neutrinos, one needs to swap Q <> Q. Taking
M = 0.938 GeV, and using Eq. (1.9) to convert the result into SI, we get:

1.166 GeV—2)2
oy = Q1OOCV T 4 038 Gev - E, [Q + 9]
T 3
E 0
~ 1.56 x 1073% cm? 4 =1. 1.354
X cm (GeV o+ 3 ( )

The mean free-path for neutrinos in a medium of density p = 1 g cm™3 is given

by Eq. (1.291). From DIS experiments, one measures Q < Q =~ 0.5, see e.g.
Problem 5.20. Thus, we get:


http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_5
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= A 18 g mol ™!
~ 0pNa 156 x 10738 cm2-20-0.5-1gem=3 - 6.02 x 1023 mol ™!
~2x 10" m. (1.355)

The same effective theory predicts the total cross section of the CC interaction
v, e~ — u v, to be as the first of Eq. (1.353):

Gis 2G* Ove 2m, -3
Ope = —— = meEl) = = = 2 X 10 . (1356)
T b o M[Q+0/3]
Suggested Readings

For more details on the interaction of high-energy neutrino with matter, the reader
is addressed to Chap. 8 of Ref. [12]. A compendium of useful formulas can be also
found in Sect. 49 of Ref. [4].

Appendix 1

We report here a simple computer program in Py thon which implements Newton’s
method for finding the roots of a real-valued function f, specialised here to the case
where f is the first derivative of tan(¢) in Eq. (1.67) with respect to x = cos 6*.

After initialising the program with the values of 8, B}, and B, the roots of f are
searched for by iteratively incrementing the variable x as:

starting from an initial value xy. The loop stops when the desired accuracy is attained,
i.e. Ax;/x;_1 < &, or the maximum number of iterations is exceeded.

A critical point of such a method applied to the case of interest arises from the
fact that x € [—1, 1], while the intermediate values x; may occasionally fall outside
of this range. When this happens, one can try tuning the starting value xp until the
convergence is attained.
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import math
class Newton:
def __init_ (self, b0, bl, b2):
self.a = b0/math.sgrt (1-b0*b0)* (bl + b2)/ (bl*b2)
self.b = -b0*b0
self.c = b0* (bl-b2)/(bl*b2)
self.d = (b0*b0/ (bl*b2)-1+b0*b0)
self.err = -1 #-1=NOT CONVERGED, 0=0K, 1=ERROR
# The first derivative of tan(phi) [=f in Newton'’s method]
def f_prime(self, x):
# need to define a=self.a, b=self.b,
val = a* (b*x*x*x- (d+2*Db) *x-c) /math.sqgrt (1-x*x) /math.pow (b*x*x+c*x+d, 2)
return val
# The second derivative of tan(phi) [=f’ in Newton'’'s method]
def f_second(self, x):
# need to define a=self.a, b=self.b,
val0 = a/math.pow(l-x*x,1.5)/math.pow(b*x*x*x + c*x +d,3)
vall = (3*b*x*x - (d+2*b))* (1l-x*x)* (b*x*x + c*x + d)
valz = (lg¥szisetsz= (Gk2¥l) ¥se=@)) ¥ (=5 *lortetsz=3 e s 5= (Cl=2"19) “mH2“@))
return val0* (vall-val2)
# Do up~to it_max iterations starting from x_start until accuracy<res
def iterate(self, x_start=0.0, it_max=10, res=0.01):
x_min = x_start

n_it = 0
for it in xrange (it_max) :
n_it += 1

if abs(x_min)>1:
self.err = 1
break
f0 = self.f_prime(x_min)
fl = self.f_second(x_min)
delta = -f0/f1
x_min += delta
if (abs (delta)<res) :
self.err = 0
break
return (x_min, n_it)
# Run from command line: $ python newton.py
newton = Newton (b0=0.8, bl=0.3, b2=0.5)
result = newton.iterate(x_start=0.0, it_max=10, res=0.01)
print"Result:", result[0]

Appendix 2

The computer program below illustrates the generation of toy MC events where
an unpolarised resonance of mass M decays into a pair of massless particles. This
routine profits from a number of built-in functions available in ROOT that implement
a good deal of four-vectors algebra.
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import ROOT
import math

# the random number generator
ran = ROOT.TRandom3 ()

# M = resonance\index{Resonance} mass, ntoys = number of MC\index{Monte Carlo}
events, beta = boost vector\index{Boost}
def toys(M=80., ntoys=1000, beta=ROOT.TVector3 (0., 0., 0.1)):

# this is the same for all events
E_cm = M/2.

for ntoy in xrange (ntoys) :

# cos(theta*) is uniform in [-1,1], phi in [-pi,pi]
cos = ran.Uniform(-1,1)
phi = ran.Uniform(-math.pi, +math.pi)

# the 3-momentum in the centre-of-mass frame

vl_cm = ROOT.TVector3()

vl_cm.SetPx (E_cm*cos)

vl_cm.SetPy (E_cm*math.sqrt (l-cos*cos) *math.sin (phi))
vl_cm.SetPz (E_cm*math.sqrt (1-cos*cos) *math.cos (phi) )
v2_cm = -vl_cm

# the 4-vectors in the centre-of-mass frame
pl_cm = ROOT.TLorentzVector (vl_cm, E_cm)
p2_cm = ROOT.TLorentzVector (v2_cm, E_cm)

# apply a boost to the lab frame
pl_cm.Boost (beta)
p2_cm.Boost (beta)

# compute mT and pT

pT_1 = math.sqgrt(pl_cm.Py()*pl_cm.Py() + pl_cm.Pz()*pl_cm.Pz())
pT_2 = math.sgrt(p2_cm.Py()*p2_cm.Py() + p2_cm.Pz()*p2_cm.Pz())
mT2 = 2*pT_1*pT_2-2*pl_cm.Py()*p2_cm.Py()-2*pl_cm.Pz()*p2_cm.Pz ()
mT = math.sqgrt (mT2)

print "Result:", mT, pT_1
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Chapter 2
Particle Detectors

Abstract The subject of the second chapter is the interaction of particles with matter.
The first section discusses the mechanism by which various types of particles interact
with different media. Particular emphasis is given to the concept of energy loss and
range in matter. The second section focuses on the experimental techniques for
particle identification. The third section is dedicated to the functioning of particle
detectors.

2.1 Passage of Particles Through Matter

The kinematics of a particle moving through matter is affected by the interaction
with the medium, which can be traced back to one or multiple incoherent colli-
sions with the scattering centres, or to coherent effects that involve the medium as
a whole. When the interaction is elastic, the particle transfers to the medium part
of its energy or momentum at each collision. This is the case of the energy loss by
electron collision, multiple scattering, Compton scattering. Inelastic reactions absorb
or transmute the particle into something else, and can also give rise to new forms
of radiation or leave behind excited states. This is for example the case of photon
conversion, bremsstrahlung, neutron capture, charged-current neutrino interactions.
Depending on the particle type, on its energy, and on the properties of the medium,
one mechanism usually dominates over the others.

Energy Loss by Collision

Moderately relativistic charged particles lose energy mostly by the interaction with
the electromagnetic field of atoms (electron collision). In the 10~! < gy < 10°
regime, the rate of energy loss per unit of traversed length, d E /dx, depends almost
exclusively on the particle velocity 8 and on the properties of the medium. The
formula describing the average rate of energy loss, or linear stopping power, is
called Bethe formula and is given by:

dE Za?(he)* 22 [ 2mec?y? B2 Winax cd, B
— — =27 Npap — — - B*—8(B) —2——— 2.1
ax = Nap G ﬁ2[ 7 B*—38(B) ~ ] (2.1)
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with:

Na,a  Avogadro number (6.02 x 10%* mol™") and fine structure constant (o 2
1/137)

0, A, Z mass density (g cm™3), atomic weight (g mol_l), and atomic number of
the material

z, B,y electric charge in units of e, velocity, and gamma-factor of the incident

particle

Winax maximum energy transfer in a binary collision (see Problem 1.26 for its
derivation)

1 mean excitation potential of the material, given by the approximate formula
1~16-Z%eV.

8,C density and shell corrections factors, see Problem 2.2. For their parametri-

sation, the reader is addressed to more advanced textbooks on the topic.

The units of dE /dx deserve a few more words. It is quite common to express the
energy loss as a mass stopping power, i.e. in units of MeV g~! cm? rather than
in MeV cm™!. This is motivated by the fact that the energy loss by collision is
proportional to the density of scattering centers, i.e. Z Ny p/A. Since Z/A is quite
uniform across different materials, the energy loss per unit of surphace density is
less dependent on the medium.

As shown by Eq. (2.1), for a fixed medium the energy loss by collision depends
only on the particle velocity B and on its charge z. The functional form features a
fast rise as 8 approaches 0 due to the 8~ factor, it approaches a global minimum at
around 8 =~ 0.94 = 0.97, or y between about 3 and 4, and then rises logarithmically
with y. Particle sitting on the minimum and on the plateau of their d E /dx curve are
characterised by a rather uniform and close-to-minal energy loss, and for this reason
they are said to be minimum ionising particles (MIP). Using the approximation
m,/M < 1in Eq. (1.141) for the maximum energy transfer, and neglecting both
shell and density corrections, which are however relevant for large y, we can arrive
an approximate formula:

~ (0.307 MeV mol ™! sz)

dE 2.2)
X

zZ2 ey p )
A B2 i

Considering that for most of the elements and their compounds Z/A =~ 0.5 g~! mol,
and given that the term within square brackets is slowly varying with y between 10
and 15, when dealing with particles of sufficiently large initial energy, one can often
use an average value:

dE 2
2 5220 (—2—) E Mev/em. 2.3)
dx gem—3 ) B2

Figure2.1 shows the function at the right-hand side of Eq. (2.2) for Z/A =
0.5 g~! mol and for two extreme values of the ionisation potential 7. The num-
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dE/pdx 7
[MeV/g cm'2] 6

Fig. 2.1 The approximate Bethe formula of Eq. (2.2) as a function of the y factor of the incident
particle and for two extreme values of the mean excitation potential /. The global minimum at
around y = 3 + 4 and the logarithmic growth are evident from the curves. For values of y above
the argmin of the function, the mass stopping power is in the ballpark of 2 MeV g~! cm?

ber of electrons extracted from their orbitals per unit length by the interaction with
a MIP can be crudely estimated from Eq. (2.3) to be

dN, _1dE
dx  1dx’

(2.4)

For example, for a typical ionisation potential / = 20 eV and a water-like mass
density, a unit-charge MIP produces about 10° electrons/cm.

For electrons and positrons moving inside matter, a formula similar to Eq. (2.1)
holds. A few modifications have to be introduced, however, to account for the smaller
mass and for the identity of the incident electron with the electrons that it ionizes, see
e.g. Sect.2.4 of Ref. [1] or Sect.33.4 of Ref. [2]. In particular, one needs to replace
Wmax by m, c2(y —2)/2 and 2m, c? by m, ¢? in the argument of the logarithm, and
add a number of extra B-dependent terms inside the square brackets of Eq. (2.1),
giving:

dE  (0.307MeV mol~! cm?) Zz 22
S £Z 4
dx 2 PAB?

me?y? prmecty —1) 1 2y —1 1y -1}
><|:ln 572 +F_ ” ln2+§(7) -8B | (2.5)

Numerically, it turns out that the stopping power for heavy ions and electrons and
positrons with the same velocity 8 are rather similar, indeed they are consistent with
each other to within about 15% up to y factors of about 100, after which energy loss
by radiation prevails anyway. The relative difference between Eqs. (2.1) and (2.8)
for a few illustrative values of y is reported in Table 2.1.
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Table 2.1 Relative difference between the energy loss by collision d E /dx for ions and electrons
at the same velocity and for a value of the mean excitation potential / = 20 (800) eV. The density
correction § is neglected

, ’ e
1.01 0.140 11.3% (17.1%)
1.1 0.417 10.7% (16.3%)
2 0.866 8.48% (12.5%)
4 0.968 8.10% (11.4%)
10 0.995 9.06% (12.2%)
100 0.999 12.3% (17.5%)

The ionisation charge and the residual atomic excitation produced by the passage
of a charged particle can be detected through various methods and thus yield a mea-
surement of the particle position or energy. For example, this is the working principle
of gaseous detectors like proportional chambers, drift and streamer tubes, RPC, lig-
uid noble-gas detectors, etc. Semiconductor materials are also largely employed in
experiments. When a charged particle moves inside a semiconductor, a number of
electron-hole pairs are produced by the electrons being excited from the valence to
the conductive band. One strength of these materials relies on their small band gap
energy, a few eV infact, yielding a large number of signal carriers. Through appro-
priate doping and polarisation of the semiconductor, these electron-hole pairs can
drift across the medium without significant recombination, to be finally collected for
signal generation.

Other materials have the property of converting a fraction of the energy lost by
a moving charged particle in the form of molecular or electronic excitation of long-
lived states, that subsequently decay by emitting photons of characteristic wavelength
(fluorescence). Because of such property, these materials are called scintillators, and
the emitted radiation is called scintillation light. A key property of the scintillation
mechanism is that the medium is transparent to its own light over distances large
enough that the photons can be efficiently collected. The total light output per unit
length is approximately proportional to the stopping power, a property which can also
allow one to measure the total particle energy for fully absorbed particles. Scintillators
can be classified into two families: organic, for which the scintillation mechanism
relies on the fluorescence of organic molecules (e.g. plastic, organic crystals), and
inorganic, for which the fluorescence originates from the band structure of the crystal
(possibly activated by the introduction of suitable inpurities), or from electron-ion or
ion-ion recombination. A broader overview on the field can be found in e.g. Chap. 7
of Ref. [1].

Table2.2 shows the mean energy loss necessary to produce one signal carrier,
which can be either a ion-electron pair, an electron-hole pair, or a scintillation photon,
depending on the excitation mechanism. As shown in the table, the largest signal
yields are provided by semiconductors, followed by the best scintillators and by
ionisation in noble gases. Some of the most popular scintillators materials in HEP
are actually characterised by relatively low light yield.
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Table 2.2 Mean energy loss necessary to produce one signal carrier, listed in increasing order. For
scintillators, the mean energy is defined as the inverse of the light yield (LY) in [y /MeV], a quantity
that is commonly used to quantify the brightness of the scintillator. The values are taken from
Ref. [1, 2] and, since they usually depend on the ambiental conditions, they should be considered
more as an order-of-magnitude estimate. For more precise values, the reader is addressed to the
technical literature

Material Excitation Mean excitation energy ¢ [eV]
Ge (77 K) Electron-hole 3.0
Si Electron-hole 3.6
CsI(TI) Scintill. y 12
NalI(Tl) Scintill. y 22
Xe Electron-ion 22
Isobutane ITonisation 23
Ar Electron-ion 26
CO, Tonisation 33
LISO (Ce) Scintill. y 35
He Electron-ion 41
Plastic Scintill. y 100
BGO Scintill. y 300
PbWO Scintill. y 5000
Multiple Scattering

Multiple scattering (MS) through small angles refers to the ensemble of incoher-
ent elastic collisions against the nuclear fields that charged particles undergo when
crossing a piece of material. Their collective effect it to randomise the direction of
the incoming particle with no significant energy loss. More informations on the sub-
ject can be found in Ref. [2]. The probability of multiple scattering through small
angles is large because of the sin~* #/2 dependence of the Rutherford cross section
(see Problem 1.58). However, there is also some finite probability that the scattering
occurs at large angles, with subsequent emission of a knocked-out electron, or §-ray
(see Problem 1.62 for how to estimate such a probability). The quantity that char-
acterises multiple scattering through small angles is the mean square angle per unit
length ®2, which in the standard theory is given by:

E. \> 1 4
0 = (_) —, with E;=,/—m,c> =21 MeV. (2.6)
Belpl) Xo a

Notice that the quantity Ej is the same that enters the definition of the Molier radius
for the lateral width of an electromagnetic shower, see Problem 2.34. The effect
of MS inside a medium of length L and radiation length X is to randomise the
position and direction of a charged particle at the exit of the medium. Considering
their projections onto a plane, the displacement y and angle 6, are described by the
joint p.d.f:


http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1

112 2 Particle Detectors

2V3 1 4, 3y, 3y?
P(y,9y|L)=TWeXP|:—@—3(9y— Tt 2.7)

From Eq. (2.7), one can easily compute the standard deviation of 6, and y, and their

correlation:
O2L 14.8MeV | L
9% — S — — 2.8
VO =5 S = e VX &9
L 8.54MeV | L
VO =0 —==2— L
V3 Belpl Xo

_bo) V3 (2.9)

0202 2

A more accurate treatment of MS modifies the first of Eq. (2.8) to the well-known

formula:
0.0136 GeV | L L
JO)=g————— | — [1 + 0.038 In (—)i| , (2.10)
@) Belpl  V Xo Xo

See Ref. [2] for further informations.
Energy Loss by Bremstrahlung

For energies above a material-dependent threshold known as critical energy (E.),
energy loss by radiation in the electromagnetic field of the atoms (bremsstrahlung)
prevails. An approximate parametrisation for the critical energy for electrons and
positrons is provided by the formula

800 MeV

C

In the bremsstrahlung-dominated regime, the energy loss per unit length is approxi-
mately proportional to the energy itself:

dE E
- =, (2.12)
dx X()

where X, called radiation length, is approximately independent of E. In units of
mass per unit area, the radiation length is provided by the approximate expression:

(m,c*)*A

T 4Z(Z+ ) Nadd(ho) [In(183Z-173) — f(2)]

716 A g cm™2 180 A 5 2.13)
~ I —_— cm , .
Z(Z + 1) In(287+/2) 728

Xo
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Table 2.3 Radiation lengths for some materials that can be commonly found in particle physics
experiments, listed by decreasing order or Xo [cm]. From Ref. [1]

Material Xo [g/cmz] Xo [cm]
Air 36 300 x 10?
Scintill. 44 42

H,0 36 36

Si 21.9 9.4

Nal 9.5 2.6

Fe 13.8 1.8

BGO 8.0 1.1

Pb 6.4 0.56

where A is the mass number in units of g mol~!. More informations on f(Z) can be
found in dedicated textbook, see e.g. Ref. [1]. Notice that both the nucleus and the
atomic electrons contribute to this &(a®) process: the former through a charge Z e
(hence the term ~ Z?2), the latter through Z incoherent scatterings of strength e (hence
the term ~Z). The last of Eq. (2.13) is a further approximation that helps remembering
the order-of-magnitude of X, and its dependence on the atomic and mass number.
The radiation length for a few representative materials commonly found in particle
physics experiments are reported in Table2.3. The energy loss by radiation is the
dominant mechanism of energy degradation for ultra-relativistic charged particles.
Notice that the radiation length X, is proportional to the mass squared of the charged
ion (m, in Eq. (2.13)). The next-to-lightest charged particle is the muon with a mass
nearly 200 times larger than m,. The threshold at which energy loss by radiation
starts to be comparable to energy loss by collision is therefore much higher.

Energy Loss by Coherent Radiation: Cherenkov and Transition Radiation

If B > 1/n(w), n(w) being the refraction index of the medium at the frequency w, the
particle emits energy in the form of Cherenkov radiation of wavelength A = 27 c/w.
The energy loss per unit length is given by:

dE ah
:Zz—

- = dw wsin® 0. (w), (2.14)
dx

where 0, is the angle of the shock-wave direction with respect to the particle direction,

COS 90 - . 2. 15

Although the Cherenkov spectrum is continuous, photodetectors have a limited range
of sensitivity which depends of the quantum efficiency of the photocathode. In order
to estimate the number of photons to which the detector will be sensitive, we can
integrate Eq. (2.13) over the relevant spectrum to yield:
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dN, 2raz? ., dN, 2, A=A
TRy sin“ 6.(A) = e ~ 2maz” (sin” 6.) e (2.16)
N 1.15 x 103 AA
o 0T 2 sin6) S
L (A/400 nm) A
(2.17)

where A = /A4, and the mean value of sin’ 6, is used, which is appropriate if n
is slowing varying. For example, with a photodetector sensitive in the range 300 to
500 nm, this gives N, < 500 photons/cm for a particle with z = 1, to be compared
with the about 10° electrons /cm electrons released by a MIP from collision loss, see
Eq. (2.7). When coupled to a photodetector, the geometric and quantum efficiency
of the photocathode further reduce the photo-electrons (p.e.) output. Equation2.16
for z = 1 can be written as:

Npe. = L Ny (sin® 6.) (2.18)

where Ny is the so-called Cherenkov detector quality factor, which is of order
100 cm™! for realistic photodetectors sensitive in the visible-UV range: practical
counters in experiments feature values of the quality factor ranging between 30 and
180 cm~! [2].

Detectors based on the detection of Cherenkov radiation can be used for measuring
the total energy of the crossing particle as well as for particle identification. In the first
case, one exploits the proportionality between the collected light yield and the range
of the particle, which is approximately proportional to the initial particle energy,
see Problem 2.3. For the second purpose, one should distinguish between threshold
detectors, which trigger the passage of a particle with velocity above the Cherenkov
threshold, and imaging detectors, which are instead designed to exploit the angle of
emission of individual Cherenkov photons. For highly energetic particles with 8 ~ 1,
the employment of threshold Cherenkov detectors for particle identification becomes
problematic since the index of refraction needs to approach one. To this purpose,
radiators with very low density, like He, C O,, or silica aerogel, are commonly used.
Indeed, the refraction index for a homogeneous medium depends on the density
according to the relation:

27 £(0,K)

=1 ,
HTE

(2.19)

where N is the density of scattering centres, f (0, k) is the forward scattering ampli-
tude and k is the wave-number vector. For example, a simple model based on a
collection of damped electronic oscillators with resonant frequency wy and damping
constant v would give [3]:

nw)=1+2rrc> NZL (2.20)

W} — w? —ivw
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Table 2.4 Refraction index and y threshold for various radiators commonly used in Cherenkov
detectors. The values refer to wavelengths in the visible domain

Material n—1 y

He (NTP) 33 x 107 123

Air (NTP) 2.7 x 1074 43

CO; (NTP) 43 x 1074 34

CsHj, (NTP) 1.7 x 1073 17.2

Silica aerogel 0.007 = 0.13 2.1+85
H,0 0.33 1.52

Glass 0.46 +0.75 1.22 = 1.37

See Tables 2.4 and 6.1 of Ref. [2] for the index of refraction of some popular radiators.
In the 8 — 1 regime, though, the light output becomes small as for Eq. (2.16). For
example, if a threshold Cherenkov is used for particle identification in a beam of fixed
momentum p, the refraction index can be set to the inverse velocity of the slowest
particle, say f,, and then:

_ B _1—mi/lpP — 1+ mi/lpP _ mi—mi
B} B} p|2 + m?

(sin®6,) = , (2.21)

which decreases like the square of the beam momentum.

When a relativistic charged particle crosses the boundary between vacuum and a
medium, a coherent radiation is emitted in the forward region & ~ 1/y. The total
energy radiated depends linearly on the y factor of the particle according to the
formula:

I—agty % _ (0.07 I eV) v, (2.22)
3 gcm3 A
where w, = /4w n./me is the plasma frequency of the medium [3]. Although
the energy emitted per each crossing is rather small, the total yield for particles
with large y, like GeV-electrons can be enhanced by interleaving several layers of
medium, as it is usually done in the so-called transition radiation detectors (TRD).
The latter find applications as tracking devices with built-in particle-identification
capability. In terms of emitted photons, the spectrum is concentrated in the region
0.1y < w/w, < y, so that more energetic particles give rise to a harder spectrum.
More informations on the subject can be found in Ref. [2].

Interaction of Photons with Matter

Photons interact with matter by three mechanisms: photoelectric effect, Rayleigh
and Compton scattering, and pair-production. Depending on the material and on the
photon energy, one mechanism at the time usually dominates over the others. The
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photoelectric effect consists in the absorption of the photon by an atom, with the
subsequent expulsion of an electron of energy

E,=hv— %, (2.23)

where hv is the photon energy and ., is the electron binding energy. Conversely,
photon scattering against the atomic electrons does not destroy the photon, but mod-
ifies its energy and direction, see e.g. Problem 1.25. The scattering can either leave
the atom in the ground state (coherent, or Rayleigh scattering) or kick-out the elec-
tron (incoherent, or Compton scattering), thus leaving the atom in an excited state.
Pair-production is the conversion of a photon into e™e™ in the electromagnetic field
of the atom, see e.g. Problem 1.48 for the kinematics of this reaction.

At low energy, photoelectric effect prevails. As the atomic electrons are bound
in discrete states, the photoelectric cross section as a function of the photon energy
features a number of thresholds corresponding to the opening of new atomic level. For
energies above the innermost level, the so-called K-shell, the cross section steeply
falls with energy like ~E7/2. The K-shell threshold for high-Z elements can be
crudely estimated by using the energy levels formula for the hydrogen atom:

E(n) = — 27%m, % (2.24)

ﬁa
From this approximations, one expects Ex ~ 10 keV for metals like iron (measured
value 7.1 keV), and Ex ~ 100 keV for lead (measured value 88 keV). At lower
energies, the L and M atomic levels give rise to as many new thresholds. Depending
on the photon energy, the cross section changes with the atomic number of the
medium. For MeV photons, it is roughly proportional to Z#, with 8 = 4 + 5. The
cross section at the K -threshold is of the order of 10° barn in lead and about 10° barn
in iron. See Ref. [9] for a compendium of measured values.

Above the K -threshold, the photoelectric and Compton scattering cross sections
become of comparable size. The latter changes mildly with energy for photon energies
up to the pair-production threshold, after which pair-production becomes dominant.
For k = E/m, < 2, the total cross sections is approximately given by the Klein—

~

Nishina formula for Z incoherent scattering centers [9]:

8 14+2k+ 1.2k
T 2) T+2k+ 1287 (2.25)

omj =Z ~Z\—
oc p OKN (3 re (1+2k)2

with 87 /3r2 = 0.665 barn. The low-energy limit of Eq. (2.25) gives the Thomas
cross section for Z free electrons, while the k-dependent term reduces the cross
section for increasing photon energies. In the Compton scattering, a fraction of the
photon energy is transferred to the outgoing electron. The differential cross section
in the recoil energy of th electron 7' can be obtained from the Klein—Nishina formula,
giving
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2
docowy _ 3om 1, (&) & (Z - g) (2.26)
k2 ( 2 1 — T

dT ~ 8m,c%k? E k
2k

with 0<T <
1—-2k

see also Problem 1.25. Due to the second term within square brackets in Eq. (2.26),
the differential cross section rises steeply with 7" up to the kinetic bound, giving rise
to a characteristic peak in the electron spectrum known as Compton peak.

When the photon energy exceeds the ete™ threshold, pair-production in the
nuclear and electronic fields dominates. For energies below about 10 MeV, the inter-
action cross section varies logarithmically with the photon energy, and then becomes
almost independent of energy. Using Tsai’s formula [4], we get

dUpair N A
dx X() NA

4
[l—gx(l—x)] = Opair = = ~ 7.2 Z? mbarn,

9 Xo Na
2.27)

where x is the photon energy fraction transferred to the electron/positron, and we
have used the last formulain Eq. (2.13) to approximate X. Notice that the appearance
of macroscopic properties of the medium in the cross section, like the mass number
and the Avogadro number, are fictitious, since they exactly cancel the same quantities
inside X. The latter is conveniently introduced to show that the interaction length
for ete™ production is indeed related to the radiation length by Apair = (9/7) Xo.
See Ref. [2] for more details.

Neutrons

The interaction between neutrons and matter depends strongly on the neutron energy.
For energies in excess of about 100 MeV, neutrons initiate a hadronic cascade, with
the production of primary hadrons (e.g. pions) sharing a fair fraction of the initial
neutron energy. Fast neutrons, i.e. from a few hundreds of keV to a few tens of MeV,
slowly thermalise by elastic scattering in high-Z materials, or faster in hydrogenised
materials, see Problem 1.24. Inelastic scattering, like A(n,n’)B, A(n, 2n")B, can
also occur in the presence of nuclear resonances. Epithermal neutrons, i.e. from
about 0.1 eV to about 100 keV, and thermal neutrons, i.e. around 25 meV, undergo
preferentially nuclear reactions, like radiative neutron capture A(n, y)B, nuclear
spallation A(n, p)B, A(n, o) B, and nuclear fission.

Problems
Bando n. 13153/2009

Problem 2.1 Give a qualitative description of how the energy loss by ionisation of
a charged particle of mass m depends on the particle momentum.


http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Solution

The energy loss by ionisation dE/dx of a particle of mass m and charge ze is
described by the Bethe formula of Eq. (2.1). To good approximation, it is a function
of the particle velocity and charge only, namely:

dE

= 2 f(B) =21 (p) (2.28)
X

see also Problem 2.4. Ata given value of m, the function f’(|p|) features the following
qualitative behaviour:

alplInlp| |pl 2 (m/m) I
blpl+c [pl<m
c

fph ~ ip| ~ 3m < 4m

(2.29)

c+dlInlp| [p|>m

In words: it first decreases as |p|~>In |p| at small momenta, until the momentum
reaches a few times the mass value. At this point, it plateaus and increases only
logarithmically with |p|, see Fig.2.2.

Bando n. 5N/R3/TEC/2005

Problem 2.2 Motivate the presence of the density and shell correction terms to the
Bethe formula.

Discussion

The Bethe formula describes the energy loss of a charged particle due to the elastic
collisions with the atomic electrons. In this respect, it assumes that the electrons
are at rest compared to the moving particle, which is nearly unaffected by each

Fig. 2.2 The Bethe formula dE/dx [a.u.]
dE /dx in arbitrary units r2 con

a |pl “In|pl a,b,c,d are constants
(a.u.) as a function of |p|, /

compared to its piecewise
approximation in four
momentum ranges

/ dlInlpl + ¢
o /

0.5 1 1.5 2
Ip| [GeV]
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individual binary collision. A non-relativistic version of the Bethe-Bloch equation
can be indeed obtained by considering the total momentum transfer that an infinitely
massive moving charge has on a free electron initially at rest and located at an
impact parameter b with respect to the direction of flight. The net effect is obtained
by considering an ensemble of such electrons up to a maximum value of b such that
the momentum transfer is above the mean ionisation energy necessary to strip the
electron from its orbital. See e.g. Sect.2.2 of Ref. [1].

Solution

The Bethe formula turns out to be accurate in the high- and low-velocity regimes only
if the density § and shell C corrections are added, as shown in Eq. (2.1). The former
accounts for the polarisation of the medium by the electric field of the incident
particle, which decreases the effective volume available for electron collision. As
such, it tends to reduce the energy loss, and is more relevant at high-energy, see e.g.
Ref. [2] for a parametrisation of §. Conversely, if the particle velocity is comparable
with the electron velocity, which is of order «, then the assumption that the electrons
are at rest breaks down and a correction C(/, 8) has to be included.

Suggested Readings

The reader is addressed to Sect.2.2 of Ref. [1] and Chap. 33 of Ref. [2] for further
details on this topic.

Problem 2.3 Derive an approximate expression for the range R of a charged particle
of mass m and initial energy E thatloses energy by collision with the atomic electrons.
How does R depends on the initial kinetic energy in the ultra-relativistic limit £ >> m
and in the classical limit?

Solution

The energy loss by collision is given by the Bethe formula of Eq. (2.1). The range
of a particle is the average distance it travels before losing all of its kinetic energy
and thus come to a stop. In the continuous slowing-down approximation (CSDA), it
can be obtained by integrating the inverse linear stopping power over the full range
of kinetic energy, i.e.:

" 1
R(E) =/E dE m (2.30)

The analytical integration of the Bethe formula is an hard task to due to the logarithmic
term. However, as we have seen in the introduction Sect. 2.1, for sufficiently large
initial energy, one can neglect the dependence of this term on the velocity 8 and use
an approximate version of the type:

dE C7?
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with C ~ 1.7 MeV [p/(g cm™)] em™", see Eq. (2.3). Using Eq. (2.31) in place of
the full Bethe formula, the range is given by:

E 2 E 2
B 1 m
Ry = [Car = o [ (1-5) -

1 11 1 (E—-m? m (y—1)?
- fieme (- - et

E cz2 E ~Cz2 vy
(2.32)
Hence, we find that R/m is a function of y = E/m:
2
R_ 1 g-p_ 1 (VIEe0 ) )33
m_Cz22 y C2  Ji+x@Br? 233

The second of Eq. (2.33) can be directly compared to Fig. 2.3, which shows the range
of a heavy ion in different materials as obtained from a full integration of Eq. (2.1),
as a function of By (from Ref. [2]). A good numerical agreement is found with the
approximate formula of Eq. (2.33) up to 8y 2 1. For smaller values of 8, Eq. (2.33)
underestimates the true range by a fair amount. This is a consequence of having
neglected the logarithmic term in the stopping power.

Fig. 2.3 Range of heavy 50000 F
charged particles in liquid 20000 -
(bubble chamber) hydrogen, 10000 —
helium gas, carbon, iron, and 5000 F

lead. From Ref. [2]
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According to Eq. (2.32), the range for an ultra-relativistic particle is proportional
to its energy:

~mr £ 2.34
Ry>>1 ~ C_Z2 = C_Zz ( . )
This result comes out intuitive if one considers that a particle with y > 1 moves at
the speed of light; the energy loss is approximately constant until the velocity drops
below c. At this point, the stopping power steepens due to the 82 dependence and
the residual energy gets degraded in a short path, so that R ~ E/(dE /dx|yip) ~ E.
For a non-relativistic particle, the range is instead a quadratic function of the kinetic
energy 7T

R~ Eomt _ T (2.35)
NM™"Cc2m — CZm ’

However, one should remember that for 8 < 0.5, the approximation of Eq. (2.31) is
not valid anymore and the resulting range is underestimated. For example, for an «
particle emitted in the decay of !°Po with T = 5.3 MeV, the range in air predicted
by Eq. (2.35) is about 5.3%/(2- 1073 .22 .4 x 10%) &~ 1 cm, whereas the CSDA range
from a full integration of the Bethe function gives about 5 cm [5].

Suggested Readings

A good starting point to learn more about the concept of range is Chap. 2 of Ref. [1].

Problem 2.4 Determine the relation between the stopping power d E /dx for two
particles of masses m; and m,, electric charges z; e and z; ¢, and same momentum
|p|, moving through the same medium. What is the relation between the range R,
and R, of the two particles under the same conditions?

Solution

The energy loss by collision is given by the Bethe formula of Eq. (2.1), which, as a
function of the particle momentum, can be written as:

dE; Ip!

- <|p|>=z%f(£), (2.36)
X m;

so that:

dE 3
“=(pD =z§f(|p|) = Z—;ﬁ(ﬂm)

ms z3 ma my

2
5 dEy (m
==—|— . 2.37
Z% Ix ( 5 |P|) ( )
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Owing to such scaling law, the stopping power d E(|p|)/dx as a function of |p| for
different particle types are all related by a uniform scaling of the orizontal axis equal
the mass ratio, and by a scaling on the vertical axis by the ratio of the squared charges.

Let’s now consider the range as defined in Problem 2.3. For a given kinetic
energy T, the range is given by:

0 0
1 1
R(T)= | dE = [ dE ———, 2.38
0=, 4% =), 27 (%) 239
so that:
0 1 2 0 1 Amy (0,1
ko) = [ B = T e = BT AE
2 f 2 2 f Uy 2 iy SRA T
2
Z%@ 1(BT)~ (2.39)
5 M1 nmy
Discussion

The simultaneous measurement of the stopping power d E/dx and of the particle
momentum, or of its kinetic energy, or of its velocity, provides a tool to identify the
particle type thanks to the scaling law of Eq. (2.37). The canonical example of a
detector that allows for a simultaneous measurement of these quantities is the time
projection chamber (TPC).

Suggested Readings

For an overview on the TPC, the reader is encouraged to consult the PDG review
on detectors for accelerators [2]. See also Ref. [1] for the scaling law of stopping
powers and ranges.

Problem 2.5 The range R of a particle is the distance over which the particle loses
all of its kinetic energy. For a heavy ion, the energy loss per unit length of traversed
material can be approximated by the formula

dE Cz?
A (2.40)
dx B2
where C ~ 1.7 MeV cm™', z is the ion charge in units of e, and 8 is the particle
velocity.

e What kind of interaction between the ion and the material is responsible for this
energy loss?

e Explain how the mass of a charged particle can be determined from the simulta-
neous measurement of d E /dx and of the momentum |p|.
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e Estimate the range R in water of a proton with 7 = 60 MeV.

Solution

As discussed in Sect.2.1, heavy ions moving in matter lose energy due to elastic
collision with the atomic electrons.

Since dE/dx ~ z? f(B) and |p| = mBy, the simultaneous measurement of the
two quantities allows to measure m for different ansatz on z. A comparison of the
mass values thus obtained with the spectrum of known particles allows one to identify
the particle type.

In order to estimate the range of a proton in water, we can use Eq. (2.35) obtained
from the limit y — 1 in Eq. (2.32). We can obtain the same result starting from
Eq. (2.40) and using the fact that T = |p|?/2m for a classical particle:

R(T)—/OdE ! —/TdE ﬁz—/TdT’ a1 T
I dE/dx — Jo 2C  Jo m,ctz2C  m,ctz2C
60)2 MeV?
(60)” Me —2.1cm, (2.41)

~ 10° MeV - 12- 1.7 MeV cm-!

to be compared with a CSDA value of 3.1 cm from a full integration of the Bethe
formula [5].

Bando n. 13153/2009
Problem 2.6 Discuss the characteristics of the Bragg peak and its main applications.

Solution

The energy loss of a charged ion in matter is described by the Bethe formula (2.1). Due
to the dominant 1/82 behaviour at velocities below about 0.9, the energy deposition
per unit length becomes increasingly more intense as the particle velocity decreases.
By tuning the initial particle energy 7T to attain a certain range R, the Bethe formula
predicts that most of 7 will be infact dissipated near the end of the trajectory.

Since E = E(B), the Bethe formula can be solved as an ordinary differential
equation (ODE) in B, giving a solution d E(x)/dx. The latter features a peak at
x & R, the so-called Bragg peak. Indeed, by using the approximation (2.3) and
assuming the ion to be non-relativistic, the ODE can be easily solved analytically,
yielding:

d (1 2 C ap 2 C 3 22C
E(E /3)——77 mﬂa——ﬁ, ﬂdﬁ——de’

472C [ azc —x
0
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Fig. 2.4 Sketch of a typical
Bragg curve for protons or
heavy ions moving in a
dense medium

—dE/dx

) 4

where we have used Eq. (2.35) to define the range R of the particle. From Eq. (2.42)
we therefore get:

dx T g JT-x/R

The energy AE deposited in the interval [AR, R] can be easily computed from
Eq. (2.43) to give:

(2.43)

d

R
AE(A)=/ dx —E‘=T~/1—x. (2.44)
A

R dx

The value of A such that a fraction « of the initial energy is lost in the interval [AR, R]
is therefore given by A = 1 — a?. For example, 50% of the kinetic energy 7 is lost
in the last quarter of the particle path, and 25% in the trailing 6% of the path. A
caveat: Eq. (2.43) has been obtained under the assumption that d E /dx ~ B~2. This
is a poor approximation for 8y < 1, and the resulting stopping power gets largely
overestimated. Furthermore, when By < 0.1, the shell corrections are relevant,
reducing significantly the stopping power, and the Bethe formula ultimately breaks
down. Overall, the Bragg curve is much less peaked than predicted by Eq. (2.43),
and infact the maximum occurs before the full range is attained, see Fig.2.4.

The Bragg peak finds one major application in medical physics as a tool for curing
solid tumors: the intense energy deposition in the neighbourhood of the beam range
allows to burn selected tissue depths with reduced damage to the upstream tissue.

Bando n. 13705/2010

Problem 2.7 A 2 cm-thick plastic scintillator is coupled to a photomultiplier with
gain G = 10% and detection threshold Qg = 1 pC, such that all the scintillation
light can be assumed to be detected. A beam of particles of energy 10 GeV impinges
perpendicularly to the scintillator:
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e Estimate the charge collected at the anode, if the beam is made of muons.
e If the beam is made of neutrons, estimate the minimum scattering angle on protons
such that the neutron can be detected.

Discussion

Scintillators have been briefly discussed in Sect. 2.1. A scintillator is always coupled
with a photomultiplier that transforms the scintillating photons in photoelectrons
(p.e.). Because of the geometry of the medium and of the QM-nature of the photo-
electric effect, a photomultiplier is only sensitive to a fraction ec of the total light
output, of which only a fraction &q is actually converted into p.e. By themselves,
such p.e. do not usually represent an amount of charge large enough to generate a
significant signal, i.e. above the electronic noise. For this reason, the primary p.e.
undergo a multiplicative enhancement between the photocathode and the anode. This
can be for example achieved by accelerating them with intense electric fields, so that
they can initiate a chain reaction that brings to the fan exponential charge multi-
plication. The enhancement factor, i.e. the total output charge per initial p.e., is the
called gain (G) of the photomultiplier. The enhanced charge is finally read-out at
the anode by a chain of amplifiers which transforms it into voltage or currents. A
key point in all this procedure is that the proportionality between the initial number
of p.e. and the final signal amplitude is preserved. After coupling the amplification
stage to the read-out electronics, characterised by an electronic noise N,, the relative
energy resolution from a scintillator that produces n,, Poisson-distributed photons
for a particle of energy E, can be parametrised as [2]:

o(E) | s N Y
E \/ny £q Ec + (Qny €q 8c) ’ (2:45)

where fy is the called excess noise factor and arised from the amplification process.
The role of the gain factor in reducing the signal uncertainty is made clear by
Eq. (2.45).

Solution

A 10 GeV muon loses energy mostly by collision with the atomic electrons as dis-
cussed in Sect.2.1. In particular, it behaves as a MIP, and its mean energy loss per
unit length is provided by Eq. (2.3). For a plastic scintillator, the mass density is
approximately p ~ 1 g cm™3. With this value, the energy loss is given by:

_4E 1 em? 5 i
P 20MeVg 'cm”-1gem™” =2MeVem™ . (2.46)
X

While crossing a thickness d = 2 cm, the total energy lost by the muon is AE =
|dE/dx| - d ~ 4 MeV. The mean excitation energy for a plastic scintillator can be
found in Table 2.2. Assuming ¢ = 100 eV, ec = 1, and eg = 1, we expect to collect
an average charge at the anode of about:
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AE . 4MeV
0=G-— -e=10"-
£ 100 eV

1.6 x 107 C = 6.4 nC, (2.47)

i.e. more than three orders of magnitude larger than the threshold charge Q.

If the beam is made of neutrons, their detection proceeds through the measurement
of the recoil energy of protons and other nuclei that interact with the beam particles.
The threshold energy such that a recoil proton gives rise to a detectable signal is
determined by the condition:

G. In On, = T, 072C-10%eV ke (2.48)
—_— . = s = = . (] 3 B
e . "7 105.1.6 x 10-1°C

which is small compared to the proton mass and to the beam momentum. It is easy
to show that for very small recoil energy, momentum has to be exchanged perpen-
dicularly. Indeed, if we indicated the four-momenta of the initial (final) neutron and
proton by p and k (p’ and k'), and the angle that the recoiling proton forms with the
beam momentum as 6, then:

p=p+tk-Fk,
my =m, +2m? — 2E, m, — 2(E, E), — |p,||p/,| c0s6),) — 2E/ m,,
E;, (En +mp)_mp (En +mp) _ Tp (E,,—I—mp) ~

cosf, = =
g pa 1P| [pa 1P|
T, [E,, +mp} ey
— | —— |, if [p)l <K< m,. (2.49)
2m, | |pal ’ !

Since " <« m, for our case, and given that the factor within square brackets is of
order one, the resulting angle turns out to be pretty much 7 /2, and conservation of
momentum implies that the momentum received by the extra neutron is also is also a
vector perpendicular to the beam direction. Since Ty, < E,, the neutron momentum
magnitude after the scattering is almost unchanged, and the scattering angle of the
neutron is therefore given by:

; 2m, T, 2-0.938-0.62 x 10-°
ool _V2mTw x =1.1x10*rad. (2.50)
P»| p»| 10

n

Bando n. IN/R3/SUB/2005

Problem 2.8 A MIP generates, on average, n electron-ion pairs per cm in a gaseous
detector at standard pressure. What is the typical value of n, if the gas consists in a
argon-isobuthan mixture 60%—40%? Which additional factors acting on the statistics
of the produced electrons determine the standard deviation of the signal?
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Solution

On average, a MIP releases an amount of energy per unit length described by Eq. (2.3).
If the gas is made of argon and isobutane, which have a small ionisation potential
I ~ 12¢eV, see e.g. Table6.1 of Ref. [1] or Ref. [5], the Bethe formula predicts
an energy loss per mass surphace of about 2.5 MeV g~! cm?, see also Fig.2.1. The
density of the gas at STP conditions can be calculated from the law od ideal gases:

A (06-18404-58)gmol!  34gmol’ _
P=RT/P ~ 8314Tmol 'K ' -298K/105Pa 2.5 x 10*cm®mol |
=14x102gem™>. (2.51)

The mean excitation energy for the two molecules can be read from Table. 2.2. Taking
a weighted average of the two components, we get:

|dE /dx| _25MeVglem? - 1.4 x 107 gem™

n= = =140cm™ L.
(0.6-26+0.4-23)eV 24.8eV

(2.52)

In a gaseous ionisation detector, the primary electrons need to be accelerated by
an intense electric fields until they trigger the formation of an avalanche. Indeed, an
amount of primary ionisation electrons like in Eq. (2.52) is not sufficient to produce a
detectable signal. Since the charge-multiplication process is intrinsically random, it
introduces an additional fluctuation in the number of signal carriers. If an electron-ion
pair recombines before the formation of the avalanche, or if it gets trapped by the gas
molecules to give rise to an ion, it gets lost for later multiplication. Suitable amounts
of electronegative gases, like freon, can limit this effect. The gain (see Problem 2.7),
and hence the final statistics of signal carriers, depends on the choice of the gas.
Noble gases are usually chosen because of their large gain factors. Another typical
problem with gaseous detectors is the formation of avalanches in random points of
the chamber created by energetic photons emitted by the accelerated electrons. This
undesired effect limits the operation rate and resolution of the detector. These effects
can be limited by adding appropriate amounts of organic quenchers, like isobutane.
Finally, one should remember that the resolution of a gaseous ionisation detector that
absorbs all of the particle kinetic energy scales better than 1/./n by the so-called
Fano factor, which for typical gases is in the range 0.05 = 0.20, see e.g. Table 6.2 of
Ref. [7].

Suggested Readings

An introduction to the physics of electronic avalanches in gas can be found in Refs. [1,
7]. For a more comprehensive review of gaseous detectors, the reader is addressed
to Ref. [8].

Bando n. SN/R3/TEC/2005
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Problem 2.9 How many electrons does a charged particle produce on average when
crossing 100 pm of silicon?

Solution

Let us assume that the charged particle have z = 1 and that they behave like a MIP.
The energy loss per unit length is given by the Bethe formula of Eq. (2.2). For a MIP,
the dependence of d E /dx on the particle energy is mainly through the logarithmic
term ~ In y. Assuming the particle to be in the neighborhood of the global minimum,
ie.y & 4, we can explicitly compute the right-hand side of Eq. (2.2) for a pure silicon
medium, giving:

dE 2.33 3.14 2.0.511 MeV - 42
—— = (0.307 MeV mol ' cm?) - gem — © -1
dx 28.1 g mol 16 - 1499eV

=3.7MeVem™!, (2.53)
which agrees well with the more accurate prediction of 3.9MeV cm~! [5]. The

number of electron-hole pairs produced by the passage of such a particle across a
thickness d = 100 wm of silicon is therefore given by:

__|dE/dx|-d _3.7MeVcem™'-107%cm
N € N 3.6eV

m ~ 10%, (2.54)

where we have used the mean excitation energy for silicon as in Table2.2.

Bando n. IN/R3/SUB/2005

Problem 2.10 A relativistic electron loses energy by both ionisation and by radiation
when moving inside matter.

e How does the energy loss by ionisation and by radiation depend on the material?

e How do they depend on the electron energy?

e The critical energy is defined as the energy at which the two energy losses are
equal: which between a muon and an electron has the smallest critical energy?

Solution

The energy loss of relativistic electrons and positrons is discussed in Sect.2.1. For
energies below the critical energy E., energy loss by collision with the atomic
electrons prevails. The material enters mostly through its electron density n, =
Na pZ/A and the average ionisation potential /. The stopping power is propor-
tional to n, and depends logarithmically on /. A residual dependence on the atomic
number Z comes from the shell and density effects, see e.g. Ref. [2]. For electrons
with energy in excess of a few MeV, the rate of energy loss by collision is almost
independent of the electron energy, while it goes like 7! at smaller energies.
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Fig. 2.5 Electron and muon critical energy for the chemical elements. From Ref. [2]

Energy loss by radiation prevails above the critical energy. The material enters
through the atomic density n = Na p A and through the atomic number Z. In particu-
lar, it is proportional to the combination Z2p/ A, as shown by Eq. (2.13). Furthermore,
it is proportional to the energy itself, see Eq. (2.12).

Since the energy loss by radiation is inversely proportional to m?, where m is the
mass of the incident particle, see Eq. (2.13), while the energy loss by ionisation is
independent of m for sufficiently high energies, it follows that the critical energy
must be approximately go as ~m?, since it is roughly given by the position of
the intersection point between two curves in the (d E /dx, E) plane, one of which is
roughly constant (energy loss by collision), while the other (energy loss by radiation)
is a straight line of slope proportional to m 2. According to this picture, the critical
energy for muons, E .., is expected to be about 4 x 10* times larger than for electrons.
An exact scaling does not hold however, and the critical energy E, is a factor of
about 3 smaller than the naive scaling E,. ~ (m,/m,)? E., see e.g. Fig.2.5 taken
from Ref. [2].

Bando n. 13153/2009

Problem 2.11 An electron moving in a material loses energy by a variety of mech-
anisms. Define the critical energy and explain how it depends on the atomic number
Z of the material.

Solution

Energy loss by collision and radiation are discussed in Sect.2.1. The critical energy
E. is defined as the energy at which the two rates of energy loss become identical.
An approximate formula for E. is given by

_ 800MeV

C
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see e.g. Ref. [1, 2]. Hence, the critical energy decreases with Z. In particular, it goes
like Z~! for Z >> 1. This can be understood by the following argument: the critical
energy is roughly given by the position of the intersection point between two curves
inthe (dE /dx, E) plane, of which one is flat versus energy and goes like ~Z (energy
loss by collision), while the other has a positive slope and goes approximately like
~Z? at large values of Z (energy loss by radiation), hence the intersection point
should scale as ~Z~!.

Bando n. SN/R3/TEC/2005

Problem 2.12 Provide an approximate formula for the radiation length X in terms
of the atomic and mass numbers of the material.

Solution

An approximate version of X has been derived in Eq. (2.13):

i 716 A . 056
~ cm” 7, .
T I Z+ ) @8IV ¢

where A is the mass number in units of g mol~! and Z is the atomic number. Hence,
the radiation length scales as ~A Z~2, for sufficiently large values of Z.

Bando n. 18211/2016

Problem 2.13 How much energy does an electron with initial energy of 1 GeV lose
by crossing a material with thickness equal to one radiation length?

Solution

Anenergy of 1 GeV is above the critical energy E. of Eq. (2.11), see Fig. 2.5, therefore
the electron loses energy mostly by radiation. The rate of energy loss per unit length
is therefore given by
dE _E 2.57)
dx - X 0 ’ ’
where X is the radiation length measured. The electron energy as a function of the
traversed length is then obtained by integrating Eq. (2.57) to give:

—x/X EO
E(x) =Eje ™ = E(X) = —2 =0.368 E,. (2.58)
e
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The energy lost in the medium is therefore AE = (1 — 1/e) Ey = 0.632 E.

Bando n. 13153/2009

Problem 2.14 Determine the law by which a beam of electrons of intensity I, gets
attenuated while crossing a layer of material of thickness d.

Solution

Electrons lose energy mostly by radiation at high energy, and then by elastic collison
with atomic electrons at lower energies. If the beam is monochromatic and the thick-
ness d exceeds the electron range in the material, the beam particles will traverse
the full thickness and emerge with an energy distribution centred around a smaller
value. Elastic scattering can instead deflect the electron from its original trajectory
and remove it from the beam. Let’s assume that the reaction which removes electrons
from the beam is characterised by a cross section o and let’s denote the density of
scattering centres by n. By definition, the probability of interaction per unit length is
given by the interaction length of Eq. (1.291), namely A = 1/(no). If the beam has
an intensity 7 (x) at a depth x, the intensity at a distance x + dx is given by:

dx dl dx i
I(x+dx)=l(x)—[(x)7, TZ_T = Ikx)=1Ie x/ (2.59)

The intensity varies exponentially with the traversed length.

Bando n. IN/R3/SUB/2005, Bando n. 13153/2009

Problem 2.15 In which energy interval does Compton scattering dominate in the
interaction of photons with matter? What kind of interaction prevails at lower and
higher energies? How does it depend on the absorber?

Solution

The interaction of photons with matter is discussed in Sect.2.1. At low energy, the
photoelectric effect (photon absorption with electron emission) is the main interaction
mechanism. Compton scattering (incoherent photon-electron scattering) becomes
significant for energies above the K -threshold and below a few times 2 m,, after which
pair-production dominates. The transition between the photoelectric and Compton-
dominated regime depends on the medium (see below). For carbon (lead), the two
become of similar size at energies of about 10 (500) KeV, see e.g. Ref. [2].

The absorber type enters mostly through the atomic number Z. The photoelectric
cross section for energies in the MeV region is goes as ~Z# with f = 4 +— 5. The
Compton cross section is instead proportional to the number of electrons per atomi,
hence it goes as ~Z. The cross section for pair-production is inversely proportional
to the radiation length X, hence it is roughly proportional to ~Z? for large atomic
numbers.


http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

Photon interaction in matter is discussed in a large number of textbooks. For a primer,
the reader is addressed to Sect.2.7 of Ref. [1] and to the PDG review [2]. A large
amount of tabulated data can be found in Ref. [6, 9].

Bando n. 5N/R3/TEC/2005

Problem 2.16 How does the photoelectric cross section vary as a function of the
photon energy? How does it depend on the atomic number Z?

Solution

The interaction of photons with matter is discussed in Sect.2.1. At low energy,
the photoelectric effect (photon absorption with electron emission) prevails. The
photoelectric cross section as a function of the photon energy features a number of
edges corresponding to the opening of new atomic levels. For energies above the
innermost level (K -shell), the cross section steeply falls with energy as ~E~"/2 and
it grows with the atomic number as ~Z# with g =4 = 5.

Suggested Readings

See Problem 2.15 and references therein.

Bando n. 18211/2016

Problem 2.17 Determine which process dominates in the photon-matter interaction
for the following reactions:

1. 1MeV photons on Al;
2. 100keV photons on Hy;
3. 100keV photons on Fe;
4. 10MeV photons on C;
5. 10MeV photons on Pb;
Solution

To solve this exercise, we can refer to Fig. 2.6, taken from Ref. [2], to read the cross
section values for carbon and lead, and then use these values, together with the
known Z-dependence of the cross sections, in order to extrapolate to other materials.
To validate the extrapolation, we can use the values tabulated in Ref. [6].

1. A 1MeV photon is just below the pair-production threshold. Aluminium has
atomic number Z = 13. The energy at which Compton and pair-production
become similar is about 500 keV in lead and about 10 keV in carbon. Aluminimum
must be in-between, therefore Compton scattering has to be by far dominant
at such an energy. Indeed, from Ref. [6] we find ocomp A~ 3barn and o, ~
1073 barn.
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Fig. 2.6 Photon total cross sections as a function of energy in carbon and lead, showing the
contributions of different processes. Taken from Ref. [2]

2. A 100 keV photon on hydrogen cannot undergo pair-production. Since Compton
scattering dominates the photon-matter interaction at this energy for carbon, it
will be a fortiori dominant in hydrogen, since the photoelectric cross section
decreases as a function of Z much faster compared to the Compton cross section.
Indeed, from Ref. [6] we find ocomp & 0.5 barn and oy, .. ~ 10~° barn.

3. A 100keV photon on iron cannot undergo pair-production. From Fig.33.15 of
Ref. [2], the photoelectric (Compton) cross section in lead at that energy is around
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103 barn (10 barn), so that, by assuming a ~Z> (~Z) scaling, we should expect
roughly the same cross sections. Indeed, from Ref. [6] we find ocomp A~ 12 barn
and o}, .. ~ 20 barn.

4. A 10 MeV photon can undergo pair-production, but Compton scattering is sizable
at that energy. Referring to Fig.33.15 of Ref. [2], one sees that Compton cross
section on carbon is larger than pair-production, although the two are still compa-
rable. Indeed from Ref. [6] we find 6comp ~ 0.3 barn and oy ~ 0.8 x 107! barn.

5. As before, one should expect the pair-production and Compton cross sections
to be of the same order. This time, it’s the former to be larger because of the
~Z? scaling compared to just a ~Z scaling of Compton scattering. Indeed from
Ref. [6] we find ocomp ~ 4 barn and o ~ 12 barn.

Bando n. 1821172016

Problem 2.18 A muon with energy of 400 GeV penetrates vertically into the sea.
By which process can it be detected? Estimate the depth at which the muon arrives
before decaying.

Solution

A muon of energy E = 400GeV moving in water (n = 1.33) emits Cherenkov
radiation at a rate of about 200 y /cm in the wavelength range [300, 500] nm, see
Eq. (2.16).

The critical energy for electrons in water is about 80 MeV, see e.g. Ref. [5]. From
the ~m? scaling of the critical energy with the particle mass, the critical energy
for muons is expected to be in excess of 3 TeV, hence far above the initial muon
energy of 400 GeV. However, as discussed in Problem 2.10, the naive scaling is only
approximate, and the critical energy for muons is about 1 TeV [5], hence still larger
than the initial muon energy. From Fig. 33.24 of Ref. [2] we see that the critical energy
for oxygen is about 900 GeV, so the same conclusions hold. The dominant energy
loss mechanism is therefore by electron collision as described by the Bethe formula
of Eq. (2.1). Since y = E/m = 3.8 x 10° > 1, we can use the approximate formula
of Eq. (2.34) to predict the range R in water (p = 1 gcm™3)tobe R ~ E/C, where C
is a constant that sets the plateau level of the Bethe formula. The stopping power for a
MIP muon in water is about 2.0 MeV g~! cm? [5]. However, at very large energies, the
logarithmic term is non-negligible. Using the value I = 80eV [5], the latter ranges
froma26aty = 3.8x 103 downto~12aty = 4 (MIP). Taking an intermediate value
of 20, the constant term can be approximated as 2.0 x 20/12 ~ 3.3 MeV g~! cm?.
Therefore:

400 GeV
R~
33MeVg-lcm?-1gem—3

= 1.2km. (2.60)

This result is in good agreement with the more accurate estimate of 1.216 km from
Table II-28 of Ref [10]. However, the muon is an unstable particle with life-time
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T = 2.2 x 107%5s. The range calculation of Eq. (2.60) will hold only if the muon
does not decay before coming to a stop. This is indeed the case with high probability.
Although the muon momentum progressively changes as the muon penetrates deeper
into the sea, time dilatation makes such that the muon decay probability over a
fixed length in the Earth frame is significant only for small velocities. At a velocity
B = 0.94, or y ~ 3, the muon is at the minimum of the stopping power curve, and
the residual energy is dissipated after traversing a length of about

106 MeV 3-1)7?
20MeVglem?-1gem3 3

=70cm < R. (2.61)

Were the muon to conserve y = 3, its mean path before decaying would be Scty =
2 km, so much larger than the residual path before stopping completely.

Discussion

The exploitation of large sea volumes as Cherenkov radiators allows one to study
cosmic radiation of very high energy. For example, the IceCube neutrino observatory
at the South Pole, is sensitive to the CC interaction of very-high energy neutrinos,
which can be detected through their emission of Cherenkov light by an array of
PMT’s located deep into the ice.

Problem 2.19 Anunderground experiment located at a depth d = 1 km from the top
of the mountain measures the momentum of cosmic muons arriving vertically from
above. Estimate the muon energy at the top of the mountain if the muon momentum
at the detector is |p| = 1.0 TeV.

Solution

Energetic muons lose energy by electron collision and by various forms of electro-
magnetic radiation, including e™e™ pair production, bremsstrahlung, and photonu-
clear interaction. The overall stopping power can be parametrised as

dE
—— =a(E)+b(E)E, (2.62)
dx

where a and b are slowly varying functions of energy for E 2 1TeV. Assuming
constant values for a and b, Eq. (2.62) can be solved exactly to yield the solution
Ey = Ey(E, x), namely:

—ﬁ—f:a—l—bE
E(0) = Eq
dE 1+E/E
_ —dr, I (1FE Eue
a+bFE 1+ Eo/E ;e

) =—bx. Eo=e"" (E+Eu)— Epe,
(2.63)
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where, by definition, E,. = a/b is the energy at which energy loss by ionisation
equals the energy loss by radiation. Using the values @ = 2.7MeV g~!' cm? and
b = 3.9 x 107%g~! cm? from Table 29.2 of Ref. [2], and by assuming the standard
rock density p = 2.65 g cm™, we get E,c = 0.69 TeV and:

Eo = (exp[3.9x 107°g " em? - 2.65g cm™ - 10° cm] - 1.69 — 0.69) TeV =
=4.0TeV. (2.64)

Suggested Readings

For more details on cosmic muons and their interaction with matter, the reader is
addressed to Sect.29.4 and Sect. 33.6 of Ref. [2].

Problem 2.20 The vertical flux of cosmic muons with £, > 1GeV at the sea
level is about 70m~2 s~! sr~!, and the muon spectrum goes approximately as E;”.
Owing to the continuous slowing down and subsequent decay, the muon spectrum
underground reduces with depth untill a depth of about 10km w.e. (1 km w.e. =
10° g cm™2) is attained. At this point, the spectrum settles to a constant value. Explain
this behaviour and provide a rought estimate of the muon flux deep underground.

Solution

At a depth d larger than a few km w.e., only muons with energies of order of E,,. or
larger can make their way through the underground soil, see Problem 2.19. In this
energy regime, however, the range scales logarithmically with the muon energy at
the sea level Ey:

—1 Eo
R(Ep) ~ b 'In(1+

uc

) , (2.65)

where a and b are the constants introduced in Problem 2.19. Equation (2.65) implies
an exponential suppression of the flux at large depths. At some point, the muon flux
becomes so weak that another source of underground muons takes over, namely muon
production from charged-current interaction of muon neutrinos with the rock. The
latter is almost independent on the depth. For example, let’s consider the infinitesimal
flux of neutrinos with energy in the range [E,, E, +d E,]: they will contribute to the
measured muon flux of energy £, > Ey,, where Ey, is the detector threshold energy,
only if the muon interacts with the rock within a distance r = R — Ey,/(dE, /dx)
from the underground level d (we make the approximation E£,, ~ E,). The probability
for such interaction is /1 < 1, where X is the interaction length and depends on
the neutrino energy, see Eq. (1.291). For E,;, = 1 GeV, the offset R — r is about
200 m. The neutrino spectrum can be assumed to be similar to the muon spectrum,
since for every muon, a v, of similar energy is produced, see Problem 1.19. The
neutrino-induced flux can be thus estimated to be:


http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Emax d®® (R(E,) — 200
o ~ / ag, ‘8 (REY) m (2.66)
E dE, ACE))

min

The maximum energy En, can be assumed to be of order of E,, since for larger
energies the range becomes only mildly dependent on the muon energy, see Eq. (2.65),
and thus it will contribute by one power less to the muon flux. Although the muon
spectrum at E, < 10GeV decreases slower than E;”, for an order-of-magnitude
estimate we can assume for simplicity:

0

cbu a—1 —o
T5 = @ =D GeV) oy (2.67)

with @) = 70m~2s~!sr™! and @ = 2.7. By using d E,, /dx = 1.9MeV g~! cm? [5]
and the cross section of Eq (1.354) for the neutrino-nucleon scattering (with Q = 1),
and neglecting for simplicity the offset of 200 m, we have:

Epe do? E N E
¢2eep N/ dE, o ( vl 2 ) (/0 A 1.6 x 10738 sziv) =
1 GeV dE, \1.9MeVg—lcm*-p A GeV

w1y (1Gevye—l (E,i;“ —a GeV)3_O‘)
3— a) GeV?
~10 9 m2s el (2.68)

I

=®)-0.23 x 10712 (

The result depends only mildly on the choice of Ep,x. This order-of-magnitude
estimate is in a decent agreement with the measured spectrum, see e.g. Fig.2.7 taken
from Ref. [2].
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Suggested Readings

More details on cosmic ray fluxes, including a review of theoretical calculation, can
be found in Ref. [11]. The reader is addressed to Sect. 29.4 of Ref. [2] for more details
on the muon flux underground.

2.2 Particle Identification

Particle identification (PID) is a common problem in particle physics experiments,
which are often equipped with a redundance of detectors as to be able to identify
the particle type besides measuring their kinematics. As a general rule, the pres-
ence of backgrounds and imperfections in the detector makes PID a statistical test
rather than a deterministic decision: the probability of correctly identifying a given
particle (efficiency) has always to be weighted against the probability of wrongly
identifying a background event (fake-rate). Depending on the particle type and on
its energy, a variety of methods can be deployed in experiments. A non-exhaustive
list of techniques for PID includes:

e Measurement of the range. Each particle loses energy by interaction with matter
at a different rate, so that the measured range can be used to differentiate between
different particle types. For example, a 10 GeV muon loses energy by collision
at a MIP rate of about 11 MeV cm™!, while an electron of the same energy loses
energy by radiation at a rate of about 550 MeV cm™', i.e. about 50 times faster.
Hadronic particles interact strongly with the nuclei, with typical interaction lengths
of tens of centimetres for condensed materials. Therefore, the capability of muons
to penetrate massive detectors exceeds by far larger that of other particles.

e Measurement of the stopping power. Even if the particle range is not fully con-
tained within the active volume of a detector, the simultaneous measurement of
the stopping power d E /dx and of the particle energy, or momentum, provides a
handle to distinguish between different particles. The stopping power can be mea-
sured from the energy deposited within the detector. Time Projection Chambers,
proportional chambers, nuclear emulsions, solid-state detectors are examples of
detectors which can measure the energy loss across the particle trajectory.

e Cherenkov-light detection. Relativistic particles can emit Cherenkov lights when
moving inside a refractive medium. The angle of emission and the number of
emitted photons depend on the particle velocity 8 as for Eq. (2.15) and Eq. (2.21).
A simultaneous measurement of the particle momentum and of the Cherenkov
light can be thus used to determine the particle mass.

e Transition-light detection. For high-energy particles, Cherenkov detectors as par-
ticle identifiers become inefficient, see Eq. (2.21). An alternative to using the
B-dependence of Cherenkov detectors is provided by the use of transition radia-
tion detectors, which are sensitive to the light emitted by charged particles while
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crossing the separation surface between vacuum and a dielectric material. Since
the intensity of the emitted radiation is proportional to the y-factor of the particle
as for Eq. (2.22), particles of a given momentum, but very different mass, like pions
and electrons, can be efficiently separated by measuring their transition light.

o Measurement of the time-of-flight. A simultaneous measurement of the particle
momentum and of the TOF over known distances, allows to determine the particle
mass. For unstable particles that decay in reconstructable vertices, the TOF can
be measured from the distance traveled by the particle before decaying. Once
combined with momentum information, this allows to infere the particle life-time
(see Problem 1.32), and hence the particle type.

e Kinematics. In scattering experiments where the kinematics of the initial and final
state can be measured, four-momentum conservation can be used to infere the
mass of the particles involved in the scattering, see e.g. Problem 1.27, 1.28, and
1.62. For unstable particles, the kinematics of the decay products can be used to
reconstruct the decay process, from which the mass of the mother particle can be
inferred, see e.g. Problems 1.16, 1.20, 1.23, and 1.37.

Problems

Bando n. 13153/2009

Problem 2.21 Mention two methods of identification for charged particles, indicat-
ing the range of applicability and their complementarity.

Solution

At small velocities, the simultaneous measurement of the particle momentum |p|
and of its time-of-flight over a known distance, or of the stopping power d E /dx, or
of the Cherenkov light emission, represent canonical techniques for PID. However,
at higher energies, all these methods become inefficient due to the saturation of the
particle velocity to B — 1, so that the TOF over a baseline distance L saturates to
L /c for all particles, the stopping power (by collision) becomes only logarithmically
sensitive to the particle velocity, while for Cherenkov detectors this is due to the fact
that the sensitivity to mass differences is suppressed by |p| =2, see Problem 2.25.

At larger energies, one can instead exploit the emission of transition radiation,
whose intensity is proportional to the y-factor of the particle. High-energy electrons
can be discriminated from other charged particles thanks to their larger emission
of bremstrahlung radiation. In high-energy experiments, a combination of tracking
and energy measurements in segmented calorimeters is sometimes used for PID:
a calorimeter consisting of an electromagnetic (ECAL) and an hadronic (HCAL)
section with independent read-out offers the possibility to separate electrons, which
are stopped in ECAL, from hadrons, which interact in both. The attempt to reconstruct
and identify each and every particle in a HEP event is called particle flow and was
pioneered at LEP [12].


http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

The PDG review of particle detectors at colliders provides a comprehensive and
up-to-date overview of detectors for PID. Introductory textbooks like Ref. [13] are
also indicated for a first overview on the subject. Besides the already quoted ALEPH
publication [12], the reader is encouraged to read about PID within the particle flow
algorithm as implemented in the CMS event reconstruction [14].

Bando n. 13153/2009

Problem 2.22 Discuss a few techniques for neutron detection as a function of the
neutron energy.

Solution

Neutrons with energies in excess of a few GeV are best measured by hadronic
calorimeters, i.e. devices that degrade the initial hadron energy by initiating a
hadronic cascade and measure the visible energy deposited by the cascade parti-
cles, which is usually proportional to the incoming neutron energy, see Problem 2.35
for more details.

The detection of fast neutrons relies on the detection of the recoil proton in (n, p)
scatterings. This is best achieved by using plastic or liquid organic scintillators, whose
molecules contain hydrogen. Given the different fluorescent response of organic
compounds to particles of different ionisation power, these materials can also offer
n/y discrimination by pulse-shape analysis.

For thermal neutrons, one usually relies on the nuclear reactions (n, ) and (n, o),
which can be e.g. detected by using liquid, glass, or inorganic scintillators, like
LiI (Eu), or gaseous ionisation detectors, like 3He, B F;. The active material is con-
veniently loaded with suitable nuclei like 3He, °Li, and '°B, which have large cross
sections for the reactions:

SHe (n, p)t,  °Li(n,0n)*He, "B (n,a)’Li®, (2.69)

respectively. The kinetic energy of the emitted particles (protons, tritium, o-particles,
Li ions) peakes at values determined by the Q-value of the reactions, thus allowing
to separate the neutron signals from other backgrounds, most notably by photon
interactions.

Suggested Readings

Chapter7.7 of Ref. [1] describes the pulse-shape technique with scintillators and
provides an introduction to various experimental techniques for neutron detection.

Bando n. IN/R3/SUB/2005
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Problem 2.23 In order to separate K™ and 7 in a momentum window between
700MeV and 4 GeV, one can use two threshold Cherenkov detectors operated in
series. Neglecting possible inefficiencies of the detectors near the threshold, deter-
mine which values of the refraction index can be chosen, and propose a suitable
radiator.

Discussion

Although not mentioned explicitly, Cherenkov detectors are often integrated with
spectrometers or other detectors that can measure the momentum of the particle. For
example, Cherenkov detectors can be employed to select particles of a given type
from a composite beam of given momentum.

Solution

The momentum acceptance of the experiment provides four threshold velocities and
as many refraction indexes, namely:

n < 1.0006 no 7w emit
n > 1.0195 all 7 emit
n < 1.0076 no K emit
n>1.22 all K emit

(2.70)

With two counters at hand, one could set counter A at a value of np, = 1.0195, so
that no signal there would imply that the particle is a kaon (K -tag), and counter B
at a value ng = 1.0076, so that a signal in that counter would imply that the particle
is not a kaon (7-tag). With this scheme one has three possibilities, summarised in
Table2.5. The third row (all counters with no-signal) represents a useful event only
if the experiment is equipped with an independent trigger (e.g. a scintillator located
along the beam direction). However, there remains an ambiguity for the case where
only counter A records a signal. If one further assumes that the particle momentum
can be measured, then the ambiguity is lifted. Indeed, if one considers pions and
kaons with velocities in the range [1/na, 1/ng], the corresponding momenta span
two non-intersecting ranges:

@2.71)

PR, [2.49. 4.0] GeV K

1 1 [0.70, 1.12] GeV &
= Ipl [

so that a simultaneous measurement of the particle momentum and of the Cherenkov
counters can discriminate between the two particles. Figure2.8 shows the critical
index 1/p for the two particle types as a function of |p|. The dashed lines indicate
the indexes chosen for counters A and B, while the vertical arrows mark the upper
and lower momenta at which pions fail to generate a signal in B and kaons generate a
signal in A, respectively. Concerning the choice of radiator medium, we can refer to
Table 2.4 to identify possible candidates. In particular, we see that a value of n — 1 =
2 x 1072 can be obtained for example by using aerogels, while n — 1 ~ 7 x 1072 can
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Table 2.5 Possible outcomes of a single-particle event using two threshold Cherenkov detectors
in series with No > ng

A B Particle

1 1 b4

1 0 wor K

0 0 K

0 1 Not possible

Fig. 2.8 The critical index
1/B for the two particle
types as a function of |p]|.
The dashed lines indicate the
indexes chosen for counters
A and B, while the vertical
arrows mark the upper and
lower momenta at which
pions fail to generate a signal
in B and kaons generate a
signal in A, respectively

l J Ipl [GeV]
0.8 12 16 2 2. 28 32 36

be obtained by using e.g. pentane (CsH;,) or perfluoropentane (CsF,) of appropriate
temperature and pressure.

Bando n. 13153/2009

Problem 2.24 Explain how the Cherenkov threshold depends on the refraction index
of the medium. Three particles of different mass but same momentum |p| cross a
system of two Cherenkov detectors arranged in series. How can the three particles
be identified?

Solution

The Cherenkov threshold is the velocity S that equals the group velocity of light in
the medium, i.e. 8 = 1/n, where n is the refraction index. By definition, vacuum
has n = 1, and n > 1 for any other medium, see Table2.4 for a few representative
materials.

Given two threshold Cherenkov detectors A and B operated in series, the identifi-
cation of three particles of different mass but same momentum |p|, such that the three
particles have velocities 8; < B, < B3, can be achieved by setting the refraction
index of the two counters at ny = 1/8; and ng = 1/8,, so that:

e particle (1) is below threshold in both counters (8; < 1/na, 1/np), thus producing
no signal in any of the two counters.
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e particle (2) is above threshold in counter A (8, > 1/n,4), but below threshold in
counter B (8, < 1/np), thus producing a signal in only one counter;

e particle (3) is above threshold (83 > 1/na, 1/ng)inboth detectors, thus producing
a signal in both counters;

An analysis of the signal output in the two counters can thus reveal which of the
three particles has crossed the detector. This configuration also maximises the light
yield when the particle is above threshold.

Problem 2.25 A Cherenkov imaging detector measures the angle 6 of Cherenkov
photons with a resolution oy = 2mrad. What is the largest beam momentum |p|
such that kaons and pions can be discriminated to better than 30 by the angular
measurement only, if the Cherenkov radiator consists of fused silica (n = 1.474) or
fluorocarbon gas (n = 1.0017)?

Solution

Let the Cherenkov angle be denoted by 6. A separation to better than 3¢ amounts
to require A8/0y > 3. By approximating finite differences by their differentials, we
get:

A0 do 1 Jeosd — B d(l)— B> dm?
o9 05  opsind oo/B2n2—1 \B) 205/B2n>—1|p?
2 2
L Sl 2.72)
209+/n% — 1|p|?

Hence, the largest momentum for which the statistical separation is in excess of
N, = 30 is provided by:

Im2 — m2| 0.474 Gev =4.2GeV silica
Ip| < K ™ _ ) V3aoxi0s T
p T = 0.474 GeV —18GeV fl b
5 > = e uorocarbon
Ny - 2094/n% — 1 +/3:22x10-3./T.00172—1

(2.73)

Suggested Readings

This problem is inspired by Sect.34.5 of Ref. [2]. The reader is addressed to this
reference for more information on the subject.
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Problem 2.26 Tellurium dioxide (Te O;) crystals (n = 2.4, p = 6 gcm_3) have
been used to search for the putative neutrinoless double-beta decay goTe —>;ZO Xe
in bolometric calorimeters. The experimental signature is provided by an energy
deposit around 2.53 MeV. A major background to this process is represented by
a-decays of radioactive contaminants. Show that the simultaneous measurement of
Cherenkov photons and calorimetric energy would allow to separate « particles from
signal events. Estimate the mean number of Cherenkov photons with wavelengths
in the range [350, 600] nm produced by a signal event in a few centimetres long
crystals.

Discussion

Differently from an ordinary double-f decay (2vff), where a nucleus 4 X decays to
4 Y +2v+2e7, aneutrinoless double-8 decay (0vBB) does not produce neutrinos
in the final state. The Q-value of the reaction, see Problem 1.39, is entirely taken by
the two electrons: their energy sum is therefore a line around Q smeared by the detec-
tor resolution. This also implies that the electron energies are fully anticorrelated.
The theoretical energy distributions for this decay can be found in Ref. [15]. Alpha
particles of a few MeV energy, typical of radioactive decays, behave like background
events by releasing their energy in the calorimeter.

Solution

In order to prove that the electrons radiate Cherenkov light while the o particles do
not, it suffices to verify that the threshold velocity 8 = 1/n = 0.717 in Te O, is
above the velocity of «’s, but below the velocity of at least one of the electrons.
Assuming 7, = 2.53 MeV, one has

5 2T, [2-2.53MeV 0.037 < (2.74)
o =,/ — =0. < p, .
My 3.73 GeV

while for a OvBg decay:

m, 2 0.511 MeV\?>
maxB, > |1 —(——) = /1 - (=) =0958>8. (2.75)
0/2 + m, 1.77 MeV

To good approximation, the total range and the number of Cherenkov photons are
independent of the energy sharing between the two electrons, thanks to the anti-
correlation between the two energies. Indeed, for y > 1, the range is a linear function
of energy as for Eq. (2.32). In the case of interest, though, the average kinetic energy
is comparable to m,, so the linearity is lost. However, a numerical investigation shows
that the total range is constant to within 15% over the allowed electron spectrum,
and is larger when the energy sharing is more asymmetric. Furthermore, Eq. (2.32)
is expected to underestimates the true range for small values of y, and one should
rather use the full calculation. To circumvent the lack of tabulated data and the
mild dependence on the kinematics, we consider a particular decay configuration,



http://dx.doi.org/10.1007/978-3-319-70494-4_1

2.2 Particle Identification 145

namely 7 = 1.0MeV and T, = Q — T; = 1.5MeV. We then approximate the
stopping power by averaging the tabulated values for two similar materials: Nal,
which contains lodine, a Tellurium neighbour in the periodic table, and Ti O,, which
is also a metal dioxide. At T = 1 MeV, Ref. [16] gives:

Ri(Nal) =0.69gcm™2, R (TiO,) = 0.55gcm™2, (2.76)

Taking the mean, we get R; &~ 0.64 g cm~2, or 0.10 cm. There are no values tabulated
for T = 1.5MeV, but we can use the scaling predicted by Eq. (2.32), giving a ratio
R>/R; = 1.69. Hence, R, ~ 0.175 cm. The light output in the wavelength window
[350, 600] nm can be estimated by using Eq. (2.16) with (sin?>0) &~ 1 —1/n?, giving:

1.15 x 103 cm™! 1\ 600 — 350
N, ~ (0.10 4 0.175) cm

J600-350/400 \' 2.4} /600 - 350
=46 +79 = 125, (2.77)

which agrees with the more accurate expectation of Ref. [17], which averages the
range over the proper energy spectrum.
Suggested Readings

The idea of exploiting Cherenkov radiation in bolometric detectors has been first
proposed in Ref. [17], from which the problem is largely inspired.

Problem 2.27 A threshold Cherenkov detector is used to separate muons from pions
in a beam with momentum |p| = 150 MeV. What values of the refraction index n
can be used?

Solution

The condition for which muons emit Cherenkov light, while pions do not, is given

by:
2 2
my My
l/ﬂ;l.<n<1//37'r < m +1<I’l< m +1,

giving the result: 1.22 < n < 1.37.

Bando n. IN/R3/SUB/2005

Problem 2.28 An experiment needs to distinguish pions from kaons of momentum
|p| = 2 GeV by measuring the time flighton a L = 2 m baseline. The instrumentation
has a time resolution o, = 0.2ns. Can each particle be identified? With which
precision can the pion fraction be determined?
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Solution

The time-of-flight (TOF) for pions and kaons in the beam is given by:

2 1 — (0139)2 _
L L m 2m 1—(%2)" =6.68ns = 2.78)

o e\ IRP T 310 ms | [y (o) g g7ng g

N
Il
Il

Since At = 0.19ns = o, particle-by-particle identification is affected by a large
statistical uncertainty, i.e. the Type-II error is large for any given efficiency to identify
the correct particle type. For example, if we decided to tag a particle as a K if the
TOF is in excess of 6.87 — 1o, = 6.67 ns, the selection efficiency would be 84%,
for a fake-rate of about 50%. Even though an event-by-event classification is not
very accurate, the pion (or kaon) fraction of the beam can be estimated with large
accuracy for a sufficiently large number of measurements. Assuming N independent
and gaussian distributed measurements X = {X;}, the maximum-likelihood (ML)
estimator of the pion fraction &, is given by the solution of the equation:

0= IL(X, &) 7
0&,

Ex

N N
with L =[]/ X, e0) = []lex & Xi |tz 00) + (1 = £0) N (Xi | 1k, 0))]
i=1 i=1

2.79)

The classical theory of estimators predicts that the asymptotic variance of the ML
estimator is given by

1

Var [&,] =

2
with 1(8,) =E [_—a i/, 5”)} :

9%e,

see Sect.4.1. The information can be computed numerically using a simple program
for different values of ¢,, see Appendix 2.3. The result is a number of &'(1): for
example, for ¢, = 0.1 (0.3) one gets I = 1.03 (0.80). Hence, the standard deviation
on the pion fraction will be given by:

T p— 2.81)

Problem 2.29 In 1987, the water Cherenkov detector Kamiokande-IIin the Kamioka
mine (Japan), detected a neutrino burst that was attributed to a supernova event
occurred at a distance d = 5.5 x 10*kpc from the Earth. The energy and arrival
time at the detector could be measured for those (anti)neutrinos that interacted via
the charged-current (CC) scattering v p — ne™, or by the electron-scattering (ES)
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Fig. 2.9 Scatter plot of 50r
energy and time for the 45}
twelve supernova candidate
events recorded by
Kamionkande in 1987 (from
Ref. [18])
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reaction v, e~ — v, e, within the fiducial volume of the detector. During a time
interval At = 12, a total of 12 events were registered. The time vs energy diagram
of the signal events is reported in the Fig.2.9.

e The Kamiokande experiment could not distinguish electrons from positrons by
using the sole Cherenkov light. How was it then possible to separate v, from v, ?

e Explain how the antineutrino energy Ej could be measured from the positron
energy E,+.

e Determine a lower bound to the v, lifetime.

e Using the data reported in the plot, estimate an upper bound to the electron neutrino
mass m,,.

Discussion

As of 1987, the Kamiokande-II experiment consisted of a cylindric water tank con-
taining over 2000 t of water instrumented with uniformly distributed PMT’s covering
about 20% of the total surface. The PMT’s were sensitive to the Cherenkov light in the
range 300500 nm. At these wavelengths, the light attenuation length exceeds 50 m,
thus allowing an efficient light collection all across the fiducial volume. The event
trigger, production vertex, direction, and energy of the particles were reconstructed
by using the charge and time stamp of all PMT with a signal above the noise. The
single-PMT time resolution was 13 ns, while the relative energy resolution was esti-
mated from simulation to be about 20%. An electron neutrino with energy of about
10 MeV interacts mostly through ES on the atomic electrons. The CC interaction
with the transmutation °0 — 1°F is instead suppressed by the large mass difference
B (é60) - A (%6F) ~ 16 MeV. Conversely, an electron antinutrino interacts mostly
through the CC reaction v p — n e*, provided E; = 2MeV. The main background
to ~10MeV electrons and positrons is represented by cosmic muons, S-decays of
unstable isotopes polluting the water, and by y /n radiation from the cavern walls.

Solution

The separation between electrons and positrons is possible on a statistical basis.
Indeed, the CC scattering for antineutrino energies Ej; ~ 10 MeV is isotropic in the
laboratory frame. This can be proved as follows. First, one notices that the velocity of
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the centre-of-mass frame is 8 = E;/(E; +m)) ~ 1072, so that the centre-of-mass
is almost at rest in the laboratory frame. In the latter, the dynamics is governed by
the exchange of a virtual W boson, as described by the Fermi Lagrangian:

G
Z = —— costc [iiyu (1 — ays)p] [iy" (1 = ys)e]. (2.82)

V2

The amplitude squared can be obtained with the usual Casimir’s tricks. By taking
a = —1, it becomes proportional to (p.+pp)(pspn) ~ E.+ E;m,m,, if the neu-
tron recoil is neglected compared to the nucleon mass. In this case, E.+ is also a
constant, hence the ampitude squared itself is constant. From Problem 1.53 and the
considerations above, we can see that the cross section is roughly isotropic in the
laboratory frame. This is not the case for the ES, since the centre-of-mass velocity is
now B = E;/(E; + m,) ~ 1. which gives rise to a very forward-peaked differential
cross section in the laboratory frame, see Problem 1.15.
For the antineutrino scattering, energy conservation implies

Es+m,=Es++m, = E;xEx++m,—mp). (2.83)
—_———
1.3 MeV

The neutrino lifetime, 7, has to be large enough so that the neutrinos can make
it to Earth, i.e.:

d 55x10'pc  55x10"-33c-y
NCVV B c(E,/my) B c(E,/m,) B

1.8 x 10° ("bf—) y, (2.84)

v

Ty

where we have used the relation 1 pc ~ 3.3 ¢ -y.
If the neutrino burst starts at the time ¢t = 0, the arrival time at the detector is:

o4 _d v 4 1+1(@)2 2.55)
S B o T-m/E)y | 2\BJ | '

Two neutrinos of energies £, and E;, emitted at the same time ¢ = 0, will arrive at
destination with a time separation:

d 1 1
Hh—t= Zm% (E—% - E—g) . (2.86)

From the recorded data, we observe the presence of a few neutrino events separated
by about 10 s from the the first burst events, which is larger than the expected duration
of a supernova burst (a few seconds), is an indication that neutrinos have a mass, since
otherwise they would have arrived all in one shot. The presence of two populations
of events, one located within the first second, and the other around ¢t = 2's, which
are not distributed according to Eq. (2.85), indicates, though, that the pattern of
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neutrino emission from the supernova has some non-trivial time dependence, i.e.
one cannot assume a perfectly synchronous burst. Yet, some of the neutrinos must
have been created simultaneously, and with some broad spectrum of energies, so that
any difference in arrival time has to be attributed to the non-zero neutrino mass. A
conservative upper limit on m,, can thus be obtained by considering, those events that
feature the largest energy difference |AE| among the first and last arrived events,
respectively. From the plot, we take e.g.: (Ey, ;) = (35MeV, 1.5s) and (E», 1) =
(10MeV, 12.5s). Inverting Eq. (2.86), we have:

2c(ti — ) EE
my </ ~20eV. (2.87)
~ d
VE — E}

Suggested Readings
This problem is inspired by the Kamiokande publication of Ref. [18].

Bando n. 18211/2016

Problem 2.30 A v, beam with an energy of 30 GeV enters a detector containing
liquid Ar. A fraction of the events features a few metres long track starting from the
interaction point, while, for a smaller fraction of the events, all tracks are contained
within a small volume. Explain this behaviour.

Solution

As already discussed in Problem 1.64, neutrinos can undergo interactions with both
the nuclei and and the atomic electrons, the latter having a cross section suppressed
by a factor of m,./my. In both cases, the neutrinos can interact via either the charged
current, v, X — p~ Y, or the neutral current interaction, v, X — v, X’. The EWK
theory predicts the ratio between neutral and charged current cross section in terms
of the Weinberg angle 6y, to be:

1 20
INC) 2 _gin20y + — sin® 6y ~ 0.31, (2.88)
occ/, 2 27

see e.g. Ref. [19]. When a neutrino of energy E, = 30GeV interacts via CC, it
produces a muon of similar energy, which being a MIP, is highly penetrating in
the Ar medium and can be therefore identified as a long track. Conversely, in the
occurrence of a NC interaction, the only detectable signal is provided by the recoil
of the struck nucleus. Since DIS prevails in this energy regime, the interaction is
inelastic and results in a number of hadronic particles which, being much heavier
than the muon and less energetic, have smaller range, thus appearing as a set of short
tracks emerging from the interaction point.
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Suggested Readings

The reader is addressed to Chap. 12 of Ref. [19] for more information on neutrino
interactions in matter.

Problem 2.31 A charged particle is moving inside a uniform magnetic field of inten-
sity B = 1.0T. The radius of curvature of the track is R = 7.25 m with negligible
error. The kinetic energy of the particle is measured to be 7 = (2.00 £ 0.03) GeV.
Determine which type of particle is most probably being measured.

Solution
The charge sign is fixed by the direction of curvature. The particle momentum |p| is
instead given by the formula:

Ipl = 0.3]z] (B/T) (R/m) GeV = 2.20 |z| GeV, (2.89)

where z is the particle charge in units of the proton charge e, see Problem 3.3. The
particle mass m is therefore given by:

pl> = T2 (2.20-2)%* — (2.00)?
m = =

GeV.
2T 2-2.00

(2.90)

m* = (T +m)* — |p|%,

The uncertainty on m can be obtained by propagating the uncertainty on 7T':

1 2/T? 1+ (2.20 - /2.00)?
+IpP/T? 14 (2.20-2/2.00)

.0.03GeV. (2.91)
2 2

om
Am = |—| AT =
aT
Stable, non-exotic particles have integer charges. We can therefore try different ansatz
values of |z| and compare the result with the known spectrum of particles. For |z]| = 1,
Eq. (2.90) gives m = (210 % 30) MeV, which does not match any known particle
within the experimental uncertainty. For |z| = 2, one has m = (3.84 £ 0.09) GeV,
which is compatible with the mass of the « particle m, = 3.73 GeV at the 1o level.

Bando n. 13153/2009

Problem 2.32 Describe which methods could be used to measure lifetimes of order
10° years, 10125, and 102255,

Solution

Lifetimes of order 10° years are typical of radioactive decays. Such lifetimes can be
measured by counting the number of decays in a sample and in a given time interval
At. Let N¢ be the number of countings after background-subtraction. Under the
assumption t 3> At, the lifetime can be measured from the relation:
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r= YO NA 2 (2.92)
A Nc¢

where V is the volume of the sample being observed.

Lifetimes of order 102 s are characteristics of weakly decaying particles, like
D and B mesons, or T leptons. Since ¢ = 3 x 10 um/ps, the decay vertexes of such
particles are of order 300 wm, when the particles are produced at relativistic ener-
gies. Silicon detectors, with intrinsic spatial resolutions of a few tens of microns or
better, see Problem 2.43, are ideal candidates to build vertex detectors with sufficient
resolution to resolve such decays.

Lifetimes of 10722 s are characteristics of strongly decaying particles, like the
p and w mesons, or the A baryon. The distance of flight is far too small to be
measurable by any position-measuring device. Such lifetimes are therefore indirectly
estimated from the decay width I" of Eqgs. (1.186), as measured from the invariant
mass distributions of the decay products, or from the production cross section.

2.3 Functioning of Particle Detectors

Particle detectors record the passage of particles. Depending on the detector type
and on the form of radiation it is sensitive to, detectors can be used to measure the
position and time of arrival of a given particle at the detector location, the energy
and direction of the incoming particle, and sometimes even identify the type of
particle. Detectors are usually composed of an active volume, which interacts with
the particle, and a readout component, hosting the electronics required to generate an
electric signal, provide signal amplification to improve the signal-over-noise ratio,
and finally shape the signal according to some logic suitable for later processing
in the experiment or for persistent data storage. In modern experiments, detectors
are commonly operated by computers, which supervise their correct functioning
and take care of data acquisition. The field of particle detection is vast and finds
application that range from pure research to industry. No attemp is made here to give
a comprehensive overview on this subject. The selected problems want to discuss
the main technologies and introduce general concepts, like resolution, efficiency,
dead time.

Problems

Bando n. IN/R3/SUB/2005

Problem 2.33 In an electromagnetic calorimeter, the stochastic contribution to the
resolution is 0.07/+/E. Can we conclude that the energy resolution for an electron
of energy E = 50GeV is 1%?
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Discussion

Electromagnetic calorimeters are detectors that measure the kinetic energy of charged
particles by exploiting one or more interaction mechanisms between charged particles
and matter, including fluorescence, Cherenkov light emission, and ionisation. In
general, only a fraction of the total initial energy is converted into a visible signal: the
proportionality between the measured signal and the total energy allows to measure
the latter, after a proper calibration is performed. Electromagnetic calorimeters can
be broadly classified into two categories: homogeneous and sampling, depending on
whether the active medium is composed of the same material, or interleaved with
layers of inactive absorbers which degrade the energy of the incoming particle. The
total energy resolution depends on the choice of active material, which determines
the statistics of signal carriers per unit of deposited energy (e.g. the statistics of
scintillation photons), on the signal generation and electronics (efficiency of the
photodetector, electronic noise), and on other geometrical properties of the detector
(e.g. uniformity, dependence of the response with the particle impact point, etc.).
In most applications, the relative energy resolution can be parametrised in terms of
these three contributions as:

o(E) a b

E JVE ®

where the symbol & indicates sum in quadrature. The three contributions are called
stochastic, noise, and constant term, respectively. As a general rule, homogeneous
calorimeters shine for their small stochastic term of order 1% in units of 1/,/E/GeV,
while for sampling calorimeters the stochastic term is in the range 5 = 20%, in the
same units. The importance of the noise term a depends on the signal collection
type: scintillation and Cherenkov calorimeters coupled to high-gain PMT suffers
the least from the electronic noise, while the noise is usually larger for calorimeters
that collect the signal in the form of charge (e.g. semiconductive, gas sampling, and
noble-gas calorimeters), since a preamplifier is the first element in the readout chain.
For this contribution to be subleading in the GeV range, the parameter b needs to be
kept at the 100 MeV level per channel. For use in high-energy experiments, where
particles with energies of hundreds of GeV need to be measured, the constant term
ends up to be the limiting factor to the ultimate energy resolution. As an example, the
electromagnetic calorimeters employed by the CMS and ATLAS experiments at the
LHC are built with different technologies, but achieve similar physics performances,
overall. The CMS detector makes use of a homogeneous scintillation calorimeter
based on PbWOy crystals. A test beam on a small prototype yielded a stochastic
term of 3.3%/+/E /GeV, a noise term of 0.19/(E /GeV), and a local constant term of
0.27%. When averaged over the full detector acceptance, the goal constant term needs
to be kept below 0.5%, which is challenging since the whole detector is composed
of about hundred thousand crystals that need to be inter-calibrated. This problem
is somehow relieved by the ATLAS setup, which uses instead a sampling liquid-Ar
calorimeter, at the price of increasing the stochastic term. A test beam on a prototype

® c, (2.93)
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yielded a stochastic term of 10%/+/E/GeV, a noise term of 0.25/(E/GeV), and a
local constant term of 0.3%.

Solution

As discussed above, the energy resolution of an electromagnetic calorimeter depends
on the energy as in Eq. (2.93). For an electron with E = 50 GeV and a calorimeter
with a = 7%, the stochastic term is 7%/ /50 &~ 1%. The latter has to be added in
quadrature to the constant and noise term to obtain the total relative energy resolution.
We can estimate an upper limit to the noise and constant terms such that they do not
contribute individually to the total relative resolution by more than a certain fraction
f, that we can conventionally set to e.g. f = 0.1. With this choice:

o(E)/E — 1%
1%

%

(%)’ So.1, ¢ <0.5%

2
(2502Y) S 0.1, b5 220MeV

1
<01 =2 (2.94)
3

We can therefore conclude that the energy resolution for an electron of energy E =
50GeV is about 1% provided that the noise and constant term are below about
200 MeV and 0.5%, respectively.

Suggested Readings

A succint but complete review of calorimetry in particle physics can be found in
Ref. [20]. More informations on the state-of-the-art in calorimetry can be found in
the PDG review [2] and references therein.

Bando n. IN/R3/SUB/2005

Problem 2.34 A relativistic electron releases energy in a block of BGO, generating
a signal of about 10° p.e./GeV, while the signal generated in a block of lead glass of
the same size is only 103 p.e./GeV. How can such a difference be explained?

Discussion

Both BGO and lead glass feature a radiation length X of about 1 cm and a critical
energy of about 10 MeV [5]. An electron of few GeV energy loses energy mostly
by radiation. The emitted bremsstrahlung photons undergo pair-production, with
subsequent photon emission. The resulting electromagnetic shower is characterised
by an energy profile

dE (b t)a—le—bt

T = BT (2.95)

where t = x/ X and a and b are constants that depend on the material. Simplifying
the shower development as a series of 1 — 2 branches (et — ey andy — e*e™)
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with equal energy sharing and separated by a distance X, so that the energy per
constituent at a depth ¢ is E/2', it follows that the total track length L(z) from
electrons, positrons, and photons, after traversing ¢ radiation lengths is given by

L) =2" X,. (2.96)
The maximum number of radiation lengths #,,, is determined by the condition that the

electron/positron energy falls below the critical energy E,i.e. fpax = In(E/E.)/1n2,
and

InE/Ec X()
L=2" Xo= (—) E. (2.97)
E.

A more refined treatment of shower development, will still predict the total track
length L to be proportional to the initial energy. Along their path, electrons and
positrons excite the fluorescent levels of the crystal, characterised by an average
excitation energy ¢, so that the total photon output N, is still proportional to the
initial energy E.

Solution

BGO, an acronym for (Bi; O3),(GeO;)3, is a scintillating crystal. The mean
excitation energy per photon is reported in Table2.2 and is about 300eV/y, or
3 x 10° y/GeV, which is in the ballpark of the value reported by the problem (the
ultimate p.e. statistics depends on the PMT collection and quantum efficiency). Lead
glass (Pb O) is an amorphous material and does not scintillate. It has a large refraction
index (n & 1.8) and is transparent to visible wavelengths, which makes it a good
Cherenkov radiator. Assuming a quality factor N of about 90 cm™!, see Eq. (2.21),
and a total charged track length as in Eq. (2.97), an upper limit to the number of p.e.
per GeV can be estimated as:

N,e N,. L . X

% = %E ~90cm™" (sin?6,) - (2/3)% =
=90cm™'-0.69 - (2/3) L3em _ o 10°/GeV (2.98)
- ’ 10MeV ’ '

where the factor of 2/3 accounts for the fact that only electrons and positrons pro-
duce Cherenkov light. This estimate does not account for the fact that the simple
shower model is not well representative of the energy distribution within the shower:
the bremsstrahlung cross section do /dv for emitting one photon with frequency v
is approximately proportional to v=!, see e.g. Eq. (2.68) of Ref. [1], so that the sec-
ondary eTe™ pairs from y conversion are preferably soft, with implications on the
total Cherenkov light yield. A more accurate estimation would yield a smaller value
Nye./E ~ 10°/GeV [20].

The difference between the two materials can be therefore ascribed to the different
mechanism by which photoelectrons are produced in the two materials.
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Suggested Readings

The reader is addressed to Ref. [20] for a primer on calorimetry for particle physics.

Bando n. 13153/2009

Problem 2.35 Measuring the energy of hadronic particles through calorimetric
methods is a fundamental ingredient in HEP experiments. When a hadron produces
a shower, on average 30% of the initial energy is transformed into “invisible” energy.
Indicate which mechanisms are responsible for the production of invisible energy
and discuss at least one method to recover it.

Discussion

The physics of hadronic cascades is by far more involved compared to the develop-
ment of electromagnetic showers due to the richness of interactions that hadronic
particles undergo when crossing matter. The interaction of a high-energy hadron
with a typical calorimetric material, like iron, lead, or copper, involves the produc-
tion of energetic secondary hadrons through strong interactions with typical inter-
action lengths of about 35 A'/3 g cm~2, followed by the degradation of their energy
by nuclear reactions that produce nuclear excitation, evaporation, spallation, fission,
etc., resulting in particles with characteristic nuclear energy (100 keV +-a few MeV).
The low energy spectrum of the hadronic cascade is dominated by neutrons, photons,
electrons and positrons, the latter produced by the interaction of photons with matter.
Photons are produced by two main mechanisms: from 7° — y y and from nuclear
de-excitations and (n, y) reactions. The latter can come delayed up to 1 ps with
respect to the primary interaction, and overall account for about 30% of the total
cascade energy. Since the number of high-energy interactions that produce pions
increases with energy, the fraction of energy drained away in the form of 7° — y y
photons increases with energy. The hadronic shower in usually initiated inside the
so-called radiator, whereas the energy measurement is performed in the active mate-
rial that samples the cascade. Both the hadronic and electromagnetic component of
the cascade contribute to the energy measurement in the active material, although
with different efficiencies. Let 1, (n;,) be the efficiency of detecting the energy con-
tained in the electromagnetic (hadronic) component. The total energy measured by
the interaction of a high-energy hadron with initial energy E is therefore given by:

M

Ne

EYy = [ne Fro(E) 4+ my Fy(E)] E = 1, [1 + (1 - ) Fh(E)j| E, (299

where F;, = 1 — F, is the hadronic energy fraction, which depends on the initial
hadron energy [20]. The ratio between the response to an hadron % and to an elec-
tromagnetic particle, like an electron, is therefore:

h _
g_ = (;) iy (1 - @) Fy(E). (2.100)

vis
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Since 1, # n. in general, and because of the dependence of Fj; with energy,
Eq. (2.100) implies that

e the energy response of a hadronic calorimeter is in general non-linear;

e the energy resolution is worse than for an electromagnetic calorimeter due to the
stochastic fluctuations on Fj,;

e the energy response is not gaussian.

For example, in a homogeneous calorimeter, e/ = 1.4 as a result of the lower
efficiency of detecting the hadronic component. This problem can be greatly miti-
gated by tuning the ratio 1y, /7, to unity, i.e. by compensating the calorimeter for the
intrinsically different response to the hadronic component.

Solution

The origin of invisible energy in hadronic cascades can be tracked down to the
production of delayed photons, soft neutrons that undergo nuclear reactions giving
low-range particles, and to the production of nuclear binding energy, which is again
drained away in the form of low-range nuclear decays. Although such energy is not
measurable, it is possible to compensate for it in a statistical sense by decreasing the
sensitivity of the detector to the electromagnetic component. For example, in a sam-
pling calorimeter made of high-Z material like brass, uranium, or lead, interleaved
with a plastic organic scintillator, the response to the electromagnetic cascade gets
reduced proportionally to the sampling fraction, i.e. the fraction of active material.
The latter can be tuned by varying the thickness of the scintillator layers. On the con-
trary, the response of the scintillator to fast neutrons is only marginally affected, since
arecoil proton with 7 ~ 1 MeV has a range of a few tens of microns, see Eq. (2.35),
hence it will always interact in the active material regardless of its thickness. By
tuning the e/ ratio to unity, the energy resolution can be grearly enhanced.

Suggested Readings

The review article [20] gives a concise but clear discussion of the phenomenology
of hadron cascades, with quantitative description of compensation in real detectors.

Bando n. 18211/2016

Problem 2.36 Which processes among pair-production, Compton scattering, and
photoelectric effect, are non-negligible in the interaction of y emitted by a %°Co
source with a Ge detector? Which process has necessarily to happen in order to
measure the total photon energy?

Discussion

Thanks to the large Z value and the small excitation energy, see Table 2.2, Ge detec-
tors place among the most precise detectors for y spectroscopy below a few MeV.
When dealing with y radiation, an important property of the detector is the photo-
peak efficiency, i.e. the efficiency of detecting a photon which is entirely absorbed



2.3 Functioning of Particle Detectors 157

by photoelectric effect. For Ge detectors and photons of order 1 MeV energy, the
photo-peak efficiency is < 1%, see e.g. Fig. 10.20 of Ref. [1].

Solution

In its B-decay chain, the ®°Co isotope produces two monochromatic photon lines
of energy 1.17 and 1.33 MeV, hence just above the pair-production threshold Ey, =
2m, ~ 1.02MeV. The K -shell for Ge is located at 11 keV [9], hence the photoelectric
effect is expected to be small for the %°Co photons, while Compton scattering should
be the dominant interaction mechanism. Indeed, from Ref. [6], we find o, .. = 5 x
1072 barn, ocomp ~ 6 barn, and o, &~ 1072 barn for E,, = 1.25MeV. If the photon
undergoes Compton scattering, only the energy deposited by the recoil electron can
be measured by the detector. The interaction length for photons in Ge is given by:

-1

5.3 —3.6 x 102 mol™!
gcm X mo ~6barn) ~ 4cm,

72 gmol ™!

)"Comp = (n O’C0m13)7l = (
(2.101)

so there is a finite probability that the photon undergoes one Compton scattering only
before leaving the active volume, if the latter is a a few mm thick, like in practical
Ge detectors. The maximum electron recoil energy is given by Eq. (1.139), namely:

2k

T = By 7%

=0.96, 1.1 MeV, (2.102)

where k = E,, /m,. For example, the range in Ge for an electron of kinetic energy
1.1 MeV is about 1.2 mm [5], hence there is a non-negligible chance that the recoil
electron escapes the active volume. The same holds for the photoelectrons, which
have energies E,, — % ~ 1.16 and 1.32 MeV, and ranges below 2 mm.

The only reactions that guarantee a full energy measurement are therefore the
photoelectric effect (probability &1%), with full electron confinement, and pair-
production (probability &~ 0.2%). In the latter case, the emitted e* have an energy of
about (E, —2m,)/2 ~ 75 and 150keV and ranges of about 25 and 85 pwm, respec-
tively, and are therefore very likely to be fully contained in the active volume. After
annihilation with an atomic electron, the 2m, rest energy of the e e~ pair restores the
full energy measurement if the two photons from positronium annihilation interact
with the active material (the interaction length for 0.5 MeV photons is about 2.4 cm).

Bando n. 18211/2016

Problem 2.37 Estimate the contribution to the energy resolution (FWHM) due to
the stochastic fluctuations in silicon calorimeters generated by photons of energy
2keV, 6keV, and 15keV.
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Discussion

If the measured energy E is distributed according to a Gaussian law with mean u = 0
and standard deviation o, the FWHM resolution is defined as the interval such that
the p.d.f equals half of its value at the mean position u, i.e.:

1
N (x4; (H,0) = EJV(O; w,0) = xiy==xv2In20~=x1.1770
opwaM = (x4 —x_) =2.350 (2.103)

When dealing with energy resolution with particle detectors, an important concept
is the so-called Fano factor (F). If a particle produces on average N = E /¢ signal
carriers through independent random interactions characterised by probability p, the
stochastic fluctuation in this number is ~/N from Poisson statistics, and the relative
energy resolution is 1/+/N. However, if the detector cannot but absorb all of the
particle energy by converting it into detectable signal carriers, the multiplicity of the
latter is ideally fixed to N and there would be no stochastic fluctuations at all. This
is seldom the case, since there is in general a partioning of the energy transferred
by the particle to the active material into more channels, some of which may not
produce signal carriers. Indeed, in some circumstances it is observed that the relative
energy variance is smaller than the Poisson expectation by an empirical factor F,
with F < 1, 1i.e.:

— (2.104)

Semiconductors that absorb the full particle energy into eh-pairs, feature a Fano
factor of about 0.12. The Fano factor for ionisation detectors has been discussed in
Problem 2.8. More informations can be found in Chap. 4 of Ref. [7].

Solution

At energies below 15 keV, the photoelectric effect dominates the interaction of pho-
tons with silicon, see e.g. Ref. [6]. We can therefore assume that the photon interacts
with one atom by emitting an electron of a few keV energy. The photo-produced elec-
tron loses energy by collision loss and creates additional electon-hole pairs along its
track. At E = 2keV, the photoelectron will most likely originate from a K-shell
emission. Since the K-edge in silicon is at 1839 eV [9], the resulting photo-electron
will be rather soft as for Eq. (2.23). However, the ionised atom is in an excited state,
which will bring to the emission of either K-« and K-8 photons, which undergo
photoelectric effect from L-shells with the emission of secondary photoelectrons,
or to the emission of short-range Auger electrons [5]. In any case, the secondary
particles will release energy in the active medium, so that one can still assume that
the whole photon energy is absorbed with little energy partitioning. This reduces
the standard deviation of the number of electron-hole pairs N, from the Poisson
expectation of 1/+/N,;, to /F/N,,, with F ~ 0.12 for silicon. The mean excitation
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energy is ¢ = 3.6eV, see Table2.2. We can therefore estimate the FWHM of the
measured signal to be:

34% E =2keV

Fe 0.12-3.6eV

1.3% E = 15keV

Suggested Readings

Reference [21] discusses in more detail the use of silicon detectors for y spectroscopy,
with examples of measured spectra from nuclear candles. A broader discussion on
the phenomenology of photoelectric absorption in matter can be found in Ref. [7].

Bando n. IN/R3/SUB/2005

Problem 2.38 A piece of Nal(TI) scintillator, read-out by a phototube, is used to
measure the '*’Cs line: estimate the energy resolution by listing the contributing
factors.

Solution

The energy resolution for a coupled scintillator-phototube detector is described by
Eq. (2.45). The '¥’Cs isotope produces a monochromatic X-ray emission with energy
E = 661keV. The main contribution to the energy resolution comes from the sta-
tistics of photoelectrons, which depends on the mean number of photons n, = E/¢,
where ¢ is the mean excitation energy, see Table 2.2, and on the overall efficiency of
the photocathode. The electronic noise plays also an important role. An other contri-
bution may come from the dependence of the response with the photon impact point
and from an imperfect shower containment. Assuming g &c = 0.2 for a typical
PMT, see e.g. Table34.2 of Ref. [2], and negligible noise from the electronics and
amplification statistics (fy = 1, G > 1), the relative energy resolution (FWHM)
can be estimated to be:

eV
TEWEM _ 935 |5 =235/ _30%, (2.106)
E E - eqec 661keV - 0.2

see Problem 2.37. No Fano factor has been accounted for in Eq. (2.1006), since there
is no evidence for its presence in scintillators.

Bando n. 5N/R3/TEC/2005

Problem 2.39 Estimate the energy resolution at 140keV of a photo-detector
equipped with Na I (Tl) crystals.
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Solution

We can refer to Problem 2.38 for determining the energy resolution of a similar setup.
Assuming eq ec = 0.2 for a typical PMT and negligible noise from the electronics
and amplification statistics, the relative energy resolution (FWHM) can be estimated

to be:
22eV
OFWHM _ 5 1< £ 35— 669, (2.107)
E E . £Q &c 140keV - 0.2

where ¢ = 22eV is the mean excitation energy for Nal(Tl), see Table2.2. See
Problem 2.37 for the definition of FWHM.

Bando n. 18211/2016

Problem 2.40 A scintillator emits 10* y /MeV. Calculate the resolution (FWHM)
for a 4 MeV particle assuming a total light collection efficiency ec eg=1.

Solution

The energy resolution of the detector is described by Eq. (2.45). Assuming eq ec = 1
and negligible noise from the electronics and amplification statistics, the relative
energy resolution (FWHM) can be estimated to be:

10-* MeV
TEWEM _ 535 /2 =235/ ———" = 1.2%. (2.108)
E E AMeV

See Problem 2.37 for the definition of FWHM.

Bando n. 13153/2009

Problem 2.41 Calculate the energy resolution for photons of energy E measured
by a solid state detector with ionisation energy &, leakage current I, and integration
time of the associated electronics equal to Ts.

Solution

If the photon energy is intirely absorbed by the detector, the mean signal charge Q
collected at the electrodes of the p-n junction and its standard deviation are given

respectively by:
E |FE
Q = ; 6, UQ = Te, (2109)
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where F' = (.12 is the Fano factor in silicon. In the integration time Tg taken by the
electronics to shape the signal, the leakage current contributes to the noise via an
equivalent squared-charge:

0, =2elyTs, (2.110)
see e.g. Sect.34.8 of Ref. [2]. Since the noise from the leakage current and the

statistical fluctuation in the number of signal carriers are uncorrelated, the relative
energy resolution is given by the sum in quadrature:

(oF) \/O-é—i_Q% 8\/ (Q,Ide)E
E_NE T (S 2 (2.111)
E 0 E E

e

Suggested Readings

For a concise overview of low-noise front-end electronics for particle detectors, the
reader is addressed to Sect. 34.8 of Ref. [2].

Bando n. IN/R3/SUB/2005

Problem 2.42 The drift velocity of electrons in some gas mixture is v = 5 cm/[LS.
What does it imply for a multiwire chamber with wire spacing s = 2 mm, and what
for a drfit chamber read-out by a TDC with 500 MHz clock?

Discussion

Multiwire chambers have been briefly discussed in Problem 2.52. Drift tubes (DT)
are gaseous ionisation detectors that measure the time taken by the primary ionisation
electrons to drift from their point of formation up to the anode. For ions moving in
a gas, the drift velocity v is roughly proportional to the electric field intensity:

v=nE, 2.112)

where p is called mobility and depends on the pressure P and temperature 7' of the
gas, while it is almost independent of the electric field. Electrons can instead reach
much higher velocities compared to ions, and the mobility ;« depends on E in such
a way that a saturation of the velocity at values of order 50 wm/ns is reached for
E ~ 1kV/cm at STP. By making the electric field as uniform as possible in the drift
region, Eq.2.112 implies a proportionality between the distance from the anode of
the primary ionisation position and the drift time. The latter is defined as the time
interval between a fast trigger, that provides the start time to the clock, and the time
of formation of the electric signal at the anode. Drift tubes are built according to this
concept. Typical position resolutions achievable with DT are 100 pm over few drift
lengths d of a few cm. The position resolution is determined by the sum in quadrature
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of three dominant contributions: the statistics of primary ionisation (relevant at small
d), the electronic noise (independent from d), and electron diffusion (proportional
to +/d). Figure 2.10 provides a qualitative description of the position resolution as a
function of the drift length d.

Solution

A MWPC with wire spacing s = 2 mm, has a spatial resolution along the coordinate
y orthogonal to the wires:

2 mm
oMV = 2 _ 2T C 580 um. 2.113)
Y J12 V12 "

The factor +/12 accounts for the fact that the particles arrive at the detector uniformly
distributed across y. The time resolution is therefore given by

oMV/2 580 um/2
mw _ %y /2 S80mm/2 o (2.114)
v Scm/ps

In Eq. (2.114), the factor of 1/2 at the numerators comes from the fact that a primary
ionisation generated outside of the +s5/2 range from a given wire will be detected by
one of the two neighbouring wires. For a DT readout by a time-to-digital converter
(TDC), the TDC clock period f~! sets a minimum time resolution

or_ S 20 sens. (2.115)

o = — =
! J12 V12

Again, one has to divide by +/12 since the actual arrival time at the anode is uniformly
distributed across the time interval f~' between subsequent clocks. The position
uncertainty induced by the TDC clock is therefore given by:

ol =0T v =0.58ns-5cm/ps ~ 29 pm. (2.116)

y, clocl
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This term contributes to the electronic noise shown in Fig. 2.10. The overall position
resolution depends however on other factors, as discussed above. Typical position
resolutions of a conventional DT is about 100 pwm, which is anyway smaller than the
one from a typical MWPC.

Suggested Readings

For a comprehensive review of DT, the reader is addressed to Ref. [22].

Bando n. IN/R3/SUB/2005

Problem 2.43 A depleted microstrip silicon detector has a strip pitch of 50 wm and
operates without charge division. What is its spatial resolution?

Discussion

A silicon microstrip is a solid-state detector consisting of a wafer of doped silicon,
for example, of a high-resistivity n-type with typical thickness of about 300 pwm,
with p-n junctions shaped in the form of long and thin parallel strips separated by a
distance (pitch) ranging between 20 and 200 pm. In a possible setup, one surface of
the wafer is grounded and the strips are implanted on the opposite side and connected
to the bias voltage via DC or AC coupling. The junction may be realised by p™-type
silicon and, for a typical wafer thickness, it gets completely depleted by a bias voltage
of order 100 V. A MIP loses 1.66 - 2.33MeV/cm ~ 3.87 MeV/cm in silicon [5].
Given that the average excitation energy is ¢ = 3.6¢eV, a total of 3 x 10* eh-pairs are
produced on average across a 300 pwm-thick junction. The signal carriers drift under
the effect of the bias voltage and the induced charge is measured by the front-end
electronics.

The charge division method consists in an analog measurement of the signal from
the strips close to the one which recorded the hit, i.e. the one with the largest signal
yield. The centre-of-mass of the strip charges x = >, Q,; x;/>"; Q;, where i runs
over the strips and x; (Q;) are the strip positions (measured signal), provides an
estimator of the impact position with typical resolution of about

d
oMt~ —— (2.117)
SNR
where d is the strip pitch and SNR is the signal-over-noise ratio. This can be easily
proved by using the standard propagation of error for uncorrelated measurements,
see Eq. (4.73):

_5)? 802

8Q§=Z(x’ x)sz%:dz 2 QJZ’
7 (2 0i) (Zj Qj)

% (2.118)

S
Jz0 N

S 25 0ix 2 ‘3)?2
S S M "X‘; 90,

d
oy = ——, with SNR =
SNR


http://dx.doi.org/10.1007/978-3-319-70494-4_4

164 2 Particle Detectors

Conversely, if the strips can be read in digital mode only, the position resolution is
given by the strip pitch:

dig= d

o T
* V12

Additional sources of uncertainty affecting the collection of charge carriers, like
thermal diffusion, multiple-scattering, 6-rays, should be also considered for realistic
detectors.

(2.119)

Solution

In the absence of charge division, the spatial resolution of a microstrip detector is
primarily determined by the pitch size d. Since the particle flux can be asumed to
be uniformly distributed across the microstrip detectors, we can estimate the spatial
resolution (FWHM) as:

Oy = 2.35—— = 34 um, (2.120)

d
V12
where the factor of 1/4/12 comes from the assumed flux uniformity, see Prob-
lem 2.42.

Suggested Readings

For a first introduction to microstrip detectors, the reader is addressed to Sect. 10.6
of Ref. [1].

Bando n. 18211/2016

Problem 2.44 A silicon detector is made of a pixels with dimension 100 pm X
200 wm. What is the smallest spatial resolution in the two dimensions, if the detector
has digital readout?

Discussion

Pixel detectors are semiconductive detectors where the active volume is segmented
in small picture elements (pixels), which are independently read-out. Planar pixel
detectors are commonly employed in HEP experiments as vertex detectors, thanks
to their superior spatial resolutions in two dimensions, which allows for a small
occupancy even at the closest distance to the interaction point, and their close-to-
ideal efficiency to detect the passage of ionising particles.

Solution

If the detector is operated in digital readout, see Problem 2.43, a lower bound to the
spatial resolution (FWHM) in the two directions is given by:
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n (2.121)

Ofwim = 2-35 %5 =68 um
pwim = 2:35 75 = 136 um

where the factor of 1/4/12 comes from the assumed flux uniformity, see Prob-
lem 2.42.

Suggested Readings

For a comprehesive introduction to pixel detectors in HEP experiments, the reader
is addressed to Ref. [21].

Bando n. 18211/2016

Problem 2.45 Why is a diode used as radiation detector usually operated with an
inverse bias?

Solution

A p-n junction operated at inverse bias give rise to an active region depleted from
mobile charge where an intense electric field can sweep out free charges liberated
by a ionising particle. The thickness of the depletion zone for the case of a silicon
p-n junction realised by a pT-doped material put into contact with a lightly doped n
region, is approximately given by:

On VO + Vbias
W =05 ( , 2.122
\/ .Qcm) ( v ) wm ( )

where p, is the resistivity of the n-type region, V; ~ 1V is the barrier voltage, and
Vbias 1S the bias voltage, see e.g. Ref. [2]. The importance of applying an inverse
bias to the junction as to enlarge the active volume is made clear by Eq. (2.122). For
example, for typical values p, = 2 x 10* §2 cm, the thickness of the depletion region
would change from 70 to 700 pwm, if a reverse bias Vyi,s = 100V is applied.

Suggested Readings

An introduction to the physics of semiconductors for particle detectors can be found
in Chap. 20 of Ref. [1].

Bando n. 13705/2010

Problem 2.46 Consider a D° meson produced with an energy of 20 GeV. Determine
the spatial resolution necessary to measure the production and decay vertex position,
and indicate which detectors are best suited for an efficiency exceeding 90%.
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Solution

The D meson decays via the electroweak interaction with a lifetime of about 0.41 ps,
corresponding to ¢t &~ 120 wm [2]. A good channel to reconstruct its decay is
D’ — K*m¥. The probability of surviving up to a distance d ot more from its
production vertex is given by Eq. (1.174):

1 d

Plx > d] = exp [—%%} — exp [‘Jﬁﬁ} (2.123)

Requiring this probability to be at least 90% is equivalent to impose that the flight
distance should be in excess of:

doos = (—1n0.9)cTy = (0.105- 123 - 11) pm ~ 140 pm, (2.124)

where we have used the fact that y =~ 11 is large. Therefore, if we want to reconstruct
at least 90% of the D° decays from their decay vertex, the vertex resolution must
be smaller than about 140 pm. This can be easily achieved by silicon-based vertex
detectors, either pixel- or mictrostrip-based.

Discussion

For E = 20 GeV, the decay products have energy of about 10 GeV each. In this
regime, multiple scattering usually dominates the tracking resolution when using
silicon detectors with pixel/pitch size < 100 pwm, see Problem 3.9. The impact point
resolution (ojp) is the uncertainty on the position of closest approach of the track
extrapolation to the primary vertex point (PV), and is related to the resolution on the
position of the secondary vertex (SV), see Fig.2.11. Modulo resolution effects, the
quantity

s, = sign [ip; - (SV — PV)] (2.125)
should be positive for tracks emerging from the same secondary vertex. Conversely,
the detector rsolution smears the impact point of tracks emerging from the PV around
zero, with equally likely values of sj,. This property can be exploited to define
tagging algorithms for displaced vertexes and experimental methods to measure
their efficiency in data [24, 25]. Assuming a MS-dominated regime, the impact point

resolution is given by:
oip X 114/ (07, (2.126)

where r; is the distance of the innermost silicon layer from the interaction point
and (912) is given by Eq. (2.8). For example, assuming the design of the CMS pixel
detector, one has r; = 4.4cm and a MS mean angle of about 2 x 10~* rad at pl =
10GeV, giving o, ~ 10 um, see Ref. [26]. A more realistic simulation, which
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Fig. 2.11 Cartoon Pr
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includes measurement uncertainty and MS in the beam pipe, gives about a factor of
2 larger resolution, which still satisfies the constraint of Eq. (2.124).

Suggested Readings

For an overview of tracking and vertexing performances at the LHC, the reader is
recommended to read the review article [26].

Bando n. 18211/2016
Problem 2.47 Explain why Ge sensors need to be cooled, while Si sensors do not.

Solution

Germanium detectors are commonly operated at liquid nitrogen temperature (7 =
77K) to reduce the leakage current I3 due to thermal excitation, and hence the
electronic noise and power consumption, see Problem 2.41). The bias current depends
exponentially on the temperature 7':

E 14(T») 7\ Eepn (1 1
I4(T) « T? -5 == Bt L pump—_— 1T
a(T) o eXp[ T |~ Ly \7) TP T2 \ T T

(2.127)

where Eg,, is the energy gap, see e.g. Sect. 34.7 of Ref. [2]. Although the same effect
exists in silicon, the energy gap in the latter is larger than in germanium. For example,
at room temperature, one has Eg,, = 1.1¢eV for silicon and 0.7 eV for germanium,
corresponding to a factor of 3 x 10° larger leakage current for the latter.

Bando n. 18211/2016

Problem 2.48 Which property of a SiPM makes it a preferable solution cimpared
to a conventional PMT for an integrated imaging PET-MRI system?



168 2 Particle Detectors

Discussion

Silicon photomultipliers (SiPM), also known as Pixelized Photon Detectors (PPD)
are photodetectors composed by an array of pixel-size photodiodes with typical size
ranging from 25 x 25 um? to 100 x 100 wm?, packed over a small area, typically
from 0.5 x 0.5 mm? to 5 x 5mm?, and operated in Geiger mode, i.e. with a bias
voltage in excess of the break-down voltage. When a eh-pair is created in the depleted
region, the intense electric field triggers the formation of an avalanche. The high bias
voltage provides large gains per incident photon and per pixel, but proportionality
between the number of photons impinging on a given cell and the collected charge
is lost. The proportionality with the total input photons is restored by summing the
binary cell outputs from the full array.

Solution

SiPM'’s represent a convenient alternative to PMT’s for applications in environment
with intense magnetic field, like in positron emission tomography-magnetic reso-
nance imaging (PET-MRI) applications, since the amplification stage in a SiPM
does not require the photoelectrons to be accelerated along the dynode of conven-
tional PMT’s, which suffers from the presence of magnetic fields, for example by
altering the gain.

Suggested Readings

For an introduction to SiPM’s, the reader is addressed to the dedicated PDG review [2]
and references therein.

Bando n. IN/R3/SUB/2005

Problem 2.49 Order the following detectors by decreasing dead time: silicon, plastic
scintillator, drift chamber. Which one would you chose for a time measurement with
resolution of a few hundred ps?

Discussion

The dead time T is the time required by a detector to process one event and be ready
to accept a new event. Depending whether the detector is sensitive or not to a new
event while processing the previous one, two types of dead-time exist: extendable or
not-extendable. In the first case, if we assume that the first event occurred at time 7y,
the arrival of a new event at a time #; < fy + 7 shifts the time at which the detector
is ready to accept and process a new event to at least #, = #; + 7. In the second case,
the new event does not change the detector state at all, and the subsequent event
can be accepted and processed at any time #; > o 4 t, regardless of what happens
meanwhile. See Problem 3.38 for more details.

Solution

Plastic scintillators are generally faster than inorganic scintillators, with decay times
of a few ns, see e.g. Table 7.1 of Ref. [1]. Fast photodetectors can also have risetimes
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below 1 ns, see e.g. Ref. [2]. A coupled scintillator-photodetector system is ready to
accept and process a new event after the fluorescent excitation from the previous event
have decayed to the ground level, which can take about 10 ns for fast scintillators.

A silicon strip or pixel detector has time resolutions of a few ns, but the time
needed to collect the full charge released in the depleted zone can take a few tens of
nanoseconds (10 ns for electrons and 25 ns for holes in a 300 pwm thich detector, see
Sect.34.7 of Ref. [2]). The readout electronics further increases the processing time
to at least 50 ns.

In a drift chamber, the dead time is mostly due to the time taken by the primary
ionisation electrons (ions) to drift to the anode (cathode), see Problem 2.42. For a
typical electron velocity of 5cm/us, the time needed to drift over 1cm is about
200 ns. During this time, a new event would cause pile-up and confusion on the time
measurement.

A time measurement with a few hundreds ps time resolution is best accommodated
with plastic scintillators coupled to fast photo multipliers, like microchannel plate
(MCP) or gas electron multipliers (GEM), with a fast sampling frequency of the
readout electronics as to allow for the full pulse shape reconstruction.

Suggested Readings

More details on the dead time of particle detectors, including techniques for measur-
ing it in the laboratory, can be found in Sect.5.7 of Ref. [1]. Table34.1 of Ref. [2]
summarises the typical resolutions and dead times of common charged particle detec-
tors.

Bando n. 18211/2016

Problem 2.50 The mean counting rate on single electrode for a given detector is
150 kHz. Estimate an upper bound to the processing time of the analog pre-amplifier
and shaper, if the pile-up probability has to be maintained below 3%.

Solution

For what concerns the pileup of multiple events, we can use the same line of
thought used to relate the true and measured rate in a non-paralyzable system, see
Problems. 2.49 and 3.38. Referring to Eq. (3.186) with ¢ = 1, we can therefore invert
the equation and express the true rate v as a function of the measured rate m and of
the dead time 7, i.e.

m
V= . (2.128)
l—-mrt

Requiring that the pile-up is less than § = 3% amounts to require that the ratio
between the measured rate and the true rate is larger than 1 — §, or equivalently:
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1 T>1—-8 = 1 8 0.03
=l-mt>1- <—=——
m 1.5x10°Hz

< |3

= 200 ns. (2.129)

Bando n. 18211/2016

Problem 2.51 A proportional cylindrical tube has inner radius R, wire radius r, and
anodic tension V. What is the value of the electric field at a distance d < R from
the anode?

Solution

Let’s assume that the anode is connected to a potential V) > 0 and that the cathode
is grounded. The wire acquires a charge with uniform linear density. By using the
cylindrical symmetry of this configuration, it is easy to prove that the electric field
must be radial, i.e. E = E(d) e,. By virtue of Gauss law, the field intensity E(r)
must scale as d 1, i.e.

E@d) =2, (2.130)
d
where ¢ is a constant that depends on the boundary conditions. Since E = —VV,

the electric potential V (d) must be proportional to In d. Together with the boundary
conditions at the two electrodes, this fully determines the potential to be:

Vo
V) = In(d/R), 2.131
(d) In(r/R) n(d/R) ( )
from which we get the result:
aVv W 1
Ed)=—-- =2 (2.132)

39d  In(R/r)d

Discussion

The d ' scaling of the electric field makes the cylindrical tube suitable for charge mul-
tiplication. For example, assuming typical values r = 20 um, R = 5cm, Vy = 2kV,
the electric field at a distance of 100 pm from the wire is about 20 kV /cm, which is
enough to trigger the formation of an avalanche with its resulting charge multiplica-
tion. As an eample, the gas multiplication factor M for a cylindrical chamber filled
with P-10 gas (90% Ar, 10% C H,) at STP can be estimated from Diethorn formula:

Vo In2 ( Vo

—In{————— ) ~73 M =15x10°
n(R/r) AV " prln(R/r)K) = X

(2.133)

where p is the gas pressure and K and AV are gas-specific parameters, see e.g.
Table 6.1 of Ref. [7] for a few examples.
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Suggested Readings

An introduction to the physics of electronic avalanches in gas can be found in Ref. [1,
7]. For a more comprehensive review of gaseous detectors, the reader is addressed
to Ref. [8].

Bando n. IN/R3/SUB/2005

Problem 2.52 The cathode readout can be used in wire detectors, like multiwire
chambers, TPC, LST, and even RPC. What does it mean? What are the main advan-
tages of this setup?

Discussion

Multiwire proportional chambers (MWPC), time projection chambers (TPC), lim-
ited streamer tubes (LST), and resistive plate chambers (RPC) are all examples of
gaseous ionisation detectors that measure the ionisation charge left behind by parti-
cles interacting with the gas. A gaseous detector consists in a pair of electrodes kept
at different electrostatic potentials and separated by a gaseous medium. The anode
is usually shaped in a way as to produce intense electric fields nearby its surface. A
metallic wire kept at a positive voltage bias is the solution at the basis of the MWPC,
TPC, and LST technology. A plane capacitor with small inter-plane distance is an
other option, which is e.g. used in RPC detectors. The cathode confines the elec-
tric field and shields the detector from the outside. The usual way of opertaing a
gaseous detector is to ground the cathode and read the anode in AC-coupling, i.e.
separating the bias voltage from the readout electronics by means of a capacitor, see
Problem 2.53. Alternatively, one can set the cathode at a negative bias voltage, and
couple the anode directly to the readout electronics.

Solution

Let’s consider the case where the anode consists in a set of parallel wire with small
inter-distance, stretched along the coordinate x, and let y be the orthogonal coordi-
nate. The passage of aionising particle induces the formation of an electron avalanche
in the neighbourhood of the anode. The positive ions drift towards the cathode induc-
ing a signal (a time-dependent voltage pulse) between the two electrodes. If the detec-
tor is operated in anode readout, only the y coordinate can be measured with good
resolution. If the cathode is segmented along y, like in the form of parallel strips,
then a cathode readout, i.e. a measurement of the pulse induced at the cathode, offers
the possibility of measuring also the x coordinate. If the cathode readout is analogic,
a centre-of-gravity method allows to measure the x position with high precision
(indeed, only limited by the noise of the electronics). If the readout is digital-only,
the x resolution is instead determined by the granularity of the cathode.

Suggested Readings

An introduction to gaseous detectors and to their readout can be found in Sect. 6.6
of Ref. [1]. A more advanced and complete reference on the subject is provided by
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Fig. 2.12 AC and DC
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Ref. [8]. A stimulating discussion on this subject can be also found in the Nobel
lecture by G. Charpak (1992), the inventor of the MWPC.

Bando n. 18211/2016

Problem 2.53 Does a radiation detector AC-coupled to its electronics have a larger
noise compared to a DC-coupled detector with the same electronics?

Discussion

The readout electrode of a charge-sensitive detector, like a microstrip silicon detector,
an RPC, a MWPC, etc., can be either set to a large bias voltage or be grounded. In
the former case, the front-end electronics, which usually starts with a pre-amplifier,
needs to be decoupled from the bias voltage by a capacitance (AC-coupling). In the
latter case, the electrode can be directly accessed by the pre-amplifier (DC-coupling),
see Fig.2.12.

Solution

AC-coupling offers the advantage of having the opposite electrode (e.g. the cathode,
for wire detectors) grounded, resulting in a convenient configuration to insulate the
detector. However, it provides an extra decoupling capacitance in input to the readout
chain, thus increasing the electronic noise compared to a DC-coupling. Indeed, for
a capacitive sensor, the charge-equivalent noise Q, can be parametrised as:
eﬁ F, 2

Ty +vaAf)C , (2.134)

%=£E&+(

where C is the sum of all capacitances shunting the input, i and 2 are the quadratic
current and voltage noise densities, Ts is the characteristic shaping time, and F; ,, . ¢
are devise-specific constants [2].
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Suggested Readings

For an introductory discussion on the readout of silicon detectors, the reader is
addressed to Sect. 10.9 of Ref. [1]. More details on low-noise electronics for capac-
itive detectors can be found in the dedicated PDG review [2].

Bando n. IN/R3/SUB/2005

Problem 2.54 A discriminator is operated with a threshold Vi, = 0.4 V and receives
in input signals that have a constant rise-time equal to 7s = 10 ns, but an amplitude
variation between Vi, = 0.5V and V.« = 1V. Estimate the lower bound on the
time resolution due to the variable amplitude. Which technique would you use to
reduce such an effect?

Discussion

A discriminator is a device that produces a digital signal when an analogical input
pulse overcomes a predefined threshold. A discriminator in combination with a TDC
device can be used for timing measurements of signals. When the input signals differ
in amplitude and/or rise-times, the time measurement performed by a discriminator
with fixed threshold is affected by event-by-event fluctuations on the pulse shape,
giving rise to the so-called time walk. A number of time-pickoff methods can be
deployed to mitigate the walk effect. A common method is based on the constant
fraction triggering (CFT), which consists in analysing the zero-crossing of a signal
obtained by a linear combination of the pulse V, delayed by a fixed time t4, with
—k V, where k is an attenuation coefficient. The triggering time R is defined as the
time at which:

V(tr — ) — k V(tg) = 0. (2.135)

Since Eq. (2.135) is homogeneous in V, signals with the same time-shape, but dif-
ferent amplitude, will give the same triggering time #,, see Fig.2.13. This method is
however affected by a residual walk effect if the pulse shape differ from one event to
another. In this case, one can try to reduce the delay time tp, as to trigger on the rising
edge of the signals, where event-by-event changes are smaller, a technique known
as amplitude and risetime compensation (ARC).

Solution

The time derivative of the signal is distributed in the range

AV | Vinin Vinax =[0.05,0.1] v (2.136)
dt Ts " Ts |~ 77 7 s '

Signals with time derivatives at the edge of the interval of Eq. (2.136) will trigger
the disciminator at times:
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The time walk At is therefore given by

At = Imax —

= (2.137)
0.05V/ns

tmin = 4 18. (2.138)

A technique to eliminate the time walk is for example the constant fraction trig-
gering, which is appropriate for this case since the signals feature the same rise-time.

Suggested Readings

Discriminators are briefly discussed in Sect. 14.0 of Ref. [1], while a few time-
pickoff methods are described in Sect. 17.2 of the same reference. The reader is also
addressed to Ref. [23] for application of discriminators in experiments.

Appendix 1

The computer program below illustrates the numerical evaluation of the information
I, from Problem 2.28. The algorithm approximates the Rieman integral by the finite

sum of rectangles:

forsi =1 (2252) o
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The integral to be approximated is given by:

2 +00 2
L. =E[—M} E/ dtf(t,en)l:—M], (2.139)

02e, o 92e,
with:
dln f(x,e0) N tr,00) — N(t; tg,00) (2.140)
387, f(t’ 87‘[)
2 . . 2
ad lnf(xvgn)_ [’/V(ty tﬂvat)_'/V(t9 tK9Ut)] (2 141)
02, f(t, e,)?
import math
# gaussian function
def gaus(x, m, s):
return 1./math.sqgrt(2*math.pi)/s * math.exp(-math.pow(x - m,2)/2/s/s)
m pi = 6.68 $ TOF\index{Time of flight@Time-of-flight} for pi m_k
= 6.87 # TOF\index{Time of flight@Time-of-flight} for K sigma =
0.2 # std of TOF\index{Time of flight@Time-of-flight} measurement
def integrate(x_1=6.0, x_h=7.5, step=0.01, f pi=0.5):
integ = 0.0
n_step = int((x_h-x_1)/step)
for s in xrange( n_step ):
t =x_ 1+ (s+0.5)*step
g_pi = gaus(t, m_pi, sigma)
g_k = gaus(t, m_k, sigma)
val = math.pow(g_pi - g_k, 2)/(f_pi*g.pi + (1. - £ pi) * g k )
integ += val*step
return integ
FHEEF
for £ pi in [0.1, 0.3]:
res = integrate(x_1=5., x_h=10, step=0.001, f_pi=f pi)
print f_pi"==>", res
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Chapter 3
Accelerators and Experimental Apparatuses

Abstract The subject of the third chapter is the motion of charged particles induced
by electromagnetic fields. The first section focuses on the kinematics of charged
particles inside static fields and its application for particle tracking. The second
section is dedicated to the physics of accelerators. The last section is devoted to the
concept of luminosity and event rates at colliders.

3.1 Tracking of Charged Particles

Tracking a charged particle is the general problem of determining the particle trajec-
tory by interpolating a collection of position measurements. In some circumstances,
one can assume that the particle trajectory gets sampled by the detector with neg-
ligible impact on the particle kinematics: the equation of motion of the particle is
therefore the same as if there were no detector at all. While this is in general the case
for high-energy and minimum ionising particles and for sufficiently thin detectors,
this assumption breaks down when the particles have a high probability of interacting
inside the detector. In general, the interaction of the particle with the detector has to
be accounted for, and a variety of techniques, either analytical or Monte Carlo-based,
exist for the purpose of estimating the kinematics of the particle cleared from de-
tector effects. Two main cases should be considered when dealing with the tracking
of charged particles. In the first situation, the particle momentum is assumed to be
known by other means, or perhaps is not relevant at all, and one is rather interested
on the track direction and/or position at an arbitrary location in space, given a set
of measurements. In the second situation, tracking is performed in a static magnetic
field at the purpose of extracting the particle momentum.

Linear Tracking

Let us assume that the tracking system consists of N 4 1 measuring stations located
at the positions xo, ..., xy, equally spaced across the spectrometer length L (also
known as lever arm), and characterised by the same spatial resolution o. In the
absence of a magnetic field, the particle trajectory is a straight line. The measured
points y = (yy, ..., yn) can be therefore fitted to a linear function:
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Fig. 3.1 Examples of linear I
tracking using N + 1 equally
spaced measuring stations

over a total lever arm L e
X() €] Te TN—-1 TN
y(x)=a+bx, (3.1)

see Fig.3.1. Since the vector y of measurements depends linearly on the unknown
parameters a and b, the theory of x2 estimators can be applied analytically to yield
the estimators of the intercept (@) and slope of the line (b). The variance of the
estimators are given by [1]:

N o? 12N R o? 2 ~
Var [b] =—S—"————, Var[d] = ——— +x_ Var [b] ,
meas. L2 (N + 1)(N +2) meas. N 41 meas.
3.2)

where x. = (xy + x¢)/2 is the coordinate of the middle point of the spectrometer.
Furthermore, if x. = 0, the two estimators are uncorrelated. Given N + 1 measuring
stations and a total lever arm L, the configuration leading to the smallest possible

value of Var [l;] corresponds to half stations clustered at the front and half at the rear
of the spectrometer, giving

A7OPL. o? 2
Var [b] -2 (3.3)
meas. L2 (N +1)

The effect of multiple scattering through small angles (MS), on the slope, see
Sect.2.1, is given by the second of Eq. (2.8), namely:

. (»> 6
Var[B] == (34)

where (9)2,) can be computed according to Eq. (2.7) taking into account the full ma-
terial budget in the the N + 1 stations.
Tracking in Magnetic Field

In the presence of a static magnetic field, the trajectory of a charged particle is
no longer a straight line. In the simplest case, the magnetic field can be assumed
uniform inside the spectrometer, B(r) = By. The trajectory is then given by a helix,
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see Problem 3.2, whose projection onto the plane orthogonal to the magnetic field is
a circle of radius R:

|p| cos A

(x—x0)+ (& —y)*=R? with R="—"2
q |B|

, (3.5)

where A is the angle between the particle momentum and the plane orthogonal to
the B field direction (dip angle). The momentum component onto this plane is usu-
ally denoted as transverse momentum pt = |p| cos A. For large transverse momenta,
the radius R is usually much larger than the lever arm L, so that Eq.(3.5) can be
approximated to first order to give:

y(x) =a+bx +cx?, (3.6)

with ¢ = (2R)~'. Again, the measurement vector y depends linearly on the unknown
parameters, so that a x 2 estimator can be obtained analytically to yield the estimators
a, 5, and ¢, from which the particle momentum can be inferred.

The momentum resolution épr/pr achievable by tracking a charged particle in
magnetic field depends on the layout of the spectrometer, i.e. the number and location
of the measuring layers, the position resolution of the measuring stations, the lever
arm, the material budget, the magnetic field, etc. However, a simplified treatment of
tracking in magnetic field for energetic particles, i.e. such that the bending power of
Eq. (3.43) is small, allows to derive the dependence of §pr/ pr upon the main dimen-
sionful quantities involved in the problem, namely the lever arm of the spectrometer
L, the magnetic field intensity B, the position resolution §y, and the material budget,
conveniently measured in radiation lengths X. To this purpose, let’s consider the tra-
jectory of a charged particle on the plane transverse to the magnetic field. As shown
in Problem 3.2, the trajectory is an arc of length L and radius R given by Eq. (3.45).
The bending angle 6 = L /R is assumed to be small. The maximal distance of the arc
from its cord is the so-called sagitta, and is usually denoted by s. From its definition,
it follows that:

6 0% L?
s=R|{l—-cos- )|~ R— = —. (3.7)
2 8 8R

Regardless of the details of its design, the spectrometer will sample the track in
a number of points, thus allowing to indirectly measure s. The uncertainty on the
sagitta will be of the order of the single-point uncertainty 8y, i.e. és ~ §y. For small
uncertainties §s one has:

Spr SR és &y 88yR  8éy
P ) s R s s L2 _qBszT

85y
-y 38
03zBL2"" (3-8)
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where the last equality assumes that the units GeV/c, T, and m are used, see Prob-
lem3.3. Therefore, the relative momentum resolution from the position measure-
ments alone depends linearly on the momentum, and is inversely proportional to
B L2. At low momenta, another effect usually dominates the momentum resolution,
namely the multiple scattering (MS) inside the spectrometer. Again, this effect should
be evaluated by considering the full spectrometer design. However, the main features
and the order-of-magnitude of the MS-induced uncertainty can be determined by con-
sidering a simple configuration where the particle track receives a deflection angle

80 =,/ (0%) as given by Eq.(2.8). This angle will induce a shift in the measured
radius R such that:

(SpT) —SR—Rae—( pr ) 1 00136 | L
pr)us T R LY T \03z28) LY Bpr V Xo
100136 | 1
= : (3.9)
03B B \LXo

and again the last equality assumes that the units GeV /¢, T, and m are used. Therefore,
the relative momentum resolution from MS alone does not depend on the momentum,
and is inversely proportional to B +/L. It also depends on the traversed material as
~ X, 1/ 2, so the effect is more relevant in condensed and high-Z materials, and less
in gas and low-Z materials. Since the uncertainty from the position measurement and
the MS inside the detector can be assumed to be independent, the overall momentum
resolution is generally parametrised as:

I} ) )
(ﬂ) — [(ﬂ) ® (ﬂ) :| =apr®b, (3.10)
pPr tot pPr meas. pPr MS

where a and b are constants. Differently from calorimeters, where the relative energy
resolution improves with energy, see Eq.(2.93), the relative momentum resolution
of tracking detectors gets worse at larger momenta.

Three configurations are worth being considered because of the possibility to
determine analytically the corresponding momentum resolution. They are illustrated
in Fig.3.2. In all cases, the N 4 1 measuring stations are assumed to be characterised
by the same spatial resolution o . In the first configuration, the measuring stations are
uniformly spaced. It can be shown[1] that the theory of x? estimators provides the
following relative momentum resolution:

Spr — _OVAN (3.11)
p% meas.  0-3 B L2’ ’
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where Ay is a function of N given by [1]:

720 N3 720

Ay = ~ .
NTINCDW+ DN +2(N+3)  N+5

(3.12)

Numerically, /Ay /8 ~ 0.8 = 1.2 up to N ~ 10, thus showing that the estimate of
Eq. (3.8) applies to this configuration to better than 20% for typical values of N. The
effect of MS has been calculated as well [1], giving

(apT) 1 00136 | Cy 3.13)
pr)us 03Bl B LX, ‘
with Cy = 1.3 = 1.4.

Given a fully magnetised spectrometer with lever arm L and N + 1 available
stations, one may wonder what is the configuration that yields the smallest momentum
resolution. The answer is provided by the second layout of Fig. 3.2, where half of
the stations are clustered around x, and the other half are equally distributed at the
rear and at the front of the magnetised volume. It can be shown that the momentum
resolution from measurement uncertainty only achievable by such configuration is
given by [1]:

Spr\ %" VB 256
(—pzT) = IOV with By = ——, (3.14)
2). .. 03B[L N+1

thus giving a factor of about 1.4 smaller relative resolution for N ~ 10, compared
to Eq.(3.11).

Finally, we consider the case where the lever arm is L, but the magnetised volume
has alength of £ < L. It can be shown [2] that a configuration like the one illustrated
in the third cartoon of Fig. 3.2, with half stations uniformly distributed at the front
and rear of the spectrometer and the other half at the centre, i.e. near to the magnet,
yields a relative momentum resolution:

(SpT) 80 1 (3.15)
Pt ) e T N FTOBBICL |

A simple proof is proposed in Problem 3.8.
Problems
Problem 3.1 Determine the equation of motion of a classical point-like particle of

charge ¢, mass m, and initial velocity v,, moving inside a static and uniform electric
E and magnetic field B.
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Fig. 3.2 Examples of L
particle tracking using N + 1

measuring stations over a © v
total lever arm L. In the first B -

and second case, the
spectrometer is immersed in
a uniform magnetic field
providing a total bending ~ _ Q@ __--J---

power of |B|L. Two layouts

of the measuring stations are z0 1 Ze TN_] TN
deployed: uniformly spaced N+1 N+1 N+1
(top) and clustered at the : 4

front, middle, and rear of the © L v
spectrometre (centre). In the b
last case, the spectrometer is B -

not fully magnetised and the
bending power is only [B|¢
(bottom); the measuring
stations are equally
distributed at the front and 0

rear of the magnetised N+1 N+l e N+1 ]\ﬁ\ 1
volume, and at the front and 4 1L 4 4
rear of the spectrometer as to
achieve a lever arm L
L 4
TN

Solution

A classical particle of charge ¢ and mass m moving inside a uniform electric field E
superimposed to a uniform magnetic field B is subject to the classical force

F=qgE+vxB). (3.16)

The second term in the right-hand side of Eq. (3.16) described the Lorentz force. The
equation of motion r(¢) is determined by Newton’s law:

d
d—?:F:q(E—i—va), 3.17)

which is a system of three coupled ODE. We choose the reference frame so that the
z-axis is aligned along B, i.e. B = (0, 0, |B|), and the y-axis is parallel to E x B,

sothat E = (E, 0, Ey) with E; > 0, and. We further define the origin such that at
time ¢ = 0 the particle is at the origin of the reference frame. Equation (3.17) and the
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boundary conditions can be written by components as:

=L 4 By =8 +opy X(0) =Y x(0) =0
j=— i) = —wp & L pPO=V) o 0 =0
i=2 =g 2(0) =0 2000=0
(3.18)
where we have defined:
B E E
op= Bl 2L a B (3.19)
m m m

The first of Eq.(3.19) is also known as cyclotron frequency. Integrating once the
three equations in the system (3.18), we get:

)&:é’lt—l—a)By—i—vg
y=—wpx+) (3.20)
Z=é8||l+v2

Inserting the second of Eq. (3.20) into the first, we have an equation in x(¢) alone:

E . /|IB|+°
i¥=—wpx+ (&L + o) = —0f (x + *) (3.21)
B

which can be integrated to yield:

1 |(E 2 E,/B|+°
xt)=|—-—— L) ¢ V0 | cos(wp t + ) + b, (3.22)
wg\ \IB] wp
where « is defined such that
W0
tano = O—X. (3.23)
W+ E,/|B|

Inserting this result into the second of Eq. (3.20), we get:

1 |(EL : . E, W)
YO = —\/\ TY) +V0|sin(wpt +a) — —1— . (3.24)
wp \ \|B| B| ws
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Finally, the last component can be obtained by integrating the third equation of the
system (3.20) to give:

(1) = ” 2401, (3.25)

Therefore, the equation of motion of the particle on the x-y plane is a uniform circular
motion with angular frequence wg centred around the point:

E. /B|+V) E 0
rc([)z(L’ __Lt_v_xvo)v (3'26)

wB B wp

which drifts with constant velocity along the direction of E x B. Along the direction
of the magnetic field, the motion is instead uniformly accelerated. The velocities
along the y-axis at the time when the motion along x reverts its direction are given
by:

E, 2
O:)'c(t,,):\/<|B|+v0) +Wsin(wgty, +o) = t, =kw —«

E, 2 E,
p(6) = £ (22 4 00) 00— 2L 3.27
5 \/(|B|+v) -k (3.27)

Hence, the motion along the y direction reverts direction if at least one among !
and |v2| is larger than zero, otherwise the trajectory goes through cusps. For the
special case £ = 0, and assuming that the particle is initially at rest, i.e. vo = 0, the
mean velocity (v) is given by the time-average of v(¢), namely:

() °\ ExB
wm={0]|=-§]= B (3.28)
(z) 0

Discussion

The motion of charged particles inside a simultaneous static electric and magnetic
field is a common situation in particle physics experiments. A typical example is
provided by the Time Projection Chamber discussed in Problem 2.4, where the elec-
tric field is needed to drift the ionisation electrons to the multiplication region, while
the magnetic field allows to measure the track curvature, hence the particle momen-
tum, see Problem3.2. In a TPC, the fields are parallel, i.e. E; = 0, a configuration
that helps reducing the lateral diffusion of the charge, see Problem?2.42. Another
canonical example is a microstrip detector (see Problem?2.43) inversely polarised
and immersed in an orthogonal magnetic field, i.e. £ = 0. In both cases, however,
the equation of motion are not given by the solution found here because the electrons
do not move in vacuum, but interact with the medium (the filling gas for TPC, the
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silicon crystal for the microstrip). The problem should be therefore treated with a
proper kinetic theory of the interactions with the traversed material. A simple friction
model predicts that the charged particles (e.g. electrons) will drift with velocity

2.2
Me wWBT wgT
=——|E+ —EXxB+ E-B)B), 3.29

1+w12312( B IBIZ( )) 529

where ., = et/m, is the electron mobility, see Eq.(2.112), and 7 is the mean time
between two collisions with the medium constituents. See Chap. 34.6 of Ref. [3] for
more details. In particular, for E orthogonal to B, the drift velocity makes an angle
O with respect to the electric field direction such that:

tan @ = wpT = . |B|. (3.30)

In semiconductive devices, like pixels or microstrips, this drift angle is also called
Lorentz angle and has important implications on the position resolution of the de-
tector. Using a typical value for electron mobility in silicium s, ~ 10° V=! cm? s72
and magnetic field intensities of order ~1 T, the Lorentz angle turn out to be sizable,
ie. OL ~ 107L

Suggested Readings

The notation has been adapted from Chap.4.8 of Ref.[4]. See also Chap.34.6 of
Ref. [3] for more details on the motion of charged particles in gas uncer the combined
effect of electric and magnetic fields.

Problem 3.2 Show that the trajectory of a charged particle of momentum p and
charge ¢ moving inside a uniform magnetic field B is a helix. What is the relation
between the particle momentum and the radius of curvature of the trajectory?

Discussion

When dealing with relativitic particles, the laws of kinematics change, but the time-
evolution law of Eq. (3.17) maintains its form. This can be for example proved by
deriving the equation from the relativistic generalisation of the Euler-Lagrange equa-
tion for a point-like charge ¢ and mass m moving in a classical electromagnetic field:

d oL 0L / |2
Eﬁ—gzo, with L(l',l"):—mc2 1—|Z—|2—q¢(r)+q1"~A(r),
(3.31)

where I = v, and ¢ (r) and A(r) are the scalar and vector potential of the electric
and magnetic field, respectively, such that E = —V¢ and B =V x A. Since B is
constant, we can always assume 9,A = 0. Computing explicitely the derivatives in
Eq.(3.31), we get:
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