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Supervisor’s Foreword

The paradigmatic idea of the Big Bang for the last three decades is Inflation. In
order to explain why the universe today is isotropic, homogeneous and spatially
flat, the theory of Inflation posits that during the earliest moments after the birth
of the Universe, there was a period of accelerated expansion, ‘inflating’ the
Universe in size by at least 60 e-foldings (i.e. ¢°°). Furthermore, it predicts the
presence of a spectrum of nearly scale-invariant primordial perturbations—pertur-
bations that eventually grow under gravity to form the galaxies and stars we see
today. This spectrum was triumphantly discovered, imprinted as temperature ani-
sotropies on the Cosmic Microwave Background, first by the BOOMERANG
experiment in 2000 and subsequently measured in exquisite detail by many
experiments thereafter. Efforts to detect the spectrum of primordial gravitational
waves, also predicted by Inflation, are well underway.

Nevertheless, despite its success, Inflation faces many foundational challenges.
One key challenge is whether it can actually ‘begin’ in the first place, in the
presence of initial conditions which are not homogeneous, isotropic and spatially
flat. Since its whole raison d’etre is to explain why the current universe has these
exact properties, this is a fundamentally important point for theorists to resolve.

To answer this question, one must be able to solve the non-linear Einstein
equations, with initial conditions that exhibit very little symmetry. This is an
extremely difficult task that is not tractable analytically, and until recently, not
tractable even numerically. Indeed, for most of Inflation’s existence as a theory,
almost all models have assumed that this issue is ‘magically solved’, or at least,
unsolvable until such time as we have developed both sufficient theoretical
know-how and computational technology. That time is now. Recent advances in
numerical relativity—the computational solution of the Einstein equations of
gravitation—driven largely by efforts to detect gravitational waves, have now
reached sufficient sophistication and maturity to allow these fundamental questions
to attacked.

Dr. Clough’s thesis represents the vanguard of these attempts at understanding
the beginnings of Inflation, and hence of the modern Big Bang theory. In her
groundbreaking thesis, she demonstrated, for the first time, that Inflation can fail to



vi Supervisor’s Foreword

begin, particularly in the so-called ‘small field’ case preferred by string theory
models. On the flipside, she also demonstrated, again for the first time, that inflation
can begin even if some part of the universe is initially collapsing. In order to do this,
she developed the necessary code, and theoretical intuition, which forms the basis
of her current post-doctoral research. While working on the science, Dr. Clough
also played a key role in the development of the numerical relativity code,
GRChombo, which is used extensively in her thesis work.

Theoretical physics in recent decades have become highly competitive and
specialised, and the increasingly long journey to reach the frontier of physics
research often limits the ambition of many Ph.D. theses. Dr. Clough’s thesis is a
brilliant exception to this rule—it is trailblazing in its potential to open up a new
field of study in cosmology. I am, hence, incredibly pleased, and proud that this
brilliance is recognised by a Springer Theses award.

London, UK Dr. Eugene Lim
March 2018



Abstract

Einstein’s field equation of General Relativity (GR) has been known for over 100
years, yet it remains challenging to solve analytically in strongly relativistic
regimes, particularly where there is a lack of a priori symmetry. Numerical
Relativity (NR)—the evolution of the Einstein Equations using a computer—is now
a relatively mature tool which enables such cases to be explored. In this thesis, a
description is given of the development and application of a new NR code,
GRChombo.

GRChombo uses the standard BSSN formalism, incorporating full Adaptive
Mesh Refinement (AMR) and massive parallelism via the Message Passing
Interface (MPI). The AMR capability permits the study of physics which has
previously been computationally infeasible in a full 3 + 1 setting. The functionality
of the code is described, its performance characteristics are demonstrated, and it is
shown that it can stably and accurately evolve standard spacetimes such as black
hole mergers.

We use GRChombo to study the effects of inhomogeneous initial conditions on
the robustness of small and large field inflationary models. We find that small field
inflation can fail in the presence of subdominant scalar gradient energies, sug-
gesting that it is much less robust than large field inflation. We show that increasing
initial gradients will not form sufficiently massive inflation-ending black holes if the
initial hypersurface is approximately flat. Finally, we consider the large field case
with a varying extrinsic curvature K, and find that part of the spacetime remains
inflationary if the spacetime is open, which confirms previous theoretical studies.

We investigate the critical behaviour which occurs in the collapse of both
spherically symmetric and asymmetric scalar field bubbles. We use a minimally
coupled scalar field subject to a ‘double well” interaction potential, with the bubble
wall spanning the barrier between two degenerate minima. We find that the sym-
metric and asymmetric cases exhibit Type 2 critical behaviour with the critical

vii



viii Abstract

index consistent with a value of v = 0.37 for the dominant unstable mode. We do
not see strong evidence of echoing in the solutions, which is probably due to being
too far from the critical point to properly observe the critical solution.

We suggest areas for improvement and further study, and other applications.
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Nomenclature

Roman Symbols

u

e

<| 8| It >t

=

8 9
S

The state vector (an ordered list of the evolution variables, rather than a
geometric vector)

The vector of eigenfunctions w (an ordered list, rather than a geometric
vector)

Reduced Planck's constant

The Hamiltonian constraint

Langrangian density

Langrangian density for the Einstein—Hilbert action

Langrangian density for a matter field

Langrangian density for a scalar field

A manifold

The momentum constraints

In cosmology, the number of e-folds

The metric compatible covariant derivative with respect to the
conformal metric 7

The traceless part of the extrinsic curvature in the BSSN decomposition
The part of the Ricci tensor related to the conformal metric

The acceleration of the normal observers

An arbitrary vector

In cosmology, the scale factor

Low counting Latin indices denote abstract tensor indices which run
through 0, 1, 2, 3

In inflation, the scale factor when the gradient energy becomes
subdominant

Spatial derivative of the lapse, used in stability analysis of Sect. 2.2.2
In inflation, the scale factor at the free fall timescale

An auxiliary vector field used in the gamma-driver shift condition,
related to the time derivative of the shift
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ij
Cabcd

dijx

Nomenclature

The magnetic part of the Weyl tensor

Speed of light in a vacuum

The Weyl tensor

The covariant derivative defined with respect to the spatial metric v,
Spatial derivative of v;, used in stability analysis of Sect. 2.2.2
The distance within the spatial hypersurface

The spacetime distance

The electric part of the Weyl tensor

The symmetry breaking scale for the PQ-field (for axions)
Newton’s gravitational constant

Determinant of the four-dimensional spacetime metric

The Einstein curvature tensor

The four-dimensional spacetime metric

In cosmology, the Hubble parameter

In gravitational waves, the strain for the + polarisation

In gravitational waves, the strain for the x polarisation

The symmetrising matrix of Py

High counting Latin indices denote spatial component indices which
run through 1, 2, 3

The ADM angular momentum of a spacetime

The trace of K, i.c. gabKab, also v Kij in the adapted basis

In inflation, the wave number of the fluctuations 27 /L

In cosmology, the curvature parameter for space

The extrinsic curvature tensor

The extrinsic curvature (in the adapted basis)

In bubble collapse, the parameter defining the steepness of the bubble
wall

Length of the numerical grid, in cosmology equal to //HV

In GRChombo, the refinement level

The mass of a black hole or compact object

The field mass, in an m2q’>2 potential

The characteristic matrix for the ith spatial direction

The axion mass defined from the potential as AZ/f,

In inflation, the Nariai mass of a black hole

The ADM mass of a spacetime

In inflation, the total number of modes of spatial fluctuations in the
scalar field

The unit normal vector to the spatial slice, also the 4-velocity of the
normal observers

Pressure (of a fluid, say)

The critical collapse parameter, with critical value p*

4-momentum (of a fluid, say)

The projection operator for the spatial hyperslice

The ADM linear momentum of a spacetime
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Py The principle symbol matrix

R The Ricci scalar

r Radial coordinate distance from the centre of the computational grid

Rica Riemann curvature tensor

Rl?; The part of the Ricci tensor related to the conformal factor

Ro In bubble collapse, the initial radius of the bubble wall

R, The matrix of eigenvectors of Py

Ry The Schwarzschild radius

R, The Ricci tensor

R;; The three-dimensional Ricci tensor (in the adapted basis)

S The trace of Sy, i.e. v;S;

s(u) Source terms in the evolution system for u

s The momentum density as measured by normal observers

s Outward pointing normal vector to a 2D surface within the spatial
hypersurface

Sc The Einstein—Hilbert action

Sy The spatial part of the energy momentum tensor in the adapted basis

T In critical collapse, proper time of a central observer, measured
backwards from the critical time

t Coordinate time, conformal time in cosmology

T The Energy Momentum (EM) tensor or stress energy tensor

U 4-velocity (of a fluid, say)

V(¢) Scalar field potential

v The components of an arbitrary vector v

Wi In cosmology, the state parameter for a component i defined by w; =
P/p

X Coordinates of a point on the computational grid

X,{; Combination of evolution variables, used in stability analysis of
Sect. 2.2.2

Xon In cosmology, the particle horizon
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Z In critical collapse, a scale-invariant variable
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Chapter 1 ®)
Introduction Check for

This chapter provides an overview of the key background to the work in this thesis.
The main themes are General Relativity (GR), its numerical formulation in Numerical
Relativity (NR), and Scalar Fields (SF) coupled to gravity. These are considered in
Sects. 1.1, 1.2 and 1.3 respectively.

The intention of this chapter is to provide an overview of the key motivations,
intuitive principles and historical developments in each topic, in order to set the scene
for the more technical detail given in Chap. 2.

In this thesis, we follow the indexing convention of [1]. The signature is
(= 4+ ++). Low-counting Latin indices (a, b, . ..) are abstract tensor indices while
Greek indices (u, v, ...) denote spacetime component indices and run through
0, 1,2, 3. Spatial component indices are labeled by high-counting Latin indices
(@i, j, ...) which run through 1, 2, 3. Unless otherwise stated, we set Newton’s gravi-
tational constant G = 1 and the speed of light ¢ = 1. Other symbols will be identified
in the text, and are summarised in the nomenclature section at the start of the the-
sis. Where components are given we assume a coordinate basis unless otherwise
specified, and the Einstein summation convention is used throughout.

1.1 General Relativity

After the theory of Special Relativity (SR) was proposed, and found to be consistent
with observation, it became clear that Newtonian gravity could not be correct. For a
force to act between two massive bodies simply due to their existence would require
“action at a distance” - should one pop out of existence the other would immediately
be freed from its orbit, requiring signals between the two to travel faster than the
speed of light. Newton himself had objected to this idea, writing in correspondence
in 1692 [2]:

© Springer International Publishing AG, part of Springer Nature 2018 3
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4 1 Introduction

It is inconceivable that inanimate matter should, without the mediation of something else,
which is not material, operate upon, and affect other matter without mutual contact.

However, as with any successful effective theory, the model of Newtonian gravity
was too useful to be discounted on purely philosophical grounds, and thus the issue
was largely ignored until SR prompted it to be revisited, and ultimately solved, by
Einstein.

Einstein’s work on the problem was motivated by two key considerations. Firstly,
the principle of general covariance, which states that the laws of physics must be the
same for all observers, and secondly the principle of equivalence, that all objects fall
with the same acceleration in a gravitational field regardless of mass. The path from
these relatively simple tenets to General Relativity - a new, more accurate, theory
of gravity - is described in Sects. 1.1.1 and 1.1.2. The consequences of the theory of
GR are numerous, and revolutionise how we understand the Universe. Several will
be discussed briefly in Sect. 1.1.3.

To replace Newtonian gravity, the new theory had to relate the way that matter
moved in a gravitational field, and the source of that field. The result obtained by
Einstein was a radical new description of the Universe - gravity was no longer a
force acting between two bodies, but an effect of matter curving the 4 dimensional
spacetime around it, like placing a rock on an elastic sheet. As described succinctly
by John Wheeler [3]:

Matter tells space how to curve, space tells matter how to move.

Or, in mathematical notation
1
Gub = Rab + ERgab = 87rTabv (11)

where the left hand side terms describe the curvature of the space, and the right hand
side relates to the matter content. The components of this equation and its derivation
will be discussed in the next chapter, in Sect. 2.1. This chapter aims to first introduce
the main concepts in GR, without the distraction of the mathematical detail which is
necessary for a complete description.

1.1.1 General Covariance

The principle of general covariance motivates the introduction of tensors as the key
components of any physical law. Tensors are geometric objects which are invariant
under a change of coordinates. Thus physical properties which are expressed in terms
of tensors would be the same no matter what coordinates they are expressed in, for
example, in cartesian or spherical coordinates.

A very simple example is a vector, which is in fact a rank 1 tensor - if I draw an
arrow on my desk, it has a certain length and direction (see Fig. 1.1). I might choose

. . . . . . I
to describe this vector, V in terms of a cartesian coordinate basis e,, = [ex ey] with
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Fig. 1.1 If I draw an arrow on my desk, I am free to describe it in any coordinate basis I choose,
but it will always have the same length. The arrow is a vector, which is a geometric invariant

the x and y basis vectors being unit vectors parallel to the horizontal and vertical
directions. Alternatively I could describe it in terms of a randomly aligned pair of
basis vectors labelled by p and ¢ so that e, = [2,, Eq]T which may or may not be
orthogonal unit vectors, and may or may not be a coordinate basis. In each case the
components of the vector V* in the basis will differ, but my vector is still physically
the same - it has a fixed length which I could calculate in either basis and I should
get the same result.!

Take a moment here to notice some notational conventions and distinguish the
different objects involved. The vector V is the invariant thing - when I think of
this object I am thinking of arrow on my desk as a physical thing, independent
of any coordinate system. What an A-level maths student might think of as “the
vector” are in fact its coordinates V# in some basis where the p labels each basis
component and is related to a corresponding basis vector ¢,,. Specifying these values
is meaningless unless one also specifies the basis. The w can thus take the values x
and y, or alternatively p and ¢, but in any chosen basis should run through as many
values as there are dimensions in the space under consideration, if the basis is to
form a complete set. Here the number of basis components is two as the surface of
my desk is two dimensional. The invariant vector itself is the product of the vector
components and the basis, i.e.

V=VHe, =V + Ve, = VP, + Vie,. (1.2)

Note that I may also write V as V¢, where the lower counting Latin index
(a, b, ...)indicates that I mean the tensor object rather than its components in some
basis, V#, for which Greek indices (u, v, . . . ) are used. In this thesis, the components
of a tensor T}, will often be discussed, since it is these numbers, in some assumed
basis (usually cartesian or spherical polar), that are ultimately what we need to tell

! Assuming that neither coordinate system is boosted relative to the other, since SR tells us that
length is not in fact an invariant quantity, only spacetime length, but for the purposes of the example
a boosted coordinate system seems an unlikely choice.
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a computer to ask it to model the system. But we may also refer to abstract tensorial
objects like the Energy-Momentum (EM) tensor 7, and it should be remembered
that this object is invariant, although its components in an arbitrary basis will not be.
Notice here another point that seems rather trivial but is not - in Fig. 1.1 I defined
my basis vectors at the position of the arrow, rather than draw axes with an origin at
the bottom left hand corner of the desk and define the x and y basis vectors as being
parallel to those, as I might have been tempted to do. Why not? Well if my desk is not
flat then I will see that the basis vectors I draw tangent to the surface at the bottom
left hand corner won’t obviously define the same directions (looking at the surface
“globally”) as those I would draw at my arrow, even though I have been careful to
keep the x and y coordinate lines “locally straight” on the surface. See Fig. 1.2.
This is the important notion that vectors can usually only be defined locally on a
curved surface, and not globally. In fact this is not an easy notion to visualise - in
particular there is an important distinction between intrinsic curvature (the surface
is curved) and extrinsic curvature (the surface is embedded in a higher dimensional
space), and we will seek to clarify this further in Chap.2. Here note that it is the

exand g, basis vectors
# at arrow position

e and ey, basis vectors
at coordinate origin

-r

Fig. 1.2 If my desk is a curved surface, the directions of the basis vectors tangent to the coordinate

lines at the bottom left hand corner are different to those where I draw my arrow. The local tangent
frame changes at different points on a curved manifold
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intrinsic curvature of the desk surface which causes problems for comparing vectors
at different positions. I could measure this curvature by drawing triangles on the
desk and measuring the angles between the sides, which, if they do not sum to 7
radians, tell me that the surface is not intrinsically flat, independently of being able
to visualise it in a higher dimensional space.

My warped desk is a 2-dimensional example of a manifold, which can be thought
of as a continuous and smooth surface, for which the number of coordinates required
to uniquely define each point is the manifold dimension. Here “smooth” means
locally Euclidean - that is, one can attach a flat plane to each point which is tangent
to the surface there, matching both the value at the point and its first derivatives. This
definition of a manifold may be easier to understand with a counterexample - if the
edge of my desk is a very sharp right angle, this part of the surface would not be a
manifold, because at the very corner point I have a discontinuity, to which I can’t
attach a tangent plane. Thus if we look at a small enough patch on a manifold, we
can define vectors lying in this tangent plane and do calculations with them as if we
were in flat space. But as we move away from that point the manifold may bend and
change shape, meaning that the local tangent “flat space” I previously drew is no
longer the same one for a neighbouring point. In fact, more than this, the very notion
of being “the same” at different points is no longer an obvious concept and we will
have to define it.

It turns out, as we will see in the next section, that spacetime is a 4-dimensional
manifold, and that these ideas of local flatness and global curvature are fundamental
to understanding the effects of gravity.

1.1.2 The Equivalence Principle

The equivalence principle in its most basic form may be stated as the fact that inertial
masses (as in the classic Newtonian relation F' = ma) and gravitational masses (as
in F = GMm/r?) are equal. The consequence of this is that all objects fall at the
same speed in a gravitational field, unlike in, say, an electric field, where their accel-
eration depends on their charge to (inertial) mass ratio. This is technically true in a
gravitational field, it is simply that the gravitational “charge” is equal to the inertial
mass and thus the ratio is always exactly one for all objects. Einstein rightly believed
that this was not a coincidence, but an indication that we had missed something
fundamental in our understanding of the laws of gravity.

In a constant, uniform field, saying that all objects fall at the same speed implies
that, in the freely falling frame, the gravitational force vanishes and the frame is an
inertial one as in SR. In an inertial frame any object placed at rest in that frame will
stay at rest, and clearly if I attach my coordinate system to one of the falling objects,
then because they all fall at the same speed, all the objects will appear, as viewed
in this coordinate system, to stay at rest. Thus in this frame, one does not need to
take the gravitational force into account, and can calculate the motion of the objects
relative to each other as if there were no external forces (as in SR). This is rather
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counterintuitive to humans on Earth because we are used to the Earth pushing up
on us - it seems obvious that we “feel” gravity. But satellites experience roughly the
same gravitational field as we do at the surface of the Earth, and astronauts in them
feel nothing - they float about as if in deep space, because to be in orbit is essentially
to be in freefall around the Earth. In their coordinate frame, attached to them as they
fall, they perceive no gravitational force.

The Einstein Equivalence Principle (EEP) goes further than this basic statement
to say that all physical laws reduce to those of SR locally for objects in a freely falling
frame, thus in such a frame one cannot “detect” gravity by any local experiment. This
is a stronger statement because it puts bounds on the ways in which other forces like
electromagnetism and the strong and weak forces can couple to gravity - essentially
it means that as far as these forces are concerned, any locally flat patch of space looks
identical to another. The even stronger Strong Equivalence Principle (SEP) requires
additionally that gravity behaves in the same way everywhere. It thus includes objects
with strong gravitational self-interactions and rules out the possibility of a varying
gravitational constant, G. The SEP applies to unmodified (Einstein) gravity with a
minimally coupled scalar field, which is what is considered in this thesis, but for
modified gravity theories, the SEP may be violated. For example, in Brans-Dicke
gravity the gravitational constant is sourced by a scalar field which may vary in space
and time. This variation would in theory be detectable at two separated points, even
though each was locally flat, and this violates the SEP.

These statements about equivalence relate to regions which are small enough such
that the gravitational field is constant, or “locally flat”. However, in nature there is
no such thing as a truly constant, uniform gravitational field. Gravitational fields
are generally sourced by objects which are localised in space, and thus create radial
fields. In a small enough region (say in a 1m? box at the surface of the Earth, or the
classic “scientist in a falling lift” scenario) the field will be approximately uniform,
but in reality any movement away from a single point will result in an (albeit very
small) change in the magnitude or direction of the field. So when we have a non
point-like object, the gravitational forces can never be completely removed from all
parts simultaneously by a coordinate choice, as each point is experiencing a different
gravitational field, and thus requires a different choice of freely falling frame to
cancel it out.

So then, this suggestion of making the gravitational force “disappear” seems rather
limited in its usefulness - if it is only exact at a single point and just a convenient
approximation elsewhere, then we are back to approximating everything as SR in
some small enough region, albeit we can now also do this in a falling lift and not
just for rockets passing each other at constant velocities in outer space. We appear
to understand things better, but this local picture doesn’t, of itself, get us nearer our
aim of relating gravitational effects and their sources.

The missing ingredient is the observation that variation in the gravitational field
leads to the phenomenon of tidal forces. Standing on the Earth my head feels less
gravity than my feet, since the gravitational force decreases as 1/r? from the centre
of the Earth, and so I am being stretched as if someone were pulling me in two
directions. I don’t notice this because I am not especially tall and so the difference is
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minute, but close to a black hole the effect of these tidal forces would be sufficient to
pull me apart, and so I would be unwise to neglect them. To reduce the description
of tidal forces to its simplest form - two particles at different points in a non uniform
field, initially with the same parallel velocity, will not maintain a constant separation,
but will move apart or together, as if acted on by forces of different magnitude or
direction. Tidal forces are a measurable physical phenomenon (they cause the tides
in the sea, amongst other things), and so clearly cannot be removed by a coordinate
choice.

If we now restate the original idea in more geometric language, we are saying that
for (temporally and/or spatially) varying gravitational fields, then /ocally one can
find a coordinate basis that is flat in the sense of Minkowski-like; but this “locally
adapted” frame changes (smoothly) from point to point, such that one cannot choose
a global coordinate basis which applies at all points. Einstein’s great insight was
to realise that this is exactly equivalent to the description of a curved manifold that
we gave earlier - locally one can create a flat patch by an appropriate coordinate
choice, but as we move away from that point this local “flat space” is no longer the
appropriate one for a neighbouring point. There is no global coordinate system that
is tangent to the whole space, as in our example earlier of the warped desk: spacetime
is curved.

In this picture tidal forces can be seen to be a manifestation of the curvature
of the manifold, which cannot be entirely removed from the whole body in any
chosen frame. But now the word force is actually misleading - there is no external
gravitational force, as can be seen from the fact that it can be removed at a single point
by a convenient choice of coordinates. The so-called “tidal forces” that result in two
separate objects moving apart are not true forces pulling them in opposite directions,
but a consequence of their moving along geodesics (lines that are locally straight)
in a curved spacetime. Even the word “field” is now somewhat inappropriate in its
conventional context, and makes sense only if we think of the gravitational “field”
as encoding the curvature of spacetime (which is indeed what we will do).

This is analogous to what happens on the surface of the Earth if two slightly
separated people take initially parallel paths and both walk in a straight line, say due
North. Because of the curvature of the Earth they will eventually meet, and if they
believe the Earth to be flat as our ancestors did, they might erroneously conclude
that they had been “pulled together” by some mysterious force. In fact their apparent
“attraction” is purely a geometric effect of travelling on the surface of a sphere - a
curved 2 dimensional manifold. See Fig. 1.3.

This insight gives us the key we need to find the equation of motion for gravity.
We know from Newtonian physics how matter gives rise to tidal forces which pull
objects apart. If we can generate their observed effect - the way in which two separated
objects move apart in the field - with a spacetime curvature instead, we can eliminate
these fictitious forces from our equation altogether. We will have the desired relation
to replace Newtonian gravity - a link between matter and spacetime curvature.

The mathematical derivation of Eq. (1.1) requires some additional geometric ideas,
not least the definition of the terms appearing on either side of the equation, which
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Fig. 1.3 In the flat space picture of the Earth, if two people start walking parallel to each other,
at the equator, and travel in a straight line due North, they will maintain an equal separation.
However, because the Earth is curved, they will in fact meet at the North pole as in the inset figure.
If they believed that the Earth was flat, this would be rather surprising, and they might believe that
they had been pulled towards each other by a mysterious force. This is analogous to the historic
misunderstanding of gravity, which was for many years thought to be an attractive force, rather than
a consequence of spacetime curvature. (Image from [4])

are not concise to state. Thus a more complete derivation is left to Sect.2.1.2 of the
following chapter.

However, this approach begs the question - if one can already calculate the tidal
forces on bodies with Newtonian gravity, why bother to replace them with spacetime
curvature at all? The answer is that although the agreement between Newtonian
Gravity and GR is (necessarily for consistency) very good at lower energies, there
are other, unexpected effects which cannot be predicted from the force picture, which
come into play when the spacetime curvature is high. Some of the consequences are
quite revolutionary, as will be discussed in the following section.

1.1.3 Consequences of GR

The effects of GR on our understanding of the universe are profound. At the lowest
level, corrections are found to Newtonian gravity, and these corrections are the basis
for some of the earliest tests of GR. A good example is the precession of the perihelion
(the direction of closest pass) in the orbit of Mercury. In Newtonian gravity an isolated
star and planet system would maintain a constant perihelion direction over the course
of many orbits, but the inclusion of relativistic terms results in its direction gradually
rotating in the orbital plane (see Fig. 1.4). Other classic tests include the bending of
light from stars around the Sun (which would not occur in Newtonian gravitation
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Fig. 1.4 General relativity
predicts that the perihelion
direction rotates gradually in
the orbital plane over
progressive orbits. This
effect does not appear in
Newtonian Gravity and its
agreement with the observed
orbit of Mercury was one of
the early successes of the
theory. (Image from [4])

as photons are massless?), and the measurement of gravitational redshift, firstly in
the Pound-Rebka experiment [5] in 1959, and nowadays on a daily basis by anyone
using GPS.

More modern tests include gravitational lensing of distant objects (see [6] for
a review), and satellite tests to observe the geodetic effect (also called de Sitter
precession) and frame dragging (specifically Lense-Thirring precession). The former,
the geodetic effect, results in the direction of a gyroscope appearing to precess as it
orbits the Earth, due to the curvature of the space around the Earth resulting from
its mass. The latter, frame dragging, occurs because the Earth is spinning, which
causes the gyroscopic direction to be “dragged” round in the direction of rotation of
the Earth. Figure 1.5 illustrates the recent Gravity Probe B experiment which tested
these effects [7].

These corrections to Newtonian gravity are inferred from “solutions” to the equa-
tions of GR, which may be found in given circumstances. In this context, a solution
is a description of the spacetime curvature resulting from a given matter distribution
- matter tells space how to curve. Where the situation has some high level of symme-
try, and where simplifying assumptions may be made, it is possible to find analytic
expressions for the spacetime curvature and its variation over time. From these solu-
tions, the motion of a small test mass (which it is assumed does not materially affect
the overall curvature) can be inferred - space tells matter how to move.

One of the most well known solutions is the Schwarzschild metric [8] which
describes the curvature of space outside a point mass, typically a black hole although
it may also be applied outside extended bodies like the Earth (it is from this solution

2 Although one can regard the photon as having a mass in terms of its angular frequency w, m =
Tw/c?, one will not get the correct deflection for a massless particle using the Newtonian result.
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Frame-dragging Effect
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Geodetic Effect
-6606 mas/yr NS

Fig. 1.5 The geodetic effect results in the direction of a gyroscope appearing to precess on each
orbit of the Earth. This is a consequence of the space around the Earth being curved by the mass
energy and so occurs for an orbit in any direction, such that the gyroscope appears to turn in the
plane of the orbit. The image also shows the effect of frame dragging, which results in the direction
of a gyroscope appearing to turn in the direction of rotation of the Earth. If a polar orbit is chosen,
as in Gravity Probe B, the two effects will be perpendicular. (Image from [7])

that the geodetic effect is calculated). It may seem rather remarkable that in the
vacuum around a mass like the Sun, the space will be affected just by its presence,
but it is exactly this solution which resolves the paradox of action at a distance
which prompted the discovery of GR - the curvature of spacetime is the mediator
of the gravitational effects between two separated bodies. Since disturbances in the
curvature cannot travel faster than the speed of light, no gravitational signal can
propagate between two points in spacetime faster than this limit, and causality is
assured.® Consideration of masses with angular momentum leads to the Kerr solution
[10], from which frame dragging can be deduced, and including electric charge gives
the Reissner-Nordstrom metric [11]. The solution for a black hole which is both
charged and rotating is the Kerr—Newman metric [12].

These vacuum solutions give us new insights into potential phenomena around
black holes, but also contain singularities - points at which spacetime becomes
infinitely curved. The breakdown in our understanding at these points highlights
the fact that, although GR is a far more accurate theory of gravity than the Newto-
nian one, it must still be an effective low energy theory - one requires a unified theory
of gravity and the Standard Model at higher energies. That is, one expects that new
physics might prevent the collapse of matter to an infinite density around the Planck
scale, just as electron and neutron degeneracy pressures prevent gravitational col-
lapse in white dwarfs and neutron stars respectively. However, such effects are well

3Modulo the construction of spacetimes with closed time-like curves, e.g. wormholes, see [9].
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beyond the energy scales which we can currently probe, and in addition, the Cosmic
Censorship conjecture asserts that singularities will always be enclosed by an event
horizon, from which information about their nature cannot be extracted (although
this remains, as the name implies, a conjecture, and considers only classical effects).

Another interesting “solution” in GR is found by applying the Einstein equation
to our Universe as a whole. The resulting Friedmann—Robertson—Walker—Lemaitre
(henceforth FRW, as is conventional) solution for a homogeneous and isotropic uni-
verse provides the basis of modern cosmology, as will be discussed in Sect.1.3.2
below, and in Sect.2.3.2 of the following chapter. Here, simply note that GR gives
us the ability to predict the future evolution of the Universe on large scales, given
a knowledge of its energy and matter content. Turning this around, one obtains a
possibly more useful result - observations of the evolution of the Universe allow us
to constrain its content, and in doing so one is led to the realisation that much of the
matter and energy content of the Universe is unaccounted for by visible matter - see
Fig. 1.6 - the so-called problems of Dark Energy and Dark Matter.

Finally, and perhaps most timely at the moment of writing this thesis, the theory of
GR predicts the existence of propagating waves in spacetime - gravitational waves.
Such waves are emitted by the relative motion of masses, in particular, as a result of a
quadrupole moment in the mass distribution. Gravitational waves emanating from a
binary black hole collision approximately 1.4 billion light years away were measured

Fig. 1.6 Observations of the Content of the Universe
Universe allow us to

constrain its energy and
matter content as above. This
leads to the somewhat
surprising result that much of
the matter and energy in the
Universe appears to be
invisible to us. (Data from
2015 Planck results [13])

@® DarkEnergy @ Dark Matter
@ Visible/Baryonic Matter
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for the first time on 14 September 2015 by the two Advanced LIGO detectors in
Hanford and Livingston [14], see Fig.1.7. A network of ground based detectors
is being established to further study this new area of observational cosmology. In
the longer term, the European Space Agency (ESA) has designated the space-based
LISA detector an L3 launch slot (expected launch date around 2034), and this seems
to be on track following the LISA Pathfinder spacecraft’s thus far successful test
mission this year. As well as providing further confirmation of the accuracy of the
theory of GR, the discovery of gravitational waves has the potential to revolutionise
our understanding of the Universe, as it is an entirely new source of information
about its content and history. An understanding of gravity and its effects is vital for
studying the data gathered, and a key part of this effort will come from Numerical
Relativity, which will be discussed in the next section.
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Fig. 1.7 GW150914, the gravitational wave signal detected by Advanced LIGO in 2015. Note
that the solid lines show a numerical relativity waveform for the inferred binary black hole system,
which is an excellent match to the measured data. Templates produced by Numerical Relativity are
essential for understanding the late inspiral and merger phase of the signal. (Image from [14])
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1.2 Numerical Relativity

Almost a hundred years after Einstein wrote down the equations of General Rel-
ativity [15], solutions of the Einstein equation remain notoriously difficult to find
beyond those which exhibit significant symmetries. Even for these highly symmetric
solutions, basic questions remain unanswered. A famous example is the question
of the non-perturbative stability of the Kerr solution — more than 50 years after its
discovery, it is not known whether the exterior Kerr solution is stable. The main dif-
ficulty of solving the Einstein equation is its non-linearity, which defies perturbative
approaches.

One of the main approaches in the hunt for solutions is the use of numerical
methods. In Numerical Relativity (NR) the 4-dimensional Einstein equation (1.1) is
formulated as a 3 4+ 1 dimensional Cauchy problem, where the Cauchy initial data,
specified on some 3-dimensional spatial hyperslice, is evolved forward in time. An
alternative approach, the Characteristic formulation, is not considered in this thesis,
but further details can be found in the review by Winicour [16].

1.2.1 NR as a Cauchy Problem

Equation (1.1) is an inherently 4-dimensional equation. Each of the tensors it contains
are geometric objects which exist on a 4-dimensional manifold and the coordinate
system within the manifold may be specified arbitrarily. There is thus (in the general
case) no natural foliation of the coordinates one chooses into space and time, as what
one calls “time” will depend on the observer, and their position and velocity within
the spacetime.

However, as humans our brains are not well adapted to visualise a 4-dimensional
space and we naturally find it more easy to visualise spatial surfaces being evolved
over some chosen time-like coordinate. As long as one is careful with the interpre-
tation of the results which are obtained, as far as possible drawing conclusions in
a coordinate independent way, this is a useful tool for understanding gravitational
solutions. Moreover, it provides a means by which to answer the question “what
happens next?”” which is often of interest for a given scenario.

In NR we thus decompose our spacetime into a 3-dimensional spatial slice, and a
time-like direction “off” the surface - see Fig. 1.8. Such a decomposition allows us
to specify constraint satisfying initial data on some (3-dimensional) Cauchy surface,
which may then be evolved forward in discrete steps along the time coordinate.

For example, our initial data may be two black holes boosted in opposite directions
so as to give a binary inspiral like the one seen by Advanced LIGO. The initial
data would describe the curvature of the spacetime around the black holes, and its
derivative with respect to time (see Sect.2.2.1 for a more exact description). This is
analogous to specifying the initial position and velocity of a particle, which will then
be evolved subject to some second order equation of motion (EOM).
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Fig. 1.8 In NR, the metric and matter data on an initial spatial hypersurface is evolved along a
local time-like coordinate according to the Einstein equation, to give data on the next hypersurface.
The process is then repeated. Here the spatial slices are represented as 2-dimensional for clarity,
whereas the data evolved will be 3-dimensional for a full spacetime. (Image from [17])

Einstein’s equation (1.1) is what provides the EOM for the spacetime curvature
under gravity. In its 4-dimensional tensor form, it constrains the relationship between
the curvature and its derivatives on the 4-dimensional spacetime manifold. It can thus
provide, once expanded out in some coordinates which delineate space and time, a
set of nonlinear, coupled second order partial differential equations (PDEs) which
relate the derivatives in space, the derivatives in time, and the matter content present.
These can be rearranged to give us the time derivatives of the curvature as a function
of the spatial derivatives and matter content, thus allowing us to generate the future
evolution of the curvature at each point from the initial data.

Note that in a black hole evolution, one does not evolve the central singularity
of the black hole in which the mass is contained, which will be excised, or a clever
choice of coordinates used to avoid it. In other systems, initial data for the matter
field and its time-like derivatives must also be specified, along with an EOM for how
that matter type evolves in a curved spacetime. This will be discussed below and in
the next chapter for a scalar field matter source.

The problem of solving a Cauchy problem for a system of coupled PDEs from
an initial data set is a classic numerical problem, used in various other fields such as
fluid dynamics. There are a number of subtleties and challenges which arise in the
specific case of gravity, which will be explored further in the following chapter, but
in principle there is no difference between evolving a fluid flow and evolving a pair
of black holes, each set of variables simply obeys a different set of PDEs.

A more detailed description of the theory behind the formulation of the Cauchy
problem is given in Sect.2.2.1 of the next chapter.
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1.2.2 Key Historical Developments in NR

Numerical methods have been used to solve the Einstein equation for many years,
but the past decade has seen a culmination of theoretical and technical developments,
leading to tremendous advances.

Three key milestones are worth mentioning. Firstly, the development of the ADM
formulation of the Einstein equations in 1962 gave a natural decomposition into a
3 + 1 form suitable for use in a Cauchy problem as described above (see Sect.2.2.1).
Originally formulated by Arnowitt, Deser and Misner from a field-theoretic perspec-
tive [18], as a Hamiltonian formulation for use in quantum gravity, the form now used
in NR and referred to as the “standard ADM decomposition” more closely resembles
the reformulation by York in 1979 [19]. This form is mathematically different,* but
should give the same results for real physical systems.

Secondly, the discovery that the ADM decomposition was not numerically stable
(see Sect.2.2.2), and its reformulation in a more stable form by Baumgarte, Shapiro,
Shibata and Nakamura® (the “BSSN” form [21-23]), enabled long term stable evo-
lutions of strongly gravitating spacetimes.

The final breakthrough was the development in 2005 of suitable gauge choices for
evolving realistic astrophysical scenarios such as neutron stars, core collapse, and the
inspiral merger of two black holes [24-26]. The use of Generalised Harmonic Coor-
dinates (GHC) with explicit excision [27], and “moving puncture” gauge excision,
enabled the study of spacetimes containing moving singularities. This is discussed
further in Sect.2.2.3.

The other driver of developments in NR is an explosion in the availability of
large and powerful supercomputing clusters and the maturity of parallel processing
technology such as the Message Passing Interface (MPI) and OpenMP [28, 29],
which open up new computational approaches to solving the Einstein equation.

We anticipate that the development of NR will continue to accelerate, especially
given the recent discovery of gravitational waves at Advanced LIGO described above.
Beyond searching for gravitational waves and black holes, NR is now beginning to
find uses in the investigation of other areas of fundamental physics. For example,
standard GR codes are now being adapted to study modified gravity [30], cosmology
[31, 32] and even string theory motivated scenarios [33-36]. In particular, there is
an increasing focus on solving GR coupled to matter equations in the strong-field
regime: cosmic string evolution with GR, realistic black hole systems with accretion
disks, non-perturbative systems in the early universe, etc. Since it is often difficult
to have an intuitive picture of the entire evolution ahead of time, the code must be
able to automatically adapt to ensure that all regions of interest remain adequately

4The evolution system for preserving the constraints is well posed for York, whereas in the original
ADM formulation it is not, although both are only weakly hyperbolic in terms of the evolution
equations, see [20].

3Oohara and Kojima were co-authors of the original paper with Nakamura in 1987, but unfortunately
are not usually included in the abbreviation, although some texts use BSSNOK to recognise their
contribution.
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resolved. This nascent, but growing, interest in using NR as a mature scientific tool
to explore other broad areas of physics was a key motivation of the GRChombo
code development, and the research work described in this thesis demonstrates its
suitability for solving these types of problems.

1.2.3 Existing Numerical Codes and AMR

In the NR community, the requirement for varying resolution is largely met through
a moving-box mesh refinement scheme. This type of setup consists of hierarchies of
boxes nested around some specified centres, and the workflow typically requires the
user to specify the exact size of these boxes beforehand. These boxes are then moved
around, either along a pre-specified trajectory guided by prior estimates, or by auto-
matically tracking certain quantities or features in the solution as it evolves. Boxes
which come within a certain distance of each other may also be allowed to merge.
A number of moving-box mesh refinement codes have been made public over the
recent years, many of which are built on top of the well-known CACTUS framework
[37, 38]. One such implementation is the McLachlan/Kranc code [39, 40], which
uses finite difference discretisation and the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) evolution scheme [22, 23]. Similarly, the LEAN code [41, 42], which uses
the CACTUS framework, and BAM and AMSS-NCKU [43, 44] also implement the
BSSN formulation of the Einstein equations. There is also GRHydro which imple-
ments general-relativistic magnetohydrodynamics (MHD) for the Einstein Toolkit
[45], building yet another layer of physics on top of evolution codes such as McLach-
lan/Kranc. There are also non-CACTUS codes such as SPeC [46] and bamps [47],
which implement the generalised harmonic formulation of the Einstein equations
using a pseudospectral method. In addition to these public codes, there is a plethora
of closed-source codes.

The moving-box mesh refinement technique has found great success in astrophys-
ically motivated problems such as two-body collision/inspiral. Outside of this realm,
however, the setup can quickly become impractical, especially where one expects
new length scales of interest to emerge dynamically over the course of the evolution.
This can occur generically in highly nonlinear regimes, either by interaction between
GR and various matter models, or by gravitational self-interaction itself which can
exhibit complicated unstable behaviour in higher dimensions. In such situations, it is
necessary to develop a code which has the flexibility to create refinement regions of
arbitrary shapes and sizes, anywhere in the computational domain as may be required.
This can be achieved by using a fully adaptive mesh refinement (AMR) technique,
whose feature is generally characterised by the ability to monitor a chosen quantity at
each time step and insert higher resolution sub-regions where this quantity fails to lie
within some chosen bounds. Of course, the efficacy of such codes depend crucially
on a sensible choice of these criteria, however when implemented correctly they can
be an extremely powerful tool. The advantage here is twofold: AMR ensures that
small emergent features remain well-resolved at all times, but also that only those
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Fig. 1.9 This image from a GRChombo simulation shows a 2-dimensional slice through the 3-
dimensional spacetime during an evolution from Chap.5 of an asymmetric scalar field bubble
collapse. The elevation at each point is equal to the value of the scalar field. The AMR mesh is
overlaid, from which it can be seen that the refinement is increased in regions of strong gradients
in the field. The remeshing is significantly more flexible than the moving-box refinement used by
most NR codes

regions which require this extra resolution get refined, thus allowing more problems
to fit within a given memory footprint.

In this thesis we will describe the development of a new code for Numerical
GR called GRChombo with full AMR. A detailed description of the code, its AMR
implementation and details of the code tests are provided in Chap. 3. Anillustration of
AMR in GRChombo is shown in Fig. 1.9. To the best of our knowledge, PAMR / AMRD
[48] and HAD [49] are the only two codes with full adaptive mesh refinement (AMR)
capabilities in numerical GR, but we understand that these are significantly less
flexible in their refinement ability than the code we have developed.

1.3 Scalar Fields with Gravity

A scalar field is a simple idea often introduced in elementary physics by thinking
about a temperature field in a room. The field is a scalar in the sense that it has a
value at each point in space which can be described by a single real number, unlike,
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Fig. 1.10 A scalar field is A
described by a single value at
each point in space. (Image

from [4]) T '
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say, a vector field which requires a magnitude and direction to be fully specified.
One expects the field to vary continuously across the space and it is possible to plot
its variation in any chosen direction. See Fig. 1.10 for an illustration.

However, temperature is not a fundamental scalar field, it is simply a macroscopic
property of space at each point, determined by other factors such as the proximity of
heat sources. When a physicist talks about fields (scalar or otherwise), they usually
have in mind something more abstract - a fundamental field of nature, which takes a
value at each point in space and may couple to other fields. In quantum field theory
(QFT), particles like electrons are localised fluctuations in these fundamental fields,
and particle collisions create new particles because they transfer energy to, and thus
excite fluctuations on, other coupled fields. Scalar fields are called spin zero fields
because they are invariant under a Lorentz transformation (they transform under the
trivial (0,0) representation of the Lorentz group).

In this section we consider some examples of scalar fields and their applications,
in particular the two applications considered in this thesis - critical collapse and
cosmology.

1.3.1 Scalar Fields and Scalar Potentials

The Higgs field is currently believed to be the only truly fundamental scalar field
which has been observed in nature, [S0-52]. However, it is possible that other funda-
mental scalar fields exist which were active in the early universe, but now lie dormant
as the average energy density has decreased to such an extent that there is no longer
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sufficient energy to excite them. A candidate for such a field is the inflaton, which
plays a key role in the theory of inflation, as discussed further in Sect. 1.3.2 below.

Scalar fields are also useful in effective theories, where they may describe the
low energy behaviour of more fundamental degrees of freedom. For example, the
Landau-Ginzberg model [53], which describes the dynamics of “Cooper pairs” (pairs
of electrons with opposite spins) in conventional superconductivity, is equivalent to
(and in fact preceded) the Albelian Higgs model, with the Cooper pairs being treated
as a single scalar particle. Similarly in particle physics, pi mesons (“pions”) are
described at low energies as a scalar particle, despite being composite particles made
up of two quarks.

Finally, scalar fields often provide a simple toy model for understanding the
behaviour of more general fields in more complicated scenarios, such as those in
which they are coupled to strong gravity, and also for unusual gravity effects, such
as Critical Collapse, introduced in Sect. 1.3.3 below.

The equation of motion for a scalar field ¢ in flat space, subject to a scalar field
potential V (¢) is the Klein Gordon equation, which can be written as

2 2 2 2
P P Fo Fo_dVe) m

o2 Oxr  9y? 072 do
The term V (¢) (with the exception of any terms in ¢ or ¢?) results in a non linear self
interaction of the field. That is, for a non trivial potential V (¢), two plane waves in
the field will not simply superpose but will interact in a non trivial way. The form of
V (¢) can be thought of as a property of the field - in the case where V (¢) = %m2¢2
then m can be identified with the “mass” of the field. In more complicated forms it
still determines how the field propagates, but in a more involved manner. The key
point is that the field has a tendency to want to fall to the minima of the potential,
and then stay there unless excited. It can thus have a strong effect on how the field
evolves. The shape of the potential for a field must be assumed, or derived from some
higher energy theory in the case where the field is only an effective description. Multi
minima potentials are thought to arise in the low energy effective theories of several
string theories, but one would need an exact model to be able to derive their form.
An example of a potential is shown in Fig. 1.11.

In both the cases of fundamental scalar fields mentioned - the Higgs field and the
inflaton field - the shape of the potential is essential in determining its behaviour and
properties. One must take care to distinguish the motion of the field in the potential
from the motion of the field in physical space. When we consider the motion of
the field in the potential, we are considering only a single point and its field value,
and looking at the corresponding value and slope of the potential at that point. The
evolution of that point in physical space will be determined by Eq.(1.3), which
combines both its tendency to “roll downhill” in potential space, and the effect of
its spatial gradients in physical space, which tend to pull it into a flatter spatial
configuration.
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Fig. 1.11 A ¢* potential for V()
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of strong gradients in space
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In this thesis and in the code we have developed, the behaviour described is
entirely classical. We consider only classical scalar fields and classical effects, and not
quantum ones, although we know that all fields are fundamentally described by QFT.
In effect, the field value being evolved is the expectation value of the field operator,
and the approach assumes that the quantum field is in an approximately coherent
state. For example, we cannot model the quantum tunnelling between minima which
may result in the bubble solutions described in Chap. 5, although we can take the
tunnelling solutions as an initial condition and evolve forward classically. Equally,
we cannot model the propagation of individual particles - our modelling of the field
as a purely classical one is only valid in the limit where occupation number in the
underlying field is high, and/or the wavelength of the fluctuations in the classical
field are much larger than the compton wavelength of the quanta of the field. In post-
inflationary cosmology this is usually the case - quantum effects are almost always
negligible in comparison to the effects of gravity which dominate over larger scales.
In smaller scale problems, such as axion stars, or during inflation where quantum
fluctuations are “blown up” to larger scales, one must be more careful to consider
whether quantum effects are relevant.

1.3.2 Scalar Fields in Cosmology

As discussed above, one can obtain an analytic solution to Einstein’s equation for
the universe as a whole if one assumes a space which is homogeneous and isotropic,
and filled with some kind of fluid matter. The result is an expanding space which
proves to be a good description of our universe on larger scales, if a certain matter
content is assumed - the FRW spacetime. In particular, the model is consistent with
observations of the Cosmic Microwave Background (CMB) radiation, which is light
emitted from the last scattering surface, after recombination of the hot plasma into
neutral atoms. The CMB data from the Planck and WMAP satellites, see Fig. 1.12,
provides an enormous amount of information and has led to an age of “precision
cosmology”.
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Fig. 1.12 The image shows the temperature anisotropies of the Cosmic Microwave Background
(CMB) radiation as observed by Planck. The CMB is the oldest observable light in our Universe,
emitted from the last scattering surface. The temperature fluctuations correspond to the density
variations which provided the seeds of future structure - stars and galaxies - in the Universe. (Image
from ESA/Planck Collaboration)

However, whilst the FRW model and cosmological data explain many things,
they also raise a number of questions, one of which is, why does the universe look so
similar in all directions? If the Universe is simply “rewound” using the FRW model,
it is clear that opposite sides of the observable universe could not have been in causal
contact when the CMB light was emitted. Thus, assuming they started out with some
random configuration (which is what physicists tend to assume), they should look
very different from each other now. This is not the case, which implies that the model
is incomplete - casual contact must have occurred at some point.°

A solution to this problem is inflation, first proposed by Guth and Starobinsky,
and later updated by Linde, and, independently, Albrecht and Steinhardt [54-57].
The theory also usefully explains the scarcity of magnetic monopoles and why the
universe is flat on large scales. Inflation is a period of superluminal expansion in the
early universe, which would allow distant regions to have been causally connected
in the past. An illustration of the proposed history of the Universe, with a period
of inflation at the beginning, is shown in Fig.1.13. One possible source of such
an expansion is a scalar field subject to a particular form of scalar potential. This
theoretical scalar field is commonly referred to as the inflaton, and there are many
possible models proposed for its behaviour.

Such inflationary models are well studied in the homogenous case, and in the
perturbative regime. However, they are not well studied in cases where there are
large variations in the initial conditions, such as large fluctuations in the value of
the scalar field throughout space. If one wants to explain how random fluctuations
can be eliminated via inflation, one should show that one can start inflation with a
truly random configuration in all variables, and still achieve the same homogeneous

6Causal contact tends to smooth out differences, as regions in contact equilibrate over time - think
of putting two tanks of water at different temperatures in contact, side by side - after some time all
the water will be at a constant temperature everywhere.
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Fig. 1.13 The image shows our current understanding of the timeline for the evolution of the
Universe. Inflation is an early phase in which the Universe undergoes a period of accelerated
expansion. (Image from [58])

result. Otherwise we are really back to square one, as we now need to explain how
to obtain a homogenous starting point for inflation to begin with.

Further technical details of FRW cosmology and inflation relevant to the current
work are given in the next chapter in Sect. 2.3.2. In Chap. 4 of this thesis, we complete
a study of a class of inhomogeneous initial conditions, and their effects on inflation,
considering the robustness of different inflationary models to perturbations in the
field, and to non uniform initial expansion.

1.3.3 Critical Collapse of Scalar Fields

In a 4-dimensional spacetime, for any one parameter, p, family of initial configu-
rations of a scalar field, the end state will be either a black hole or the dispersal of
the field to infinity. The transition between these two end states occurs at a value
of the parameter p*, at which the critical solution exists. An illustration of a criti-
cal collapse is shown in Fig. 1.14, in which is a gaussian bump in a spherical shell
(which appears as a ring in a 2D slice) collapses inwards. The parameter p could be
the initial height of the bump, or its radius. When p is small the bump will collapse
inwards and then disperse. As p is increased, we are adding more energy into the
gradient in the walls, and eventually we will have added a sufficient amount that on
collapse a black hole will form. The value of the parameter at this point is p*. This
was almost exactly the procedure followed by Choptuik in his 1992 study [59], and
whilst this result may seem rather obvious, his studies revealed other behaviour near
this critical point which was not.
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Fig. 1.14 An illustration of a scalar field critical collapse. The image shows a 2D slice through
the 3D spatial hypersurface, and the elevation is the value of the field at each point. The initial
perturbation splits into an ingoing and outgoing spherical wave. If there is sufficient energy in the
collapse, a black hole will form

Firstly, in a spherically symmetric collapse, the mass M of any black hole that is
formed close to the critical point follows the relation

M oc(p—p)7”, (1.4)

where the scaling constant s is universal in the sense that it does not depend on the
choice of family of initial data - p may be the initial height, width or any other scale
which may be varied in the initial data. This phenomenon of universality implies
that one can tune a black hole mass to zero, in theory creating a naked singularity in
breach of the cosmic censorship conjecture.

The other key phenomenon observed is that of self-similarity in the solutions, or
“scale-echoing”. Close to the critical point, and in the strong field region, the fields
are subject to a scaling relation in which, as the time nears the critical time, the same
field profile is seen but on a smaller spatial scale. This scale-echoing may be either
continuous or discrete, but the factors leading a system to either case are not well
understood.

Whilst spherically symmetric configurations have been well-studied analytically
and numerically, axisymmetric and fully asymmetric configurations are much less
well understood due to the high resolutions required to resolve the scale echoing.

Further technical details of critical collapse are given in Sect.2.3.3 of the next
chapter. Chapter 5 of this thesis presents work on the critical collapse of non spher-
ically symmetric scalar field “bubbles” - solutions which interpolate between two
minima in a ¢* potential.
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Chapter 2 ®)
Technical Background e

In this chapter the key topics covered by the thesis are explored in more technical
detail. We follow the theoretical steps in formulating a numerical evolution, and
the background to the specific problems studied. Discussion of the implementation
aspects of the numerical evolution are left to the following chapter in which the code
which was developed is described. As in Chap. 1, we divide this chapter into three
sections, GR, NR and Scalar Fields.

e Section 2.1 concerns GR generally, and aims to summarise the Einstein Equation,
its key geometric components and their physical interpretation from a geometric
and a Lagrangian perspective.

e Section 2.2 explains the key issues encountered in the numerical formulation of GR
asa3 + 1D Cauchy problem which can be implemented and solved on a computer,
including the ADM decomposition, numerical stability and gauge issues.

e Section 2.3 discusses scalar fields coupled to gravity, and the specific problems of
Inflation and Critical Collapse for which the research presented in Chaps. 4 and 5
was undertaken.

2.1 GR - Key Theoretical Concepts

In this section we aim to summarise the formulation of the Einstein equation, and
highlight the key concepts which will be important in the numerical formulation.
This is not intended to be a complete treatment of the subject of GR, and the reader
is referred to a standard textbook on GR for further detail. In particular, the books
by Schutz [1] and Carroll [2] give detailed and thorough introductions to the sub-
ject, whilst Wald [3] is the key reference for more advanced topics, or as a concise
reference.
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In this section all references to the metric and its derived objects refer to the 4-
dimensional versions, for example R = “R. We will always assume a coordinate
basis, which means that the basis vectors are defined as the tangents to coordinate
curves. The result is that such basis vectors commute and the Christoffel symbols
are symmetric.!

Note that we will include any cosmological constant contribution to the Einstein
equation in the stress-energy tensor, rather than stating it separately, which effectively
means that it is treated as a fluid which violates the strong energy condition (“SEC”).
This corresponds to the treatment in Chap. 4, in which the inflaton scalar field sources
the cosmological constant for inflation.

2.1.1 Geometric Preliminaries

Manifolds and Metrics

As stated in Chap. 1, an n-dimensional manifold may be thought of as a smooth and
continuous surface. More explicitly, it is a set which at each point is homeomorphic to
an n-dimensional Euclidean space, and may be continuously parameterised (locally
at least) by some coordinates that can be mapped to the reals R”.

The differentiability of the manifold with reference to the local coordinates means
that vectors can be defined as tangents to local curves, with components in some basis
dx"/d)\ where \ parameterises the curve, and one-forms can be defined as linear,
real valued functions of these vectors. There is a duality in the definition such that we
can equally define a one form d¢ as the geometric object with components 0¢/0x*
in some basis (i.e. the gradient of a scalar function), and a vector as a linear, real
valued function of the one form. The vector takes the one form (or vice versa) into
the derivative of the scalar function along the curve to which it is tangent, i.e.

00 dx _do

do(V) = V(@) = Oxi dx  d\’

2.1)

The spacetime of GR is a pseudo-Riemannian manifold,> meaning that in addition to
the above manifold coordinate structure, one has specified a metric, g,5, which is a
rank 2 tensor, at each point. This is an additional piece of information which defines
the local distance ds on the manifold, when an infinitesimal (vector) step dx is taken

ds® = gapdx®dx? . 2.2)

I'Schutz gives a good description of non coordinate bases in both his books [1, 4], in particular there
is a useful example in the latter which shows that the often-used unit vectors in (flat space) polar
coordinates are not in fact a coordinate basis, which has consequences for tensor calculus.

lele pseudo in pseudo-Riemannian means that the metric is not positive definite, i.e. gu, V¢V’ % 0
V V, which is obviously very important physically as it is due to the minus sign associated with the
time direction, but does not make a big difference to our discussion here of geometric properties.
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It also serves to define a one-to-one mapping between vectors and one-forms, such
that the one form dual V to the vector V is defined as

V)= gmV?. (2.3)

In our Universe, a key feature of the spacetime manifold is that the metric has
three positive eigenvalues and one negative eigenvalue, such that its signature is
3 — 1 = +2, and that the metric is symmetric.

This distinction between the coordinate labelling of the manifold and the phys-
ical distances is a very important point in GR, and becomes even more relevant
when working with simulations in NR. In SR the metric is a constant everywhere in
spacetime and equal in a cartesian basis to

G = M = diag(—1,1,1, 1). (2.4)

This means that distances are determined by the Pythagorean rules of flat space
(ignoring the complications of the minus sign) and our coordinates will be linked
directly to physical distances as measured by the observer in that frame. However,
in GR this is no longer the case - the metric varies from place to place and the
coordinates x* which we impose are simply an arbitrary labelling, embodying the
gauge freedom which is exactly the principle of general covariance. Taken in isola-
tion, the coordinates tell us simply how the spacetime is connected, so that x = 2 is
somewhere “between” x = 1 and x = 3, but the actual distances between the points
are not necessarily equal to 1. We require knowledge of the metric to understand the
physical quantities - proper distances, times and volumes - which would be measured
by an observer, according to Eq. (2.2).

Equivalently, the metric of GR is a geometric object which takes a value at each
point on the 4 dimensional manifold. Expressed in some basis, it is a set of 10
quantities (it is symmetric), and is the fundamental object which is used to describe
the curvature of the spacetime manifold.

Curvature and the Einstein Equation

As was stated in Chap. 1, the interplay between matter and curvature is summarised by
Einstein’s field equation, an inherently local equation relating the Einstein curvature
tensor G, to the Energy-Momentum (EM) tensor T,;, at each and every point in the
spacetime

1
Gu = Ry + ERgab =8 Ty . (2.5)

The left hand side, G,;, encodes the curvature, which is completely determined by
specifying the metric across the spacetime (terms like R, just being a shorthand to
represent some convenient combinations of the metric and its derivatives, which will
be defined below).

On the right hand side, the EM tensor 7, is usually defined in words in its raised
component form 7", as “the flux of four-momentum p# across a surface of constant
x"”. Its form depends on the type of matter - for example, for a perfect fluid with
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energy density p and pressure P the components measured by an observer with
4-velocity U" are
™ = (p+ P)UHU” + Pg"”. (2.6)

Returning to the curvature part, we define a particularly useful combination of the
metric and its gradients, the Riemann curvature tensor, as

‘pea = 0clhq — 0aTp + To. Ty — T3 Thc 2.7)

where we have implicitly chosen the torsion-free “Levi-Civita” or “metric” connec-

tion in our definition, as is usual in GR. The Christoffel symbols (which are not

tensors) are the components of the Levi-Civita connection in some basis, and can be
expressed in terms of derivatives of the metric as

1
FZV = Eg/}a (augm/ + augucr - aag;w) . (2.8)
In effect, the Christoffel symbols describe how the basis vectors change from place
to place on the manifold. If we choose a locally flat inertial frame, in which the
Christoffel symbols (but not their derivatives) vanish, the components of the Riemann
tensor can be written in a lowered form as

1
Rogys = 5(@3&,%5 — 93059ar + 0a059sy — 0005955) » (2.9

which makes explicit their dependence on the second derivatives of the metric, and
the many symmetries (which must hold in all bases, as they can be expressed as valid
tensor equations such as R,pcq = — Rpaca, see for example Schutz [1]).

It can be shown that the Riemann tensor has two interpretations. Firstly, it defines
the change in direction of a vector as it is parallel transported around a closed curve
(see Fig.2.1). Explicitly, the change in the vector component § V¢ will be

SV =R% sdx"dx"V". (2.10)

Equivalently, the Riemann tensor is the commutator of the covariant derivative acting
on a vector, i.e.
V.VyV¢ —VyV. Ve =RY V. (2.11)

Note that whilst covariant derivatives of scalars commute, on a curved manifold
covariant derivatives of vectors do not.
The quantities appearing in the Einstein Equation, the Ricci tensor R,; and its
trace, the Ricci scalar
R =Tr(Ru) = g*’Ryy = R®, (2.12)
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Fig. 2.1 The Riemann
tensor describes the change
in direction of a vector after
it is parallel transported
around a closed loop in the
manifold. One can see that
when a vector is moved
around a loop on a curved
surface, this change is non
zero. Image from [5]

3

are defined by the contraction of the Riemann tensor

Ry = R°

ach *

(2.13)

The result of these relations is that the curvature term appearing on the left hand
side of the Einstein field equation is a (quite complex) non linear combination of the
metric and its first and second derivatives with respect to space and time.

Note that if all components of the Riemann tensor are zero, the space is flat. The
same is not true of the Ricci tensor or Ricci scalar, which may be zero in a curved
space, leading to non trivial solutions, even when T,;, = 0, the so called “vacuum
solutions”.

In the next section, we use these geometric ideas to motivate the Einstein equations,
as was described qualitatively in Chap. 1, by relating the separation of neighbouring
particles due to tidal forces to movement on a curved manifold.

3Why this contraction between the first and third indices, rather than others? One can show that any
other contraction is either equal to zero or =R, due to the symmetries of the Riemann tensor, so
it is in effect the only one possible. We will also see in Sect.2.1.2 why this contraction is relevant
in relation to tidal forces.
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2.1.2 The Einstein Equation from Geometric Principles

At the end of Sect. 1.1.2, we stated the following:

We know from Newtonian physics how matter gives rise to tidal forces which pull objects
apart. If we can generate their observed effect - the way in which two separated objects
move apart in the field - with a spacetime curvature instead, we can eliminate these fictitious
forces from our equation altogether. We will have the desired relation to replace Newtonian
gravity - a link between matter and spacetime curvature.

Here we proceed with this interpretation, having developed the machinery we need
in the previous section to describe the effects of curvature, in particular, the Riemann
tensor.

Consider a single particle at a position x; falling freely in a gravitational field,
with four-velocity U. For a Newtonian gravitational potential W the acceleration
arises from the potential gradient,

W_ 3y, (2.14)
dt

The equivalent statement in GR is the geodesic equation, which can be written (with
proper time 7 as the affine parameter)

au” o dx? dx? 215
dr —  Pdr dr -’ @15
Thus we can see that the Christoffel symbols act as VW. The statement that we can
find a local frame in which the gravitational force disappears is equivalent to the
statement that we can find a local frame in which the Christoffel symbols are zero.
If we introduce a second particle at x;, which is slightly separated from the first
but also falling freely, and define the separation between two point particles Z as
7% = x5 — x{* (see Fig.2.2), then the tidal acceleration is given by Newton as

d*z

5= —GV)VU. (2.16)

Considering, equivalently, the motion of particles in a curved space, which we assume
would follow geodesics, one can show (see for example Schutz [1]) that the equation
of geodesic deviation is

d2 a
- TZZ =—2"R%,, UMV . 2.17)
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Fig. 2.2 Two particles are
separated by Z as they fall
freely (along geodesics) in a
gravitational field. Due to the
curvature of spacetime their
separation will change as
they advance along the
curves

z(r+A7)

/

Comparing these two we make the connection® that

VgV R, UMDY, (2.18)
and hence
VW < R, UMUY. (2.19)

The Newtonian potential is sourced by the mass density p according to the Poisson
equation
VW = 47p. (2.20)

We already have our “GR” version of the left hand side in Eq.(2.19). For the right
hand side, given the definition of the EM tensor, the energy density measured by an
observer moving along the geodesic is:

p=T,U0"U". (2.21)

Combining these results and requiring that they are true for all U gives us

R, =R, = 47T, . (2.22)

pav

4Although we are cheating a bit since the V in the Newtonian case is the 3 dimensional spatial
gradient and not a four dimensional quantity. We should really show that the time components do
not contribute in some chosen frame and then generalise from a tensor equation.
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This is clearly close to Eq.(2.5) but not quite right, as we are missing a factor of
2 and the Ricci scalar contribution. However, at this point note that the inability to
make tidal forces disappear in any frame is directly connected to having a non zero
Riemann tensor, as expected.

The problem we have is that physically we know that the EM tensor on the right
hand side 7% is divergenceless, and thus so should the Ricci Tensor be. It happens
that this puts big restrictions on what form R, can take. To solve this problem, R, is
replaced by the Einstein Tensor G, = R, — % Rg,p, for which G ab jg divergenceless
as an identity (see for example Schutz [1]). The factor of two then comes in so as
to recover the correct Newtonian limit. This divergenceless property of the Einstein
Tensor is very important, and gives rise to the Bianchi Identities

v,G%=0. (2.23)

2.1.3 The Einstein Equation from Action Principles

The form of the Einstein field equation (2.5) can be derived in several ways. The fact
that there are many consistent ways in which it can be reached is part of the elegance
of the theory.

An alternative to the geometric approach is the minimisation of the Einstein—
Hilbert action

Selg™1= / d*x/=gR. (2.24)

where g is the determinant of the four dimensional spacetime metric, and its (negative)
square root encodes the dependence of the volume element on the metric. The action
S¢ can be considered as a map from a certain field configuration (of g,;) on a manifold
M into the real numbers R. The integrand is the Lagrangian density for GR

L6 =+—gR. (2.25)

which excluding the volume factor ./—g is simply the Ricci scalar R. Since this is
the only non trivial scalar one can obtain from contractions of the Riemann tensor,
it is the obvious choice for the scalar Lagrangian.

Taking the functional derivative of this action with respect to the inverse of the
metric (and assuming zero surface terms®) gives

§S[g*]

1
o V=g (Rab - ERgab) . (2.26)

SThis will be correct if the change in the metric 6g®? and its derivatives go to zero at infinity.
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we see that minimisation of the action leads directly to the (vacuum) Einstein field
equation:

1
Ry = 5 Rgay = 0. (2.27)

Including an energy-momentum source provides an alternative definition of the
EM tensor in terms of the minimisation of a matter action. One defines a new
Lagrangian density as

L=L;+CyuLly. (2.28)

where C)y is a constant which depends on the energy momentum source, being 167
for scalar field matter. The minimisation of the combined action means that the field

equation gains an extra term, recovering Eq. (2.5) if the EM tensor is defined to be

Cu  6Sulg™]

Ty = — 2.29
ab 87T\/—_g (59“17 ( )
which can also be written in terms of the Lagrangian density as
c OLulg™
T, — M mlg®] (2.30)

8mJ—g Ogw

Now the requirement that the matter action is diffeomorphism invariant leads to the
requirement (see for example Wald [3]) that for a matter field which satisfies the field
equations, the EM tensor is divergenceless, that is

V4T, =0, 2.31)

which is consistent with the expected conservation of energy and momentum from
its physical definition above in terms of fluxes across a surface.

For example, for a minimally coupled scalar field, with a simple kinetic term, the
Lagrangian density is

1
Lsr = =53/=9 (8" VadVo0 +2V(9)) . (232)

One can verify that Eq. (2.30) then leads to the EM tensor

1
Tap = VapVpo — Egab(vc¢ Vg +2V). (2.33)

In some ways this derivation of the Finstein equation is more elegant than the
geometric approach, because R is the obvious choice for the scalar to play the role
of the Lagrangian, and we don’t have to do a last minute switch from R, to G;.
However, a geometric understanding is probably more important in the field of NR,
and is closer to the original derivation followed by Einstein. We present both here
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because scalar fields are often expressed in the language of Lagrangians and it is thus
valuable to connect the two approaches in the context of this work. We will continue
to make this connection in the following section when we decompose the metric in
the 3 4 1 formalism using both a geometric and Lagrangian approach.

2.2 NR - Key Theoretical Concepts

In this section we describe the key issues encountered in the numerical formulation
of GR as a 3 + 1D Cauchy problem which can be implemented and solved on a
computer. As discussed in Chap. I, when one wishes to solve the Einstein equation
numerically, the usual scenario is that one knows or postulates some initial condition
on a spatial hypersurface, and wants to find out “what happens next”, that is, one
wishes to evolve the slice forward in time. This in principle a tractable problem -
if one knows the metric on a hyperslice and its derivatives as one moves “off” the
slice, that should be enough to populate the rest of spacetime, using the Einstein field
equations.

One must define what is meant by the spatial hypersurface. In GR, there is no
preferred time-like direction and, crucially, no global concept of time. This makes
the problem of solving the Einstein equation numerically substantially different from
normal Cauchy problems. The data on the initial 3 dimensional spatial hyperslice
is evolved forward along a local time coordinate, with each point corresponding to
an “observer” who moves through the spacetime, rather than any fixed spatial point.
The freedom to choose the path of these observers, the so-called “gauge choice”, is
discussed in Sect.2.2.2.

There exists a “natural” decomposition of the Einstein equations which is well
motivated from both the Lagrangian and geometric approaches - the ADM (Arnowitt
Deser Misner) decomposition [6]. As we have mentioned, the original decomposition
by Arnowitt et al. was reformulated by York [7], and this is the one which we describe
here.

As the York distinction implies, several formulations are possible. The different
formulations must agree for physical data (otherwise they will not describe gravity
as we observe it), but they may have different global mathematical properties, and
thus behave differently as one moves off the constraint surface (i.e. into regions of
non-physical data). This has important consequences for numerical stability, and is
discussed further in Sect.2.2.2. In this section we will also introduce the formulation
used in the work presented in this thesis - the BSSN formalism - and explain why it
has desirable properties.
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2.2.1 ADM Decomposition

In this section, the ADM decomposition is derived both as a geometric problem, and
from variational principles of the Einstein—Hilbert action.

Spacetime Slicing and Kinematics

Consider the foliation of 4-dimensional spacetime into a 3-dimensional “spatial”
hyperslice, and a “timelike” normal to that slice, as illustrated in Fig. 2.3. It is assumed
that the spacetime is globally hyperboloidal, that is, that it can be foliated into level
sets of a universal time function ¢ which are distinct and cover the whole spacetime.

The spatial coordinates x’ (¢) label the points on the spatial hypersurface at some
coordinate time 7. Within this slice, the proper distance d/ is determined by a 3-
dimensional spatial metric «y;; according to

dI* = ~;dx'dx' . (2.34)

Xisdt 4 t + dt

adtn

Fig. 2.3 Foliation of a 4 dimensional spacetime into a 3 dimensional “spatial” hyperslice, and a
“time-like” normal to that slice. The gauge variables - the lapse a and shift 5’ - are also illustrated.
In this picture space is represented as a two dimensional surface, whereas in full GR each spatial
slice is a 3 dimensional volume
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The normal direction to the hyperslice at each point is given by the unit vector 7,
which is the 4-velocity of the normal observers. Travelling along this direction, the
distance in proper time 7 to the slice at ¢ 4 d is given by:

dr = adt . (2.35)

Here « is the lapse function, which takes a value at each point on the slice. The lapse
encodes our freedom to slice the time-like evolution as we choose - it is a gauge
variable. A value of « of less than one, for example, indicates that coordinate time
runs slower than proper time at this point, but this should make no difference to the
physical results we obtain in this basis.

As we move onto the next slice, we may use the equivalent spatial coordinate free-
dom to relabel the coordinates on our hyperslice. This relabelling is parameterised
by the shift vector 3'. It may not immediately be clear why we would want to do this
- surely it is simpler to leave the points at fixed locations in space? Unfortunately
this is not possible in the general case. Firstly, it turns out that the freedom to move
our coordinates dynamically on each slice can improve the stability of our numerical
evolutions, in particular in black hole spacetimes. Secondly, it is important to under-
stand that each coordinate on the spatial slice does not correspond (necessarily) to a
fixed point in space, but rather a particular observer moving through the spacetime.
The observer labelled by x’ can move with reference to a fixed point from slice
to slice, even with a zero shift vector. We will return to these points below and in
Sect.2.2.3 on gauge choices. For now simply note that the shift vector moves the
coordinates according to the following relation

x'(t +dt) = x'(t) — fdr, (2.36)

where the notation is rather confusing but should be read as “the observer moving
with 4-velocity n® who, on the slice at t, was labelled with the coordinates x' (t) is
labelled on the timeslice at t + dt by the coordinates x' (t + dt)”.

Using simple addition of vectors, we can see that the 4-dimensional spacetime
distance ds is given by

ds* = (—a* + B B)dt* + 2pidx'dt + ~;;dx'dx? . (2.37)

Notice that we have, without justifying it, introduced a coordinate system which
is adapted to the slicing - the &y basis vector is tangent to the lines of constant x'
(along the ¢ coordinate line), and the ¢; basis vectors are tangent to the slice. This is a
natural choice, and will make things simpler as it will mean a lot of the components
of our geometric objects reduce to zero. For example, in this basis, the unit normal
vector has the components in raised and lowered forms of

' =/a,—f/a) n,=(-a,0,0,0), (2.38)
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from which we can see that it is normalised and timelike such that n*n, = —1. In
this basis objects living in the spatial slice can have their indices raised and lowered
with the spatial metric 7;;. We will refer to this coordinate choice as “the adapted
basis”.

However, it is important to be aware that we can define all our quantities indepen-
dently of this coordinate system, as we will now do. Knowing the unit normal vector
to the slice 71, we can define the projection operator which projects indices onto the
spatial hypersurfaces as

Pl =6, +nny. (2.39)

Applying this to the metric gives the (4-dimensional) metric induced on the spatial
slice as
Yab = Py Pyl gea = Gab + Nty (2.40)

from which we can see that the projection operator is in fact the spatial metric, that
is
b b
P =n,. (2.41)

a

The lapse function is defined as
a=(=Vt.Vt)z, (2.42)

and the shift vector 3 is defined such that it is orthogonal to 7 by construction, with
3% =0and

B = —a(i.Vx'), (2.43)
so that the time vector has components
t* = an® + ﬂa . (244)

Note that in a general basis ¢ # V“, but t*V,¢t = 1 in all bases. We can also see
that 3¢ is the projection of 7 onto the spatial hypersurface

PitY = (68 4 nnp)(an® + B7) = B°. (2.45)

‘We won’t have much need to use more general bases, and work mainly in the adapted
basis, in which case we can frequently ignore the time-like components of the geo-
metric objects which are intrinsic to the spatial slice. The key point to take away is
simply that these quantities are geometric objects which exist independently, and are
not defined by, the obvious coordinate choice aligned to the slices. As a consequence,
we can only ignore the time-like components when we make this particular choice,
and not in the general case.
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More Kinematics - The Extrinsic Curvature

To fully specify our decomposed spacetime, we must also define an object called the
extrinsic curvature, K5, which describes how the spatial hypersurface is embedded
in the 4-dimensional spacetime.

The notion of extrinsic curvature is in some ways more intuitive that the notion
of intrinsic curvature. Consider a cylinder in 3-dimensional space - the intrinsic
curvature of the 2-dimensional surface is zero - it is flat in the sense that the parallel
transport of a vector around a loop on the surface does not lead to a change in
its direction. However, our human brains consider this surface to be curved, which
it is in the 3-dimensions in which it is embedded - it has an extrinsic curvature.
This extrinsic curvature can be defined in two equivalent ways. Firstly, it can be
defined as the change in the direction of the normal vector under parallel transport
a small distance away along the surface, see Fig.2.4. Geometrically, this definition
corresponds to

K. = —P;Vcnb = —(Vynp +n,nVeny) . (2.46)

Note that the quantity we might naively specify, V,n;, is projected into the spatial
slice (there is also a minus sign which is just a matter of convention). This is to

n(x1) 7.n
r
+
| n(xz+dx)
I
n(xi+dx
a=1 ! nfxs ) A
|
nt =1 | Ven
. \
|
| n(xz)
' ;
I
e |
Ka 7 e «=2 :
B ne=1/2 - %
g -
KIKX

Fig. 2.4 In 141D the extrinsic curvature in the adapted slicing has only one non trivial component,
K. The figure illustrates how its value relates to the change in the normal vector as it is parallel
transported along the slice. In the vicinity of x; the lapse is constant in space, and so the covariant
derivative of the normal vector naturally has all its components tangent to the slice. At another point
x7 the lapse is not constant and so the normal vector at xp + dx is a different length (which has
been exaggerated for effect, it should vary smoothly and thus be only infinitesimally different in
length). In this case it is necessary to project the covariant derivative into the slice to find the value
of K. Note that for simplicity in the figure the shift is equal to zero, so that the time-like direction
is parallel to the normal vector, which is not true in the general case
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remove the effect of the lapse, which is not intrinsic to the slice, but appears in
the normalisation of the normal vector. By projecting into the slice we ensure that
K, is symmetric and intrinsic to the slice. In effect, K, is defined as if all normal
observers followed the geodesic congruence with o = 1, which means that it is a
gauge independent quantity. Equivalently, the extrinsic curvature may be defined as
the Lie derivative of the metric along the normal direction, i.e.

1
K = _§£ﬁ7ub . (247)

That this is equivalent to Eq. (2.46) can be shown by expanding out the Lie derivative
(a short discussion of Lie derivatives and the derivation of this result is given in the
Appendix A.2). If we now choose the adapted basis, the time components of the
extrinsic curvature can be ignored - they are zero in the raised form, and although
non-zero in the lowered form, all their information will effectively be contained in
the spatial components. These components are then

1
Kij = _Z(at’)’ij — Difj — D;f3) (2.48)

where D; is the covariant derivative defined with respect to the spatial metric ~;;.°
Contracting Eq. (2.46) with the metric it can be seen that its trace is equal to the
divergence of the normal lines

K =g"K,, = —V.n©, (2.49)

where the second term vanishes because 7 is unitary and so its gradient is orthogonal
to it. This means that it corresponds to the changing volume element of the normal
observers. We will see that in the special case of an isotropic and homogeneous
Universe, with geodesic observers, K is related to the Hubble constantas K = —3H.
Negative K thus corresponds to an expanding space, and positive K to a collapsing

0ne.7

Constraints and Dynamics

In previous sections we have discussed only the kinematics derived froma 3 + 1 slic-
ing of the metric. In this section we introduce the dynamics and physical constraints
imposed on the metric by the Einstein equation.

The method to be followed consists in projecting the Einstein equation both onto
the spatial surface that we have constructed, and normal to it. In fact there are three
options - either both indices can be projected into the spatial hypersurface, both

SThis is equivalent to the projection of the covariant derivative into the spatial slice D, = Pf \3
for the derivative of a scalar or a purely spatial tensor, but when acting on a general four tensor, one
must also project the indices of the tensor itself into the spatial slice.

This is true for the definition of K used here, but an opposite sign convention for Ky, is possible
and used by some authors. In addition, as will be discussed later, in more general cases the volume
growth may be a gauge effect, rather than due to the physical expansion of the space.
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normal to it, or (since the tensors are symmetric), either one of the indices can be
projected into the slice and the other one out of it.

We start from two well-known relations which are simply (but lengthily) derived
from the geometric slicing described above. Firstly, the Gauss-Codazzi equation

Paeth ch le @ Rf-’f,(ih =0 Rabcd + Kachd - Kadec ’ (250)
and secondly the Codazzi—-Mainardi equation

PEP) PIn" DR,y = DyKae — DaKope . 2.51)

Contracting both sides of Eq. (2.50) twice with the metric g*¢* gives

n‘n’Gu = YR+ K* — Ky K, (2.52)

from which, using the Einstein equation to replace G, with T,;, and using the
adapted basis, we obtain

H="R+K>— K;K" —16mp=0. (2.53)

where p = n“n®T,, is the energy density measured by a normal observer. This rela-
tion is the Hamiltonian constraint. It involves no time derivatives and is independent
of the gauge parameters® o and /3. It is not, therefore, related to the evolution of the
quantities but their relation within a slice. It tells us that we are not free to specify
any data we like for the metric and the energy density - the data must satisfy this
relation or it will not satisfy the Einstein Equation. This is quite clear when you think
about it physically - if I were completely free to choose all my quantities, I could put
a very large mass in the centre of my space, and insist that the spacetime around it
was completely flat. This is clearly not a valid physical scenario, and we see that it
is indeed ruled out by Eq. (2.53).

The same contraction of Eq.(2.51) gives the projection of the Einstein equation
with one index in and one out of the slice

PGy, = Dy(v*K — K, (2.54)

from which, again using the Einstein equation to eliminate G ., we obtain the momen-
tum constraints in the adapted basis

M =D;(yVK — K7) —8rS', (2.55)

8When we start specifying scalar field data on the initial slice, the gauge parameters will appear in
the constraint equation. This is a consequence of the fact that the time derivatives of the scalar field
are usually specified with reference to coordinate time and not for the (gauge independent) normal
geodesic observer. Their appearance in the constraints is then to remove their effect from the gauge
dependent quantities, rather than because the constraints depend on the gauge.
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where §' = —/ #n"T,, is the momentum density as measured by normal observers.
Again these (three) relations must be satisfied by the data on the each slice if it is to
represent a true “physical” spacetime. However, as with the Hamiltonian constraint,
it gives us no data about how the quantities should evolve in time, save that these
relations should continue to be satisfied.

The four constraints reduce the number of degrees of freedom from ten (the sym-
metric components of g,,,) to six. To obtain the remainder, we require the projection
of both indices into the slice. Starting with Eq. (2.50) again and contracting with the
metric g*¢ we have

P PI (DR + 1 DRopgn) = D Rog + K Kpa — KiK. (2.56)

One can also show that the last non trivial projection of the 4D Riemann tensor is
- 1
P/ P} (n°n? DR,rgn) = £:Kpa — Kpe K§ + — Dy Dyar. (2.57)
’ e

Before we can equate these two (purely geometric) relations, we need to eliminate
the term P/ P/ R ;.. In deriving the constraints, we have eliminated similar terms
by expressing them in terms of G, and then making a substitution for the EM tensor,
thereby introducing the “physics” of GR. Whilst we can do the same here, we choose
instead to replace R, directly using an alternative form of the Einstein Equation

1
Rab =87 <Tab — Eg”hT) . (258)

where T = T/. This step is the key difference between the York and original ADM
formulations. If we used the Einstein tensor instead, we would add a term proportional
to the Hamiltonian constraint to the evolution equation derived, which for physical
data is zero and so the two are the same. Combining these results and expressing
them in the adapted basis gives the evolution equation for K;; as

8;[(,']' =Bk8k1(ij + Kkiajﬁk + Kkj&-ﬁk - DiDjOé
+a (PR + KK;j — 2Ky K%) + 4mar (i (S — p) — 2835)
(2.59)

where S;; =7, v, T" and S = Sf . Combining this with the definition of Kj;
Eq.(2.48) above, which can be rearranged to give

Ovij = —2aKi; + DiBj + D; i , (2.60)
gives a full set of evolution equations for the spatial metric and the extrinsic curvature.

Note that since the Einstein equation involved second derivatives of the metric with
respect to time, we have effectively performed the usual trick of decomposing a
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second order differential equation into two first order ones, by first defining K;; to
be (loosely speaking) the first time derivative of the metric as in Eq. (2.60), and then
giving the time evolution in terms of K;;. Thus one should not strictly see Eq. (2.60)
as an evolution equation for the metric (since it is not derived from the Einstein
equations in any way) but rather as the definition of K;;. This is equivalent to how in
Newtonian mechanics F = m dv/dt is the evolution equation whereas v = dx/dt
is just the definition of the velocity, although together they allow one to derive the
overall (second order) evolution of position x from two first order equations.

A couple of notes to close this section - firstly, one can show that if the constraint
equations are satisfied on the initial slice, the evolution Egs. (2.59) and (2.60) will
preserve them on future slices, due primarily to the effect of the Bianchi identities in
Eq.(2.23). Secondly, we consider again the ten degrees of freedom in the full metric.
We have already said that four of these are removed by the constraints. A further
four of the six dynamical degrees of freedom represent the freedom to choose one’s
gauge variables in space and time. That leaves two physical degrees of freedom of
the gravitational field, which corresponds to the two polarisations of gravitational
waves.

A summary of the key equations derived in this section is given in Appendix B.1
for reference.

ADM Decomposition - Lagrangian Formulation

Arnowitt, Deser and Misner’s original paper derived the ADM decomposition as a
minimisation of the classical action Eq. (2.24), with the 4 dimensional Ricci scalar
“ R decomposed into its components in the slice using

R=2(n"n"Gu —n“n"Ra) . (2.61)

The first term is the contracted Gauss—Codazzi relation in Eq. (2.52) above, and the
second can be shown using the definition of the Riemann tensor in Eq. (2.11) to be

K*—-K w K" 4 atotal divergence . (2.62)

The problem was originally formulated as a Hamiltonian problem with the conjugate
momenta
y oL y y
szfz—ﬁ(Kj—’yjK) (263)
Vi j
in place of the extrinsic curvature, but for consistency with the above work we retain
K;; here, which is just a change of variable. Recognising that the volume element

=g d*x = a/y d*x, where v is the determinant of the 3 dimensional spatial
metric, gives the action as

S, e, B1 = /d4x av/=7 (VR + KiK' — K?). (2.64)
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Taking the functional derivative of this action and minimising it with respect to
each of the components of the decomposed 4-metric in turn, the lapse «, shift 3’ and
spatial metric ;;, gives the Hamiltonian constraint, the momentum constraints, and
the evolution equation for K;; respectively. For example, considering minimisation
with respect to the lapse, and ignoring surface terms

S« A1 /d4x¢—_»y(<3>R — KK+ K)5(x—y) =0 (265
dau(y)

we obtain the Hamiltonian constraint as per Eq. (2.53).

Thus we see how the “gauge choice” variables dictate that each slice must be
correctly embedded in the higher dimensional spacetime such that the constraints
are satisfied, with, as one might expect, the time-like lapse « giving rise to the
equation of energy conservation, and the spatial gauge variable 3 giving rise to
momentum conservation. The true “equation of motion” for the metric then comes
from the minimisation of the action with respect to 7;;, which gives rise to an equation
similar to Eq. (2.59) (differing only by the addition of a multiple of the Hamiltonian
constraint) for the evolution of Kj;.

The equivalence of the field theoretic approach with the geometric approach is
part of the beauty of the theory of gravity, but it is also useful. By formulating
in terms of an action, one may study modified gravity theories derived from new
actions, with symmetries motivated by other physical ideas. Since one may derive
new equations of motion from such a new action, one can in theory evolve these
numerically and compare their results to standard Einstein gravity, thus exploring
higher energy deviations from the accepted model. For example, f(R) gravity in
which the R is replaced by some function of R in the Einstein—Hilbert action [8], or
f(PR) in Horava Lifshitz gravity [9], in which the 4-dimensional diffeomorphism
is broken. Probing these modified gravity models is one of the key aims of ESA’s
Euclid mission [10], which will map large scale structure of galaxies and galaxy
clusters across a significant portion of the sky.

Although one can formulate an equation of motion in 3 + 1 dimensions for modi-
fied gravity models in NR by following the prescription above, it turns out that ensur-
ing the numerical stability and well-posedness of the equations which are obtained
is not trivial. This issue, in the context of standard Einstein gravity, is considered in
the following section.

2.2.2 Numerical Stability

The 3 4+ 1D ADM decomposition of the Einstein Equation presented above and
summarised in Appendix B.1 is already, in theory, in a form suitable for evolution
on a computer. However, one finds that it results in large instabilities developing
during the simulation. This can be shown to be due to the equations being weakly
hyperbolic rather than strongly hyperbolic, which means they are not well-posed,
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such that certain modes may grow without bound. In the first part of this section we
will define and explain these terms, and describe the key points that lead to numerical
problems in the ADM formalism.

Many numerical relativity codes implement the so called BSSN form of the Ein-
stein equation [11-13]. This admits a strongly hyperbolic formulation of the Einstein
equation, and together with the “1 4 log” slicing [14] and the “gamma-driver” gauge
conditions [15], has allowed the stable simulation of dynamical spacetimes of inter-
est, including black hole binaries. We will present this formulation in the second part
of this section, and describe how its well-posedness is achieved.

More recently, other refined formulations of the Einstein equation based on the Z4
system [16, 17] have been proposed, most notably the Z4c formulation [18] and the
CCZA formulation [19]. In the Z4 system, both the Hamiltonian and the momentum
constraint are promoted to dynamical variables and hence constraint violating modes
can propagate and eventually exit the computational domain, which can result in a
more stable evolution. In this thesis we use only the BSSN formulation, which was
found to be sufficiently stable for our purposes in the research presented.

The other main approach in NR is Generalised Harmonic Coordinates (GHC),
which takes a completely different approach and evolves the full spacetime metric
9ap- This has been used with much success by groups including Pretorius [20], but
again it is not used for this work and so we do not consider it further here.

Note that going forward, all references to the metric and its derived objects refer to
the 3-dimensional versions, for example R = @ R, unless otherwise specified. The
dimension will be specified where there is potential for confusion, but it should be
clear from the indexing convention (Roman indices for 3-dimensional objects and
Greek indices for 4-dimensional ones).

Well-Posed and Hyperbolic Formulations

If a system of PDEs is well posed, this means that a small change in initial data results
in a small change in the solution. This can be expressed by the condition

lu, x)|| < Cre™ [lu(0, x)| (2.66)

with the constants C; and C; independent of the initial data. This only requires a less
than (or equal to) exponential growth in the initial conditions, which is not in itself
fantastic - such growth may still cause problems within a simulation. However, it is
certainly a necessary (if not sufficient) condition for good numerical behaviour.

We will now describe how a system which is strongly hyperbolic can be shown
to be well-posed as a result. We consider a system of the form

du+ Mdu=s), (2.67)

where u is not a vector in the geometric sense, but an ordered list of the evolution
variables, K;;, o etc. and so we denote it in bold face. We will ignore the effect of
the source term, setting s(u) = 0, as it does not play a role in our discussions here
(but note that it may indeed affect the analysis if it is non linear in the variables).
The i spans the spatial dimensions and thus there is one characteristic matrix M’
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for each direction. If one considers an arbitrary unit vector s = (sy, Sy, §;) one can
construct the principle symbol matrix Py(5) = M's;. If this has real eigenvalues and
a complete set of eigenvectors for all s;, the system is strongly hyperbolic.’ In this
case one can always find a symmetric, positive definite matrix Hy = (R; )T R
which “symmetrises” P, such that

HP,— P'H/ = H,P;— P/ H, =0, (2.68)

where R, is the matrix of eigenvectors of Py, and A; the diagonal matrix of eigen-
values such that
PsR; = AgR; . (2.69)

We can then use H; to construct an “Energy-Norm” of the initial condition vector u
and its adjunct u’

lu> =u'Hu. (2.70)
ikx.s

Using a Fourier mode u(x, t) = u(t)e as the initial condition we can see that

O u|* = 0, Hyu) = ika” (PT H, — H;P)i =0, (2.71)

meaning that the energy norm is constant in time, and thus the system is well posed
as required. If we reduce our system to derivatives of a single direction x, (which we
can do with our tensor variables since they have no preferred direction), we can also
define eigenfunctions w = R 1u such that

oW+ Ayd,w =0, (2.72)

so that the evolution equations for the eigenfunctions decouple, and propagate with
speeds equal to the eigenvalues of the principle symbol. In this case we are effectively
only considering the matrix M~. Often the eigenfunctions can be found by inspection,
rather than explicit calculation of the eigenvectors.

We will now sketch the key steps in analysing the ADM system of PDEs according
to this approach. For a more complete treatment, on which this discussion is based,
see Chap.5 of Alcubierre [21].

Firstly, in order to take all the equations into first order form, we define the
following new variables:

1
=0ijk » (2.73)

A,' = 8,'(11’1 Oé) d,‘jk = 2

91f the former condition, real eigenvalues, is met but not the latter, a complete set of eigenvectors,
it is only weakly hyperbolic.
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The lapse is considered to be a dynamically varying quantity, subject to the evo-
lution
da =—aQ, (2.74)

where Q is some function of the other variables, and 9, is shorthand for 8, — 5 9.
The shift is considered to be an a priori function of space and time and thus it and its
derivatives are treated as source terms. We consider only the “principle parts”, that
is, we keep only the highest order derivatives present, which dominate the behaviour,
whilst the remaining terms are considered source terms and set to zero. This means
that we ignore the evolution equations for the lower order quantities o and ;. Our
equations reduce to those for the 27 independent variables

OA; ~ —a0; 0, (2.75)
Oodiji =~ —a0;K ji (2.76)
D K;j ~ _aakxl]'(j . 2.77)

ij Jm mj)
only one spatial derivative direction x, many of the equations immediately decouple
and thus some eigenfunctions can be found by inspection, for example, the eigen-
functions

up to the principle part, where X}, = df; + d; (a HAdn —2d" ) Considering

w=A; i#x with\=—g3", (2.78)
w=dijx i #x withA=-0". (2.79)

Additionally by considering how X ;k evolves, one can show that another set of
eigenfunctions is

w=7uKij FX;; i jFx with A= —03" £ a7 (2.80)

However, in trying to extend this to the directions involving x, one finds a problem.
We can see from Eq. (2.77) that K; evolves as a function of the derivatives of X7;,
but since

QXY ~ayV0. K i,j #x, (2.81)

it is clear that the time derivative of X7; is independent of K,;. This means that
this subsystem cannot be symmetrised, and that K,; can grow in an unbounded way
unless X7, = 0. The ADM equations are thus only weakly hyperbolic. This can be
fixed by assuming that the momentum constraint is satisfied, in which case Eq. (2.81)
becomes

O Xy; = ay™ 0Ky 1 #x, (2.82)

for which the two quantities recouple, allowing them to be symmetrized, with the
same eigenfunction structure as Eq.(2.81).
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We therefore find that the ADM decomposition will be strongly hyperbolic only if
the momentum constraint is satisfied at all times. In a numerical simulation this cannot
be guaranteed, which is what leads to the instabilities in the formalism. In order to
remove this dependence, we need to alter the structure of the characteristic matrix in
such a way as to ensure hyperbolicity regardless of the constraint violation. We want
to do this without altering the physical behaviour of the system, and fortunately the
freedom to add and subtract arbitrary multiples of the constraints (which should be
zero) gives us the ability to do exactly that. Another possibility is found in promoting
certain quantities to dynamical variables as is considered in the next section in the
BSSN formalism. As we have mentioned, other formalisms exist, but we refer the
reader to the standard NR texts [21, 22] for further details.

Note that a second condition which is required to achieve hyperbolicity in the
ADM formalisms is that the lapse cannot be chosen to be an a priori function of
space and time as was done for the shift - it must evolve as a dynamical variable.'”
Some possible dynamic conditions will be considered in Sect.2.2.3.

BSSN
The BSSN system is derived from the ADM system with the following key steps:

1. Introduce the conformal connection coefficients T'': These three auxiliary vari-
ables are promoted to dynamical evolution variables. They allow us to adjust the
form of the characteristic matrix and thus change the hyperbolicity of the system.

2. Replace certain combinations of variables with multiples of the constraints: In
several of the evolution equations, multiples of the constraints are added, again
these change the characteristic matrix and thus improve stability.

3. Decompose ADM variables into conformal versions: Improving the hyperbolicity
is a necessary but not sufficient condition for well behaved numerics. Another
key feature of BSSN is the conformal decomposition of variables, which has been
found in practise to improve stability.

Starting with the last point, we decompose the induced metric as 7;; = % Yij S0

that det%;; = 1 and x = (det; j)_%. As suggested in [23], we use the inverse of the
conformal factor ) which is specified in most texts, since this results in a conformal
factor which goes to zero at a black hole singularity, rather than a 1/r singularity.''
The components of the conformal metric thus remain O(1) and encode the directional
stretching of space, whilst the conformal factor gives the overall scale of the metric.
For weak gravity cases in a conformally flat space, ) is approximately related to the
Newtonian gravitational potential ¥ by

10 Alternatively the desensitised lapse o/ /7y can be specified as a function of space and time, but
we do not take this approach in this work. One can see that in any case the slicing conditions we use
results in a similar behaviour to specifying a constant desensitised lapse, with the lapse becoming
smaller in regions in which the normal observer volume is shrinking.

Note that many texts also use a y which is equivalent to our 2. One should thus take care with
conventions when comparing results.
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[ 1
= [ 2.83
X v (2.83)

and a value of x less than 1 can thus be loosely thought of as corresponding to a
gravitational “well”, and at flat space infinity, x tends to 1.

Similarly, the extrinsic curvature is decomposed into its trace, K =+ K; ;» and
its traceless part so that
1 /- |
Kij = 2 Aij + 3 K7 ), (2.84)

with 49 A; ; = 0. Itis not actually clear why such a decomposition should improve
numerical stability, but in practise it has been found to do so where the tracelessness
of A, ;j 1s enforced at each step.

One can then find the evolution equations for the decomposed variables directly
from the ADM versions, taking care to account for the tensor density nature of
X, 7ij and A; ; when expanding the Lie derivatives (further details of this are given
in Appendix A.2.3). This gives

1 1
Ohx = gaxK—gxakﬂ"w"akx, (2.85)

- P - 2. -
Oy = —2a Ay + 7 0,8 + A 08" — 3 Vi OB* + B 0 (2.86)
. IO 1 .
8,K = —’leD,'DjO[ + (6% (AijAU + §K2) + 513,'1( +47T05(p+ S), (287)
8,Aij = X2 [—DiDjOé +« (R,‘j — 87T()[Sij)]TF + oz(KAij — 21&,'1 Alj)

- - 2 . -
+ Ay 0;8" + Ajy 0, 8° — 3 A o B* + B oAy, (2.88)

where in the equation for J, K the Ricci scalar R has been eliminated by an addition of
(—a times) the Hamiltonian constraint H. Here D; is the metric compatible covariant
derivative with respect to the physical metric ~;; and [...]™ denotes the trace free
part of the expression inside the parenthesis.

We now introduce the conformal connection functions [V = 3/ [ jx Where I ik
are the Christoffel symbols associated to the conformal metric 7;,

.
D=

(055 + OFj1 — O i) - (2.89)

N =

which gives the dynamical variables for the BSSN system as

X, %ij. K, A, T} (2.90)
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In order to write down the evolution equations for '/, we simply use their definition
and the evolution equation for «;;, Eq. (2.60), to find

O = 8;(E5n") — 2(a0; A" + A7 9;0). 2.91)

A crucial step is that we now eliminate the divergence term 0 jfi"j using the momen-
tum constraint expanded in terms of the conformal variables. We also have to account
for I' not being a tensor (and not even a tensor density as it is composed of Christof-
fel symbols) when expanding the Lie derivative. We therefore obtain a number of
additional terms including second derivatives of the shift, in addition to the terms
relating the the Lie derivative of a tensor density (see Appendix A.2.3). The resulting
evolution equation is

.y Lo 2 -0
8,1"’:—2A’18ja+2a<F;kA’k—§ f&,K—3AJ’7X)
P A
+ O + 370,008 + 3 5100, B¢

ot —tro s — 16ma i s;. (2.92)

W

+

We can now use the derivatives of the evolved quantity I in calculating the three-
dimensional Ricci tensor, R;; used in the evolution equation for A;;. The Ricci tensor
is split as

Rij = Rij + R}, (2.93)
where
Ry = —5m0, 07, + P Faig + 3 QFE F oo + T 2.04
=Ty 'mO17Yij + (lj)k—i_’y ( 1@+ Jkm + T k]J) (2.94)
and { )
Rz)j = ;(D,DJX + :YileDIX) - ?’%]‘DIXD[X. (295)

where D; is the metric compatible covariant derivative with respect to the conformal
metric 7;;. Note that the three-dimensional Ricci Scalar is then R =~ R;;. We
could of course have simply calculated the Ricci Tensor as before, by calculating
the Christoffel symbols and their derivatives from the metric derivatives on the grid.
In fact it is usual in simulations to continue to use the data for ;; on the slice to
calculate I'. However, using the evolved I in the derivative terms 8‘,'12 ! makes
the equations “more hyperbolic” in the sense that the second derivatives of 7;; in
the evolution equation for Ai ; (which are found in the Ricci tensor), now reduce to
the scalar Laplace operator 7/ 8;0,7;;, with all other terms being rewritten in terms
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of first derivatives of I'".'2 More formally, an analysis of the eigenfunctions, first
done by Sarbach et al. [25], shows that in this form the equations are indeed strongly
hyperbolic, and thus well posed.

The BSSN equations are summarised in Appendix B.2 for reference.

2.2.3 Initial Conditions, Gauge Choice
and Interpretation of Results

Having formulated well-posed evolution equations which are suitable for numerical
implementation, there are still some open points remaining before we can perform a
time evolution. In particular, we need to:

1. Specify initial data: Given a coordinate grid on some spatial hyperslice, one must
specify data at each point for the metric +;;, the extrinsic curvature K;; and stress
energy components S;, S;; and p. As we have established this is not “free data”
in the sense that it must satisfy the Hamiltonian and momentum constraints.

2. Choose a gauge: The lapse and shift are free parameters at the start, so we need
to specify their initial values and how they will evolve with coordinate time. It
turns out that although all gauge choices should (in theory) give the same physical
result, the choice is important for achieving long term evolutions of spacetimes.
In fact, gauge choice is often one of the most difficult problems in achieving a
stable simulation.

3. Interpret the results: Having evolved the initial data using the BSSN formulation
discussed above, in the chosen gauge, one must interpret the data obtained in a
gauge independent way. For example, one may wish to find event horizons or
extract gravitational wave signals.

These points will be considered briefly in this section. This is quite a limited overview
of what are individually very large topics in their own right. The intention is to explain
the methods which will be used in this thesis to the level required to understand the
research undertaken, highlighting the key ideas and giving references for further
details.

Initial Data

Specifying the initial data amounts to specifying the 6 components of the spatial
metric and the 6 components of the extrinsic curvature at each point on the ini-
tial hypersurface, given an initial matter configuration. This data must satisfy the
Hamiltonian and momentum constraints, which, in the most general case, represent
a set of four coupled, elliptic PDEs.

Clearly the constraints can only remove 4° s of freedom from the initial data - the
remaining 8 must be chosen according to physical principles or knowledge about the

12Note that it is also possible to add terms to the evolution equations proportional to the difference
between the evolved I and that calculated from the derivatives of the metric on the slice, in order
to stabilise the evolution, as in [24], but we do not use this “constraint damping” method in the
work presented here.
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system, which is a non-trivial problem. A common choice is to choose the metric to
be conformally flat (thus removing 5°s of freedom) and to impose some condition
on the extrinsic curvature to remove the remaining three. For example, the extrinsic
curvature can be decomposed into the product of two three-vectors, one of which
can be set to zero. The problem then reduces to (the still highly difficult problem of)
solving for the conformal factor y and the remaining three-vector component of the
extrinsic curvature, using the four constraint equations.

We will not consider the most general case here and simply note that the two
main methods are the conformal transverse-traceless (CTT) or York-Lichnerowicz
decomposition, see [26] for a review, and the conformal thin sandwich (CTS) decom-
position which is also due to York [27]. These methods provide some guidance on
how to choose values for the many unset degrees of freedom, but in the absence of
significant symmetries many of the choices are arbitrary. In particular, doing things
like imposing conformal flatness and setting components to zero can be shown in
some cases to be “unnatural”, in the sense that setting the problem up in this way
results in some spurious gravitational wave (GW) emission at the start, before the
simulation “settles down”.

Note that it is not that the starting point is unphysical, as in our previous example
of setting up a large mass in a completely flat space - the chosen data can satisfy
the constraints exactly. It is more that the data chosen would not naturally “spring
into being” in that configuration, so that we have artificially distorted the spacetime
compared to the “natural” configuration we are most likely looking for. A good
example is the binary black hole collision used in the convergence test performed in
Chap. 3. Two black holes are set up, stationary (with K;; = 0), at a fixed separation,
from which they fall in by gravitational attraction. Clearly, the two bodies would
not appear out of nowhere in this stationary state - they ought to have some inward
velocity as a result of having (presumably) fallen in from being stationary at a large
initial separation. As a result of this “unnatural” start, a burst of GW is produced
initially before the main collision signal. In this case the problem could clearly be
reduced by starting them much further apart (although this might be too computa-
tionally expensive), but in most cases there is no clear physical interpretation which
would guide you to a better choice. Whilst one might consider it acceptable to have
some junk GW data at the start of a simulation, it introduces the additional problem
of calibrating the mass and angular momentum of the objects being evolved. That is,
the configuration that the simulation “settles into” will not have the same mass as the
initial data, as some energy is lost in the GW content. In high accuracy simulations
of binary black hole mergers, this can be a potentially significant source of error, but
in the research presented here it does not generate significant problems.

Returning to the methods used in this thesis, in testing the code, we use several
analytic results which satisfy the constraints, such as black hole and wave data. These
specific examples will be presented in Chap. 3.

In our critical collapse simulations in Chap.5, we choose the initial conditions
such that the metric is conformally flat at a moment of time symmetry, i.e. where
K;; = 0.Insuch a scenario, where the momentum flux §' is also zero, the momentum
constraint is trivially satisfied. Choosing an initial field configuration for the field
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¢, it is possible to solve the Hamiltonian constraint for the conformal factor y, the
only remaining degree of freedom. This may be done numerically, and we take the
(rather inefficient) method of relaxing x over an initial period, until the Hamiltonian
constraint is sufficiently satisfied and converges, according to

dx = CxH, (2.96)

where Cp is some user defined constant which effectively sets the relaxation speed.
The same approach was taken in the inflationary scenarios in Chap.4, except that
we have a non zero initial expansion rate K which means that it is no longer time
symmetric, although Ai_,- = 0. The effect of this in solving the initial conditions
(especially in the case of periodic (spatial) boundary conditions considered) will be
discussed further in that chapter.

Part of specifying the initial conditions involves specifying the boundary condi-
tions for the edges of the numerical grid. In our simulations we use either periodic
boundary conditions or asymptotically flat spacetimes with radiative (Sommerfeld)
boundary conditions [15]. These will be discussed further Sect.3.2.4.

The final part of specifying the initial conditions lies in specifying the gauge con-
ditions. As was mentioned previously, this is independent of specifying the data on
the initial slice as the constraints do not depend on the gauge variables. However,
because the time derivatives of matter fields are often specified with respect to coor-
dinate time rather than proper time, the lapse and shift will (indirectly) affect the
initial data and satisfaction of the constraints in these cases. For example, saying
that 0,¢ = 3 means something different depending on the values of the lapse and
shift. If instead the conjugate momenta of the field is specified, the physical situation
would be invariant under a change of choice of the lapse and shift, but in practise it is
more common to specify the coordinate time derivatives, so one must check that the
implementation is consistent with what is intended. Gauge conditions are considered
further in the sections below, split out into the choice of lapse and shift respectively.

Gauge Choice - Lapse

As we discussed above, the lapse determined the relation between coordinate time
and proper time according to Eq.(2.35). This is a local definition at each point on
the slice, therefore observers at different locations (recall that each coordinate point
represents an observer rather than a location in space) can have different values of
the lapse, and thus travel at different rates of proper time.
The normal observers will have some proper acceleration a, and we can calculate
this as
at =n"V,n* (2.97)

Expanding this relation in terms of its timelike and spacelike coordinates, and
expressing the 4-dimensional Christoffel symbols in terms of 3-dimensional quanti-
ties gives

ap = B0k In(a) a; = 9; In(e) (2.98)
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so we can see that a spatially varying lapse results in acceleration of the normal
observers.

We have said in Sect.2.2.2 above that the lapse cannot be an a priori function of
space and time, but must evolve dynamically. However, it is nevertheless instructive
to consider the simplest possible choice of lapse, « = 1 everywhere, which seems
like it ought to simplify things quite a lot. Combined with a zero shift 3 = 0, this
corresponds to the coordinate observers following geodesics, since they have zero
acceleration. In the case of a flat and static spacetime, this will correspond to the
observers staying at a fixed location in space, which would indeed be very simple.
Unfortunately, in most cases of interest, we are considering some matter distribution,
and in this space geodesics will tend to focus on areas of high density. Even if those
areas of overdensity subsequently disperse, the geodesic observers would continue
with a constant velocity to the site to which they were previously attracted, with the
result that eventually all the coordinate points will converge on the same physical
point. In the most extreme case, a black hole spacetime, a grid set up with this slicing
will simply fall into the event horizon (in a time ¢t = wM for the observers initially
at the horizon), eventually causing the code to crash when the spacetime volume of
each observer is too tiny to resolve. Even if we could continue to resolve the smaller
and smaller volumes, our finite grid will quickly shrink until it covers only a very
small region of space within the black hole, making it useless for observing external
behaviour.

The focussing of observers is related to the evolution of the trace of the extrinsic
curvature K. We have shown that this is related to the rate of growth of volume ele-
ments of the normal observer according to Eq. (2.49), so that a positive K represents
a collapse of the volume elements. Consider the evolution equation for K in the case
of a constant unitary lapse and zero shift

0K = KKV +4r(p+S) . (2.99)

This is positive definite assuming that the strong energy condition holds, leading to an
ever-growing K, and thus ever-collapsing coordinates. This makes sense when one
considers that gravity is always attractive for normal matter, so geodesic observers
will always be focussed.

A solution to this focussing of observers is the maximal slicing condition, which
preserves K =0 and 0;,K = 0 on all slices. This necessitates that the following
condition is satisfied on each slice

D*a = a[K;;K"7 +4n(p+ S)]. (2.100)

However, since this condition needs to be integrated on each timeslice, it is not well
suited to a dynamic, parallelised evolution (which prefers conditions based only on
local quantities, rather than global ones), and would be costly to perform, especially
on a 3D AMR grid such at that used by GRChombo.

Instead we vary the lapse dynamically according to a generalised hyperbolic
slicing condition, often referred to as a Bono-Masso type slicing condition [14],
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Fig. 2.5 The figure shows time
the effect of reducing the
lapse in areas of high
curvature, as occurs in the
alpha-driver condition.
Slowing the passage of
proper time near the
singularity creates an
acceleration of the normal
observers away from the
point with infinite curvature,
improving long term
stability. However, the slices
are “stretched” because of
this, which can lead to
numerical instabilities.
Figure taken from Alcubierre
[21]

Event horizon

Spacelike slices

| \ radius
Collapsing matter

which is designed to be “singularity avoiding”. This is based on local quantities and
derivatives at each point and thus is well suited to our implementation. The basic idea
is to reduce the lapse in regions of high curvature, which tends to create an outward
acceleration per Eq.(2.98), and in effect slows the passage of the normal observers
to the point of focussing, see Fig.2.5. The so-called alpha-driver condition is

Oro = —fig, "2 K + f10, 3 0;cx. (2.101)

for which the commonly used 1 + log slicing applicable for black hole inspirals
corresponds to (., = 2, fto, = 1 and p,, = 1. The optimal coefficients in this rela-
tion are in general physics dependent and we will describe in Chap. 5 the intuition
developed for these coefficients, which represented a significant part of stabilising
the evolutions in the presence of matter.

One problem with this slicing condition is that it leads to slice stretching, in
which the metric suffers shear as a result of the differing passage of time of the
normal observers. This problem can be mitigated by the use of a dynamical shift
condition, which we will discuss next.

Gauge Choice - Shift

As we found when considering the lapse, dynamical gauges are an essential element
in making NR simulations stable in the presence of singularities.

We have seen that we can impose a slicing condition for the lapse which slows
the passage of the normal observers towards singularities. However, the lapse will
never fall exactly to zero (when it does this tends to cause numerical issues), and
so the central grid points will continue to infall, albeit very slowly. However, we
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Fig. 2.6 A plot of the shift vector around a black hole using the gamma-driver condition, in a 2D
slice through the centre. We see that the shift vector tends to move the observers away from the
central singularity, which reduces slice-stretching and prevents them from falling into the singularity

can use our freedom to relabel spatial points to “shift” the observers back away
from the singularity. The shift condition imposed (which will be specified below)
thus tends to point away from a central singularity, see Fig. 2.6, to (approximately)
maintain the positions of the observers in space relative to the singularity. In addition,
anon zero shift aims to reduce the “slice-stretching” caused by the alpha-driver lapse
condition. This result is achieved by prescribing a condition for minimal distortion.
A strict criteria would require [ = 0and 9,I"" = 0, which necessitates the solution
of a coupled set of elliptic equations on each slice, but, as with the lapse condition, we
can achieve this approximately by implementing a condition which aims to instead
drive I' to zero dynamically. This is the so-called gamma-driver condition [15],

Of =ns B, OB" = ps a0 —nyB", (2.102)

where B is an auxiliary vector field, while 7,, 13, 145, and 14, are input parameters.
The usual hyperbolic gamma-driver condition uses the parameters 73, = 3/4, 13, =
1, g, = 1 and pg, = 0. One may also include parameters that allow one to turn on
standard advection terms in Eq. (2.102), but we have not found these to be of particular
use in our work so far. Again, this is a local condition which makes implementation
simple.



62 2 Technical Background

The so-called moving punctures method [23, 28], is a combination of the 1 + log
slicing for o and gamma-driver for 3. As we mentioned in Chap. 1, the development
of this gauge choice was one of the key steps in the development of the field of NR. It
is strongly singularity avoiding, and is the standard choice for black hole spacetimes.
Evolving a black hole in this gauge results in the “trumpet” solution, where the central
points asymptote to a finite distance from the singularity [29]. In this way we never
resolve the singularity, and are able to achieve long term stable evolutions of the
spacetime around it. One might worry about taking derivatives across this singular
point, even within the event horizon, but in practise this does not cause issues, and
the evolution is not spoiled by artefacts at the puncture [30].

Interpretation of Results

In this thesis we have used several method to analyse our results. Often simply
viewing the evolution of the variables in coordinate time (and taking account of the
gauge issues discussed above) is sufficient to draw conclusions for our purposes.
Methods which apply more generally, and which will be introduced in more detail
in Chap. 3 on the code implementation and testing, include:

1. Apparent Horizon Finder: In most of the work we have used a spherically sym-
metric apparent horizon finder to identify black hole formation and quantify the
mass of the black hole formed.

2. Mass, Angular Momentum and Momentum - ADM quantities: One can extract
data from the asymptotically flat regions of the spacetime regarding the mass,
angular momentum and linear momentum of the spacetime. This was used in our
testing phase but not extensively in our other work.

3. Gravitational Wave extraction: Our convergence testing used the Newman-
Penrose method for extracting gravitational waveforms. This has not been used
in the other research presented here. Following the results of LIGO, extracting
waveforms will clearly become a focus of much interest.

Again these individually represent substantial topics, and we will give only a brief
discussion of how they are used for our purposes in the following chapter, along with
relevant references for further details.

2.3 Scalar Fields with Gravity

In this section we summarise the key points regarding the addition of matter to the
decomposed equations. We then discuss in more detail the two applications of scalar
fields which are considered in this thesis - cosmology and critical collapse.
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2.3.1 Scalar Matter with Minimal Coupling

As we noted in Chap. 1, the equation of motion for a scalar field in flat space is the
Klein Gordon equation, which can be written as

dv (o)
dp

where n' is the Minkowski metric of flat space and V (¢) is the scalar potential.

The equivalence principle (specifically the EEP) motivates the idea of minimal
coupling, which is a method of modifying the flat space Lagrangian (or equivalently
equation of motion) of some matter content for curved space. In this prescription,
partial derivatives are replaced with covariant ones and any terms in the Minkowski
metric are replaced by the full metric in curved spacetime g,,,,. Thus the Klein—-Gordon
equation in curved space becomes

"' 0,0,¢ = (2.103)

dv(o)
do

One can see that if the coordinates are chosen such that we are in a freely falling
frame, locally the metric will be flat and the equation will reduce to the form in
Eq. (2.103); thus satisfying the EEP. Note, however, that this is not the only form that
we could have chosen that would satisfy the EEP, although it is the simplest. Minimal
coupling will be assumed throughout this thesis where scalar fields are coupled to
gravity. Note that V,,¢ = 0,,¢ for a scalar field ¢.

In the Lagrangian picture, we have included a single minimally coupled scalar
field ¢ as matter content

9"V, V,p = (2.104)

Lor = 3V,096 + V() (2.105)

leading to the second order equation of motion Eq.(2.104), which, as is usual, we
decompose into two first order equations using the variables ¢ and I1,,, with

1 .
My = a(ﬁ‘fqb — B'0:9). (2.1006)

We note that our I, is the negative of IT in some references, e.g. [22], and thus
the negative of the conjugate momentum of the field. Equation (2.104) may then be
decomposed into the following evolution equations in the adapted basis

0p = ally + 300 (2.107)
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and
i y .- v
8,1’1,.,,:66iHM+71(oz8‘,~6i¢+8j¢8ia)+a KHM—’)/JFijak(ﬁ-l-% .
(2.108)

Again, Eq. (2.107) is actually just the definition of IT,,. The true EOM for the field
is given by Eq. (2.108).

We will also require the energy momentum tensor of the scalar field for calculating
the matter components of the EM tensor in Eq.(B.8). As was found in Eq.(2.33)
above, the components are

1
T/W = V,U,(rbvll(rb - Eg/u/(vﬂd) Vp¢ + 2V) . (2109)

The addition of a scalar field to the BSSN equations allows us to explore a range
of effects involving gravity and fields. We now introduce the two key applications
which are explored in this thesis - cosmology and critical collapse.

2.3.2 Early Universe Cosmology

The Einstein equation can be used to provide insight into some of the biggest ques-
tions in physics. In particular, since gravitational effects dominate on large scales,
it can be applied to the observable universe, to better understand the history of its
expansion, and its future trajectory. Combined with an abundance of high accuracy
data from large scale observational experiments (such as the Planck satellite) this has
led to the development of a very successful model, ACDM, to explain the current
composition of the universe.

Whilst the model is highly accurate and consistent with the measurements taken to
date, many questions about the exact nature of the components remain unanswered. In
addition, when the model is “rewound” to the start of time, significant inconsistencies
are revealed, for which the theory of inflation is proposed as a solution. The nature
of inflation is not well understood and although the basic principle fits well with
available data, it is difficult to propose specific tests which would confirm or exclude
it, or constrain the possible models. The most common model is “slow-roll” inflation
in which a scalar field, called the “inflaton”, drives the expansion.

In this section we summarise the key ideas in cosmology which are relevant to
the work in this thesis. Further details can be found in Baumann’s cosmology notes
[31] as a comprehensive starting point, or Weinberg [32] for a complete treatment.

Note that in this section we do not set G = 1 but follow the convention in [32] and
replace it with (non-reduced) Planck units M, = /hic/G = 2.17 x 1078 kg, with
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h = ¢ = 1, which is standard practise in cosmology.'> We take the same approach
when presenting our work in Chap.4, although our numerical code GRChombo
always works in geometric units, which must then be scaled accordingly. A brief
note on the conversion between these units is given in Appendix A.l. As in the
previous sections, any cosmological constant is treated as being a component of the
EM tensor, rather than being stated separately.

Cosmology - Kinematics and Dynamics

Assuming a homogenous and isotropic universe, the metric can be written in terms
of the coordinates x* as follows

ds* = a*(t) (—dt* + yydx'dx’) (2.110)
where in radial polar coordinates
i dr? 2 5652
vijdx'dx! = ——— +r°dQ”. (2.111)
1 — Kker?

Due to the scaling symmetry of the metric, it is possible to choose which of r, a and
k. are dimensionful, and normalise them relative to some spatial scale R,. Here we
have used k. = k./R2, so that it is a measure of the curvature of the surface with

dimensions (length) ~? (note that it may take any real value). The scale factor a(t) is
then dimensionless, and r has units of length. k. is the curvature parameter which is
normalised such that

k. = —1 for negative spatial curvature , (2.112)
k. = +1 for positive spatial curvature , (2.113)
k. = 0 for spatial flatness . (2.114)

Note the following:

1. No centre of the Universe: The origin of the spatial coordinates is not a special
point - choosing a different centre would give the same line element.

2. Constant spatial curvature: Homogeneity and isotropy do not force the spatial
metric to be flat, but they do impose a constant (intrinsic) curvature everywhere
on the hyperslice, with the sign determined by k.. The three possible cases are
illustrated in Fig.2.7.

3. Flat space # flat spacetime: The case of k. = 0 corresponds to a flat spatial
metric, but note that this is still not necessarily a flat spacetime. The spatial slice
is intrinsically flat, but if the spacetime is expanding it has an extrinsic curvature.
It may therefore still have a non-zero curvature in 4 dimensions.

4. Coordinates: The spatial coordinates x, y, z are the comoving coordinates, and
as in NR they are just labels for specific points, rather than physical distances.

131t is also common to use the reduced Planck mass M ?,fd”“’d = /hc/8mG which eliminates some
factors of 8 in the equations. However, since in our GR work we tend to keep the 87’s explicit,
we also keep them here.



66 2 Technical Background

Fig. 2.7 The three cases of spatial curvature are illustrated. From top to bottom; Spherical/positive
curvature, k. = +1, areas are greater than they would be in flat space. Hyperboloidal/negative cur-
vature, k. = —1, areas are smaller than they would be in flat space. Flat space, k. = 0. (Remember
that the curvature of interest here is the intrinsic one, thus a cylinder depicted here would also have
ke = 0, since a triangle drawn on its surface would have the same area as in the bottom case.) Figure
from [5]

This is illustrated in Fig.2.8. The time coordinate ¢ is the conformal time, from
which we can recover the change in physical proper time experienced by a comov-
ing observer as d7 = a(t)dt.'*

5. A global time: The homogeneity and isotropy of the spatial slices allows us to
define a global time coordinate, the proper time measured by comoving observers.
Because all points on the spatial slice are effectively the same, all comoving
observers will measure the same proper (and conformal) time.

From now on we will consider the case of k. = 0 which is what we observe cur-
rently in the Universe (modulo some very small number). One can show that for a
standard cosmology (made up of material which obeys the Strong Energy Condi-
tion (SEC)), the Universe must have been even flatter in the past. This is called the
“flatness problem”. It provides a key motivation for having a period of inflation, as
during such a period the spatial curvature would tend to reduce. However, we will
focus in this section on the second key motivation - spatial homogeneity, which is
a stronger constraint on the amount of inflation required. In conformal time ¢ and
comoving spatial coordinates x, light propagates along null geodesics with ds? = 0.
This makes the past and future light cones (which define the particle and event

14Note that the use of  and 7 is the opposite convention to many standard Cosmology texts. The aim
of using them in this way is to make a connection with the NR work described above. In cosmology
conformal time ¢ is the “unphysical” coordinate time whereas the time 7 is the proper time for a
comoving observer, so it seems more consistent with the other material presented here to use them
in this way.
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a(ty) =1

a(t) =0.5

physical distance =
a(t) * dx

x=0 x=1 x=2 x=0 x=1 x=2

Fig. 2.8 The coordinates x are the comoving coordinates, and do not represent physical distances.
Physical distance at any time ¢ is given by dI = a(t)dx

horizons respectively) diagonal lines on an x — ¢ plot, as illustrated in Fig. 2.9. Since
the scale factor is allowed to be a function of time, one defines the Hubble parameter
H as

a
H=", (2.115)
a

where the dot indicates a derivative with respect to physical time 7. One uses the
rescaling symmetry of the metric to set the current day value of the scale factor
ap = 1, and observations then show that Hy & 67km s~! Mpc’l, where the true
units are clearly time in accordance with its definition (a is dimensionless), but the

dt

event horizon at p

particle horizon at p

dx

Fig. 2.9 In conformal time # and comoving spatial coordinates x, with zero curvature k. = 0, light
propagates along straight lines, which makes the past and future light cones which define the particle
and event horizons easy to draw. Figure adapted from [31]
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rather odd ones given refer to its historic definition according to the approximate
relation
H=1z/d, (2.116)

for nearby objects, with z redshift (in km s~!) and d distance (in Mpc).

To find the dynamics of the scale factor, one must use Einstein’s equation. The
requirement for the universe to be isotropic and homogeneous force the EM tensor
to have the form per Eq. (2.6) of

T = (p+ P)U"U" + Pg"", (2.117)

where P is the pressure and p is the energy density of the fluid as measured by
a comoving observer, and U* is the 4-velocity of the observer with respect to the
comoving frame. (Note that again we are treating any cosmological constant as
contributing to the EM tensor, rather than adding a separate component on either the
curvature or matter sides of the Einstein Equation.) Using the fact that the EM tensor
is divergenceless per Eq.(2.31)

ViT, =0, (2.118)

one obtains the continuity equation
p+3H(p+P)=0, (2.119)

from which one can obtain the scaling of the energy density for different types of
matter as defined by their equation of state

w; = P/p, (2.120)

as
p oc g 3w (2.121)

From the Einstein equations themselves, we can relate the curvature to the energy
content, which gives us the two “Friedmann equations”, which are (again ignoring
the curvature contribution, so k. = 0)

8
o2 = 210 (2.122)
3IM2,
and i 4 3P
4_ _4mp+3P) ) (2.123)
a 3M?

From Eq.(2.122) one can define the critical density of the Universe, which is the
total energy density of the Universe with zero spatial curvature k. (so the total energy
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density of the Universe as we currently observe it, since according to observations it
is flat)

2152
3M Pl HO

2.124
- ( )

Perit =

We then express the energy density of each component of the universe as a dimen-

sionless density parameter, representing the fraction it contributes to the total current
energy density

Q= Pi

Perit

(2.125)

In a universe dominated by a single component, combining Egs. (2.121) and (2.122)
allows us to work out the evolution of the scale factor by integrating the equation

a oc a2 (43w (2.126)

From this equation one can see that the value w; = —1/3 is a critical value, which
results physically from the fact that matter which obeys the SEC has a value of
w; > —1/3.

The table in Fig.2.10 summarises the key types of matter that are currently com-
ponents of our Universe, and the dependency of the energy density and scale factor
in a universe in which they dominate. Knowing the current contributions of each
component allows us to “rewind” the evolution of the scale factor in the Universe,
according to

Ha) = 52| 20 4 B0 4 o (2.127)
O g# a’ Al '

where the 0 subscript denotes the present day values, and ay = 1 as is conventional.'?
When we do so we find something rather surprising - there is not enough conformal
time. How much is enough? Consideration of the temperature change since the CMB
was emitted gives the scale factor at that time as acyp ~ 10728, As we explained
in Chap. 1, we observe the Universe to be homogeneous on extremely large scales
in the CMB, and we assume that this is a result of thermalisation - the points being
able to exchange signals prior to the light being emitted. The alternative explanation,
that the Universe sprang into being in a completely homogeneous state is considered
unnatural.'®

I5However, note that in Chap.4 we will set a = 1 at the start of inflation rather than at the current
time, for numerical convenience.

16What constitutes a “natural” initial state for the universe can be more a question of philosophy
than physics. If we had a better understanding of what happened at higher energies, for example,
a quantum theory of gravity, we would be better placed to comment on what is “natural” in this
context. However, it is generally true in physics that randomness is more natural than a very ordered
state.
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Type Description wy Q; pla) a(r) a(t)

Radiation Gas of relativistic particles, 1/3 0.0001 o * 7/2 t
energy density dominated by
KE, e.g. photons, neutrinos

Matter Gas of non-relativistic parti- 0 032 a3 713 2
cles, pressureless, e.g. dark
matter, baryons

Dark Energy Vacuum Energy / Cosmolog- —1  0.68 a®  eHT 1/t
ical constant

Fig. 2.10 The table summarises the current known components of the Universe and their charac-
teristics as introduced in this section

We have said that in conformal time coordinates, the past light cones define the
particle horizon - the separation of points that can have exchanged a signal at some
point in the past. This then represents the locus of points that can have been in thermal
contact. We therefore want the particle horizon of a distant point on the sky to have
covered every other point in the observable sky at the time the CMB was emitted. So
we need as much conformal time before the CMB was emitted (at acy g ~ 10728) as
has passed since. That is a lot of conformal time, and it turns out to be far more than
we have, assuming the matter and radiation have scaled as expected. This is illustrated
in Fig.2.11, where we see that rewinding the universe leads to a singularity (the scale

1.0
0.8}
0.6
Singularity =
at ° 04l
Zero
conformal o ;
; 0.2 Finite amount of conformal time
time
0.0 e e
0 5 10 15 20 25 30 35 40 45
t /Gyr

Fig.2.11 Here we have illustrated the evolution of the scale factor as if it was dominated by radiation
throughout the history of the Universe, but the result is essentially the same if we include the later
transitions to matter and Dark energy domination. There is a finite amount of conformal time after
the Big Bang singularity at which a = 0 and before the CMB was emitted at acpp ~ 10728, This
is insufficient to explain the homogeneity of the Universe on large scales, which led to the theory
of inflation being proposed
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factor going to zero), in a finite amount of conformal time. The proposed solution to
this so-called “Horizon problem” is considered in the next section: Inflation.

Inflation and Slow-Roll Models

As we have said, in conformal time and comoving coordinates light rays follow null
geodesics that are straight lines, such that

Ax = At . (2.128)

We can thus write the particle horizon X ,;, as

odr
X0 = _—, 2.129
ph /7—1 a(T) ( )
or in terms of the scale factor
4rin 1 da
X, = — =t 1. 2.130
ph /aim‘r ClH a f ( )

The comoving Hubble radius is defined to be (a H)~!. For a single component fluid
then from Eq. (2.126) this is (again taking ag = 1)

(@H)™" = Hy'q2(+3) (2.131)
and we can see by integrating Eq. (2.130) that the initial conformal time

2H(;1 L(143wy)
1+ 3waiﬂil

(2.132)

init =

is zero when a;,;; — 0 for w; > —1/3, as was illustrated in Fig.2.11 for radiation
domination. The particle horizon is then determined by the final value of conformal
time, and is of order of the comoving Hubble radius, i.e. X, =1, ~ (aH)™L.
This gives a finite amount of conformal time since the initial singularity, which is
insufficient to explain the homogeneity observed in the CMB on the largest scales.

However, for a fluid that violates the SEC a;,;; - —o0 as w < —1/3, as illus-
trated in Fig.2.12. There is now an (in principle) infinite amount of conformal time
before the singularity is reached,'” and so plenty of time for the Universe to have
thermalised before the CMB was formed. Such a period, dominated by an SEC vio-
lating fluid, solves the horizon problem. By considering the amount of expansion
which has occurred since the CMB was emitted, one finds that the minimum amount
of inflation required to ensure thermal contact between the whole sky is roughly 60
e-folds, where the number of e-folds N satisfies

7Note that the additional conformal time is additional coordinate time, and does not necessarily
correspond to a large amount of additional proper time being experienced by a comoving observer.
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Transition

at
Zero
conformal
time
To infinity
e L L o8- )
-40 =30 -20 =10 0 10 20 30 40 50

t /Gyr
m

infinite amount of conformal time

Fig. 2.12 Here we have illustrated the evolution of the scale factor as if it was dominated by
radiation throughout the late history of the Universe, but with a transition to an SEC violating fluid
around ¢t = 0. There is now a potentially infinite amount of conformal time after the Big Bang
singularity at which @ = 0, and before the CMB is emitted, giving distant parts of the Universe time
to thermalise. Note that we have exaggerated the vertical scale of the transition point for clarity - the
scale factor at transition would be less than acy g &~ 10728, whereas in the illustration it is shown
as abouta = 0.1

dN =d(Ina) = Hdr. (2.133)

‘We can express the behaviour in the inflationary period in several equivalent ways,
each of which can be taken as the basic definition of inflation and used to derive the
other characteristics:

1. A shrinking Hubble sphere: We can see from Eq.(2.131) that, for w; < —1/3,
(aH)~ ! is smaller at the end of inflation that at the start.
2. A period of accelerated expansion: A shrinking Hubble horizon implies that

daH)™

which corresponds to a period of positive acceleration ¢ in the expansion.
3. Roughly constant H: A shrinking Hubble horizon also implies that

daH)™" 1
daly” 1.1 <o, (2.135)
dr a
where the Hubble slow roll parameter is defined as ¢ = —H / H2. Thus we require

¢ < 1 and small H for the expansion.



2.3 Scalar Fields with Gravity 73

4. De-Sitter like expansion: For perfect inflation ¢ = 0 and the Hubble parameter H
is constant, which corresponds to a de-Sitter expansion, with w = —1, as for a
cosmological constant.

5. Negative pressure: An SEC violating fluid obeys w = p/P < —1/3 and thus has
a negative pressure as the energy density measured by any observer should be
positive.

6. Constant density: From Eq. (2.119) one can show that

dinp _, (2.136)
dina _ °© '

so that small e means p is approximately constant.

Inflation is commonly thought of as a period of de Sitter expansion, but it cannot
be sourced by a simple cosmological constant, because ultimately inflation ends. A
true cosmological constant would have continued to dominate the expansion to the
present day, so this means that at some point the cosmological constant would have
had to “switch off”, which seems unnatural. The most commonly proposed solution
to this problem is slow-roll inflation in which a scalar field ¢ sources the non zero
energy density for a period as it rolls along a plateau in the potential, before falling
to a different part at which the value of V (¢) is zero. A typical potential V (¢) for
this “inflaton” field is shown in Fig.2.13. As illustrated in this figure, it is common
to think of the inflaton as “rolling down a hill”. If space is homogeneous then the
value of the inflaton field is the same everywhere and the picture expresses how this
universal value changes over time. However, if the space is inhomogeneous, then the
value of ¢ can differ at all points in space and each point will need its own picture,
which in isolation is an incomplete description as it does not include the effects
of spatial gradients in the field, which we know play a role per the Klein—-Gordon
equation (2.104).

In fact we ought to expect to need to add variation into the field - we propose
inflation to explain the homogeneity of the universe as observed at the emission of

Fig. 2.13 A typical

slow-roll potential is

illustrated. The inflaton field

¢ sources the non zero

energy density which causes

inflation for a period as it

rolls along a plateau in the =
potential, before falling to -
the minimum at which the

value of V (¢) is zero, at | —»
which point inflation ends

o¢p
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the CMB, but there is no reason to suppose that it was homogeneous before inflation
happened. In fact, it is perverse to do so, since if the universe was homogeneous
prior to inflation then inflation is unnecessary - homogeneity is already assured.

In the remainder of this section, we will summarise the key components of standard
slow-roll inflation assuming spatial homogeneity in the field. Our work in Chap.4
concerns the effects of removing this assumption.

The requirements of slow roll are usually summarised by the two Hubble slow
roll parameters € and 1. We have already defined

H

2 (2.137)

€=

for which the requirement that ¢ < 1 corresponds to the requirement for H to be
approximately constant. The second parameter is defined as
_ (2.138)
"=THe '
for which the requirement that |n| < 1 corresponds to the requirement for € to be
approximately constant, such that inflation persists for a sufficient number of e-folds.
For a scalar field the values of p and P are

1. 1.
P = 5¢2 +V(@), Ps= §¢2 — V@, (2.139)

so that, for an SEC violating fluid, V (¢) must dominate over the kinetic energy.
Substituting these density and pressure expressions into the Friedmann equations,
(2.122) and (2.123), we can obtain the evolution equation for the field, which is
equivalent to the Klein—Gordon equation

dv(g)
de
where the Hubble constant acts as a friction and the potential gradient acts as a

force, driving the motion down the potential. We can also deduce that the slow roll
parameters, see [33, 34], are

b+3Hd+

0, (2.140)

_ 4é? (2.141)
T |
and .
2¢
n=-2 _2. (2.142)
H¢

In the case of a homogeneous field in slow roll we can make several simplifying
assumptions that allow us to characterise the behaviour in terms of the potential and
its gradients only. In particular, assuming that the potential dominates over the kinetic
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energy V (¢) > $%/2 means that the first Friedmann equation (2.122) becomes

8V
H~ 2l (2.143)
3MPI
and assuming that ¢ ~ (0 gives the Klein Gordon equation
. dv
3Hp ~ ———, 2.144
¢ 40 ( )
for which the time derivative is
. . d*v .
3H 3Hp~ ———¢. 2.145
O+ 3HG~ = (2.145)
One then defines the Potential slow-roll parameters, per [34], as
M2 1 2
=== =c¢, 2.146
V= Tor ( % ) ¢ (2.146)
where the dash denotes a derivative with respect to ¢, and
MLV e (2.147)
A T 2 '

These parameters must both be much smaller than 1 for sufficient inflation to proceed.
One can also work out the number of e-folds A as

% [Am d¢
&1 € My '

N = (2.148)

where e can be replaced approximately by €y, and ¢; and ¢ g are defined as the values
at which ey = 1.

After the inflaton falls into the minimum of the potential, its oscillations are
expected to generate the particles of the standard model during the reheating period.
This marks the commencement of the “standard big bang” era of cosmology.

Cosmology and the ADM Decomposition

It can be useful to relate the FRW cosmological properties that have been discussed
to the equivalent NR quantities. In simplified cases there is a direct correspondence,
and even in more complex cases, where the correspondence is broken due to a lack
of homogeneity, it can be useful to think in these terms to develop some physical
intuition for what is happening in a simulation.

Consider the FRW metric in Eq. (2.110)

ds* = a*(t) (—dt* + y;;dx'dx’) (2.149)
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with the time evolution quantified by

a
H=-, (2.150)
a
and compare it to the BSSN metric
2 20 Lo i
ds® = —a“dt” + —2’}/,'jdx dx’, (2.151)
X
with time evolution quantified by
8,7,-1- = —2OZK,'j . (2152)

where we have immediately set the shift to zero, since we know that physically
it does not change the embedding of the spatial hyperslice, but simply represents a
relabelling of the coordinates on subsequent slices. In an FRW cosmology this would
just correspond to relabelling the positions of our comoving observers - a change of
what we call x, y and z, for which we have already said the origin is an arbitrary
point.

Consider the spatial part of the metric v;;. Isotropy, combined with setting the
curvature parameter to zero, k. = 0, corresponds to conformal flatness 7;; = §;; in
NR language. In this case the conformal factor is related directly to the scale factor
by x = 1/a. However, in our simulations, even when they are conformally flat, y can
vary on the spatial slice whereas a is assumed to be constant in space. It can be useful
to consider small areas of the simulation domain as patches of FRW spacetime that
are locally spatially flat but have undergone different amounts of expansion, and thus
have a different scale factor. However, once spatial isotropy is lost, and especially in
a varying gauge, this intuition can quickly break down.

Now consider the time evolution of the metric. We can connect the trace of the
extrinsic curvature with the Hubble parameter in a homogeneous and isotropic uni-
verse as K = —3H. Whereas H is a constant in space, we may have a spatially
varying K, and again it can then be helpful to think of locally FRW patches sewn
together, which are expanding at different rates. Note that a negative extrinsic cur-
vature corresponds to an expanding universe, as expected from our NR convention.

Finally, looking at the time evolution, we see that in the case where @ = 1 we
recover proper time measured by the comoving observers (who are the normal
observers of NR). If we choose our lapse to be equal to the scale factor, o = a,
then our time coordinates will correspond to conformal time coordinates. In partic-
ular, if we choose the dynamical lapse to evolve as

da = —3a’°K , (2.153)
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then in an FRW spacetime this corresponds to

2
O =a H = Z‘—za,a, (2.154)

so that if the lapse is initially the same as the scale factor, @ = a, the two will evolve
in the same way and therefore the slicing will be that of conformal time. Whilst we
do not use exactly this slicing in our work in Chap. 4, we use something similar, such
that the lapse gets bigger approximately in line with the increase in the scale factor.
For stability, it is acceptable for the lapse to grow at a rate slower than the scale
factor, but not faster, which would break the Courant condition (see Sect.3.1.2).

2.3.3 Critical Collapse

One of the most fascinating and as yet not fully understood aspects of general rel-
ativity is the appearance of critical phenomenon in gravitational collapse as first
discovered by Choptuik [35]. A comprehensive review can be found in [36].

Briefly, if we have an initial configuration, such as a Gaussian shaped bubble of
scalar field, and allow this to evolve under the action of gravity, the result will be either
the formation of a black hole, or dispersal of the field to infinity depending on the
“strength” of the initial data. Varying any one initial parameter p of the configuration
(such as the height of the bubble), one finds that there is a critical point p* at which
the transition between the two end states occurs, and that the mass of the black hole
created on the supercritical side follows the scaling relation

M x (p— p*)s, (2.155)

where the scaling constant ~yg is universal in the sense that it does not depend on
the choice of family of initial data. For a massless scalar in a spherically symmetric
collapse, s has been numerically determined to be around 0.37. This index does,
however, depend on the type of matter considered.

The other key phenomenon which is observed is that of self-similarity in the
solutions, or “scale-echoing”. Close to the critical point, and in the strong field
region, the value of any gauge independent field ¢ at a point x and time 7 exhibits
the scaling relation

d(x, T) = d(ePSx, e™5T) , (2.156)

where Ay is a dimensionless constant with another numerically determined value of
3.44 for a massless scalar field in the spherical case. The time T here is measured
“backwards” - it is the difference between the critical time at which the formation of
the black hole occurs and the current time, with time being the proper time measured
by a central observer. What one sees is therefore that, as the time nears the critical
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Fig. 2.14 During a critical 0.8 " o
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time nears the critical time
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time by a factor of e®$, the same field profile is seen but on a scale e®$ smaller, as
illustrated in Fig.2.14.

In this section we will summarise the key principles which underlie these charac-
teristics, firstly explaining the origin of universality and how this leads to the scaling
relation Eq.(2.155), and then discussing scale invariance and importance of gauge
choice in looking for echoing solutions.

The results presented here are only known to apply to the spherically symmet-
ric case, which has been well studied. In Chap.5 we will detail the work which
was undertaken to study scalar field bubbles in asymmetric configurations. This is
expected to exhibit similar behaviour, but has been considerably more difficult to
study due to the high levels of refinement required.

Universality and Scaling

One can consider the initial conditions of a GR spacetime, decomposed into the ADM
quantities on some initial hypersurface, to be an infinite dimensional continuous
dynamical system. Each point in the phase space is characterised by the configuration
of the set of variables {'y,- i, Kij, ¢, T M} across the whole spatial slice, that must
satisfy the constraint equations. Given some gauge choice of lapse and shift, the
solution curves follow a trajectory in this phase space.

For a massless scalar field, there are only two end points for an isolated system
following collapse - formation of a black hole or dispersal of the field to infinity. Thus
the phase space is divided into two halves - one for which all trajectories ultimately
result in a black hole, the other in dispersal. A “critical surface” (CS) separates the
two regions, forming a manifold with one less dimension that the full phase space.
Since points on the surface go to neither of the two extremes, they will by definition
stay within the surface if sufficiently finely tuned. One postulates that there is an
attracting fixed point, or “critical point” (CP) somewhere in the CS and that it is
an attractor of co-dimension one, i.e. there is a single growing mode which is not
tangential to the CS.

The result of this picture is that for initial data close to the critical surface, the
evolution trajectory will be initially in the direction of the CP, moving parallel to
the CS. As it nears the CP, it slows down, and then moves away in the direction of
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the unstable growing mode. This “funnelling” effect means that all initial data ends
up following the same final path, differentiated only by how far they were initially
from the CS. This is illustrated schematically in Fig.2.15.

One can use this picture to derive the scaling relation from a simple dimensional
analysis. This will be explained in the following section.

It is often found in dynamical systems analysis that critical points have additional
symmetries. This appears to be the case in GR. In type II critical collapse, the crit-
ical spacetime is self-similar or scale invariant; i.e. if one assumes continuous self
symmetry (CSS), there exists a “homothetic” vector field &, which is one for which
the Lie derivative of the metric satisfies

£g Yab = 2gab (2157)

(see Appendix A.2 for a discussion of Lie derivatives). In coordinates adapted to the
symmetry

; 0
xt = (o5, x'), {=—5—, (2.158)
Oo S
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black T
hole
threshold T
: A
| 1-parameter
| family of
- critical | initial data
T~ point *'
T~ \
a0 ;

J‘-\ T

/A ~_F

L e pp®
.-"'llr f 7
/ I' __—+ p>p*

/. _|I /.../
/ A/II, <
~_ /’

A black hole fixed point

Ly -

A T

Fig. 2.15 The diagram illustrates how the phase space is separated into two regions by a critical
surface. Initial data moves parallel to the surface towards the critical point, before diverging along
the direction of the unstable mode. This is a very simplified diagram (the phase space is infinite
dimensional), so one should take it as a heuristic picture rather than an exact representation. Diagram
from [36]
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we can write ' .
G (s, x1) = €275 G, (x). (2.159)

In discrete self similarity (DSS) the scaling is periodic in og with period A so that
Gu(os, x') = Gu(os + As, x7). (2.160)

Note that the proper time T is generally related to the adapted coordinate og (which
is dimensionless) as os ~ In T/ Ty, which is why in Eq.(2.156) the Ay appears as
a factor of e®s. It is said that o is the logarithm of the spacetime scale. Thus the
echoing is not spaced evenly in proper time unless expressed on a logarithmic scale.
This is one factor which makes it difficult to resolve the many echos that occur over
increasingly small timescales in a simulation.

Another problem with observing the critical behaviour in simulations is that of
gauge choice. One must choose a lapse and shift which adapts the slicing to the sym-
metries of the spacetime metric and the homothetic vector field. There is no obvious
way to ensure this for general initial conditions, especially in the absence of spher-
ical symmetry. It has been suggested by Smarr and York [37] that maximal slicing
and minimal strain should meet this requirement, but as we have explained above,
these conditions, if enforced strictly, require the solution of elliptic equations on each
slice, which is computationally demanding. One may hope that their approximate
realisation as hyperbolic driver conditions would be sufficient, and there is evidence
that this is the case from recent work by Akbarian et al. [38].

Deriving the Scaling Relation for Type I and II Critical Collapse

We first consider a type II critical collapse, which corresponds to the case where
there is no mass scale in the problem, such as in the massless scalar field.

If we take some variable Z, which is a scale invariant variable such as g,,,, and
rescaled matter variables (;~5, then Z(x) is an element of the phase space we have
described up to a scale given by oy, which defines Z(x, o).

If we assume that the critical point has a CSS associated with it, then solutions in
the phase space around it can be expanded to linear order in its perturbation modes
as

Z(x,05) ~ Z*(x)+ZCi(p)e)""TSZ,-(x), (2.161)
i=0

where C;(p) are the perturbation amplitudes. These amplitudes depend on initial
data only as a function of the distance from the CS, characterised by some parameter
p, due to the funnelling effect of the solutions near to the CP. If the CP has only one
growing mode, with a positive real \;, then in the limit of 05 — oo the other modes
will vanish. Therefore in this limit

lim Z(x,05) ~ Z*(x) 4+ Co(p)e™” Zy(x) . (2.162)

o5—>00



2.3 Scalar Fields with Gravity 81

We can then expand the perturbation amplitude for this mode about the critical value
of p*

dC
Co(p) = Co(p*) + d—p°<p —pH).... (2.163)

which, recognising that the Cy(p*) = 0 as the perturbations are zero at the CS, gives

o5— 00

. * dCO *\ A0,
lim Z(x,o05) ~Z*(x) + d—(p — pHeZp(x) . (2.164)
p

Then considering the solution at some o defined by

dc ]
—(p = pHeNT =, (2.165)
dp

where € < 1 so the linear approximation is still valid,
Z(x,05) = Z*(x) + €Zo(x) . (2.166)

This solution will be the same regardless of the value of ¢, apart from a scale given
by e™"?S where n is the length (or mass) dimension of the variable Z(x, oy). If the
variable is a mass n = 1 and the solution will scale as e™%, so

M e o« (p— p*)/h. (2.167)

This tells us that the critical exponent in Eq.(2.155) is related to the eigenvalue of
the unstable mode of the critical solution as vg = 1/\¢.

For DSS there is a small modification to the relation due to the period of the DSS,
such that

InM = sIn(p — p*) + Cp + f(ysIn(p — p*) + Cp). (2.168)

where Cp is some constant, but f(z) is a universal function with period Ag.

In the case of Type I critical collapse, where a mass scale in the evolution equations
is dynamically relevant (such as a scalar field with a large mass), the picture is
similar. However, now the solution is not scale invariant but rather time invariant
(or time periodic). Thus the critical solution has a finite mass and the universality
in this context corresponds to the final BH mass near the critical threshold being
independent of the initial data. The quantity that now scales with the distance to the
CS is the lifetime of the intermediate state for which the solution is approximately
critical, which scales as

T,=((p-p)"+C, (2.169)

where C7; is a data dependent constant.
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Part 11
Code Development Work



Chapter 3 ®)
GRChombo - Code Development ez
and Testing

GRChombo is a new multi-purpose numerical relativity code, which is built on top of
the open source Chombo [1] framework. In this chapter, we will detail the capabilities
of GRChombo and illustrate how they expand the current field in numerical GR
to permit new physics to be explored. The design methodology, scaling properties
and performance of GRChombo in a number of standard simulations are included.
Videos of simulations using GRChombo can be viewed via the website at www.
grchombo.org. The work presented in this chapter is mainly derived from the paper
“GRChombo: Numerical Relativity with Adaptive Mesh Refinement” [2].

The chapter is organised as follows:

e In Sect.3.1 we describe the functionality of Chombo which is utilised by
GRChombo, including the program structure, adaptive mesh refinement (AMR)
methodology and load balancing.

e In Sect.3.2 we describe the implementation of the code that we have built on top
of Chombo, including the finite differencing scheme, dissipation and equations of
motion.

e In Sect.3.3, we present the results of standard tests, including the Apples with
Apples tests [3], black holes and black hole mergers, and critical collapse. We
test the AMR capabilities of the code, its robustness to regridding errors, and its
scaling and convergence properties.

3.1 Features of Chombo

Chombo is a set of tools developed by Lawrence Berkeley National Laboratory for
implementing block-structured AMR in order to solve partial differential equations
[1]. Some key features are:
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e C++ class structure: Chombo is primarily written in the C++ language, using the
class structure inherent in that language to separate the various processes. It is also
possible to use a form of Fortran for the array operations, including the evolution
equations.

e Adaptive Mesh Refinement: Chombo provides Berger-Oliger style [4, 5] AMR
with Berger-Rigoutsos [6] block-structured grid generation. Chombo supports full
non-trivial mesh topology — i.e. many-boxes-in-many-boxes. The user is required
to specify regridding criteria.

e MPI scalability: Chombo contains parallel infrastructure which gives it the ability
to scale efficiently to several thousand CPU-cores per run. It uses an inbuilt load
balancing algorithm, with Morton ordering to map grid responsibility to neigh-
bouring processors in order to optimise processor number scaling.

e Standardised Output and Visualization: Chombo uses the HDF5 output format,
which is supported by many popular visualization tools such as VisIt.Inaddition,
the output files can be used as input files if one chooses to continue a previously
stopped run — i.e. the output files are also checkpoint files.

We detail some of the key features below. Note that there are many possibili-
ties for configuring Chombo, with regard to, for example, time stepping and block
refinement; but here we focus on those features used by GRChombo.

3.1.1 Chombo Structure and Classes

Chombo uses the C++ language, the main purpose of which is to add “object ori-
entation” to normal programming functionality. “Classes” are the central feature of
object-oriented programming, and one can think of them as a somewhat complicated
user defined type, like an integer, or double. Thus if one has a class Shape, one can
define a Shape object in the same way as an integer:

int a = 7;
double b = 0.9;
Shape circle;

However, a class in general has much more structure than a simple type like an
integer. It may contain a number of variables or structures, and functions that set or
operate on these members. By containing all of the information and operators in one
structure, the interactions between different parts of the code are constrained - one
should not (in theory) go in and amend the contents of an existing class - one should
treat it as a “black box”, which is designed to remain unmodified as new code is
added. The new code must work within the constraints of the existing classes, using
their access and member setting functions, or otherwise new classes must be written.

In this context, another aspect of classes which is useful is their ability to inherit
from an existing class. If, for example, one wants a class that does almost the same
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thing as Class A, but contains an additional variable and a function on that variable,
it is possible to make a class ClassB which inherits all the functionality of ClassA,
but to which one can add additional structures and functions. A good easily readable
reference for classes is [7], or [8], which gives a more advanced treatment.

The central class in Chombo is the AMR class. This is the class which operates
the update process and all of the regridding and interlevel communications. Below
this sits an AMRLevel class, which broadly defines what happens on each refinement
level in a single update step. When writing a new physics code with Chombo, the user
writes a new class which inherits from AMRLevel, but which in addition implements
user defined functions for the physics specific steps. For example, the AMRLevel
class contains all the functionality to do a Runge—Kutta update, but the user must
specify the equation of motion that gives the time derivatives of each variable f,
df/dt, by writing a new version of the class member function evalRHS().

The processes of Chombo are best described in a series of block diagrams. In
Fig.3.1 we illustrate the overall program flow. We see that the main function sim-
ply sets up the MPI communication and calls a function “RunGRChombo()”. That
function reads in the parameters which will be used in the simulation, such as grid
size, maximum number of refinement levels, time interval, etc, and sets up the basic
structure of the problem domain. It creates a GRChomboClassFactory class object,
which simply returns a pointer to the GRChombo version of the AMRLevel class,
GRChomboLevel. This information is then used to create an AMR class object,
which is set up either to run from a checkpoint file, in which case the information
from the checkpoint file is read in and used to set up an initial grid, or otherwise
set up for a new run, in which case the initial data must be specified within the
GRChomboLevel function InitialData().

In Fig.3.2 we illustrate the flow which happens in each individual AMRLevel
update. The key function is the advance() function. In GRChombo we use a 4th order
Runge—Kutta (RK4) update in time, but other options are available. The “physics”
is contained in evalRHS(), the method used in the RK4 step to calculate the time
derivatives of the physical variables - so this is what contains the BSSN equations
and matter evolution equations. At user-defined intervals (which may differ on each
Level), we check whether we want to add (or remove) additional resolution in dif-
ferent areas of the problem domain. This is done by tagging cells according to some
refinement criteria and adding additional levels, if required, according to the algo-
rithm described in Sect.3.1.2. One may also write checkpoint files at multiples of
the coarsest time step.

In Fig. 3.3 we illustrate the interaction between the coarser and finer levels, which
is controlled by the AMR class and will be described in more detail in Sect.3.1.2.
Note that the program flow takes each refinement level in serial, starting with the
coarsest level. The parallelisation described in Sect.3.1.3 occurs entirely within a
single level. Each refinement level is divided into a number of “boxes” (which may
be disjoint) and it is these boxes which are divided between processors. As a result, at
any one time the processors are working on boxes at a single level, and all processors
must finish and synchronise before moving onto the next refinement level.
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int main()
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set up MPI
communication

v

RunGRChombo()

read params file

2

make GRChombo
LevelFactory
class object

N

set up problem
domain - grid
size, number of
levels etc

v

create and define
amr class object

either
setup from

checkpoint

or

setup for new

shutdown MPI

run

run amr

end

until t > t_max

Fig. 3.1 The flow chart illustrates the program flow for setup and running

As shown in the figure, after a single coarse timestep, the finer level below takes
a half step. To take the second step that will bring it in line with the coarser level,
regions at the edge of the refined area need data with which to populate their ghost
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Initial Data from checkpoint or
InitialData()

y

advance()

evalRHS
Run RK4 update 0

Implement soln = soln + dsoln/dt * dt Provide calculation

Enforce trace free A_ij €= of dsoln/dt
Enforce positive lapse and conformal for RK4 update
factor steps

Check for nans

repeat . B
ift<t max Update time t =t + dt
postTimeStep()
Optional post time step routines, e.g.
calculate constraints, find apparent
horizons
If interval = tag cells interval If time = checkpoint time
tagCells() writeCheckpointHeader()
Tag cells meeting some user specified Write out the header data information
criteria such as large change in value (refinement ratio, dx, t etc) for the
between neigbouring cells Level, in hdf5 format

regrid()
writeCheckpointLevel()
Add additional refinement level in

areas which have been tagged (these Write out the box data for the Level
will then also undergo tagging and (coordinates and data values)
regridding)

Fig. 3.2 The flow chart illustrates the program flow for the evolution of a single AMR Level,
highlighting the key functions in the GRChomboLevel class
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cells.! This is done by interpolating the data from the coarse time step. Once the finer
level catches up with the coarser one, any coarse cells which are overlaid by better
refinement are overwritten with the finer data (which should be more accurate). In
the figure only two levels are shown, but in an actual simulation, each finer level will
itself be a coarser level, and so the process will occur recursively down the hierarchy,
until all levels are synchronised at the coarsest time step. In addition, each level may
spawn additional finer levels at the end of a time step by regridding areas which have
become poorly resolved. This is the main functionality of which GRChombo takes
advantage.

As will be discussed in Chap.6, we are currently in the process of rewriting
GRChombo to make it more modular and thus more adaptable. However, the broad
functionality of Chombo described here remains the same.

3.1.2 Berger-Rigoutsos Block-Structured AMR

GRChombo uses Chombo’s implementation of the Berger-Rigoutsos adaptive mesh
refinement algorithm [6], which is one of the standard block-structured AMR
schemes. Block-structured AMR regrids by overlaying variable size boxes, instead
of remeshing on a cell-by-cell basis (the “bottom-up” approach). The main challenge
is to find an efficient algorithm to partition the cells which need regridding into rect-
angular “blocks”. In this section, we will briefly discuss the algorithm. The basic
idea is illustrated in Fig.3.4.

For a given grid at some refinement level /, where [ = 0 is the base level and /,,,,,
is some preset maximum refinement level, we first “tag” cells for which refinement
is required. The refinement condition used by GRChombo is discussed later in this
section. The primary problem of AMR is to efficiently partition this grid into regions
which require adaptive remeshing. In block-structured AMR these regions are boxes
in 3D or rectangles in 2D. Efficiency is measured by the ratio of tagged over untagged
cell points in the final partitions.

In each partition, we compute the signatures or traces of the tagging function
f(x,y,z) of any given box

X(x) = /f(x,y,z)dydz, (3.1)
Y()’) = /f(-xs Vs Z)d.de, (32)
Z(z) = /f(x,y,z)dydx, (3.3)

Ghost cells are the outer boundary cells of the boxes, which must be exchanged between processors
working in different regions.
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Fig. 3.3 The flow chart illustrates how a coarse and fine level interact during a single update step
of the coarser level. For simplicity only two levels are shown



94 3 GRChombo - Code Development and Testing

1
]
1
X X X X X X 1 X X X
H
X X X X x X x 1 X X  x X
1
1
X X X oxoxox X x x x X
1
X X X X x 1 X  x x x X
H
X 1 X X X
1
1
" X X X
1
/ I \
1
1
xxx: x X X X x x
1
X X P XX X X X X x x X
1
X X 1 X X X x X X X x X
1
]
X ' X X X X X X X x X
1
1 X X  x x
1
1 X X X
1
1

/ \ Is the box:
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Stop if box is:
X
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Fig. 3.4 The figure illustrates the process for partitioning and selecting grids for refinement based
on tagged cells (those marked with an x). The partitioning is shown schematically for 1 dimension,
whereas the actual code divides the boxes in all three spatial directions
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where f(x, y, z) = l if acell is tagged for refinement and 0 otherwise. Given these
traces, we can further compute the Laplacian of the traces 8§X (x), 8§Y (y) and
8122 (z). Given the Laplacians, the algorithm can search for all (if any) inflection
points individually for each direction — i.e. the locations of zero crossings of the
Laplacian. It can then pick the one whose § (3i2X ;) is the greatest (corresponding to
the line — or plane in 3D — separating the largest change in the Laplacian). This point
then becomes the line of partition for this particular dimension. Roughly speaking,
this line corresponds to an edge between tagged and untagged cells in the orthogonal
directions of the signature. Furthermore, if there exists a point x; with zero signature
X;(x;) = 0 (i.e. no cells tagged along the plane orthogonal to the direction), then this
“hole” is chosen to be the line of partition instead.

After a partitioning, we check whether or not each partition is efficient, specifically
whether it passes a user-specified threshold or fill factor, sy < 1.0,

Tagged Cells

4
Total Cells = ers G4

If this is true, then we check if this box is properly nested® [4, 5] and if so we accept
this partition and the partitioning for this particular box stops. If not, then we continue
to partition this box recursively until either all boxes are accepted or partitioning no
longer can be achieved (either by the lack of any tagged cells or reaching a preset
limit on the number of partitions). Furthermore, GRChombo allows the user to set a
maximum partition size, which if exceeded will force a partitioning of the box. This
can be useful when trying to achieve good load balancing, as many smaller boxes
can be shared more easily than several large ones.

Note that a higher value of € means that the partitioning will be more aggres-
sive, which will lead to a higher efficiency in terms of the final ratio of tagged to
untagged cells — generating more boxes in the process. However, this is not necessar-
ily always computationally better as partitioning requires computational overhead,
which depends on the number and topology of the processors. The ideal fill ratio is
often a function of available processors, their topology and of course the physical
problem in question.

A partitioned box is then refined, i.e. its grids are split into a finer mesh using the
(user definable) refinement ratio n’ = dx'*!/dx!, and the process continues recur-
sively until we either have no more tagged cells, or when we reach a preset number
of refinement levels [,,,,,.

Finally we need to specify a prescription for tagging which cells are required to
be refined. GRChombo tags a cell when any (set of) user selected fields F' € u pass
a chosen threshold o, (F), which sets a limit on the L? norm of the change in the
value of the field across that cell, i.e.

ZProperly nested means that (1) a I 4 1 level cell must be separated from an [ — 1 cell by at least a
single / level cell and (2) the physical region corresponding to a/ — 1 level cell must be completely
filled by [ cells if it is refined, or it is completely unrefined (i.e. there cannot be “half-refined” coarse
cells).
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1if i(F(x—i—équ) — F(x—0x%;))? > o,4(F)
fx,y,2) = i=l (3.5)

0 otherwise.

This condition can be augmented, for example by using estimated truncation
errors as tagging conditions instead.

Partitioning can be done at every time-step for each refinement level, or the fre-
quency may be defined by the user for each refinement level. The user may wish to
select a lower frequency because it might be useful to not partition at every timestep
for a given refinement level. Firstly, less frequent regridding saves computational
overhead, and in addition it can be important to let numerical errors dissipate (e.g.
via Kreiss—Oliger dissipation, see Sect.3.2.3) before remeshing. Once a new hierar-
chy of partitions is determined, we interpolate via linear interpolation from coarse
to fine mesh (higher order interpolation tends to overfit the data), and from fine to
coarse mesh, which can introduce errors. We will see in the testing phase that this
effectively reduces the convergence of the code from 4th order to 3rd order.

Since the finer mesh has a smaller Courant number, each mesh level’s timestep is
appropriately reduced via
At

At = — (3.6)
n

GRChombo follows the standard Berger-Collela AMR evolution algorithm [5],
as was illustrated in Fig. 3.3. Starting from the coarsest mesh, it advances the coarse
mesh 1 time step i.e. t — ¢ + At'. Then it advances the next finest mesh n! times
until the fine mesh “catches up” with the coarse mesh time. Once both coarse and
fine mesh are at the same time #, GRChombo synchronises them by interpolating
from the fine cells to the coarse cells.

Note that in a conservative system, this simple synchronisation is not conservative
and requires proper refluxing — the coarse fluxes are replaced with a time-averaged
fine mesh fluxes. This step is not implemented by GRChombo as GR equations are
not conservative, but would need to be considered if a fluid type matter was added.

3.1.3 Load Balancing

GRChombo’s efficiency when running on a large number of distributed-memory
nodes is highly dependent on efficient load balancing of the available computational
work across those nodes. Load balancing seeks to avoid the situation where most of
the nodes are waiting for some small subset of nodes to finish their computational
work, and it does this by seeking to distribute the amount of work to be done per
time step evenly among all of the nodes. This can be non-trivial when AMR boxes
at many different locations are simultaneously being evolved across the system. In
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addition, even within a single node, multiple OpenMP threads might be running, and
the per-node workload needs to be balanced amongst those threads.

For the inter-node load balancing, GRChombo leverages Chombo’s load balanc-
ing capabilities to distribute the AMR boxes among the available nodes. It does this
by building a graph of the boxes to be distributed, adding edges between neighbour-
ing and overlapping boxes. A bin packing/knapsack algorithm is used to balance the
computational work among nodes, where the work is assumed to be proportional to
the number of grid points, and then an exchange phase is used to minimise the com-
munication cost. Because this load balancing procedure can be costly, we normally
run it only every few time steps. In between runs of the load balancing procedure,
new boxes generated by AMR refinement stay on the node which holds the parent
box.

Within each node, the computational work is divided amongst the available
OpenMP threads by iterating over the boxes to process using OpenMP’s dynamic
scheduling capability. This allows each thread to take the next available box from
the queue of unprocessed boxes, instead of deciding ahead of time which boxes each
thread will process. This is important because the boxes are varying in size. We gen-
erally divide even the coarsest level into multiple boxes so that it can be processed
in parallel by multiple threads.

3.2 Implementing GRChombo

GRChombo is a physics engine built around Chombo. GRChombo solves the system
of hyperbolic partial differential equations of the Einstein equation, with scalar matter
content.

Below are the key features of GRChombo, which are built on top of the Chombo
functionality described above.

e BSSN formalism with moving puncture: GRChombo evolves the Einstein equation
in the BSSN formalism with scalar matter. Singularities of black holes are managed
using the moving puncture gauge conditions [9, 10].

e 4th order discretisation in space and time: We use 4th order spatial stencils com-
bined with a 4th order Runge—Kutta time update. In Sect.3.3.4 we show that the
convergence is approximately 4th order without regridding, but reduces to 3rd
order convergence with regridding effects.

e Kreiss—Oliger dissipation: Kreiss—Oliger dissipation is used to control errors, from
both truncation and the interpolation associated with regridding.

e Boundary conditions: In our work we either use radiative or periodic boundary
conditions. In principle, one can implement other boundary condition methods in
GRChombo. For many simulations, the AMR ability allows us to set the boundaries
far enough away so that reflections do not affect the results during simulation time.

e [nitial Conditions: As detailed in Sect. 2.2.3, for the work done to date we generally
used simple analytic conditions, or relaxation of the Hamiltonian constraint in
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somewhat more general conditions. However, in principle any initial conditions
can be read in, for example, where solutions to the constraints have been found
numerically. Note that GRChombo itself does not (currently) solve for the initial
conditions.

e Diagnostics: The key diagnostics used in this work are apparent horizons, ADM
mass and momenta, and gravitational waves.

Additional details of these features are given in the sections below.

3.2.1 Evolution Equations

GRChombo evolves the BSSN equations described in Sect.2.2.2 and summarised in
Appendix B.2.

Note that in the actual evolution, the values of the three-vector ['? are computed
from the knowledge of the conformal metric, 7;;, but for its spatial derivatives 0, I,
the evolved I'; is used.

In addition, we hard code the condition o > 0 as is usual practice. For the algebraic
constraints of BSSN, we do not enforce (by hand) the condition that the conformal
metric has a determinant of one, but we do enforce after each RK4 step that Ai ;18
traceless.

3.2.2 Discretization and Time-Stepping

We would like to evolve a set of fields in space, the state-vector
u(x',t) = {F, B, Fs,...} (3.7
through time 7 via the equations of motion

Ou
i F(u), (3.8)

where F is some operator on u which, in the case of the Einstein equation, is non-
linear.

In GRChombo, both the space and time coordinates are discretised. Evolution
in time is achieved through time-stepping t+ — ¢ + At, where at each time step we
compute the fluxes for each grid point individually. Time stepping is implemented
using the standard 4th Order Runge—Kutta method, and hence, as usual, we only
need to store the values of the state-vector at each time step.

The state vector u itself is discretised into a cell-centered grid. Spatial derivatives
across grid points are computed using standard 4th order stencils for all spatial
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derivatives, except for advection terms which are implemented using an upwind
stencil. The form of the stencils GRChombo uses exactly follow Egs. (2.2)—-(2.6) of
[11], which are, for the standard derivatives

1
OcFijx = m(ﬂ—z,,‘,k —8F; 1k +8Fiy1jk — Fiya i), 3.9
1
Ocx Fijx = m(—sz,]‘,k + 16F 1, jx —30F, jx +16Fi_1 jx — Fiz k),
(3.10)
1
Oy Fijx = m(ﬂ—lj—lk —8F; 1j 2k +8Fiy1j 2k — Fiyaj2x (3.11)

—8(Fj—2,j—1x —8Fi—1,j—1k +8Fiy1,j—14 — Fito j—14) (3.12)
+8(Fi—a j+1.k — 8Fi—1 ju1.k +8Fiq1 j+1.k — Figo,j+1.4) (3.13)

— (Ficajwok — 8Fi1 jyox +8Fit1 jrok — Fivo j42.4))s
(3.14)

whilst for the advection derivatives (of the form 3'9; F) we use the upwinded stencils

1
OcFijx = ———(=Fi_3jx +6F_2jx —18F_1 jx + 10F; jx +3Fi11 1),

12dx
(3.15)
for 8* < 0 and

1
OcFijx = @(Fi+3,j,k —O6F 2k +18F 1 jx —10F; jx +3Fi_1 i),
(3.16)
for g* > 0.

3.2.3 Kreiss-Oliger Dissipation

In a finite difference scheme, instabilities can arise from the appearance of high
frequency spurious modes. Furthermore, regridding generates errors an order higher
than the typical error of the evolution operator, hence it is crucial that we control
these errors in an AMR code.

The standard prescription is to implement some form of numerical dissipation
to damp out these modes. GRChombo implements N = 3 Kreiss—Oliger [12] dissi-
pation. In this scheme, for all evolution variables in u, the evolution equations are
modified as follows for each spatial direction
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0, F, — O,F,+

640Ax (Fm+3 - 6Fm+2 + lSFm+l —20F, + 15F,—1 — 6Fy > + Fin-3),
3.17)

where m =+ n labels the grid point, n the total offset from m in the spatial direction and
o is an adjustable dissipation parameter usually of the order O(10~2). This 3rd order
scheme is accurate as long as the integration order of the finite difference scheme is
5 or less (which it is in our implementation using 4th order Runge—Kutta).

3.2.4 Boundary Conditions

GRChombo supports both periodic (in any direction) boundary conditions, as well as
any particular boundary conditions the user may want to specify (such as Neumann
or Dirichlet types). A particular popular type of boundary condition is the so-called
Sommerfeld [13] boundary condition, where out-going radiation is dissipated away.
For any field F, we impose the condition at the boundary

oF o OF F—F,
ot r Ox; r

: (3.18)

where r = ,/x? + x7 + x3 is the radial distance from the center of the grid, Fy is the
desired space-time at the boundary (typically Minkowski space for asymptotically
flat spacetimes) and v the velocity of the “radiation”, which is typically chosen to
be 1.

It should be noted that, whilst these conditions work reasonably well in practice
(in particular for harmonic oscillations of a massive field), they are not constraint
preserving and affect the well-posedness of the system, and so their use is some-
what questionable. Where simulations are run for more than one light crossing time,
allowing signals from the boundaries to propagate to the system under study, the
effect of the boundary conditions on results may need to be considered.

3.2.5 |Initial Conditions

GRChombo supports several ways of entering initial conditions.

e Direct equations — Initial conditions which are described by known analytic equa-
tions, such as the Schwarzschild solution, can be entered directly in equation form.

e Checkpointing — The HDF 5 format output files from GRChombo double as check-
point files. A run can simply be continued from any previous state as long as its
HDF'5 output file is available.
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e Entering from data file — GRChombo allows one to read in data from a file.

e Relaxation — GRChombo has a rudimentary capability to solve for the conformal
factor given some initial mass distribution, and assuming that the momentum con-
straint is satisfied by the other variables specified. Given a guess for y, GRChombo
relaxes it to the correct initial values using a dissipation term which is proportional
to a user chosen dissipation coefficient times the Hamiltonian constraint.

The initial conditions used in the code development are mostly analytic or approx-
imate analytic solutions, and so are entered directly into the code. In the critical col-
lapse, a Mathematica numerical solution as a function of the radius is interpolated
onto the initial grid.

3.2.6 Apparent Horizon Finder in Spherical Symmetry

The presence of a black hole event horizon is gauge invariant. We use an apparent
horizon finder which assumes spherical symmetry to identify marginally trapped
surfaces on each spatial slice. Whilst these are local rather than global horizons, if
we detect an apparent horizon on a time slice, the singularity theorems tell us that
it must lie inside an event horizon (see, for example, Sect.7.1 of [14]). Thus if we
detect an apparent horizon we can infer that a black hole has formed, and the area of
the apparent horizon provides a lower bound on the black hole mass. Note that the
converse is not true — the absence of an apparent horizon does not imply the absence
of an event horizon.

One can find apparent horizons as the surface on which the expansion of the
outgoing null geodesics is zero, that is

®=Vis'+K;js's/ —K =0, (3.19)

where s' is the outward-pointing unit normal to the apparent horizon surface (which
thus lies in the spatial slice, not to be confused with the normal vector to the slice
itself which is time-like).

In spherical symmetry the outward pointing normal vector may be found at each
point in the surface, assuming that the central point of the AH lies at the centre of
the grid at x' = 0, as

sh=", (3.20)

where x! denotes the x, y and z coordinates of the point. The distance r is the
coordinate radius from the centre point 7> = x? 4+ y? + z2. We can then calculate ®
at each point in the hyperslice as in [15], as

A B C
= Dp3n + D12 + D K, (3.21)

C
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where
ik jl L ki
A=—("s) (" s1)0;s; — 5(7 57) (k8107 (3.22)
B = (ai,yij)sj + ’yi'jaisj + giij (81 In ﬁ) y (3.23)
C=K"ss;, (3.24)
D =~"s;s; . (3.23)

The mass M of the apparent horizon is then found from its area A as

MZA

= —. 3.26
16w ( )

By considering the point where the apparent horizon crosses the x axis, at a radius of
r from the centre point, M can be calculated in cartesian coordinates from the state
values at that point as

~ o~ r
M = (i) 5= (3.27)
X

One can extend the method to non spherical horizons but the normal vector
in this case is not trivial to find as the surface may change shape at different points in
a way that is not known a priori. One generally requires a trial surface which is then
made to converge on the true horizon using Newton’s method, as in Thornburg’s fast
apparent horizon finder [15]. In the work in this thesis, a spherical apparent horizon
finder was sufficient, as even in asymmetric cases, we could wait for the solution to
settle into an approximately spherical solution before measuring the mass. In future
work we plan to extend the method to more general surfaces.

3.2.7 Extracting ADM Mass and Momenta

A problem in GR is found in defining the total energy or momentum of a system.
Whilst we have a local law for energy conservation, V,T% = 0, there is no global
law of conservation of energy integrated over a finite volume. This is because 7y
contains only the contributions from matter and not the energy of the gravitational
field itself (which is in fact difficult to define).

In the weak field case, in cartesian coordinates, one could define the energy,
momentum and angular momentum in a slice, neglecting the gravitational contribu-
tion, as

M:/pdV, P":/Sl'dv, Jl':/eff'kxjsk dv . (3.28)

These can be rewritten in terms of the ADM variables using the Hamiltonian and
Momentum constraints, assuming small K ;, and converting to surface integrals using
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Gauss’ theorem, to give

1 .
My = 1= 7§ (8" Oyjx — D)5 dS , (3.29)
S
i 1 i i
Pipm = 8_7_‘_%9(1{1' — 0" K)s*dS, (3.30)
. 1 -
Japm = 3 .(]{s e x;(Ky — 6uK)s'dS, (3.31)

where s’ is, as in the apparent horizon finder, the outward pointing unit normal

sh=2 (3.32)

In the strong field regime the volume expressions will no longer be valid because
they do not contain the energy of the field. However, if the surface integrals are
evaluated at infinity, in asymptotically flat space, they remain valid and thus we
can define the ADM mass, linear momentum and angular momentum of an isolated
system by the value of these expressions evaluated at spatial infinity.

In practice, in our code, we evaluate these expressions as far out as is computa-
tionally feasible, given the finite size of the computational domain.

3.2.8 Gravitational Wave Detection

In the section on convergence testing we extract a gravitational waveform from the
code to test convergence. Here we will summarise briefly the method used to extract
such a waveform in cartesian coordinates, following closely the description in Sect. 6
of [16]. The reader is referred to the standard NR texts, in particular [17], for a more
full discussion.

_ ﬂWe use the Newman-Penrose formalism which is based on a tetrad of null vectors,
k, 1, m, it where the the first two are real vectors, and the latter two are part imaginary
and complex conjugates of each other. In Cartesian coordinates these are found from
a Gram-Schmidt orthonormalisation of the following spatial vectors

w =[x,y z], v =[xz, vz, —x>—y*, w' = e;kujvk, (3.33)

which are used to construct the tetrad as

%(n(l +u®), = %(n“ —u®), m®= %(UO‘ +iw®), (3.34)

where n® is the unit normal vector to the spatial slice as described in Chap.2, and
the time components of i, v, and w are zero by construction.

kK =
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The complex Weyl scalar W, is defined as the projection of the Weyl tensor Cypcq
onto these vectors as follows

Wy = Coposl®m’ i’ . (3.35)

Its physical significance is that it measures the outgoing radiation from a source.
As its name implies, there are other Weyl scalars which come from different pro-
jections of the Weyl tensor (five in total, each complex, thus accounting for the 10
degrees of freedom in the Weyl tensor). However, for a plane wave spacetime, the
tetrad can be chosen such that only Wy is non zero. The “peeling theorem” tells us
that, at a large distance from an isolated source, the space looks locally like a plane
wave. Therefore taken in asymptotically flat space, the quantity W, contains all the
relevant information about the gravitational wave.
The Weyl tensor is defined in 4 dimensions as

1
Cabed = Ravea — Jaie Rawp + goie Raya + gga[cgd]bR . (3.36)

so we can calculate W, directly from this, or alternatively by first calculating the
electric and magnetic parts of the Weyl tensor in the adapted basis, with components

Eij = Rij — " (KijKyn — KinKn),  Bij = Yix€ ™ D Kpj - (3.37)

The expression for Wy is given in terms of these quantities as

1
Wy = -5 (Emn """ —w"w") — By, (0"w" + w™ v”))
1

+ E (Emn(vmwn _ wmvn) + an(wmwn + Umvn)) .

(3.38)

This value of W, can be extracted from a point in asymptotically flat space and used
to construct the gravitational wave strains /4 and & at that point by integrating the
relation

hy —ihy, =W, (3.39)

However, to reduce numerical error, it is common, rather than using a single point,
to extract the multipole components of the W, signal and quote these directly, as
we have done when calculating the convergence. This effectively means that W, is
decomposed into its components in a basis of spin-weighted spherical harmonics of
spin weight s = —2,

W1, 0, 6) = Y b)Y, (0, ), (3.40)

I,m
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where the components can be found by integrating the W, values, multiplied by the
(complex conjugate of the) spin weighted spherical harmonics, over the surface of a
sphere at the radius of extraction, i.e.

i) = / Wilt, 0, )T 20, )dS . (3.41)

3.3 Testing GRChombo

We detail the results of the standard Apples with Apples tests [3] in Sect. 3.3.1 when
turning off AMR and using fixed resolution grids. In Sect.3.3.2 we turn on the AMR
abilities of the code and demonstrate that it can stably evolve spacetimes containing
black-hole-type singularities. In Sect.3.3.3 we demonstrate the ability of the code
to evolve matter content by considering scalar fields with gravity, by recreating the
results of the sub-critical and critical cases of Choptuik scalar field collapse detailed
in [17]. In Sect. 3.3.4 we demonstrate convergence of the code and in Sect.3.3.5 we
discuss its scaling properties. In Sect.3.3.6 we simulate a head on collision of two
black holes, and compare our code performance to an existing Numerical GR code.

3.3.1 Apples with Apples Tests

In this section we describe the results of applying the code to the standard Apples
with Apples tests in the paper [3]. Here we give a brief description of the key features
of the tests, but the reader should refer to [3] for full specifications. Where we do not
specify details, our treatment can be assumed to follow that of the standard tests. The
AMR capabilities of the code are not utilised in these tests (which were designed for
a uniform resolution) in order to make our results comparable with other codes. (We
consider the effects of regridding on code performance in Sect.3.3.2.)

Robust Stability Test

The robust stability test introduces small amounts of random noise to all of the
evolution variables, in order to test the code’s robustness against numerical errors.
The test was conducted atresolutions of p = 4, p = 2 and p = 1, which correspond to
grid spacings of 0.005, 0.01 and 0.02 respectively on a grid of width 1. The amplitude
of the noise is scaled as 1/p*. No dissipation was added in the test.

As shown in Fig. 3.5, the error growth in the evolution variables did not increase
with increasing grid resolution, and the Hamiltonian constraint A did not grow more
for higher resolutions. Therefore, we conclude that the test is passed.

Linear Wave Test

A wave of fixed amplitude is propagated across the grid in the x-direction with
periodic boundary conditions, with
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Fig. 3.5 Robust stability test for both the BSSN and the CCZ4 codes, with resolutions p = 1,2, 4
respectively. Left: time evolution of the L, norm of the Hamiltonian constraint. Right: deviation
of 4xx from 1. Neither norm grows at an increasing rate with increasing resolution, and so the test
is passed

ds®> = —dt* +dx* + (1 — H)ydy> + (1 — H)dz* H = Asin 2r(x — 1)) .
(3.42)

The amplitude A is small enough that the non-linear terms are below numerical
precision, such that the behaviour under the Einstein equation is approximately linear.
The test measures the errors in magnitude and phase introduced by the code after
1000 crossing times.

As can be seen from Fig. 3.6, this error is 4 orders of magnitude smaller than the
signal and therefore negligible.

Gauge Wave Tests

The gauge wave test requires the evolution of the metric
ds’> = (1 — H)(—dt* +dx®) +dy* +dz®> H = Asin2r(x —1).  (3.43)

The BSSN formulation is known to produce unsatisfactory results for the gauge
wave tests. GRChombo is no different in this respect. As can be seen in Fig.3.7, it
becomes unstable after around 50 crossing times, with the Hamiltonian constraint
increasing exponentially, even for a relatively small initial amplitude of the gauge
wave of A = 0.1.

As was shown in [18] stability can be achieved by adding in the CCZ4 constraint
damping terms. GRChombo shows exactly this behaviour (Fig.3.7).

Gowdy Wave Test

The Gowdy wave evolves a strongly curved spacetime; an expanding vacuum uni-
verse containing a plane polarised gravitational wave propagating around a 3-torus.
The metric is
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Fig. 3.6 Linear wave test. Left: analytical solution and the evolved g, component of the metric
at 7 = 1000 at resolution p = 4, but the two are indistinguishable. Right: absolute value of the
error across the grid at 7 = 1000, from which we can see more easily that some small errors in the
magnitude and phase have been introduced

Fig. 3.7 Gauge wave test. 100 ‘
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ds®> =t72¢> (—dt* +dz%) + tePdx* + e Pdy? (3.44)

where P is a function of z and ¢ with Bessel functions J,, in particular we use
P = Jy(2wt) cos2mz. A is also a function of z and r which may be expressed as a
(rather more complex) product of Bessel functions, as given in Eq. A.28 of [3]. In
the forward time direction, P decays to zero, and A undergoes linear growth due to
the cosmological expansion.
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Fig. 3.8 Gowdy wave test, collapsing. Left: minimum value of the lapse « across the grid as the
spacetime is evolved towards the singularity. As expected, the harmonic gauge causes the evolution
to “slow down” as the singularity is approached. Right: evolution of the L, norm of the Hamiltonian
constraint for two resolutions. The test reaches 7 = 1000 crossing times without crashing

In the expanding direction we use the slicing, d;cc = —0; ,/7z;. The collapsing
direction is evolved starting at ¢ = ¢y with harmonic slicing for the lapse and zero
shift. A Kreiss—Oliger dissipation coefficient of o = 0.05 was used in both directions.

The results for both the BSSN and CCZ4 codes in the collapsing direction are
shown in Fig. 3.8, and in the expanding direction in Fig.3.9.

As is found in the Apples with Apples tests [3] for other simple BSSN codes,
GRChombo with BSSN and CCZ4 gives a less than satisfactory performance in this
test in the expanding direction. The evolution is stable for approximately the first
30 crossing times, after which high frequency instabilities develop and cause code
crash, due to the exponentially growing ., component. In [3] it was found that this
behaviour of BSSN could be controlled with dissipation, but that long term accuracy
was not achievable.

In the contracting direction the evolution is stable for the full 1000 crossing times
and we were able to confirm the convergence of our code. As shown in Fig.3.10,
both BSSN and CCZ4 exhibit 4th order convergence initially. While convergence is
never lost, the order is reduced at later times. This is similar to the behaviour found
in [3, 19].

3.3.2 Vacuum Black Hole Spacetimes

In this subsection we show that our code can stably evolve spacetimes containing
black holes.
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Fig. 3.9 Gowdy wave test, expanding. Left: trace of the extrinsic curvature K as the Gowdy wave
spacetime is evolved in the collapsing direction. This correctly asymptotes to zero as the spacetime
expands, butbecomes unstable at around ¢ = 30. Right: evolution of the L », norm of the Hamiltonian
constraint for two different resolutions

60 120

BSSN BSSN
COZ4 o CCZ4 oo
50 4th order convergence 1 100 ‘ 4th order convergence B
<+
L L
S r 1 = sp 1
& =
~_ 30f 1 ~~ 0} | 1
o o |
= 20¢r = i
T N - T
10 1 20 | 1
0 s s s s s 0 " s s s
0 5 10 15 20 25 0 200 400 600 800 1000
t [ct] ¢ [et]
(a) Convergence (expanding) (b) Convergence (collapsing)

Fig. 3.10 Gowdy wave test, convergence. The ratio of the L, norm of the Hamiltonian constraint
for the resolutions p = 4 and p = 2 is shown, for the expanding and collapsing directions for the
BSSN and CCZ4 codes. A value of 16 indicates 4th order convergence, which is demonstrated by
the codes initially, although lost at later times by BSSN

All the simulations presented here used the BSSN formulation of the Einstein
equations, along with the gamma-driver and alpha-driver gauge conditions. Adding
CCZA4 constraint damping gives better performance for the Hamiltonian constraint,
as would be expected, but the results are broadly similar and so are not presented
here. Unless otherwise stated, we perform the simulations with up to 8 levels of
refinement and we based our tagging/regridding criterion, Eq.(3.5), on the value
of x. We emphasise that the purpose of this subsection is to demonstrate that we
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can stably evolve black hole spacetimes, but we are not interested in extracting
gravitational wave data or in studying convergence; this will be done in the next
subsection.

Where we refer to taking an L? norm of the Hamiltonian constraint 7 in a test,
this is calculated as follows (using the weighted variable sum function in Vislt):

1l = [> miH?, (3.45)

where m; = V;/V,,, is the fraction of the total grid volume V,,, occupied by the ith
box. Where the grid contains a black hole, we excise the interior by setting H to zero
within the region in which the lapse « is less than 0.3 (which is an approximate rule
of thumb for the location of an event horizon for a black hole in the moving puncture
gauge). The difference in the results is small, since the error norm is dominated by
regridding errors at the boundaries between meshes. We also exclude the values on
the outer boundaries of the grid, which can distort the results in cases where periodic
boundaries are used.

Schwarzschild Black Hole

First we evolve a standard Schwarzschild black hole in isotropic gauge, with a con-
formally flat metric, the lapse initially set to one everywhere, and the conformal

factor x set to
M\ 2
X = <1 + —) . (3.46)
2r

In this simulation, we chose the outer boundary of the domain to be at 600M and
the spatial resolution in the coarsest mesh as 10M . We impose Sommerfeld boundary
conditions. The initial value of x through a slice is shown in Fig.3.11. We see the
expected “collapse of the lapse” at the singularity and the solution quickly stabilises
into the “trumpet” puncture solution described in [20]. We find an apparent horizon
and are able to evolve the black hole stably and without code crash for well over
t = 10000M time steps as shown in Fig.3.12 (left). In this figure we show the L?
norm of the Hamiltonian constraint across the whole grid, and it remains bounded
throughout the evolution.

We monitor the ADM mass of the black hole by integrating over a surface near
the asymptotically flat boundary, as seen in Fig.3.12 (right). We also monitor the
angular momentum and linear momentum of the black hole, and find that these
remain zero as expected, as shown in Fig. 3.12 (right). These simple ADM measures
rely on asymptotic flatness at the surface over which they are integrated, and so are
sensitive to errors introduced by reflections at the boundaries, initial transients from
approximate gauge choice or if the black hole is moving nearer the boundary (as in
the boosted case). They are therefore less reliable as the simulation progresses, and
we use them simply to confirm that we are evolving the correct spacetime initially.
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Fig. 3.11 The profile for y through a slice perpendicular to the z axis is shown for a Schwarzschild
black hole
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Fig.3.12 Schwarzschild black hole simulations. Left: Evolution of the L? norm of the Hamiltonian
constraint up to ¢ = 10000, showing long term stability. Right: ADM Mass, angular momentum
and linear momentum (in the x direction) during the initial stages of the evolution. These quantities
remain approximately constant

Kerr Black Hole

In this sub-subsection we present the results of a simulation of the Kerr black hole
spacetime in the quasi isotropic Kerr-Schild coordinates that were used in [21], with
the angular momentum parameter a = J/M set to 0.2. The domain size was chosen
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Fig.3.13 Kerrblack hole simulations. Left: Evolution of the L% norm of the Hamiltonian constraint.
Right: Components of the angular momentum and mass of the Kerr black hole during the evolution.
The ADM quantities remain constant

to be (320M)3 and the grid spacing in the coarsest level was 4M . We impose periodic
boundary conditions for simplicity, which limits the duration of the simulation due
to boundary effects.

In Fig.3.13 (left) we show the L? norm of the Hamiltonian constraint throughout
the evolution. This plot shows that the amount of constraint violation remains stable
during the simulation. In the right panel of Fig.3.13 we display the ADM measures
for the three components of the angular momenta and the mass. This figure shows
that these quantities remain (approximately) constant during the simulation.

Boosted Black Hole

In this sub-subsection we evolve a boosted black hole using the perturbative approx-
imation from [14], in which the momentum constraint is solved by

- 3y o . o
Ay =25 (i) 4 pIst = (67 — s ysiph). (3.47)
2r2

where pi & 1.0 are the initial momenta, and the Hamiltonian constraint is solved to
first order in p? = p'p; as

P’ 1 -
5(91 + 542(3cos” 0 — 1))) , (3.48)

=(1 =
X <+q+M
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Fig. 3.14 The boosted black hole moves across the grid diagonally with initial momenta of P, =

0.02, Py, = 0.02 and P, = 0.0, as expected, and the grid adapts to this movement, with the high
resolution grids following the movement
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Fig. 3.15 Boosted black hole simulations. Left: Evolution of the L? norm of the Hamiltonian
constraint. Right: Components of the ADM linear momentum during the evolution. They remain
constant. Note that the lines for P, and Py overlap and so are difficult to distinguish

where
1M
9= (3.49)
g1 =0+ (@' +5¢° +100° + 10g +5). (3.50)
g2 = 0.05(1 + ¢)>¢*(84¢° + 3784 + 658¢° + 539¢* + 192¢g + 15)
14243 9 (3.51)
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The initial momenta are set to p, = 0.02, p, =0.02 and p, = 0.0. The domain
size was chosen to be (640)3, with spatial resolution in the coarsest grid of 4M. We
imposed periodic boundary conditions at the outer boundaries of the domain. The
black hole moves across the grid diagonally as expected, as is seen in Fig.3.14.

In the left panel of Fig.3.15 we show the L? norm of the Hamiltonian constraint
across the domain as a function of time. This plot shows that the constraints remain
bounded throughout the simulation. In the right panel of Fig.3.15 we display the
components of the ADM linear momentum during the simulation. In the continuum
limit they should be constant and in our simulation they are indeed approximately
constant.

Binary Inspiral

In this sub-subsection we superpose the initial perturbative solution for two boosted
black holes in [14], sufficiently separated, to simulate a binary inspiral merger. The
domain size was (200M)* with a grid spacing in the coarsest level of SM. As in
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Fig. 3.16 Two black holes are evolved with GRChombo in an inspiral merger. The final stages of
the merger are shown

some of the previous tests, for simplicity we imposed periodic boundary conditions
at the outer boundaries of the domain.

We are able to evolve the merger stably such that the two black holes merge to form
one with a mass approximately equal to the sum of the two. The progression of the
merger is shown in Fig.3.16. The time evolution of the L? norm of the Hamiltonian
constraint across the grid is shown in Fig. 3.17. Again this remains stable throughout
the simulation.

3.3.3 Choptuik Scalar Field Collapse

‘We now test the scalar field part of the code, by simulating the Choptuik scalar field
collapse as described in [17] and illustrated in Fig. 3.18. The referenced description
is for a 1+1D simulation which is evolved using a partially constrained evolution.
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The lapse « and the single degree of freedom for the metric, A, are both solved for
on each slice using ODEs obtained from the Hamiltonian constraint, and the polar
areal slicing condition (0;799) = 0;¥¢e = 0. The only degrees of freedom which are
truly evolved are those of the field variables, ¢, W and IT.

Our evolution is carried out using the full 3 4 1 BSSN equations, without assum-
ing or adapting coordinates to spherical symmetry. We are able to replicate the results
obtained in [17], subject to some minor differences due to the fact that we evolve
with the puncture gauge rather than according to the polar areal gauge, see Figs.3.19
and 3.20, and compare to 3.21.

We see that GRChombo can accurately evolve the field profile in the presence of
gravity, and copes with the collapse of the supercritical case into a singularity, without
code crash. For the subcritical cases we see that the field disperses as expected.

3.3.4 Convergence Test: Head on Collision of Two Black
Holes

In this subsection we simulate the head on collision of two black holes and analyse
the convergence of the code. We set up Brill-Lindquist initial data [22] consisting
of two static black holes of mass 0.5M with a separation of 10M, located at the
centre of the computational domain. We extract the gravitational wave signal (see
Fig.3.22 below). An initial burst of radiation is seen, which is a property of the
superimposed initial data, prior to the main signal. Even though this set up could
be simulated in axisymmetry, we have evolved the system without imposing any
symmetry assumptions. So the results below correspond to a full 3 4 1 simulation
with GRChombo.
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Fig. 3.18 In Choptuik scalar field collapse, the initial specially symmetric configuration in the first
figure (which shows the values on a slice perpendicular to the z axis) collapses, splitting into an
ingoing and an outgoing wave as seen in the second image. If the amplitude of the initial perturbation
is greater than a certain critical value, the ingoing wave will result in the formation of a black hole, as
seen from the output of the apparent horizon finder in the third figure, which shows that an apparent
horizon with a mass of about 0.25 has formed by r = 15

We performed runs at three different resolutions with 7 levels of refinement, each
level having half the grid spacing as the previous one. The grid spacings were

e 0.03125M /4M for the low resolution run,
e 0.02083M/2.66667M for the medium resolution run,
e 0.01563M /2M for the high resolution run.
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Fig. 3.19 Choptuik scalar field collapse. The profiles shown for the fields at + = 0, 5 and 20 differ
from those in [17] due to the different gauge conditions used. In the supercritical case we show the
snapshot at ¢+ = 10 rather than 20 as this is the point at which the evolution is frozen in the gauge
choice in [17]. In the puncture gauge the evolution of the region within the event horizon continues
and the result is that the large spike in the field effectively falls into the puncture, resulting in a zero
field value at the centre of the coordinate grid
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Fig. 3.20 Choptuik scalar field collapse. The values of the lapse at the centre of the grid are given.
It can be seen the the profiles are very similar to those obtained by Alcubierre in [17], and that the
one for the supercritical case shows the characteristic collapse of the lapse which is symptomatic
of black hole formation

Here the numbers refer to the resolution on the finest/coarsest grids respectively. The
outer boundary of the domain is located at 200M and we impose periodic boundary
conditions for simplicity. This puts an upper bound on the time up to which we
can evolve the system before boundary effects influence physical observables. In
Fig.3.22 (top) we display the real part of the £ = 2, m = 0 mode of r ¥4 extracted on
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Fig. 3.21 Choptuik scalar
field collapse. The results
obtained by Alcubierre in
[17] are shown for
comparison to our results
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Fig.3.22 Convergence test of head on collision: Top: The real part of the £ = 2, m = 0 mode of r Wy
on the sphere of radius R = 60M. Bottom: Differences in the real part of the £ = 2, m = 0 mode
of r\Wy between three different resolutions. We also show the data rescaled by a factor consistent
with either third (x4.11) or fourth (x5.64) order convergence

a sphere of radius R = 60M using 4th order interpolation. We use 320 grid points®
in both the polar and azimuthal directions on the extraction sphere. Following [23],
we test convergence by comparing a physical quantity W at different resolutions.
The convergence is of order Q if for a set of grid spacings h1, h», h3, the differences
between the numerically computed physical quantity W at successive resolutions
satisfy

\Ijhl _\Ijhz _ th _hZQ

- , (3.52)
\Ilhz - \Ijh3 th —_ h3Q

3Something of order 64 grid points should in practise be sufficient.
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ignoring higher order terms. Such terms may introduce errors in the convergence
relation if the ratio between successive grids is not large, which in practise it is
not (values of 1.2 are common, to avoid the highest resolution having a prohibitive
computational expense). With the resolutions used in these runs, assuming 4th order
convergence the above factor is ~5.953, whilst assuming 3rd order convergence the
factor is ~4.115.

The gravitational wave content of the superimposed initial data is reflected in the
non-zero initial signal. The collision of the two black holes takes place at t ~ 50,
so the signal before this collision time should be regarded as mostly unphysical
(although some physical interaction - bremsstrahlung - can occur prior to the merger).
As can be seen in the plot, the results for the two higher resolutions are indistinguish-
able on the scale employed here, whilst the lowest resolution shows a very slight drift
towards later times, but is still in very good agreement. The bottom plot in Fig.3.22
shows the absolute value of the difference between r W, computed at low and medium
resolution (solid blue), medium and high resolution (solid black), and this latter curve
scaled up by the convergence factor assuming 3rd (dotted orange) and 4th (dotted
red) order convergence. This plot shows that in the highly dynamical stages of the
evolution, when there is a lot of regridding and the boxes move around the domain,
the convergence is closer to 3rd order. On the other hand, when the system has nearly
settled, and hence the boxes do not move much, the convergence order is somewhat
closer to 4. We can explain this loss of convergence due to regridding because in the
interpolation used in GRChombo only the values of the functions are matched across
levels, not their derivatives.

3.3.5 MPI Scaling Properties

We now turn to the performance aspects of GRChombo. Here we perform a number
of scaling tests to show that our code can exploit the parallelism offered in modern
supercomputers to a reasonable extent. Whilst Chombo does have the capability to
partially utilise threads through hybrid OpenMP routines, we will limit our attention
to pure MPI mode in these tests, as we have found that this gives significantly smaller
run-to-run performance variations.

Our strong scaling test is performed using a head on binary black hole system.
We set up Brill-Lindquist initial data for two static black holes of mass 0.5M, with a
separation of 6M . Our overall computational domain is a box of size 160M, and at the
coarsest level, we fix the total number of grid points to 320 in each direction, giving a
grid spacing of 0.5M . The centre of mass of the system is at the centre of the domain.
For the mesh refinement, we fix the total number of levels to six. The simulation is
allowed to run up to the time of 2M. The bulk of this test was performed on the
SuperMike-II cluster at the Louisiana State University. Each compute node consists
of two 2.6 GHz 8-core Sandy Bridge Xeon processors, connected via a InfiniBand
QDR fabric. We fix the computational load across all jobs and vary the core count
from 16 to 2048. Our data in Fig. 3.23 shows excellent strong scaling up to 200 cores
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Fig. 3.23 Strong scaling behaviour of GRChombo on the SuperMike-II cluster at the Louisiana
State University. The code achieves excellent strong scaling up to 200 cores, and a useful scaling
up to around 1000 cores

on this cluster. We continue to see a reasonable speedup up to around 1000 cores for
this particular problem. Of course, in a production environment, it is often desirable
to use additional cores to be able to run a larger simulation, rather than to speed
up a problem of fixed size. In this scenario, weak scaling behaviour is of interest.
We begin at 1024 cores with an identical setup to that in the strong scaling test.
We then scale up the number of grid points at the coarsest level proportional to the
increase in core count up to 10240, whilst adjusting the tagging threshold in order
to maintain the shape and size of the refined regions. We also adjusted the time step
size (i.e. the Courant factor) so that each simulation would reach the target stop time
in the same number of steps. We use the Mira Blue Gene/Q cluster at the Argonne
National Laboratory for this due to the larger number of cores available. Figure 3.24
shows a less-than-perfect scaling behaviour in this setup, with the main bottleneck
appearing in the regridding and box generation stages. We are working together with
the developers of Chombo to improve this aspect of the code performance. It is worth
noting, however, that even in its current state the code still shows a useful level of
scalability: the wallclock time increases by less than 2x over the 10x increase in core
count.

3.3.6 Performance Comparison

Lastly, we demonstrate that GRChombo’s performance on standard 3 + 1 black hole
problems is comparable to that of an existing numerical relativity code.

Our comparison target is the Lean code [24, 25], a 3 4+ 1 numerical relativity
code designed to evolve four and higher dimensional vacuum spacetimes. Lean
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Fig. 3.24 Weak scaling behaviour of GRChombo on the Mira Blue Gene/Q cluster at the Argonne
National Laboratory over a 10x increase in core count

is based on the Cactus computational toolkit [26] and realises moving-box mesh
refinement via the Carpet package [27, 28], both of which are part of the open-
source Einstein Toolkit [23, 29]. Initial data is constructed either analytically
or numerically by employing the TwoPunctures spectral solver [30].

In order to track apparent horizons, Lean makes use of AHFinderDirect [15,
31].

The GRChombo setup is identical to that in the strong scaling test as detailed in
Sect.3.3.5. The Lean code is subject to the limitation of Carpet, where successive
levels may only occur in a collection of nested-box hierarchies, whose sizes are
typically related by a power of two. In this case, we first fix boxes of side lengths
160, 80, 40 and 20M at the centre of the domain, encompassing both black holes,
then fix further boxes of side lengths 5 and 2.5M centred at each of the black holes.
During the evolution, Lean has the capability to track the black holes and move or
merge the finer boxes as appropriate, however the shape and size of the boxes remain
unchanged. The GRChombo code is not subject to this box structure limitation,
and therefore we simply tune the regridding threshold so that the size of the finest
level matches that of the Lean setup. We make no attempt to match the sizes of
the intermediate levels as this would defeat the spirit of fully-flexible AMR. Our
comparison tests were performed on the COSMOS VIII shared memory facility.
Both codes were executed on the same SGI UV1000 machine, utilising up to 60
Nehalem EX 2.67 GHz CPUs with 6 cores per CPU, giving up to 360 cores in total.
In all of these runs, we pin one MPI rank to each core and disabled all checkpointing
activity since we wish to exclude I/O bottlenecks. We allowed the simulation to run
up to coordinate time ¢t = 2, and measured the wall-clock time taken to execute the
time evolution portion of the code (i.e. we excluded the time spent during initial
setup).
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Fig. 3.25 Runtime and scaling comparison between GRChombo (orange) and Lean (blue). The
leftmost data points show disproportionately large wallclock times as the machine becomes memory-
limited at this core count

Within the range of 150-360 cores, both GRChombo and Lean exhibit sim-
ilar performance and strong scaling characteristics (Fig.3.25). Below 150 cores,
we cannot meaningfully test the strong scaling behaviour as the machine becomes
memory-limited. We have not performed this comparison on a larger cluster due
to the lack of resource availability, but we have no reason to expect any significant
difference provided that the problem size is also scaled up appropriately. Having
said this, we believe that a framework like Cactus probably remains the better choice
when it comes to these standard problems, owing to the wealth of existing tools and
resources and a more mature community of users. Instead, we intend for GRChombo
to be complementary to existing numerical relativity codes in order to open up new
avenues of research by enabling a wider range of problems to be tackled at a feasible
level of resources.
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Chapter 4 ®)
Inhomogeneous Inflation i

4.1 Introduction

Cosmic Inflation [1-4] is thought to provide a solution to several problems in standard
Big Bang theory by dynamically driving a “generic” initial state to a flat, homoge-
neous and isotropic Universe, while generating a nearly scale-invariant power spec-
trum of primordial perturbations which is consistent with observations. The question
of what constitutes a “generic” initial state is a difficult one, and can only be under-
stood in the context of a quantum theory of gravity. However, regardless of the nature
of quantum gravity, a random realisation from the set of all possible initial condi-
tions will not look like an inflationary spacetime, at least initially [5], and one should
expect the initial conditions from which inflation begins to contain some measure of
inhomogeneity.

The issues concerning initial conditions and the stability of de Sitter and infla-
tionary spacetimes have been under investigation for as long as inflation itself, and
there are many analytic and semi-analytic [6—48] as well as numerical studies [49—
62] (see [63] for a short review). Goldwirth and Piran [54, 55, 58] were the first to
study the robustness of inflation to spherically symmetric perturbations using general
relativistic 1 + 1D simulations.! In modern terminology, their conclusion was that
large field models, in which the inflaton traverses more than a Planck mass during the
inflationary period, d¢ = Mp,, are more robust than small field models, d¢p << Mp.
Their results are often taken to imply that inflation requires a homogenous patch
of size roughly 1/H to begin. This work was later followed by 3 + 1D numerical
simulations in Refs. [57, 59] showing large field inflation to be robust to simple
inhomogeneous (and anisotropic) initial conditions with large initial gradient ener-
gies in situations in which the field is initially confined to the part of the potential
that supports inflation. This was confirmed recently in Ref. [61], which demonstrated
that large field inflation is robust even if the average energy density due to spatial

! An earlier pioneering work [49] showed that inhomogeneous scalar fields will homogenise in a
fixed FRW background. See also [60] for a recent follow up work in this direction.
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gradients in the field pgag &~ 1000 py, where py is the vacuum energy density, at
least if the universe initially expands at the same rate everywhere.

In this work, we continue this line of research and test the robustness of inflation
to a slightly more general but still very simple class of inhomogeneous initial condi-
tions both in the scalar field profile and the extrinsic curvature. We use GRChombo,
setting up the machinery that will allow us to study more general classes of initial
conditions in the future. Since the degree of robustness to inhomogeneities depends
on the exact model of inflation, this provides us with an approach to checking model
viability. According to the Lyth bound [64, 65], inflation occurs at high energies and
involves large field excursions in models that produce observable amounts of pri-
mordial gravitational waves, whereas the energy scale and field excursion are small
in models that do not. Our results are summarised as follows:

e For the initial conditions we consider, we find that large field inflation is robust to
large gradient energies of pgraq/py >> 1, in agreement with [57, 59, 61].

e Small field inflation is less robust than large field inflation. It can fail even when
the energy density in gradients is subdominant pgraq/py < 1. We show that small
field inflation fails when a large enough local fluctuation ends inflation early in that
particular region, with the gradients quickly dragging the rest of the spacetime from
the inflating part of the potential. However, the size of local fluctuation required
to end inflation must be large enough to explore the boundary of the inflationary
regime of the potential, making small field inflation somewhat more robust than
might be expected.

e Large inhomogeneities do not form dominant black hole spacetimes. In the large
field case, the potential is sufficiently wide to support inhomogeneities which result
in collapse to form black holes. However, in the case where the initial spacetime
is flat on average, increasing gradient energy implies an increase in average initial
expansion. This expansion prevents the formation of inflation-ending black hole
spacetimes. We found that there exists a maximum black hole mass which is
subdominant to the inflationary spacetime, which we derived both analytically
and numerically.

e We show that for initial spacetimes containing both expanding and collapsing
regions local regions may collapse into black holes. However, inflation will occur
as long as the spacetime is on average initially expanding. This is consistent with
the theoretical expectations of [12, 47].

This chapter is organised as follows. In Sect. 4.2 we present the theory and method-
ology of our approach. In Sects.4.3 and 4.4, we present the numerical results, and
discuss their implications for the small field and large field cases respectively. We
conclude in Sect.4.5. The work presented in this chapter is derived from the paper
“Robustness of Inflation to Inhomogeneous Initial Conditions” [66]. Note that in this
chapter, as in Sect.2.3.2, we do not set G = 1 but follow the convention in [67] and
replace it with (non-reduced) Planck units Mp = /hic/G = 2.17 x 10~3 kg, with
h=c=1.
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4.2 Theory and Methodology

We consider single-field inflation with a canonical kinetic term in the Lagrangian

1
Ly= _Eglwaud)auﬁb - Vo), (4.1)

For a spatially homogeneous configuration, inflation occurs if V' > 0 and the potential
slow-roll parameters satisfy

2
<1, 4.2)

"

M3 (V' M} |V
= — _ 1 s = —|—
v 16w ( Vv ) < v 8 |V

with M3 = fic/G. In this case the field is slowly rolling and V ~ constant acts as
a cosmological constant resulting in an inflating spacetime. The second condition
ny < 1 is required to ensure that inflation occurs for the sufficient amount of e-
foldings.

In the large-field models, the region of the potential where this occurs is super-
Planckian, i.e. the field needs to roll 6¢p > Mp, for sufficient inflation, while in the
small field model the field traverses a sub-Planckian distance in field space §¢ <
Mp,. This is illustrated in Fig.4.1. In the context of single field inflation, the Lyth
bound [64] implies that high/low-scale inflation is associated with large/small field
inflation.

4.2.1 Initial Conditions

We impose very simple inhomogeneous initial conditions similar to those in [61] by
specifying the initial condition for the scalar field as follows

Fig. 4.1 In small field
inflation the width of the
inflationary “slow-roll” part 6¢

of the potential 5¢ < Mpy,

whereas in large field
8¢ > Mp

V(¢)
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N
. A 2 2 2
ot =0,x") = ¢o + qu ; (cos Tx + cos ?y + cos 7an1) . (43)
and .
Ot = 0,x7)

0 4.4
Ot ’ .4

where x' is the spatial coordinate of a foliation labeled by the time coordinate ¢,
and A¢ is the amplitude of the initial inhomogeneities. The value ¢ is chosen such
that we have 100 e-folds of inflation in the absence of any inhomogeneities. Since
there are three modes each with amplitude A, the maximal total amplitude of the
fluctuations about ¢ is 3A¢. We chose not to include random phases in this work as
we have found that random phases do not materially change the overall results. Note
that we have normalised the total A¢ by the number of modes N — this means that
the average gradient energy is slightly higher for larger N, but that the maximum
traverse from ¢ towards the inflationary minimum is the same. See Fig.4.2 for an
illustration of the cases N = 1 and N = 2.

We set L to be the length of the simulation domain, and use periodic boundary
conditions to simulate a space composed of periodic fluctuations of this length and
amplitude. L is chosen to be the Hubble length in the absence of inhomogeneities
(A¢p = 0), that is

3M
L= 4.5)

V24TV (o)

Hence, our model of initial inhomogeneities depends on the integer N, the amplitude
of inhomogeneities A¢, and the potential V (¢¢). The potential V (¢y) sets the infla-
tionary Hubble scale, the integer N sets the wavelength of the shortest perturbations
relative to this scale, and A¢ sets the amplitude of the inhomogeneities. In this work
we focus on N of order unity and leave a more systematic study of the space of ini-
tial conditions for future work. In the limit in which the gradient energy dominates,
i.e. pgrag > V(¢o), changing A¢ is equivalent to changing the wavelength of the

Fig. 4.2 Tllustration of the cases N = 1 and N = 2 showing the values of ¢ on a 2D slice through
the y axis. On this slice the maximum value of ¢ in each case is 4 x 10~*Mp; and the minima are
—9.5 x 1075 Mp; and —6.0 x 107> Mp, respectively
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mode relative to the actual Hubble length H~! (including the energy density from
fluctuations). For N = 1 and a Euclidean metric on the initial slice the wave number
k = 2m/L satisfies

k Mp
r_ M 4.6
H™ Jinno (4.6)

In large field inflation we use a single mode, i.e. N = 1, and vary A¢. In small
field inflation, we consider the two cases N = 1, and N = 2, a superposition of two
modes, in addition to the variation of A¢.

We use the BSSN formalism, with & = 1 and 3’ = 0 on the initial hypersurface,
and hence the initial gradient energy on this hypersurface is

1 .
Pgrad = Efyuai ¢aj¢ . (47)

We evolve the lapse and shift in the moving puncture gauge [68, 69], which allows
us to stably form and evolve black holes in the spacetime, as

o= —pig1aK + B0, (4.8)
0,6 = B, (4.9)

. 3 .. .
a[Bl = Z@[Fl _7732Bl . (4.10)

The exact values of j,; and 7, are chosen to improve stability in any particular
numerical simulation.

Next, we have to specify the initial conditions for the metric 7;; and extrinsic
curvature Kj;, so as to satisfy both the Hamiltonian and momentum constraints on
the initial hypersurface. Introducing the notation

(0:¢ — B*0r9) 4.11)

1
o

£

so that the energy density at any point in the hypersurface is

1 1
p= 552 + 577 0i00;0 + V (4.12)

the constraint equations become

o 3us = R OK* 1L
xD X—357 DiXDjX"i‘T“‘?—aAijA =4nGp, (4.13)

and
[ 3 ...~ 2 ..~ .
DJ'AU - _A”DjX - E’VID]‘K = 87rG§’y”8j¢. (414)
X
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K is the local expansion rate of spacetime, and, as noted previously, in the special
case of the Friedmann-Robertson-Walker metric, K = —3H where H is the Hubble
constant.

This is a set of coupled elliptic equations and is non-trivial to solve in general.
Throughout this work, we will make the simplifying assumption that the metric is
conformally flat and the traceless part of the extrinsic curvature K;; is zero every-

where on the initial slice
Nij = 0ij (4.15)

and
Aij=0. (4.16)

In this special class of initial conditions, we consider two possible solutions, that of
uniform initial expansion K, and one with spatially varying K.

Uniform Initial Expansion K = constant

For spatially varying ¢, the momentum constraint Eq. (4.14) is trivially satisfied for
& = 0and K =const. K is in principle a free parameter, corresponding to a uniform
local expansion rate across the initial hypersurface. However, in order to satisfy
periodic boundary conditions for y and the Hamiltonian constraint, K2 /247 needs
to lie close to the average initial energy density for the hypersurface. For simplicity,
we choose it to be equal to the average initial energy density, approximating the

metric to be Euclidean
K = —/247G{p), 4.17)

with |
p= 5(8,¢>2+V(¢>, (4.18)

where (X) = V! J X dV indicates the average over the spatial volume V of the
quantity X. Once K is chosen, the initial field profile and the Hamiltonian constraint
then fully determine the conformal factor y (which we solve for using numerical
relaxation).

In cases where the gradient energy dominates i.e. p & pgrad > V (¢), the initial
expansion rate is large compared to the Hubble rate associated with inflation. This
large initial uniform expansion means that we are stacking the deck against ending
inflation. In general, we should expect the local expansion rate to be a function of
spatial position that can be both initially expanding or collapsing. To study the general
case will require relaxing some combination of the conformal condition Eq. (4.15),
the condition on A ij» Eq.(4.16), and the condition of zero initial scalar field velocity,
& = 0. We reserve the general case for future work, but there exists a second solution
consistent with Egs. (4.15) and (4.16), given our assumptions. By imposing & # 0,
we can obtain a non-uniform initial expansion. We turn to this solution next.

Expanding/Contracting Initial Condition K # constant

For constant initial scalar velocity &
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C

=——, 4.19
& 127G ( )
with C some constant, the momentum constraint Eq. (4.14) relates the extrinsic cur-

vature K to the initial scalar field profile ¢
K =—-C¢+ Ko, (4.20)

where Ky is an integration constant. This initial condition means that a constant
initial scalar velocity £ and a varying field ¢ will lead to a spatially varying K. If
Ky is chosen to be approximately the average value of C¢, the spacetime will be
locally initially expanding or contracting depending on its position. (Note that as
above, the choice of K|, is not completely free because of the need to satisfy periodic
boundary conditions for y.) We can then again solve the Hamiltonian constraint for
the conformal factor x in order to complete the specification of the initial conditions.

4.2.2 Numerical Set-Up

We rescale our simulations (by choosing the geometrised mass unit M to represent
some convenient multiple of Mp;) such that the size of our physical domain is covered
by (32M)>. We turn on GRChombo’s adaptive mesh refinement, using the gradients
of K and ¢ as refinement threshold conditions, with a coarsest level grid size of
643, allowing up to 6 levels of refinement with a refinement ratio of 2 per level. We
check convergence approximately in this case by checking that the same results are
obtained when starting from a coarsest grid of 1283, increasing the number of grids
by one and using a more aggressive regridding condition (approximately halving the
thresholds). It was found that the difference in the results was small — for example,
the number of e-folds at failure in the small field cases were different by +0.1%.

We can track inflationary simulations for around 23 e-folds. After this point numer-
ical error begins to dominate as the conformal factor x (equal to the inverse of the
scale factor) falls below working precision.

4.3 Small Field Inflation

As discussed in the Introduction, the inflating plateau of the small field potential can
be relatively narrow, with ¢ << Mp;. The reason is as follows. The scalar power
spectrum for single field inflation is given by

2 H? -9
AR = — 2x 1077, “4.21)
TMpe
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For low scale inflation (H/Mp)? is small, which means that ¢ must be small to
achieve sufficient amplification of the observed scalar power. This means that the
inflaton has to roll very slowly (when compared to the large field case). The number

of e-folds V, is given by
47 |d
/\/z/ Am ldgl - (4.22)
€ Mp

Assuming ¢ and H constant, we estimate the field range with the help of equa-
tion (4.21)

N H
S5~ ——10° Mp,. 4.23
0] 3 Mo Pl (4.23)

For a typical low scale inflation H/Mp ~ 1071°, we see that §¢p/ Mp ~ 3 x 10~
s0 d¢ is sub-Planckian as we argued. A typical small field inflation model is shown
in Fig. 4.3, where the inflating domain is around the inflection point of the potential.

Inflation could occur for much longer than 60 e-folds. Therefore the inflection
point could be quite broad, while still accommodating the small field requirement,
so the potential could instead look like Fig. 4.4, with a wider plateau. In the context
of inhomogeneous inflation, this distinction is important — the presence of large
gradients means that the scalar field can now sample a large domain of the potential,
which could include the non-inflating “cliff” on the left side of the potential in Fig. 4.3.
The additional potential energy in such regions is converted to scalar kinetic energy
as the field rolls down the hill towards the inflection point, which can disrupt slow
roll sufficiently to end inflation.

In this section, we will explore and compare the two cases, a potential with an
extended flat direction, and one with a steeper rise. Note that we do not consider the
effect of varying K on small field inflation. This is because a profile for K which
covers both negative and positive values (i.e. with both expanding and contracting
regions), requires the addition of a relatively large kinetic energy term &, which
immediately pushes the field into the minimum, ending inflation. Thus the case

Fig. 4.3 Small field 3.0 le=22
potential function V (¢) ' ‘
without an extended flat a5l |

region, showing the three
regions, the central solid line 20l

(blue) region gives rise to the ‘g« \
slow-roll inflationary period = 15f Y 1
< S
~ 10} 1
1
1
0.5} L.

0.0 . . . . . . L .
—0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030
¢ [Mpl]
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where K is constant represents a best case scenario — adding variation in K will only
end inflation sooner. This is consistent with initial kinetic energy being the most
important failure mode, as shown by Goldwirth and Pirin [54, 55, 58].

4.3.1 Small Field Model with Extended Flat Direction

In this section, we will investigate the robustness of small field inflation for the case
depicted in Fig.4.4.
We model the inflationary potential as

Vo ¢ <0
Vi) =4V (1 - (11)4> 0 < ¢ < 0.023Mp| (4.24)
m2(p— ¢)? ¢ > 0.023Mp,

with p = 0.0238Mpy, Vo = 1.15949 x 1072 My, m> = 3.75 x 1078 M}, and ¢, =
0.025Mp,. The Hubble rate during inflation for this choice of parameters is Hi,s =
3.125 x 107" Mpy.

These rather specific looking values are chosen such that for ahomogeneous initial
value of the field of ¢g = 10™*Mp,, they would result in 100 e-folds of inflation,
Ag =107 and ny; = 0.95 for modes that exit the horizon 60 e-folds before the
end of inflation. We find the end of the inflationary plateau, the point at which the
potential is no longer “slow roll”, to be at approximately ¢ = 0.008 Mp;, with all but
the last e-fold taking place for ¢ < 0.001Mp,.

The length scale for the fluctuations L, set to the Hubble length in the absence of
fluctuations, is then L = 3.2 x IOIOMP_II, and the value of K is constant across the
grid as described in Sect.4.2. This satisfies the Hamiltonian constraint, assuming that
the initial value of the conformal factor of the metric, y, is approximately of order

Fig. 4.4 Small field 3.0 Le=22
potential function V (¢) with ' ‘
an extended flat region, 25}
showing the three regions,
the central solid line (blue) 20k
region gives rise to the ‘§
slow-roll inflationary period — 15}
> 1.0+
1
1
0.5} ’
,
4

00 L L L L L L L L
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VQ
ot

Fig. 4.5 A time series of the value of the field ¢ is shown on a 2 dimensional spatial slice. The
maximum initial value of the field is at the centre, and it can be seen how this point “falls off” the
inflationary potential, and subsequently drags the remaining space down with it. This means that
the failure of a single point quickly ends inflation throughout the spacetime

1. In our simulations, we set this constant value of K across the grid and then relax
the value of x from a value of 1 everywhere to satisfy the Hamiltonian constraint
exactly.”

‘We then evolve the initial conditions forward in time until inflation ends, or we
reach the maximum number of e-folds we can simulate. We define the end of inflation
as being the point at which a single point in the space falls to the minimum of the
potential, that is, when the value of ¢ = ¢, somewhere on the grid. The rest of the
space will subsequently be pulled in by gradients, as illustrated in Fig. 4.5, and as we
will discuss in more detail in the next section. The average number of e-folds (\/)
is measured on this time slice.> We do this for a range of A¢. The results are shown
in Fig.4.6 for the cases N = 1 and N = 2.

For N = 1 we find that inflation ends with less than 20 e-folds (which we call
“failure” for our purposes) for initial amplitudes of around A¢ > 0.0007 Mp;. These
values of A¢ correspond to pgraa/py, > 1 X 1074, Hence the gradient energy is still
sub-dominant to the length scale L ~ 1/H. This is highly “homogeneous”. Note
that the density contrast in inflationary primordial perturbations are expected to be
of order 107> which is only an order of magnitude smaller than this. However, the
perturbations here are concentrated in one or two modes and it is the field excursions

2 Although in the small field case  remains very close to 1 as the fluctuations are small, and the
space is approximately flat.

3While the remaining spacetime can achieve several more e-folds before falling to the minimum,
we treat this point as having ended inflation for measurement purposes. Allowing the simulations to
run until the whole spacetime has fallen to the minimum and fully ceased inflating would displace
the lines in Fig.4.6 vertically, but the trends would be the same. The actual values of (\) are, in
any case, model specific.
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that should be compared. The typical displacement due to quantum fluctuations is
Apgm ~ Hinr/2m < 0.0007 Mp. We will explore the robustness of inflation to initial
perturbations with more general power spectra in future work.

For N = 2 we find failure when A¢ > 0.0011Mp,. It can be seen that adding the
additional mode makes inflation more robust. Recall from the definition Eq. (4.3) that
we have normalised A¢ to the total number of modes so adding modes adds to the
gradient energy but not to the maximum field value — this suggests that inflationary
failure scenarios are more dependent on single long wavelength inhomogeneities
rather than multiple short wavelength ones. The number of e-folds decreases with
an approximate relationship of (N) o« A¢~* in both the N = 1 and N = 2 cases.

4.3.2 Pull Back Effects in Small Field Inflation

As was mentioned above, once one part of the field falls into the minimum, it quickly
“drags down” the remaining spacetime, as shown in Fig.4.5. It is instructive to
consider the scalar field dynamics which leads to the failure as the naive expectation
that the part of the field which has the maximum initial value (and hence is closer to
the point where inflation ends) is that which falls to the minimum first is not always
correct. There is some initial resistance from gradient pressure which, for a range of
A, pulls the field back up the hill away from the minimum, “saving” inflation and
making it more robust than one might expect. See Fig.4.7.
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Fig. 4.7 TIllustration of competition between gradient pressure and potential gradient for a concave
model - the point in space marked with a green dot corresponds to the point on the potential which
is closest to falling into the minimum. The two competing effects are the potential gradient, which
tends to increase the field value, and the gradient pressure, which tends to pull it back up the potential
hill

Using the Klein—Gordon equation, we can show that local gradient pressure should
temporarily “save” inflation up to some critical value, above which the maximum
field value will fall directly to the minimum. The critical value for A¢ where this
happens can be approximated quite accurately as follows. Consider the Klein—Gordon

equation,
2 ij av
[“)tqb—'yf(“)i@jgzb—l—% =0, (4.25)

where we have ignored the friction term due to the expansion, and let
Pmax (1) = max (0, ¢(x, 1)). (4.26)

Initially, ¢pmax = ¢o + 3A¢ and v/ ~ O(1). For this point, and assuming that we
are still in the concave part of the potential (i.e., the “hilltop” part), the field value
should fall initially towards the minimum if

dv
_ 2 < |
VoS 5| (4.27)

For the initial conditions and the potential we consider, this is the case (assuming
N = 1) for
av

3k APS — —

T (4.28)

$=¢max

Using the relation Eq. (4.5), ¢9 < 3A¢, and V (¢g) & V, for our small field case this
becomes

327 VoA _ 4Vo(BA¢)°

S , 4.29)
Mlgl p
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Fig. 4.8 The evolution of initial ¢pmax and ¢min = min(¢(X, fy) points versus proper time 7 for
small field inflation (extended flat case). At the derived “critical value” of A¢ = 0.0017Mp; and
Pmax.crit = 0.00525Mpj, shows a very small initial increase at the maximum value (in dashed/pink)
but then is pulled back, so that it is in fact the initial minimum point (shown in blue/solid) which
fails first. A slightly larger value of A¢ = 0.002Mp) fails immediately at the maximum point (in
green/dotted), as expected. Note that 7 is the proper time experienced by an observer at the specified
coordinate location

which simplifies to
Ap >/ 8y (4.30)
~V 27 My’ '

The critical value for our chosen values and n = 1 is A¢ ~ 0.0017 Mp;, which cor-
responds to Pmax.crit = 0.00525 Mp;, beyond the part of the potential that supports an
extended period of inflation. Small field inflation is thus more robust than one might
naively expect because local excursions towards the edge of the inflationary plateau
are pulled back onto it.

The results of several simulations are illustrated in Fig.4.8. We see that the pre-
dicted critical value for A¢ at which immediate failure occurs is approximately
correct. In fact the field can even resist some initial movement towards the minimum
at the maximum point, before being pulled back up the potential hill.

4.3.3 Small Field Model Without Extended Flat Direction

In this section, we will investigate the robustness of small field inflation in the case
in which the negative ¢ direction is a “cliff”’. We model the potential as
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Vo +m?¢? 0 <0
Vig) =1V (1 - (§)4> 0 < ¢ < 0.023Mp, 4.31)
m2(¢ - ¢*)2 ¢ > OOZSMP] s

with the same parameters and initial conditions as in Sect.4.3.1. The is illustrated in
Fig.4.3.

For the N = 1 case, we find failure for initial amplitudes of A¢ = 5 x 1075 Mp,
which corresponds to perad/py, & 6 x 107, Note that inflation now fails for ampli-
tudes roughly an order of magnitude smaller than in the case of the extended flat
region, showing that small field inflation is highly sensitive to changes in the potential
around the flatregion. Although the energy density in these fluctuations is now smaller
than those expected from inflationary primordial perturbations, recall that it is con-
centrated in one mode, rather than being a scale invariant spectrum. In particular, the
typical displacement due to quantum fluctuations for a given mode is still significantly
smaller than the fluctuations considered here Agom ~ Hing/2m < 5 % 107> Mp,.

The results are shown in Fig.4.6 for the cases N = 1 and N = 2, below those
for the case with the flatter potential. Again it can be seen that adding the additional
mode makes inflation slightly more robust. The number of e-folds decreases as a
power law with an approximate relationship of (V') oc A¢~3.

In this case the dynamics of the failure is driven by the most positive point. One
might expect the most negative point to rapidly gain kinetic energy and overshoot
the inflationary plateau, but this is only observed for higher values of A¢; for small
A¢ the field is “pulled back™ by the gradients in the field. The most positive point
in this case gets pulled back as before, but then hits the steep “wall” and proceeds to
roll off the plateau. This is illustrated in Fig.4.9.

Again thinking solely about the scalar field dynamics of the extremal points,
one can estimate at which point the most negative point will fail directly. Consider
the most negative value of ¢ initially, ¢min = P9 — 3A¢p. We can see that it will
fail if, having oscillated through ¢, the point at which it would be brought to rest
by gradient pressure exceeds the critical point derived in the previous section of
Pmax.crit = 0.00525Mpy. If the potential were flat in this region, this value would be
the same as Pmax = o + 3A¢ (since it is effectively in simple harmonic motion).
However, the initial slope in V (¢) gives it an extra “push”, which we can equate to
having started with a larger value of A¢. Considering the initial energy density py at
the minimum point, relative to the point ¢y,

1
po = (V(Snin) = V(60) + 7(Ve)*, (4.32)
then by making the approximations ¢y < 3A¢ and V (¢g) ~ V), this becomes

6722 Ag?

po=m*(=3A0)" + ——,

(4.33)
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Fig. 4.9 The evolution of initial ¢max and dmin = min(¢(X, fy) points versus proper time 7 for
small field inflation (steep potential case). The spatial point which is initially at the maximum (in
blue/solid) fails first, after hitting the “wall” to the left of the inflationary potential, and rebounding
into the minimum of the potential. While the minimum point does rapidly overshoot due to its
kinetic energy (in pink/dashed), it is pulled back by gradients and ultimately “saved” from failure.
However, increasing A¢ further does eventually lead to the spatial point with the minimum initial
field value dominating the collapse due to its kinetic energy (in green/dot-dash). Note that 7 is the
proper time experienced by an observer at the specified coordinate location

and we can find an “effective” initial value of A¢, which would have the same initial

energy density
/ 3m2L2
A(beff = A¢ 1 + W . (434)

Setting this equal to Pmax. crit gives a rough estimate for the initial value of A¢ lead-
ing to immediate failure at the minimum point, which using our specific values
gives A¢ ~ 0.0002. As shown in Fig.4.9, this value is consistent with our findings,
although failure will occur slightly below this value, due to the various assump-
tions made, in particular that the potential is flat after ¢y, when it is in fact sloped
downwards.

4.4 Large Field Inflation

In large field inflation the inflationary part of the potential is d¢ > Mp. It thus
supports larger fluctuations in the field while still keeping the entire space within the
inflationary regime.

The robustness of inflation in large field inflation was tested in [59], and more
recently in [61] who found that large field inflation with uniformly expanding initial
conditions is very robust to large inhomogeneities of up t0 pgraa = 1000py,. In this
section we broadly reproduce their results, before extending the work to consider
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Fig. 4.10 In large field

inflation the width of the
inflationary “slow-roll” part oo
of the potential §¢ > Mpy.
We use m2¢? as illustrated,

which as can be seen §:
requires a longer stretch, but
permits less flatness than o —»

small field inflation

the limit of very large fluctuations and non-uniform initial expansion rates which
include initially contracting regions.
We use m>¢? inflation as a generic model for large scale inflation,* see Fig.4.10,
i.e.
V(9) =m?¢’, (4.35)

with m = 1.07967 x 1077 Mpy, leading to an inflationary scale of Hi, = 1.25 x
10~°Mp,. For an initial value of the field of ¢o = 4Mpy, these values would result in
100 e-folds of inflation, with the scalar perturbation amplitude Ag = 107> and the
spectral index n; =~ 0.97 for modes that exit the horizon 60 e-folds before the end of
inflation.

The length scale for the fluctuations L is set to the Hubble length in the absence
of fluctuations, for our choice of parameters L = 8.0 x 10° Mp_ll.

4.4.1 Large Field Inflation with Constant K

In this section the value of K, the extrinsic curvature, iS set as a constant across
the grid using Eq. (4.17) as above. We first considered a range of initial amplitudes
of the perturbations A¢, and found that values below 0.2 Mp; resulted in inflation
everywhere.

We find that at larger values of A¢, we form black holes. As in [61], we can argue
for their formation at this scale using the hoop conjecture. The black hole mass M
must be enclosed within a hoop of radius R. Assuming spherical symmetry, this is

R=2GM. (4.36)

4While this model is marginally ruled out by the latest Planck data [70], we chose it for its simplicity
of implementation. More complicated models will not lead to any drastically different results since
the key feature is the flatness of the potential and the long traverse to the minimum.
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For a perturbation of wavelength L, given that a single mode in each spatial
direction necessarily creates two black holes by symmetry, the greatest radius from
which each black hole can accrete is approximately

R = L (4.37)
=7 .
Note that L is an arbitrary length (the wavelength of the perturbation) and not nec-
essarily the Hubble length. The mass enclosed, M, is

4
M ~ 7R (pyraa) (4.38)
where
2 AP
(pgrad) ~ 3w 7 , 4.39)

which is obtained from the volume average of (V)? from Eq.(4.3) over a volume
L3. The maximum mass is then linearly proportional to L, i.e.

3 2
- (A_¢) . (4.40)
16 \ Mp

Combining these gives the condition

Ad |2 (4.41)
Mp1 - 7'l'3 ’

as the critical case for black hole formation, independent of the length L. This value
of approximately 0.25Mp is consistent with our findings above that the critical
A¢ ~ 0.2 (given the approximate nature of the calculation).

Using Eq.(4.6), this value of A¢ ~ 0.25Mp gives k/H ~ 1.6. This result is
also consistent with the findings of [61]. In other words, black holes will form
when the wavelength of the perturbation is four times the Hubble length H~! ~
3//247 pgraa Mp) or larger.

Above the critical value, black holes were formed, but these only created locally
collapsing regions, and did not dominate the overall inflationary behaviour. As such
they were quickly “inflated out” of the spacetime, see Fig.4.11.

The robustness was, as in the small field case, due in part to the fact that the most
extreme value is quickly “pulled back” up the hill by gradient energy, resulting in
initial inhomogeneities being smoothed out. For the m?®? potential we are using, ¢y
and A¢ are both large and so the field will move towards the minimum when

327r3n2m2¢3A¢

2 —
v < 2m2(do — 3A9), (4.42)
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Fig.4.11 A time series of the value of the extrinsic curvature K is shown on a 2 dimensional spatial
slice in the case A¢ = 0.5Mpj. Black areas are collapsing (within the black hole) and the remaining
areas are inflating, with the colour scale from black to white varying between K = =£5 x 107> Mpj.
We confirm the formation of a black hole by using an apparent horizon finder, but are able to
continue evolving the black hole until it “inflates out” of the space. Although this is in part due to
the gauge conditions (the moving puncture method tends to move the coordinate points away from
the black hole singularity), the dominant effect is the inflation of the surrounding space. Eventually
the spike will disappear once it falls below the coordinate grid resolution

which reduces to 5 5
¢70 M, Pl ~ M, Pl

= 1673023 + 3M}, T l6minZey

Ad (4.43)

Thus there is a minimum value beyond which pullback always occurs. This is because
dV /d ¢ approaches zero at the minimum for m?¢? type potentials — i.e. it is a con-
vex potential.> For concave type potentials (e.g. hill-top models [71]), there will be
a maximum A¢ instead, as we have discussed in the small field case. The value
of this bound is small, in our model A¢ ~ 0.0005, and in the limit of a very flat
extended potential it is zero. Thus almost any perturbations will tend to be pulled
back to a (potentially) more homogeneous configuration in this potential. This more
homogeneous configuration then continues to inflate, with the number of e-folds
approximately equal to that given by ¢y.

Thus, as expected, inflation eventually wins out, even with fluctuations which
reach almost to the minimum of the m>¢? potential — large field inflation is very
robust to scalar field inhomogeneities.

5Note that in our convention, hilltop type models are concave, whereas m2¢? type potentials we
call convex.
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4.4.2 Can Black Holes Stop Inflation?

Naively, one might imagine that one can continuously increase the size of the fluctu-
ations to generate black holes of increasing mass, to the point that the Schwarzschild
radius dominates over the scale of inflation Rg >> H,, ! ending inflation. The critical
limit for this to occur is the so-called Nariai limit, which occurs when the black hole
horizon and the de Sitter horizon coincide in a Schwarzschild-de Sitter spacetime.
In our units, the critical mass of the black hole is

My =+ Mg]M (4.44)
RNV '

We will show in this section that this is not possible.

In Fig.4.12, we show the mass of the black holes formed as we gradually increase
the amplitude A¢ obtained from numerical simulations. We see that while the mass
increases with A¢ initially, at some point, the black hole mass begins to decrease as
M o< A¢~'. Thus there is a maximum black hole mass which can be formed (which
in our case had a Schwarzschild radius of about 20 per cent of the Hubble radius
related to the initial V (¢), that is, L). This can be understood as follows.

Since pgrag > Vo initially, the early expansion of the spacetime is roughly that of
a radiation dominated universe, i.e. pgrag ¢ @ and H? X pgraa. At late times, the
expansion rate is that of de Sitter, i.e. a eVt where H‘z, = @81G/3)Vp.

le5
1.4 T

—  Mpgy per Eqn (52)
' == Mpy (‘l*/flff)3

1.2}

1.0
= 08} /g
S 06fe

0.4}

0.2}

2 3 4 5
Ag [M,]

Fig.4.12 Plot showing the mass of the black holes formed versus the size of the initial perturbations.
Although the mass initially increases, it reaches a maximum (at a size of about Rg = 0.2L) after
which it falls off as 1/A¢, meaning the maximum mass of the black hole which can be formed
is bounded. The green dots are results from numerical simulations, and the lines illustrate the
approximate agreement to our analytic calculations. The green solid line shows the maximum mass
Mgy predicted per Eq. (4.50). The blue dotted line shows Mpp (a+/ agr)’, reflecting the effect of the
transition to de Sitter on the radius from which energy can fall in. The two lines meet at the critical
point A¢ &~ 0.43 Mp
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Meanwhile, the free fall time-scale for some matter distribution of average density

p is given by
1
Atg ~ [ ——. 4.45
it~ | Gp (4.45)

If there is no expansion, then this is roughly the timescale for some cloud of density
p to collapse to form a black hole as long as the initial distribution is supercritical.
However, due to the presence of the large gradient energy density, the spacetime is
roughly expanding as a radiation dominated universe, dissipating some of the energy
away from forming a black hole. Once the spacetime is dominated by vacuum energy,
it is safe to assume that any remaining energy that has not collapsed into a black hole
will be rapidly dissipated. The time scale for this to happen, a,, occurs at vacuum-
gradient energy equality peraaa; * = Vi, i.e.

A
a? = /8m3 A¢ , (4.46)
Pl
where we have used Egs. (4.5) and (4.39).
Converting Aty into the scale factor by solving the Friedmann equation, we get

ai =2 S?F-i-l, (4.47)
which is independent of p,,q as expected. This predicted value of agi = 2.6 provides
a good approximation to the value of (a) ~ 3 measured at black hole formation in
the simulations over the range of A¢ tested. If a, < ayg, then de Sitter space will take
over before the collapse has finished, leading to a lower mass black hole, and this is
the case for smaller values of A¢. By equating these two times from Egs. (4.46) and
(4.47), we obtain

A¢p ~ 0.43Mp, (4.48)

as the point when the free fall is no longer stopped by de Sitter expansion, resulting
in a maximum mass of the black hole. This is in good agreement with the numerical
value which gives the maximum mass at A¢ ~ 0.4Mp, as seen in Fig.4.12.

Above this point, the free fall timescale falls fully within the radiation dominated
era. Consider the mass enclosed in a spherical distribution of matter of size r

M) = %‘ﬂﬂp. (4.49)

Since the collapse occurs well within the radiation domination era, the largest radius
from which matter can still collapse into a black hole is the Hubble radius, r ~ H -1
with the largest mass occurring when p = pgraq, giving us

6Recall that in our conventions a ~ 1 on the initial slice.
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which scales like M A(b‘l as our numerical results indicate, and has a Schwarzs-
child radius of
L My

\/871'3A_¢7

which agrees to the maximum observed size of about Rg = 0.2L for A¢ = 0.4. This
means that one cannot make a “Giant Death Black Hole” using the methods we
outlined in this work — there is a maximum mass, roughly 1/3 of the mass of the
Nariai black hole Eq. (4.44), after which increasing A¢ leads to a reduction in BH
size. While our analysis and numerical simulations have focused on the specific case
where the initial expansion is uniform and scaled to the gradient energy, we expect
similar no-go results to hold as long as the initial hypersurface is approximately flat
i.e. x ~ 1 and A;; ~ 0 since the Hamiltonian constraint Eq. (4.13) implies that the
initial expansion will be, on average, uniform and large.

RsS 4.51)

4.4.3 Large Field Inflation with Spatially Varying K

We now consider spatially varying K in the case where A¢ = 0.1 Mp; and study the
effect on inflation. The potential is now set to be simply a cosmological constant
with the value V (¢) from the previous large field case, to allow inflation to continue
indefinitely.

For our purposes it is useful to recast Eq. (4.20) for K in the form

K =—zC(p— ¢o) + (K). (4.52)

We set

(K) = —/247G p), (4.53)

where the value of p now includes the contribution from £. Without loss of generality,
weset C = 2.78 x 1077 so that the maximum value of X is zero for z = 1. Increasing
z increases the amplitude of the fluctuations in K and allows us to consider larger
regions of spacetime that are initially collapsing, K > 0. The profile for K and the
dependence on z is illustrated in Fig.4.13.

We test a range of values of z between 1.0 and 2.0, and find that in cases of
smaller z (where most of the spacetime is expanding initially) the collapsing part of
the spacetime “bounces back”, such that K quickly becomes approximately constant
with a negative value everywhere. Inflation then continues, and over 20 e-folds are
reached.

In cases of higher z, with z > 2.0, where more of the spacetime (but still less than
half) is collapsing initially, we find that black holes form at the initially contracting
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Fig. 4.13 Tllustration of the change in the spatial variation in K when the parameter z is varied,
showing a slice through the maximum and minimum values of the profile

Vo
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Fig. 4.14 Tllustration of the evolution of K in the large field varying K case for z = 1.5. The initial
inhomogeneities in K quickly disperse and it settles into an inflating spacetime everywhere. White
areas are collapsing and black areas are inflating, with the colour scale from black to white varying
between K = +5 x 1075 Mp,

point. We therefore find that for a spacetime that would have resulted in inflation
everywhere for constant K (A¢ = 0.1 is subcritical for black hole formation in the
constant K case), we are now able to generate regions of collapse by introducing
variations of K. This is illustrated in Figs.4.14 and 4.15.

However, even in these cases, the remaining spacetime continues to expand and
inflate. Since (K) < 0 in all cases here, this result is consistent with what would be
expected from [12, 47] (note that our sign convention means that K < 0 denotes
locally expanding spacetime).
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Fig. 4.15 Illustration of the evolution of K in the large field varying K case for z = 2.0, showing
the black hole formation at the centre. White areas are collapsing and black areas are inflating,
with the colour scale from black to white varying between K = %5 x 107> Mpy. The peak value in
the last frame is K = 0.005Mpj, and the average number of e-folds across the grid at this point is
roughly 0.4

4.5 Conclusions

We investigated the robustness of small and large field models of inflation, subjecting
it to several simple inhomogeneous initial conditions both in the scalar field profile
and in the extrinsic curvature. In doing so we have set up a framework that will allow
us to study more general initial conditions in the future. As expected, we found that
large field inflation was far more robust than small field inflation. In particular, small
field inflation can fail even for small subdominant gradient energies pgraa/py ~ 1074
while large field inflation is robust even to dominant gradient energies of pgraa/py >>
1. This implies that small field inflation requires at least some level of tuning to begin
or a dynamical mechanism that sets up appropriate initial conditions.

4.5.1 Robustness of Small Field Inflation

The primary failure mode for small field inflation is the disruption of coherent slow
roll dynamics, causing some parts of the scalar field to irrevocably fall into the non-
inflating minimum. Once a region of the scalar field falls into the minimum, this
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region will expand and dominate the rest of spacetime ending inflation for the entire
hypersurface. This failure mode can be induced in the following ways:

e Adding large amplitude scalar fluctuations. Large amplitude scalar fluctuations
can create excursions outside the inflationary part of the potential which lead to
one region falling to the minimum and dragging the rest of the field down with
it. However, local excursions of the field towards the edge of the inflationary part
of the potential get pulled back by gradient pressure, making small field inflation
more robust than one might expect (see below).

e Converting additional potential energy into kinetic energy. If the inflationary
region of the potential is small — in the case of typical small field models it is
often just an inflection point — then a large initial fluctuation may have support
on the steep part of the potential (i.e. the green dotted line in Fig.4.3). This addi-
tional potential energy will be converted to scalar kinetic energy, generating a large
fluctuation and pushing the scalar closer to the minimum, thus ending inflation.

Nevertheless, we found that small field inflation is more robust than one might
naively expect. In particular, we find the following:

e Pullback effect of gradients. We show that perturbations tend to “homogenise”, i.e.
gradients tend to flatten out. This means that some initial conditions which have
regions in the non-inflating regime can still inflate as the scalar field gets pulled
back into the inflating regime. We provide a formula for this critical point for any
given potential, and demonstrate its effect numerically.

e Adding additional shorter wavelength modes makes inflation more robust for a
given maximum initial value of ¢. Adding a second mode with half the wavelength,
but normalised to keep the same value of ¢, resulted in a higher threshold for
inflation. This is somewhat unexpected since adding an N = 2 mode increases
the gradient energy. We propose that this could be related to the pullback effect
described above, which is stronger for higher wavenumber modes.

4.5.2 Robustness of Large Field Inflation

In the large field case, except for the trivial case of an initial hypersurface which is
contracting everywhere, i.e. K > 0, we did not find a viable failure mode for the
initial conditions we considered — large field inflation is robust to very large gradient
energies pgrad/py > 107, The primary reason for its robustness is the potential’s large
support for slow roll i.e. ¢ > Mp;, which combined with the rapid dissipation of
gradient energy due to expansion, makes it difficult for the scalar to reach a non-
inflating region. Furthermore, we find the following:

e No “Giant Death Black Holes”. Given a uniformly expanding initial condition
scaled to the total initial gradient energy, there is a maximum mass black hole that
is formed for which the radius is of order 0.2 times the size of the vacuum energy
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Hubble radius. Increasing initial gradients beyond this point decreases the final
black hole mass — this is caused by the dissipation of gradient energies due to the
large initial expansion. We calculate the maximum mass, which occurs when the
transition to de Sitter expansion no longer limits the black hole mass, and confirm
it with numerical simulations. We find that it is roughly 1/3 of the mass of the
Nariai black hole.

e Pullback effect of gradients. Similar to the small field model, large gradients tend
to homogenise. We show that for convex potentials, even with initial fluctuations
which reach to the minimum of the potential, inflation can eventually succeed.

o If (K) < 0, then inflation wins. If the initial hypersurface (a Cauchy surface) has
a net negative (expanding) value of K there will always be an expanding region,
as predicted in analytic studies [12, 47].
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Chapter 5 ®)
Critical Bubble Collapse ez

5.1 Introduction

Since their discovery by Choptuik [1], critical phenomena have been studied in many
different contexts [2-9] — for a review see [10].

Restating briefly the key points from Sect.2.3.3, any one parameter (p) family of
initial configurations of the scalar field will evolve to one of the two final end states
— a black hole or the dispersal of the field to infinity. The transition between these
two end states occurs at a value of the parameter p*, at which the critical solution
exists.

In a spherically symmetric collapse, the mass of any black hole that is formed
from such a collapse follows the critical relation

M o (p—p)”, (5.1

where the scaling constant g is universal in the sense that it does not depend on the
choice of family of initial data, although it does depend on the type of matter.

The other key phenomenon which is observed is that of self-similarity in the
solutions, or “scale-echoing”. Close to the critical point, and in the strong field
region, the value of any gauge independent field ¢ at a position x and time 7 exhibits
the following scaling relation,

d(x, T) = p(e®Sx, e®T), (5.2)

where Ay is a dimensionless constant with another numerically determined value of
3.44 for a massless scalar field in the spherical case.

In spherical symmetry, the system of the Einstein equations coupled to matter
can be reduced to a 1 4 1D system, and hence it is widely studied. Beyond spher-
ical symmetry, there has been some recent progress in studying the phenomenon,
for example, [2-5], but progress in making firm conclusions has been slower than
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expected due to the extremely high refinements required to study the stages of the
collapse, which are magnified three-fold in full 3 + 1 codes.

This universality in the critical behaviour can be derived by assuming that the
critical case is an intermediate attractor of co-dimension one, which, when perturbed,
has exactly one unstable mode [11]. It is not clear whether this will be true in more
complex cases beyond spherical symmetry. Linear perturbations of the spherically
symmetric case [12] do not show additional unstable modes, but numerical studies
such as that of Choptuik et al. [4] gave hints of further unstable modes that may be
present in the full non-linear regime. Beyond spherical symmetry, work has generally
focussed on axisymmetric vacuum collapses of gravitational waves, massless scalar
fields and radiation fluids, as in [2, 4, 5, 13, 14]. More recently, Healy and Laguna
[3] considered a fully asymmetric case in full three dimensional simulations for a
massless scalar field with Y, ; spherical harmonic perturbations on a spherical bubble
shaped potential.

Simply adding a ¢* self-interaction potential to a massless scalar field is not
expected to change the universality of the solution or the critical solution which is
approached, as in principle no new mass scale is introduced, therefore one expects that
the constants vy and A g will be unchanged [15]. Due to the assumed self similarity of
the critical solution, the field values, and hence the potential, should remain bounded
during the evolution [16]. The behaviour is then dominated by the gradient terms
in the Lagrangian as the critical solution is approached, rather than the potential.
The main cases which have been explored beyond the massless case have been
massive fields with an m? mass term such as [7], in which Type I critical collapse
is observed when the mass of the field becomes comparable to the mass scale of the
initial perturbation. Honda and Choptuik [8] also studied sub-critical oscillons in a
¢* potential. Few papers have considered a more general potential, as it is expected
that the results will be the same as those for the massless or massive case depending
on the relative size of the mass scales present. However, the particular case of bubbles
set up in multi minima potentials is of interest to early universe cosmologists, as they
are natural consequences of phase transitions, as will be discussed below.

It has not been clear that the standard BSSN formulation of the Einstein equations,
combined with the moving puncture gauge commonly used for black hole evolutions,
[17, 18], would be well adapted to the study of this problem. It can be challenging
to find a stable choice of gauge parameters near the critical point, and moreover, it
is not clear that any chosen gauge will be “symmetry seeking” [19], that is, that it
will be adapted to observing the scale-echoing phenomena. Recent work by Healy
et al. [3] and Akbarian et al. [9] have indicated that these standard choices may
indeed be well adapted for the study of critical phenomena, although the latter paper
used a special choice of coordinate grid and made some amendments to the standard
puncture gauge.

In this work, we study the critical collapse and formation of black holes of “Bub-
bles” in both spherically symmetric and perturbed asymmetric cases, in 3 + 1D using
cartesian coordinates and a slightly modified version of the puncture gauge. Bubbles
are regions of space bounded by a scalar field domain wall. The domain wall inter-
polates between the two minima. We consider the case of a minimally coupled scalar
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Fig. 5.1 The double well potential considered in this work, and the initial bubble wall profile

field, subject to the following potential, as shown in Fig.5.1, with two degenerate
minima s

e (0" — o). (5.3)

Vig) =

The potential barrier between the two minima generates a tension o,,; on the
bubble wall ‘
Om
Owall ~ / quVZV 5.4)

@m

The presence of this tension is an important difference between that of a simple
“bubble-like configuration”, say a top-hat profile, of a scalar-field (either massive or
massless) as the field configuration seeks to maintain this tension even as the bubble
collapses. Indeed, the tension increases as the bubble becomes smaller, causing the
wall’s gradient to rapidly increase. Even though the vacuum is degenerate (both
minima have the same V (¢)), the bubble collapses due to the pull of both gravity
and this tension. In other words, without gravity a massless “bubble” will disperse
while bubbles with tension will coherently collapse.

Our work is motivated by the desire to understand transitions in scalar fields that
are subject to multi minima potentials, which are found on cosmological scales in
both the early and late universe.

In the late universe, cosmological axion fields [20] are candidates for Dark Matter.
Cosmological axions (as opposed to the QCD axion) are pseudo-bosons which can
be described by a real scalar field. If the axion decay constant f < H;, where H;
is the scale of inflation, then its global symmetry will be broken after inflation, and
the subsequent phase transition will populate the universe with bubbles of different
vacuum expectation values, forming a network of domain walls. These bubbles are
expected to collapse to form structures called “mini-clusters” which can be the source
of cosmological structure formation and/or black holes which may be the origin of
the super massive black holes in the centres of galaxies [21].

In the early universe, potentials with many minima are often considered to be
candidates for inflationary models (see [22] for an exhaustive review). In the context
of Type IIB string theories, the low energy effective theory can often be described by
a potential landscape of many different minima, arising from the different choice of
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fluxes used for its compactification to 4 dimensions [23]. In [24], collisions between
pairs of bubbles are studied in 1 4+ 1D, and the observables resulting from such a
“multiverse” scenario are quantified, such that possible models may be constrained
by observables. However, in the early universe, many such bubbles may have formed
and collided simultaneously, leading to more random and asymmetric configura-
tions. This work represents a first step towards understanding these more complex
interactions. In this context, a single asymmetric bubble collapse can act as a sim-
ple model for the collapsing shapes formed when multiple spherical bubbles collide
randomly and simultaneously. As will be discussed in our Conclusions in Chap. 6,
we will study such multiple bubble collisions in a future work.
The chapter is organised as follows:

e In Sect.5.2, we describe the methodology and formalism used in the 3 + 1 simu-
lations.

In Sect. 5.3, we describe the spherically symmetric case, using botha 1 + 1D code
and the full 3 + 1D simulations with GRChombo.

In Sect. 5.4, we describe collapse in two different asymmetric cases.

In Sect.5.5, we discuss the results. Areas for further work will be suggested in
Chap.6.

The work presented in this Chapter is derived from the paper “Critical Phenomena
in Non-spherically Symmetric Scalar Bubble Collapse” [25]. We work in geometric
units with G =c = 1.

5.2 Methodology

In this section we briefly describe the methodology and formalism used in the 3 4 1
simulations.

5.2.1 Gauge Conditions

A full description of the GRChombo code can be found in Chap.3. As discussed,
the code implements the BSSN formulation of the 3 + 1D decomposition of the
Einstein equation, with full AMR. An illustration of the adaptive mesh responding
to the curvature in an axisymmetric bubble is shown in Fig.5.2.

In this work, a modification of the moving puncture gauge condition, see [17,
18], was used in all the evolutions. It was found that having steep walled bubbles,
and adding in a potential term, made the system of equations significantly more
challenging to evolve stably near the critical point. After some experimentation with
different gauges, the most suitable gauge was found to be given by the gamma driver
condition for the shift,
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Fig. 5.2 The mesh for a scalar field bubble in GRChombo, which is adapted to give greatest
curvature at the steep walls of the bubble. The image shows a slice through the x-z plane with the

elevation corresponding to the value of the field ¢ at that point

(5.5)

= B!
8tﬁi - nﬁzBi ,

o.p
8, B’

(5.6)

where 73, is of order 1/2M, where M is the ADM mass of the initial spacetime, and

the alpha driver condition for the lapse,

(5.7)

’

aiOé

oK + 3

= —Ha,

o«

with 14, of order 1, but set as described below.

Note that this lapse condition would be harmonic slicing if coupled with a zero

as opposed to simply « (as in the standard

2

shift vector. It was found that using «

puncture gauge) kept the lapse around O(1) during the final stages of the collapse

and thereby increased stability.

trivial to find a stable gauge for evolutions near the critical

it was non-

>

As noted
point, possibly due to the additional non

potential,

linearity introduced by the self interaction

and a certain amount of trial and error was required. The key requirements

for stability are listed below.
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e The coefficients in the lapse condition were chosen so that the lapse remained
between values of 0.1 and 1.0 until the field settled into a black hole or dispersed,
as freezing of the coordinates or large forward steps resulted in instabilities devel-
oping. In the late stages of collapse, high scalar field gradients resulted in the lapse
being driven near zero at the centre of the grid, whereas it needed to be free to
oscillate further in order to prevent slice-stretching. The 11, parameter for the lapse
condition was therefore chosen to keep the lapse of order one whilst the solution
was still evolving (i.e. before an apparent horizon formed). This was found to be
important for stability close to the critical point.

e A non-zero, evolving shift was required in supercritical cases for the evolution
to remain stable. The 73, coefficient of the shift was of order 1/2M where M is
the ADM mass of the initial spacetime, but the stability of simulations was not
particularly sensitive to its exact value.

e Some level of damping of high frequency numerical noise, such as by Kreiss-
Oliger dissipation [26], was needed, but again the exact coefficient was not crucial
to stability.

5.2.2 Initial Data

In the spherically symmetric case the initial conditions were derived from a numerical
Mathematica solution in the areal polar gauge.

In asymmetric cases, we chose for the initial conditions a moment of time sym-
metry, such that K;; = 0, and a conformally flat metric. The remaining degree of
freedom, the conformal factor x, was solved for using a relaxation of the Hamilto-
nian constraint H over some chosen relaxation time, i.e.

I x = CrH, (5.8)

with Cp a user defined constant.

5.2.3 Resolution and Convergence

The coarsest level of refinement was dx = M, with M an arbitrary mass scale in the
simulation (we worked in geometric units in which G = ¢ = 1). The physical domain
was (128 M)3 and regridding was triggered by the change in ¢ or  across the cell
exceeding a certain empirically determined threshold (see Sect.3.1.2)). The maxi-
mum number of regriddings was 8, 9 or 10 depending on how close the simulation
was to the critical point. In supercritical evolutions, the number of grid points across
the event horizon needed to be, at minimum, around 20 in order for the horizon to be
well resolved. A Courant factor of 0.25 was used in the fourth order Runge—Kutta
update.
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It was found that increasing the number of levels of refinement, and reducing the
threshold at which regridding occurred, did not significantly change the mass of the
black hole formed, so that the results had converged at the levels used. The black
hole masses were measured from the area of the apparent horizon, once the black
hole had settled into a roughly spherically symmetric configuration (for asymmetric
initial conditions). At this point the majority of the scalar field radiation had either
dispersed or fallen into the black hole, but the simulation had not yet run for long
enough for boundary effects to contaminate the results.

The typical run time for a full collapse into a black hole was of the order of
24-36 h when run on 256 cores. Closer to the critical point the simulations were
more challenging and above 11 levels (10 regriddings above the coarsest level) the
simulations became impractically slow and memory intensive with the resources we
had available. However, there was in principle no barrier to increasing the levels of
refinement further to study smaller mass black holes.

5.3 Spherical Symmetry

5.3.1 Spherical Symmetry in 1 + 1D

In preparation for the full 3 + 1D GR simulations, we simulated bubble collapses in
spherical symmetry with a separate 1 4+ 1D numerical code, with an initial configu-
ration chosen to be a moment of time symmetry with

¢ = ¢ tanh (kyau(r — Ro)) , M1 =0, (5.9)

where k,,,;; defines the steepness of the wall between the two vacua and is set by the
form of the potential in Eq.5.3 as

N
kwan = /2(2551( s (5.10)

withs = 1, ¢, = 0.01, and ¢ = 10, 000.

The value of the initial bubble radius R, was chosen as the critical parameter
p, and was gradually increased from subcritical to supercritical. The masses of the
resulting black holes were recorded. The results are given in Fig.5.3. The critical
index from these simulations is vs = 0.363, consistent over a range of In(Ry — R;)
from 0 to —15. There is an uncertainty of between 4+0.008 and —0.028, which arises
from considering the uncertainty in the critical point, as bounded by the smallest
radius simulated for which a black hole formed, and the largest for which it did
not. The quoted critical index is based on the critical value for which the residuals
in the best fit line were minimised. There are hints of a periodic oscillation of the
black hole masses as predicted in [16] but we did not pursue this further. A technical
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Fig. 5.3 Results from the 0 : ‘
simulations of a 1 4+ 1D [— InM=0363 In(p-p) - 2.30]
spherically symmetric code. 20 .

The critical index is

vs = 0.363, which is
consistent with the value
obtained in the full 3 4+ 1D
simulations presented 6
elsewhere
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difficulty encountered during the simulations was the rapid Lorentz contraction of
the bubble wall during the collapse, which necessitated very high resolution meshes.
Since most of the energy of the bubble wall is concentrated along a small region
of the simulation domain, this posed a challenge even in 1 + 1D. We used a time-
independent variable mesh 1 4- 1D code (as opposed to general adaptive mesh) to
push as close to the critical point as we could within reasonable expenditure of
computational resources. This portended the difficulties we would face when we
moved to full 3 + 1D simulations.

5.3.2 Spherical Symmetry in 3 + 1D

Initially, we repeated the ¢ = 10,000 tests undertaken with the 1 4+ 1D code in order
to confirm that the 3 + 1D code gave consistent results.

We looked for a consistent scaling relation for black hole masses in supercritical
collapses, and for evidence of scale echoing. For the latter, we observed the values
of scale invariant quantities like , K and p at the centre of the bubble in a slightly
subcritical evolution, and how they evolved in proper time before the critical accu-
mulation point was reached (the point at which the field began to disperse). We also
looked at radial profiles of dm/dr = 4mr?p at and around the critical time.

We found that, as was expected, spherical bubbles subject to a double well potential
showed the same critical phenomena as in the massless case and were consistent
with our 1 + 1D simulations. Fig. 5.4 shows a plot of the scaling relation between
In(Mgpy) and In(R — R*) which was obtained, with the best fit line giving a value
for the critical exponent of 5 = 0.39. There is an uncertainty of +0.01 and —0.04
which arises from considering the uncertainty in the critical point, as bounded by the
smallest radius simulated for which a black hole formed, and the largest for which it
did not. As in the 1D case, the quoted critical index is based on the critical value for
which the residuals in the best fit line were minimised.
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Fig. 5.4 Plot of In(Mpp) versus In(R — R*) for the symmetric 3 + 1D bubble in a potential with
¢ = 10,000. The horizontal error bars represent the possible error in the plotted values due to the
uncertainty in the critical value of p*. The best fit line is based on the critical value for which the
residuals of the fit were minimised
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Fig. 5.5 Plots of echoing for the symmetric bubble in a potential with ¢ = 10,000. The first shows
the evolution of the energy density p against proper time 7. If one applies a fit to 7* and Ag using
the relation in the echoing equation with respect to the extremal values in this plot one finds a
value of Ag of approximately 0.7, which is inconsistent with the massless case value of 3.4 which
is expected. The second and third plots show radial profiles of dm /dr = 47r?p in the marginally
subcritical and supercritical cases simulated, and whilst there are hints of echoing, they are not
conclusive

Figure 5.5 shows the echoing plots that were produced in near critical evolutions.
As can be seen, there is some evidence for echoing, but insufficient to be conclusive.
If one applies a fit to 7* and A g using the relation in Eq. 5.2, one finds a value of A g of
approximately 0.7, which is inconsistent with the massless case value of 3.4 which
is expected. It is likely that we are still too far from the critical point to observe
true echoing. It is also possible that, in the case of the radial profiles, the chosen
coordinates are not well adapted to the echoing symmetries.
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5.4 Beyond Spherical Symmetry - 3 + 1D Simulations

5.4.1 Radial Perturbations of a Spherical Bubble -
Axisymmetric Bubbles

We set up bubbles ina s =1, ¢,, = 0.01, and ¢ = 5,000 potential for which the
radius of the bubble wall was perturbed by the Y; ¢ spherical harmonic, such that the
initial configuration for the field is (see Fig.5.6)

Rasym = (1 + 6asym'Re(Yl,O)|2) Ry, (511)
¢ = ¢m tanh [kwall(r - Rasym)] ) (5.12)
with k. as in Eq. 5.10, and initially static, i.e.

m=0. (5.13)
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Fig. 5.6 Initial configurations for the axisymmetric radially perturbed bubble case, showing the
adaptive mesh. The image shows a slice through the x — z plane with the colour corresponding to
the value of ¢ at that point per the legend
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We considered the case in which €4y, = 0.5, and again, we varied the initial
radius of the bubbles Rj until we had bounded the critical point. We investigated
the scaling relations in the black hole masses which resulted in supercritical evolu-
tions, and scale echoing in evolutions above and below the critical point. We found
evidence for critical phenomena consistent with that in the massless and spher-
ically symmetric cases. Figure 5.7 shows a plot of the scaling relation between
In(Mpy)andIn(Ry — Rj;) which was obtained, with the best fit line giving a value for
the critical exponent of vg = 0.39, using the method described in spherical symmetry
above. This value is consistent with the spherically symmetric case. The uncertainty
in this case was between 4-0.02 and —0.10.

Figure 5.8 shows the echoing plots that were produced. Again, there is some
evidence for echoing, but insufficient to be conclusive, for the reasons discussed
above.

Although we saw no definitive evidence in the simulations for other growing
asymmetric modes, it seemed clear that the behaviour was becoming more strongly
asymmetric as the critical radius was approached. The simulations became extremely
challenging and difficult to evolve as the critical point was neared, and we saw that
asymmetric “shock waves” developed in some parameters, particularly in the lapse,
with extremely steep gradients and clearly non-spherical forms, as shown in Fig. 5.9.
To enable us to probe this asymmetric behaviour further, we are considering amending
the gauge conditions further to “smooth” the lapse, and perhaps to implement some
of the shock avoidance techniques applied in [27].
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Fig. 5.7 Plot of In(Mpy) versus In(Ry — R(}) for the axisymmetric, radially perturbed bubble in a
potential with ¢ = 5,000. The horizontal error bars represent the possible error in the plotted values
due to the uncertainty in the critical value of p*. The best fit line is based on the critical value for
which the residuals of the fit were minimised
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Fig. 5.8 Plots of echoing for the axisymmetric, radially perturbed bubble in a potential with { =
5,000. The first graph shows the evolution of the energy density p against proper time 7. The peaks
are not consistent with the relation in the echoing equation since the proper time between the peaks
appears to increase as the critical time is approached. The second plot shows radial profiles of 4772 p
along the z axis in a subcritical case, at two times. The third shows the same profiles in the x axis,
perpendicular to the axis of symmetry

5.4.2 Amplitude Perturbations of a Spherical Subble -
Asymmetric Bubbles

We set up bubbles ina s =1, ¢,, = 0.01, and ¢ = 5,000 potential for which the
amplitude of the bubble at the wall was perturbed by the Y, ; spherical harmonic,
which was similar to the configuration studied in the massless case by Healy et. al.
[3]. The initial configuration for the field is (see Fig.5.10)

6= (1+ cwmRe(V2)e ™) g tanh k(R = RO, (5.14)

with ky,, as in Eq.5.10, 0 = 0.5, and

I =0. (5.15)

Fig. 5.9 We find that “shock
waves” (blue regions
transitioning into green)
develop in some parameters
in the axisymmetric case
close to the critical point,
particularly in «, the lapse
parameter, which is shown
here, with very steep
gradients and asymmetric
configurations. The blue
parts correspond to small
values of the lapse (the lapse
has “collapsed”), whilst the
red parts to o = 1




5.4 Beyond Spherical Symmetry - 3 + 1D Simulations 169

We considered the case €4y, = 1, and again, we varied the initial radius of the
bubbles R until we had bounded the critical point above and below. We investigated
the scaling relations in the black hole masses which resulted, and evidence for scale
echoing.

We found the same critical phenomena as in the symmetric and axisymmetric
cases. Figure 5.11 shows a plot of the scaling relation between In(Mp ) and In(Ry —
R}). This was obtained, with the best fit line which minimises the residuals giving a
value for the critical exponent of vy = 0.38, with an uncertainty of +-0.01 and —0.05.
Figure 5.12 shows the echoing plots that were produced in near critical evolutions.
As above, there is some evidence for echoing, but insufficient to be conclusive.

Interestingly, although the initial asymmetry was larger in this case than in the
axisymmetric case, there was much less evidence of any growing asymmetry near
the critical point, and in fact the asymmetry appeared to decay during collapse even
as the critical point was neared. This is consistent to the findings of Choptuik et. al.
in [4] in the massless axisymmetric case, where they also found that radial pertur-
bations produced more asymmetry than amplitude perturbations. Thus there is not a
universality in the parameter to which the asymmetry is applied - some parameters
produce more asymmetry than others, and future efforts to find asymmetric growing
modes are best focussed in these areas.
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Fig. 5.10 Initial configurations for the asymmetric amplitude perturbed bubble case, showing the
adaptive mesh. The image shows a slice through the x-z plane with the colour corresponding to the
value of ¢ at that point per the legend
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Fig. 5.11 Plot of In(Mpp) vs In(R — R) for the asymmetric amplitude perturbed bubble in a
potential with ¢ = 5,000. The horizontal error bars represent the possible error in the plotted values
due to the uncertainty in the critical value of p*. The best fit line is based on the critical value for
which the residuals of the fit were minimised
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Fig. 5.12 Plots of echoing for the asymmetric amplitude perturbed bubble in a potential with { =
5,000. The first graph shows the evolution of the energy density p against proper time 7. If one
applies a fit to 7% and Ay using the relation in the echoing equation with respect to the extremal
values in this plot one finds a value of Ag of approximately 0.7, which is inconsistent with the
massless case value of 3.4 which is expected. The second plot shows radial profiles of 47r2p
along and perpendicular to the z axis in a subcritical case. The third shows the z axis profile in a
supercritical case at several times close to the critical time. Whilst there are hints of echoing in these
plots, they are not conclusive

5.5 Discussion

We have shown that in spherical symmetry, bubble collapse behaviour with a non-
trivial self interaction shows the same critical scaling behaviour as in the massless
case.

In the axisymmetric and asymmetric cases studied, in which the radius of the initial
bubble and its amplitude, respectively, were perturbed, we see a scaling relation which
is again consistent with the massless spherically symmetric case. This seems to imply
that, at least for the cases we considered, even in the presence of fairly significant
initial asymmetry in the configuration, the final state of the collapse is dependent on
a single dominant mode.
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There are some hints of echoing, but insufficient to be conclusive. It is likely that

we are still too far from the critical point to observe echoing. It is also possible that
the chosen coordinates are not well adapted to the symmetries of the echoing.

The case in which the asymmetry was introduced via the radial perturbations

appeared to produce greater asymmetry near the critical point than the case in which
the amplitude of the bubbles was varied. This is then a better candidate for future
investigations to look for growing but subdominant asymmetric modes beyond spher-
ical symmetry.
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Part IV
Conclusions



Chapter 6 ®)
Conclusions and Further Work Geda

In this thesis, we introduced and described GRChombo, a new multi-purpose numer-
ical relativity code built using the Chombo framework. Itis a3 + 1D finite difference
code based on the BSSN/CCZ4 evolution scheme. It supports Berger-Collela type
AMR evolution with Berger-Rigoutsos block structured grid generation and is fully
parallelised via the Message Passing Interface. Time evolution is via standard 4th
order Runge—Kutta time-stepping.

We showed that GRChombo successfully passes the standard “Apples with Ap-
ples” tests, evolved standard single black hole spacetimes (Schwarzschild and Kerr)
and showed that they are stable to more than 7 = 10,000 . Using the moving punc-
ture gauge, we also show that GRChombo stably evolves the merger of two and three
black holes in inspiral and head-on collisions. We simulated the supercritical col-
lapse of a scalar field configuration and found that it forms a black hole, as expected,
to show that the code supports non vacuum spacetimes. Finally we tested the MPI
scaling properties of the code, both strongly and weakly, and compared this with an
alternative numerical relativity code based on the popular Cactus framework.

Many areas of physics can potentially benefit from this code, such as multiple
black hole mergers and scalar field collapse. Such fields require a code which adapts
to changes in the range and location of scales at different points in space and time in
the simulation. We emphasise that setting the initial conditions for these mergers are
trivial — GRChombo automatically remeshes the grid given a set of analytic initial
conditions without further user intervention.

In this thesis two applications were considered: Inhomogeneous inflation and
critical bubble collapse.

In the first, we investigated the robustness of small and large field models of
inflation, subjecting it to several simple inhomogeneous initial conditions both in
the scalar field profile and in the extrinsic curvature. In doing so we have set up a
framework that will allow us to study more general initial conditions in the future.
As expected, we found that large field inflation was far more robust than small field
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inflation. In particular, small field inflation can fail even for small subdominant gra-
dient energies pgrad/pv ~ 10~* while large field inflation is robust even to dominant
gradient energies of pgraq/pv > 1. This implies that small field inflation requires at
least some level of tuning to begin or a dynamical mechanism that sets up appropriate
initial conditions. A full summary of findings is given in Sect.4.5.

In the second, we showed that in spherical symmetry, bubble collapse behaviour
with a non-trivial self interaction shows the same critical behaviour as in the massless
case. In the axisymmetric and asymmetric cases studied, in which the radius of the
initial bubble and its amplitude respectively were perturbed, we see a scaling relation
that is again consistent with the massless spherically symmetric case. This implies
that, at least for the cases we considered, even in the presence of fairly significant
initial asymmetry in the configuration, the final state of the collapse is dependent
on a single dominant mode. There were some hints of echoing, but insufficient to
be conclusive. It is likely that we are still too far from the critical point to observe
echoing. It is also possible that the chosen coordinates are not well adapted to the
echoing.

In the following sections, directions for further research will be proposed. The first
three relate directly to the work presented in this thesis. The final section considers
a separate topic which is also under investigation.

6.1 Development of GRChombo

Despite its power, the AMR capability of GRChombo has to be treated with care. As
we mentioned earlier, coarse-fine boundaries can be a significant source of inaccura-
cy, even though the Hamiltonian constraint may still be kept under control. We wish
to investigate how well angular momentum is conserved during an evolution, which
is known to be a problem in cartesian codes. This will be particularly important for
the investigation of rotating systems in future.

There are also several code development projects which are work in progress by
the GRChombo collaboration.

We are currently in the process of rewriting GRChombo in a more modular way,
so as to hide more of the Chombo functionality from the user, and make the NR
sections of the code more reusable in different applications. In addition, sections
have been rewritten entirely in C++, with no Fortran calls, which makes the code
more readable, and enables support for vectorisation of the data updates (so that
several gridpoints can be processed simultaneously).

In addition to rewriting the existing matter code in the new format, it would be
useful to add other types of matter, such as fluid matter, and ultimately an MHD
module. We would like to introduce more general boundary conditions, in particular
ones which better damp outgoing radiation and reduce reflections, allowing us to
undertake longer runs without reflections contaminating the results. We plan to write
a general initial condition solver, using the chombo multigrid Poisson solver, to
allow us to consider more general, non symmetric initial data. A non spherically
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symmetric apparent horizon finder would allow us to measure masses of black holes
without waiting for them to settle into spherical symmetry.

The ultimate aim is to release the code to the public and, with this in mind,
documentation (a wiki, and doxygen manual) is under development.

6.2 Inhomogeneous Inflation

Our work on inflation was only a starting point for a wider investigation of more
general initial conditions. We investigated a very restrictive class of initial conditions;
only one or two modes of horizon scale, with significant symmetries still assumed
in the metric components.

The work can easily be extended by relaxing some of these assumptions. First,
we wish to consider the effect of smaller wavelengths of the scalar field fluctuations,
building up to a scale invariant spectrum of perturbations. In our results adding modes
seemed to increase robustness, and it would be interesting to confirm that this trend
continues for more than two modes and over a range of scales.

The initial metric can be made more general by breaking isotropy - i.e. by having
a non conformally flat metric. In addition, we can introduce a non zero traceless part
of the extrinsic curvature by decomposing it, as in the CTT and CTS decompositions,
and specifying particular components.

Ideally, we might like to generate a range of simulations with randomly generated
initial data (which still satisfies the constraints). For this we require the general initial
condition solver for GRChombo; which is work in progress, as above.

Furthermore, we focused on the case of single field inflation. It will be interesting
to study whether the presence of additional degrees of freedom renders inflation more
or less robust to inhomogeneities. We will pursue these and other questions in future
work.

6.3 Ciritical Collapse in Asymmetry

The study of the axisymmetric radially perturbed case merits further study, as there
seemed to be evidence of asymmetric modes near the critical point. As was mentioned
previously, linear perturbations of the spherically symmetric case [1] do not show
additional unstable modes, but numerical studies such as that of Choptuik et al.
[2] gave hints of further unstable modes in the full non-linear regime. Given the
additional challenges introduced by the bubble case (the steepness of the wall at
collapse), it would be useful initially to take a step back and first recreate the results
of Choptuik in [2] in the massless case. Choptuik’s results are still unconfirmed by
any other simulations and it is not certain that they do not result from numerical
sources, therefore there is strong interest in the community in confirming them with
an independent code.
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It seems reasonable to assume that in strongly asymmetric cases the spherical
symmetry will no longer dominate, and the scaling relation will eventually break
down. For example, if we set up an ellipsoidal shaped bubble, then one can imagine
that the bubble can collapse into two black holes if one of the semi-principal axes
is much longer than the other two (i.e. a “long sausage”). Nevertheless, these two
black holes will eventually collide and merge to form a single black hole as the final
state. It is an interesting question to ask whether this final state black hole will still
follow the scaling relation.

It is hoped that with the new version of the GRChombo code, combined with a
greater appreciation of efficiencies in regridding,' we can get sufficiently close to the
critical point to properly observe echoing. As mentioned, we intend to test this first
in the less challenging massless case, before returning to bubbles in a multi minima
potential. This is ongoing work.

A further related area is the study of bubble collisions, which was the motivation
for the original work. We would like to investigate whether collision of bubble walls
can create black holes via non trivial self interactions, and the gravitational wave
signals which are emitted in multiple collisions.

6.4 Axion Stars

Axions are pseudo-Goldstone bosons of spontaneously broken global U (1) “Peccei-
Quinn” (PQ) symmetries [3]. The complex PQ-field, ¢, has the potential

2\
Vip) =\, (w - 7”) : ©6.1)
The U (1)pg symmetry is broken at some constant scale f,. After symmetry break-
ing, writing the PQ field as ¢ = (o/~/2)e'%//«, the radial field o acquires a vacuum
expectation value such that: (@) = (f,/+/2)e'?//e. The angular degree of freedom,
the axion ¢, is the Goldstone boson of the broken symmetry.

As a Goldstone boson, the axion enjoys a shift symmetry, i.e. the action contains
only terms in 0,,¢ and there is a symmetry under ¢ — ¢ + ¢ for any real number c.
In general, this shift symmetry is anomalous and is broken to a discrete symmetry,
¢ — ¢ + 27n for some integer n. The breaking of the axion shift symmetry selects
a particular direction in the field space ¢ = ¢ + iy,. In the potential we can write

this as
2

2
V(p) = A, <|<p|2 - %“) +€poprt s (6.2)

1Use of K as the regridding trigger is more efficient than , which was previously used, and we have
found that we can reduce the regridding frequency significantly and still maintain good resolution.
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for some parameter € po of mass dimension three, which is “small” in the sense that
€po/ fa3 « 1. In some limits, we can ignore the radial mode and consider simply a
periodic potential for the axion

V(p) = A;‘ |:1 — cos (%)] = meaz |:1 — oS (%)] , (6.3)

from which we find that epp = \/Emg f2- The minimum of the potential at ¢ = 0
is used to define the “axion mass”, m, = A2/f,. Non-perturbative effects generally
switch on at scales far below the fundamental scale, while we expect f, to be of
the order of the fundamental scale. Thus axions are naturally extremely light via
the seesaw mechanism as long as the shift symmetry breaking is small, €/ ff =
V2(mg/f2)? < 1. The axion is also hierarchically lighter than the radial field, p.
Due to the hierarchy of scales between the axion mass and the radial mode, it is
possible to simulate the axion field as a real valued scalar field in a cosine potential.

The classical equations of motion for an axion with potential given by Eq. (6.3)
possess quasi-stable, localised, oscillating solutions, which are sometimes referred
to as “axion stars”. In the paper [4], the author and collaborators studied, for the first
time, collapse of axion stars numerically using the full non-linear Einstein equations
of general relativity and the full non-perturbative cosine potential. Regions were
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Fig. 6.1 The stability diagram is parameterised by the axion decay constant, f,, and the initial
condition Mapwm, the initial mass of the axion star (which we set using the initial field velocity, IT,
at the centre). Solid lines mark the approximate boundaries between three regions of the axion star
parameter space: quasi-stability (R1), collapse to a BH (R2), and dispersal (R3). We postulate the
existence of a “triple point” between these regions. The dashed line marks the region below which
axion mass is effectively negligible. Simulated axion stars are marked as circles; other symbols
mark points explored in more detail. Below the triple point, for f, < M, under an increase in
mass, dispersal of the star via winding of the axion field occurs before collapse to a BH. Above the
triple point, stable axion stars can collapse to BHs by acquiring mass e.g. by accretion
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mapped on an “axion star stability diagram”, parameterised by the initial ADM
mass, Mapm, and axion decay constant, f,. Three regions of the parameter space
were identified:

1. Long-lived oscillating axion star solutions, with a base frequency, m,, modulated
by self-interactions

2. Collapse to a black hole

3. Complete dispersal due to gravitational cooling and interactions

We located the boundaries of these three regions and an approximate “triple point”
(Mrp, frp) ~ (2.4M§,/ma, 0.3M,,). See Fig.6.1.

For f, below the triple point BH formation proceeds during winding (in the
complex U (1) picture) of the axion field near the dispersal phase. This could prevent
astrophysical BH formation from axion stars with f, <« M. For larger f, 2 frp,
BH formation occurs through the stable branch and we estimate the mass ratio of the

1.000
09875

09699

- 09398

apparent horizon

Fig. 6.2 (Mapwm, fa) = (2.63,0.055), R2 star in Fig. 6.1. The parameter shown is the conformal
factor of the metric, x. The first panel shows the initial data, and subsequent panels show the
evolution. The initial state is spatially extended, with low curvature. As collapse proceeds, the
axion star becomes smaller, and some scalar radiation is emitted in waves. The final BH has an
apparent horizon that is very small compared to the initial axion star size. Some of the axion field
remains outside the BH, and gravitationally bound to it, in “scalar wigs”
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BH to the stable state at the phase boundary to be O(1) within numerical uncertainty,
see Fig. 6.2. Our findings have observational relevance for axion stars as BH seeds,
which are supermassive in the case of ultralight axions. For the QCD axion, the
typical BH mass formed from axion star collapse is Mgy ~ 3.4(f,/0.6M ,))'* M.
Much work remains to be done in this area. Firstly, one can study the collisions
of axion stars or axion stars with black holes, to obtain gravitational wave signals.
One can also consider gradual accretion of scalar matter onto a single axion star,
and the way in which the axion star then moves between the different regions of the
parameter space that we have identified above. Extension to the rotating case may
also lead to interesting phenomena and potentially a more complex solution space.
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Appendix A
Technical Points and Summary of Equations

A.1 Geometric and Planck Units

In the code GRChombo, and NR in general, one uses geometrised units, whereas
in most other areas of physics, including cosmology, one uses Planck units. This
section aims to briefly summarise the two systems and their conversions. The reader
is referred to the Appendix of Wald [1], which has a good introduction to geometrised
units. Most physics textbooks contain an introduction to Planck units.

Note that where we refer to the Planck mass throughout this thesis, we mean
My, = 2.17651 x 1078 kg, i.e. M} = lic/ G, rather than the reduced planck mass
M? = hc/87G. The reduced Planck mass, which is heavily used in cosmology, has
an additional factor of 8. In GRChombo, factors of 8 are included explicitly and not
set to one, so we prefer to work with the non-reduced Planck mass. Future versions
of the code will enable the user to set G so as to eliminate the factors of 87 if desired.

A.1.1 Geometric Units

These are units in which G = ¢ = 1, which means that lengths, masses and times
all have the same unit (recall that the SI units of G are m> kg~! s72 so setting length
equal to time from ¢ = 1 leads to mass and length having the same dimension).
For our purposes in GRChombo, we usually work with a Mass M as the standard
geometrised unit (this is equivalent to using a length L, which is often preferred).
Then all lengths and all time intervals are expressed in these units of mass M .

To convert to real ST units one must multiply by the appropriate factors of G and
¢, and then by kg to the appropriate geometrised mass dimension, to give the correct
units. For example, the length in meters is obtained by multiplying the length in
geometrised (mass) units by G/c? (which has units m/kg), and then by the value
of M in kg. Notice that the geometrised mass unit M can be chosen freely. Thus
if we simulate a black hole of geometrised mass one, M = 1, we can describe the
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spacetime for any mass of black hole simply by scaling the results according to what
we want this unit mass to physically represent in kg. However, once one physical
value has been fixed - for example, in inflation, the energy density scale associated
with the field - everything else must be consistent with this scale.

The geometrised unit of any other dimensionful quantity in the simulation can be
expressed by considering its real physical dimension and replacing any L and/or T
with M. The value in real SI units must again be calculated using the appropriate
conversion factors of G and ¢, and the geometrised mass dimension. Sometimes
one wishes to find the geometrised quantity from a real physical value, which is the
Teverse process.

Two useful examples in this thesis are:

1. Energy Density The energy density has real dimensions ML™'T~2 so in ge-
ometrised units it has dimension M ~2. The geometric quantity must be multiplied
by a factor of ¢®/ G and then by the value of 1/M? in kg~ to obtain the SI value.

2. Scalar Field Using the fact that the action has dimensions of 2 we can show that
the scalar field has units of L!/2M /2T~ (alternatively (0,¢)? has the same units
as energy density), thus in geometrised units it is dimensionless. The geometric
quantity must be multiplied by a factor of ¢?/ G to obtain its SI value (note that
the value of M does not affect this).

For convenience we also usually choose M to be M,,, which makes the conversion
to Planck units more obvious, as we will discuss below. However, in some cases we
prefer to choose that M = gM,, where g gives the fraction or multiple of M,, that is
represented by one geometrised unit in our code. This can lead to more manageable
numbers in our simulations, for example, we can make the length of our grid of order
10.

A.1.2 Planck Units

The aim of Planck units is to express all quantities as multiples of a set of base units
defined by appropriate dimensionful combinations of the fundamental constants 7,
¢ and G, which are the Planck length /,, the Planck mass M, and the Planck time z,.

Any other dimensionful quantities are expressed as multiples of the appropriate
combination of /,, M, and t,, given their real physical dimension, for example, one
“Planck force” F,, is equal to Mpl,/1,>.

Quantities are then expressed in dimensionless form in equations, e.g. one can
write Newton’s law of gravitation

G
F=2Mm (A.1)

as

(A2)
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where this is understood to mean

i _ (my /M) (ma/My,) ) (A.3)

Fy (r/lp)?

However, what conventionally happens when using Planck units is that ¢ and / are
set to one, and then, since all powers of /, and 7, can be expressed in terms of M,,
all figures in Planck units are expressed as a multiple of M,,. This is to contain the
uncertainty in G, which is not as well measured as the other constants. What this
means in effect is that M,, replaces G (as G = M, %) in all the equations, thus the
above Newton’s equation would be written

o miny

F=M : (A4)

)
In this formulation of Planck units, lengths and times have units of inverse mass
Mt

To convert back to SI units one must multiply the value in Planck units by the
appropriate factors of & and c to get a result in the SI units, and then by M,, in kg to
the appropriate mass dimension. For example, an energy in Planck units has mass
dimension 1 (it is expressed as a multiple of My,), so its value in joules is found by
multiplying the value by ¢? to obtain the correct SI unit, and then by M,, in kg.

A.1.3 Conversion between units

Using Planck Units Directly

If one uses the geometrised unit M = M,, in simulations, one can extract directly the
values in Planck units of other quantities - the numerical value in geometrised units
is the same as that in Planck units.

This can be shown by converting the value first into SI units using appropriate
factors of G and ¢, and then into Planck units by adding factors of / and c. The
factors of 7, ¢ and G combine into some multiple of the Planck mass such that the
correct units are given but the numerical value is the same.

That is, if one models a black hole of (geometrised) mass 2M , where M = M,
then the lengths are Planck lengths and the times are Planck times. To be totally
explicit, this means that if the radius is 4M, one finds that the radius in SI units
is 41, (with [, expressed in meters) and thus equal to 4M,,!" in Planck units where
h = c¢ = 1. Initially this may seem a bit counterintuitive as one unit contains an
inverse M, whilst the other contains M, but one can show that this is correct by first
converting to SI units from geometrised ones and then on to Planck units as above.
In addition, if M,, is set to one, which is equivalent to setting G = 1, both units agree
on the numerical value, as we would expect.
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Measures of time behave in exactly the same way, with 1M equal to #, and thus
1M, 1 in Planck units, where 2 = ¢ = 1. Once we know how to treat mass, length
and time, other quantities that are combinations of these follow in the natural way.

A useful example to consider is the scalar field ¢, which is dimensionless in
geometrised units as above. This means that a change in ¢ of 1 in our simulation is
equivalent to a change of 1M}, in Planck units, where i = ¢ = 1. This is invariant
whatever we choose our geometrised mass unit to represent, which initially seems
surprising, but can be explained by the fact that the physical meaning of the scalar
field is effectively absorbed into the energy density V (¢), and its spatial and temporal
gradients.

Similarly, an energy density of 1M 2, where M = M,,, corresponds to an energy
density of 1M} in Planck units. However, care needs to be taken (especially in this
case) when M # M, as explained below.

Using Scaled Planck Units

As noted above, in some cases we prefer to choose that M = gM,, where g gives the
fraction or multiple of M, that is represented by one geometrised unit in our code.
This can lead to more manageable numbers in our simulations, for example, we can
make the length of our grid of order 10, which tends to be easier to work with.

The strategy in this case is to first recover the case above, where the geometrised
unit is M. Then, whatever number you have is again the correct number in Planck
units. This is best seen by an example:

One chooses a geometrised unit M to represent a physical mass of 10M,,.

Now for a length of, say, 2M , this corresponds to 2 x 10M;, = 20M,,, and there-
fore it represents a length of 20/, or 20M,,! in Planck units. The same thing happens
with time, and other dimensionful quantities follow in the same way.

For another example, consider an energy density of p = 2 in geometric units. This
is actually p = 2M ~2 because energy density has (geometrised) mass dimension
of —2 as discussed above. Therefore the correct conversion when one has chosen
M = 10M,, is to first say that (still in geometrised units)

p=2(10M,)"% = 0.02M, > . (A.5)

Therefore the value in Planck units is 0.02 M.

Note that this conversion can also be thought of in terms of an effective mass m.,
which is used to “undimensionalise” the geometric quantities, so that all masses,
lengths and times are divided by m,g to obtain their value in dimensionless Planck
units. In the example above, m.y = M /q = 0.1M , so a geometrised quantity of 2M
becomes 2M /m.; = 20 in dimensionless (and thus Planck) units. We are essentially
using the freedom inherent in geometric units to choose the mass scaling which
achieves a convenient simulation unit. Converting from Planck units into scaled
geometrised units is simply the reverse of this process.
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T(xp)

T(xa) T(xa)

Fig. A.1 The Lie Derivative is a measure of how much a tensor 7; changes as one moves infinites-
imally along the congruence of a vector field V

A.2 Lie Derivatives - A Brief Description and Notes on Use

The concept of a Lie derivative is in many respects more fundamental than the concept
of a covariant derivative since it does not require an affine connection to be defined
on the manifold. A full discussion of Lie derivatives can be found in Schutz [2], or
other standard texts on GR and differential geometry. Here we will summarise the
key ideas and show how they are used in the derivation of the extrinsic curvature and
in the BSSN equations. We assume a coordinate basis throughout.

A.2.1 Lie Derivatives

If one has a vector field V on a manifold, it is possible to define the integral curves
x(\) by integrating the relation for the coordinates

xa

d

= Vi(x(\), (A.6)

which simply insists that that tangent to the curve at each point is the vector V at
that point. This forms a congruence, a family of such curves which fill the manifold,
with affine parameter A. The integral curves are thus like streamlines in an (ideal)
fluid flow, with the vector V being the fluid velocity at each point; see Fig. A.1.
The Lie derivative of a tensor T} withrespect to ‘7, writtenas £;; 7}, is a measure of
how much that tensor changes as one moves infinitesimally along the congruence. We
have already emphasised in Chap. | that comparing tensorial objects (like vectors) at
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different points on a manifold is an ambiguous concept. This is because the manifold
may be curved and we must define how to transport the object from point to point.

When we define the covariant derivative, we introduce the affine connection and
the concept of parallel transport in order to make a comparison. We require the
covariant derivative to be metric compatible, i.e.

Vegar =0, (A7)

which means that it preserves the scalar product of two vectors as they are transported
infinitesimally along the manifold. The covariant derivative can then be expressed in
terms of the partial derivatives and the Christoffel symbols for a general tensor T}
as

V.If = 0. T) + T{T%, — T4T4. . (A.8)

The procedure for taking the Lie derivative is slightly different - again we want
to somehow compare our tensors at two different points, but this time we use an
infinitesimal coordinate transform, generated by the vector field, to drag the tensor
at one point an infinitesimal distance along the congruence, and compare it to the
“actual” value of the tensor at the new location. Consider the points P and Q on an
integral curve of V, separated by A, as in Fig. A.1. What we called the “actual”
value of the tensor at Q is given by Taylor expanding from the point P

T (xg) = T{(xp + AXN V) = TE(xp) + AN VEOTY + O(AN) . (A.9)

We want to compare this to the tensor at P which has been “dragged along” the
congruence to Q using the infinitesimal coordinate transform

’

ox®

7 =0T ANV, (A.10)

where the primed indices relate to the new transformed coordinate system. We will
call this object T}; (Xq), and it is given by

oy ox® oxd

We have the relation we need to transform the raised index via Eq.(A.10), and the
second comes from inverting it

ox®

57 =0 ANV + O(AN?) . (A.12)
X

We define the Lie derivative as



Appendix A: Technical Points and Summary of Equations 189

| T (xg) — T} (%)
iTr =1 - £ Al
E Ty = flim |: AN ’ @.13)
which using the above relations is
£,T) =VOT, —T;0.V* +TIO, V. (A.14)

This generalises to tensors of higher orders in the usual way, with upper
indices generating additional terms like the second, and lower indices generating ad-
ditional terms like the third. Comparing this to the covariant derivative in Eq. (A.8),
we see that the Lie derivatives require the derivatives of V at each point, and it is
this piece of additional structure that replaces the chosen connection (the Christoffel
symbols) from the covariant derivative. The result is that the Lie derivative does
not require a connection and thus (in the case of the Levi-Civita connection) it is
independent of the metric.

Note that one can show that the partial derivatives in Eq. (A.14) can be replaced
by covariant ones with the same result, that is

€T = VOVTE — TV VO + TOV,VE . (A.15)

We will use this result in the following section.

A.2.2 Lie Derivatives and the Extrinsic Curvature

We now use Eq.(A.15) to show that the two definitions of the extrinsic curvature
K. are equivalent using the results above, as was stated in Sect.2.2.1. Starting from
the definition of K, in terms of the Lie derivative along the normal direction of the
spatial metric, per Eq.(2.47)

1 1, . .
Kab = _§£71'7ab = _z (ncvc/}’ab + 'Yacvbnc + chvant) . (A16)

Expanding out the spatial metric as g, + n,n, and using the fact that the normal
vector is orthogonal to its gradient n,V,n* = 0 this becomes

1, X
Ky = ) (n‘navcnb + n‘npVeng + Vo + Vbnu) ) (A.17)

Reversing the trick to replace the normal vectors with nn, = 75 — g; and using the
fact that the 4-metric commutes with the covariant derivative we find

1
K, = —5 ('ngcnh + ’y}ivcna) = —PZVCnb , (A.18)

which is the alternative definition as per Eq. (2.46).
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A.2.3 Lie Derivatives and the Evolution Equations

ADM Equations

The ADM evolution equations are derived by finding the change of each tensor
quantity 7 along the normal direction to the spatial hyperslice, which is in a sense
the most “natural” direction to consider. This must then be re-expressed as the change
with respect to the coordinate time in terms of the gauge variables v and /3, i.e.

1
6T = —£,.T = — <£;T - £3T) , (A.19)
Q [0 !

which is rearranged to give the evolution in coordinate time (recognising that the
Lie derivative along 7 reduces to the partial derivative with respect to the coordinate
time ¢) such that

OT = of5T + £5T . (A.20)

The first term will be some combination of the evolution variables per the derivation
of the change along the normal direction, to which one then adds the Lie derivative
of T along the shift vector. This is what gives rise to the terms like 3'9;T in each of
the expanded ADM equations.

BSSN Equations

In the BSSN evolution equations, the decomposition of the evolution variables into
conformal quantities means that they are no longer tensors but tensor densities. A
tensor density 7 of “weight” w is a tensor 7 multiplied by the determinant of the
spatial metric y to the power w/2, i.e.

T =~"T . (A.21)
The Lie derivative then becomes

£57 = [£7] FuTov', (A22)

w=!

where the first term is the expression arising from Eq. (A.15) as if T were a normal
tensor, and the second is the correction for the non zero tensor density. The conformal
factor x as defined as v; = = ;i has weight —1/3, and the conformal metric and
the traceless part of the extrinsic curvature have weight —2/3 according to their
definitions. K is a normal tensor. This leads to additional terms in the BSSN evolution
equations, compared to the ADM versions.

The evolution of T is further complicated by the fact that it is not a true vector
density either. This is clear from the fact that the Christoffel symbols F]’fk are not
tensors, therefore neither is their contraction. One thus obtains second derivatives of
the shift in the Lie derivative, in addition to the term to account for the tensor density
weight of 2/3, as can be seen in the second line of Eq. (B.15).
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Appendix B
Summary of Equations

B.1 Summary of the ADM Equations

For the standard 3 4+ 1 ADM decomposition per York of the spacetime metric
ds* = —a? di* + ;(dx' + B dt)(d¥ + 3 dt) (B.1)
7y;j is the induced metric on the spatial slices with timelike unit normal

= é (0 — 5 o) (B.2)

The extrinsic curvature is defined as

K = —% Eiip) (B.3)
The Hamiltonian constraint
H =R+ K?—K;K7 — 167p (B.4)
The Momentum constraint
M; = D/ (y,K — K;j) — 87S; (B.5)

The definition of the extrinsic curvature (and evolution equation for ;)

Oy = —2aK;; + D;f3; + D;f3; (B.6)
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~ )

The evolution equation for Kj;

8;[(,:,' = ﬁkakK,:j + Kk,'ajﬁk + Kkja,ﬂk = Dl’DjOé

+a (<3)R,-,- + KK — 21<,-kK;<) + 4 (7S — p) — 255)
(B.7)

where the various components of the matter stress tensor are defined as

p=namp T, Si=—Yumpy T, Sj=9aypT®, S=7"S; (B.8)

B.2 Summary of the BSSN Equations

In the BSSN formalism used in our GRChombo simulations, the induced
metric is decomposed as

1 - 1
%= % dety; =1 x = (detr;) ° (B.9)

The extrinsic curvature is decomposed into its trace, K = v¥ Kj;, and its
traceless part 7/ A; = 0 as

1 /- 1
Ki=—(A;+=-K~; B.10
ij 2 ( i+ 3 ’Y/) ( )

The conformal connections I' = 3/ f"'jk where f‘ijk are the Christoffel sym-
bols associated with the conformal metric ;.
The evolution equations for BSSN are

a,X:%axK—%xakﬂk—l—ﬁkakx (B.11)
By = =20 Ay + Fu 6;8* + Y B8 — % T OB+ B Oy (B.12)
K = —v'DiD;a + (A,-,-A"f + %1@) + BI0,K +4malp+S) (B.13)
8A; =X’ [-DiDja + a (R — 87 aSy) | + a(KA; — 24, A%)

- - 2 -~ -
+ Ay 08 + Ay 0,6 — 3 Ai B+ B* Ay (B.14)
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~ '

- - o o~ 2 . ~..0;
6;Fl = —2AY a,'Oé + 2« (F;kAjk — § ;}‘/Ua,'K — 3AU17X)

. o1
+ BT + 749,08’ + 3 396;0,8*

o8¢ — X B — 16T a7V S; (B.15)

wll\)

The covariant derivative of the lapse in the term D;D;c is calculated with
reference to the full spatial metric, and not the covariant one, i.e.

DiDjor = 9,0 — Ts0kx (B.16)
where

~ 1 .
Iy =I5 - X (55% + 65 9x — vw"’alx) (B.17)

The Ricci tensor R;; is split into conformal and non conformal parts R;; =
Rjj + R}; which are calculated as

1.

and
| R o =S 2 . -, -
R} = ~ ODpx + 3iD'Dix) — Fm»jblxblx. (B.19)
The scalar field matter evolution equations are

0i¢ = ally + 5'0i¢p (B.20)

dv
8Ty = B9y +a@8’q’)+3¢8‘a+a(KHM —yirky ¢——¢)
(B21)
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