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Preface

This book emerged from a course on density functional theory (DFT), first given
at the University of Munich more than a decade ago. The course was based on the
classic texts by Dreizler and Gross (Springer, 1990) and by Parr and Yang (Oxford
University Press, 1989). More recent topics of that time, such as time-dependent
DFT or orbital-dependent functionals, were added to the material covered by the
two books. However, already at that time restriction to the most relevant and/or
most illustrative statements on a particular aspect of DFT was necessary, in order
to keep the length of the course under control. When the course was later given
again at the University of Frankfurt it soon turned out to be impossible to integrate
the exploding number of new results, concerning both the formalism as well as
important applications, into the course: So, even a selection of the branches of DFT
covered in the course was unavoidable.

The present text reflects this, admittedly subjective, choice of topics: it con-
centrates on the basics of the most widely used variants of DFT. This implies a
thorough discussion of the corresponding existence theorems and effective single-
particle equations as well as of the key approximations utilized in implementations.
Ground state DFT (on the nonrelativistic level) is addressed in Chaps. 2—6. Chap-
ter 2 introduces the fundamental Hohenberg-Kohn theorem and its extensions to
spin-, current- and current-spin-density functional theory, together with some ba-
sic notions such as v-representability. The resulting Kohn-Sham equations are col-
lected in Chap. 3. This chapter also includes a discussion of the relation between the
Kohn-Sham wavefunctions and eigenvalues and the true many-body wavefunctions
and energies. Chapter 4 is devoted to a detailed exposition of the currently avail-
able approximations for the exchange-correlation functional, based on two exact
representations of this quantity. The most important virial relations valid for density
functionals are summarized in Chap. 5. The discussion of the exchange-correlation
functional is then resumed in Chap. 6, in which the concept of orbital-dependent
functionals is introduced. This chapter also serves as a demonstration of the first-
principles character of DFT, in that it shows that the true exchange-correlation en-
ergies and potentials can be systematically approached by use of orbital-dependent
functionals. On the other hand, the discussion of the existence theorem, of the basic
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formalism and of standard approximations is concentrated in a single chapter in the
case of time-dependent DFT (Chap. 7). The same statement applies to relativistic
DFT which is presented in Chap. 8. An extended review of the problem of renor-
malization (in the Appendices F-I) serves as background information for relativistic
DFT.

Throughout the text formal statements are complemented by selected quantitative
results, which primarily aim at an illustration of the strengths and weaknesses of a
particular approach or functional. However, no attempt is made to review the full
range of present-day DFT applications, not even their boundaries will be marked
out. In order to stay within reasonable bounds, the discussion also omits a few topics
which have recently attracted much interest, such as DFT for superconducting or
hadronic systems. An overview of the topics not covered explicitly in this book
is provided by Chap. 9 (Further Reading) which offers a substantial collection of
pertinent papers together with some comments.

The students in the courses indicated above had quite diverse backgrounds, rang-
ing from mineralogy to biochemistry. So, the courses had to be rather self-contained,
requiring neither the audience’s familiarity with standard many-body theory nor ex-
tensive experience with the quantum theory of solids. Again, the book reflects this
fact: the reader will find that all concepts of many-body theory which are indis-
pensable for the discussion of DFT, such as the single-particle Green’s function or
response functions, are introduced step by step, rather than just used. The same ap-
plies to some basic notions of solid state theory, as, for instance, the Fermi surface.
In fact, even the language of second quantization is introduced systematically in an
Appendix. When starting with this Appendix, reading this book should require little
more than a strong background in elementary quantum mechanics (at least, if one
accepts some of the more advanced relations of Chap. 4 without going through their
derivations).

As is clear from these remarks, this book does not target only one particular sci-
entific community. On the other hand, the material is easily restricted to the needs of
a more specialized course. Many of the advanced chapters require little more than
knowledge of the most elementary parts of the introductory chapters. Several re-
dundancies help to support this modular structure. It should therefore be possible to
find one’s own way through the material. Although detailed recommendations have
obvious problems, some suggestions for selected reading are made in the following
table:

! An alternative, low level entry point to the discussion of the exchange-correlation energy func-
tional is provided by Appendix D, in which the local density approximation for the exchange func-
tional is derived explicitly without using concepts from many-body theory. With the background
of this appendix it should be possible to continue with the more advanced results and explicit
functionals of Chap. 4.
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Section  Bias solid state physics

Bias chemistry, atomic physics

Basic Advanced  Basic Advanced
1 Complete Complete
2.1 Complete Complete ~ Complete Complete
2.2 Optional Complete Optional Complete
2.3 1.+2. paragraph Complete 1.42. paragraph Complete
24 Complete Complete
2.5 Complete Complete Complete Complete
2.6 Optional Optional
2.7 Complete Complete ~ Complete Complete
3.1 Complete Complete Complete Complete
3233 Complete Complete
34 Optional Optional
3.5 Complete Complete Complete Complete
3.6 Complete Complete Ist paragraph  3.6.1
3.7 Optional Optional
4.1 Complete Complete ~ Complete Complete
4.2 Only results Complete Only results
4.3 Complete Complete App.D+4.3.2-6 Complete
4.4 Only results Complete Only results
4.5 4.5.4+4.5.5 Complete 4.54+4.5.5 Complete
4.6
4.7 Optional Optional
4.8 Optional Complete Only results
4.9 Complete Complete
5.1-5.4 Complete Complete ~ Complete Complete
6.1 Complete Complete Complete Complete
6.2 6.2.1/2/5/6 6.2.1-6 6.2.1/2/5/6
6.3 Complete Complete Complete
6.4 6.4.1+6.4.2 6.4.1
6.5 6.5.4 6.5.4 6.5.4
6.6 Complete Complete
6.7
7.1-7.6  Complete Complete ~ Complete Complete
8.1 Complete Complete
8.2-8.5 Optional
8.6 Complete Complete
8.7 Complete Optional
8.8 Optional Optional

Depending on the background of the reader, Appendix B (on second quantization)
might have to be included between Chaps. 1 and 2.

At various points explicit derivations of important results are given, rather than
just summaries of the results. These derivations might not be suitable for presenta-
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tion in a course, depending on its scope and audience. However, there is always an
option to skip the details and restrict oneself to the essentials. Sometimes, such de-
tails are distinguished from the main text by use of a smaller font, in other cases the
details have been relegated to Appendices. At some points the reader will find sug-
gestions which portion of the text may be skipped, if one wants to focus on results
only.

It is a pleasure for us to acknowledge the help and support that we received when
writing this book. This book has benefited enormously from extensive discussions
with Dr. D. Kodderitzsch. His comments and suggestions helped in particular to
improve the readability of this text for less experienced readers. Many thanks go to
the two referees of our manuscript (unknown to us). Their reports encouraged us to
include a number of additional topics in the text (some suggested by the referees,
others which we felt appropriate), although this led to an increase of its length, way
beyond initial plans. Equally important, however, was the additional time which the
referees comments have given us: this allowed us to straighten out some paragraphs
in the initial manuscript. We would also like to thank Dr. S. Varga and H. Engel for
their careful proof-reading and many suggestions for improvements. We are grateful
to M. Hellgren and U. von Barth for making their atomic RPA potentials available
to us. Last, but not least, our thanks go to Dr. Ch. Caron from Springer Verlag, who
supervised the production of this book. His support, flexibility and patience were
instrumental in making this book what it is.

Frankfurt am Main, Eberhard Engel
March 2010 Reiner M. Dreizler
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Chapter 1
Introduction

One of the basic problems in theoretical physics and chemistry is the description
of the structure and dynamics of many-electron systems. These systems comprise
single atoms, the most elementary building blocks of ordinary matter, all kinds of
molecules, ranging from dimers to proteins, as well as mesoscopic systems, for
example clusters or quantum dots, and solids, including layered structures, surfaces
and quasi-crystals. The following two paragraphs list the properties of such systems
which are generally of interest, without, however, aiming at completeness. These
properties can roughly be classified as either structural or dynamical.

An important structural property is the electronic shell structure (or band struc-
ture in the case of crystals). The shell structure directly determines the stability of
a system, but also shows up in a number of other properties—it is, for instance, a
key factor in transport properties like the electrical conductivity. Stability manifests
itself in various binding energies. These are either of electronic nature, such as the
ionization potential and the work function, or they characterize the bonds between
atoms, such as the atomization energy of molecules and the cohesive energy of
solids. Other structural properties, which are related to shell structure, are electric or
magnetic moments. The geometry of poly-atomic systems, that is bond lengths and
bond angles as well as the symmetry of the atomic arrangement, constitutes yet an-
other important structural property. Often several geometrical configurations which
are almost degenerate (at least compared to typical thermal energies) are observed
for such systems. In this case the relative stability of the various configurations is of
obvious interest. All these properties have in common that they can be calculated if
the relevant electronic ground states are known. Even if more than one ground state
is involved, as in the comparison of energies of systems with different electron num-
bers or with different atomic configurations, there is no need to determine excited
electronic states.

The electronic excitation spectrum is the most notable dynamical property. Exci-
tation energies are not only the quantities necessary for an understanding of optical
properties, they also feature in all kinds of scattering processes. In addition to the
excitation spectrum, a complete description of excitation or ionization requires the
evaluation of the associated transition probabilities. In a poly-atomic system the

E. Engel, R M. Dreizler, Introduction. In: E. Engel, R.M. Dreizler, Density Functional Theory,
Theoretical and Mathematical Physics, pp. 1-9 (2011)
DOI 10.1007/978-3-642-14090-7_1 (© Springer-Verlag Berlin Heidelberg 2011
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excitation of nuclear motion is also possible, the rotational-vibrational motion in
molecules or lattice vibrations (phonons) in solids being the simplest examples. The
discussion of these dynamical properties obviously requires knowledge of either
excited stationary states of the system, or even of time-dependent states.

For the study of these properties one can distinguish between two basic ap-
proaches:

1. The first approach is based on the true, fundamental Hamiltonian of the system.
It is therefore called the ab-initio or first principles approach. As the solution of
the resulting many-body Schrodinger equation is an extremely demanding task,
some approximations are unavoidable. However, all approximations utilized in
this context are of a technical nature, as for instance the determinantal form of
the many-body wavefunction in the Hartree-Fock approximation or the represen-
tation of its single-particle ingredients in terms of a finite basis set. These tech-
nical simplifications can curtail the results of an ab-initio calculation: depending
on the system and property under investigation, important features can be missed
(e.g. a single-determinant wavefunction can not reproduce the fully correlated
motion of the electrons). The ab-initio approach is thus not characterized by the
absence of any approximations, but rather by the fact that the approximations do
not introduce adjustable physical(!) parameters. Clearly, a more efficient tech-
nical approximation will lead to a computational task that can be handled more
easily.

2. In the second approach a suitable model Hamiltonian is utilized from the very
outset. Relying on available information (often experimental) on the system, the
relevant aspects can be isolated and used to construct the model Hamiltonian.
For instance, if one is interested in the magnetic ordering of a mono-atomic crys-
talline solid, one might rely on the Heisenberg Hamiltonian. In this model each
atomic site ¢ of the crystal is represented by a spin operator s, with possible
eigenvalues corresponding to the available spin per site. The interaction between
the spins of two sites o and 3 is represented by —Js¢ - s, so that for positive J
energy is gained by the alignment of the two spins. Clearly, the Heisenberg Spin
Hamiltonian can not make any statement about the lattice constant of the solid,
as it only deals with one particular property, its magnetism. The only remnant
of the underlying electronic structure is the size of the coupling constant J. This
physical parameter can, however, not be determined within the model, but has to
be adjusted to experiment or some prior ab-initio results. The advantage of the
use of model Hamiltonians is obvious: the resulting many-body problem is much
simpler than the corresponding ab-initio problem. On the other hand, it is often
an art to extract the essential aspects of a system in a way which neither ignores
important features nor leads to an overwhelmingly complicated Hamiltonian.

The present text introduces a variant of the first approach, which is at the same time
efficient, widely applicable and reasonably accurate.

The starting point of the discussion is the ab-initio Hamiltonian of the coupled
electron-nucleus system,
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1:1 - Tn + ann +ﬂe ("“A/nfﬁeld) (11)
I:Ie = ﬁ, + ane + Vefe (JFVe—ﬁeld) . (1.2)

In (1.1) T, represents the kinetic energy of the K nuclei of the system,

-2

_’WR“ (1.3)

where R, denotes the Cartesian coordinates of nucleus o with mass M, and
VR, = d/9Ry. The potential V;,_, represents the repulsion among the nuclei,’

£ ZaZpge

‘7_ =
n—n ‘Roc Rﬁ|

(1.4)
a,f=1;0<pB

For the electronic problem V,_, just amounts to an additive constant. The third
component of H is the electronic Hamiltonian H., which is decomposed into the
kinetic energy of the N electrons,

(1.5)

(Vi =V,,, with r; denoting the position of electron i), the interaction between elec-
trons and nuclei (with charges Zye, e = |e]),

K N Zan

V. . o =_ —_— (1.6)
I
and the interaction among the electrons,
N 2
. e
Voo = (1.7)

i,j=1;i<j|r"_rj|.

Finally, depending on the system under consideration, the two types of particles can
couple to an external electromagnetic field,

N K Zgeh

Vaosoa = 3, [Zae®exc(Rat) + 150 Acx(Rat)- Vo, ~ Lo Bea(Rat)|  (18)
a=1 af

R N

Vefﬁe]d = 2 {_ eq)ext(rit) - 2iuBAext(rit) . Vi + Up0o;- Bext(rit)} . (19)

Here ®cx(r7) and Axi(r?) are the potentials corresponding to the electromagnetic
field,

! Throughout this text we use Gaussian units for the electric charge.
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Eon(rt) =~V (1) — %% (1.10)
Bexi(rt) = V X Aexe(r1) . (1.11)

1, characterizes the magnetic moment of nucleus o, Up is the Bohr magneton,
ug = eh/(2mc), and ©; the spin operator corresponding to electron i, (the vector
o denotes the three 2 x2 Pauli matrices—for their explicit forms see Eqs. (2.122)-
(2.124)).

A number of comments are appropriate:

e Asexpressed by (1.3) and (1.5), the motion of both the electrons and the nuclei is
treated strictly nonrelativistically. Equations (1.3)—(1.9) also imply that the nuclei
are point particles, characterized only by mass, charge and magnetic moment. Of
course, the nonrelativistic and elementary treatment of the nuclei is completely
legitimate for the range of questions addressed here. On the other hand, the ne-
glect of all relativistic corrections to the kinetic energy of the electrons, most
notably of the spin—orbit interaction, is not always legitimate: for heavy atoms
relativistic effects modify the structure of the electronic Hamiltonian to an extent
which is even noticeable in molecular bonds, so that use of a relativistic Te is
required. The issue of relativity will be addressed in Chap. 8. For the time being
the interest will, however, be restricted to the nonrelativistic limit.

e Similarly, the interaction between the charged particles in the Hamiltonians (1.4),
(1.6) and (1.7) is given by the instantaneous and spin-independent Coulomb inter-
action, which ignores the transverse nature of light (photons) and its finite speed,
manifest e.g. in the Breit interaction. The discussion of relativistic corrections to
the Coulomb interaction is also postponed to Chap. 8. However, it seems worth-
while to emphasize already at this point that the neglect of the Breit corrections
is in general much less critical than the neglect of the spin—orbit interaction.

e In Egs. (1.1) and (1.2) the possible presence of an external electromagnetic field
is indicated. This field can be either static or time-dependent, as for instance a
laser pulse. Again the coupling of the field to the quantized particles is specified
on the simplest level available, assuming Coulomb gauge,

V-Ae(rt) =0. (1.12)

Most of the discussion will, however, be devoted to the field-free situation
D¢y = Aexy = 0 or to static fields. The Hamiltonian of the coupled system is then
stationary. Nevertheless, even in this case a time-dependence can be introduced
into the electron problem as soon as the motion of the nuclei is treated classically
(as is customary for the discussion of collision problems). An indication of how
to deal with time-dependent fields is given in Chap. 7.

The simplest and best-studied systems are single atoms. Here a dynamical treat-
ment is required only for the electrons (at least, as long as the atoms are not subject
to electromagnetic fields): after transformation into the center-of-mass frame the
Hamiltonian separates into a part governing the trivial translational motion of the
complete atom and the motion of the electrons relative to the center-of-mass. As the
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origin of the center-of-mass frame is (essentially) identical with the position of the
nucleus, one ends up with an electronic problem in which the nucleus enters as a
(static) external source. This effective factorization of nuclear and electron degrees
of freedom is no longer possible for poly-atomic systems. In these systems one has
to deal with the coupled dynamics of electrons and nuclei, i.e. with the Schrodinger
equation

I:I\Pa(Rl,...,RK;HO’],...,I'NGN)
:an‘a(Rl,...,RK;rlGl,...,rNGN), (1.13)

where o; denotes the spin-orientation of electron i with respect to some chosen
axis (from now on it is assumed that the external fields are time-independent). As
it stands, the partial differential equation (1.13) poses an exceedingly complicated
technical problem: the size of the systems of interest ranges from atoms to solids,
so that the particle number in (1.13) varies over many orders of magnitudes. At the
same time, a quantum mechanical treatment of the electrons is usually unavoidable,
even if only the most elementary features of these systems are to be studied.

The standard first step towards a solution of (1.13) is a partial decoupling of
the electron from the nuclear motion, which relies on the different time scales of
the two types of motion. This is achieved by the Born-Oppenheimer approximation
[1]. The Born-Oppenheimer approximation amounts to a factorization of the total
wavefunction W, into a nuclear wavefunction ‘P;‘k and an electron wavefunction ‘{’Z,

W.=ik(Ri,...,Rg;1r101,...,rNON)
= \P?k(Rl,...,R]()TZ(R],...,RK;TIG],...,TNGN) . (114)

The electron wavefunction depends parametrically on the position of the nuclei. It
satisfies the Schrodinger equation

I:IC‘PE(Rl, e ,RK;I‘lGl, .. .,rNO'N)
= Ex(Ry,...,Rg)¥i(Ry,...,Rk;r101,...,rNON) , (1.15)

which represents a stationary eigenvalue problem for any given set of R,,. Together
with V,_p, Eq. (1.4), the eigenvalues Ej(R;,...) act as potentials in which the nuclei
are moving.

The solution of (1.15) is a formidable computational task, even for fixed positions
of the nuclei. Not only the large number and the quantum nature of the electrons
represent a challenge, but also the complicated geometry of many systems. It is
also possible that a number of (meta-)stable arrangements of the nuclei (isomers,
conformers) exist, so that the solution of (1.15) for each of these arrangements is
required in order to determine the ground state configuration. For these reasons
an extremely efficient handling of the electron problem is necessary, even if the
possible motion of the nuclei is ignored.

A variety of approaches have been developed to obtain approximate solutions of
Eq. (1.15). The oldest and simplest is the Hartree-Fock (HF) (or Self-Consistent-
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Field) approximation, in which the ground state wavefunction W}_, is assumed to
be a determinant of single-particle states, a so-called Slater determinant,

‘I’S(rlcl, ...rNON) = @) N(r101,...rNON)

0, (rion) -+ ¢iy(rion)
(Dil...iN(rlG],...rNGN) = ——det . : (1.16)
i : .
i, (rnow) -+ @iy (ryvow)

(in the following, determinantal wavefunctions will always be denoted by ® in or-
der to distinguish them from the correlated N-particle wavefunctions ‘¥'; in addition,
the spin variable o will be displayed explicitly as an argument; the two possible
orientations of ¢ will be either denoted as T, ] or by +1/2). The N single-particle
states ¢; in the approximate ground state wavefunction @;...y are determined varia-
tionally. For this purpose the expectation value of the Hamiltonian (1.2) is evaluated
with respect to the wavefunction ®;...,y. Assuming the single-particle states to be
orthonormal, the result is

N —i 2
<(D1...N|H|(I)1...N> = z z /d3r¢l_*(r0') [(JLV) +vext(r)] (P,‘(I'O')
i=1

o=1.l "

N
+%Z y /d3r / &' 97 (r6) 91 (F o) w(r,r')

i,j=10,0'=1,1|

x [¢i(ro)o;(r'c’) — ¢;(ro)g;i(r'c’)] (1.17)

where vex(r) = — XX _, Zoe?/|Ry — 1| is the total potential generated by the nuclei
and w(r,r’) = e?/|r — r'| denotes the electron—electron interaction. The contribution
of the two-body interaction consists of a direct and an exchange term, as a conse-
quence of the determinantal structure of the state (1.16).

Minimization of the approximate ground state energy (1.17) with respect to the
orbitals ¢ (ro), including the constraint of orthonormality,” leads to the HF equa-
tions (i=1,...N),

2 The constraint is implemented by the introduction of a suitable set of Lagrange multipliers {&}
in the functional to be minimized,

N
<¢‘1..,N|I:]|(D]..,N> — ZE,‘ (Z/d3r|¢,‘("6)2 — ]) .
i=1 o

A set of real and diagonal multipliers is sufficient as the resulting single-particle Hamiltonian deter-
mining the ¢; turns out to be hermitian, which ensures the orthogonality of the ¢;. Alternatively, one
can explicitly include Lagrange multipliers for the orthogonality constraint and subsequently use
the properties of the single-particle equation and the Lagrange multiplier matrix to show that the
latter can be diagonalized by a suitable unitary transformation of the solutions of the single-particle
equation [2]. The set of single-particle states corresponding to the diagonal Lagrange multiplier
matrix is often called canonical.
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2v72
hzv (ro) + 2 /d3r’v}jfl§ ro,rc’)¢;(r'c’) = &¢i(ro) (1.18)
Vi (ro,r'o’) = 00/5 (r =) Vet (r) +vu(r)] + v (ro, ¥ o) (1.19)

(for the variational or functional derivatives required see Appendix A). The HF
equations have the structure of the ordinary single-particle Schrodinger equation.
However, the total single-particle potential in the HF equations is nonlocal and con-
tains two terms, the Hartree (direct Coulomb) potential

N
vi(r) = /d3r’w(r, )Y Y e(re))? (1.20)
o/=1.1 j=1
and the exchange potential
N
w(ro,r'e’) = —w(r.r') 3 ¢;(ro)e; (r's"), (1.21)

which depend on the solutions to be determined by Eq. (1.18). The standard ap-
proach to deal with this nonlinearity is a selfconsistent iteration of Eq. (1.18): start-
ing with an initial guess for the total potential, the states ¢; and the potentials (1.20)
and (1.21) are improved step by step. In each cycle of the iteration process first the
¢; corresponding to the current potentials are determined and then updated poten-
tials are calculated from these ¢;. This iterative process is stopped once a suitable
accuracy criterion is met (i.e. as soon as selfconsistency is achieved). Since the HF
equations (1.18) reflect the Ritz principle, one ends up with the set of ¢; which min-
imizes the total HF energy (1.17). The HF approach yields, in the sense of the Ritz
principle, the best determinantal approximation to the ground state.

The determinant (1.16) manifestly satisfies the requirement of antisymmetry.
This rather elementary correlation between fermions is often called Pauli corre-
lation. The wavefunction (1.16) does, however, not contain the correlation resulting
from the interaction between the electrons: while in the HF approach each electron
simply experiences the average field of the complete electron cloud, the actual mo-
tion of an electron depends, via the Coulomb repulsion, on the individual positions
of all other electrons (compare Sect. 3.1). In order to incorporate this Coulomb cor-
relation into the many-body wavefunction one has to go beyond the representation
by a single determinant. In order to construct such wavefunctions one has to real-
ize that a complete solution of the HF equations not only provides the N occupied
single-particle states included in the HF ground state (1.16), but also a (finite or in-
finite) number of further, unoccupied states (the other eigenstates of the differential
equation (1.18), obtained for a fixed Hamiltonian on the left-hand side). Together
with the occupied ¢;, these states form a complete basis of the single-particle Hilbert
space. A complete basis in the N-particle Hilbert space is then obtained from the set
of all determinants (1.16) which can be built from this complete set of single-particle
states (for a more detailed discussion see Appendix B). Using the completeness of
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the states of type (1.16), correlated wavefunctions can be written as

‘Pk(rlol,...rNGN) = Z Cﬁ__,iN(I)il.“iN(r]G],...)‘NGN). (1.22)
iy

Several strategies are available for the determination of the expansion coefficients
cf?l iy [2,3]. However, while highly efficient numerical implementations and present
day computer power allow the application of these so-called correlated ab-initio
methods to surprisingly large systems, there is a fundamental drawback, which se-
riously limits their range of applicability.

In order to understand this point one has to realize that, in one way or another,
the single-particle orbitals from which the ®;, ...;, are constructed must be expanded
in terms of some finite set of basis functions 7y,

M
0i(ro) = 3 bixo Mk(r). (1.23)
k=1

Using the matrix elements (1|n;), (ne|V?|n;) etc, Eq. (1.15) can then be recast
as an algebraic (eigenvalue) problem, in which the b; ;s and c{-‘l,,,iN are determined
either sequentially or simultaneously. For instance, in the case of an effective single-

particle problem (as the HF scheme) one ends up with

3 [(n

where Vg 5o 18 the total potential which the electrons experience (the basis func-
tions have not been assumed to be orthonormal nor has the fact been used that the
HF effective potential is diagonal with respect to spin). The obvious question is:
how do the algebraic formulations of the various many-body methods scale with the
size M of the basis set?

The answer to this question is not as straightforward as one might think, as it
depends on the technical implementation of the method under investigation. Fur-
thermore, one has to distinguish between the number of operations (i.e. computer
time) and the size of arrays (i.e. computer memory) required. The somewhat in-
volved answer is, for the interested reader, displayed in more detail in Appendix C
(for an alternative view on the same problem see [4]). The following list gives an
overview of the scaling behavior which is obtained for some of the standard many-
body methods [5]:

2v2

- m 666’+ﬁeff.66’

771> —8i<nk|nl>} bijsr = 0, (1.24)
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Noninteracting particles ~ ~ M3
Density Functional Theory ~ M’ 3 (in case of the LDA, GGA, MGGA)

Hartree-Fock ~ M* (in case of the standard implementation)
Mgller-Plesset 2 ~ M? (2nd order perturbation theory on HF basis)
Mgller-Plesset 4 ~ M7 (4th order perturbation theory on HF basis)
CISD(T) ~ M" (Configuration Interaction: energy

minimization allowing single (S), double
(D) and selected triple (T) particle-hole
excitations from HF ground state)

It should be mentioned that this table does not take into account reduction tech-
niques, such as the suppression of small matrix elements. An important aspect to be
noticed in this respect is the relation between M and the size of the system for multi-
center problems: in the case of localized basis functions like Gaussians an increase
of M eventually implies an increase of the number of atoms involved, as the num-
ber of basis functions required for each atomic center is essentially limited (even if
high accuracy is desired). However, the overlap of basis functions centered on atoms
which are far apart is very small, as long as the basis functions are well localized.
This condition is satisfied most easily, if the basis set only has to represent occupied
single-particle orbitals, but no virtual states. As a result, one can devise rather elab-
orate cut-off schemes for multi-center matrix elements, which reduce the scaling
behavior of the HF approximation to M>. Corresponding speed-ups are found for
the correlated approaches. It is nevertheless clear, that the scaling behavior of the
correlated ab-initio methods is prohibitive, as each additional power of M increases
the computational demands by a factor of the order of the electron number N: M
scales linearly with NV, since for any additional electron at least one additional basis
function is required in order to keep up the quality of the basis set representation.
While the precise range of applicability of correlated ab-initio methods is difficult
to assess, there will always be interesting systems whose size is beyond their reach.

For this reason only a method with the optimum scaling behavior is of interest
for the treatment of complex systems, i.e. some kind of effective noninteracting ap-
proach involving only single-particle operators. This suggests using the HF scheme,
as the prototype of an effective single-particle approach. However, as already indi-
cated, correlation plays an important role for many systems of interest, so that one
has to go beyond the HF approximation. This immediately leads to the question,
whether one can map the fully interacting many-body problem onto an effective
single-particle problem in a more complete fashion, including correlation in some
way. The answer is yes, this type of mapping is the basic aim of density functional
theory (DFT).



Chapter 2

Foundations of Density Functional Theory:
Existence Theorems

2.1 Hohenberg-Kohn Theorem

The starting point of any discussion of DFT is the Hohenberg-Kohn (HK) theorem
[6]. It represents the most basic of a number of existence theorems which ensure that
stationary many-particle systems can be characterized (fully) by the ground state
density and closely related quantities. As the reasoning leading to the HK theorem
is quite instructive, it is worthwhile to study this prototype of an existence theorem
in some detail (the discussion of the HK theorem follows [7]).

Let us consider the standard Hamiltonian of a stationary system of N interacting
spin-1/2 particles (typically electrons),

A=T+4 Ve +W, 2.1)

which consists of the kinetic energy operator 7',

T:Z th

/ &Erit(ro)V(ro), (2.2)
i=1 ms=1.1

the interaction of the particles with external sources characterized by a given, time-
independent potential vex(r),

A N

Vext = ZVext(r,-) = / AP rve(r)A(r) (2.3)
25 (r—r)= Y ¥'(ro)¥(ro), 2.4)
i=1 o=T,]

and a particle—particle interaction W,
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R N 1 N
W = Z w(ri,rj) = E 2 w(ri,rj)
i,j=17;i<j ij=1: i#j
— LS @ [ @0 )b (o i ) pr o iro). @5)
c,0'=1,l

In Egs. (2.2)—(2.5) r; represents the position of particle i, o; is its spin projection
in z-direction (the two possible orientations of ¢; will be either denoted as T, | or
by +1/2). ¥(")(ro) is the field operator which describes the creation/annihilation
of one particle with spin ¢ at point r. As we are dealing with spin-1/2 particles,
Ph) (ro) satisfies anticommutation rules,

{ﬁ/(rc),lfl(r’c’)} - {W(ro),wr'c’)} —0 2.6)
{ﬁ/(rG),lf/T(r’G’)} =8 (r—r) 8,0 2.7)

At this point it is not necessary to specify the interaction w(r,r’) in detail. The
basic DFT formalism is independent of the form of w, as long as w is kept the
same throughout the complete discussion. It is only assumed that w is symmetric,
w(r,r') = w(r,r) and independent of spin. In practice, of course, one is primarily
interested in electrons with their Coulomb interaction. Similarly, the external poten-
tial vex; Which is of particular interest in practical applications is given by Eq. (1.6).
For the present discussion, however, vy is considered to be an arbitrary function of
r.
Some further comments on Egs. (2.1)—(2.5) seem appropriate.

(a) The Hamiltonian (2.1) is strictly nonrelativistic. The complete formalism pre-
sented in this chapter can, however, be extended to the relativistic domain on
the basis of quantum electrodynamics. A detailed account of relativistic DFT
is given in Chap. 8.

(b) For the time being, the Hamiltonian does not include the presence of external
magnetic fields. This extension will be discussed in Sects. 2.5 and 2.6. The
absence of magnetic fields does not imply, however, that the eigenstates of
(2.1), and in particular the ground state, can not exhibit magnetic properties.

(c) Although it is not obvious from Egs. (2.1)—(2.5), the following discussion will
be restricted to the zero temperature formalism. An extension to systems with
T # 0 may be found in [8, 7].

(d) All energy contributions, which do not depend on the electron degrees of free-
dom, as the interaction among atomic nuclei (1.4), are irrelevant in the present
context. They can be added to the electron part of the Hamiltonian when
needed.

(e) An important property of the operator (2.3) is its local (that is multiplicative)
character. The potential (1.6) has this character, but the class of legitimate po-
tentials also includes additional electrostatic fields applied to the many-particle
system. It does not include, however, the standard type of pseudopotentials
utilized in the context of DFT (see e.g. [9, 10]). In order to introduce these
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nonlocal pseudopotentials one first establishes DFT on the all-electron level,
before making the transition to the pseudopotential description.

It is worthwhile to note at this point that there also exists an extension of the
HK-theorem to nonlocal potentials [11, 12]. In this approach the 1-particle den-
sity matrix

y(ro,ro’) = 2 /d3r2...d3rN‘I‘o(rG,r202,...rNGN)
02,...,ON
xWi(r'o’,ry0,,...ryoN),

where W denotes the non-degenerate ground state wavefunction correspond-
ing to the nonlocal external potential, plays the role that the density plays in
DFT. The arguments behind this extension follow closely the lines given be-
low.

(f) As indicated in Egs. (2.1)—(2.5) we will frequently switch between the first
and second quantized formalism, depending on which is more appropriate for
a given problem. An introduction to the language of second quantization may
be found in Appendix B.

The many-body eigenstates |¥}) corresponding to the Hamiltonian (2.1) are ob-
tained by solution of the stationary Schrodinger equation,

H|Y:) = Ei|¥y) . (2.8)

This is true in particular for the ground state |'\V), on which we will focus attention
in the following.

Now consider the set of all Hamiltonians of the form (2.1) with non-degenerate
ground states, i.e. the set of all local potentials vex; for which (2.8) leads to a non-
degenerate |Wy), while the interaction (2.5) is kept fixed. This set does not only
contain physically realizable potentials, but also an infinite number of purely math-
ematical constructs. In addition, it contains an infinite number of trivial copies of
any given vex(r), which are obtained by simply adding an arbitrary constant to
vext(r). These trivial copies, of course, lead to the same ground state, so that they
are physically equivalent to vex(r). On the other hand, there exist physical systems
with degenerate ground states which are not included in the present discussion—the
restriction to non-degenerate ground states will be removed later.

One can then interpret the solution of the Schrodinger equation as a map between
the set 7 of external potentials which differ by more than a constant,

YV = {vm ‘ with: vex multiplicative, corresponding |Wy) exists and

is non-degenerate, Vi (r) # vexi(r) + const } . (2.9)
and the set & of resulting ground states,

4 = {|Wo) | with: [¥o) ground state corresponding to one element of ¥/,
W) # € |Wo) with ¢ being some global phase}. (2.10)
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Let us denote the map from ¥ to & as A,
AV —9.
Introducing the ground state density ny,
no(r) = (Yola(r)[¥o)
-N Y /d3r2 Py |(ro1, P20y ryon WOV, 211)
oy,...0N

one can furthermore define a second map B between the set ¢ and the set ./ of all
ground state densities obtained from some element of ¢ via (2.11),

A = {ng | no(r) = (Yola(r) W), [¥o) € 4} 2.12)
B: 49— N

The two maps are illustrated in Fig. 2.1. By construction both maps are surjective.

Fig. 2.1 Correspondence between external potentials v;, associated ground states ¥y ,, and ground
state densities 7o, in the case of non-degenerate ground states.

The question then is: can it happen that the same |W¢) is obtained as ground state for
two different potentials or that the same ng results from two different ground states?
These possibilities are indicated by the dashed lines in Fig. 2.1.

The crucial observation of HK was: both maps are also injective and thus unique.
The proof of this statement for map A consists in demonstrating the validity of the
following two statements:

(i) For given vey there exists only one |Wp) in ¢, i.e. there is no veyx Which is
mapped onto two elements of ¥.

(ii) There is no |Wo) which is simultaneously ground state for two different po-
tentials vexe and v, which differ by more than a constant.



2.1 Hohenberg-Kohn Theorem 15

Statement (i) is trivial due to the restriction to non-degenerate ground states. It re-
mains to prove statement (ii).

The standard proof of (ii) is based on a reductio ad absurdum. Let us as-
sume that |Wy) is simultaneously ground state for two different potentials vy and
Vi 7 Vext + const. |Wo) thus satisfies two Schrodinger equations,

HWo) = [T+ Vet + W] [Wo) = Eo|Wo) (2.13)
H'|Wo) = [T+ Vi + W] [Wo) = Ep|Wo) . (2.14)

Upon subtraction of (2.13) and (2.14) one obtains
[Vext — Vi) [Wo) = [Eo — Eg[Wo) - (2.15)

Equation (2.15) is best written in first quantized form, in which, due to the multi-
plicative character of the potentials, one can divide by the ground state wavefunction

(r161, . 7I'NO'N|‘{’0> = ‘Po(rl Ol,..., rNO'N) . (2.16)

One thus finds

=

[Vext(r1) = Vi (ri)] = Eo — E} 2.17)

1

for all points r; for which the wavefunction Wo(r;01,...,ryoy) does not vanish.
Keeping N — 1 of the r; fixed and letting the remaining position vary, Eq. (2.17)
leads to a contradiction (as the right-hand side is constant, while vey and v.,, are
assumed to differ by more than a constant). Consequently, the map A is unique:
there is a one-to-one correspondence between the potential vey and the resulting
ground state |'Po) (up to some additive constant in vex).

Let us now turn to the map B. The definition of B via Eq. (2.11) implies that it is
impossible that one |y is mapped onto two different densities g and nj,. In order
to demonstrate the injectivity of B, one has to show that two different |¥¢) € ¢ can
not lead to the same ground state density ng. The proof again relies on reductio ad
absurdum. Assume that n is obtained from two different elements |¥) and |'¥)) of
¢. From the Ritz variational principle one then obtains an inequality for the ground
State energy,

Eo = (Wo|H|¥o) < (VH|H|Y,), (2.18)

where H is the unique Hamiltonian leading to [¥) (due to the uniqueness of map
A) and the strict inequality originates from the non-degeneracy of [¥¢) and |'¥{)).
The right-hand side of (2.18) can be evaluated further by adding and subtracting the

unique potential V/,, which corresponds to [¥),

Eo < Eg+ (¥ |Vext — V| '¥0) - (2.19)
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Using the multiplicative form of Vey, Eq. (2.3), and the assumption that both states
lead to the same density ng, one obtains

Eo < El)+ / drig(r) [vex(r) — vy (r)] - (2.20)

However, this argument can equally well be given with primed and unprimed quan-
tities interchanged,

Ej < Eo+ / d*rng(r) [V (r) = vex(r)] - (.21)
Upon addition of Eqgs. (2.20) and (2.21), one ends up with a contradiction,
Ey+Ey<Ey+Ep. (2.22)

One therefore concludes that the map B is also unique: there is a one-to-one corre-
spondence between |¥¢) and ny.

On the basis of these arguments one can formulate the fundamental statements
of the HK theorem.

(a) Taking both maps together, one has a one-to-one correspondence
between the external potential veyy in the Hamiltonian, the (non-
degenerate) ground state |'P¢) resulting from solution of the Schrodinger
equation and the associated ground state density ny,

Vext(T) ? [¥o) (:T) no(r) = (WolA(r)|Wo). (2.23)
unique (up to some constant in vex)

Thus vext, |Po) and ny determine each other uniquely. In mathemati-
cal terms: the ground state is a unique functional of the ground state
density, denoted as |W[n]). Upon insertion of one element ny € .4, this
functional yields the ground state |¥o) associated with this particular
nO’

[Wo) = [¥[no]) - (2.24)

The functional [¥[n]) is a realization of the map B~".

Note that no explicit information on vey is required to construct |¥o)
from ngp: |P[n]) has the same functional form for all kinds of many-
particle systems with the same interaction (w was kept fixed throughout
the complete discussion). The same functional |¥[n]) applies to atoms,
molecules and solids. The particular geometry of the systems under con-
sideration is mediated by the structure of the density. |¥'[n]) is therefore
called universal. Clearly, the functional dependence of |¥[n]) on n must
be extremely complicated.
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(b) The existence of the functional |¥[n]) leads to the statement that any
ground state observable is a density functional,

O[n] := (¥[n]|0|¥[n]). (2.25)

This is true, in particular, for the ground state energy, which turns out to
be the most important density functional,

E[n] := (¥[n]|A|¥[n]) = F[n] —|—/d3rvext(r)n(r) (2.26)
F[n] == (¥Y[n]|T + W|¥[n]). (2.27)

In (2.26) the universal part F [n] has been extracted from the total energy
functional E[n], in order to emphasize the fact that vey enters E[n] at
only one point.

(c) There exists a minimum principle for E[n]: if ng is the ground state den-
sity corresponding to vey, one has for all densities ny,(r) # no(r)

E[ng] < E[nj] = Ep = min E[n]. (2.28)
neN

This is a direct consequence of the unique relation between ng and |Wo)
and the Ritz variational principle (the ground state |'¥,) associated with
ny, differs from |¥p)). At this point it is worthwhile to emphasize the re-
stricted domain of the functional E[n]: only densities in .4, i.e. ground
state densities which are obtained by solution of the Schrodinger equa-
tion, are legitimate, but not arbitrary non-negative functions of r with
finite norm.

How can one interpret the last result physically? Obviously the particles react to
any (arbitrarily small) change in vey, so that their total energy is minimized, and
this response is unique. Due to the locality of the potential there is no modification
of vexr which does not require a readjustment of the electron wavefunction and,
consequently, of the density distribution.! This response is very familiar in a number
of cases. If, for instance, the nuclear charge is increased in an atom, the orbitals are
contracted in a well-defined way. If the form of the nuclear charge distribution is
changed from point-like to a finite shape, the density of the electrons in the vicinity
of the nucleus reflects this change of vey. If the atoms in a molecule are taken apart,
the wavefunction and the density follow this positional change. The basic result of
the HK theorem is therefore intuitively plausible.

Of course, these statements are only correct if the particles actually experience
the change in vex. If, for instance, some part of space is separated by a barrier of
infinite height and non-vanishing width from the region in which the particles are
moving, a modification of vey in this exterior region does not affect the particles

! This implies the uniqueness of the density—density response function of the system.



18 2 Foundations of Density Functional Theory: Existence Theorems

at all (as there is no communication between the two parts of space). Similarly,
if the difference between vey, and V., is non-vanishing only at the nodes of |¥y)
(Vext — Vhy, Would have a §-type form), the proof of the uniqueness of map A breaks
down. However, such situations are either trivial (as the case of an infinite barrier)
or rather unphysical. Potentials with d-like structures are not met in first-principles
electron structure calculations. For this reason one can safely assume the validity of
the HK theorem for all systems of practical interest.

In view of the intuitive physical background of the HK theorem it is not sur-
prising that the first energy functionals were introduced long before HK’s existence
proof. Thomas [13] and Fermi [14] considered the kinetic energy of a noninteract-
ing electron gas, which turns out to be a simple functional of the gas density—for
a derivation see Appendix D. Using this functional with the actual inhomogeneous
densities of systems like atoms or molecules (rather than just the uniform gas den-
sity) constitutes the so-called Thomas-Fermi model. A variety of extensions and
properties of the Thomas-Fermi approach have been established with time. A com-
plete review of these aspects of DFT is beyond the scope of this book. The basics
are summarized in Appendix D, for further information the interested reader is re-
ferred to [15, 7] which provide a rather complete account of the TF approach and
extensions.

2.2 Degenerate Ground States

The proof of the HK theorem presented in Sect. 2.1 relies crucially on the restriction
to non-degenerate ground states. The argument has to be modified in the case of
degenerate states. In this situation two or more ground states |'Wo ;) originate from
the same potential vex. The first step thus is an appropriate redefinition of the set of
legitimate potentials ¥,

YV = {vext | with: vex multiplicative, Vi (F) # vext(r) +const} , (2.29)

the set ¢ of resulting ground states,

q
Do = {1¥) | with: [¥) = ¥ i ¥o),
i=1

|Wo,) = degenerate ground states to vext} (2.30)
@G — Ugvext , (2.31)

Vext

and the set .4 of associated ground state densities,

Niee = {n(r) | with: n(r) = (W|a(r)|¥), |¥) € G } (2.32)
AN = (2.33)

Vext

ext *
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The definitions of ¥, ,, and .4;_, include the non-degenerate situation.

G

Fig. 2.2 Correspondence between external potentials v;, associated subsets of ground states ¥,
and subsets of ground state densities .4, in the case of degeneracy.

One can then show [16] that there exists a one-to-one correspondence between
the potential vey;, the class &, of all possible ground states resulting from vex;
and the class .4, of ground state densities obtained from these ground states

ext
and that the subsets ¢, and .47 for different vy, are disjoint,

Vext

(2.34)

ext ext

Vext(r) <= %,... <= N,
7 1

unique (up to some constant in vex¢)
[Wo) # ) and no = (Wo|A[Wo) # np = (¥olA|¥p)
for all pairs [Wo) € G, W) €Yy With vy 7 Vexe + const .

The proof of these statements proceeds as in the non-degenerate case: assuming
that two potentials vex; and V.., # vex + const have a common ground state [\Wy),
one can follow the arguments from (2.13) to (2.17) to end up with a contradiction.
Two different vey always lead to two disjoint sets of ground states ¥, —a given
[Wo) € ¥ can only belong to one particular &, and therefore to one particular ves.
Similarly, one arrives at a contradiction if one assumes that two states |¥o) € 4.,
and |¥j) € gvéx[ lead to the same density ny and then follows the arguments in
Egs. (2.18) to (2.22). A density ny € .4 can only be an element of one single set
i Two densities from different .4;_, necessarily correspond to two different

ext* ext
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Yo and two different vey and vice versa. A sketch of the situation is given in
Fig. 2.2.

In other words: one needs only one element of . 4]_, to identify the corresponding
9. a0d vexi. On the other hand, it can happen that the same density is obtained for
two different elements of one subset ¢, . As a simple example one may consider
the boron atom on the noninteracting level, i.e. in terms of a Hamiltonian with only
a spherical Coulomb potential. As the 2p-states are degenerate, a possible classifi-

cation of the 2p-states is

2 04, = 0y, (@)
2pF g5 (r) = Zlf(r)Ylil(-Q),

where R, (r) denotes the standard radial orbitals of the hydrogen problem and
Y;,,(Q) the spherical harmonics. However, due to

|Y1¢](.Q)‘2 = %sinz@ s

one finds that the density
N

n(r) = X 0i(r)

i=1

is identical for the following two 5-particle states (Slater determinants),

¥, = %det((ls)z(k)%[u)

1 209 0)\2
vo= = det((ls) (2s) 2p,) .
A unique functional |¥[n]) does not exist in the case of degenerate ground states.
Fortunately, the existence of such a unique functional is not really required in or-
der to extend the most important statement of the HK theorem to degenerate ground
states: only the existence of E[n] is of interest [16]. One first notes that, by definition,
all the degenerate states |y ;) lead to the same ground state energy. Even if two de-
generate states 1) = ¥ | a;|Wo,) and [¥2) =37 | b;|¥o;) with |¥;) # [¥>) lead
to the same n, this density nevertheless determines the ground state energy uniquely,

Ey = (W1|H|Y1) = (V2| H|Y:), (2.35)

as, by virtue of (2.34), both |'¥';) and |¥,) originate from the same veyt, i.e. the same
Hamiltonian (up to the constant in vex; Which is always undetermined). Similarly,
two different densities n, ny from the same .4}, give the same ground state energy.
As aresult, Ey is a unique functional of n.
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Choosing an arbitrary representative |'¥') among all states which lead to the
same given density n, one can define an energy functional E[n] for degenerate

states,
E[n] = (¥[n]|H¥[n)), (2.36)

which is unambiguous for all » in the set (2.33). As in the case of the non-
degenerate situation one can then verify the existence of a minimum principle,

Ey=E[n] VneN

; Ey<Eln] Van¢g.A (2.37)

ext *

2.3 Variational Equation, Interacting v-Representability,
Functional Differentiability

The minimum principles (2.28) and (2.37) indicate the possibility to determine the
ground state density of a many-particle system by a variational equation,

sy (E0 -k ([ )}

where the subsidiary condition is required to ensure the proper normalization of
the density. Unfortunately, the transition from (2.28), (2.37) to Eq. (2.38) is not
completely legitimate from a mathematical point of view. The existence of the vari-
ational derivative §E[n]/0n requires the functional E[n] to be defined on a suffi-
ciently dense set of densities n (just as the differentiation of functions requires more
than integer numbers as the domain of definition). So far, however, E|[n] is only
defined for ground state densities resulting from the solution of the Schrodinger
equation (2.8). One thus has to face the question whether there exists a potential
vext for every given normalizable function n(r), so that n(r) is the ground state den-
sity corresponding to vex? If such a potential can be found the density is termed
interacting v-representable.

Unfortunately, one can give explicit counterexamples, which demonstrate that
the issue of v-representability is non-trivial for the functionals (2.26) and (2.36).
The discussion of this problem is, however, mathematically somewhat involved. The
reader may thus wish to skip the remainder of Sect. 2.3 in a first reading and sim-
ply accept the (admittedly vague) statement that the functional derivative §E[n]/dn
exists for all practical purposes, if the definition of E|n] is suitably extended.

=0, (2.38)
n(r)=no(r)

1. The first counterexample is based on degeneracy. Let [Wo 1) ... [¥o) be ¢ or-
thonormal degenerate ground states for some vex;. One can then construct a sta-
tistical density matrix D from these states,
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q q
D= ci|Yo)(Yo,l; ci=c;>0; Ye=1. (2.39)
i=1 i=1

The corresponding (ensemble) density is obtained by
R q
np(r) =t {Di(r)} = ci(Wo,lA(r)|Wo,) - (2.40)
i=1

The important observation is: a density of the form (2.40) can not be obtained
from a single ground state |¥o) [17, 18].

This statement is worth to be demonstrated explicitly. The most general ground state of the
degenerate system has the form

q q
[Wo) = Y di|Wo,) 5 S ldil*=1. (2.41)
i=1 i=1

The corresponding density is

q
no(r) =Y did; (Wola(r)|Wo,) . (2.42)
i,j=1

For the densities ny and np to be identical, the relation

q
> (Ci5i.i —d; d‘,) (Po.ili(r)[Po,) =0

ij=1

has to be satisfied. As the matrix elements (¥ ;|A(r)|¥o,;) do not vanish and as they all exhibit
a different r-dependence, all prefactors must vanish individually,

iy —did; =0. (2.43)

The ¢ unknown complex numbers d; have to satisfy 2¢> linearly independent equations. As
there is in general no solution to (2.43), one can not find a linear combination of the |\ ;) with
the density np.

For this reason one distinguishes between pure-state and ensemble v-represent-
ability,

pure-state = n(r) results from a single state |¥y)
ensemble = n(r) results from a density matrix, i.e. a statistical ensemble

Obviously the original HK energy functional is only defined for pure-state repre-
sentable densities.

In order to cope with ensemble v-representable densities one replaces the set 4, ,
of pure states, Eq. (2.30), by the set of all density matrices which can be built on
the basis of the potential vex,

D,

Vext

q q
= {ﬁ ’ with: D= ¢;|¥o)(Woils ci=ci >0, Yeci=1;
i-1 i-1

|'Wo,;) = degenerate ground states to vext} . (2.44)
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One can then show that there is a one-to-one correspondence between vey(, the
set 2, and the set of ensemble v-representable densities resulting from the
elements of %, ., via Eq. (2.40) [17, 18]. The sets 2., and vey are uniquely
determined by any given ensemble v-representable n: a given n can not result
from more than one %, and the %, are disjoint—the underlying argument is

the same as in the case of degenerate ground states. This allows a redefinition of
E[n], Eq. (2.36), as

ext

EEHK[ } : I'{D[ ]ﬁ} with n = tr{D[n]ﬁ}

q
Z (Wo,|H|Wo,) (2.45)

q
with n( Zc, (Wo,la(r)|Woi); ci=ci>0; Yei=1;
|¥o.;) = degenerate ground states to H .

Any D which corresponds to the potential vey¢, Which in turn is determined by
a given density n, yields the same energy value, so that Eggk[n] is a unique
density functional. In this way the domain of E[n] is extended to ensemble v-
representable densities (for pure-state v-representable densities both functionals
coincide, since the minimizing density matrix in (2.45) results from the non-
degenerate ground state in this case).

2. The second counterexample [19] is of a more explicit nature: a single particle
in one spatial dimension. There is nothing in the HK proof which requires the
presence of more than one particle, an interaction or a three-dimensional system.
All statements of the HK theorem are also valid in this special limit.

The Schrodinger equation then has the simple form

2 2
{ I )}‘*'(x> =E¥(x): ) =[Y@P. (246

Equation (2.46) represents a direct map between n and veyt, if one chooses W(x)
to be real,

o1 4 —
Vext (X) = % \/ﬁ W n(x) +E. (247)

A similar relation can be established for noninteracting particles in three dimen-
sions.
One can now consider the density

n(x) = (a+blx|%)* f(x)?, (2.48)

with
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1
a,b>0; §<Oc<1; Ffx)=fo Vx| <xo. (2.49)

The function f(x) ensures the normalizability of n(x), so that (2.48) represents
a legitimate density for which E[n] should exist (the precise form of f(x) for
|x| > xp is irrelevant at this point).

The derivative of n(x) required for the determination of the corresponding vex(x) via Eq. (2.47)
can be evaluated by use of the general rule”

d d
T = {00 +0(—x)(~"}
= 8(x) {x” - (—x)p} + pfx|P 2 (2.50)
= pxjx|P~2 for p>0. (2.51)

If one assumes that d f /dx(xo) = d” f/dx*(xo) = O (which is legitimate as a single counterex-
ample is sufficient), one obtains in the interesting region |x| < xo,

d d

p n(x) = E‘I‘(x) = fobox|x|*72 (2.52)
L i = L) = fobaa— e
e nx—dx2 x) = fo X

+fobod () [+ (027! (2:53)

The kinetic energy associated with ¥ (x) is finite,

2 +x, 2
= <d‘I’(x)> Tk

T 2m )y, dx
h2 +Xx0
= S fipel / dx x24Ty < oo, (2.54)

X0

as o0 > 1/2 has been chosen (T is the finite contribution from the exterior region
|x| > x0). The corresponding potential reads (|x| < xp) [20]

W ba

Vext(x) = %a+b|x|°‘

{(a— D) |x] %7248 (x) [x* 1 (—x)* ] }—i—E, (2.55)
As could be expected, vex has a distributional character. The potential diverges
more strongly than |x|~! in the limit |x| — O for & < 1. The corresponding po-
tential energy,

+xp
V= dxvexi(x)n(x) + Vg, (2.56)

—X0

is not well-defined, the individual contributions being highly divergent. Obvi-
ously, potentials of the type (2.55) neither define a proper Hamiltonian, nor are

2 Note that for p > 0 one has &' (x)x” f(x) = —& (x) pxP~! f(x) for any regular f(x).
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they particularly realistic. This example calls for a more stringent characteriza-
tion of the sets of admissible densities and corresponding potentials.

3. The third counterexample [19] is even more simple. Consider a single (nonin-
teracting) particle in a spherical potential. Then any density with a zero is not
v-representable, as nodes can only show up for excited states (the ground state is
nodeless [21]).

The examples show that the treatment of non-v-representable densities needs closer
attention. A rigorous resolution of the problem of interacting v-representability can
either be obtained by a more mathematical approach or with a more practically
motivated argument.

1. In the practical variant one relies on the fact that any numerical realization of
DFT requires the use of grids. On a (finite or infinite) spatial grid, however, any
strictly positive (n(r) > 0), normalizable density, which is compatible with the
Pauli principle, is ensemble v-representable [20]. The crucial point is the repre-
sentation of the Laplacian by a suitable finite difference formula, as e.g.

V()=

L

Mm

[f(r+hei) —2f(r) + f(r—he:)] (2.57)
1

where an equidistant mesh and Cartesian coordinates have been used (with mesh
spacing h; e; denotes a Cartesian unit vector). The answer to the question of
v-representability is in this line of argumentation associated with the finite reso-
lution of the grid, which does not permit a representation of singular potentials:
the finite grid spacing suppresses all singularities.

2. For the mathematical resolution of the v-representability problem one introduces
a suitable redefinition of the energy functional [22, 17, 23]. The starting point of
this generalization is the Levy-Lieb functional

Eiiln] = Fioln]+ / & rven(r)n(r) (2.58)
Fpln) = Jnf (P|T+W|¥P). (2.59)

The notation ¥ — #n indicates that the infimum has to be taken over all N-particle
states ¥ which yield the given density #n (in fact, the infimum is a minimum, i.e.
there always exists some W which minimizes (W|T + W |¥) for given n [23]).
This restricted minimization procedure is usually referred to as the Levy-Lieb
constrained search.

The Levy-Lieb functional Ey 1 [n] represents a consistent extension of the original
HK functional: Eyy [n] is identical with E|n] for all pure-state v-representable n
and has its minimum for exactly the same density as E[n]. This can be shown by
use of the Ritz principle,
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Ey = igf(‘l’\[flri‘)
= inf { inf (P|T +W + Vex(| ¥) }
n Y—n

inf ELL [n] . (260)

As the infimum is actually reached for the true ground state with the density
no, Er 1 [n] is minimized by this density and one has Ej | [ng] = E[ng|. Moreover,
each state W, which minimizes (¥|H|¥) for some potential vey, is a ground
state by construction and therefore leads to a pure-state v-representable density.
As a consequence there are no additional densities n which are not pure-state
v-representable, but nevertheless give the same energy as the true degenerate
ground states. On the complete domain of E[n] one thus finds

ErL[n] = E[n] for all pure-state v-representable . (2.61)

The same is true for Fi1: Fi[n] = F[n], if n is pure-state v-representable.

So far, the problem of v-representability has, however, only been reformulated
by the definition (2.59). The question, still to be answered, is: given some non-
negative, normalizable function n(r), is there always a suitable antisymmetric,
normalizable N-particle function ¥ with n(r) = (¥|A(r)|¥)? If so, the func-
tion n(r) is called (pure-state) N-representable. Fortunately, the answer is yes
[11, 24-26]. In fact, one can explicitly construct such a wavefunction [24].

This construction, ignoring spin for simplicity, starts with the definition of suitable single-
particle orbitals,

12
ou(r) = (%) R ke?, 2.62)

with the Cartesian components of the vector field f given by

Jiwdxd'n(x',y,2)

fi(r) = Znif:odx’n(x’,y,z) (2.63)
o Tdd P dy (XY )

f2lr) = znfiodx’ Jo dy' n(x,y . z) 264)

F(r) = 2n_ffmdx Jo.dy [f.dd n(x,y,2) (2.65)

Joedx [Ty [TLdZ n(x Y, 2)

and a real, but otherwise arbitrary scalar field ¢(r). Different choices of ¢ are possible, unique-
ness is not required at this point.

The functions ¢ define an orthonormal and complete basis. Orthonormality is verified as fol-
lows. One starts with

. . 1 s .
[drolagn) = [ drar)etaboo, 2.6
For the evaluation of (2.66) the integration over r has to be replaced by one over f. Consider

first the x-coordinate. As long as n(r) does not vanish identically in some finite region of space,
/1 is a monotonically increasing function of x (for fixed y and z). One can therefore substitute
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/eo dz /m dy /eo dxn(x,y,z)
o Lo e (252) e

. ‘X’ ! !
o /Malz'/fwdy/0 df; '/mdx n(¥,y,2)

This procedure can be repeated with y and f5. For fixed z, the function (2.64) is a monotonically
increasing function of y,

/;m dz /j' dy /f dxn(x,y,z)
L [ [P (299 [ et
:W/anfl/ dz/ dfz/ dx/ dy'n(x'y',z).

Finally, z is replaced by f3,

/dz/ dy/ den(e3) = s /zn dfi /Mdfz/ dfs. (2.67)

Equation (2.67) allows a direct evaluation of (2.66),

/d3r¢k )0q(r )3 H/ dfje ki) = Orq- (2.68)

Equation (2.68) is the desired orthonormality relation. In a similar fashion one can establish the
completeness of the set of functions ¢,

Z ¢k(r)¢,j(r’) Meitp(r)*i(p(r’) 2 k(=)

kez3 N keZ3

= VR o) (2 50 () - £10)

/ i i / dJ 1 J2 -
_ n(;\)/n(r ) io(n-ip(r) (217 60 (r—v) E?JC(I)J;ZJ)%)
=8F(r—r), (2.69)

using the Jacobi determinant of (2.67).
With the ¢ one can construct an antisymmetric N-particle state. The Slater determinant

|
D,k = ﬁdet@kl ...¢kN> (2.70)

has all the properties required for the Levy-Lieb construction (2.59). In particular, one obtains
as the density corresponding to @y, the desired result

()= X lou ()7 =" . CED

i=1
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On the basis of this explicit construction of suitable N-particle states one concludes that the
Levy-Lieb functional (2.58) is mathematically well-defined for arbitrary non-negative functions

n(r).

The Levy-Lieb construction solves the question of v-representability: Eyy [n] is
well-defined for any density » in the vicinity of some ground state density ng. Unfor-
tunately, this does not automatically imply that the functional derivative of Ey [n]
at ng exists. This is analogous to the situation for ordinary functions, for which dif-
ferentiability at some point xp requires more than the existence of the function in a
neighborhood of xp.

In order to settle the question of functional differentiability an even more general
extension of the HK functional E[n| than Eyy [n] has to be introduced. A complete
and mathematically rigorous discussion of this extension, the Lieb functional [23],
requires a substantial background in functional analysis. Therefore only the basic
concepts and the main results will be outlined here (for an extended and coherent
review of Lieb’s work see [27]; a complementary approach, emphasizing the aspect
of Legendre transforms and generalizing the Lieb functional to non-integer particle
number, is presented in [28]). After a characterization of the admissible densities and
potentials in section (a) the Lieb functional is defined in section (b). Its functional
differentiability is discussed in section (c). Finally, in section (d) an alternative form
of the Lieb functional is introduced, which turns out to be most useful for estab-
lishing the Kohn-Sham equations in a rigorous way. The hasty reader may proceed
directly to the summarizing statement at the end of section (c).

(a) Admissible densities and potentials

In the first step of this extension the sets of admissible densities and potentials are
specified more precisely, as differentiability can only be demonstrated for a mathe-
matically well-defined domain. In fact, not every non-negative, normalizable func-
tion n(r) is a reasonable candidate for which a ground state energy functional should
be defined. Rather one requires the components of the ground state energy to be fi-
nite separately,

(PIT|¥) < e 2.72)
|(F[Vext|¥)| < o0 (2.73)
(P|W|WP) < oo. (2.74)

According to condition (2.72) the gradients of the admissible N-particle wavefunc-
tions W (r, 01, . ..) have to be square-integrable,

N
Tw) =Y Y _/d3r1...d3rN|V,»\P(rlcl,...rNaN)|2 (2.75)

i=10},...0N

-N 3 /d3r1...d3rN V¥(rion,...ryon)]? < . (276)
O1,...0N
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This condition leads to a constraint for the corresponding density [23],
3 172412
/ &Pr [Vn / (r)} < o 2.77)

In mathematical language, each component of V¥ is in the set .#%(R3") of square-
integrable functions over R*V, each component of Va(r)!'/? is in the set Z%(R?).
Quite generally, Z7(R?) denotes the set of all functions of ¢ real variables for which
the norm

1/p
Ifl, = [/dxl ...dxq|f(x1,...xq)p} (2.78)
is finite,

LPRY) = {f(x1,...x) | | Fllp <} - (2.79)

If one combines (2.76) and (2.77) with the square-integrability of P,

1) = (¥ = Y /dSrl...dSrN [W(ri01,...ryon)[> = 1 (2.80)
O1,...0N

— YeZRN), (2.81)
and of n!/2,
1/2 2 3
(IIn Hz) = |nll; = /d ra(r) = N (2.82)
— e L' (R); n'? e LR, (2.83)

one arrives at the statement that both ¥ and n'/? belong to the Sobolev space 7',
¥ e ' (R3) and n'/? € 7' (R3). This space,

A = {f|feLVfe L},

is a Hilbert space with the inner product
le) = [ o+ [Vr-ve.

As soon as W € 7! (R*V) the constraint (2.74) is automatically satisfied [23]. The
sets of relevant wavefunctions % and densities .7 are thus given by

W ={¥|llyll=1, T(¥) <=} (2.84)

S = {n | n(r) >0, /d3m(r) =N, n'%e %I(RS)} . (2.85)
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. has the important property that it is convex: with the densities n; and n, all
densities on the “straight connection line” between the two densities are in .,

nmmeS; 0<A<1 = n=Aim+(l-A)m]e.”. (2.86)

Since .7 C #'(R3), this result follows directly from the definition of the norm
£l = (fF)1 /% in 21 (R3), if Schwartz’s inequality,

(Vn1/2)2 (V’l)2

2
1/2 1—A né/z 1/2
1/2 an +(1— )—nl/an2

(lm) 1/2 —s—(l—k) ((l—n/l)nz> (Vn;/z)Z

Vn}/z) +(1 z)(vn;/z),

I /\

is used.

On this basis one can now consider the constraint (2.73), which leads to a char-
acterization of the set of admissible external potentials. One first has to realize that
any density in . also belongs to the larger space .#! (R?) N .#3(R?), which is a
Banach space (i.e. a complete normed vector space). This is a result of Sobolev’s
inequality, which (in 3 dimensions) states

s = [/d3 In(r) }1/3 3 ;()4/3/(13 Vn'2(r )]

However, a function which belongs to both ! (R?) and .#3(R?), also belongs to
Z%(R3). The integral (2.73),

(P [V W) = / Bra(Fvea(r) = |nve): ; (2.87)
is thus finite, if
Vew € L3R} + 27 (RY) (2.88)

where .#>(IR3) denotes the space of all bounded functions,

[fllo =" sup [f(x1,...xq)] (2.89)
(x1,...xg)ERY
ZL7(RY) = {f(x1,...x0) | | flle <M} . (2.90)

It is immediately clear that potentials from the set .Z* (we will now drop the indi-
cation of the coordinate space over which the functions are defined, as it should be
obvious at this point) yield a finite ||nvex||;. For the potentials from the set .23/
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one relies on the Holder inequality [29],
. 1 1
Ifell < Ifllp [ fllg  with ;+5=1 (2.91)
= [lwexll1 < [Infl3 [[Vext|lz2 < .

The set .£3/% + 2> includes in particular the Coulomb potential, which may be
decomposed as?

1 _OR—r) 1-6R—|r)

7| |r| |r|
O(R—|r|) c P31
Ir|
otk

£3/2 4 = is a Banach space with the norm

el = i€ {Uflatlelle o =F4e) . @92)

The characterization of the spaces involved is completed by the observation that the
dual space of .Z' N.Z3, i.e. the space of all continuous linear functionals on the
space of functions .Z! N3, is exactly .Z3/% + #*—all continuous linear func-
tionals on 2" N.Z3 have the form [ d>rv(r)n(r) with v € £3/2 + 2> [29].

(b) Definition of Lieb functional and basic properties

At this point one can start the discussion of energy functionals. One first defines the
energy E[v] of an N-particle system subject to the external potential v in the most
natural way,

EP] = igf{(‘P|Hv|‘P> |Yer}. (2.93)

Here the index v at A, characterizes the external potential in V.. This definition
is obviously legitimate for all v € .£3/2 + £, Of course, the existence of E[V]
for some v does not imply that that there is a minimizing state ¥ which satisfies a
Schrodinger equation with the operator H,. This is only the case if v belongs to the
set of potentials for which a ground state exists: the ground state then minimizes the
right-hand side of (2.93). The set of all densities, for which one finds such a ground
state is the domain of the original HK-functional,

3 On the other hand, unbounded potentials such as the harmonic oscillator require an additional
restriction on the set of densities.
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o = {n=(Y|a|¥) | IV € # with Ep] = (V|H,[¥)} . (2.94)

The second domain of interest is that of Egpk[n], i.e. the set of all ensemble v-
representable densities,

q q
B = {n = Zci<\P0,i|ﬁ|‘P0.i> | Ci = C;f >0; ZC[ =1;
i=1 i=1

|¥o,;) = degenerate ground states for some v € L3724 .Z""}. (2.95)
With the energy functional (2.93) the Lieb functional is then defined as [23]
F[n] = sup{E[v] - /d3rv(r)n(r) ’ vE .,?3/2—&—.,2”‘”} with ne .7 . (2.96)
v v

The domain of this functional can be extended to the complete space ! N .Z3,
if one allows Fi [n] to assume the value e (which is no problem in functional
analysis). However, only the densities in .# are really relevant in the following. The
energy (2.93) for any external potential v € .#3/? 4 2 is then obtained by

E[v] = ilr}f{FL[n] —|—/d3rv(r)n(r) ’ ne y} ) (2.97)

which is a consequence of the definitions of E[v] and F [n] as mutual Legendre
transforms.*

This identity can be verified by establishing two suitable inequalities. On the one hand, one has
by definition of Fi [n] for any given v € .£3/% + £~

E[vo}*/d%von < F[n] Vone, e L g

— inf{ {E[vo} —/d3rv0n} +/d3rvn ne y}
n

< inf{FL[n]+/d3rvn nejﬂ} Y v, v e LRy g

4 An extended version of F1.[n] in which the pure-state energy (2.93) is replaced by an ensemble
energy,

F[n,N] := sgp{E[v,N] —/d3rv(r)n(r) ‘ ve $3/2+$‘”}

E,N] := igf{tr{r)ﬂ} | w{DR} =N}

has been introduced by Eschrig [28]. It shares many properties with Fy,[n] and allows a consistent
handling of non-integer particle numbers. In accordance with the more general definition of E[v, N],
one finds

F[n,N] < F.[n] = Fux|n] for ne .
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This inequality also holds for vo = v,

Ep] < ir’%f{FL[n}—i-/dsrvn

nef} Vove Ly g (2.98)
On the other hand, one has by definition of E|v]

E[v] < igf{(‘P\IfI‘,\‘P) |Wew, (Pa¥)=n} Vnes ve L+~
so that

E[V}*/aﬁrvn
< iff,f{<l{‘|f+w|‘l’) |Yew, (Plal¥)=n} Vnes ve Lo

= A = sup{E[v]f/d3rvn ve$3/2+$°°}
< mf{ WIT+W|W) | Yew, (PalW)=n} Vnes
= FL[n]+/d3rvn
< inf{(PAY) | Yer, (Hal¥)=n}  VneS veL Vo7

However, for any ¥ € % the resulting expectation value (‘¥|A['¥) is in .#, so that the infimum of
the right-hand side of this inequality is exactly E[v],

inf{FL[n] + /dSrvn

< inf{(PAY) [Wer} = EY] ve L > (2.99)

neY}

Combination of this inequality with (2.98) proves (2.97).

As a direct consequence of (2.97) one obtains
FL[l’l] = FLL[H] = FHK[H} Vne JZ/, (2.100)

so that Fi[n] is a consistent extension of the initial HK functional.

(c) Functional differentiability of Lieb functional
For the functional Fi,[n] one can prove the following properties [23, 30, 31]:
1. F[n] is convex: for ng,n; € . and 0 < A < 1 one has
FLAni+(1=A)ng] < AFL[ni]+ (1 —A)F.[no] . (2.101)
Note that the convexity of .% ensures that Fi [n] is defined (i.e. finite) for all

n=An; + (1 — A)ng. The property (2.101) results from the linearity of Fi [n] in
n in combination with the definition of F[n] as a supremum.
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2. F.[n] is weakly lower semicontinuous: for any sequence n; which converges
weakly against a limit n, i.e. for which

(e —np|) =20 ¥V ve 242,

one has
FL [I’l] S lim il’lfFL [}’ll] = limianL [nk] .
koo I>k k—seo
This relation is a “weak” version of the standard concept of continuity which
. k—eo . . . . .
requires that |F [n] — F.[m]] —— 0 if ng is norm convergent against n (i.e. if

k—oo . k—oo
|lng —nlli —— 0 and simultaneously ||n; —n|ls —— 0).
3. Fi[n] has aunique continuous tangent functional on #: for all ny € % there exists

a continuous linear functional 8F,,[n] with domain ! N.#3, i.e. a functional of
the form

0F,,[n] = —/dSrv(r)n(r) with ve L3244 2°, (2102
so that
Fn] > Fllnol+8F,,n—n) VneZL'ng?, (2.103)

and the kernel v in 6F, [n — no] is unique up to a constant (the uniqueness is a
consequence of the HK theorem). The tangent functional vanishes for n = ng, so
that (2.103) becomes an equality at this density, which explains the name.

4. The set of densities in A is norm dense in . for arbitrary ny € . there

. k—o0 .
exists a sequence n; € & such that ||y —ngl|i —— 0 and simultaneously
k— o0

[k —nolls —— 0.
This statement ensures that for any ng € . one can find a unique continuous
tangent functional for a density n; which is infinitesimally close to ng, so that,
from a practical point of view, continuous tangent functionals exist for all ny €

.

These properties finally allow a resolution of the initial question concerning func-
tional differentiability. The point is: for any convex, finite, lower semicontinuous
functional with a unique continuous tangent functional the existence of the func-
tional derivative is guaranteed, the functional derivative being identical with the
kernel —v(r) of the tangent functional [30, 31, 29] (for a more precise formulation
see in particular Corollary 2.5 and Proposition 5.3 of [32] or [27]). Since the first
step of the proof of this statement is both simple and instructive, it is worthwhile to
present it here. Consider the densities

n = ng+A(n —ngp) with nge B, me, 0<A<I1.

Due to the convexity of . the density # is also in .. Now combine the convexity
of F [n] (property 1.) with the existence of the tangent functional (property 3.),
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AFL[n]+(1—=A)F.[no] > FL[no+A(n1—ng)] > F[no] + 5Fn0 [A(n1 —no)] .

If one subtracts Fi [ng], uses 6F, [A(ny —ng)] = A8F,,[n — no] and divides by A,
one arrives at

Fi[no +A(n1 —no)] — F[no]

Flni] — F[no] > 7

> §Fyln—nol.  (2.104)

Both Fi[ni] — Fi.[no] and 8F;,[n; — ng| are well defined and finite, so that the so-
called Gateaux differential

. K +A(ng — iy
F'lno,ni] = ;ILIE}) L[no (nl,an)] . [n0]

of F [n] at n = ny exists.

In order to complete the proof of the existence of the functional derivative one
has to demonstrate that the Gateaux differential is linear and continuous in (n; —ng),
i.e. that it is identical with 0F,, [n1 — no). This second step of the proof is more in-
volved, so that the reader is referred to the literature [32, 27] for a mathematically
rigorous discussion. The linearity of the Gateaux differential is, however, intuitively
clear on geometrical grounds, if one interprets the functionals involved as simple
functions as in Fig. 2.3: the right-hand inequality in (2.104) shows that the Gateaux
differential approaches the limit n; = ng at least as slowly as the linear functional
OF,,[n1 —ng] when n; approaches ng. So, F'[ng,n;] can not vanish faster than n; —ng

Fig. 2.3 Illustration of convex functional F{ [1] with unique Gateaux differential 8 F,,[n; — no).

for ny — ng. On the other hand, the convexity of F.[n] does not allow F'[ng,n1] to
approach its limit zero more slowly than n; —ny (as the straight line between Fi[n]
and F[ng] must be above Fi [no + A (n; — np)] for arbitrary n;—this excludes that
Fi[no+A(n1 —nop)] jumps above this line for some sequence of A, so that semiconti-
nuity implies continuity). Consequently, F”[no,n;] must be linear in n; — ng. More-
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over, as the direction of n; — ng is arbitrary and the tangent functional is unique,
F'[ng,n;] must coincide with 8 F,, [n) — no).

In summary: The functional derivative of Fj [n] exists for all ensemble v-repre-
sentable densities and is identical with a potential vexs from the dual space
L2+ L,
(]

() |y

=

= —vext(r)  with vey € L2+ 2. (2.105)

=7

Moreover, for any other “reasonable” density n (i.e. for any n € .%’) one can
find an ensemble v-representable density which is arbitrarily close to n, so that
the functional derivative of Fy [n] again exists.

In order to complete the picture, it is worthwhile to reconsider the Levy-Lieb
functional (2.59) at this point. The existence of a unique continuous tangent func-
tional for all n € &7 has also been demonstrated for Fy 1 [n] [23]. However, this func-
tional is not convex on . [23]. Since convexity is crucial for establishing the exis-
tence of the functional derivative of F [n] via Eq. (2.104), functional differentiability
has not been rigorously proven for Fj [n] so far.

(d) Representation of Lieb functional in terms of density matrices

So, as a matter of principle, the subsequent development of the DFT formalism
should therefore be based explicitly on the Lieb functional. We will nevertheless
often ignore the issue of functional differentiability in the following and will not
distinguish between the various flavors of the energy functional. A prominent ex-
ception is the derivation of the Kohn-Sham equations. For this purpose, an alterna-
tive form of F [n] is most useful. In fact, for all n € .7 the Lieb functional Fi [n] can
be recast in the form [23]

Filn] = inf w{D(T+W)} , (2.106)

D—n

with the density matrices restricted to the form

D =Y d V) (W, di =d >0, Ydi=1, (¥u|¥)) =, V€
k k

n(r) = zk‘,dk (Wila(r)|Px)

(the W) denote a set of orthonormal wavefunctions in the N-particle Hilbert space).
One can also show that there always exists a minimizing D for all n € .7 [23]. The
form (2.106) will be used in particular to establish the Kohn-Sham equations for
degenerate systems (see Sect. 3.3).
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2.4 Fractional Particle Numbers, Derivative Discontinuity

The variational equation (2.38) raises one further question: in this equation the par-
ticle number is determined via a subsidiary condition, which implies the existence
of E[n] for non-integer particle numbers. However, so far all energy functionals are
only defined for integer N. Therefore the question has to be addressed, how to extend
the energy functional to fractional particle numbers.

Assume that a density integrates up to N 41,

/d3rn(r)=1v+n; N=12... 0<n<l. (2107

The simplest definition of an energy functional for such a density is a statistical
superposition of the lowest possible energies of two states |¥y) and [Wy1) with
the neighboring integer particle numbers N and N + 1 [33],

Efln] := Fyln] + / & rvea(r)n(r) (2.108)

Ff[n] ::\Fn&i‘n {(1—n)<\PN|T+W|\PN>+n<\PN+1|T+W“PN+1>} (2.109)
N> TN+1

with 2(r) = (1= ) (¥n[AF) [ Ey) + 1 Py A7) [ Pyet)  (2.110)
(Wn[Wn) = (Pnet [Phen) = 1.

The condition (2.110) restricts the variational search for the minimum in (2.109) to
those combinations of normalizable states |Wy) and [Wy.1), which yield the pre-
scribed density n (constrained search). On the other hand, |¥y) and [¥y ) need not
be related to the potential vex in any way. Equation (2.110) automatically guarantees
the desired particle number (2.107). The definition (2.109) is an obvious extension
of the Levy-Lieb functional (2.59) to fractional particle numbers. Correspondingly,
Fy[n] becomes identical with the Levy-Lieb functional for n = 0. On the basis of
E[n] the variational equation (2.38) is also well-defined for fractional particle num-
bers,’

;o @.111)

as Fy[n] exists for any non-negative n(r) which integrates up to N + 7. For any given
particle number N + 1 one finds a corresponding Lagrange multiplier py (N +1).

For integer particle number this Lagrange multiplier is identical with the chemi-
cal potential

vy = 2E

= 5n (). (2.112)

3 Precisely speaking, the extension of the Lieb functional to non-integer particle number [28]
is required at this point. We will, however, not distinguish between the two functionals in the
following.
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where E(N + 1) denotes the minimum of the functional (2.108) for given, fractional
particle number,

E(N+1) = min Eg[n]. (2.113)

Equation (2.112) can be verified by functional Taylor expansion of the total energy
of a system with fractional particle number around the ground state density ny of
the N-particle system,

JE

oN
1

lim —|E(N —E(N

lim [E(V )~ EN)]

(V)

(Ngn (r) —ny(r)]+...—E(N)|,

n=ny

o SEs[n]
= {Ef [”NH/ ()

where nyyn denotes the ground state density for particle number N + 7 and
E¢[ny] = E(N). One can now use (2.111) to identify the Lagrange multiplier with
JE/IN,

JE

H(N):ﬁ

.1
(N) = ur(N) 71713}) 0 &rinyin(r) —ny(r)] = uL(N).  (2.114)
It is worthwhile to examine t(N) more closely. Consider the ground state energy
of a system with N + n particles,

E(N+mn) = min Ef[n]
=min_min {(1—n)(¥y|H[¥N)+ 1Py |H[Pye1)}  (2.115)

n Wy Wyii

with n(r) = (1 —n)(¥n[A(r)[¥Yn) + 1 (YN |a(r)[Pyi1)

where the search for the minimum over # is restricted to densities with the fractional
particle number N + 11. However, the expression

(1—=n)(¥n|H|¥N) + N (N1 [H[PN11)

becomes minimal if [y ) is the ground state of the N particle system and [Py 1) is
the ground state of the N + 1 particle system (for the same vex—one now assumes
that the normalizable ground state |Wy41) exists, i.e. that vex is capable of binding
N + 1 particles). The minimum of (2.115) is therefore obtained if n is given by a
superposition of the ground state density ny of the N-particle system and the ground
state density ny. of the (N + 1)-particle system,

n(r) = (1—n)ny(r)+ Ny (r). (2.116)
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A similar superposition is found for the total energy of the system with N 4 1 par-
ticles,

E(N+1) = (1-1E(N)+nEN+1). (2.117)

This dependence of the energy on the particle number is illustrated in Fig. 2.4. The

E(Q)

N-1 N N+1 0

Fig. 2.4 Particle number dependence of the total energy E(Q) for fractional particle number Q
(the external potential vey; is the same for all Q).

total energy is a linear function between two neighboring integer particle numbers.
According to Eq. (2.114), u(N) is the slope of this piecewise linear curve. One thus
obtains

U(N—=nm)=E(N)—E(N—1)=—IP (ionization potential) (2.118)
UN+M)=EN+1)—E(N)=—EA (electron affinity), (2.119)

if N is the number of electrons required for charge neutrality (and n > 0). As
a consequence, [L(N) is discontinuous at all integer particle numbers. In view of
Egs. (2.114) and (2.111) this implies that the functional derivative of the total en-
ergy functional E¢[n] itself must have discontinuities at these particle numbers, the
so-called derivative discontinuities (for an extended discussion of this and related
aspects see [15]).
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2.5 Spin-Polarized Systems

Up to now the discussion focused on systems of interacting particles moving in
an electrostatic external potential. Density functional theory can, however, also be
extended to systems in which the particles are subject to a static magnetic field
[34, 35]. In the simplest version the corresponding Hamiltonian is given by
H=T+W+ /d3r{vex[(r)ﬁ(r) + Bex (r) -f(r)} . (2.120)

Here 7 is the operator of the magnetization density,°

N
i(r) = up Y 6:8V(r—r) =g Y 9'(ro)oe P(ro’),  (2.121)
i=1

o,0'=1,]
where 0 denotes the 2 x2 Pauli matrices,

0 1

Oy = (1 O) & Oioo' =0 ¢ (2.122)
0—i .. ,

a=1{i 0 &  Oygo = isign(0’) 8/ _¢ (2.123)
1 0 .

O; = (0 _1> < Ozg¢’ = Slgn(G) 50",0' ) (2.124)

and U is the Bohr magneton, tp = efi/(2mc) (e = |e]). In addition to the conven-
tional single-particle density ng, now a second density variable, the ground state
magnetization density

mo(r) = (Wo|m(r)|¥o), (2.125)

offers itself for a characterization of the ground state |¥o) of the Hamiltonian
(2.120). And indeed, one can verify the following two statements [34, 35]:

(a) Two different non-degenerate ground states [Wo) and [W{)) from the set
of all ground states resulting from Hamiltonians of type (2.120) always
lead to two different sets of ground state densities (ng,mo) and (ng,,my),
i.e. at least one of the four density components differs. As a conse-

6 Both the components of bispinors and spin quantum numbers will be characterized by either
the numerical values £1/2 or, alternatively, the symbolic equivalents T, |, depending on which
notation is more convenient or clear.

In Egs. (2.120) and (2.121) the sign of the magnetization density has been chosen so that m
differs from the conventional magnetization density of electrons introduced in classical electrody-
namics (see e.g. [36]) by a minus sign.
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quence, |Wo) is uniquely determined by the set (ng,my), i.e. is a unique
functional of (n,m),

[Fo) *T* (no,mo) = [Po) = [Pno,mo]).  (2.126)

one-to-one

The proof via reductio ad absurdum proceeds as for the purely electrostatic po-
tential. Assume that the ground states |\Wo) and |'¥{,) corresponding to the Hamilto-
nians A and A’ yield the same set (ng,m). Then consider the ground state energy
and use both the Ritz variational principle and the fact that the two states are non-
degenerate,

(WolH[Wo) < (WolH[¥o)

— (VLA + / &1 { [Vess — Vo] 10+ [Boxt — Blog] mo} (2.127)

(as |Wo) # |'¥)) and both states are non-degenerate one necessarily has H # H', i.e.
(Vext; Bext) 7 (Vaxe, Bogt))- Interchanging primed and unprimed quantities one finds

(WHIH W) < (Yol H|Wo) + / &1 { [V — ve] 0+ [Bl — Bex] -mo} .
(2.128)
Addition of (2.127) and (2.128) leads to the desired contradiction.

(b) The functional |¥[n,m]) allows the definition of a ground state energy
functional,

Eln,m) = Fln,m] + / B {ve(Pn(r) + Beu(r)-m(r)}  (2.129)

Fln,m] = (¥[n,m]|T +W|¥[n,m)), (2.130)
which satisfies a minimum principle,

Elng,mo] < E[n,m] ¥ (n,m) # (no,my) (2.131)

with (ng,mp) being the ground state densities corresponding to
(VextaBext)~

The proof follows the same pattern as in the original argument by HK. Note that
it is usual to call E[n,m] a density functional, in spite of the fact that this functional
not only depends on 7, but also on the magnetization density. Ignoring the issue of
v-representability, one can furthermore reformulate (2.131) as a set of four coupled



42 2 Foundations of Density Functional Theory: Existence Theorems

variational equations,7
OE[n,m] o O0E[n,m] B
“on(r - Smi() S0 e

n=ng,m=m n=ng,m=m

with the Lagrange parameter y ensuring the correct particle number as in (2.38).
A number of points should be noted:

1. The reader will have noticed that the existence theorem formulated for systems
subject to magnetic fields is much more restrictive than the original HK theorem.
In particular, nothing has been said about the relation between the ground state
[Wo) and the set of external potentials (Vext, Bext). Obviously, the corresponding
proof used for the original HK theorem does not apply in the present situation,
as the operator By - 2 does not allow a factorization of the ground state wave-
function (which was utilized in Eq. (2.17)).

In fact, one can give a rather simple argument that two different sets of (Vext, Bext)
can lead to the same ground state [34, 37, 38]: whenever one has a magnetic field
of the collinear form

B (r) =(0,0,B)

with constant B, any ground state |¥o) of some Hamiltonian A,
H|o) = Eo|'Yo) ,

which is simultaneously an eigenstate of
A~ N A
S, = z Giz s S:[Wo) = S:|¥o),

is also an eigenstate of the extended Hamiltonian A + /.LBB§Z,
(A + upBS.) [Wo) = (Eo+ usBS:) |Wo),

irrespective of the magnitude of B. Moreover, as long as B is sufficiently small,
[Wo) remains the ground state of the system characterized by H+ /.LBBS'Z, demon-
strating the non-uniqueness of the map between all ground states and the set of
external potentials (Vext, Bext)-

However, the above example obviously relies on the fact that B is constant. Cor-
respondingly, one can show that two pairs of spin-dependent potentials,

/

Vi (r) = vext(r) £ UpBexi(r)  and VI (r) = vy (r) £ UpBey (1) |

7 Here and in the following the derivative with respect to a vector is to be understood as the vector
which results from differentiation with respect to the components,

8E[n,m| _ (8E[n,m] SE[n,m] GE[n.m]
dm(r) ( Smy(r) " Sma(r)’ Sms(r) ) ’
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for which vs differs from vj; by more than a o-dependent constant (for both
o = =) always have different ground states [38—40].
Returning to the general case of a magnetic field Bey; with more than one non-
vanishing component, the question of uniqueness then reduces to the question
whether one can find a local rotation in spin space which transforms Bey; to the
collinear form (0,0, Bex)? The answer is no [40] (with the exception of some
rather special cases [41]), so that the map between the ground state |¥y) and the
set of external potentials (vext, Bext) is invertible in the general situation.

2. Often the actual magnetic field has only one non-vanishing component,

Bexi(r) = (0,0, Bext (1)) - (2.133)

Of course, one can go through the existence theorem for a field of the form
(2.133) as in the general situation. One ends up with the statement that there
is a one-to-one correspondence between |Wp) and the set (ng,m; ),

‘\PO> A (l’l()7mz7()) = ‘\PO> = |‘I’[n0,mz70]> . (2.134)

Correspondingly, the energy becomes a functional of n and the z-component of
the magnetization density, m,.
It is standard to reformulate this functional in terms of the spin-densities,

N
2 1+sign(0)0,,] 8% (r—r) =¥ (ro)r(ro)  (2.135)

ar) =Y hAql(r). (2.136)

o=

N \

—
—

In fact, for the z-component of Eq. (2.121) one immediately obtains

ti(r) = g [0 (P 1) W (r?) = 9 (r )W (r )] = g (A1 (r) = A (n)] . (2.137)

Thus the set (ny,n|) is completely equivalent to (n,m.). All statements can
equally well be formulated in terms of (n1,n). The most frequently used form
of the spin-density functional then reads

Elny,n|| = Fny,n|] +/d3r{vext[m +n)]+ UpBex[ny —nj]}  (2.138)
Flny,n)) = (¥lng,n)|T+W[¥[ny,n]). (2.139)
The associated variational equations rely on the fact that in the case of the re-

duced magnetic field (2.133) the Hamiltonian (2.120) commutes with the total
particle number for given spin,

No = / Prig(r) . [A,85] =0 (2.140)
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(for the basic commutators involved see Appendix L). It is thus possible to fix
the individual numbers Ny of particles with spin o, as long as the total particle
number is N,

Ng = (Wo|Ng|Wo) ; N;+N| =N. (2.141)

Each pair Ny, N| defines one sector of Fock space for which the Ritz variational
principle is separately valid, so that the DFT minimum principle also applies to
each sector separately. Consequently, the variational equations have the form

OE[ny,n] -
ong(r) o

nNg=Ng 0

(2.142)

with the Lagrange parameters {5 controlling the individual particle numbers Ng.
The true ground state then corresponds to the pair of Ng which gives the mini-
mum energy.

3. One can finally reconsider the many-particle problem without any magnetic field.
For this problem it is nevertheless legitimate, though not formally necessary, to
use the spin-dependent functional

Elny,n)| = F["T7”1}+/d3rve:xt[”¢+"¢] ;

rather than the original form (2.26): the class of systems discussed in the present
section also contains the more restricted class considered in the original HK the-
orem. In practice, Egs. (2.138)—(2.142) with Bey = 0 represent the standard DFT
approach to spin-polarized systems, i.e. systems with non-vanishing magnetic
moment.

Why is this extended description of spin-polarized systems superior to the more
direct approach in terms of only the density? In principle, n; and n| are func-
tionals of the complete n as long as By, = 0. However, their functional depen-
dence on n is definitely complicated. Consequently, it is advantageous to resolve
this unknown functional dependence by explicit use of the spin-densities via the
functional (2.138). In this way, one effectively introduces an exact symmetry of
the system into the energy functional.

One can go even further and apply the full magnetization density formalism
(2.129)—(2.132) for the description of systems without any external magnetic
field. As a matter of fact, many systems, ranging from open subshell atoms to
large classes of solids, show a local variation of the direction of m, i.e. a non-
collinear magnetization density.

The most prominent example for a system with non-collinear m is y-Fe, which crystallizes in

the fcc structure.® When y-Fe is synthesized as precipitates in a Cu matrix, the local magnetic
moments M; of the iron atoms, i.e. the integrals over m around single sites,

M;= | d&rm(r),
Q;

8 y-Fe is the standard form of iron in the temperature range between 910°C and 1390°C.
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do not align ferromagnetically, as one would expect from the bcc phase of iron and other 3d
elements. Rather the local moments form a spiral wave [42], referred to as spin-spiral or spiral
spin-density wave (SDW),

M; =M(cos(Q-Ri+¢)sin(0), sin(Q- R+ ¢) sin(6), cos(6) ) ,

in which the direction of the M; precesses around one of the cubic axes, if one proceeds from
site to site along this axis (R; denotes the position of site 7). Moreover, the spin-spiral is in-
commensurate with the crystal lattice, i.e. its wavelength can not be expressed as a rational
number times the lattice constant a of the fcc lattice. Experimentally one observes a wave vec-
tor of @ ~ (0.1,0,1) (27 /a) and @ = /2 [42], corresponding to a planar spiral wave® (helical
SDW).

Early DFT calculations for y-Fe (see e.g. [44]) relied on the inclusion of non-collinearity on
an intermediate level: assuming m to be collinear around the individual sites, only the spin-
quantization axis was allowed to vary from site to site. A spin-density functional approach
allowing for this inter-atomic non-collinearity has been formulated quite early [45, 46] (for a
review see [47]). More recently, however, it became clear that the variation of m on the intra-
atomic scale (intra-atomic non-collinearity) plays an important role'” for y-Fe [48, 43, 49, 50].
Non-collinearity has also been observed for the ground states of ¢-Mn (bulk Mn at room tem-
perature and ambient pressure—see [51] and references therein), a number of Mn and Fe com-
pounds (see e.g. [52]), several Uranium compounds (see [47] and references therein) as well
as thin Cr and Fe films (see [53-55] and references therein). Mono-layers of Mn on a tungsten
surface develop a cycloidal spin-spiral, resulting from the spin—orbit interaction in a system
lacking inversion symmetry [56].

Finite systems exhibit non-collinear magnetism as well: for instance, non-collinear calculations
for several low-lying states of free small iron clusters show a variation of the direction and
size of m on the constituent atoms [57]. A simple example is the ground state of Fes. In this
trigonal bipyramid structure the magnetic moments in the basis of the pyramids are aligned, the
moments of the two tips, however, are tilted with respect to the majority spin direction defined
by the atoms of the basis. When deposited on a Cu surface, on the other hand, iron clusters
seem to prefer ferromagnetic ordering [S8]. However, even for clusters on a surface geometric
frustration can lead to non-collinear magnetic moments in the case of Mn and Cr clusters [58],
consistent with the vanishing total magnetic moments observed in experiment [59, 60].

It is obvious that use of the non-collinear formalism (2.129)—(2.132) is manda-
tory for systems for which the non-collinearity of m is an indispensable feature
of the electronic structure, as, for instance, y-Fe. For most problems, however,
the corrections resulting from non-collinearity are rather small, in particular for
open-subshell atoms [61] (compare also [62, 63]). For these systems the applica-
tion of the more complicated calculational scheme resulting from Egs. (2.129)—
(2.132) is usually too high a price to be paid for the more accurate representa-
tion of m. Spin-density functional theory in the form (2.138)—(2.142) represents
the standard approach to magnetic systems for this reason. It seems worthwhile
to emphasize that this approach rigorously covers antiferromagnetic ordering of

° The value 8 = 7/2 follows rigorously from symmetry constraints as long as spin—orbit coupling
is neglected [43].

10° At the same time even the early calculations revealed a very high sensitivity of the magnetic
structure of the ground state to the equilibrium volume.
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magnetic moments, including situations as the linearly polarized spin-density
wave observed for the ground state'! of bulk Cr.

2.6 Current Density Functional Theory

The Hamiltonian (2.120) accounts for the dominant coupling mechanism between
magnetic fields and electrons, at least for low electron velocities. It neglects, how-
ever, the Lorentz force exerted on the electrons by the magnetic field. This effect is
included in current density functional theory (CDFT) and its extension, current spin
density functional theory (CSDFT) [68-71]. The starting point for the discussion of
CSDFT is the Pauli Hamiltonian,

g L Brot v+ & 29
H= sz./d ryt(ro) { ihV + CAm(r)} V(ro)

+ [ dr [vea(r)i(r) + Be(r) ()] + W (2143

where the magnetization density i is defined as in Eq. (2.121) and A denotes the
vector potential which generates the magnetic field,

Bexi(r) =V X Aexe (1) . (2.144)

The Hamiltonian (2.143) can be systematically derived from the fully relativistic
Hamiltonian of Dirac theory,!? either by an expansion in powers of 1/c or, alterna-
tively, by a low order Foldy-Wouthuysen transformation.

The formulation of a density functional approach for the Hamiltonian (2.143)
has to be preceded by some remarks on the issue of gauge transformations. The
magnetic field (2.144) does not change under the gauge transformation'?

1 The ground state of bulk Cr (which crystallizes in the bcc structure) exhibits a static SDW
along the (100) direction of the conventional cubic unit cell (for an overview see [64]): while the
directions of the local magnetic moments on nearest neighbor sites (corner and body-center of the
bee structure) are antiparallel (corresponding to an anti-ferromagnetic ordering), the amplitudes
u; of these local moments are modulated in an almost sinusoidal form, y; = M sin(Q-R;) +...
(with M| = 0.62 ug). Moreover, the wavelength of the SDW is incommensurate with the crystal
lattice: the dominant wave vector in the SDW is found to be |Q| = 0.952 27”, the period of the
complete spin-density pattern is as long as 20.83 a. A longitudinal SDW is observed below a spin-
flip temperature of 123 K, a transverse SDW between this and the Neél temperature of 311 K.
However, in both cases linear polarization is energetically favored over some helical SDW, so that
m remains collinear (for corresponding SDFT calculations see [65-67]).

12 More precisely speaking, the Hamiltonian (2.143) is obtained from quantum electrodynamics,
i.e. from the QED Hamiltonian (8.39). In the present context, however, only an expansion of the
relativistic kinetic energy operator is relevant.

13 Quite generally, the electromagnetic fields (1.10), (1.11) do not change under the combined
gauge transformation
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AL (r) = Acu(r) = VA(r). (2.148)

On the other hand, the Hamiltonian (2.143), which depends on the vector potential
itself, is not invariant under the transformation (2.148) (unlike the reduced Hamilto-
nian (2.120)). The same statement necessarily also applies to the ground state |¥o)
corresponding to (2.143),

H|¥o) = Eo|Wo). (2.149)

However, it is easy to show that the transformation (2.148) simply leads to a phase
transformation of the corresponding ground state: if the wavefunction

lP()(I‘]G],...7‘}\](71\/) = (T1G],...I‘NGN|lP0>

is a solution of (2.149) for the potential Aex, the gauge transformed wavefunction
, ie ¥
‘Po(rlo'l, e rNGN) = exp % z /l(rk) ‘Po(rlGl yeen rNO'N) (2.150)
k=1

is a solution of (2.149) for the potential A.,, obtained by the gauge transformation
(2.148)—this can be verified by insertion into (2.149) in first quantized form. All
pairs (Aext, Po) which differ by no more than the combined transformation (2.148),
(2.150) are physically equivalent.'* As a result they lead to the same ground state
energy Ey, the same ground state density ny and the same ground state magnetization
density m,

Ey = Ep (2.152)

/ e d
Vit (71) = Vexe (rt) — ;EA(rt) (2.145)
Al (rt) = Aex(rt) — VA(rt) (2.146)

of the set of potentials. As the present discussion is restricted to static external fields, the class of
admissible gauge transformations is given by

A(rt) = Jot +A(r) . (2.147)

The first term corresponds to the addition of the constant A to the external potential vey. If only
this potential is present, A (rt) = Aot is the only legitimate gauge transformation. One can therefore
identify the class of vex¢ which differ by more than a constant with the class of potentials which
differ by more than a (static) gauge transformation.

14 Note that this equivalence also manifests itself as the invariance of the Hamiltonian (2.143)

under the simultaneous transformation of the vector potential by (2.148) and of the field operator
by

W (ro) = &40/ y(ro) | (2.151)

In fact, this invariance of H is sometimes even identified with the actual gauge invariance of the
corresponding expectation value (¥o|H|Wo). The same statements apply to the complete ground
state current (2.156). Similarly, the gauge dependence of the paramagnetic current is reflected by
the lack of invariance of fp under the combined transformations (2.148) and (2.151).
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ny(r) = no(r) (2.153)

o(r) . (2.154)

my(r)

As required, gauge invariance is also observed for the physical ground state current
Jos

Jo(r) = Jo(r) = (Wo|j(r)|¥o), (2.155)

which, in the case of the Hamiltonian (2.143), is obtained from the operator15

A~

3(r) = Gp(r) + SV xm(r) + - Acx(r)i(r) (2.156)

Here }'p denotes the (canonical) paramagnetic current density,'®

—in &
3'p<r>=2—,f VisD(r—ry)+ 60 (r—r)V)] (2.157)
i=1
ih
=—2’—m [0 (ro) (V(ro)) — (Vi (ro)) W(ro)] . (2.158)
o=T,l

If one wants to set up a DFT scheme for the Hamiltonian (2.143), the first issue to
be addressed is an appropriate choice of the basic variables. As usual, the coupling
between densities and external potentials in the Hamiltonian allows the identifica-
tion of the basic DFT variables. However, using (2.156), the Hamiltonian (2.143)
can be rewritten in two alternative ways,

2
A e . e .
H = T+W+/d3r {CAext']+ |:vext_2mc2AgXI:| n} (2159)
PN 5 [e A C . &2 s 1.
:T+W+/dr A [Tp 4 SV x| + vt 5 AT, (2.160)

where 7' is the standard kinetic energy operator (2.2). The form (2.159) suggests
to employ the density plus the complete physical current as basic variables of a
DFT scheme. However, the discussion of gauge transformations has shown that
the set ng, j, does not determine the ground state uniquely. One is thus bound to
base CSDFT on the combination of the density operator 7 with the current operator
[72, 73]

15 The operator (2.156) can either be derived by a Gordon decomposition of the fully relativistic
current (compare Sect. 8.7), followed by the limit ¢ — oo. Alternatively, j can be identified by an
analysis of the time-dependent Schrodinger equation obtained from the Hamiltonian (2.143) as the
current for which a continuity equation holds.

16 For the transition from first to second quantized form note that

(F'o'|G,(r|r"e") = %::56,6,, 8 ) [V (r =)+ 83 (r V']



2.6 Current Density Functional Theory 49
y ~ c N

Jo(r) :]p(r)—i-;me(r) , (2.161)
whose ground state expectation value

Joo(r) = <‘P0|}'g(")|‘i’o> (2.162)

is as gauge-dependent as the ground state itself: under the gauge transformation
(2.150) the ground state current j, ( transforms just as the paramagnetic current,

Jpo(r) = dpo(r) + ——n(r)VA(r). (2.163)

since the magnetization density is gauge invariant, Eq. (2.154).

In the second step one has to prove an existence theorem for these variables.
The core of the proof of the HK-theorem is the strict inequality (2.20). In order to
derive an equivalent inequality for the Hamiltonian (2.160), one considers two dif-
ferent non-degenerate ground states |Wo) and |\¥{,) with associated sets of potentials
Vext, Aext and Vi, AL, (the sets Vexi,Aex and V.., AL, also differ, since |Wp) and
|'¥f,) are non-degenerate). Now assume that |¥y) and |¥,) lead to the same ground
state density ng and current

Jeo(r) = (Yol jo(r)|Wo) = (Wolj, (r) %) - (2.164)

The expectation value of the Hamiltonian (2.160) with respect to the ground state

|¥},) corresponding to v}y, ALy, can then be expressed as

2
CHAN) = (RG] [ o v 5y (M= A23)

+- / A1 [Acx —Aly] g0 (2.165)

where A’ is the Hamiltonian (2.160) with primed potentials. If one could now state
that the unprimed ground state energy (Wo|H|Wy) is strictly lower than (W |H|¥),

= (WolH|Wo) < (WolH|¥s) Y [¥o)#[¥o). (2.166)
the desired inequality of type (2.20) would have been found,
e 2 12
EO < E0+/d r |:Vext ext+ 2 (Aext Aext)
+ / Pr [Aei—Aly] - Jigo- 2.167)
However, |Wo) and |'¥,) can be related by a gauge transformation and the actual
ground state energies associated with these states are identical, Eq. (2.152). This

raises the question whether the strict inequality (2.166), i.e. the Ritz principle, still
holds if |¥},) differs from |¥) only by the phase transformation (2.150). Let us con-
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vince ourselves that this is indeed the case. If [¥},) and [Wo) are related by (2.150),
the difference between (Wj|H|W¥}) and the ground state energy is given by

(WolH W) — (WolA|¥o)
1

= — d3r1~-~d3rN‘P8(r101,...rNGN)
2m G]Z‘GN/

N ie 2 e 2
X Z |:e;w7t(rk) (—ith+ SAext(rk)) erc(r) _ (—ihvk+ gAext(rk)) :|
k=1

Xll"o(r]cl,...rNGN) s
which is easily evaluated to

(PolH W) — (WolH|¥o)

/d3r1 ~-~d3rN‘P(’§(r161,...rNGN)

x 2 { VA (r)] (—ith+§Acxt(rk)) —ihg [V,%z(rk)} + (ivkurk))z}
x‘I’O(rlcl,...rNGN).

After partial integration of half of the first term in the square brackets one can rewrite
this expression in terms of the paramagnetic current (2.158),

(\WolH[¥o) — (Yol H|Wo)
= [@rewal |CVAEN () + £ Acs(nitn) + (£V20) atr)| ).

One can now use Eq. (2.156) to replace j, by the physical current,

3 . ¢ ¢ :
(P AP} — (WolAWo) = /d [ (VA)- (]0 ermo)+(Cw) no} .
Finally, use of current conservation and Gauss’ theorem leads to
112y ! T 3.(¢€ 2
(VL)) — (Yol H|¥o) = /d‘r(;V/l(r)) no(r) > 0. (2.168)

This confirms the strict inequality (2.166) and thus Eq. (2.167) (provided that A is
not a simple constant and does not vanish wherever ng is non-zero).

The inequality (2.167) can then be used in the standard fashion (combination
with the same relation with primed and unprimed quantities interchanged) to derive
a contradiction of the type (2.22).
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(a) One concludes that there exists a one-to-one correspondence between
the set of ground states and the set of densities (n, j, o) [68],

|\P0> — {no(r)ajg,O(r)} . (2.169)

This correspondence establishes the existence of a unique functional
|'¥[n, jol), which, by insertion of the actual (no, j, ), reproduces the
ground state of the system, [Wo) = [¥[no, jg ol)-

An extended variant of CSDFT is obtained, if one gives up the relation (2.144)
between Bey; and A¢x; and considers these two fields as independent (which is legiti-
mate from a mathematical point of view—for an even more general form of CSDFT
see [68]). The Hamiltonian then contains three independent coupling terms,

ﬁ:f+W+§/fﬁwy&Mm+/fmmuymn

62 2

+/frhﬂﬂ+AmvﬂMﬂ. (2.170)

2mc?

In this case one finds (by the standard argument) an extended one-to-one correspon-
dence [68],

Wo) = {no(r),jpo(r),mo(r)}, (2.171)

i.e. a ground state functional of the form [W¥[no, j, o,mo]). This approach is partic-
ularly legitimate if the external magnetic field vanishes anyway, Bext = Aext = 0.
The use of j,, and mg as independent variables could potentially introduce addi-
tional flexibility into the representation of the ground state, compared to the reduced
form (2.169). This point is further investigated in the context of the KS equations of
CSDFT in Sect. 3.7.

If one neglects the coupling between m and By completely, one arrives at the
existence theorem of current density functional theory (CDFT) [74]: the ground
state o) of a system governed by the Hamiltonian (2.170) with Bexs = 0 is uniquely
determined by the ground state density and the paramagnetic current density,

o) <= {no(r),jpo(r)}, (2.172)

so that it can be written as a functional of these quantities, [Wo) = [¥[no, j,, o])-

Either of the correspondences (2.169), (2.171) and (2.172) allows a representa-
tion of the ground state expectation value of any operator O as a functional of the
corresponding independent combination of variables.'”

17 For a constrained search formulation of CDFT see [75].
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(b) Restricting the explicit discussion to CSDFT in the form (2.169), one
has
Oln,jg] = (¥[n, jgl|O¥[n, j,)) - (2.173)

In particular, one obtains for the ground state energy
E[nng] n ]g /dSr]g ext( )
+ / Br {vext( 5 2Agxt( )] n(r) (2.174)
Fln,jg) = (P, jJIT +W[¥n, jg)) - (2.175)
The basic variational principle of CSDFT then follows, as usual, from
Ritz’s principle. It states that the functional (2.174) has a minimum for

the true current and density distributions no, j, o corresponding to the
given external fields,

E[”Om’.g,O] < E[na.]g] v (nng) 7é (nOajg,O) : (2.176)

The resulting variational equations,

SE[n, j
OFln ] =0 (2.177)
on(r) 1n0,Jg0
SE[n.j

. ] -0, (2.178)
075(1) gy

have to be solved under the constraint of particle number conservation,

/ d*ra(r)=N,
and a constraint expressing the (static) continuity equation for the physical current,
V.jir)=0, (2.179)
which may be resolved as
Ve jp(r) = =SV [Ac(rn(r)] (2.180)

As in the case of SDFT, the existence theorems of C(S)DFT only involve the rela-
tion between the current and density variables and the ground state. No statement is
made concerning a possible unique correspondence between the external potentials
and the ground state. The reason for this restriction is the same as for SDFT: one



2.6 Current Density Functional Theory 53

can give explicit counterexamples which demonstrate that one can find more than
one set of potentials which yield a given ground state [76]. In fact, two different
types of counterexamples are available, an extension of the symmetry argument of
Sect. 2.5 (which may be characterized as systematic non-uniqueness) and a second
class (referred to as accidental non-uniqueness).

Let us first consider the symmetry-related counterexample for the case of CDFT,
i.e. ignoring the spin degree of freedom for simplicity. Assume that |\Wy) is the
ground state corresponding to the CDFT Hamiltonian

A=t [ d%»{ﬁ(r) [vm(r) AL +i}p(r)erxt(r)} (2.181)
H|¥o) = Eo|¥) . (2.182)

The question then is: can |¥y) also be the ground state of a CDFT Hamiltonian in
which vey and Agy are replaced by two different potentials

Vixt = Vext + AVext (2.183)
Al = Aexi+ AAcx - (2.184)

In other words: can one find Avey; and AAey, so that
AH|¥o) = AEy ) , (2.185)
with AH given by

2
(20N
AR = / d3r{n [Avext+ o (aag, t+2AAext~Aex[)] + 45, Ao

(2.186)
For Eq. (2.185) to hold, the operator AH has to be a constant of motion, i.e. has to
commute with the Hamiltonian (2.181). An explicit example for such a constant of
motion is the angular momentum!8 [76]

L. = m/d3r (e-xr)-j,(r) (2.187)

in the case of systems which are invariant under rotations about the z-axis. However,
choosing

18 In second quantization the angular momentum operator is given by

L=-iny /d‘ o) (rx V)y(ro)]

which may be expressed in terms of the paramagnetic current after suitable partial integration,

i.=m/d3r [rxJy(r)] .
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AAex(r) = ATB (e;xr) (2.188)
2
Avex(r) = — 25162 (AA2(F) + 28 A e (F) - Ac(r)) | (2.189)

with constant AB, the operator (2.186) becomes a simple multiple of L., so that
Eq. (2.185) is satisfied for all Hamiltonians for which [I:I ,iz] = 0. Thus, as long as
AE) is smaller than the energy gap between the ground and first excited state, |'¥¢)
remains the ground state corresponding to the primed potentials. The size of AE),
however, is easily controlled by the size of AB. Consequently, one finds a complete
set of potentials which lead to the same ground state.

As an example for an accidental non-uniqueness consider a single particle within
CDFT, again ignoring spin. Assume that the non-degenerate ground state orbital
¢o(r) satisfies the Schrodinger equation

{21,1 |:—th + SAeXt(r)] 2 + vex[(r) }q)o(r) = 80¢0(r) (2190)
for
Aext =0

(this example includes all vector potentials which differ from 0 by a gauge transfor-
mation, Aexy = —VA). The (nodeless) orbital ¢o(r) can then be chosen real,

0 (r) = ¢o(r) . (2.191)

Now one again asks the question whether one can find some further set of poten-
tials V., ALy for which ¢y (r) remains the ground state? For this to be the case,
Eq. (2.190) must also be valid with the unprimed potentials replaced by the primed
ones. It is straightforward to show, however, that the Schrodinger equation with the

potentials

, B V xC(r)

Ay (r) = YR (2.192)
! 62 / 2

Vext(F) = Vex(r) = 5 (AL (D) (2.193)

is satisfied by ¢y (r) for arbitrary C(r), provided that Eq. (2.190) holds for the un-
primed potentials [76]. In fact, insertion of (2.193) into the Schrodinger equation
(with primed potentials) and use of (2.190) for the unprimed potentials yields the
condition

(V- AL (r) +240,(r)- V| 60(r) =0, (2.194)

which is trivially satisfied by the form (2.192). For given vey and thus ¢y one has
found an infinite number of potentials V., AL, for which ¢ is an eigenstate. Again,

if the magnitude of C(r) is chosen sufficiently small, ¢y remains the ground state.
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In order to provide some physical background of this accidental non-uniqueness
let us fix the gauge of the potential (2.192): among all physically admissible vector
potentials giving a particular magnetic field B(r) = V x AL, (r) one can always
choose to work with the one which satisfies Coulomb gauge,

VAL (r)=0. (2.195)

All other potentials which give the same B(r) can only differ from this AL, by
gauge transformations. Restricting the set of potentials (2.192) to those which sat-
isfy Eq. (2.195) requires

[Voo(r)]-[VxC(r)] =0 (2.196)

for all r, so that the potentials of the type (2.192) ultimately also correspond to a
specific symmetry of the ground state.

A final remark on C(S)DFT addresses the limit Aex; = 0. In this limit all variants
of C(S)DFT reduce to standard DFT, as all spin- and spin-current-densities are now
unique functionals of n. For instance, one has for the approach (2.171),

Jp(r) = jplnl(r): m(r)=mn)(r) = En,j,m]=E[n].

In analogy to the improved description of spin-dependent systems with Bexy = 0
by E[ng,n|], there might be some advantage in retaining the more flexible form
E|[n, jp,m] also for Aexr = 0. Similar statements apply to all other variants of
C(S)DFT.

2.7 Excited States: Part 1

Let us return to the Hamiltonian (2.1) for which the original HK-theorem is valid.
The ground state density ng does not only determine the ground state |¥) uniquely,
but also all excited states |¥;) (i > 0). The reason for this, at first glance surprising,
statement is the one-to-one correspondence of ng and the external potential vey;.
Once vey; is known, all excited states are unambiguously determined by solution of
the Schrodinger equation,

no = Vext = |¥); i=0,1,...00. (2.197)

HK theorem solution of the Schrodinger equation

All matrix elements of excited states |'¥;) can, in view of this correspondence, be
regarded as functionals of the ground state(!) density. This conclusion applies in
particular to all excitation energies.

The practical exploitation of (2.197) is complicated by two aspects: it is more
difficult to derive acceptable approximations for the energy functional of excited
states and there exists no suitable variational principle for these states. An excep-
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tion to the latter statement is found if the complete Fock space can be decomposed
into subspaces with different symmetry, i.e. if the Hamiltonian commutes with some
symmetry operator. In this case there exists a minimum principle for each of the sub-
spaces with a given symmetry (an argument, which has already been used in the case
of the spin). It is possible to formulate a HK theorem for the energetically lowest
state of each subspace, in analogy to the original version [77]: there is a one-to-one
correspondence between the energetically lowest state |'P;) of the subspace and the
associated density n; = (W;|A|¥;), defining the functional |¥;[n;]) (the spaces ¢ and
A of the original HK proof have to be restricted to the symmetry under considera-
tion). The functional dependence of |'¥;) on n;, however, in general differs from that
of the ground state functional |\W[n]). Lacking any alternative, ground state density
functionals are nonetheless often used for the discussion of excited states as, for ex-
ample, atomic states with different angular momenta. However, this approach runs
into difficulties with the resolution of the individual states of multiplets, as long as
the density functional does not reflect the specific symmetry under consideration
(for a scheme to deal with multiplet states see [78, 79]).



Chapter 3
Effective Single-Particle Equations

3.1 Kohn-Sham Equations

Let us return to the simplest situation considered so far, i.e. to a Hamiltonian of
type (2.1) with a non-degenerate ground state. For this system the Hohenberg-Kohn
theorem states that knowledge of the ground state density is sufficient to determine
all ground state observables. In addition, the ground state energy functional E[n]
allows the determination of the ground state density itself via the variational equa-
tion (2.38) Unfortunately, the HK-theorem does not give any hint concerning the
explicit form of E[n] (or F[n]). Moreover, the initial motivation for the discussion of
DFT was to introduce an exact mapping of the interacting N-particle problem onto a
suitable effective noninteracting system. The connection of the existence theorems
established so far with this mapping is provided by the Kohn-Sham (KS) scheme.
In order to introduce the KS equations in a systematic fashion we first consider a
system of noninteracting electrons with a multiplicative external potential vy,

A =140, \%:/d%ﬁ(r)vs(r). 3.1)

The corresponding N-particle ground state |®y), assumed to be non-degenerate at
this point, is a Slater determinant,
H,|®g) = Eo|Do) (3.2)
(TIG],...I‘NGN|¢0> = q)()(r]G],...rNGN)
¢1(ri01) - gn(rion)
det : : , (3.3)

d1(rvon) -+ dn(rnow)

VNI

constructed from the energetically lowest solutions ¢; of the single-particle Schro-
dinger equation,

E. Engel, R M. Dreizler, Effective Single-Particle Equations. In: E. Engel, R.M. Dreizler, Density
Functional Theory, Theoretical and Mathematical Physics, pp. 57-108 (2011)
DOI 10.1007/978-3-642-14090-7_3 (© Springer-Verlag Berlin Heidelberg 2011



58 3 Effective Single-Particle Equations

2m

292
{—h v +Vs(")}¢i("0)=8i¢i("0)- (3.4

The eigenvalues &; are assumed to be ordered as
81§82§...§8N:£F<€N+1§... s 3.5)

where, as usual, the Fermi energy &f is identified with the eigenvalue &y of the
highest occupied single-particle level.

In (3.4) the spin degree of freedom has been expressed in terms of the variable
o, rather than by understanding ¢; as a two-component spinor. Correspondingly, the
quantum number i represents both spatial and spin quantum numbers. The single-
particle states ¢; can be characterized further by taking into account the fact that the
Hamiltonian (3.1) commutes with the spin-projection on the z-axis,

. 1Y 1 . .
S, = 3 Yo.i= 5 3 /d3r1/ﬁ(rc) 0. 50! P(ro’), (3.6)
=1 1.l

o,0'=1,

where o is the z-component of the vector of Pauli matrices, Eq. (2.124) (for the
basic commutators required see Appendix L). The spin-projection can be rewritten
in terms of the particle numbers (2.140) of the two spin orientations,

" 1 N
S. = E{NT—NL}, 3.7)
so that the commutation relation

[Hg,ﬁz] —0 (3.8)

follows directly from [Hy, N] = 0. The orbitals ¢; can be chosen as eigenstates of
oy, i.e. they can be factorized into a spatial wavefunction and the Pauli spinor y..
As the potential vg does not distinguish between the two spin orientations, the spatial
wavefunction is independent of spin,

¢i(ro) = ¢o(r) xs(0) = i=(a,s) (3.9)
XN =EX+= (é) 5 X =X-= <(1)> <~ XS(G):(SSO' (3.10)

O xr=*txr < Y000 %(0") =sign(s) b (3.11)

0-/

Any single-particle level is at least twofold degenerate due to spin. As long as |®y)
is assumed to be non-degenerate one has €y < &y+1. For a non-degenerate ground
state one thus necessarily finds Ny = N|, so that N must be even. This implies that the
ground state must have a vanishing magnetic moment, as (®g|S,|®g) = 0. The issues
of degeneracy at the Fermi level and of spin-polarized systems will be discussed in
Sects. 3.3 and 3.5.
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The ground state density corresponding to (3.3) is given by

N/2

N
nos(r) =3, 3 1¢i(ro)> =2 [9a(r)*. (3.12)
o=1

o=1,li=1

In the following the sum over the N energetically lowest single-particle states will
nevertheless be written in the more general form

nos(r) =Y, Y. 6;|¢i(ro)|*. (3.13)
o=, i

In the present context the occupation function ©; denotes the standard step function,

1 for eg > ¢

0 elsewhere 3.14)

0, =0O(ep—¢g) = {
The formulation (3.13) has the advantage that it can equally well be used for a
system at finite temperature 7" > 0. In this case the step function simply has to be
replaced by a Fermi distribution,

L -1
e, — {1+exp (gk T”)] , (3.15)
B

with u being the chemical potential, which is chosen so that }; ©; = N. The ground
state energy corresponding to (3.3) is
3% (—ihV)z 3
Eo = 2.6; Y, /d r¢f(ro)~———¢i(ro) + /d rvs(rngs(r).  (3.16)

i o=l 2m

At this point one recollects the fact that the HK theorem is valid for arbitrary
many-particle systems, irrespective of their particle—particle interaction w. It ap-
plies in particular to noninteracting systems, for which w = 0. The non-degenerate
ground state (3.3) is thus uniquely determined by the ground state density (3.13). In
other words: The ground state of a noninteracting system is a unique functional of
the ground state density, |®[n]). The particular ground state (3.3) is obtained if the
associated ground state density ngs is inserted into this functional,

|®@[n]) : with |Dg) = |DP[ngs)) - (3.17)

The functional |®[n]) is not identical with the functional (2.24) obtained for non-
vanishing interaction w. Using |®[n]), one can define the HK ground state energy
functional of noninteracting systems,

Ey[n] = (@[n]| T + V| ®[n]) = (®[n]| 7"|®[n]) +/d3rvs(r)n(r). (3.18)
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It has the same properties as the functional (2.26). In particular, the minimum prin-
ciple (2.28) applies,

Eg[nos] < Eg[n] ¥ n#nos; Ego = Es[nos) . (3.19)

Equation (3.18) defines the kinetic energy functional Ti[n] of noninteracting parti-
cles for any ground state density n resulting from a Hamiltonian of type (3.1), i.e.
for any n which is noninteracting v-representable,

Ti[n) := (®[n]|7|@[n]). (3.20)

As |®[n]) is universal (i.e. independent of v) the same is true for Ti[n]. The kinetic
energy has, however, already been expressed in terms of the single-particle orbitals
¢; in Eq. (3.16),
—ihV)?
Ti[n] = 26,- z /d3r¢i*(ro)7( > ) ¢i(ro), (3.21)

i o=1,l mn

which implies that the ¢; themselves are functionals of the density.

How can the orbitals be density functionals? Clearly, a change of n can only be
induced by a corresponding change of the external potential vs. Any modification of
vs leads to a unique change of all orbitals via Eq. (3.4). This statement is immedi-
ately obvious if one reconsiders the HK argument for the case of a single-particle
problem. If two potentials v and v, # vs + const would have a common eigenstate
¢;, the combination of the corresponding single-particle equations (3.4) gives

[vs(r) —vi(r)] ¢i(ro) = [& — €] ¢i(ro),

so that one ends up with a contradiction. Not only the many-particle ground state
@y, but also its ingredients ¢;(ro) are unique functionals of 7,

¢i(ro) = ¢i[n](ro). (3.22)

Equation (3.21) identifies the first non-trivial density functional, although in an im-
plicit form.

Let us return to the discussion of the interacting system (2.1). Assume that for
any admissible potential vey the ground state density no(r) of the interacting system
is simultaneously the ground state density of some yet to be determined noninter-
acting system with a single-particle potential vy (different from vey). This auxiliary
noninteracting system with a Hamiltonian of the form (3.1) is called the KS sys-
tem. The question whether such a KS system actually exists for arbitrary ng, the
question of the noninteracting v-representability, will be addressed in Sect. 3.2. If
the assumption stated is correct, one can represent the ground state density of the
interacting system in terms of the single-particle orbitals ¢; of the KS system,

no(r) =nos(r) = Y, Y 6i¢i(ro)|*. (3.23)
o=1,l 1
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It is important to realize the difference between (3.13) and (3.23): Equation (3.13)
is a straightforward result for the density of a noninteracting system, while (3.23) is
a highly non-trivial representation of the interacting density!

Of course, the structure of v¢ must reflect the nature of the interacting system. In
order to determine vs one decomposes the total energy functional E[n] in a suitable
fashion. One first realizes that the kinetic energy functional Ti[n], Eq. (3.20), is well-
defined for the ground state densities of all interacting systems for which a v exists.
Ti[n] can be explicitly expressed in terms of the auxiliary orbitals ¢;, which satisfy
Eq. (3.4), as in Eq. (3.21). One can therefore rewrite E[n] as

E[n] = Ty[n] + Eu[n] 4 Eex[n] + Exc[n] . (3.24)

The functional Ey[n] is the classical (Hartree) interaction energy between the N
particles with density n,

Euln] = % / &P /d3r'n(r)w(r,r')n(r’), (3.25)

including their self-interaction energy. Ey[n] is usually referred to as Hartree term.
Eex¢[n] characterizes the coupling between the particles and the external potential,

Eeuln] = / B rvea(rn(r). (3.26)

Finally, the exchange-correlation (xc) energy functional Ex.[n] is defined by (3.24).
It absorbs all the complicated many-body effects not contained in Ty, Ey and Eey;.
Ec[n] is a density functional as, on the one hand, E[n] is a density functional by
virtue of the HK theorem for interacting particles and, on the other hand, T is a
density functional by virtue of the HK theorem for noninteracting particles, while
Ey and E are explicit density functionals. However, one should realize that, from a
mathematical point of view, the decomposition (3.24) is only legitimate for densities
which are simultaneously interacting and noninteracting v-representable.
Before proceeding with the derivation of vs, some comments seem appropriate:

e The decomposition (3.24) isolates exactly those contributions to the total energy
functional, which can be treated rigorously: Ey and E.y; are simple functionals of
the density whose evaluation is straightforward. The exact handling of 7 will be
discussed below. At the same time, these components of E[n| usually dominate
over the exchange-correlation energy. Even the complete neglect of Ey. often
leads to an electronic structure which is qualitatively correct. One could thus
hope that an approximate account of Ey. allows a sufficiently accurate description
of most many-particle systems.

e As F[n], Ty[n], En[n] and Eex[n] are universal, the same is true for Ex¢[n]. There-
fore the same xc-functional applies to all systems in which the particle—particle
interaction is given by the Coulomb force. An approximation for Ex., which has
been obtained for some model system with the Coulomb interaction can, from
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a mathematical point of view, legitimately be utilized for all kinds of Coulomb
systems.

The DFT xc-energy Ex. is not identical with the conventional xc-energy EX,
which is usually employed in standard many-body theory and quantum chem-
istry. A more detailed discussion of this point requires the separation of E,?CC
into an exchange and a correlation component and is therefore postponed until
Sect. 4.1. At this point, we only emphasize that E is not identical with the dif-
ference between the complete interaction energy of the interacting system and its
classical counterpart,

ERO = (Wo|W|Wo) — Enn) . (3.27)

In fact, Eq. (3.24) may be rewritten as
Exe = (YolT +W[¥o) — Ti[no] — En[no] (3.28)

so that the difference between Ex. and E,l(‘c}’0> originates from the difference be-
tween the kinetic energy of an interacting system with density ng and that of a
noninteracting system with the same density,

Exe—Ex" = (PolT|¥o) — Tilno] = (Wo|T[¥o) — (ol |do).  (3.29)

As the interacting ground state |¥o) differs from the Slater determinant |®g)
which gives the same density, one has (Wo|7'|Wo) # (®o|T'|Do).

In fact, the interacting ground state |'¥o) minimizes the total energy of the inter-
acting system, (¥o|T +W 4 Vexe|'Po), while the KS ground state |®g) = |®[no])
corresponding to the same ng minimizes the expectation value of the kinetic en-
ergy operator,

(®o|T|®o) = (P|T|¥)

inf
Y—ny
(since for fixed ng the external potential term (®[ng]|Vex(|®[no]) = [ d>rngvs is

also fixed, the minimization of the total energy reduces to a minimization of
(®[ng]|T|®[no])). As a results one finds

Ti[no) = (@o|T|@g) < (Wo|T|Wo), (3.30)
and thus
Ey > ERY. (3.31)

This result is illustrated by a look at the difference between Ey. and EJ:CW in terms
of numbers. These quantities have been evaluated rigorously only for rather sim-
ple systems such as closed-subshell atoms. For instance, for helium one obtains
T = 2.903724 Hartree [80, 81] (nonrelativistically) and 7y = 2.867082 Hartree
[82, 831, so that T — Ty = Exc — Eit” = 0.036642 Hartree. Similarly, for beryl-
lium the difference amounts to Ey. — E,L\é’0> = 0.0737 Hartree [84, 82]. The
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difference Ey. — E,‘ff‘” is thus found to be of the same order of magnitude as
the complete correlation energy (see below). Note, however, that E,‘;g‘0> is not

identical with the conventional xc-energy ESC.

The real task after these remarks is the specification of vy and thus of the orbitals
¢; which reproduce the interacting density ng. For this purpose one considers the
ground state energy functional E[n] of an interacting system for a density n close to
the true ground state density ny,

n(r) =no(r)+ on(r). (3.32)

Using a functional Taylor expansion of E|[n] about n = ng together with the varia-
tional equation (2.38),

[n(r) — no(r)] + ﬁ(ﬁnz)

Eln] :E[n0]+/d3r gf([”] )

r)
— Elng) + / Prudn(r) + 6(5n%), (3.33)

and restricting the variation of E|[n] to fixed particle number,
/d3rn(r) = /d3rno(r) = /d3r5n(r) =0, (3.34)

one finds that the deviation of E[ng + dn| from the true ground state energy E [no] is
of second order in the density deviation dn,

E[ng+ 8n] — E[no] = 0(8n?). (3.35)

This variational property is the reason why the total energy functional is rather in-
sensitive to errors in the density which is inserted, a fact that is often utilized in
applications.

The expansion (3.33) requires the existence of the functional derivative of E[n]
at ng. As discussed earlier, however, many densities are not v-representable, so that
OE([n]/én|,—,, can not be expected to exist in general. The issue of functional dif-
ferentiability of E[n] (and its components) is nevertheless set aside for a moment—
we will return to this point in Sect. 3.2.

Now the individual components of E[no+ 6n] — E[ng] have to be examined. In
the case of Ty one resorts to the implicit density functional representation (3.21)
via the ¢;. Since the ¢; are unique functionals of the density, any variation dn(r)
corresponds to a unique variation 8¢; of ¢;, i.e. any density ng + én corresponds
to a unique set of orbitals ¢; + 6¢,—provided that no + dn is noninteracting v-
representable. At this point one thus needs the assumption that all relevant interact-
ing densities are also noninteracting v-representable (for a discussion of this point
see below). To first order in the deviation 0¢; and thus 6n(r) one obtains
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[n0+5n] [n()]
B (_ZIm z@"/dgr{5¢i*(’G)V2¢i(’G)+¢i*(rG)V25¢i(ro)}+0(5¢2)
(—ih)?

= 2@ /d3 897 (ro)V20i(ro) +56,(r0)V20; (r0) } + 0(30°)

where partial integration has been utilized for the last line, assuming all surface

contributions to vanish (or to cancel). One can now use the single-particle equations
(3.4) in order to eliminate the derivatives

Ti[no + on] — Ty[no]
_ Z@ /d r[ei—v(n]{86: (r0)0i(r0) + 7 (ro)36:(r0) } + 0(56%).
Applying Eq. (3.23) to ng + n,

=Y6 ¥ {867 (ro)oi(ro) + 0/ (ro)36(ro) | + 0(36%) .
i o=1l

and utilizing proper normalization,
0= /d* |0i(ro) + 8i(ro) /d3r|¢, ro)?
= [@r{80; (r0)6(r) + 07 (r0)50i(r0) } + 0(69°).
one can express Ty[ng + 6n] — Ty[ng] in terms of on,
T[no + n] — Ty [no] /d‘ &= v(r) | 8n(r) + 0(69)
/ Brvy(r)Sn(r) +0(5n?). (3.36)
As one might have expected, the individual components of E[n] do not have the

variational property (3.35), but rather contain terms of first order in on.
The next component to be considered is the Hartree term (3.25),

Enlno + 6n] — Enlno) /d3 /d3r/ Sn(r)w(r,r ng(r') +0(8n*).  (3.37)
The variation of the external potential energy is even simpler,
Eexi[no + 1] — Eexe[no] = / & rvea(r)Sn(r). (3.38)

On the other hand, for the unknown xc-functional one can only write down the
formal functional Taylor expansion,
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OExc[n]
on(r)

Sn(r)+0(8n%).  (3.39)

n=n
} on(r).
n=n

(3.40)
Equation (3.40) is valid for arbitrary variations on(r) which satisfy (3.34), so that
one ends up with the identity

Exc[no+ 0n] — Exc[no] = /d3r

Collecting the results (3.35)—(3.39), one arrives at

0= / d3r{vs(r)— / P w(r, ¥ )ng(F) — vex(r) — 5;;‘(:[’)‘]

vs(r) = vext(r) +va[no] (r) + vie[no] (r), (3.41)
where vy is the Hartree (direct Coulomb) potential,
wlnl(r) = [ & w(r,n(r). (3.42)

and the xc-potential vy is defined as

OExc[n]
on(r)

Vxe[n](r) = (3.43)

It is apparent that the unknown potential v is a density functional itself, so that the
single-particle equations (3.4) are nonlinear: The solutions ¢; determine the density
via Eq. (3.23), which then determines the effective potential vs via Eq. (3.41). The
celebrated Kohn-Sham equations [85] (see also [86]) resulting from insertion of
(3.41) into (3.4),

22
{_ hzZ +vext(r)+VH[n}(r)+vxc[n](r)}¢,-(rc7) = &¢i(ro), (3.44)

have to be solved in a self-consistent fashion, similar to the HF equations.
One starts with some trial density n(l), which allows the construction of the start-
ing potential

o (1) = vex(r) +vu V) (r) 4+ vy [1V] ()

(assuming the functional derivative of Ey.[n] to be given). Only a rough estimate of
the actual density is required. For instance, (suitably screened) hydrogenic orbitals
could be used to generate n'!) in calculations for atoms. For molecules or solids
the trial density is often set up as a superposition of atomic densities. Alternatively,
one can start with a direct guess for the total potential vgl) (r). Solution of (3.44)
with vgl) (r) then provides some orbitals ¢i(2) which lead to an improved density n2
via Eq. (3.23). The density n(?) can in turn be used to obtain improved potentials
vir[n?)](r) and vye[n®)](r). This iterative procedure is repeated until the difference
between the densities obtained in two successive iterations falls below some prede-
fined accuracy criterion. In practice, the control of this self-consistency procedure
is non-trivial.
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A number of comments are appropriate.

. The KS equations are equivalent to a minimization of the total ground state en-
ergy, which is the reason why the self-consistent iteration in the spirit of the
HF equations converges. In fact, the KS equations can be derived in a some-
what more direct way by minimization of the total energy functional (3.24) with
respect to N single-particle orbitals which are assumed to form the density via
Eq. (3.23), while proper normalization is ensured by a subsidiary condition for
the orbitals. This approach relies explicitly on the one-to-one correspondence be-
tween the ground state density of a noninteracting system and the corresponding
set of single-particle orbitals (as well as on the noninteracting v-representability
of the interacting density).
. The Slater determinant constructed from the KS orbitals, Eq. (3.3), does not rep-
resent the exact ground state ¢ of the interacting system. Rather, the KS orbitals
¢; should be understood as purely mathematical constructs which only serve as a
basis for the representation of the density. The mapping between the original in-
teracting system and the effective noninteracting system, which is established by
the KS approach, only ensures that the ground state density and energy are repro-
duced, but not the interacting ground state itself. The price for the reduction of
the complexity of the many-body problem is the limited information that can be
extracted via the KS scheme (at least from a formal point of view). However, for
many structural questions in condensed matter physics and quantum chemistry
this restricted information on the energetics and the electronic charge distribution
is completely sufficient to give an answer.
Obviously, @ approaches the true ¥ for vanishing particle—particle interaction.
This implies that the agreement between ®( and ‘¥ depends on the relative im-
portance of the external and Hartree potentials compared to xc-effects. For that
reason @y is often used as an approximation to the true ground state in the case
of systems whose electronic structure is dominated by single-particle aspects.
One should nevertheless keep in mind that the difference between @y and ‘P
becomes immediately apparent even for a weak interaction w, if one looks at the
2-particle density
@) o NIN-1) 3 3 / 2
) = S Y /d ry o dPry|(rO1, P G2, 7303, ... PN O W) |2
O]

! (3.45)
n(z)(r, r') is the probability to find one particle with arbitrary spin at position r
and simultaneously a second particle with arbitrary spin at position »’. For the
Slater determinant @ one obtains

N

207 (r, 7y = n(r)n(r) = 3|3 0i(ro) i (Fa")| . (3.46)

0,0 |i=1

The first term in Eq. (3.46) is the direct product of the probability of finding
one particle at point r with the probability to find a second particle at 7. This
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product of single-particle probabilities would be the exact result if the motion of
the particles was completely uncorrelated. However, in contrast to classical par-
ticles spin-1/2 fermions are correlated by the Pauli principle, even if no particle—
particle interaction is present. This so-called Pauli correlation is expressed by
the second term in Eq. (3.46). The role of this term is quite easily seen if one
considers the probability to find two noninteracting particles at the same point
r=r,

2
20 (rr) = n(r)? =Y, i |0i(ro)|?
o |i=1
= Y ne(Mng(r)— Y, ne(r)?
o,0'=1,] o=1,l
= ZnT(r)nl(r) s (347)

In (3.47) the total density has been decomposed into the contributions of the two
spin orientations as in (2.136). In addition, one has used the fact that a given
orbital either contains a spin-up or a spin-down electron and that ¢;(r1);(r]) =
0 (spin-projection is assumed to be a good quantum number). As expected, the
probability to find two particles at the same point is given by the probability to
find one particle with spin up and one particle with spin down.

As soon as a particle—particle interaction is present, the motion of two particles
with different spins is no longer independent. This is reflected by the so-called
electron—electron cusp in n® (r,r’). This cusp is illustrated in Figs. 3.1 and 3.2
for helium. In the case of helium the exact ground state corresponding to the
Hamiltonian (2.1) is a product of a symmetric spatial wavefunction y and an
antisymmetric spin-wavefunction Yoo in which the two spins are coupled to a
total spin of zero,

(rio1r02Wo) = y(ri,r2) xo0(01,072) (3.48)
1
X00(01,02) = E{M(Gl)%—(ﬁz) —%—(Gl)X+(02)}- (3.49)

The spatial function y can be characterized further by use of the inherent sym-
metries of the helium ground state. Given the triangle defined by the positions of
the nucleus and the two electrons, any rotation of this triangle about the corner
at which the nucleus is located can not lead to a change in the wavefunction.
As a consequence, there are only three independent coordinates on which y de-
pends. One usually chooses the distances r; and r, between the electrons and the
nucleus (located at the origin) as well as the distance |r; — r| between the two
electrons,

y(ri,r2) =y(r,rn,r—r) .

Extremely accurate forms for y/(r,r2,|r; — r2|) have been obtained by use of a
variational approach [80].



68 3 Effective Single-Particle Equations

0.8

0.6

0.4

|47, W] [Bohr=2]

0.2

—-3
-2
y [Bohr]

L e e e e

B e B e e S

S 2 4 0 1 2 3 0
x [Bohr]

Fig. 3.1 Exact 2-particle density of helium as function of r, = (x,y,0): The nucleus is located at
the origin, while the second electron is kept fixed at r; = (0.559 Bohr,0,0).
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Fig. 3.2 Kohn-Sham 2-particle density of helium as function of r, = (x,y,0): The nucleus is lo-
cated at the origin, while the second electron is kept fixed at r; = (0.559Bohr,0,0).
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For the ground state (3.48) the 2-particle density is simply given by
n®(ri,r2, 10— ra]) = [W(r,ra, r—ra) 7 (3.50)

This function is shown in Fig. 3.1, normalized so that integration over r, yields
the standard radial density,

477:r%n(r1)

o +1
= (475}’%) 47r/ r%drz/ d(cos@)n<2>(r1,r2, [r% +r§ — 2r1rycos @]1/2),
0 -1

with © denoting the angle between r; and r;. In Fig. 3.1 one electron is fixed
at a distance of r; = 0.559Bohr from the nucleus. The position of the second
electron is then varied in a plane containing the nucleus and the first electron.
For r, = 0.559Bohr and © = 0 the two electrons sit on top of each other.

One can see that the two electrons preferably move on opposite sides of the
nucleus: the likelihood to come close to each other is only half as large as that of
remaining on opposite sides. The 2-particle density clearly shows the electron—
electron cusp at r| = r, reflecting the short-range Coulomb repulsion. Figure 3.2
provides the corresponding result obtained with the KS determinant ®g. As this
determinant only contains Pauli, but no Coulomb correlations, the electrons move
independently,

n® (11,72, 1} + 13 = 2r1r2c0s ©)1/2) = |01.(r1) 261 () [

which is consistent with (3.47). The probability for the electrons to sit on top of
each other is as high as that for sitting at the same radial distance on opposite
sides of the nucleus. One finds that the KS determinant can not reproduce the
interacting 2-particle density even qualitatively, although the KS orbitals repro-
duce the interacting ground state density exactly. The KS equations yield only
two quantities correctly, the ground state density and, by insertion into E[n], the
ground state energy.

3. On this basis a brief comparison of the KS approach with the HF method seems
worthwhile. The core of the HF scheme is the approximation of the many-body
ground state wavefunction in terms of a Slater determinant of effective single-
particle orbitals. The equations for the determination of these orbitals are ob-
tained from minimization of the total energy. They are nonlinear (they have to be
solved by iteration) and nonlocal (due to the form of the HF exchange potential).
The HF energy and the ground state wavefunction do not contain any correlation
effects. On the other hand, all ground state expectation values for observables
can be evaluated directly in this approximation, as the many-body wavefunction
is available.

The core of the KS approach is the representation of the ground state density and
thus, via the HK energy functional, of the ground state energy in terms of effec-
tive single-particle orbitals. The equations which determine the orbitals are again
obtained from minimization of the total energy. They are nonlinear, but local (as



70 3 Effective Single-Particle Equations

the KS xc-potential has this property). The quality of the results depends on the
choice for the energy functional. However, both the ground state density and, in
particular, the energy include correlation effects even in the simplest available ap-
proximations for the energy functional. On the other hand, no approximation for
the ground state wavefunction emerges from the KS scheme, at least in principle.
Other ground state observables can therefore only be calculated if corresponding
density functionals are available.
A more detailed comparison of the HF and KS approaches can be found in sub-
sequent chapters of this book. A formal analysis of the underlying variational
procedures is given in Sects. 4.1 and 6.2.3. The consequences of the differences
observed are investigated quantitatively in Sect. 6.3.

4. For the ground state energy an alternative form to (3.24) is obtained by rewriting
T; with (3.4),

L,=36: 3 (/d3r¢i*(r6){8i_Vs(r)}¢i(rc) (3.51)

i o=T,l
Eo = 2.0~ [ @rv(rino(r) ~ Eulml + Eclno].  (352)

In comparison with the original form (3.24) the expression (3.52) has the ad-
vantage that one does not have to evaluate gradients of the KS orbitals. For this
reason it is almost exclusively used in all numerical implementations. The re-
lation is valid for arbitrary xc-functionals, as long as self-consistency has been
reached.

3.2 Noninteracting v-Representability

The question whether one can always find a noninteracting system with potential
vs, for which the density ny of the interacting system is the ground state den-
sity, has already been raised. In order to answer this question of noninteracting
v-representability, one begins with a reformulation. Consider the energy functional
of noninteracting particles,

Eq[n] = T[n] + / d*rvg(r)n(r). (3.53)

Use of the variational equation (2.38) for E[n] yields

8Ty [n]
~ n(r)

+u. (3.54)
n(r)=no(r)

vs(r) =

One thus finds that the existence of v for some given ng is intimately related to
the existence of the functional derivative 67;[n]/dn for this density. The existence
of 8T[n]/én for the functional (3.21), which originates from a single Slater deter-
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minant ground state has not been demonstrated. The same statement applies to the
Levy-Lieb extension of T3[n], T 11.[n] = infy_, (¥|T|¥).

On the other hand, the existence of the functional derivative has been established
[30, 31, 87] for the noninteracting limit of the Lieb functional (2.106),

Ty [n] := inf «w{DT}, (3.55)

D—n
with

D = Y d| Vi) (Wi, dif =di >0, Y di =1, (Pi|¥)) = &, Y€ " (3.56)
% p

so that
n(r) = Ydi (Wila(r)|¥e) .
k

Since the proofs given for Fi [n] do not depend on the presence of the electron—
electron interaction, all statements on Fi [n] carry over to Ty [n], with the appro-
priate redefinitions of the sets involved (see Sect. 2.3). In particular, the functional
derivative of Ty [n] exists for all densities which are noninteracting ensemble v-
representable, i.e. all densities of the set
q q
By = {n = ci(Wo,i|A|Wo,) ‘ with: c;=¢f >0; Y ¢i=1;

i=1 =1

W, ;) = degenerate ground states of 7 + [vA, v e 32+ =} .
, g g .

For each density ny € % there exists a unique potential vs from L34 2=, 50
that

6TS7L [I’l]

— ] 3/2 00
5n(r) vs(r) with v, € L+ & (3.57)

n(r)=no(r)

(of course, v is only unique up to an irrelevant additive constant).

Unfortunately, it is not clear whether % is identical with the set of interacting
ensemble v-representable densities %, Eq. (2.95). While there are some hints in-
dicating that these sets might coincide [27], their identity remains questionable in
view of the fact that the set of noninteracting pure-state v-representable densities
is not identical [23] with the set of interacting pure-state v-representable densities
o, Eq. (2.94). However, as for the interacting situation, the set of densities in %
is dense in the larger set .7, Eq. (2.85). For any density n € . with n ¢ %, one
can thus find a noninteracting ensemble v-representable density which is arbitrarily
close to n. So, for all practical purposes the functional derivative of T; 1 [n] exists for
all interacting densities of interest.

Even though it is clear from Eq. (2.100), it seems worthwhile to convince one-
self explicitly that 7y 1 [1] is a consistent extension of the HK functional Ti[n]. Con-
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sider a noninteracting v-representable density ng resulting from a non-degenerate
KS ground state |®y) (the set of all such densities is the domain of T[n]). The ques-
tion then is: what is the density matrix D for which infp, , tr{DT} is obtained?

The answer to this question can be given in a rather general form. Let us for the
moment consider an arbitrary fixed density n. We want to find the density matrix D
with the properties

(@) n=tr{D¢A}
(b) tr{DT} minimal.

However, for fixed n the minimum of tr{D7'} is obtained for exactly the same den-
sity matrix as the minimum of

w{DA} = w{DT} + / Brv(r)e{Da(r)} = u{DT} + / Ervg(r)n(r), (3.58)

since for fixed n the contribution of the second term on the right-hand side is also
fixed. Thus, quite generally, the density matrix D; which minimizes the total KS
energy tr{ DA} simultaneously minimizes its kinetic energy component.

Let us now return to our special case, in which the non-degenerate |®y) mini-
mizes the energy of the KS system. This means that Dg = |®g)(®y| is the density
matrix which minimizes tr{DT} for given

no(r) = tr{Dgi} = (@o|A|@o) = Y. 6; Y, |¢i(ro)|>. (3.59)
i o=1,]

With this D one obtains

—inV)?
E gire), G60)

T =u{DT} =6 ¥ / Brof(ro)

i o=l

for the Lieb kinetic energy, in agreement with the original KS kinetic energy func-
tional for non-degenerate KS systems, Eq. (3.21).

The kinetic energy functional 71 [n] induces a corresponding definition for the
xc-functional,

ExC7L [I’l] = FL[I’Z} — TS,L[n] — EH[I’I} . (3.61)

Strictly speaking, functional differentiability of Excp[n] is restricted to the set
of densities, for which both F [n] and 7y [n] are differentiable, i.e. the densities
which are simultaneously interacting and noninteracting ensemble v-representable,
n € (%ByNA). However, as in the case of Fi [n] and T; 1.[n] one can rely on the fact
that for any n € . there is some n| € 4 and some n; € %, which are both infinites-
imally close to n, so that the existence of the functional derivative is ensured for all
practical purposes.
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3.3 Degenerate Kohn-Sham Ground States

The discussion in Sect. 3.1 is based on the assumption that the ground state of the
auxiliary KS system is non-degenerate. The question remains: How can one handle
the situation, if there are more degenerate KS states at the Fermi level than there are
electrons to be distributed among them? The answer to this question is provided by
an analysis of Ty [n], as only this form of the kinetic energy functional guarantees
the existence of the functional derivative 87;[n]/6n for arbitrary n.

Let us assume that the ground state density ng of the interacting system, when
inserted into 6751 [n]/0n, leads to a v, (via (3.57)) which yields ¢ degenerate N-
particle KS Slater determinants |®g ),

H|®o ) = E|@oy) k=1,...q. (3.62)

The single-particle spectrum of such a degenerate KS system is shown in Fig. 3.3.
All KS states with eigenvalues below the highest occupied KS level (with energy )

4&
0

ra ' o) Fan

Ay Ny A4

——ol-—0— ¢

Fig. 3.3 Sketch of the single-particle spectrum of a degenerate KS system. Filled circles indicate
occupied KS states, open circles refer to unoccupied states.

are occupied in all the determinants |®y ;). However, the occupation of the highest
KS level differs for each of the states |@g ). The presence of ¢; in [®Pg ) can be
characterized by an occupation factor Oy,

1 if ¢; present in [® )

Oi = {O otherwise (3.63)
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In total there are g possibilities to distribute the most weakly bound KS particles
among the degenerate orbitals ¢; at the Fermi level (in the example of Fig. 3.3 one
has g = 6, ignoring spin).

As long as one does not fix the density, the total energy functional of noninter-
acting particles tr{DH;}, Eq. (3.58), is then minimized by an arbitrary linear super-
position of all degenerate states |®g ), i.e. the minimizing density matrix has the
form

q q
Dy="Y di|®o)(@oxl: df=d>0; Y de=1. (3.64)

D, is constructed from the degenerate ground state determinants only—any admix-
ture of a higher lying state gives an energy tr{DH,} above E. The density corre-
sponding to the ensemble (3.64) reads

q
ne(r) = Y di (@i |A(r) | Do)
k=1
q
= { > |gi(ro) )+ (zdk@,»k>¢i(rc>|2}. (3.65)
o=1,] | &<&r &=¢€p \k=1

For the derivation of the second line the fact has been used that all single-particle
levels with an eigenvalue below & are occupied in all degenerate Slater determi-
nants |<I)07k>, while those at the Fermi level, i.e. with & = &, are distributed among
the states |®@p ;) according to (3.63).

Any set of dy with proper normalization leads to the same ground state energy
E, so that the d;, are not determined by the requirement of energy minimization for
the KS system. Even if some of the corresponding densities (3.65) are identical, one
generally finds a number of different ground state densities for the degenerate KS
system. Only one of them agrees with the actual density ng of the interacting system.
It is the identity of the ensemble density (3.65) with ng which fixes the weights dj.

Equation (3.65) suggests a redefinition of the KS occupation factor (3.14) as

1 for & < €p
6= X dOy fore=ep ; YO =N. (3.66)
0 for & > €f i

With this redefinition the ensemble density (3.65) and the associated kinetic energy
(3.55) have the same form as the corresponding non-degenerate quantities (3.13)
and (3.21). This is immediately obvious for the density (3.65),

ng(r) = w{Dsi} = Y. 6; Y |¢i(ro)[*. (3.67)
i o=l

In the case of ;1 one again has to use the fact that, among all density matrices
of the general form (3.56) which yield the density (3.67), the expression tr{DT} is
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minimized by exactly the same Dy as the total KS energy (3.58). Consequently, one
obtains for any admissible ground state density ng,

T;1[ns] = inf tr{f)f} = tr{DST}

D—ng
-Yo ¥ / o7 r0) T oy (3.68)

i o=l 2m

On the basis of (3.67) and (3.68) as well as the standard decomposition (3.24)
of the total energy (with 75 and Ex. replaced by (3.55) and (3.61)) one can now go
through the explicit derivation of the KS potential as in Sect. 3.1. One ends up with
the KS equations for degenerate KS systems,

2Vv?
{— . +vext(r)+vH[n](r)+vxc[n](r)}q),-(rcr) = g¢;(ro), (3.69)

where the eigenvalues at the Fermi level are now allowed to be degenerate,
&< €41 (for arbitrary 7). (3.70)
The density is given by (3.67) with occupation factors of the form

O, =1 for g <e¢p
0<6; <1 for g=¢r Yo =N, (3.71)
©;, =0 for g >¢f i

vy is defined as in Eq. (3.42) and vy, by

Vxe[n](r) = ag):(lr‘_gn] (3.72)
The alternative form of the total energy, Eq. (3.52), also remains valid with ®; now
given by (3.71).

It is worthwhile pointing out the difference between Eqs. (3.66) and (3.71): in
order to set up a KS scheme for the case of degenerate KS ground states the mere
existence of weights d; which reproduce any interacting ground state density via
(3.65) is sufficient. On the other hand, in a self-consistent scheme the occupation
factors at the Fermi level can no longer be simply evaluated from a given set of
dy and |®@g ) as these quantities are the outcome of the calculation. One needs a
constructive scheme for the determination of the d, i.e. for choosing the ©; for the
KS levels with & = ep during the self-consistent iteration. As the correct ground
state density of the KS system also minimizes the energy of the interacting system,
the ©; have to be chosen in accordance with this requirement. If the interacting
system is degenerate, several degenerate KS densities and several sets of minimizing
©®; exist.
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On the other hand, fractional values of ©); at the Fermi level are only legitimate
if the resulting self-consistent KS potential does not break the degeneracy, which
has led to the non-integer ©;. For instance, in the boron atom with electron—electron
interaction only the occupation

1
0:@2pi:§

0,
leads to a spherically symmetric n and thus vg, which is the basis for the degen-
eracy of the KS 2p° and 2p™ levels. Any other choice for ©; gives a non-spherical
potential which lifts the degeneracy of the three p-states. A fractional occupation al-
ways has to be chosen so that the degeneracy remains unbroken, i.e. in an internally
consistent fashion. This requirement usually determines the ©; completely (together
with the correct particle number). Nevertheless, often several internally consistent
sets of ©; must be compared (usually both fractional and integer sets). The ground
state is then identified with the set which yields the lowest total energy.

In practice, the Fermi distribution (3.15) is the most elegant way to handle de-
generate or nearly degenerate systems. As long as the temperature 7" is chosen suf-
ficiently small, one essentially obtains the same result as for zero temperature.

3.4 Janak’s Theorem, Fractional Particle Numbers

In the previous sections the occupation numbers ©; of the individual KS states
emerged from the total energy minimization of DFT. Let us now step back for a
moment and consider the situation in which the occupation of the single-particle
states generating the density is specified in an arbitrary fashion [88],

=36, |¢(ro)] with 0 <@ <1 Vi. (3.73)
i o=l

At this point, the occupation numbers ©; may be fractional and may not sum up to
an integer particle number N. There may be gaps in the occupation of the underlying
single-particle spectrum, i.e. there may be states with vanishing ©; scattered among
states with non-zero occupation numbers. The number of ©; which are non-zero
may be finite or infinite. The corresponding total energy is then defined as

Ey(6)) : 2@:,+ / & rves (Pn(F) + Exln] + Exe.[n] (3.74)

1 = /d3r¢l ro) ) ~———¢i(ro), (3.75)
o=1.1

where Ey[n] and Exc1.[n] are the standard DFT functionals evaluated with the den-
sity (3.73). Minimization of Ey with respect to the yet undetermined orbitals ¢; for
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fixed ©; and under the constraint of normalization! leads to KS-type single-particle
equations,

22
{ - % + Vext () + va[n] (r) + vxe [n](r)}gbi(ra) = g¢;(ro).  (3.76)

In the present situation these equations have to be solved at least for all states ¢;
with non-vanishing ©;, not just for the lowest N orbitals.

Clearly, the energy (3.74) coincides with the ground state energy Eo(N) of the
N-particle system subject to vey if (i) X; ©; yields the correct particle number and
(ii) the energy Ej(6);) is simultaneously minimized with respect to the ©;,

JE;
96; 6;=06;9

Ej(©:0) = Eo(N) if > 6p=N and =0. 3.77)

On the other hand, for non-integer particle number N + 1 (with 0 <1 < 1) Ey(6;)
provides a continuous interpolation between the ground state energies of the neigh-
boring integer particle numbers N and N + 1, as long as Ej(60;) is minimized with
respect to the ©; for all 7).

Let us evaluate the partial derivative dE;j/d0;, which controls the occupation,
explicitly. Given the definition of Ej, it is obvious that the orbitals ¢; which minimize
Ej vary, if the ©; are varied. The desired partial derivative therefore consists of two
contributions, the explicit dependence of Ey on ©; and the implicit dependence via
the orbitals,

JE;

o 9|¢J|2
36, ~ t,+§

|¢:|2+Z@/

D>

Ij
j
00; o=y

(3.78)
The first term, the kinetic energy of orbital i, can be rewritten by use of the single-
particle equation (3.76), in analogy to Eq. (3.51). Multiplication of (3.76) with ¢;*
and subsequent integration yields

i+ /d F ext (F) + via(F) + vie (P)] [6:(r0) 2 = & (3.79)
o=1,l

Insertion of this relation (reflecting the minimization of Ej with respect to ¢;) and of
the definition (3.75) into Eq. (3.78) then gives

o -a+3e 3 [ar

i i o=l

th)
+ Vext +VH + Vxc | @ +c.c..

If the single-particle equations (3.76) are used once more, one finally arrives at
Janak’s theorem [88],

! There is no need to constrain different orbitals to be orthogonal as the single-particle operator on
the left-hand side of Eq. (3.76) is hermitian anyway.
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JE;
T@i = z+2@ 8]86

/ &rlg;(ro))? = &. (3.80)
o=l

Equation (3.80) is a generalization of Slater’s analogous result obtained for the X -
method [89, 90].

It remains to analyze which distribution of occupation numbers emerges from the
minimization of Ej with respect to the ©; for fixed particle number N + 7). Imple-
menting the particle number and normalization constraints by Lagrange parameters
(as usual) and the constraint 0 < ©; < 1 by the transformation

6, = cos*(oy) with 0< o < 5

the functional to be minimized is given by

Ejy(cos? Zcos o) ,[ /d3 |pi(ro)|? 1]
o=T,]

—u lZcosz(af) —(N+m)

Variation with respect to ¢; leads to Eq. (3.76), as before. Minimization with respect
to ¢, on the other hand, gives the condition

JdE;

sin(ZOc[) |:a(~) —u

] = sin(2ey) [g;—u] = 0.

This relation can only be satisfied in three ways:

0,=0 <« 6,=1 & arbitrary
o= g — 0,=0 &; arbitrary

o arbitrary <= O; arbitrary & =

Thus there is only one particular energy for which a fractional occupancy can occur.
All other states are either completely filled or empty. From the KS approach one
would expect that the levels below u are filled, the ones above u are empty.

This expectation can be verified by use of Janak’s theorem. As discussed, Ej
recovers the true ground state energy in the case of integer particle numbers, if min-
imized with respect to the ©;. For this reason the present ©; must be identical with
the KS occupation numbers (3.71) for integer particle numbers. Let us convince our-
selves that Janak’s theorem (3.80) actually yields the KS occupation in this limit. For
fixed particle number any increase of one of the ©; has to be compensated by a re-
duction of the others. So, starting from the KS occupation, an infinitesimal increase
of the occupation @, of an unoccupied state ¢, from its initial value of zero leads to
the total energy change
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_ 0E; 0E; . _
OF = &7(9”9”_ 287(91”1 with 2 n = @u,

occ. i occ. i

where Y ... ; only extends over the initially occupied states (It is irrelevant at this
point whether the highest occupied state is fractionally occupied or not). The shift
OF includes the infinitesimal rearrangement of the ¢; which results from the mod-
ified occupation numbers. However, as the occupation is assumed to change only
infinitesimally, there is no energetic reordering of eigenvalues as compared to the
initial configuration—the eigenvalues themselves also change only infinitesimally.>
Use of Eq. (3.80) and of the fact that the eigenvalues of the occupied states are all
lower than that of the highest occupied state ¢y, therefore allows to determine the
sign of OF,
OF = O,&,— z ni& > @u(gu - gho) > 0.
occ.1

Any increase of ©, from zero raises the energy.

In the same way one can analyze an initial occupation with a gap at state j,
©; =0, and occupied states with energies higher than &;. In this case an infinitesimal
increase of the occupation O; yields the energy change

E= 20— =" ith i = 0.
0 a@j@J za@in wit gjn O,

As long as all levels with eigenvalues lower than €; are completely filled, one finds

OFE = O — z nig < @j(Sj—Sk) <0,

i#j;8i>€j

where k is the energetically lowest state above the initially empty state j. Thus the
state j begins to be filled due to energy minimization. This process continues at
least as long as the ordering of €; and g is preserved. If the point £; = g is reached
without both states being fully occupied, one either starts to fill up both of them
simultaneously from non-empty states higher than k or one is facing the fractional
occupation of a degenerate KS Fermi level. In both cases one finally ends up with
the KS occupation.

The same basic mechanism applies for fractional particle number, so that only
the highest occupied state (or the set of degenerate highest occupied states) can be
partially filled. Integrating up Eq. (3.80) between two neighboring integer particle
numbers thus yields a relation for the ionization energy,

1
E(N+1)—E(N) = /0 doy g, (3.81)

2 Of course, if & = ¢ ' holds before the modification of the occupation numbers, one might find
some ordering & < €; after the transfer of norm. However, this splitting of previously degenerate
states does not affect the argument.
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where [ denotes the unoccupied state of the N-particle system which is filled in the
N + 1-particle system.?

Let us finally go beyond the actual realm of DFT for a moment and try to utilize
Eq. (3.80) for the calculation of excitation energies. In fact, the functional (3.74) can
be used to set up a first approximation for the energy of excited states. For instance,
a single-electron excitation from the many-particle ground state is obtained, if the
occupation numbers are chosen to differ from the ground state occupation for ex-
actly two single-particle states i and j: If ©; and ©; correspond to the ground state,
the occupation ©; — 1 and ©; + 1 (with all other occupation numbers kept fixed)
represents an excited many-particle state in which an electron is transfered from the
occupied state i to the unoccupied state j. If the symmetries of the two states differ,
this representation is in the spirit of the DFT for excited states discussed in Sect. 2.7.
Repeating the argument behind Eq. (3.81), one can express the excitation energy of
this transition as

1 1
Ei(N) — Eo(N) = /0 d@,-s,-f/o d6y¢;. (3.82)

In practice, the evaluation of the right-hand side of Eq. (3.82) relies on a discretiza-
tion of the ©);,;-integrals. The simplest approximation is to use the value of the in-
tegrand at the midpoint @; = @; = % for the complete range of the integration. This
choice minimizes the error introduced by the discretization, if only a single mesh
point is to be utilized for the discretization. The eigenvalues &; and ¢; then have to
be obtained from a selfconsistent calculation for the occupation ©; = @; = %,

El(N) —E()(N) ~ Ej(@,' = @j = %) —8,'(@,' = @j = l) .

In this approximation Eq. (3.82) simply represents Slater’s transition state approach
[90], applied to the KS scheme.

3.5 Kohn-Sham Equations for Spin-Polarized Systems

Similar to the HK theorem, one can also extend the KS scheme to systems in ex-
ternal magnetic fields [34, 91]. One starts with the assumption of the existence of a
noninteracting system,

A= T+ [ dr {u(ri(r) + By(r) -iu(r)} (3.8

with the same ground state density » and ground state magnetization density m,

3 This argument assumes, of course, that there is no complete rearrangement of states when going
from the N- to the N + 1-particle system.
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n(r)=3Y Y .6i¢(ro) (3.84)
o=1,l i
m(r)=pg Y Y66/ (ro)6se¢i(ro’), (3.85)
o,0'=1,] i

as the interacting system (2.120). The kinetic energy of this KS system, which is a
functional of n and m, is given by

_ 2
Lim =36 3 [arer0) S 0r0), G0

i
i o=, m

with the ©; chosen in accordance with (3.71). T; 1. then induces a decomposition of
the total energy of the interacting system,

Eln,m] = Typjn,m]+ / &r {vexin + Bexe-m) + Ealn] + Excr [n,m].  (3.87)

Minimization of E[n,m] with respect to the orbitals ¢; yields the associated KS
equations,

2%72
Z{ |:— hZZ +Vs[”7m}(r):| 0o’ + UBO 56! ~Bs[n,m](r)} ¢i(ro-/)

= &¢;(ro) (3.88)
vs[n,m|(r) = vext(r) +vuln](r) + W (3.89)
B[, m)(r) = Boy(r) + 2Ecrlm] (3.90)

om(r)

In addition to the external magnetic field the KS orbitals experience some internally
generated magnetic field, originating from the xc-functional.

The standard form of spin-density functional theory is obtained if the magnetic
field is restricted to a pure z-component, as in Eq. (2.133). In this limit the spin-
densities are the fundamental variables of DFT. The Hamiltonian of the noninteract-
ing KS system can thus be written as

A=+ Y /d3rvf(r)ﬁg(r). (3.91)
o=T,]

In contrast to the general form (3.83) the Hamiltonian (3.91) obtained for
Bexi = (0,0, Bey) commutes with the operator S, given in Eq. (3.6), as H; commutes
with the total particle number for given spin,

(A, Ns] =0. (3.92)

However, the effective KS potentials for the two spin orientations differ, so that the
corresponding spatial single-particle orbitals depend on the spin quantum number,
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0i(ro) = os(r) xs(o) i=(a,s). (3.93)

The spin-densities are obtained as

2@|¢, ro) ZGM\%G r?, (3.94)

where (3.10) has been utilized to evaluate the sum over s. The spin-dependence
of the occupation numbers reflects the commutation relation (3.92). Each pair of
particle numbers Ny, with Nt +N| = N, represents a different sector of Fock space,
for which the existence theorem (2.134) applies separately. The absolute ground
state is then determined by minimization of the total energy of the interacting system
with respect to Ng. In the most general situation the occupation numbers are thus
given by

1 for Eno < EFo
Oups = L 0< Oy <1 for €y5 = €Fs ; with 3,0y =Ns . (3.95)
0 for €46 > €rs

The particle number Ny for spin o determines the corresponding Fermi energy €re.
The kinetic energy of the KS system is

Tifn)= 3 Y6 [dreire) g ro)

o=, i
th)

- 2@aafd3r¢m

o=1,l &

5 0as(r). (3.96)

With the decomposition

Elny,n|) = TpL[ng,n] +/d3r{ [Vext“l‘uBBext] n + [Vext _.uBBext} nl}
+Ey [I’l] + EXC,L[nT,nl] 3.97)

one finds the KS equations of spin-density functional theory,

m*V?
{ . +vg ["%nﬂ(")}d)aa(") = €q60uc(r) (3.98)
vl [ny,n](r) = vexi(r) +sign(0) UpBex (r) + v [n] (r) + v [ny,n |(r)  (3.99)
ve[nym](r) = (W- (3.100)

Both spins experience different effective potentials vZ. In addition to the external
magnetic field the internal spin-effects included in Exc.[n7,n|] contribute to the
difference between the spin up and spin down potentials. For completeness we also
note the spin-dependent analog of Eq. (3.52),
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Ey = Z {2@0‘08‘10’_'/d3rvgc[nT7nl](r)nG(r)} _EH[n]""Exc,L[nT,nl]-

o=],l L @
(3.101)
Of course, for unpolarized systems Egs. (3.94)—(3.101) are identical with the KS
scheme of Sect. 3.3.

It is worthwhile to emphasize that the spin-dependent scheme (3.94)—(3.101) is
most often applied in the limit Bexy = 0. In fact, the explicit inclusion of the spin
degree of freedom via the spin-dependent KS equations (3.98) (or even (3.88)) is
mandatory, whenever the ground state of interest exhibits some nonzero magnetic
moment. Given the claim that the original HK theorem guarantees a purely density-
dependent description of spin-polarized systems, this statement requires some ex-
planation. The critical point is the degree to which the physical properties of the true
ground state are transferred to the ground state of the auxiliary noninteracting sys-
tem. The KS system needed is necessarily a system of spin-1/2 particles—otherwise
one would have to introduce ad hoc rules for the occupation of the KS levels. A
non-degenerate KS system therefore automatically implies an even particle number
N (as discussed in Sect. 3.1). A description of spin-polarized states on the basis
of a scheme that depends only on the density (rather than the spin-densities) must
thus employ the formalism for degenerate situations outlined in Sect. 3.3, even if no
spatial symmetry is present.

Let us analyze the consequences of this ensemble approach for a noninteracting
physical system with Ny = N| + 1 and without spatial symmetries. The KS potential
is identical with vey in this case, so that all KS levels are exactly twofold degen-
erate. All KS levels up to N — 1 = 2N are doubly occupied, while the degenerate
levels N and N + 1 contain only one KS particle. Since a spin-independent poten-
tial can never lift the spin-degeneracy, the occupation numbers Oy and Oy can
have arbitrary fractional values consistent with Oy + Oy+1 = 1. Moreover, the den-
sity does not depend on the actual values of Oy and Oy 1, as ¢y and ¢y only
differ in their spin-dependence. There is thus no intrinsic requirement which deter-
mines these occupation numbers. On the other hand, there is no need to fix them
individually, as the complete formalism only depends on @y + Oy and the mag-
netic moment need not be reproduced by the KS ground state in the unpolarized
scheme. As a consequence, the density and the energy of a noninteracting system
with Ny = N| + 1 are correctly obtained from Eqs. (3.67)—(3.72), while the magnetic
moment remains undetermined. In this sense 75 1 [1] can describe ground states with
a total spin-projection 1/2.

Let us next consider a noninteracting physical system with Ny = N| +2 and no
spatial symmetries. The corresponding physical state is not the absolute ground state
of the underlying Hamiltonian, but the energetically lowest state in one particular
sector of Fock space, for which the Ritz principle is valid. It is immediately obvi-
ous that the density of this state can not be obtained from the ensemble KS scheme
(3.67)—(3.72), as the highest two relevant single-particle states are only singly oc-
cupied in the physical system. Clearly, T; 1 [n] is not applicable to individual spin
sectors of Fock space, only the absolute ground state can be described.
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Consider finally an interacting physical system and assume that the internal spin-
effects lead to an absolute ground state with Ny = N| +2 for full interaction strength
w. Imagine that this strength is obtained by switching on the interaction from the
value w = 0. There is one critical interaction strength A.w (0 < A. < 1) during
this process, for which the energy of the lowest state with Ny = N| + 2 falls be-
low that of the lowest state with Ny = N| = N /2. This critical strength A depends
on the external potential vex—the same basic effect could be observed by varying
vext for fixed interaction strength. In order to be generally applicable, the ensem-
ble KS scheme has to reproduce both types of ground state densities, the one with
Ny =N = N/2 below A and the one with N; = N| +2 for 4 > A.. However, the
absolute ground state density is discontinuous when crossing A.. This discontinu-
ity must be generated by the xc-functional Ex. 1 [n], i.e. the corresponding vy must
favor spatially different densities for A < Ac and A > A.. And it must do so for a
large class of potentials vey without depending on vey itself (as Ex 1] is universal).
While this is not impossible in principle, no mathematical realization of a functional
with these properties is conceivable at present (not to speak of the approximations
for Exc 1[n] available to date).

In summary: The description of spin-polarized systems within the unpolarized
KS scheme is possible in principle, as the magnetic moment of the KS system need
not agree with the magnetic moment of the interacting system. However, the irrele-
vance of the magnetic moment of the KS system is also the major drawback of the
unpolarized framework. The burden of distinguishing between different spin states
must solely be carried by the purely density-dependent xc-functional. No suitable
xc-functional for this task is known so far.

As a final remark, one should take note of the fact that the scheme (3.94)—(3.100)
only applies to the energetically lowest state for given Ny, N|. For instance, in the
case of helium the choice Ny = N| = 1 and thus S, = 0 necessarily corresponds
to the Singlet ground state. The lowest Triplet state with S, = 0 is an excited state
of this sector of Fock space. On the other hand, the lowest state with Ny = 2 and
N, = 0 is the KS representation of the lowest S, = 1 Triplet state. In this way, a
certain amount of information on excited states is accessible via the KS approach.

3.6 Interpretation of Kohn-Sham Eigenvalues:
Relation to Ionization Potential, Fermi Surface and Band Gap

3.6.1 Ionization Potential

It has been emphasized in Sect. 3.1 that the KS ground state @y is not identical
with the true ground state Wy of the interacting system. The KS formalism is a
mathematical tool to generate the exact ground state density and energy in the most
efficient way. This implies that the individual KS orbitals and eigenvalues have, in
general, no physical meaning. There is, however, one exception to this statement:
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The eigenvalue of the highest occupied KS level of a finite system, i.e. a system for
which the density decays exponentially outside a finite region of space, is identical
with the ionization potential (IP) of the interacting system [92].

The proof of this identity relies on the concept of the quasi-particle amplitudes.
In order to introduce these quantities one starts with the full many-body Hamilto-
nian,

212
H= Y /d3r1f/"'(ro'){hzlz Jrvext(r)}lf/(rc)
o=T,l

S [ [0 00 (Y e ) i) iire). G102
2 1.1

o,0'=1,
The N-particle eigenstates of this Hamiltonian are denoted as \‘I’Q’ )s
HPY) = EN WYY EY <E}.,. (3.103)

As indicated in (3.103), the |‘I’§cV ) are assumed to be energetically ordered, so that
[P} represents the ground state in the N-particle sector of Fock space (assumed to
be non-degenerate). The quasi-particle amplitudes are then defined as

fi(ro) == (¥ g (ro) [¥Y) (3.104)
gi(ro) .= (¥ Y (ro) 7). (3.105)

fx 1s the overlap of the N — 1-particle state obtained by taking out an electron with
spin o at point r from the N-particle ground state with the k-th eigenstate in the
N — 1-particle sector. Similarly, g is the overlap of the N + 1-particle state obtained
by adding an electron to |‘I’6V ) with the k-th eigenstate in the N + 1-particle sector.

The relevance of these coefficients for the present discussion becomes more clear,
if one compares the definition (3.104) with that of the ground state density of the
interacting system, Eq. (2.11): the ground state density can be directly expressed in
terms of the quasi-particle amplitudes f; by use of the completeness relation in the
(N — 1)-particle Hilbert space, ¥ [P} ') (¥} | =1,

no(r) = %, (B0 (ro)p(ro)|¥5) = Y, Ylf(ro).  (3.106)
o=1,] o=1,l k

Therefore the properties of ng are intrinsically related to the properties of the f;.

The quasi-particle amplitudes f; satisfy differential equations which have some
similarity with the Hartree-Fock (self-consistent field) equations. They are most eas-
ily derived by evaluation of the commutator [\, H],

[Ip(m),ﬂ} = { — h;vj +vext(r)}ti/(r0)

4 / Erw(r ) S )l i(re).  (3.107)
o’'=1,]
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After identification of the density operator (2.4) one arrives at

oY [wro), A1) 19

2%72
=] = T ) o)+ [ @t A o) )

= [BY =B o o)), (3.108)

where the last line has been obtained with Eq. (3.103). Use of the definition (3.104)
then yields

292
{ hZZ + Vext(r )}fk(rG)+/d3rlw(rar/)<LP§cv_1|ﬁ(r/)llA/(rG)|‘P6v>

= hay fy(ro), (3.109)
where the excitation energy
hoy == E) —E)! = O > O (3.110)

has been introduced. The ordering of the @y results directly from the energetic or-
dering of the states, Eq. (3.103). Moreover, if \‘Pg\' ) is a normalizable bound state, its
energy is usually lower than that of [} ~'). This is true in particular if [¥Y) is the
ground state of a neutral atom or molecule. In this case one immediately identifies
the IP as first excitation energy,

P = —hw; ap < 0. 3.111)

One can finally insert the completeness relation in Fock space, Yy ¥, [¥V) (¥V] =1,
between 7i(r') and §(ro) and utilize the fact that y|WY) is a state in the N — 1-
particle sector,

2v72
0= { — %‘i’vext(r) hwk}fk(ra)

+2/d3r w(r, ) (P A Y Y fi(ro). (3.112)

One has thus found an infinite set of coupled single-particle equations for the am-
plitudes fi.

In the limit of vanishing interaction w all states [W}') are Slater determinants
built from the single-particle orbitals corresponding to the potential vex;. As a con-
sequence, the overlap integral (¥} g (ro)|[¥)) vanishes if ¥ ") contains or-
bitals which are not present in [}). Only the N amplitudes for which [¥} ) is
obtained by taking out one of the single-particle orbitals from |‘{”0V ) are nonzero.
The N non-vanishing f; are identical with the N energetically lowest single-particle
orbitals, i.e. the orbitals which are occupied in the N-particle ground state. The as-
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sociated 7wy, agree with the corresponding single-particle eigenvalues. This result
can also be obtained directly from (3.112), as for w = 0 Eq. (3.112) is nothing but
the single-particle Schrodinger equation for particles experiencing the potential vVey;.

Starting from [liﬁfl ] one can also derive a differential equation for the g;. How-
ever, these amplitudes are irrelevant for the present discussion, so that no details are
given here. The only point worth noting is the fact that the g approach the unoccu-
pied single-particle orbitals in the limit of vanishing interaction.

The asymptotic decay of the quasi-particle amplitudes f; for the case of finite
systems is the key for the identification of the eigenvalue of the highest occupied
KS state with the IP of the interacting system. The asymptotic behavior of the f;
can be determined by an analysis of the differential equation (3.112) for large |r|—
an explicit discussion is given in Appendix E. One finds that the asymptotically
leading amplitude is obtained for k = 0,

f [zclmmm ‘| —\/—Zma)o/hr
\rlﬁw

(the values of the coefficients /" and the exponent by are not relevant at this point).

In the asymptotic region the density (3.106) is dominated by this leading amplitude,

no(r) —— Y 21’6 e 2V ~2man/hr (3.113)

‘rlﬁw o=1,|

ch(;”Ym

This result may be compared with the asymptotic form of the KS density (3.23),
which is dominated by the most weakly decaying KS orbital. The asymptotic form
of the latter can be directly extracted from the KS equations (3.44). Defining the
origin of the energy scale by

vy(r) —— 0, (3.114)

[r[—e

one obtains by the same analysis as for the quasi-particle amplitude,

¢i(ro [ [Zd Yim (L2 }r%oevmﬂ/” (3.115)
r|—oo
2
Ym ZVNO' 72\/72m£Nr/h 3116
no(r) m’ og,l % ] r-iNoe ( )

(the KS levels are assumed to be energetically ordered). As the exact density is
identical with the KS density one has

ey =hwy = —1P. (3.117)
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The relation (3.117) not only applies to the first IP, i.e. to a neutral system with
N = Z, but also to all higher IPs (and the EA, if a negative ion exists).

3.6.2 Fermi Surface

This result automatically raises the question whether an equivalent statement can be
made for extended systems. In the case of metals one could hope that the KS Fermi
surface, as the analog of the highest occupied KS eigenvalue, is identical with the
exact Fermi surface. In fact, this hope is fostered by two limiting cases, for which
the agreement is obvious.

(a) For noninteracting systems the KS Fermi surface is trivially identical with the
exact Fermi surface (for magnetic systems the spin-dependent version of the
KS approach has to be used).

(b) In the case of the uniform electron gas both Fermi surfaces are spherical and
contain the same volume of k-space, according to Luttinger’s theorem [93].
Consequently the Fermi surfaces coincide.

The question to be answered is, whether this result also holds for real systems, which
are simultaneously interacting and inhomogeneous?

In order to answer this question one first has to define the exact Fermi surface in a
precise manner. For this purpose one needs an equation which allows a more direct
determination of the excitation energies 7@y, than (3.112). The derivation of this al-
ternative equation starts from the single-particle Green’s function of the interacting
system,

G(rot,ro't’) .= —i (W T (rot) ' (Fo't)|¥), (3.118)

where (rot) is the field operator in the Heisenberg representation (H is time-
independent),

W(rot) = /My (ro) e MM, (3.119)

and T denotes time-ordering of the two field operators. Quite generally, the time-
ordering symbol T reorders arbitrary sets of elementary creation and annihilation
operators Oi(ti) chronologically, with the latest time to the left: if P is the permu-
tation of the operators required to achieve this chronological ordering, T is defined
as

N

Tél(ll) . On(tn) = SNP Op(l)(tp(l))ép(2>(tp(2)) .. OP(n)(tP(n)) (3.120)
with  7p1) > tpa) > ... > tp(y)

{ —1 for fermions

§ = +1 for bosons

Np = number of pairwise permutations required to set up P .



3.6 Ionization Potential, Fermi Surface, Band Gap 89

The prefactor SV7 accounts for the fermionic or bosonic character of the O;: the
overall sign is always positive for bosons and equal to the sign of the permutation P
for fermions. Using Egs. (3.119) and (3.120), the definition (3.118) can be written
more explicitly as

G(rot,Fo't') = —i0(t — 1) (Wo|¥(ro) e Ayt (67 |Wy) eEo =)/
_H'@(t/ —t)<lPo|l[A/+(T/G/) efiﬁ(t’ft)/h W(ro)|¥o) eiE{)V(t’ft)/h ,

which leads to the following interpretation of G: for ¢ > ¢’ a particle with spin ¢’
is added at position r’ and time ¢’ to the N-particle ground state |W¢). The resulting
(N + 1)-particle state then evolves in time according to the Hamiltonian A until the
time ¢, at which one particle with spin ¢ is taken out of the system at position r.
Similarly, for the case ¢ < ¢’ a particle with spin ¢ is annihilated from the ground
state at position r and time ¢, leaving a (N — 1)-particle state. After propagation until
¢’ the missing N-th particle is added at position # with spin ¢’. Thus, the term with
t > t' describes the propagation of an additional particle in the presence of the N
particles of the ground state, the second term describes the propagation of a missing
particle, called a hole. Taking both transition amplitudes together, the single-particle
Green’s function reflects the complete structure and dynamics of the system. As a
consequence, many physical observables can be extracted from G.

G can be expressed in terms of the quasi-particle amplitudes (3.104), (3.105) by
use of the completeness relation in the (N =+ 1)-particle Hilbert space,

do ..
G(rot,r'o't) = /%e"“’“_’)G(rG,r/G/,a)) (3.121)

gi(ro)g; (r'a’)
ho—E) +EY +in

filro)fi (r'o’) }
ho—EY+EY ' —in )’

G(ro,r'o’,0) = hZ{

i

(3.122)

where the standard representation of the step function as a contour integral, Eq. (L.5),
has been used to obtain the Fourier decomposition. The pole shifts £in in the de-
nominator of Eq. (3.122), which is referred to as Lehmann representation of G,
have to be understood as infinitesimal, with 1 > O in all cases. These shifts only
serve to define the contour in the complex w-plane which implements the correct
time-ordering for the individual contributions to G. Once the integration over ® is
performed, the limit 7 — O is taken. This limit is, however, never noted explicitly in
equations as (3.121), but automatically implied whenever pole shifts show up. The
same notation is subsequently used for all other quantities for which some time-
ordering has to be incorporated in their Fourier representation, in particular for the
response functions introduced in Sect. 4.2.1.
The Green’s function satisfies the Dyson equation [94, 95],
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G(rot,r'c't') = Go(rot,r'o’t) + Y, /d3r3d3r4 /dt3 dty

03,04

X Go(rGt, r303t3) Z(r363l‘3, r4G4t4) G(r404t4, r’o’t/) . (3.123)

Here Gy represents the noninteracting Green’s function which is obtained from G
in the limit w — 0. An explicit form of Gy is obtained by realizing that for van-
ishing w the amplitudes f; and g; approach the single-particle orbitals ¢ of the
noninteracting system with external potential vex; (compare Eq. (3.112), which, for
w = 0, is nothing but the single-particle equation corresponding to the noninteract-
ing system). Correspondingly, the energy differences 7w, = E(I)V — Efv ~! go over into
the associated eigenvalues & (which, for the moment, should not be understood as
KS eigenvalues). Denoting the occupation of the single-particle states by ©;, one
therefore obtains for the Lehmann representation of Gy

6(r0)0; (ro') | o 0i(ro)g; (o)
o0—¢g/h+in ! o-—g/h—in

Go(ro,ro’,0) = Z{(l -0)

[

} . (3.124)

X denotes the proper (or irreducible) self-energy, for which Eq. (3.123) represents
one possible definition. X contains all non-trivial interaction contributions to G, i.e.
all terms which are not simply obtained by repetition of more elementary contri-
butions to X. This statement becomes clear if Eq. (3.123) is iterated, i.e. if the full
Green’s function on the right-hand side of (3.123) is repeatedly replaced by use of
Eq. (3.123) itself,

G(rot,r'o't)
= Go(rot,r'o't")
+ 2 /d3r3d3r4/dtgdeo(rot,r36313)2(r30'3t3,r464t4)
G304 .

X G()(r464l‘4, r’c’t’)

+ z /d3r3d3r4/dt3dt4Go(rGt7r30'3t3)2(r30'3t3,r464t4)

0304

X 2 /d3r5d3r6/dtsdt6Go(r40'4t4,r50'5t5)2(r5c75t5,r666t6)

0506

x Go(re0Oets, r/o"t’) +....

This equation demonstrates how the basic building blocks of G, absorbed in X,
are repeated infinitely often in the form of a geometric series. The structure of this
series immediately suggests the use of perturbation theory with respect to w: Any
approximation to X is resummed to infinite order by the geometric series, so that a
perturbative treatment of X corresponds to a non-perturbative treatment of G. In fact,
the perturbative evaluation of X via the Feynman diagram technique is the standard
approach in Green’s function based many-body theory. To lowest order (first order
in w) one finds (see e.g. [94])
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=W (ror,r o't)

= i8558V (r—r)5(t 1Y / &> w(r,r") lim, Go(r'c"t,r"c"t+1)
ol n—

+id(t —t")w(r,r) 11%1+G0(r0t,r/6’t+n)
n—>
= 85,683 (r—1)8(t —"Yvulno) (r) + hZc(rot,r 6't'), (3.125)

where, after identification of the density (2.11) as a contraction of the Green’s func-
tion,
—iY lim Go(rot,rot+n) = ny(r),
o n—0t

Eq. (3.42) has been utilized and an abbreviation has been introduced for the second
term (ng is the ground state density of the noninteracting system with potential vex
in the present discussion). To lowest order X thus consists of a direct Coulomb term
and an exchange contribution X.

On the basis of the Dyson equation (3.123) one can define the exact Fermi sur-
face, provided one adapts (3.124) to a periodic system, i.e. a system with

Vext(r+Rn) = Vext(r) (3.126)

for all translations R, which leave the periodic arrangement of the nuclei in the
crystal unchanged (readers familiar with elementary quantum mechanics of peri-
odic systems may proceed directly to Eq. (3.141)). The Bravais vectors R, can be
expressed in terms of the three primitive vectors a; of the lattice which reflect three
characteristic axes of the lattice with respect to which periodicity is observed,

R, = nia, + ma; +n3as ; n €7Z. (3.127)

The parallelepiped spanned by the primitive vectors a; is the unit cell of the lattice:
repetition of this elementary building block of the lattice with volume

Q =la;-(ay x a3)| (3.128)

fills all space without leaving any voids.

As soon as the external potential satisfies the periodicity condition (3.126), the
complete Hamiltonian commutes with all translations by Ry, since the kinetic en-
ergy operator and the Coulomb interaction remain unaffected if all electronic co-
ordinates are shifted by the same R,. As a result all eigenstates of the Hamiltonian
may be classified by quantum numbers according to the translational symmetry. The
consequences of this translational symmetry are most easily analyzed for noninter-
acting particles: the single-particle states ¢; corresponding to the potential (3.126),

l_ R V2

m +Vext(r)‘| Pk (r0) = €k Pra(ro) , (3.129)
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satisfy Bloch’s theorem [96],
Ok (ro) = e* T uy (ro) . (3.130)

The quantum number k, the crystal momentum, reflects the periodicity of the system,
the quantum number «, the band index, originates from the atomic states which
form the Bloch states @ for any value of k one finds a complete set of bands c.
If the eigenvalues &, are plotted along a specific direction in k-space, one obtains
the band structure of the solid (for an example see Fig. 6.3). Finally, uz, (ro) is a
function which is strictly periodic with the lattice,

Upe(r + Rn, 0) = uge(ro) . (3.131)

As a direct consequence of (3.126) and (3.131) vex and ug, (and, in fact, all observ-
able (real) fields of the system) can be Fourier expanded in terms of the reciprocal
lattice vectors Gy,

G, = mby +myby +msbs m; €7, (3.132)

where the vectors b; denote the primitive vectors of the reciprocal lattice,

a; Xag

b =2r———
a - (az X 03)

with i, j,k = cyclic permutations of 1,2,3.  (3.133)

By construction one has
b,"dj = 277:51']’7 (3.134)

so that Egs. (3.132), (3.133) implement the periodicity requirement
exp[iGm - (r+Ry)] = exp[iGm-r] <= expliGm-Ry]=1; VR,, (3.135)
which results from the Fourier expansion of Egs. (3.126) and (3.131). One thus has

upg(ro) = ZeiG'"" U (Gmo) (3.136)
m

and analogous expansions for vey; and all other strictly periodic functions.

It remains to discuss the quantum number k in more detail. Its character is de-
termined by the requirement of normalization. Obviously, proper normalization of
the Bloch states (3.130), (3.136) is not possible, if arbitrary values of k are allowed.
This observation expresses the fact that one can not have more than countably many
electrons in a periodic system. Boundary conditions are needed to ensure proper
normalization and the correct particle number. In order to specify these boundary
conditions consider a large block of unit cells, consisting of N; repetitions of the
unit cell in the direction of a;, N, repetitions in the direction of a, and N3 repeti-
tions in the direction of a3. The full crystal is then obtained by periodic repetition
of this large block of unit cells, referred to as Born-von Karman block in the fol-
lowing. On the other hand, each individual block approaches the complete crystal in
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the limit Ny, N, N3 — oo. Proper normalization is then ensured if one requires strict
periodicity of the @, with respect to repetitions of the Born-von Karman block of
unit cells,

Ok (r + Niatj, 0) = Qg (ro)  for i=1,2,3. (3.137)

From this Born-von Karman boundary condition one obtains as admissible k-values

! l ! N; N;
k= Lb+-2byt by with ——<L<—  LeZ (3.138)
N, N3

Np 2 2’
(alternatively, one may use the range 0 < [; < N; — 1). In total, a multiplicity of
NN, N3 is associated with each atomic state contributed by the atoms in the actual
unit cell, allowing exactly as many electrons to fill these states as provided by the
atoms in the complete Born-von Karman block. In the limit Ni,N>,N3 — oo the
ratio /;/N; can be any rational number between —% and +%. The set of k-values
characterized by (3.138) is called the first Brillouin zone.

On this basis one can then establish the orthonormality and completeness rela-
tions for the Bloch states,

/N1N2N3f2 d3r¢;a<ro-) o (rG) = 5kk’ Soror (3.139)
c - :
Z(I)ka(rd)gb,fa(r’a’) = S0’ 6(3)(r_r/) . (3.140)
ko

Here the short-hand notation k = k; has been introduced, ¥; =Y, and J implies
l; =1 (i=1,2,3) in the representation (3.138). The Bloch states are normalized to
1 in the Born-von Karman block with volume NiN,N3£2.

After this preparation, the discussion of the single-particle Green’s function can
be resumed. In view of the translational symmetry of the system a Fourier represen-
tation is most suitable. The basis for this Fourier representation is an expansion of
the field operator in terms of creation/annihilation operators 6,(:2 for the noninteract-
ing Bloch states ¢,

W(ro) = Y $a(ro) ég vi(ro) = Y o5, (ro)e),  (3.141)
ko ko

{éka,ék/a,} - {é,ta,éj;,a/} —0 {éka,éz,a,} = S O (3.142)

(the commutation relations follow from Egs. (2.6), (2.7)). Insertion into (3.118) de-
fines the single-particle Green’s function in momentum representation,

G(rot,r'c't') =3 Y dka(ro) ¢y, (r'c’) Glkat,k'a't') (3.143)
ko k' of

Glkot K ot") = —i (¥o|Téra (1)}, (') Wo) (3.144)

Cra(t) = eP/h gy oM (3.145)
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In the state CAk | o) abare (i.e. noninteracting) Bloch electron is added to the ground
state of the N-particle system. Of course, this state is not an eigenstate of the Hamil-
tonian in the (N + 1)-particle sector, but rather a superposition of eigenstates,

hal¥o) = D (k) [¥)) (3.146)
g (ko) = (PN er [P - (3.147)
Similarly, the state ¢y|Wo) is a superposition of (N — 1)-particle eigenstates,
CkalWo) = ;ﬁ(ka)|‘11§v_1> (3.148)
filka) := (PY |6k | D) - (3.149)

G(kot,k' o/t") describes the propagation of these wave packets in time, with 6}; o o)
being propagated for ¢ > ¢’ and & |Wo) for 1 < t'. The quasi-particle amplitudes
g; (ker) and f;(kor) represent the probabilities to find the wave packets in particular
eigenstates of the (N & 1)-particle systems.

As in the case of its real space equivalent, the quasi-particle amplitudes can be
used to establish the Lehmann representation of G(kat,k'ot") by implementation
of time-ordering via suitable contours in frequency space,

G(kat, K o't') = / ”é—:e*iw(’*"m(ka,k’a’,w) (3.150)
{ gi(ka)gj (K o)
ho —EN T+ EY +in

filka) fj (K'ot') }
ho—EY+EY ' —in ]

G(ko,k'o/,0) = 1Y,
]

(3.151)

For extended and, in particular, for periodic systems, it is convenient to recast the
representation (3.151) by use of the chemical potentials and excitation energies of
the (N — 1)- and (N + 1)-particle systems,

u(N) = EY —EY! (3.152)
u(N+1) = EY' —EY (3.153)
Q=g '-E)"" = QV!> (3.154)
QU= gV YT = QM > (3.155)
In fact, for large N (for solids N ~ 10%%) one has
Uu(N) = [.1<N+1)+ﬁ<;]> = u, (3.156)

so that the Lehmann representation (3.151) may be written as
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{ gi(ko)g; (K'ot') Silka) f; (K o) }
ho—pu—QVt ' +in ho-pu+QV ' —in)

(3.157)
The form (3.157) exhibits most clearly that the threshold energy 7@ = u distin-
guishes between the particle propagation described by the first term and the hole
propagation in the second.

The important observation now is: G(ko,k'a, ) is diagonal with respect to
k,k'. This property is easily verified for the noninteracting Green’s function, whose
momentum space representation is defined in analogy to Eq. (3.143). Insertion of the
Bloch states (3.130) into (3.124) and subsequent comparison with (3.143)—(3.151)
directly yields

G(ko ko' .0) = 1Yy,
1

Go(ka,k'o, @) = Sy 80 Go(k, 0, ) (3.158)
1_@(8F_€ka) @(SF_gka)
O—¢&o/h+in  ©—g&q/i—in

Go(k,0,0) = , (3.159)
where the occupation number has now been expressed in terms of the Fermi energy
€ of the noninteracting system.

However, diagonality with respect to k, k" can also be demonstrated for the inter-
acting Green’s function (compare [97, 98]). For this purpose one first notes that all
interacting states have to be periodic with respect to the Born-von Karman block:
any translation by N;a; (or multiples of it) must leave the states invariant,

"va(rl + N;a;, 01,...ry + Na;, GN)
=¥N(rio1,...ryoy)  for i=1,23. (3.160)
The interacting states can thus be expanded in terms of the N-particle basis pro-

vided by the Slater determinants |(Dk1...kN.oc1...ocN> constructed from the Bloch states
(3.130),

Yy = S aki.ky,on.on) | Pry ko) (3.161)

kl.”kN,Oll...O(N

[Pk, ko) = oy Cyany |0) - (3.162)

In addition, ‘Pﬁv can be chosen to be an eigenstate of all translations by Bravais
vectors R,, as the Hamiltonian commutes with these translations,

‘I—’;V(rl +R,,01,...rN+ Ry, O'N) = eiR"'ng ‘{‘ﬁv(rl ,O1,...TN, O'N) . (3.163)
If one applies this relation to the right-hand side of the expansion (3.161), one finds

a condition for the total crystal momentum of the basis functions, which is valid for
each of the terms in the expansion,

k) =Y ki. (3.164)
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Now consider the amplitude which defines G(kat, k' o't'),
(Woley g (1) ra (1) o) = 3 (¥ 10, )~ ) () era 1Y)
]
weIEY—E) =) (3.165)

If one inserts the expansion (3.161) into the amplitude (W) ™" |éx ¥ ),

() ekal ¥0) = )y Y aqk.ky ooy )
k’]"'k}\/—]va{"'a[l\]_] k]...kN,(X]...O(N
Xao(kl...kN,Otl...O(N)

N A AT oF
.Gy CrgC ...C 0
10y kyog “kaCk oy thXN| )

one notices that only those terms in the expansion are non-vanishing, for which
N-1 N
K=Y k=Y k—k=xKy)—k.
i=1 i=1

This argument can be repeated for the second amplitude on the right-hand side of
(3.165), (PN )&l [¥N1), with the result

Ko
N-1 N
k) 7'= Y ki=Yk-kK=xy—Fk.
i=1 i=1

Since both conditions have to be satisfied simultaneously in the amplitude (3.165),
one concludes that (Wo|éx (t)éz,a, (t')|Wo) can only be non-zero, if k = k': the in-
teracting Green’s function is also diagonal,

Glko, ko', 0) = 8 Glk,ad!, o) . (3.166)

The connection between G(k,00, @) and its noninteracting limit Gy (k, o, @)
is again given by the Dyson equation. Taking into account that the full G is not
diagonal with respect to the band index, one obtains

G(k,O(OC/,CO) = O’ GO(k7a7(D)
+Go(k,a,0) Y E(k, 00", 0)G(k, 0" o', ). (3.167)

a//

This relation may either be considered as definition of X(k,00”, @) or it may be
derived from (3.123) by expansion of the self-energy in terms of Bloch states, sim-
ilar to Eq. (3.143), and use of the orthonormality relation (3.139) as well as of the
diagonality of both G and Gy with respect to k, k. If a matrix notation for the band
index is introduced,

G(ko) = (G(k,00!, )) Z(ko) = (Z(k, a0, 0)) , (3.168)
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the Dyson equation may be rewritten as
G (ko) = G, (ko) — Z(ko) (3.169)

G, is a diagonal matrix, so that G, Uis directly available).

However, the diagonal elements of X(k, e, @) are usually much larger than
its off-diagonal elements. If the off-diagonal terms of X (k, cza”, ) are neglected,
Eq. (3.167) reduces to

G(k,o0,0) = Golk,o, )+ Go(k,o,0)X(k,0coe, )Gk, o0, 0).  (3.170)
As in the general situation, this Dyson equation may be resummed by use of G L

1

Gk, aa,0) = ®— & /h— Z(k, 000, ®)

, (3.171)

where the imaginary part of X(k,cco, ®) now plays the role of the pole shift 7.
Moreover, even if the off-diagonal elements of X are kept, an equation of this type
can be obtained by diagonalization of (3.169), which implies the transition to a new
set of quasi-particles/holes.

Now compare the result (3.171) with the diagonal element of the Lehmann rep-
resentation (3.157),

B g1 (kot)|?
Gk, a0, 0) = 214{ o—(u+QN /n+in
[fi(ko)
o—(u—Q" ") /h—in } o

As indicated before, G(k, 0.0, ) represents the propagation of a superposition of
infinitely many eigenstates of the (N = 1)-particle systems,

Gk, o0t —1') = —iO(t —1') Y |gi (ko) Pe B+ 0=/
1

+i0( —1) S| fika)Pe -2 NN0/m (3173
1

In general, this superposition is not an eigenstate itself, but rather a wave packet
which is damped out in time, a so-called quasi-particle (for t > t') or quasi-hole
(for ¢ < t')—which finally explains the names of the corresponding amplitudes. The
longer the lifetime of this wave packet is, the closer is the wave packet to an actual
eigenstate. The energies and lifetimes of the quasi-particles/holes are determined by
the complex poles

o, (ko) = E(ko)/h—il” (kar); gka),I'(ka) e R (3.174)
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of the Dyson denominator (3.171),
o, (ko) — exo/h— Z(k, e, (ko)) = 0. (3.175)
For frequencies close to the pole an expansion of X around this pole can be used,
Z(k,ao,0) = Z(k,ao,o(ka)) + ' (k, oo, (ko)) (0 — op(ka)) + ... .

This allows to rewrite the Green’s function close to the pole as

B z(kot)
Glk,ao,0) = ©— (ko) 7+ 1T (ko)) +AG(w) (3.176)
z(kat) = ! (3.177)

C1=X(k, 00, 0p(kat))

where AG denotes the remaining terms of the Laurent expansion, which are finite
at @ = wp(ka). Transformation of this result to the time domain,

Gk, o0,t —t') = —iz(kat) O(t — ") O (T (kor) e Eke) (=) /=T (ker) e =1')
+lZ(ka) @(tl - t) @(71—~(ka))eié(ka)(t/—t)/h-l-r(ka)(t/—t)
+AG(t—1') (3.178)

provides a direct interpretation of & and I': €(kot) represents the quasi-particle/hole
energy, while 1/|I" (ka)| is the lifetime of the resonance.

As is clear from (3.173), the threshold between quasi-particle and quasi-hole
energies is exactly the chemical potential u (remember that .QZN +1> 0). The Fermi
surface of the interacting system is therefore determined by the solutions of (3.175)
for which

I'(ka) = S{Z(k, 00, wp(ka))} = 0.

The associated real part of haw,(kar),
E(ka) = ero + AR {Z(k,aa,wy(ka))} ,

is the chemical potential u. For this particular energy the quasi-particle/hole in
(3.178) is not damped out, but represents an eigenstate of the interacting system,
i.e. has an infinite lifetime.* The Fermi surface of the interacting system is thus
defined as the set of k-values for which’

# Quite generally, the lifetime of the quasi-particles/holes increases if (ko) approaches ui. For en-
ergies sufficiently close to the Fermi surface the quasi-particles/holes are therefore accurate repre-
sentations of the true excitations of the system (which provides the basis for Landau’s Fermi-liquid
theory).

5 The value of u may alternatively be fixed by the particle number constraint. If there are Ng
particles in the volume £ of the unit cell, Eq. (3.106) yields

No = /Qd3rn(r) - fizl/gaﬁrG(rct,roﬁ) - z/gd%;\f,(m)\?.
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U— &g —hR{Z(k,ac,u/h)} =0 = ep(ka) = pn.  (3.179)

Equation (3.179) implies that different bands o may be cut by the Fermi surface
for different momenta k. Different bands o define different branches of the Fermi
surface, provided that (3.179) has a solution for a given band o.

The KS Fermi surface is, in analogy to Eq. (3.179), defined by the set of all KS
eigenvalues &, (from now on & again denotes a KS eigenvalue) which agree with
the KS Fermi level &, i.e. the KS chemical potential,

Eo = EF - (3.180)

For given Ey. the KS equations thus allow the determination of the KS Fermi sur-
face.

This concludes the discussion of the definition of the two Fermi surfaces. The
question concerning their identity can now be answered. It is sufficient to examine
the simplest periodic system, the weakly inhomogeneous electron gas, since this
system represents an explicit counterexample. The weakly inhomogeneous gas is
an extension of the homogeneous gas (for details see Chap. 4), which is obtained by
introducing a weak perturbation

vext(r) =vocos(Q-r).

This perturbation induces a one-dimensional Bravais lattice in the direction of Q.
The Fermi surfaces (3.179) and (3.180) of this system can be evaluated explicitly to
first order in the electron—electron interaction (utilizing (3.125)) and to lowest order
in vg (via the linear response formalism). One finds that the two surfaces differ in
the order v%w [99, 100] (there is no contribution linear in v to the Fermi surface).
Notwithstanding this exact result, one finds in practice that the KS Fermi surface is
often rather close to the exact Fermi surface.

3.6.3 Band Gap

Turning from metals with their Fermi surface to insulators and semiconductors, the
obvious question is whether the energy gap in the spectrum of these systems can
be described by the KS scheme? The so-called fundamental band gap E; is pre-
cisely defined as the difference between the binding energy of the most weakly

However, using the strict periodicity of the product ¢;, (rc) @k, (ro) as well as the orthonormality
relation (3.139), one can express N also in terms of the f;(ka),

No = —i—— 3 Glkao 1) 1D, 0k (r0)har0)

NI NoN3 o NiN2N3 Q2

NlNzNz zz ‘ﬁ ka

ko 1
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bound electron in the ground state of the insulator or semiconductor and that of the
most weakly bound electron in the ground state of the system obtained by adding
one electron. Identifying the neutral solid with the N-particle system, one can write
[101, 102]

B =—{|B)-E)"] - [y - B}, (3.181)

where the sign convention ensures that E, is positive. The name band gap originates
from the fact that the most weakly bound electron of the insulator or semiconductor
belongs to the highest occupied band, the valence band, while the (N + 1)-th elec-
tron goes into the lowest empty band, the conduction band. The band gap is easily
evaluated for noninteracting systems as the KS system,

As = Ent1 — &N, (3.182)

as the ionization energies are identical with the orbital energies, E(I)V — E(I)V T—gy
(we now return to the short-hand notation for the KS quantum numbers).

Using the earlier results (2.118) and (2.119), the exact band gap can be rewritten
as

E,=1P — EA= lim {u(N+n)—u(N—n)}. (3.183)
n—0+

On the basis of the variational equation (2.111) one then finds

E, = lim { O[] } (3.184)
N-7

n—0+ 5n(r )
with the understanding that 8E[n]/dn is evaluated with the ground state density
corresponding to the particle number N £ 7. Finally, the total energy functional can
be decomposed in the standard fashion (3.24). Utilizing the continuous dependence
of Eext and Ey on the particle number, one arrives at
7 OT[n] B O0Exc[n]
N-1n

b — tim )| 8% L | 9Bl
£ o0t || 8n(r) vy Bn(r) |y_y 8n(r) |y.y  On(r)
— At A (3.185)

~ SE[n]
N4 on(r)

In the second line the contribution of T to the band gap has already been identified
with Ag, Eq. (3.182), as T; is the only part of the total energy of the KS system which
shows a derivative discontinuity. The total band gap thus consists of the difference
between the highest occupied and the lowest unoccupied KS eigenvalue and an xc-
contribution [101, 102],

Eg = v+l — N+ Axc- (3.186)
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In practice, Ay is often ignored. This is completely legitimate for approximate
xc-functionals which do not show a derivative discontinuity, such as the LDA (for
details on this xc-functional, see Sect. 4.3). On the other hand, the exact Ey. leads
to a non-vanishing Ay.. This can be explicitly demonstrated to first order in the
electron—electron coupling constant ¢, i.e. for the exchange contribution Ay (for
the precise definition of exchange within DFT, see Sect. 4.1). Table 3.1 lists A
together with the band gaps resulting from LDA calculations and the experimental
data for two prototype systems. These numbers show, that the eigenvalue difference

Table 3.1 Band gap of insulators and semiconductors: Exact Ax [103] versus A obtained within
the LDA and experimental gap.

System  Ag(LDA) Ax Expt.

[eV] [eV] [eV]
C 4.16 8.70 5.48
Si 0.49 5.62 1.17

As obtained with the standard approximations to Ex.[n] underestimates the true band
gaps of semiconductors considerably. On the other hand, A is surprisingly large,
indicating that the correlation contribution to Ax. must also be rather large (and
negative) in order to compensate Ay (for a more detailed discussion see at the end
of Sect. 6.3).

3.7 Kohn-Sham Equations of Current Density Functional
Theory

The extension of the KS scheme to the case of C(S)DFT (Sect. 2.6) proceeds along
the same lines as the extension to spin-density functional theory [74, 68]. One starts
with introducing auxiliary orbitals to represent all relevant ground state densities of
the interacting system (assuming noninteracting v-representability, as usual). In the
case of CDFT, which is considered first, these are the density,

n(r) =Y Oty (ro)gi(ro) (3.187)
ko
and the paramagnetic current density,
ih
Jplr) = =5 3 0{6{(r0) [Vou(ro)] — [V9; (ro)] 6x(ra)} . (3.188)
ko

In the next step, the standard decomposition (3.24) is used for the total energy func-
tional (2.174),
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E[nvjp] = Ts[n; jp] + EeXt[nvjp] + EH [n] +EXC [nv jp} I (3189)
with 7 and Ey given by Egs. (3.21) and (3.25), respectively, and E.y defined as

: 2
. e
Eex[n, j,] = /d3r |:V6Xt(r)+2mczAgxt(r) n(r)

—|—§/d3rjp(r) Ae(r). (3.190)

As usual, the decomposition (3.189) serves as definition of the xc-functional, which
is j,-dependent in the present situation, Exc|[n, j,|-

One arrives at the KS equations of CDFT [74], if one follows the argument in
Sect. 3.1 or, alternatively, minimizes E|[n, jp} with respect to the auxiliary orbitals
under the constraint of proper normalization,

1 . e 2 21 2
{Zm =iV + £ (A7) +Aselr))| = [2Axc(r) + Ae(r) - Axe(r)
+Vext(r)+VH(7)+VXC(")}¢k(rG) = gd(ro). (3.191)
Here the xc-potentials are defined as

5Exc[n7jp]

Vee(r) = ———— (3.192)
on(r) i

e 6Exc[nvj ]
“Aye(r) = —— 3.193
c ( ) 6]p(r) ) ( )

The notation indicates that the second density variable has to be kept constant in the
variation of Ey. with respect to the other (vy is given by Eq. (3.42)).

In view of the gauge freedom of Ay the gauge properties of the KS formalism
for CDFT are of obvious interest. The crucial statement is: the KS equations (3.191)
are gauge covariant [68], as will be shown in the following. Let us start with a
closer look at the ground state @ of noninteracting particles, expressed as a current-
density functional, ®y|[n, jp}. The gauge transformation (2.148) corresponds to the
phase transformation (2.150) of the interacting ground state wavefunction. An anal-
ogous transformation has to hold for the corresponding ground state current-density
functional of interacting particles,

i

l(rk)] Woln, jp)(r1,...) - (3.194)

S

= %
M=

Woln', jp)(r1,...) = exp [

k=1

The same transformation is also valid for ®@y[n, jp], which is a simple limit of
\}’0 [najp]s
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@[, il (1,2 exp[ Zxrk Do, jp)(ri,-..) - (3.195)

This result can, alternatively, be derived explicitly for the KS ground state determi-
nant @ (consisting of the single-particle orbitals of Eq. (3.191)) by the following
argument: Since @y yields the exact density, the invariance of n(r) under the trans-
formation (2.148) only allows a local phase transformation of ®(. Due to the single-
particle nature of both @y and the transformed function ®j, the local phase has to be
a simple sum over single-particle phase functions depending on one coordinate only.
The phase function is therefore uniquely determined by the transformation behavior
(2.163) of j,, which must be reproduced by @, P,

As a consequence, the noninteracting kinetic energy functional Ti[n, jp] trans-
forms as

Tl ) = T ) +5 [ @riy(r) -V (r)

+/d3rn(r)

However, both the total energy (3.189) and the combination 7 + E.x are invariant
under the gauge transformation (2.148) plus the associated phase transformations
of the ground state wavefunctions. This gauge invariance is reflected by the corre-
sponding functionals,

2
S[VA(r)). (3.196)

EAéxt [n/hlé)] = Eaey [nhip]
Ts[nlv.l;)} +Eext,Aéx1 [n/h]{:)] = Ts[nv.]p] +Eext.,Aex1 [n7jp] )

where the additional index indicates the vector potential present in the external en-
ergy. As a result the xc-energy functional is gauge invariant as well,

EXC[”/»J';] = Exc[n>jp] . (3.197)
As n is gauge invariant by itself, one arrives at
EXC[n’j;] :Exc[najp] . (3.198)

Moreover, as Exc[n, j,| is universal in the sense that the functional dependence of
Exc on n and j, is identical for all external potentials, the functional dependence on
Jp itself must have a form which ensures Eq. (3.198). The only local, gauge invariant
quantity which can be constructed from j, with its transformation behavior (2.163)
is the vorticity

v(r) =V x [j;((r'))] . (3.199)

E. can thus be expressed as a functional of v,

Exeln, j,) = Exe[n,v]. (3.200)
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The functional form (3.200) has important consequences. Let us first consider
the functional derivatives (3.192) and (3.193). The derivative (3.193) can be directly
evaluated with the chain rule, keeping track of the quantities which have to be kept
constant in the variational process,

e [ , 8Exc[n, V] _5V(r’)
Arelr) = ./d T Tev(r) | (i)
1 SExc[n, V]
_mwan (3.201)
With this result one obtains for the derivative (3.192)
B SE[n, V] 5, 0Ex[n, V] '6v(r/)
Pelr) = =5, +/ TSy | en(r) |
v n Jp
_ (SExc[n7V] _ jp(r) V x SEXC[VLV]
— n(r) v n(r)? ov(r) .
B SE[n, V] B Jp(r) e
= on(r) ) n(r) -EAxc(r). (3.202)

Equations (3.201) and (3.202) allow the determination of the gauge properties of the
xc-potentials. In Eq. (3.201) Ay is expressed completely in terms of gauge invariant
quantities, so that it is gauge invariant itself,

Axc [”/»f;] =Axc [nﬂjp] . (3.203)

Similarly, Eq. (3.202) shows that v, transforms as

2
Vel 7] = vaeln, jy) — %Am n,j,]- VA, (3.204)
where the transformation behavior of the paramagnetic current, Eq. (2.163), and
(3.203) have been utilized.

With this information one can finally analyze the gauge properties of the KS
equations (3.191), in order to confirm Eq. (3.195) explicitly. After insertion of
Eqg. (3.202) one can introduce the physical current (2.156) (for the case of an un-
polarized system) and rewrite (3.191) as

{3 [F109 £ Aol 4 4] v 4ot + 2
— gAxc(r) M:i + ijAxc(r)} }(pk(ro) = gt (ro) . (3.205)
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Gauge covariance of the KS equations then follows directly from the gauge in-
variance of Axc, V, n and j—under a gauge transformation of the external vector
potential the KS orbitals transform in the same way as the orbitals of a truly nonin-
teracting system, consistent with the starting point of the analysis, Eq. (3.195).
Combination of Egs. (3.201) and (3.202) with the KS equations also allows a
verification of the conservation of the physical current (2.156). From Eq. (3.201)
one immediately finds
V. [n(r)Ax(r)] =0. (3.206)

On the other hand, the standard combination of (3.191) with its hermitian conjugate
yields
. e
V- {ip(1) + -5 n(r) [Aexe(r) + Axe(r)] } =0

mc

Use of (3.206) and (2.156) confirms the validity of current conservation, Eq. (2.179),
in the KS approach to CDFT.

The KS equations of CSDFT, which are listed below, complement the results
for CDFT. We first consider the extended variant (2.171), in which n, m and jp are
independent variables. For their derivation one combines Eqs. (3.187) and (3.188)
with the representation (3.85) of the magnetization density, assuming that all three
densities n, m and j, can be reproduced by an effective noninteracting system. In
the standard decomposition of the total energy, Eq. (3.189), T;, Ex. and Ey are now

6 The gauge invariance of v, Ay and the effective scalar potential in the KS equations,

e? _ S8E[n,V]

Vet (F) = vxe (F) — m—cerXl(r) Axe(r)= on(r) e

_ ;Axc(r) {% 5 Axe(r)]|

\'Z

has an interesting consequence for periodic systems [68]. Consider a periodic system with primitive
vectors a;, i = 1,2,3. In this system all observable densities must be invariant against a translation
by some arbitrary lattice vector R, = nja; +naas + n3as, n; € Z. If the magnetic field vanishes,
Acxt = 0, both n and jp = j are periodic, so that also vy and Ay, are periodic by construction. As
a consequence, Bloch’s theorem directly applies to the KS states.

The situation is no longer as simple, if a homogeneous magnetic field Bey; is present. The vector

potential corresponding to Bey,
1
Aexi(r) = EBext xXr,

is obviously not periodic, so that the same applies to the total Hamiltonian. Fortunately, the term
violating periodicity in case of a translation by R,

1
Aext(r+Rn) = Aext(r) + EBext X Ry,
can be viewed as a gauge transformation of Ac by the gauge function

A(r) = 3 (B < Ra)
The ground state wavefunction then acquires an additional phase factor according to (2.150) upon
translation by R,. However, due to its equivalence to a gauge transformation, this translation does
not affect v, Ay and veg. It then follows that the conditions for the applicability of Bloch’s theorem,
which are quite restrictive for non-vanishing By [104], are not changed by the presence of the
effective potentials.
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functionals of n, m and j,,

and E¢y is given by
Eex I’l ]pa /d r |:vext Aezxt( ):| (r)
L / d3rAm(r)- Jy(r)+ / &rBou(r)-m(r). (3.208)

With the definition of the xc-magnetic field,

6EXC [f’l, jp’ m]

By(r) = ) (3.209)
om(r) mody
and the xc-potentials,

OFExc[n, j,,m

Vie(F) = ;[n(r;) ] . (3.210)
Jp‘m

e 6Exc[naj 7m]
“Age(r) = — P2 3.211
c (r) 6jp(r) ( )

one arrives (via minimization of the total energy) at the KS equations of CSDFT,

1 2
25{[znzP*hV—+iAﬂJ — it (V- Ase) 24 - V] vt 711+ e B

+u30‘00f-(Bext+Bxc)}¢k(70') = &@(ro) . (3.212)

Exactly the same form of KS equations is obtained for the CSDFT variant
(2.169), using n and j, as basic variables,

Eln, jo] = Ts[n, jo| + Eext[n, jo] + Enln] + Exc[n, ji (3.213)

Beslnodgl = [ &1 )+ 552450 | )
+ / PrAcdr) - j,(r), (3.214)

provided that v, Axc and By, are understood as

6Exc [}’l7 ]g]

onr) (3.215)

Vxe(r) =

Je
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e - 5Exc[n7jg]
EAxc(r) = W n (3.216)
By (r) = V x A (1) . (3.217)

The similarity of the KS equations raises the question about the relation between
the two CSDFT schemes. It can be answered by an analysis of the corresponding
xc-functionals [73]. The functional Ey. is gauge invariant in both CSDFT variants,
due to the gauge invariance of the total energy and of T; + Eext,

Exc[nvj;pm] = Exc[n,jp,m} (3.218)

Exc[n, | = Exc[n, j,] - (3.219)

As both functionals are universal, their gauge invariance requires that they depend
on suitable vorticities. In the case of the functional (3.218) this vorticity is given by

Eq. (3.199), ]
Exc[n,jp,m} = Exc[n,v,m] . (3.220)

On the other hand, for Exc[n, j,| it is the extended form

a0
ve(r) = V x [ e } (3.221)
Exc[n, jo| = Excn,vg| . (3.222)

The relation between the two functionals can then be established by use of (2.161),

V xm(r)
n(r) |’
and the fact that the total energies of both approaches have to be identical. In fact,

for arbitrary, given Ay the external energies (3.208) and (3.214) of both schemes
coincide as Egs. (2.161) and (2.144) must hold,

vo(r) = v(r)+ SV x [ (3.223)

ECXt[nvjpam} = EeXt[najg] . (3224)

Moreover, the total energies have to be identical even for vanishing interaction, so
that

Tln, jp,m) = Ty[n, j,] - (3.225)

As a result one finds [73]

Exeln, v,m] = Exc [n,erZVx (Vzm)] . (3.226)

Combining this relation with Eq. (3.220) and using the fact that due to Eq. (3.199)
fixed n and jp are equivalent to fixed v, one then obtains
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Sm(r) - m(r) |,

o - c Vxm
zam(r)Em[n,wevx( - )]

At this point one can go back to the original form of Ex¢[n, v,] via Eq. (3.222), again
using the fact that fixed n and v imply fixed j,,

”7jp

n,v

6EXC [n7jp7m]
om(r)

_ OEx[n, jg
 Sm(r)

ndp n.jp

Finally, one can use the unique correspondence of j, and m established by (2.161)
for fixed j,,

SEXC [n7jp7m] _ /d3r/ 6EXC [nng] 5jg(r/)
om(r) mody 0jq(r) . om(r) i ’
and evaluate 6 j,/dm via Eq. (2.161)
SEXC I j ’ 6EXC ) j
I dpml| ey oxell, Jgl A (3.227)
om(r) i, € 0jo(r) .

The magnetic field By, of the formalism based on n, jp and m, Eq. (3.209), is there-
fore identical with the curl of the xc-potential Ay of the scheme based on n and j,,
Eq. (3.216), exactly as required for the identity of the corresponding KS equations
by Eq. (3.217). Since the xc-potentials of both schemes agree,

SEXC[n)jInm] 5Exc[n7jg] 6Exc[n7jg]
— = — = =i 3.228
5Jy(r) 8y (7) Sigr) | O
5Exc[n7jpam] 6Exc[n7jg]
b~ = — 5 , (3.229)
on(r)  |ym  Onn) |y

one has verified the equivalence of both CSDFT variants.

With Eq. (3.212) our collection of nonrelativistic, stationary KS equations is
complete. Depending on the phenomenon under consideration, one can apply ei-
ther (3.44), (3.69), (3.88), (3.98), (3.191) or (3.212). We have finally reached the
point where the xc-functional has to be studied more closely.



Chapter 4
Exchange-Correlation Energy Functional

In this chapter we introduce the most frequently used approximations for the xc-
energy functional on the basis of a number of rigorous results for Ex[n]. The pre-
sentation focuses on the derivation of the various functionals, their performance
will only be discussed in so far as it serves as motivation for improvements. How-
ever, some prototype results will be given for the most important functionals, the
local density and generalized gradient approximation. An excellent overview of the
performance of many of the approximations in the field of quantum chemistry is
given in [105] (see also [106]); for solids corresponding information can be found
in [107-111] and references therein.

4.1 Definition of Exact Exchange within DFT

It is usual to decompose the total xc-energy functional Ex[n] into an exchange part
E[n] and a correlation functional E[n], in analogy to conventional many-body the-
ory. In view of the difference between Ex.[n] and the standard xc-energy discussed
in Sect. 3.1, the precise definition of Ex[n] is somewhat arbitrary. It is neverthe-
less the natural first choice to define the exchange functional in such a way that the
total energy ETF and density nyr of the Hartree-Fock (HF) approximation are re-
produced if the correlation functional is completely neglected. The corresponding
HF-only ground state energy functional E|n],

E[n] = Ty[n] + Eex[n] + En[n] + Ex[n] , (4.1)
is hence to be minimized by nyr,
EMF — Elnur] 4.2)
while for any other density one must have

EMF < E[n] YV n# nur. (4.3)

E. Engel, R. M. Dreizler, Exchange-Correlation Energy Functional. In: E. Engel, R.M. Dreizler,
Density Functional Theory, Theoretical and Mathematical Physics, pp. 109-217 (2011)
DOI 10.1007/978-3-642-14090-7_4 (© Springer-Verlag Berlin Heidelberg 2011
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The existence of such an exchange functional is guaranteed by the HK theorem,
which remains valid in the exchange-only limit [112, 22]. One can then set up a KS
scheme on the basis of £y [n]. However, contrary to naive expectation, the resulting
KS orbitals and eigenvalues do not agree with the original HF orbitals and eigenval-
ues, as the KS potential is always multiplicative: the functional derivative of Ey[n]
with respect to n(r) yields a multiplicative exchange potential which has nothing to
do with the nonlocal HF exchange operator, only the resulting densities coincide by
definition.
Unfortunately, the definition (4.1)—(4.3) leads to a number of difficulties:

e No explicit expression for the exact functional Ex [n] is available, neither in terms
of the density, nor in terms of some suitable N-particle wavefunction.

e With this definition of the exchange functional no virial relation can be formu-
lated (compare Sect. 5.3).

e A gradient expansion does not exist for Ex[n] (compare Sect. 4.4.3).

For these reasons an alternative definition [113, 114] of the exchange energy func-
tional has become the standard in DFT,

Ex[n] := (®o|W|®o) — Enln], (4.4)

where |®y) is the KS Slater determinant (3.3) (a non-degenerate KS system is as-
sumed). Equation (4.4) can easily be evaluated explicitly. One obtains the standard
Fock expression, written, however, in terms of the KS orbitals ¢y,

Edn] = ;%@k@,z / &r / B 9 (ro) oy (ro)w(r,F)o; (F' &' )ou(F o).

e 4.5)
The right-hand side of Eq. (4.5) is a density functional in the same sense as the
kinetic energy functional T[n]. As indicated in Eq. (3.22), the ¢ are uniquely deter-
mined by the density #n, since n uniquely determines v (according to the Hohenberg-
Kohn theorem for noninteracting systems), which in turn allows the unambiguous
calculation of the @. Ex[n] represents an implicit density functional, in contrast to
the explicit density functionals to be discussed below.
In spite of the agreement of the functional (4.5) with the Fock expression, the
density which minimizes the total exchange-only (x-only) energy functional of DFT,

EX""W[n] := Ti[n] + Eexi[n] + En[n] + Ex[n], (4.6)

is not identical with nygp. This statement becomes immediately clear if one ana-
lyzes x-only DFT from the viewpoint of an energy minimization with respect to the
orbitals ¢. Taking Egs. (4.6), (3.21), (3.25), (3.26) and (4.5) together, the energy ex-
pression to be minimized in x-only DFT is identical with its HF counterpart (1.17).
However, in DFT the single-particle orbitals have to satisfy the KS equations (3.44),
with vy given by the multiplicative potential 6 Ex[n]/dn(r). The multiplicative na-
ture of the total KS potential vg represents a subsidiary condition in the minimization
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procedure, which is not present in the HF-type minimization with its nonlocal ex-
change potential (1.21). In the HF approach one thus has some additional variational
freedom, which, in general, leads to a lower energy minimum,

EMF < min EX7OW (] 4.7
n

The HF orbitals are not included in the variational space available to x-only DFT.
This implies that the insertion of the HF ground state density into EX~°"Y[n] does
not yield the HF ground state energy,

EHF ?é Ex—only [nHF] > min Ex—only [n]
n

The x-only DFT minimization coincides with the HF scheme only in special sit-
uations in which the HF potential (1.19) can be recast as a local potential for the
occupied state, i.e. for spin-saturated 2-particle systems. The use of Eq. (4.5) within
DFT—either in the x-only limit or in the general situation—Ileads to exchange ener-
gies which differ from their HF counterparts, due to the difference between KS and
HF orbitals.

This point is illustrated quantitatively in Table 4.1. Three values obtained by

Table 4.1 Exchange and correlation energies resulting from different definitions: Eq. (4.5) eval-
uated with HF, exact KS and x-only KS orbitals as well as DFT correlation energy versus E?C,
Eq. (4.9) [115, 83, 116] (all energies in mHartree).

Atom —Ex ~E. —EX
HF  KS: exact KS: x-only
H~ 39549  380.90 39549 41.99 39.82

He 1025.77 1024.57  1025.77 42.11 42.04
Be 2666.91 2673.98  2665.77 962 94.34
Ne 12108.35 12083.93 12105.01 394. 390.47

evaluation of (4.5) with three different types of orbitals are listed: the standard HF
exchange energy is compared with the DFT exchange resulting from insertion of the
KS orbitals which reproduce the exact density of the interacting system' (referred
to as exact KS orbitals in the following) and the DFT exchange energy obtained by
insertion of the KS orbitals which minimize (4.6) (called exact x-only orbitals in
the following). Table 4.1 indicates that HF and x-only DFT exchange energies are
always rather close to each other (they are identical for spin-saturated 2-electron
systems). However, the same is not true for the Ex calculated from the exact KS

! The exact densities of interacting systems with only few electrons can be obtained with high
accuracy by Quantum Monte Carlo or Configuration Interaction calculations. Once the density is
available, one can determine the total KS potential which gives this density by a suitably con-
strained solution of the single-particle equations [117-122].
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orbitals. Even the sign of the deviation from EHF and Ex —only changes from atom to
atom.

The definition (4.5) induces a corresponding definition of the correlation energy
functional E.[n],

E.[n] := Exc[n] — Ex[n]. (4.8)

The difference between (4.5) and the HF exchange energy is absorbed into E.. The
DFT correlation energy is thus not identical with the conventional correlation energy
ESC, which is employed in standard many-body theory and quantum chemistry. The
latter energy is defined as the difference between the total ground state energy of the
interacting system and its HF counterpart,

EQ = (YolH|Yo) — (" |H|@GT), (4.9)

with |<I>gF ) denoting the HF ground state Slater determinant. On the other hand,
Eq. (4.8) may be rewritten as

Ec = (Wo|H|Wo) — (®o|H | Do) . (4.10)

The difference between E. and E?C hence originates from the difference between
the HF ground state energy and EX~°"¥[n], Eq. (4.6), evaluated with the density ng
of the fully interacting system,

E.—EZ® = (O |H|®[T) — (®o|H| Do)
= EHF _ proonly ], 4.11)

The size of E. — ECQC can be characterized further by introducing the x-only ground
state energy [116],

E.— ESC _ (EHF _Exfonly [n();fonlyD + (Ex—only[nz(;only] _Ex—only [’70]) ,
(4.12)
where ng_only represents the exact x-only ground state density. The first term on the
right-hand side of Eq. (4.12) is known for a variety of systems and turns out to be
small for all of them (for explicit numbers see Sect. 6.3). The second expression
allows a functional Taylor series expansion, similar to the expansion of the total

ground state energy in Eq. (3.33). As néfonly minimizes E*~°"[n], the difference

between EX~ " [z37°™] and EX~°" [ng] is of second order in njy ™™ — np,
Exfonly [nz()fonly] o Exfonly[no] -0 ((nz()fonly . no)z) . 4.13)

As a consequence, the difference E; — ESC is generally quite small. This point is
demonstrated explicitly for a few light atoms in Table 4.1 [116].

The most important property of the functional (4.5) is the exact cancellation of
the self-interaction contained in Ey. The Coulomb integral (3.25) with the total
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density contains the interaction of the orbital density | |*> with itself,

Ey

>, [@r [ outro) Puir.)la(rs))P

o,0’

1
5 Y 6,6,
x

z /d3r/d3r/ “Pk(rG)PW(r,r/)|¢k(r/6/)|2, (4.14)

0,0’

1
— B =1Ye
k

The self-interaction energy Eﬂl is exactly compensated by the terms with / = k of
4.5),

ES' = —E]L. (4.15)

A second important feature of (4.5) is its additivity with respect to the two spin
orientations [123]. Utilizing the definition (4.5) within (collinear) SDFT, one can
insert the form (3.93) of the corresponding KS orbitals (and w(r,r’) = e*/|r —r|)
to obtain

2

e
Ex[ny,n|| = —EZZOQG@[;G/d3r/d3r’

Gaﬁ

O (P50 (P00 (F) o ()
= |
(4.16)
One thus finds a simple separation of spins in Ex[n1,n|] on the level of the orbital
representation (4.16),

EX[nT,nl} =Eq+E. 4.17)
For an unpolarized system with ny = n| one has
Ex [n] = Ex [Zn” = Ex [nT7nT] = 2ExT s (418)

where Ex[n] denotes the functional (4.5) and the factor of 2 in the right-most equa-
tion follows directly from (4.17). Now consider a spin-polarized system: for a
given ng of this polarized system one can imagine an auxiliary unpolarized sys-
tem with 7iy = 7i| = ng . In this auxiliary system both spin-up and spin-down KS
orbitals are identical with the orbitals ¢s of the actual polarized system. Ac-
cording to Eq. (4.18), the exchange energy of this unpolarized system satisfies
Ex[2ns) = Ex[2is] = 2E,s . Upon insertion of this relation into (4.17) one arrives at

1
Eylny.n|] = 5{Ex[zm]HEX[zm]}. (4.19)

The third important property of (4.5) and (4.16) is the behavior of the correspond-
ing potentials in the asymptotic region of finite systems (for which the density de-

cays exponentially for large r). Applying the standard normalization v¢ (r) m 0,

one finds

2
V() ¢ (4.20)

rl—ee 7|
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For the verification of (4.20) one needs a scheme which allows the explicit evalua-
tion of the functional derivative §/8n of an implicit functional of type (4.5). Such
a scheme is provided by the optimized potential method (OPM) [124, 125]. An ex-
plicit account of the OPM is given in Chap. 6. It will be shown in this chapter that
v is obtained as solution of a linear integral equation. Examination of this integral
equation for large r establishes the validity of (4.20) (see Sect. 6.2.5).

The physical reason behind this result is very simple: if one electron of a sys-
tem of N electrons and a corresponding assembly of nuclei is sufficiently far away
from the other electrons bound to the nuclei, it must experience the net charge of
the remaining system. The total electronic potential is given by the sum of vJ, and
the Hartree potential (3.42). However, vy contains the Coulomb self-repulsion of
the isolated electron far out. This self-interaction has to be eliminated by vZ. The
asymptotic limit (4.20) just reflects the exact cancellation of the self-interaction in
En by Ex. No other contribution to v, can be proportional to 1/r, as this behavior
can only result from a monopole term.

This physical origin of (4.20) can be illustrated directly for a spin-saturated two-
electron system like the helium atom. In this case there is only one occupied KS
level for each spin,

no(r) = |91(r)|; n(r) = 2nq(r),
and the exchange energy only has to cancel the self-interaction. Equation (4.16) thus
reduces to

2 /
EM[n; n|] = —%Z/d3r/d3r’ ”“r')"“(') . 4.21)

r—r|

The functional derivative of EX® is then trivially given by

/
vZHe(r) = —¢? / > |”r"_('r,)| , (4.22)

so that (4.20) is obtained in the asymptotic limit.

Closely related to (4.20) is the asymptotic behavior of the exchange energy den-
sity ex (we will always denote the energy per volume corresponding to some energy
E, by e,). As any other energy density, ex has the disadvantage that it can not be
defined uniquely: one can always add terms which integrate up to zero without af-
fecting Ex. Nevertheless, the Fock expression (4.5) suggests as a natural definition
for ey,

2 o
ex(r) == —% ZZGac(aﬁc/d3r’ i

o af

(r)q)[io(r)d’gg(r/)d’zxc(r/)

[r—r|

. (4.23)

which has become standard within DFT. If one now assumes the orbitals to decay
exponentially for large r, one finds for the asymptotic behavior of the exchange
energy density
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e (r) —— _n(r)

. (4.24)
r|—c 2|r|

The pair of Eqgs. (4.20) and (4.24) reflects the quadratic structure of the self-inter-
action energy with respect to the orbital density of the most weakly bound electron.

With Egs. (4.15), (4.19), (4.20) and (4.24) the list of important rigorous proper-
ties of the exact exchange (4.5) is complete. Before discussing approximations for
E[n] we first establish some exact results for the complete xc-functional.

4.2 Exact Representations of E.[n]

Given the exact representation of Ex[n] in terms of the KS orbitals, Eq. (4.5), the
question concerning an equivalent exact expression for the correlation functional
comes up quite naturally. This is also in line with the initial motivation for DFT: the
aim was to establish an exact mapping of the interacting many-body problem onto
an effective single-particle system. Of course, one should not expect an exact result
for E. to be directly applicable in practice, as this would imply the exact solution
of the many-body Schrodinger equation. However, a formally exact representation
provides an ideal starting point for the derivation of systematic approximations. In
this context the term “systematic”” means that, at least in principle, one can improve
a given approximation by successive inclusion of well-defined corrections until the
exact result is approached. This strategy reflects the basic understanding of DFT as
a first-principles approach.

In this section two different exact expressions for the xc-functional will be dis-
cussed, which are usually referred to as

(a) Kohn-Sham perturbation theory [126, 127], and
(b) adiabatic connection [77, 128].

Both of them will be derived explicitly, as they serve as starting points for two quite
different classes of approximate functionals.

4.2.1 Variant (a): Kohn-Sham Perturbation Theory

Let us for a moment assume that vy, the total KS potential, is known. In this case
the KS Hamiltonian A, Eq. (3.1), can be utilized as any other given noninteracting
N-particle Hamiltonian—the fact that in reality vy emerges from a self-consistent
calculation will have to be addressed subsequently. The ground state |®g) (assumed
to be nondegenerate) corresponding to H is then obtained by solution of Eq. (3.2),
the ground state energy Es and density ng are given by Egs. (3.16) and (3.13),
respectively. The density ng is—by construction—identical with the density of the
interacting system, in which we are interested.
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One can then use Ay as noninteracting reference Hamiltonian in order to de-
rive an exact relation for Ey. First the total Hamiltonian of the interacting system
is decomposed into H, and a remainder H;, for which the main component is the
electron—electron interaction W. In addition, H; has to compensate the parts of ﬁs
which are not contained in A,

=W / &ri(F)vie(r)., 4.25)
where vy represents the electron—electron interaction components in vy,

Viaxe (1) = vs(r) — vexe(r) = v (r) +vxe(r) . (4.26)

In the second step a running coupling constant A is introduced into the total Hamil-
tonian,

H(A) = Hs+ AH,, 4.27)

which allows the use of the coupling constant integration technique. The ground
state |[Wo(A4)) corresponding to H(2) (also assumed to be nondegenerate) is ob-
tained from the interacting Schrodinger equation,

H(A)|¥o(1)) = Eo(A)[¥o(A)). (4.28)

One can now apply the method of coupling constant integration to the A-dependent
ground state energy,

Eo(A) = (Wo(A)|H(A)[Wo(R)). (4.29)

One starts by differentiating Eo(A) with respect to A,

L2 = (PR 1) ) + (o) ) 220
+(Wo(A)|H1[¥o(2))
d¥o(4) d¥o(1)

=Eo(A) |(—— 72 [Po(4)) + <‘P0(7L)|T>
+(Wo(A)|H|Wo(R)) .

If one uses the fact that [Wo(A)) is normalized for all A,

BA(A) =1 = T HA)FA) =0, (@30
one arrives at
L Eo(A) = (o(R) [¥o(R)). (“31)

di
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Next, one integrates (4.31) with respect to A. The integration starts at A = 0, for
which A(A) agrees with the KS Hamiltonian, and ends at A = 1, where H(A) is
identical with the true interacting Hamiltonian,

. H, for A =0
H(A)_{F] forA=1"

On the left-hand side of (4.31), the integration leads to the difference between the
energy Eo(1) = Ey of the interacting system (which is the energy one is interested
in) and the energy Ey(0) = E; of the KS reference system,

Eo(1) — Eo(0) = Eg— Es = ./0'1 dA (Wo(A) | [Wo(R)). (4.32)

The expectation value on the right-hand side of Eq. (4.32) can be rewritten in several
ways. It is instructive to consider first a less successful option. For this one uses the
equal-time commutation relations for the field operator, Egs. (2.6) and (2.7), to show
that

W' (ro) ' (¥ o' )p(r' o) (ro) = ¥l (ro) @ (ro) ¥’ (Fo')p(r' o)
—8(r—r) 6550 (ro)(ro).  (4.33)

Combination of (4.33) with (4.25) and (2.5) leads to

(Po(4 )\H1|‘P0 /d3 /d3rwrr
< (Wo(M)[(r)i(r') — 8% (r— ) i(r)[¥o(1))
—/d3rvch(r)<‘I’0(l)|ﬁ(r)|‘P0(7L)>. (4.34)

The kernel of (4.34) can be expressed in terms of the so-called density—density re-
sponse function of the interacting system.

The concept of response functions is so fundamental to many-body theory and is
utilized so often in this text that it is worth a little detour. Several kinds of response
functions (alternatively called correlation functions or susceptibilities) can be found
in the literature: depending on the context, different forms turn out to be particularly
useful. Of course, all of them are closely related. Two variants of response func-
tions are particularly relevant in the context of DFT. For the present discussion the

time-ordered response function is the most appropriate. For a stationary system it is
defined as

x(rt,r't) = —% (Wo|T ii(rt) i(r't)|Wo) (4.35)

_ _% (Po|T (rt) A(F1) W) — no(r)mo(r')
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(for the definition of the time-ordering symbol T see Eq. (3.120)). The basic ingre-
dient of y is the density operator in the Heisenberg representation,

a(rt) = i(rt) fno( ) (4.36)
A(rt) = "1/ ji(r) e M = ZW (rot)y(rov) (4.37)
no(r) = (Woli(rt)|¥o) = (‘I’o|n( )W) . (4.38)

The time-ordered response has to be distinguished from the refarded response func-
tion,

IR (o, 1) = — 2 O 1) (Bl [(re) ()] o) (4.39)
= =5 00 —) (Folla(r) A1) o),

on which the discussion of Sect. 4.4 and, in particular, of Sects. 7.4-7.6 relies. The
retarded response function is somewhat closer to physical reality, in that it connects
the response of an observable directly with the perturbation which causes the re-
sponse (compare the discussion in Sect. 4.4). The time-ordered response function,
on the other hand, is more easily dealt with in mathematical terms. In particular, it
allows the application of the complete machinery of Green’s function theory. For
this reason the relation between both functions is of obvious interest, as one often
would like to eliminate g in favor of .

Let us therefore collect the basic properties of these functions. Due to the station-
arity of the Hamiltonian both response functions only depend on the time difference
t —t'. This is immediately clear by insertion of 7i(rt) into the building block of both
functions,

<\P0|fl(ﬂ)ﬁ(7‘/l‘/)|\l"0> _ <\P0|eiﬂz/h ﬁ(r) efiﬂt/heiﬁ[’/h ﬁ(l‘/) efiﬁ[’/h‘\};w
_ <\Po|ﬁ(r) efiﬁ(tft’)/h ﬁ(r/)|\PO>eiE0(t7t’)/h
= ARy (rt, 7'ty = ywy(r, ¥t —1'). (4.40)

It is therefore convenient to analyze these functions in frequency space,

Foo , ,
X (rr o) = / d(t—1') e gy (r, 77, 4.41)
The intimate relation between ) and yr can be established on the basis of the
Lehmann representation, in analogy to Eq. (3.122). Let us denote the N-particle
eigenstates of the interacting Hamiltonian by |¥,), with the quantum number n
chosen according to their energy ordering,

I:II\Pn> =E, |"I"n> > Ey <Epti. (4.42)
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Let us furthermore assume that the ground state is non-degenerate. The Lehmann
representations of ¥ and yr are then obtained from the definitions (4.35) and (4.39)
by insertion of the completeness relation in the N-particle Hilbert space,

S W) (Pal =1, (4.43)

use of (4.42) and subsequent Fourier transformation,?
{ x(r.r', o) } . (Wola(r)[Wn) (Walia(r') o)
XR(’J'/,(D) 0 ho— (E, —Ep) +in

-y (Woli(r')[¥n) (Pulii(r)[Wo)
b ho+ (E,—Ep) Fin

(4.44)

The only difference between the Lehmann representations of ¥ and yr is found for
the pole shift of the second contribution, for which the (upper) minus sign refers
to x, while the (lower) plus sign is correct for yr (concerning the handling of the
pole shifts see the remark following Eq. (3.122)). As E, — Ey > 0 for all states with
n # 0, the pole structures of )y and yr have the forms given in Fig. 4.1. In this

S((D) A

XXX X X X XX X X X X R(w)

®© 0000000 0 0 0 0 | 3 NN NN NN N NN

Fig. 4.1 Analytic structure of y (x) and yr (e), Eq. (4.44), in the complex w-plane.

figure crosses (x) denote the poles of ¥, filled circles (o) those of yr. Figure 4.1
demonstrates that neither of the functions has poles on the imaginary axis and in the
upper-right quadrant of the complex @-plane. One can directly verify that

2 Note that the term with n = 0, which is present in the completeness relation (4.43), is missing
in the final Lehmann representation (4.44). In the case of the time-ordered response function this
contribution drops out due to the definition of ¥ in terms of the density deviation operator 7, i.e.
due to the subtraction of ng(r)no(r") from the actual time-ordered product of density operators in
Eq. (4.35). For the retarded response function the definition in terms of the commutator of two
density operators, Eq. (4.39), is responsible for the elimination of the term with n = 0.
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x(r,r,o) for R(w) >0

I
xR(r,r, @) = {%*(r’,r, o) for R(w) <0’ (+:43)

as the pole shift in the second term of (4.44) becomes irrelevant for @ > 0, while
for w < 0 the same is true for the pole shift in the first denominator (E,, — Eog > 0).
Direct inspection of (4.44) leads to the symmetry relations

xr(r, 7, —w) = yi(r,r, o) (4.46)
X(rarlvfw)ZX(r/araw)' (447)

Equations (4.45)—(4.47) imply that both functions are identical and real for w = 0,
(7, 0=0)=x(r,r,0=0)=y"(r,r,0=0). (4.48)

Moreover, for systems with a finite number of particles integration over space leads
to

/d3rx(R) (r,r,0=0)= /d3r/x(R)(r,r', ®=0)=0. (4.49)
This identity, however, relies on
[ & (Rl = (PlRI¥) = Néo.

As a consequence, Eq. (4.49) does not apply to infinite systems, for which the parti-
cle number diverges, so that the integral over space is not well-defined as it stands.

Additional information on both types of response functions will be given in sub-
sequent sections, in particular in Sects. 4.3 and 4.4. For the present discussion the
limit #,#/ — 0 is of interest. One immediately recognizes, from either the definition
(4.39) or the Lehmann representation (4.44), that the retarded response function
vanishes in this limit,

t'—0 t—0 | /=0

T dw
f/ —err )

lim [III%XR()'Z‘ r't )} = lim {hm xr(rt,r't )]

(4.50)

All poles of yr(r,r,®) lie in the lower half of the complex plane. On the other
hand, the limit z,#’ — 0 is well-defined and non-zero in the case of the time-ordered
response function,

lim {hn&x(n r't )] = lim [hm x(rt,r't )}

t'—0 t—0 [/—0

oy
:[w %X(rvr/vw)
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=z Z (Pola(r)[Wa) (Wali(r')[¥o)
n;éO
= —E[<‘l’0|ﬁ(r)ﬁ(r’)|‘l‘o) —n(r)n(r")]. 4.51)

With this result let us resume the discussion of the energy shift (4.34). The limit
(4.51) can be used to reformulate (4.34) in terms of the time-ordered response func-
tion. Combining Eqgs. (4.32), (4.34) and (4.51), one arrives at

Eo(1) = Ep(0)— /dz,/cﬁrm {vch(r)—;/d3r’w(r,r’)n,1(r')}

+= /d3 /d3rwrr)

/ az {in tim (e, ')~ 60 (r =y (1)}, (4.52)

1,t'—0

where n), and y, denote the density and response function resulting from the ground
state |Wo (1)) for given A. One can now use Eq. (3.18) for Ey(0),

Eo(0) = Es = (®o|Hy|®o) = T, + / Brvg(r)n(r), (4.53)

and (3.24) to end up with

/d3 /d3r w(r, ) /ld/l {3, (10,7°0) = 60 (r =y (r)}
+ /0 an {EH[n;L]—EH[n]—&— / & r[vo(r) — Ve (r)] [n(r)—n;t(r)]}. (4.54)

The expression (4.54) is a density functional in the sense that the ground state
[Wo(A)) is a unique functional of the density n,, for any A. However, as the strength
of the particle—particle interaction varies with A, the functional dependence of |Wy)
(1)) = |¥2[na]). One has to perform an integration
over A, in order to obtain the desired functional of the actually interesting density
n. While (4.54) is an exact representation of Ex, it is difficult to imagine how this
functional could be used in practice.

Fortunately, Eq. (4.54) can be reformulated in a more useful form. With this aim
in mind, it is most convenient to go back to the coupling constant integration formula
(4.32). For its evaluation the concept of adiabatic switching [94] is applied to H.
This means that A is switched off for large positive and negative times, using some
exponential switching factor,

H — e 8 A, (4.55)

so that asymptotically one has lim, ... H(A) = H; (while for r = 0 the original
Hamiltonian is retained). The limit € — O is taken at the very end of the discussion,
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in order to return to the original Hamiltonian for all times. On this basis the machin-
ery of standard many-body theory, i.e. the Gell-Mann-Low theorem [129] applied
to the present decomposition of the total Hamiltonian, leads to an expression which
connects the interacting ground state with the KS ground state,

018( , Foo)| Do)

Wo(A A lim (4.56)
O = 0 [ (0, 70) )
. . 12
A= Bm <<1’0|U1,61(A+°°70)|‘1>0><‘1>0\U182( —)[®0) | s
e1.620 (@0|Ur¢, (+2,0) U e, (0, —<)|®o)

where A ensures the normalization (4.30). The main ingredient of (4.56) is the time-
evolution operator in the interaction picture (defined by H), which is given by a
power series in the perturbation,

\ (—in)"
U],S(t7t/) h}'ll | /dtl /dl‘ e e([ty[4+|tn])

n=0

X T[H]J(tl)---HlJ(ln)] (458)
H]J(l‘) _ eiI:ISt I:I efiI:Ist

Z/UP /d3r'w r )0 (rot) 0 (F 01 W (P ') o (rot)

0'6’

—2 / & rvuge(r) ¥ (rot) o (rot) . (4.59)

Here )y represents the field operator in the interaction picture, which is identical
with the field operator in the Heisenberg representation defined by the KS Hamilto-
nian,

Wo(rot) = M/ g(ra) e M = Y bigi(ro)e e/, (4.60)
i
The operator BET) denotes the annihilation (creation) operator for the single-particle
KS state ¢;
¢i(ro) = (ro|b|0) (4.61)
0 = b;|0) (4.62)
[@0) = TT &/ [0). (4.63)
£ <€

The field operator and the KS Hamiltonian may thus be expanded as
ro) = Y bi¢i(ro); Ay = &blb;,
i i

which leads to the simple commutation relations
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{1:157bi:| = —¢gb;; |:I:Iq,bj.:| = Sib; .

Use of the identity (L.12) then explains the right-hand equality in (4.60). The reader
is referred to a text on many-body theory (for instance [94]) for the derivation of
Eq. (4.56), which is completely independent of the form of H.

Insertion of (4.56) into the coupling constant integral (4.32) leads to the energy
correction which results from switching on the perturbation. In order to express this
energy in standard form one first uses the fact that H, =H, I (t = 0) can be absorbed
into the time-ordered product in (7178,

Upe(+e0,0)H Uy (0, —o)

B i —z?L Foo

n=0 'n
« z 7 / dtl / dt/ —&(Jty [+ ])
k=0 Mk!

XT[H 71(l1) .- ‘ﬁl,l(tn)}ﬂl,I(O)T[I:Il,l(ti) . ~~I:11,1(t1/€)}

(AN oo 400
(=id) S E—

- / i e~en -+l

dty -- dt,e

By
XT [Hi(t1) - Hi(ta)Hy 1 (0)Hy 1 (17) -+ Hy g (1))
= T [H11(0)Up¢(422,0)U1 ¢ (0, —0)] .
Together with the additivity of the time-evolution operator,
O, (+0,0) Uy £ (0, —o0) = Uy ¢ (40, —o0),

one arrives at

Eo—E. —hm/d?uz - / di / i, el

(Do|THy 1(0)Hy 4 (t1) - Hy ()| Do)
<(D0|Ul,e(+°°a_°°)|q)0>

(4.64)

Using Egs. (3.18) and (3.24) one can finally extract Ex. and perform the coupling
constant integration,
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Exe = /d3 /dgrwrr

«{ X @010 1018 (0" 0 (1) @) ()t |

c,0’

1 ([t1 ]+ [tu])
+1m2hn +1 /dt1 /dte

£—0

X <(D0|TH171( )Hlﬁl(tl) .- ~H1,1(l‘n)|q)0>1 . (465)

The index [ indicates that in the order-by-order evaluation of (4.65) only those con-
tributions have to be included which can not be factorized into one term involving
H, 1(0) and a remainder. Expressed in the language of Feynman diagrams, only
linked diagrams are to be included in the evaluation of (4.65) via Wick’s theorem
(this restriction corresponds to the cancellation of the denominator of (4.64)).

The first term on the right-hand side of (4.65) emerges from the perturbative
contribution linear in A and is easily identified as the exchange energy (4.5). In
order to prove this assertion, one can either insert the noninteracting field operator
(4.60) and the KS ground state (4.63) to evaluate the expectation value directly.
Alternatively, one can commute the operators {Jy as in (4.33) and subsequently use
(4.51),

1
E/d3r/d3r’w(r,r’)

Y. (@o| 5 (ro) g (r'o )ll/o(rcf)llfo(rﬁ)lfl>o>n(r)n(r')]

o,0’
oo
= %/d3r/d3r’w(r, r) {zh/ Cé—:xs(r, r o) —5(3)(r—r’)n(r)} . (4.66)

Here ), denotes the time-ordered response function of the KS system, which is
defined in complete analogy to the full response function (4.35), with the ground
state and density operator being replaced by their KS counterparts,

xs(rt, r't")

> (Do| T (rot) Yo (rot)fd (r' o't )P (r' o't') | o) —n(r)n(r’)} . (4.67)

o,0'

i

The function ), and its retarded version ysr (defined in analogy to Eq. (4.39))
satisfy the same relations as the interacting response functions, Egs. (4.40)—(4.49).
In particular, there also exists a Lehmann representation for ;. In fact, this Lehmann
representation becomes particularly simple, due to the determinantal structure of the
KS N-particle states. As lf/g Uy can only excite a single KS particle from the ground
state Slater determinant |®y), one finds
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& (ro)¢i(ro)¢; (r'o’)¢(r'o’)
O(1-6
% k( l) z

/
S\"» ,(D = .
x%:(rr,0) ho — (g — &) +in

o,0/

(ra) g (ro’) o (ro)g(ro
yai-g) 3 KIDACNCDNCD) g
Kl 0,0/ ®+ (& —&) —in
Insertion of (4.68) into (4.66) then allows a direct evaluation of the frequency inte-
gral by contour integration techniques. One ends up with the exchange (4.5), estab-
lishing two alternative representations of Ey,

1
Ey = 5/af3rﬁ/d3r’w(r,r’)

x { ZI@OWS(TU)VT( o')W (r'c’) o (ro)|do) —"(r)"(r/)}
= /d3 d3r’w (r,r) [ —xg r,r a))—n(r)5(3)(r—r’)} , (4.69)

where (4.47) has been used to restrict the frequency integration to the positive range.
The second term in (4.65), which incorporates all higher orders of H, provides
an exact expression for the correlation energy E,

E —limS " gt el Hnl)
c=li 0; n+1 / dty - / dtpe”
x (@o|THy 1(0)H: 1 (1) - Hy 1(1,)|Do); - (4.70)

The quantities required for the evaluation of this expression via Wick’s theorem, i.e.
the elementary building blocks of many-body perturbation theory based on Hs, are
the KS Green’s function,

Gs(rot,r'o't")
= —i<¢0|T1f/()(TG[) l/AIO (T/G/l,)|q)0>
— _,2{ —1)(1-6,) -0 —16 }¢,(rc)¢f(m) e =/ 471

the Coulomb interaction w and vyx. (as H, depends on this potential). The Hartree
component of vyxe = vy + Vxc 1S readily calculated from the KS orbitals, so that
(4.65) depends on three basic quantities, @, & and vxc.

The result obtained is hence an exact representation of Ey. in terms of the KS
orbitals and eigenvalues as well as in terms of its own functional derivative. Con-
sequently, Eq. (4.65) does not assign a well-defined expression to Ey., but rather
represents a highly nonlinear functional equation. This result is, however, still con-
sistent with the basic statements of DFT: as v, is a density functional itself, the
right-hand side of Eq. (4.65) represents an implicit density functional.
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While the expression (4.65) is more transparent than (4.54), its usefulness for
practical applications is not obvious at all. Both its dependence on the KS states
as well as its nonlinearity prevent a direct exploitation. Nevertheless, the represen-
tation (4.65) serves as basis for a complete class of approximations for Ex.. As
these approximations rely on the explicit representation of xc-effects in terms of
KS states, further discussion is postponed until Chap. 6, in which the handling of
orbital-dependent functionals is explained.

4.2.2 Variant (b): Adiabatic Connection

The starting point of the discussion is once more the representation of Ex. in terms of
the response function ). Obviously, the result (4.54), obtained by the decomposition
(4.27) of the total Hamiltonian, is rather difficult to handle, because the ground state
density changes with the switching factor A. One might thus ask whether one can
modify this procedure in a way which ensures that the ground state density remains
the same along the path from the KS system to the fully interacting system? This
invariance is the crucial feature behind the adiabatic connection [77, 128].

The basic assumption, that one uses here, is: the ground state density n of the
interacting system is v-representable for any strength of the interaction Aw with
A € [0, 1]—until now, only the two end points have been utilized. In other words:
one assumes that one can find an external potential, so that the same ground state
density is obtained for any interaction strength A € [0, 1],

ny (r) = (Po(A)|A(r)[Yo(r)) = n(r) forall 0<A<1. (4.72)
This external potential will be denoted by u,,

vs(r) forA =0
uy (r) = < unknown for0<iA <1 . (4.73)
Vext (1) for A =1

The total Hamiltonian for given A then reads
A = T+/d3rul(r)ﬁ(r)+/lW, (4.74)

so that one obtains again

A - H, for A =0
A fordA=1"

However, in contrast to the Hamiltonian (4.27) the present H(A) is only known for
the two limiting cases A = 0 and A = 1. This complicates the evaluation of the
energy for intermediate A.
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For the Hamiltonian (4.74) one can use coupling constant integration in the same
fashion as for (4.27). If one denotes the ground state, which results from (4.74), by
[Wo(A)), one obtains for the ground state energy,

Eo(l)—Eo(O):/ < '/d3m dm r)

= /d3r [u,1=1 (r)— MA:O(')] n(r)

+= Z/d3 /d3rwrr /dl

oo"

<(Fo (M)W (ro) W' (r' o) (r' o) p(ro)[¥o(4)).

Vw))

In the next step, the time-ordered response function corresponding to the Hamilto-
nian (4.74) can be introduced and Ey. can be extracted,

Exc[n] = %/d3r/d3r’w(r, r’)/oldl (i (r0,7°0) —n(r) 6 (r— )] . (4.75)

Of course, the response function in (4.75) is not identical with the y; in (4.54),
as the underlying Hamiltonians differ. Nevertheless, use of the HK theorem for all
A € [0,1] leads again to the statement that the ground state [Wo(A)) is a unique
functional of the density 7). The important advantage of (4.75), compared to the
expression (4.54), results from the fact that n, is now identical for all A, so that
|[Wo(2L)) and hence ), as well as (4.75) are functionals of the actual interacting
ground state density n only (|Wo(1)) = [¥;[n])). Equation (4.75) represents the
adiabatic connection formula for Exc.

Often an alternative form of (4.75) is found in the literature, which relies on a
variant of the response function, the so-called pair-correlation function,

(Fola(r)a(r')[Wo) —n(r) %) (r—r')

g(r,r) = n(r) () (4.76)

g(r,r) —1is the percentage deviation of the probability to find one particle at point
r and simultaneously a second particle at 7 from the uncorrelated product of single-
particle probabilities,

n@(r, ) = Zn(r)n(r)g(r,r), (4.77)

where n(?) is given by (3.45). The connection between n(®) (r, ') and g(r, ') can be
easily established via the 2-particle density operator
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N
2 (r—#)8% (' —#)) (4.78)
J=1i

W (r0) ¥ (70 (o) i(ro) (4.79)

| = l\)\'—‘

a

o,

(the equivalence of (4.78) and (4.79) can be verified on the basis of the general rela-
tion between the first and second quantized representation of 2-particle operators—
see Appendix B). Insertion of g(r,r’) into (4.75) yields

Exln] = %(/d3r/d3r/n(r)w(r,r’)n(r’)‘/01d?L g (rr)—1].  (4:80)

g, (r,7) is a unique functional of n, in the same way as x; .
There exists yet another reformulation of (4.75) which is frequently met within
DFT. The definition of the exchange-correlation hole hx.,

1
') = n(r) [ a2 fsa(r.r)=1). @81
Jo
allows to rewrite (4.75) as

/d3rn /d3r w(r, ¥ ) e (r, 7). (4.82)

In the form (4.82) the xc-energy can be interpreted as the interaction energy of the
charge density n with its associated xc-hole. Any approximation for hy., g3 or x,
then defines an approximation for Exc[n].

For practical purposes it is convenient to recast (4.75) using the fact that the
response function y; (rt,r't') only depends on r —t’, which allows the insertion of
the Fourier representation (4.41),

1 3 3.7 e
Exczi/dr/dr|r—r’|

1 o
x/o A {m/ i—:)a(r,r',a))fn(r)6(3)(rfr') L 483)

—oo

Using Eq. (4.47) to restrict the frequency integration to the positive regime and
subtracting the exact exchange (4.69), one ends up with an exact representation of
the correlation energy functional,

_ lh/d3 /d3 " —r’|/ / [ (r,r,0) — xs(r,r, )] . (4.84)

For R(w) > 0, however, y; (r,r’,®) does not have any poles in the upper half of
the complex w-plane, as can be explicitly verified via the Lehmann representation
(4.44). The same statement is true for ys(r, 7, ®), see Eq. (4.68). As a consequence,
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integrals along arbitrary closed contours in the upper-right quadrant of the w-plane
vanish. This finally allows us to rewrite (4.84) as an integral over imaginary fre-
quencies, i.e. an integral along the imaginary axis,

2 1 oo
E. = —g/d3r/d3r/ ‘rir/| A dA /0 d7w [%}L(rvr/viw)_%s(rvr/aia))] :

(4.85)

The form (4.85) has the advantage that one does not come close to any pole of

1 (r, 7, @) and x(r, 7, ) along the imaginary axis, so that the pole shifts in their

Lehmann representations become irrelevant. On this basis one can directly demon-

strate that y; (r, 7, i®) and ys(r, ¥, i®) are manifestly real, so that also the integrand

of (4.85) is real.

4.3 Local Density Approximation (LDA)

In view of the complex structure of the time-ordered response function one might
ask whether the adiabatic connection (4.75) can be of any use? Clearly, it does not
directly define some explicit density functional: only the mere existence of the func-
tional y; [n] is ensured, while the actual density dependence of x; is as unknown
as that of |W [1]). However, there exists a prominent interacting many-body system
for which the density dependence of y is rather well-known, the homogeneous (or
uniform) electron gas (HEG). The HEG is a system of infinitely many interacting
electrons which do not experience a spatially varying external potential. Of course,
the total energy of infinitely many particles is infinite, only the energy density is
a meaningful quantity, or, alternatively, the energy per particle. However, even the
energy density of infinitely many electrons diverges, due to the long range of the
Coulomb interaction. In order to cure this problem, the charge of the electrons has
to be neutralized by a homogeneous, positive background charge density 7., con-
sistent with the requirement that the external potential has to be a constant. As a
result, the net charge in any (suitably chosen) volume of space is zero, so that the
long-range Coulomb forces vanish and a finite energy density is obtained. If the
number of electrons per volume exceeds a certain threshold, the electron ground
state density ng of the HEG is constant throughout all space, i.e. homogeneous, with
ny =ny.

As a direct consequence, the spatial xc-energy density ex. of the HEG (or the
Xc-energy per particle &. = exc/no) is an ordinary function of ng, rather than an
actual functional. In addition, the response function of the HEG only depends on
the distance between the points r and 7/,

x.(re,r't)y = i (lr—rt -1, (4.86)

as a result of the translational and rotational invariance of the HEG (in the following
the response function of the HEG will always be distinguished from the general
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by its arguments). The adiabatic connection thus takes the form?

1
EG (ng) = =5 /dgr w(r—r / dA {ihxl(r—r',o;no) —n05(3)(r—r')},
(4.87)
where the density dependence of y, has been explicitly indicated. In addition, one
has used the fact that the Coulomb interaction only depends on the distance between
the two particles. A simpler form is obtained by Fourier transformation,

3
&9(m) = 3 [ Gavia@ i [0 [ 2 x@.om)-mf . @s)

with
/d3re 4T y(r—r) (4.89)
2.(q,0) = /dt/d3re"" ey, (r—rt—1). (4.90)
The explicit form of w(q) for the case of the Coulomb interaction is*
4me?
w(q) = pe (4.91)

Equation (4.88) can be evaluated for a number of approximations for y,. How-
ever, a detailed account of the state-of-the-art knowledge on the HEG, and in partic-
ular on x; and €S is beyond the scope of this text. In the following we will only
make use of the Dyson equation for the response function,

2(q,0) = I1(q,0) +11(q,0)w(q) x(q, ®) (4.92)
(g, )

=T wig)(q.0) (493

(
(g, w)+1I1(q,0) w(q) I1(q,®)
+11(q,0)w(q)I1(q,®)w(q) I1(q,®) + ...,

in which y is expanded in powers of its basic buildings blocks, the irreducible (or
proper) polarization insertion I1. The concept behind Eq. (4.92) is closely related
to that of the Dyson equation for the single-particle Green’s function, introduced in
Sect. 3.6: Equation (4.92) separates the core contributions to y, as the propagation
and annihilation of a single particle-hole pair created by the incoming momentum

3 Note that ey is the xc-energy per volume, not the xc-energy per particle, which is often used to
characterize the HEG. The latter quantity will be denoted by &.

*In actual calculations the long range of the Coulomb interaction often requires use of the screened
form (L.10) in intermediate steps of the calculation. The limit of vanishing screening is then usually
taken at the end of the calculation.
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q, from simple repetitions of the same process. Many further details on )y can be
found in standard textbooks as [94, 95].

4.3.1 Exchange

We first consider the lowest order contribution to ), , i.e. the response function Yo
of a noninteracting HEG with density ng. This noninteracting response function is
independent of A. When inserted into the general expression (4.88), yo yields a
contribution to ¢:IFS which is linear in ¢?. By definition, this is the exchange energy

of the HEG,
1 dq
HEG _ !
ex (no) = 2/(27r)3 { / 20(q,® } : (4.94)

X0, the so-called Lindhard function [130, 94], can be written in terms of the single-
particle Green’s function Gy of the noninteracting HEG,

xo(r—r i—t") = IO —r -1

—% Y Go(r—r',t—1,00")Go(r —r,i'—1,0'0)
c,0’

) &k dik°
nYq,w) = —- Z/ 27y 2m Go(k+ ¢,k + ®,00") Go(k,w,06'G) . (4.95)

The explicit form of Gy, Eq. (L.29), is obtained from the general result (3.124) by
insertion of the eigenstates of the noninteracting HEG (and use of a suitable limiting
procedure in order to keep the normalization of the eigenstates and the density under
control—see Appendix D). These eigenstates are simple plane waves,

.k Rk
¢1(ro) = Pgs(ro) = Ce™" x5(0), g§=&=>5_-,
m
which are occupied for all |k| below the Fermi momentum
V2
ke = };”gF ‘ (4.96)

The Fermi momentum, in turn, is determined by the density of the gas,

K

I (4.97)

nop =

The expression (4.95) indicates why it is often preferable to represent Green’s

and response functions in terms of Feynman diagrams, rather than by explicit spec-
ification of Feynman integrals. The diagrammatic equivalent of (4.95),
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i1 — , (4.98)

in which the solid line represents Gy (either in real or in momentum space), is much
more compact. In the following the diagrammatic form will therefore be utilized
frequently. The technical details of the Feynman rules, required to translate diagrams
into integrals such as (4.95) and vice versa are given in Appendix L (the rules used
are identical with those of [94], Chaps. 9—-12, to which the reader is referred for
background information).
Insertion of (4.95) and (L.29) into (4.94) and subsequent integration over k,k0
leads to [131]
eHEG( 3(37%)'3 62n3/3 '

in (4.99)

no) =

An alternative, very elementary derivation of this result is given in Appendix D.

4.3.2 Correlation: High-Density Limit

The leading term of the high-density limit of the correlation energy eFS is con-

tained in a set of contributions termed random phase approximation (RPA). The
RPA corresponds to the approximation

7o)
% (g.0) = e (q’ ) (4.100)

6050

This form allows one to perform the A-integration in (4.88),

HEGRPA _ I d*q do _ (0) (0)
-3/ ta )m{m\l w(g)11" (g, 0)] +w(g)T" (q,0)}
(4.101)

(the exchange term (4.99) has been subtracted from the total xc energy (4.88)). An
exact analytical evaluation of the remaining integrals is not possible. However, in
the limit of high density one obtains [132, 133],
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HEG.RPA ng—ee € [1—=1In2
el N (ng) —— no{”zln(rs)0.071+...} ,  (4.102)
aop
with the dimensionless Wigner-Seitz radius
3 1/3 me?
= — —. 4.103
s <47Tl’lo > n? ( )

The Wigner-Seitz radius is the ratio between the radius of the sphere which is on
the average occupied by a single electron of the gas and the Bohr radius
72

ag =

=—. (4.104)
me

The leading term of the high-density expansion of e[EC is seen to increase faster

than linear with ng, due to the In(rs)-factor. In terms of the electron—electron cou-
pling constant ¢? the leading term scales as e*In(e?), which indicates that the
high-density limit emerges from a resummation of the geometric series inherent
in (4.100). This result reflects the fact that there is no gap between the highest occu-
pied and the lowest unoccupied state in the case of the HEG. The high-density limit
is therefore not identical with the second order perturbative correction in w (which
diverges for the HEG). A complete numerical evaluation of (4.101) has been carried
out by von Barth and Hedin [34] as well as by Vosko, Wilk and Nusair [134].
The result (4.102) raises two questions:

e For which values of rg does (4.102) provide reliable results?
e Which range of r; is relevant for realistic systems?

Even though the HEG only serves as a model system for the construction of ap-
proximate xc-functionals, it is obvious that any functional relying on expressions
like (4.102) can only be accurate for systems which have densities in the range of r
covered by (4.102). The average density obtained from the valence bands of a num-
ber of solids are listed in Table 4.2. These examples show that the range 1 < ry <6
is probed by the valence densities of solids. An impression of inner shell densities of
atoms is given in Table 4.3. The data given in this table are local density values, in
contrast to the average valence densities in Table 4.2. As expected, one finds rather
high densities in the inner shell regions, so that ry can be as small as 0.01 for very
heavy atoms. However, even for atoms the density in the valence regime is more rel-
evant for all kinds of physical processes, so that an approximation should primarily
address the much lower valence densities.

From the values in Tables 4.2 and 4.3 it is immediately clear that, even for the
highest valence densities, the leading, logarithmic term in (4.102) does not dominate
over the next to leading term,

In(ry =2)

(1-1n2)="-= = 0.021 < 0.071.

One thus has to go beyond the leading term.
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Table 4.2 Average valence densities ng of prototype solids. The number of valence electrons is
given for the conventional cubic unit cell.

Solid Lattice no Ts Lattice Number of valence
constant (valence) (valence)  type electrons per
[Bohr] [Bohr—3] atom  unit cell

Li 6.60 0.00696 3.25 bce 1 2

Na 7.99 0.00392 3.93 bee 1 2

Cs 11.43 0.00134 5.62 bce 1 2

Fe 542 0.0252 2.12 bece 2 4

Al 7.65 0.0268 2.07 fce 3 12

Au 7.71 0.00873 3.01 fce 1 4

C 6.75 0.1040 1.32 dia 4 32

Si 10.26  0.0296 2.00 dia 4 32

Table 4.3 Densities of prototype atoms at the r-expectation values (r) of various subshells.

Atom  Subshell  (r) no rs
n [Bohr] [Bohr—3]

Li 1 s 0.59 0.50  0.78
2 s 393 0.0017 5.90

Cs 1 s 0.026  7841. 0.031
2 s 0.11 496.  0.078
3 s 0.30 56.4  0.16
4 0.70 499 036
5 s 1.74 0.15 1.16
6 s 5.55  0.00055 7.59

Fe 1 s 0.059  639. 0.072
2 s 0.27 285 020
3 s 0.82 177 051
3 p 0.86 151 054
3 d 1.13 0.54 076
4 3.00  0.0075 3.17

Si 1 s 0.11 86.7 0.14
2 s 0.57 275 044
3 s 216 0.029 2.02
3 p 279 0012 272

The next important contribution is obtained from the so-called second order ex-
change term. It results from the first order contributions to the response function
which are not contained in the RPA, Eq. (4.100). These terms can be depicted dia-
grammatically as

i1\ = + + (4.105)
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and contribute to the complete y according to (4.93),
x =IO+ 1@y o).

When inserted into (4.88), IT(") leads to an additional contribution to e'FC which is
linear in ng [133, 135], the second order exchange (SOX) term. If one adds the SOX
term to the RPA energy, one obtains the complete high-density limit,

2
HEG np—oo e 1—1In2
ec V(ng) —— —ny { o

In(rs) —0.047 + .. } . (4.106)
ao

Unfortunately, the next order in this perturbation series scales as r¢In(rs) [136, 137],
so that (4.106) is still not sufficient to cover the relevant range of densities. In one
way or another one needs more information on efFS than provided by the high-
density limit.

4.3.3 Correlation: Low-Density Limit

For very low densities the HEG crystallizes in the form of a bec lattice, the so-called
Wigner crystal [138—140]. In this limit the kinetic energy of the electrons is much
smaller than the Coulomb repulsion between them. It is thus energetically favorable
that the electrons permanently remain at the largest possible separation from each
other, which the given density allows. Their motion is restricted to small vibrations
around their equilibrium positions, similar to the motion of the nuclei in a standard
lattice. The resulting correlation energy density has the form

no—0 €% 0.438 1.33 1.47
ap

e ™C(ng) =— —ny T e +} (4.107)
S

where the last two terms originate from the zero-point energy corresponding to the
vibrational motion. The transition from the regular (unpolarized) HEG to the Wigner
solid is expected to take place around ry =~ 80 [141]. This limiting behavior of the
electron gas is obviously not relevant for ordinary matter. Unfortunately, this implies
that neither the limit (4.106) nor the limit (4.107) is particularly useful in practice.

4.3.4 Correlation: Interpolation Between High- and Low-Density
Regime

One is thus led to consider the intermediate regime of densities. The simplest ap-
proach to the correlation energy at these densities is an interpolation between the
high- and the low-density limit. The first interpolation of this type has been sug-
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gested by Wigner [138],

2
Wigner — _i 0.44
b (o) aono rs+7.8°

This formula neither includes the leading, logarithmic high-density term, nor does
it take into account the fact that the high- and the low-density limits correspond to
different physical phases, i.e. the liquid high-density phase and Wigner crystal. It is
nevertheless surprisingly accurate in the relevant density range of 1 < rg < 6.

A more sophisticated form for e!’FS can only be obtained by an explicit eval-
uation for intermediate densities. In practice, it turns out to be simpler to perform
a Monte Carlo simulation of the HEG and extract ¢!ES from the resulting total
energy, than to evaluate (4.88). Rather accurate results have been obtained in this
way [141, 142]. In order to facilitate their practical use, they are usually combined
with the analytical results for the high- and low-density limits. For this purpose
one chooses an analytical ansatz which reproduces the forms of the high- and low-
density limits (4.106) and (4.107), but simultaneously shows sufficient flexibility at
intermediate densities. For instance, Vosko, Wilk and Nusair (VWN) [134] rely on
the ansatz

2 1 2 _p2\1/2
VWN e 1—In2 X 2b _ (4e—b7)
= 1 t 4.108
e (m0) = Zomo—p { o e gy Y
bxy (x—x0)%>  2Q2x0+b) _ (4c—b*)'/?
— In an
X (x0) X (x) (4c—b2)1/2 2x+b
X(x) = x> +bx+c ; X =/rs.

By construction, this formula reproduces the leading logarithmic term of the high-
density limit (4.106) exactly. In addition, the analytical form of all other known
terms of the high-density expansion is preserved,

VWN ng—oo 82 1—1In2
e, " (ng) —— —no o ln(rs)+A+rs[Bln(rs)+C]+... .

ao

However, VWN do not require that the exact numerical values of the coefficients
A, B and C (as e.g. A = —0.047) are reproduced. The same is true for the low-
density expansion (4.107), whose analytical form is recovered after an expansion
of the VWN formula for large rs. The numerical values given in (4.107), on the
other hand, correspond to the Wigner crystal, so that they are not very useful for the
liquid phase anyway. The parameters xg, b and ¢ are then optimized to reproduce
the exact coefficient A = —0.047 of (4.106) and the Monte Carlo data (the result is
xo =—0.10498, b =3.72744 and ¢ = 12.9352—see Table V of [134]). The concepts
behind most other parameterizations are quite similar.

Some of the more accurate parameterizations of this type are plotted in Fig. 4.2.
This figure confirms the earlier statement that the high-density limit (4.106) can



4.3 Local Density Approximation (LDA)

=20

=30 -

eCHEG/nO [mHartree]
1
oy
S
T

HDL =RPA +SOX

137

-0+ /& 7 s vBH=RPA —
————————— VWN
-80 - PZ -
=== OB
-90 -+ Monte Carlo OB 7
~100 | | |
3 4 5 6
r>

Fig. 4.2 Correlation energy per electron (g. = eEC /ng) of the spin-saturated homogeneous elec-
tron gas as a function of the Wigner-Seitz radius rs, Eq. (4.103), for several parameterizations:
vBH—[34], VWN—[134], PZ—[143], OB—[142]. Also plotted is the high-density limit (4.106)
(HDL = RPA plus second order exchange) and the Monte Carlo data [142].

not be used for realistic systems: one finds a 25% difference between (4.106) and
the complete e?EG for densities as large as r¢ = 1. Moreover, the difference be-
tween the RPA and (4.106) observed for small r; emphasizes the importance of the
SOX contribution. The three interpolation formulae shown differ by the use of dif-
ferent Monte Carlo reference energies and/or by the analytical ansatz chosen. The
VWN form [134] and the Perdew-Zunger (PZ) [143] interpolation both employ the
Ceperley-Alder data [141], but differ in the analytical structure of the analytical
ansatz. On the other hand, the Ortiz-Ballone (OB) [142] interpolation is based on
their own Monte Carlo data, but uses the same ansatz as VWN. One recognizes that
(1) the form of the ansatz is irrelevant (as long as it reproduces the limits and is oth-
erwise sufficiently flexible) and, (ii) the Monte Carlo results have converged within
a few percent. It turns out that the remaining uncertainty in the Monte Carlo data
and the resulting interpolation formulae is irrelevant in practice (see below).

4.3.5 Density Functional: Local Density Approximation (LDA)

So far, we have considered the xc-energy of the HEG. The important question to be
addressed at this stage is: how can one utilize these results within the framework of
DFT, given the fact that all systems of interest are inhomogeneous? The answer to
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this question is provided by the local density approximation (LDA) [6]. In the LDA
the xc-energy density of the inhomogeneous system with density n(r) is locally
approximated by the xc-energy density of an electron gas with density ng = n(r),

E,];CDA[n] = /d3re§{CEG(no =n(r)). (4.109)

A number of comments are appropriate:

(a) The LDA is a universal first-principles functional of 7 in the sense that it does
not depend on any free parameters which introduce some physical scale. It
would be a misinterpretation to regard the coefficients in the interpolation for-
mulae as free parameters: they are completely fixed by the properties of the
HEG. One could, as an alternative, directly use numerical Monte Carlo results
in the LDA (4.109). The LDA is thus consistent with the ab-initio concept of
DFT.

(b) In the LDA any system is locally treated as an electron gas. The LDA can be
applied to arbitrarily inhomogeneous systems without encountering any tech-
nical difficulties. However, its formal universality and technical applicability
do not imply validity for just any system. Clearly, one would expect the LDA
to be particularly appropriate for systems which share some properties with
the HEG, as for instance simple metals. A more precise characterization of its
regime of validity will be given below.

(c) The LDA is easily utilized in the KS equations, as the corresponding xc-
potential is a simple function of the local density,

LDA () — SEP[n] :/d3r’ del (no) én(r')
61’!(") dVl() no=n(r') 5n(r)
HEG
= M (4.110)
dng no=n(r)

One observes, however, that viPA has an extremely short range, as it only de-

pends on the local density. As an important consequence, the LDA potential
vanishes exponentially in the asymptotic region of finite systems. This prop-
erty can easily be demonstrated for its exchange component, which is obtained
by differentiation of (4.99),

3\1/3
JLDA () _%én‘/%) , @.111)

As soon as the density decays exponentially, the same is true for the LDA
exchange potential,
nr)~e ™ = A e (4.112)

This behavior is in obvious contradiction to the exact result (4.20).
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(d)

A direct consequence is the fact that the KS spectrum obtained with the LDA
for finite system like atoms does not contain Rydberg states, which are charac-
teristic of the Coulombic —1/r-behavior. This implies that the LDA necessarily
predicts atomic negative ions to be unbound, which is one of its most important
deficiencies.

The asymptotic behavior of the LDA correlation potential for finite systems is
determined by the low-density limit of the correlation energy density efFS (ng).
In view of (4.110) any functional with the same density-dependence as (4.107)
shows an exponential decay,

n(r)y~e % = VEPA(p) ~ g3 (4.113)

rather than the correct power law behavior [92].

The LDA has been the workhorse of DFT applications for decades, so that
an overwhelming number of LDA results can be found in the literature. Any
attempt to give an overview of this vast body of material is bound to fail. At
this point the discussion is restricted to the most basic numbers which can
be quoted, i.e. the xc-energies of atoms. Atoms are not only the elementary
building blocks of matter, they are also quite critical test systems due to the
piecewise exponential behavior of atomic densities (which reflects the orbital
structure). In addition, a number of exact results for atomic xc-energies are
available, allowing an unambiguous comparison.

Atomic exchange energies from various sources are compared in Table 4.4. The
corresponding reference values are obtained by an exact treatment of the DFT
exchange (4.5) and a complete neglect of correlation. These exact exchange-

Table 4.4 Exchange energies of spin-saturated, closed-subshell atoms: LDA, second order GE
(GE2), PW91-GGA, PBE-GGA and B88-GGA energies (the results including gradient corrections
are discussed in Sect. 4.5.5) obtained by insertion of exact exchange-only densities into the func-
tionals (4.109), (4.178), (4.255), (4.256) and (4.286) in comparison with exact values (all energies
are in Hartree). Also given is the corresponding percentage error A.

Atom Exact LDA GE2 PWI1 PBE B88
—Eyx —Ey A —Ey A —Ex A —Ex A —Ex A

He 1.026  0.884 —13.82 1.007 —1.86 1.017 —0.88 1.014 —1.19 1.025 —0.03
Be 2666 2312 —13.26 2581 -3.19  2.645 —0.77  2.636 —1.13  2.658 —0.30
Ne 12.105 11.033 —-885 11.775 —2.73 12.115 0.08 12.067 —0.32 12.138 0.27
Mg 15988 14.612 —8.61 15510 —2.99 15980 —0.05 15915 —0.46 16.000 0.08
Ar 30.175 27.863 —7.66 29.293 —2.92 30.123 —0.17 29.996 —0.59 30.153 —0.07
Ca 35.199 32591 —7.41 34.183 —2.89 35.165 —0.10 35.016 —0.52 35.192 —0.02
Zn 69.619 65.645 —5.71 68.109 —2.17 69.834 031 69.531 —0.13 69.867 0.36
Kr 03.833 88.624 —5.55 91.651 —2.33 93.831 0.00 93.426 —0.43 93.872 0.04
Sr 101.926  96.362 —5.46  99.560 —2.32 101.918 —0.01 101.479 —0.44 101.956 0.03
Cd  148.880 141.543 —4.93 145702 —2.13 148.885 0.00 148.260 —0.42 148.930 0.03

Xe

179.064 170.566 —4.75 175.304 —2.10 178.991 —0.04 178.245 —0.46 179.043 —0.01
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only (x-only) calculations require a fully numerical evaluation of the poten-
tial corresponding to the expression (4.5) by the OPM (see Chap. 6). Self-
consistent KS calculations with this potential provide a large amount of in-
formation on the exact x-only ground state. In particular, one obtains the exact
x-only density which can then be inserted into any approximate exchange func-
tional. The resulting LDA values (as well as energies obtained with gradient
corrected functionals—see Sect. 4.4.3), are also given in Table 4.4, together
with their percentage deviation from the exact Ex. The LDA turns out to be
moderately accurate, with a consistent underestimation of the exact Ex.

The picture which emerges from Table 4.4 should not be generalized without
caution to other systems or to more subtle atomic quantities. It has already
been pointed out that the LDA does not predict any negative atomic ion to
be stable. This emphasizes the fact that there is a crucial difference between
integrated quantities like the energy and local quantities like the potential. Inte-
grated quantities can be more accurate due to a cancellation of local errors. In
addition, the accuracy of the LDA clearly depends on the specific system under
consideration. The less the density varies spatially, the higher is the accuracy
of the LDA. This point is investigated in more detail later.

Table 4.5 offers a similar comparison for the correlation energy. In this case it
is much more difficult to generate exact reference data. As the exact correlation
functional is not known, exact values for E. can only be calculated indirectly
by subtraction of the x-only ground state energy obtained by insertion of the
exact KS orbitals into the functional (4.6) from the exact total ground state en-
ergy obtained with a non-DFT method. Although a few numbers of this type
are available, the comparison in Table 4.5 and all subsequent comparisons of
correlation energies rely on the conventional quantum chemical correlation en-
ergy EC, defined by (4.9). This procedure is legitimate, since the difference
between E. and E2C is found to be extremely small (compare the discussion of
Table 4.1 in Sect. 4.1). This statement is true in particular for the present analy-
sis: the LDA correlation energies obtained by insertion of the exact x-only den-
sities into Eq. (4.109) differ from E?C by a factor of two. The small differences
between E. and ECQC as well as the small differences between the LDA values
calculated from the x-only densities and the LDA energies resulting from the
exact densities are thus irrelevant. The same is true for the differences between
the various parameterizations of e{lFG,

While an error of 100% seems to exclude the application of the LDA to atomic
systems, one should be aware of the fact that the absolute size of E, is usually
much smaller than that of E, so that the accuracy of the exchange component
dominates. In addition, the LDA xc-energies often profit from error cancella-
tion between the underestimated Ey and the overestimated E..

Overall, one can state that the LDA is surprisingly accurate for a good number
of quite inhomogeneous systems. This accuracy can be understood on the basis
of (i) the size of the inhomogeneity corrections (see Sect. 4.4), and (ii) the sum
rules which the LDA satisfies (see Sect. 4.5). Further discussion of the merits
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Table 4.5 Correlation energies (—E.) of unpolarized, closed-subshell atoms: LDA, second order
GE (GE2), PWI91-GGA, LYP-GGA, PKZB-MGGA, TPSS-MGGA, B3LYP- and PBEO-hybrid
results obtained by insertion of exact exchange-only densities into (4.109) (using the VWN param-
eterization [134]), (4.183), (4.274), (4.289), (4.316), (4.326), (6.128) and (6.135) in comparison
with second order perturbation theory on HF basis (MP2) [144, 145] and the exact ELQC [115] (all
energies are given in mHartree). The correlation component of the PBEO-hybrid is identical with
that of the PBE-GGA.

(e)

Atom MP2 Exact LDA GE2 PWO91 LYP PKZB TPSS B3LYP PBE(0)
He 37 42 113 82 46 44 42 43 64 42
Be 76 94 225 213 94 94 86 87 133 86
Ne 388 391 746 —487 382 384 351 354 491 351
Mg 428 438 892 —607 450 459 411 415 587 411
Ar 709 722 1431 -962 771 751 707 711 950 707

Ca 798 1581 —1087 847 830 774 779 1049 774
Zn 1678 2668 —1471 1526 1431 1406 1410 1785 1406
Kr 1891 3284 —1801 1914 1749 1767 1771 2184 1767
Cd 2618 4571 —2425 2739 2423 2536 2540 3025 2536
Xe 3088 5199 —2768 3149 2744 2918 2920 3428 2918

and failures of the LDA, as well as additional numerical results, will be given
in connection with the extensions of the LDA.

In the literature one sometimes meets some variants of the LDA for the ex-
change potential. The first of these is the Slater exchange [146],

3
V)S(later(r) _ *V!:DA (r) )

2

This form is obtained if one identifies the exchange potential with 2¢HEC /n,

rather than with the functional derivative of EFPA. This identification follows
the pattern set by the Hartree term, for which vy = 2ey/n. In applications,
vSlaer js usually multiplied by an adjustable prefactor ¢, which defines the so-
called X oc-method [147],

Vi (p) = %avI;DA(r) . (4.114)
The standard value for o is 0.7, which essentially leads back to the LDA ex-
change.
The second modification of vPA represents an attempt to resolve the prob-
lem expressed by (4.112): the Latter-correction [148] reestablishes the correct
asymptotic behavior (4.20) by hand,

Latter
X

LDA N
(r) = {vx (r) for |r| < R(F) 4.115)

—e?/|r| for |r| > R(#) ’

where R(7) (# = r/|r|) denotes the distance of the largest closed surface around
the finite system for which
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&2

R(7)

v PARP) = —

from the center of the system.

(f) Already the first density functional established in the literature [13, 14], an
approximation for the kinetic energy Ti[n], was based on the same concept as
the LDA for Ex. (for details see Appendix D). For the discussion of Ti[n] the
kinetic energy density of the noninteracting HEG has to be considered,

3(3n%)%3 hjnsm

G (ng) = =20y

t (4.116)

The functional (4.116) can be utilized for inhomogeneous systems, if IEEG is
evaluated locally with the actual r-dependent densities of these systems,

TTF ] — / & r1HES (n(r)) @.117)

T.™[n] constitutes the basis for the Thomas-Fermi approach, in which the
many-body problem is tackled by an explicit solution of the variational equa-
tion (2.38).

4.3.6 Spin-Polarized Electron Gas: Local Spin-Density
Approximation (LSDA)

The discussion of the previous section is based on the assumption that one has as
many electrons with spin-up as with spin-down in the electron gas, ny =n| =ng/2.
On the other hand, for actual applications one often needs an approximation for the
spin-density functional Eyc[ny,n|]. A spin-density-dependent version of the LDA
(local spin-density approximation—LSDA) is easily constructed for the exchange
functional. In this case one can combine the exact relation (4.19) with (4.109),

1
ELSPA[p, p] = E{E,E')A[zm] —i—E)];DA[an]} . 4.118)
The correlation energy of a spin-polarized HEG is much more difficult to extract.
It can, however, be evaluated numerically within the RPA [34, 134]. The result is
usually expressed in terms of the total gas density n and the fractional polarization
ny—n|

_— 4.119
Py (4.119)
rather than in terms of n; and n|. One finds that the spin-dependence of the correla-

tion energy has some similarity with that of the exchange energy (4.118), which can
be written as
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0, §) = eHFO (n,¢ = 0) + [ (n,§ = 1) = l0(n, £ = 0)] £(§)  @.120)

(148 P+ (1-¢)* -2

(&)= 2217 1) (4.121)

This similarity has first been noticed by von Barth and Hedin in their numerical RPA
data [34], which suggests an analytical parameterization of the form

ei—IEG,RPA (n,0) ~ eIC—IEG,RPA(m 0)+ e?EG,RPA(m 1) — eIC—IEG,RPA n,0)| £(©) .
(4.122)
However, VWN found that the form (4.122) is rather inaccurate for small {, even
in the case of the RPA [134]. They suggested the improved parameterization

HEG _ eHEG n n f(C) 4
€c (n)g) - *c ( 70)+a0( )f//(o) [1 C ]

o+ [€HEG n, 1) — e0(,0)] £(£)6* (4.123)
with the spin-stiffness

d2 HEG
oe(n) = echng)Lo . (4.124)

The form (4.123) reproduces the exact {-dependence of efF9(n, ) to lowest or-

der. This can be verified by a Taylor expansion for small {, using the fact that

f(&)/f"(0) =&?/2for & — 0,
MBS (n, §) = S (n, § = 0) + %ac(n)c%rﬁ(g“) . (4.125)

There is no term linear in ¢ as there is no preferred spin direction in the HEG. For
¢ — 1, on the other hand, the term in the second line of (4.123) is dominant.

The ingredients of (4.123) are the correlation energy of the unpolarized gas,
eHES(n,{ = 0), the corresponding energy of a fully spin-polarized gas with the
same total density, ef'G(n,{ = 1), and the spin-stiffness. For ef'EG(n,{ = 0) one
can use the Monte Carlo data already presented. Analogous results are available for
eHEG (n, ¢ = 1) [141, 142]. They can be represented in terms of some analytical in-
terpolation formula, just as eFS(n, ¢ = 0). Figure 4.3 provides some explicit num-
bers. While the accuracy of these results is slightly lower than that for the unpolar-
ized situation, it is nevertheless sufficient for all practical purposes. It is worthwhile
to mention in this context that the Monte Carlo data suggest the fully spin-polarized
HEG to be energetically lower than both the unpolarized gas and the Wigner crystal
in the density range 75 < ry < 100.

The third quantity which enters (4.123), the spin-stiffness, is known analytically

only in the high-density limit [150-152, 134],
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Fig. 4.3 Correlation energy per electron (& = el'"C /ng) of the fully spin-polarized homogeneous
electron gas as a function of the Wigner-Seitz radius rs, Eq. (4.103), for several parameterizations:
vBH—[34], VWN—[134], PW—([149], OB—[142] (VWN and PW data essentially coincide).

oe(n) 25 Z()<6nzln(rs)+0.03547+...> . (4.126)

In addition, rather accurate numerical information is available within the RPA.
These RPA data are reproduced extremely well by an analytical ansatz for o (n),
which obeys the limit (4.126) and has the same n-dependence as the interpola-
tion formula used for €MEY(n,0): for all densities the error is below 0.2%. This
leads VWN to the expectation that the same analytical form is suitable for the spin-
stiffness corresponding to the complete SCHEG(n, ). In order to utilize this ansatz for

intermediate densities, they fit its parameters to the numerical data for

2 [&"™0(n,1) — &% (n,0)]
{2 [fEGRPA 1) _ JHEGRPA (o))

[e}TEORRA (3, ) — HIEORRA 5 ),

for a number of low densities. This means that they use the {-dependence of the
RPA for all densities, but rescale the RPA spin-stiffness by the overall sensitivity of
eHEG (n, &) to {. Tt turns out that the resulting o, (n) also reproduces the few avail-
able Monte Carlo data for the partially spin-polarized HEG fairly accurately [142]
(when combined with the optimum parameterizations of €159 (n, 1) and €1EG (n,0)).

The VWN ansatz for the spin-stiffness is also utilized in other modern parame-

terizations of €€ (n, ), as e.g. the Perdew-Wang form [149], the only exception
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being the Perdew-Zunger functional [143]. The overall accuracy of the resulting
eHEG (n, £) is of the order of 1-3%.

The LSDA for correlation is then defined by use of (4.123) with the inhomoge-
neous spin-densities of the actual system,

EEPA g ] = [ @rel™® (u(r), £(r) (4.127)

It shares the properties (a)—(d) with the unpolarized form of the LDA. In the fol-
lowing, we no longer distinguish between LDA and LSDA: the term LDA should
automatically be understood as LSDA whenever spin-polarization is present.

4.4 Nonlocal Corrections to the LDA

It has already been emphasized that the universal applicability of the LDA does not
imply that this functional covers the physics of all kinds of systems. Real systems are
more or less inhomogeneous, so that the adequacy of the LDA is not clear a priori.
Quite naturally the question arises whether one can derive corrections to the LDA
in a systematic fashion? The answer is yes, the underlying model system being the
weakly inhomogeneous electron gas [6]. The resulting contributions to Exc[n] and
the potential vy, are often referred to as nonlocal corrections, as the corresponding
energy density ex.(r) and potential vy (r) are not simple functions of the local den-
sity n(r). This terminology should, however, not be understood in the sense that vyc
would constitute a nonlocal potential, only its density dependence is nonlocal.

4.4.1 Weakly Inhomogeneous Electron Gas

The inhomogeneous electron gas is characterized by the Hamiltonian
H= T+W+/d3rﬁ(r) Sv(r), (4.128)

with the external potential §v(r) assumed to be a weak perturbation (in some yet to
be specified sense). In order to keep control of the charge balance in the gas, one
has to think of the perturbation as being generated by a small positive charge density

ony(r),
Sv(r) = — / B w(r—r)on, (F), (4.129)
where w(r —r') denotes, as usual, the Coulomb interaction. Equation (4.129) cov-

ers both the case of a localized perturbation as well as some periodic structure. At
this point there is no need to restrict dn any further, so that the net charge N,
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associated with én.,
SN, = / d*rén, (r), (4.130)

could be nonzero in the case of a localized perturbing charge. For a periodic per-
turbation, on the other hand, only the choice SN, = 0 ensures that the energy scale
remains unchanged, which requires that the average potential vanishes,

/d3r6v(r) =0. (4.131)

The presence of ov leads to a redistribution of the electronic density, so that the total
n(r) deviates from the unperturbed value ng by an induced shift dn(r),

n(r) = ng+8n(r) . (4.132)

The gas thus consists of electrons with their two density components ng and dn, the
constant positive background charge n; = ng and the given perturbing charge on. .
A weakly inhomogeneous electron gas is characterized by

on(r) < ng . (4.133)

As soon as 0v is assumed to be sufficiently small to ensure (4.133), a perturbative
treatment is legitimate. All pertinent quantities can be expanded in powers of dv,
most notably the induced density,

sn(r) = 6n V(P + 80P (r) +..., (4.134)

where 8n'") is understood to be of the order (8v)'. For extended many-body systems
the perturbation expansion for dn is usually formulated in terms of the retarded
response functions of the system. The first order shift 5n!) is obtained via the linear
response function (4.39),

sn(r) = /d3r’xR(rfr/,w:0) Sv(r). (4.135)

The ground state of the unperturbed system defining yr in Eq. (4.39) represents, in
the present situation, the ground state of the HEG. All higher order contributions
to On can, in complete analogy to (4.135), be expressed in terms of the associ-
ated higher order retarded response functions. However, even for the second order
(quadratic) response function only very limited information is available. In addition,
the response formalism becomes more and more involved with increasing order. The
present discussion is therefore restricted to linear response, which is expected to
dominate anyway in the case of a truly weak perturbation. As long as one keeps an
eye on the consistency of all subsequent results in dv, one can then simply identify
the complete induced density shift with Sn),
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Sn(r) = 8nV(r). (4.136)

At this point it is convenient to go over to the momentum space representation of
all relevant quantities, as for instance

3
su(r) = [ ok etonla):  Snla) =on(-a). @130

The relation between 6n(q)* and dn(—gq) follows from the fact that dn(r) is real
(the same holds for the Fourier transforms of 6v and 67, ). To first order the induced
density deviation can then be written as

on(q) = x(q,0=0)dv(q), (4.138)

where Eq. (4.48) has been utilized to replace yr by the time-ordered response func-
tion y (see Eq. (4.90) for the Fourier transformation of ). Ultimately, the response
function will have to be evaluated in some detail, for which the standard machinery
of Green’s function theory (which can only be exploited for )) provides an adequate
framework.

In any real, closed physical system the number of electrons remains unchanged
after switching on some perturbation. However, the HEG with its uncountable reser-
voir of electrons, can add a finite number of localized electrons without a change of
the average density ng. As a consequence, the net induced charge,

SN = /d3r6n(r) = Sn(g=0), (4.139)
does not necessarily vanish. In fact, insertion of (4.129) and of the Dyson equa-

tion (4.93) into (4.138) demonstrates that the induced density concentrates as much
charge around a localized perturbing charge dn as required for complete screening,

on(q) = —x(q,0 =0)w(q)én.(q) (4.140)
B I(q,0=0)
= Mg o=0—wi(g @
—  Sn(g=0)=68n.(qg=0) = SN, . (4.141)

Here w(q) = 4me®/q” has been used for the last line (limy_oI1(g,® = 0) # 0).
In the case of the noninteracting HEG with y = IT(¥) the complete Rydberg series
of states generated by 6v would be filled, as the bound electrons do not repel each
other (which corresponds to N = ). As a consequence, a rigorous conservation
of the electronic norm,

/‘d3r5n(r) = on(g=0) =0, (4.142)

can only be ensured by a vanishing perturbing charge,
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/d3r5n+(r) = Sny(g=0) = 0. (4.143)

For the present purpose, however, a strict conservation of the electron number is
essential. The ground states of the unperturbed and of the perturbed system must
correspond to exactly the same, mathematically well-defined particle number, in
order to allow the derivation of a first-principles density functional. For this rea-
son the class of legitimate external potentials has to be restricted to those satisfy-
ing Eqgs. (4.142), (4.143). This neither excludes localized perturbations dv nor does
it require [d>r8v(r) = 8v(g = 0) to vanish as y(gq = 0,® = 0) = 0. Of course,
[d*rév(r) = 0 is completely sufficient to ensure (4.142).

After these preliminaries one can consider the shift in the total energy which is in-
duced by 8v. The xc-component of this energy shift serves as basis for the construc-
tion of inhomogeneity corrections to the LDA. In order to extract the xc-component
all other contributions to the total energy must be known. The most critical compo-
nent is the electrostatic energy, which requires some care due to the long range of the
Coulomb force. In order to discuss the electrostatic energy of the inhomogeneous
electron gas, one therefore works with a screened Coulomb interaction,

’ , 2 67# ‘rir/‘
W(r,r)—>Ws(r,r):€ W’ (4144)
which suppresses all long-range singularities at intermediate steps. The limit y — 0
leads back to the system of interest at the end of the calculation. With the interaction
(4.144) the total electrostatic energy is given by

e
B & [ [ T Sl + 00 )
—|—%[n0+5n(r)}[n0+5n(r')}
— [no+ on(r)][n+ +5n+(r/)]} . (4.145)

In addition to the electronic charge density n = ng + On, the complete positive back-
ground charge density n; + 6ny has been included in (4.145). The electrostatic
energy will not be finite in the limit 4 — O without taking into account n. The
inclusion of dn,, on the other hand, expresses the fact that v is, as indicated by
Eq. (4.129), generated by some charge. Without this specification, the external po-
tential term [ d>rA&v would have an origin different than electrostatics. In this case
E.s would be given by the above expression with én set to zero. The two ap-
proaches (inclusion of 674 or not) just differ by the treatment of the external source.
They are completely equivalent in the electronic sector, as long as they are applied
consistently and mere additive constants in the Hamiltonian are ignored. The ap-
proach chosen here appears to be somewhat more transparent in a physical sense.
Using n4 = ng one obtains
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e~ HIr=7|
/d3 /d3 r=r|
x {6ny(r)6ny(r')+ 8n(r)én(r') —26n(r)ény(r')} .

As expected, the electron density ng and the background charge n; completely neu-
tralize each other. The limit t — 0 can now be taken without any problem,

Eos = En[8n,] + Eul6n] + / &r&n(r) Sv(r) . (4.146)

The first contribution in (4.146) is the self-interaction of the fixed background
charge, which represents an irrelevant additive constant for the electronic problem
and can simply be ignored. The remaining two terms have exactly the form of the
electronic Hartree energy and the external energy functional. In the case of a local-
ized perturbation they are finite as long as 6N, < oo (for periodic perturbations the
energy density is the only relevant quantity).

The total energy of the weakly inhomogeneous electron gas is now easily ob-
tained via the coupling constant integration technique. The appropriate Hamiltonian
H(A), which reproduces the HEG in the limit A = 0 and the inhomogeneous gas for
A =1, is given by

HA) = T+WHEG 13 [/d3r[ﬁ(r)—n+}5v(r)+EH[5n+] . (4.147)

In addition to the coupling between the electrons and the external potential, it con-
tains an additive constant which reproduces the total electrostatic energy (4.145)—
the interaction of the positive background charge n. with itself and the HEG density
ng is understood to be included in WHES, Coupling constant integration then yields
(compare Eq. (4.32))

Eo(1) —Eo(0)
1
:/0 dl{ d®r[ny (r) —ny] 6v(r)+EH[3n+]}

- /0 i / & [ng+ 28nD(r) + 0(67%) —n. | 8v(r) + Eu[Sn ]
= % / d*r8nV (r) v(r) + Eg[dny] + O(8V°) . (4.148)

One should note that Eq. (4.148) includes all second order contributions in év con-
sistently, although the density is only treated consistently to first order. This result
reflects the fact that knowledge of the first order wave function is sufficient to de-
termine the second order corrections to the energy within Rayleigh-Schrodinger
perturbation theory. On the other hand, all contributions beyond the order §v? are
ignored in Eq. (4.148). Insertion of the HEG energy E((0) and use of (4.135) leads
to
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Eo(1) = TPAno) + EXPA o) + [ @*r Sn(r)Sv(r) + Eua[dn.]
ﬂ/d3 /d3rx r—r,0=0)8v(r)dv(r)+0(8V*). (4.149)

The correction 8n(!) has now been identified with the full 8n, as the associated error
in Eg(1) is of the order (6v)3.

In the next step one has to extract the xc-contribution to Eq. (4.149). One starts
with the exact energy functional for the weakly inhomogeneous electron gas, ob-
tained by inclusion of the total electrostatic energy (4.145),

Eo(1) = Tylno + &n] + / &3r&n(r) $v(r) + Eq[8n.] + En[6n] + Exclno + 1] .
(4.150)
This exact expression has to be compared with the result (4.149). One directly iden-
tifies the external potential energy and the self-interaction energy of the background
charge. In order to deal with the Hartree energy it is advantageous to go to momen-
tum space and to introduce the temporary abbreviation

(LDA) ]

fos (LDA) [ ]

(LDA) ).

=T +E¢ (4.151)

Combination of Egs. (4.149) and (4.150), together with use of (4.137) and (4.138),
then leads to

3
B+ 80+ [ S5 on()Puta)

= ES2A) 5 < [6v(q)x(4.0) + 0(8v)
2) (2n)? ’

_ pipAp, 1 L " dq |on(q)P 3
= Egc" [no] 2] @r) 1@.0) +0(86n), (4.152)

where w(q) is given by (4.91). The last line indicates that, in view of (4.138), the
order in dv is equivalent to the order in dn. Use of the Dyson equation (4.93) in the
form

1 _ 1 —w( )
2.0 Tgo) "1

allows the elimination of Ey[dn] from (4.152),

1 [ dq |on(q)]®
2 (27)° Ti(4,0)

Egc [n() + 51’1] ELDA[ ()] —

o +0(8n).  (4.153)
The right-hand side of (4.153) is a functional of ny and 87, but not yet a functional
of n = ng + On, as desired. This form can, however, easily be obtained for the LDA

components in (4.153): one can use the functional Taylor expansion of ELPA[n]
about the unperturbed density to rewrite (4.153) as
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Esxc[no + on
LDA
— ERAno+ 8]~ [ d*r 7’5 )
(r) n=ng
SZELDA[] L[ d’q |8n(q)
3437 SXC A -
/ Crdr Symentr)| " on(r)on(r) 2/ () T1(q,0)

d
= EXPA[ng + 8n) - / &r 7652110(”") Sn(r)

/ iy T ) 6<3)(r—r/)5n(r)5n(r')—% /

d*q |6n(q)?
dno m)3 TI(

(2m)3 I(q,0)

One now uses norm conservation, Eq. (4.142), to eliminate the term linear in §n. In
addition, one can apply the compressibility sum rule [153], which relates the second
derivative of the energy per volume to the chemical potential t(ng) and the long-
wavelength limit of the static irreducible polarization insertion of the interacting
HEG,

de HEG(”O) d HEG HEG
e = [+ )

d
= — = — 4.154
. u (n()) (g — — ( )
In this fashion one is led to

Esxc[no + 0n] = ESLX?A [no + On]

2/ d3 (@) {H(;,O) a H((l),O) } (4.153)

Equation (4.155) can be split into a noninteracting (kinetic) component, obtained in
the limit ¢ — 0,

Ti[no+ on] = TLDA [no + On

dq 1 1
2/ 3 1o { 9(¢.0) <°><o,o>}’ (130

and a remainder, which contributes to the xc-functional,

LDA 1 d36] 2 2
Exclno+8n) = E2M[no + 8n] — 5 / G 1O1@PK (@ m0) @157

Ky — 4L L 1
T = T1(q,0)  110)(q,0) 11(0,0) ' 1(0,0)"

(4.158)
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Equations (4.156) and (4.157) represent systematic inhomogeneity corrections to
the LDA. All ingredients are completely determined by the ground state of the HEG,
no free parameters are involved.

The only problem is that these expressions still depend on ng and 6n separately,
rather than on ng + 6n. The elimination of ny and én in favor of ng + én turns
out to be a nontrivial problem, if one wants to avoid any further approximation.
For this reason the linear response kernel in (4.157) is usually reduced to its long-
wavelength limit, which greatly simplifies the problem of elimination. Nevertheless,
we first take a closer look at the complete linear response functional, restricting the
discussion to the xc-component. Of course, the same steps can be taken for 7 (for a
brief discussion see Appendix D).

4.4.2 Complete Linear Response

The first step of the transition from (4.157) to a density functional is a back-
transformation to real space. The result for the nonlocal (i.e. non-LDA) contribution
to (4.157), denoted by AEx., reads

AEy. = f%/d%»d%’ Sn(r)K(|r—7|,no) Sn(r) (4.159)
dq
K(|r|,no) = / (27;;3 TK (g% no). (4.160)

One now has two options for the elimination of 6n which lead to slightly different
results. The first option [6, 154—157] relies on the fact that

/d3r1<(|r—r’|,n0):1<(q2:o,no):0. (4.161)

This relation allows adding two vanishing contributions proportional to §n(r)? and
Sn(r')? to (4.159),

2
AEG = % / drdy' [n(r) = Sn(r)| K(|r—r'|,no)
2
= %/d3rd3r/ [n(r) *I’l(f’)} K(|rfr’|,n0) . (4.162)
In the second approach [158] one uses
Vén(r) = V(no - 6n(r)) = Vn(r) (4.163)

to rewrite (4.157) as
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a 1
ABE) = = [@rd (Vn(r) V'nlr) ) Lr =) @164)

dq .. K@ n
L(|r),n0) = / (2753 ¢ (qq2 i (4.165)

Up to this point the forms (4.162) and (4.164) are not really different, rather they
can be transformed into each other by partial integration (for finite systems). In both
cases it remains to eliminate ng. Any substitution of ny, which reduces to ng in the
limit of vanishing &n, is admissible for this step. On the other hand, both forms
immediately reveal the difficulty of the task: the kernel of the fully nonlocal linear
response functional depends on two positions 7 and 7/, so that the replacement of ng
is ambiguous. In fact, an infinite number of possibilities exists, as one is not limited
to use some kind of local substitution. Nevertheless, two local substitutions offer
themselves quite naturally,

. +r +r
6] no —>n0+5n<r 2r>:n(r 2r>

(ii) ny — % [no +6n(r)+no+ 5n(r/)} = % {n(r) +n(r’)}

They correspond to two different partial resummations of the complete response
expansion. Both forms have been tested only for a very limited number of systems.
It turns out that (i) leads to divergences [155], while (ii) does not. Neither the few
results obtained with (4.162) for solids [154, 159, 155, 156] nor those obtained with
(4.164) for atoms [158] are completely satisfactory. A more suitable replacement
for ng remains to be found. For this reason this type of functional is not used in
practice.’

4.4.3 Gradient Expansion

The situation is completely different for the second strategy to generate a density
functional from (4.157). In this approach [6] one assumes 6n to vary only very
slowly with r. This implies that the Fourier transform dn(q) is strongly peaked at
small g and decays very rapidly with increasing |g|—note, however, that norm con-
servation requires 6n(q = 0) = 0. One can then replace the static response function
in the kernel of (4.157) by its long-wavelength expansion,

11(q,0) = a(no) +b(no)q” + ... , (4.166)

and carry through the inversion,

5 The expression (4.159), provides, however, the basis for a density functional approach to disper-
sion forces [160—170] (compare Sect. 6.1.2).
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[ b(ng)  bo(no)

a(ng)*  ag(np)?

as On(q) is essentially zero for all g for which (4.166) and (4.167) are not valid
(ao(no) and by (ng) denote the expansion coefficients of the noninteracting response
function).

A more precise characterization of this approximation is the following: use of the
representation (4.167) of 1/IT, i.e. of I1(q) ' ~T1(0)~'[1 — (IT(q) — IT1(0))/IT(0)],
in (4.157) requires

K(q*,no) = — ] ¢ +0(qY, (4.167)

3 ; 3
/(;33 |8n(q)* > ZEHE? / (21;)13 7 15n(q)1, 4.168)

while the neglect of all higher order terms in (4.166) relies on

SEZS/(G[ e @ > ZEZS/([I e 0@l (4169

where ¢(ng) denotes the coefficient of the g*-term of the expansion (4.166). In order
to analyze the conditions (4.168) and (4.169) further, one has to take a closer look
at the static response function. Quite generally, IT can be written as

I(q,0) = — h2 SJ(0.rs). (4.170)

J is a dimensionless function of the dimensionless momentum

lq|

Q:Tk]:

(4.171)

and the dimensionless Wigner-Seitz radius (4.103). J has a rather simple form in the
noninteracting limit [94] (it is the static Lindhard function),

mke (1 1—-0Q%* [14+0Q
= In ,
n?m? 1-0

2 40
and is also known [171] analytically for the first order diagrams (4.105),

& 4\ 1/3 ) 22
10(q,0) = _;:;71:2 K%) ”I(Q)] - ;’:; 10), 4.173)
)3

) L (4.174)

H(O) <q70> = -

(4.172)

with
1-0*
19 = Tz (1“‘1— ) 24Q2
1 1—Q2 1+Q
8 [ 207! ]

17 1+x
1—x

17 1+x
1—x
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The kernel (4.157) resulting from the approximation IT ~ IT® + IT() is plotted
in Fig. 4.4. One recognizes the infinite slope at Q = 1, which originates from the

6 T T T

5 —

4 _
<= ; 1

I

=

2 —

1 complete

————————— GE2
0 ! ! !
0 0.5 1 1.5 2

Q = |q|/(2kg)

Fig. 4.4 Kernel of nonlocal xc-functional (4.157) as a function of g (for r; = 2): Complete inverse
polarization insertion (solid line) versus long-wavelength expansion IT~' = 1/a—bq?/a* (dashed
line) corresponding to second order gradient expansion, Eqs. (4.166), (4.167). The polarization
insertion has been approximated by its x-only limit, IT ~ IT©) + [1(1).

derivative discontinuity of both IT ©) and ITM at Q = 1. While the derivative dis-
continuity of the first order diagrams (4.105) is damped by inclusion of screening
effects (see e.g. [172]), the quantity 1/(2kr) nevertheless represents the character-
istic length scale of the linear response functional (and that of its long-wavelength
expansion). It is obvious that the second order expansion (4.167) completely mis-
represents the correct kernel for |g| £ 2kr (In fact, the Taylor expansion in powers of
g does not even converge for |g| > 2kg). Consequently, the long-wavelength expan-
sion of (4.157) is only legitimate, i.e. the conditions (4.168) and (4.169) can only be
satisfied, if 6n(q) decays rapidly for |q| Z 2k.

Insert now (4.167) into (4.157), keeping the conditions (4.168) and (4.169) in
mind. After Fourier transformation to real space and use of (4.163) the inhomo-
geneity correction to the LDA reads

) _ L[] b0)  bolno) |rg 12 4
AE = 2/d3 [a(no)z ao(no)zl [V (r)} +0(VY.  (4.175)

As indicated, the terms neglected involve at least four gradient operators (order g*).
The long-wavelength expansion of IT induces a gradient expansion (GE) for Exc.
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The elimination of ng is now trivial. As the complete energy (4.157) is only consis-
tent to second order in dn, one can simply use a local density substitution,

1 b(n(r))  bo(n(r)) 4
AE<b):f/d3 - Vn(r)P + 6(V*) + 6(8n%). (4176
“ T2 amn)? T aoln(r)? Vn(nl + 0V + o(6m). ( )
This local density substitution represents a partial resummation of the expansion in
powers of n, just like the LDA. The resummation has the potential to extend the
range of validity of the (second order) gradient correction (4.176).
This point is illustrated in Fig. 4.5. The linear response expression (4.157) has

on/n,

GE
regime
after
ng—n

/ linear response regime

GE regime before 1o — n |Vn|/n*?3

Fig. 4.5 Regimes of validity of linear response and gradient expansion.

been derived under the assumption dn/ny < 1. This requirement has then been
combined with (4.168) and (4.169) to arrive at (4.175). The validity of the functional
(4.175) is therefore restricted to the shaded region in Fig. 4.5. However, one can also
approach this functional in a different way. If one first assumes (V'n)/n'+t/3 < 1,
one can establish the GE expression (4.176) without any recourse to the proper-
ties of the HEG. The density dependence of the unknown function b/a’ is com-
pletely determined by dimensional arguments, only numerical prefactors remain
open. However, for n = ng+ 0n and dn/ny < 1 the resulting expression must agree
with (4.175), which allows the determination of b/ a*. In other words: the linear re-
sponse regime is only exploited to evaluate the numerical parameters in an otherwise
fixed, universal functional. This argument reflects the fact that alternative methods
for the derivation of gradient corrections, as the real-space GE [173], are available.
If viewed from this perspective the GE is valid as long as (V'n)/n'*"/3 < 1, in spite
of its relation to the weakly inhomogeneous electron gas.
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The crucial step in the explicit construction of the GE is the evaluation of the
long-wavelength expansion of IT(g?,0). This is trivial for the Lindhard-function,
which yields the second order GE for T,

2
ar? = L [, 07 4.177)
T2m n

This functional has originally been suggested by von Weizsacker [174] with a some-
what different prefactor, resulting from the kinetic energy of a system with a single
particle (like the hydrogen atom—see Appendix D). The correct prefactor is also
obtained with the commutator expansion of Kirzhnits [175], which is one variant of
the real-space GE. Both results illustrate the argument that the form of the gradi-
ent correction is fixed by dimensional requirements, so that a model system is only
needed to determine the numerical parameters in this general form. The functional
(4.177) provides the basis for all kinds of extended Thomas-Fermi-type approxima-
tions, in which the variational equation (2.38) is solved in its original form, rather
than via the KS scheme (for a detailed discussion of this approach see [7, 15]).
Unfortunately, the evaluation of the long-wavelength expansion of IT(g%,0) is
much more involved in the case of Ex.. We first consider the exchange contribution
which is linear in ¢?. It is thus obtained from an expansion of the kernel (4.158) to

first order in €2,

| L D (q,0) N
I1(q,0) ~ 110)(q,0) n%g,0 "
The relevant first order diagrams of I'T have already been displayed in Eq. (4.105).
The loop integrations occurring in these diagrams are rather intricate, so that ini-
tially the small-g expansion was employed for the integrands of the Feynman in-
tegrals (4.105) and the loop integrations were carried out afterwards [176]. As the
resulting integrals exhibit an infrared divergence for g> — 0, Yukawa-screening of
the Coulomb integration, Eq. (4.144), was utilized for all intermediate steps. After

all loop integrations were performed the screening was removed. In this way one
finds

AEZ = 811 / d3reMES(n) € (4.178)

with the dimensionless characteristic density gradient

52(2[ Van(r) (r))z. (4.179)

3m2n(r)])'/3n

The same result was obtained by the real-space GE, for which intermediate Yukawa-
screening was also used [177].

Later, it was observed that the small-g expansion does not commute with the loop
integration [178], due to the singular structure of the Coulomb interaction for small
momenta. A complete calculation of IT(!) without Yukawa-screening, followed by
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a small-g expansion of the final IT() (¢,0), leads to a different exchange coefficient
[178-180, 171],

10

=31 (4.180)

AE)?] =Cy /d3re?EG(n)§ ; Cy
As the form of the functional is completely determined from the very outset, only its
prefactors can be a matter of debate. Moreover, Egs. (4.179), (4.180) demonstrate
explicitly that after the local density replacement the appropriate length scale for
measuring gradients is given by 2[37%n(r)]~'/3. The form of & is a direct conse-
quence of the form of the response function (4.173).
It should be pointed out that the functional (4.180) is only determined up to some
partial integration. For instance, partial integration of one of the density gradients in
(4.180) yields

AEY = —cx/d3re§‘EG(n) [n - :g} (4.181)

Vn(r)
43m2n(r)23n(r)’

n= (4.182)
where the surface contribution is assumed to vanish (which requires a suitable
decay of n(r) for large r). The expressions (4.180) and (4.181) are completely
equivalent—they lead to the same energy and the same potential. While the en-
ergy density is only defined up to contributions which integrate up to zero, the total
energy and the xc-potential are unambiguous quantities.

The second order gradient contribution has also been studied for the density func-
tional Ex|[n] for the HF exchange, defined by Egs. (4.1)~(4.3). The corresponding
approximation for IT consists of IT(") plus additional exchange-type diagrams of
higher order in ¢?. For the evaluation of the corresponding Feynman integrals again
Yukawa-screening has been introduced, in order to carry through the small-g expan-
sion before performing any loop integration. One finds that the resulting gradient
coefficient diverges in the limit of vanishing screening [181-184], the divergence
originating from the higher order diagrams. Given the fact that an erroneous gradi-
ent coefficient is obtained by application of the same procedure to IT(!), one might
wonder whether this negative result is a mathematical artefact. In order to give a
definitive answer to this question, one has to evaluate the relevant Feynman dia-
grams for IT without utilizing the small-g expansion before loop integration. The
result of a corresponding fully numerical study [185] shows a completely smooth
behavior in the small-q regime. Unfortunately, the analytical form in this regime has
not been extracted from the numerical data. It is thus not clear whether the leading
term of the small-g expansion is proportional to g> (as implied by Eq. (4.166)) or
approaches zero in a different fashion (e.g. as g°In|q|).

The evaluation of the correlation contributions to IT is even more involved than
that of IT(). In this case only the first strategy, in which the small-g expansion is
applied inside the Feynman integrals, has been pursued [186, 187]. The net result
reads [188],
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AEZ = / d3reMES (n) & Cye (n) (4.183)

167m(37)!3 2.568423.266r+0.007389r2
3000  1+8.723r+0.47272+0.0738973°
=0.0518349

Cxe(n) = (4.184)

where (4.184) represents a parameterization of the original numerical data by Gel-
dart and Rasolt [187]. Equation (4.183) still contains the exchange term (4.180),
which, however, is easily subtracted,

Ce(n) = Cye(n) — . (4.185)

C. is plotted in Fig. 4.6 as a function of r;, rather than of the density. C turns out to
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Fig. 4.6 Second order gradient coefficient C;, Eq. (4.185) as a function of rs. Also shown are two
data points for C; based on Monte Carlo simulations for the local field factor [172].

be only weakly dependent on ry.
A number of comments are required at this stage:

1. The derivation of the functional (4.183) starts with the gradient corrections re-
sulting from the RPA energy (4.101) by the replacement of Gq by the propagator
of the weakly inhomogeneous electron gas and subsequent expansion to second
order in 8v. Expressed in terms of IT, this procedure amounts to the inclusion
of the screened exchange as well as of the so-called fluctuation diagrams. Taken
together, these diagrams constitute the RPA-approximation for I1,
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(688

in which the Coulomb interaction only enters in RPA-screened form,

MDA = A . (4.187)

In this way the high-density limit of AEC[Z], which gives the dominant contribution
to (4.183), is treated rigorously via standard Green’s function techniques. The
result is afterwards extended to metallic densities, relying on a Hubbard-type
approximation [187].

The final gradient coefficient (4.184) can, however, be compared with results
for C.. obtained from fixed-node diffusion Monte Carlo calculations for the local
field correction G [172]. This quantity is equivalent to the irreducible polarization
insertion,

1 L
w(q) [IT(g,0) IO)(q,w)]’

so that its behavior for small g allows the determination of the gradient coef-
ficient. Two such data points are included in Fig. 4.6. They have been extracted
under the assumption that the numerical value for G at |q| = 1.01 kg is completely
due to the leading term of the long-wavelength expansion which contributes to
C.. Given the uncertainty in this procedure, the resulting data points are con-
sistent with the parameterization (4.184), at least for moderately high metallic
densities as rg = 2.

G(q7 0)) =

(4.188)

. According to present knowledge, the interchange of the small-q expansion with

the loop integration is legitimate for the diagrams contributing to (4.186). The
RPA-screening suppresses the infrared singularity of the Coulomb interaction,
which is responsible for the problem with the exchange diagrams (4.105). In
other words: the screened exchange diagrams are regularized in a physical fash-
ion, so that a mathematical regularization via Yukawa-screening is no longer
necessary.

. The result (4.183) represents an inhomogeneity correction to the LDA, which

has been derived systematically and is not restricted to high densities. There are
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no adjustable parameters in AEiz]. The expression (4.183) reappears as the hard
core of all first-principles gradient functionals.

4. In the high-density limit the functional (4.183) leads to a term linear in €2, just
as the exchange. This is a result of the resummation of the RPA-contributions to
I1, similar to the In(rs)-term in the correlation energy of the HEG.

5. The gradient contribution to the correlation energy dominates over the exchange
term. This becomes more obvious if the high-density limit of Cx.(n) is compared
with Cx = 0.123,

Cre(n— o) =—0.133 =  C(n—o)=-0257.  (4.189)

As a consequence AECm has the opposite sign as AE)[(Z] and ECLDA.

Before examining the validity of the GE we extend the results (4.180) and (4.183) to
spin-density functional theory. This extension is straightforward for the exchange,
if one uses the general relation (4.19),

AEP oy ny] = 3 {AEP ) + B ). (4.190)

On the other hand, an evaluation of the response function of the spin-polarized elec-
tron gas would be required in the case of correlation. This is an extremely involved
task, so that only the high-density limit has been examined [189]. Fortunately, the

general form of AEC[Z] [n1,n,] is already fixed by the symmetry of the system. Includ-
ing the exchange, one has

AEny.n)] = /d3r{ &% (2n1) &1 Cld (ny,my)
+e"0 (2y/mmy) & Cl (ny,ny)
el g Clnrn)p. @19

with the dimensionless gradient given by

V}’lg Vno-/
;= . . 4.192
S0 (2[6n2n6]1/3n6> (2[6ﬂ2n6/]1/3n6r> ( )

For ny = n| the gradient &5, reduces to (4.179), the complete energy (4.191) ap-
proaches (4.183). Moreover, the spin-symmetry requires

ll(n,m) =Cl(ny,n) = clln,~¢) = Ci{(n.¢)  (4.193)
Cli(ny,ny) = Clt(ny,n)) = Clin,=¢) = Clt(n,§). (4.194)

The spin-density-dependent functions C,?CG/ which result from the numerical calcu-
lation of the high-density limit can be parameterized as [190],
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. / 877.7(677.72)1/3 U 1 Ny k
lim €3¢ = LY g (L 4.195
Jim G (nr,m1) 3000 ,Zoak n ) *-199)

where | is assumed to be the majority spin and the coefficients a,‘c"’/ are given in

Table 1 of [190]. If T is the majority spin, the expressions for ClCT and Cicl have to
be interchanged according to (4.193), (4.194). It is generally believed that the spin-
dependence observed in the high-density limit is also quite accurate for the more
relevant intermediate densities, which leads to the functional

lim Cd(my.m)

2
AEng,m) = /d3r{ e Gy | Jim Cxe(ny +ny)

- . xc b1, 1]
+eyFO (2 ) & l,}gro]o m

}

X Cye(ny+n)), (4.196)

Ll
. Cxe(np,m))
ey [Lm el

with Cx(n) being the coefficient obtained for the unpolarized gas, Eq. (4.184).
A reformulation of (4.196) paves the way to an even simpler, but still quite accu-
rate approximation [191],

AE,[(%] ny,n|] = /d3reXHEG(n){ (2(Vn1/3n)zcxc(n7g)

372n)

i (N) Ceel,)

37m2n)2/3n

+(2(V’5)1/3)25xc<n,c>}. (@.197)

3n2n

The coefficients Cyc, Cxc and Cy. can be derived directly from the original functions
Cfc"’. One finds that in the high-density limit Cy. is much larger than the other two
coefficients, .

[Cxe(1,8) > |Cue(n,§)| > [Cre(n,§)] -

This suggests that Cy and C:‘xc may be neglected (see also [192]). In addition, one
finds that the spin-dependence of the remaining coefficient Cxc(n,§) is very well
represented by

oY me) = [0+ a- 0] @y

which is the exact spin-dependence of the x-only limit,
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=g(¢). (4.199)

The {-dependence of Cy. deviates by less than 1% from that of Cx [191]. With these
approximations the spin-dependent second order gradient correction finally reads

AE@[ny,n)) = /'d3re§'EG(n)§cm(n> 2(0), (4.200)

with Cx.(n) given by (4.184).

The applicability of the GE is limited by the fact that it requires all density gradi-
ents to be small. This point is illustrated by consideration of the lowest order (fourth
order) gradient corrections which have been neglected in (4.180) and (4.183). Fourth
order corrections have been derived in various ways in the case of Ty [193-195], but
are known only partially even for Ex [171, 196]. Of course, the general form of the
fourth order gradient corrections for Ey is again clear on dimensional grounds [197],

AEY — /d3reHEG( ) [n? +ané& + b€ . (4.201)

The coefficient C = 146,/2025 can be extracted from I1() [171], a = —2.5+0.5
from its quadratic response counterpart [196]. If one combines (4.109), (4.180) and
(4.201), the GE for Ex[n] reads

146 5
ECE[y] /d3 HEG — n?2-z bEX| ... Y. (4202
re, —|— 54—2025 2”5"‘ &+ (4.202)

Equation (4.202) reveals some sufficient criteria for the validity of the LDA and the
second order GE (GE2) in a quantitative form: the LDA is an accurate approxima-
tion if the local gradient corrections 10 /81, 14612 /2025 etc are all small com-
pared to 1. The GE2 is accurate if 146n? /2025 < 10& /81 etc. This argument can
be easily extended to higher gradients. Of course, these criteria are nothing but the
real-space equivalents of (4.168) and (4.169), interpreted locally in accordance with
the local density replacement.

The two lowest gradients can be explicitly examined for all interesting systems.
As only an estimate of the form and magnitude of & and 7 is required, it is not nec-
essary to use the exact density. Any approximate n, resulting e.g. from an exchange-
only or an LDA calculation, is sufficient. Figures 4.7—4.10 provide some illustrative
examples. Figure 4.7 shows both gradients for the calcium atom. Three spatial re-
gions can be distinguished:

e For very small r, i.e. in the vicinity of the nucleus, & is finite, in accordance with
the cusp condition for point nuclei (Kato’s theorem [198]),

n'(0) z 72

a0 - Ca g<0):ag[37r2n(0)]2/3'

(4.203)
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Fig. 4.7 Characteristic gradients of the density for ground state of Ca: & = (Vn)2/[4(312n)%/3n?),
n = V?n/[4(372n)*/n]. The density was obtained by a KS calculation with the exact exchange.

Here n’ denotes the derivative of the radially symmetric n(r) with respect to r
and qg is the Bohr radius (4.104). On the other hand, 1 diverges at the origin,

1 n"(0) 2#n'(0
n(r—0)~ 4[37:2,1(0)]2/3[ o )]' (4204

n(0) ~ r n(0)

e For intermediate r-values both & and 1 are of the order of 1. Both gradients

clearly exhibit the atomic shell structure.
e Finally, for large r, for which the density decays exponentially, the gradients

diverge exponentially,

nr)~e = E(),n(r) ~ et (4.205)
The same behavior is observed for all other atoms. In the case of spin-polarized
atoms the spin-densities follow this pattern individually, as is shown for chromium
in Fig. 4.8. £ and n also remain of the order of 1-3 in the bonding region of
molecules and the interstitial region of solids, as can be seen in Figs. 4.9 and 4.10. In
fact, & necessarily vanishes at some point in the bonding region. On the other hand,

in the inner shell regime the atomic behavior is reproduced by the poly-atomic den-

sity gradients.
These figures lead to the following conclusions:
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Fig. 4.8 Characteristic gradients of the spin-densities for ground state of Cr: &; =
(Vg )2/ [4(67%n6)23n2), Ne = Ve /[4(67%n4)%ns). The spin-densities were obtained by a
KS calculation with the exact exchange.

(a) The GE cannot converge locally in the vicinity of the nucleus.
Fortunately, the contribution of this region to the energy is suppressed by the
volume element 4772, so that the energy (4.180), but also (4.201), does not
diverge in the small-r region. On the other hand, the potential obtained from
(4.180) by functional differentiation has the form

A = VPR (n) ¢, {é — in] : (4.206)

so that the second order potential is proportional to 1/r for small r. This di-
vergence is somewhat unpleasant, but does not cause any serious problems, as
the 1/r-term in the total potential is dominated by the nuclear charge. In other
words: the “effective charge”

5 Z m

277 32 (0)]13 12 (Ziow =Z+Zce)  (4.207)

ZGE =

introduced by the GE is much smaller than the nuclear charge Z. For this reason

g

a regularization of Avy~ for small r is neither required nor usual.

This is no longer true for the fourth order potential obtained from AE,[:H,

Eq. (4.201),
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Fig. 4.9 Characteristic gradients of the density for ground state of Ny: & = (Vn)2/[4(312n)%/3n?),
n = V?n/[4(37%n)*/3n]. The density was obtained by a KS calculation with the exact exchange.
The two nuclei are located at x = +1.035Bohr, y =z =0.
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Fig. 4.10 Characteristic gradients of density for ground state of bulk silicon (diamond structure):
& = (Vn)?/[4(37%n)*3n2], n = V?n/[4(372n)%/n], The density was obtained by a KS pseudopo-
tential calculation with the LDA.
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4 _
AN = 5025 T6(3mn)i 3
y B <(V4n) V) (V) (V) 6(V2n)§Vn)2)

n n? n? n

3 /(V*)? (VVn)-(VVn Vn)-V(Vn)? Vn)?
_2a<( nz) ( )nz( )+3( )n3( ) _6(n4) )
+3b<— <V2”}1§V">2 _ ';(V”)z +3(Vn’j)4ﬂ . (4.208)

which diverges like 1/72. In order to utilize this expression in KS calculations
a regularization is required for small r [199]. Fortunately, this cut-off does not
significantly affect the potential and orbitals for intermediate and large r. Nev-
ertheless, this divergence clearly shows the inadequacy of the GE in the vicinity
of the nucleus.

The GE appears to be useful in the intermediate regime, at least in the sense of
an asymptotic expansion.

Taking into account the upper limit for & of roughly 3 and its prefactor of 10/81
in the GE (4.202), the second order correction contributes less than 40% of the
leading term even locally. At first glance, this seems to indicate the convergence
of the GE. However, a closer look at the fourth order terms proves the opposite.
In fact, the general argument on the validity of the long-wavelength expansion
(4.167), given earlier, immediately explains why the GE can not converge even
for £, ~ 1 (corresponding to |q| & 2kp). The GE is not applicable as soon as
the density changes substantially over a length scale of 1/[2(37%n)'/3].

One should keep in mind, however, that

(i) & Z 1 does not automatically imply that the GE energy density and po-
tential diverge, but rather that they become inaccurate, and

(i1) the local divergence of the GE energy density or potential does not nec-
essarily lead to a divergence of the integrated GE energy.

The GE definitively diverges in the asymptotic region of finite systems.
In fact, insertion of (4.205) into (4.206) yields

n(r) ~e % = Av,[(z](r — 00) T3 (4.209)

While the exponential divergence is suppressed by the vanishing Cx.(n) in the

total xc-functional, A v,[(zc] nevertheless does not approach zero for large r,

AV = JLDA () { (Cxc(n) — %nddcf (n)) E— %Cxc (n)n} (4.210)
2l

= Av(r — o) ~const. (4.211)
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An indication of the net accuracy of the second order GE (GE2) for atoms is
given in Tables 4.4 and 4.5. In the case of the exchange the inclusion of AE,[(z] leads

to an improvement, reducing the error of the LDA by roughly 50%. Consistent with

C& < 1, the integrated AE)[(Z] represents a small correction to the LDA. Unfortu-

nately, the same is not true for AECm: here one finds that the second order energy is

larger than the LDA energy itself. As AEC[Z] is positive, the resulting atomic correla-
tion energies even have the wrong sign. This indicates a complete failure of the GE
for correlation. Obviously, the criteria for the legitimate size of & and higher gradi-
ents derived from the exchange contribution to IT are not applicable to correlation.
In summary, one can state that the GE can not be applied to atoms, molecules
or surfaces without suitable modification. On the other hand, there are no technical
reasons which prevent GE calculations for solids. The adequacy of this approach
can only be established by explicit applications. Only few such calculations with
the original GE have been reported in the literature, the reason being the failure of
the GE2 for metallic iron. The GE2 predicts, as the LDA, an incorrect paramagnetic
fcc ground state [200]. For this reason one is forced to consider extensions of the
GE2. In fact, already very early the failure of the GE2 has prompted suggestions for

the regularization of AE)[(%] [186, 197] in the form

AEx[n] = / d*retBS (n) € gy (n, ) (4.212)

Cye(n) for £ —0

8xc(n,§) = {o for & —» oo ° (4.213)

Functionals of this form are called Generalized Gradient Approximations (GGAS).
They represent a de facto standard in DFT applications. GGAs will therefore be
discussed in detail in the next section.

4.5 Generalized Gradient Approximation (GGA)

Let us summarize the main problems with the second order GE:

(i) The GE2 exchange potential diverges for exponentially decaying densities.

(i) The GE2 gives only moderately accurate exchange energies and unacceptable
atomic correlation energies.

(iii) The GE2 does not lead to an improvement over the LDA even in the case of
solids.

On the other hand, the semi-local structure of gradient-dependent functionals is very
attractive for applications. They are computationally much less demanding than cal-
culations with fully nonlocal functionals like (4.162). For this reason much effort has
been spent on the systematic construction of improved gradient-based functionals,
which do not suffer from the shortcomings of the GE2. Two complementary variants
have been investigated, in order to understand the failure of the GE on a formal level
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and, with this information, to formulate extensions of the GE. While the first of these
is based on a momentum space analysis of the GE [201, 202, 114, 203, 192], the
second relies on real space arguments [204—207]. Both variants are quite instructive,
so that both will be discussed explicitly in the following.

4.5.1 Momentum Space Variant

Let us first go through the momentum space analysis [201, 202, 114, 203, 192].
The starting point for the derivation of gradient corrections is the linear response
expression (4.157) with its kernel depending on the inverse polarization insertion.
In the high-density limit, which dominates the final AE)[(%] , IT~! can be approximated
by

1 1 %™ (g%,0)
~ 1— 4214
I1(¢g*,0) ~ 11(¢%,0) { 0 (g,0) ' } ’ 21

with ITRPA given by (4.186). Equation (4.214) contains all contributions of the or-
der ¢, which is the only order which will be treated consistently in the following.
Insertion into (4.157) leads to

20 - [ L9 s, ©Onla)onq) ;o
AExc - /(27[)3 €y (l’l()) (2(37[2}10)1/3]/10)2 Zxc(q 7}’lo), (4215)

with the dimensionless kernel

(4.216)

Tty — 24 [T70.00) 150,00
’ Ime? g% | 110)(g2,0,n0)>  11(9(0,0,n9)2

The value of Z. at g> = 0 determines the GE2 (in the high-density limit). One can
now consider a wavevector decomposition of Zy. with respect to the momentum
k which runs through the interaction line in the Feynman diagrams (4.186) which
constitute ITRPA:

q+k +k K +k
q+k k gtk k
K gtk
k k
q+k K
Tq Tq Tq Tq Tq

Separation of the integration over |k| from all other loop integrations leads to the
wavevector decomposition zyc,

Zxc(qz,no) :/0 dexc(qz,k,no). (4.217)
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A sketch of the correlation contribution to the quantity zx. as a function of k is shown
in Fig. 4.11 for several values of

0= V3 M , (4.218)
kTR
where ktr denotes the (inverse) Thomas-Fermi screening length,

13 \ /2 1/2 1/6 1/6
ke = <4 (4> rs> ke = <‘”‘F> - 2(3) <”§> . (4219)
T\ 91 Tag T ag

One immediately notices the extreme sensitivity of z. on g for small g-values. In

Zc(q27 k, ng)

k 3"k

Fig. 4.11 Schematic plot of the wavevector-decomposition of the nonlocal corrections to the
xc-energy in the high-density limit, Eq. (4.217), for different external momenta Q = v/3|q|/krg
(adopted from [203]).

particular, one finds

. . 2 . . 2
IEH)I});E}I})ZXC(q ,k,l’l()) # (}E%%%ZXC (q ,k,}’l()) =0. (4.220)
The second order gradient correction results from the curve with |g| = 0. One thus
realizes that the wavevector decomposition of the GE2 is quite different from that of
the complete linear response kernel. This sensitive g-dependence is transfered into
the integrated quantity Z., which is plotted in Fig. 4.12. For |q| < ktr/+/3 the total
Zy. is well approximated by

1

Ze (g%, n0) = 5 [1-1978+0.7701n(Q) - 1.250)]. (4.221)
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0.3 T T T

0.25 .
L

lq| 3" /krg

Fig. 4.12 Correlation contribution to the linear response kernel in the high-density limit,
Eq. (4.216), according to the parameterization (4.221) [203]. Also given are two data points for
Z. extracted from fixed-node diffusion Monte Carlo simulations for the local field factor [172].
They correspond to the (metallic) density rg = 2.

with Q given by (4.218) [208] (note that 9 Cxc(n = o) = —1.1978). Figure 4.12 is
then obtained by subtraction of Zy,

265 (no) g* | 1) (g%,0,m9)%  T1€0)(0,0,n0)? '

Zy (qzvno) =

81 2025 4k2

In order to appreciate the strong g-dependence of Z., one has to relate it to the g-
dependence of Z. The appropriate scale for the g-dependence of Z. is kg, while
the Fermi momentum occurs in Zy. In view of Eq. (4.219) an explicit comparison of
Fig. 4.12 with (4.222) is only possible for a given density. For instance, for rg = 2
one has ktr = 1.15kp . The corresponding Zy is plotted in Fig. 4.13. Z is almost
constant over the range of Q for which Z is given in Fig. 4.12. While Z(g?) is
comparatively well approximated by its long-wavelength limit Z(0), this is not
the case for Z.. In other words: while 1/(2kr) is the appropriate length scale for
exchange, the much larger v/3 /ktr is the inherent length scale for correlation. One
thus concludes that higher order gradient corrections are much more important for
correlation than for exchange.

In fact, the GE2-limit z.(g*> = 0,k) is much less characteristic for the inhomo-
geneity corrections in real systems than the behavior of z.(g2, k) for g> > 0, most no-
tably the fact that z.(g*, k = 0) = 0. On the other hand, the z. (g, k) obtained for dif-
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Fig. 4.13 Exchange contribution to (4.216) for ry = 2.

ferent g> soon approach each other with increasing k. This observation has prompted
Langreth and Mehl to introduce a cut-off into the wavevector-decomposition of Z
in such a way, that the behavior of z.(g?,k,ng) for vanishing k is enforced even for

q* =0,
™% k,no) = ze(q* = 0,k,n9) @ (k f |V”|> (4.223)

The step function cuts off the GE2-result z.(g> = 0, k) for all k smaller than f|Vn|/n.
The quantity |Vn|/n serves as a measure of the inhomogeneity of the real sys-
tem under consideration and thus as a measure of the momentum |gq| below which
z¢(¢?,k) should drop to zero. The smaller |Vn|/n is, the closer is z-M (g%, k,ng) to
the GE2. f is a fit parameter which absorbs all numerical prefactors involved. Lan-
greth and Mehl then use an analytical parameterization of their numerical RPA data
for z.(q*> = 0,k),

2(q* = 0,k,np) ~ —Cc(n= )2kf [ 2\f } (4.224)
TF

to carry through the k-integration in (4.217). The result reads

EMn) = Ce(n=oo /d3reHEG( )éexp[ (97a )1/6f| 7/6|:| . (4229)

For f a value of approximately 0.15 turned out to be a good compromise between
the optimum f found for different systems like surfaces and atoms. As it stands,
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Eq. (4.225) covers only the high-density limit of the RPA (order ¢*) consistently.
It has later been extended by inclusion of the contributions of the second order
exchange graphs [192]. In addition, a spin-dependent version has been put forward
by Hu and Langreth [209],

e (n)

d(¢)

5/3 #\3/3
(1;@) n (1 2C> ] (4.227)
and ¢ given by Eq. (4.119).

While LM have established the GGA approach, E-M[n] is no longer used in appli-
cations today. One reason is the fact that E-™[n] does not cover the metallic density
range (in analogy to the observation made for RPA for ef'F9). This statement is cor-
roborated by Fig. 4.12, in which two data points extracted from fixed-node diffusion
Monte Carlo simulations for the local field factor G, Eq. (4.188), at ry = 2 are given
[172]. The relation between the xc-kernel and G is established after extension of Zy.
to arbitrary densities. Using the compressibility sum rule (4.154), one finds

|Vl

& exp {—(971118)1/6 f’ﬂ/é} . (4.226)

EFM 0y = Cc(n:oo)/d3r

with
d(g) =27

2ol m) 2k} Ak 1 1 L1
ny) = — — — —
xeld5m0) = "o g2 | TI(g2,0)  TO(g2,0)  11(0,0) ' 110)(0,0)
2k 42 [4me? d?elEC
=_—EF 17" G xe ) 4.228
972 q2 q2 (q)+ dn% (”0) ( )

The derivative of the xc-energy density can be rewritten in terms of the correlation
energy per particle &,

d?etlFG e g d rs d
= —— — — — | § — — —E&, .
dn} (o) Kk 3nodrg <(rs) 3 dr ()|
which allows an evaluation of d?e!FS / dn(zJ for instance via the VWN parameteriza-

tion for &, Eq. (4.108). It is obvious that the Monte Carlo results for ry = 2 are quite
different from the high-density limit.

For this reason the first important step to be taken is a generalization to arbitrary
densities. Such a generalization has been suggested by Perdew [210], relying on the

density dependence of AE(?], Eq. (4.183),

~C‘C(oo) |Vn\
B = [ @rCun) 0 (n) exp | — oma) 107 S TR

(4.229)

The factor C.(n) is a very natural extension of the LM prefactor C, (o) to intermedi-
ate densities, as it reintroduces the complete second order gradient correction. The
underlying assumption is that the small-k behavior of the wavevector-decomposition
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observed for the RPA is also roughly correct for the complete z.(g?,k,np). The ad-
ditional density dependence in the exponential function leads to a faster cut-off for
low densities. The fit parameter f was adjusted to the correlation energy of the neon
atom, which led to £ = 0.11. For spin-dependent systems Perdew suggests the uti-
lization of the same overall scaling as in Egs. (4.226), (4.227). The P86-GGA for
correlation is still used today in applications.

4.5.2 Real Space Variant

The starting point of the complementary real-space analysis of the GE [204-207]
is the adiabatic connection formula, expressed in terms of the xc-hole /.. After
explicit insertion of the Coulomb interaction and a suitable shift of the integration
variable r/, the corresponding relation (4.82) can be written as

/ Bra(r / B — e (r,r+u), (4.230)

with Ay given by Eq. (4.81). Ay satisfies a number of exact relations [77]. In view
of the definition (4.76) of the pair-correlation function, integration over u yields

/d3uhxc(r7r+u)
= /d3r/{ / dA (Yo (L)|[A(r )_”0(’)][77("/)—no(r/)]\‘l‘o(/l»
—6(3)(r—r’)}
1 1 . .
= ﬁ/0 dA (o (A)|[A(r) — no(r)][N — N]|[¥o(A)) — 1

_ 1 (4.231)

This sum rule can then be decomposed into an exchange and a correlation compo-
nent, iy = hy + hc. The exchange component (linear in ez) is obtained from the KS
pair-correlation function (i.e. the noninteracting limit—compare Eq. (3.46)),

o _y 1200 rrf)frfzﬁ;/ )(" i (4.232)
N hn(r.r z | Y @aa(p(:;(z'(';)qbao‘( )2 ’ (4.233)

where the ¢; represent KS orbitals. Integration immediately leads to

/d3uhx(r,r+u) — 1, (4.234)



176 4 Exchange-Correlation Energy Functional

so that (4.231) requires
/d3uhc(r,r+ u)=0. (4.235)

Two further exact relations directly emerge from (4.233),
hx(r,r+u) <0 Vru (4.236)

hy(r,r) = f@ (for unpolarized systems) . (4.237)
Both the sum rules (4.234) and (4.235) as well as the local conditions (4.236) and
(4.237) are satisfied by the LDA xc-hole. The compliance with these rigorous prop-
erties is one of the major advantages of the LDA. In particular, the compliance with
the sum rule (4.231) has been identified as the main reason for the surprising per-
formance of the LDA in the case of atoms [155]: due to the validity of Eq. (4.231)
the spherically averaged xc-hole,

dQ
T;hxc(r, r+u),

which determines Ey. via Eq. (4.230), is well reproduced by the LDA.
The situation is quite different for the exchange hole resulting from the gradient
expansion. Within the real-space method of Kirzhnits one finds [177],

i) = =" L0y )+ 2w+ ) @23
ey = J(2) (4.239)
U (r,u) = 12L(2) ';{V: (4.240)
F
4 i-Vn\? V)2
iZ](r,u) = {M(Z)3ZL(Z)] <u2kp:> +4zL(z)(u4k#
F
1 Vn \? s
- {N(z) + 3ZL(Z)} (Zk}fn> +2N(z)ﬁ, (4.241)
F
with the abbreviations
z = 2kl ke = (3n%n)\/3 i = ﬁ (4.242)
J(z) = Z—? [4 + 7224 (2 —4)cos(z) — 4z sin(z)} (4.243)
L(z) = 113 [2 —2cos(z) — zsin(z)} (4.244)

M(z) = % [—zcos(z) + sin(z)} (4.245)
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N(z) = ;4 —4— 22+ (4—7%)cos(z) + 4z sin(z)} : (4.246)
The real-space GE of hx(r,r + u) essentially represents a Taylor series expansion
with respect to powers of the operator - V. For this reason Yukawa-screening has to
be utilized to regularize the u-integration in (4.230), if the GE2 for Ey is evaluated
by insertion of (4.238) [177]—without screening the convergence of the integral
for large |u| is not ensured (note, however, that an incorrect gradient coefficient is
obtained in this way).

The important observation [204] is that the second order gradient correction to
hyx neither satisfies the sum rule (4.234) nor the negativity condition (4.236). In
fact, the individual terms in (4.238) even lead to divergent u-integrals, as the func-
tions (4.244)—(4.246) do not decay sufficiently fast for large |u|. These integrals can
no longer be kept under control by some regularization: as soon as the screening
is removed after the u-integration, the divergences show up again. While the u-
integral obtained by insertion of (4.238) into (4.230) is just not well-defined without
Yukawa-screening, the u-integral in (4.234) simply diverges.

In view of their importance Perdew therefore suggests to reinforce the conditions
(4.234) and (4.236) a posteriori [204]. In order to introduce a corresponding real-
space cut-off first an integration by parts is performed in (4.230) (with respect to the
uncritical variable r). This leads to a modified exchange hole,

hy(r,r+u) = —nTr)f(r, u) (4.247)
. a-Vn M [ia-Vn\? Vi \?
L e T Y < 2ken ) FleL+N] <2an)
+.... (4.248)

The form (4.247) avoids the presence of second density gradients, which simplifies
the subsequent analysis. Of course, /iy violates the conditions (4.234) and (4.236)
just as the original /1 does. For this reason two cut-offs are applied to (4.247),

WA (rr ) = B2 (rr+w)© (F(rw) © (Re(r)—[ul) . (4.249)

While (4.236) is reinstalled by O (f(r,u)), the sum rule (4.234) is implemented via
the function R (r). R, is that value of |u| for which

/d3uhGGA(r r+u) = ;1/2kFRczzdz/dQ F(r,u)O (f(r.u))
X I 4877:2 o u ) I

=—1 (4.250)

holds for a given r (z = 2kg|u|). Insertion of (4.248) demonstrates that the violation
of (4.234) becomes more and more serious with increasing gradient of n: the larger
the prefactor & = (Vn)?/(2kgn)? is, the earlier does the |u|-integral in (4.250) ex-
haust the sum rule. On the other hand, there is no additional explicit r-dependence
found in the exchange hole (4.247). Consequently, the cut-off is a function of & only,
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which can be determined by solution of (4.250) for arbitrary £. Insertion of (4.249)
into (4.230) then defines a GGA,

ES9A) = £ /d3rn /d3 —hGGA (r.r+u)

_ /d3reXHEG(n)f(RC(§)) (4.251)

1 [2keRe - _ ~
FRA) = 5 /O 2dz / A9, f(ru)0 (F(ru) . (4252)

The numerical results for f (R.(&)) can finally be parameterized in the form

FPV(E) = [14 156 + 148240281 (4.253)

Initially, the Sham coefficient C}, Sham _ 7 /81 has been used in (4.253). However, the
sum rule (4.250) is not very sensitive to & for very small gradients, so that f(R.(&))
can not be determined with high accuracy in the limit & — 0. In fact, the numerical
results for small & even suggest a dependence on \/E [207]. For consistency the
small-& behavior has therefore later been adjusted to the correct gradient coefficient
Cx = 10/81. The GGA (4.251), (4.253) is the exchange complement to the GGA
(4.229) for E¢[n].

The concept of the real-space cut-off of h)[(z] has subsequently been refined by
Perdew and Wang [206, 211] with the aim to incorporate the Lieb-Oxford lower
bound for the exchange energy [212],

E, > Ee > EY0 > 2273 / & eHEG (1) (4.254)

(here the inequality (3.31) between Ey. and the non-classical part of the interac-
tion energy of the interacting system, EJ(L 0" = (Wo|W|Wo) — Enlnol, Eq. (3.27), has
been used). Interpreted locally, this exact relation implies f(&) < 2.273. Combin-
ing this requirement with an improved analytical parameterization of the numerical
F(R<(&)) and the correct gradient coefficient, one ends up with the PW91-GGA for
exchange [206],

a1 + (Cx —ar)e”1"%)E — ap&?
1+b1\/§arsh(b2\/g) +ay&? ’

with a; = 0.2743 ~2.2Cy, a; = 0.004, by = 9a, /(41) and by = 2(672)'/3b;. While
the kernel (4.255) reproduces the exact second order gradient term for & = 0, f*W!
shows a very sensitive &-dependence for small £ (which is nevertheless consistent
with the results of the real-space cut-off procedure (4.250) in the small-& regime).
However, the strong variation of fPV°! for small & leads to undesired (though un-
critical) peak structures in the corresponding exchange potential [213].

In a later contribution, a simplified form of f*W°! has been suggested [207],

e =1 (4.255)
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ag
1+bE "’

PBEE) =1+ (4.256)

with
3
— {Cc(oo) + 81} =0.21951 ~ 1.8Cx and b=0.2730.

In this GGA the gradient coefficient has been chosen so that exchange and correla-
tion cancel each other in the limit of small £, i.e. that the total second order gradient
correction vanishes. This construction essentially relies on the argument that the
LDA is more accurate for weakly inhomogeneous systems than the GE2.

It is obvious from this discussion that, in spite of the first-principles background
of GGAs, there remains some uncertainty in the determination of their precise form.
The final form depends on the set of criteria which are used for its construction and
the priorities between the criteria. On the other hand, practical results show only
a moderate dependence on the precise form of the GGA, if one keeps a realistic
perspective of the overall accuracy of this type of functional (compare the discussion
below).

The transition to spin-density functional theory is again achieved by (4.19).

4.5.3 Combination of Momentum and Real Space Variants

In view of the successful real-space cut-off procedure for hy the question arises
whether a similar scheme can be applied to the correlation hole? As a direct real-
space GE of A is not available, information on the correlation hole can only be
obtained indirectly. In order to extract this information one first has to remember
that the xc-energy only depends on the spherically averaged xc-hole

1 oo 2
=5 / ra(r) / AmuPdu S e (r,u) (4.257)
0 u

— dQ
hye(r,u) = / — L hye(r,r4-u) . (4.258)

47

One can now use the Fourier representation of the Coulomb interaction,
2m)3 ¢ k2

47rk2dk sin ku) 4me?
- / [

& / Bk g, Ame
|ul (

(4.259)

to rewrite Ey. as

AnkPdk Ame?
/ Prn /O o hye(r,k) (4.260)
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0= [ om W ). (4.261)

This result can be compared with the wavevector decomposition (4.215)—(4.217),

3 2
4] _ 4’9 ypG q-on(q) én(
AES = f/ an) ey (no)—<3n2n0 7752 / dkz(g*,k,ng)

N 4rk*dk 4me?
/d /dr5n r)on(r )/0 T &

HEG
—ig-(r—r') ;2 (ng) (27m)
x/(2n)3e “ 1 4(3”2,,0)2/3 2 (4me)? Zc(q Jk,ng) . (4.262)

The g-integral can easily be carried through, if one restricts (4.262) to the lowest
order gradient contribution. The usual local density substitution then leads to

2
E[z] /d3 / dnk’dk 4me?
0 277?) k2

—ei™S(n(r)) T oe(0kn(r).  (4.263)

X [Vn(r)]2 4(37[2”(’_))2/3”(’,)3 &2

Comparison with (4.261) allows the direct identification of the high-density limit of
the spherically averaged A,

HEG oo :
— HDL —ey Y (n) 1 5 . sin(ku)
h = (Vn)?—=% / Kdk =—=7.(0,k,n).
o (ru) = (Vo) e 2xe Jo . <0kn)

(4.264)
With the analytical parameterization of z.(0,k,n), Eq. (4.224), one can perform the
k-integration (see [214], Eq. 2.667.5),

2 2
— HDL B B Vn 36 kg
he DC(rou) = —Ce(n= o) ( 2kTFn> Tan T o T (4.265)

Insertion into (4.257) and subsequent evaluation of the u-integration leads back to
the high-density limit of the GE2, Eq. (4.183). In order to recover the complete
EC[Z], one has to extend (4.265) to arbitrary densities. To this aim one notes that he
essentially depends on the product ktru, so that high densities are equivalent to large
particle—particle separations u. Similarly, low densities are equivalent to small «, so
that the low-density limit of 4. corresponds to its short-range behavior. Perdew and
Wang [206] suggest the following ansatz for the short-range component, which is
L

missing in /.

— HDL 1 ( Vn
u

2
_ Koo P’ (4066

2kTpn

"7 S -G 0
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It is worthwhile to verify explicitly that (4.266) reproduces the second order gradient
correction (4.183). In fact, insertion into (4.257) gives

o 2
AECm = %/d3rn(r)/() 4nu2du%E£2]("a’4)
& 3 il Va\? 1
= _E/d rn(r)/0 udu (n) a0

Vo \? kg [~ [36C.(e0) e
2 3 F c
- /d ) (Zan) 47r/0 e [[12+y]2+ 18 }

_ /d3rexHEG(n) Cn)E, (4.268)

36C, (o) o~ blkrpu)?
[12-‘1- (kTFu)2]2 18

which is the desired result. )

Once a reasonably accurate representation of /1.~ (r,u) has been established, one
can check whether it satisfies the sum rule (4.235). It is no surprise that (4.235) is
violated,

/ amitdunc® (ru) £ 0. (4.269)
0
The sum rule is therefore reinforced by introduction of a real-space cut-off R. in

complete analogy to (4.249),

7S (ru) = B u) O(Re —u) | 4.270)

with R determined by

(]

e 2 (7 0] 7
/ amidu [ (r.) + 1P )] = 0. 4.271)
0

If more than one value of R solves (4.271), the solution with the largest value
is chosen. Insertion of (4.266) into (4.271) immediately exhibits the quantities on
which R, depends,

‘Re _ \v} 2 4 kTER:
/ 4nu2duhc[2] (ryu) = —( " ) / " ax
JO

ZkTFn 7l'2kTF JO

2+x22 " 18

36C, (<o) eble

One identifies

|Vl
.

= 4.272
2kTpI’l ( )

as characteristic dimensionless density gradient of the correlation functional. In ad-
dition, R, depends on the density. The GGA for E.[n] is defined by



182 4 Exchange-Correlation Energy Functional
gea _ 1 [ 3 e
AE;P" = E/d rn(r)/ Arudu—h; (r,u). (4.273)
0 u

The construction of the GGA is completed by an analytical parameterization of the
t- and n-dependent kernel resulting from the condition (4.271),

AEPWVOl — /d3rn(r) [fl (t,n)+f2(t,n)} (4.274)
_p? 200 2+ A
3 ¢ 312 —100&
3 e 3 &2
HEG —1
A= %‘x {exp (_igec n(”)> _ 1} . (4.278)

Equation (4.274) is to be combined with the PW91-GGA for exchange, Eq. (4.255).

It remains to make the transition to spin-dependent systems. Relying on the ne-
glect of V¢ and the approximation (4.198) (which led to the gradient term (4.200))
and expressing the f; in terms of the actually occurring variables, the transition can
be made by

HEG HEG

ﬁ(r,é,cc(n)fcn(”)) — g3ﬁ<;,g2§,cc(n),ec 3(”)>7 (4.279)

gn

with g(&) given by Eq. (4.198).
A simplified variant of (4.274) has been put forward by Perdew, Burke and Ernz-
erhof [207],

AEPPE — /d3rn(r) filtn). (4.280)

It is based on the concept of a complete cancellation of the total second order gra-
dient term, which originates from the observation that the LDA is more accurate
for weakly inhomogeneous systems than the GE2. Together with the PBE-GGA
for exchange, Eq. (4.256), the functional (4.280) leads to a vanishing second order
gradient coefficient for the complete Ey..

4.5.4 Semi-Empirical Construction of GGAs

The fact that the basic form of GGA-type functionals is already determined by di-
mensional arguments has prompted quite a number of semi-empirical schemes for
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their construction. This route has been pursued in particular in quantum chemistry,
often aiming at specific classes of systems. Alternatively, GGA-type expressions are
combined with a fraction of the exact exchange (4.5), which constitutes the class of
hybrid functionals [215-217] discussed in Sect. 6.5.4. It is beyond the scope of this
work to review the wealth of semi-empirical functionals which can be found in the
literature. Only the original and best-known GGAs of this type will be discussed.
The structure of the GGA is most obvious for the exchange part, as Ex is linear

in €2,

ESN] = [ @ref™S(m) £(). (4.281)

The dimensionless function fx can only depend on the dimensionless gradient &,
as any further density dependence requires the presence of e>—otherwise it is not
possible to generate a dimensionless quantity (as rg). Moreover, in analogy to the
first-principles GGAs the dependence on higher gradients of the density has been
neglected. Of course, fx(&) has to satisfy a number of criteria. Some of them are
of fundamental nature, others are motivated by practical considerations. Given the
universality of Ex and the rigorous information available for the HEG, fx has to
approach the LDA for vanishing &,

(@) ~(E=0)=1. (4.282)
In addition, the structure of the second order gradient term has to be reproduced,
(b) [E<)=1+aE+.... (4.283)

While the weakly inhomogeneous electron gas requires a = Cy, this parameter is
often treated as adjustable, only the functional form of the second order gradient
correction is kept. In addition to these more fundamental requirements one wants
to obtain a non-diverging exchange potential for exponentially decaying densities,
which restricts the behavior of fx for large &,

(¢) K(E—e)<cVE. (4.284)

The simplest realization of a kernel which obeys the conditions (a)—(c) is a [1,1]-
Padé function

B86 ag

% @)—1+1+b5, (4.285)
as suggested by Becke in his seminal contribution [218]. The gradient coefficient
a of the B86-GGA was not restricted to the exact coefficient Cx. Rather both pa-
rameters a and b were fitted to a set of atomic exchange energies, with the result
a=0.2351 ~1.9C and b = 0.24308.

An extension of this concept leads to the most frequently used semi-empirical

GGA (B88) [219]. With the alternative ansatz
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C8(E) =1+ a (4.286)

1+b+/EArsh[2(672)1/3 /]

one can not only reproduce atomic Ex even more accurately than with (4.285) (with
a =0.2743 ~ 2.2Cy), the choice b = 9a/(4r) also allows the incorporation of the
correct asymptotic behavior of the exchange energy density, Eq. (4.24). In fact, in-
sertion of the asymptotic forms of n and &, Eq. (4.205), into (4.286) leads to

2

MO nE) —— . .

However, as emphasized earlier, the energy density is not uniquely defined, so that
the physical relevance of (4.287) remains open at this point. In contrast to ex. the
xc-potential is an unambiguous quantity. Asymptotically the exact v behaves like
1/r, Eq. (4.20). On the other hand, one finds for the B88-GGA (see e.g. [220]),

VB —— ¢ (4.288)

P

As the asymptotic relations (4.20) and (4.24) both originate from the nonlocal char-
acter of the self-interaction contribution to the exact Ey, the mismatch between
(4.287) and (4.288) indicates that (4.287) does not have the desired physical back-
ground.

The discussion of semi-empirical GGAs is closed by a remark on the functional
suggested by Lee, Yang and Parr (LYP) [221], which often serves as the counterpart
to the B88-GGA (4.286) (the combined functional is termed BLYP). The LYP-GGA
is based on the orbital-dependent correlation functional of Colle and Salvetti [222]
(see Sect. 6.5.2), whose crucial ingredient is the Laplacian of the noninteracting 2-
particle density (3.46). The Laplacian of n§2) can be rewritten as the sum of simple
gradients of the density and the KS kinetic energy density (relying on the fact that
normalizable KS states can always be chosen to be real). LYP then approximate the
KS kinetic energy density by its second order GE, so that the Laplacian of ngz) is
expressed as a density functional. The final functional reads (in atomic units)

n 3ab

Eg‘YP[nT,ni] = —a/d3r}/ 7/613"7/3 Z(6n2”0)2/3 ”%r (4.289)
(e}

o 5
_% / d%w{;z [(vn(,)2+3ncv2n6] - (Vn)2+nV2n},
(e2

with the abbreviations

a(r) = 1+dn(r)"'/
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1(r) = 4"

The parameters used by LYP are the original values of Colle and Salvetti [222] (see
Sect. 6.5.2), whose a = 0.04918me* /1%, b = 0.132, ¢ = 0.2533 /ag, d = 0.349 /ay,
which are optimized to reproduce the correlation energy of the helium atom.

4.5.5 Merits and Limitations of GGAs

Some illustrative GGA results for atoms are included in Tables 4.4 and 4.5. For the
comparison with the LDA and GE2 the most frequently used GGAs have been cho-
sen. An impressive improvement is observed both for exchange and for correlation.
Compared to the LDA, the net error is reduced by more than an order of magni-
tude in both cases. Moreover, while the differences originating from the different
kernels of the GGAs are not completely negligible, they are much smaller than the
differences between any of the GGAs and the LDA.

The accuracy of the xc-energies is directly transfered to the total ground state en-
ergies obtained by selfconsistent calculations with these functionals. This is demon-
strated in Table 4.6 for the case of closed-subshell atoms. Exact total energies for

Table 4.6 Exchange-only ground state energies of closed-subshell atoms: Selfconsistent LDA,
PW91-GGA, PBE-GGA and B88-GGA energies versus exact results [223] (all energies in
mHartree).

Atom Emt E[m — E[eo)iam
Exact LDA PW91 PBE BS88

He —2861.7 138.0 65 96 —1.7
Be —14572.4  349.1 18.2 274 6.1
Ne —128545.4 1054.7 —23.5 253 —44.7
Mg —199611.6 1362.8 —0.5 64.7 —-20.4
Ar —526812.2 2294.8  41.2 169.5 12.4
Ca —676751.9 2591.8 2571759 —1.0

Zn  —1777834.4 39245 —252.6 51.5 —285.2
Kr  —27520429 5176.8 —18.4 389.3 —57.7
Sr —31315334 55354 —8.84322 —457
Pd  —4937906.0 6896.0 —65.2 524.8 —109.6
Cd 54651144 7292.6 —31.9595.6 —-76.3
Xe  —7232121.1 8463.8  54.9 803.1 4.5

these systems are available in the x-only limit, while highly accurate numbers for
the complete energy are only known for a few, very light atoms. In order to allow an
unambiguous comparison Table 4.6 is therefore restricted to the x-only limit. The
improvement provided by GGAs is obvious.
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In fact, quite convincing numbers are found for a wide range of systems and
properties (see e.g. [211, 224, 225]). Some illustrative results for diatomic molecules
are given in Table 4.7. This table lists all first and second row diatomic molecules

Table 4.7 Bond lengths R., dissociation energies D, (including the zero-point energies [226])
and harmonic frequencies . of first and second row diatomic molecules: Selfconsistent LDA
[134], PBE-GGA [207] and BLYP-GGA [219, 221] results versus experimental data (taken from
[227-229]—see also http://cccbdb.nist.gov/). For the atomic ground state non-spherical densities

have been allowed.

A) Hydrogen and first row homonuclear diatomics.

Molecule Method R D e
[Bohr] [eV] [cm™!]
H, Exact 1.401 4.747 4401
) LDA 1.446 4913 4203
PBE 1.418 4.538 4318
BLYP 1.410 4.749 4347
Li, Expt. 5.051 1.058 351
) LDA 5.118 1.027 332
PBE 5.153 0.868 325
BLYP 5.119 0.895 327
B, Expt. 3.005 3.071 1051
3y LDA 3.033 3.855 1032
PBE 3.057 3.340 1007
BLYP 3.057 2911 987
C, Expt. 2.348 6.333 1855
> LDA 2353 7.249 1878
PBE 2369 6.258 1824
BLYP 2371 5.866 1799
N> Expt. 2.074 9.905 2359
5)) LDA 2.068 11.601 2393
PBE 2.082 10.583 2344
BLYP 2.082 10.440 2327
0, Expt. 2282 5.213 1580
3y LDA 2274 7.590 1621
PBE 2301 6.248 1552
BLYP 2321 5.902 1488
F> Expt. 2.668 1.658 917
) LDA 2.614 3.395 1043
PBE 2.672 2295 948
BLYP 2.710 2.127 894
Mean abs. LDA 0.030 1.101 66
deviation PBE 0.032 0442 37
BLYP 0.034 0.355 49

contained in the G2 test set [225]. The G2 set is a collection of experimentally well-
studied molecules, for which the spectroscopic constants can serve as reference data
for benchmarking theoretical approaches. There exists a number of further test sets,
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Table 4.7 continued: B) Hydrogen and first row heteronuclear diatomics.

Molecule Method R, D. e
[Bohr] [eV] [cm™]

LiH Expt. 3.015 2501 1406
) LDA 3.031 2.640 1377
PBE 3.031 2322 1375

BLYP 3.018 2.525 1387

FH Expt. 1.732 6.126 4138
) LDA 1.761 7.039 4045
PBE 1.758 6.167 4012

BLYP 1.762 6.129 3972

Cco Expt. 2.132 11.243 2170
) LDA 2.128 12.968 2179
PBE 2.145 11.674 2127

BLYP 2.145 11.372 2113

NO Expt. 2175 6.625 1904
o LDA 2.165 8.633 1944
PBE 2.185 7.413 1883

BLYP 2.193 7.150 1840

OH Expt. 1.832 4.642 3738
2T LDA 1.861 5350 3628
PBE 1.857 4.552 3605

BLYP 1.860 4.563 3568

NH Expt. 1.958 3.605 3282
3y LDA 1.992 4.141 3150
PBE 1.983 3.844 3177

BLYP 1.984 3.889 3140

CH Expt. 2.116 3.629 2858
o LDA 2.154 3.984 2720
PBE 2.147 3.544 2735

BLYP 2.138 3.558 2732

CN Expt. 2214 7.849 2069
2y LDA 2202 9519 2135
PBE 2217 8.576 2087

BLYP 2218 8.308 2067

LiF Expt. 2955 6.022 910
) LDA 2930 6.785 942
PBE 2975 6.034 918

BLYP 2979 6.097 918

BeH Expt. 2.537 2373 2061
2y LDA 2568 2.620 1981
PBE 2.557 2409 1994

BLYP 2.541 2474 2022

Mean abs. LDA 0.023 0.906 73
deviation PBE 0.019 0.263 68
BLYP 0.017 0.175 79

187
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Table 4.7 continued: C) Second row homonuclear diatomics.

Molecule Method R. D, e
[Bohr] [eV] [cm™!]

Na, Expt. 5.818 0.745 159
Iy LDA 5.668 0.879 161
PBE 5.834 0.770 151

BLYP 5.788 0.768 150

Al Expt. 4.660 1.628 350
3x LDA 4.648 1978 349
PBE 4.702 1.674 340

BLYP 4.761 1309 312

Si> Expt. 4.244 3.258 511
3% LDA 4.283 4.040 492
PBE 4.315 3.531 482

BLYP 4.341 3316 464

P, Expt. 3.578 5.080 781
Iy LDA 3.570 6.224 796
PBE 3.594 5283 767
BLYP 3.609 5.290 762

S, Expt. 3.570 4.414 726
) LDA 3.577 5.876 719
PBE 3.606 5.013 703
BLYP 3.639 4.684 668

Ch Expt. 3.757 2.514 560
5> LDA 3.738 3.626 567
PBE 3.783 2.863 539
BLYP 3.849 2.540 500

Mean abs. LDA 0.039 0.831 8
deviation PBE 0.035 0.249 18
BLYP 0.070 0.151 38

which either cover larger collections of molecules or specialize in particular types
of bonds. However, for the present purpose of illustrating the overall accuracy of
xc-functionals the G2 set appears to be best suited.

Before discussing its content, a few remarks on the technical details behind Ta-
ble 4.7 seem to be appropriate. The theoretical data in Table 4.7 have been obtained
by solution of Eq. (3.98) with a basis set expansion for the KS orbitals. Large two-
center basis sets [230] have been employed in order to make sure that the basis set
limit is reached. For each diatomic molecule the ground state energy has been cal-
culated for a number of internuclear distances. The resulting discrete values for the
energy surface have finally been fitted to a Morse-type potential, from which the
spectroscopic constants can be directly extracted. It is this last step which limits the
accuracy of the data in Table 4.7 most severely. Their uncertainty is roughly given by
0.002 Bohr in the case of Re, 0.002 eV for D and 10-20 cm™! for o, respectively.

Turning to the actual results in Table 4.7, one immediately notices that the molec-
ular binding energies are substantially improved by use of the GGA, at least for the
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Table 4.7 continued: D) Second row and mixed hydrogen/first row—second row heteronuclear

diatomics.

Molecule Method R,

[Bohr] [eV] [cm™!]

D.

e

HClI
1y

CIF
)

ClO
n

SiO
'y

SO
3y

cs
1))

PN
'y

NaCl
5

Mean abs.
deviation

Expt.
LDA

PBE

BLYP

Expt.
LDA

PBE

BLYP

Expt.
LDA
PBE

BLYP

Expt.
LDA

PBE

BLYP

Expt.
LDA

PBE

BLYP

Expt.
LDA

PBE

BLYP

Expt.
LDA

PBE

BLYP

Expt.
LDA

PBE

BLYP

LDA
PBE
BLYP

2.409
2.440
2.434
2.438

3.077
3.063
3.115
3.156

2.966
2.927
2974
3.012

2.853
2.856
2.882
2.888

2.799
2.807
2.835
2.852

2.901
2.894
2919
2.923

2.817
2.805
2.828
2.831

4.461
4413
4.491
4.512

0.020
0.024
0.041

4.618
5.228
4.621
4.538

2.610
4.144
3.149
2.934

2.801
4.564
3.470
3.181

8.306
9.731
8.542
8.498

5.426
7.284
6.148
5.882

7.468
8.763
7.800
7.483

6.446
7.784
6.800
6.840

4.245
4.516
4.104
3.984

1.262
0.375
0.263

2991
2888
2890
2846

786
807
754
715

854
927
873
821

1242
1240
1204
1195

1149
1148
1109
1072

1285
1288
1259
1240

1337
1372
1335
1321

366
378
354
352

31
34
56

vast majority of molecules. In fact, the binding energy is always reduced by in-
clusion of the gradient corrections. While this reduction sometimes overshoots the
desired correction, it definitively represents progress. This statement is true for both
GGAs included in Table 4.7, the first-principles PBE form, Egs. (4.256), (4.280),
and the semi-empirical BLYP-GGA, Egs. (4.286), (4.289). Moreover, the improve-
ment of D, is roughly the same for all subsets of molecules grouped together in
Table 4.7, which reflects the universal character of the GGAs (for completeness the
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corresponding average absolute deviations for the complete set of molecules are
listed in Table 4.8).

Table 4.8 Bond lengths R., dissociation energies D, (including zero-point energies [226]) and
harmonic frequencies @, of first and second row diatomic molecules: Mean absolute deviation of
selfconsistent LDA [134], PBE-GGA [207] and BLYP-GGA [219, 221] results from experimental
data (taken from [227-229]—see also http://cccbdb.nist.gov/) for the set of molecules listed in
Table 4.7. The corresponding mean absolute errors obtained by a posteriori application of the
PKZB [231] and TPSS [232] MGGAs on the basis of selfconsistent PBE-GGA solutions are also
given (see Sect. 4.8).

Method R. D, [ON
[Bohr] [eV] [cm™!]
LDA 0.027 1.027 48
PBE 0.026 0.329 43
BLYP 0.037 0.234 59
PKZB 0.051 0.172 52
TPSS 0.025 0.168 31

On the other hand, the GGA bond lengths are not really superior to the cor-
responding numbers obtained with the LDA (at least for this, somewhat arbitrar-
ily chosen, set of molecules). The same is true for the form of the potential well,
for which the vibrational frequencies provide some measure. Looking at the indi-
vidual numbers, one finds that the gradient corrections stretch the bonds almost
consistently. While this improves the agreement with experiment for a number of
molecules, the GGA also increases the bond lengths in many cases in which the
LDA already overestimates the experimental values. The only exception from this
general tendency are the hydrogen bonds, which are significantly shortened by the
inclusion of gradient terms. As this bond length reduction is accompanied by a re-
duction of the dissociation energy, GGAs account for hydrogen bonds much better
than the LDA (for additional examples see [233-236]).

An analogous comparison for a number of metals is given in Table 4.9. Again the
GGA results compare quite favorably with the LDA values. As a general trend the
GGA leads to larger lattice constants, which goes hand in hand with a reduction of
the bulk moduli. GGAs most notably predict the correct ferromagnetic bec ground
state of metallic iron [200], in contrast to the LDA for which the paramagnetic fcc
phase has a lower energy.

The brief overview of GGA results given so far makes it quite clear why GGAs
represent the de facto standard approximation in present-day applications of DFT.
One should, however, keep a realistic perspective of the predictive power of GGAs.
The point to be noted in this context is the fact that physical and chemical processes
are controlled by energy differences, rather than absolute energies (as those given in
Tables 4.4-4.6). The best-known examples are atomic ionization potentials (IP) and
electron affinities (EA), molecular atomization energies and the cohesive energies
of solids. In these energy differences the major contribution to the total energies
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Table 4.9 Lattice constants a and bulk moduli B of metals: Selfconsistent LDA and PW91-GGA
results versus experimental data. All calculations rely on the full potential linearized-augmented-
plane-wave scheme (a: [237], b: [238], c: [239]).

Solid a [Bohr] B [GPa]

LDA GGA Expt. LDA GGA Expt.
Li* (bcc) 6.36 649 6.57 15 12 13
Al? (fcc) 7.54 7.65 7.65 84 74 72
V¢ (bcc) 556 5.69 571 187 183 159
Fe® (bce) 5.36 5.41 215 172
Cub (fcc) 6.65 6.84 6.81 192 151 138
Nb? (bec) 6.17 627 624 199 177 170
Pd¢ (fcc) 7.30 7.49 7.35 222 175 195

due to the core electrons usually cancels out (as the core electrons do not really
participate in the process of interest). The percentage error in energy differences is
therefore primarily determined by the description of the valence states, for which
xc-effects play a much more prominent role than for the core electrons. One finds
that the improvement of GGAs over the LDA is often less impressive for energy
differences. As a first illustration of this statement one can compare the accuracy
of the total energies in Table 4.6 with that of the dissociation energies in Table 4.7.
The most prominent example, however, are atomic IPs, for which some numbers are
listed in Table 4.10. This table (relying again on the x-only limit) demonstrates that
GGAs can yield worse results for IPs than the LDA.

Table 4.10 also lists the eigenvalues of the highest occupied KS states obtained
with the three functionals. These eigenvalues are generally referred to as HOMO
(highest occupied molecular orbital) eigenvalues, in spite of the fact that they are
of atomic nature. We will follow this terminology. According to Sect. 3.6.1, the
exact KS HOMO eigenvalues are identical with the corresponding IPs. Table 4.10
demonstrates that the LDA, but also the GGA underestimate the exact results by
roughly a factor of 2, with a marginal improvement by the GGA. As the HOMO
eigenvalue is particularly sensitive to the form of the KS potential for large r, this
drastic underestimation indicates a rather poor behavior of the LDA and GGA xc-
potential in the asymptotic region. We will come back to this point below.

Closely related to the quality of HOMO eigenvalues is that of the band gap of
semiconductors. As discussed in Sect. 3.6.3, the band gap reduces to the difference
between the highest occupied and the lowest unoccupied KS eigenvalue, if the xc-
functional applied does not show a derivative discontinuity. Neither the LDA nor
the GGA do that, so that the value for the gap directly reflects the KS eigenvalues.
Numbers for some prototype semiconductors are given in Table 4.11. Similar to the
situation for the HOMO eigenvalue of finite systems, the LDA and GGA band gaps
underestimate the experimental values drastically. This fact has obvious implica-
tions for all observables related to virtual or real excitation processes, such as the
optical conductivity.
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Table 4.10 Exchange-only ionization potentials of atoms: Selfconsistent LDA, PW91-GGA and
B88-GGA data versus exact results (all energies in mHartree). All atoms have been treated nonrel-
ativistically.

Atom 1P [p—Jpexact —EHOMO

Exact LDA PW91 B88 LDA PWO91 B88
He 862 51 4 7 517 555 554
Be 295 —15 5 1 170 182 181
Mg 242 —4 12 6 142 150 149
Ca 188 1 12 7 111 117 116
Sr 171 3 13 8 103 107 106
Ba 152 4 12 8 91 95 94

Cu 231 47 54 52 159 164 163
Ag 215 36 41 38 142 145 143
Au 216 38 43 39 145 148 146

Li 196 —11 3 1 100 110 109
Na 181 -2 10 6 97 103 102
K 147 2 10 7 80 85 84
Rb 137 4 11 8 76 80 79
Cs 123 4 11 8 69 72 72

Zn 276 34 44 39 185 191 190
Cd 252 30 37 32 168 172 170
Hg 248 33 39 34 169 172 170

Yb 174 8 18 12 107 112 111

Table 4.11 Band gap of semiconductors: LDA and PBE-GGA results obtained with self-consistent
LAPW [240] and plane-wave pseudopotential [103, 241] calculations versus experimental data
(taken from [242]) (all energies in eV).

Ey. Method C Si GaAs
LDA PW-PP 4.16 049 0.32
LDA LAPW 4.11 0.47 0.30
PBE LAPW 4.15 0.57 0.53

Expt. 545 1.17 1.52

As in the case of the LDA, the quality of GGA results is to some extent based on
error cancellation between exchange and correlation. This statement is illustrated in
Table 4.12, in which a subset of the molecules in Table 4.7 is considered in the x-
only limit. In this limit the spectroscopic constants can be evaluated exactly via the
OPM (Chap. 6). It turns out that the x-only bond lengths and vibrational frequencies
obtained with the GGA are consistently further away from the exact numbers than
their LDA counterparts, with the (only) exception of hydrogen bonds. Even the error
in the binding energies reduces by only 30-50%, when going from the LDA to
the GGA. The mean absolute deviations for the set of molecules chosen amount
to 2.76 eV in the case of the LDA and to 1.87eV for the GGA, which has to be
compared to 1.03 eV (LDA) and 0.33 eV (GGA) for the average deviations including
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Table 4.12 Exchange-only spectroscopic constants of diatomic first row molecules: Selfconsistent
LDA, PW91-GGA and TPSS-MGGA results versus exact x-only data [243].

Molecule Method Re D, We
[Bohr] [eV] [ecm™!]

H, Exact 1.386  3.637 4585
LDA 1476 3.552 4059

PWOl 1424 3.686 4254

TPSS 1.409 3.758 4359

Liy Exact 5264 0.169 337
LDA 5300 0.292 305
PW91 5267 0.343 310
TPSS 5298 0.262 310

B> Exact 3.069 0.608 971
LDA  3.085 3.450 987
PWO1 3.103 2516 945
TPSS 3.107  2.157 939

Cy Exact 2332 0.282 1932
LDA 2384 5.743 1839
PW91 2398 4.328 1746
TPSS 2399 3.779 1733

N, Exact 2.012 4.970 2737
LDA  2.089  9.191 2338
PWOI 2.099 7.995 2262
TPSS 2096 7511 2278

0, Exact 2.184  1.440 1980
LDA 2304 6.384 1554
PWO1 2352 4.584 1422
TPSS 2355 3910 1416

F> Exact 2.497 —1.607 1283
LDA  2.653 2.752 1015
PWO1 2755 1.430 905
TPSS 2763  1.138 875

LiH Exact 3.037  1.483 1427
LDA 3.114 1477 1290
PWO1 3.086 1.639 1312
TPSS 3.057 1.610 1356

FH Exact 1.693  4.202 4499
LDA 1.782 5902 3846
PWO1 1777  5.118 3857
TPSS 1.777  4.817 3873

CcO Exact 2.080  7.521 2445
LDA  2.149 11.348 2088
PW91 2163  9.740 2055
TPSS 2.162  9.180 2063

Mean abs. LDA  0.078 2.757 291
deviation  PW91 0.087 1.867 313
TPSS 0.087 1.542 299
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correlation (see Table 4.8). Error cancellation between exchange and correlation
improves the net accuracy by a factor of 3—4. A similar behavior is observed for the
mean deviations of bond lengths and vibrational frequencies.

In order to understand these observations one has to analyze the accuracy of
xc-functionals on a local level, for which the corresponding potential provides an
unambiguous measure. The exact exchange potential is known for a number of sys-
tems ranging from atoms to solids (see Chap. 6). Even the exact correlation potential
is available for a few atoms [83]. Unfortunately, the comparison of LDA and GGA
potentials with these reference results turns out to be disappointing. While GGAs
come closer to the exact potential than the LDA in the case of exchange, no improve-
ment at all is observed for v, [83]. The local error of the GGA exchange potential,6

2 -
98w = o { @) - 3@ 395 @) sa

is much larger than deviation of the GGA exchange energy from the corresponding
exact Ey [223, 244]. Examples for these statements are given in Figs. 4.14—4.17.
Figure 4.14 shows the exchange potential of the calcium atom, for which the closed-

} . (4.290)

v, [Hartree]

0.01 0.1 1 10
r [Bohr]

Fig. 4.14 Exchange potential for atomic calcium. The LDA and GGA potentials have been gener-
ated by insertion of the exact exchange-only density corresponding to the exact vy. For the GGA
the PW91-form has been used.

subshell structure leads to a spherically symmetric density and potential. The exact
exchange potential has been generated by the OPM, as explained in Chap. 6. The

6 The result (4.290) is obtained by direct functional differentiation of the general form (4.281)).
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resulting density, i.e. the exact x-only density, has then been inserted into the LDA
and the PW91-GGA in order to evaluate the corresponding potentials.

One first of all observes a clear oscillatory structure in the exact v, which reflects
the individual atomic shells. For small r the exact potential approaches a finite value,
for large r one rediscovers the —1/r-decay, Eq. (4.20). The LDA potential, on the
other hand, averages over the shell oscillations and vanishes exponentially for large
r. This behavior is more clearly seen in Fig. 4.15, which shows the outermost shell
and the asymptotic region on an enlarged scale. The GGA clearly improves the

v, [Hartree]
|
=}
o
T

-1.2 .

r [Bohr]

Fig. 4.15 Valence and asymptotic region of Fig. 4.14 on enlarged scale.

situation in comparison with the LDA. While the GGA does not reproduce the exact
shell structure very accurately, there is at least some resemblance of this feature.
The GGA potential goes like 1/r for r — 0, in accordance with the behavior of
the second order gradient term, Eq. (4.206). Finally, for large r the GGA potential
decays as fast as its LDA counterpart. In fact, one can show quite generally that
GGAs cannot simultaneously reproduce the asymptotic behavior of the exact ey
and the exact vy for finite systems [220]. This result simply reflects their semi-local
functional form. As a consequence, GGAs cannot describe atomic negative ions.
There is one further, related consequence of the semi-locality of the LDA and
GGA worth to be noted. As soon as one considers open-shell systems the differ-
ence between the highest occupied eigenvalues of the majority spin (spin-up) and
the minority spin (spin-down) channels comes into play. This difference determines
the relative stability of the various spin states and therefore the magnetization. As
the highest occupied eigenvalues strongly depend on vy, the balance between the
spin-up and the spin-down exchange potential has a major impact on the local mag-
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netic moments. In Fig. 4.16 the difference between the spin-up and the spin-down
exchange potentials of Cr is shown. The deviations of the LDA and the GGA from
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Fig. 4.16 Exchange potential of Cr: Spin balance obtained with LDA and GGA versus exact result.
The LDA and GGA potentials have been generated by insertion of the exact exchange-only density
corresponding to the exact vx. For the GGA the PBE-form has been used.

the exact result are obvious [223]. For large r the exact vy & is dominated by the
—1/r-tail in case of both spins. In the valence regime the exact difference vy 1 — vy |

is thus less affected by the actual positions of the spin-aligned 4s- and 3d-electrons

than vi?A/ aea _ ilfA/ GGA, which directly reflect the structures of the valence spin-

densities: the exact Vx,1 — Vx,| is close to zero and repulsive, while its LDA and GGA
counterparts necessarily have to be attractive. The difference between the spin-up
and spin-down densities essentially vanishes in the L- and K-shell regime, so that
Vx,t — Vx,| approaches zero in the LDA and GGA. The exact result, on the other
hand, shows an almost constant shift between vy ; and vy |. The nonlocality of the
exact Ey propagates the differences between the spin-up and spin-down densities in
the valence regime into the inner shell region.

An idea of the behavior of the GGA exchange potential in the bonding region of
molecules is given in Fig. 4.17, in which results for the hydrogen dimer are plotted.
The individual potentials have been generated in the same way as for the atomic
case. It is obvious that the GGA-potential is not particularly close to the exact vy
in the bonding region. As H, is a spin-saturated two-electron system, the exact
vx only provides the required self-interaction correction (as in the case of helium,
Eq. (4.22)). This Coulomb integral of the molecular density has a broad minimum
in the center between the two protons. The LDA exchange potential (4.111), on
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Fig. 4.17 Exchange potential of Hy. LDA and PBE-GGA versus exact vy. The LDA and GGA
potentials have been generated by insertion of the exact exchange-only density. The two protons
are located at z = £0.7Bohr, x =y = 0.
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the other hand, is proportional to n'/3, which leads to peaks at the positions of the
nuclei. The GGA potential even diverges at these points. However, the GGA gener-
ates a somewhat more attractive potential in the bonding region and, in that sense,
improves results compared to the LDA.

Figure 4.18 provides a corresponding comparison for N». In addition to the fea-
tures already observed for H,, one can now see the shell structure in the molecular
v¢.] The GGA potential also shows an indication of the shell structure, while this
feature is completely absent in the LDA.

Finally, Fig. 4.19 illustrates the statement on the GGA correlation potential
for the example of the neon atom (for the technical details behind Fig. 4.19 see
Sect. 6.6.3). It is obvious that neither the LDA nor the GGA agree with the exact
ve [83]. The LDA is again strictly negative and smooth, in contrast to the exact
potential, which can be positive and shows some shell-related structure. The GGA
also generates some structures, which, however, have nothing in common with the
exact data. The large local errors in vy and v, explain why GGAs improve energy
differences often much less than total energies, as these differences usually imply
the removal of a localized part of the electronic density.

How can one understand the discrepancy between the rather accurate GGA ener-
gies and the partial failure of the GGA potentials? The answer is seen most clearly
on the basis of the virial relation (5.31), which Ey satisfies. For finite systems partial
integration allows the reformulation

E, = / &BrB3n(r) +r-Va(r)]u(r). 4.291)

The virial relation originates from a scaling analysis of Ex|n], i.e. from dimensional
arguments. It is thus not only satisfied by the exact Ex[n], but also by approximations
like GGAs. The deviation of GGA exchange energies from the exact Ex can, using
(4.291), be expressed in terms of the corresponding potentials,

E,— EGGA — / &rBn(r) + r-Vn(r)] o (r) =S98 (P)] ~ 0.

While the local error vy (r) — vS9A(r) is quite substantial, the integrated error is very
small [244]. An illustration of this fact is given in Fig. 4.20, in which the zinc atom
is shown. The local error in v oscillates according to the atomic shell structure. In
the virial relation (4.291) positive and negative deviations then integrate up to zero.
As the GGA potential is only slightly closer to the exact vk than the LDA potential,
one concludes that the extreme accuracy of GGAs for atomic Ey results from the
cancellation of local errors and does not fully reflect the inherent quality of this type
of functional.

7 In the case of the exact exchange the KLI approximation (6.63) is used for the evaluation of vy.
The result is, however, very close to the exact vy (see Chap. 6).
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Fig. 4.18 Exchange potential of N». LDA and PBE-GGA versus exact vi. The LDA and GGA
potentials have been generated by insertion of the density corresponding to the exact vx. The two
nitrogen nuclei are located at z = 4-1.05Bohr, x =y = 0.
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Fig. 4.19 Correlation potential for atomic neon. The LDA and GGA potentials have been gener-
ated by insertion of the exact density. For the GGA the PW91-form has been used (the exact v is

taken from [83]).
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Fig. 4.20 Integrand of virial integral for spherically symmetric ground state density and potential
of zinc. n’ denotes the first derivative with respect to r. For the GGA the PW91-form has been
utilized. Very similar results are obtained for all other standard GGAs.
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4.6 Weighted Density Approximation (WDA)

There exists yet another class of nonlocal xc-functionals which is based on the adia-
batic connection (4.80), the weighted density approximation (WDA) [245, 246, 155]
and its precursor, the average density approximation (ADA) [247]. Starting from
(4.80), the WDA is based on an approximate expression for the coupling constant
integrated pair-correlation function

1
gr,r) = /0 dr g (r,r). (4.292)

The function g is then subject to the sum rule (4.231), which can be rewritten as

/ d*r'n ) —1]=—1. (4.293)

This procedure represents a systematic extension of the LDA if g is approximated
by the pair-correlation function of the HEG.

This concept is most easily demonstrated in the case of the exchange. The pair-
correlation function of the noninteracting HEG is obtained from Eq. (4.232), with
the ¢; given by plane-wave states. It already featured as the lowest order contribution
to the GE of the exchange hole in Egs. (4.238), (4.239). The function J(2kg|r —r'|)
can be written in a more suitable form, which leads to

2
9 | sin(kg|r—7'|)
HEG () p p V1 — _2
g (r—rng)—1 [(kp|r—r’|)2 . (4.294)

The coupling constant integration in (4.292) is trivial in the case of exchange,
8x = 8x. The remaining task is to find a suitable local density replacement for the
gas density ng, which is reminiscent of the analogous problem for the full linear re-
sponse functional (4.157). Within the WDA this task is performed via the sum rule
(4.293). Choosing the local replacement to be a function of r only,

ny — na(r),
one can determine 72 by the requirement
/d3 HEG(r— v a(r)) — 1} -1, (4.295)

which has to be satisfied for all r. The resulting local 72(r) is then inserted into the
functional (4.80),

EYON) = 5 [@r [@ 0 n(rywr ) [5 v mr)) —1] . 4296)
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An older variant of this approach is the ADA in which the sum rule (4.293) is
utilized in the form

ilr) [ a7 [0 (r— ()~ 1] = 1. @297)

Of course, the screening density 72(r) depends on the system under consideration.
The WDA and ADA thus require the solution of (4.293) in each step of a KS calcu-
lation.

The results obtained with the functional (4.296) for atoms are rather disap-
pointing. In addition, little is known about the correlation contribution to the pair-
correlation function. For this reason often empirical forms are used for g.

An additional problem with the WDA is its inherent violation of the symmetry
of g(r,r") with respect to interchange of r and . As a result the corresponding
exchange potential does not satisfy the exact relation (4.20),

2

WDA €
_ . 4.298
W) o (4298)

in spite of the fully nonlocal character of the WDA functional. Due to the facts that
the WDA is much more difficult to handle numerically than gradient-based func-
tionals and that its performance is not very satisfactory, the WDA has rarely been
used in applications so far (for some results see [248-253]). Extensions of the WDA
have, however, been successfully applied to the problem of freezing [254-256], in
particular in the theory of nonuniform classical liquids [257, 258].

4.7 Self-Interaction Corrections (SIC)

There is one important deficiency which is shared by all functionals based on
the HEG: none of these approximations can describe a 1-particle system such as
the hydrogen atom properly. In order to demonstrate this fact, let us look at the
spin-density dependent version of the LDA, ELPA [ny,n]. In contrast to the exact
exchange (4.16), the LSDA exchange does not reduce to a pure Coulomb self-
interaction integral, if only a single particle with spin up and density n; = ‘¢1-,T|2
1S present,

ELDA 2 0 Eexact 2 _ /dS d3 /|¢1T )‘ |¢1 ( )‘
EO91,12,0) # B 1oy 1,0 .
(4.299)
In addition, the LDA for correlation does not vanish in this limit,
EPMI914[7,0] # ES(|¢11),0] = 0. (4.300)

In a many-particle system this self-interaction error is present for each of the parti-
cles in the system. The same observation is made for GGA-type functionals.
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Given the fact that the LDA and the GGA are exact in the opposite limit of an
infinite HEG, it is tempting to try to eliminate the self-interaction in an ad hoc
fashion [259, 260, 143, 261]. In the self-interaction corrected LDA (SIC-LDA)
[259, 143] the erroneous terms are subtracted a posteriori for the individual KS
states of both spins,

BN = BN n ]~ S0k o{ 1] + £ (01001

= E)I(‘C nTanl Z@k GELCDA[|¢I<,0'|270]

772@ /d3rd3 ll(PkG )‘ ‘(pkc( )| ) (4301)

=7

By construction, ESI®~IPA reproduces the exact xc-energy of a single particle. The
same scheme can be applied to any other density functional, in particular to GGAs.

A closer inspection of (4.301), however, reveals that the SIC-LDA is not a density
functional, but rather an orbital-dependent functional, just as the exact exchange. It
thus belongs to the class of implicit functionals, for which, as a matter of princi-
ple, the OPM (for details see Chap. 6) has to be utilized for the calculation of the
corresponding xc-potential [262]. On the other hand, the standard procedure for the
application of the SIC-LDA relies on the use of orbital-dependent KS potentials,
derived by minimization of (4.301) with respect to the ¢y : a separate KS equa-
tion is solved for each individual KS state. This procedure leads to non-orthogonal
KS orbitals, so that an a posteriori orthogonalization is required [259]. In practice,
the orthogonality of the KS orbitals turns out to be only weakly violated by the
orbital-dependent SIC-LDA potential, so that the explicit orthogonalization is often
neglected. In any case, the problem of non-orthogonality is automatically avoided
by use of the OPM, which produces the multiplicative potential corresponding to a
given orbital-dependent expression.

On the other hand, the OPM does not resolve the unitarity problem which is
inherent in the SIC functional [263-265]: if one performs a unitary transformation
among the KS orbitals, the individual orbital densities will change, even if the trans-
formation only couples degenerate KS states. Consequently, the value of EfgC’LDA
also changes. An additional prescription which defines a suitable representation of
the KS orbitals (which usually implies a localization) is necessary for practical cal-
culations [266]. While the results for atoms are not very sensitive to this problem
of unitarity, it becomes more important in extended systems (for some numbers see
Sect. 6.6.2). For this reason the SIC-LDA has rarely been applied to molecules [267—
269]. It has mainly been used to handle the localized d-and f-electrons in transition
metal elements (see, for instance, [270-272]).

One way to overcome the unitarity problem is an approximate elimination of the
orbital densities in favor of the spin-densities. The first suggestion of this type goes
back to Stoll, Pavlidou and Preuss [260], who modify the correlation component of
(4.301) as
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B ) = EcP [y ny ] = Y EP [ng,0]. (4.302)
(o

It is obvious that (4.302) vanishes in the case of a single particle. However, the SIC-
functional (4.302) is no longer exact for a truly homogeneous system. This problem
is resolved by the most straightforward replacement of the orbital density [261],

ne(r)
No

|$i.6(r)|* — (4.303)

By construction, this replacement is exact for a single particle. For correlation one
obtains in this way

_ n
B ] = EV ] - SN EPR [ 30,0] . (304
o (e}
Since HEG
fim e (10) _
ng—0 no

(see Eq. (4.107)), the SIC-correction in (4.304) vanishes for the HEG. On the other
hand, application of (4.303) to the exchange part of (4.301) yields

1 2
EXC R npon ] = ZZ{EQDA[zna]—NcEXLDA [2;"} —NEH[nG]}. (4305)
o o o

The main ingredient of (4.305) is the Fermi-Amaldi term Y. Exng|/Ng [273]. For
the remaining terms once more (4.19) has been utilized.

In practice, the forms (4.302), (4.304) and (4.305) have not been applied very
often, in spite of their simple form.

4.8 Meta-GGA (MGGA)

Given the limitations of standard GGA-type functionals discussed in Sect. 4.5.5, an
extension of the GGA’s rather restricted set of density variables (i.e. n and Vn) by
other semi-local functionals of the density offers itself quite naturally.® The most
obvious variable for such an extension is the Laplacian of the density, Vi, which
is the key quantity in the second order gradient correction for Ex, Eq. (4.201), as
well as in the corresponding expansion for E.. The simplest extension of the GGA
(4.281) for exchange is thus obtained by inclusion of V21 in an extended kernel
Fx(&,1n). Functionals of this type have been suggested quite early [197, 199]. How-
ever, the potential corresponding to expressions as (4.201), Eq. (4.208), involves the
fourth gradient of the density, which diverges severely at the positions of nuclei and
is very difficult to evaluate numerically. In fact, already the evaluation of Vin is

8 For a completely different approach based on the properties of surfaces see [274].
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numerically much more demanding than that of the first gradient. For this reason,
GGAs depending directly on V21 have not been pursued intensively (for one such
functional see [275]).

In addition to V?n, the kinetic energy density’

h2
(r) = = D0k V() (4.306)
k

has been used for the representation of Exc[n] [276-280, 231, 232]. In fact, #; can
serve as a substitute for Vn [231]. In order to verify this statement, one has to con-
sider the gradient expansion of #;. The lowest order terms of the gradient expansion
of the total kinetic energy 7; have already been given in Egs. (4.117) and (4.177),

h 3(37%)%/3 1 (Vn)?
TSE[n] = ~ d3r{(7lro)n5/3+72(:)+... : (4.307)

However, the total T defines the local #(r) only up to terms which integrate to zero.
One can easily demonstrate by use of Gauss’ theorem that one consistent second

order gradient term,
hZ
— / d3rV2n7
m

vanishes for finite systems. As a result, the contribution of %Vzn to t; is no longer
visible in the total T5.

A complete determination of the GE for #,(r) via the linear response approach
of Sect. 4.4 is impossible. Rather one has to resort to a direct evaluation of #; in
real space, for which the commutator expansion of Kirzhnits [175] (or related tech-
niques) are well suited. In this way one obtains as GE for the kinetic energy density
(4.306) to second order [193—-195]

w3303 55 1(Vn)? 1s
ts_m{lOn +ET+8V’1 . (4.308)

Combination of Eqs. (4.179), (4.182) and (4.308) then yields [231]

= — — — 2, 4,
=5 2(3m2)23n5/3 20 12 (4.309)

One can therefore replace 7 by the right-hand side of this relation (with #; evaluated
by Eq. (4.3006)), the result being correct to second order in the gradients. Abbreviat-
ing the right-hand side of (4.309) by 7, one can then consistently rewrite the fourth
order GE for Ex, Eq. (4.202), as

9 While any energy functional defines the corresponding energy density only up to partial integra-
tion, it has become standard to define the kinetic energy density by Eq. (4.306).
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EGE /d3reHEG( ){ +— 5—1—% [2_;115_1_1952} +} (4.310)

In the next step one constructs a GGA-type functional which reproduces the
fourth order terms in (4.310). Such an extended GGA, termed Meta-GGA (MGGA),
necessarily involves an extended kernel Fx(&,7),

EN'GGA ] / dref®(n) K (E,7). 4.311)

A simple kernel in the spirit of the PBE-GGA, which reproduces the GE (4.310) in
the limit of slowly varying density, is [231]

FFBEm) = 1+x- T (4.312)
146 Ly 73
& 3055 —ﬁ*§+ b4 — < ”52 (4.313)

The parameter k drops out of the two leading gradient terms, so that the limit (4.310)
is obtained for arbitrary values of k. This parameter is then used to ensure that
the MGGA (4.311) obeys the Lieb-Oxford bound (4.254) locally, which leads to a
value of k¥ = 0.804. Lacking any rigorous information on the gradient coefficient
b, Perdew et al. [231] fit this coefficient to the dissociation energies of a set of
20 molecules (which gives b = 0.113). As usual in the case of the exchange, the
extension to spin-polarized systems is provided by Eq. (4.19).

Ideally, one would like to apply the same strategy for the extension of the correla-
tion part of the GGA. However, no information on the fourth order gradient correc-
tions for E¢[ny,n|] is available. In their MGGA Perdew et al. [231] therefore utilize
the kinetic energy density only for the elimination of the inherent self-interaction in
the GGA, while retaining the properties of the GGA for slowly varying densities. In
order to avoid the unitarity problem of the conventional SIC-LDA approach (4.301),
the MGGA starts from the SPP-SIC (4.302). This expression has the disadvantage
that it does not preserve the limit of a uniform gas, i.e. the SPP-SIC is not restricted
to the subtraction of the correlation energy of the individual particles. A quantity
which allows to distinguish between a single particle and the HEG is the kinetic
energy density. Splitting the total ¢ into the two spin-channels,

r) =Y t.s(r), (4.314)

the kinetic energy density of a single particle in the state ¢, can be easily expressed
in terms of its density [174], if one chooses @ to be real,

feo(F) —— two(r) = 7 [Vno(r)*

(4.315)
ne=0% 8m  ng(r)
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While the so-called von Weizscicker functional tw s coincides with the exact 5
for a single particle, it vanishes for uniform density. The ratio tw s /fs o is therefore
well suited to suppress contributions in the limit of slowly varying density (compare
the discussion in Sect. 6.5.4). In fact, if (tw o /ts.5)* is used as switching factor,
this factor vanishes like a fourth order gradient term for vanishing Vng, leaving the
second order gradient correction unaffected. The final MGGA for correlation is thus

given by
PKZB 3 ) Gca Sotwo )\
EC [nT,nl]:/d rs e (nT,nl,VnT,an) 1+C(G : >
Yotso
; 2
(1+C)Z<W‘°> eE’GA(ng,O,VnG,O)}. (4.316)
o s,0

This expression vanishes for a single particle and reproduces the GGA without any
SIC for slowly varying densities. For ¢59# the MGGA utilizes the combination of
the LDA and the PBE gradient correction (4.280). The coefficient C has been cho-
sen so that EFXZB gives essentially the same correlation contribution to the surface
energies of jellium (i.e. a semi-infinite electron gas experiencing the attractive po-
tential of a positive background density which is constant in one half of space and
vanishes in the other) as the PBE-GGA, which leads to C = 0.53.

The MGGA has later been revised [232], in response to the inaccurate equilib-
rium bond lengths which the PKZB form predicts [281]. In the case of the exchange
the revision is primarily based on the non-uniqueness of the representation (4.312),
(4.313). The construction of an optimized kernel Fx starts with an alternative repre-
sentation of 7. One first defines a suitable ratio of kinetic energies densities,

ts —tw ts 5

where tw denotes the von Weizsacker functional (4.315) for a spin-saturated many-
electron system,

n? (Vn)?
tw =D twe = — . (4.318)
g‘ N m 8n

If expanded to second order in the gradients, o reduces to

40

= (4.319)

o =1+ 20
which is easily verified by insertion of Eq. (4.308) into (4.317). Using this limit, it
is straightforward to show that the quantity

9 o—1
20 [1+Ba(a—1)]12

fj = + %5 (4.320)
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approaches 1 for slowly varying density, irrespective of the value of 3: this com-
ponent of the denominator does not enter the second order GE, it merely introduces
some freedom to satisfy some constraint yet to be chosen (see below).

Now the form of Fx (&, 7)) needs to be specified. In order to remove some of the
ambiguity in this expression one has to incorporate additional conditions on Fx. To
this aim Tao et al. [232] consider a spin-saturated 2-electron system. For this system
the exact 7, reduces to the von Weizsacker expression (4.318), so that o vanishes.
This implies a fixed relation between 7j and &,

- 9 2
] ———+§§.

If this limit is inserted into F, a purely &-dependent kernel is obtained, i.e. an ex-
pression like the kernel fx of standard GGAs,

_ 9 2
F (§,n=—+5> Pa— (). (4.321)

In general, the corresponding potential (4.290) diverges at the positions of the
nucleus, due to its 1n-dependence (in complete analogy to the GE2 potential,
Eq. (4.206)). This divergence can be avoided by requiring

ZC]
el o, 4322)
4 le=g

with & denoting the value of £ at the origin of the 2-electron atom. In addition, Tao
et al. assumed the parameter b in (4.310) to be zero. A kernel which satisfies these
two additional conditions is

FIPSS(E.) = 14 x

- 4.32
1+x/x’ (4.323)

with

1/2

i 10, 2 gy 146 73113 2+1§2
X = —_— _—— — —_ —
81 T(1+2212]° 20257 "4051|2\5°) T2

1/10)\? 10 /32 1
i) #4298 (59) +5“53}<1+¢3¢>z 324

=W (4.325)
ts

The value of «x is the same as for the PKZB-MGGA. The parameters y = 1.59096
and 6 = 1.537 are chosen to enforce the condition (4.322) and to yield the correct ex-
change energy of the hydrogen atom (for H one has Ex = —FEy = —0.3125 Hartree).
Moreover, B is chosen to have the smallest value which ensures that FxTPSS is
a monotonically increasing function of £ for any fixed value of o (which gives
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B =0.4). Finally, u = 0.21951 restores the behavior of the PKZB-MGGA for large
E.

The revision of the correlation part of the MGGA aims at an improved description
of spin-polarization. The TPSS-MGGA for correlation is given by [232]

3
D
14+ (’W> egeVpKZB] (4.326)
n I

1+c@m>CZ)1

ETSS[n, n] = / &3 r efeVPKZB

eEeVPKZB = eCPBE(nT,ni,VnT,an)

u+cwmﬂ(”)2

fs

X Y max {eCPBE(no,O, Vne,0),

r:yeEBE(nT,nl,VnT,an)} (4.327)

C(&,0) = 0.53+0.878%4+0.50¢* +2.26¢° (4.328)
C(¢,0

C(¢.p) = (£.0) (4.329)

L[ O R (1= )R 2

Here { denotes the spin-polarization (4.119) and

Vel
p= S (4.330)
One first notes that the core of the SIC term involves the maximum of the local
values of efBE(ng,0,Vng,0) and efBE(ny,n |, Vny, Vi), unlike the PKZB-MGGA.
This modification implements the rigorous constraint that the value of E¢[n1,n|] has
to be negative for all possible spin-densities—in the PKZB-MGGA the positive SIC
term can become slightly larger than the negative main term in regions in which only
a single spin-orbital is non-vanishing, as in the asymptotic region of the Li atom.
It remains to discuss the treatment of spin in the SIC components. One first ob-
serves that the energy density (4.327) vanishes for a system containing only a single
particle,

I’ZT=¢2, I’ll:O - ts=tw, §==I,

irrespective of the value of C({,p). On the other hand, for a spin-saturated many-
particle system one has
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2
v
2.0 () e (5.0.50)

N

If applied to the completely delocalized states of the jellium problem, the SIC should
give no contribution to the surface correlation energy. This can be achieved for
the standard range of valence electron densities (2 < ry <6—see Table 4.2) by set-
ting C(0,0) = 0.53 (as in the PKZB-form) and by introducing the additional factor
14 (D/n)(tw /t;)3e="PXZB in the TPSS-MGGA (4.326) with D = —2.87% /(me*).
The form of C(&,0) is motivated by the limit of very strong interaction. In this
limit the Coulomb repulsion completely dominates over quantum effects, so that
the correlation energy becomes independent of the spin-polarization of the system.
This behavior is implemented via the form (4.328), which ensures that the TPSS
correlation energy obtained from non-uniform spin-densities with uniform £,

VE=0 —  (1-{)Va =(1+{)Vn,

is independent of { in the range 0 < |{] < 0.7.

Finally, the SIC-term should not affect the transition region between the valence
and the core regime of a monovalent atom like Li. While in the valence regime one
has { = +1 and thus p =0, { and p are close to zero in the core regime. In the region
in which core and valence densities overlap { switches between these two values,
so that p is large. The p-dependence of C({,p) lets this quantity become small in
the overlap zone, in this way suppressing the SIC ingredient of the first term on the
right-hand side of Eq. (4.327) (compare [282], for an extensive discussion of the
MGGA see [283]).

The functionals (4.311), (4.316) and (4.323), (4.326) avoid the singularities re-
sulting from the potential (4.208). The price to be paid, however, is the dependence
of the MGGA on the KS orbitals. As in the case of the SIC-LDA the corresponding
potential has, as a matter of principle, to be evaluated via the optimized potential
method discussed in Chap. 6. This procedure is computationally much more de-
manding than a standard GGA calculation. However, the additional gradient terms
in the MGGA are expected to give only a limited correction to the GGA poten-
tial. In practice, the MGGA is therefore often applied a posteriori, using the so-
lutions obtained by a self-consistent GGA calculation (Post-GGA approach). Al-
ternatively, selfconsistent calculations with the MGGA are based on the HF-type
equations which emerge from a minimization of the total MGGA energy with re-
spect to the individual orbitals, rather than the density—this procedure is sometimes
termed generalized KS (GKS) approach (see also Sect. 6.5.4).

Some reference data for atomic exchange energies obtained with the MGGA
are provided in Table 4.13, atomic MGGA correlation energies are included in Ta-
ble 4.5. Table 4.8 lists the mean absolute errors in the spectroscopic constants of
the molecules in Table 4.7 resulting from the two MGGAs via the Post-GGA treat-
ment. One finds no improvement over standard GGAs for bond lengths and only
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Table 4.13 Exchange energies of spin-saturated, closed-subshell atoms: PKZB-MGGA, TPSS-
MGGA, B3LYP-hybrid and PBEO-hybrid energies obtained by insertion of exact exchange-only
densities into the functionals (4.311), (4.323), (6.127) and (6.134) in comparison with exact values
(all energies are in Hartree). Also given is the corresponding percentage error A. The hybrid data
are discussed in Sect. 6.5.4.

Atom  Exact PKZB TPSS B3LYP PBEO
—Ey —Ex A —Ex A —Ex A —Ex A

He 1.026 1.020 —0.54 1.030 0.44 1.014 —1.13 1.017 —0.89

Be 2.666 2.648 —0.66 2.677 0.43 2.632 —1.28 2.643 —0.84

Ne 12.105  11.951 —1.27 12.180 0.62 12.043 —0.51 12.076 —0.24
Mg 15988 15.745 —1.52 16.050 0.38 15.887 —0.63  15.933 —0.35
Ar 30.175 29.644 —1.76  30.216 0.14 29974 —0.66  30.041 —0.44
Ca 35.199 34587 —1.74 35249 0.14 34986 —0.61 35.061 —0.39
Zn 69.619  68.651 —1.39 69.798 0.26 69.480 —0.20  69.553 —0.09
Kr 93.833 92295 —1.64 93.719 —0.12  93.444 —0.41 93.527 —0.33
Sr 101.926 100.250 —1.64 101.761 —0.16 101.502 —0.42 101.591 —0.33
Cd 148.880 146.558 —1.56 148.493 —0.26 148.329 —0.37 148.415 —0.31
Xe 179.064 176.257 —1.57 178.449 —0.34 178.369 —0.39 178.450 —0.34

a very moderate advance for vibrational frequencies, but much better atomization
energies. A more detailed inspection of the individual data shows that the TPSS
functional also provides an improved description of hydrogen bonds [282]. In addi-
tion, the TPSS-MGGA often significantly reduces the error in the lattice constants
of solids in comparison with the PBE-GGA [232].

4.9 LDA+U

It is a long-standing problem for effective single-particle methods to deal with the
simultaneous presence of highly delocalized (itinerant) band states and of strongly
localized, atomic-like states in many compounds containing rare-earth or late tran-
sition metal elements. While the d- and, in particular, the f-states essentially retain
their atomic character in solids, the valence s- and p-states tend to form bands.
The preceding discussion of the properties of the LDA indicates that the LDA has
difficulties with the description of highly localized states, primarily due to the in-
sufficient treatment of the SIC. As a result the LDA predicts itinerant d-states and
a metallic ground state for many transition metal oxides, for which a sizable energy
gap between occupied and unoccupied subbands is observed in experiment (an ex-
ample is given in Fig. 6.3). Moreover, in spite of its overall improvement over the
LDA, the GGA does not really provide a satisfactory SIC either (see also Fig. 6.3).

The fact that the band picture is not adequate for rare-earth and transition metal
compounds suggests a decomposition of the complete Hilbert space into two subsys-
tems, following the Anderson model [284]: (i) the localized d- or f-states for which
a more explicit, orbital-dependent treatment of all Coulomb effects is required,
and (ii) the s- and p-states which are well described by the LDA (or GGA). The
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technical implementation of this concept in DFT is the LDA+U method [285-288].
For its derivation the only assumption required is that the d- or f-states are localized
within well-separated atomic spheres, so that the bulk states are well represented by
a superposition of the corresponding atomic states only.

The starting point of the discussion is the spin-resolved form of the sum of the
Hartree and the exact exchange energy, Eq. (4.16),

ButEi= 3 3, 3 OuaOuar [ @rd [0ua(r)Pulrr) | guro(r)F

o,0’ o,0f

—722@%@&6/613 &

X o (F)Por o (P)W(F, 7 ) D1 (F ) G (7). (4.331)

The states ¢ can e.g. be Bloch states, for which o corresponds to the combination
of the crystal momentum k and a band index (in this case one of the spatial integra-
tions has to be restricted to one unit cell). The intra-shell contribution to Ey + Ex,
i.e. the complete Hartree plus exchange energy associated with a single atomic shell
nl of an atom at site a, is obtained by projection of the actual KS states ¢ys onto
the standard set of atomic orbitals @, with principal quantum number n, angular
momentum quantum number / and corresponding z-projection m at site a,

Cacianim = / &r @l (P)9us (r). 4.332)

For given nl and a this overlap vanishes for all ¢, except the few localized states
which emerge from the @, in the solid (or molecule). The bulk states formed by
the @uu1,, on the other hand, can be expanded in terms of the orthonormal set of
atomic orbitals: within the atomic sphere in which ¢4 is localized at site a one
simply has

/d3r(p;nlm(r)(pan’l’m’(r) = 6nn/ 5[[’ Smm/ (4.333)
g (Pac zcac sanlm (panlm( ) (4.334)

The energy associated with the shell n/ at site a is thus obtained by insertion of
(4.334) into Eq. (4.331),

[Eu+E,, = z ZAZ’;”ZAG, ”,ﬁ[ (mm |w|m"'m"™) g

O'G'm

—722/&"“"’/&"‘;;',31 (mm! |wim" m" )y, (4.335)

mn,l///

where the matrix elements of the basis functions
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(mm |W|m// ///)

= / &1 d>r’ Qi (1) Pantot ()W 1) @y (7)) Qi ('), (4.336)
the occupation matrix
A = ¥ Ouc Chganim Cacianimt (4.337)
o
and the abbreviation m = m,m’,m” ,m" have been introduced. At this point the ref-
erence to the shell n/ as well as to the site a is dropped, direct and exchange matrix

elements are combined in an alternative fashion, and the intra-shell direct plus ex-
change energy is given its standard name,

EU[éo} = [EH+E }anl
722Amm” mm”’ mm|w|m" H/)

+= ZZAG oA [(mm |wlm"m"") — (mm|wim"'m")] . (4.338)

The derivation shows that this expression can be directly extended to the case of
more than one shell n/ and/or more than one site a.

In the next step the Slater integrals (4.336) have to be evaluated. Insertion of the
atomic orbitals

P,
(punlm(r) = l’fr) Ylm('Q> (4.339)

(the center of the coordinate system is chosen to be at the location of site @) into
(4.336) and expansion of w(r,r’) in spherical harmonics allows a straightforward
calculation of these matrix elements (for all details of the expansion and the angular
integrations involved see [289]),

21

(mm'|wm"m") = ap(m,m',m" ,m") Fy (4.340)
=0
L
ap(m,m’,m" ,m") = (L010|10)? N, (LM Im" |Im) (LM Im'|Im"") (4.341)
M=L
FL = /0 dr /0 dr’ Pu(r)*wi(r,r ) Pu(r)?, (4.342)

where (LM Im|l'm’) denotes the Clebsch-Gordan coefficients (in the definition of
Rose [289]). If w was the pure Coulomb interaction, one would have

wr(r,r) = & ,,LJ<rl with 7o =min{r,/'}, r~ =max{r,r'}.
>
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In reality, screening of the Coulomb interaction is important, so that usually an
effective, screened interaction is used to determine the radial Slater integrals Fy.

Due to the exact cancellation of the self-interaction energy in the expression
(4.338), EY accounts for the intra-shell xc-energy much better than the LDA. In
order to correct the LDA one would therefore like to combine EV with the LDA
functional. However, when adding £ U to EMPA | one has to make sure that double
counting of the intra-shell Hartree and xc-energy is avoided. The form of this dou-
ble counting correction could be determined by different strategies, depending on
the implementation of the combined functional. As long as no shape approximation
is used, the Hartree energy is handled exactly in EXPA, so that no modification of
this component is necessary. On the other hand, often a spherical approximation
(atomic sphere approximation—ASA) is used for the total KS potential experienced
by all localized states. The average Hartree energy per particle of the atomic shell
nl utilized in the ASA,

1
Y (mm |wmm') = Fy
(21+1)2 ot

(compare the discussion below) differs significantly from the actual Hartree energy
resulting for the individual states ¢,,,;,,,. For instance, the self-interaction energy of
a single d-state with m = 0 is obtained as

4
(00[w[00) = Fo-l—@(Fz +Fy) .

Thus, if the ASA is applied, not only the xc-energy, but also the Hartree term in
ELPA needs to be corrected for open-shell effects. In addition, one wants to in-
clude screening effects, as emphasized before (concerning screening, compare, how-
ever, the discussion of the tadpole contributions to the KS perturbation expansion in
Sect. 6.4.1). In the LDA+U approach the double counting (dc) correction is there-
fore chosen so that EV is cancelled by the dc correction, if the shell (of bands)
emerging from the atomic shell nl is completely filled, since in the case of filled
shells Ey is handled correctly by ELPA even in the ASA.

In order to evaluate EV for a completely filled shell one starts by considering the
occupation matrix A° . Eq. (4.337),

A8 = Ouc / &r / &r @k (1) bac (F) 0k () Qanim (1) - (4.343)
o

Since the states ¢ are eigenstates of the KS Hamiltonian, they form a complete
orthonormal basis. The completeness relation in the Hilbert space spanned by the
occupied states may therefore be written as (for each spin-channel separately)

Y Ouc Pac(r)des(r') = 83 (r—r) (in the space of occupied states) . (4.344)
o
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If the shell is completely filled, this completeness relation can be used in all matrix
elements of the atomic states ¢, as for instance!® for (4.343). This allows the
evaluation of the occupation matrix by use of the orthonormality relation (4.333),

Argm” — 6m,m” . (4345)

Insertion of this result into EV gives

closed 2 z mm |W|mm 2 2 (mm’\w|m/m) . (4.346)

o mm’ o mm’

Use of the matrix elements (4.340) as well as of the properties of the Clebsch-
Gordan coefficients then leads to

21
Eclosed = 2(21 + 1)2F0 - (21 + 1) z (LO 10|10)2FL (4.347)
L=0

One now identifies the self-interaction correction contribution to the exchange en-

ergy (the monopole term) to rewrite EY closed S

1 1
EY i = ZN“”[ (N — 1)U — 3 Y N (Nat 1), (4.348)
o

where Ng"[ = 21+ 1 is the number of spin-o electrons in the shell n/, the quan-
tity Nanl — NT“"Z +Nf"l is the total number of electrons in the shell, U = Fj is the
screened Coulomb repulsion energy per electron and J denotes the Stoner exchange
parameter,

1 21
J=— Y (LOI0|I0)*F . 4.349
21 2 (LOI0lI0) (4.349)

If the complete shell is filled, subtraction of the energy (4.348) from the general
expression (4.338) gives zero. In order to correct the expression (4.338) for double
counting in the case of a partially filled shell, one therefore subtracts the energy!!

10 Note that the completeness relation (4.344) could be used for all sites of a lattice which are
equivalent to the site a. On the contrary, use of the completeness relation for the @, is restricted
to the atomic sphere around site a.

! The expression (4.350) is also obtained by averaging over all possible ways to distribute the N&"
electrons with spin o among the 2/ + 1 available m-substates of an open-subshell atom [290],

i
Ej = ZEU(q) with g5 =01 ; Y g5 = Ng"
m=—1
1
EU(q) =5 Z Z anq”y mm,|w‘mm,) - Ez Z Qrcnqr?;’(mml‘w|mlm) ’
c o' mm’ o mm'

which, in turn is equivalent to a spherical average.
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EdC[éU] _ %Nanl(Nanl _ 1) _ %ZNgnl(Ng_nl _ 1) (4.350)
o

from EV, where, however, Nf;”l now denotes the actual number of spin-c electrons
in the shell (and N = N?"l +Nf"l #2(21+1)). This number is given by the occu-
pation factor Oy s weighted with the overlap of ¢y and all @,

N&" = ¥ Ous Y. |cacanm|” = DA, - (4.351)
o m m

In practice, the quantities U and J in Eq. (4.350) are often treated as parameters,
rather than evaluated from the integrals F7. In addition, sometimes modified double
counting corrections are utilized [291, 292].

The final LDA+U functional is then defined as [285]

EMPA U g, A%] i= E"PAng] + EV[AC] — E*[A°]. (4.352)
This functional is orbital-dependent since the occupation matrix depends on the KS
states. Unlike the case of the SIC-LDA, however, invariance under unitary transfor-
mations among the KS states emerging from the shell n/ is ensured.
Ignoring the exchange contributions beyond the SIC as well as the difference
between the intra-shell Coulomb integrals for the actual bulk states and the U of the
atomic orbitals, one can qualitatively express EFPATU as

U U
ELDA+U ~ ELDA+E z @O{@ﬁ_zN(N_l)7

o

where @, = 0, 1 represents the occupation of the state ¢ (the spin is now included
in a for brevity) and the sum over a, 3 only extends over all substates in the shell
nl. The orbital energies corresponding to this functional can then be obtained via
Janak’s theorem (see Sect. 3.4),

&ELDA+U
a@a

ea:

~ elPA LU (1 —@a> .
2

Compared to the LDA eigenvalue, one finds a lowering of the occupied states by
—U /2 and a raise of the unoccupied states by +U /2. The complete d- or f-band
thus splits up into occupied lower Hubbard bands and unoccupied upper Hubbard
bands, with an energy separation determined by the intra-shell Coulomb integral U.
The LDA+U method therefore recovers the physics of Mott-Hubbard insulators.

Due to its orbital-dependence E-PA*Y basically belongs to the class of function-
als for which the OPM of Chap. 6 should be used to determine the corresponding po-
tential. As in the case of the SIC-LDA, this is, however, not the standard procedure.
Rather one resorts to a nonlocal Hamiltonian which is obtained by minimization of
ELPA+U with respect to (g [287],
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ALDALU B 5ELDA+U
[HG (P(XO'K’I) - 64)5;6(")

= A5 0o (r)+ Y, / &1 Qantim (P UGt Pt (F )G (') (4.353)

W = Y, |:2Arg’/m’” (mm' |w|m"m") — A%, (mm' |w|m” /m”)]
m/ m/// G/

an 1 an 1
— S [U <N - 2) —J (Ncr - 2) ] . (4.354)

The additional term compared to the LDA has the form of a projection operator on
the atomic subspace nl. As this operator acts on all KS states, the quality of the
LDA+U approach is determined by the degree to which the localized states ¢yo,
for which the explicit treatment of the intra-shell Coulomb interaction is necessary,
retain the character of the atomic states ¢,,;,,- A clear separation of the complete
Hilbert space into the subspace emerging from the ¢, and a remainder must be
possible.

The LDA+U approach has been successfully applied to a wide variety of tran-
sition metal and rare earth compounds (see e.g. [288]). In particular, the LDA+U
provides an accurate account of the Mott-Hubbard character of the 3d transition
metal oxides, most notably MnO, FeO, CoO and NiO. This success seems particu-
larly noteworthy as, in spite of their localized nature, the 3d states strongly hybridize
with the oxygen 2p states in these compounds.



Chapter 5
Virial Theorems

5.1 Scaling Behavior of Energy Contributions

Virial theorems are derived by considering the behavior of all relevant quantities
under a global scaling transformation of the position vectors r; of the electrons,

r, — 7Lr,-, (51)

while keeping all other length scales of the system (positions of the nuclei, box sizes
etc) fixed. This transformation is thus not equivalent to a simple rescaling of the unit
of length: in the latter case all(!) quantities with the dimension of a length are scaled
in a homogeneous fashion.

In accordance with the transformation (5.1) one defines the scaled ground-state
wavefunction of the interacting system as

(rl,Gl;...rN,GN\‘}’()’;t) = 2,3N/2 (lrhm;. ..7LrN7(7N|‘1-’0> . (5.2)

The prefactor A3V/2 ensures proper normalization to 1,

(WoaPou) =21 Y /d3r1--~/d3rN|(7LT1701;~~-ATN,GN\‘P0>|2
O]...0N
= (Po|Wo) = 1. (5.3)
Similarly, one can introduce the scaled KS ground state,
(r1,015...7x,08|@g 1) 1= A3V (Ari,015... Ary, on| Do), (5.4)
which is a Slater determinant of scaled KS orbitals,
92 (r,0) == A3 ¢i(Ar,0). (5.5)

By construction, both (5.2) and (5.4) lead to the same scaled ground state density,

The original version of this chapter was revised. An erratum can be found at
https://doi.org/10.1007/978-3-642-14090-7_12

E. Engel, R.M. Dreizler, Virial Theorems. In: E. Engel, R.M. Dreizler, Density Functional
Theory, Theoretical and Mathematical Physics, pp. 219-226 (2011)
DOI 10.1007/978-3-642-14090-7_5 (© Springer-Verlag Berlin Heidelberg 2011
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ny (r) == An(Ar). (5.6)

For A — 0 the initial density n(r) is therefore smeared out in space, so that, on the
fixed external length scale(s), n; (r) becomes uniform and probes the low-density
limit. On the other hand, n; (r) approaches a §-like peak for A — oo, if n(r) charac-
terizes a finite system.

On the basis of these definitions one can analyze the scaling behavior of various
ground state expectation values, starting with the kinetic energy. Taking into account
the scaling of the momentum operator V = d/dr, one finds the same quadratic
scaling with A for both the exact and the KS kinetic energy,

(Pou|T[Woa) = A% (Wo|T|Wo) (5.7)
(@04 |TDo.1) = A% (Po| T Do) (5.8)

Equation (5.8) can be reformulated as a scaling relation for Ti[n], Eq. (3.21),
Tinp] = (@01 |T|@g ) = A% (o|T'|Do) = A7 Ti[n], (5.9)

where the unique correspondence between |® ) and n; as well as the universal-
ity of Ti[n] have been used on the left-hand side (the one-to-one correspondence
results from the Hohenberg-Kohn theorem for noninteracting particles, as soon as
v-representability of n; is assumed). The next energy component of interest is the
external potential energy,

<\PO,7L Wext|q’0,k> = <(D<) A |Vext|q)0 )L)
= /d3rn,1 Vext (T /dgrn r)vex(r/A).  (5.10)

Of course, no statement is possible without further specification of vey;. The best-
known case is that of a single atom with the nuclear Coulomb potential centered at
the origin,

/d3rnl(r)vg§§m l/d3rn YA (). (5.11)

The scaling factor can be absorbed into the positions of the nuclei in the more inter-
esting case of molecular or crystalline systems with the external potential (1.6),

3 _ 3 Zae
/d 1y (1) Vexe(7) /l/d ra( Z‘r AR (5.12)

Finally, it remains to examine the interaction energy. For the Coulomb interaction
one has

(WorlW[Wos) = A (Yo|W[W¥o) (5.13)
(@ 2 |W[@g 1) = A (Do|W|Dy), (5.14)
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with W given by Eq. (2.5) and w(r,7’) = € /|r — r/|. By definition the expectation
value (5.14) consists of the Hartree and the exchange contribution,

Enlna] + Exlna] = (@0 1 |W|®g ) = A (@|W|®o) = 4 { Exln] + Exln} . (5.15)
The scaling behavior of Ey[n] is easily obtained from (3.25),
Eulny] = A Euln, (5.16)
so that one finds for the exchange functional [293],
Ex[ny] = A Ex[n]. (5.17)

The scaling properties of E[n] are more involved. It is clear that E[n] can not obey
the simple power law observed for the exact interaction energy, Eq. (5.13), since
E.[n] contains the difference between the exact and the KS kinetic energy. In order to
derive a relation for E¢[n] one uses the fact that |\¥ ; ) minimizes (¥, |T+AW|¥;)
[293]. On the other hand, the Levy-Lieb functional Fiy [n], Eq. (2.59), minimizes
(¥|T +W|¥) for given constraint ) — n, so that one finds [293]

Fiolm] < (ol +W([¥,) .

Decomposing Fi 1 as usual, Fi1 = T5 11+ Eq + Exc LL , then allows one to establish
an inequality for Exc 11 [n] under scaling [293],

Ecrilm) < A*(T —Top[n]) + A (W — Euln] — Ex[n]) (5.18)

with the obvious definitions
T = (Wo|T|W¥o) (5.19)
W = (Wo|W|¥). (5.20)

What is the use of these scaling relations?' The answer is given under the heading
of virial theorems.

5.2 Conventional Virial Theorem

We first consider the virial theorem of standard quantum many-body theory. The
crucial observation for its derivation is the fact that, for given, unscaled Hamiltonian,
the total energy of the system has its minimum for A = 1, as [V, ;) approaches the

! A large variety of additional scaling relations for Ej, its components and the corresponding
functional derivatives have been established in the literature [294-306] (for a compact compilation
of the most important results see e.g. [307, 308]). In addition to the uniform coordinate scaling
(5.6), non-uniform scaling, such as 15 (x,y,z) = An(Ax,y,z), and scaling of the interaction strength
(either with or without simultaneous coordinate scaling) have been considered. These investiga-
tions have led to an overwhelming number of identities and inequalities for various parts and
limits of Ex., which have been extensively used as constraints in the construction of xc-functionals
[309, 206, 211, 310, 207, 231, 232].
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true ground state |\Wo) in this limit. This corresponds to the relation

Yo, |HWY =0. 5.21
d),< 0alH[Yo.2) - (5.21)
Insertion of (5.7), (5.12) and (5.13) yields
— 2(Wo|F[Wo) + (Wo|W |¥o) /d3rn P Zoe”
0 0 0 0 |r—)LRa\

2
— R

_ 3
ZRB aR [/d ra(r 2|r Ro‘]expl

Here the relation

d

QTmRa’i - 60([3 51] (522)

has been utilized and the index “expl” indicates that only the explicit R, -dependence
has to be taken into account in the evaluation of the partial derivative (but not the im-
plicit dependence of n(r) on Ry,). Identification of (W |Vex|¥o) leads to the desired
virial theorem

0 =2T + W + (Wo[Vex|Wo) + >, Ro - (P0|Vex|Wo) . (5.23)
o

9
&RO‘ expl.
In the special case of atoms Eq. (5.23) simplifies to the famous relation

0 = 2T + W + (Wo|[VAO™|Wy) = T +EXNo™, (5.24)

ext

5.3 DFT Virial Theorem

In order to derive virial relations for density functionals, one first considers the
generic situation

Alny] = A*Aln]. (5.25)

Using the fact that A[n,] depends on A only via the scaled density n; (all other
length scales remain fixed), one obtains quite generally [311],

dny (r) 6A[n]
dA 6y (r)|,_

iA[m = kA[n] = /d3

71 . (5.26)
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One can now insert (5.6),

B . SA[n]
] f/d% [37LG(/lr)+7u3r 50" S
0A[n|
= / d*r [3n(r) +r-Vn(r)] Snlr) (5.27)
If n(r)
by parts,
__ / Pra(r)r-v g:([ﬂ. (5.28)

Either the form (5.27) or (5.28) has to be used, depending on the type of system
considered. For brevity, the subsequent discussion is restricted to the case of finite
systems.

One can now apply (5.28) to the individual energy components. For the kinetic
energy (5.9) the variational equation (3.54) (for the KS system) leads to

27 /d3rn r. V /d3 V- Vvs(r). (5.29)
Similarly, Egs. (5.16) and (5.17) lead to virial relations for the Hartree and the ex-
change energy functional [293],

Euln] = — / Bra(r)r-Vou(r) (5.30)
Exn] = —/d3rn(r)r-va(r). (5.31)

The most complicated component is the correlation energy, as it does not exhibit
the straight power law behavior assumed for the derivation of (5.28). Nevertheless,
the steps which lead from Eq. (5.26) to the right-hand side of Eq. (5.28) can also be
applied to E, [293],

d

EEC [nl]

- —/d3rn(r)r-ch(r) . (5.32)

A=1

Note that the relations (5.29)—(5.32) are valid for all kinds of external potentials
vext- Only the particle—particle interaction has been chosen to be Coulombic. These
relations thus allow a check of numerical procedures for a very general class of
problems.
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On the basis of (5.9), (5.16), (5.17) and (5.32) one can derive the DFT analog of
Eq. (5.23). Starting from the minimum property of the total energy functional,

d

ﬁE[’%]

=0, (5.33)
A=1

one obtains with the decomposition (3.24) (see [312]),
0 = 27,[n] + Enln] + Exn /d3m r-Voe(r)

, (5.34)

. d .
+<IPO‘Vext‘lPO> JFZ Ry - W<IPO|Vext|\PO>
[ o expl.

where (5.32) has been utilized for the evaluation of dE.[n;]/dA and the treatment
of Ecx[n] follows that in Eq. (5.23).

Combining (5.34) with (5.23), one finally obtains for the specific external poten-
tial (1.6) [312]

Een) = f/d3rn(r)r-ch(r)—T+Ts[n}. (5.35)

5.4 Hellmann-Feynman Theorem

The interaction between the external sources, the nuclei, has been ignored in the
discussion of the virial theorems (5.23) and (5.34). We now consider the complete
Born-Oppenheimer (BO) energy surface, including the energy (1.4). In order to es-
tablish a virial relation, one first evaluates the gradient of the total BO energy with
respect to the position of the nucleus a, R,

2
ZﬁZye

R [F 3 S R Ry (5.36)

The electronic part of this gradient is given by

d d

However, as F[n] is universal, an explicit Ry-dependence of E[n] is only found in
Eext[n]. In addition, the variational equation (2.38) is valid on the BO surface, i.e. as
soon as the electronic ground state for given positions of the nuclei is reached,

d d d 3
—,uaRa /d ra(r)

ar, Fl = oro

<\’PO|Vext|\PO>

expl.
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0 N
= 5 (Yo|Vex|'Yo)
(9R ext expl.
Z e*(Ry — 1)
_ 3 o o
_ / Br |Ra_r‘3 (5.37)
z Zoye*(Ry —1) ZoZge*(Ro — Rp)
—E = [ Pra(r)=2=—""% — . (5.38
— dRa BO = / |Ra—r\ ﬁ%a |Ra*Rﬁ|3 ( )

Equation (5.38) is an important result in itself, as it shows that the gradients of
the total BO energy, i.e. the forces on the nuclei (within a classical description), are
completely determined by the explicit R,-dependence of the electronic energy. This
result simplifies the calculation of forces in actual applications considerably.

Equations (5.37) and (5.38) represent the original form of the Hellmann-Feynman
theorem [313, 314], formulated in terms of the total energy functional. They are
special cases of a rather general result which can be proven for parameter-dependent
expectation values of the form

(WorlHp|Wor)  with  Hy[Woa) =Ex[Woa)- (5.39)

The derivative of (W3 |H; W) with respect to the parameter A reduces to the

derivative of the operator ), as long as the eigenstates |Wo.2) of H, are normalized
to one for all values of A,

d
(WorlHp|Wo2)

dr
d‘POA ~ [d¥o
= Hj (Yo, ‘Poz ‘1’0,/1 +( Yo |H
dA
d
=B (WorlWor)+ ‘Poz ‘Poz
A,
= (¥ —= ¥ . 4
< 04| 77 0,x> (5.40)

In (5.37) and (5.38) the positions of the nuclei play the role of the parameter A.
Equation (5.38) leads directly to a virial relation, if one considers a local or global
minimum of the BO energy. At a minimum the forces on the nuclei vanish,

/d3 Zae Rafr)

Ry —rfF

ZaZﬁe Ra Rﬁ)
|Roc Rﬁ|3

d N
ﬁ <"PO|Vext|lP()
o

expl.

=Y (5.41)

pra

This allows an evaluation of the most complicated contribution to the general virial
theorems (5.23) and (5.34),
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(9 A 1 ZaZﬁez
Ry~ (Wo|Ve|Wo)| =2 ¥ 2P (5.42)
% ’ 8R0¢ - expl. 2 aéﬁ |R0¢ 7R/3|

Insertion of (5.42) into the conventional virial relation (5.23) then yields a relation
between the total BO energy and the (full) kinetic energy of the electrons,

R 1 ZoZpge?
0=2T+W+ (WolVex|Wo) + = Y, o———=T+Ego
2(1#[; |RO£7R,B|

Finally, combination of (5.42) with (5.34) yields the DFT variant of (5.43) (see
[312]),

0 = 2Ti[n] + Eex[n] + Eu[n] + Ex[n]

1 ZouZpe®
— [ Pra(r)r-Vv(r)+- ¥ S22 (5.44)
/ 3 2
—  Epo= T +E[n] + / Bra(r)r-Vve(r). (5.45)

Equation (5.45) provides a consistency check for actual calculations.



Chapter 6

Orbital Functionals: Optimized Potential
Method

6.1 Motivation

The illustrative results for (M)GGAs which have been presented in Chap. 4 demon-
strate the success of the GGA concept. Studies of the applicability and the ac-
curacy of different forms of the (M)GGA for a large variety of systems support
this statement [5, 200, 211, 224, 238, 315-326]. A completely different concept
[113, 114, 127] is introduced in this chapter. In this approach Ey. is expressed in
terms of the KS orbitals and eigenvalues,1 rather than the density itself, so that Ex.
becomes an implicit functional of n. The prototype functional of this class is the
exact exchange, Eq. (4.5).

Given the success of the GGA, one may ask why such orbital-dependent xc-
functionals are of any interest? The answer to this question necessarily consists in
a list of systems for which the GGA (and, of course, also the LDA) is not just
inaccurate, but rather fails completely.

6.1.1 Atomic Negative lons

A first fundamental failure of the GGA is observed for atomic negative ions [327,
328]. This failure originates from the semi-local density-dependence of the GGA
exchange potential. The situation is more easily analyzed in the case of the LDA,
to which we restrict the explicit discussion. The LDA for the exchange potential is

given by Eq. (4.111). As the density of finite systems decays exponentially in the

asymptotic region, one finds an exponential decay of viPA,

or = VPAGr) —— e

[r[—oe

n(r) —>‘ | e —ar/3
r|—oo

! In the following the term orbital-dependent is always understood to include a possible eigenvalue-
dependence.
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in obvious contradiction to the exact result (4.20). An equivalent exponential decay
is also obtained for the LDA correlation potential (1/rg ~ n'/3). Moreover, for neu-
tral atoms the electrostatic potential of the nucleus cancels with the monopole term
in vy, Eq. (3.42). Consequently, the total vs decays faster than 1/r. This implies that
a neutral atom does not exhibit a Rydberg series of excited states within the frame-
work of the LDA and is therefore not able to bind an additional electron, i.e. to form
a negative ion.”

The same deficiency is found for all GGAs of the form (4.281), for which the
potential, Eq. (4.290), depends on the first two gradients of the density. While for
some forms of the kernel f, Eq. (4.281), a power-law behavior of v3%A for large r
can emerge from (4.290), this standard form of the GGA potential necessarily de-
cays faster than —1/r [220] (see Sect. 6.3 for an explicit example of this behavior).
As a consequence, GGAs do not predict the existence of atomic negative ions either.
The same problem is observed for many negatively charged small molecules.

The —1/r-behavior of the exact vy results from the self-interaction contribution
to Ex, which is required to cancel the self-interaction included in Ey, as discussed
in Sect. 4.1. This indicates that one needs a rather nonlocal exchange functional
to reproduce the —1/r-behavior: the self-interaction component of vy has to be as
nonlocal as the Coulomb integral in vy. In fact, an exact cancellation of the self-
interaction in Ey is only possible if the same Coulomb matrix elements are present
in Ey. This requires an orbital-dependent representation of Ex.

6.1.2 Dispersion Forces

The LDA and GGA also fail to reproduce the London dispersion force (one of the
van der Waals forces) [329-331]. In this case the problem results from the short-
ranged nature of the LDA/GGA correlation functional. In the LDA the correlation
energy density is given by the energy density e?EG of the homogeneous electron
gas (HEG), evaluated with the local density, Eq. (4.109). As ef¥S(ny — 0) =0
(see Eq. (4.107)), one realizes that only regions in space with a non-vanishing den-
sity contribute to the correlation energy. Now consider two neutral, closed-subshell
atoms, which are so far apart that their densities do not overlap. As indicated in
Fig. 6.1 the density of this system corresponds to the sum of the two atomic densi-
ties. In this situation dispersion forces become important, as there is neither an elec-
trostatic interaction between the two atoms nor can any bonding orbitals be formed.
Only the attraction between virtual (dipole) excitations of the two atoms can lead
to binding via the London dispersion force. In the LDA, however, any inter-atomic
interaction provided by E. requires an overlap of the atomic densities, as the binding
energy Ep must result from the nonlinear density dependence of ECLDA,

2 Note, however, that (4.20) is only a necessary, but not a sufficient criterion for the stability of a
negative ion. Ultimately, the stability depends on the relative size of the total energies of the N and
the N + 1 electron system.
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Fig. 6.1 Electronic density of two atoms at large separation.

Eyp = EXPA[ng 4 np) — EXPA ny] — EFPA[ng) .

For this reason dispersion forces can not be reproduced by the LDA.
The behavior of the LDA in the case of dispersive bonds is illustrated in Fig. 6.2,
in which the BO surface of the He dimer is shown. He; is a particularly sensitive

Ey, [meV]

——— LDA 7

R [Bohr]

Fig. 6.2 Energy surface E}, of He,: Selfconsistent LDA [134], BLYP [219, 221] and PBE [207]
data versus exact result [332].

system, as manifest in the meV scale of Fig. 6.2: the dispersive bond is extremely
weak, which leads to a highly delocalized ground state wavefunction [333]. He,
thus provides an ideal testing ground for approximate correlation functionals.

As is obvious from Fig. 6.2, the LDA predicts the minimum of E}, to be at much
smaller separation than the true E}, [332] and overestimates the corresponding well
depth by an order of magnitude. For large internuclear separations the LDA surface
vanishes exponentially (which is not apparent due to the scale of Fig. 6.2). The
figure confirms the argument that the LDA requires the densities of the two atoms
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to overlap, in order to produce binding. As a consequence, the dimer is contracted
far too much in the LDA. The LDA is not suitable to describe dispersive bonds, in
spite of the fact that it generates an attractive Ey.

As in the case of negative ions, this problem is not resolved by use of the GGA,
in which the energy density depends on the first two gradients of the density,

ESN ] = [ eSO (n, (V2. V).

The Vn-dependence of ¢S9A(r) only accounts for the density in the immediate

vicinity of r. ¢S94 (r) therefore vanishes wherever n(r) vanishes. Figure 6.2 ex-
plicitly illustrates this statement for two standard versions of the GGA. While the
PBE-GGA basically shows the same picture as the LDA, the BLYP-GGA remains
repulsive for all internuclear separations. The discrepancy between the two GGA
results already indicates the inadequacy of the GGA for this system. In spite of the
quantitative improvement of the PBE-form over the LDA, the attractive potential
generated by the PBE-GGA relies on the same mechanism as the potential pro-
duced by the LDA. Neither the LDA nor the GGA can mediate the long-range force
resulting from virtual excitations.> Not only the exact exchange functional is highly
nonlocal, but also the exact correlation functional.

6.1.3 Strongly Correlated Systems

The third class of systems for which both the LDA and the GGA meet with prob-
lems are strongly correlated systems [338, 339, 237]. The most prominent examples
of this type of solids are the 3d transition metal monoxides MnO, FeO, CoO and
NiO. These systems, which crystallize in the rock salt structure,* are insulating an-
tiferromagnets of type II.> Both the LDA and the GGA predict, however, FeO and
CoO to be metallic and underestimate the band gap in MnO and NiO dramatically
[338, 339, 237]. This is illustrated in Fig. 6.3 in which the LDA and PBE-GGA band

3 The dispersion force between two well-separated perturbations in a uniform electron gas is,
however, included in the linear response contribution to the xc-functional, Eq. (4.159) [160, 161]:
for large separation R of the two localized perturbations one obtains the required attractive 1/R°-
interaction. This opens a route to account for the dispersion interaction by nonlocal, but still explic-
itly density-dependent functionals [162—170]. In an alternative approach the polarizability of the
interacting fragments is modeled in terms of multipole moments constructed from the exchange
hole on the two centers [334—337]. This model is then inserted into the closure approximated ex-
pression for the standard second order energy correction. The resulting functional depends, how-
ever, on the occupied KS orbitals.

4 One finds a minor rhombohedral distortion of the unit cell, which, however, appears to be irrele-
vant for the insulating nature of these compounds.

3 In the type II antiferromagnets the magnetic moments of all transition metal atoms in planes
orthogonal to the body-diagonal are aligned, with the direction of the spins alternating from plane
to plane.
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structures for FeO are plotted—the band structures obtained with most other GGAs
are rather similar [339, 237].

KS single particle energies [eV]

Fig. 6.3 Band structure of antiferromagnetic (type II) FeO obtained by plane-wave-pseudo-
potential calculation with the LDA (solid lines) and PBE-GGA (dashed lines). The valence space of
Fe includes the 3s, 3p, 3d and 4s states, the cut-off energy of the plane-wave basis is Ecyt =300 Ry,
20 special k-points have been used for the integration over the 1st Brillouin zone.

The origin of this problem is not a priori clear from the structure of the LDA and
GGA. There are, however, definite indications of the reason for these difficulties:

e On the one hand, there exists one parameterization of the GGA which predicts

FeO and CoO to be antiferromagnetic insulators [237]. This functional is the
only GGA whose kernel was explicitly optimized to reproduce the exact atomic
exchange potentials as accurately as possible [244]. Although the results obtained
with this GGA are not really convincing (in particular, the corresponding gaps
are still much too small), this suggests that the quality of the exchange potential
plays an important role in the description of Mott insulators.
The SIC-LDA, Eq. (4.301), also leads to insulating ground states [270, 271].
Similarly, partial inclusion of exact exchange (i.e. for the 3d states at the iron
sites) in the spirit of a hybrid functional (see Sect. 6.5.4) opens a gap [340].

e Finally, an LDA+U treatment solves the problem [285, 288].
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All these results indicate that once again the inappropriate handling of the self-
interaction (in this case of the 3d states) is a major reason for the failure of the LDA
and GGA.

6.1.4 Third Generation of DFT

Let us finally look at the concept of orbital-dependent xc-functionals from a some-
what wider perspective. The initial idea of DFT was to represent the total energy as a
functional of the density, E[n]. The many-body problem then reduces to the solution
of the variational equation 8 E[n]/dn(r) = i, Eq. (2.38). In this first generation of
DFT one needs an explicit representation of 7 in terms of n, for which only Thomas-
Fermi-type functionals and nonlocal extensions based on linear response are avail-
able to date (see Appendix D). Even elementary properties of quantum systems,
most notably the atomic shell structure, are not reproduced with these functionals.
This was the reason to resort to an implicit representation of 7 in terms of the KS
orbitals, recasting the many-body problem in the form of the KS equations. Only an
explicit representation of Ey. in terms of n is required in this variant of DFT (second
generation). Unfortunately, the explicitly density-dependent approximations for Ex.
currently available exhibit the deficiencies discussed in the preceding sections. The
obvious next step for an improvement is a representation of Ey., or at least of Ey,
in terms of the KS orbitals. The formally correct way of implementing this third
generation of DFT is the so-called Optimized (Effective) Potential Method (OPM or
OEP), in which the many-body problem is approached by the simultaneous solution
of the KS equations and an integral equation which determines vy, (to be discussed
below).

Unfortunately, the OPM turns out to be computationally very demanding even
for rather simple orbital-dependent expressions. For this reason applications of
orbital-dependent xc-functionals often rely on the so-called generalized Kohn-Sham
(GKS) approach, in which the KS equations are replaced by the HF-type orbital-
dependent equations which result from a minimization of the total energy functional
with respect to the orbitals.® Alternatively, orbital-dependent expressions are sim-
ply applied a posteriori by insertion of the solutions of a self-consistent GGA (or
even LDA) calculation (Post-GGA/LDA treatment), rather than implemented self-
consistently. The GKS or Post-GGA schemes are used in particular for the model-
based’ functionals of Sect. 6.5. In the following, however, we will focus completely
on the rigorous way of handling orbital-dependent functionals, i.e. the OPM. In fact,

6 If applied to the exact exchange without any correlation, the GKS scheme coincides with the HF
approach.

7 Lacking any better characterization, we call all those functionals model-based which either can
not be derived by a systematic sequence of approximations from the exact Ex., or contain parame-
ters which can be determined in more than one way. The class of model-based functionals includes
both non-empirical functionals whose parameters are adjusted to theoretical conditions, as well as
semi-empirical forms whose parameters are fitted to experimental observations.
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this is the standard approach in the case of the exact exchange and the first-principles
correlation functionals of Sect. 6.4.

In summary, there exist three basic variants of DFT, which differ both in qual-
ity and in computational efficiency. Depending on the physical phenomenon under
investigation, one can choose the method which is most appropriate. However, it
seems fair to say that, given the present computer power, the OPM implementation
of orbital-dependent functionals primarily serves to provide benchmark results and
proof-of-principle solutions.

6.2 Derivation of OPM Integral Equation

The most important question to be answered at this point is how to calculate the mul-
tiplicative potential (3.43), which corresponds to an xc-functional of the type (4.5).
There are three different ways for the derivation of the basic equation, which deter-
mines this potential. As each of these derivations is instructive by itself, all three will
be outlined below.® However, before starting the discussion of the OPM equations,
we first introduce a notation which allows dealing with both spin-saturated (DFT)
and spin-polarized (SDFT) systems in a more coherent fashion.

6.2.1 Compact Notation

In Chaps. 1-4 the spin degree of freedom has always been specified explicitly as an
argument of the KS orbitals, ¢ (rc), and related quantities such as Green’s func-
tions. This explicit notation allows a more ready access to the relations used in DFT,
be it at the price of somewhat lengthier equations. From this point on, we will use
the standard notation, in which the orbitals are understood as bispinors,

_ (D)

In the framework of both DFT and SDFT, to which we restrict the discussion in this
chapter, the quantum number k consists of an orbital quantum number ¢ and a spin
quantum number s, according to either Eq. (3.9) for the case of spin-saturated sys-
tems or to Eq. (3.93) for spin-polarized systems. As the spinor character of ¢ is, in
this case, determined by the Pauli spinor ¥;, either its lower or its upper component

vanishes,
o= (*07) o= (4 ) (62)

8 For an extension of the OPM to excited states see [341], to time-dependent DFT see [342].




234 6 Orbital Functionals: Optimized Potential Method

The scalar orbitals ¢ of the right-hand side are defined by either (3.9) or (3.93).
In order to distinguish between the bispinor on the left-hand sides of Eq. (6.2) and
the scalar orbitals on the right-hand sides, we will always label the bispinor with the
compact index k (etc) in the following, with the understanding that k = as.

This allows a unified representation of the KS equations, covering both DFT
and SDFT. If the KS potential vy is understood as the diagonal matrix of the spin-

dependent potentials (3.99),
wiry = (P00 (6.3)
) 0 vi(r))’ '

and ¢, is the bispinor (6.1), the KS equations of both DFT and SDFT can be written
as

2%72
{ - T () ) = ). (6.4

2m

If the spin-component of k corresponds to spin-up, only the upper component of ¢
is nonzero, according to (6.2). Consequently, the matrix-spinor product vs ¢ reduces
to

Vs @ = VZ (POtT(r)a

so that the KS equations for spin-up emerge (similarly for spin-down).
The nonlocal operator vy may be decomposed in the form

vs(r) = vl (r)P +vl(r)P (6.5)

with the aid of the projection operators

_(10Y) _ ¥ _{00Y) _ ¥
po= <00> = XX P = <01> = XX - (6.6)
Using Pg, the spin-density can be expressed as
no(r) = Y, 0u) (r)Psdi(r) . (6.7)
k

6.2.2 Direct Functional Derivative

The simplest way to derive the basic equation of the OPM is the transformation of
the functional derivative (3.43) into derivatives with respect to ¢ and &, using the
chain rule for functional differentiation [343, 344] (for a general discussion of the
chain rule see Appendix A). In the following we formulate this approach directly
for the more general situation of spin-density functional theory, assuming Ex. to be
a functional of the KS orbitals ¢ and the corresponding eigenvalues ¢&. At the end
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of the discussion we will then reduce the spin-dependent equations to the limit of
spin-saturated systems.

Relying on the one-to-one correspondence between the set of spin-densities
(ny,n)) and the corresponding set of KS potentials (vl , vi), one first obtains

OE OE
o XC _ 3 / Xc
L = g / &r 6% G M - 6.8)

However, for given number of spin-up/down electrons, Ng = [ d>rng(r), the spin-
density ns is uniquely determined by vZ only, and vice versa. On the one hand,
the solutions ¢ys of the KS equation (3.98) are completely determined for given
vZ, irrespective of the form of the KS potential for the opposite spin. Therefore,
as soon as Ny is fixed, ng is fixed. On the other hand, for given ny the associated
KS potential is fully determined (up to a constant) by virtue of the HK-theorem for
noninteracting systems, v> = —087; 1 [ny,n,]/6ns + Ug, since Ty [n1, 1], Eq. (3.96),
is additive with respect to spin. In other words: for given N the two spin channels
are completely decoupled in the noninteracting KS system.”"'9 As a consequence,
one has

!

O(r) _ s 8u(r)

Sna(r) % Snlr) ©

which simplifies Eq. (6.8). In a second step one utilizes the one-to-one correspon-
dence between v and the associated single-particle states (compare the discussion
following Eq. (3.21)),

G 3, 00 (r) 30 |80, (F) SEx
VXC( ) /d 571(; r %{/d d 61}?(;‘/) 5¢]j(r//) Te.c
o¢ 8Exc}

+W 88/( (6.10)

The sum over k is not restricted to occupied states and includes both spin channels.
However, the variational derivative 5(}),{T /6vg vanishes if the spin-quantum number
in k is opposite to &, as will be shown explicitly below. The functional derivative
OFEx/ 5¢,j is a bispinor. It has the simple form

? Note that this statement is no longer correct, if only the total number of electrons is specified,
while Ny is allowed to vary in accordance with N = N; + N). This is typically the case for infinite
systems for which the magnetic moment results from a minimization of the total energy with
respect to Ny, N|. In this situation ns depends on both vl and vi. Nevertheless, v¢ is still uniquely
determined by 14 only (up to some constant, as usual).

10 This statement should not be mixed up with the fact that the total KS potentials in the KS
equations for the interacting system are constructed from both spin-channels: for the present task
of replacing functional derivatives via the chain rule only the one-to-one correspondence between
the spin-densities and potentials of the KS system is relevant.
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5Exc _ 6Z*EX(Cr) . 5Exc o 52-
500 oi(r)  \ ) 500 (1 \ 55
k=0T O k=ot| 6¢(xl(r)

in the present situation.

The functional derivative § Ex./8ns has now been expressed in terms of quanti-
ties which can be evaluated: the derivatives 0Ex./0 @ and dEx./d€ can be calcu-
lated for any explicit expression at hand. For instance, for the exact exchange (4.5)

one finds
OE,

sof(r)

and dEx/de; = 0. The additivity of Ex with respect to spin shows up in (6.11) as
soon as Eq. (6.2) is taken into account.

The derivatives § (p,j /0v? and d¢g;/6vS can be evaluated by use of the KS equa-
tion (6.4). An infinitesimal variation v, of the total KS potential (which corre-
sponds to a diagonal 2 x 2 matrix in the case of SDFT) induces infinitesimal changes
O ¢y and J¢; of the KS states and eigenvalues, respectively,

@kZ@m) /d3 ¢1r r/|) (6.11)

V32
{ o +vs(r )+5Vs(")} [0 (r) + 6 k(r)] = [x + S&] [Qr(r) + S i (r)] .

To first order one thus finds

2
{ hZV +vs(r) — }5¢k(") = [8& — Ovs(r)] i(r) . (6.12)

Multiplication by 0); (r), integration over r and use of the unperturbed KS equation
then yield

Sy — / &r ) (r) vy(r) dulr) . 6.13)

Upon insertion into (6.12) one arrives at

2v72
{—hzz +vs(r) - }6¢k Ud3r’¢k )8vs (K)o (') — 8vs(r) | dc(r) .

This inhomogeneous differential equation can be solved with the aid of the associ-
ated Green’s function Gy,

2v72
{ Y (- }Gk<r,r’>=6<3><r—r> HY("). (614
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which can be identified as!!

5 419/ (r).

Gi(r,r) = (6.15)
k(r,r) P NCED
Gy, has the obvious symmetry
Gi(r.,r) = Gu(r'r). (6.16)
In terms of the Green’s function, d ¢y is given by
89u(r) = = [ & Gu(r.r) Su () (). (617

It should be no surprise that Egs. (6.13) and (6.17) are quite familiar from first order
perturbation theory. By insertion of (6.5) into (6.13), (6.17) one obtains

6 J / /
52]5((:,)) = — 9/ () PoGy(r',7) (6.18)
Svo(r) & (r) P ¢(r). (6.19)

It remains to deal with the factor §v2/6n°. The inverse of this quantity is the
static response function of the KS system,

on°(r) oo’ /

— = r,r). 6.20
5\/? (r/) Xs ( ) ( )
As indicated by its name and notation, xf"l is related to the density—density
response function (4.67). The discussion of this point is, however, relegated to
Sect. 6.2.4. x99 is easily calculated by insertion of (6.18) and its hermitian con-

1A closer look at the expression (6.15) exhibits that G, contains contributions from both spins.
With the explicit form of the quantum number &, k = s, one finds in the case of SDFT,

9p (r) 04, (F)
Culr?) =% X Tl
s B Bs os
B#a if s'=s
2 (pﬁT(r)(PET(r/) 0
B €p1 — Eas
B#o if s=1 ,
r) o (r
0 2 (l)ﬁl( )(bm( )
B €| — €as

Baif s=|

The contribution to G combining eigenvalues from both spin channels is a result of the particular
notation chosen, which covers spin-saturated and spin-polarized systems at the same time. It drops
out of all relevant formulae.
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jugate into (6.7),

2x5° 2@k¢k VPG (r, ) Porp(F) +c.c.. (6.21)

xS o s diagonal in spin, as can be shown by use of Egs. (6.2) and (6.6),

XSGOJ(","/) = — 050 ZanMa(r)Gao(n r/)‘POtG(r/) te.c.. (6.22)

Insertion of Gy into (6.21) allows the derivation of an alternative form for 2 o
Splitting the summation over all states [ # k in Gy, into contributions from occupied
and unoccupied states, one arrives at

Xfal(r,r’) - _kl;%ék@k@l d)lj(r) ¢l(£1)ipl£;({ ) Py i(r') +c.c.
r T r
—Z@kZ ¢k( r)P Mpgrd%(r’)—i—c.c..

& — &

The first term on the right-hand side vanishes, as can be shown by interchanging the
indices k and [ in the c.c. term,

ce.=— Y 0,00 (F)py XA p o).
klslk & —&
One thus finds
i Tl /
x° 2@1( (P" (r)PUq)l(;) flg(kr Vo () +ece.,  (623)

which is often more useful than (6.21) in actual calculations.
If one multiplies Eq. (6.10) by x2°(r,r"), integrates over r, and uses

on (r) SVG(r/) (3) (41 /
3 o s _ 503 _
/ S Sngny 0 T

as well as the symmetry of the response function (6.21),
20" r) = 130 (r,r")

one ends up with an integral equation for vZ,,

/ B yC VO(F) = AS(r), (6.24)

with the inhomogeneity given by
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SEy.
& )PsG
Z/ (Pk k(rr)a(b]j(r)Jr
8Exc
+Z¢k r)Psdy(r 8£k : (6.25)

The xc-potential is spin-independent in the case of spin-saturated systems. Summing
(6.24) over both spins, one finds

/ Er s (r, 7 ) vxe(F') = Axe(r), (6.26)
where ys denotes the complete static KS response function,

=Y x°rr) = Z@wk )Gi(r, )i (r') +c.c. (6.27)

and the inhomogeneity is given by

, i OEx IExc
Axe(r) = %{/aﬁr [q),j(r)Gk(r,r)W +ec| +|g(r)]? EFS } :
(6.28)

From now on we will no longer distinguish between Eq. (6.26) and its spin-
dependent counterpart (6.24)—for brevity, the subsequent discussion will be re-
stricted to the spin-saturated formalism.

Equation (6.26), termed the OPM integral equation, is the central equation of the
OPM. It allows the calculation of the multiplicative xc-potential for a given orbital-
and eigenvalue-dependent functional Ey., as soon as all ¢, and g are available. As
Eq. (6.26) is linear in Ex., each of the components of Ex. can be treated separately.

Each cycle of a selfconsistent KS calculation consists of two steps, (i) the solution
of the differential equations (3.44) for given vy, and (ii) the determination of this vy
for given KS orbitals. Step (ii) includes the evaluation of the xc-potential. In the
case of an LDA or GGA potential one calculates the density and its derivatives and
inserts these quantities into a given analytical formula. In the OPM the solution of
Eq. (6.26) replaces this simple insertion of # into a functional.

6.2.3 Total Energy Minimization

The physics behind the OPM integral equation becomes more transparent in the sec-
ond derivation of Eq. (6.26). This alternative approach, which constitutes the orig-
inal derivation of the OPM [124, 125], relies on energy minimization. The starting
point is a total energy functional expressed in terms of the KS orbitals and eigen-
values, E[¢y, &]. As the Hohenberg-Kohn theorem for noninteracting particles guar-
antees that there is a unique relation between n and vy, the standard minimization
of the total energy E with respect to n can be substituted by a minimization with
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respect to vy,

_ OE[oy, &
0 = P (6.29)

(for fixed particle number). The derivative (6.29) can be handled in the same fashion
as in (6.10),

SE(pr,&] ., |80/ (r) SE Sex OE
“n(r) %{/d r [ Svi(r) 6¢,j(r’) +c.c.] + 6‘)8(’-)3&{} . (6.30)

In addition to the ingredients which are already known from the previous section,
Eq. (6.30) contains the functional derivatives of E with respect to ¢y and &, which
can be evaluated from Eqgs. (3.21), (3.24)—(3.26),

SE m*v? SExc
—— =6 l—z + vext(r) +vH(r)] O (r)+ T (6.31)
8¢, (r) m 8¢, (r)
0E  0Ey
a—gk = e (6.32)
One can now use the KS equations to rewrite 0E / (qukT ,
OE OEx.
5 = Oc[er—vxe(r)] u(r) + (6.33)

59, () 5o/ (r)

Insertion of the unpolarized forms of (6.18), (6.19) as well as of (6.32), (6.33) into
(6.30) leads to

0= ;/dS}” |fb]j(ﬁ Gk(r, r’) <@k¢k(r/) (ch(r’) - ek) + 62}?{;)) +c.c.
5 0Ex¢

. 6.34
+210F g (6.34)

After identification of the various components of ys and Ay, which show up in
Eq. (6.34), as well as use of the orthogonality relation

/ &r o) (r) Gu(rr') = / B Go(r,F) du(F) =0 (6.35)

(which is easily proven by insertion of Eq. (6.15)) one again obtains the OPM inte-
gral equation (6.26).

This derivation seems to indicate that the x-only limit of the OPM is identical
with the HF approach, as the total energy functional E [, &] formally agrees with
the HF energy functional in this limit. The HF approach corresponds, however, to a
free minimization of the total energy functional with respect to ¢ and &. Equation
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(6.29), on the other hand, is not equivalent to a free minimization of E: rather the
¢ and & have to satisfy the KS equations with their multiplicative total potential.
This requirement represents a subsidiary condition for the minimization of E, which
is actually implemented into the OPM equation via Eq. (6.33). This point will be
addressed further from a quantitative point of view in Sect. 6.3.

6.2.4 Invariance of Density

The starting point of the third derivation of the OPM integral equation is the equal-
ity of the KS density ng with the density n of the interacting system [102, 345],
Eq. (3.23),

0=ny(r)—n(r). (6.36)

Note that the relation (6.36) relies on the complete framework of the Hohenberg-
Kohn and KS formalism. In particular, it implies the application of the minimum
principle for the total ground state energy. This statement provides the link between
(6.36) and the arguments of Sects. 6.2.2 and 6.2.3.

The interacting density n can be expressed in terms of the 1-particle Green’s
function (3.118) of the interacting system. Similarly, ny can be expressed in terms
of the Green’s function G; of the noninteracting KS system, Eq. (4.71). G has the
form (3.124), if ¢y and & are understood as the KS states and eigenvalues. In both
cases the densities are obtained by taking the appropriate limit ¢/ — ¢ (compare
Eqgs. (3.106), (3.122)),

0 = —itr{Gy(rt,rt™) = G(rt,rt")}. (6.37)
As usual, tT indicates an infinitesimal positive time-shift of 7, i.e.
F*) = lim f(e-+el)
The interacting Green’s function obeys the Dyson equation (3.123),
G(1,2) =Go(1,2) +/d3d4Go(1,3)Z(3,4)G(4,2), (6.38)

where the (Harvard) notation

k= rktk) (6.39)
/ d3 = / d’rs / dts (6.40)
3 4) = 5 (r3 —7‘4)5(2‘3 —t4) (6.41)

has been used. Gy represents the Green’s function of electrons which experience the
external potential vex, but do not interact, X is the full self-energy of the interacting
system, which may be split into an xc- and a Hartree contribution,
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1
2(3,4) :ZXC(3,4)+£8(3,4)VH(7‘3). (6.42)

On the other hand, the KS (single-particle) Green’s function satisfies a Dyson equa-
tion in which the self-energy is simply given by vy + v,

Gs(1,2) = Go(1,2) +%/d3d4Go(1,3)6(3,4)[vH(r3) Ty (r3)]Gs(4,2) . (6.43)

If one now subtracts Eqgs. (6.38) and (6.43) from each other, one finds a relation
between G and G,

G(1,2) = G(1,2) —|—/d3d4Gs(1,3) {EXC(3,4) - ;6(3,4)vxc(r3)}G(4,2).

(6.44)
Equation (6.44) is a Dyson equation, whose irreducible kernel is given by the differ-
ence between the full self-energy and the KS self-energy. Upon insertion of (6.44)
into (6.37) one obtains

0= —itr/d3d4GS(1,3) {zxc(3,4) - ;5(3,4)vxc(r3)} G(4,1%).  (645)

Equation (6.45), referred to as the Sham—Schliiter equation, is a complicated in-
tegral equation connecting the KS Green’s function, the xc-component of the full
self-energy, the xc-potential and the full Green’s function. Does this relation have
anything to do with the OPM equation (6.26)?

The first step towards an answer to this question is provided by repeated applica-
tion of the Dyson equation (6.44). After insertion of (6.44) the leading term in (6.45)
contains the product of Gs(1,3) with Gg(4,1). Partial evaluation of the 4-integration
then yields,

/d3r3/dt3xs(l73)vxc(r3)
_ —itr/d3d4Gs(1,3)Zxc(3,4)Gs(4, )
—itr/d3d4Gs(1,3) {%(3,4) - ;16(3,4)vxc(r3)}
x / d5d6G(4,5) [zm(s,@ - ;5(5,6)vxc(r5)] G(6,1%),  (6.46)
where the time-ordered KS response function (4.67),

xs(1,3) = —%tr[Gs(1,3)Gs(3,l)] (6.47)

has been introduced in order to make the similarity of (6.46) with (6.26) more ap-
parent. In fact, the left-hand side of Eq. (6.46) is identical with the corresponding
term of the OPM equation, if one performs the df3 integration and identifies the
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static response function (zero-frequency limit of the Fourier transform of ys(1,3)),

/dl3)(s(1,3) :/dt3xs(r17r37t1 —13) = xs(r1i,r3,0=0) = x(r1,r3). (6.48)

The identity of (6.48) with (6.27) can be verified explicitly via the Lehmann repre-
sentation (4.68). For @ = 0 the pole shifts in (4.68) are no longer relevant, so that
one ends up exactly with the form of ), given in Egs. (6.27), (6.23).

On the other hand, the right-hand side of Eq. (6.46) is still different from the
inhomogeneity (6.28). In fact, the right-hand side depends on vy itself, so that (6.46)
represents a nonlinear integral equation for vyc.

In order to explain the difference between Eqgs. (6.46) and (6.26), one has to re-
member that an arbitrary, orbital-dependent Ex. has been assumed in the discussion
of Sects. 6.2.2 and 6.2.3, i.e. the form of Ex. has not been specified beyond the fact
that it depends on the ¢y and &. The starting point (6.36) of the present approach,
together with the application of the Dyson equation for both the KS and the interact-
ing system, automatically implies the use of the exact Ex.. In order to make closer
contact between the first two and the third derivation of the OPM equation, one has
to insert the exact Ex., studied in Sect. 4.2.1, into the OPM equation (6.26).

The comparison of Eq. (6.46) with Eq. (6.26) is rather straightforward in the x-
only limit, which corresponds to a lowest order expansion of Ey. in powers of the
coupling constant 2. In this limit Eq. (6.46) reduces to

/d3r3 2s(r,r3)ve(r3) = —itr/d3d4GS(1,3)2x(3,4)GS(4, 1),

since each factor of Xy, or vy introduces an additional factor of ¢* on the right-
hand side of (6.46). Insertion of the exchange contribution X to the full self-energy,
i.e. the standard 1-loop self-energy (3.125), leads to the exchange-only limit of
Eq. (6.26), which is obtained by insertion of (6.11) into the inhomogeneity (6.28).
This demonstrates explicitly that the Sham-Schliiter equation (6.46) agrees with the
standard OPM equation in the x-only limit.

The situation is much more complicated for the correlation contribution. A de-
tailed verification of the identity of (6.46) and (6.26) to all orders in €2 is not
available to date. Such a comparison is hampered by the fact that the exact Ex
in Eq. (4.65) not only depends on ¢, and & via the Green’s function (4.71), but also
on its functional derivative vy.. On the one hand, this is exactly what is required in
view of the structure of the right-hand side of (6.46), which also depends on vyc.
On the other hand, the vy.-dependence implies that the derivative 6 Ex./ 5¢,j on the
right-hand side of (6.28) includes contributions from §vy./0 q)kT , which can only be
handled within an expansion in powers of e (see Sect. 6.4.1). Nevertheless, there
can be little doubt about the general agreement of (6.46) and (6.26).
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6.2.5 Exact Relations Based on OPM Integral Equation

Before investigating the properties of orbital-dependent xc-functionals from a quan-
titative point of view, it seems worthwhile to list a few exact relations, which emerge
from an analysis of the OPM integral equation. One first of all recognizes that the
OPM equation determines vy, only up to an additive constant. In fact, as norm-
conservation, i.e. Eq. (6.35), requires

/d3rxs(r,r’) _ /d3r’xs(r,r’) —0, (6.49)

one can add any constant to vy, without altering the left-hand side of Eq. (6.26). The
same is true for the individual spin channels in the case of SDFT, i.e. of Eq. (6.24).
One therefore has to ensure the explicit normalization of vy, in the process of solving
the OPM equation.

For finite systems one usually requires v, to vanish asymptotically,

lim vy (r) =0. (6.50)

len

Let us therefore examine the solution of (6.26) for finite systems, with the aim to
extract the behavior of vy for large |r|.

One starts with (6.34),

' / T / / / 5 XC
0= ;/d%' {¢k (r)Gk(r,r) @kvxc(r )d)k(r ) — 5¢kf(r’):| +c,c,}
29Exe

Il (©5)

Further analysis of (6.51) requires a specification of the eigenvalue-dependence of Ex. and thus of
the form of the correlation contribution to Ey.. The discussion of (6.51) for large |r| will, therefore,
be restricted to the x-only limit. In addition, we assume the energetically highest occupied KS state
¢p, to be nondegenerate. This implies that all other occupied states decay exponentially faster than
o5, while ¢, decays exponentially faster than all unoccupied states.'? Insertion of Gy and (6.11)
into (6.51) gives

_ et AN L
0= k[%k@k/d o (r) p— F(r') +c.c., (6.52)

with the abbreviation

12 It is sometimes helpful to think of finite systems as being enclosed in a large box or spherical
cavity of radius R, with hard-wall boundary conditions applied at the surface of the box or cavity
[346], in order to simplify the discussion of positive energy states. In this situation all KS states
vanish on the surface, so that at first glance the following arguments, based on exponential sup-
pression, appear to be incorrect. However, the behavior of bound, i.e. negative energy, states is
essentially unaffected by the boundary conditions at R in an extended region between the finite
system and the surface, as long as R is sufficiently large. For systems enclosed in a box the argu-
ments given in this section therefore apply to this intermediate range of large r, which are not yet
close to the surface.
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Tl /1
F(r) = w(F)0(r) + & 3,0,0,(7) / W’% . (6.53)
J

d

In analogy to the derivation of Eq. (6.23), the sum over / can be split into two parts,

= ¢k( )¢]( ) 3 e
’- kl%ék & — & /d o (r)E(r') +c.c.
o (o) [ 5,
+§@k;(1—@,) ke,fsk /dz 7o/ (F)F(r) +cc.. (6.54)

For very large |r| both expressions are dominated by the contributions of the highest occupied
orbital. This statement is easily verified for the first line. In the first expression the sum over [
is restricted to occupied states, so that the most weakly decaying pair ¢, (r)¢;(r) is obtained if
either k =h and / = h— 1 or vice versa. The analysis is somewhat more involved for the second
line. In this expression all q),:r (r) are multiplied by an infinite series of unoccupied ¢;(r). In order
to conclude that the term k = h dominates the second line one thus has to make sure that the
summation over all unoccupied ¢;(r) does not lead to an exponential suppression of the term with
k = h relative to energetically lower states k. To this aim, let us examine the coefficient associated
with an individual pair ¢, (r)¢;(r),

/ /! rl/
{Q)z o () e (r +e229 /d” )¢/(|,//),,5|r)¢k()

For a given I, ay; becomes the larger, the less localized ¢ (r) is. This is immediately obvious for
the first contribution, as the degree of localization is reduced the higher the energy of a state is—
unoccupied states are always less localized than occupied ones, so that the overlap of q)f (7) and
¢ (r') is maximized for the least localized ¢, i.e. for k = h. In the second term the overlap be-
tween ¢1 (r') and ¢; (r) is maximal for j = h. Simultaneous maximization of the overlap of the
second pair involved, ¢ (") and ¢ ("), then requires k = h. This overlap argument is particularly
applicable to the completely delocalized high energy states. Consequently, in the second line of
Eq. (6.54) the term with k = h dominates asymptotically for each individual /, so that the summa-
tion over / cannot compensate differences in the asymptotic decay of the ¢(r). The most weakly
decaying contribution to (6.54) is obtained for k = h—all other terms are suppressed exponentially.

Moreover, the combination ¢, (r)¢,—1 (r), which dominates the first line of Eq. (6.54), always

decays faster than (ph’(r) ¢ (r), if [ is an unoccupied level. For large |r|, Eq. (6.54) thus reduces to
r)/d3r’2 )‘1”() o/(r )F(r)+cc (6.55)
i & — &

At this point one can use the fact that all discrete states can be chosen to be real. In addition, all
the bispinors ¢ have only one non-vanishing component,

B 01 = 03y Oy sy if h=as, [=ps .

One can thus divide Eq. (6.55) by the non-vanishing component of ¢y,(r),

0=>3(1-6) ¢1(2 /d3 /¢ (FE(r) +c.c.,

7 &

with the understanding that this relation only holds for that bispinor component of ¢; which is
projected out by ¢,. If one applies the operator
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R
2m

-‘rVg( ) &

to this equation, one arrives at

0="S(1-0)0(r) / & o (F)Fy(r) +c.c.

1

= i)~ S 0r0r ) [ @ 6] (D) + e,

where the completeness relation has been used to obtain the second line. Both contributions of the
second line are real, so that the c.c. term can be dropped. Asymptotically, the second expression is
dominated by the state / = h, all other terms are suppressed exponentially,

0 = F(r)— ou(r) ./dSr’ o (F)F(r) . (6.56)

Equation (6.56) allows to establish two important relations. As Fj,(r) decays
faster than ¢, (r) (provided the normalization (6.50) is used), the asymptotically
leading term in (6.56) yields an identity for the highest occupied KS state (the
Krieger-Li-lafrate identity) [347],

™ /
/d3rvx |¢h _ —6’22@ /d3 /d3 /¢h ¢J( )¢(T )¢h(r> . (657)

r—r|

The next to leading order term in (6.56) constrains the asymptotic behavior of vy,

pE |on ()] |2 e
Fy(r) ——0 = w(r) — — Y - —— ——, (6.58)
|r|—eo Ir|—eo lr=r| |r—e  |r|

so that one ultimately ends up with Eq. (4.20).!3 Equation (6.58) explicitly confirms
the earlier statements concerning the physical origin of the limit (4.20) (compare
Sect. 4.1). The present discussion is easily extended to Eq. (6.24), so that Eq. (6.58)
also applies to the individual spin channels.

Both Egs. (6.57) and (6.58) allow an unambiguous normalization of vy in the
case of finite, non-degenerate systems. An analogous, though more complicated,
statement is available for v, [348]. It is clear from the physical background of (6.58)
that (4.20) also applies to degenerate KS systems. For solids, on the other hand, it is
more convenient to fix the average of vy in the unit cell. The precise value of this
average is irrelevant for non-magnetic systems. In the case of spin-polarized solids,
however, the normalization of vy is intrinsically related to the magnetic moment in
the unit cell, i.e. to the relative occupation of spin-up and spin-down bands. In this
case, the correct ground state is obtained by minimization of the total energy with
respect to the pair of spin-up and spin-down averages of vyc.

One further limit of (6.26) appears to be worth a comment. If there is only one
occupied orbital (k = h) for each spin, the x-only limit of Eq. (6.26) reads

13 Equation (6.58) has originally been proven for closed-subshell (spherical) atoms, using an alter-
native approach for the discussion of Gy [125].



6.2 Derivation of OPM Integral Equation 247

Tl /1
¢Z(r)/d3r/Gh(r, r)en(r') [Vx(r,)+€2/d3r// hlr I(://)_(Ph(r )’

, +cc.=0.
r|

One easily identifies

vx(r): /d3 I|¢/’l( )|2 62 d3 / n(r)

|r/—r| 2 ¥ —r|

as the solution of the OPM integral equation for spin-saturated two-electron sys-
tems, in perfect agreement with Eq. (4.22). For these systems the exchange potential
just eliminates the self-interaction of the electrons, but does not include any Pauli
repulsion among equal spins.

The next point to be discussed at this stage is an exact property of E.. In order to
derive this relation, we assume the KS system to have a completely discrete spec-
trum, i.e. all eigenstates ¢ to be normalizable. If required, this may be ensured by
enclosing the finite system in a very large box [346, 349]. Integration of (6.51) over
r and use of (6.35) then yields [350]

3By
zk: 52 =0. (6.59)

The sum rule (6.59) is automatically satisfied as long as E. only depends on eigen-
value differences,

Exc = ZEln(Sl - gn)

3o -3y 2l

All first-principles approximations for E. discussed so far in the literature (see be-
low), have the form (6.60).

Finally, it seems worthwhile to demonstrate that the OPM yields the conventional
functional derivative vy = 8 Ex./dn, if Ex. depends explicitly on the density. In this
case Eq. (6.26) reduces to

8El,,

(k1 — Okn) = 0. (6.60)

£=¢g—¢

/ / / ;o ;. OFExc[n
/d3r Xs(r, ) vee (1) = —2/d3r ¢;j(r)Gk(r,r)6¢lj_(£/1 +c.c.
= _2/d3”/¢k r)Gi(r, 7)o (r )SEX(Cr[ )} +c.c.

If one now multiplies both sides by x, !, one recovers the original definition of vyc.
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6.2.6 Krieger-Li-lafrate Approximation (KLI)

One has now reached the point at which it is clear that, as a matter of principle,
orbital-dependent functionals can be handled in a fashion consistent with the spirit
of DFT. Moreover, the subsequent sections will show that the OPM integral equa-
tion can also be solved in practice. However, in view of the complicated structure of
Egs. (6.26), (6.28) and, in particular, of Eq. (6.45), the question concerning the effi-
ciency of the OPM scheme arises quite naturally. The answer obviously depends on
the system under consideration and on the numerical implementation of the OPM
chosen. Nevertheless, as a rule of thumb, one can say that OPM calculations are
essentially one or two orders of magnitude more involved than corresponding GGA
calculations. Consequently, an approximate (semi-analytical) solution of the OPM
integral equation is of definitive interest.

The main reason for the demanding nature of the OPM is the presence of the
Green'’s function (6.15) both in the response function (6.27) and in the inhomogene-
ity (6.28). The Green’s function depends on the complete KS spectrum and not just
on the occupied states. A full solution of (6.26) therefore requires the evaluation
and, perhaps, the storage of all occupied and unoccupied KS states.

One way to circumvent the explicit evaluation of unoccupied states is an approx-
imate procedure that has been suggested by Krieger, Li and Iafrate (KLI) [351]. The
idea is to use a closure approximation (also called common energy denominator ap-
proximation) for the Green’s function, i.e. to approximate the eigenvalue difference
in the denominator of (6.15) by some average A€ [124, 351],

"o o) (r) 8O (r—r)— dulr)e) ()
Gk(r7r)~[§;{ i = . (6.61)

Insertion into the OPM integral equation leads to

w1 8By 2[ B 8EXC}
V“(’)‘2n<r>§{[‘P"(’)aqs;'(r)““ HOF [anasgy }
Av = / 2 {@k|¢k(r) 20 () — 0] (r) 62?’(“;) } tec.. (6.62)

This approximation is completely unambiguous as soon as Ey is independent of &.
On the other hand, the presence of dEx/dg; introduces a new energy scale in the
case of eigenvalue-dependent Ex. (via A€). Given the basic concept of the closure
approximation, it is obvious that this term should be neglected. The consequences
of this step have been investigated in detail for the relativistic exchange [350] (see
Chap. 8). In this case neglect of the dEx./d€,-contribution represents an excellent
approximation. One should note, however, that the relativistic exchange depends
only weakly on the eigenvalues &, unlike orbital-dependent correlation functionals
(compare Sect. 6.5). In any case, no systematic scheme for the specification of A€
has been suggested so far. The KLI approximation is thus always understood to
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imply neglect of the dEx./dé&;-term,

1 OE

KLI = — ¥ —x c.c.
Vxe (r) - 2]’!(")%{ l¢k(r)6¢g(r) +

A careful look at Eqgs. (6.62), (6.63) shows that one has not yet found a full
resolution of the problem, as vEM appears both on the left-hand and on the right-
hand side of (6.63). Fortunately, one can recast Eqs. (6.62), (6.63) as a set of linear
equations which allow the determination of Av,IfLI without prior knowledge of vKM
[351]. This provides an analytical solution of the integral equation (6.63). Alterna-
tively, one can iterate Egs. (6.62), (6.63) until self-consistency, starting with some
approximation for AkaU, e.g. obtained from the LDA.

When applied to the exact exchange, a calculation with the KLI method is as
efficient as a Hartree-Fock calculation, and often only slightly less efficient than a
GGA calculation. At this point one should nevertheless keep in mind that the KLI
approximation only speeds up the calculation of Gy, but not that of the other ingre-
dients of the OPM equation. The most time-consuming step in a KLI calculation
is usually the evaluation of 0Ex./ 5(1); : as soon as the exact exchange is used, the
evaluation of Slater integrals is required, which is generally more time consuming
than the calculation of density gradients.

The KLI approximation preserves both the identity (6.57) and the exact asymp-
totic behavior of vy for finite systems, Eq. (6.58). It is exact for spin-saturated two-
electron systems, i.e. it also satisfies Eq. (4.22).

A variant of the KLI approximation within the x-only limit is the so-called local-
ized HF approximation (LHF) [352, 328]. Its derivation is based on the assumption
that the HF and the x-only DFT ground state orbitals (resulting from the multi-
plicative LHF potential) are identical. Subtraction of the total HF and x-only DFT
energies, using this assumption, leads to the following expression for the exchange
potential,

+ |¢k(r)|2Av,1§“} ) (6.63)

VEHE () = an(r) {% {/ a7 q),j(r)vXHF(r, row(r') +c.c.]
+ 30010 ()0rr) v (6.64
kl
ava = [ @ [ @1 9}r) (K1) 60 (r— )~ i¥ () b or(r) e
T (4!
wr(rr) = —eZZOmd’mf:)q}’r”,T') : (6.65)

The KLI approximation is obtained from this result by neglect of the off-diagonal
terms,
Avkl — Avkk 5kl .

Quantitatively one finds only limited differences between KLI and LHF results
[352].
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6.2.7 OPM in Case of Degeneracy

In the derivation of the OPM integral equation we have so far assumed that the KS
states are non-degenerate. We now consider the situation in which some symmetry
of the system leads to degenerate KS states. These states will be denoted by ¢, in
the following, where k identifies all KS energy levels and v distinguishes the KS
states within the degenerate subspaces,

2m

mV?
- +vs(r) ¢ Oey(r) = &rv (1) (6.66)
The functions ¢y, are assumed to be orthonormal,

/d3r¢;jv(’)¢lp(") = Okt Svp - (6.67)

Our derivation of the associated OPM equation follows the line of Sect. 6.2.2. The
discussion is restricted to the spin-saturated situation.

In order to evaluate 8¢y, /d8vs, one introduces a perturbation, in analogy to
Eq. (6.12). In general, the perturbation dvg will lift the degeneracy of the unper-
turbed states. In the present situation, however, one is only interested in symmetry-
preserving perturbations, as the resulting potential is to be used in a self-consistent
calculation. The perturbed states can therefore be characterized by the same quan-
tum numbers as the unperturbed states. To first order in the symmetry-preserving
Ovs one has

wV?
{— m +vs(r) — 5k} Sy (r) = [6&x — 8vs(r)] Py (1) - (6.68)

Multiplication by q),jp (r), integration over r and use of (6.66) allow the determina-
tion of the eigenvalue shifts,

Serdip = [ drol,(r) 5v,(r) 01 (1) (6.69)

Upon insertion into (6.68) one arrives at

{ _ h;:z +vs(r) 8k}5¢kv(r)

= [ / &3 o) (r)8vs(F )y (r') — 6vs(r)] Prv () -

This differential equation can be solved via a suitably redefined Green’s function
Gi,
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V>
{—2 +vs(")—8k}Gk("J/) z¢kv ) og, (r (6.70)
m
) B (1) d)l,,(r )
G = _. 6.71
K(r,r) %p p—y (6.71)

Utilizing (6.69) and (6.70), 8¢y, is given by

SOry (1 / d*r Gi(r, 7)) Sv(F) oy (7). (6.72)

At first glance, Egs. (6.69), (6.72) are very similar to their non-degenerate counter-
parts (6.13), (6.17). However, the point to be noted is that dvs(r) can no longer be
varied arbitrarily: rather, the variation has to preserve the symmetry, which has to
be taken into account when performing the functional derivative.

One has basically two options to implement this constraint. The first is the direct
use of a form of dvs(r) relevant for the problem under investigation. For instance,
in the case of spherically symmetric systems Ovs(r) just depends on |r|, so that the
angular coordinates can be integrated out in both (6.69) and (6.72). In this case the
functional derivative determining the OPM equation is a derivative with respect to
the spherically symmetric potential dvs(|r|), leading to an integral equation in the
variable |r].

Alternatively, one may resort to an explicit symmetrization of an unconstrained
variation,

SF] . 1
Svulr) lL”ée{F

where Py denotes the symmetry operators which commute with the KS Hamiltonian,

vo(F) + %%f’R(r) §O(r—r)

— F [vs(r)] } . (6.73)

Pr,Hxs| =0 VR, (6.74)
[P i

and the sum over R runs over all / elements of the symmetry group of Hks. Using
(6.73) in Egs. (6.69), (6.72), the functional derivative can be implemented as an
unconstrained 3-dimensional variation of dvs(r), which leads to

15}
;)]v(:(( - _*ZPR 19y, (r) Ge(r,r') (6.75)
S¢ . .
5vs(kr) - ﬁ%PR(rmkv(') Ory (1) - (6.76)

The v-dependence of the right-hand side of Eq. (6.76) is eliminated automatically
by the sum over R (see below). One can now proceed as in Sect. 6.2.2 and derive an
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OPM equation of the form (6.26) with the ingredients'4

1
xs(rr) = =3 D Pe(r Z@k% )G (r, ) py (F) + cec. (6.77)
R
1 p 1|t o OFExc
= h%PR(r)%{ —./d3r ¢kv(r)Gk(r,r)W +c.c.
zaExc
o (N o } (6.78)

In both expressions the symmetrization is applied to a product of two KS orbitals,
once Eq. (6.71) is utilized for G;. The symmetrization can be carried through more
explicitly, if the quantum numbers of the KS states are chosen according to the
irreducible representations of the group of Hks,

(l)kv(r) I ¢aav(") )

where o denotes the irreducible representations and a represents the remaining
quantum number(s). One can now utilize the fact that any symmetry operator Py
only couples states belonging to the same energy level and the same irreducible
representation,

Pr(r) Gacev (r ZD,V ) Gacii (7). (6.79)

The function fo ) (R) denotes the matrix representation of the group element R in
the irreducible representation ¢ and [, is the dimension of this representation. With
this choice the summation over all group elements present in Egs. (6.77) and (6.78)
can be performed via the orthogonality theorem for irreducible representations,

n EPR q)a(XV ¢bﬁp Z 2 Dtv aocz z D ¢bﬁj )

LR -
=35 0@ D ®)| 0luriom; 0
i=1j= R
la
= ap Oup li Y 9 (r)Boai(r) (6.80)
a =]

The summations over states in Eqgs. (6.77) and (6.78) then reduce to

14 Note that the general form of §Ey. /8 (b,jv automatically accounts for the correct symmetry, if the
appropriate form of the orbitals, i.e. ¢y, is used for its evaluation.
pprop
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;l%pR(r) Z Z ¢;ocv (r)¢bﬁp(r)Aaav,bﬁp

aov bBp:bf#ac

= 2 I, Z¢aaz ) Db ( )ZAaav,bav (6.81)

abosb#a "0 i

(the summation over bf3p results from the sums over / and p in Eq. (6.71)).
As an explicit illustration, we consider a spin-saturated, spherically symmetric
system, for which
Pn[(r)
r

¢azxv(") =

ie.a=n,a =1, v=mand I, = 2]+ 1. After insertion of (6.81), the symmetry-
preserving response function (6.77) reduces to

Yim(£27) Xs » (6.82)
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( nl n'n' #n Ey — &nl
Similarly, using (6.11), one finds for the inhomogeneity (6.78) in the x-only limit

3 [ b i)
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Identifying
2 ,
5P - 2 Z @nl@ IIZI/ /dQ Ylm P //l// ( ) Yll/m// (.Qr/)
nl m 'l
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one can rewrite (6.84) as

P, (r)P /l(r’) 5Ex
Ax(r) = dr CRASWAY/ . 6.86
X r 47[)"2 Z nl / " ' /7511 Ey — Enl 6Pnl(r/) ( )
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Insertion of (6.84) and (6.86) into (6.26) leads to exactly the same OPM equation as
obtained by variation of the exchange energy of a spherical system with respect to a
manifestly spherical density [125, 223].

It remains to discuss the KLI approximation in the presence of degeneracy. Av-
eraging the eigenvalue denominator of (6.71) as in Eq. (6.61) gives

80)(r— ) = S, Guan (1) Ol ()

Guo(r,7) =~ Y (6.87)

Insertion into the OPM integral equation with kernel (6.77) and inhomogeneity
(6.78) then yields

Kug - L J1Isp : SExc
XC (r)i zn(r){th:PR(r)a% |fPaO(V( )6¢aav( )+CC
+ ¢aav )Gacuy (1 ZAvi%},} (6.88)

6¢;ap(r

In the derivation of Eq. (6.88) the fact that (6.88) generates a manifestly symmetric

KLI has been used, so that an explicit symmetrization is not necessary. The result
(6.88) is invariant under a unitary transformation of the KS states within the degen-
erate subspaces.

OExc
avsih = | d3r{ Ouc B (VAL (1) ucp ) — ¢;ap<r>E)}+c.c..

6.3 Exchange-Only Results

Before addressing the issue of correlation in more detail, it is instructive to study
the x-only limit from a quantitative point of view. Quite a number of exact x-only
results have already been used for the analysis of the LDA and GGA (in Sects. 4.3.5
and 4.5.5). It is clear from this discussion that use of the exact exchange (often
termed EXX approach) is worth the increased computational effort in many situa-
tions. The present section supports this statement with additional results, focussing
on two aspects: the first is an assessment of the quality of the KLI approximation. It
has been pointed out in Sect. 6.2.6 that large-scale applications of orbital-dependent
functionals would benefit substantially from the efficiency of the KLI approxima-
tion. Before using the KLI approach in such applications one has to make sure that
it yields reasonable results at least for the simplest orbital-dependent functional, the
exact Ex. The second purpose of this section is to demonstrate the role of the exact
exchange in the electronic structure of solids. For additional results the reader is
referred to the extensive literature on practical realizations and applications of the
exact exchange [103, 125, 223, 241, 243, 244, 344, 351, 353-382].
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The x-only ground state energies of closed-subshell atoms resulting from the ex-
act DFT exchange are compared with the corresponding HF values in Table 6.1
(all calculations were performed fully numerically with finite differences methods).
The energies obtained by solution of the full OPM equation (6.26) for the exchange

Table 6.1 Exchange-only ground state energies of closed-subshell atoms: Selfconsistent OPM re-
sults [223] versus KLI, LDA, PW91-GGA [211] and HF [383] energies (all energies in mHartree).

Atom —Eiot Eio — EQPM
OPM KLI LDA GGA HF
He 2861.7 0.0 138.0 6.5 0.0
Be 145724 0.1 349.1 182 —0.6

Ne 1285454 0.6 10547 —-235 —1.7
Mg 199611.6 09 1362.8 -05 =31
Ar 5268122 1.7 2294.8 412 =53
Ca 6767519 2.2 2591.8 2577 —6.3
Zn 1777834.4 3.7 39245 —-252.6 —13.8
Kr 27520429 32 51768 —184 —12.0
Sr 3131533.4 3.6 55354 —8.8 —122
Pd 4937906.0 4.5 6896.0 —652 -—15.0
Cd 54651144 6.0 72926 —-319 -—18.7
Xe 7232121.1 6.1 8463.8 549 —-17.3
Ba 7883526.6 6.5 87925 157 —17.3
Yb  13391416.3 10.0 10505.6 —852.4 —39.9
Hg  18408960.5 9.1 130404 -221.5 -31.0
Rn 218667457 8.5 144243 83 —-26.5
Ra 230942779 8.7 14807.2 05 —25.8
No 327894727 129 172029 -373.1 -39.5

(4.5) are given in the first column. This rigorous handling of the exact DFT exchange
functional provides the reference data for the x-only limit. The energies for all other
methods are given relative to this reference standard. The KLI approximation for
the exact exchange is of primary interest here—the LDA and GGA data are only
included for completeness. One observes that the KLI energies are extremely close
to the correct OPM energies. For helium the KLI approximation is, as explained
in Sect. 6.2.6, exact. All other KLI energies are higher than their full OPM coun-
terparts. This is consistent with the fact that the full OPM generates that potential
which minimizes the energy expression at hand. The deviation of the KLI approxi-
mation systematically increases with atomic size, i.e. the number of shells present.
Nevertheless, the deviation is still no larger than 15 mHartree even for very heavy
atoms. An indication of the relevance of this error is obtained by a comparison with
the corresponding error of LDA and GGA energies: even the GGA results differ
much more from the exact data than the KLI numbers.

We next compare OPM and Hartree-Fock results. It has been emphasized in
Sect. 6.2.3 that the x-only OPM represents a restricted HF energy minimization: the
same energy expression is minimized, but under the subsidiary condition of generat-
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ing a multiplicative exchange potential in the case of the OPM. The consequences of
this subsidiary condition can be gleaned from Table 6.1. The differences are rather
small. The OPM energy for He is identical with the HF value, as the HF equation for
the occupied state can be trivially recast as a KS equation with the OPM exchange
potential (4.22) in this case (this is only true for the occupied state, but not for the
rest of the spectrum). Even for the heaviest elements the differences between OPM
and HF energies are below 40 mHartree. The additional variational freedom of the
HF approach appears to be of limited importance. This observation is made in many
situations (see below). The x-only OPM is in many respects physically equivalent
to the HF approximation.

This statement is corroborated by Table 6.2, in which the x-only ground state
energies of a number of diatomic molecules are presented (evaluated at the exper-
imental bond lengths). For a reason that will become clear in a moment, the KLI

Table 6.2 Exchange-only ground state energies of diatomic molecules: Selfconsistent OPM [372]
results versus KLI [243], LDA and HF [384] energies at the experimental bond lengths (all energies
in mHartree).

Molecule State R, —Eiot Eiot — Et‘g}‘
[Bohr] KLI OPM LDA HF

H, 'Y 1.400 1133.6 0.5 899 0.0
Li 'Y 5046 148705 4737 —-1.1
Be, 1> 4600 291274 666.2 —6.3
B, 3y 3.003 490852 823.6

Cy Iy 2348 75394.0 956.3 —12.6
N, I 2075 108985.1 5.6 1229.0 —-8.0
(0} 3y 2281 1496813 11.5 1447.0

F, Iy 2678 1987602 163 17033 —12.2
LiH > 3.014 7986.8 282.6 —0.5
BH 'y 2336 25129.0 499.1 2.6
NH 3y 2047 549829 34 7113

FH 'Y 1733 100067.5 11.0 9163 —3.3
BF 1> 2386 124162.1 1312.1 —6.7
CcO > 2132 1127833 6.7 12525 -7.6
NO 2IT 2,175 1292955 1336.5

energies [243] are used as a reference in Table 6.2. All other energies are given
relative to the KLI values. If one compares the KLI and HF energies one finds, as
expected, that the HF energies are always lower—with the exception of Hy. For this
spin-saturated two-electron system both energies must be identical.

On the other hand, the full OPM results [372] are energetically higher than the
KLI data, even though the OPM produces, by construction, the optimum exchange
potential. The reason for this unexpected ordering can be found in the technical de-
tails of the calculations. The HF results are obtained fully numerically, using large
real-space grids [384]. All DFT calculations rely on basis set expansions. Extremely
large two-center basis sets have been used [243] in the case of the KLI (and LDA)
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calculations, so that the KLI numbers are essentially converged with respect to the
basis set size. On the other hand, the OPM results are obtained with standard Gaus-
sian basis sets of more modest size, so that the basis set limit is not yet reached.
Clearly, converged OPM energies must lie between KLI and HF results. In other
words: the ordering EHF < EOPM < EKLL st only be preserved if the same com-
putational basis is applied for all three methods. Table 6.3 demonstrates that this
ordering is actually maintained, if the OPM, KLI and HF energies are obtained with
the same, highly accurate basis set [371].15 The results allow the conclusion that the

Table 6.3 Exchange-only ground state energies of small molecules: Selfconsistent OPM, KLI
and HF energies obtained with the same, high-accuracy basis set [371] at the experimental bond
geometry (all energies in mHartree).

Molecule  —Ey  Eo— ESM
OPM KLI HF

CcO 1127849 20 —-58
H,O 760648 0.8 2.5
CyH, 768509 1.1 —4.7

error of the KLI approximation is smaller than the variation resulting from use of
different basis sets: an appropriate choice of the basis set is more important than the
exact implementation of the OPM integral equation. Compared with the full OPM,
the KLI approximation either allows a speed-up of molecular calculations (keeping
the basis set fixed) or a gain in accuracy by enlarging the basis set.

It has been emphasized before that the physical and chemical properties usually
depend on energy differences, rather than on total energies. In Table 6.4 the simplest
energy difference, the (first) ionization potential (IP), is studied for atoms. Again the
KLI results are extremely close to the OPM data, which in turn agree very well with
the HF IPs. Moreover, the exact x-only eigenvalues of the highest occupied (molec-
ular) orbitals (HOMO) are rather close to the corresponding IPs, consistent with
the statement in Sect. 3.6.1. This is a direct consequence of the correct asymptotic
—1/r-behavior of the exact x-only potential, which dominates the total KS poten-
tial in the case of neutral atoms and molecules. In view of the correct asymptotic
behavior of the KLI potential, vKM (7 — o0) ~ —1/r, it should be no surprise that
the HOMO eigenvalues obtained with the KLI approximation are generally close to
their OPM counterparts. Similar results for molecules [371] are given in Table 6.5.

A more critical energy difference is the electron affinity (EA). The EAs of the
prototype negative ions F~ and Na™ are listed in Table 6.6, together with the HOMO
eigenvalues obtained with the full OPM and the KLI approximation. One should first
note the mere existence of these systems within the OPM [354], in contrast to the
situation encountered in the LDA and the GGA. This deficiency of conventional

15 Note that the basis set used for the representation of the exchange potential has to be in balance
with that used for the KS orbitals [385, 386], i.e. the variational freedom in the exchange potential
must not be larger than that in the orbitals. Otherwise spurious results may be obtained [387].
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Table 6.4 Exchange-only ionization potentials of atoms: Selfconsistent OPM results versus KLI,
LDA, PW91-GGA and HF data. Also given is the eigenvalue egomo of the highest occupied
(molecular) orbital obtained in the OPM (all energies in mHartree).

Atom —egomo 1P [P-IPOPM
OPM OPM KLI LDA GGA HF
He 918 862 0 =51 4 0
Be 309 295 0 -14 6 1
Mg 253 242 0 -4 12 1
Ca 196 188 0 1 12 0
Sr 179 171 0 3 13 0
Cu 240 231 -2 47 54 5
Ag 222 215 -1 36 41 3
Au 223 216 -2 38 42 2
Li 196 196 0 —11 4 0
Na 182 181 0 -2 10 1
K 148 147 0 2 10 0
Rb 138 137 0 4 12 1
Cs 124 123 0 5 11 0
Zn 293 276 0 34 44 5

Table 6.5 Exchange-only eigenvalues of highest occupied molecular orbital of small molecules:
OPM, KLI and HF energies obtained with the same, high-accuracy basis set [371] at the experi-
mental bond geometry (all energies in mHartree).

Molecule OPM KLI HF
co 553 550 555
H,0 509 507 511
CH, 411 410 411

Table 6.6 Exchange-only electron affinities of atoms: Selfconsistent KLI versus OPM results.
Also given is the highest occupied eigenvalue egomo (all energies in mHartree).

Atom Method —egomo EA
F~ OPM 181.0 48.5

KLI 180.4 48.5
Na- OPM 13.3 584
KLI 132 583

density functionals, which was an important motivation for studying implicit func-
tionals (Sect. 6.1.1), is automatically resolved by use of the exact exchange. The
existence of atomic negative ions is a direct consequence of the —1/r-behavior of
the exact exchange potential in the large-r regime. Since the KLI approximation
preserves this feature, the KLI-EAs are almost identical to their OPM counterparts.

One next observes the huge difference between the EA and the HOMO eigen-
value egomo- This discrepancy is somewhat surprising, given the facts that (i) the
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IPs of neutral atoms are in reasonable agreement with the corresponding €gomo
(see Table 6.4) and that (ii) the exact EA is identical with the exact egomo [92] (see
Sect. 3.6.1). One has to keep in mind, however, that the data in Table 6.6 correspond
to the x-only limit. The difference between the EA and egomo reflects the important
role which correlation plays for negative ions. In the case of singly charged negative
ions the otherwise asymptotically dominating —1/r-term in vex; + vig + vx cancels
out completely, so that the total vy is particularly sensitive to its correlation com-
ponent. For that reason the x-only EAs should not be expected to be close to the
experimental EAs.

The most interesting quantities in quantum chemistry are the spectroscopic con-
stants. A set of data for some diatomic molecules is given in Table 6.7. As full OPM

Table 6.7 Exchange-only spectroscopic constants of diatomic molecules: Selfconsistent KLI [243]
versus HF [388, 384, 225] results.

Molecule Method R, D. [0)
[Bohr] [eV] [ecm™!]

H, KLI 1386 3.638 4603
HF 1386 3.631 4583
Li» KLI 5266 0.168 338
HF 5259 0.176 337
B, KLI  3.068 0.608 972
HF  3.09 075 939
G, KLI 2332 0281 1933
HF 2341 038 1898
N> KLI 2011 4972 2736
HF 2013 4952 2713
0, KLI  2.184 1441 1981
HF 221 1455 2002
F KLI 2496 —1.607 1283
HF 2507 —1.627 1276
LiH KLI  3.037 1483 1427
HF  3.035 1487 1430
FH KLI  1.694 4203 4501
HF  1.695 4.197 4472
Co KLI 2080 7.530 2444
HF 2082 7.534 2416
Cly KLI  3.727 613
HF  3.726 618

results for these quantities are not yet available, the KLI numbers can only be com-
pared with HF data. However, the exact OPM energy must be somewhere between
the KLI and the HF energy for each individual molecular geometry (for fixed basis
set). As long as the KLI and HF energy surfaces are very close, one can be sure
that KLI and OPM results are equally close. This is exactly what one finds: the KLI
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and HF spectroscopic constants (as a measure for the energy surface) show very
good agreement—in particular, if one takes into account that not all HF results in
Table 6.7 might be fully converged with respect to the size of the basis set. In con-
clusion, one can state that KLI results for finite systems are generally very close to
the corresponding OPM values in the x-only limit.

Does this statement also apply to extended systems? The x-only lattice constants,
cohesive energies and bulk moduli of aluminum (fcc lattice) and silicon (diamond
structure) obtained with both the full OPM and the KLI approximation are given
in Table 6.8. Again the KLI results are found to be very close to the OPM data.

Table 6.8 Lattice constants a, cohesive energies E¢o, and bulk moduli B of prototype metals and
semiconductors: Selfconsistent OPM versus KLI results [380]. All calculations use the plane-wave
pseudopotential scheme [389, 103] in combination with self-consistent exact exchange pseudopo-
tentials [380] (for technical details see Figs. 6.6 and 6.7). The same pseudopotential is employed
for both the full OPM and the KLI calculation for a given system.

Solid Method a Eow B
[Bohr] [eV] [GPa]

Al OPM 7.814 1.662 63.9
KLI 7.816 1.658 63.2
Si OPM  10.409 6.213 103.8

KLI 10.406 6.120 104.2

Nevertheless, it is worthwhile to note that the cohesive energies differ by about
0.1eV in the case of silicon. This is somewhat larger than the deviations obtained
for aluminum and most diatomic molecules.

Similar agreement is observed for the corresponding single-particle energies of
aluminum, as shown in Fig. 6.4a. However, the same is not true for the band struc-
ture of silicon, as illustrated in Fig. 6.4b. The KLI and OPM band energies of the va-
lence and conduction bands differ by about 0.3 eV, with the KLI approximation pro-
ducing less bound valence states and more strongly bound conduction band states.
As a consequence the band gap is underestimated by the KLI scheme by almost a
factor of 2, EgPM = 1.22eV versus Eg“ = 0.69eV. One concludes that the KLI
spectrum of extended systems—in particular, of the unoccupied KS states—can be
seriously in error.

In order to understand this result, one has to analyze local quantities as the
xc-potential (compare the corresponding discussion for the LDA and GGA in
Sect. 4.5.5). The selfconsistent vKM is compared with the exact vy for the case of
the neon atom in Fig. 6.5.® The only difference between the full OPM result and
the KLI potential is found in the transition region from the K- to the L-shell, where

16 Note that the differences between a selfconsistent potential and the potential obtained by inser-
tion of a given density (as e.g. the exact KS density) into a functional are very small in the case of
atoms [390]. The same is true for the solution of the OPM equation, if different sets of orbitals are
utilized: the origin of the orbitals (and thus of the density) is much less important for the structure
of atomic vy, than the functional form of Ey..
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Fig. 6.4 Band structure of (a) aluminum (fcc structure) and (b) silicon (diamond structure): Self-
consistent x-only KLI versus full OPM result (for technical details see Figs. 6.6 and 6.7).
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Fig. 6.5 Exchange potential of Ne atom: Selfconsistent OPM, KLI, LDA and PW91-GGA results.

the shell oscillation of vKM is not as pronounced as that of the exact potential. This

smoothing of shell oscillations is a general feature of the KLI approximation. For
large r both potentials explicitly show the —1 /r-behavior discussed before, i.e. both
potentials are self-interaction free. Figure 6.5 explains the findings in Tables 6.2-6.8
from a microscopic perspective.

Figure 6.6 provides a comparison similar to Fig. 6.5 for the case of a metal.
The exchange potential of bulk aluminum is plotted along the [110] direction. As
all potentials originate from pseudopotential calculations, the attractive part of vy
associated with the core electrons is missing in Fig. 6.6—the comparison focuses
completely on the delocalized valence states of the metal (the corresponding valence
densities resulting from selfconsistent calculations with the same functionals are
shown in Fig. 6.6b). Again the KLI approximation is reasonably close to the OPM
potential. The agreement is particularly convincing in comparison with the GGA
result: the gradient corrections to the LDA even go into the wrong direction. In
fact, the dependence of the GGA on the local density gradients introduces some
completely artificial structures in the low density region.

The same overall picture can be observed in Fig. 6.7, which shows the exchange
potential of bulk silicon along the [111] direction. The only difference worth noting
in this case is an improvement over viPA by the GGA in high density regions, i.e. in
the bonding regime between the nearest neighbor atoms. This result is corroborated
by the corresponding self-consistent valence densities, plotted in Fig. 6.7b.

However, as the 2D representations in Figs. 6.8 and 6.9 show, the KLI approxi-
mation misses some directional information present in the full OPM potential. This
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Fig. 6.6 (a) Exchange potential of fcc aluminum in [110] direction (surface diagonal of conven-
tional cubic unit cell): Full OPM versus KLI approximation, LDA and PBE-GGA. All v have
been evaluated from the KS states resulting from a self-consistent x-only OPM calculation within
the plane-wave pseudopotential scheme (60 special k-points for integration over 1st Brillouin zone,
E.u =40 Ry—this leads to about 460 states per k-point in Gy, a = 7.6 Bohr, e = positions of atoms).
(b) Self-consistent valence densities obtained by full OPM, KLI, LDA and PBE-GGA calculations.

effect is particularly pronounced for silicon, as demonstrated in Fig. 6.9. Obviously,
the closure approximation (6.61), on which the KLI scheme is based, leads to an
averaging over directions, as all states in the response of the system are treated
as being degenerate (similar to the fact that summation over the m-quantum num-
ber of atomic orbitals of type P,;(r)¥;,, (6, @) is equivalent to spherical averaging).
The KLI approximation thus has particular problems with the treatment of localized
states which are energetically close, but not degenerate.

This can lead to rather fundamental failures, as demonstrated in Figs. 6.10 and
6.11. Figure 6.10 shows the band structure of FeO in the AF II phase which is
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Fig. 6.7 (a) Exchange potential of Si (diamond structure) along [111] direction (body diagonal):
Full OPM versus KLI approximation, LDA and PBE-GGA. All vk have been evaluated with the KS
states resulting from a self-consistent x-only OPM calculation within the plane-wave pseudopoten-
tial scheme (28 special k-points for integration over 1st Brillouin zone, E¢,; =40 Ry—this leads to
about 1150 states per k-point in Gy, a = 10.26 Bohr, e = positions of atoms). (b) Self-consistent
valence densities obtained by full OPM, KLI, LDA and PBE-GGA calculations.

obtained by application of the exact exchange within the KLI approximation (com-
pare Sect. 6.1.3). Correlation is included via the LDA. The correlation contribution
has, however, only a minor impact on the resulting bands. One notices a substan-
tial rearrangement of essentially all bands in comparison with the LDA and GGA
band structures in Fig. 6.3. However, the EXX/KLI calculation still predicts FeO
to be a metal, in conflict with reality. On the other hand, a full OPM calculation
with the exact exchange and LDA correlation [391] leads to the bands plotted in
Fig. 6.11. One now observes a fundamental gap of 1.7V, in very rough agreement
with the experimental gap of 2.4 eV [392, 393]. The key factor for this success is the
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Fig. 6.8 Exchange potential of fcc aluminum in (100) plane (surface of conventional cubic unit
cell): Self-consistent OPM and KLI potentials resulting from exact exchange (technical details as
in Fig. 6.6).
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Fig. 6.9 Exchange potential of silicon (diamond structure) in (1,1,0) plane (diagonal plane of con-

ventional cubic unit cell): Self-consistent OPM and KLI potentials resulting from exact exchange
(technical details as in Fig. 6.7).
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Fig. 6.10 As Fig. 6.3 for exact exchange within the KLI approximation in combination with LDA
correlation.

complete cancellation of the self-interaction of the highly localized and oriented 3d
states: proper elimination of the self-interaction stabilizes one of the minority spin
fy, states (the so-called aj, state in the rhombohedral nomenclature—this state has
3(z')? — r? character in the coordinate system with z’-axis perpendicular to the AF
II planes) so much that a population imbalance of three 7, states is energetically
favorable and a gap emerges. The full OPM exchange allows the exchange potential
to develop the very localized, attractive pockets, which are required to build up this
population imbalance, while these pockets are smeared out in the KLI approxima-
tion. The same effect is found for CoO [391], for which the minority spin #,, states
are split into two occupied and one unoccupied band. Figure 6.11 should, however,
not be interpreted as the final result, as replacement of the LDA correlation by some
appropriate orbital-dependent correlation functional is expected to lead to modifica-
tions of the band structure. In addition, a serious comparison with experimental gaps
requires the inclusion of the derivative discontinuity, Eq. (3.186), which is non-zero
for orbital-dependent functionals as the exact exchange.

Some further band gaps obtained with the exact exchange are listed in Ta-
ble 6.9, as a final illustration of the role of self-interaction in v¢. All-electron OPM
results based on (i) the Korringa-Kohn-Rostoker (KKR) method and the atomic
sphere approximation (ASA) [360], (ii) the Linear-Muffin-Tin-Orbital method plus
ASA [358-360], and (iii) the Full-Potential Linearized-Augmented-Plane-Wave
(FP-LAPW) approach [394] are compared with full potential plane-wave pseudopo-
tential (PW-PP) [103, 241] data for C, Si, Ge and GaAs. All calculations use the full
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Fig. 6.11 As Fig. 6.3 for full OPM calculation with the exact exchange in combination with LDA
correlation [391] (Eqye =160Ry). Also shown are the total (solid line) and partial densities of
states (DOS): O2p—dashed line; Fe3d at sites with majority spin [—dotted line; Fe3d at sites
with majority spin |—dash-dotted line.

Table 6.9 Fundamental band gap E, and band gap at I"-point E,(I") of semiconductors and in-
sulators: FP-LAPW [394], KKR-ASA [360], LMTO-ASA [360] and plane-wave pseudopotential
(PW-PP—in the spirit of [103, 377]) OPM results versus HF [395] and experimental data (all en-
ergies in eV—experimental values for E, from [396-400], for Eq(I") from [401-404]; for E(I")
of diamond one also finds 6.5£1.0eV [405] and 7.3 eV [406]). The direct gap As and the exact
exchange contribution Ay [103, 241] to the derivative discontinuity of Ex., Eq. (3.185), are given
separately in the case of the EXX calculations.

E, E. Method C Si Ge GaAs Ne
As(I') Exact — FP-LAPW 6.67 3.58 1.42 242 163
Exact — PW-PP 6.24 3.17 1.46 2.06 14.72
LDA LDA PW-PP 5.56 256 0.0 0.0 11.32
E (T") Expt. (T > 0) 6.0+0.2 3.35 0.89 1.63 21.69

A Exact LDA  KKR-ASA 458 1.12 1.03
Exact LDA LMTO-ASA 4.65 1.251.12

Exact LDA PW-PP 4.81 1.351.22 2.11 14.76
Exact PBE PW-PP 432 094 0.84 1.80
Exact — PW-PP 4.67 121 1.08 2.03 14.15
Ac  Exact — PW-PP 8.70 5.62 4.81 5.28
Eq HF — LAPW/PW-PP 124 63 64 7.7

Expt. (T =0) 548 1.170.79 1.52 21.69




6.3 Exchange-Only Results 269

OPM, rather than the KLI approximation with its inherent limitations, illustrated in
Fig. 6.4b. Values resulting from the combination of the exact Ex with either LDA or
PBE-GGA correlation are listed in addition to the x-only data.

Results for both the fundamental band gap E, (which is an indirect gap in the
case of C and Si) and for the gap E,(I") at the I"-point, i.e. the origin of the first
Brillouin zone (k = (0,0,0)) are given.!” The single-particle contribution As, i.e.
the KS eigenvalue gap, is separated from the contribution Ay originating from the
derivative discontinuity of the exact exchange, according to Eqgs. (3.185), (3.186).
The corresponding HF band gaps are listed for comparison.

Before comparing OPM results with experiment, one has to make sure that the
OPM data are not affected by technical limitations. Several aspects of the computa-
tion can be critical:

e The atomic sphere approximation (ASA) has been applied in the case of the KKR
and LMTO results. However, as shown in Fig. 6.9, the exchange potential in these
crystals with a diamond structure is not really spherical inside the ASA sphere
around the atomic sites (which implies that vy is essentially constant between the
sites).

e The PW-PP data, on the other hand, could suffer from an inadequate treatment
of the core—valence interaction: While the exact exchange interaction among the
valence states is included explicitly, the exchange component of the core—valence
interaction is frozen to have the form of the core—valence interaction of the cor-
responding atom (via the pseudopotential—compare, however, [407, 408]).

e In the case of all methods a restricted KS spectrum resulting from a small basis
set can lead to an inadequate representation of both the response function and the
inhomogeneity of the OPM equation. This point is illustrated in Fig. 6.12 which
shows the convergence of As with the resolution of the plane-wave basis used
for vy in case of the PW-PP scheme (for fixed cut-off energy for the KS states).
As potentials resulting from Coulomb integrals are smoother than the underly-
ing (orbital) densities, one would expect the representation of v to require fewer
plane-waves than that of the KS states (whose spatial variation is determined by
the dominating components of the total KS potential, the pseudopotential and
vi). On the other hand, the solution of the OPM integral equation on the recipro-
cal lattice is the most costly step in PW-PP calculations with the exact exchange,
so that a truncation of the plane-wave expansion of v below the value used for
the KS states suggests itself [241, 381, 407]. Figure 6.12 basically confirms this
procedure. However, even for silicon an accurate evaluation of the gap requires a
cut-off energy of more than 15 Ry.

e Finally, insufficient k-point sampling can spoil results. Use of a dense grid for the
integration over the first Brillouin zone is particularly costly in EXX calculations,
since the exact exchange scales quadratically with the number of grid points.

17 Note that, as a matter of principle, E4(T") is not a density functional, in contrast to the funda-
mental gap, Eq. (3.181). It is nevertheless usual to compare the KS eigenvalue gap at k = (0,0,0)
with the experimental Eq(I").
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Fig. 6.12 Convergence of A with the energy cut-off used in the plane-wave representation of vy
within the PW-PP scheme for silicon. All results rely on a cut-off energy of 40 Ry for the KS states
and 28 special k-points for the integration over the 1st Brillouin zone.

As a result of the various limitations, the agreement of the gaps obtained with
different methods is not fully satisfactory. Nevertheless, it is obvious from Table 6.9
that A is consistently enlarged, when replacing the LDA exchange by the exact
Ex (compare Table 4.11). In fact, the A obtained with the exact Ex are in much
better agreement with the experimental data than the LDA gaps, irrespective of the
correlation functional used. Surprisingly, one finds that the inclusion of correlation
on the LDA level increases Ay compared with the x-only result, while use of the
PBE-GGA for E, leads to a reduced gap. As a consequence, inclusion of GGA cor-
relation improves the agreement with experiment for Ge and GaAs, while it worsens
the agreement for Si and the insulator C.

The picture becomes even less clear as soon as the derivative discontinuity of
E, is taken into account. The corresponding contribution Ay is much larger than Ag
[103], so that the agreement with experiment is completely lost. In fact, the sum
of As and Ay obtained in the x-only OPM calculation is almost equal to the very
large band gap which one finds in the Hartree-Fock approximation [395]. In this
sense the x-only OPM and the HF scheme are once more equivalent. Obviously, the
correlation contribution to Ay, must cancel most of the large Ay.

Indeed, the good agreement of EXX KS gaps with experimental data led to the
expectation that Ay and A. cancel each other almost completely. Ax has therefore
often been ignored in discussions of EXX results. Recently, however, a first appli-
cation of the orbital-dependent RPA functional (see Sect. 6.4.2) demonstrated that
Afxx and ACRP A do not cancel completely [409] (see also [410]). Rather, their sum
is of the same order of magnitude as the corresponding Aq, at least for the systems
considered in [409] (Si, LiF and Ar).

In view of all these contradicting results it seems to be too early to draw definitive
conclusions about the role of the exact exchange for band gaps. First some techni-
cal issues of the various implementations need to be clarified and an appropriate
functional for correlation has to be fully established. The only reliable information
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which can be extracted from Table 6.9 is the fact that the transition from LDA to
exact exchange leads to an increase of A (for fixed E[n]).

6.4 First-Principles Implicit Correlation Functionals

Some of the examples considered in the previous section already indicated that the
exact exchange, while providing obvious progress compared with LDA and GGA
exchange, has to be combined with an appropriate correlation functional, in order
to be really useful in practice. This statement is corroborated by the accuracy of
the spectroscopic constants resulting from the combination of the exact exchange
(EXX) and PBE-GGA correlation. As demonstrated in Table 6.10 for the diatomic
molecules of the G2 test set, the mean absolute errors obtained with the EXX-PBE
functional are worse than the corresponding deviations of the LDA data (compare
Table 4.8). In particular, the EXX-PBE approach leads to rather unsatisfactory re-
sults for bond lengths (see Table 6.16 for an explicit example). GGA and LDA cor-
relation functionals are not suitable for use with the exact exchange, so that one is
led to consider orbital-dependent correlation functionals. Given the first-principles
nature of the exact Ey, a systematic derivation of a corresponding functional from
the exact E. suggests itself.

Suitable starting points for this endeavor have been established in Sect. 4.2:
both KS-based many-body theory and the adiabatic connection can be employed
[343, 361, 344, 362, 411-415]. It is beyond the scope of the present summary to
review the various lines of attack that have been followed during the last years—
the construction of first-principles orbital-dependent correlation functionals is still
a matter of current-day research. The discussion is therefore restricted to two basic
functionals of this type. The first of these functionals results from a perturbation
expansion of the exact E; [343], for which Eq. (4.65) provides the most transparent
starting point (see Sect. 6.4.1). Due to its roots in perturbation theory, this functional
is not applicable to systems without an energy gap between the highest occupied and
lowest unoccupied KS state. The simplest functional available for gapless systems is
obtained from the RPA, applied within the framework of KS-based many-body the-
ory [361, 362, 411, 412]. The adiabatic connection formula (4.85) allows the most
direct derivation in this case (see Sect. 6.4.2). Other variants of partial resummation
of the KS perturbation expansion can be found in [416-421].

Both examples discussed below indicate that the structure of first-principles
orbital-dependent correlation functionals is much more involved than that of con-
ventional, density-based approximations. In particular, inclusion of higher order cor-
relation complicates applications dramatically. It is therefore tempting to combine
lowest order perturbation theory with a model-based representation of all higher
order contributions. The first functional implementing this concept, the interaction
strength interpolation (ISI) [422], is briefly discussed in Sect. 6.4.3.
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6.4.1 Kohn-Sham Perturbation Theory

Equation (4.65) provides an exact representation of Ex. in terms of the KS orbitals
and eigenvalues (which enter via the KS Green’s function emerging from the appli-
cation of e.g. Wick’s theorem) as well as of its own functional derivative vy.. In fact,
the power series in H; on the right-hand side of Eq. (4.65) includes arbitrary powers
of vxc, so that Eq. (4.65) and the resulting OPM equation are highly nonlinear.
How can one deal with this nonlinearity? Given the genesis of Eq. (4.65), an
expansion of Ey. (and thus of vy.) in powers of ¢? is the natural first approach to the
linearization of the OPM equation for the exact Ex. [343]. This approach is usually
referred to as Kohn-Sham or Gorling-Levy perturbation theory. The lowest order
term in this expansion is the exchange energy. All higher orders correspond to E,

Exc = Z ! E)Elc) [n] = Ex +Ec<2> +... (6.89)
=1
e = S vl = v+ P 4 (6.90)

After insertion of (6.89), (6.90) into the OPM equation (6.26) both its right-hand
and its left-hand side are given as power series with respect to 2. Identity of both
sides is then required order by order.

Unfortunately, the expression (4.65) does not lend itself to a direct expansion in
powers of e?: many-body perturbation theory for the energy (4.65) necessarily has
to start with an expansion in powers of H, Eq. (4.25). The basic elements of this
expansion are the Green’s function Gg, the Coulomb interaction W and vy.. While
W is linear in €2, vy itself involves a complete power series in ¢Z. The lowest order
term in this series is vy (which is linear in e2), so that each power of vy introduces
at least one order of ¢%. An expansion of (4.65) in powers of e? thus consists of two
steps, first an expansion in powers of W and vy, followed by an expansion of vy in
powers of ¢2.

In lowest order (e?) the left-hand side of the OPM integral equation (6.26) just
contains vy, while the inhomogeneity is determined by (6.11). This simply reflects
the fact that Ex is a well-defined functional of only the ¢%. In lowest order one
therefore ends up with the standard OPM equation for the exact exchange,

/ B g5 (P W (F) = Ax(F) 6.91)
/ot / 6Ex
Ax(r) = —%/d% 0! (rGy(r,r )W tee.. (6.92)

The first time that the nonlinearity comes into play is in the order ¢*. This low-
est order correlation contribution (often referred to as second order Gorling-Levy
functional [343]) can be written as
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EY = EMP 4 gAY (6.93)

The first of these terms is an expression which basically looks like the standard
second order Mgller-Plesset (MP2) correction to the HF energy,

B _ €5 00,1 01— g) IR — WD) g,

2 Etej—&—&

However, the Slater integrals (ij||k/) in (6.94),

.
(ijlIkl) = /d3r1/d3 () (1), (r2)(ra). (6.95)

lr1 —r2|

are calculated with the KS orbitals ¢, and the denominator of (6.94) is determined
by the KS eigenvalues &, so that EMP? can give results which are quite different
from standard MP2 data (see below). As usual, EMP? can be split into a direct con-
tribution (DIR) and an exchange term (second order exchange—SOX),

D (k1
Eév[PzﬁDIR _ Z 0,0,(1— - )M (6.96)
z/kl E+E —&—¢§
j||\kD) (K| ji
EMP2SOX _ Z@@ (1-6 )(1*@1)M- (6.97)
z]kl 8i+8j_8k_81
In the diagrammatic evaluation of (4.65) the direct term emerges from
(6.98)

with the solid line representing the KS Green’s function (4.71) and the wavy line
being the Coulomb interaction (for the Feynman rules required to translate diagrams
into formulas and vice versa see Appendix L). The SOX term corresponds to

(6.99)

The second contribution to (6.93) involves the difference between the orbital expec-
tation values of the nonlocal HF-type exchange potential and of vy,

B = 3 = (i) + ¢ X 0531 1) (6.100)
il 1

6,(1-6) 2
€ 7
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(i|ve|l) = /d3r¢j(r)vx(r)¢l(r). (6.101)

accounts for the fact that the present perturbation expansion is not based on
EAHF

AHF
EC

the HF Hamiltonian, but rather on the KS Hamiltonian. Diagrammatically,
results from the remaining second order terms in (4.65), including the interaction of
the KS particles with the “external” potential vyyc, Eq. (4.26):

O~ -0 X
O X
(o o

Sdo

In these diagrams the wavy line with the cross denotes vpy.. After decomposition
of v into vy and v, the Hartree contributions cancel with the tadpole diagrams.
The remaining terms can be added up to the expression (6.100) with v replaced
by the full vy.. After this first step of the expansion the energy correction therefore
features the full difference between the single-particle KS and HF Hamiltonians,
. —ihV)?
(il = 39 =) | S50 () () el
()] (r)

ety = 59— [ ) 4] + 22@ e

2m

However, due to the quadratic structure of (6.100) only the leading term vy is rele-
vant in the order ¢*. As net result one finds a well-defined, linear expression for the
correlation functional Eéz).

The contribution EAHF once again illustrates the relation between the x-only
OPM and the standard HF approach. In the x-only limit the OPM, i.e. the EXX
approach, corresponds to a minimization of the HF energy expression under the
subsidiary condition that the orbitals satisfy the KS equations (see Sect. 6.2.2). The
EXX ground state energy is thus slightly higher than the HF value, which results
from a free minimization of the same energy expression. The difference between
the two energies can be evaluated order by order, using the difference between the
HF and the EXX Hamiltonian as perturbation. In lowest order this procedure leads
to the energy (6.100). This expression is always negative, consistent with the fact
that the HF energy must be below the x-only OPM value. On the other hand, if
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one examines (6.100) quantitatively, one usually finds it to be rather small, which is
immediately clear from Tables 6.1 and 6.2 (see also Sect. 6.6).

As already emphasized, EC(Z) is well-defined as soon as vy is known. This implies,
that the first step of a selfconsistent application of (6.93) is a solution of the x-only

OPM equation (6.91) for given orbitals. Once vy is available, it remains to evaluate

EY [0k, €k, vx]

The calculation of the functional derivative of EMP? with respect to 7 can be handled

in analogy to Eq. (6.10), as this term does not depend on vx. The same applies to the
r- and &-dependence of EAHF. The subsequent discussion therefore focuses on the
handling of the vy-dependence of EAHF,

One starts by realizing that the explicit v-dependence of EAHF is not fundamen-
tally different from the ¢- and &;-dependence. One thus has to include a functional
derivative with respect to this additional variable, when eliminating the original
derivative 0/0n via the chain rule (as in (6.10)). This leads to an additional con-
tribution to the inhomogeneity (6.28),

() 3.7 O (7) 5ECAHF
AA (r)—/d Saerart (6.103)

The first factor, the functional derivative of vx with respect to vg, is accessible via the
x-only OPM equation. If one differentiates Eq. (6.91) with respect to v and isolates
the desired derivative one finds

5vx r2 3 SAX(I‘3) _ 3 6}@(7‘3,7‘4)
5vg /d 7"3%b (rz,rg){ 5vs(r1) /d rq va(m) . (6104)

The functional derivative of Ax with respect to the KS potential can again be ob-
tained by use of the chain rule and the relations (6.18), (6.19),

fsfsf =3 [dn {% n)Gk(rl,m‘;gEE:z; +}
NI oAs),

Jex

(6.105)

The second new expression in (6.104) is the derivative of the linear response func-
tion with respect to the KS potential. Using the definition (6.27) of the linear KS
response function, one can rewrite this quantity as the second functional derivative
of n with respect to vg, i.e. the quadratic response function of the KS system,

Oxs(r3,ra) _ 8%n(r3)
ovs(ry) Svs(ra)dvs(ry)

(6.106)
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This function can be evaluated in the same fashion as s (compare [350]). As the
derivative SEAHF /§v, can be taken directly, all ingredients of (6.103) are known,
so that ng) can be calculated.

In principle, one can proceed in the same fashion to approach higher order con-

tributions to E.. However, Egs. (6.103)—(6.106) indicate that even a self-consistent
application of EC(Z) represents quite a demanding computational task. For this reason

EC(Z) is often applied in post-EXX fashion, i.e. evaluated a posteriori with the KS or-
bitals resulting from a self-consistent EXX calculation. Alternatively, the complete
EAHE or at least its contribution to véz) are neglected, as one expects this energy

contribution to be small quite generally.

6.4.2 Kohn-Sham-Based Random Phase Approximation

@)

The most straightforward way to go beyond E; ™ is the resummation of certain dia-
grammatic classes of the KS perturbation expansion. The simplest and, at the same
time, most important of these classes are the so-called ring diagrams, which are
known to be crucial for the description of metals (see e.g. [94]). As in the case
of the homogeneous electron gas, the resulting correlation energy is termed random
phase approximation (RPA) [361, 362, 411-414, 423-425]. Its derivation starts with
the adiabatic connection formula (4.85). The heart of (4.85) is the time-ordered re-
sponse function ), of the interacting system with coupling strength A and external
potential u,, which has the same ground state density as the actual system of inter-
est (obtained for A = 1, u; = vex). As in the case of any other interacting system,
one can formulate a Dyson equation for y, . Its derivation is discussed in detail in
Sect. 7.4. This Dyson equation allows a systematic analysis of approximations for
X.- At this point, however, we will introduce the RPA for y;, in an ad hoc fashion,
relying on the analogy with the RPA for the homogeneous electron gas, Eq. (4.100).
Translated to the inhomogeneous situation, this equation reads'8

1A (r,r ,0) = x5(r,7 )

de 2
+ / & / &r" (7" a))7| N o). (6107
Physically, this approximation corresponds to a screening of the Coulomb interac-
tion by repeated, sequential excitation of a single virtual particle-hole pair, which,
in the present situation, is a KS particle-hole pair. Insertion of the iterated equation
(6.107) into (4.85) allows the evaluation of the coupling constant integral,

18 Comparison with the Dyson equation (7.127) shows that (6.107) amounts to a complete neglect
of the xc-kernel fic.
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oo

d
ERPA _ 2/ a’z /d3r1/d3’ /d3r,,/d3’

X%s(ry, 12 i) - m%s("n»’hlw)
n n

n[edo . .
:E/o — Triln{l —wys(io)] +wys(io)} (6.108)

Irl—r’l

where the trace in the last line indicates integration over all spatial coordinates. In
order to arrive at a practically useful form of EXPA one has to specify ys in more
detail. Starting from (4.68), one first obtains

Z¢k () (r') Culio) (6.109)

(ex— &) —iho

0P+ (G—a ) (6.110)

Cu(io) = (6, —6;)

Insertion into (6.108) gives

do g
ERPA — _ 2/ °yly ..y

n— 2”k111 knlp
X (lnkl | |kn11 )Cklll (za)) s (lnflankn,] ln)Ck,,I,, (ia)) s (6.1 1 1)

where the Slater integrals (6.95) contain all spatial integrations. Comparison with
(6.96) shows that the lowest order contribution to EXY A is exactly the second order
direct term, E. MP2DIR O the other hand, the SOX contribution (6.97) is not included
in the RPA.

Equation (6.111) can be brought into a more compact form by definition of the
matrix

Sirji(iw) := (kj||il) Cji(iw) 6.112)
do < )
— B = / >~ 2 + 2 Stabay (1) Sy, il (i)
n=2"V il kel

h [~do
- f/ —Tr{ln [l—g(iw)} +§(iw)} . (6.113)
2Jo ® = = =
where the trace runs over the multi-index ik of the matrix § Finally, one can use
Tr[ln(A)] = In|det(A)|

to rewrite (6.113) as

ERPA — g/:d%’ {ln’det (l—é(ia))))—kTrg(iw)}. 6.114)
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The corresponding potential can be calculated via the standard OPM integral equa-
tion (6.26).
As it stands, Eq. (6.114) is still completely general. A particularly useful form is obtained

by choosing real KS orbitals (which is always possible for discrete states, as long as the spin-
projection in z-direction is a good quantum number). In this case one of the contributions to (6.109),

. e (66
i1 30/ (N0(N0] () P s

vanishes identically due to the symmetry of ¢,j (r)ou(r) d);(r’ )k (r') under exchange of k and /. In
addition, the remaining term can be reformulated as

xs(r.riw) = 3 0/ (r) o1 () (r' ) (r) Cu i) (6.115)
ki

2(£k — 61)

Culio) = 6(1 *@)W‘

(6.116)
The form (6.116) of Cy; simplifies the evaluation of the most critical ingredient of E?PA, the deter-
minant det (l -8 (ia))) , as the multi-index of S now splits into two components—one index (k) is

restricted to occupied states, while the second (/) involves only unoccupied states.

6.4.3 Interaction Strength Interpolation (ISI)

Given the extremely complicated form of the correlation contributions beyond Ec(2>,
one might ask whether it is possible to account for these higher order terms in a
more efficient fashion? This is the aim of the interaction strength interpolation (IST)
[422], in which one attempts to express the higher order terms in the form of an
explicit density functional. The starting point for the derivation of the ISI is the
adiabatic connection (4.75). Insertion of y;, Eq. (4.35), and use of the commutator
(4.33) leads to a formula similar to (4.32),

1
Ex = / AW, [n], 6.117)
0

with!®
Wy ln] = (Fo(A)[n]|W[¥o(A)[n]) — Enln]. (6.118)

The basic idea of the ISI is to obtain W) in the interesting regime A ~ 1 from an
interpolation between the weak (A < 1) and the strong (A >> 1) interaction limit.
The former limit is well-known by now: for weak interactions one can expand FEx
in powers of the coupling constant A. This automatically yields a corresponding
expansion for Wy,

19 |Wo(1)) denotes the ground state which results from (4.74)—see Sect. 4.2.2.
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: S 0
Ev :/ A {EX+ZM’1EC } (6.119)
0 =2

The lowest two orders of W), are therefore determined by Ex and EC(Z).

The strong interaction limit requires a different approach. As the electrostatic
forces completely dominate over kinetic effects for A — oo, a simple model system
(point charge plus continuum model) should be sufficient to extract Wy [426]. In this
way one finds the leading two orders of the expansion of W;, in powers of 1/ VA,

Jim W [n] = We.[n] + WA 24 (6.120)

with
Waaln] = /d3r {An4/3 +B(;’22} (6.121)
W [n] = / Br {Cn3/2 n D(Z;}gz} (6.122)

(for the values of the coefficients A — D see [422]). Interpolation between Ey, Ec(z)
on the one hand and W.,, W.. on the other leads to

2X (1+Y)/2+2
ES —w + 2 |1+ -1 -z [ L T2 6.123
e = Wat o[ (147) |7 . (6123)
with the abbreviations
T GRS o
z2 z &
x=—4g? y=W. 7= Ex—W.. (6.124)

Equations (6.123), (6.124) should be understood as an effective resummation of the
KS perturbation series. The correlation part of EIS! is obtained by subtraction of the
exact Ey from (6.123).

6.5 Model-Based Orbital-Dependent Exchange-Correlation
Functionals

In view of the complexity of the first-principles implicit correlation functionals of
Sect. 6.4, one is automatically led to look for more accessible alternatives. Two func-
tionals of this type have been combined with the OPM quite early, two additional
options only very recently.
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All these functionals have the advantage that they only depend on the occupied
KS states, so that their application is much less time-consuming than that of the
functionals of Sect. 6.4. On the other hand, the correlation components of these
model-based forms are relatively local: their nonlocality is restricted to the first
gradient of the KS orbitals, with obvious limitations. As a consequence, none of
these functionals can deal with the London dispersion force. The argument given in
Sect. 6.1.2 for the LDA and GGA applies equally well to these types of functionals.

6.5.1 Self-Interaction Corrected LDA

The first functional of this type is the self-interaction corrected LDA (SIC-LDA)
[143, 262]. The SIC-LDA has already been introduced in Sect. 4.7 (to which we
refer the reader for all details). Applications of this functional usually do not rely
on the OPM, but rather on the use of orbital-dependent KS potentials. Few results
combining the SIC-LDA with the OPM have been reported in the literature [262,
353].

6.5.2 Colle-Salvetti Functional

A second model-based orbital-dependent expression which was originally intro-
duced in a different context is the Colle-Salvetti (CS) correlation functional [222]. It
was initially developed for use within the Hartree-Fock scheme. The starting point
for the derivation of the CS functional is an approximation for the correlated wave-
function Wo(r101,...rnv0On). The ansatz for Wy consists of a product of the HF
Slater determinant and so-called Jastrow factors, which reflect the correlation be-
tween all pairs of particles,

‘I’o(ncl g rNO'N) = @gp(rlcl g rNO'N) H {1 — (p(r,»,rj)} . (6.125)
i<j

CS use a model for the correlation functions ¢(r;,r;) which satisfies the electron—
electron cusp condition at r; = r; [198]. The free parameter in this model is adjusted
to the correlation energy of the He atom [222]. The final functional reads

ab
ESS — 7Z/d3rﬁy 4 Oono(V|orol)2 — [V = 3 1o VPng +nV2n
ko o

—a/kﬁryﬁg (6.126)
o
with the abbreviations

a(r) = 1+dn(r)"'/?
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n(r) =5/ exp[—en(r) 1]

o(r)

1(r) = 4"

(for the values of the coefficients a—d see after Eq. (4.289)). This functional de-
pends on the spin-density n, and the orbital kinetic energy density, |V ¢ |*. In the
context of DFT, this dependence makes ESS an implicit functional for which the
OPM has to be utilized. Only a few OPM-based applications of the CS functional
are documented in the literature [427-429]. The CS functional is, however, the ba-
sis for the LYP-GGA, Eq. (4.289), which is one of the most often used correlation
functionals.

6.5.3 Meta-GGA

A third model-based orbital-dependent xc-functional is the Meta-GGA [231, 232]
already introduced in Sect. 4.8 (to which we refer the reader for all details). Sim-
ilar to the CS-functional, the Meta-GGA is usually not applied within the OPM.
Rather applications often utilize an a posteriori evaluation of the Meta-GGA energy
by insertion of selfconsistent GGA densities/orbitals. Alternatively, selfconsistent
calculations with the Meta-GGA rely on orbital-dependent potentials, i.e. on a min-
imization of the total energy in the spirit of the HF minimization (see also next
section).

6.5.4 Global, Screened and Local Hybrid Functionals

It has been realized quite early [215, 430] that an admixture of the exact exchange to
GGA-type functionals improves thermochemical results substantially, as compared
to pure GGAs. The standard form of such a global hybrid functional is given by

EN — qoE 4 g ESOA 4 (1 —ag—ay)EFPA (6.127)
EW® — p ESCA 4 (1 —b))ELPA (6.128)

The form of the GGA and the mixing coefficients were originally chosen to op-
timally reproduce sets of thermochemical data. In this way one finds the B3LYP
functional [216], which relies on the B88-GGA for exchange [219], the LYP-GGA
for correlation [221] and ag = 0.2, a; = 0.72, by = 0.81. For E-PA the VWN pa-
rameterization is employed, with, however, (i) a set of parameters different from
those provided in Sect. 4.3, and (ii) the sgm dependence of the exchange: in B3LYP
ELPA s replaced by (4.122), with €5 E9RP (1,0) and ef"9RPA (5, 1) parameterized

in the VWN form (4.108), using xo = —0. 409286, b =13.0720 and ¢ = 42.7198
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for the paramagnetic case and xg = —0.743294, b = 20.1231 and ¢ = 101.578 for
the ferromagnetic limit—this set of data corresponds to the RPA for the correlation
energy of the HEG [134] (compare the discussion in [431]).

The mean average errors obtained with this hybrid for the spectroscopic con-
stants of the molecules listed in Table 4.7 are given in Table 6.10 (atomic refer-
ence data obtained with the B3LYP functional are included in Tables 4.13 and 4.5).
The improvement of these thermochemical data by the B3LYP functional is ob-

Table 6.10 Bond lengths R., dissociation energies D, (including the zero-point energies [226])
and harmonic frequencies @.: Mean absolute deviation of global and local hybrid results from
experimental data (taken from [227-229]—see also http://cccbdb.nist.gov/) for the set of diatomic
molecules listed in Table 4.7. B3LYP: Egs. (6.127), (6.128) [430, 216]; PBEO: Egs. (6.134), (6.135)
[217]); LH-BPWO1: Eqgs. (6.141), (6.146), (6.147) with B88-GGA exchange and PW91-GGA cor-
relation [432]; LH-LDA: Egs. (6.141), (6.148), (6.147) with the LDA for exchange and correlation
[433]). The corresponding deviations of the combination of the exact exchange with the PBE-GGA
for correlation (EXX+PBE) [434] are also given (see Sect. 6.4).

Method R. D e
[Bohr] [eV] [cm™!]

B3LYP  0.018 0.148 33
PBEO  0.020 0.195 41
LH-BPWOI 0046 0.842 109
LH-LDA 0026 0215 35
EXX+PBE 0.088 1.187 213

vious. A good number of similar results can be found in the literature (see e.g.
[430, 216, 435, 436]).

The success of this construction immediately prompts the question concerning
its justification. A simple argument can be given on the basis of the adiabatic con-
nection (4.75) [215]. The crucial point is the decomposition of the total Ex.[n] in
terms of the coupling strength A4,

1
Exln] = /0 dA Exe 5 [n]. (6.129)

Ey ;. is known for small A, for which a power series expansion in the coupling
constant is legitimate,

Exenln] = A9+ 240 1] + 224 0] + 234 [n] + ... (6.130)

The lowest order coefficients of (6.130) are given by the series (6.89), A0 = E, .

A = 2E§2). The simplest approximation for (6.129) relies on the representation of
the A-dependence of E, ; by a straight line,

EchL = EXC,A:O +4 [Exc,)L:l _EXC,A:O] (6.131)
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1
=  Ex[n] = 3 [Ex+Excp-1] -

One can then argue that the LDA or GGA provide a reasonably accurate represen-
tation of E, ; at A =1 (as the xc-hole is deeper and thus more localized around its
electron for full coupling strength [217]) to end up with [215]

1
Exeln] = 5 [Ex+ B (6.132)
This qualitative argument indicates why functionals of the form (6.127) could be
of interest. The quantitative performance of the functional (6.132) is less satisfying.
The argument given can, however, be refined by a more detailed analysis of the
shape of E,. 3 as a function of A [217]. One starts with the ansatz

Eyop = EQO + [Ex —EJOM (1-2)", (6.133)

which (i) is exact for A = 0 (as Egy , = EJ9®), and (ii) approaches ES? | for
A = 1, similar to (6.132). The form (6.133) allows, however, any power—law shape
for intermediate values of A, not just a straight line. The appropriate power n de-
pends on the system under consideration. For molecules one can refer to the success
of many-body perturbation theory to fourth order in the coupling constant (the so-
called MP4 approximation). If one assumes this observation to be also characteristic
for the expansion of Ey, it suggests that the optimum shape of (6.133) is obtained
forn =4.

If the GGA contribution to (6.133) is chosen to be of first-principles form, the
HEG limit is also correctly reproduced. The resulting hybrid functional reads [217]

1 3
EPBEO _ Z ESxact 4 : EPBE (6.134)
EFBE0 _ pPBE (6.135)

Some prototype results obtained with this so-called PBEO functional are given in
Table 6.11. The mean average errors found for the spectroscopic constants of the
diatomic molecules in the G2 set are included in Table 6.10. A comparison with
the PBE-GGA data in Tables 4.7 and 4.8 shows that the PBEQ hybrid improves the
accuracy of the dissociation energy. Additional results may be found in Sect. 6.6
and [437, 435, 438, 439].

Applications of hybrid functionals usually rely on a HF-type implementation of
their exact exchange component (often termed generalized Kohn-Sham approach—
GKYS), rather than on the solution of the OPM equation for the exact Ey,

_ OE,
50/ (r)

This is uncritical for most thermochemical calculations in quantum chemistry,
where the concept of hybrid functionals originated. However, as soon as one wants

Vi (P) i (r) — [Pxi] (r)
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Table 6.11 Bond lengths R., dissociation energies D, (including the zero-point energies [226])
and harmonic frequencies @, of diatomic molecules: Selfconsistent PBEO [217] and local hybrid
(LH-LDA) results. The LH-LDA hybrid [433] combines Eqs. (6.141), (6.148), (6.147) with the
LDA for exchange and correlation. It is evaluated with the orbitals resulting from a global hybrid
in which 10% exact exchange is admixed to the LDA for exchange and correlation. For the atomic
ground state non-spherical densities have been allowed.

Molecule Method Re D. e
[Bohr] [eV] [cm™!]

H, PBEO 1407 4.529 4406
LH-LDA 1.403 4.972 4491

Lip PBEO 5.152 0.836 331
LH-LDA 5.214 0.846 329

B, PBEO 3.047 2.848 1016
LH-LDA 3.071 2482 963

C, PBEO 2351 5219 1870
LH-LDA 2.358 4.884 1846

N, PBEO  2.055 9.787 2464
LH-LDA 2.061 9.445 2428

0, PBEO 2251 5406 1697
LH-LDA 2262 5.334 1673

F, PBEO0 2596 1.519 1067
LH-LDA 2615 1.633 1018

LiH PBEO  3.014 2296 1419
LH-LDA 3.039 2.560 1402

FH PBEO0 1.734 5939 4162
LH-LDA 1.738 6.243 4156

Cco PBEO  2.120 11.090 2240
LH-LDA 2.126 11.025 2227

NO PBEO 2.150 6.603 2019
LH-LDA 2.159 6.379 1982

OH PBEO  1.833 4.414 3761
LH-LDA 1.836 4.577 3758

NH PBEO 1960 3.697 3319
LH-LDA 1960 3.650 3318

CH PBEO  2.124 3.501 2850
LH-LDA 2.120 3.548 2878

CN PBEO 2.186 7.754 2146
LH-LDA 2.195 7.356 2144

LiF PBEO 2945 5730 932
LH-LDA 2994 5970 893

BeH PBEO  2.544 2422 2028
LH-LDA 2.550 2.544 2043
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to apply hybrid functionals to metallic systems, one has to face the logarithmic di-
vergence of the derivative of the HF single particle (band) energies with respect to
the crystal momentum at the Fermi surface (see Chap. 17 of [96]). This divergence
results from the combination of (i) the long range of the unscreened Coulomb inter-
action, and (ii) the nonlocal structure of the HF exchange potential. While an OPM
treatment of the exact exchange avoids the divergence, the GKS approach suffers
from it, just as the pure HF scheme.

Quite generally, the infinite range of the Coulomb interaction complicates HF
and also GKS calculations for metals substantially: while the range of the exchange
interaction decays exponentially for systems with a gap [440] (with the decay con-
stant being controlled by the size of the HOMO-LUMO or band gap), its decay is
only algebraic for metallic systems [441] (at zero temperature). As a consequence,
the real space methods typically applied in quantum chemistry become extremely
demanding: for each center the exchange interaction with a large number of neigh-
boring centers has to be taken into account.

In order to resolve this difficulty, the concept of screened hybrid functionals has
been introduced [441]. The starting point for this class of functionals is a decom-
position of the Coulomb interaction into a short-range and a long-range part. For
technical reasons (i.e. the fact that integrals with Gaussian basis functions can be
solved analytically) the decomposition is based on the error function,

1 erfc(o|r]) erf(o|r|)

L n (6.136)
7| 7] 7|
——
short—range long—range
erf(x) 2 /xdt -+ erfe(x) = 1 —erf(x)
X) = —= e X)=1— X
VT Jo

= erf(0)=0 erf(e0) =1,

where the empirical parameter @ remains to be determined. After insertion of
(6.136) the exchange functional of the global PBEO hybrid, Eq. (6.134), splits into
four components,

E}l:BEO _ % E)(:xact,sr_,'_E)t(:xact,lr} _’_% |:E)I?BE,sr+E)1:BE,Ir ’ (6.137)

where E{““*" denotes the Fock term with the interaction erfc(w|r — '|)/|r — '
and ES““" absorbs the remaining long-range part of (6.136). Similarly, Ex =" and
EFPBEI are the PBE-type GGAs for exchange which result from use of the short-
and long-range Coulomb interactions inside the PBE exchange hole [441] (compare
Sect. 4.5.2).

The critical term in (6.137), which complicates calculations for metallic systems,
is Efxam"lr. However, for suitable values of o this term is rather small. In addition,
EZMY is often close to EX°™". This suggests the replacement of the PBEO ex-

change by

)
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1 3
E)I(-ISE — ZE)f(:xact,sr + ZE)I(’BE,sr _|_E£BE,lr ) (6138)
Obviously, approaches the PBEO functional in the limit @ — 0. The correla-
tion component of the PBEQ functional, on the other hand, remains unmodified in

the screened hybrid,

E)I(‘ISE

ENSE — EPBE (6.139)

Extensive tests showed that results are not particularly sensitive to the value of
, as long as this screening parameter is chosen sufficiently small. The value of
®=0.11 Bohr~! turned out to be a good compromise between accuracy and compu-
tational efficiency [441-443]. With this choice the accuracy of the screened hybrid
for standard sets of thermochemical data is comparable to that of its PBEQ parent
functional. A detailed assessment of the screened hybrid for solids may be found in
[444, 242, 443, 445, 446].

The major motivation for using the exact exchange functional is the complete
cancellation of the self-interaction in Ey. Unfortunately, this cancellation remains
incomplete for hybrid functionals as (6.127) or (6.134). As a consequence, the corre-
sponding vy, does not satisfy (4.20), but rather decays like —a/r (for finite systems).
This local property of vy, which is associated with the fact that asymptotically a
single orbital dominates the density, raises the question whether one can improve
hybrids by use of a local mixing procedure. Ideally, such a local mixing would al-
low the complete cancellation of the self-interaction in those regions in which the
system is close to a single particle system. In order to distinguish between different
regions of space a local hybrid [447] necessarily has to rely on the local admixture
of the exact exchange energy density e<**'(r) to some LDA or GGA energy density.
Setting aside the issue of non-uniqueness of energy densities, the former quantity is
most naturally defined as

2 T L™ /
eexact(r) _ _%z@k@l/d3r/ ¢k (r)¢l(r)¢l (r) i (r') (6.140)
kl

" r—r|

(see also the discussion in [448]). The general form of a local hybrid [447] is then
given by

M — / dr { F(re () + 1= £(r)]elPV R )} (6.141)

Obviously, the crucial ingredient of (6.141) is the local mixing factor f(r), for which
some model is required.

Given the basic purpose of the local hybrid, the mixing factor has to distinguish
between the one-electron regime, in which the exact exchange energy density is
required for a complete cancellation of the self-interaction, and the electron gas
regime, in which GGA-type functionals become exact. These two limits are also
reflected in the kinetic energy density. Ignoring once more the non-uniqueness of
any energy density, one usually defines the exact KS kinetic energy density as
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n? 5
ts(r) = %2@,{ (Vor(r)]”, (6.142)
k

where all orbitals have been chosen to be real. In the case of a single particle z; can
be written in the form of the von Weizsacker energy density [174],

B2 V()
t5(r) g tw(r) = ) (6.143)

On the other hand, #w vanishes in the limit of a homogeneous electron gas. Both 7
and tw are positive definite by construction and satisfy the inequality

ts(r) > tw(r). (6.144)
Equation (6.144) is easily proven by considering

0< Y 66 [0V — V)
kl

=2|>.00 Z@kwmﬂ —%Zekez (Vor) (Vo?)
! k kl
= a0 ()]

One therefore finds

<1, (6.145)

with the left-hand bound being approached in regions in which the KS states are
close to plane waves, the right-hand bound in regions in which only a single orbital
is non-vanishing. As a consequence, the mixing factor

f(r)= (6.146)

offers itself. Clearly, this choice is in no way unique, many alternatives being con-
ceivable (see [432, 449, 433]). The functional (6.141) is easily extended to spin-
polarized systems, using (4.19) and the corresponding statement for the kinetic en-
ergy.

It remains to define the correlation component of the local hybrid. As the can-
cellation of self-interaction is much more important for exchange than for correla-
tion, the correlation component of the local hybrid is chosen to be a conventional
(semi)local density functional,

LDA/GGA
o )

EM —E (6.147)
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Both the LDA and various GGAs have been utilized in connection with local hy-
brids. Applications initially relied on an evaluation of ELH with LDA or GGA or-
bitals. Recently, also selfconsistent calculations, using either the OPM [432] or the
GKS scheme [450], have been reported. The differences between selfconsistent and
post-LDA/GGA results are, however, generally rather small, so that one may use the
more efficient post-LDA/GGA treatment.

It turns out that the results obtained with ELH with the mixing factor (6.146)
are not fully convincing, irrespective of the approximation chosen for its semi-local
ingredient and of its treatment via the OPM, the GKS or the post-LDA/GGA proce-
dure [447, 432, 449, 433, 450]. On the one hand, the local hybrid clearly constitutes
an improvement over the global hybrid for systems in which the cancellation of the
self-interaction plays a predominant role, as symmetric radical cations (as e.g. H;’ ,
He; ) or reaction barriers [447]. On the other hand, the accuracy of ELH for standard
thermochemical data is clearly lower than that of global hybrids [447, 432]. An il-
lustration of this statement is provided in Table 6.10. This table includes results from
a local hybrid, which combines Eq. (6.141) with the mixing factor (6.146) and the
B88-GGA for exchange as well as Eq. (6.147) with the PW91-GGA for correlation.

This poor performance has prompted attempts to optimize f(r) [432, 449, 433].
It was found that the choice

lw(r)

ts(r)

gives much improved thermochemical results, even if the exact exchange is com-
bined with the LDA [449, 433, 450]. Some prototype results obtained from a local
hybrid using the mixing factor (6.148) and the LDA [134] for the density-dependent
component of EX are included in Tables 6.11 and 6.10. One finds almost the same
average absolute error as with the best global hybrids.

f(r) =048 (6.148)

6.6 Analysis of Orbital-Dependent Correlation Functionals

6.6.1 Dispersion Force

In view of the motivation for implicit correlation functionals given in Sect. 6.1.2,
first the question of dispersion forces has to be addressed. As none of the model-
based functionals of Sect. 6.5 can rigorously deal with these long-range forces, the
present discussion focuses on the second order correlation functional (6.93) as the
simplest first-principles functional. Some numerical results obtained with global hy-
brid functionals are provided at the end of this section.

Consider two neutral atoms A and B, separated by a sufficiently large distance
R, so that no molecular orbitals are formed. For this system the overlap between the
atomic orbitals ¢ 4 centered on atom A and ¢  centered on atom B vanishes expo-
nentially with increasing R. Even if A and B represent the same type of atom, one
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can therefore choose the KS states of the two-center system to be atomic orbitals,
rather than molecular orbitals (which are trivial linear combinations of the atomic
orbitals). The sums over all KS states in (6.94) and (6.100) then effectively split up
into sums over the atomic states (compare e.g. [96]),

This implies that only those Slater integrals in EC(Z) contribute which do not in-
volve orbital pairs of type ¢i2(r)¢ iz (r), i.e. which do not link orbitals from dif-
ferent atomic centers at the same point r. Consequently, for large R neither EAHE,
Eq. (6.100), nor the SOX component of EéVIP 2 Eq. (6.97), contributes to the inter-
action between the two atoms, as for these terms all sums over states only couple
states belonging to the same atom,

4
EMP2SOX _ & Y Y 6,0,(1-6)(1-6y,)
2 A B iy ekl
. lajallkalo)(kalol| jaia)
€ig + Ejo — &g — &y

AHF 6,(1-6y,)],. 2 NG
EST = 2 2 (ia|vx|la) +e Z@ja(la]an]ala)
0=AB igly  Eia ~ Ela Jo
Only the direct matrix elements in EiVI P2DIR ' \vhich corresponds to the ring diagram

(6.98), couple both centers for large R. In the present situation the complete ring
diagram decomposes into four terms, as the electron-hole pair in any of the rings
can either belong to atom A or atom B. The combinations AA and BB,

4
MP2DIR _ €
E; antBB = 5 Y Y 6,0,,(1-6,)(1-6y,)

0=AB i jokala

y (iajollkala) (kala|licja)
i, + Ejo — &g — Ely ’
contribute to the atomic (on-site) correlation energies of A and B, just as EAHF and
Eéw P2,50X Only the combinations AB and BA, which represent the interaction of
virtual particle-hole excitations on two different centers, lead to molecular binding.
No other component of the total energy functional contributes to the interaction
between the two atoms, provided that A and B are closed-subshell atoms (so that
no static multipole moments are present). The interaction energy between A and B
therefore reduces to

_ ~MP2,DIR
Ein = Ec,AB+BA

) (iajB|lkalp)(kalpl|iajB)

(6.149)
€iy T Ejp — Eky — Eip
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If one expands (6.149) in powers of 1/R and reintroduces the frequency integration
inherent in the ring diagram, one ends up with an expression [350] which is much
more familiar,

Co

= du . .
Eine = g6 Co = —3e4/0 - Ot 4 (i) ot p(iut) . (6.150)

Here o 4/5(iu) denotes the atomic KS polarizability (for the case of closed sub-
shells), evaluated at imaginary frequency,

O(S((D) = —/d3r1/d3r2 71 22 xsyR(rl,rz,a)). (6.151)

The basic ingredient of o(®) is the frequency-dependent, retarded KS response
function,

O (r))gu(r)@; (r2)¢u(r2) .

6.152
ho—¢g+ & +in ( )

Ksr(ri,r2,0) = Y [6,— 6]
ol

Equation (6.150) has the standard form of a dispersion force. Obviously, E§2) is able
to reproduce the correct long-range behavior proportional to 1/RS. The same is true
for ERPA as the diagram (6.98) is included in the RPA (see Eq. (6.108)).

However, the exact result for the coefficient Cg involves the full atomic polariz-
abilities, while the present DFT-variant of Cg is determined by the KS polarizabil-
ities (as a consequence of second order perturbation theory). So, the next question
is how well do the KS coefficients reproduce the exact Cs? Calculations [451] show
that Eq. (6.150) yields reasonably accurate values for light atoms: as indicated by
Table 6.12, the lowest order KS results overestimate the full Cg by 10-20%. On the

Table 6.12 Van der Waals coefficient Cs: Eq. (6.150) versus accurate empirical results.

Atoms  EP[451] Empirical [452, 453]

He-He 1.66 1.46
He-Ne 3.49 3.03
Ne-Ne 7.45 6.38
Xe—Xe 730.7 285.9
H-He 3.02 2.82 +0.02
H-Na 81.14 71.8 +£0.3

other hand, for heavier atoms higher order correlation becomes important, so that
the C obtained from Eq. (6.150) differ substantially from empirical results.

At this point it is has been verified that the functional (6.93) reproduces the long-
range behavior of the dispersion force. It is not yet clear, however, how it performs in
the intermediate (bonding) regime. In order to predict the equilibrium geometry of a
van der Waals bonded molecule, it is not sufficient to obtain the correct asymptotic
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1/RC-attraction. Rather the complete energy surface must be accurate. This point is
illustrated in Fig. 6.13, in which the energy surface Ey,(R) of the He dimer is shown
[454]. In Fig. 6.13 four different DFT results are compared with HF data [455]
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Fig. 6.13 Energy surface Ey, of Hey: Exact Ey in combination with E{* (EXX+EC2) [454], ERPA
(EXX+RPA) and EST (EXX+ISI) versus EXX, HF [455] and exact data [332].

and the exact Ey, obtained by variational calculations with correlated wavefunctions
[332] (all Ey are strictly nonrelativistic). The x-only results demonstrate explicitly
that dispersive bonding is a pure correlation effect—both the EXX calculation and
its HF counterpart predict a repulsive energy surface (as in many other situations the
EXX data are rather close to the HF numbers—see Sect. 6.3).

Three “correlated” DFT results are also shown in Fig. 6.13. The first one is based
on the combination of the exact Ex with EC<2) (EXX+EC2—after a selfconsistent
EXX calculation with the KLI approximation, EC(Z) is evaluated from the EXX or-
bitals and added to the EXX ground state energy). The agreement of the result-
ing EFXXTEC2(R) with the exact surface is far from perfect, but EFX*TEC2(R) is at

least qualitatively correct. One can conclude that Ec(z) does not only give the de-
sired asymptotic 1 /R6-behavior, but also provides a realistic description of E,(R)
for non-asymptotic R.

As pointed out before, the RPA contains the asymptotically leading term of EC(2>.
It is therefore no surprise that the energy surfaces of the two functionals agree for
large R. However, the RPA also leads to quite realistic results in the vicinity of the
minimum of Ey,(R) [456] (see Fig. 6.13). The same is not true for the ISI energy sur-
face, which is also plotted in Fig. 6.13. The He, molecule is an extremely sensitive
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system, so that a model-based treatment of higher order correlations is particularly
difficult.

Since Eéz) originates from second order perturbation theory, one might be tempted to consider
its success for He; a trivial result: the arguments given in the beginning of this section apply to
any second order perturbative energy functional, so that the 1/R®-behavior is common to all of
them. However, the correct long-range behavior does not imply that the full function Ey(R) is
accurate. This is demonstrated explicitly in Fig. 6.14, in which four second order results for Ey,(R)
are compared. In addition to the EXX+EC2-result, already shown in Fig. 6.13, the surface obtained
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Fig. 6.14 Energy surface Ey(R) of He, obtained from different perturbation expansions to
(2

second order: EC2 in combination with exact Ey evaluated with either self-consistent EXX
(EXX+EC2/EXX) or LDA (EXX+EC2/LDA) orbitals versus conventional MP2 [457] and ex-
act [332] result. Also shown is the result for LDA orbitals, if EcAHF , Eq. (6.101), is left out
(EXX+MP2/LDA).

in the conventional MP2 approach (second order perturbation theory on the basis of HF) is given.
The EXX+EC2-result overestimates the exact well depth to roughly the same extent as the MP2
surface underestimates it.

In the third second order approach the EXX+EC2 functional is evaluated with self-consistent
LDA orbitals, i.e. the difference between ELPA and E, —i—Ec(2> is added perturbatively to the
LDA surface. This is exactly the energy functional obtained from the perturbation expansion of
Sect. 4.2.1, if the self-consistent LDA Hamiltonian is used as reference Hamiltonian. In this case
the perturbing Hamiltonian is given by

m:W+/fmmpmm—¢mmy

where viPA denotes the self-consistent total LDA potential. One can then follow the derivation of
Sect. 4.2.1 with this A; until one arrives at Eq. (4.64) with E; = T-PA + [ @3r nPPAVLPA Tnsertion
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of the present A and expansion to second order finally leads to the ground state energy
TLDA | /d3rveX[nLDA + Ey[nPA] + Ey [91PA] +EC(2) [pLDA gLDA \LDA}

where vEPA enters into EC<2) via EAHF, By construction this functional yields the 1/R®-asymptotics.

However, the Cg-coefficient obtained from (6.150) with LDA orbitals [451] is much larger than the
Cs resulting from EXX orbitals (which is already too large). This is reflected by the large-R be-
havior of the corresponding energy surface (see Fig. 6.14). Even more important is the complete
failure of the LDA-based second order expansion in the vicinity of the minimum of Ey. It either
yields by far too much bonding, if EC(2> [9LPA elPA VEDAT g included completely, or by far too
little, if the component EAHF, Eq. (6.101) is left out. This demonstrates that application of second
order perturbation theory does not automatically guarantee a realistic energy surface for disper-
sive bonds. A suitable noninteracting reference Hamiltonian, which provides the starting point for
the expansion, is required. The EXX Hamiltonian offers itself as a particularly consistent choice
(compare also [458, 459]).

For completeness, the energy surfaces obtained with two standard hybrid func-
tionals, B3LYP [430, 216] and PBEQ [217], are shown in Fig. 6.15. While B3LYP
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Fig. 6.15 Energy surface E}, of He: Self-consistent B3LYP and PBEO results versus EXX, PBE
data as well as exact surface [332].

generates a strictly repulsive energy surface, PBEQ leads to an attractive potential
well whose depth and minimum position are reasonably close to the exact values
[437]. This success results from a suitable superposition of the much too attractive
PBE surface and the repulsive EXX surface (both are included in Fig. 6.15). As
a consequence of the subtle balance between the GGA and EXX components, the
energy surfaces obtained from hybrid functionals are quite sensitive to the precise
mixing ratio between exact and GGA exchange. This fact emphasizes the impor-
tance of the ratio of 1/4 derived from the adiabatic connection. Asymptotically, the
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PBEQO surface falls off much faster than 1/ RO, consistent with the short-range char-
acter of its components.

6.6.2 Correlation Energy

After the demonstration that EC<2> and related first-principles functionals are able to
deal with dispersion forces, the next step is a quantitative study of more conven-
tional properties. Correlation energies of closed-subshell atoms, obtained in various
approximations, are listed in Table 6.13 and compared with exact quantum chemi-
cal correlation energies [115] (which have been extracted by combining variational
results for two- and three-electron systems with experimental data for the ioniza-
tion energies of the remaining electrons). The difference (4.11) between the exact
DFT correlation energy and the quantum chemical correlation energy (4.9) is rather

small, so that ECQC can serve as reference standard for the present comparison [116]

)

(compare the discussion of Table 4.1 in Sect. 4.1). EC(2 clearly overestimates the

Table 6.13 Correlation energies (—E;) of closed-subshell atoms: LDA [134], PW91-GGA [211],
CS [222], E?) [343], ERPA [414, 421], ERPAT [460, 461, 421] and IS [422] results (all DFT
energies have been obtained by insertion of EXX densities) in comparison with conventional MP2

[145, 144] and exact E?C [115] energies (in mHartree). The contribution (6.100) to E§2> is also
listed separately.

Atom MP2 —EQC ISI —E?) —EAHF _pRPA _pRPAL | DA GGA CS
He 37 42 39 48 00 83 47 113 46 42
Be 76 94 101 124 06 179 108 225 94 93
Ne 388 391 411 478 1.7 597 400 746 382 375
Mg 428 438 462 522 32 687 453 892 450 451
Ar 709 722 777 866 54 1101 742 1431 771 743

Ca 798 890 996 6.4 1581 847 824
Zn 1678 1789 2016 149 2668 1526 1426
Cd 2618 2847 3104 195 4571 2739 2412
Xe 3088 3214 3487 177 5199 3149 2732

exact atomic correlation energies, consistent with the result for the energy surface
of He;. The accuracy of Ec<2> is lower than that of the conventional MP2 scheme,
in particular for heavier atoms. The deviations are also much larger than those ob-
served for standard GGAs. On the other hand, the ISI extension of EC(2> eliminates
most of the error produced by EC(Z).

The component ECAHF of Ec(z) is listed separately in Table 6.13. It vanishes for
two-electron systems and is more than 2 orders of magnitude smaller than EMP? for
all other atoms. This suggests that EAHF can be neglected in most situations, which

definitively simplifies the application of EC<2) .
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A comparison of Ec(z) with ERPA| Eq. (6.114), illustrates the importance of the
SOX contribution (6.97) for finite systems [460, 461,411, 421]. The RPA is not par-
ticularly useful for atoms and molecules without inclusion of some SOX correction.
However, as is clear from the discussion of dispersion forces, the SOX term is of
short-range nature. For this reason one would expect the LDA to give a reasonably
accurate account of the SOX contribution. The SOX energy, as well as other higher
order corrections, may thus be included in the form [460, 461]

ERPA+ _ ERPA | pLDA _ pLDA-RPA (6.153)
where ELPA-RPA denotes the LDA for ERPA, The RPA+ approach has been shown to
give rather accurate correlation energies for atoms [421]. Some examples are listed
in Table 6.13.

For completeness, Table 6.13 also includes the energies resulting from the CS-
functional (6.126). This functional leads to rather accurate values for light atoms,
but underestimates E. for the heavier elements.

Comparable data for the He isoelectronic series are given in Table 6.14 [344].

These numbers demonstrate that Ec(z) obeys the correct scaling law with respect

Table 6.14 Correlation energies (—E.) of the He isoelectronic series: LDA [134], PW91-GGA

[211], CS [222], E?) [343], ERPA [421] and ISI [422] results (all energies obtained by insertion of
EXX densities) in comparison with conventional MP2 [462] and exact [81] energies (in mHartree).

Ion LDA GGA CS —ERA _E? ISI Exact MP2
He 112.8 459 41.6 83.1 4821 39.4 42.04 37.1
Neb+ 203.0 61.7 40.6 90.8 46.81 45.0 45.69 44.4
Cal®* 2433 67.7 359 914 46.69 45.8 46.18 45.4
Zn®+ 2672 713 332 915 46.67 4634 457
738+ 284.4 74.0 314 91.5 46.66 46.3 46.42 45.9

Sn®t 297.7 76.0 30.0 46.65 46.47 46.0
Nd>3+ 308.7 77.8 29.0 46.64 46.3 46.51
Ybo+ 318.0 79.3 28.2 46.63 46.53
Hg”8* 326.1 80.6 27.6 46.62 46.4 46.55
Th38+ 333.2 81.7 27.0 46.62 46.56
Fm?+ 339.6 82.8 26.0 46.62 46.4 46.57

to the nuclear charge Z: EC<2> becomes exact in the limit of large Z, in which the
correlation energy of two-electron ions approaches a constant. The GGA energies,
on the other hand, exhibit a systematic increase with increasing Z. The opposite
behavior is found for the CS functional, with an error of about 50% for heavy ions.
The ISI functional, whose dominant component is EC(Z), also approaches a constant
value for large Z.

A very sensitive test for correlation functionals is provided by atomic EAs. Ta-
ble 6.15 lists the EAs for H™ obtained with various functionals. The exact exchange
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Table 6.15 Correlation energy and electron affinity of H™: Results obtained by combination of the
exact exchange with different correlation functionals (LDA [134], PW91-GGA [211], CS [222],
EC2 (E%) [343], RPA (ERP) [361] and ISI [422]) in comparison with conventional MP2 [463]
and exact [464] energies (in mHartree). All correlation functionals have been evaluated with self-
consistent EXX orbitals.

Method —E. EA

EXX — —121
EXX+LDA 757 62.6
EXX+GGA 355 228
EXX+CS 31.2 189
EXX+EC2 54.6 42.6
EXX+RPA 742 424
EXX+ISI 343 222

Exact 39.8 27.8
MP2 273 152

is used in all cases, only the correlation functional varies. The EXX calculation
predicts H™ to be unbound, which emphasizes once more the importance of correla-
tion.2Y Inclusion of LDA correlation produces an EA which is more than a factor of
2 too large, since the EA of H™ directly reflects the accuracy of the correlation en-

ergy. Ec(z) also clearly overestimates the correlation energy of H™, so that the same is

true for the EA. Eéz) and the conventional MP2 energy bracket the exact EA, in the
same fashion as they bracket the correlation energies of neutral atoms and positive
ions. The inclusion of higher order terms in Eéz) via the ISI definitively improves
the agreement with the exact EA, although one notices a tendency to overcorrect the
error of EC(Z).

The next topic of this quantitative investigation of orbital-dependent correlation
functionals are covalently bound molecules. Since the results for N, are quite char-
acteristic for many diatomic molecules, the spectroscopic constants of N, obtained
with a variety of approximations are listed in Table 6.16. One first of all observes
that the EXX approach yields a reasonably accurate bond length, but substantially
underestimates the experimental dissociation energy. In comparison to the EXX re-
sults, the combination of exact exchange with LDA or GGA correlation improves
D, even though the remaining error is quite large. At the same time R is reduced
and @, is increased, which worsens the agreement with experiment. Similar state-
ments apply if the CS functional is added to the exact exchange.

Turning to the first-principles orbital-dependent correlation functionals, one finds

that Ec(z) predicts N» to be unbound. In order to understand this result one has to go
back to Eq. (6.94) and examine the structure of this expression. If the separation
of the two nitrogen atoms in N is increased, the highest occupied and the lowest
unoccupied KS levels in the molecule approach each other further and further. So,

20 Note that the EXX method yields a stable solution for the H~ ion. However, the EXX ground
energy of the ion is higher than that of the neutral hydrogen atom.
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Table 6.16 Spectroscopic constants of N»: Results obtained by combination of the exact exchange

(EXX) with different correlation functionals (LDA [134], PW91-GGA [211], CS [222], EC2 (Ec(z))
[343] ISI [422] and RPA [361, 411]) in comparison with HF, MP2, quadratic configuration inter-
action with single and double excitations (QCISD) [225], SIC-LDA [143], conventional LDA and
PWOI1-GGA, as well as experimental [227] results (all EXX calculations rely on the KLI approxi-
mation; EC2, ISI and RPA correlation have been evaluated with EXX orbitals; EXX+CS-data from
[428]).

Method R. De We
[Bohr] [eV] [cm™!]
Expt. 2.074 9.905 2359
HF 2.037 4952 2738
MP2 2.135 9.333 2180
QCISD 2.105 8.488 2400
EXX 2.011 4973 2736

EXX+LDA 1.994 7.381 2780
EXX+GGA 1.997 7.574 2804

EXX+CS 1.998 7.818

EXX+EC2 unbound

EXX+ISI 2235 12225 1401
EXX+RPA 2.077 9.603 2354
LDA 2.068 11.601 2393
PBE 2.082 10.583 2344
BLYP 2.082 10.440 2327
B3LYP 2.059 9.910 2416
PBEO 2.055 9.787 2464

SIC-LDA(x+c) 1.876 —49.490 3245

with increasing R the energy gap in the denominator of (6.94) shrinks more and
more. As this divergence is not compensated by vanishing Slater integrals in the
numerator, EMP 2 becomes larger and larger when the atoms are taken apart. This
effect sets in already in the vicinity of the equilibrium separation in the case of N».
As a consequence, one does not even find a local minimum in the energy surface.

This problem is intrinsically related to (i) the perturbative nature of EMP?, and
(ii) the existence of a Rydberg series in the EXX spectrum. The same effect shows
up in other instances: one finds, for example, that the correlation energy of the beryl-
lium atom is particularly overestimated by Ec<2>, which is due to the presence of the
low-lying unoccupied 2p states (compare Table 6.13). The presence of the Rydberg
series is useful for the calculation of many atomic properties, most notably for the
description of negative ions or of excited states. On the other hand, it is not very
helpful if the treatment of correlation is based on perturbation theory. This state-
ment is corroborated by the fact that the conventional MP2 calculation gives quite
reasonable results for N», as the underlying HF Hamiltonian does not yield a Ryd-
berg series.

On the other hand, the Rydberg states do no longer pose a problem, as soon
as a suitable partial resummation of the KS perturbation series is applied. This is
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demonstrated in Table 6.13 for the case of the RPA, which yields quite accurate
results for Ny (compare, however, [411]).

This statement raises the question whether the model-based resummation of the
perturbation series via the ISI can resolve this fundamental problem of a straight
perturbation expansion as well? The ISI functional indeed leads to a bound N».
However, it does not perform particularly well quantitatively.

For completeness, Table 6.16 also contains the spectroscopic constants obtained with the SIC-
LDA for both exchange and correlation. In this calculation the standard molecular orbitals have
been used for the evaluation of the xc-energy and potential, without applying any additional local-
ization scheme. The importance of the unitarity problem discussed in Sect. 4.7 becomes obvious.
In particular, the dissociation energy is completely misrepresented. This problem can be traced to
the SIC energies of the molecular core states [267]: the Coulomb contribution to (4.301), resulting
from the two-center molecular core states (10, 10y,), differs substantially from the one obtained
with the one-center atomic core states (1s), as

Doy, ~ \% [‘PA‘]si%lx] .

Realistic SIC-LDA results for molecules or solids can only be obtained on the basis of some local-
ization prescription for quasi-degenerate states [267]. Such a scheme essentially consists of using
localized linear combinations of ¢log " for the evaluation of the SIC functional and has to be ap-
plied to all core and semi-core states.

6.6.3 Correlation Potential

In the applications discussed in Sects. 6.6.1 and 6.6.2 all orbital-dependent function-
als have been evaluated with orbitals obtained by selfconsistent calculations with
the exact Ey, i.e. in post-EXX form. However, ultimately one would like to apply
any approximation for E; in a selfconsistent fashion, so that the effective poten-
tial includes correlation effects. The correlation potentials obtained from the LDA
and GGA have, as illustrated in Sect. 4.5.5, little in common with the exact atomic
correlation potential [83]. This raises the question whether orbital-dependent func-
tionals provide any improvement, in particular, in view of the first-principles nature

of functionals like Eéz).

Unfortunately, in the case of functionals which depend on unoccupied KS states
the solution of the OPM integral equation (6.26) is not as straightforward as for
the exact exchange. The underlying problem has already surfaced in Sect. 6.2.5,
where the derivation of Eq. (6.59) required a discrete, normalizable KS spectrum.
Quite generally, the OPM integral equation does not have a solution, which satis-
fies the boundary condition (6.50), as soon as positive energy continuum KS states
are present [465, 466, 346]. This problem can be resolved by working with a com-
pletely discrete KS spectrum [467, 346], which is most elegantly introduced via a
suitable basis set [417, 468]. Alternatively, one can embed finite systems in a large
box or spherical cavity, requiring hard-wall boundary conditions at the surface of
the box [349]. If the surface of the box is sufficiently far from the system of interest,
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the boundary conditions do not affect results in any significant way. Most potentials
shown below have been generated with this approach. Note that in the case of pe-
riodic systems the standard Born-von Karman boundary conditions automatically
ensure a discrete positive energy spectrum.

The question whether Ec(z) provides an improvement over LDA and GGA is
addressed in Figs. 6.16—6.20, in which the correlation potentials of He, Be, Ne,
Li and N are shown. Exact reference potentials are available for He, Be and Ne.
These (numerically) exact v, have been obtained by inversion of the KS equations
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Fig. 6.16 Correlation potential of helium: vM*? = §EMP? /5, Eq. (6.94), and v&S = SESS /6n,

C

Eq. (6.126), versus exact potential [83]. All approximations have been evaluated with the exact KS
density. Note that EAHF vanishes for spin-saturated 2-electron systems, so that vMP? = v£2>.

C

[83] (see also [117-122]): In this approach first a Monte Carlo calculation is per-
formed in order to generate a highly accurate representation of the atomic ground
state density (on a numerical grid). This exact density is then used as input for the
actual inversion of the KS equations, which leads to the exact total KS potential
and the exact KS orbitals. Finally, subtraction of the exact v, which is obtained by
solution of the x-only OPM integral equation resulting from the exact KS orbitals,
and the exact vy yields the exact v.. For consistency, all approximate correlation
potentials have also been evaluated with the exact ground state densities, which cor-
responds to the use of the exact KS orbitals in case of vff). Only the MP2 component

(6.94) has been included in the evaluation of v‘(:z), as EMP? is much larger than EAHF
for the atoms discussed (compare Table 6.13) (EAHF even vanishes for He).
Several features are obvious from Figs. 6.16-6.18:

° véz) reproduces the shell-structure of the exact v., unlike all available explicitly

density-dependent approximations (compare Fig. 4.19). However, the amplitudes
of the individual structures are considerably overestimated.
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Eq. (6.126), versus exact potential [83]. All approximations have been evaluated with the exact KS
density.

Fig. 6.17 Correlation potential of beryllium: vMP2 = SEMP2 /§n, Eq. (6.94), and v§S = SESS /8n,

—— exact
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Fig. 6.18 Correlation potential of neon: vMP? = SEMP2 /8, Eq. (6.94), and v$S = SESS /én,

Eq. (6.126), versus exact potential [83]. All approximations have been evaluated with the exact
KS density.
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° v£2> is asymptotically attractive on the left-hand side of the periodic table (Be) and
repulsive on the right-hand side (Ne), as required by the error in EXX ionization
potentials [469].

o v§2> reproduces the — ot/ (2r*)-behavior of the exact v, in the asymptotic regime
[92, 467]. However, the atomic polarizability o is substantially overestimated by

v£2> (as is already clear from the energy surface of the He dimer).

)

ve ' can equally well be evaluated for spin-polarized systems. Examples for open-
shell atoms are given in Figs. 6.19 and 6.20. As no Monte Carlo-based reference
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Fig. 6.19 Correlation potential of lithium: M2 = SEMP2 /§n, Eq. (6.94) versus LDA and LYP-

C
GGA potential. Thick lines correspond to the majority spin channel, thin lines provide the minority

spin potential. All approximations have been evaluated with the exact x-only spin-densities.

results are available for these spin-polarized atoms, the potentials in Figs. 6.19 and
6.20 have been evaluated with KS orbitals obtained from self-consistent calculations
with the exact exchange. For comparison the correlation potentials obtained with the
LDA and the LYP-GGA are also shown.

Besides the structures already observed for closed-subshell atoms, two new fea-
tures show up:

e In the core region, in which the densities of the two spin-channels are essentially
identical, the MP2 correlation potentials of the two channels differ by an almost
constant shift, while the corresponding LDA and GGA potentials are very close
(compare Fig. 4.16).

e In the case of Li the MP2 correlation potential of the majority-spin channel,

vl, is attractive, while the minority-spin potential, vi, is repulsive. This reflects
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Fig. 6.20 As Fig. 6.19 for nitrogen.

the fact that the majority-spin channel is dominated by the 2s orbital, so that
the resulting vl has some similarity with the correlation potential found for Be.
The minority-spin channel consists only of the 1s orbital. This channel therefore
resembles the closed-shell He configuration. On the other hand, the majority-spin
potential is repulsive in the case of N, while the minority-spin potential remains
close to zero in the valence regime and becomes attractive in the core region.
While the majority-spin channel with its completely filled 2 p orbital has the same
basic structure as the correlation potential of Ne, the minority-spin channel is
qualitatively close to the Be potential.

Both features are also observed for the correlation potentials obtained by inversion
of accurate CI spin-densities [470].

So far, all orbital-dependent potentials have been evaluated for a given set of KS
orbitals. Ultimately, however, fully self-consistent calculations are desired. Unfor-
tunately, self-consistent application of EMP? is hampered by its perturbative origin:
Eévm is found to be variationally instable for systems with a small HOMO-LUMO
gap [349, 468], as, for instance, the beryllium atom. This behavior is easily under-
stood if one recalls the fact that the OPM scheme is equivalent to a total energy min-
imization. As EMP? is strictly negative, any increase of [EMP?|, which does not seri-
ously affect other energy components, leads to a lower total energy. If the HOMO-
LUMO gap is small, v can reduce this gap substantially without modifying the
KS orbitals too much (which would change the remaining energy components) and
thereby increase the absolute value of EMP2. Once the gap shrinks more and more,

EMP2 starts to dominate the total energy and vMP? controls the total KS potential,
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which further eases closing of the gap. This deficiency of EMF? reflects its origin
in KS-based perturbation theory, which relies on a clear separation of occupied and
unoccupied states.

Even for systems for which the HOMO-LUMO gap is too large to be closed by
vMP2 one observes the same basic effect: the difference between the self-consistent
vMP2 and the vMP? obtained from the exact KS states is larger than the correspond-
ing difference for any other known functional. This is illustrated in Fig. 6.21 for

neon. The shell oscillations of the self-consistent vg/m are clearly larger than those

exact -

— — — MP2/exact Ne
SR MP2/sc SN

02f T RPA/sc N

v.(r) [Hartree]

0.01 0.1 1 10
r [Bohr]

Fig. 6.21 Correlation potential of neon: vMP? obtained from the exact KS density versus self-
consistent vﬁm [349], self-consistent vCRPA [415], and exact result [83].

obtained by use of the exact KS orbitals in vMP2. In this way additional correlation
energy is gained, which lowers the total energy.

This observation points again at the importance of higher order correlation con-
tributions. However, a brute-force inclusion of all third and fourth order terms of KS
perturbation theory (in analogy to the MP4 level of quantum chemistry), is neither
desirable (due to the resulting computational cost) nor can it be expected to resolve
any problem originating from the perturbative nature of Eéz). One is therefore led to
consider some partial resummation of the KS perturbation series, such as the RPA.

It turns out that the RPA functional (6.114) is variationally stable for beryllium
[415]. The correlation potentials resulting from self-consistent calculations with the
combination of the exact Ex and E?PA for neon and beryllium [415] are included
in Figs. 6.21 and 6.22. In addition to the variational stability, one observes a clear
quantitative improvement over vgm. Similar improvements have been obtained with
other resummation schemes [418-420, 471].
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Fig. 6.22 Correlation potential of beryllium: vMP? [420] obtained from the exact KS density versus
self-consistent vCRPA [415], and exact result [83].

In summary: The results of Sects. 6.6.1-6.6.3 demonstrate the first-principles
background of Ec(z) and related functionals. In fact, these results may be considered
as a verification of the first-principles nature of DFT itself, as the formalism be-
hind these expressions provides a truly systematic route to the exact xc-functional.
On the other hand, the orbital-dependent treatment of correlation represents a much
more serious challenge than that of exchange. The systematic derivation of such
functionals via many-body theory leads to rather complicated expressions, in par-
ticular, if a resummation of the KS perturbation series is considered. Their rigorous
implementation within the OPM not only requires the evaluation of Coulomb matrix
elements of the complete set of KS states, but, in principle, also knowledge of higher
order response functions. In practical calculations these first-principles functionals
necessarily turn out to be rather difficult to handle, even if they are only applied
non-self-consistently on the basis of some self-consistent EXX or GGA calculation.

6.7 Orbital-Dependent Representation of 2-Particle Density

Many-body techniques based on the KS Hamiltonian can not only be utilized for the
derivation of first-principles xc-functionals, but also for the construction of density
functionals for other ground state expectation values. This is of particular interest
for quantities, which explicitly depend on the correlated motion of the electrons. A
prototype of these quantities is the 2-particle density n(?) (r1,r2), Eq. (3.45). Using
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2

the perturbative approach of Sect. 6.4.1 to first order in e, one finds

n(2),(1>(rl7,2)
_ ! Y, 0;(kjl| ji) + (klvi)
__Egetg(l—@k) p—

X { &/ (r1)oc(r)n(r2) +n(r1)g; (r2) du(r2)

-6 {¢f(r1)¢k(f1)¢f(r2)¢>z(r2) + ¢,~T("1)¢z(r1)¢1+(r2)¢k(rz)} }
1

(ij||kt) = (ijl[Lk)

1
+- > O,0; 1-6,)(1-06
2% ! jg‘( k)( 2 E&t+eE—&—¢

<0/ (r))ou(r)o] (r)oi(ra) +cc. . (6.154)

This expression represents an implicit density functional for n(?) (r1,ry) in the same
sense as (4.5) is an implicit density functional for the exchange energy.

The question of the quality of the description of the Coulomb correlation by
n®(1) is addressed in Fig. 6.23, which shows the 2-particle density of the He ground
state. In case of the He atom one has only three relevant coordinates, which charac-

1 T T T T T

exact

_______ x-only =
He 27N e implicit

N I I
B [=)} =]
T

@nryry)* n®(r,r,.0) [Bohr 2]

e
o

5 cos(©) [Bohr]

Fig. 6.23 2-particle-density n(z)(rhrz,@) of helium as a function of r, for r1=0.543 Bohr and
O = 7,0 (the left half corresponds to © = m, the right half to © = 0). First order perturbative
implicit functional versus x-only and exact result [80].

terize the positions of the two electrons relative to the nucleus in the plane spanned
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by the three particles (compare the discussion of Figs. 3.1 and 3.2 in Sect. 3.1). If the
nucleus defines, as usual, the origin of the coordinate system, suitable coordinates
are the radial distances of the two electrons from the origin, r;, r», and the angle ©
between the position vectors of the electrons, r| - r, = rirpcos ©. In Fig. 6.23 r| has
been chosen as 0.543 Bohr, which is the radius at which radial density r%n(rl) has
its maximum. Together with the nucleus at the origin the position of the first elec-
tron defines a straight line along which the second electron is moved, i.e. Fig. 6.23
shows the r-dependence for © = 0 and © = &. For r, =+0.543 Bohr and © = 0 the
two electrons are on top of each other.

The solid line represents the exact result, obtained from an accurate variational
wavefunction [80], the dashed line the pure KS 2-particle density (compare Figs. 3.1
and 3.2 and the associated discussion). As this comparison shows, the implicit func-
tional (6.154) incorporates most of the Coulomb correlation in n@ 1t slightly over-
estimates the suppression of the on-top position, but, overall, is quite realistic (the
somewhat less pronounced cusp is a basis set, i.e. numerical, effect). This result
demonstrates explicitly that the concept of implicit functionals can not only be used
for a representation of xc-energies, but also for the description of local correlation,
which could be of interest in the context of scattering and multiple excitation pro-
cesses.



Chapter 7
Time-Dependent Density Functional Theory

Time-dependent density functional theory (TDDFT) has developed rapidly since
its beginnings in 1984 [472, 473]. TDDFT opens a direct access to excited states,
but also to truly time-dependent processes. As a topical example of such processes,
one may mention transport phenomena, like conduction through single molecules
or atomic wires [474-476] (i.e. conduction in the quantum regime). A review of
the large variety of applications of TDDFT is, however, not the aim of the present
chapter. For this we refer to a recent set of lecture notes [477] (see also [478]).
The present discussion is restricted to the basic elements of TDDFT, that is (i) the
theorem of Runge and Gross, (ii) the time-dependent Kohn-Sham equations, (iii) the
adiabatic local density approximation (ALDA) (sometimes called time-dependent
LDA) plus direct extensions, (iv) linear response within TDDFT, and (v) a TDDFT
approach to excitation energies.

7.1 Runge-Gross Theorem

The analog of the HK-theorem for time-dependent (td) systems is the Runge-Gross
(RG) theorem [472]. It establishes a map between the td many-particle state and
the corresponding td density. Since the reasoning behind the RG-theorem is quite
different from the argumentation leading to the HK-theorem, it is worthwhile to
discuss the proof of the RG-theorem in some detail.

The simplest Hamiltonian, which can be used to characterize a td system of in-
teracting spin-1/2 particles, is given by

A(t) =T+ Veu(t) +W, (7.1)

with an interaction between particles and external sources which couples the particle
density to a time-dependent potential vex(7t),

E. Engel, R M. Dreizler, Time-Dependent Density Functional Theory. In: E. Engel, R.M.
Dreizler, Density Functional Theory, Theoretical and Mathematical Physics, pp. 307-349 (2011)
DOI 10.1007/978-3-642-14090-7_7 (© Springer-Verlag Berlin Heidelberg 2011
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R N

Dext(t) = 3 vese(rit) = / B rvea(r) A(r). (7.2)
i=1

As in the stationary case, the particle—particle interaction W is assumed to be sym-
metric and independent of spin (and, of course, independent of time). For all systems
of interest here W is the Coulomb interaction.

The many-body state |¥(¢)) corresponding to the Hamiltonian (7.1) satisfies the
td Schrodinger equation,

ind,[\¥(1)) = H(1)[¥(r)). (7.3)

In addition to the equation of motion, the complete characterization of a td problem
requires the specification of some initial value. In the present case the Schrodinger
equation (7.3) has to be solved for a given initial state |¥y) at time 7,

[¥(10)) = [o) - (74)

The external potential (7.2) can describe many interesting td phenomena, as for
instance the adiabatic motion of nuclei which governs (i) the rotational and vibra-
tional excitations in molecules and solids, and (ii) low-energy ion-atom collisions.
It also represents a good approximation for many other situations, as the interaction
of atoms with applied laser fields. The explicit proof of the existence theorem of
TDDFT will therefore be restricted to the Hamiltonian (7.1).

It is nevertheless advantageous to start the discussion with a detour, in order to
prepare the actual proof. Let us for a moment consider a more general Hamiltonian,
including the coupling to a td magnetic field,

j7 ; / dsrwm){zin [—ihV+iAext(rt)r+veXt(rt)}1i/(ro)+W, (7.5)

where the standard relations between the external electro-magnetic fields and po-
tentials,

1 1 0Acx(rt
Ecxt(rt) = Evvext(n) - E% (7.6)

Bext(rt) - V XAext(rt) B (77)
are supposed to hold. A point to be noted here is the fact that the vector potential
Ay can be non-zero even for a vanishing magnetic field Bey. One and the same

electric field E.x (and thus the same physics) can either be represented in terms of
Vext (With Aex; set to zero) or in terms of AL, (with v, = 0), if AL, is chosen as

't
Ay (rr) = —g / dt' Vvex (rt') . (7.8)

Equation (7.8) is a special case of a td gauge transformation, for which the most
general form is given by
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e dA(rt
falrt) = vea(rr) — £ 2270

AL (rt) = Acxe(rt) — VA(rt) . (7.10)

v (7.9)

While for the stationary Hamiltonian (2.143) the electric (vex¢) and magnetic (Aext)
potentials are not coupled by the gauge transformation (2.145)—(2.147), the situation
is no longer as simple for td Hamiltonians.

It is therefore necessary to study the relation between the td potentials ve(r?),
A (rt) and the corresponding td state |'P'(¢)) in more detail, before discussing the
RG-theorem for the system (7.1). In view of the gauge freedom the obvious question
is: when does one consider two potentials to be physically non-equivalent? In order
to answer this question, one first notes that the gauge-transformed state

N
(r101...rnoy | () = exp l’l; S A(rd)| (rio..ryon|¥()  (7.11)
k=1

is a solution of the td Schrodinger equation (7.3) with the potentials V., (rt), AL, (rt),
provided that [¥(z)) is the solution of (7.3) for the Hamiltonian (7.5) with the un-
primed potentials. One can, without loss of generality, choose A (r#p) =0, so that the
initial states coincide, | (19)) = [¥(t9)) = [Wo). It is obvious that sets of potentials
Vext, Aext and v, AL which are related by Eqgs. (7.9), (7.10) are physically equiva-
lent. In turn, the uniqueness of the solution of the td Schrodinger equation leads to
the statement: two states which differ by more than the phase transformation (7.11)
can never emerge from two potentials which are related by Egs. (7.9), (7.10).

The crucial question, which has to be answered, is: can |¥(¢)) and |W'(r)) be
related by a phase transformation of the form (7.11), if the potentials differ by more
than the gauge transformation (7.9), (7.10)? Obviously, an affirmative answer would
exclude any density functional approach from the very outset, as the densities cor-
responding to [W(¢)) and |W(¢)) are identical in this case. Fortunately, the question
can be answered rigorously with “no”. For the case A¢x = 0, i.e. for the Hamilto-
nian (7.1), the answer is provided by the original RG-theorem [472]. This limit not
only excludes the presence of magnetic fields, but also implies a particular choice of
gauge. For the general Hamiltonian (7.5) a corresponding proof has been given by
Ghosh and Dhara [479] (see also [480]). The scheme of this proof follows closely
the line of RG. Our explicit discussion will therefore be restricted to the RG theo-
rem.

Before proceeding to the RG theorem for the Hamiltonian (7.1), it is instructive to
consider the reduced class of phase transformations allowed by the choice Aext = 0,
i.e. transformations by a global td phase o:(t),

(1)) = e N (1)) (7.12)

in more detail. The additional phase can, as in the general situation discussed above,
be absorbed into a gauge-transformed potential v.,,,
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Vit (71) = Vexe (r1) + 6(1) (7.13)

(& = dy@x). On the other hand, as soon as the potentials vey and V.,
than the trivial gauge transformation (7.13),

differ by more

ext

Voo (71) # Vexe(rt) + (1) for 1<t <, (7.14)
the solutions [¥(¢)) and |W'(r)) of (7.3) differ by more than a td global phase,
W' (1)) # e NO/M P (1)) for 19 <t <1y, (7.15)

even if the same initial condition is chosen for both states.

The proof of this statement is based on reductio ad absurdum. Assume that, in
spite of the condition (7.14), Eq. (7.12) is valid. Now consider the corresponding
Schrodinger equations,

ihd, [P (1)) = H(t)|\¥(1))
ino, ' (1)) = H'(1)|¥'(1)
— e NUOMNG (1) + indy) (1)) = e NEO/ARY

(7.16)

H'(ON¥(). (717

Upon subtraction of (7.17) from (7.16) one obtains
0= [Vexe(r) = Vo 1) + ()| (1)), (7.18)

(N|¥(t)) = N|¥(¢))) or, in first quantized form,

N
OZZ(veX[(rit) VL (rit) + 6t ))‘P(rlcy]...rNoN,t). (7.19)
i=1

As in the stationary situation, one can now keep N — 1 of the r; fixed and consider
(7.19) as a function of time and the N-th position. As the wavefunction in (7.19)
equals zero only for selected values of its arguments, the relation can only be satis-
fied, if

0 = Vext(rt) — Vi (rt) + Cc(t) for 19 <r<t,

in obvious contradiction to the condition (7.14). One can therefore state: as soon
as Vi (rr) differs from vey(rt) by more than a td function c(r) the corresponding
many-particle states differ by more than a global td phase. Of course, all these state-
ments have to be understood as statements for functions of time over a finite period
to <t < t1, not just for a single instant of time.

Now consider the set of all Hamiltonians of the form (7.1), (7.2) for which

(a) the Taylor expansion of the potential about the initial time #( exists,

Vext (1) 2 7 8 Vext(Pt)| (1 —10)%, (7.20)

7[0
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(b) only one representative vy, is included for each class of physically equivalent
potentials according to Eq. (7.14).

The last condition is an obvious extension of the situation for stationary systems for
which external potentials are only considered to be different if they differ by more
than a global constant. The mathematical role of condition (7.20) will become clear
later on. This requirement excludes the possibility that the td potential is switched
on at 7y in a step-like fashion. As realistic fields necessarily build up continuously,
this is not a fundamental restriction, but merely a requirement for the time scale on
which a process is considered.
The statement of the RG-theorem then is [472]:

For a given initial state [¥(#))) there exists a one-to-one correspondence be-
tween the set of all potentials, which satisfy (7.14) and (7.20),

V= {Vext(rt)

— 1
Vext(rt) = Y E&f‘vext(rt)) (t —10)k;
k=0 """

=1y
Vit (1) 7 Vexe (1) +c(t)}, (7.21)
and the set of associated td densities,

N = {n(rt) n(rt) = (P(0)|a(r)|¥(2)); o, [P (1)) = A (1)¥(1)):

A—7+ / Prved(r)An) +W; vea(m) €7}, (7.22)

within the finite time interval ) <t < t;.

Note that it is not sufficient to specify the initial density
no(r) = n(rtg) = (¥(to)|a(r)|¥ (%)) (7.23)

instead of |W(#p)). This signifies that the RG-theorem does not, in general, define
a pure density functional method. There is, however, an important class of situa-
tions in which the initial state |\¥'(zp)) is uniquely determined by ny, i.e. all those
time-dependent systems which are in their ground state until # = #;. In this case the
stationary HK-theorem applies at #y, so that |¥'(¢)) is a functional of the ground
state density n(rt).

The proof of the RG-theorem proceeds in two steps. In the first step a corre-
sponding statement for the current density is verified. This statement is extended to
the particle density in the second step.

Step 1(a): Consider the (paramagnetic) current density

Jp(rt) = (¥(0)|J, (r)[¥(1)) (7.24)
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. —ih &,
W=7, 2 Vis® (r—r)+ 8% (r—r)V)]
_ i [ r0)(Vinro)) - (Vi (r0) o). (7.25)

o 2

The first time-derivative of jp(rt) can be analyzed via Heisenberg’s equation of
motion,

d do(t) i

SHWIOOI¥W) = (¥0)| = Z - 2100.A0]¥0), (726

which is valid for the expectation value of any operator 0([) In Eq. (7.26) the
term with dO(r) /dt accounts for the time-dependence of the operator itself (in the
Schrodinger representation), while the time-derivative of the state |\¥(¢)) has been
reformulated using the Schrodinger equation (7.1). Application of (7.26) to the cur-
rent operator (7.25), which does not depend explicitly on time, leads to

1) = =5 (¥(0)| [Gp(r), 0] (). a.27)

With the aid of (7.27) one can compare the time-derivatives of the current densities

resulting from two different potentials v, (rf) and vex (rt) of the set ¥ at the initial

time f. Utilizing the basic commutation relation

[Go(r)Ar)] = ‘ih{ VO (r— )| S [0 (ro)p(r'0) + 9! (o) (ro)]

- 2m S
—80(r— r’)Vﬁ(r)} : (7.28)

one obtains for the Hamiltonian (7.1)

3, Liy(rt) — 1, (r1)] :—%n(rto)V[vext(rto)—v’ext(rto)]. (7.29)

t=ty

Consequently, as long as the two potentials differ by more than a global constant at
10, Vext(710) 7 Vex(Tt0) + co , the currents j (rt) and ji,(rr) differ at a time r which
is infinitesimally larger than #;.

However, the two potentials will often be identical at = #(, most notably, if their
time-dependent components are switched on smoothly for # > 3. One therefore has
to deal with the case that vey (rfo) = Vi, (rfo) + co, which requires an examination
of the second time-derivative of the current. It turns out that j, and j;, become
different immediately after g if o [vexi(rt) — Viy (r1)];=, is not identical with some
global constant. As this need not always be the case, one is led to consider the next
time-derivative of the current.

Step 1(b): It is thus necessary to discuss the general situation, in which a finite

number, say k — 1, of time-derivatives of V., (rr) and vex(rt) agree at r = o (up to
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global constants),

o}V ()], = e (rt)]  +c 1=0,...k—1 (7.30)

T Vext
=1y =1y

(which includes the special value k = 1). In this case one has to consider the (k+ 1)-
th derivative of the current. Quite generally, one finds by recursive use of (7.26),

a,kij(rt)
. N\ 2
=3 (w0| (- 5 )alimaw) + (-1 ) [l Aw0] A0 [ro)
=32 (ww)| () ylr 0]

From the lowest two orders indicated, one can already glean how order by or-
der more complicated combinations of time-derivatives and multiple commutators
emerge. In fact, all possible sequences of differentiation and commutation appear.
Ordered with respect to the number of derivatives to be taken, one finally obtains

= (o) (‘ ;)@k [Gp(r). B (1)
; 2k718k7171 5T 4 q
+(-3) Lo Gy Aw) A |
+.
.\ k+1
+<_;> [...“}p(r),lfl(t)],I:I(t)},...ﬁ(t)}"}’(t)>, (7.31)

(k41)—times

where the last line denotes a (k + 1)-fold commutator. Once all time-derivatives are
applied to the Hamiltonians in the individual expressions, all terms in (7.31) consist
of multiple commutators of }'p with the Hamiltonian and its derivatives. The general
form of these expressions is given by

DE(A,1) = [ . [[}p(r),aﬁlzfz(t)} ,aﬁ‘zﬁ(t)} .. ..aﬁnmt)} . (132)

n—times
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with the total number of derivatives and commutators being fixed by the order of the
derivative on the left-hand side of (7.31),

n

Yaitn=k+1. (7.33)

i=1

An analogous relation holds for j;) in terms of A’. For the present proof one has

to evaluate the difference between 9/ j, and 9!
the first k — 1 time-derivatives of A’ can, in view of assumption (7.30), be expressed

in terms of the corresponding derivatives of H,

Jp att =1o. However, at t =19

AR (1) = 3d A1) +c()N] for 1=0,...k—1,  (7.34)
=ty =ty
with
k—1 I ;
c(t) :== g()ﬁ (t—19) (7.35)

and N denoting the particle number operator. This allows the replacement of A’ in
DZ(H',to) by H +cN for all n > 1, as none of the &; < k can be larger than k — 1 in
this case,

Drllx>l(ﬂ/7t0)

= [ [0 (A e®) |0 (A ) |0 (A ) | (7.36)
=1y
n—times
Now one can use the fact that both }'p and H commute with N,
[Jp(r),N] =0 ; [A(t).N) =0. (7.37)

As a consequence of (7.37) the contributions of all the terms 9% ¢(t)N in (7.36)
to the multiple commutator vanish, irrespective of the order of the time-derivatives
involved,

[aﬁﬁ(;),af’c(r)zﬂ - (8,Bc(t)) 9% [A(1),N] =0.
One therefore finds
D®(H' 1)) = D*(H,ty)  for n>1. (7.38)

As a result only the first term on the right-hand side of (7.31) contributes to the
difference between 9! Jjp and oft! j;, atr = ry,
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O Liglrt) — (), = —+ (#()

=1

3 [3p(n). A1)~ H'(1)] | W(0))

=1y
(7.39)
The evaluation of this expression again relies on Eq. (7.28),

1
of ! [jprt