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Preface

This book emerged from a course on density functional theory (DFT), first given
at the University of Munich more than a decade ago. The course was based on the
classic texts by Dreizler and Gross (Springer, 1990) and by Parr and Yang (Oxford
University Press, 1989). More recent topics of that time, such as time-dependent
DFT or orbital-dependent functionals, were added to the material covered by the
two books. However, already at that time restriction to the most relevant and/or
most illustrative statements on a particular aspect of DFT was necessary, in order
to keep the length of the course under control. When the course was later given
again at the University of Frankfurt it soon turned out to be impossible to integrate
the exploding number of new results, concerning both the formalism as well as
important applications, into the course: So, even a selection of the branches of DFT
covered in the course was unavoidable.

The present text reflects this, admittedly subjective, choice of topics: it con-
centrates on the basics of the most widely used variants of DFT. This implies a
thorough discussion of the corresponding existence theorems and effective single-
particle equations as well as of the key approximations utilized in implementations.
Ground state DFT (on the nonrelativistic level) is addressed in Chaps. 2–6. Chap-
ter 2 introduces the fundamental Hohenberg-Kohn theorem and its extensions to
spin-, current- and current-spin-density functional theory, together with some ba-
sic notions such as v-representability. The resulting Kohn-Sham equations are col-
lected in Chap. 3. This chapter also includes a discussion of the relation between the
Kohn-Sham wavefunctions and eigenvalues and the true many-body wavefunctions
and energies. Chapter 4 is devoted to a detailed exposition of the currently avail-
able approximations for the exchange-correlation functional, based on two exact
representations of this quantity. The most important virial relations valid for density
functionals are summarized in Chap. 5. The discussion of the exchange-correlation
functional is then resumed in Chap. 6, in which the concept of orbital-dependent
functionals is introduced. This chapter also serves as a demonstration of the first-
principles character of DFT, in that it shows that the true exchange-correlation en-
ergies and potentials can be systematically approached by use of orbital-dependent
functionals. On the other hand, the discussion of the existence theorem, of the basic
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formalism and of standard approximations is concentrated in a single chapter in the
case of time-dependent DFT (Chap. 7). The same statement applies to relativistic
DFT which is presented in Chap. 8. An extended review of the problem of renor-
malization (in the Appendices F–I) serves as background information for relativistic
DFT.

Throughout the text formal statements are complemented by selected quantitative
results, which primarily aim at an illustration of the strengths and weaknesses of a
particular approach or functional. However, no attempt is made to review the full
range of present-day DFT applications, not even their boundaries will be marked
out. In order to stay within reasonable bounds, the discussion also omits a few topics
which have recently attracted much interest, such as DFT for superconducting or
hadronic systems. An overview of the topics not covered explicitly in this book
is provided by Chap. 9 (Further Reading) which offers a substantial collection of
pertinent papers together with some comments.

The students in the courses indicated above had quite diverse backgrounds, rang-
ing from mineralogy to biochemistry. So, the courses had to be rather self-contained,
requiring neither the audience’s familiarity with standard many-body theory nor ex-
tensive experience with the quantum theory of solids. Again, the book reflects this
fact: the reader will find that all concepts of many-body theory which are indis-
pensable for the discussion of DFT, such as the single-particle Green’s function or
response functions, are introduced step by step, rather than just used. The same ap-
plies to some basic notions of solid state theory, as, for instance, the Fermi surface.
In fact, even the language of second quantization is introduced systematically in an
Appendix. When starting with this Appendix, reading this book should require little
more than a strong background in elementary quantum mechanics (at least, if one
accepts some of the more advanced relations of Chap. 4 without going through their
derivations1).

As is clear from these remarks, this book does not target only one particular sci-
entific community. On the other hand, the material is easily restricted to the needs of
a more specialized course. Many of the advanced chapters require little more than
knowledge of the most elementary parts of the introductory chapters. Several re-
dundancies help to support this modular structure. It should therefore be possible to
find one’s own way through the material. Although detailed recommendations have
obvious problems, some suggestions for selected reading are made in the following
table:

1 An alternative, low level entry point to the discussion of the exchange-correlation energy func-
tional is provided by Appendix D, in which the local density approximation for the exchange func-
tional is derived explicitly without using concepts from many-body theory. With the background
of this appendix it should be possible to continue with the more advanced results and explicit
functionals of Chap. 4.
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Section Bias solid state physics Bias chemistry, atomic physics
Basic Advanced Basic Advanced

1 Complete Complete

2.1 Complete Complete Complete Complete
2.2 Optional Complete Optional Complete
2.3 1.+2. paragraph Complete 1.+2. paragraph Complete
2.4 Complete Complete
2.5 Complete Complete Complete Complete
2.6 Optional Optional
2.7 Complete Complete Complete Complete

3.1 Complete Complete Complete Complete
3.2,3.3 Complete Complete
3.4 Optional Optional
3.5 Complete Complete Complete Complete
3.6 Complete Complete 1st paragraph 3.6.1
3.7 Optional Optional

4.1 Complete Complete Complete Complete
4.2 Only results Complete Only results
4.3 Complete Complete App.D+4.3.2–6 Complete
4.4 Only results Complete Only results
4.5 4.5.4+4.5.5 Complete 4.5.4+4.5.5 Complete
4.6
4.7 Optional Optional
4.8 Optional Complete Only results
4.9 Complete Complete

5.1–5.4 Complete Complete Complete Complete

6.1 Complete Complete Complete Complete
6.2 6.2.1/2/5/6 6.2.1–6 6.2.1/2/5/6
6.3 Complete Complete Complete
6.4 6.4.1+6.4.2 6.4.1
6.5 6.5.4 6.5.4 6.5.4
6.6 Complete Complete
6.7

7.1–7.6 Complete Complete Complete Complete

8.1 Complete Complete
8.2–8.5 Optional
8.6 Complete Complete
8.7 Complete Optional
8.8 Optional Optional

Depending on the background of the reader, Appendix B (on second quantization)
might have to be included between Chaps. 1 and 2.

At various points explicit derivations of important results are given, rather than
just summaries of the results. These derivations might not be suitable for presenta-
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tion in a course, depending on its scope and audience. However, there is always an
option to skip the details and restrict oneself to the essentials. Sometimes, such de-
tails are distinguished from the main text by use of a smaller font, in other cases the
details have been relegated to Appendices. At some points the reader will find sug-
gestions which portion of the text may be skipped, if one wants to focus on results
only.

It is a pleasure for us to acknowledge the help and support that we received when
writing this book. This book has benefited enormously from extensive discussions
with Dr. D. Ködderitzsch. His comments and suggestions helped in particular to
improve the readability of this text for less experienced readers. Many thanks go to
the two referees of our manuscript (unknown to us). Their reports encouraged us to
include a number of additional topics in the text (some suggested by the referees,
others which we felt appropriate), although this led to an increase of its length, way
beyond initial plans. Equally important, however, was the additional time which the
referees comments have given us: this allowed us to straighten out some paragraphs
in the initial manuscript. We would also like to thank Dr. S. Varga and H. Engel for
their careful proof-reading and many suggestions for improvements. We are grateful
to M. Hellgren and U. von Barth for making their atomic RPA potentials available
to us. Last, but not least, our thanks go to Dr. Ch. Caron from Springer Verlag, who
supervised the production of this book. His support, flexibility and patience were
instrumental in making this book what it is.

Frankfurt am Main, Eberhard Engel
March 2010 Reiner M. Dreizler



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Foundations of Density Functional Theory: Existence Theorems . . . . . 11
2.1 Hohenberg-Kohn Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Degenerate Ground States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Variational Equation, Interacting v-Representability, Functional

Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Fractional Particle Numbers, Derivative Discontinuity . . . . . . . . . . . . 37
2.5 Spin-Polarized Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Current Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 Excited States: Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Effective Single-Particle Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Noninteracting v-Representability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3 Degenerate Kohn-Sham Ground States . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4 Janak’s Theorem, Fractional Particle Numbers . . . . . . . . . . . . . . . . . . 76
3.5 Kohn-Sham Equations for Spin-Polarized Systems . . . . . . . . . . . . . . . 80
3.6 Interpretation of Kohn-Sham Eigenvalues:

Relation to Ionization Potential, Fermi Surface and Band Gap . . . . . 84
3.6.1 Ionization Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.6.2 Fermi Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.6.3 Band Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.7 Kohn-Sham Equations of Current Density Functional Theory . . . . . . 101

4 Exchange-Correlation Energy Functional . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1 Definition of Exact Exchange within DFT . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Exact Representations of Exc[n] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.1 Variant (a): Kohn-Sham Perturbation Theory . . . . . . . . . . . . . 115
4.2.2 Variant (b): Adiabatic Connection . . . . . . . . . . . . . . . . . . . . . . 126

4.3 Local Density Approximation (LDA) . . . . . . . . . . . . . . . . . . . . . . . . . . 129

ix



x Contents

4.3.1 Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.3.2 Correlation: High-Density Limit . . . . . . . . . . . . . . . . . . . . . . . . 132
4.3.3 Correlation: Low-Density Limit . . . . . . . . . . . . . . . . . . . . . . . . 135
4.3.4 Correlation: Interpolation Between High- and

Low-Density Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.3.5 Density Functional: Local Density Approximation (LDA) . . 137
4.3.6 Spin-Polarized Electron Gas: Local Spin-Density

Approximation (LSDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.4 Nonlocal Corrections to the LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.4.1 Weakly Inhomogeneous Electron Gas . . . . . . . . . . . . . . . . . . . 145
4.4.2 Complete Linear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.4.3 Gradient Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.5 Generalized Gradient Approximation (GGA) . . . . . . . . . . . . . . . . . . . 169
4.5.1 Momentum Space Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.5.2 Real Space Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.5.3 Combination of Momentum and Real Space Variants . . . . . . 179
4.5.4 Semi-Empirical Construction of GGAs . . . . . . . . . . . . . . . . . . 182
4.5.5 Merits and Limitations of GGAs . . . . . . . . . . . . . . . . . . . . . . . 185

4.6 Weighted Density Approximation (WDA) . . . . . . . . . . . . . . . . . . . . . . 201
4.7 Self-Interaction Corrections (SIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.8 Meta-GGA (MGGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.9 LDA+U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5 Virial Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.1 Scaling Behavior of Energy Contributions . . . . . . . . . . . . . . . . . . . . . . 219
5.2 Conventional Virial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.3 DFT Virial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
5.4 Hellmann-Feynman Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6 Orbital Functionals: Optimized Potential Method . . . . . . . . . . . . . . . . . 227
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.1.1 Atomic Negative Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.1.2 Dispersion Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.1.3 Strongly Correlated Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.1.4 Third Generation of DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

6.2 Derivation of OPM Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.2.1 Compact Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.2.2 Direct Functional Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
6.2.3 Total Energy Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.2.4 Invariance of Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.2.5 Exact Relations Based on OPM Integral Equation . . . . . . . . . 244
6.2.6 Krieger-Li-Iafrate Approximation (KLI) . . . . . . . . . . . . . . . . . 248
6.2.7 OPM in Case of Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.3 Exchange-Only Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
6.4 First-Principles Implicit Correlation Functionals . . . . . . . . . . . . . . . . . 271



Contents xi

6.4.1 Kohn-Sham Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . 272
6.4.2 Kohn-Sham-Based Random Phase Approximation . . . . . . . . 276
6.4.3 Interaction Strength Interpolation (ISI) . . . . . . . . . . . . . . . . . . 278

6.5 Model-Based Orbital-Dependent Exchange-Correlation Functionals 279
6.5.1 Self-Interaction Corrected LDA . . . . . . . . . . . . . . . . . . . . . . . . 280
6.5.2 Colle-Salvetti Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
6.5.3 Meta-GGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
6.5.4 Global, Screened and Local Hybrid Functionals . . . . . . . . . . . 281

6.6 Analysis of Orbital-Dependent Correlation Functionals . . . . . . . . . . . 288
6.6.1 Dispersion Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
6.6.2 Correlation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
6.6.3 Correlation Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

6.7 Orbital-Dependent Representation of 2-Particle Density . . . . . . . . . . 304

7 Time-Dependent Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . 307
7.1 Runge-Gross Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.2 Time-Dependent Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . 325
7.3 Exchange-Correlation Action: Adiabatic Local Density

Approximation and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
7.4 Time-Dependent Linear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
7.5 Spin-Polarized Time-Dependent Density Functional Theory . . . . . . . 335
7.6 Excited States: Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

8 Relativistic Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
8.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
8.2 Field Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
8.3 Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
8.4 Relativistic Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
8.5 Towards a Workable RDFT Scheme: No-pair Approximation . . . . . . 371
8.6 No-pair RDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
8.7 Variants of RDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
8.8 Relativistic Exchange-Correlation Functional: Concepts and

Illustrative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
8.8.1 Relativistic Implicit Functionals: Optimized Potential

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
8.8.2 Role of Relativistic Corrections in Exc: I. Prototype

Results for Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
8.8.3 Relativistic Local Density Approximation . . . . . . . . . . . . . . . . 393
8.8.4 Relativistic Generalized Gradient Approximation . . . . . . . . . 397
8.8.5 Role of Relativistic Corrections in Exc: II. Prototype

Results for Molecules and Solids . . . . . . . . . . . . . . . . . . . . . . . 398

9 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401



xii Contents

Erratum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E3

Erratum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1

A Functionals and the Functional Derivative . . . . . . . . . . . . . . . . . . . . . . . . 403
A.1 Definition of the Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
A.2 Functional Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
A.3 Calculational Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
A.4 Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

B Second Quantization in Many-Body Theory . . . . . . . . . . . . . . . . . . . . . . . 413
B.1 N-Particle Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

B.1.1 Realization in First Quantized Form . . . . . . . . . . . . . . . . . . . . 413
B.1.2 Formal Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

B.2 Fock Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
B.2.1 Creation and Annihilation Operators . . . . . . . . . . . . . . . . . . . . 421
B.2.2 1-Particle Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
B.2.3 2-Particle Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

C Scaling Behavior of Many-Body Methods . . . . . . . . . . . . . . . . . . . . . . . . . 433

D Explicit Density Functionals for the Kinetic Energy: Thomas-Fermi
Models and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

E Asymptotic Behavior of Quasi-Particle Amplitudes . . . . . . . . . . . . . . . . 445

F Quantization of Noninteracting Fermions in Relativistic Quantum
Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

G Renormalization Scheme of Vacuum QED . . . . . . . . . . . . . . . . . . . . . . . . 457

H Relativistic Homogeneous Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
H.1 Basic Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
H.2 Response Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
H.3 Ground State Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
H.4 Ground State Four Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

I Renormalization of Inhomogeneous Electron Gas . . . . . . . . . . . . . . . . . . 481

J Gradient Corrections to the Relativistic LDA . . . . . . . . . . . . . . . . . . . . . . 485

K Gordon Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

L Some Useful Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Erratum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E5



Acronyms

ALDA adiabatic local density approximation
AF antiferromagnetic
ASA atomic sphere approximation
B86 Becke 86 GGA for exchange energy
B88 Becke 88 GGA for exchange energy
B3LYP hybrid constructed on basis of Becke-Lee-Yang-Parr GGA
BLYP Becke-Lee-Yang-Parr GGA
bcc body-centered cubic
BO Born-Oppenheimer
C Coulomb
CDFT current density functional theory
CS Colle-Salvetti
CSDFT current spin density functional theory
DC Dirac-Coulomb
DCB Dirac-Coulomb-Breit
DFT density functional theory
DIR direct (matrix element)
EA electron affinity
ext external
EXX exact exchange
fcc face-centered cubic
FP full potential
GE gradient expansion
GGA generalized gradient approximation
GKS generalized Kohn-Sham
GK Gross-Kohn (kernel of TDDFT)
H Hartree
HDL high-density limit
HEG homogeneous (or uniform) electron gas
HF Hartree-Fock
HK Hohenberg-Kohn

xiii



xiv Acronyms

hom homogeneous
HOMO highest occupied molecular orbital
IP ionization potential
int interaction
ISI interaction strength interpolation
KS Kohn-Sham
KLI Krieger-Li-Iafrate (approximation)
LAPW linearized-augmented-plane-wave
LDA local density approximation
LDA+U combination of LDA and Hubbard U approach
LH local hybrid
LHF localized Hartree-Fock
LM Langreth-Mehl GGA for correlation energy
LR linear response
LSDA local spin-density approximation
LUMO lowest unoccupied molecular orbital
LYP Lee-Yang-Parr GGA
MGGA meta generalized gradient approximation
MP Møller-Plesset
np no-pair
NR nonrelativistic
OPM optimized (effective) potential method
PP pseudopotential
P86 Perdew 86 GGA for correlation energy
PBE Perdew-Burke-Ernzerhof GGA
PBE0 hybrid constructed on basis of Perdew-Burke-Ernzerhof GGA
PKZB Perdew-Kurth-Zupan-Blaha MGGA
PW86 Perdew-Wang 86 GGA for exchange energy
PW91 Perdew-Wang 91 GGA
PZ Perdew-Zunger self-interaction correction
QED quantum electrodynamics
R retarded
RDFT relativistic density functional theory
REXX relativistic exact exchange
RHEG relativistic homogeneous (or uniform) electron gas
RG Runge-Gross (theorem)
RGGA relativistic generalized gradient approximation
RHF relativistic Hartree-Fock
RLDA relativistic local density approximation
RLSDA relativistic local spin density approximation
ROPM relativistic optimized (effective) potential method
RPA random phase approximation
RSDFT relativistic spin density functional theory
SDFT spin-density functional theory
s single-particle, noninteracting, Kohn-Sham



Acronyms xv

SI self-interaction
SIC self-interaction correction
SOX second order exchange
SPP Stoll-Pavlidou-Preuss self-interaction correction
T transverse
TDDFT time-dependent density functional theory
TDKS time-dependent Kohn-Sham
TDLDA time-dependent local density approximation
TF Thomas-Fermi
TPSS Tao-Perdew-Staroverov-Scuseria MGGA
UV ultraviolet
vBH von Barth-Hedin LDA for correlation energy
VWN Vosko-Wilk-Nusair LDA for correlation energy
WDA weighted density approximation
xc exchange-correlation



Chapter 1
Introduction

One of the basic problems in theoretical physics and chemistry is the description
of the structure and dynamics of many-electron systems. These systems comprise
single atoms, the most elementary building blocks of ordinary matter, all kinds of
molecules, ranging from dimers to proteins, as well as mesoscopic systems, for
example clusters or quantum dots, and solids, including layered structures, surfaces
and quasi-crystals. The following two paragraphs list the properties of such systems
which are generally of interest, without, however, aiming at completeness. These
properties can roughly be classified as either structural or dynamical.

An important structural property is the electronic shell structure (or band struc-
ture in the case of crystals). The shell structure directly determines the stability of
a system, but also shows up in a number of other properties—it is, for instance, a
key factor in transport properties like the electrical conductivity. Stability manifests
itself in various binding energies. These are either of electronic nature, such as the
ionization potential and the work function, or they characterize the bonds between
atoms, such as the atomization energy of molecules and the cohesive energy of
solids. Other structural properties, which are related to shell structure, are electric or
magnetic moments. The geometry of poly-atomic systems, that is bond lengths and
bond angles as well as the symmetry of the atomic arrangement, constitutes yet an-
other important structural property. Often several geometrical configurations which
are almost degenerate (at least compared to typical thermal energies) are observed
for such systems. In this case the relative stability of the various configurations is of
obvious interest. All these properties have in common that they can be calculated if
the relevant electronic ground states are known. Even if more than one ground state
is involved, as in the comparison of energies of systems with different electron num-
bers or with different atomic configurations, there is no need to determine excited
electronic states.

The electronic excitation spectrum is the most notable dynamical property. Exci-
tation energies are not only the quantities necessary for an understanding of optical
properties, they also feature in all kinds of scattering processes. In addition to the
excitation spectrum, a complete description of excitation or ionization requires the
evaluation of the associated transition probabilities. In a poly-atomic system the

E. Engel, R.M. Dreizler, Introduction. In: E. Engel, R.M. Dreizler, Density Functional Theory,
Theoretical and Mathematical Physics, pp. 1–9 (2011)
DOI 10.1007/978-3-642-14090-7 1 c© Springer-Verlag Berlin Heidelberg 2011



2 1 Introduction

excitation of nuclear motion is also possible, the rotational-vibrational motion in
molecules or lattice vibrations (phonons) in solids being the simplest examples. The
discussion of these dynamical properties obviously requires knowledge of either
excited stationary states of the system, or even of time-dependent states.

For the study of these properties one can distinguish between two basic ap-
proaches:

1. The first approach is based on the true, fundamental Hamiltonian of the system.
It is therefore called the ab-initio or first principles approach. As the solution of
the resulting many-body Schrödinger equation is an extremely demanding task,
some approximations are unavoidable. However, all approximations utilized in
this context are of a technical nature, as for instance the determinantal form of
the many-body wavefunction in the Hartree-Fock approximation or the represen-
tation of its single-particle ingredients in terms of a finite basis set. These tech-
nical simplifications can curtail the results of an ab-initio calculation: depending
on the system and property under investigation, important features can be missed
(e.g. a single-determinant wavefunction can not reproduce the fully correlated
motion of the electrons). The ab-initio approach is thus not characterized by the
absence of any approximations, but rather by the fact that the approximations do
not introduce adjustable physical(!) parameters. Clearly, a more efficient tech-
nical approximation will lead to a computational task that can be handled more
easily.

2. In the second approach a suitable model Hamiltonian is utilized from the very
outset. Relying on available information (often experimental) on the system, the
relevant aspects can be isolated and used to construct the model Hamiltonian.
For instance, if one is interested in the magnetic ordering of a mono-atomic crys-
talline solid, one might rely on the Heisenberg Hamiltonian. In this model each
atomic site α of the crystal is represented by a spin operator sssα with possible
eigenvalues corresponding to the available spin per site. The interaction between
the spins of two sites α and β is represented by −Jsssα · sssβ , so that for positive J
energy is gained by the alignment of the two spins. Clearly, the Heisenberg Spin
Hamiltonian can not make any statement about the lattice constant of the solid,
as it only deals with one particular property, its magnetism. The only remnant
of the underlying electronic structure is the size of the coupling constant J. This
physical parameter can, however, not be determined within the model, but has to
be adjusted to experiment or some prior ab-initio results. The advantage of the
use of model Hamiltonians is obvious: the resulting many-body problem is much
simpler than the corresponding ab-initio problem. On the other hand, it is often
an art to extract the essential aspects of a system in a way which neither ignores
important features nor leads to an overwhelmingly complicated Hamiltonian.

The present text introduces a variant of the first approach, which is at the same time
efficient, widely applicable and reasonably accurate.

The starting point of the discussion is the ab-initio Hamiltonian of the coupled
electron-nucleus system,



1 Introduction 3

Ĥ = T̂n +V̂n−n + Ĥe (+V̂n−field) (1.1)

Ĥe = T̂e +V̂n−e +V̂e−e (+V̂e−field) . (1.2)

In (1.1) T̂n represents the kinetic energy of the K nuclei of the system,

T̂n =
K

∑
α=1

(−ih̄∇∇∇RRRα )2

2Mα
, (1.3)

where RRRα denotes the Cartesian coordinates of nucleus α with mass Mα and
∇∇∇RRRα = ∂/∂RRRα . The potential V̂n−n represents the repulsion among the nuclei,1

V̂n−n =
K

∑
α,β=1;α<β

Zα Zβ e2

|RRRα −RRRβ |
. (1.4)

For the electronic problem V̂n−n just amounts to an additive constant. The third
component of Ĥ is the electronic Hamiltonian Ĥe, which is decomposed into the
kinetic energy of the N electrons,

T̂e =
N

∑
i=1

(−ih̄∇∇∇i)2

2m
(1.5)

(∇∇∇i ≡ ∇∇∇rrri , with rrri denoting the position of electron i), the interaction between elec-
trons and nuclei (with charges Zα e, e = |e|),

V̂n−e = −
K

∑
α=1

N

∑
i=1

Zα e2

|RRRα − rrri| , (1.6)

and the interaction among the electrons,

V̂e−e =
N

∑
i, j=1; i< j

e2

|rrri − rrr j| . (1.7)

Finally, depending on the system under consideration, the two types of particles can
couple to an external electromagnetic field,

V̂n−field =
K

∑
α=1

[
Zα eΦext(RRRα t)+ i

Zα eh̄
Mα c

AAAext(RRRα t) ·∇∇∇RRRα − IIIα ·BBBext(RRRα t)
]

(1.8)

V̂e−field =
N

∑
i=1

[
− eΦext(rrrit)−2iμBAAAext(rrrit) ·∇∇∇i + μBσσσ i ·BBBext(rrrit)

]
. (1.9)

Here Φext(rrrt) and AAAext(rrrt) are the potentials corresponding to the electromagnetic
field,

1 Throughout this text we use Gaussian units for the electric charge.
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EEEext(rrrt) = −∇∇∇Φext(rrrt)− 1
c

∂AAAext(rrrt)
∂ t

(1.10)

BBBext(rrrt) = ∇∇∇×AAAext(rrrt) . (1.11)

IIIα characterizes the magnetic moment of nucleus α , μB is the Bohr magneton,
μB = eh̄/(2mc), and σσσ i the spin operator corresponding to electron i, (the vector
σσσ denotes the three 2×2 Pauli matrices—for their explicit forms see Eqs. (2.122)–
(2.124)).

A number of comments are appropriate:

• As expressed by (1.3) and (1.5), the motion of both the electrons and the nuclei is
treated strictly nonrelativistically. Equations (1.3)–(1.9) also imply that the nuclei
are point particles, characterized only by mass, charge and magnetic moment. Of
course, the nonrelativistic and elementary treatment of the nuclei is completely
legitimate for the range of questions addressed here. On the other hand, the ne-
glect of all relativistic corrections to the kinetic energy of the electrons, most
notably of the spin–orbit interaction, is not always legitimate: for heavy atoms
relativistic effects modify the structure of the electronic Hamiltonian to an extent
which is even noticeable in molecular bonds, so that use of a relativistic T̂e is
required. The issue of relativity will be addressed in Chap. 8. For the time being
the interest will, however, be restricted to the nonrelativistic limit.

• Similarly, the interaction between the charged particles in the Hamiltonians (1.4),
(1.6) and (1.7) is given by the instantaneous and spin-independent Coulomb inter-
action, which ignores the transverse nature of light (photons) and its finite speed,
manifest e.g. in the Breit interaction. The discussion of relativistic corrections to
the Coulomb interaction is also postponed to Chap. 8. However, it seems worth-
while to emphasize already at this point that the neglect of the Breit corrections
is in general much less critical than the neglect of the spin–orbit interaction.

• In Eqs. (1.1) and (1.2) the possible presence of an external electromagnetic field
is indicated. This field can be either static or time-dependent, as for instance a
laser pulse. Again the coupling of the field to the quantized particles is specified
on the simplest level available, assuming Coulomb gauge,

∇∇∇ ·AAAext(rrrt) = 0 . (1.12)

Most of the discussion will, however, be devoted to the field-free situation
Φext = AAAext = 0 or to static fields. The Hamiltonian of the coupled system is then
stationary. Nevertheless, even in this case a time-dependence can be introduced
into the electron problem as soon as the motion of the nuclei is treated classically
(as is customary for the discussion of collision problems). An indication of how
to deal with time-dependent fields is given in Chap. 7.

The simplest and best-studied systems are single atoms. Here a dynamical treat-
ment is required only for the electrons (at least, as long as the atoms are not subject
to electromagnetic fields): after transformation into the center-of-mass frame the
Hamiltonian separates into a part governing the trivial translational motion of the
complete atom and the motion of the electrons relative to the center-of-mass. As the
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origin of the center-of-mass frame is (essentially) identical with the position of the
nucleus, one ends up with an electronic problem in which the nucleus enters as a
(static) external source. This effective factorization of nuclear and electron degrees
of freedom is no longer possible for poly-atomic systems. In these systems one has
to deal with the coupled dynamics of electrons and nuclei, i.e. with the Schrödinger
equation

Ĥ Ψa(RRR1, . . . ,RRRK ;rrr1σ1, . . . ,rrrNσN)
= Ea Ψa(RRR1, . . . ,RRRK ;rrr1σ1, . . . ,rrrNσN) , (1.13)

where σi denotes the spin-orientation of electron i with respect to some chosen
axis (from now on it is assumed that the external fields are time-independent). As
it stands, the partial differential equation (1.13) poses an exceedingly complicated
technical problem: the size of the systems of interest ranges from atoms to solids,
so that the particle number in (1.13) varies over many orders of magnitudes. At the
same time, a quantum mechanical treatment of the electrons is usually unavoidable,
even if only the most elementary features of these systems are to be studied.

The standard first step towards a solution of (1.13) is a partial decoupling of
the electron from the nuclear motion, which relies on the different time scales of
the two types of motion. This is achieved by the Born-Oppenheimer approximation
[1]. The Born-Oppenheimer approximation amounts to a factorization of the total
wavefunction Ψa into a nuclear wavefunction Ψn

ik and an electron wavefunction Ψe
k,

Ψa≡i,k(RRR1, . . . ,RRRK ;rrr1σ1, . . . ,rrrNσN)
= Ψn

ik(RRR1, . . . ,RRRK)Ψe
k(RRR1, . . . ,RRRK ;rrr1σ1, . . . ,rrrNσN) . (1.14)

The electron wavefunction depends parametrically on the position of the nuclei. It
satisfies the Schrödinger equation

Ĥe Ψe
k(RRR1, . . . ,RRRK ;rrr1σ1, . . . ,rrrNσN)

= Ek(RRR1, . . . ,RRRK)Ψe
k(RRR1, . . . ,RRRK ;rrr1σ1, . . . ,rrrNσN) , (1.15)

which represents a stationary eigenvalue problem for any given set of RRRα . Together
with V̂n−n, Eq. (1.4), the eigenvalues Ek(RRR1, . . .) act as potentials in which the nuclei
are moving.

The solution of (1.15) is a formidable computational task, even for fixed positions
of the nuclei. Not only the large number and the quantum nature of the electrons
represent a challenge, but also the complicated geometry of many systems. It is
also possible that a number of (meta-)stable arrangements of the nuclei (isomers,
conformers) exist, so that the solution of (1.15) for each of these arrangements is
required in order to determine the ground state configuration. For these reasons
an extremely efficient handling of the electron problem is necessary, even if the
possible motion of the nuclei is ignored.

A variety of approaches have been developed to obtain approximate solutions of
Eq. (1.15). The oldest and simplest is the Hartree-Fock (HF) (or Self-Consistent-
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Field) approximation, in which the ground state wavefunction Ψe
k=0 is assumed to

be a determinant of single-particle states, a so-called Slater determinant,

Ψe
0(rrr1σ1, . . .rrrNσN) ≈ Φ1···N(rrr1σ1, . . .rrrNσN)

Φi1···iN (rrr1σ1, . . .rrrNσN) =
1√
N!

det

⎛
⎜⎝ φi1(rrr1σ1) · · · φiN (rrr1σ1)

...
...

φi1(rrrNσN) · · · φiN (rrrNσN)

⎞
⎟⎠ (1.16)

(in the following, determinantal wavefunctions will always be denoted by Φ in or-
der to distinguish them from the correlated N-particle wavefunctions Ψ; in addition,
the spin variable σ will be displayed explicitly as an argument; the two possible
orientations of σ will be either denoted as ↑,↓ or by ±1/2). The N single-particle
states φi in the approximate ground state wavefunction Φ1···N are determined varia-
tionally. For this purpose the expectation value of the Hamiltonian (1.2) is evaluated
with respect to the wavefunction Φ1···N . Assuming the single-particle states to be
orthonormal, the result is

〈Φ1···N |Ĥ|Φ1···N〉 =
N

∑
i=1

∑
σ=↑,↓

∫
d3r φ ∗

i (rrrσ)
[
(−ih̄∇∇∇)2

2m
+ vext(rrr)

]
φi(rrrσ)

+
1
2

N

∑
i, j=1

∑
σ ,σ ′=↑,↓

∫
d3r

∫
d3r′ φ ∗

i (rrrσ)φ ∗
j (rrr

′σ ′)w(rrr,rrr′)

× [
φi(rrrσ)φ j(rrr′σ ′)−φ j(rrrσ)φi(rrr′′′σ ′)

]
, (1.17)

where vext(rrr) = −∑K
α=1 Zα e2/|RRRα − rrr| is the total potential generated by the nuclei

and w(rrr,rrr′) = e2/|rrr−rrr′| denotes the electron–electron interaction. The contribution
of the two-body interaction consists of a direct and an exchange term, as a conse-
quence of the determinantal structure of the state (1.16).

Minimization of the approximate ground state energy (1.17) with respect to the
orbitals φ ∗

i (rrrσ), including the constraint of orthonormality,2 leads to the HF equa-
tions (i = 1, . . .N),

2 The constraint is implemented by the introduction of a suitable set of Lagrange multipliers {εi}
in the functional to be minimized,

〈Φ1···N |Ĥ|Φ1···N〉−
N

∑
i=1

εi

(
∑
σ

∫
d3r |φi(rrrσ)|2 −1

)
.

A set of real and diagonal multipliers is sufficient as the resulting single-particle Hamiltonian deter-
mining the φi turns out to be hermitian, which ensures the orthogonality of the φi. Alternatively, one
can explicitly include Lagrange multipliers for the orthogonality constraint and subsequently use
the properties of the single-particle equation and the Lagrange multiplier matrix to show that the
latter can be diagonalized by a suitable unitary transformation of the solutions of the single-particle
equation [2]. The set of single-particle states corresponding to the diagonal Lagrange multiplier
matrix is often called canonical.
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− h̄2∇∇∇2

2m
φi(rrrσ)+ ∑

σ ′=↑,↓

∫
d3r′ vHF

eff (rrrσ ,rrr′σ ′)φi(rrr′σ ′) = εiφi(rrrσ) (1.18)

vHF
eff (rrrσ ,rrr′σ ′) = δσσ ′ δ (3)(rrr− rrr′) [vext(rrr)+ vH(rrr)]+ vHF

x (rrrσ ,rrr′σ ′) (1.19)

(for the variational or functional derivatives required see Appendix A). The HF
equations have the structure of the ordinary single-particle Schrödinger equation.
However, the total single-particle potential in the HF equations is nonlocal and con-
tains two terms, the Hartree (direct Coulomb) potential

vH(rrr) =
∫

d3r′ w(rrr,rrr′) ∑
σ ′=↑,↓

N

∑
j=1

|φ j(rrr′σ ′)|2 (1.20)

and the exchange potential

vHF
x (rrrσ ,rrr′σ ′) = −w(rrr,rrr′)

N

∑
j=1

φ j(rrrσ)φ ∗
j (rrr

′σ ′) , (1.21)

which depend on the solutions to be determined by Eq. (1.18). The standard ap-
proach to deal with this nonlinearity is a selfconsistent iteration of Eq. (1.18): start-
ing with an initial guess for the total potential, the states φi and the potentials (1.20)
and (1.21) are improved step by step. In each cycle of the iteration process first the
φi corresponding to the current potentials are determined and then updated poten-
tials are calculated from these φi. This iterative process is stopped once a suitable
accuracy criterion is met (i.e. as soon as selfconsistency is achieved). Since the HF
equations (1.18) reflect the Ritz principle, one ends up with the set of φi which min-
imizes the total HF energy (1.17). The HF approach yields, in the sense of the Ritz
principle, the best determinantal approximation to the ground state.

The determinant (1.16) manifestly satisfies the requirement of antisymmetry.
This rather elementary correlation between fermions is often called Pauli corre-
lation. The wavefunction (1.16) does, however, not contain the correlation resulting
from the interaction between the electrons: while in the HF approach each electron
simply experiences the average field of the complete electron cloud, the actual mo-
tion of an electron depends, via the Coulomb repulsion, on the individual positions
of all other electrons (compare Sect. 3.1). In order to incorporate this Coulomb cor-
relation into the many-body wavefunction one has to go beyond the representation
by a single determinant. In order to construct such wavefunctions one has to real-
ize that a complete solution of the HF equations not only provides the N occupied
single-particle states included in the HF ground state (1.16), but also a (finite or in-
finite) number of further, unoccupied states (the other eigenstates of the differential
equation (1.18), obtained for a fixed Hamiltonian on the left-hand side). Together
with the occupied φi, these states form a complete basis of the single-particle Hilbert
space. A complete basis in the N-particle Hilbert space is then obtained from the set
of all determinants (1.16) which can be built from this complete set of single-particle
states (for a more detailed discussion see Appendix B). Using the completeness of
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the states of type (1.16), correlated wavefunctions can be written as

Ψk(rrr1σ1, . . .rrrNσN) = ∑
i1···iN

ck
i1···iN Φi1···iN (rrr1σ1, . . .rrrNσN) . (1.22)

Several strategies are available for the determination of the expansion coefficients
ck

i1···iN [2, 3]. However, while highly efficient numerical implementations and present
day computer power allow the application of these so-called correlated ab-initio
methods to surprisingly large systems, there is a fundamental drawback, which se-
riously limits their range of applicability.

In order to understand this point one has to realize that, in one way or another,
the single-particle orbitals from which the Φi1···iN are constructed must be expanded
in terms of some finite set of basis functions ηk,

φi(rrrσ) =
M

∑
k=1

bi,kσ ηk(rrr) . (1.23)

Using the matrix elements 〈ηk|ηl〉, 〈ηk|∇∇∇2|ηl〉 etc, Eq. (1.15) can then be recast
as an algebraic (eigenvalue) problem, in which the bi,kσ and ck

i1···iN are determined
either sequentially or simultaneously. For instance, in the case of an effective single-
particle problem (as the HF scheme) one ends up with

M

∑
l=1

∑
σ ′

[〈
ηk

∣∣∣∣− h̄2∇2

2m
δσσ ′ + v̂eff,σσ ′

∣∣∣∣ηl

〉
− εi〈ηk|ηl〉

]
bi,lσ ′ = 0 , (1.24)

where v̂eff,σσ ′ is the total potential which the electrons experience (the basis func-
tions have not been assumed to be orthonormal nor has the fact been used that the
HF effective potential is diagonal with respect to spin). The obvious question is:
how do the algebraic formulations of the various many-body methods scale with the
size M of the basis set?

The answer to this question is not as straightforward as one might think, as it
depends on the technical implementation of the method under investigation. Fur-
thermore, one has to distinguish between the number of operations (i.e. computer
time) and the size of arrays (i.e. computer memory) required. The somewhat in-
volved answer is, for the interested reader, displayed in more detail in Appendix C
(for an alternative view on the same problem see [4]). The following list gives an
overview of the scaling behavior which is obtained for some of the standard many-
body methods [5]:
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Noninteracting particles ∼ M3

Density Functional Theory ∼ M3 (in case of the LDA, GGA, MGGA)
Hartree-Fock ∼ M4 (in case of the standard implementation)
Møller-Plesset 2 ∼ M5 (2nd order perturbation theory on HF basis)
Møller-Plesset 4 ∼ M7 (4th order perturbation theory on HF basis)
CISD(T) ∼ M7 (Configuration Interaction: energy

minimization allowing single (S), double
(D) and selected triple (T) particle–hole
excitations from HF ground state)

It should be mentioned that this table does not take into account reduction tech-
niques, such as the suppression of small matrix elements. An important aspect to be
noticed in this respect is the relation between M and the size of the system for multi-
center problems: in the case of localized basis functions like Gaussians an increase
of M eventually implies an increase of the number of atoms involved, as the num-
ber of basis functions required for each atomic center is essentially limited (even if
high accuracy is desired). However, the overlap of basis functions centered on atoms
which are far apart is very small, as long as the basis functions are well localized.
This condition is satisfied most easily, if the basis set only has to represent occupied
single-particle orbitals, but no virtual states. As a result, one can devise rather elab-
orate cut-off schemes for multi-center matrix elements, which reduce the scaling
behavior of the HF approximation to M2. Corresponding speed-ups are found for
the correlated approaches. It is nevertheless clear, that the scaling behavior of the
correlated ab-initio methods is prohibitive, as each additional power of M increases
the computational demands by a factor of the order of the electron number N: M
scales linearly with N, since for any additional electron at least one additional basis
function is required in order to keep up the quality of the basis set representation.
While the precise range of applicability of correlated ab-initio methods is difficult
to assess, there will always be interesting systems whose size is beyond their reach.

For this reason only a method with the optimum scaling behavior is of interest
for the treatment of complex systems, i.e. some kind of effective noninteracting ap-
proach involving only single-particle operators. This suggests using the HF scheme,
as the prototype of an effective single-particle approach. However, as already indi-
cated, correlation plays an important role for many systems of interest, so that one
has to go beyond the HF approximation. This immediately leads to the question,
whether one can map the fully interacting many-body problem onto an effective
single-particle problem in a more complete fashion, including correlation in some
way. The answer is yes, this type of mapping is the basic aim of density functional
theory (DFT).



Chapter 2
Foundations of Density Functional Theory:
Existence Theorems

2.1 Hohenberg-Kohn Theorem

The starting point of any discussion of DFT is the Hohenberg-Kohn (HK) theorem
[6]. It represents the most basic of a number of existence theorems which ensure that
stationary many-particle systems can be characterized (fully) by the ground state
density and closely related quantities. As the reasoning leading to the HK theorem
is quite instructive, it is worthwhile to study this prototype of an existence theorem
in some detail (the discussion of the HK theorem follows [7]).

Let us consider the standard Hamiltonian of a stationary system of N interacting
spin-1/2 particles (typically electrons),

Ĥ = T̂ +V̂ext +Ŵ , (2.1)

which consists of the kinetic energy operator T̂ ,

T̂ =
N

∑
i=1

(−ih̄∇∇∇i)2

2m
= − h̄2

2m ∑
σ=↑,↓

∫
d3r ψ̂†(rrrσ)∇∇∇2ψ̂(rrrσ) , (2.2)

the interaction of the particles with external sources characterized by a given, time-
independent potential vext(rrr),

V̂ext =
N

∑
i=1

vext(rrri) =
∫

d3r vext(rrr) n̂(rrr) (2.3)

n̂(rrr) =
N

∑
i=1

δ (3)(rrr− rrri) = ∑
σ=↑,↓

ψ̂†(rrrσ)ψ̂(rrrσ) , (2.4)

and a particle–particle interaction Ŵ ,

E. Engel, R.M. Dreizler, Foundations of Density Functional Theory: Existence Theorems. In:
E. Engel, R.M. Dreizler, Density Functional Theory, Theoretical and Mathematical
Physics, pp. 11–56 (2011)
DOI 10.1007/978-3-642-14090-7 2 c© Springer-Verlag Berlin Heidelberg 2011
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Ŵ =
N

∑
i, j=1 ; i< j

w(rrri,rrr j) =
1
2

N

∑
i, j=1 ; i�= j

w(rrri,rrr j)

=
1
2 ∑

σ ,σ ′=↑,↓

∫
d3r

∫
d3r′ ψ̂†(rrrσ)ψ̂†(rrr′σ ′)w(rrr,rrr′)ψ̂(rrr′σ ′)ψ̂(rrrσ) . (2.5)

In Eqs. (2.2)–(2.5) rrri represents the position of particle i, σi is its spin projection
in z-direction (the two possible orientations of σi will be either denoted as ↑,↓ or
by ±1/2). ψ̂(†)(rrrσ) is the field operator which describes the creation/annihilation
of one particle with spin σ at point rrr. As we are dealing with spin-1/2 particles,
ψ̂(†)(rrrσ) satisfies anticommutation rules,{

ψ̂(rrrσ) , ψ̂(rrr′σ ′)
}

=
{

ψ̂†(rrrσ) , ψ̂†(rrr′σ ′)
}

= 0 (2.6){
ψ̂(rrrσ) , ψ̂†(rrr′σ ′)

}
= δ (3)(rrr− rrr′)δσσ ′ . (2.7)

At this point it is not necessary to specify the interaction w(rrr,rrr′) in detail. The
basic DFT formalism is independent of the form of w, as long as w is kept the
same throughout the complete discussion. It is only assumed that w is symmetric,
w(rrr,rrr′) = w(rrr′,rrr) and independent of spin. In practice, of course, one is primarily
interested in electrons with their Coulomb interaction. Similarly, the external poten-
tial vext which is of particular interest in practical applications is given by Eq. (1.6).
For the present discussion, however, vext is considered to be an arbitrary function of
rrr.

Some further comments on Eqs. (2.1)–(2.5) seem appropriate.

(a) The Hamiltonian (2.1) is strictly nonrelativistic. The complete formalism pre-
sented in this chapter can, however, be extended to the relativistic domain on
the basis of quantum electrodynamics. A detailed account of relativistic DFT
is given in Chap. 8.

(b) For the time being, the Hamiltonian does not include the presence of external
magnetic fields. This extension will be discussed in Sects. 2.5 and 2.6. The
absence of magnetic fields does not imply, however, that the eigenstates of
(2.1), and in particular the ground state, can not exhibit magnetic properties.

(c) Although it is not obvious from Eqs. (2.1)–(2.5), the following discussion will
be restricted to the zero temperature formalism. An extension to systems with
T �= 0 may be found in [8, 7].

(d) All energy contributions, which do not depend on the electron degrees of free-
dom, as the interaction among atomic nuclei (1.4), are irrelevant in the present
context. They can be added to the electron part of the Hamiltonian when
needed.

(e) An important property of the operator (2.3) is its local (that is multiplicative)
character. The potential (1.6) has this character, but the class of legitimate po-
tentials also includes additional electrostatic fields applied to the many-particle
system. It does not include, however, the standard type of pseudopotentials
utilized in the context of DFT (see e.g. [9, 10]). In order to introduce these
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nonlocal pseudopotentials one first establishes DFT on the all-electron level,
before making the transition to the pseudopotential description.
It is worthwhile to note at this point that there also exists an extension of the
HK-theorem to nonlocal potentials [11, 12]. In this approach the 1-particle den-
sity matrix

γ(rrrσ ,rrr′σ ′) = ∑
σ2,...,σN

∫
d3r2 . . .d3rN Ψ0(rrrσ ,rrr2σ2, . . .rrrNσN)

×Ψ∗
0(rrr

′σ ′,rrr2σ2, . . .rrrNσN) ,

where Ψ0 denotes the non-degenerate ground state wavefunction correspond-
ing to the nonlocal external potential, plays the role that the density plays in
DFT. The arguments behind this extension follow closely the lines given be-
low.

(f) As indicated in Eqs. (2.1)–(2.5) we will frequently switch between the first
and second quantized formalism, depending on which is more appropriate for
a given problem. An introduction to the language of second quantization may
be found in Appendix B.

The many-body eigenstates |Ψk〉 corresponding to the Hamiltonian (2.1) are ob-
tained by solution of the stationary Schrödinger equation,

Ĥ|Ψk〉 = Ek|Ψk〉 . (2.8)

This is true in particular for the ground state |Ψ0〉, on which we will focus attention
in the following.

Now consider the set of all Hamiltonians of the form (2.1) with non-degenerate
ground states, i.e. the set of all local potentials vext for which (2.8) leads to a non-
degenerate |Ψ0〉, while the interaction (2.5) is kept fixed. This set does not only
contain physically realizable potentials, but also an infinite number of purely math-
ematical constructs. In addition, it contains an infinite number of trivial copies of
any given vext(rrr), which are obtained by simply adding an arbitrary constant to
vext(rrr). These trivial copies, of course, lead to the same ground state, so that they
are physically equivalent to vext(rrr). On the other hand, there exist physical systems
with degenerate ground states which are not included in the present discussion—the
restriction to non-degenerate ground states will be removed later.

One can then interpret the solution of the Schrödinger equation as a map between
the set V of external potentials which differ by more than a constant,

V =
{

vext
∣∣ with: vext multiplicative, corresponding |Ψ0〉 exists and

is non-degenerate, v′ext(rrr) �= vext(rrr)+ const
}

. (2.9)

and the set G of resulting ground states,

G =
{|Ψ0〉

∣∣ with: |Ψ0〉 ground state corresponding to one element of V ,

|Ψ′
0〉 �= eiϕ |Ψ0〉 with ϕ being some global phase

}
. (2.10)
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Let us denote the map from V to G as A,

A : V −→ G .

Introducing the ground state density n0,

n0(rrr) = 〈Ψ0|n̂(rrr)|Ψ0〉
= N ∑

σ1,...σN

∫
d3r2 . . .d3rN |(rrrσ1,rrr2σ2 . . .rrrNσN |Ψ0〉|2 , (2.11)

one can furthermore define a second map B between the set G and the set N of all
ground state densities obtained from some element of G via (2.11),

N =
{

n0
∣∣ n0(rrr) = 〈Ψ0|n̂(rrr)|Ψ0〉, |Ψ0〉 ∈ G

}
(2.12)

B : G −→ N .

The two maps are illustrated in Fig. 2.1. By construction both maps are surjective.

v1
0,v1

0,v3

0,v40,v2

n0,v1

v4
?

v2 ?= n0,v2
 = n0,v3

?

v3
?

A B

Ψ

ΨΨ

Ψ

Fig. 2.1 Correspondence between external potentials vi, associated ground states Ψ0,vi and ground
state densities n0,vi in the case of non-degenerate ground states.

The question then is: can it happen that the same |Ψ0〉 is obtained as ground state for
two different potentials or that the same n0 results from two different ground states?
These possibilities are indicated by the dashed lines in Fig. 2.1.

The crucial observation of HK was: both maps are also injective and thus unique.
The proof of this statement for map A consists in demonstrating the validity of the
following two statements:

(i) For given vext there exists only one |Ψ0〉 in G , i.e. there is no vext which is
mapped onto two elements of G .

(ii) There is no |Ψ0〉 which is simultaneously ground state for two different po-
tentials vext and v′ext which differ by more than a constant.
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Statement (i) is trivial due to the restriction to non-degenerate ground states. It re-
mains to prove statement (ii).

The standard proof of (ii) is based on a reductio ad absurdum. Let us as-
sume that |Ψ0〉 is simultaneously ground state for two different potentials vext and
v′ext �= vext + const. |Ψ0〉 thus satisfies two Schrödinger equations,

Ĥ|Ψ0〉 =
[
T̂ +V̂ext +Ŵ

] |Ψ0〉 = E0|Ψ0〉 (2.13)

Ĥ ′|Ψ0〉 =
[
T̂ +V̂ ′

ext +Ŵ
] |Ψ0〉 = E ′

0|Ψ0〉 . (2.14)

Upon subtraction of (2.13) and (2.14) one obtains[
V̂ext −V̂ ′

ext

] |Ψ0〉 =
[
E0 −E ′

0

]|Ψ0〉 . (2.15)

Equation (2.15) is best written in first quantized form, in which, due to the multi-
plicative character of the potentials, one can divide by the ground state wavefunction

(rrr1σ1, . . . ,rrrNσN |Ψ0〉 = Ψ0(rrr1σ1, . . . ,rrrNσN) . (2.16)

One thus finds

N

∑
i=1

[
vext(rrri)− v′ext(rrri)

]
= E0 −E ′

0 (2.17)

for all points rrri for which the wavefunction Ψ0(rrr1σ1, . . . ,rrrNσN) does not vanish.
Keeping N − 1 of the rrri fixed and letting the remaining position vary, Eq. (2.17)
leads to a contradiction (as the right-hand side is constant, while vext and v′ext are
assumed to differ by more than a constant). Consequently, the map A is unique:
there is a one-to-one correspondence between the potential vext and the resulting
ground state |Ψ0〉 (up to some additive constant in vext).

Let us now turn to the map B. The definition of B via Eq. (2.11) implies that it is
impossible that one |Ψ0〉 is mapped onto two different densities n0 and n′0. In order
to demonstrate the injectivity of B, one has to show that two different |Ψ0〉 ∈ G can
not lead to the same ground state density n0. The proof again relies on reductio ad
absurdum. Assume that n0 is obtained from two different elements |Ψ0〉 and |Ψ′

0〉 of
G . From the Ritz variational principle one then obtains an inequality for the ground
state energy,

E0 = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′
0|Ĥ|Ψ′

0〉 , (2.18)

where Ĥ is the unique Hamiltonian leading to |Ψ0〉 (due to the uniqueness of map
A) and the strict inequality originates from the non-degeneracy of |Ψ0〉 and |Ψ′

0〉.
The right-hand side of (2.18) can be evaluated further by adding and subtracting the
unique potential V̂ ′

ext which corresponds to |Ψ′
0〉,

E0 < E ′
0 + 〈Ψ′

0|V̂ext −V̂ ′
ext|Ψ′

0〉 . (2.19)
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Using the multiplicative form of V̂ext, Eq. (2.3), and the assumption that both states
lead to the same density n0, one obtains

E0 < E ′
0 +

∫
d3r n0(rrr)

[
vext(rrr)− v′ext(rrr)

]
. (2.20)

However, this argument can equally well be given with primed and unprimed quan-
tities interchanged,

E ′
0 < E0 +

∫
d3r n0(rrr)

[
v′ext(rrr)− vext(rrr)

]
. (2.21)

Upon addition of Eqs. (2.20) and (2.21), one ends up with a contradiction,

E0 +E ′
0 < E ′

0 +E0 . (2.22)

One therefore concludes that the map B is also unique: there is a one-to-one corre-
spondence between |Ψ0〉 and n0.

On the basis of these arguments one can formulate the fundamental statements
of the HK theorem.

(a) Taking both maps together, one has a one-to-one correspondence
between the external potential vext in the Hamiltonian, the (non-
degenerate) ground state |Ψ0〉 resulting from solution of the Schrödinger
equation and the associated ground state density n0,

vext(rrr) ⇐⇒ |Ψ0〉 ⇐⇒ n0(rrr) = 〈Ψ0|n̂(rrr)|Ψ0〉. (2.23)
↑ ↑

unique (up to some constant in vext)

Thus vext, |Ψ0〉 and n0 determine each other uniquely. In mathemati-
cal terms: the ground state is a unique functional of the ground state
density, denoted as |Ψ[n]〉. Upon insertion of one element n0 ∈ N , this
functional yields the ground state |Ψ0〉 associated with this particular
n0,

|Ψ0〉 = |Ψ[n0]〉 . (2.24)

The functional |Ψ[n]〉 is a realization of the map B−1.
Note that no explicit information on vext is required to construct |Ψ0〉
from n0: |Ψ[n]〉 has the same functional form for all kinds of many-
particle systems with the same interaction (w was kept fixed throughout
the complete discussion). The same functional |Ψ[n]〉 applies to atoms,
molecules and solids. The particular geometry of the systems under con-
sideration is mediated by the structure of the density. |Ψ[n]〉 is therefore
called universal. Clearly, the functional dependence of |Ψ[n]〉 on n must
be extremely complicated.
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(b) The existence of the functional |Ψ[n]〉 leads to the statement that any
ground state observable is a density functional,

O[n] := 〈Ψ[n]|Ô|Ψ[n]〉 . (2.25)

This is true, in particular, for the ground state energy, which turns out to
be the most important density functional,

E[n] := 〈Ψ[n]|Ĥ|Ψ[n]〉 = F [n]+
∫

d3r vext(rrr)n(rrr) (2.26)

F [n] := 〈Ψ[n]|T̂ +Ŵ |Ψ[n]〉 . (2.27)

In (2.26) the universal part F [n] has been extracted from the total energy
functional E[n], in order to emphasize the fact that vext enters E[n] at
only one point.

(c) There exists a minimum principle for E[n]: if n0 is the ground state den-
sity corresponding to vext, one has for all densities n′0(rrr) �= n0(rrr)

E[n0] < E[n′0] ⇐⇒ E0 = min
n∈N

E[n] . (2.28)

This is a direct consequence of the unique relation between n0 and |Ψ0〉
and the Ritz variational principle (the ground state |Ψ′

0〉 associated with
n′0 differs from |Ψ0〉). At this point it is worthwhile to emphasize the re-
stricted domain of the functional E[n]: only densities in N , i.e. ground
state densities which are obtained by solution of the Schrödinger equa-
tion, are legitimate, but not arbitrary non-negative functions of rrr with
finite norm.

How can one interpret the last result physically? Obviously the particles react to
any (arbitrarily small) change in vext, so that their total energy is minimized, and
this response is unique. Due to the locality of the potential there is no modification
of vext which does not require a readjustment of the electron wavefunction and,
consequently, of the density distribution.1 This response is very familiar in a number
of cases. If, for instance, the nuclear charge is increased in an atom, the orbitals are
contracted in a well-defined way. If the form of the nuclear charge distribution is
changed from point-like to a finite shape, the density of the electrons in the vicinity
of the nucleus reflects this change of vext. If the atoms in a molecule are taken apart,
the wavefunction and the density follow this positional change. The basic result of
the HK theorem is therefore intuitively plausible.

Of course, these statements are only correct if the particles actually experience
the change in vext. If, for instance, some part of space is separated by a barrier of
infinite height and non-vanishing width from the region in which the particles are
moving, a modification of vext in this exterior region does not affect the particles

1 This implies the uniqueness of the density–density response function of the system.
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at all (as there is no communication between the two parts of space). Similarly,
if the difference between vext and v′ext is non-vanishing only at the nodes of |Ψ0〉
(vext − v′ext would have a δ -type form), the proof of the uniqueness of map A breaks
down. However, such situations are either trivial (as the case of an infinite barrier)
or rather unphysical. Potentials with δ -like structures are not met in first-principles
electron structure calculations. For this reason one can safely assume the validity of
the HK theorem for all systems of practical interest.

In view of the intuitive physical background of the HK theorem it is not sur-
prising that the first energy functionals were introduced long before HK’s existence
proof. Thomas [13] and Fermi [14] considered the kinetic energy of a noninteract-
ing electron gas, which turns out to be a simple functional of the gas density—for
a derivation see Appendix D. Using this functional with the actual inhomogeneous
densities of systems like atoms or molecules (rather than just the uniform gas den-
sity) constitutes the so-called Thomas-Fermi model. A variety of extensions and
properties of the Thomas-Fermi approach have been established with time. A com-
plete review of these aspects of DFT is beyond the scope of this book. The basics
are summarized in Appendix D, for further information the interested reader is re-
ferred to [15, 7] which provide a rather complete account of the TF approach and
extensions.

2.2 Degenerate Ground States

The proof of the HK theorem presented in Sect. 2.1 relies crucially on the restriction
to non-degenerate ground states. The argument has to be modified in the case of
degenerate states. In this situation two or more ground states |Ψ0,i〉 originate from
the same potential vext. The first step thus is an appropriate redefinition of the set of
legitimate potentials V ,

V =
{

vext
∣∣ with: vext multiplicative, v′ext(rrr) �= vext(rrr)+ const

}
, (2.29)

the set G of resulting ground states,

Gvext =
{
|Ψ〉

∣∣∣ with: |Ψ〉 =
q

∑
i=1

ci|Ψ0,i〉,

|Ψ0,i〉 = degenerate ground states to vext

}
(2.30)

G =
⋃
vext

Gvext , (2.31)

and the set N of associated ground state densities,

Nvext =
{

n(rrr)
∣∣ with: n(rrr) = 〈Ψ|n̂(rrr)|Ψ〉, |Ψ〉 ∈ Gvext

}
(2.32)

N =
⋃
vext

Nvext . (2.33)
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The definitions of Gvext and Nvext include the non-degenerate situation.

Fig. 2.2 Correspondence between external potentials vi, associated subsets of ground states Gvi

and subsets of ground state densities Nvi in the case of degeneracy.

One can then show [16] that there exists a one-to-one correspondence between
the potential vext, the class Gvext of all possible ground states resulting from vext

and the class Nvext of ground state densities obtained from these ground states
and that the subsets Gvext and Nvext for different vext are disjoint,

vext(rrr) ⇐⇒ Gvext ⇐⇒ Nvext (2.34)
↑ ↑

unique (up to some constant in vext)

|Ψ0〉 �= |Ψ′
0〉 and n0 = 〈Ψ0|n̂|Ψ0〉 �= n′0 = 〈Ψ′

0|n̂|Ψ′
0〉

for all pairs |Ψ0〉 ∈ Gvext , |Ψ′
0〉 ∈ Gv′ext

with v′ext �= vext + const .

The proof of these statements proceeds as in the non-degenerate case: assuming
that two potentials vext and v′ext �= vext + const have a common ground state |Ψ0〉,
one can follow the arguments from (2.13) to (2.17) to end up with a contradiction.
Two different vext always lead to two disjoint sets of ground states Gvext—a given
|Ψ0〉 ∈ G can only belong to one particular Gvext and therefore to one particular vext.
Similarly, one arrives at a contradiction if one assumes that two states |Ψ0〉 ∈ Gvext

and |Ψ′
0〉 ∈ Gv′ext

lead to the same density n0 and then follows the arguments in
Eqs. (2.18) to (2.22). A density n0 ∈ N can only be an element of one single set
Nvext . Two densities from different Nvext necessarily correspond to two different
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Gvext and two different vext and vice versa. A sketch of the situation is given in
Fig. 2.2.

In other words: one needs only one element of Nvext to identify the corresponding
Gvext and vext. On the other hand, it can happen that the same density is obtained for
two different elements of one subset Gvext . As a simple example one may consider
the boron atom on the noninteracting level, i.e. in terms of a Hamiltonian with only
a spherical Coulomb potential. As the 2p-states are degenerate, a possible classifi-
cation of the 2p-states is

2p0 : φ 0
2p(rrr) =

R21(r)
r

Y1,0(Ω)

2p± : φ±
2p(rrr) =

R21(r)
r

Y1,±1(Ω) ,

where Rnl(r) denotes the standard radial orbitals of the hydrogen problem and
Ylm(Ω) the spherical harmonics. However, due to

|Y1,±1(Ω)|2 =
3

8π
sin2 Θ ,

one finds that the density

n(rrr) =
N

∑
i=1

|φi(rrr)|2

is identical for the following two 5-particle states (Slater determinants),

Ψ+ =
1√
5!

det
(
(1s)2(2s)22p+

)
Ψ− =

1√
5!

det
(
(1s)2(2s)22p−

)
.

A unique functional |Ψ[n]〉 does not exist in the case of degenerate ground states.
Fortunately, the existence of such a unique functional is not really required in or-

der to extend the most important statement of the HK theorem to degenerate ground
states: only the existence of E[n] is of interest [16]. One first notes that, by definition,
all the degenerate states |Ψ0,i〉 lead to the same ground state energy. Even if two de-
generate states |Ψ1〉= ∑q

i=1 ai|Ψ0,i〉 and |Ψ2〉= ∑q
i=1 bi|Ψ0,i〉 with |Ψ1〉 �= |Ψ2〉 lead

to the same n, this density nevertheless determines the ground state energy uniquely,

E0 = 〈Ψ1|Ĥ|Ψ1〉 = 〈Ψ2|Ĥ|Ψ2〉 , (2.35)

as, by virtue of (2.34), both |Ψ1〉 and |Ψ2〉 originate from the same vext, i.e. the same
Hamiltonian (up to the constant in vext which is always undetermined). Similarly,
two different densities n1, n2 from the same Nvext give the same ground state energy.
As a result, E0 is a unique functional of n.



2.3 Variational Equation, Interacting v-Representability, Functional Differentiability 21

Choosing an arbitrary representative |Ψ〉 among all states which lead to the
same given density n, one can define an energy functional E[n] for degenerate
states,

E[n] = 〈Ψ[n]|Ĥ|Ψ[n]〉 , (2.36)

which is unambiguous for all n in the set (2.33). As in the case of the non-
degenerate situation one can then verify the existence of a minimum principle,

E0 = E[ni] ∀ ni ∈ Nvext , E0 < E[n] ∀ n /∈ Nvext . (2.37)

2.3 Variational Equation, Interacting v-Representability,
Functional Differentiability

The minimum principles (2.28) and (2.37) indicate the possibility to determine the
ground state density of a many-particle system by a variational equation,

δ
δn(rrr)

{
E[n]−μ

(∫
d3r n(rrr)−N

)}∣∣∣∣
n(rrr)=n0(rrr)

= 0 , (2.38)

where the subsidiary condition is required to ensure the proper normalization of
the density. Unfortunately, the transition from (2.28), (2.37) to Eq. (2.38) is not
completely legitimate from a mathematical point of view. The existence of the vari-
ational derivative δE[n]/δn requires the functional E[n] to be defined on a suffi-
ciently dense set of densities n (just as the differentiation of functions requires more
than integer numbers as the domain of definition). So far, however, E[n] is only
defined for ground state densities resulting from the solution of the Schrödinger
equation (2.8). One thus has to face the question whether there exists a potential
vext for every given normalizable function n(rrr), so that n(rrr) is the ground state den-
sity corresponding to vext? If such a potential can be found the density is termed
interacting v-representable.

Unfortunately, one can give explicit counterexamples, which demonstrate that
the issue of v-representability is non-trivial for the functionals (2.26) and (2.36).
The discussion of this problem is, however, mathematically somewhat involved. The
reader may thus wish to skip the remainder of Sect. 2.3 in a first reading and sim-
ply accept the (admittedly vague) statement that the functional derivative δE[n]/δn
exists for all practical purposes, if the definition of E[n] is suitably extended.

1. The first counterexample is based on degeneracy. Let |Ψ0,1〉 ... |Ψ0,q〉 be q or-
thonormal degenerate ground states for some vext. One can then construct a sta-
tistical density matrix D̂ from these states,
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D̂ =
q

∑
i=1

ci|Ψ0,i〉〈Ψ0,i| ; ci = c∗i ≥ 0;
q

∑
i=1

ci = 1 . (2.39)

The corresponding (ensemble) density is obtained by

nD(rrr) = tr
{

D̂n̂(rrr)
}

=
q

∑
i=1

ci〈Ψ0,i|n̂(rrr)|Ψ0,i〉 . (2.40)

The important observation is: a density of the form (2.40) can not be obtained
from a single ground state |Ψ0〉 [17, 18].

This statement is worth to be demonstrated explicitly. The most general ground state of the
degenerate system has the form

|Ψ0〉 =
q

∑
i=1

di|Ψ0,i〉 ;
q

∑
i=1

|di|2 = 1 . (2.41)

The corresponding density is

n0(rrr) =
q

∑
i, j=1

d∗
i d j 〈Ψ0,i|n̂(rrr)|Ψ0, j〉 . (2.42)

For the densities n0 and nD to be identical, the relation

q

∑
i, j=1

(
ciδi j −d∗

i d j

)
〈Ψ0,i|n̂(rrr)|Ψ0, j〉 = 0

has to be satisfied. As the matrix elements 〈Ψ0,i|n̂(rrr)|Ψ0, j〉 do not vanish and as they all exhibit
a different rrr-dependence, all prefactors must vanish individually,

ciδi j −d∗
i d j = 0 . (2.43)

The q unknown complex numbers di have to satisfy 2q2 linearly independent equations. As
there is in general no solution to (2.43), one can not find a linear combination of the |Ψ0,i〉 with
the density nD.

For this reason one distinguishes between pure-state and ensemble v-represent-
ability,

pure-state ≡ n(rrr) results from a single state |Ψ0〉
ensemble ≡ n(rrr) results from a density matrix, i.e. a statistical ensemble

Obviously the original HK energy functional is only defined for pure-state repre-
sentable densities.
In order to cope with ensemble v-representable densities one replaces the set Gvext

of pure states, Eq. (2.30), by the set of all density matrices which can be built on
the basis of the potential vext,

Dvext =
{

D̂
∣∣∣ with: D̂ =

q

∑
i=1

ci|Ψ0,i〉〈Ψ0,i|; ci = c∗i ≥ 0;
q

∑
i=1

ci = 1;

|Ψ0,i〉 = degenerate ground states to vext

}
. (2.44)
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One can then show that there is a one-to-one correspondence between vext, the
set Dvext and the set of ensemble v-representable densities resulting from the
elements of Dvext via Eq. (2.40) [17, 18]. The sets Dvext and vext are uniquely
determined by any given ensemble v-representable n: a given n can not result
from more than one Dvext and the Dvext are disjoint—the underlying argument is
the same as in the case of degenerate ground states. This allows a redefinition of
E[n], Eq. (2.36), as

EEHK[n] := tr
{

D̂[n]Ĥ
}

with n = tr
{

D̂[n]n̂
}

=
q

∑
i=1

ci〈Ψ0,i|Ĥ|Ψ0,i〉 (2.45)

with n(rrr) =
q

∑
i=1

ci 〈Ψ0,i|n̂(rrr)|Ψ0,i〉 ; ci = c∗i ≥ 0;
q

∑
i=1

ci = 1;

|Ψ0,i〉 = degenerate ground states to Ĥ .

Any D̂ which corresponds to the potential vext, which in turn is determined by
a given density n, yields the same energy value, so that EEHK[n] is a unique
density functional. In this way the domain of E[n] is extended to ensemble v-
representable densities (for pure-state v-representable densities both functionals
coincide, since the minimizing density matrix in (2.45) results from the non-
degenerate ground state in this case).

2. The second counterexample [19] is of a more explicit nature: a single particle
in one spatial dimension. There is nothing in the HK proof which requires the
presence of more than one particle, an interaction or a three-dimensional system.
All statements of the HK theorem are also valid in this special limit.
The Schrödinger equation then has the simple form{

− h̄2

2m
d2

dx2 + vext(x)
}

Ψ(x) = EΨ(x) ; n(x) = |Ψ(x)|2 . (2.46)

Equation (2.46) represents a direct map between n and vext, if one chooses Ψ(x)
to be real,

vext(x) =
h̄2

2m
1√
n(x)

d2

dx2

√
n(x)+E . (2.47)

A similar relation can be established for noninteracting particles in three dimen-
sions.
One can now consider the density

n(x) = (a+b|x|α)2 f (x)2 , (2.48)

with
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a,b > 0 ;
1
2

< α < 1 ; f (x) = f0 ∀ |x| ≤ x0 . (2.49)

The function f (x) ensures the normalizability of n(x), so that (2.48) represents
a legitimate density for which E[n] should exist (the precise form of f (x) for
|x| > x0 is irrelevant at this point).

The derivative of n(x) required for the determination of the corresponding vext(x) via Eq. (2.47)
can be evaluated by use of the general rule2

d
dx

|x|p =
d
dx

{
Θ(x)xp +Θ(−x)(−x)p

}
= δ (x)

{
xp − (−x)p

}
+ px|x|p−2 (2.50)

= px|x|p−2 for p > 0 . (2.51)

If one assumes that d f /dx(x0) = d2 f /dx2(x0) = 0 (which is legitimate as a single counterex-
ample is sufficient), one obtains in the interesting region |x| ≤ x0,

d
dx

√
n(x) =

d
dx

Ψ(x) = f0bαx|x|α−2 (2.52)

d2

dx2

√
n(x) =

d2

dx2 Ψ(x) = f0bα(α −1)|x|α−2

+ f0bαδ (x)
[
xα−1 +(−x)α−1

]
. (2.53)

The kinetic energy associated with Ψ(x) is finite,

T =
h̄2

2m

∫ +x0

−x0

dx

(
d
dx

Ψ(x)
)2

+TR

=
h̄2

2m
f 2
0 b2α2

∫ +x0

−x0

dx |x|2α−2 +TR < ∞ , (2.54)

as α > 1/2 has been chosen (TR is the finite contribution from the exterior region
|x| > x0). The corresponding potential reads (|x| ≤ x0) [20]

vext(x) =
h̄2

2m
bα

a+b|x|α
{

(α −1)|x|α−2 +δ (x)
[
xα−1 +(−x)α−1]}+E , (2.55)

As could be expected, vext has a distributional character. The potential diverges
more strongly than |x|−1 in the limit |x| → 0 for α < 1. The corresponding po-
tential energy,

V =
∫ +x0

−x0

dxvext(x)n(x)+VR , (2.56)

is not well-defined, the individual contributions being highly divergent. Obvi-
ously, potentials of the type (2.55) neither define a proper Hamiltonian, nor are

2 Note that for p > 0 one has δ ′(x)xp f (x) = −δ (x)pxp−1 f (x) for any regular f (x).
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they particularly realistic. This example calls for a more stringent characteriza-
tion of the sets of admissible densities and corresponding potentials.

3. The third counterexample [19] is even more simple. Consider a single (nonin-
teracting) particle in a spherical potential. Then any density with a zero is not
v-representable, as nodes can only show up for excited states (the ground state is
nodeless [21]).

The examples show that the treatment of non-v-representable densities needs closer
attention. A rigorous resolution of the problem of interacting v-representability can
either be obtained by a more mathematical approach or with a more practically
motivated argument.

1. In the practical variant one relies on the fact that any numerical realization of
DFT requires the use of grids. On a (finite or infinite) spatial grid, however, any
strictly positive (n(rrr) > 0), normalizable density, which is compatible with the
Pauli principle, is ensemble v-representable [20]. The crucial point is the repre-
sentation of the Laplacian by a suitable finite difference formula, as e.g.

∇∇∇2 f (rrr) =
1
h2

3

∑
i=1

[
f (rrr +heeei)−2 f (rrr)+ f (rrr−heeei)

]
, (2.57)

where an equidistant mesh and Cartesian coordinates have been used (with mesh
spacing h; eeei denotes a Cartesian unit vector). The answer to the question of
v-representability is in this line of argumentation associated with the finite reso-
lution of the grid, which does not permit a representation of singular potentials:
the finite grid spacing suppresses all singularities.

2. For the mathematical resolution of the v-representability problem one introduces
a suitable redefinition of the energy functional [22, 17, 23]. The starting point of
this generalization is the Levy-Lieb functional

ELL[n] := FLL[n]+
∫

d3r vext(rrr)n(rrr) (2.58)

FLL[n] := inf
Ψ→n

〈Ψ|T̂ +Ŵ |Ψ〉 . (2.59)

The notation Ψ → n indicates that the infimum has to be taken over all N-particle
states Ψ which yield the given density n (in fact, the infimum is a minimum, i.e.
there always exists some Ψ which minimizes 〈Ψ|T̂ +Ŵ |Ψ〉 for given n [23]).
This restricted minimization procedure is usually referred to as the Levy-Lieb
constrained search.
The Levy-Lieb functional ELL[n] represents a consistent extension of the original
HK functional: ELL[n] is identical with E[n] for all pure-state v-representable n
and has its minimum for exactly the same density as E[n]. This can be shown by
use of the Ritz principle,
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E0 = inf
Ψ
〈Ψ|Ĥ|Ψ〉

= inf
n

{
inf

Ψ→n
〈Ψ|T̂ +Ŵ +V̂ext|Ψ〉

}
= inf

n
ELL[n] . (2.60)

As the infimum is actually reached for the true ground state with the density
n0, ELL[n] is minimized by this density and one has ELL[n0] = E[n0]. Moreover,
each state Ψ, which minimizes 〈Ψ|Ĥ|Ψ〉 for some potential vext, is a ground
state by construction and therefore leads to a pure-state v-representable density.
As a consequence there are no additional densities n which are not pure-state
v-representable, but nevertheless give the same energy as the true degenerate
ground states. On the complete domain of E[n] one thus finds

ELL[n] = E[n] for all pure-state v-representable n . (2.61)

The same is true for FLL: FLL[n] = F [n], if n is pure-state v-representable.
So far, the problem of v-representability has, however, only been reformulated
by the definition (2.59). The question, still to be answered, is: given some non-
negative, normalizable function n(rrr), is there always a suitable antisymmetric,
normalizable N-particle function Ψ with n(rrr) = 〈Ψ|n̂(rrr)|Ψ〉? If so, the func-
tion n(rrr) is called (pure-state) N-representable. Fortunately, the answer is yes
[11, 24–26]. In fact, one can explicitly construct such a wavefunction [24].

This construction, ignoring spin for simplicity, starts with the definition of suitable single-
particle orbitals,

φkkk(rrr) :=
(

n(rrr)
N

)1/2

ei[kkk· fff (rrr)+ϕ(rrr)] ; kkk ∈ Z
3 , (2.62)

with the Cartesian components of the vector field fff given by

f1(rrr) = 2π
∫ x
−∞ dx′ n(x′,y,z)∫ ∞
−∞ dx′ n(x′,y,z)

(2.63)

f2(rrr) = 2π
∫ ∞
−∞ dx′

∫ y
−∞ dy′ n(x′,y′,z)∫ ∞

−∞ dx′
∫ ∞
−∞ dy′ n(x′,y′,z)

(2.64)

f3(rrr) = 2π
∫ ∞
−∞ dx′

∫ ∞
−∞ dy′

∫ z
−∞ dz′ n(x′,y′,z′)∫ ∞

−∞ dx′
∫ ∞
−∞ dy′

∫ ∞
−∞ dz′ n(x′,y′,z′)

, (2.65)

and a real, but otherwise arbitrary scalar field ϕ(rrr). Different choices of φkkk are possible, unique-
ness is not required at this point.
The functions φkkk define an orthonormal and complete basis. Orthonormality is verified as fol-
lows. One starts with ∫

d3r φ †
kkk (rrr)φqqq(rrr) =

1
N

∫
d3r n(rrr)ei(qqq−kkk)· fff (rrr) . (2.66)

For the evaluation of (2.66) the integration over rrr has to be replaced by one over fff . Consider
first the x-coordinate. As long as n(rrr) does not vanish identically in some finite region of space,
f1 is a monotonically increasing function of x (for fixed y and z). One can therefore substitute
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−∞
dz

∫ ∞

−∞
dy

∫ ∞

−∞
dxn(x,y,z)

=
∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ f1(+∞)

f1(−∞)
d f1

(
∂ f1(x,y,z)

∂x

)−1

n(x,y,z)

=
1

2π

∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ 2π

0
d f1

∫ ∞

−∞
dx′ n(x′,y,z) .

This procedure can be repeated with y and f2. For fixed z, the function (2.64) is a monotonically
increasing function of y,∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ ∞

−∞
dxn(x,y,z)

=
1

2π

∫ 2π

0
d f1

∫ ∞

−∞
dz

∫ f2(+∞)

f2(−∞)
d f2

(
∂ f2(y,z)

∂y

)−1 ∫ ∞

−∞
dx′ n(x′,y,z)

=
1

(2π)2

∫ 2π

0
d f1

∫ ∞

−∞
dz

∫ 2π

0
d f2

∫ ∞

−∞
dx′

∫ ∞

−∞
dy′ n(x′,y′,z) .

Finally, z is replaced by f3,

∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ ∞

−∞
dxn(x,y,z) =

N
(2π)3

∫ 2π

0
d f1

∫ 2π

0
d f2

∫ 2π

0
d f3 . (2.67)

Equation (2.67) allows a direct evaluation of (2.66),

∫
d3r φ †

kkk (rrr)φqqq(rrr) =
1

(2π)3

3

∏
j=1

∫ 2π

0
d f j ei(q j−k j) f j = δkkk,qqq . (2.68)

Equation (2.68) is the desired orthonormality relation. In a similar fashion one can establish the
completeness of the set of functions φkkk,

∑
kkk∈Z3

φkkk(rrr)φ †
kkk (rrr′) =

√
n(rrr)n(rrr′)

N
eiϕ(rrr)−iϕ(rrr′) ∑

kkk∈Z3

eikkk·[ fff (rrr)− fff (rrr′)]

=

√
n(rrr)n(rrr′)

N
eiϕ(rrr)−iϕ(rrr′) (2π)3 δ (3)( fff (rrr)− fff (rrr′))

=

√
n(rrr)n(rrr′)

N
eiϕ(rrr)−iϕ(rrr′) (2π)3 δ (3)(rrr− rrr′)

∣∣∣∣∂ ( f1, f2, f3)
∂ (x,y,z)

∣∣∣∣−1

= δ (3)(rrr− rrr′) , (2.69)

using the Jacobi determinant of (2.67).
With the φkkk one can construct an antisymmetric N-particle state. The Slater determinant

Φkkk1...kkkN =
1√
N

det
(

φkkk1
. . .φkkkN

)
(2.70)

has all the properties required for the Levy-Lieb construction (2.59). In particular, one obtains
as the density corresponding to Φkkk1...kkkN the desired result

n(rrr) =
N

∑
i=1

|φkkki (rrr)|2 =
n(rrr)

N
·N . (2.71)
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On the basis of this explicit construction of suitable N-particle states one concludes that the
Levy-Lieb functional (2.58) is mathematically well-defined for arbitrary non-negative functions
n(rrr).

The Levy-Lieb construction solves the question of v-representability: ELL[n] is
well-defined for any density n in the vicinity of some ground state density n0. Unfor-
tunately, this does not automatically imply that the functional derivative of ELL[n]
at n0 exists. This is analogous to the situation for ordinary functions, for which dif-
ferentiability at some point x0 requires more than the existence of the function in a
neighborhood of x0.

In order to settle the question of functional differentiability an even more general
extension of the HK functional E[n] than ELL[n] has to be introduced. A complete
and mathematically rigorous discussion of this extension, the Lieb functional [23],
requires a substantial background in functional analysis. Therefore only the basic
concepts and the main results will be outlined here (for an extended and coherent
review of Lieb’s work see [27]; a complementary approach, emphasizing the aspect
of Legendre transforms and generalizing the Lieb functional to non-integer particle
number, is presented in [28]). After a characterization of the admissible densities and
potentials in section (a) the Lieb functional is defined in section (b). Its functional
differentiability is discussed in section (c). Finally, in section (d) an alternative form
of the Lieb functional is introduced, which turns out to be most useful for estab-
lishing the Kohn-Sham equations in a rigorous way. The hasty reader may proceed
directly to the summarizing statement at the end of section (c).

(a) Admissible densities and potentials

In the first step of this extension the sets of admissible densities and potentials are
specified more precisely, as differentiability can only be demonstrated for a mathe-
matically well-defined domain. In fact, not every non-negative, normalizable func-
tion n(rrr) is a reasonable candidate for which a ground state energy functional should
be defined. Rather one requires the components of the ground state energy to be fi-
nite separately,

〈Ψ|T̂ |Ψ〉 < ∞ (2.72)

|〈Ψ|V̂ext|Ψ〉| < ∞ (2.73)

〈Ψ|Ŵ |Ψ〉 < ∞ . (2.74)

According to condition (2.72) the gradients of the admissible N-particle wavefunc-
tions Ψ(rrr1σ1, . . .) have to be square-integrable,

T (Ψ) :=
N

∑
i=1

∑
σ1,...σN

∫
d3r1 . . .d3rN |∇∇∇iΨ(rrr1σ1, . . .rrrNσN)|2 (2.75)

= N ∑
σ1,...σN

∫
d3r1 . . .d3rN |∇∇∇1Ψ(rrr1σ1, . . .rrrNσN)|2 < ∞ . (2.76)
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This condition leads to a constraint for the corresponding density [23],∫
d3r

[
∇∇∇n1/2(rrr)

]2
< ∞ . (2.77)

In mathematical language, each component of ∇∇∇iΨ is in the set L 2(R3N) of square-
integrable functions over R

3N , each component of ∇∇∇n(rrr)1/2 is in the set L 2(R3).
Quite generally, L p(Rq) denotes the set of all functions of q real variables for which
the norm

‖ f‖p :=
[∫

dx1 . . .dxq | f (x1, . . .xq)|p
]1/p

(2.78)

is finite,

L p(Rq) :=
{

f (x1, . . .xq)
∣∣ ‖ f‖p < ∞

}
. (2.79)

If one combines (2.76) and (2.77) with the square-integrability of Ψ,

‖Ψ‖ := (‖Ψ‖2)
2 = ∑

σ1,...σN

∫
d3r1 . . .d3rN |Ψ(rrr1σ1, . . .rrrNσN)|2 = 1 (2.80)

=⇒ Ψ ∈ L 2(R3N) , (2.81)

and of n1/2, (
‖n1/2‖2

)2
= ‖n‖1 =

∫
d3r n(rrr) = N (2.82)

=⇒ n ∈ L 1(R3); n1/2 ∈ L 2(R3) , (2.83)

one arrives at the statement that both Ψ and n1/2 belong to the Sobolev space H 1,
Ψ ∈ H 1(R3N) and n1/2 ∈ H 1(R3). This space,

H 1 =
{

f
∣∣ f ∈ L 2,∇∇∇ f ∈ L 2} ,

is a Hilbert space with the inner product

〈 f |g〉 =
∫

f ∗g+
∫

∇∇∇ f ∗ ·∇∇∇g .

As soon as Ψ ∈ H 1(R3N) the constraint (2.74) is automatically satisfied [23]. The
sets of relevant wavefunctions W and densities S are thus given by

W =
{

Ψ
∣∣ ‖ψ‖ = 1, T (Ψ) < ∞

}
(2.84)

S =
{

n
∣∣ n(rrr) ≥ 0,

∫
d3r n(rrr) = N, n1/2 ∈ H 1(R3)

}
. (2.85)
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S has the important property that it is convex: with the densities n1 and n2 all
densities on the “straight connection line” between the two densities are in S ,

n1,n2 ∈ S ; 0 ≤ λ ≤ 1 =⇒ n = [λn1 +(1−λ )n2] ∈ S . (2.86)

Since S ⊂ H 1(R3), this result follows directly from the definition of the norm
‖ f‖ = 〈 f | f 〉1/2 in H 1(R3), if Schwartz’s inequality,

(
∇∇∇n1/2

)2
=

(∇∇∇n)2

4n

=

[
λ

n1/2
1

n1/2
∇∇∇n1/2

1 +(1−λ )
n1/2

2

n1/2
∇∇∇n1/2

2

]2

≤ λ
(

λn1

n

)(
∇∇∇n1/2

1

)2
+(1−λ )

(
(1−λ )n2

n

)(
∇∇∇n1/2

2

)2

≤ λ
(

∇∇∇n1/2
1

)2
+(1−λ )

(
∇∇∇n1/2

2

)2
,

is used.
On this basis one can now consider the constraint (2.73), which leads to a char-

acterization of the set of admissible external potentials. One first has to realize that
any density in S also belongs to the larger space L 1(R3)∩L 3(R3), which is a
Banach space (i.e. a complete normed vector space). This is a result of Sobolev’s
inequality, which (in 3 dimensions) states

‖n‖3 =
[∫

d3r |n(rrr)|3
]1/3

≤ 1
3

(
2
π

)4/3 ∫
d3r

[
∇∇∇n1/2(rrr)

]2
.

However, a function which belongs to both L 1(R3) and L 3(R3), also belongs to
L 2(R3). The integral (2.73),

〈Ψ|V̂ext|Ψ〉 =
∫

d3r n(rrr)vext(rrr) = ‖nvext‖1 , (2.87)

is thus finite, if

vext ∈ L 3/2(R3)+L ∞(R3) , (2.88)

where L ∞(R3) denotes the space of all bounded functions,

‖ f‖∞ := sup
(x1,...xq)∈Rq

| f (x1, . . .xq)| (2.89)

L ∞(Rq) :=
{

f (x1, . . .xq)
∣∣ ‖ f‖∞ < M

}
. (2.90)

It is immediately clear that potentials from the set L ∞ (we will now drop the indi-
cation of the coordinate space over which the functions are defined, as it should be
obvious at this point) yield a finite ‖nvext‖1. For the potentials from the set L 3/2
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one relies on the Hölder inequality [29],

‖ f g‖1 ≤ ‖ f‖p ‖ f‖q with
1
p

+
1
q

= 1 (2.91)

=⇒ ‖nvext‖1 ≤ ‖n‖3 ‖vext‖3/2 < ∞ .

The set L 3/2 + L ∞ includes in particular the Coulomb potential, which may be
decomposed as3

1
|rrr| =

Θ(R−|rrr|)
|rrr| +

1−Θ(R−|rrr|)
|rrr|

Θ(R−|rrr|)
|rrr| ∈ L 3/2

1−Θ(R−|rrr|)
|rrr| ∈ L ∞ .

L 3/2 +L ∞ is a Banach space with the norm

‖vext‖ = inf
f∈L 3/2,g∈L ∞

{‖ f‖3/2 +‖g‖∞
∣∣ vext = f +g

}
. (2.92)

The characterization of the spaces involved is completed by the observation that the
dual space of L 1 ∩L 3, i.e. the space of all continuous linear functionals on the
space of functions L 1 ∩L 3, is exactly L 3/2 + L ∞—all continuous linear func-
tionals on L 1 ∩L 3 have the form

∫
d3r v(rrr)n(rrr) with v ∈ L 3/2 +L ∞ [29].

(b) Definition of Lieb functional and basic properties

At this point one can start the discussion of energy functionals. One first defines the
energy E[v] of an N-particle system subject to the external potential v in the most
natural way,

E[v] := inf
Ψ

{〈Ψ|Ĥv|Ψ〉 ∣∣ Ψ ∈ W
}

. (2.93)

Here the index v at Ĥv characterizes the external potential in V̂ext. This definition
is obviously legitimate for all v ∈ L 3/2 + L ∞. Of course, the existence of E[v]
for some v does not imply that that there is a minimizing state Ψ which satisfies a
Schrödinger equation with the operator Ĥv. This is only the case if v belongs to the
set of potentials for which a ground state exists: the ground state then minimizes the
right-hand side of (2.93). The set of all densities, for which one finds such a ground
state is the domain of the original HK-functional,

3 On the other hand, unbounded potentials such as the harmonic oscillator require an additional
restriction on the set of densities.
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A :=
{

n = 〈Ψ|n̂|Ψ〉 ∣∣ ∃Ψ ∈ W with E[v] = 〈Ψ|Ĥv|Ψ〉} . (2.94)

The second domain of interest is that of EEHK[n], i.e. the set of all ensemble v-
representable densities,

B :=
{

n =
q

∑
i=1

ci〈Ψ0,i|n̂|Ψ0,i〉
∣∣ ci = c∗i ≥ 0;

q

∑
i=1

ci = 1;

|Ψ0,i〉 = degenerate ground states for some v ∈ L 3/2 +L ∞
}

. (2.95)

With the energy functional (2.93) the Lieb functional is then defined as [23]

FL[n] := sup
v

{
E[v]−

∫
d3r v(rrr)n(rrr)

∣∣∣ v ∈ L 3/2 +L ∞
}

with n ∈ S . (2.96)

The domain of this functional can be extended to the complete space L 1 ∩L 3,
if one allows FL[n] to assume the value +∞ (which is no problem in functional
analysis). However, only the densities in S are really relevant in the following. The
energy (2.93) for any external potential v ∈ L 3/2 +L ∞ is then obtained by

E[v] = inf
n

{
FL[n]+

∫
d3r v(rrr)n(rrr)

∣∣∣ n ∈ S

}
, (2.97)

which is a consequence of the definitions of E[v] and FL[n] as mutual Legendre
transforms.4

This identity can be verified by establishing two suitable inequalities. On the one hand, one has
by definition of FL[n] for any given v0 ∈ L 3/2 +L ∞

E[v0]−
∫

d3r v0 n ≤ FL[n] ∀ n ∈ S , v0 ∈ L 3/2 +L ∞

=⇒ inf
n

{[
E[v0]−

∫
d3r v0 n

]
+

∫
d3r vn

∣∣∣∣ n ∈ S

}

≤ inf
n

{
FL[n]+

∫
d3r vn

∣∣∣∣ n ∈ S

}
∀ v,v0 ∈ L 3/2 +L ∞

4 An extended version of FL[n] in which the pure-state energy (2.93) is replaced by an ensemble
energy,

F [n,N] := sup
v

{
E[v,N]−

∫
d3r v(rrr)n(rrr)

∣∣∣ v ∈ L 3/2 +L ∞
}

E[v,N] := inf
D̂

{
tr
{

D̂Ĥ
} ∣∣∣ tr

{
D̂N̂

}
= N

}
,

has been introduced by Eschrig [28]. It shares many properties with FL[n] and allows a consistent
handling of non-integer particle numbers. In accordance with the more general definition of E[v,N],
one finds

F [n,N] ≤ FL[n] = FHK[n] for n ∈ A .
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This inequality also holds for v0 = v,

E[v] ≤ inf
n

{
FL[n]+

∫
d3r vn

∣∣∣∣ n ∈ S

}
∀ v ∈ L 3/2 +L ∞ . (2.98)

On the other hand, one has by definition of E[v]

E[v] ≤ inf
Ψ

{〈Ψ|Ĥv|Ψ〉 ∣∣ Ψ ∈ W , 〈Ψ|n̂|Ψ〉 = n
} ∀ n ∈ S , v ∈ L 3/2 +L ∞ ,

so that

E[v]−
∫

d3r vn

≤ inf
Ψ

{〈Ψ|T̂ +Ŵ |Ψ〉 ∣∣ Ψ ∈ W , 〈Ψ|n̂|Ψ〉 = n
} ∀ n ∈ S , v ∈ L 3/2 +L ∞

=⇒ FL[n] = sup
v

{
E[v]−

∫
d3r vn

∣∣∣∣ v ∈ L 3/2 +L ∞
}

≤ inf
Ψ

{〈Ψ|T̂ +Ŵ |Ψ〉 ∣∣ Ψ ∈ W , 〈Ψ|n̂|Ψ〉 = n
} ∀ n ∈ S

=⇒ FL[n]+
∫

d3r vn

≤ inf
Ψ

{〈Ψ|Ĥv|Ψ〉 ∣∣ Ψ ∈ W , 〈Ψ|n̂|Ψ〉 = n
} ∀ n ∈ S , v ∈ L 3/2 +L ∞ .

However, for any Ψ ∈ W the resulting expectation value 〈Ψ|n̂|Ψ〉 is in S , so that the infimum of
the right-hand side of this inequality is exactly E[v],

inf
n

{
FL[n]+

∫
d3r vn

∣∣∣∣ n ∈ S

}
≤ inf

Ψ

{〈Ψ|Ĥv|Ψ〉 ∣∣ Ψ ∈ W
}

= E[v] ∀ v ∈ L 3/2 +L ∞ . (2.99)

Combination of this inequality with (2.98) proves (2.97).

As a direct consequence of (2.97) one obtains

FL[n] = FLL[n] = FHK[n] ∀ n ∈ A , (2.100)

so that FL[n] is a consistent extension of the initial HK functional.

(c) Functional differentiability of Lieb functional

For the functional FL[n] one can prove the following properties [23, 30, 31]:

1. FL[n] is convex: for n0,n1 ∈ S and 0 ≤ λ ≤ 1 one has

FL[λn1 +(1−λ )n0] ≤ λFL[n1]+ (1−λ )FL[n0] . (2.101)

Note that the convexity of S ensures that FL[n] is defined (i.e. finite) for all
n = λn1 +(1−λ )n0. The property (2.101) results from the linearity of FL[n] in
n in combination with the definition of FL[n] as a supremum.
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2. FL[n] is weakly lower semicontinuous: for any sequence nk which converges
weakly against a limit n, i.e. for which

‖(nk −n)v‖1
k→∞−−−→ 0 ∀ v ∈ L 3/2 +L ∞ ,

one has
FL[n] ≤ lim

k→∞
inf
l≥k

FL[nl ] = liminf
k→∞

FL[nk] .

This relation is a “weak” version of the standard concept of continuity which

requires that |FL[n]−FL[nk]| k→∞−−−→ 0 if nk is norm convergent against n (i.e. if

‖nk −n‖1
k→∞−−−→ 0 and simultaneously ‖nk −n‖3

k→∞−−−→ 0).
3. FL[n] has a unique continuous tangent functional on B: for all n0 ∈B there exists

a continuous linear functional δFn0 [n] with domain L 1∩L 3, i.e. a functional of
the form

δFn0 [n] = −
∫

d3r v(rrr)n(rrr) with v ∈ L 3/2 +L ∞ , (2.102)

so that

FL[n] ≥ FL[n0]+δFn0 [n−n0] ∀ n ∈ L 1 ∩L 3 , (2.103)

and the kernel v in δFn0 [n− n0] is unique up to a constant (the uniqueness is a
consequence of the HK theorem). The tangent functional vanishes for n = n0, so
that (2.103) becomes an equality at this density, which explains the name.

4. The set of densities in B is norm dense in S : for arbitrary n0 ∈ S there

exists a sequence nk ∈ B such that ‖nk − n0‖1
k→∞−−−→ 0 and simultaneously

‖nk −n0‖3
k→∞−−−→ 0.

This statement ensures that for any n0 ∈ S one can find a unique continuous
tangent functional for a density n1 which is infinitesimally close to n0, so that,
from a practical point of view, continuous tangent functionals exist for all n0 ∈
S .

These properties finally allow a resolution of the initial question concerning func-
tional differentiability. The point is: for any convex, finite, lower semicontinuous
functional with a unique continuous tangent functional the existence of the func-
tional derivative is guaranteed, the functional derivative being identical with the
kernel −v(rrr) of the tangent functional [30, 31, 29] (for a more precise formulation
see in particular Corollary 2.5 and Proposition 5.3 of [32] or [27]). Since the first
step of the proof of this statement is both simple and instructive, it is worthwhile to
present it here. Consider the densities

n = n0 +λ (n1 −n0) with n0 ∈ B, n1 ∈ S , 0 ≤ λ ≤ 1 .

Due to the convexity of S the density n is also in S . Now combine the convexity
of FL[n] (property 1.) with the existence of the tangent functional (property 3.),
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λFL[n1]+ (1−λ )FL[n0] ≥ FL[n0 +λ (n1 −n0)] ≥ FL[n0]+δFn0 [λ (n1 −n0)] .

If one subtracts FL[n0], uses δFn0 [λ (n1 − n0)] = λδFn0 [n1 − n0] and divides by λ ,
one arrives at

FL[n1]−FL[n0] ≥ FL[n0 +λ (n1 −n0)]−FL[n0]
λ

≥ δFn0 [n1 −n0] . (2.104)

Both FL[n1]−FL[n0] and δFn0 [n1 − n0] are well defined and finite, so that the so-
called Gâteaux differential

F ′[n0,n1] := lim
λ→0

FL[n0 +λ (n1 −n0)]−FL[n0]
λ

of FL[n] at n = n0 exists.
In order to complete the proof of the existence of the functional derivative one

has to demonstrate that the Gâteaux differential is linear and continuous in (n1−n0),
i.e. that it is identical with δFn0 [n1 − n0]. This second step of the proof is more in-
volved, so that the reader is referred to the literature [32, 27] for a mathematically
rigorous discussion. The linearity of the Gâteaux differential is, however, intuitively
clear on geometrical grounds, if one interprets the functionals involved as simple
functions as in Fig. 2.3: the right-hand inequality in (2.104) shows that the Gâteaux
differential approaches the limit n1 = n0 at least as slowly as the linear functional
δFn0 [n1−n0] when n1 approaches n0. So, F ′[n0,n1] can not vanish faster than n1−n0

n0 n1

λ FL[n1 ]+ (1 − λ )FL[n0]

FL[n0 ]+ δ Fn0
[n1 − n0]

FL[n]

n

Fig. 2.3 Illustration of convex functional FL[n] with unique Gâteaux differential δFn0 [n1 −n0].

for n1 → n0. On the other hand, the convexity of FL[n] does not allow F ′[n0,n1] to
approach its limit zero more slowly than n1 −n0 (as the straight line between FL[n1]
and FL[n0] must be above FL[n0 + λ (n1 − n0)] for arbitrary n1—this excludes that
FL[n0 +λ (n1−n0)] jumps above this line for some sequence of λ , so that semiconti-
nuity implies continuity). Consequently, F ′[n0,n1] must be linear in n1 −n0. More-
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over, as the direction of n1 − n0 is arbitrary and the tangent functional is unique,
F ′[n0,n1] must coincide with δFn0 [n1 −n0].

In summary: The functional derivative of FL[n] exists for all ensemble v-repre-
sentable densities and is identical with a potential vext from the dual space
L 3/2 +L ∞,

FL[n]
δn(rrr)

∣∣∣∣
n=n0

= −vext(rrr) with vext ∈ L 3/2 +L ∞ . (2.105)

Moreover, for any other “reasonable” density n (i.e. for any n ∈ S ) one can
find an ensemble v-representable density which is arbitrarily close to n, so that
the functional derivative of FL[n] again exists.

In order to complete the picture, it is worthwhile to reconsider the Levy-Lieb
functional (2.59) at this point. The existence of a unique continuous tangent func-
tional for all n ∈A has also been demonstrated for FLL[n] [23]. However, this func-
tional is not convex on S [23]. Since convexity is crucial for establishing the exis-
tence of the functional derivative of FL[n] via Eq. (2.104), functional differentiability
has not been rigorously proven for FLL[n] so far.

(d) Representation of Lieb functional in terms of density matrices

So, as a matter of principle, the subsequent development of the DFT formalism
should therefore be based explicitly on the Lieb functional. We will nevertheless
often ignore the issue of functional differentiability in the following and will not
distinguish between the various flavors of the energy functional. A prominent ex-
ception is the derivation of the Kohn-Sham equations. For this purpose, an alterna-
tive form of FL[n] is most useful. In fact, for all n ∈S the Lieb functional FL[n] can
be recast in the form [23]

FL[n] = inf
D̂→n

tr
{

D̂(T̂ +Ŵ )
}

, (2.106)

with the density matrices restricted to the form

D̂ = ∑
k

dk |Ψk〉〈Ψk|, d∗
k = dk ≥ 0, ∑

k

dk = 1, 〈Ψk|Ψl〉 = δkl , Ψk ∈ H 1

n(rrr) = ∑
k

dk 〈Ψk|n̂(rrr)|Ψk〉

(the |Ψk〉 denote a set of orthonormal wavefunctions in the N-particle Hilbert space).
One can also show that there always exists a minimizing D̂ for all n ∈ S [23]. The
form (2.106) will be used in particular to establish the Kohn-Sham equations for
degenerate systems (see Sect. 3.3).
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2.4 Fractional Particle Numbers, Derivative Discontinuity

The variational equation (2.38) raises one further question: in this equation the par-
ticle number is determined via a subsidiary condition, which implies the existence
of E[n] for non-integer particle numbers. However, so far all energy functionals are
only defined for integer N. Therefore the question has to be addressed, how to extend
the energy functional to fractional particle numbers.

Assume that a density integrates up to N +η ,∫
d3r n(rrr) = N +η ; N = 1,2, . . . ; 0 ≤ η < 1 . (2.107)

The simplest definition of an energy functional for such a density is a statistical
superposition of the lowest possible energies of two states |ΨN〉 and |ΨN+1〉 with
the neighboring integer particle numbers N and N +1 [33],

E f [n] := Ff [n]+
∫

d3r vext(rrr)n(rrr) (2.108)

Ff [n] := min
ΨN ,ΨN+1

{
(1−η)〈ΨN |T̂ +Ŵ |ΨN〉+η〈ΨN+1|T̂ +Ŵ |ΨN+1〉

}
(2.109)

with n(rrr) = (1−η)〈ΨN |n̂(rrr)|ΨN〉+η〈ΨN+1|n̂(rrr)|ΨN+1〉 (2.110)

〈ΨN |ΨN〉 = 〈ΨN+1|ΨN+1〉 = 1 .

The condition (2.110) restricts the variational search for the minimum in (2.109) to
those combinations of normalizable states |ΨN〉 and |ΨN+1〉, which yield the pre-
scribed density n (constrained search). On the other hand, |ΨN〉 and |ΨN+1〉 need not
be related to the potential vext in any way. Equation (2.110) automatically guarantees
the desired particle number (2.107). The definition (2.109) is an obvious extension
of the Levy-Lieb functional (2.59) to fractional particle numbers. Correspondingly,
Ff [n] becomes identical with the Levy-Lieb functional for η = 0. On the basis of
E f [n] the variational equation (2.38) is also well-defined for fractional particle num-
bers,5

δE f [n]
δn(rrr)

= μL , (2.111)

as Ff [n] exists for any non-negative n(rrr) which integrates up to N +η . For any given
particle number N +η one finds a corresponding Lagrange multiplier μL(N +η).

For integer particle number this Lagrange multiplier is identical with the chemi-
cal potential

μ(N) :=
∂E
∂N

(N) , (2.112)

5 Precisely speaking, the extension of the Lieb functional to non-integer particle number [28]
is required at this point. We will, however, not distinguish between the two functionals in the
following.
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where E(N +η) denotes the minimum of the functional (2.108) for given, fractional
particle number,

E(N +η) = min
n

E f [n] . (2.113)

Equation (2.112) can be verified by functional Taylor expansion of the total energy
of a system with fractional particle number around the ground state density nN of
the N-particle system,

∂E
∂N

(N)

= lim
η→0

1
η
[
E(N +η)−E(N)

]
= lim

η→0

1
η

[
E f [nN ]+

∫
d3r

δE f [n]
δn(rrr)

∣∣∣∣
n=nN

[nN+η(rrr)−nN(rrr)]+ . . .−E(N)
]
,

where nN+η denotes the ground state density for particle number N + η and
E f [nN ] = E(N). One can now use (2.111) to identify the Lagrange multiplier with
∂E/∂N,

μ(N) =
∂E
∂N

(N) = μL(N) lim
η→0

1
η

∫
d3r [nN+η(rrr)−nN(rrr)] = μL(N) . (2.114)

It is worthwhile to examine μ(N) more closely. Consider the ground state energy
of a system with N +η particles,

E(N +η) = min
n

E f [n]

= min
n

min
ΨN ,ΨN+1

{
(1−η)〈ΨN |Ĥ|ΨN〉+η〈ΨN+1|Ĥ|ΨN+1〉

}
(2.115)

with n(rrr) = (1−η)〈ΨN |n̂(rrr)|ΨN〉+η〈ΨN+1|n̂(rrr)|ΨN+1〉 ,

where the search for the minimum over n is restricted to densities with the fractional
particle number N +η . However, the expression

(1−η)〈ΨN |Ĥ|ΨN〉+η〈ΨN+1|Ĥ|ΨN+1〉

becomes minimal if |ΨN〉 is the ground state of the N particle system and |ΨN+1〉 is
the ground state of the N + 1 particle system (for the same vext—one now assumes
that the normalizable ground state |ΨN+1〉 exists, i.e. that vext is capable of binding
N + 1 particles). The minimum of (2.115) is therefore obtained if n is given by a
superposition of the ground state density nN of the N-particle system and the ground
state density nN+1 of the (N +1)-particle system,

n(rrr) = (1−η)nN(rrr)+η nN+1(rrr) . (2.116)



2.4 Fractional Particle Numbers, Derivative Discontinuity 39

A similar superposition is found for the total energy of the system with N + η par-
ticles,

E(N +η) = (1−η)E(N)+ηE(N +1) . (2.117)

This dependence of the energy on the particle number is illustrated in Fig. 2.4. The

E(Q)

QN N + 1N – 1

Fig. 2.4 Particle number dependence of the total energy E(Q) for fractional particle number Q
(the external potential vext is the same for all Q).

total energy is a linear function between two neighboring integer particle numbers.
According to Eq. (2.114), μ(N) is the slope of this piecewise linear curve. One thus
obtains

μ(N −η) = E(N)−E(N −1) = −IP (ionization potential) (2.118)

μ(N +η) = E(N +1)−E(N) = −EA (electron affinity) , (2.119)

if N is the number of electrons required for charge neutrality (and η > 0). As
a consequence, μ(N) is discontinuous at all integer particle numbers. In view of
Eqs. (2.114) and (2.111) this implies that the functional derivative of the total en-
ergy functional E f [n] itself must have discontinuities at these particle numbers, the
so-called derivative discontinuities (for an extended discussion of this and related
aspects see [15]).
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2.5 Spin-Polarized Systems

Up to now the discussion focused on systems of interacting particles moving in
an electrostatic external potential. Density functional theory can, however, also be
extended to systems in which the particles are subject to a static magnetic field
[34, 35]. In the simplest version the corresponding Hamiltonian is given by

Ĥ = T̂ +Ŵ +
∫

d3r
{

vext(rrr)n̂(rrr)+BBBext(rrr) · m̂mm(rrr)
}

. (2.120)

Here m̂mm is the operator of the magnetization density,6

m̂mm(rrr) = μB

N

∑
i=1

σσσ i δ (3)(rrr− rrri) = μB ∑
σ ,σ ′=↑,↓

ψ̂†(rrrσ)σσσσσ ′ ψ̂(rrrσ ′) , (2.121)

where σσσ denotes the 2×2 Pauli matrices,

σx =
(

0 1
1 0

)
⇐⇒ σx,σσ ′ = δσ ′,−σ (2.122)

σy =
(

0 −i
i 0

)
⇐⇒ σy,σσ ′ = isign(σ ′)δσ ′,−σ (2.123)

σz =
(

1 0
0 −1

)
⇐⇒ σz,σσ ′ = sign(σ)δσ ′,σ , (2.124)

and μB is the Bohr magneton, μB = eh̄/(2mc) (e = |e|). In addition to the conven-
tional single-particle density n0, now a second density variable, the ground state
magnetization density

mmm0(rrr) = 〈Ψ0|m̂mm(rrr)|Ψ0〉 , (2.125)

offers itself for a characterization of the ground state |Ψ0〉 of the Hamiltonian
(2.120). And indeed, one can verify the following two statements [34, 35]:

(a) Two different non-degenerate ground states |Ψ0〉 and |Ψ′
0〉 from the set

of all ground states resulting from Hamiltonians of type (2.120) always
lead to two different sets of ground state densities (n0,mmm0) and (n′0,mmm

′
0),

i.e. at least one of the four density components differs. As a conse-

6 Both the components of bispinors and spin quantum numbers will be characterized by either
the numerical values ±1/2 or, alternatively, the symbolic equivalents ↑,↓, depending on which
notation is more convenient or clear.

In Eqs. (2.120) and (2.121) the sign of the magnetization density has been chosen so that m̂mm
differs from the conventional magnetization density of electrons introduced in classical electrody-
namics (see e.g. [36]) by a minus sign.
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quence, |Ψ0〉 is uniquely determined by the set (n0,mmm0), i.e. is a unique
functional of (n,mmm),

|Ψ0〉 ⇐⇒ (n0,mmm0) =⇒ |Ψ0〉 = |Ψ[n0,mmm0]〉 . (2.126)
↑

one-to-one

The proof via reductio ad absurdum proceeds as for the purely electrostatic po-
tential. Assume that the ground states |Ψ0〉 and |Ψ′

0〉 corresponding to the Hamilto-
nians Ĥ and Ĥ ′ yield the same set (n0,mmm0). Then consider the ground state energy
and use both the Ritz variational principle and the fact that the two states are non-
degenerate,

〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′
0|Ĥ|Ψ′

0〉
= 〈Ψ′

0|Ĥ ′|Ψ′
0〉+

∫
d3r

{[
vext − v′ext

]
n0 +

[
BBBext −BBB′

ext

] ·mmm0
}

(2.127)

(as |Ψ0〉 �= |Ψ′
0〉 and both states are non-degenerate one necessarily has Ĥ �= Ĥ ′, i.e.

(vext,BBBext) �= (v′ext,BBB
′
ext)). Interchanging primed and unprimed quantities one finds

〈Ψ′
0|Ĥ ′|Ψ′

0〉 < 〈Ψ0|Ĥ|Ψ0〉+
∫

d3r
{[

v′ext − vext
]

n0 +
[
BBB′

ext −BBBext
] ·mmm0

}
.

(2.128)
Addition of (2.127) and (2.128) leads to the desired contradiction.

(b) The functional |Ψ[n,mmm]〉 allows the definition of a ground state energy
functional,

E[n,mmm] = F [n,mmm]+
∫

d3r
{

vext(rrr)n(rrr)+BBBext(rrr) ·mmm(rrr)
}

(2.129)

F [n,mmm] = 〈Ψ[n,mmm]|T̂ +Ŵ |Ψ[n,mmm]〉 , (2.130)

which satisfies a minimum principle,

E[n0,mmm0] < E[n,mmm] ∀ (n,mmm) �= (n0,mmm0) , (2.131)

with (n0,mmm0) being the ground state densities corresponding to
(vext,BBBext).

The proof follows the same pattern as in the original argument by HK. Note that
it is usual to call E[n,mmm] a density functional, in spite of the fact that this functional
not only depends on n, but also on the magnetization density. Ignoring the issue of
v-representability, one can furthermore reformulate (2.131) as a set of four coupled
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variational equations,7

δE[n,mmm]
δn(rrr)

∣∣∣∣
n=n0,mmm=mmm0

= μ ;
δE[n,mmm]
δmmm(rrr)

∣∣∣∣
n=n0,mmm=mmm0

= 000 , (2.132)

with the Lagrange parameter μ ensuring the correct particle number as in (2.38).
A number of points should be noted:

1. The reader will have noticed that the existence theorem formulated for systems
subject to magnetic fields is much more restrictive than the original HK theorem.
In particular, nothing has been said about the relation between the ground state
|Ψ0〉 and the set of external potentials (vext,BBBext). Obviously, the corresponding
proof used for the original HK theorem does not apply in the present situation,
as the operator BBBext · m̂mm does not allow a factorization of the ground state wave-
function (which was utilized in Eq. (2.17)).
In fact, one can give a rather simple argument that two different sets of (vext,BBBext)
can lead to the same ground state [34, 37, 38]: whenever one has a magnetic field
of the collinear form

BBBext(rrr) = (0,0,B)

with constant B, any ground state |Ψ0〉 of some Hamiltonian Ĥ,

Ĥ|Ψ0〉 = E0|Ψ0〉 ,

which is simultaneously an eigenstate of

Ŝz =
N

∑
i=1

σi,z ; Ŝz|Ψ0〉 = Sz|Ψ0〉 ,

is also an eigenstate of the extended Hamiltonian Ĥ + μBBŜz,(
Ĥ + μBBŜz

) |Ψ0〉 = (E0 + μBBSz) |Ψ0〉 ,

irrespective of the magnitude of B. Moreover, as long as B is sufficiently small,
|Ψ0〉 remains the ground state of the system characterized by Ĥ +μBBŜz, demon-
strating the non-uniqueness of the map between all ground states and the set of
external potentials (vext,BBBext).
However, the above example obviously relies on the fact that B is constant. Cor-
respondingly, one can show that two pairs of spin-dependent potentials,

v±(rrr) = vext(rrr)±μBBext(rrr) and v′±(rrr) = v′ext(rrr)±μBB′
ext(rrr) ,

7 Here and in the following the derivative with respect to a vector is to be understood as the vector
which results from differentiation with respect to the components,

δE[n,mmm]
δmmm(rrr)

=
(

δE[n,mmm]
δm1(rrr)

,
δE[n,mmm]
δm2(rrr)

,
δE[n,mmm]
δm3(rrr)

)
.
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for which vσ differs from v′σ by more than a σ -dependent constant (for both
σ = ±) always have different ground states [38–40].
Returning to the general case of a magnetic field BBBext with more than one non-
vanishing component, the question of uniqueness then reduces to the question
whether one can find a local rotation in spin space which transforms BBBext to the
collinear form (0,0,Bext)? The answer is no [40] (with the exception of some
rather special cases [41]), so that the map between the ground state |Ψ0〉 and the
set of external potentials (vext,BBBext) is invertible in the general situation.

2. Often the actual magnetic field has only one non-vanishing component,

BBBext(rrr) = (0,0,Bext(rrr)) . (2.133)

Of course, one can go through the existence theorem for a field of the form
(2.133) as in the general situation. One ends up with the statement that there
is a one-to-one correspondence between |Ψ0〉 and the set (n0,mz,0),

|Ψ0〉 ⇐⇒ (n0,mz,0) =⇒ |Ψ0〉 = |Ψ[n0,mz,0]〉 . (2.134)

Correspondingly, the energy becomes a functional of n and the z-component of
the magnetization density, mz.
It is standard to reformulate this functional in terms of the spin-densities,

n̂σ (rrr) =
1
2

N

∑
i=1

[1+ sign(σ)σz,i]δ (3)(rrr− rrri) = ψ̂†(rrrσ)ψ̂(rrrσ) (2.135)

n̂(rrr) = ∑
σ=↑,↓

n̂σ (rrr) . (2.136)

In fact, for the z-component of Eq. (2.121) one immediately obtains

m̂z(rrr) = μB
[
ψ̂†(rrr↑)ψ̂(rrr↑)− ψ̂†(rrr↓)ψ̂(rrr↓)] = μB

[
n̂↑(rrr)− n̂↓(rrr)

]
. (2.137)

Thus the set (n↑,n↓) is completely equivalent to (n,mz). All statements can
equally well be formulated in terms of (n↑,n↓). The most frequently used form
of the spin-density functional then reads

E[n↑,n↓] = F [n↑,n↓]+
∫

d3r
{

vext[n↑ +n↓]+ μBBext[n↑ −n↓]
}

(2.138)

F [n↑,n↓] = 〈Ψ[n↑,n↓]|T̂ +Ŵ |Ψ[n↑,n↓]〉 . (2.139)

The associated variational equations rely on the fact that in the case of the re-
duced magnetic field (2.133) the Hamiltonian (2.120) commutes with the total
particle number for given spin,

N̂σ =
∫

d3r n̂σ (rrr) =⇒ [
Ĥ, N̂σ

]
= 0 (2.140)
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(for the basic commutators involved see Appendix L). It is thus possible to fix
the individual numbers Nσ of particles with spin σ , as long as the total particle
number is N,

Nσ = 〈Ψ0|N̂σ |Ψ0〉 ; N↑ +N↓ = N . (2.141)

Each pair N↑,N↓ defines one sector of Fock space for which the Ritz variational
principle is separately valid, so that the DFT minimum principle also applies to
each sector separately. Consequently, the variational equations have the form

δE[n↑,n↓]
δnσ (rrr)

∣∣∣∣
nσ =nσ ,0

= μσ , (2.142)

with the Lagrange parameters μσ controlling the individual particle numbers Nσ .
The true ground state then corresponds to the pair of Nσ which gives the mini-
mum energy.

3. One can finally reconsider the many-particle problem without any magnetic field.
For this problem it is nevertheless legitimate, though not formally necessary, to
use the spin-dependent functional

E[n↑,n↓] = F [n↑,n↓]+
∫

d3r vext[n↑ +n↓] ,

rather than the original form (2.26): the class of systems discussed in the present
section also contains the more restricted class considered in the original HK the-
orem. In practice, Eqs. (2.138)–(2.142) with Bext = 0 represent the standard DFT
approach to spin-polarized systems, i.e. systems with non-vanishing magnetic
moment.
Why is this extended description of spin-polarized systems superior to the more
direct approach in terms of only the density? In principle, n↑ and n↓ are func-
tionals of the complete n as long as Bext = 0. However, their functional depen-
dence on n is definitely complicated. Consequently, it is advantageous to resolve
this unknown functional dependence by explicit use of the spin-densities via the
functional (2.138). In this way, one effectively introduces an exact symmetry of
the system into the energy functional.
One can go even further and apply the full magnetization density formalism
(2.129)–(2.132) for the description of systems without any external magnetic
field. As a matter of fact, many systems, ranging from open subshell atoms to
large classes of solids, show a local variation of the direction of mmm, i.e. a non-
collinear magnetization density.

The most prominent example for a system with non-collinear mmm is γ-Fe, which crystallizes in
the fcc structure.8 When γ-Fe is synthesized as precipitates in a Cu matrix, the local magnetic
moments MMMi of the iron atoms, i.e. the integrals over mmm around single sites,

MMMi =
∫

Ωi

d3r mmm(rrr) ,

8 γ-Fe is the standard form of iron in the temperature range between 910◦C and 1390◦C.
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do not align ferromagnetically, as one would expect from the bcc phase of iron and other 3d
elements. Rather the local moments form a spiral wave [42], referred to as spin-spiral or spiral
spin-density wave (SDW),

MMMi = M
(

cos(QQQ ·RRRi +φ) sin(θ), sin(QQQ ·RRRi +φ) sin(θ), cos(θ)
)

,

in which the direction of the MMMi precesses around one of the cubic axes, if one proceeds from
site to site along this axis (RRRi denotes the position of site i). Moreover, the spin-spiral is in-
commensurate with the crystal lattice, i.e. its wavelength can not be expressed as a rational
number times the lattice constant a of the fcc lattice. Experimentally one observes a wave vec-
tor of QQQ ≈ (0.1,0,1)(2π/a) and θ = π/2 [42], corresponding to a planar spiral wave9 (helical
SDW).
Early DFT calculations for γ-Fe (see e.g. [44]) relied on the inclusion of non-collinearity on
an intermediate level: assuming mmm to be collinear around the individual sites, only the spin-
quantization axis was allowed to vary from site to site. A spin-density functional approach
allowing for this inter-atomic non-collinearity has been formulated quite early [45, 46] (for a
review see [47]). More recently, however, it became clear that the variation of mmm on the intra-
atomic scale (intra-atomic non-collinearity) plays an important role10 for γ-Fe [48, 43, 49, 50].
Non-collinearity has also been observed for the ground states of α-Mn (bulk Mn at room tem-
perature and ambient pressure—see [51] and references therein), a number of Mn and Fe com-
pounds (see e.g. [52]), several Uranium compounds (see [47] and references therein) as well
as thin Cr and Fe films (see [53–55] and references therein). Mono-layers of Mn on a tungsten
surface develop a cycloidal spin-spiral, resulting from the spin–orbit interaction in a system
lacking inversion symmetry [56].
Finite systems exhibit non-collinear magnetism as well: for instance, non-collinear calculations
for several low-lying states of free small iron clusters show a variation of the direction and
size of mmm on the constituent atoms [57]. A simple example is the ground state of Fe5. In this
trigonal bipyramid structure the magnetic moments in the basis of the pyramids are aligned, the
moments of the two tips, however, are tilted with respect to the majority spin direction defined
by the atoms of the basis. When deposited on a Cu surface, on the other hand, iron clusters
seem to prefer ferromagnetic ordering [58]. However, even for clusters on a surface geometric
frustration can lead to non-collinear magnetic moments in the case of Mn and Cr clusters [58],
consistent with the vanishing total magnetic moments observed in experiment [59, 60].

It is obvious that use of the non-collinear formalism (2.129)–(2.132) is manda-
tory for systems for which the non-collinearity of mmm is an indispensable feature
of the electronic structure, as, for instance, γ-Fe. For most problems, however,
the corrections resulting from non-collinearity are rather small, in particular for
open-subshell atoms [61] (compare also [62, 63]). For these systems the applica-
tion of the more complicated calculational scheme resulting from Eqs. (2.129)–
(2.132) is usually too high a price to be paid for the more accurate representa-
tion of mmm. Spin-density functional theory in the form (2.138)–(2.142) represents
the standard approach to magnetic systems for this reason. It seems worthwhile
to emphasize that this approach rigorously covers antiferromagnetic ordering of

9 The value θ = π/2 follows rigorously from symmetry constraints as long as spin–orbit coupling
is neglected [43].
10 At the same time even the early calculations revealed a very high sensitivity of the magnetic
structure of the ground state to the equilibrium volume.
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magnetic moments, including situations as the linearly polarized spin-density
wave observed for the ground state11 of bulk Cr.

2.6 Current Density Functional Theory

The Hamiltonian (2.120) accounts for the dominant coupling mechanism between
magnetic fields and electrons, at least for low electron velocities. It neglects, how-
ever, the Lorentz force exerted on the electrons by the magnetic field. This effect is
included in current density functional theory (CDFT) and its extension, current spin
density functional theory (CSDFT) [68–71]. The starting point for the discussion of
CSDFT is the Pauli Hamiltonian,

Ĥ =
1

2m ∑
σ=↑,↓

∫
d3r ψ̂†(rrrσ)

[
−ih̄∇∇∇+

e
c

AAAext(rrr)
]2

ψ̂(rrrσ)

+
∫

d3r
[
vext(rrr)n̂(rrr)+BBBext(rrr) · m̂mm(rrr)

]
+Ŵ , (2.143)

where the magnetization density m̂mm is defined as in Eq. (2.121) and AAAext denotes the
vector potential which generates the magnetic field,

BBBext(rrr) = ∇∇∇×AAAext(rrr) . (2.144)

The Hamiltonian (2.143) can be systematically derived from the fully relativistic
Hamiltonian of Dirac theory,12 either by an expansion in powers of 1/c or, alterna-
tively, by a low order Foldy-Wouthuysen transformation.

The formulation of a density functional approach for the Hamiltonian (2.143)
has to be preceded by some remarks on the issue of gauge transformations. The
magnetic field (2.144) does not change under the gauge transformation13

11 The ground state of bulk Cr (which crystallizes in the bcc structure) exhibits a static SDW
along the (100) direction of the conventional cubic unit cell (for an overview see [64]): while the
directions of the local magnetic moments on nearest neighbor sites (corner and body-center of the
bcc structure) are antiparallel (corresponding to an anti-ferromagnetic ordering), the amplitudes
μi of these local moments are modulated in an almost sinusoidal form, μi = M1 sin(QQQ ·RRRi)+ . . .
(with M1 = 0.62 μB). Moreover, the wavelength of the SDW is incommensurate with the crystal
lattice: the dominant wave vector in the SDW is found to be |QQQ| = 0.952 2π

a , the period of the
complete spin-density pattern is as long as 20.83 a. A longitudinal SDW is observed below a spin-
flip temperature of 123 K, a transverse SDW between this and the Neél temperature of 311 K.
However, in both cases linear polarization is energetically favored over some helical SDW, so that
mmm remains collinear (for corresponding SDFT calculations see [65–67]).
12 More precisely speaking, the Hamiltonian (2.143) is obtained from quantum electrodynamics,
i.e. from the QED Hamiltonian (8.39). In the present context, however, only an expansion of the
relativistic kinetic energy operator is relevant.
13 Quite generally, the electromagnetic fields (1.10), (1.11) do not change under the combined
gauge transformation
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AAA′
ext(rrr) = AAAext(rrr)−∇∇∇λ (rrr) . (2.148)

On the other hand, the Hamiltonian (2.143), which depends on the vector potential
itself, is not invariant under the transformation (2.148) (unlike the reduced Hamilto-
nian (2.120)). The same statement necessarily also applies to the ground state |Ψ0〉
corresponding to (2.143),

Ĥ|Ψ0〉 = E0|Ψ0〉 . (2.149)

However, it is easy to show that the transformation (2.148) simply leads to a phase
transformation of the corresponding ground state: if the wavefunction

Ψ0(rrr1σ1, . . .rrrNσN) ≡ (rrr1σ1, . . .rrrNσN |Ψ0〉

is a solution of (2.149) for the potential AAAext, the gauge transformed wavefunction

Ψ′
0(rrr1σ1, . . .rrrNσN) = exp

[
ie
h̄c

N

∑
k=1

λ (rrrk)

]
Ψ0(rrr1σ1, . . .rrrNσN) (2.150)

is a solution of (2.149) for the potential AAA′
ext obtained by the gauge transformation

(2.148)—this can be verified by insertion into (2.149) in first quantized form. All
pairs (AAAext,Ψ0) which differ by no more than the combined transformation (2.148),
(2.150) are physically equivalent.14 As a result they lead to the same ground state
energy E0, the same ground state density n0 and the same ground state magnetization
density mmm0,

E ′
0 = E0 (2.152)

v′ext(rrrt) = vext(rrrt)− e
c

∂
∂ t

Λ(rrrt) (2.145)

AAA′
ext(rrrt) = AAAext(rrrt)−∇∇∇Λ(rrrt) (2.146)

of the set of potentials. As the present discussion is restricted to static external fields, the class of
admissible gauge transformations is given by

Λ(rrrt) = λ0t +λ (rrr) . (2.147)

The first term corresponds to the addition of the constant λ0 to the external potential vext. If only
this potential is present, Λ(rrrt) = λ0t is the only legitimate gauge transformation. One can therefore
identify the class of vext which differ by more than a constant with the class of potentials which
differ by more than a (static) gauge transformation.
14 Note that this equivalence also manifests itself as the invariance of the Hamiltonian (2.143)
under the simultaneous transformation of the vector potential by (2.148) and of the field operator
by

ψ̂ ′(rrrσ) = eieλ (rrr)/(h̄c) ψ̂(rrrσ) . (2.151)

In fact, this invariance of Ĥ is sometimes even identified with the actual gauge invariance of the
corresponding expectation value 〈Ψ0|Ĥ|Ψ0〉. The same statements apply to the complete ground
state current (2.156). Similarly, the gauge dependence of the paramagnetic current is reflected by
the lack of invariance of ĵp under the combined transformations (2.148) and (2.151).
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n′0(rrr) = n0(rrr) (2.153)

mmm′
0(rrr) = mmm0(rrr) . (2.154)

As required, gauge invariance is also observed for the physical ground state current
jjj0,

jjj′0(rrr) = jjj0(rrr) = 〈Ψ0| ĵjj(rrr)|Ψ0〉 , (2.155)

which, in the case of the Hamiltonian (2.143), is obtained from the operator15

ĵjj(rrr) = ĵjjp(rrr)+
c
e

∇∇∇×mmm(rrr)+
e

mc
AAAext(rrr)n̂(rrr) . (2.156)

Here ĵjjp denotes the (canonical) paramagnetic current density,16

ĵjjp(rrr) =
−ih̄
2m

N

∑
i=1

[
∇∇∇iδ (3)(rrr− rrri)+δ (3)(rrr− rrri)∇∇∇i

]
(2.157)

= − ih̄
2m ∑

σ=↑,↓

[
ψ̂†(rrrσ)(∇∇∇ψ̂(rrrσ))− (

∇∇∇ψ̂†(rrrσ)
)

ψ̂(rrrσ)
]

. (2.158)

If one wants to set up a DFT scheme for the Hamiltonian (2.143), the first issue to
be addressed is an appropriate choice of the basic variables. As usual, the coupling
between densities and external potentials in the Hamiltonian allows the identifica-
tion of the basic DFT variables. However, using (2.156), the Hamiltonian (2.143)
can be rewritten in two alternative ways,

Ĥ = T̂ +Ŵ +
∫

d3r

{
e
c

AAAext · ĵjj +
[

vext − e2

2mc2 AAA2
ext

]
n̂

}
(2.159)

= T̂ +Ŵ +
∫

d3r

{
e
c

AAAext ·
[

ĵjjp +
c
e

∇∇∇× m̂mm
]
+
[

vext +
e2

2mc2 AAA2
ext

]
n̂

}
, (2.160)

where T̂ is the standard kinetic energy operator (2.2). The form (2.159) suggests
to employ the density plus the complete physical current as basic variables of a
DFT scheme. However, the discussion of gauge transformations has shown that
the set n0, jjj0 does not determine the ground state uniquely. One is thus bound to
base CSDFT on the combination of the density operator n̂ with the current operator
[72, 73]

15 The operator (2.156) can either be derived by a Gordon decomposition of the fully relativistic
current (compare Sect. 8.7), followed by the limit c → ∞. Alternatively, ĵjj can be identified by an
analysis of the time-dependent Schrödinger equation obtained from the Hamiltonian (2.143) as the
current for which a continuity equation holds.
16 For the transition from first to second quantized form note that

〈rrr′σ ′| ĵjjp(rrr)|rrr′′σ ′′〉 =
−ih̄
2m

δσ ′σ ′′ δ (3)(rrr′ − rrr′′)
[
∇∇∇′′δ (3)(rrr− rrr′′)+δ (3)(rrr− rrr′′)∇∇∇′′

]
.
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ĵjjg(rrr) = ĵjjp(rrr)+
c
e

∇∇∇× m̂mm(rrr) , (2.161)

whose ground state expectation value

jjjg,0(rrr) = 〈Ψ0| ĵjjg(rrr)|Ψ0〉 (2.162)

is as gauge-dependent as the ground state itself: under the gauge transformation
(2.150) the ground state current jjjg,0 transforms just as the paramagnetic current,

jjj′p,0(rrr) = jjjp,0(rrr)+
e

mc
n(rrr)∇∇∇λ (rrr) , (2.163)

since the magnetization density is gauge invariant, Eq. (2.154).
In the second step one has to prove an existence theorem for these variables.

The core of the proof of the HK-theorem is the strict inequality (2.20). In order to
derive an equivalent inequality for the Hamiltonian (2.160), one considers two dif-
ferent non-degenerate ground states |Ψ0〉 and |Ψ′

0〉 with associated sets of potentials
vext,AAAext and v′ext,AAA

′
ext (the sets vext,AAAext and v′ext,AAA

′
ext also differ, since |Ψ0〉 and

|Ψ′
0〉 are non-degenerate). Now assume that |Ψ0〉 and |Ψ′

0〉 lead to the same ground
state density n0 and current

jjjg,0(rrr) = 〈Ψ0| ĵjjg(rrr)|Ψ0〉 = 〈Ψ′
0| ĵjjg(rrr)|Ψ′

0〉 . (2.164)

The expectation value of the Hamiltonian (2.160) with respect to the ground state
|Ψ′

0〉 corresponding to v′ext,AAA
′
ext can then be expressed as

〈Ψ′
0|Ĥ|Ψ′

0〉 = 〈Ψ′
0|Ĥ ′|Ψ′

0〉+
∫

d3r

[
vext − v′ext +

e2

2mc2

(
AAA2

ext −AAA′ 2
ext

)]
n0

+
e
c

∫
d3r

[
AAAext −AAA′

ext

] · jjjg,0 , (2.165)

where Ĥ ′ is the Hamiltonian (2.160) with primed potentials. If one could now state
that the unprimed ground state energy 〈Ψ0|Ĥ|Ψ0〉 is strictly lower than 〈Ψ′

0|Ĥ|Ψ′
0〉,

E0 = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′
0|Ĥ|Ψ′

0〉 ∀ |Ψ′
0〉 �= |Ψ0〉 , (2.166)

the desired inequality of type (2.20) would have been found,

E0 < E ′
0 +

∫
d3r

[
vext − v′ext +

e2

2mc2

(
AAA2

ext −AAA′ 2
ext

)]
n0

+
e
c

∫
d3r

[
AAAext −AAA′

ext

] · jjjg,0 . (2.167)

However, |Ψ0〉 and |Ψ′
0〉 can be related by a gauge transformation and the actual

ground state energies associated with these states are identical, Eq. (2.152). This
raises the question whether the strict inequality (2.166), i.e. the Ritz principle, still
holds if |Ψ′

0〉 differs from |Ψ0〉 only by the phase transformation (2.150). Let us con-
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vince ourselves that this is indeed the case. If |Ψ′
0〉 and |Ψ0〉 are related by (2.150),

the difference between 〈Ψ′
0|Ĥ|Ψ′

0〉 and the ground state energy is given by

〈Ψ′
0|Ĥ|Ψ′

0〉−〈Ψ0|Ĥ|Ψ0〉
=

1
2m ∑

σ1,···σN

∫
d3r1 · · ·d3rN Ψ∗

0(rrr1σ1, . . .rrrNσN)

×
N

∑
k=1

[
e−

ie
h̄c λ (rrrk)

(
−ih̄∇∇∇k +

e
c

AAAext(rrrk)
)2

e
ie
h̄c λ (rrrk) −

(
−ih̄∇∇∇k +

e
c

AAAext(rrrk)
)2

]
×Ψ0(rrr1σ1, . . .rrrNσN) ,

which is easily evaluated to

〈Ψ′
0|Ĥ|Ψ′

0〉−〈Ψ0|Ĥ|Ψ0〉
=

1
2m ∑

σ1,···σN

∫
d3r1 · · ·d3rN Ψ∗

0(rrr1σ1, . . .rrrNσN)

×
N

∑
k=1

[
2

e
c

[∇∇∇kλ (rrrk)] ·
(
−ih̄∇∇∇k +

e
c

AAAext(rrrk)
)
− ih̄

e
c

[
∇∇∇2

kλ (rrrk)
]
+
(e

c
∇∇∇kλ (rrrk)

)2
]

×Ψ0(rrr1σ1, . . .rrrNσN) .

After partial integration of half of the first term in the square brackets one can rewrite
this expression in terms of the paramagnetic current (2.158),

〈Ψ′
0|Ĥ|Ψ′

0〉−〈Ψ0|Ĥ|Ψ0〉
=

∫
d3r 〈Ψ0|

[
e
c

[∇∇∇λ (rrr)] ·
(

ĵjjp(rrr)+
e

mc
AAAext(rrr)n̂(rrr)

)
+
(e

c
∇∇∇λ (rrr)

)2
n̂(rrr)

]
|Ψ0〉 .

One can now use Eq. (2.156) to replace jjjp by the physical current,

〈Ψ′
0|Ĥ|Ψ′

0〉−〈Ψ0|Ĥ|Ψ0〉 =
∫

d3r

[
e
c
(∇∇∇λ ) ·

(
jjj0 −

c
e

∇∇∇×mmm0

)
+
(e

c
∇∇∇λ

)2
n0

]
.

Finally, use of current conservation and Gauss’ theorem leads to

〈Ψ′
0|Ĥ|Ψ′

0〉−〈Ψ0|Ĥ|Ψ0〉 =
∫

d3r
(e

c
∇∇∇λ (rrr)

)2
n0(rrr) > 0 . (2.168)

This confirms the strict inequality (2.166) and thus Eq. (2.167) (provided that λ is
not a simple constant and does not vanish wherever n0 is non-zero).

The inequality (2.167) can then be used in the standard fashion (combination
with the same relation with primed and unprimed quantities interchanged) to derive
a contradiction of the type (2.22).
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(a) One concludes that there exists a one-to-one correspondence between
the set of ground states and the set of densities (n0, jjjg,0) [68],

|Ψ0〉 ⇐⇒ {n0(rrr), jjjg,0(rrr)} . (2.169)

This correspondence establishes the existence of a unique functional
|Ψ[n, jjjg]〉, which, by insertion of the actual (n0, jjjg,0), reproduces the
ground state of the system, |Ψ0〉 = |Ψ[n0, jjjg,0]〉.

An extended variant of CSDFT is obtained, if one gives up the relation (2.144)
between BBBext and AAAext and considers these two fields as independent (which is legiti-
mate from a mathematical point of view—for an even more general form of CSDFT
see [68]). The Hamiltonian then contains three independent coupling terms,

Ĥ = T̂ +Ŵ +
e
c

∫
d3r ĵjjp(rrr) ·AAAext(rrr)+

∫
d3r BBBext(rrr) · m̂mm(rrr)

+
∫

d3r

[
vext(rrr)+

e2

2mc2 AAA2
ext(rrr)

]
n̂(rrr) . (2.170)

In this case one finds (by the standard argument) an extended one-to-one correspon-
dence [68],

|Ψ0〉 ⇐⇒ {n0(rrr), jjjp,0(rrr),mmm0(rrr)} , (2.171)

i.e. a ground state functional of the form |Ψ[n0, jjjp,0,mmm0]〉. This approach is partic-
ularly legitimate if the external magnetic field vanishes anyway, BBBext = AAAext = 000.
The use of jjjp,0 and mmm0 as independent variables could potentially introduce addi-
tional flexibility into the representation of the ground state, compared to the reduced
form (2.169). This point is further investigated in the context of the KS equations of
CSDFT in Sect. 3.7.

If one neglects the coupling between mmm and BBBext completely, one arrives at the
existence theorem of current density functional theory (CDFT) [74]: the ground
state |Ψ0〉 of a system governed by the Hamiltonian (2.170) with BBBext = 000 is uniquely
determined by the ground state density and the paramagnetic current density,

|Ψ0〉 ⇐⇒ {n0(rrr), jjjp,0(rrr)} , (2.172)

so that it can be written as a functional of these quantities, |Ψ0〉 = |Ψ[n0, jjjp,0]〉.
Either of the correspondences (2.169), (2.171) and (2.172) allows a representa-

tion of the ground state expectation value of any operator Ô as a functional of the
corresponding independent combination of variables.17

17 For a constrained search formulation of CDFT see [75].
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(b) Restricting the explicit discussion to CSDFT in the form (2.169), one
has

O[n, jjjg] = 〈Ψ[n, jjjg]|Ô|Ψ[n, jjjg]〉 . (2.173)

In particular, one obtains for the ground state energy

E[n, jjjg] = F [n, jjjg]+
e
c

∫
d3r jjjg(rrr) ·AAAext(rrr)

+
∫

d3r

[
vext(rrr)+

e2

2mc2 AAA2
ext(rrr)

]
n(rrr) (2.174)

F [n, jjjg] = 〈Ψ[n, jjjg]|T̂ +Ŵ |Ψ[n, jjjg]〉 . (2.175)

The basic variational principle of CSDFT then follows, as usual, from
Ritz’s principle. It states that the functional (2.174) has a minimum for
the true current and density distributions n0, jjjg,0 corresponding to the
given external fields,

E[n0, jjjg,0] < E[n, jjjg] ∀ (
n, jjjg

) �= (
n0, jjjg,0

)
. (2.176)

The resulting variational equations,

δE[n, jjjg]
δn(rrr)

∣∣∣∣
n0, jjjg,0

= 0 (2.177)

δE[n, jjjg]
δ jjjg(rrr)

∣∣∣∣
n0, jjjg,0

= 000 , (2.178)

have to be solved under the constraint of particle number conservation,∫
d3r n(rrr) = N ,

and a constraint expressing the (static) continuity equation for the physical current,

∇∇∇ · jjj(rrr) = 0 , (2.179)

which may be resolved as

∇∇∇ · jjjp(rrr) = − e
mc

∇∇∇ · [AAAext(rrr)n(rrr)] . (2.180)

As in the case of SDFT, the existence theorems of C(S)DFT only involve the rela-
tion between the current and density variables and the ground state. No statement is
made concerning a possible unique correspondence between the external potentials
and the ground state. The reason for this restriction is the same as for SDFT: one
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can give explicit counterexamples which demonstrate that one can find more than
one set of potentials which yield a given ground state [76]. In fact, two different
types of counterexamples are available, an extension of the symmetry argument of
Sect. 2.5 (which may be characterized as systematic non-uniqueness) and a second
class (referred to as accidental non-uniqueness).

Let us first consider the symmetry-related counterexample for the case of CDFT,
i.e. ignoring the spin degree of freedom for simplicity. Assume that |Ψ0〉 is the
ground state corresponding to the CDFT Hamiltonian

Ĥ = T̂ +Ŵ +
∫

d3r

{
n̂(rrr)

[
vext(rrr)+

e2

2mc2 AAA2
ext(rrr)

]
+

e
c

ĵjjp(rrr) ·AAAext(rrr)
}

(2.181)

Ĥ |Ψ0〉 = E0 |Ψ0〉 . (2.182)

The question then is: can |Ψ0〉 also be the ground state of a CDFT Hamiltonian in
which vext and AAAext are replaced by two different potentials

v′ext = vext +Δvext (2.183)

AAA′
ext = AAAext +ΔAAAext . (2.184)

In other words: can one find Δvext and ΔAAAext, so that

Δ Ĥ |Ψ0〉 = ΔE0 |Ψ0〉 , (2.185)

with Δ Ĥ given by

Δ Ĥ =
∫

d3r

{
n̂

[
Δvext +

e2

2mc2

(
ΔAAA2

ext +2ΔAAAext ·AAAext
)]

+
e
c

ĵjjp ·ΔAAAext

}
?

(2.186)
For Eq. (2.185) to hold, the operator Δ Ĥ has to be a constant of motion, i.e. has to
commute with the Hamiltonian (2.181). An explicit example for such a constant of
motion is the angular momentum18 [76]

L̂z = m
∫

d3r (eeez × rrr) · ĵjjp(rrr) (2.187)

in the case of systems which are invariant under rotations about the z-axis. However,
choosing

18 In second quantization the angular momentum operator is given by

L̂LL = −ih̄ ∑
σ=↑,↓

∫
d3r

[
ψ̂†(rrrσ)(rrr×∇∇∇)ψ̂(rrrσ)

]
,

which may be expressed in terms of the paramagnetic current after suitable partial integration,

L̂LL = m
∫

d3r
[
rrr× ĵjjp(rrr)

]
.
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ΔAAAext(rrr) =
ΔB
2

(eeez × rrr) (2.188)

Δvext(rrr) = − e2

2mc2

(
ΔAAA2

ext(rrr)+2ΔAAAext(rrr) ·AAAext(rrr)
)

, (2.189)

with constant ΔB, the operator (2.186) becomes a simple multiple of L̂z, so that
Eq. (2.185) is satisfied for all Hamiltonians for which [Ĥ, L̂z] = 0. Thus, as long as
ΔE0 is smaller than the energy gap between the ground and first excited state, |Ψ0〉
remains the ground state corresponding to the primed potentials. The size of ΔE0,
however, is easily controlled by the size of ΔB. Consequently, one finds a complete
set of potentials which lead to the same ground state.

As an example for an accidental non-uniqueness consider a single particle within
CDFT, again ignoring spin. Assume that the non-degenerate ground state orbital
φ0(rrr) satisfies the Schrödinger equation{

1
2m

[
−ih̄∇∇∇+

e
c

AAAext(rrr)
]2

+ vext(rrr)
}

φ0(rrr) = ε0φ0(rrr) (2.190)

for
AAAext = 000

(this example includes all vector potentials which differ from 000 by a gauge transfor-
mation, AAAext = −∇∇∇λ ). The (nodeless) orbital φ0(rrr) can then be chosen real,

φ ∗
0 (rrr) = φ0(rrr) . (2.191)

Now one again asks the question whether one can find some further set of poten-
tials v′ext, AAA′

ext for which φ0(rrr) remains the ground state? For this to be the case,
Eq. (2.190) must also be valid with the unprimed potentials replaced by the primed
ones. It is straightforward to show, however, that the Schrödinger equation with the
potentials

AAA′
ext(rrr) =

∇∇∇×CCC(rrr)
φ0(rrr)2 (2.192)

v′ext(rrr) = vext(rrr)− e2

2mc2

(
AAA′

ext(rrr)
)2

(2.193)

is satisfied by φ0(rrr) for arbitrary CCC(rrr), provided that Eq. (2.190) holds for the un-
primed potentials [76]. In fact, insertion of (2.193) into the Schrödinger equation
(with primed potentials) and use of (2.190) for the unprimed potentials yields the
condition [(

∇∇∇ ·AAA′
ext(rrr)

)
+2AAA′

ext(rrr) ·∇∇∇
]
φ0(rrr) = 0 , (2.194)

which is trivially satisfied by the form (2.192). For given vext and thus φ0 one has
found an infinite number of potentials v′ext, AAA′

ext, for which φ0 is an eigenstate. Again,
if the magnitude of CCC(rrr) is chosen sufficiently small, φ0 remains the ground state.
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In order to provide some physical background of this accidental non-uniqueness
let us fix the gauge of the potential (2.192): among all physically admissible vector
potentials giving a particular magnetic field BBB(rrr) = ∇∇∇ × AAA′

ext(rrr) one can always
choose to work with the one which satisfies Coulomb gauge,

∇∇∇ ·AAA′
ext(rrr) = 0 . (2.195)

All other potentials which give the same BBB(rrr) can only differ from this AAA′
ext by

gauge transformations. Restricting the set of potentials (2.192) to those which sat-
isfy Eq. (2.195) requires

[∇∇∇φ0(rrr)] · [∇∇∇×CCC(rrr)] = 0 (2.196)

for all rrr, so that the potentials of the type (2.192) ultimately also correspond to a
specific symmetry of the ground state.

A final remark on C(S)DFT addresses the limit AAAext = 000. In this limit all variants
of C(S)DFT reduce to standard DFT, as all spin- and spin-current-densities are now
unique functionals of n. For instance, one has for the approach (2.171),

jjjp(rrr) = jjjp[n](rrr) ; mmm(rrr) = mmm[n](rrr) =⇒ E[n, jjjp,mmm] = Ẽ[n] .

In analogy to the improved description of spin-dependent systems with BBBext = 000
by E[n↑,n↓], there might be some advantage in retaining the more flexible form
E[n, jjjp,mmm] also for AAAext = 000. Similar statements apply to all other variants of
C(S)DFT.

2.7 Excited States: Part 1

Let us return to the Hamiltonian (2.1) for which the original HK-theorem is valid.
The ground state density n0 does not only determine the ground state |Ψ0〉 uniquely,
but also all excited states |Ψi〉 (i > 0). The reason for this, at first glance surprising,
statement is the one-to-one correspondence of n0 and the external potential vext.
Once vext is known, all excited states are unambiguously determined by solution of
the Schrödinger equation,

n0 =⇒ vext =⇒ |Ψi〉; i = 0,1, . . .∞ . (2.197)
↑ ↑

HK theorem solution of the Schrödinger equation

All matrix elements of excited states |Ψi〉 can, in view of this correspondence, be
regarded as functionals of the ground state(!) density. This conclusion applies in
particular to all excitation energies.

The practical exploitation of (2.197) is complicated by two aspects: it is more
difficult to derive acceptable approximations for the energy functional of excited
states and there exists no suitable variational principle for these states. An excep-



56 2 Foundations of Density Functional Theory: Existence Theorems

tion to the latter statement is found if the complete Fock space can be decomposed
into subspaces with different symmetry, i.e. if the Hamiltonian commutes with some
symmetry operator. In this case there exists a minimum principle for each of the sub-
spaces with a given symmetry (an argument, which has already been used in the case
of the spin). It is possible to formulate a HK theorem for the energetically lowest
state of each subspace, in analogy to the original version [77]: there is a one-to-one
correspondence between the energetically lowest state |Ψi〉 of the subspace and the
associated density ni = 〈Ψi|n̂|Ψi〉, defining the functional |Ψi[ni]〉 (the spaces G and
N of the original HK proof have to be restricted to the symmetry under considera-
tion). The functional dependence of |Ψi〉 on ni, however, in general differs from that
of the ground state functional |Ψ[n]〉. Lacking any alternative, ground state density
functionals are nonetheless often used for the discussion of excited states as, for ex-
ample, atomic states with different angular momenta. However, this approach runs
into difficulties with the resolution of the individual states of multiplets, as long as
the density functional does not reflect the specific symmetry under consideration
(for a scheme to deal with multiplet states see [78, 79]).



Chapter 3
Effective Single-Particle Equations

3.1 Kohn-Sham Equations

Let us return to the simplest situation considered so far, i.e. to a Hamiltonian of
type (2.1) with a non-degenerate ground state. For this system the Hohenberg-Kohn
theorem states that knowledge of the ground state density is sufficient to determine
all ground state observables. In addition, the ground state energy functional E[n]
allows the determination of the ground state density itself via the variational equa-
tion (2.38) Unfortunately, the HK-theorem does not give any hint concerning the
explicit form of E[n] (or F [n]). Moreover, the initial motivation for the discussion of
DFT was to introduce an exact mapping of the interacting N-particle problem onto a
suitable effective noninteracting system. The connection of the existence theorems
established so far with this mapping is provided by the Kohn-Sham (KS) scheme.

In order to introduce the KS equations in a systematic fashion we first consider a
system of noninteracting electrons with a multiplicative external potential vs,

Ĥs = T̂ +V̂s ; V̂s =
∫

d3r n̂(rrr)vs(rrr) . (3.1)

The corresponding N-particle ground state |Φ0〉, assumed to be non-degenerate at
this point, is a Slater determinant,

Ĥs|Φ0〉 = Es,0|Φ0〉 (3.2)

(rrr1σ1, . . .rrrNσN |Φ0〉 ≡ Φ0(rrr1σ1, . . .rrrNσN)

=
1√
N!

det

⎛
⎜⎝ φ1(rrr1σ1) · · · φN(rrr1σ1)

...
...

φ1(rrrNσN) · · · φN(rrrNσN)

⎞
⎟⎠ , (3.3)

constructed from the energetically lowest solutions φi of the single-particle Schrö-
dinger equation,

E. Engel, R.M. Dreizler, Effective Single-Particle Equations. In: E. Engel, R.M. Dreizler, Density
Functional Theory, Theoretical and Mathematical Physics, pp. 57–108 (2011)
DOI 10.1007/978-3-642-14090-7 3 c© Springer-Verlag Berlin Heidelberg 2011
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− h̄2∇∇∇2

2m
+ vs(rrr)

}
φi(rrrσ) = εiφi(rrrσ) . (3.4)

The eigenvalues εi are assumed to be ordered as

ε1 ≤ ε2 ≤ . . . ≤ εN = εF < εN+1 ≤ . . . , (3.5)

where, as usual, the Fermi energy εF is identified with the eigenvalue εN of the
highest occupied single-particle level.

In (3.4) the spin degree of freedom has been expressed in terms of the variable
σ , rather than by understanding φi as a two-component spinor. Correspondingly, the
quantum number i represents both spatial and spin quantum numbers. The single-
particle states φi can be characterized further by taking into account the fact that the
Hamiltonian (3.1) commutes with the spin-projection on the z-axis,

Ŝz =
1
2

N

∑
i=1

σz,i =
1
2 ∑

σ ,σ ′=↑,↓

∫
d3r ψ̂†(rrrσ)σz,σσ ′ ψ̂(rrrσ ′) , (3.6)

where σz is the z-component of the vector of Pauli matrices, Eq. (2.124) (for the
basic commutators required see Appendix L). The spin-projection can be rewritten
in terms of the particle numbers (2.140) of the two spin orientations,

Ŝz =
1
2

{
N̂↑ − N̂↓

}
, (3.7)

so that the commutation relation [
Ĥs, Ŝz

]
= 0 (3.8)

follows directly from [Ĥs, N̂σ ] = 0. The orbitals φi can be chosen as eigenstates of
σz, i.e. they can be factorized into a spatial wavefunction and the Pauli spinor χ±.
As the potential vs does not distinguish between the two spin orientations, the spatial
wavefunction is independent of spin,

φi(rrrσ) = φα(rrr)χs(σ) ⇐⇒ i ≡ (α,s) (3.9)

χ↑ ≡ χ+ =
(

1
0

)
; χ↓ ≡ χ− =

(
0
1

)
⇐⇒ χs(σ) = δsσ (3.10)

σz χ± = ±χ± ⇐⇒ ∑
σ ′

σz,σσ ′ χs(σ ′) = sign(s)δsσ . (3.11)

Any single-particle level is at least twofold degenerate due to spin. As long as |Φ0〉
is assumed to be non-degenerate one has εN < εN+1. For a non-degenerate ground
state one thus necessarily finds N↑ = N↓, so that N must be even. This implies that the
ground state must have a vanishing magnetic moment, as 〈Φ0|Ŝz|Φ0〉= 0. The issues
of degeneracy at the Fermi level and of spin-polarized systems will be discussed in
Sects. 3.3 and 3.5.
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The ground state density corresponding to (3.3) is given by

n0s(rrr) = ∑
σ=↑,↓

N

∑
i=1

|φi(rrrσ)|2 = 2
N/2

∑
α=1

|φα(rrr)|2 . (3.12)

In the following the sum over the N energetically lowest single-particle states will
nevertheless be written in the more general form

n0s(rrr) = ∑
σ=↑,↓

∑
i

Θi |φi(rrrσ)|2 . (3.13)

In the present context the occupation function Θi denotes the standard step function,

Θi ≡Θ(εF − εi) =
{

1 for εF ≥ εi

0 elsewhere
. (3.14)

The formulation (3.13) has the advantage that it can equally well be used for a
system at finite temperature T > 0. In this case the step function simply has to be
replaced by a Fermi distribution,

Θi =
[

1+ exp

(
εi −μ
kBT

)]−1

, (3.15)

with μ being the chemical potential, which is chosen so that ∑i Θi = N. The ground
state energy corresponding to (3.3) is

Es,0 = ∑
i

Θi ∑
σ=↑,↓

∫
d3r φ ∗

i (rrrσ)
(−ih̄∇∇∇)2

2m
φi(rrrσ)+

∫
d3r vs(rrr)n0s(rrr) . (3.16)

At this point one recollects the fact that the HK theorem is valid for arbitrary
many-particle systems, irrespective of their particle–particle interaction w. It ap-
plies in particular to noninteracting systems, for which w = 0. The non-degenerate
ground state (3.3) is thus uniquely determined by the ground state density (3.13). In
other words: The ground state of a noninteracting system is a unique functional of
the ground state density, |Φ[n]〉. The particular ground state (3.3) is obtained if the
associated ground state density n0s is inserted into this functional,

|Φ[n]〉 : with |Φ0〉 = |Φ[n0s]〉 . (3.17)

The functional |Φ[n]〉 is not identical with the functional (2.24) obtained for non-
vanishing interaction w. Using |Φ[n]〉, one can define the HK ground state energy
functional of noninteracting systems,

Es[n] = 〈Φ[n]|T̂ +V̂s|Φ[n]〉 = 〈Φ[n]|T̂ |Φ[n]〉+
∫

d3r vs(rrr)n(rrr) . (3.18)
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It has the same properties as the functional (2.26). In particular, the minimum prin-
ciple (2.28) applies,

Es[n0s] < Es[n] ∀ n �= n0s ; Es,0 = Es[n0s] . (3.19)

Equation (3.18) defines the kinetic energy functional Ts[n] of noninteracting parti-
cles for any ground state density n resulting from a Hamiltonian of type (3.1), i.e.
for any n which is noninteracting v-representable,

Ts[n] := 〈Φ[n]|T̂ |Φ[n]〉 . (3.20)

As |Φ[n]〉 is universal (i.e. independent of vs) the same is true for Ts[n]. The kinetic
energy has, however, already been expressed in terms of the single-particle orbitals
φi in Eq. (3.16),

Ts[n] = ∑
i

Θi ∑
σ=↑,↓

∫
d3r φ ∗

i (rrrσ)
(−ih̄∇∇∇)2

2m
φi(rrrσ) , (3.21)

which implies that the φi themselves are functionals of the density.
How can the orbitals be density functionals? Clearly, a change of n can only be

induced by a corresponding change of the external potential vs. Any modification of
vs leads to a unique change of all orbitals via Eq. (3.4). This statement is immedi-
ately obvious if one reconsiders the HK argument for the case of a single-particle
problem. If two potentials vs and v′s �= vs + const would have a common eigenstate
φi, the combination of the corresponding single-particle equations (3.4) gives[

vs(rrr)− v′s(rrr)
]

φi(rrrσ) =
[
εi − ε ′i

]
φi(rrrσ) ,

so that one ends up with a contradiction. Not only the many-particle ground state
Φ0, but also its ingredients φi(rrrσ) are unique functionals of n,

φi(rrrσ) = φi[n](rrrσ) . (3.22)

Equation (3.21) identifies the first non-trivial density functional, although in an im-
plicit form.

Let us return to the discussion of the interacting system (2.1). Assume that for
any admissible potential vext the ground state density n0(rrr) of the interacting system
is simultaneously the ground state density of some yet to be determined noninter-
acting system with a single-particle potential vs (different from vext). This auxiliary
noninteracting system with a Hamiltonian of the form (3.1) is called the KS sys-
tem. The question whether such a KS system actually exists for arbitrary n0, the
question of the noninteracting v-representability, will be addressed in Sect. 3.2. If
the assumption stated is correct, one can represent the ground state density of the
interacting system in terms of the single-particle orbitals φi of the KS system,

n0(rrr) ≡ n0s(rrr) = ∑
σ=↑,↓

∑
i

Θi|φi(rrrσ)|2 . (3.23)
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It is important to realize the difference between (3.13) and (3.23): Equation (3.13)
is a straightforward result for the density of a noninteracting system, while (3.23) is
a highly non-trivial representation of the interacting density!

Of course, the structure of vs must reflect the nature of the interacting system. In
order to determine vs one decomposes the total energy functional E[n] in a suitable
fashion. One first realizes that the kinetic energy functional Ts[n], Eq. (3.20), is well-
defined for the ground state densities of all interacting systems for which a vs exists.
Ts[n] can be explicitly expressed in terms of the auxiliary orbitals φi, which satisfy
Eq. (3.4), as in Eq. (3.21). One can therefore rewrite E[n] as

E[n] = Ts[n]+EH[n]+Eext[n]+Exc[n] . (3.24)

The functional EH[n] is the classical (Hartree) interaction energy between the N
particles with density n,

EH[n] =
1
2

∫
d3r

∫
d3r′ n(rrr)w(rrr,rrr′)n(rrr′) , (3.25)

including their self-interaction energy. EH[n] is usually referred to as Hartree term.
Eext[n] characterizes the coupling between the particles and the external potential,

Eext[n] =
∫

d3r vext(rrr)n(rrr) . (3.26)

Finally, the exchange-correlation (xc) energy functional Exc[n] is defined by (3.24).
It absorbs all the complicated many-body effects not contained in Ts, EH and Eext.
Exc[n] is a density functional as, on the one hand, E[n] is a density functional by
virtue of the HK theorem for interacting particles and, on the other hand, Ts is a
density functional by virtue of the HK theorem for noninteracting particles, while
EH and Eext are explicit density functionals. However, one should realize that, from a
mathematical point of view, the decomposition (3.24) is only legitimate for densities
which are simultaneously interacting and noninteracting v-representable.

Before proceeding with the derivation of vs, some comments seem appropriate:

• The decomposition (3.24) isolates exactly those contributions to the total energy
functional, which can be treated rigorously: EH and Eext are simple functionals of
the density whose evaluation is straightforward. The exact handling of Ts will be
discussed below. At the same time, these components of E[n] usually dominate
over the exchange-correlation energy. Even the complete neglect of Exc often
leads to an electronic structure which is qualitatively correct. One could thus
hope that an approximate account of Exc allows a sufficiently accurate description
of most many-particle systems.

• As F [n], Ts[n], EH[n] and Eext[n] are universal, the same is true for Exc[n]. There-
fore the same xc-functional applies to all systems in which the particle–particle
interaction is given by the Coulomb force. An approximation for Exc, which has
been obtained for some model system with the Coulomb interaction can, from
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a mathematical point of view, legitimately be utilized for all kinds of Coulomb
systems.

• The DFT xc-energy Exc is not identical with the conventional xc-energy EQC
xc ,

which is usually employed in standard many-body theory and quantum chem-
istry. A more detailed discussion of this point requires the separation of EQC

xc

into an exchange and a correlation component and is therefore postponed until
Sect. 4.1. At this point, we only emphasize that Exc is not identical with the dif-
ference between the complete interaction energy of the interacting system and its
classical counterpart,

E |Ψ0〉
xc = 〈Ψ0|Ŵ |Ψ0〉−EH[n0] . (3.27)

In fact, Eq. (3.24) may be rewritten as

Exc = 〈Ψ0|T̂ +Ŵ |Ψ0〉−Ts[n0]−EH[n0] , (3.28)

so that the difference between Exc and E |Ψ0〉
xc originates from the difference be-

tween the kinetic energy of an interacting system with density n0 and that of a
noninteracting system with the same density,

Exc −E |Ψ0〉
xc = 〈Ψ0|T̂ |Ψ0〉−Ts[n0] = 〈Ψ0|T̂ |Ψ0〉−〈Φ0|T̂ |Φ0〉 . (3.29)

As the interacting ground state |Ψ0〉 differs from the Slater determinant |Φ0〉
which gives the same density, one has 〈Ψ0|T̂ |Ψ0〉 �= 〈Φ0|T̂ |Φ0〉.
In fact, the interacting ground state |Ψ0〉 minimizes the total energy of the inter-
acting system, 〈Ψ0|T̂ +Ŵ + V̂ext|Ψ0〉, while the KS ground state |Φ0〉 = |Φ[n0]〉
corresponding to the same n0 minimizes the expectation value of the kinetic en-
ergy operator,

〈Φ0|T̂ |Φ0〉 = inf
Ψ→n0

〈Ψ|T̂ |Ψ〉

(since for fixed n0 the external potential term 〈Φ[n0]|V̂ext|Φ[n0]〉 =
∫

d3r n0vs is
also fixed, the minimization of the total energy reduces to a minimization of
〈Φ[n0]|T̂ |Φ[n0]〉). As a results one finds

Ts[n0] = 〈Φ0|T̂ |Φ0〉 ≤ 〈Ψ0|T̂ |Ψ0〉 , (3.30)

and thus

Exc ≥ E |Ψ0〉
xc . (3.31)

This result is illustrated by a look at the difference between Exc and E |Ψ0〉
xc in terms

of numbers. These quantities have been evaluated rigorously only for rather sim-
ple systems such as closed-subshell atoms. For instance, for helium one obtains
T = 2.903724Hartree [80, 81] (nonrelativistically) and Ts = 2.867082Hartree
[82, 83], so that T −Ts = Exc −E |Ψ0〉

xc = 0.036642Hartree. Similarly, for beryl-
lium the difference amounts to Exc − E |Ψ0〉

xc = 0.0737 Hartree [84, 82]. The



3.1 Kohn-Sham Equations 63

difference Exc − E |Ψ0〉
xc is thus found to be of the same order of magnitude as

the complete correlation energy (see below). Note, however, that E |Ψ0〉
xc is not

identical with the conventional xc-energy EQC
xc .

The real task after these remarks is the specification of vs and thus of the orbitals
φi which reproduce the interacting density n0. For this purpose one considers the
ground state energy functional E[n] of an interacting system for a density n close to
the true ground state density n0,

n(rrr) = n0(rrr)+δn(rrr) . (3.32)

Using a functional Taylor expansion of E[n] about n = n0 together with the varia-
tional equation (2.38),

E[n] = E[n0]+
∫

d3r
δE[n]
δn(rrr)

∣∣∣∣
n=n0

[
n(rrr)−n0(rrr)

]
+O(δn2)

= E[n0]+
∫

d3r μδn(rrr)+O(δn2) , (3.33)

and restricting the variation of E[n] to fixed particle number,∫
d3r n(rrr) =

∫
d3r n0(rrr) ⇐⇒

∫
d3r δn(rrr) = 0 , (3.34)

one finds that the deviation of E[n0 +δn] from the true ground state energy E[n0] is
of second order in the density deviation δn,

E[n0 +δn]−E[n0] = O(δn2) . (3.35)

This variational property is the reason why the total energy functional is rather in-
sensitive to errors in the density which is inserted, a fact that is often utilized in
applications.

The expansion (3.33) requires the existence of the functional derivative of E[n]
at n0. As discussed earlier, however, many densities are not v-representable, so that
δE[n]/δn|n=n0 can not be expected to exist in general. The issue of functional dif-
ferentiability of E[n] (and its components) is nevertheless set aside for a moment—
we will return to this point in Sect. 3.2.

Now the individual components of E[n0 + δn]−E[n0] have to be examined. In
the case of Ts one resorts to the implicit density functional representation (3.21)
via the φi. Since the φi are unique functionals of the density, any variation δn(rrr)
corresponds to a unique variation δφi of φi, i.e. any density n0 + δn corresponds
to a unique set of orbitals φi + δφi—provided that n0 + δn is noninteracting v-
representable. At this point one thus needs the assumption that all relevant interact-
ing densities are also noninteracting v-representable (for a discussion of this point
see below). To first order in the deviation δφi and thus δn(rrr) one obtains
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Ts[n0 +δn]−Ts[n0]

=
(−ih̄)2

2m ∑
i,σ

Θi

∫
d3r

{
δφ ∗

i (rrrσ)∇∇∇2φi(rrrσ)+φ ∗
i (rrrσ)∇∇∇2δφi(rrrσ)

}
+O(δφ 2)

=
(−ih̄)2

2m ∑
i,σ

Θi

∫
d3r

{
δφ ∗

i (rrrσ)∇∇∇2φi(rrrσ)+δφi(rrrσ)∇∇∇2φ ∗
i (rrrσ)

}
+O(δφ 2) ,

where partial integration has been utilized for the last line, assuming all surface
contributions to vanish (or to cancel). One can now use the single-particle equations
(3.4) in order to eliminate the derivatives

Ts[n0 +δn]−Ts[n0]

= ∑
i,σ

Θi

∫
d3r

[
εi − vs(rrr)

]{
δφ ∗

i (rrrσ)φi(rrrσ)+φ ∗
i (rrrσ)δφi(rrrσ)

}
+O(δφ 2) .

Applying Eq. (3.23) to n0 +δn,

δn(rrr) = ∑
i

Θi ∑
σ=↑,↓

{
δφ ∗

i (rrrσ)φi(rrrσ)+φ ∗
i (rrrσ)δφi(rrrσ)

}
+O(δφ 2) ,

and utilizing proper normalization,

0 =
∫

d3r |φi(rrrσ)+δφi(rrrσ)|2 −
∫

d3r |φi(rrrσ)|2

=
∫

d3r
{

δφ ∗
i (rrrσ)φi(rrrσ)+φ ∗

i (rrrσ)δφi(rrrσ)
}

+O(δφ 2) ,

one can express Ts[n0 +δn]−Ts[n0] in terms of δn,

Ts[n0 +δn]−Ts[n0] =
∫

d3r
[
εi − vs(rrr)

]
δn(rrr)+O(δφ 2)

= −
∫

d3r vs(rrr)δn(rrr)+O(δn2) . (3.36)

As one might have expected, the individual components of E[n] do not have the
variational property (3.35), but rather contain terms of first order in δn.

The next component to be considered is the Hartree term (3.25),

EH[n0 +δn]−EH[n0] =
∫

d3r
∫

d3r′ δn(rrr)w(rrr,rrr′)n0(rrr′)+O(δn2) . (3.37)

The variation of the external potential energy is even simpler,

Eext[n0 +δn]−Eext[n0] =
∫

d3r vext(rrr)δn(rrr) . (3.38)

On the other hand, for the unknown xc-functional one can only write down the
formal functional Taylor expansion,
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Exc[n0 +δn]−Exc[n0] =
∫

d3r
δExc[n]
δn(rrr)

∣∣∣∣
n=n0

δn(rrr)+O(δn2) . (3.39)

Collecting the results (3.35)–(3.39), one arrives at

0 =
∫

d3r

{
vs(rrr)−

∫
d3r′ w(rrr,rrr′)n0(rrr′)− vext(rrr)− δExc[n]

δn(rrr)

∣∣∣∣
n=n0

}
δn(rrr) .

(3.40)
Equation (3.40) is valid for arbitrary variations δn(rrr) which satisfy (3.34), so that
one ends up with the identity

vs(rrr) = vext(rrr)+ vH[n0](rrr)+ vxc[n0](rrr) , (3.41)

where vH is the Hartree (direct Coulomb) potential,

vH[n](rrr) =
∫

d3r′ w(rrr,rrr′)n(rrr′) , (3.42)

and the xc-potential vxc is defined as

vxc[n](rrr) =
δExc[n]
δn(rrr)

. (3.43)

It is apparent that the unknown potential vs is a density functional itself, so that the
single-particle equations (3.4) are nonlinear: The solutions φi determine the density
via Eq. (3.23), which then determines the effective potential vs via Eq. (3.41). The
celebrated Kohn-Sham equations [85] (see also [86]) resulting from insertion of
(3.41) into (3.4),{

− h̄2∇∇∇2

2m
+ vext(rrr)+ vH[n](rrr)+ vxc[n](rrr)

}
φi(rrrσ) = εiφi(rrrσ) , (3.44)

have to be solved in a self-consistent fashion, similar to the HF equations.
One starts with some trial density n(1), which allows the construction of the start-

ing potential

v(1)
s (rrr) = vext(rrr)+ vH[n(1)](rrr)+ vxc[n(1)](rrr)

(assuming the functional derivative of Exc[n] to be given). Only a rough estimate of
the actual density is required. For instance, (suitably screened) hydrogenic orbitals
could be used to generate n(1) in calculations for atoms. For molecules or solids
the trial density is often set up as a superposition of atomic densities. Alternatively,

one can start with a direct guess for the total potential v(1)
s (rrr). Solution of (3.44)

with v(1)
s (rrr) then provides some orbitals φ (2)

i which lead to an improved density n(2)

via Eq. (3.23). The density n(2) can in turn be used to obtain improved potentials
vH[n(2)](rrr) and vxc[n(2)](rrr). This iterative procedure is repeated until the difference
between the densities obtained in two successive iterations falls below some prede-
fined accuracy criterion. In practice, the control of this self-consistency procedure
is non-trivial.
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A number of comments are appropriate.

1. The KS equations are equivalent to a minimization of the total ground state en-
ergy, which is the reason why the self-consistent iteration in the spirit of the
HF equations converges. In fact, the KS equations can be derived in a some-
what more direct way by minimization of the total energy functional (3.24) with
respect to N single-particle orbitals which are assumed to form the density via
Eq. (3.23), while proper normalization is ensured by a subsidiary condition for
the orbitals. This approach relies explicitly on the one-to-one correspondence be-
tween the ground state density of a noninteracting system and the corresponding
set of single-particle orbitals (as well as on the noninteracting v-representability
of the interacting density).

2. The Slater determinant constructed from the KS orbitals, Eq. (3.3), does not rep-
resent the exact ground state Ψ0 of the interacting system. Rather, the KS orbitals
φi should be understood as purely mathematical constructs which only serve as a
basis for the representation of the density. The mapping between the original in-
teracting system and the effective noninteracting system, which is established by
the KS approach, only ensures that the ground state density and energy are repro-
duced, but not the interacting ground state itself. The price for the reduction of
the complexity of the many-body problem is the limited information that can be
extracted via the KS scheme (at least from a formal point of view). However, for
many structural questions in condensed matter physics and quantum chemistry
this restricted information on the energetics and the electronic charge distribution
is completely sufficient to give an answer.
Obviously, Φ0 approaches the true Ψ0 for vanishing particle–particle interaction.
This implies that the agreement between Φ0 and Ψ0 depends on the relative im-
portance of the external and Hartree potentials compared to xc-effects. For that
reason Φ0 is often used as an approximation to the true ground state in the case
of systems whose electronic structure is dominated by single-particle aspects.
One should nevertheless keep in mind that the difference between Φ0 and Ψ0

becomes immediately apparent even for a weak interaction w, if one looks at the
2-particle density

n(2)(rrr,rrr′) =
N(N −1)

2 ∑
σ1...σN

∫
d3r3 . . .d3rN |(rrrσ1,rrr

′σ2,rrr3σ3, . . .rrrNσN |Ψ0〉|2.
(3.45)

n(2)(rrr,rrr′) is the probability to find one particle with arbitrary spin at position rrr
and simultaneously a second particle with arbitrary spin at position rrr′. For the
Slater determinant Φ0 one obtains

2n(2)
s (rrr,rrr′) = n(rrr)n(rrr′)− ∑

σ ,σ ′

∣∣∣∣∣
N

∑
i=1

φi(rrrσ)φ ∗
i (rrr′σ ′)

∣∣∣∣∣
2

. (3.46)

The first term in Eq. (3.46) is the direct product of the probability of finding
one particle at point rrr with the probability to find a second particle at rrr′. This
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product of single-particle probabilities would be the exact result if the motion of
the particles was completely uncorrelated. However, in contrast to classical par-
ticles spin-1/2 fermions are correlated by the Pauli principle, even if no particle–
particle interaction is present. This so-called Pauli correlation is expressed by
the second term in Eq. (3.46). The role of this term is quite easily seen if one
considers the probability to find two noninteracting particles at the same point
rrr = rrr′,

2n(2)
s (rrr,rrr) = n(rrr)2 −∑

σ

∣∣∣∣∣
N

∑
i=1

|φi(rrrσ)|2
∣∣∣∣∣
2

= ∑
σ ,σ ′=↑,↓

nσ (rrr)nσ ′(rrr)− ∑
σ=↑,↓

nσ (rrr)2

= 2n↑(rrr)n↓(rrr) . (3.47)

In (3.47) the total density has been decomposed into the contributions of the two
spin orientations as in (2.136). In addition, one has used the fact that a given
orbital either contains a spin-up or a spin-down electron and that φ ∗

i (rrr↑)φi(rrr↓) =
0 (spin-projection is assumed to be a good quantum number). As expected, the
probability to find two particles at the same point is given by the probability to
find one particle with spin up and one particle with spin down.
As soon as a particle–particle interaction is present, the motion of two particles
with different spins is no longer independent. This is reflected by the so-called
electron–electron cusp in n(2)(rrr,rrr′). This cusp is illustrated in Figs. 3.1 and 3.2
for helium. In the case of helium the exact ground state corresponding to the
Hamiltonian (2.1) is a product of a symmetric spatial wavefunction ψ and an
antisymmetric spin-wavefunction χ00 in which the two spins are coupled to a
total spin of zero,

(rrr1σ1rrr2σ2|Ψ0〉 = ψ(rrr1,rrr2) χ00(σ1,σ2) (3.48)

χ00(σ1,σ2) =
1√
2

{
χ+(σ1)χ−(σ2)−χ−(σ1)χ+(σ2)

}
. (3.49)

The spatial function ψ can be characterized further by use of the inherent sym-
metries of the helium ground state. Given the triangle defined by the positions of
the nucleus and the two electrons, any rotation of this triangle about the corner
at which the nucleus is located can not lead to a change in the wavefunction.
As a consequence, there are only three independent coordinates on which ψ de-
pends. One usually chooses the distances r1 and r2 between the electrons and the
nucleus (located at the origin) as well as the distance |rrr1 − rrr2| between the two
electrons,

ψ(rrr1,rrr2) = ψ(r1,r2, |rrr1 − rrr2|) .

Extremely accurate forms for ψ(r1,r2, |rrr1 − rrr2|) have been obtained by use of a
variational approach [80].
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Fig. 3.1 Exact 2-particle density of helium as function of rrr2 = (x,y,0): The nucleus is located at
the origin, while the second electron is kept fixed at rrr1 = (0.559Bohr,0,0).
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Fig. 3.2 Kohn-Sham 2-particle density of helium as function of rrr2 = (x,y,0): The nucleus is lo-
cated at the origin, while the second electron is kept fixed at rrr1 = (0.559Bohr,0,0).
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For the ground state (3.48) the 2-particle density is simply given by

n(2)(r1,r2, |rrr1 − rrr2|) = |ψ(r1,r2, |rrr1 − rrr2|)|2 . (3.50)

This function is shown in Fig. 3.1, normalized so that integration over rrr2 yields
the standard radial density,

4πr2
1n(r1)

= (4πr2
1) 4π

∫ ∞

0
r2

2dr2

∫ +1

−1
d(cosΘ)n(2)(r1,r2, [r2

1 + r2
2 −2r1r2 cosΘ ]1/2) ,

with Θ denoting the angle between rrr1 and rrr2. In Fig. 3.1 one electron is fixed
at a distance of r1 = 0.559Bohr from the nucleus. The position of the second
electron is then varied in a plane containing the nucleus and the first electron.
For r2 = 0.559Bohr and Θ = 0 the two electrons sit on top of each other.
One can see that the two electrons preferably move on opposite sides of the
nucleus: the likelihood to come close to each other is only half as large as that of
remaining on opposite sides. The 2-particle density clearly shows the electron–
electron cusp at rrr1 = rrr2, reflecting the short-range Coulomb repulsion. Figure 3.2
provides the corresponding result obtained with the KS determinant Φ0. As this
determinant only contains Pauli, but no Coulomb correlations, the electrons move
independently,

n(2)
s (r1,r2, [r2

1 + r2
2 −2r1r2 cosΘ ]1/2) = |φ1(r1)|2|φ1(r2)|2 ,

which is consistent with (3.47). The probability for the electrons to sit on top of
each other is as high as that for sitting at the same radial distance on opposite
sides of the nucleus. One finds that the KS determinant can not reproduce the
interacting 2-particle density even qualitatively, although the KS orbitals repro-
duce the interacting ground state density exactly. The KS equations yield only
two quantities correctly, the ground state density and, by insertion into E[n], the
ground state energy.

3. On this basis a brief comparison of the KS approach with the HF method seems
worthwhile. The core of the HF scheme is the approximation of the many-body
ground state wavefunction in terms of a Slater determinant of effective single-
particle orbitals. The equations for the determination of these orbitals are ob-
tained from minimization of the total energy. They are nonlinear (they have to be
solved by iteration) and nonlocal (due to the form of the HF exchange potential).
The HF energy and the ground state wavefunction do not contain any correlation
effects. On the other hand, all ground state expectation values for observables
can be evaluated directly in this approximation, as the many-body wavefunction
is available.
The core of the KS approach is the representation of the ground state density and
thus, via the HK energy functional, of the ground state energy in terms of effec-
tive single-particle orbitals. The equations which determine the orbitals are again
obtained from minimization of the total energy. They are nonlinear, but local (as
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the KS xc-potential has this property). The quality of the results depends on the
choice for the energy functional. However, both the ground state density and, in
particular, the energy include correlation effects even in the simplest available ap-
proximations for the energy functional. On the other hand, no approximation for
the ground state wavefunction emerges from the KS scheme, at least in principle.
Other ground state observables can therefore only be calculated if corresponding
density functionals are available.
A more detailed comparison of the HF and KS approaches can be found in sub-
sequent chapters of this book. A formal analysis of the underlying variational
procedures is given in Sects. 4.1 and 6.2.3. The consequences of the differences
observed are investigated quantitatively in Sect. 6.3.

4. For the ground state energy an alternative form to (3.24) is obtained by rewriting
Ts with (3.4),

Ts = ∑
i

Θi ∑
σ=↑,↓

∫
d3r φ ∗

i (rrrσ)
{

εi − vs(rrr)
}

φi(rrrσ) (3.51)

E0 = ∑
i

Θiεi −
∫

d3r vxc(rrr)n0(rrr)−EH[n0]+Exc[n0] . (3.52)

In comparison with the original form (3.24) the expression (3.52) has the ad-
vantage that one does not have to evaluate gradients of the KS orbitals. For this
reason it is almost exclusively used in all numerical implementations. The re-
lation is valid for arbitrary xc-functionals, as long as self-consistency has been
reached.

3.2 Noninteracting v-Representability

The question whether one can always find a noninteracting system with potential
vs, for which the density n0 of the interacting system is the ground state den-
sity, has already been raised. In order to answer this question of noninteracting
v-representability, one begins with a reformulation. Consider the energy functional
of noninteracting particles,

Es[n] = Ts[n]+
∫

d3r vs(rrr)n(rrr) . (3.53)

Use of the variational equation (2.38) for Es[n] yields

vs(rrr) = − δTs[n]
δn(rrr)

∣∣∣∣
n(rrr)=n0(rrr)

+ μ . (3.54)

One thus finds that the existence of vs for some given n0 is intimately related to
the existence of the functional derivative δTs[n]/δn for this density. The existence
of δTs[n]/δn for the functional (3.21), which originates from a single Slater deter-
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minant ground state has not been demonstrated. The same statement applies to the
Levy-Lieb extension of Ts[n], Ts,LL[n] = infΨ→n〈Ψ|T̂ |Ψ〉.

On the other hand, the existence of the functional derivative has been established
[30, 31, 87] for the noninteracting limit of the Lieb functional (2.106),

Ts,L[n] := inf
D̂→n

tr
{

D̂T̂
}

, (3.55)

with

D̂ = ∑
k

dk |Ψk〉〈Ψk|, d∗
k = dk ≥ 0, ∑

k

dk = 1, 〈Ψk|Ψl〉 = δkl , Ψk ∈ H 1 (3.56)

so that
n(rrr) = ∑

k

dk 〈Ψk|n̂(rrr)|Ψk〉 .

Since the proofs given for FL[n] do not depend on the presence of the electron–
electron interaction, all statements on FL[n] carry over to Ts,L[n], with the appro-
priate redefinitions of the sets involved (see Sect. 2.3). In particular, the functional
derivative of Ts,L[n] exists for all densities which are noninteracting ensemble v-
representable, i.e. all densities of the set

B0 :=
{

n =
q

∑
i=1

ci〈Ψ0,i|n̂|Ψ0,i〉
∣∣∣∣ with: ci = c∗i ≥ 0;

q

∑
i=1

ci = 1;

|Ψ0,i〉 = degenerate ground states of T̂ +
∫

vn̂, v ∈ L 3/2 +L ∞
}

.

For each density n0 ∈ B0 there exists a unique potential vs from L 3/2 + L ∞, so
that

δTs,L[n]
δn(rrr)

∣∣∣∣
n(rrr)=n0(rrr)

= −vs(rrr) with vs ∈ L 3/2 +L ∞ (3.57)

(of course, vs is only unique up to an irrelevant additive constant).
Unfortunately, it is not clear whether B0 is identical with the set of interacting

ensemble v-representable densities B, Eq. (2.95). While there are some hints in-
dicating that these sets might coincide [27], their identity remains questionable in
view of the fact that the set of noninteracting pure-state v-representable densities
is not identical [23] with the set of interacting pure-state v-representable densities
A , Eq. (2.94). However, as for the interacting situation, the set of densities in B0

is dense in the larger set S , Eq. (2.85). For any density n ∈ S with n /∈ B0 one
can thus find a noninteracting ensemble v-representable density which is arbitrarily
close to n. So, for all practical purposes the functional derivative of Ts,L[n] exists for
all interacting densities of interest.

Even though it is clear from Eq. (2.100), it seems worthwhile to convince one-
self explicitly that Ts,L[n] is a consistent extension of the HK functional Ts[n]. Con-
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sider a noninteracting v-representable density n0 resulting from a non-degenerate
KS ground state |Φ0〉 (the set of all such densities is the domain of Ts[n]). The ques-
tion then is: what is the density matrix D̂s for which infD̂→n0

tr{D̂T̂} is obtained?
The answer to this question can be given in a rather general form. Let us for the

moment consider an arbitrary fixed density n. We want to find the density matrix D̂s

with the properties

(a) n = tr{D̂sn̂}
(b) tr{D̂T̂} minimal .

However, for fixed n the minimum of tr{D̂T̂} is obtained for exactly the same den-
sity matrix as the minimum of

tr{D̂Ĥs} = tr{D̂T̂}+
∫

d3r vs(rrr) tr{D̂n̂(rrr)} = tr{D̂T̂}+
∫

d3r vs(rrr)n(rrr) , (3.58)

since for fixed n the contribution of the second term on the right-hand side is also
fixed. Thus, quite generally, the density matrix D̂s which minimizes the total KS
energy tr{D̂Ĥs} simultaneously minimizes its kinetic energy component.

Let us now return to our special case, in which the non-degenerate |Φ0〉 mini-
mizes the energy of the KS system. This means that D̂s = |Φ0〉〈Φ0| is the density
matrix which minimizes tr{D̂T̂} for given

n0(rrr) = tr
{

D̂sn̂
}

= 〈Φ0|n̂|Φ0〉 = ∑
i

Θi ∑
σ=↑,↓

|φi(rrrσ)|2 . (3.59)

With this D̂s one obtains

Ts,L[n0] = tr
{

D̂sT̂
}

= ∑
i

Θi ∑
σ=↑,↓

∫
d3r φ ∗

i (rrrσ)
(−ih̄∇∇∇)2

2m
φi(rrrσ) , (3.60)

for the Lieb kinetic energy, in agreement with the original KS kinetic energy func-
tional for non-degenerate KS systems, Eq. (3.21).

The kinetic energy functional Ts,L[n] induces a corresponding definition for the
xc-functional,

Exc,L[n] := FL[n]−Ts,L[n]−EH[n] . (3.61)

Strictly speaking, functional differentiability of Exc,L[n] is restricted to the set
of densities, for which both FL[n] and Ts,L[n] are differentiable, i.e. the densities
which are simultaneously interacting and noninteracting ensemble v-representable,
n ∈ (B0 ∩B). However, as in the case of FL[n] and Ts,L[n] one can rely on the fact
that for any n ∈S there is some n1 ∈B and some n2 ∈B0 which are both infinites-
imally close to n, so that the existence of the functional derivative is ensured for all
practical purposes.
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3.3 Degenerate Kohn-Sham Ground States

The discussion in Sect. 3.1 is based on the assumption that the ground state of the
auxiliary KS system is non-degenerate. The question remains: How can one handle
the situation, if there are more degenerate KS states at the Fermi level than there are
electrons to be distributed among them? The answer to this question is provided by
an analysis of Ts,L[n], as only this form of the kinetic energy functional guarantees
the existence of the functional derivative δTs[n]/δn for arbitrary n.

Let us assume that the ground state density n0 of the interacting system, when
inserted into δTs,L[n]/δn, leads to a vs (via (3.57)) which yields q degenerate N-
particle KS Slater determinants |Φ0,k〉,

Ĥs|Φ0,k〉 = Es|Φ0,k〉 ; k = 1, . . .q . (3.62)

The single-particle spectrum of such a degenerate KS system is shown in Fig. 3.3.
All KS states with eigenvalues below the highest occupied KS level (with energy εF)

εF

0

εk

Fig. 3.3 Sketch of the single-particle spectrum of a degenerate KS system. Filled circles indicate
occupied KS states, open circles refer to unoccupied states.

are occupied in all the determinants |Φ0,k〉. However, the occupation of the highest
KS level differs for each of the states |Φ0,k〉. The presence of φi in |Φ0,k〉 can be
characterized by an occupation factor Θik,

Θik =
{

1 if φi present in |Φ0,k〉
0 otherwise

. (3.63)
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In total there are q possibilities to distribute the most weakly bound KS particles
among the degenerate orbitals φi at the Fermi level (in the example of Fig. 3.3 one
has q = 6, ignoring spin).

As long as one does not fix the density, the total energy functional of noninter-
acting particles tr{D̂Ĥs}, Eq. (3.58), is then minimized by an arbitrary linear super-
position of all degenerate states |Φ0,k〉, i.e. the minimizing density matrix has the
form

D̂s =
q

∑
k=1

dk |Φ0,k〉〈Φ0,k| ; d∗
k = dk ≥ 0 ;

q

∑
k=1

dk = 1 . (3.64)

D̂s is constructed from the degenerate ground state determinants only—any admix-
ture of a higher lying state gives an energy tr{D̂Ĥs} above Es. The density corre-
sponding to the ensemble (3.64) reads

ns(rrr) =
q

∑
k=1

dk 〈Φ0,k|n̂(rrr)|Φ0,k〉

= ∑
σ=↑,↓

{
∑

εi<εF

|φi(rrrσ)|2 + ∑
εi=εF

( q

∑
k=1

dk Θik

)
|φi(rrrσ)|2

}
. (3.65)

For the derivation of the second line the fact has been used that all single-particle
levels with an eigenvalue below εF are occupied in all degenerate Slater determi-
nants |Φ0,k〉, while those at the Fermi level, i.e. with εi = εF, are distributed among
the states |Φ0,k〉 according to (3.63).

Any set of dk with proper normalization leads to the same ground state energy
Es, so that the dk are not determined by the requirement of energy minimization for
the KS system. Even if some of the corresponding densities (3.65) are identical, one
generally finds a number of different ground state densities for the degenerate KS
system. Only one of them agrees with the actual density n0 of the interacting system.
It is the identity of the ensemble density (3.65) with n0 which fixes the weights dk.

Equation (3.65) suggests a redefinition of the KS occupation factor (3.14) as

Θi =

⎧⎨
⎩

1 for εi < εF

∑q
k=1 dk Θik for εi = εF

0 for εi > εF

; ∑
i

Θi = N . (3.66)

With this redefinition the ensemble density (3.65) and the associated kinetic energy
(3.55) have the same form as the corresponding non-degenerate quantities (3.13)
and (3.21). This is immediately obvious for the density (3.65),

ns(rrr) = tr
{

D̂sn̂
}

= ∑
i

Θi ∑
σ=↑,↓

|φi(rrrσ)|2 . (3.67)

In the case of Ts,L one again has to use the fact that, among all density matrices
of the general form (3.56) which yield the density (3.67), the expression tr{D̂T̂} is
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minimized by exactly the same D̂s as the total KS energy (3.58). Consequently, one
obtains for any admissible ground state density ns,

Ts,L[ns] = inf
D̂→ns

tr
{

D̂T̂
}

= tr
{

D̂sT̂
}

= ∑
i

Θi ∑
σ=↑,↓

∫
d3r φ ∗

i (rrrσ)
(−ih̄∇∇∇)2

2m
φi(rrrσ) . (3.68)

On the basis of (3.67) and (3.68) as well as the standard decomposition (3.24)
of the total energy (with Ts and Exc replaced by (3.55) and (3.61)) one can now go
through the explicit derivation of the KS potential as in Sect. 3.1. One ends up with
the KS equations for degenerate KS systems,{

− h̄2∇∇∇2

2m
+ vext(rrr)+ vH[n](rrr)+ vxc[n](rrr)

}
φi(rrrσ) = εiφi(rrrσ) , (3.69)

where the eigenvalues at the Fermi level are now allowed to be degenerate,

εi ≤ εi+1 (for arbitrary i) . (3.70)

The density is given by (3.67) with occupation factors of the form

Θi = 1 for εi < εF

0 ≤ Θi ≤ 1 for εi = εF

Θi = 0 for εi > εF

⎫⎬
⎭ ∑

i
Θi = N , (3.71)

vH is defined as in Eq. (3.42) and vxc by

vxc[n](rrr) =
δExc,L[n]

δn(rrr)
. (3.72)

The alternative form of the total energy, Eq. (3.52), also remains valid with Θi now
given by (3.71).

It is worthwhile pointing out the difference between Eqs. (3.66) and (3.71): in
order to set up a KS scheme for the case of degenerate KS ground states the mere
existence of weights dk which reproduce any interacting ground state density via
(3.65) is sufficient. On the other hand, in a self-consistent scheme the occupation
factors at the Fermi level can no longer be simply evaluated from a given set of
dk and |Φ0,k〉 as these quantities are the outcome of the calculation. One needs a
constructive scheme for the determination of the dk, i.e. for choosing the Θi for the
KS levels with εi = εF during the self-consistent iteration. As the correct ground
state density of the KS system also minimizes the energy of the interacting system,
the Θi have to be chosen in accordance with this requirement. If the interacting
system is degenerate, several degenerate KS densities and several sets of minimizing
Θi exist.
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On the other hand, fractional values of Θi at the Fermi level are only legitimate
if the resulting self-consistent KS potential does not break the degeneracy, which
has led to the non-integer Θi. For instance, in the boron atom with electron–electron
interaction only the occupation

Θ2p0 = Θ2p± =
1
3

leads to a spherically symmetric n and thus vs, which is the basis for the degen-
eracy of the KS 2p0 and 2p± levels. Any other choice for Θi gives a non-spherical
potential which lifts the degeneracy of the three p-states. A fractional occupation al-
ways has to be chosen so that the degeneracy remains unbroken, i.e. in an internally
consistent fashion. This requirement usually determines the Θi completely (together
with the correct particle number). Nevertheless, often several internally consistent
sets of Θi must be compared (usually both fractional and integer sets). The ground
state is then identified with the set which yields the lowest total energy.

In practice, the Fermi distribution (3.15) is the most elegant way to handle de-
generate or nearly degenerate systems. As long as the temperature T is chosen suf-
ficiently small, one essentially obtains the same result as for zero temperature.

3.4 Janak’s Theorem, Fractional Particle Numbers

In the previous sections the occupation numbers Θi of the individual KS states
emerged from the total energy minimization of DFT. Let us now step back for a
moment and consider the situation in which the occupation of the single-particle
states generating the density is specified in an arbitrary fashion [88],

n(rrr) := ∑
i

Θi ∑
σ=↑,↓

|φi(rrrσ)|2 with 0 ≤ Θi ≤ 1 ∀ i . (3.73)

At this point, the occupation numbers Θi may be fractional and may not sum up to
an integer particle number N. There may be gaps in the occupation of the underlying
single-particle spectrum, i.e. there may be states with vanishing Θi scattered among
states with non-zero occupation numbers. The number of Θi which are non-zero
may be finite or infinite. The corresponding total energy is then defined as

EJ(Θi) := ∑
i

Θiti +
∫

d3r vext(rrr)n(rrr)+EH[n]+Exc,L[n] (3.74)

ti := ∑
σ=↑,↓

∫
d3r φ ∗

i (rrrσ)
(−ih̄∇∇∇)2

2m
φi(rrrσ) , (3.75)

where EH[n] and Exc,L[n] are the standard DFT functionals evaluated with the den-
sity (3.73). Minimization of EJ with respect to the yet undetermined orbitals φi for
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fixed Θi and under the constraint of normalization1 leads to KS-type single-particle
equations,{

− h̄2∇∇∇2

2m
+ vext(rrr)+ vH[n](rrr)+ vxc[n](rrr)

}
φi(rrrσ) = εiφi(rrrσ) . (3.76)

In the present situation these equations have to be solved at least for all states φi

with non-vanishing Θi, not just for the lowest N orbitals.
Clearly, the energy (3.74) coincides with the ground state energy E0(N) of the

N-particle system subject to vext if (i) ∑i Θi yields the correct particle number and
(ii) the energy EJ(Θi) is simultaneously minimized with respect to the Θi,

EJ(Θi,0) = E0(N) if ∑
i

Θi,0 = N and
∂EJ

∂Θi

∣∣∣∣
Θi=Θi,0

= 0 . (3.77)

On the other hand, for non-integer particle number N + η (with 0 ≤ η ≤ 1) EJ(Θi)
provides a continuous interpolation between the ground state energies of the neigh-
boring integer particle numbers N and N + 1, as long as EJ(Θi) is minimized with
respect to the Θi for all η .

Let us evaluate the partial derivative ∂EJ/∂Θi, which controls the occupation,
explicitly. Given the definition of EJ, it is obvious that the orbitals φi which minimize
EJ vary, if the Θi are varied. The desired partial derivative therefore consists of two
contributions, the explicit dependence of EJ on Θi and the implicit dependence via
the orbitals,

∂EJ

∂Θi
= ti +∑

j
Θ j

∂ t j

∂Θi
+

∫
d3r [vext + vH + vxc] ∑

σ=↑,↓

[
|φi|2 +∑

j
Θ j

∂ |φ j|2
∂Θi

]
.

(3.78)
The first term, the kinetic energy of orbital i, can be rewritten by use of the single-
particle equation (3.76), in analogy to Eq. (3.51). Multiplication of (3.76) with φ ∗

i
and subsequent integration yields

ti + ∑
σ=↑,↓

∫
d3r [vext(rrr)+ vH(rrr)+ vxc(rrr)] |φi(rrrσ)|2 = εi . (3.79)

Insertion of this relation (reflecting the minimization of EJ with respect to φi) and of
the definition (3.75) into Eq. (3.78) then gives

∂EJ

∂Θi
= εi +∑

j
Θ j ∑

σ=↑,↓

∫
d3r

∂φ ∗
j

∂Θi

[
(−ih̄∇∇∇)2

2m
+ vext + vH + vxc

]
φ j + c.c. .

If the single-particle equations (3.76) are used once more, one finally arrives at
Janak’s theorem [88],

1 There is no need to constrain different orbitals to be orthogonal as the single-particle operator on
the left-hand side of Eq. (3.76) is hermitian anyway.



78 3 Effective Single-Particle Equations

∂EJ

∂Θi
= εi +∑

j
Θ jε j

∂
∂Θi

∑
σ=↑,↓

∫
d3r |φ j(rrrσ)|2 = εi . (3.80)

Equation (3.80) is a generalization of Slater’s analogous result obtained for the Xα-
method [89, 90].

It remains to analyze which distribution of occupation numbers emerges from the
minimization of EJ with respect to the Θi for fixed particle number N + η . Imple-
menting the particle number and normalization constraints by Lagrange parameters
(as usual) and the constraint 0 ≤Θi ≤ 1 by the transformation

Θi = cos2(αi) with 0 ≤ αi ≤ π
2

,

the functional to be minimized is given by

EJ(cos2(αi))−∑
i

cos2(αi)εi

[
∑

σ=↑,↓

∫
d3r |φi(rrrσ)|2 −1

]

−μ

[
∑

i
cos2(αi)− (N +η)

]
.

Variation with respect to φi leads to Eq. (3.76), as before. Minimization with respect
to αi, on the other hand, gives the condition

sin(2αi)
[

∂EJ

∂Θi
−μ

]
= sin(2αi) [εi −μ ] = 0 .

This relation can only be satisfied in three ways:

αi = 0 ⇐⇒ Θi = 1 εi arbitrary

αi = π
2 ⇐⇒ Θi = 0 εi arbitrary

αi arbitrary ⇐⇒ Θi arbitrary εi = μ

Thus there is only one particular energy for which a fractional occupancy can occur.
All other states are either completely filled or empty. From the KS approach one
would expect that the levels below μ are filled, the ones above μ are empty.

This expectation can be verified by use of Janak’s theorem. As discussed, EJ

recovers the true ground state energy in the case of integer particle numbers, if min-
imized with respect to the Θi. For this reason the present Θi must be identical with
the KS occupation numbers (3.71) for integer particle numbers. Let us convince our-
selves that Janak’s theorem (3.80) actually yields the KS occupation in this limit. For
fixed particle number any increase of one of the Θi has to be compensated by a re-
duction of the others. So, starting from the KS occupation, an infinitesimal increase
of the occupation Θu of an unoccupied state φu from its initial value of zero leads to
the total energy change
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δE =
∂EJ

∂Θu
Θu − ∑

occ. i

∂EJ

∂Θi
ηi with ∑

occ. i
ηi = Θu ,

where ∑occ. i only extends over the initially occupied states (It is irrelevant at this
point whether the highest occupied state is fractionally occupied or not). The shift
δE includes the infinitesimal rearrangement of the φi which results from the mod-
ified occupation numbers. However, as the occupation is assumed to change only
infinitesimally, there is no energetic reordering of eigenvalues as compared to the
initial configuration—the eigenvalues themselves also change only infinitesimally.2

Use of Eq. (3.80) and of the fact that the eigenvalues of the occupied states are all
lower than that of the highest occupied state φho therefore allows to determine the
sign of δE,

δE = Θuεu − ∑
occ. i

ηiεi ≥ Θu(εu − εho) ≥ 0 .

Any increase of Θu from zero raises the energy.
In the same way one can analyze an initial occupation with a gap at state j,

Θ j = 0, and occupied states with energies higher than ε j. In this case an infinitesimal
increase of the occupation Θ j yields the energy change

δE =
∂EJ

∂Θ j
Θ j −∑

i �= j

∂EJ

∂Θi
ηi with ∑

i �= j

ηi = Θ j .

As long as all levels with eigenvalues lower than ε j are completely filled, one finds

δE = Θ jε j − ∑
i �= j;εi>ε j

ηiεi ≤ Θ j(ε j − εk) ≤ 0 ,

where k is the energetically lowest state above the initially empty state j. Thus the
state j begins to be filled due to energy minimization. This process continues at
least as long as the ordering of ε j and εk is preserved. If the point ε j = εk is reached
without both states being fully occupied, one either starts to fill up both of them
simultaneously from non-empty states higher than k or one is facing the fractional
occupation of a degenerate KS Fermi level. In both cases one finally ends up with
the KS occupation.

The same basic mechanism applies for fractional particle number, so that only
the highest occupied state (or the set of degenerate highest occupied states) can be
partially filled. Integrating up Eq. (3.80) between two neighboring integer particle
numbers thus yields a relation for the ionization energy,

E(N +1)−E(N) =
∫ 1

0
dΘl εl , (3.81)

2 Of course, if εi = ε j holds before the modification of the occupation numbers, one might find
some ordering εi < ε j after the transfer of norm. However, this splitting of previously degenerate
states does not affect the argument.
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where l denotes the unoccupied state of the N-particle system which is filled in the
N +1-particle system.3

Let us finally go beyond the actual realm of DFT for a moment and try to utilize
Eq. (3.80) for the calculation of excitation energies. In fact, the functional (3.74) can
be used to set up a first approximation for the energy of excited states. For instance,
a single-electron excitation from the many-particle ground state is obtained, if the
occupation numbers are chosen to differ from the ground state occupation for ex-
actly two single-particle states i and j: If Θi and Θ j correspond to the ground state,
the occupation Θi − 1 and Θ j + 1 (with all other occupation numbers kept fixed)
represents an excited many-particle state in which an electron is transfered from the
occupied state i to the unoccupied state j. If the symmetries of the two states differ,
this representation is in the spirit of the DFT for excited states discussed in Sect. 2.7.
Repeating the argument behind Eq. (3.81), one can express the excitation energy of
this transition as

E1(N)−E0(N) =
∫ 1

0
dΘ j ε j −

∫ 1

0
dΘi εi . (3.82)

In practice, the evaluation of the right-hand side of Eq. (3.82) relies on a discretiza-
tion of the Θi/ j-integrals. The simplest approximation is to use the value of the in-
tegrand at the midpoint Θi = Θ j = 1

2 for the complete range of the integration. This
choice minimizes the error introduced by the discretization, if only a single mesh
point is to be utilized for the discretization. The eigenvalues εi and ε j then have to
be obtained from a selfconsistent calculation for the occupation Θi = Θ j = 1

2 ,

E1(N)−E0(N) ≈ ε j(Θi = Θ j =
1
2
)− εi(Θi = Θ j =

1
2
) .

In this approximation Eq. (3.82) simply represents Slater’s transition state approach
[90], applied to the KS scheme.

3.5 Kohn-Sham Equations for Spin-Polarized Systems

Similar to the HK theorem, one can also extend the KS scheme to systems in ex-
ternal magnetic fields [34, 91]. One starts with the assumption of the existence of a
noninteracting system,

Ĥs = T̂ +
∫

d3r {vs(rrr)n̂(rrr)+BBBs(rrr) · m̂mm(rrr)} , (3.83)

with the same ground state density n and ground state magnetization density mmm,

3 This argument assumes, of course, that there is no complete rearrangement of states when going
from the N- to the N +1-particle system.
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n(rrr) = ∑
σ=↑,↓

∑
i

Θi |φi(rrrσ)|2 (3.84)

mmm(rrr) = μB ∑
σ ,σ ′=↑,↓

∑
i

Θi φ ∗
i (rrrσ)σσσσσ ′φi(rrrσ ′) , (3.85)

as the interacting system (2.120). The kinetic energy of this KS system, which is a
functional of n and mmm, is given by

Ts,L[n,mmm] = ∑
i

Θi ∑
σ=↑,↓

∫
d3r φ ∗

i (rrrσ)
(−ih̄∇∇∇)2

2m
φi(rrrσ) , (3.86)

with the Θi chosen in accordance with (3.71). Ts,L then induces a decomposition of
the total energy of the interacting system,

E[n,mmm] = Ts,L[n,mmm]+
∫

d3r {vextn+BBBext ·mmm}+EH[n]+Exc,L[n,mmm] . (3.87)

Minimization of E[n,mmm] with respect to the orbitals φi yields the associated KS
equations,

∑
σ ′

{[
− h̄2∇∇∇2

2m
+ vs[n,mmm](rrr)

]
δσσ ′ + μBσσσσσ ′ ·BBBs[n,mmm](rrr)

}
φi(rrrσ ′)

= εiφi(rrrσ) (3.88)

vs[n,mmm](rrr) = vext(rrr)+ vH[n](rrr)+
δExc,L[n,mmm]

δn(rrr)
(3.89)

BBBs[n,mmm](rrr) = BBBext(rrr)+
δExc,L[n,mmm]

δmmm(rrr)
. (3.90)

In addition to the external magnetic field the KS orbitals experience some internally
generated magnetic field, originating from the xc-functional.

The standard form of spin-density functional theory is obtained if the magnetic
field is restricted to a pure z-component, as in Eq. (2.133). In this limit the spin-
densities are the fundamental variables of DFT. The Hamiltonian of the noninteract-
ing KS system can thus be written as

Ĥs = T̂ + ∑
σ=↑,↓

∫
d3r vσ

s (rrr)n̂σ (rrr) . (3.91)

In contrast to the general form (3.83) the Hamiltonian (3.91) obtained for
BBBext = (0,0,Bext) commutes with the operator Ŝz given in Eq. (3.6), as Ĥs commutes
with the total particle number for given spin,[

Ĥs, N̂σ
]
= 0 . (3.92)

However, the effective KS potentials for the two spin orientations differ, so that the
corresponding spatial single-particle orbitals depend on the spin quantum number,
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φi(rrrσ) = φαs(rrr)χs(σ) i ≡ (α,s) . (3.93)

The spin-densities are obtained as

nσ (rrr) = ∑
i

Θi |φi(rrrσ)|2 = ∑
α

Θασ |φασ (rrr)|2 , (3.94)

where (3.10) has been utilized to evaluate the sum over s. The spin-dependence
of the occupation numbers reflects the commutation relation (3.92). Each pair of
particle numbers Nσ , with N↑ +N↓ = N, represents a different sector of Fock space,
for which the existence theorem (2.134) applies separately. The absolute ground
state is then determined by minimization of the total energy of the interacting system
with respect to Nσ . In the most general situation the occupation numbers are thus
given by

Θασ =

⎧⎨
⎩

1 for εασ < εFσ
0 ≤Θασ ≤ 1 for εασ = εFσ ; with ∑α Θασ = Nσ
0 for εασ > εFσ

. (3.95)

The particle number Nσ for spin σ determines the corresponding Fermi energy εFσ .
The kinetic energy of the KS system is

Ts,L[n↑,n↓] = ∑
σ=↑,↓

∑
i

Θi

∫
d3r φ ∗

i (rrrσ)
(−ih̄∇∇∇)2

2m
φi(rrrσ)

= ∑
σ=↑,↓

∑
α

Θασ

∫
d3r φ ∗

ασ (rrr)
(−ih̄∇∇∇)2

2m
φασ (rrr) . (3.96)

With the decomposition

E[n↑,n↓] = Ts,L[n↑,n↓]+
∫

d3r
{[

vext + μBBext

]
n↑ +

[
vext −μBBext

]
n↓
}

+EH[n]+Exc,L[n↑,n↓] (3.97)

one finds the KS equations of spin-density functional theory,{
− h̄2∇∇∇2

2m
+ vσ

s [n↑,n↓](rrr)

}
φασ (rrr) = εασ φασ (rrr) (3.98)

vσ
s [n↑,n↓](rrr) = vext(rrr)+ sign(σ)μBBext(rrr)+ vH[n](rrr)+ vσ

xc[n↑,n↓](rrr) (3.99)

vσ
xc[n↑,n↓](rrr) =

δExc,L[n↑,n↓]
δnσ (rrr)

. (3.100)

Both spins experience different effective potentials vσ
s . In addition to the external

magnetic field the internal spin-effects included in Exc,L[n↑,n↓] contribute to the
difference between the spin up and spin down potentials. For completeness we also
note the spin-dependent analog of Eq. (3.52),
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E0 = ∑
σ=↑,↓

{
∑
α

Θασ εασ −
∫

d3r vσ
xc[n↑,n↓](rrr)nσ (rrr)

}
−EH[n]+Exc,L[n↑,n↓] .

(3.101)
Of course, for unpolarized systems Eqs. (3.94)–(3.101) are identical with the KS
scheme of Sect. 3.3.

It is worthwhile to emphasize that the spin-dependent scheme (3.94)–(3.101) is
most often applied in the limit Bext = 0. In fact, the explicit inclusion of the spin
degree of freedom via the spin-dependent KS equations (3.98) (or even (3.88)) is
mandatory, whenever the ground state of interest exhibits some nonzero magnetic
moment. Given the claim that the original HK theorem guarantees a purely density-
dependent description of spin-polarized systems, this statement requires some ex-
planation. The critical point is the degree to which the physical properties of the true
ground state are transferred to the ground state of the auxiliary noninteracting sys-
tem. The KS system needed is necessarily a system of spin-1/2 particles—otherwise
one would have to introduce ad hoc rules for the occupation of the KS levels. A
non-degenerate KS system therefore automatically implies an even particle number
N (as discussed in Sect. 3.1). A description of spin-polarized states on the basis
of a scheme that depends only on the density (rather than the spin-densities) must
thus employ the formalism for degenerate situations outlined in Sect. 3.3, even if no
spatial symmetry is present.

Let us analyze the consequences of this ensemble approach for a noninteracting
physical system with N↑ = N↓+1 and without spatial symmetries. The KS potential
is identical with vext in this case, so that all KS levels are exactly twofold degen-
erate. All KS levels up to N − 1 = 2N↓ are doubly occupied, while the degenerate
levels N and N + 1 contain only one KS particle. Since a spin-independent poten-
tial can never lift the spin-degeneracy, the occupation numbers ΘN and ΘN+1 can
have arbitrary fractional values consistent with ΘN +ΘN+1 = 1. Moreover, the den-
sity does not depend on the actual values of ΘN and ΘN+1, as φN and φN+1 only
differ in their spin-dependence. There is thus no intrinsic requirement which deter-
mines these occupation numbers. On the other hand, there is no need to fix them
individually, as the complete formalism only depends on ΘN +ΘN+1 and the mag-
netic moment need not be reproduced by the KS ground state in the unpolarized
scheme. As a consequence, the density and the energy of a noninteracting system
with N↑ = N↓+1 are correctly obtained from Eqs. (3.67)–(3.72), while the magnetic
moment remains undetermined. In this sense Ts,L[n] can describe ground states with
a total spin-projection 1/2.

Let us next consider a noninteracting physical system with N↑ = N↓ + 2 and no
spatial symmetries. The corresponding physical state is not the absolute ground state
of the underlying Hamiltonian, but the energetically lowest state in one particular
sector of Fock space, for which the Ritz principle is valid. It is immediately obvi-
ous that the density of this state can not be obtained from the ensemble KS scheme
(3.67)–(3.72), as the highest two relevant single-particle states are only singly oc-
cupied in the physical system. Clearly, Ts,L[n] is not applicable to individual spin
sectors of Fock space, only the absolute ground state can be described.
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Consider finally an interacting physical system and assume that the internal spin-
effects lead to an absolute ground state with N↑ = N↓+2 for full interaction strength
w. Imagine that this strength is obtained by switching on the interaction from the
value w = 0. There is one critical interaction strength λcw (0 < λc < 1) during
this process, for which the energy of the lowest state with N↑ = N↓ + 2 falls be-
low that of the lowest state with N↑ = N↓ = N/2. This critical strength λc depends
on the external potential vext—the same basic effect could be observed by varying
vext for fixed interaction strength. In order to be generally applicable, the ensem-
ble KS scheme has to reproduce both types of ground state densities, the one with
N↑ = N↓ = N/2 below λc and the one with N↑ = N↓ + 2 for λ ≥ λc. However, the
absolute ground state density is discontinuous when crossing λc. This discontinu-
ity must be generated by the xc-functional Exc,L[n], i.e. the corresponding vxc must
favor spatially different densities for λ < λc and λ > λc. And it must do so for a
large class of potentials vext without depending on vext itself (as Exc,L[n] is universal).
While this is not impossible in principle, no mathematical realization of a functional
with these properties is conceivable at present (not to speak of the approximations
for Exc,L[n] available to date).

In summary: The description of spin-polarized systems within the unpolarized
KS scheme is possible in principle, as the magnetic moment of the KS system need
not agree with the magnetic moment of the interacting system. However, the irrele-
vance of the magnetic moment of the KS system is also the major drawback of the
unpolarized framework. The burden of distinguishing between different spin states
must solely be carried by the purely density-dependent xc-functional. No suitable
xc-functional for this task is known so far.

As a final remark, one should take note of the fact that the scheme (3.94)–(3.100)
only applies to the energetically lowest state for given N↑,N↓. For instance, in the
case of helium the choice N↑ = N↓ = 1 and thus Sz = 0 necessarily corresponds
to the Singlet ground state. The lowest Triplet state with Sz = 0 is an excited state
of this sector of Fock space. On the other hand, the lowest state with N↑ = 2 and
N↓ = 0 is the KS representation of the lowest Sz = 1 Triplet state. In this way, a
certain amount of information on excited states is accessible via the KS approach.

3.6 Interpretation of Kohn-Sham Eigenvalues:
Relation to Ionization Potential, Fermi Surface and Band Gap

3.6.1 Ionization Potential

It has been emphasized in Sect. 3.1 that the KS ground state Φ0 is not identical
with the true ground state Ψ0 of the interacting system. The KS formalism is a
mathematical tool to generate the exact ground state density and energy in the most
efficient way. This implies that the individual KS orbitals and eigenvalues have, in
general, no physical meaning. There is, however, one exception to this statement:



3.6 Ionization Potential, Fermi Surface, Band Gap 85

The eigenvalue of the highest occupied KS level of a finite system, i.e. a system for
which the density decays exponentially outside a finite region of space, is identical
with the ionization potential (IP) of the interacting system [92].

The proof of this identity relies on the concept of the quasi-particle amplitudes.
In order to introduce these quantities one starts with the full many-body Hamilto-
nian,

Ĥ = ∑
σ=↑,↓

∫
d3r ψ̂†(rrrσ)

{
− h̄2∇∇∇2

2m
+ vext(rrr)

}
ψ̂(rrrσ)

+
1
2 ∑

σ ,σ ′=↑,↓

∫
d3r

∫
d3r′ ψ̂†(rrrσ)ψ̂†(rrr′σ ′)w(rrr,rrr′)ψ̂(rrr′σ ′)ψ̂(rrrσ) . (3.102)

The N-particle eigenstates of this Hamiltonian are denoted as |ΨN
k 〉,

Ĥ |ΨN
k 〉 = EN

k |ΨN
k 〉 ; EN

k ≤ EN
k+1 . (3.103)

As indicated in (3.103), the |ΨN
k 〉 are assumed to be energetically ordered, so that

|ΨN
0 〉 represents the ground state in the N-particle sector of Fock space (assumed to

be non-degenerate). The quasi-particle amplitudes are then defined as

fk(rrrσ) := 〈ΨN−1
k |ψ̂(rrrσ)|ΨN

0 〉 (3.104)

g∗k(rrrσ) := 〈ΨN+1
k |ψ̂†(rrrσ)|ΨN

0 〉 . (3.105)

fk is the overlap of the N −1-particle state obtained by taking out an electron with
spin σ at point rrr from the N-particle ground state with the k-th eigenstate in the
N−1-particle sector. Similarly, gk is the overlap of the N +1-particle state obtained
by adding an electron to |ΨN

0 〉 with the k-th eigenstate in the N +1-particle sector.
The relevance of these coefficients for the present discussion becomes more clear,

if one compares the definition (3.104) with that of the ground state density of the
interacting system, Eq. (2.11): the ground state density can be directly expressed in
terms of the quasi-particle amplitudes fk by use of the completeness relation in the
(N −1)-particle Hilbert space, ∑k |ΨN−1

k 〉〈ΨN−1
k | = 1̂,

n0(rrr) = ∑
σ=↑,↓

〈ΨN
0 |ψ̂†(rrrσ)ψ̂(rrrσ)|ΨN

0 〉 = ∑
σ=↑,↓

∑
k

| fk(rrrσ)|2 . (3.106)

Therefore the properties of n0 are intrinsically related to the properties of the fk.
The quasi-particle amplitudes fk satisfy differential equations which have some

similarity with the Hartree-Fock (self-consistent field) equations. They are most eas-
ily derived by evaluation of the commutator [ψ̂, Ĥ],

[
ψ̂(rrrσ), Ĥ

]
=

{
− h̄2∇∇∇2

2m
+ vext(rrr)

}
ψ̂(rrrσ)

+
∫

d3r′ w(rrr,rrr′) ∑
σ ′=↑,↓

ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)ψ̂(rrrσ) . (3.107)
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After identification of the density operator (2.4) one arrives at

〈ΨN−1
k |

[
ψ̂(rrrσ), Ĥ

]
|ΨN

0 〉

= 〈ΨN−1
k |

{
− h̄2∇∇∇2

2m
+ vext(rrr)

}
ψ̂(rrrσ)+

∫
d3r′ w(rrr,rrr′)n̂(rrr′)ψ̂(rrrσ)|ΨN

0 〉

=
[
EN

0 −EN−1
k

]
〈ΨN−1

k |ψ̂(rrrσ)|ΨN
0 〉 , (3.108)

where the last line has been obtained with Eq. (3.103). Use of the definition (3.104)
then yields{

− h̄2∇∇∇2

2m
+ vext(rrr)

}
fk(rrrσ)+

∫
d3r′ w(rrr,rrr′)〈ΨN−1

k |n̂(rrr′)ψ̂(rrrσ)|ΨN
0 〉

= h̄ωk fk(rrrσ) , (3.109)

where the excitation energy

h̄ωk := EN
0 −EN−1

k =⇒ ωk ≥ ωk+1 (3.110)

has been introduced. The ordering of the ωk results directly from the energetic or-
dering of the states, Eq. (3.103). Moreover, if |ΨN

0 〉 is a normalizable bound state, its
energy is usually lower than that of |ΨN−1

0 〉. This is true in particular if |ΨN
0 〉 is the

ground state of a neutral atom or molecule. In this case one immediately identifies
the IP as first excitation energy,

IP = −h̄ω0 ; ω0 < 0 . (3.111)

One can finally insert the completeness relation in Fock space, ∑N ∑l |ΨN
l 〉〈ΨN

l |= 1̂,
between n̂(rrr′) and ψ̂(rrrσ) and utilize the fact that ψ̂ |ΨN

k 〉 is a state in the N − 1-
particle sector,

0 =
{
− h̄2∇∇∇2

2m
+ vext(rrr)− h̄ωk

}
fk(rrrσ)

+∑
l

∫
d3r′ w(rrr,rrr′)〈ΨN−1

k |n̂(rrr′)|ΨN−1
l 〉 fl(rrrσ) . (3.112)

One has thus found an infinite set of coupled single-particle equations for the am-
plitudes fk.

In the limit of vanishing interaction w all states |ΨN
k 〉 are Slater determinants

built from the single-particle orbitals corresponding to the potential vext. As a con-
sequence, the overlap integral 〈ΨN−1

k |ψ̂(rrrσ)|ΨN
0 〉 vanishes if |ΨN−1

k 〉 contains or-
bitals which are not present in |ΨN

0 〉. Only the N amplitudes for which |ΨN−1
k 〉 is

obtained by taking out one of the single-particle orbitals from |ΨN
0 〉 are nonzero.

The N non-vanishing fk are identical with the N energetically lowest single-particle
orbitals, i.e. the orbitals which are occupied in the N-particle ground state. The as-
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sociated h̄ωk agree with the corresponding single-particle eigenvalues. This result
can also be obtained directly from (3.112), as for w = 0 Eq. (3.112) is nothing but
the single-particle Schrödinger equation for particles experiencing the potential vext.

Starting from [ψ̂†, Ĥ] one can also derive a differential equation for the gk. How-
ever, these amplitudes are irrelevant for the present discussion, so that no details are
given here. The only point worth noting is the fact that the gk approach the unoccu-
pied single-particle orbitals in the limit of vanishing interaction.

The asymptotic decay of the quasi-particle amplitudes fk for the case of finite
systems is the key for the identification of the eigenvalue of the highest occupied
KS state with the IP of the interacting system. The asymptotic behavior of the fk

can be determined by an analysis of the differential equation (3.112) for large |rrr|—
an explicit discussion is given in Appendix E. One finds that the asymptotically
leading amplitude is obtained for k = 0,

f0(rrrσ) −−−→
|rrr|→∞

[
∑
lm

clm
σ Ylm(Ω)

]
rbσ e−

√
−2mω0/h̄ r

(the values of the coefficients clm
σ and the exponent bσ are not relevant at this point).

In the asymptotic region the density (3.106) is dominated by this leading amplitude,

n0(rrr) −−−→
|rrr|→∞

∑
σ=↑,↓

∣∣∣∣∑
lm

clm
σ Ylm(Ω)

∣∣∣∣2 r2bσ e−2
√

−2mω0/h̄ r . (3.113)

This result may be compared with the asymptotic form of the KS density (3.23),
which is dominated by the most weakly decaying KS orbital. The asymptotic form
of the latter can be directly extracted from the KS equations (3.44). Defining the
origin of the energy scale by

vs(rrr) −−−→
|rrr|→∞

0 , (3.114)

one obtains by the same analysis as for the quasi-particle amplitude,

φi(rrrσ) −−−→
|rrr|→∞

[
∑
lm

dlm
iσ Ylm(Ω)

]
rγiσ e−

√−2mεi r/h̄ (3.115)

n0(rrr) −−−→
|rrr|→∞

∑
σ=↑,↓

∣∣∣∣∣∑lm dlm
Nσ Ylm(Ω)

∣∣∣∣∣
2

r2γNσ e−2
√−2mεN r/h̄ (3.116)

(the KS levels are assumed to be energetically ordered). As the exact density is
identical with the KS density one has

εN = h̄ω0 = − IP . (3.117)
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The relation (3.117) not only applies to the first IP, i.e. to a neutral system with
N = Z, but also to all higher IPs (and the EA, if a negative ion exists).

3.6.2 Fermi Surface

This result automatically raises the question whether an equivalent statement can be
made for extended systems. In the case of metals one could hope that the KS Fermi
surface, as the analog of the highest occupied KS eigenvalue, is identical with the
exact Fermi surface. In fact, this hope is fostered by two limiting cases, for which
the agreement is obvious.

(a) For noninteracting systems the KS Fermi surface is trivially identical with the
exact Fermi surface (for magnetic systems the spin-dependent version of the
KS approach has to be used).

(b) In the case of the uniform electron gas both Fermi surfaces are spherical and
contain the same volume of k-space, according to Luttinger’s theorem [93].
Consequently the Fermi surfaces coincide.

The question to be answered is, whether this result also holds for real systems, which
are simultaneously interacting and inhomogeneous?

In order to answer this question one first has to define the exact Fermi surface in a
precise manner. For this purpose one needs an equation which allows a more direct
determination of the excitation energies h̄ωk than (3.112). The derivation of this al-
ternative equation starts from the single-particle Green’s function of the interacting
system,

G(rrrσt,rrr′σ ′t ′) := −i〈Ψ0|T ψ̂(rrrσt)ψ̂†(rrr′σ ′t ′)|Ψ0〉 , (3.118)

where ψ̂(rrrσt) is the field operator in the Heisenberg representation (Ĥ is time-
independent),

ψ̂(rrrσt) = eiĤt/h̄ ψ̂(rrrσ)e−iĤt/h̄ , (3.119)

and T denotes time-ordering of the two field operators. Quite generally, the time-
ordering symbol T reorders arbitrary sets of elementary creation and annihilation
operators Ôi(ti) chronologically, with the latest time to the left: if P is the permu-
tation of the operators required to achieve this chronological ordering, T is defined
as

T Ô1(t1) . . .Ôn(tn) := SNP ÔP(1)(tP(1)) ÔP(2)(tP(2)) . . . ÔP(n)(tP(n)) (3.120)

with tP(1) > tP(2) > .. . > tP(n)

S =
{−1 for fermions

+1 for bosons

NP = number of pairwise permutations required to set up P .
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The prefactor SNP accounts for the fermionic or bosonic character of the Ôi: the
overall sign is always positive for bosons and equal to the sign of the permutation P
for fermions. Using Eqs. (3.119) and (3.120), the definition (3.118) can be written
more explicitly as

G(rrrσt,rrr′σ ′t ′) = −iΘ(t − t ′)〈Ψ0|ψ̂(rrrσ)e−iĤ(t−t ′)/h̄ ψ̂†(rrr′σ ′)|Ψ0〉eiEN
0 (t−t ′)/h̄

+iΘ(t ′ − t)〈Ψ0|ψ̂†(rrr′σ ′)e−iĤ(t ′−t)/h̄ ψ̂(rrrσ)|Ψ0〉eiEN
0 (t ′−t)/h̄ ,

which leads to the following interpretation of G: for t > t ′ a particle with spin σ ′
is added at position rrr′ and time t ′ to the N-particle ground state |Ψ0〉. The resulting
(N +1)-particle state then evolves in time according to the Hamiltonian Ĥ until the
time t, at which one particle with spin σ is taken out of the system at position rrr.
Similarly, for the case t < t ′ a particle with spin σ is annihilated from the ground
state at position rrr and time t, leaving a (N−1)-particle state. After propagation until
t ′ the missing N-th particle is added at position rrr′ with spin σ ′. Thus, the term with
t > t ′ describes the propagation of an additional particle in the presence of the N
particles of the ground state, the second term describes the propagation of a missing
particle, called a hole. Taking both transition amplitudes together, the single-particle
Green’s function reflects the complete structure and dynamics of the system. As a
consequence, many physical observables can be extracted from G.

G can be expressed in terms of the quasi-particle amplitudes (3.104), (3.105) by
use of the completeness relation in the (N ±1)-particle Hilbert space,

G(rrrσt,rrr′σ ′t ′) =
∫

dω
2π

e−iω(t−t ′) G(rrrσ ,rrr′σ ′,ω) (3.121)

G(rrrσ ,rrr′σ ′,ω) = h̄∑
l

{
gl(rrrσ)g∗l (rrr

′σ ′)
h̄ω −EN+1

l +EN
0 + iη

+
fl(rrrσ) f ∗l (rrr′σ ′)

h̄ω −EN
0 +EN−1

l − iη

}
, (3.122)

where the standard representation of the step function as a contour integral, Eq. (L.5),
has been used to obtain the Fourier decomposition. The pole shifts ±iη in the de-
nominator of Eq. (3.122), which is referred to as Lehmann representation of G,
have to be understood as infinitesimal, with η > 0 in all cases. These shifts only
serve to define the contour in the complex ω-plane which implements the correct
time-ordering for the individual contributions to G. Once the integration over ω is
performed, the limit η → 0 is taken. This limit is, however, never noted explicitly in
equations as (3.121), but automatically implied whenever pole shifts show up. The
same notation is subsequently used for all other quantities for which some time-
ordering has to be incorporated in their Fourier representation, in particular for the
response functions introduced in Sect. 4.2.1.

The Green’s function satisfies the Dyson equation [94, 95],
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G(rrrσt,rrr′σ ′t ′) = G0(rrrσt,rrr′σ ′t ′)+ ∑
σ3,σ4

∫
d3r3 d3r4

∫
dt3 dt4

×G0(rrrσt,rrr3σ3t3)Σ(rrr3σ3t3,rrr4σ4t4)G(rrr4σ4t4,rrr
′σ ′t ′) . (3.123)

Here G0 represents the noninteracting Green’s function which is obtained from G
in the limit w → 0. An explicit form of G0 is obtained by realizing that for van-
ishing w the amplitudes fk and gk approach the single-particle orbitals φk of the
noninteracting system with external potential vext (compare Eq. (3.112), which, for
w = 0, is nothing but the single-particle equation corresponding to the noninteract-
ing system). Correspondingly, the energy differences h̄ωl = EN

0 −EN−1
l go over into

the associated eigenvalues εl (which, for the moment, should not be understood as
KS eigenvalues). Denoting the occupation of the single-particle states by Θl , one
therefore obtains for the Lehmann representation of G0

G0(rrrσ ,rrr′σ ′,ω) = ∑
l

{
(1−Θl)

φl(rrrσ)φ ∗
l (rrr′σ ′)

ω − εl/h̄+ iη
+Θl

φl(rrrσ)φ ∗
l (rrr′σ ′)

ω − εl/h̄− iη

}
. (3.124)

Σ denotes the proper (or irreducible) self-energy, for which Eq. (3.123) represents
one possible definition. Σ contains all non-trivial interaction contributions to G, i.e.
all terms which are not simply obtained by repetition of more elementary contri-
butions to Σ . This statement becomes clear if Eq. (3.123) is iterated, i.e. if the full
Green’s function on the right-hand side of (3.123) is repeatedly replaced by use of
Eq. (3.123) itself,

G(rrrσt,rrr′σ ′t ′)
= G0(rrrσt,rrr′σ ′t ′)

+ ∑
σ3σ4

∫
d3r3 d3r4

∫
dt3 dt4 G0(rrrσt,rrr3σ3t3)Σ(rrr3σ3t3,rrr4σ4t4)

×G0(rrr4σ4t4,rrr
′σ ′t ′)

+ ∑
σ3σ4

∫
d3r3 d3r4

∫
dt3 dt4 G0(rrrσt,rrr3σ3t3)Σ(rrr3σ3t3,rrr4σ4t4)

× ∑
σ5σ6

∫
d3r5 d3r6

∫
dt5 dt6 G0(rrr4σ4t4,rrr5σ5t5)Σ(rrr5σ5t5,rrr6σ6t6)

×G0(rrr6σ6t6,rrr
′σ ′t ′)+ . . . .

This equation demonstrates how the basic building blocks of G, absorbed in Σ ,
are repeated infinitely often in the form of a geometric series. The structure of this
series immediately suggests the use of perturbation theory with respect to w: Any
approximation to Σ is resummed to infinite order by the geometric series, so that a
perturbative treatment of Σ corresponds to a non-perturbative treatment of G. In fact,
the perturbative evaluation of Σ via the Feynman diagram technique is the standard
approach in Green’s function based many-body theory. To lowest order (first order
in w) one finds (see e.g. [94])
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h̄Σ (1)(rrrσt,rrr′σ ′t ′)

= −iδσ ,σ ′δ (3)(rrr− rrr′)δ (t − t ′)∑
σ ′′

∫
d3r′′ w(rrr,rrr′′) lim

η→0+
G0(rrr′′σ ′′t,rrr′′σ ′′t +η)

+iδ (t − t ′)w(rrr,rrr′) lim
η→0+

G0(rrrσt,rrr′σ ′t +η)

= δσ ,σ ′δ (3)(rrr− rrr′)δ (t − t ′)vH[n0](rrr)+ h̄Σx(rrrσt,rrr′σ ′t ′) , (3.125)

where, after identification of the density (2.11) as a contraction of the Green’s func-
tion,

−i∑
σ

lim
η→0+

G0(rrrσt,rrrσt +η) = n0(rrr) ,

Eq. (3.42) has been utilized and an abbreviation has been introduced for the second
term (n0 is the ground state density of the noninteracting system with potential vext

in the present discussion). To lowest order Σ thus consists of a direct Coulomb term
and an exchange contribution Σx.

On the basis of the Dyson equation (3.123) one can define the exact Fermi sur-
face, provided one adapts (3.124) to a periodic system, i.e. a system with

vext(rrr +RRRnnn) = vext(rrr) (3.126)

for all translations RRRnnn which leave the periodic arrangement of the nuclei in the
crystal unchanged (readers familiar with elementary quantum mechanics of peri-
odic systems may proceed directly to Eq. (3.141)). The Bravais vectors RRRnnn can be
expressed in terms of the three primitive vectors aaai of the lattice which reflect three
characteristic axes of the lattice with respect to which periodicity is observed,

RRRnnn = n1aaa1 +n2aaa2 +n3aaa3 ; ni ∈ Z . (3.127)

The parallelepiped spanned by the primitive vectors aaai is the unit cell of the lattice:
repetition of this elementary building block of the lattice with volume

Ω = |aaa1 · (aaa2 ×aaa3)| (3.128)

fills all space without leaving any voids.
As soon as the external potential satisfies the periodicity condition (3.126), the

complete Hamiltonian commutes with all translations by RRRnnn, since the kinetic en-
ergy operator and the Coulomb interaction remain unaffected if all electronic co-
ordinates are shifted by the same RRRnnn. As a result all eigenstates of the Hamiltonian
may be classified by quantum numbers according to the translational symmetry. The
consequences of this translational symmetry are most easily analyzed for noninter-
acting particles: the single-particle states φl corresponding to the potential (3.126),[

− h̄2∇∇∇2

2m
+ vext(rrr)

]
φkkkα(rrrσ) = εkkkα φkkkα(rrrσ) , (3.129)
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satisfy Bloch’s theorem [96],

φkkkα(rrrσ) = eikkk·rrr ukkkα(rrrσ) . (3.130)

The quantum number kkk, the crystal momentum, reflects the periodicity of the system,
the quantum number α , the band index, originates from the atomic states which
form the Bloch states φkkkα : for any value of kkk one finds a complete set of bands α .
If the eigenvalues εkkkα are plotted along a specific direction in kkk-space, one obtains
the band structure of the solid (for an example see Fig. 6.3). Finally, ukkkα(rrrσ) is a
function which is strictly periodic with the lattice,

ukkkα(rrr +RRRnnn,σ) = ukkkα(rrrσ) . (3.131)

As a direct consequence of (3.126) and (3.131) vext and ukkkα (and, in fact, all observ-
able (real) fields of the system) can be Fourier expanded in terms of the reciprocal
lattice vectors GGGmmm,

GGGmmm = m1bbb1 +m2bbb2 +m3bbb3 ; mi ∈ Z , (3.132)

where the vectors bbbi denote the primitive vectors of the reciprocal lattice,

bbbi = 2π
aaa j ×aaak

aaa1 · (aaa2 ×aaa3)
with i, j,k = cyclic permutations of 1,2,3. (3.133)

By construction one has
bbbi ·aaa j = 2π δi j , (3.134)

so that Eqs. (3.132), (3.133) implement the periodicity requirement

exp[iGGGmmm · (rrr +RRRnnn)] = exp[iGGGmmm · rrr] ⇐⇒ exp[iGGGmmm ·RRRnnn] = 1 ; ∀RRRnnn , (3.135)

which results from the Fourier expansion of Eqs. (3.126) and (3.131). One thus has

ukkkα(rrrσ) = ∑
mmm

eiGGGmmm·rrr ukkkα(GGGmmmσ) (3.136)

and analogous expansions for vext and all other strictly periodic functions.
It remains to discuss the quantum number kkk in more detail. Its character is de-

termined by the requirement of normalization. Obviously, proper normalization of
the Bloch states (3.130), (3.136) is not possible, if arbitrary values of kkk are allowed.
This observation expresses the fact that one can not have more than countably many
electrons in a periodic system. Boundary conditions are needed to ensure proper
normalization and the correct particle number. In order to specify these boundary
conditions consider a large block of unit cells, consisting of N1 repetitions of the
unit cell in the direction of aaa1, N2 repetitions in the direction of aaa2 and N3 repeti-
tions in the direction of aaa3. The full crystal is then obtained by periodic repetition
of this large block of unit cells, referred to as Born-von Karman block in the fol-
lowing. On the other hand, each individual block approaches the complete crystal in
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the limit N1,N2,N3 → ∞. Proper normalization is then ensured if one requires strict
periodicity of the φkkkα with respect to repetitions of the Born-von Karman block of
unit cells,

φkkkα(rrr +Niaaai,σ) = φkkkα(rrrσ) for i = 1,2,3 . (3.137)

From this Born-von Karman boundary condition one obtains as admissible kkk-values

kkklll =
l1
N1

bbb1 +
l2
N2

bbb2 +
l3
N3

bbb3 with − Ni

2
≤ li <

Ni

2
, li ∈ Z (3.138)

(alternatively, one may use the range 0 ≤ li ≤ Ni − 1). In total, a multiplicity of
N1N2N3 is associated with each atomic state contributed by the atoms in the actual
unit cell, allowing exactly as many electrons to fill these states as provided by the
atoms in the complete Born-von Karman block. In the limit N1,N2,N3 → ∞ the
ratio li/Ni can be any rational number between − 1

2 and + 1
2 . The set of kkk-values

characterized by (3.138) is called the first Brillouin zone.
On this basis one can then establish the orthonormality and completeness rela-

tions for the Bloch states,

∑
σ

∫
N1N2N3Ω

d3r φ ∗
kkkα(rrrσ)φkkk′α ′(rrrσ) = δkkkkkk′ δαα ′ (3.139)

∑
kkkα

φkkkα(rrrσ)φ ∗
kkkα(rrr′σ ′) = δσσ ′ δ (3)(rrr− rrr′) . (3.140)

Here the short-hand notation kkk ≡ kkklll has been introduced, ∑kkk ≡ ∑lll , and δkkkkkk′ implies
li = l′i (i = 1,2,3) in the representation (3.138). The Bloch states are normalized to
1 in the Born-von Karman block with volume N1N2N3Ω .

After this preparation, the discussion of the single-particle Green’s function can
be resumed. In view of the translational symmetry of the system a Fourier represen-
tation is most suitable. The basis for this Fourier representation is an expansion of

the field operator in terms of creation/annihilation operators ĉ(†)
kkkα for the noninteract-

ing Bloch states φkkkα ,

ψ̂(rrrσ) = ∑
kkkα

φkkkα(rrrσ) ĉkkkα ψ̂†(rrrσ) = ∑
kkkα

φ ∗
kkkα(rrrσ) ĉ†

kkkα (3.141){
ĉkkkα , ĉkkk′α ′

}
=

{
ĉ†

kkkα , ĉ†
kkk′α ′

}
= 0

{
ĉkkkα , ĉ†

kkk′α ′

}
= δkkkkkk′ δαα ′ (3.142)

(the commutation relations follow from Eqs. (2.6), (2.7)). Insertion into (3.118) de-
fines the single-particle Green’s function in momentum representation,

G(rrrσt,rrr′σ ′t ′) = ∑
kkkα

∑
kkk′α ′

φkkkα(rrrσ)φ ∗
kkk′α ′(rrr′σ ′)G(kkkαt,kkk′α ′t ′) (3.143)

G(kkkαt,kkk′α ′t ′) = −i〈Ψ0|T ĉkkkα(t)ĉ†
kkk′α ′(t

′)|Ψ0〉 (3.144)

ĉkkkα(t) = eiĤt/h̄ ĉkkkα e−iĤt/h̄ . (3.145)
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In the state ĉ†
kkkα |Ψ0〉 a bare (i.e. noninteracting) Bloch electron is added to the ground

state of the N-particle system. Of course, this state is not an eigenstate of the Hamil-
tonian in the (N +1)-particle sector, but rather a superposition of eigenstates,

ĉ†
kkkα |Ψ0〉 = ∑

l

g∗l (kkkα) |ΨN+1
l 〉 (3.146)

g∗l (kkkα) := 〈ΨN+1
l |ĉ†

kkkα |ΨN
0 〉 . (3.147)

Similarly, the state ĉkkkα |Ψ0〉 is a superposition of (N −1)-particle eigenstates,

ĉkkkα |Ψ0〉 = ∑
l

fl(kkkα) |ΨN−1
l 〉 (3.148)

fl(kkkα) := 〈ΨN−1
l |ĉkkkα |ΨN

0 〉 . (3.149)

G(kkkαt,kkk′α ′t ′) describes the propagation of these wave packets in time, with ĉ†
kkkα |Ψ0〉

being propagated for t > t ′ and ĉkkkα |Ψ0〉 for t < t ′. The quasi-particle amplitudes
g∗l (kkkα) and fl(kkkα) represent the probabilities to find the wave packets in particular
eigenstates of the (N ±1)-particle systems.

As in the case of its real space equivalent, the quasi-particle amplitudes can be
used to establish the Lehmann representation of G(kkkαt,kkk′α ′t ′) by implementation
of time-ordering via suitable contours in frequency space,

G(kkkαt,kkk′α ′t ′) =
∫

dω
2π

e−iω(t−t ′) G(kkkα,kkk′α ′,ω) (3.150)

G(kkkα,kkk′α ′,ω) = h̄∑
l

{
gl(kkkα)g∗l (kkk

′α ′)
h̄ω −EN+1

l +EN
0 + iη

+
fl(kkkα) f ∗l (kkk′α ′)

h̄ω −EN
0 +EN−1

l − iη

}
. (3.151)

For extended and, in particular, for periodic systems, it is convenient to recast the
representation (3.151) by use of the chemical potentials and excitation energies of
the (N −1)- and (N +1)-particle systems,

μ(N) = EN
0 −EN−1

0 (3.152)

μ(N +1) = EN+1
0 −EN

0 (3.153)

Ω N−1
l := EN−1

l −EN−1
0 =⇒ Ω N−1

l ≥ 0 (3.154)

Ω N+1
l := EN+1

l −EN+1
0 =⇒ Ω N+1

l ≥ 0 . (3.155)

In fact, for large N (for solids N ∼ 1023) one has

μ(N) = μ(N +1)+O

(
1
N

)
≡ μ , (3.156)

so that the Lehmann representation (3.151) may be written as
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G(kkkα,kkk′α ′,ω) = h̄∑
l

{
gl(kkkα)g∗l (kkk

′α ′)
h̄ω −μ −Ω N+1

l + iη
+

fl(kkkα) f ∗l (kkk′α ′)
h̄ω −μ +Ω N−1

l − iη

}
.

(3.157)
The form (3.157) exhibits most clearly that the threshold energy h̄ω = μ distin-
guishes between the particle propagation described by the first term and the hole
propagation in the second.

The important observation now is: G(kkkα,kkk′α ′,ω) is diagonal with respect to
kkk,kkk′. This property is easily verified for the noninteracting Green’s function, whose
momentum space representation is defined in analogy to Eq. (3.143). Insertion of the
Bloch states (3.130) into (3.124) and subsequent comparison with (3.143)–(3.151)
directly yields

G0(kkkα,kkk′α ′,ω) = δkkkkkk′ δαα ′ G0(kkk,α,ω) (3.158)

G0(kkk,α,ω) =
1−Θ(εF − εkkkα)
ω − εkkkα/h̄+ iη

+
Θ(εF − εkkkα)

ω − εkkkα/h̄− iη
, (3.159)

where the occupation number has now been expressed in terms of the Fermi energy
εF of the noninteracting system.

However, diagonality with respect to kkk,kkk′ can also be demonstrated for the inter-
acting Green’s function (compare [97, 98]). For this purpose one first notes that all
interacting states have to be periodic with respect to the Born-von Karman block:
any translation by Niaaai (or multiples of it) must leave the states invariant,

ΨN
l (rrr1 +Niaaai,σ1, . . .rrrN +Niaaai,σN)

= ΨN
l (rrr1σ1, . . .rrrNσN) for i = 1,2,3 . (3.160)

The interacting states can thus be expanded in terms of the N-particle basis pro-
vided by the Slater determinants |Φkkk1...kkkN ,α1...αN 〉 constructed from the Bloch states
(3.130),

|ΨN
l 〉 = ∑

kkk1...kkkN ,α1...αN

al(kkk1 . . .kkkN ,α1 . . .αN) |Φkkk1...kkkN ,α1...αN 〉 (3.161)

|Φkkk1...kkkN ,α1...αN 〉 = ĉ†
kkk1α1

. . . ĉ†
kkkN αN

|0〉 . (3.162)

In addition, ΨN
l can be chosen to be an eigenstate of all translations by Bravais

vectors RRRnnn, as the Hamiltonian commutes with these translations,

ΨN
l (rrr1 +RRRnnn,σ1, . . .rrrN +RRRnnn,σN) = eiRRRnnn·κκκN

l ΨN
l (rrr1,σ1, . . .rrrN ,σN) . (3.163)

If one applies this relation to the right-hand side of the expansion (3.161), one finds
a condition for the total crystal momentum of the basis functions, which is valid for
each of the terms in the expansion,

κκκN
l =

N

∑
i=1

kkki . (3.164)
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Now consider the amplitude which defines G(kkkαt,kkk′α ′t ′),

〈Ψ0|ĉ†
kkk′α ′(t

′)ĉkkkα(t)|Ψ0〉 = ∑
l

〈ΨN
0 |ĉ†

kkk′α ′ |ΨN−1
l 〉〈ΨN−1

l |ĉkkkα |ΨN
0 〉

×e−i(EN
0 −EN−1

l )(t−t ′) . (3.165)

If one inserts the expansion (3.161) into the amplitude 〈ΨN−1
l |ĉkkkα |ΨN

0 〉,

〈ΨN−1
l |ĉkkkα |ΨN

0 〉 = ∑
kkk′1...kkk′N−1,α ′

1...α ′
N−1

∑
kkk1...kkkN ,α1...αN

a∗l (kkk
′
1 . . .kkk′N−1,α ′

1 . . .α ′
N−1)

×a0(kkk1 . . .kkkN ,α1 . . .αN)

×〈0|ĉkkk′N−1α ′
N−1

. . . ĉkkk′1α ′
1
ĉkkkα ĉ†

kkk1α1
. . . ĉ†

kkkN αN
|0〉 ,

one notices that only those terms in the expansion are non-vanishing, for which

κκκN−1
l =

N−1

∑
i=1

kkk′i =
N

∑
i=1

kkki − kkk = κκκN
0 − kkk .

This argument can be repeated for the second amplitude on the right-hand side of
(3.165), 〈ΨN

0 |ĉ†
kkk′α ′ |ΨN−1

l 〉, with the result

κκκN−1
l =

N−1

∑
i=1

kkk′i =
N

∑
i=1

kkki − kkk′ = κκκN
0 − kkk′ .

Since both conditions have to be satisfied simultaneously in the amplitude (3.165),
one concludes that 〈Ψ0|ĉkkkα(t)ĉ†

kkk′α ′(t ′)|Ψ0〉 can only be non-zero, if kkk = kkk′: the in-
teracting Green’s function is also diagonal,

G(kkkα,kkk′α ′,ω) = δkkkkkk′ G(kkk,αα ′,ω) . (3.166)

The connection between G(kkk,αα ′,ω) and its noninteracting limit G0(kkk,α,ω)
is again given by the Dyson equation. Taking into account that the full G is not
diagonal with respect to the band index, one obtains

G(kkk,αα ′,ω) = δαα ′ G0(kkk,α,ω)
+G0(kkk,α,ω)∑

α ′′
Σ(kkk,αα ′′,ω)G(kkk,α ′′α ′,ω) . (3.167)

This relation may either be considered as definition of Σ(kkk,αα ′′,ω) or it may be
derived from (3.123) by expansion of the self-energy in terms of Bloch states, sim-
ilar to Eq. (3.143), and use of the orthonormality relation (3.139) as well as of the
diagonality of both G and G0 with respect to kkk,kkk′. If a matrix notation for the band
index is introduced,

G(kkkω) =
(
G(kkk,αα ′,ω)

)
Σ(kkkω) =

(
Σ(kkk,αα ′,ω)

)
, (3.168)
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the Dyson equation may be rewritten as

G−1(kkkω) = G−1
0

(kkkω)−Σ(kkkω) (3.169)

(G
0

is a diagonal matrix, so that G−1
0

is directly available).
However, the diagonal elements of Σ(kkk,αα ′′,ω) are usually much larger than

its off-diagonal elements. If the off-diagonal terms of Σ(kkk,αα ′′,ω) are neglected,
Eq. (3.167) reduces to

G(kkk,αα,ω) = G0(kkk,α,ω)+G0(kkk,α,ω)Σ(kkk,αα,ω)G(kkk,αα,ω) . (3.170)

As in the general situation, this Dyson equation may be resummed by use of G−1
0 ,

G(kkk,αα,ω) =
1

ω − εkkkα/h̄−Σ(kkk,αα,ω)
, (3.171)

where the imaginary part of Σ(kkk,αα,ω) now plays the role of the pole shift η .
Moreover, even if the off-diagonal elements of Σ are kept, an equation of this type
can be obtained by diagonalization of (3.169), which implies the transition to a new
set of quasi-particles/holes.

Now compare the result (3.171) with the diagonal element of the Lehmann rep-
resentation (3.157),

G(kkk,αα,ω) = ∑
l

{
|gl(kkkα)|2

ω − (μ +Ω N+1
l )/h̄+ iη

+
| fl(kkkα)|2

ω − (μ −Ω N−1
l )/h̄− iη

}
. (3.172)

As indicated before, G(kkk,αα,ω) represents the propagation of a superposition of
infinitely many eigenstates of the (N ±1)-particle systems,

G(kkk,αα, t − t ′) = −iΘ(t − t ′)∑
l

|gl(kkkα)|2e−i(μ+Ω N+1
l )(t−t ′)/h̄

+iΘ(t ′ − t)∑
l

| fl(kkkα)|2e−i(μ−Ω N−1
l )(t−t ′)/h̄ . (3.173)

In general, this superposition is not an eigenstate itself, but rather a wave packet
which is damped out in time, a so-called quasi-particle (for t > t ′) or quasi-hole
(for t < t ′)—which finally explains the names of the corresponding amplitudes. The
longer the lifetime of this wave packet is, the closer is the wave packet to an actual
eigenstate. The energies and lifetimes of the quasi-particles/holes are determined by
the complex poles

ωp(kkkα) = ε̃(kkkα)/h̄− iΓ (kkkα); ε̃(kkkα),Γ (kkkα) ∈ R (3.174)
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of the Dyson denominator (3.171),

ωp(kkkα)− εkkkα/h̄−Σ(kkk,αα,ωp(kkkα)) = 0 . (3.175)

For frequencies close to the pole an expansion of Σ around this pole can be used,

Σ(kkk,αα,ω) = Σ(kkk,αα,ωp(kkkα))+Σ ′(kkk,αα,ωp(kkkα))(ω −ωp(kkkα))+ . . . .

This allows to rewrite the Green’s function close to the pole as

G(kkk,αα,ω) =
z(kkkα)

ω − ε̃(kkkα)/h̄+ iΓ (kkkα)
+ΔG(ω) (3.176)

z(kkkα) =
1

1−Σ ′(kkk,αα,ωp(kkkα))
, (3.177)

where ΔG denotes the remaining terms of the Laurent expansion, which are finite
at ω = ωp(kkkα). Transformation of this result to the time domain,

G(kkk,αα, t − t ′) = −iz(kkkα)Θ(t − t ′)Θ(Γ (kkkα))e−iε̃(kkkα)(t−t ′)/h̄−Γ (kkkα)(t−t ′)

+iz(kkkα)Θ(t ′ − t)Θ(−Γ (kkkα))eiε̃(kkkα)(t ′−t)/h̄+Γ (kkkα)(t ′−t)

+ΔG(t − t ′) , (3.178)

provides a direct interpretation of ε̃ and Γ : ε̃(kkkα) represents the quasi-particle/hole
energy, while 1/|Γ (kkkα)| is the lifetime of the resonance.

As is clear from (3.173), the threshold between quasi-particle and quasi-hole
energies is exactly the chemical potential μ (remember that Ω N±1

l ≥ 0). The Fermi
surface of the interacting system is therefore determined by the solutions of (3.175)
for which

Γ (kkkα) = ℑ
{

Σ(kkk,αα,ωp(kkkα))
}

= 0 .

The associated real part of h̄ωp(kkkα),

ε̃(kkkα) = εkkkα + h̄ℜ
{

Σ(kkk,αα,ωp(kkkα))
}

,

is the chemical potential μ . For this particular energy the quasi-particle/hole in
(3.178) is not damped out, but represents an eigenstate of the interacting system,
i.e. has an infinite lifetime.4 The Fermi surface of the interacting system is thus
defined as the set of kkk-values for which5

4 Quite generally, the lifetime of the quasi-particles/holes increases if ε̃(kkkα) approaches μ . For en-
ergies sufficiently close to the Fermi surface the quasi-particles/holes are therefore accurate repre-
sentations of the true excitations of the system (which provides the basis for Landau’s Fermi-liquid
theory).
5 The value of μ may alternatively be fixed by the particle number constraint. If there are NΩ
particles in the volume Ω of the unit cell, Eq. (3.106) yields

NΩ =
∫

Ω
d3r n(rrr) = −i ∑

σ

∫
Ω

d3r G(rrrσt,rrrσt+) = ∑
σ

∫
Ω

d3r ∑
l

| fl(rrrσ)|2 .
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μ − εkkkα − h̄ℜ{Σ(kkk,αα,μ/h̄)} = 0 ⇐⇒ ε̃F(kkkα) = μ . (3.179)

Equation (3.179) implies that different bands α may be cut by the Fermi surface
for different momenta kkk. Different bands α define different branches of the Fermi
surface, provided that (3.179) has a solution for a given band α .

The KS Fermi surface is, in analogy to Eq. (3.179), defined by the set of all KS
eigenvalues εkkkα (from now on εl again denotes a KS eigenvalue) which agree with
the KS Fermi level εF, i.e. the KS chemical potential,

εkkkα = εF . (3.180)

For given Exc the KS equations thus allow the determination of the KS Fermi sur-
face.

This concludes the discussion of the definition of the two Fermi surfaces. The
question concerning their identity can now be answered. It is sufficient to examine
the simplest periodic system, the weakly inhomogeneous electron gas, since this
system represents an explicit counterexample. The weakly inhomogeneous gas is
an extension of the homogeneous gas (for details see Chap. 4), which is obtained by
introducing a weak perturbation

vext(rrr) = v0 cos(QQQ · rrr) .

This perturbation induces a one-dimensional Bravais lattice in the direction of QQQ.
The Fermi surfaces (3.179) and (3.180) of this system can be evaluated explicitly to
first order in the electron–electron interaction (utilizing (3.125)) and to lowest order
in v0 (via the linear response formalism). One finds that the two surfaces differ in
the order v2

0w [99, 100] (there is no contribution linear in v0 to the Fermi surface).
Notwithstanding this exact result, one finds in practice that the KS Fermi surface is
often rather close to the exact Fermi surface.

3.6.3 Band Gap

Turning from metals with their Fermi surface to insulators and semiconductors, the
obvious question is whether the energy gap in the spectrum of these systems can
be described by the KS scheme? The so-called fundamental band gap Eg is pre-
cisely defined as the difference between the binding energy of the most weakly

However, using the strict periodicity of the product φ ∗
kkkα ′ (rrrσ)φkkkα (rrrσ) as well as the orthonormality

relation (3.139), one can express NΩ also in terms of the fl(kkkα),

NΩ = −i
1

N1N2N3
∑

kkkαα ′
G(kkk,αα ′, t − t+)∑

σ

∫
N1N2N3Ω

d3r φ ∗
kkkα ′ (rrrσ)φkkkα (rrrσ)

=
1

N1N2N3
∑
kkkα

∑
l

| fl(kkkα)|2 .
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bound electron in the ground state of the insulator or semiconductor and that of the
most weakly bound electron in the ground state of the system obtained by adding
one electron. Identifying the neutral solid with the N-particle system, one can write
[101, 102]

Eg = −
{[

EN
0 −EN−1

0

]
−
[
EN+1

0 −EN
0

]}
, (3.181)

where the sign convention ensures that Eg is positive. The name band gap originates
from the fact that the most weakly bound electron of the insulator or semiconductor
belongs to the highest occupied band, the valence band, while the (N + 1)-th elec-
tron goes into the lowest empty band, the conduction band. The band gap is easily
evaluated for noninteracting systems as the KS system,

Δs = εN+1 − εN , (3.182)

as the ionization energies are identical with the orbital energies, EN
0 −EN−1

0 = εN

(we now return to the short-hand notation for the KS quantum numbers).
Using the earlier results (2.118) and (2.119), the exact band gap can be rewritten

as

Eg = IP − EA = lim
η→0+

{
μ(N +η)−μ(N −η)

}
. (3.183)

On the basis of the variational equation (2.111) one then finds

Eg = lim
η→0+

{
δE[n]
δn(rrr)

∣∣∣∣
N+η

− δE[n]
δn(rrr)

∣∣∣∣
N−η

}
, (3.184)

with the understanding that δE[n]/δn is evaluated with the ground state density
corresponding to the particle number N ±η . Finally, the total energy functional can
be decomposed in the standard fashion (3.24). Utilizing the continuous dependence
of Eext and EH on the particle number, one arrives at

Eg = lim
η→0+

{[
δTs[n]
δn(rrr)

∣∣∣∣
N+η

− δTs[n]
δn(rrr)

∣∣∣∣
N−η

]
+

[
δExc[n]
δn(rrr)

∣∣∣∣
N+η

− δExc[n]
δn(rrr)

∣∣∣∣
N−η

]}
= Δs +Δxc . (3.185)

In the second line the contribution of Ts to the band gap has already been identified
with Δs, Eq. (3.182), as Ts is the only part of the total energy of the KS system which
shows a derivative discontinuity. The total band gap thus consists of the difference
between the highest occupied and the lowest unoccupied KS eigenvalue and an xc-
contribution [101, 102],

Eg = εN+1 − εN +Δxc . (3.186)
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In practice, Δxc is often ignored. This is completely legitimate for approximate
xc-functionals which do not show a derivative discontinuity, such as the LDA (for
details on this xc-functional, see Sect. 4.3). On the other hand, the exact Exc leads
to a non-vanishing Δxc. This can be explicitly demonstrated to first order in the
electron–electron coupling constant e2, i.e. for the exchange contribution Δx (for
the precise definition of exchange within DFT, see Sect. 4.1). Table 3.1 lists Δx

together with the band gaps resulting from LDA calculations and the experimental
data for two prototype systems. These numbers show, that the eigenvalue difference

Table 3.1 Band gap of insulators and semiconductors: Exact Δx [103] versus Δs obtained within
the LDA and experimental gap.

System Δs(LDA) Δx Expt.
[eV] [eV] [eV]

C 4.16 8.70 5.48
Si 0.49 5.62 1.17

Δs obtained with the standard approximations to Exc[n] underestimates the true band
gaps of semiconductors considerably. On the other hand, Δx is surprisingly large,
indicating that the correlation contribution to Δxc must also be rather large (and
negative) in order to compensate Δx (for a more detailed discussion see at the end
of Sect. 6.3).

3.7 Kohn-Sham Equations of Current Density Functional
Theory

The extension of the KS scheme to the case of C(S)DFT (Sect. 2.6) proceeds along
the same lines as the extension to spin-density functional theory [74, 68]. One starts
with introducing auxiliary orbitals to represent all relevant ground state densities of
the interacting system (assuming noninteracting v-representability, as usual). In the
case of CDFT, which is considered first, these are the density,

n(rrr) = ∑
kσ

Θkφ ∗
k (rrrσ)φk(rrrσ) , (3.187)

and the paramagnetic current density,

jjjp(rrr) = − ih̄
2m ∑

kσ
Θk

{
φ ∗

k (rrrσ) [∇∇∇φk(rrrσ)]− [∇∇∇φ ∗
k (rrrσ)]φk(rrrσ)

}
. (3.188)

In the next step, the standard decomposition (3.24) is used for the total energy func-
tional (2.174),
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E[n, jjjp] = Ts[n, jjjp]+Eext[n, jjjp]+EH[n]+Exc[n, jjjp] , (3.189)

with Ts and EH given by Eqs. (3.21) and (3.25), respectively, and Eext defined as

Eext[n, jjjp] =
∫

d3r

[
vext(rrr)+

e2

2mc2 AAA2
ext(rrr)

]
n(rrr)

+
e
c

∫
d3r jjjp(rrr) ·AAAext(rrr) . (3.190)

As usual, the decomposition (3.189) serves as definition of the xc-functional, which
is jjjp-dependent in the present situation, Exc[n, jjjp].

One arrives at the KS equations of CDFT [74], if one follows the argument in
Sect. 3.1 or, alternatively, minimizes E[n, jjjp] with respect to the auxiliary orbitals
under the constraint of proper normalization,{

1
2m

[
−ih̄∇∇∇+

e
c
(AAAext(rrr)+AAAxc(rrr))

]2 − e2

mc2

[
1
2

AAAxc(rrr)2 +AAAext(rrr) ·AAAxc(rrr)
]

+ vext(rrr)+ vH(rrr)+ vxc(rrr)
}

φk(rrrσ) = εkφk(rrrσ) . (3.191)

Here the xc-potentials are defined as

vxc(rrr) =
δExc[n, jjjp]

δn(rrr)

∣∣∣∣
jjjp

(3.192)

e
c

AAAxc(rrr) =
δExc[n, jjjp]

δ jjjp(rrr)

∣∣∣∣∣
n

. (3.193)

The notation indicates that the second density variable has to be kept constant in the
variation of Exc with respect to the other (vH is given by Eq. (3.42)).

In view of the gauge freedom of AAAext the gauge properties of the KS formalism
for CDFT are of obvious interest. The crucial statement is: the KS equations (3.191)
are gauge covariant [68], as will be shown in the following. Let us start with a
closer look at the ground state Φ0 of noninteracting particles, expressed as a current-
density functional, Φ0[n, jjjp]. The gauge transformation (2.148) corresponds to the
phase transformation (2.150) of the interacting ground state wavefunction. An anal-
ogous transformation has to hold for the corresponding ground state current-density
functional of interacting particles,

Ψ0[n′, jjj′p](rrr1, . . .) = exp

[
ie
h̄c

N

∑
k=1

λ (rrrk)

]
Ψ0[n, jjjp](rrr1, . . .) . (3.194)

The same transformation is also valid for Φ0[n, jjjp], which is a simple limit of
Ψ0[n, jjjp],
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Φ′
0[n

′, jjj′p](rrr1, . . .) = exp

[
ie
h̄c

N

∑
k=1

λ (rrrk)

]
Φ0[n, jjjp](rrr1, . . .) . (3.195)

This result can, alternatively, be derived explicitly for the KS ground state determi-
nant Φ0 (consisting of the single-particle orbitals of Eq. (3.191)) by the following
argument: Since Φ0 yields the exact density, the invariance of n(rrr) under the trans-
formation (2.148) only allows a local phase transformation of Φ0. Due to the single-
particle nature of both Φ0 and the transformed function Φ′

0 the local phase has to be
a simple sum over single-particle phase functions depending on one coordinate only.
The phase function is therefore uniquely determined by the transformation behavior
(2.163) of jjjp, which must be reproduced by Φ0,Φ′

0.
As a consequence, the noninteracting kinetic energy functional Ts[n, jjjp] trans-

forms as

Ts[n′, jjj′p] = Ts[n, jjjp]+
e
c

∫
d3r jjjp(rrr) ·∇∇∇λ (rrr)

+
∫

d3r n(rrr)
e2

2mc2 [∇∇∇λ (rrr)]2 . (3.196)

However, both the total energy (3.189) and the combination Ts + Eext are invariant
under the gauge transformation (2.148) plus the associated phase transformations
of the ground state wavefunctions. This gauge invariance is reflected by the corre-
sponding functionals,

EAAA′
ext

[n′, jjj′p] = EAAAext [n, jjjp]

Ts[n′, jjj′p]+Eext,AAA′
ext

[n′, jjj′p] = Ts[n, jjjp]+Eext,AAAext [n, jjjp] ,

where the additional index indicates the vector potential present in the external en-
ergy. As a result the xc-energy functional is gauge invariant as well,

Exc[n′, jjj′p] = Exc[n, jjjp] . (3.197)

As n is gauge invariant by itself, one arrives at

Exc[n, jjj′p] = Exc[n, jjjp] . (3.198)

Moreover, as Exc[n, jjjp] is universal in the sense that the functional dependence of
Exc on n and jjjp is identical for all external potentials, the functional dependence on
jjjp itself must have a form which ensures Eq. (3.198). The only local, gauge invariant
quantity which can be constructed from jjjp with its transformation behavior (2.163)
is the vorticity

ννν(rrr) = ∇∇∇×
[

jjjp(rrr)
n(rrr)

]
. (3.199)

Exc can thus be expressed as a functional of ννν ,

Exc[n, jjjp] ≡ Ẽxc[n,ννν ] . (3.200)



104 3 Effective Single-Particle Equations

The functional form (3.200) has important consequences. Let us first consider
the functional derivatives (3.192) and (3.193). The derivative (3.193) can be directly
evaluated with the chain rule, keeping track of the quantities which have to be kept
constant in the variational process,

e
c

AAAxc(rrr) =
∫

d3r′
δ Ẽxc[n,ννν ]

δννν(rrr′)

∣∣∣∣∣
n

· δννν(rrr′)
δ jjjp(rrr)

∣∣∣∣∣
n

=
1

n(rrr)
∇∇∇× δ Ẽxc[n,ννν ]

δννν(rrr)

∣∣∣∣∣
n

. (3.201)

With this result one obtains for the derivative (3.192)

vxc(rrr) =
δ Ẽxc[n,ννν ]

δn(rrr)

∣∣∣∣∣
ννν

+
∫

d3r′
δ Ẽxc[n,ννν ]

δννν(rrr′)

∣∣∣∣∣
n

· δννν(rrr′)
δn(rrr)

∣∣∣∣∣
jjjp

=
δ Ẽxc[n,ννν ]

δn(rrr)

∣∣∣∣∣
ννν

− jjjp(rrr)
n(rrr)2 ·∇∇∇× δ Ẽxc[n,ννν ]

δννν(rrr)

∣∣∣∣∣
n

=
δ Ẽxc[n,ννν ]

δn(rrr)

∣∣∣∣∣
ννν

− jjjp(rrr)
n(rrr)

· e
c

AAAxc(rrr) . (3.202)

Equations (3.201) and (3.202) allow the determination of the gauge properties of the
xc-potentials. In Eq. (3.201) AAAxc is expressed completely in terms of gauge invariant
quantities, so that it is gauge invariant itself,

AAAxc[n′, jjj′p] = AAAxc[n, jjjp] . (3.203)

Similarly, Eq. (3.202) shows that vxc transforms as

vxc[n′, jjj′p] = vxc[n, jjjp]−
e2

mc2 AAAxc[n, jjjp] ·∇∇∇λ , (3.204)

where the transformation behavior of the paramagnetic current, Eq. (2.163), and
(3.203) have been utilized.

With this information one can finally analyze the gauge properties of the KS
equations (3.191), in order to confirm Eq. (3.195) explicitly. After insertion of
Eq. (3.202) one can introduce the physical current (2.156) (for the case of an un-
polarized system) and rewrite (3.191) as{

1
2m

[
−ih̄∇∇∇+

e
c

(AAAext(rrr)+AAAxc(rrr))
]2

+ vext(rrr)+ vH(rrr)+
δ Ẽxc[n,ννν ]

δn(rrr)

∣∣∣∣
ννν

− e
c

AAAxc(rrr)
[

jjj(rrr)
n(rrr)

+
e

2mc
AAAxc(rrr)

]}
φk(rrrσ) = εkφk(rrrσ) . (3.205)
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Gauge covariance of the KS equations then follows directly from the gauge in-
variance of AAAxc, ννν , n and jjj—under a gauge transformation of the external vector
potential the KS orbitals transform in the same way as the orbitals of a truly nonin-
teracting system, consistent with the starting point of the analysis, Eq. (3.195).6

Combination of Eqs. (3.201) and (3.202) with the KS equations also allows a
verification of the conservation of the physical current (2.156). From Eq. (3.201)
one immediately finds

∇∇∇ · [n(rrr)AAAxc(rrr)] = 0 . (3.206)

On the other hand, the standard combination of (3.191) with its hermitian conjugate
yields

∇∇∇ ·
{

jjjp(rrr)+
e

mc
n(rrr) [AAAext(rrr)+AAAxc(rrr)]

}
= 0 .

Use of (3.206) and (2.156) confirms the validity of current conservation, Eq. (2.179),
in the KS approach to CDFT.

The KS equations of CSDFT, which are listed below, complement the results
for CDFT. We first consider the extended variant (2.171), in which n, mmm and jjjp are
independent variables. For their derivation one combines Eqs. (3.187) and (3.188)
with the representation (3.85) of the magnetization density, assuming that all three
densities n, mmm and jjjp can be reproduced by an effective noninteracting system. In
the standard decomposition of the total energy, Eq. (3.189), Ts, Exc and Eext are now

6 The gauge invariance of ννν , AAAxc and the effective scalar potential in the KS equations,

veff(rrr) = vxc(rrr)− e2

mc2 AAAext(rrr) ·AAAxc(rrr) =
δ Ẽxc[n,ννν]

δn(rrr)

∣∣∣∣
ννν
− e

c
AAAxc(rrr)

[
jjj(rrr)
n(rrr)

+
e

2mc
AAAxc(rrr)

]
,

has an interesting consequence for periodic systems [68]. Consider a periodic system with primitive
vectors aaai, i = 1,2,3. In this system all observable densities must be invariant against a translation
by some arbitrary lattice vector RRRnnn = n1aaa1 + n2aaa2 + n3aaa3, ni ∈ Z. If the magnetic field vanishes,
AAAext = 000, both n and jjjp = jjj are periodic, so that also vxc and AAAxc are periodic by construction. As
a consequence, Bloch’s theorem directly applies to the KS states.

The situation is no longer as simple, if a homogeneous magnetic field BBBext is present. The vector
potential corresponding to BBBext,

AAAext(rrr) =
1
2

BBBext × rrr ,

is obviously not periodic, so that the same applies to the total Hamiltonian. Fortunately, the term
violating periodicity in case of a translation by RRRnnn,

AAAext(rrr +RRRnnn) = AAAext(rrr)+
1
2

BBBext ×RRRnnn ,

can be viewed as a gauge transformation of AAAext by the gauge function

λ (rrr) = −1
2
(BBBext ×RRRnnn) · rrr .

The ground state wavefunction then acquires an additional phase factor according to (2.150) upon
translation by RRRnnn. However, due to its equivalence to a gauge transformation, this translation does
not affect ννν , AAAxc and veff. It then follows that the conditions for the applicability of Bloch’s theorem,
which are quite restrictive for non-vanishing BBBext [104], are not changed by the presence of the
effective potentials.
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functionals of n, mmm and jjjp,

E[n, jjjp,mmm] = Ts[n, jjjp,mmm]+Eext[n, jjjp,mmm]+EH[n]+Exc[n, jjjp,mmm] , (3.207)

and Eext is given by

Eext[n, jjjp,mmm] =
∫

d3r

[
vext(rrr)+

e2

2mc2 AAA2
ext(rrr)

]
n(rrr)

+
e
c

∫
d3r AAAext(rrr) · jjjp(rrr)+

∫
d3r BBBext(rrr) ·mmm(rrr) . (3.208)

With the definition of the xc-magnetic field,

BBBxc(rrr) =
δExc[n, jjjp,mmm]

δmmm(rrr)

∣∣∣∣
n, jjjp

, (3.209)

and the xc-potentials,

vxc(rrr) =
δExc[n, jjjp,mmm]

δn(rrr)

∣∣∣∣
jjjp,mmm

(3.210)

e
c

AAAxc(rrr) =
δExc[n, jjjp,mmm]

δ jjjp(rrr)

∣∣∣∣∣
n,mmm

, (3.211)

one arrives (via minimization of the total energy) at the KS equations of CSDFT,

∑
σ ′

{[
1

2m

[
−ih̄∇∇∇+

e
c

AAAext

]2 − iμB [(∇∇∇ ·AAAxc)+2AAAxc ·∇∇∇]+ vext + vH + vxc

]
δσσ ′

+ μB σσσσσ ′ · (BBBext +BBBxc)
}

φk(rrrσ ′) = εkφk(rrrσ) . (3.212)

Exactly the same form of KS equations is obtained for the CSDFT variant
(2.169), using n and jjjg as basic variables,

E[n, jjjg] = Ts[n, jjjg]+Eext[n, jjjg]+EH[n]+Exc[n, jjjg] (3.213)

Eext[n, jjjg] =
∫

d3r

[
vext(rrr)+

e2

2mc2 AAA2
ext(rrr)

]
n(rrr)

+
e
c

∫
d3r AAAext(rrr) · jjjg(rrr) , (3.214)

provided that vxc, AAAxc and BBBxc are understood as

vxc(rrr) =
δExc[n, jjjg]

δn(rrr)

∣∣∣∣
jjjg

(3.215)
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e
c

AAAxc(rrr) =
δExc[n, jjjg]

δ jjjg(rrr)

∣∣∣∣∣
n

(3.216)

BBBxc(rrr) = ∇∇∇×AAAxc(rrr) . (3.217)

The similarity of the KS equations raises the question about the relation between
the two CSDFT schemes. It can be answered by an analysis of the corresponding
xc-functionals [73]. The functional Exc is gauge invariant in both CSDFT variants,
due to the gauge invariance of the total energy and of Ts +Eext,

Exc[n, jjj′p,mmm] = Exc[n, jjjp,mmm] (3.218)

Exc[n, jjj′g] = Exc[n, jjjg] . (3.219)

As both functionals are universal, their gauge invariance requires that they depend
on suitable vorticities. In the case of the functional (3.218) this vorticity is given by
Eq. (3.199),

Exc[n, jjjp,mmm] ≡ Ẽxc[n,ννν ,mmm] . (3.220)

On the other hand, for Exc[n, jjjg] it is the extended form

νννg(rrr) = ∇∇∇×
[

jjjg(rrr)
n(rrr)

]
(3.221)

Exc[n, jjjg] ≡ Ēxc[n,νννg] . (3.222)

The relation between the two functionals can then be established by use of (2.161),

νννg(rrr) = ννν(rrr)+
c
e

∇∇∇×
[

∇∇∇×mmm(rrr)
n(rrr)

]
, (3.223)

and the fact that the total energies of both approaches have to be identical. In fact,
for arbitrary, given AAAext the external energies (3.208) and (3.214) of both schemes
coincide as Eqs. (2.161) and (2.144) must hold,

Eext[n, jjjp,mmm] = Eext[n, jjjg] . (3.224)

Moreover, the total energies have to be identical even for vanishing interaction, so
that

Ts[n, jjjp,mmm] = Ts[n, jjjg] . (3.225)

As a result one finds [73]

Ẽxc[n,ννν ,mmm] = Ēxc

[
n,ννν +

c
e

∇∇∇×
(

∇∇∇×mmm
n

)]
. (3.226)

Combining this relation with Eq. (3.220) and using the fact that due to Eq. (3.199)
fixed n and jjjp are equivalent to fixed ννν , one then obtains
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δExc[n, jjjp,mmm]
δmmm(rrr)

∣∣∣∣
n, jjjp

=
δ Ẽxc[n,ννν ,mmm]

δmmm(rrr)

∣∣∣∣
n,ννν

=
δ

δmmm(rrr)
Ēxc

[
n,ννν +

c
e

∇∇∇×
(

∇∇∇×mmm
n

)]∣∣∣∣
n,ννν

.

At this point one can go back to the original form of Ēxc[n,νννg] via Eq. (3.222), again
using the fact that fixed n and ννν imply fixed jjjp,

δExc[n, jjjp,mmm]
δmmm(rrr)

∣∣∣∣
n, jjjp

=
δExc[n, jjjg]

δmmm(rrr)

∣∣∣∣
n, jjjp

.

Finally, one can use the unique correspondence of jjjg and mmm established by (2.161)
for fixed jjjp,

δExc[n, jjjp,mmm]
δmmm(rrr)

∣∣∣∣
n, jjjp

=
∫

d3r′
δExc[n, jjjg]

δ jjjg(rrr′)

∣∣∣∣∣
n

δ jjjg(rrr′)
δmmm(rrr)

∣∣∣∣
jjjp

,

and evaluate δ jjjg/δmmm via Eq. (2.161)

δExc[n, jjjp,mmm]
δmmm(rrr)

∣∣∣∣
n, jjjp

=
c
e

∇∇∇× δExc[n, jjjg]
δ jjjg(rrr)

∣∣∣∣∣
n

. (3.227)

The magnetic field BBBxc of the formalism based on n, jjjp and mmm, Eq. (3.209), is there-
fore identical with the curl of the xc-potential AAAxc of the scheme based on n and jjjg,
Eq. (3.216), exactly as required for the identity of the corresponding KS equations
by Eq. (3.217). Since the xc-potentials of both schemes agree,

δExc[n, jjjp,mmm]
δ jjjp(rrr)

∣∣∣∣∣
n,mmm

=
δExc[n, jjjg]

δ jjjp(rrr)

∣∣∣∣∣
n,mmm

=
δExc[n, jjjg]

δ jjjg(rrr)

∣∣∣∣∣
n

(3.228)

δExc[n, jjjp,mmm]
δn(rrr)

∣∣∣∣
jjjp,mmm

=
δExc[n, jjjg]

δn(rrr)

∣∣∣∣
jjjg

, (3.229)

one has verified the equivalence of both CSDFT variants.
With Eq. (3.212) our collection of nonrelativistic, stationary KS equations is

complete. Depending on the phenomenon under consideration, one can apply ei-
ther (3.44), (3.69), (3.88), (3.98), (3.191) or (3.212). We have finally reached the
point where the xc-functional has to be studied more closely.



Chapter 4
Exchange-Correlation Energy Functional

In this chapter we introduce the most frequently used approximations for the xc-
energy functional on the basis of a number of rigorous results for Exc[n]. The pre-
sentation focuses on the derivation of the various functionals, their performance
will only be discussed in so far as it serves as motivation for improvements. How-
ever, some prototype results will be given for the most important functionals, the
local density and generalized gradient approximation. An excellent overview of the
performance of many of the approximations in the field of quantum chemistry is
given in [105] (see also [106]); for solids corresponding information can be found
in [107–111] and references therein.

4.1 Definition of Exact Exchange within DFT

It is usual to decompose the total xc-energy functional Exc[n] into an exchange part
Ex[n] and a correlation functional Ec[n], in analogy to conventional many-body the-
ory. In view of the difference between Exc[n] and the standard xc-energy discussed
in Sect. 3.1, the precise definition of Ex[n] is somewhat arbitrary. It is neverthe-
less the natural first choice to define the exchange functional in such a way that the
total energy EHF and density nHF of the Hartree-Fock (HF) approximation are re-
produced if the correlation functional is completely neglected. The corresponding
HF-only ground state energy functional Ẽ[n],

Ẽ[n] = Ts[n]+Eext[n]+EH[n]+ Ẽx[n] , (4.1)

is hence to be minimized by nHF,

EHF = Ẽ[nHF] , (4.2)

while for any other density one must have

EHF < Ẽ[n] ∀ n �= nHF . (4.3)
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110 4 Exchange-Correlation Energy Functional

The existence of such an exchange functional is guaranteed by the HK theorem,
which remains valid in the exchange-only limit [112, 22]. One can then set up a KS
scheme on the basis of Ẽx[n]. However, contrary to naive expectation, the resulting
KS orbitals and eigenvalues do not agree with the original HF orbitals and eigenval-
ues, as the KS potential is always multiplicative: the functional derivative of Ẽx[n]
with respect to n(rrr) yields a multiplicative exchange potential which has nothing to
do with the nonlocal HF exchange operator, only the resulting densities coincide by
definition.

Unfortunately, the definition (4.1)–(4.3) leads to a number of difficulties:

• No explicit expression for the exact functional Ẽx[n] is available, neither in terms
of the density, nor in terms of some suitable N-particle wavefunction.

• With this definition of the exchange functional no virial relation can be formu-
lated (compare Sect. 5.3).

• A gradient expansion does not exist for Ẽx[n] (compare Sect. 4.4.3).

For these reasons an alternative definition [113, 114] of the exchange energy func-
tional has become the standard in DFT,

Ex[n] := 〈Φ0|Ŵ |Φ0〉−EH[n] , (4.4)

where |Φ0〉 is the KS Slater determinant (3.3) (a non-degenerate KS system is as-
sumed). Equation (4.4) can easily be evaluated explicitly. One obtains the standard
Fock expression, written, however, in terms of the KS orbitals φk,

Ex[n] = −1
2 ∑

kl

ΘkΘl ∑
σσ ′

∫
d3r

∫
d3r′ φ ∗

k (rrrσ)φl(rrrσ)w(rrr,rrr′)φ ∗
l (rrr′σ ′)φk(rrr′σ ′) .

(4.5)
The right-hand side of Eq. (4.5) is a density functional in the same sense as the
kinetic energy functional Ts[n]. As indicated in Eq. (3.22), the φk are uniquely deter-
mined by the density n, since n uniquely determines vs (according to the Hohenberg-
Kohn theorem for noninteracting systems), which in turn allows the unambiguous
calculation of the φk. Ex[n] represents an implicit density functional, in contrast to
the explicit density functionals to be discussed below.

In spite of the agreement of the functional (4.5) with the Fock expression, the
density which minimizes the total exchange-only (x-only) energy functional of DFT,

Ex−only[n] := Ts[n]+Eext[n]+EH[n]+Ex[n] , (4.6)

is not identical with nHF. This statement becomes immediately clear if one ana-
lyzes x-only DFT from the viewpoint of an energy minimization with respect to the
orbitals φk. Taking Eqs. (4.6), (3.21), (3.25), (3.26) and (4.5) together, the energy ex-
pression to be minimized in x-only DFT is identical with its HF counterpart (1.17).
However, in DFT the single-particle orbitals have to satisfy the KS equations (3.44),
with vx given by the multiplicative potential δEx[n]/δn(rrr). The multiplicative na-
ture of the total KS potential vs represents a subsidiary condition in the minimization
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procedure, which is not present in the HF-type minimization with its nonlocal ex-
change potential (1.21). In the HF approach one thus has some additional variational
freedom, which, in general, leads to a lower energy minimum,

EHF ≤ min
n

Ex−only[n] . (4.7)

The HF orbitals are not included in the variational space available to x-only DFT.
This implies that the insertion of the HF ground state density into Ex−only[n] does
not yield the HF ground state energy,

EHF �= Ex−only[nHF] ≥ min
n

Ex−only[n] .

The x-only DFT minimization coincides with the HF scheme only in special sit-
uations in which the HF potential (1.19) can be recast as a local potential for the
occupied state, i.e. for spin-saturated 2-particle systems. The use of Eq. (4.5) within
DFT—either in the x-only limit or in the general situation—leads to exchange ener-
gies which differ from their HF counterparts, due to the difference between KS and
HF orbitals.

This point is illustrated quantitatively in Table 4.1. Three values obtained by

Table 4.1 Exchange and correlation energies resulting from different definitions: Eq. (4.5) eval-
uated with HF, exact KS and x-only KS orbitals as well as DFT correlation energy versus EQC

c ,
Eq. (4.9) [115, 83, 116] (all energies in mHartree).

Atom −Ex −Ec −EQC
c

HF KS: exact KS: x-only
H− 395.49 380.90 395.49 41.99 39.82
He 1025.77 1024.57 1025.77 42.11 42.04
Be 2666.91 2673.98 2665.77 96.2 94.34
Ne 12108.35 12083.93 12105.01 394. 390.47

evaluation of (4.5) with three different types of orbitals are listed: the standard HF
exchange energy is compared with the DFT exchange resulting from insertion of the
KS orbitals which reproduce the exact density of the interacting system1 (referred
to as exact KS orbitals in the following) and the DFT exchange energy obtained by
insertion of the KS orbitals which minimize (4.6) (called exact x-only orbitals in
the following). Table 4.1 indicates that HF and x-only DFT exchange energies are
always rather close to each other (they are identical for spin-saturated 2-electron
systems). However, the same is not true for the Ex calculated from the exact KS

1 The exact densities of interacting systems with only few electrons can be obtained with high
accuracy by Quantum Monte Carlo or Configuration Interaction calculations. Once the density is
available, one can determine the total KS potential which gives this density by a suitably con-
strained solution of the single-particle equations [117–122].



112 4 Exchange-Correlation Energy Functional

orbitals. Even the sign of the deviation from EHF
x and Ex−only

x changes from atom to
atom.

The definition (4.5) induces a corresponding definition of the correlation energy
functional Ec[n],

Ec[n] := Exc[n]−Ex[n] . (4.8)

The difference between (4.5) and the HF exchange energy is absorbed into Ec. The
DFT correlation energy is thus not identical with the conventional correlation energy
EQC

c , which is employed in standard many-body theory and quantum chemistry. The
latter energy is defined as the difference between the total ground state energy of the
interacting system and its HF counterpart,

EQC
c = 〈Ψ0|Ĥ|Ψ0〉−〈ΦHF

0 |Ĥ|ΦHF
0 〉 , (4.9)

with |ΦHF
0 〉 denoting the HF ground state Slater determinant. On the other hand,

Eq. (4.8) may be rewritten as

Ec = 〈Ψ0|Ĥ|Ψ0〉−〈Φ0|Ĥ|Φ0〉 . (4.10)

The difference between Ec and EQC
c hence originates from the difference between

the HF ground state energy and Ex−only[n], Eq. (4.6), evaluated with the density n0

of the fully interacting system,

Ec −EQC
c = 〈ΦHF

0 |Ĥ|ΦHF
0 〉−〈Φ0|Ĥ|Φ0〉

= EHF −Ex−only[n0] . (4.11)

The size of Ec −EQC
c can be characterized further by introducing the x-only ground

state energy [116],

Ec −EQC
c =

(
EHF −Ex−only[nx−only

0 ]
)

+
(

Ex−only[nx−only
0 ]−Ex−only[n0]

)
,

(4.12)
where nx−only

0 represents the exact x-only ground state density. The first term on the
right-hand side of Eq. (4.12) is known for a variety of systems and turns out to be
small for all of them (for explicit numbers see Sect. 6.3). The second expression
allows a functional Taylor series expansion, similar to the expansion of the total
ground state energy in Eq. (3.33). As nx−only

0 minimizes Ex−only[n], the difference

between Ex−only[nx−only
0 ] and Ex−only[n0] is of second order in nx−only

0 −n0,

Ex−only[nx−only
0 ]−Ex−only[n0] = O

(
(nx−only

0 −n0)2
)

. (4.13)

As a consequence, the difference Ec −EQC
c is generally quite small. This point is

demonstrated explicitly for a few light atoms in Table 4.1 [116].
The most important property of the functional (4.5) is the exact cancellation of

the self-interaction contained in EH. The Coulomb integral (3.25) with the total
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density contains the interaction of the orbital density |φk|2 with itself,

EH =
1
2 ∑

kl

ΘkΘl ∑
σ ,σ ′

∫
d3r

∫
d3r′ |φk(rrrσ)|2 w(rrr,rrr′)|φl(rrr′σ ′)|2

=⇒ ESI
H =

1
2 ∑

k

Θ 2
k ∑

σ ,σ ′

∫
d3r

∫
d3r′ |φk(rrrσ)|2 w(rrr,rrr′) |φk(rrr′σ ′)|2 . (4.14)

The self-interaction energy ESI
H is exactly compensated by the terms with l = k of

(4.5),

ESI
x = −ESI

H . (4.15)

A second important feature of (4.5) is its additivity with respect to the two spin
orientations [123]. Utilizing the definition (4.5) within (collinear) SDFT, one can
insert the form (3.93) of the corresponding KS orbitals (and w(rrr,rrr′) = e2/|rrr− rrr′|)
to obtain

Ex[n↑,n↓] = −e2

2 ∑
σ

∑
αβ

ΘασΘβσ

∫
d3r

∫
d3r′

φ ∗
ασ (rrr)φβσ (rrr)φ ∗

βσ (rrr′)φασ (rrr′)
|rrr− rrr′| .

(4.16)
One thus finds a simple separation of spins in Ex[n↑,n↓] on the level of the orbital
representation (4.16),

Ex[n↑,n↓] = Ex↑ +Ex↓ . (4.17)

For an unpolarized system with n↑ = n↓ one has

Ex[n] = Ex[2n↑] = Ex[n↑,n↑] = 2Ex↑ , (4.18)

where Ex[n] denotes the functional (4.5) and the factor of 2 in the right-most equa-
tion follows directly from (4.17). Now consider a spin-polarized system: for a
given nσ of this polarized system one can imagine an auxiliary unpolarized sys-
tem with ñ↑ = ñ↓ = nσ . In this auxiliary system both spin-up and spin-down KS
orbitals are identical with the orbitals φασ of the actual polarized system. Ac-
cording to Eq. (4.18), the exchange energy of this unpolarized system satisfies
Ex[2nσ ] = Ex[2ñσ ] = 2Exσ . Upon insertion of this relation into (4.17) one arrives at

Ex[n↑,n↓] =
1
2

{
Ex[2n↑]+Ex[2n↓]

}
. (4.19)

The third important property of (4.5) and (4.16) is the behavior of the correspond-
ing potentials in the asymptotic region of finite systems (for which the density de-

cays exponentially for large rrr). Applying the standard normalization vσ
x (rrr)

|rrr|→∞−−−→ 0,
one finds

vσ
x (rrr) −−−→

|rrr|→∞
− e2

|rrr| . (4.20)
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For the verification of (4.20) one needs a scheme which allows the explicit evalua-
tion of the functional derivative δ/δn of an implicit functional of type (4.5). Such
a scheme is provided by the optimized potential method (OPM) [124, 125]. An ex-
plicit account of the OPM is given in Chap. 6. It will be shown in this chapter that
vσ

x is obtained as solution of a linear integral equation. Examination of this integral
equation for large r establishes the validity of (4.20) (see Sect. 6.2.5).

The physical reason behind this result is very simple: if one electron of a sys-
tem of N electrons and a corresponding assembly of nuclei is sufficiently far away
from the other electrons bound to the nuclei, it must experience the net charge of
the remaining system. The total electronic potential is given by the sum of vσ

xc and
the Hartree potential (3.42). However, vH contains the Coulomb self-repulsion of
the isolated electron far out. This self-interaction has to be eliminated by vσ

x . The
asymptotic limit (4.20) just reflects the exact cancellation of the self-interaction in
EH by Ex. No other contribution to vσ

xc can be proportional to 1/r, as this behavior
can only result from a monopole term.

This physical origin of (4.20) can be illustrated directly for a spin-saturated two-
electron system like the helium atom. In this case there is only one occupied KS
level for each spin,

nσ (rrr) = |φ1(rrr)|2 ; n(rrr) = 2nσ (rrr) ,

and the exchange energy only has to cancel the self-interaction. Equation (4.16) thus
reduces to

EHe
x [n↑,n↓] = −e2

2 ∑
σ

∫
d3r

∫
d3r′

nσ (rrr)nσ (rrr′)
|rrr− rrr′| . (4.21)

The functional derivative of EHe
x is then trivially given by

vσ ,He
x (rrr) = −e2

∫
d3r′

nσ (rrr′)
|rrr− rrr′| , (4.22)

so that (4.20) is obtained in the asymptotic limit.
Closely related to (4.20) is the asymptotic behavior of the exchange energy den-

sity ex (we will always denote the energy per volume corresponding to some energy
Ea by ea). As any other energy density, ex has the disadvantage that it can not be
defined uniquely: one can always add terms which integrate up to zero without af-
fecting Ex. Nevertheless, the Fock expression (4.5) suggests as a natural definition
for ex,

ex(rrr) := −e2

2 ∑
σ

∑
αβ

ΘασΘβσ

∫
d3r′

φ ∗
ασ (rrr)φβσ (rrr)φ ∗

βσ (rrr′)φασ (rrr′)
|rrr− rrr′| , (4.23)

which has become standard within DFT. If one now assumes the orbitals to decay
exponentially for large rrr, one finds for the asymptotic behavior of the exchange
energy density
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ex(rrr) −−−→
|rrr|→∞

− e2n(rrr)
2|rrr| . (4.24)

The pair of Eqs. (4.20) and (4.24) reflects the quadratic structure of the self-inter-
action energy with respect to the orbital density of the most weakly bound electron.

With Eqs. (4.15), (4.19), (4.20) and (4.24) the list of important rigorous proper-
ties of the exact exchange (4.5) is complete. Before discussing approximations for
Ex[n] we first establish some exact results for the complete xc-functional.

4.2 Exact Representations of Exc[n]

Given the exact representation of Ex[n] in terms of the KS orbitals, Eq. (4.5), the
question concerning an equivalent exact expression for the correlation functional
comes up quite naturally. This is also in line with the initial motivation for DFT: the
aim was to establish an exact mapping of the interacting many-body problem onto
an effective single-particle system. Of course, one should not expect an exact result
for Ec to be directly applicable in practice, as this would imply the exact solution
of the many-body Schrödinger equation. However, a formally exact representation
provides an ideal starting point for the derivation of systematic approximations. In
this context the term “systematic” means that, at least in principle, one can improve
a given approximation by successive inclusion of well-defined corrections until the
exact result is approached. This strategy reflects the basic understanding of DFT as
a first-principles approach.

In this section two different exact expressions for the xc-functional will be dis-
cussed, which are usually referred to as

(a) Kohn-Sham perturbation theory [126, 127], and
(b) adiabatic connection [77, 128].

Both of them will be derived explicitly, as they serve as starting points for two quite
different classes of approximate functionals.

4.2.1 Variant (a): Kohn-Sham Perturbation Theory

Let us for a moment assume that vs, the total KS potential, is known. In this case
the KS Hamiltonian Ĥs, Eq. (3.1), can be utilized as any other given noninteracting
N-particle Hamiltonian—the fact that in reality vs emerges from a self-consistent
calculation will have to be addressed subsequently. The ground state |Φ0〉 (assumed
to be nondegenerate) corresponding to Ĥs is then obtained by solution of Eq. (3.2),
the ground state energy Es and density n0 are given by Eqs. (3.16) and (3.13),
respectively. The density n0 is—by construction—identical with the density of the
interacting system, in which we are interested.
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One can then use Ĥs as noninteracting reference Hamiltonian in order to de-
rive an exact relation for Exc. First the total Hamiltonian of the interacting system
is decomposed into Ĥs and a remainder Ĥ1, for which the main component is the
electron–electron interaction Ŵ . In addition, Ĥ1 has to compensate the parts of Ĥs

which are not contained in Ĥ,

Ĥ1 = Ŵ −
∫

d3r n̂(rrr)vHxc(rrr) , (4.25)

where vHxc represents the electron–electron interaction components in vs,

vHxc(rrr) = vs(rrr)− vext(rrr) = vH(rrr)+ vxc(rrr) . (4.26)

In the second step a running coupling constant λ is introduced into the total Hamil-
tonian,

Ĥ(λ ) = Ĥs +λ Ĥ1 , (4.27)

which allows the use of the coupling constant integration technique. The ground
state |Ψ0(λ )〉 corresponding to Ĥ(λ ) (also assumed to be nondegenerate) is ob-
tained from the interacting Schrödinger equation,

Ĥ(λ )|Ψ0(λ )〉 = E0(λ )|Ψ0(λ )〉 . (4.28)

One can now apply the method of coupling constant integration to the λ -dependent
ground state energy,

E0(λ ) = 〈Ψ0(λ )|Ĥ(λ )|Ψ0(λ )〉 . (4.29)

One starts by differentiating E0(λ ) with respect to λ ,

d
dλ

E0(λ ) = 〈dΨ0(λ )
dλ

|Ĥ(λ )|Ψ0(λ )〉+ 〈Ψ0(λ )|Ĥ(λ )|dΨ0(λ )
dλ

〉
+〈Ψ0(λ )|Ĥ1|Ψ0(λ )〉

= E0(λ )
[
〈dΨ0(λ )

dλ
|Ψ0(λ )〉+ 〈Ψ0(λ )|dΨ0(λ )

dλ
〉
]

+〈Ψ0(λ )|Ĥ1|Ψ0(λ )〉 .

If one uses the fact that |Ψ0(λ )〉 is normalized for all λ ,

〈Ψ0(λ )|Ψ0(λ )〉 = 1 =⇒ d
dλ

〈Ψ0(λ )|Ψ0(λ )〉 = 0 , (4.30)

one arrives at

d
dλ

E0(λ ) = 〈Ψ0(λ )|Ĥ1|Ψ0(λ )〉 . (4.31)
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Next, one integrates (4.31) with respect to λ . The integration starts at λ = 0, for
which Ĥ(λ ) agrees with the KS Hamiltonian, and ends at λ = 1, where Ĥ(λ ) is
identical with the true interacting Hamiltonian,

Ĥ(λ ) =
{

Ĥs for λ = 0

Ĥ for λ = 1
.

On the left-hand side of (4.31), the integration leads to the difference between the
energy E0(1) = E0 of the interacting system (which is the energy one is interested
in) and the energy E0(0) = Es of the KS reference system,

E0(1)−E0(0) = E0 −Es =
∫ 1

0
dλ 〈Ψ0(λ )|Ĥ1|Ψ0(λ )〉 . (4.32)

The expectation value on the right-hand side of Eq. (4.32) can be rewritten in several
ways. It is instructive to consider first a less successful option. For this one uses the
equal-time commutation relations for the field operator, Eqs. (2.6) and (2.7), to show
that

ψ̂†(rrrσ)ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)ψ̂(rrrσ) = ψ̂†(rrrσ)ψ̂(rrrσ)ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)

−δ (3)(rrr− rrr′)δσσ ′ψ̂†(rrrσ)ψ̂(rrrσ) . (4.33)

Combination of (4.33) with (4.25) and (2.5) leads to

〈Ψ0(λ )|Ĥ1|Ψ0(λ )〉 =
1
2

∫
d3r

∫
d3r′ w(rrr,rrr′)

×〈Ψ0(λ )|n̂(rrr)n̂(rrr′)−δ (3)(rrr− rrr′) n̂(rrr)|Ψ0(λ )〉
−

∫
d3r vHxc(rrr)〈Ψ0(λ )|n̂(rrr)|Ψ0(λ )〉 . (4.34)

The kernel of (4.34) can be expressed in terms of the so-called density–density re-
sponse function of the interacting system.

The concept of response functions is so fundamental to many-body theory and is
utilized so often in this text that it is worth a little detour. Several kinds of response
functions (alternatively called correlation functions or susceptibilities) can be found
in the literature: depending on the context, different forms turn out to be particularly
useful. Of course, all of them are closely related. Two variants of response func-
tions are particularly relevant in the context of DFT. For the present discussion the
time-ordered response function is the most appropriate. For a stationary system it is
defined as

χ(rrrt,rrr′t ′) := − i
h̄
〈Ψ0|T ˆ̃n(rrrt) ˆ̃n(rrr′t ′)|Ψ0〉 (4.35)

= − i
h̄

[
〈Ψ0|T n̂(rrrt) n̂(rrr′t ′)|Ψ0〉−n0(rrr)n0(rrr′)

]
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(for the definition of the time-ordering symbol T see Eq. (3.120)). The basic ingre-
dient of χ is the density operator in the Heisenberg representation,

ˆ̃n(rrrt) = n̂(rrrt)−n0(rrr) (4.36)

n̂(rrrt) = eiĤt/h̄ n̂(rrr) e−iĤt/h̄ = ∑
σ

ψ̂†(rrrσt)ψ̂(rrrσt) (4.37)

n0(rrr) = 〈Ψ0|n̂(rrrt)|Ψ0〉 = 〈Ψ0|n̂(rrr)|Ψ0〉 . (4.38)

The time-ordered response has to be distinguished from the retarded response func-
tion,

χR(rrrt,rrr′t ′) := − i
h̄

Θ(t − t ′)〈Ψ0|[ ˆ̃n(rrrt), ˆ̃n(rrr′t ′)]|Ψ0〉 (4.39)

= − i
h̄

Θ(t − t ′)〈Ψ0|[n̂(rrrt), n̂(rrr′t ′)]|Ψ0〉 ,

on which the discussion of Sect. 4.4 and, in particular, of Sects. 7.4–7.6 relies. The
retarded response function is somewhat closer to physical reality, in that it connects
the response of an observable directly with the perturbation which causes the re-
sponse (compare the discussion in Sect. 4.4). The time-ordered response function,
on the other hand, is more easily dealt with in mathematical terms. In particular, it
allows the application of the complete machinery of Green’s function theory. For
this reason the relation between both functions is of obvious interest, as one often
would like to eliminate χR in favor of χ .

Let us therefore collect the basic properties of these functions. Due to the station-
arity of the Hamiltonian both response functions only depend on the time difference
t − t ′. This is immediately clear by insertion of n̂(rrrt) into the building block of both
functions,

〈Ψ0|n̂(rrrt)n̂(rrr′t ′)|Ψ0〉 = 〈Ψ0|eiĤt/h̄ n̂(rrr) e−iĤt/h̄eiĤt ′/h̄ n̂(rrr′) e−iĤt ′/h̄|Ψ0〉
= 〈Ψ0|n̂(rrr) e−iĤ(t−t ′)/h̄ n̂(rrr′)|Ψ0〉eiE0(t−t ′)/h̄

=⇒ χ(R)(rrrt,rrr′t ′) = χ(R)(rrr,rrr
′, t − t ′) . (4.40)

It is therefore convenient to analyze these functions in frequency space,

χ(R)(rrr,rrr
′,ω) =

∫ +∞

−∞
d(t − t ′)eiω(t−t ′) χ(R)(rrrt,rrr′t ′) . (4.41)

The intimate relation between χ and χR can be established on the basis of the
Lehmann representation, in analogy to Eq. (3.122). Let us denote the N-particle
eigenstates of the interacting Hamiltonian by |Ψn〉, with the quantum number n
chosen according to their energy ordering,

Ĥ |Ψn〉 = En |Ψn〉 ; En ≤ En+1 . (4.42)
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Let us furthermore assume that the ground state is non-degenerate. The Lehmann
representations of χ and χR are then obtained from the definitions (4.35) and (4.39)
by insertion of the completeness relation in the N-particle Hilbert space,

∑
n
|Ψn〉〈Ψn| = 1̂ , (4.43)

use of (4.42) and subsequent Fourier transformation,2{
χ(rrr,rrr′,ω)
χR(rrr,rrr′,ω)

}
= ∑

n�=0

〈Ψ0|n̂(rrr)|Ψn〉〈Ψn|n̂(rrr′)|Ψ0〉
h̄ω − (En −E0)+ iη

− ∑
n�=0

〈Ψ0|n̂(rrr′)|Ψn〉〈Ψn|n̂(rrr)|Ψ0〉
h̄ω +(En −E0)∓ iη

. (4.44)

The only difference between the Lehmann representations of χ and χR is found for
the pole shift of the second contribution, for which the (upper) minus sign refers
to χ , while the (lower) plus sign is correct for χR (concerning the handling of the
pole shifts see the remark following Eq. (3.122)). As En −E0 > 0 for all states with
n �= 0, the pole structures of χ and χR have the forms given in Fig. 4.1. In this

Fig. 4.1 Analytic structure of χ (×) and χR (•), Eq. (4.44), in the complex ω-plane.

figure crosses (×) denote the poles of χ , filled circles (•) those of χR. Figure 4.1
demonstrates that neither of the functions has poles on the imaginary axis and in the
upper-right quadrant of the complex ω-plane. One can directly verify that

2 Note that the term with n = 0, which is present in the completeness relation (4.43), is missing
in the final Lehmann representation (4.44). In the case of the time-ordered response function this
contribution drops out due to the definition of χ in terms of the density deviation operator ˆ̃n, i.e.
due to the subtraction of n0(rrr)n0(rrr′) from the actual time-ordered product of density operators in
Eq. (4.35). For the retarded response function the definition in terms of the commutator of two
density operators, Eq. (4.39), is responsible for the elimination of the term with n = 0.
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χR(rrr,rrr′,ω) =
{

χ(rrr,rrr′,ω) for ℜ(ω) ≥ 0
χ∗(rrr′,rrr,ω) for ℜ(ω) ≤ 0

, (4.45)

as the pole shift in the second term of (4.44) becomes irrelevant for ω ≥ 0, while
for ω ≤ 0 the same is true for the pole shift in the first denominator (En −E0 > 0).
Direct inspection of (4.44) leads to the symmetry relations

χR(rrr,rrr′,−ω) = χ∗
R(rrr,rrr′,ω) (4.46)

χ(rrr,rrr′,−ω) = χ(rrr′,rrr,ω) . (4.47)

Equations (4.45)–(4.47) imply that both functions are identical and real for ω = 0,

χR(rrr,rrr′,ω = 0) = χ(rrr,rrr′,ω = 0) = χ∗(rrr,rrr′,ω = 0) . (4.48)

Moreover, for systems with a finite number of particles integration over space leads
to ∫

d3r χ(R)(rrr,rrr
′,ω = 0) =

∫
d3r′ χ(R)(rrr,rrr

′,ω = 0) = 0 . (4.49)

This identity, however, relies on∫
d3r 〈Ψ0|n̂(rrr)|Ψn〉 = 〈Ψ0|N̂|Ψn〉 = Nδn0 .

As a consequence, Eq. (4.49) does not apply to infinite systems, for which the parti-
cle number diverges, so that the integral over space is not well-defined as it stands.

Additional information on both types of response functions will be given in sub-
sequent sections, in particular in Sects. 4.3 and 4.4. For the present discussion the
limit t, t ′ → 0 is of interest. One immediately recognizes, from either the definition
(4.39) or the Lehmann representation (4.44), that the retarded response function
vanishes in this limit,

lim
t ′→0

[
lim
t→0

χR(rrrt,rrr′t ′)
]

= lim
t→0

[
lim
t ′→0

χR(rrrt,rrr′t ′)
]

=
∫ +∞

−∞

dω
2π

χR(rrr,rrr′,ω)

= 0 . (4.50)

All poles of χR(rrr,rrr′,ω) lie in the lower half of the complex plane. On the other
hand, the limit t, t ′ → 0 is well-defined and non-zero in the case of the time-ordered
response function,

lim
t ′→0

[
lim
t→0

χ(rrrt,rrr′t ′)
]

= lim
t→0

[
lim
t ′→0

χ(rrrt,rrr′t ′)
]

=
∫ +∞

−∞

dω
2π

χ(rrr,rrr′,ω)
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= − i
h̄ ∑

n�=0

〈Ψ0|n̂(rrr)|Ψn〉〈Ψn|n̂(rrr′)|Ψ0〉

= − i
h̄
[〈Ψ0|n̂(rrr)n̂(rrr′)|Ψ0〉−n(rrr)n(rrr′)] . (4.51)

With this result let us resume the discussion of the energy shift (4.34). The limit
(4.51) can be used to reformulate (4.34) in terms of the time-ordered response func-
tion. Combining Eqs. (4.32), (4.34) and (4.51), one arrives at

E0(1) = E0(0)−
∫ 1

0
dλ

∫
d3r nλ (rrr)

{
vHxc(rrr)− 1

2

∫
d3r′ w(rrr,rrr′)nλ (rrr′)

}
+

1
2

∫
d3r

∫
d3r′ w(rrr,rrr′)

×
∫ 1

0
dλ

{
ih̄ lim

t,t ′→0
χλ (rrrt,rrr′t ′)−δ (3)(rrr− rrr′)nλ (rrr)

}
, (4.52)

where nλ and χλ denote the density and response function resulting from the ground
state |Ψ0(λ )〉 for given λ . One can now use Eq. (3.18) for E0(0),

E0(0) = Es = 〈Φ0|Ĥs|Φ0〉 = Ts +
∫

d3r vs(rrr)n(rrr) , (4.53)

and (3.24) to end up with

Exc =
1
2

∫
d3r

∫
d3r′ w(rrr,rrr′)

∫ 1

0
dλ

{
ih̄χλ (rrr0,rrr′0)−δ (3)(rrr− rrr′)nλ (rrr)

}
+

∫ 1

0
dλ

{
EH[nλ ]−EH[n]+

∫
d3r

[
vs(rrr)− vext(rrr)

][
n(rrr)−nλ (rrr)

]}
. (4.54)

The expression (4.54) is a density functional in the sense that the ground state
|Ψ0(λ )〉 is a unique functional of the density nλ for any λ . However, as the strength
of the particle–particle interaction varies with λ , the functional dependence of |Ψ0〉
on the density also varies, |Ψ0(λ )〉 = |Ψλ [nλ ]〉. One has to perform an integration
over λ , in order to obtain the desired functional of the actually interesting density
n. While (4.54) is an exact representation of Exc, it is difficult to imagine how this
functional could be used in practice.

Fortunately, Eq. (4.54) can be reformulated in a more useful form. With this aim
in mind, it is most convenient to go back to the coupling constant integration formula
(4.32). For its evaluation the concept of adiabatic switching [94] is applied to Ĥ1.
This means that Ĥ1 is switched off for large positive and negative times, using some
exponential switching factor,

Ĥ1 −→ e−ε |t| Ĥ1 , (4.55)

so that asymptotically one has limt→±∞ Ĥ(λ ) = Ĥs (while for t = 0 the original
Hamiltonian is retained). The limit ε → 0 is taken at the very end of the discussion,
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in order to return to the original Hamiltonian for all times. On this basis the machin-
ery of standard many-body theory, i.e. the Gell-Mann-Low theorem [129] applied
to the present decomposition of the total Hamiltonian, leads to an expression which
connects the interacting ground state with the KS ground state,

|Ψ0(λ )〉 = A lim
ε→0

ÛI,ε(0,∓∞)|Φ0〉
〈Φ0|ÛI,ε(0,∓∞)|Φ0〉

(4.56)

A = lim
ε1,ε2→0

[
〈Φ0|ÛI,ε1(+∞,0)|Φ0〉〈Φ0|ÛI,ε2(0,−∞)|Φ0〉

〈Φ0|ÛI,ε1(+∞,0)ÛI,ε2(0,−∞)|Φ0〉

]1/2

, (4.57)

where A ensures the normalization (4.30). The main ingredient of (4.56) is the time-
evolution operator in the interaction picture (defined by Ĥs), which is given by a
power series in the perturbation,

ÛI,ε(t, t ′) =
∞

∑
n=0

(−iλ )n

h̄nn!

∫ t

t ′
dt1 · · ·

∫ t

t ′
dtn e−ε(|t1|+···+|tn|)

×T
[
Ĥ1,I(t1) · · · Ĥ1,I(tn)

]
(4.58)

Ĥ1,I(t) = eiĤst Ĥ1 e−iĤst

=
1
2 ∑

σ ,σ ′

∫
d3r

∫
d3r′ w(rrr,rrr′) ψ̂†

0 (rrrσt)ψ̂†
0 (rrr′σ ′t)ψ̂0(rrr′σ ′t)ψ̂0(rrrσt)

−∑
σ

∫
d3r vHxc(rrr) ψ̂†

0 (rrrσt)ψ̂0(rrrσt) . (4.59)

Here ψ̂0 represents the field operator in the interaction picture, which is identical
with the field operator in the Heisenberg representation defined by the KS Hamilto-
nian,

ψ̂0(rrrσt) = eiĤst/h̄ ψ̂(rrrσ) e−iĤst/h̄ = ∑
i

b̂iφi(rrrσ)e−iεit/h̄ . (4.60)

The operator b̂(†)
i denotes the annihilation (creation) operator for the single-particle

KS state φi

φi(rrrσ) = 〈rrrσ |b̂†
i |0〉 (4.61)

0 = b̂i|0〉 (4.62)

|Φ0〉 = ∏
εi≤εF

b̂†
i |0〉 . (4.63)

The field operator and the KS Hamiltonian may thus be expanded as

ψ̂(rrrσ) = ∑
i

b̂i φi(rrrσ) ; Ĥs = ∑
i

εi b̂†
i b̂i ,

which leads to the simple commutation relations
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Ĥs, b̂i

]
= −εib̂i ;

[
Ĥs, b̂

†
i

]
= εib̂

†
i .

Use of the identity (L.12) then explains the right-hand equality in (4.60). The reader
is referred to a text on many-body theory (for instance [94]) for the derivation of
Eq. (4.56), which is completely independent of the form of Ĥ1.

Insertion of (4.56) into the coupling constant integral (4.32) leads to the energy
correction which results from switching on the perturbation. In order to express this
energy in standard form one first uses the fact that Ĥ1 = Ĥ1,I(t = 0) can be absorbed
into the time-ordered product in ÛI,ε ,

ÛI,ε(+∞,0)Ĥ1ÛI,ε(0,−∞)

=
∞

∑
n=0

(−iλ )n

h̄nn!

∫ +∞

0
dt1 · · ·

∫ +∞

0
dtn e−ε(|t1|+···+|tn|)

×
∞

∑
k=0

(−iλ )k

h̄kk!

∫ 0

−∞
dt ′1 · · ·

∫ 0

−∞
dt ′k e−ε(|t ′1|+···+|t ′k|)

×T
[
Ĥ1,I(t1) · · ·Ĥ1,I(tn)

]
Ĥ1,I(0)T

[
Ĥ1,I(t ′1) · · ·Ĥ1,I(t ′k)

]
=

∞

∑
n=0

(−iλ )n

h̄nn!

∫ +∞

0
dt1 · · ·

∫ +∞

0
dtn e−ε(|t1|+···+|tn|)

×
∞

∑
k=0

(−iλ )k

h̄kk!

∫ 0

−∞
dt ′1 · · ·

∫ 0

−∞
dt ′k e−ε(|t ′1|+···+|t ′k|)

×T
[
Ĥ1,I(t1) · · ·Ĥ1,I(tn)Ĥ1,I(0)Ĥ1,I(t ′1) · · ·Ĥ1,I(t ′k)

]
= T

[
Ĥ1,I(0)ÛI,ε(+∞,0)ÛI,ε(0,−∞)

]
.

Together with the additivity of the time-evolution operator,

ÛI,ε(+∞,0)ÛI,ε(0,−∞) = ÛI,ε(+∞,−∞) ,

one arrives at

E0 −Es = lim
ε→0

∫ 1

0
dλ

∞

∑
n=0

(−iλ )n

h̄nn!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn e−ε(|t1|+···+|tn|)

× 〈Φ0|T Ĥ1,I(0)Ĥ1,I(t1) · · · Ĥ1,I(tn)|Φ0〉
〈Φ0|ÛI,ε(+∞,−∞)|Φ0〉

. (4.64)

Using Eqs. (3.18) and (3.24) one can finally extract Exc and perform the coupling
constant integration,
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Exc =
1
2

∫
d3r

∫
d3r′ w(rrr,rrr′)

×
{

∑
σ ,σ ′

〈Φ0|ψ̂†
0 (rrrσ)ψ̂†

0 (rrr′σ ′)ψ̂0(rrr′σ ′)ψ̂0(rrrσ)|Φ0〉−n(rrr)n(rrr′)
}

+ lim
ε→0

∞

∑
n=1

(−i)n

h̄n(n+1)!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn e−ε(|t1|···+|tn|)

×〈Φ0|T Ĥ1,I(0)Ĥ1,I(t1) · · ·Ĥ1,I(tn)|Φ0〉l . (4.65)

The index l indicates that in the order-by-order evaluation of (4.65) only those con-
tributions have to be included which can not be factorized into one term involving
Ĥ1,I(0) and a remainder. Expressed in the language of Feynman diagrams, only
linked diagrams are to be included in the evaluation of (4.65) via Wick’s theorem
(this restriction corresponds to the cancellation of the denominator of (4.64)).

The first term on the right-hand side of (4.65) emerges from the perturbative
contribution linear in Ĥ1 and is easily identified as the exchange energy (4.5). In
order to prove this assertion, one can either insert the noninteracting field operator
(4.60) and the KS ground state (4.63) to evaluate the expectation value directly.
Alternatively, one can commute the operators ψ̂0 as in (4.33) and subsequently use
(4.51),

1
2

∫
d3r

∫
d3r′ w(rrr,rrr′)

×
[

∑
σ ,σ ′

〈Φ0|ψ̂†
0 (rrrσ)ψ̂†

0 (rrr′σ ′)ψ̂0(rrr′σ ′)ψ̂0(rrrσ)|Φ0〉−n(rrr)n(rrr′)

]

=
1
2

∫
d3r

∫
d3r′ w(rrr,rrr′)

{
ih̄

∫ +∞

−∞

dω
2π

χs(rrr,rrr′,ω)−δ (3)(rrr− rrr′)n(rrr)
}

. (4.66)

Here χs denotes the time-ordered response function of the KS system, which is
defined in complete analogy to the full response function (4.35), with the ground
state and density operator being replaced by their KS counterparts,

χs(rrrt,rrr′t ′)

= − i
h̄

[
∑

σ ,σ ′
〈Φ0|T ψ̂†

0 (rrrσt)ψ̂0(rrrσt)ψ̂†
0 (rrr′σ ′t ′)ψ̂0(rrr′σ ′t ′)|Φ0〉−n(rrr)n(rrr′)

]
. (4.67)

The function χs and its retarded version χs,R (defined in analogy to Eq. (4.39))
satisfy the same relations as the interacting response functions, Eqs. (4.40)–(4.49).
In particular, there also exists a Lehmann representation for χs. In fact, this Lehmann
representation becomes particularly simple, due to the determinantal structure of the
KS N-particle states. As ψ̂†

0 ψ̂0 can only excite a single KS particle from the ground
state Slater determinant |Φ0〉, one finds
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χs(rrr,rrr′,ω) = ∑
kl

Θk(1−Θl) ∑
σ ,σ ′

φ ∗
k (rrrσ)φl(rrrσ)φ ∗

l (rrr′σ ′)φk(rrr′σ ′)
h̄ω − (εl − εk)+ iη

−∑
kl

Θk(1−Θl) ∑
σ ,σ ′

φ ∗
k (rrr′σ ′)φl(rrr′σ ′)φ ∗

l (rrrσ)φk(rrrσ)
h̄ω +(εl − εk)− iη

. (4.68)

Insertion of (4.68) into (4.66) then allows a direct evaluation of the frequency inte-
gral by contour integration techniques. One ends up with the exchange (4.5), estab-
lishing two alternative representations of Ex,

Ex =
1
2

∫
d3r

∫
d3r′ w(rrr,rrr′)

×
{

∑
σ ,σ ′

〈Φ0|ψ̂†
0 (rrrσ)ψ̂†

0 (rrr′σ ′)ψ̂0(rrr′σ ′)ψ̂0(rrrσ)|Φ0〉−n(rrr)n(rrr′)

}

=
1
2

∫
d3r

∫
d3r′ w(rrr,rrr′)

[
ih̄

∫ ∞

0

dω
π

χs(rrr,rrr′,ω)−n(rrr)δ (3)(rrr− rrr′)
]
, (4.69)

where (4.47) has been used to restrict the frequency integration to the positive range.
The second term in (4.65), which incorporates all higher orders of Ĥ1, provides

an exact expression for the correlation energy Ec,

Ec = lim
ε→0

∞

∑
n=1

(−i)n

h̄n(n+1)!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn e−ε(|t1|···+|tn|)

×〈Φ0|T Ĥ1,I(0)Ĥ1,I(t1) · · · Ĥ1,I(tn)|Φ0〉l . (4.70)

The quantities required for the evaluation of this expression via Wick’s theorem, i.e.
the elementary building blocks of many-body perturbation theory based on Ĥs, are
the KS Green’s function,

Gs(rrrσt,rrr′σ ′t ′)

:= −i〈Φ0|T ψ̂0(rrrσt) ψ̂†
0 (rrr′σ ′t ′)|Φ0〉

= −i∑
i

{
Θ(t − t ′)(1−Θi)−Θ(t ′ − t)Θi

}
φi(rrrσ)φ †

i (rrr′σ ′)e−iεi(t−t ′)/h̄ , (4.71)

the Coulomb interaction w and vHxc (as Ĥ1 depends on this potential). The Hartree
component of vHxc = vH + vxc is readily calculated from the KS orbitals, so that
(4.65) depends on three basic quantities, φk, εk and vxc.

The result obtained is hence an exact representation of Exc in terms of the KS
orbitals and eigenvalues as well as in terms of its own functional derivative. Con-
sequently, Eq. (4.65) does not assign a well-defined expression to Exc, but rather
represents a highly nonlinear functional equation. This result is, however, still con-
sistent with the basic statements of DFT: as vxc is a density functional itself, the
right-hand side of Eq. (4.65) represents an implicit density functional.
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While the expression (4.65) is more transparent than (4.54), its usefulness for
practical applications is not obvious at all. Both its dependence on the KS states
as well as its nonlinearity prevent a direct exploitation. Nevertheless, the represen-
tation (4.65) serves as basis for a complete class of approximations for Exc. As
these approximations rely on the explicit representation of xc-effects in terms of
KS states, further discussion is postponed until Chap. 6, in which the handling of
orbital-dependent functionals is explained.

4.2.2 Variant (b): Adiabatic Connection

The starting point of the discussion is once more the representation of Exc in terms of
the response function χ . Obviously, the result (4.54), obtained by the decomposition
(4.27) of the total Hamiltonian, is rather difficult to handle, because the ground state
density changes with the switching factor λ . One might thus ask whether one can
modify this procedure in a way which ensures that the ground state density remains
the same along the path from the KS system to the fully interacting system? This
invariance is the crucial feature behind the adiabatic connection [77, 128].

The basic assumption, that one uses here, is: the ground state density n of the
interacting system is v-representable for any strength of the interaction λw with
λ ∈ [0,1]—until now, only the two end points have been utilized. In other words:
one assumes that one can find an external potential, so that the same ground state
density is obtained for any interaction strength λ ∈ [0,1],

nλ (rrr) = 〈Ψ0(λ )|n̂(rrr)|Ψ0(λ )〉 ≡ n(rrr) for all 0 ≤ λ ≤ 1 . (4.72)

This external potential will be denoted by uλ ,

uλ (rrr) =

⎧⎪⎨
⎪⎩

vs(rrr) for λ = 0

unknown for 0 < λ < 1

vext(rrr) for λ = 1

. (4.73)

The total Hamiltonian for given λ then reads

Ĥ(λ ) = T̂ +
∫

d3r uλ (rrr) n̂(rrr)+λŴ , (4.74)

so that one obtains again

Ĥ(λ ) =

{
Ĥs for λ = 0

Ĥ for λ = 1
.

However, in contrast to the Hamiltonian (4.27) the present Ĥ(λ ) is only known for
the two limiting cases λ = 0 and λ = 1. This complicates the evaluation of the
energy for intermediate λ .
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For the Hamiltonian (4.74) one can use coupling constant integration in the same
fashion as for (4.27). If one denotes the ground state, which results from (4.74), by
|Ψ0(λ )〉, one obtains for the ground state energy,

E0(1)−E0(0) =
∫ 1

0
dλ

〈
Ψ0(λ )

∣∣∣∣∫ d3r n̂(rrr)
duλ (rrr)

dλ
+Ŵ

∣∣∣∣Ψ0(λ )
〉

=
∫

d3r
[
uλ=1(rrr)−uλ=0(rrr)

]
n(rrr)

+
1
2 ∑

σ ,σ ′

∫
d3r

∫
d3r′ w(rrr,rrr′)

∫ 1

0
dλ

×〈Ψ0(λ )|ψ̂†(rrrσ)ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)ψ̂(rrrσ)|Ψ0(λ )〉 .

In the next step, the time-ordered response function corresponding to the Hamilto-
nian (4.74) can be introduced and Exc can be extracted,

Exc[n] =
1
2

∫
d3r

∫
d3r′ w(rrr,rrr′)

∫ 1

0
dλ

[
ih̄χλ (rrr0,rrr′0)−n(rrr)δ (3)(rrr− rrr′)

]
. (4.75)

Of course, the response function in (4.75) is not identical with the χλ in (4.54),
as the underlying Hamiltonians differ. Nevertheless, use of the HK theorem for all
λ ∈ [0,1] leads again to the statement that the ground state |Ψ0(λ )〉 is a unique
functional of the density nλ . The important advantage of (4.75), compared to the
expression (4.54), results from the fact that nλ is now identical for all λ , so that
|Ψ0(λ )〉 and hence χλ as well as (4.75) are functionals of the actual interacting
ground state density n only (|Ψ0(λ )〉 = |Ψλ [n]〉). Equation (4.75) represents the
adiabatic connection formula for Exc.

Often an alternative form of (4.75) is found in the literature, which relies on a
variant of the response function, the so-called pair-correlation function,

g(rrr,rrr′) :=
〈Ψ0|n̂(rrr)n̂(rrr′)|Ψ0〉−n(rrr)δ (3)(rrr− rrr′)

n(rrr) n(rrr′)
. (4.76)

g(rrr,rrr′)−1 is the percentage deviation of the probability to find one particle at point
rrr and simultaneously a second particle at rrr′ from the uncorrelated product of single-
particle probabilities,

n(2)(rrr,rrr′) =
1
2

n(rrr)n(rrr′)g(rrr,rrr′) , (4.77)

where n(2) is given by (3.45). The connection between n(2)(rrr,rrr′) and g(rrr,rrr′) can be
easily established via the 2-particle density operator
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n̂(2)(rrr,rrr′) =
1
2

N

∑
i, j=1;i�= j

δ (3)(rrr− r̂rri)δ (3)(rrr′ − r̂rr j) (4.78)

=
1
2 ∑

σ ,σ ′
ψ̂†(rrrσ)ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)ψ̂(rrrσ) (4.79)

(the equivalence of (4.78) and (4.79) can be verified on the basis of the general rela-
tion between the first and second quantized representation of 2-particle operators—
see Appendix B). Insertion of g(rrr,rrr′) into (4.75) yields

Exc[n] =
1
2

∫
d3r

∫
d3r′ n(rrr)w(rrr,rrr′)n(rrr′)

∫ 1

0
dλ [gλ (rrr,rrr′)−1] . (4.80)

gλ (rrr,rrr′) is a unique functional of n, in the same way as χλ .
There exists yet another reformulation of (4.75) which is frequently met within

DFT. The definition of the exchange-correlation hole hxc,

hxc(rrr,rrr′) = n(rrr′)
∫ 1

0
dλ [gλ (rrr,rrr′)−1] , (4.81)

allows to rewrite (4.75) as

Exc[n] =
1
2

∫
d3r n(rrr)

∫
d3r′ w(rrr,rrr′)hxc(rrr,rrr′) . (4.82)

In the form (4.82) the xc-energy can be interpreted as the interaction energy of the
charge density n with its associated xc-hole. Any approximation for hxc, gλ or χλ
then defines an approximation for Exc[n].

For practical purposes it is convenient to recast (4.75) using the fact that the
response function χλ (rrrt,rrr′t ′) only depends on t − t ′, which allows the insertion of
the Fourier representation (4.41),

Exc =
1
2

∫
d3r

∫
d3r′

e2

|rrr− rrr′|
×

∫ 1

0
dλ

[
ih̄

∫ ∞

−∞

dω
2π

χλ (rrr,rrr′,ω)−n(rrr)δ (3)(rrr− rrr′)
]

. (4.83)

Using Eq. (4.47) to restrict the frequency integration to the positive regime and
subtracting the exact exchange (4.69), one ends up with an exact representation of
the correlation energy functional,

Ec =
ih̄
2

∫
d3r

∫
d3r′

e2

|rrr− rrr′|
∫ 1

0
dλ

∫ ∞

0

dω
π

[
χλ (rrr,rrr′,ω)−χs(rrr,rrr′,ω)

]
. (4.84)

For ℜ(ω) ≥ 0, however, χλ (rrr,rrr′,ω) does not have any poles in the upper half of
the complex ω-plane, as can be explicitly verified via the Lehmann representation
(4.44). The same statement is true for χs(rrr,rrr′,ω), see Eq. (4.68). As a consequence,
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integrals along arbitrary closed contours in the upper-right quadrant of the ω-plane
vanish. This finally allows us to rewrite (4.84) as an integral over imaginary fre-
quencies, i.e. an integral along the imaginary axis,

Ec = − h̄
2

∫
d3r

∫
d3r′

e2

|rrr− rrr′|
∫ 1

0
dλ

∫ ∞

0

dω
π

[
χλ (rrr,rrr′, iω)−χs(rrr,rrr′, iω)

]
.

(4.85)
The form (4.85) has the advantage that one does not come close to any pole of
χλ (rrr,rrr′,ω) and χs(rrr,rrr′,ω) along the imaginary axis, so that the pole shifts in their
Lehmann representations become irrelevant. On this basis one can directly demon-
strate that χλ (rrr,rrr′, iω) and χs(rrr,rrr′, iω) are manifestly real, so that also the integrand
of (4.85) is real.

4.3 Local Density Approximation (LDA)

In view of the complex structure of the time-ordered response function one might
ask whether the adiabatic connection (4.75) can be of any use? Clearly, it does not
directly define some explicit density functional: only the mere existence of the func-
tional χλ [n] is ensured, while the actual density dependence of χλ is as unknown
as that of |Ψλ [n]〉. However, there exists a prominent interacting many-body system
for which the density dependence of χλ is rather well-known, the homogeneous (or
uniform) electron gas (HEG). The HEG is a system of infinitely many interacting
electrons which do not experience a spatially varying external potential. Of course,
the total energy of infinitely many particles is infinite, only the energy density is
a meaningful quantity, or, alternatively, the energy per particle. However, even the
energy density of infinitely many electrons diverges, due to the long range of the
Coulomb interaction. In order to cure this problem, the charge of the electrons has
to be neutralized by a homogeneous, positive background charge density n+, con-
sistent with the requirement that the external potential has to be a constant. As a
result, the net charge in any (suitably chosen) volume of space is zero, so that the
long-range Coulomb forces vanish and a finite energy density is obtained. If the
number of electrons per volume exceeds a certain threshold, the electron ground
state density n0 of the HEG is constant throughout all space, i.e. homogeneous, with
n0 = n+.

As a direct consequence, the spatial xc-energy density exc of the HEG (or the
xc-energy per particle εxc = exc/n0) is an ordinary function of n0, rather than an
actual functional. In addition, the response function of the HEG only depends on
the distance between the points rrr and rrr′,

χλ (rrrt,rrr′t ′) ≡ χλ (|rrr− rrr′|, t − t ′) , (4.86)

as a result of the translational and rotational invariance of the HEG (in the following
the response function of the HEG will always be distinguished from the general χ
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by its arguments). The adiabatic connection thus takes the form3

eHEG
xc (n0) =

1
2

∫
d3r′ w(rrr− rrr′)

∫ 1

0
dλ

{
ih̄χλ (rrr− rrr′,0;n0)−n0 δ (3)(rrr− rrr′)

}
,

(4.87)
where the density dependence of χλ has been explicitly indicated. In addition, one
has used the fact that the Coulomb interaction only depends on the distance between
the two particles. A simpler form is obtained by Fourier transformation,

eHEG
xc (n0) =

1
2

∫
d3q

(2π)3 w(qqq)
{

ih̄
∫ 1

0
dλ

∫
dω
2π

χλ (qqq,ω;n0)−n0

}
, (4.88)

with

w(qqq) =
∫

d3r e−iqqq·rrr w(rrr− rrr′) (4.89)

χλ (qqq,ω) =
∫

dt
∫

d3r eiωt e−iqqq·rrr χλ (rrr− rrr′, t − t ′) . (4.90)

The explicit form of w(qqq) for the case of the Coulomb interaction is4

w(qqq) =
4πe2

qqq2 . (4.91)

Equation (4.88) can be evaluated for a number of approximations for χλ . How-
ever, a detailed account of the state-of-the-art knowledge on the HEG, and in partic-
ular on χλ and eHEG

xc , is beyond the scope of this text. In the following we will only
make use of the Dyson equation for the response function,

χ(qqq,ω) = Π(qqq,ω)+Π(qqq,ω)w(qqq)χ(qqq,ω) (4.92)

=
Π(qqq,ω)

1−w(qqq)Π(qqq,ω)
(4.93)

= Π(qqq,ω)+Π(qqq,ω)w(qqq)Π(qqq,ω)

+Π(qqq,ω)w(qqq)Π(qqq,ω)w(qqq)Π(qqq,ω)+ . . . ,

in which χ is expanded in powers of its basic buildings blocks, the irreducible (or
proper) polarization insertion Π . The concept behind Eq. (4.92) is closely related
to that of the Dyson equation for the single-particle Green’s function, introduced in
Sect. 3.6: Equation (4.92) separates the core contributions to χ , as the propagation
and annihilation of a single particle–hole pair created by the incoming momentum

3 Note that exc is the xc-energy per volume, not the xc-energy per particle, which is often used to
characterize the HEG. The latter quantity will be denoted by εxc.
4 In actual calculations the long range of the Coulomb interaction often requires use of the screened
form (L.10) in intermediate steps of the calculation. The limit of vanishing screening is then usually
taken at the end of the calculation.
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qqq, from simple repetitions of the same process. Many further details on χ can be
found in standard textbooks as [94, 95].

4.3.1 Exchange

We first consider the lowest order contribution to χλ , i.e. the response function χ0

of a noninteracting HEG with density n0. This noninteracting response function is
independent of λ . When inserted into the general expression (4.88), χ0 yields a
contribution to eHEG

xc which is linear in e2. By definition, this is the exchange energy
of the HEG,

eHEG
x (n0) =

1
2

∫
d3q

(2π)3 w(qqq)
{

ih̄
∫

dω
2π

χ0(qqq,ω)−n0

}
. (4.94)

χ0, the so-called Lindhard function [130, 94], can be written in terms of the single-
particle Green’s function G0 of the noninteracting HEG,

χ0(rrr− rrr′, t − t ′) ≡ Π (0)(rrr− rrr′, t − t ′)

= − i
h̄ ∑

σ ,σ ′
G0(rrr− rrr′, t − t ′,σσ ′)G0(rrr′ − rrr, t ′ − t,σ ′σ)

Π (0)(qqq,ω) = − i
h̄ ∑

σ ,σ ′

∫
d3k

(2π)3

dk0

2π
G0(kkk +qqq,k0 +ω,σσ ′)G0(kkk,ω,σ ′σ) . (4.95)

The explicit form of G0, Eq. (L.29), is obtained from the general result (3.124) by
insertion of the eigenstates of the noninteracting HEG (and use of a suitable limiting
procedure in order to keep the normalization of the eigenstates and the density under
control—see Appendix D). These eigenstates are simple plane waves,

φl(rrrσ) ≡ φkkks(rrrσ) = C eikkk·rrr χs(σ) , εl ≡ εkkk =
h̄2kkk2

2m
,

which are occupied for all |kkk| below the Fermi momentum

kF =
√

2mεF

h̄
. (4.96)

The Fermi momentum, in turn, is determined by the density of the gas,

n0 =
k3

F

3π2 . (4.97)

The expression (4.95) indicates why it is often preferable to represent Green’s
and response functions in terms of Feynman diagrams, rather than by explicit spec-
ification of Feynman integrals. The diagrammatic equivalent of (4.95),
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0 ,ih̄Π = (4.98)

in which the solid line represents G0 (either in real or in momentum space), is much
more compact. In the following the diagrammatic form will therefore be utilized
frequently. The technical details of the Feynman rules, required to translate diagrams
into integrals such as (4.95) and vice versa are given in Appendix L (the rules used
are identical with those of [94], Chaps. 9–12, to which the reader is referred for
background information).

Insertion of (4.95) and (L.29) into (4.94) and subsequent integration over kkk,k0

leads to [131]

eHEG
x (n0) = −3(3π2)1/3

4π
e2 n4/3

0 . (4.99)

An alternative, very elementary derivation of this result is given in Appendix D.

4.3.2 Correlation: High-Density Limit

The leading term of the high-density limit of the correlation energy eHEG
c is con-

tained in a set of contributions termed random phase approximation (RPA). The
RPA corresponds to the approximation

χRPA
λ (qqq,ω) =

Π (0)(qqq,ω)
1−λw(qqq)Π (0)(qqq,ω)

(4.100)

χRPA
λ

χRPA
λ

.= +

This form allows one to perform the λ -integration in (4.88),

eHEG,RPA
c = − ih̄

2

∫
d3q

(2π)3

dω
2π

{
ln
∣∣1−w(qqq)Π (0)(qqq,ω)

∣∣+w(qqq)Π (0)(qqq,ω)
}

(4.101)
(the exchange term (4.99) has been subtracted from the total xc energy (4.88)). An
exact analytical evaluation of the remaining integrals is not possible. However, in
the limit of high density one obtains [132, 133],
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eHEG,RPA
c (n0)

n0→∞−−−→ e2

a0
n0

{
1− ln2

π2 ln(rs)−0.071+ . . .

}
, (4.102)

with the dimensionless Wigner-Seitz radius

rs =
(

3
4πn0

)1/3 me2

h̄2 . (4.103)

The Wigner-Seitz radius is the ratio between the radius of the sphere which is on
the average occupied by a single electron of the gas and the Bohr radius

a0 =
h̄2

me2 . (4.104)

The leading term of the high-density expansion of eHEG
c is seen to increase faster

than linear with n0, due to the ln(rs)-factor. In terms of the electron–electron cou-
pling constant e2 the leading term scales as e4 ln(e2), which indicates that the
high-density limit emerges from a resummation of the geometric series inherent
in (4.100). This result reflects the fact that there is no gap between the highest occu-
pied and the lowest unoccupied state in the case of the HEG. The high-density limit
is therefore not identical with the second order perturbative correction in w (which
diverges for the HEG). A complete numerical evaluation of (4.101) has been carried
out by von Barth and Hedin [34] as well as by Vosko, Wilk and Nusair [134].

The result (4.102) raises two questions:

• For which values of rs does (4.102) provide reliable results?
• Which range of rs is relevant for realistic systems?

Even though the HEG only serves as a model system for the construction of ap-
proximate xc-functionals, it is obvious that any functional relying on expressions
like (4.102) can only be accurate for systems which have densities in the range of rs

covered by (4.102). The average density obtained from the valence bands of a num-
ber of solids are listed in Table 4.2. These examples show that the range 1 < rs < 6
is probed by the valence densities of solids. An impression of inner shell densities of
atoms is given in Table 4.3. The data given in this table are local density values, in
contrast to the average valence densities in Table 4.2. As expected, one finds rather
high densities in the inner shell regions, so that rs can be as small as 0.01 for very
heavy atoms. However, even for atoms the density in the valence regime is more rel-
evant for all kinds of physical processes, so that an approximation should primarily
address the much lower valence densities.

From the values in Tables 4.2 and 4.3 it is immediately clear that, even for the
highest valence densities, the leading, logarithmic term in (4.102) does not dominate
over the next to leading term,

(1− ln2)
ln(rs = 2)

π2 = 0.021 < 0.071 .

One thus has to go beyond the leading term.
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Table 4.2 Average valence densities n0 of prototype solids. The number of valence electrons is
given for the conventional cubic unit cell.

Solid Lattice n0 rs Lattice Number of valence
constant (valence) (valence) type electrons per
[Bohr] [Bohr−3] atom unit cell

Li 6.60 0.00696 3.25 bcc 1 2
Na 7.99 0.00392 3.93 bcc 1 2
Cs 11.43 0.00134 5.62 bcc 1 2
Fe 5.42 0.0252 2.12 bcc 2 4
Al 7.65 0.0268 2.07 fcc 3 12
Au 7.71 0.00873 3.01 fcc 1 4
C 6.75 0.1040 1.32 dia 4 32
Si 10.26 0.0296 2.00 dia 4 32

Table 4.3 Densities of prototype atoms at the r-expectation values 〈r〉 of various subshells.

Atom Subshell 〈r〉 n0 rs

n l [Bohr] [Bohr−3]
Li 1 s 0.59 0.50 0.78

2 s 3.93 0.0017 5.90

Cs 1 s 0.026 7841. 0.031
2 s 0.11 496. 0.078
3 s 0.30 56.4 0.16
4 s 0.70 4.99 0.36
5 s 1.74 0.15 1.16
6 s 5.55 0.00055 7.59

Fe 1 s 0.059 639. 0.072
2 s 0.27 28.5 0.20
3 s 0.82 1.77 0.51
3 p 0.86 1.51 0.54
3 d 1.13 0.54 0.76
4 s 3.00 0.0075 3.17

Si 1 s 0.11 86.7 0.14
2 s 0.57 2.75 0.44
3 s 2.16 0.029 2.02
3 p 2.79 0.012 2.72

The next important contribution is obtained from the so-called second order ex-
change term. It results from the first order contributions to the response function
which are not contained in the RPA, Eq. (4.100). These terms can be depicted dia-
grammatically as

ih̄Π (1) = + + (4.105)
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and contribute to the complete χ according to (4.93),

χ = Π (0) +Π (1) +Π (0) wΠ (0) +O(e4) .

When inserted into (4.88), Π (1) leads to an additional contribution to eHEG
c which is

linear in n0 [133, 135], the second order exchange (SOX) term. If one adds the SOX
term to the RPA energy, one obtains the complete high-density limit,

eHEG
c (n0)

n0→∞−−−→ e2

a0
n0

{
1− ln2

π2 ln(rs)−0.047+ . . .

}
. (4.106)

Unfortunately, the next order in this perturbation series scales as rs ln(rs) [136, 137],
so that (4.106) is still not sufficient to cover the relevant range of densities. In one
way or another one needs more information on eHEG

c than provided by the high-
density limit.

4.3.3 Correlation: Low-Density Limit

For very low densities the HEG crystallizes in the form of a bcc lattice, the so-called
Wigner crystal [138–140]. In this limit the kinetic energy of the electrons is much
smaller than the Coulomb repulsion between them. It is thus energetically favorable
that the electrons permanently remain at the largest possible separation from each
other, which the given density allows. Their motion is restricted to small vibrations
around their equilibrium positions, similar to the motion of the nuclei in a standard
lattice. The resulting correlation energy density has the form

eHEG
c (n0)

n0→0−−−→ e2

a0
n0

{
−0.438

rs
+

1.33

r3/2
s

− 1.47
r2

s
+ . . .

}
, (4.107)

where the last two terms originate from the zero-point energy corresponding to the
vibrational motion. The transition from the regular (unpolarized) HEG to the Wigner
solid is expected to take place around rs ≈ 80 [141]. This limiting behavior of the
electron gas is obviously not relevant for ordinary matter. Unfortunately, this implies
that neither the limit (4.106) nor the limit (4.107) is particularly useful in practice.

4.3.4 Correlation: Interpolation Between High- and Low-Density
Regime

One is thus led to consider the intermediate regime of densities. The simplest ap-
proach to the correlation energy at these densities is an interpolation between the
high- and the low-density limit. The first interpolation of this type has been sug-
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gested by Wigner [138],

eWigner
c (n0) = − e2

a0
n0

0.44
rs +7.8

.

This formula neither includes the leading, logarithmic high-density term, nor does
it take into account the fact that the high- and the low-density limits correspond to
different physical phases, i.e. the liquid high-density phase and Wigner crystal. It is
nevertheless surprisingly accurate in the relevant density range of 1 ≤ rs ≤ 6.

A more sophisticated form for eHEG
c can only be obtained by an explicit eval-

uation for intermediate densities. In practice, it turns out to be simpler to perform
a Monte Carlo simulation of the HEG and extract eHEG

c from the resulting total
energy, than to evaluate (4.88). Rather accurate results have been obtained in this
way [141, 142]. In order to facilitate their practical use, they are usually combined
with the analytical results for the high- and low-density limits. For this purpose
one chooses an analytical ansatz which reproduces the forms of the high- and low-
density limits (4.106) and (4.107), but simultaneously shows sufficient flexibility at
intermediate densities. For instance, Vosko, Wilk and Nusair (VWN) [134] rely on
the ansatz

eVWN
c (n0) =

e2

a0
n0

1− ln2
π2

{
ln

x2

X(x)
+

2b

(4c−b2)1/2
tan−1 (4c−b2)1/2

2x+b
(4.108)

− bx0

X(x0)

[
ln

(x− x0)2

X(x)
+

2(2x0 +b)
(4c−b2)1/2

tan−1 (4c−b2)1/2

2x+b

]}

X(x) = x2 +bx+ c ; x =
√

rs .

By construction, this formula reproduces the leading logarithmic term of the high-
density limit (4.106) exactly. In addition, the analytical form of all other known
terms of the high-density expansion is preserved,

eVWN
c (n0)

n0→∞−−−→ e2

a0
n0

{
1− ln2

π2 ln(rs)+A+ rs

[
B ln(rs)+C

]
+ . . .

}
.

However, VWN do not require that the exact numerical values of the coefficients
A, B and C (as e.g. A = −0.047) are reproduced. The same is true for the low-
density expansion (4.107), whose analytical form is recovered after an expansion
of the VWN formula for large rs. The numerical values given in (4.107), on the
other hand, correspond to the Wigner crystal, so that they are not very useful for the
liquid phase anyway. The parameters x0, b and c are then optimized to reproduce
the exact coefficient A = −0.047 of (4.106) and the Monte Carlo data (the result is
x0 =−0.10498, b = 3.72744 and c = 12.9352—see Table V of [134]). The concepts
behind most other parameterizations are quite similar.

Some of the more accurate parameterizations of this type are plotted in Fig. 4.2.
This figure confirms the earlier statement that the high-density limit (4.106) can
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Fig. 4.2 Correlation energy per electron (εc = eHEG
c /n0) of the spin-saturated homogeneous elec-

tron gas as a function of the Wigner-Seitz radius rs, Eq. (4.103), for several parameterizations:
vBH—[34], VWN—[134], PZ—[143], OB—[142]. Also plotted is the high-density limit (4.106)
(HDL ≡ RPA plus second order exchange) and the Monte Carlo data [142].

not be used for realistic systems: one finds a 25% difference between (4.106) and
the complete eHEG

c for densities as large as rs = 1. Moreover, the difference be-
tween the RPA and (4.106) observed for small rs emphasizes the importance of the
SOX contribution. The three interpolation formulae shown differ by the use of dif-
ferent Monte Carlo reference energies and/or by the analytical ansatz chosen. The
VWN form [134] and the Perdew-Zunger (PZ) [143] interpolation both employ the
Ceperley-Alder data [141], but differ in the analytical structure of the analytical
ansatz. On the other hand, the Ortiz-Ballone (OB) [142] interpolation is based on
their own Monte Carlo data, but uses the same ansatz as VWN. One recognizes that
(i) the form of the ansatz is irrelevant (as long as it reproduces the limits and is oth-
erwise sufficiently flexible) and, (ii) the Monte Carlo results have converged within
a few percent. It turns out that the remaining uncertainty in the Monte Carlo data
and the resulting interpolation formulae is irrelevant in practice (see below).

4.3.5 Density Functional: Local Density Approximation (LDA)

So far, we have considered the xc-energy of the HEG. The important question to be
addressed at this stage is: how can one utilize these results within the framework of
DFT, given the fact that all systems of interest are inhomogeneous? The answer to
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this question is provided by the local density approximation (LDA) [6]. In the LDA
the xc-energy density of the inhomogeneous system with density n(rrr) is locally
approximated by the xc-energy density of an electron gas with density n0 = n(rrr),

ELDA
xc [n] =

∫
d3r eHEG

xc (n0 = n(rrr)) . (4.109)

A number of comments are appropriate:

(a) The LDA is a universal first-principles functional of n in the sense that it does
not depend on any free parameters which introduce some physical scale. It
would be a misinterpretation to regard the coefficients in the interpolation for-
mulae as free parameters: they are completely fixed by the properties of the
HEG. One could, as an alternative, directly use numerical Monte Carlo results
in the LDA (4.109). The LDA is thus consistent with the ab-initio concept of
DFT.

(b) In the LDA any system is locally treated as an electron gas. The LDA can be
applied to arbitrarily inhomogeneous systems without encountering any tech-
nical difficulties. However, its formal universality and technical applicability
do not imply validity for just any system. Clearly, one would expect the LDA
to be particularly appropriate for systems which share some properties with
the HEG, as for instance simple metals. A more precise characterization of its
regime of validity will be given below.

(c) The LDA is easily utilized in the KS equations, as the corresponding xc-
potential is a simple function of the local density,

vLDA
xc (rrr) =

δELDA
xc [n]

δn(rrr)
=

∫
d3r′

deHEG
xc (n0)
dn0

∣∣∣∣
n0=n(rrr′)

δn(rrr′)
δn(rrr)

=
deHEG

xc (n0)
dn0

∣∣∣∣
n0=n(rrr)

. (4.110)

One observes, however, that vLDA
xc has an extremely short range, as it only de-

pends on the local density. As an important consequence, the LDA potential
vanishes exponentially in the asymptotic region of finite systems. This prop-
erty can easily be demonstrated for its exchange component, which is obtained
by differentiation of (4.99),

vLDA
x (rrr) = − (3π3)1/3

π
e2n1/3(rrr) . (4.111)

As soon as the density decays exponentially, the same is true for the LDA
exchange potential,

n(rrr) ∼ e−αr =⇒ vLDA
x (rrr) ∼ e−αr/3 . (4.112)

This behavior is in obvious contradiction to the exact result (4.20).
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A direct consequence is the fact that the KS spectrum obtained with the LDA
for finite system like atoms does not contain Rydberg states, which are charac-
teristic of the Coulombic −1/r-behavior. This implies that the LDA necessarily
predicts atomic negative ions to be unbound, which is one of its most important
deficiencies.
The asymptotic behavior of the LDA correlation potential for finite systems is
determined by the low-density limit of the correlation energy density eHEG

c (n0).
In view of (4.110) any functional with the same density-dependence as (4.107)
shows an exponential decay,

n(rrr) ∼ e−αr =⇒ vLDA
c (rrr) ∼ e−αr/3 , (4.113)

rather than the correct power law behavior [92].
(d) The LDA has been the workhorse of DFT applications for decades, so that

an overwhelming number of LDA results can be found in the literature. Any
attempt to give an overview of this vast body of material is bound to fail. At
this point the discussion is restricted to the most basic numbers which can
be quoted, i.e. the xc-energies of atoms. Atoms are not only the elementary
building blocks of matter, they are also quite critical test systems due to the
piecewise exponential behavior of atomic densities (which reflects the orbital
structure). In addition, a number of exact results for atomic xc-energies are
available, allowing an unambiguous comparison.
Atomic exchange energies from various sources are compared in Table 4.4. The
corresponding reference values are obtained by an exact treatment of the DFT
exchange (4.5) and a complete neglect of correlation. These exact exchange-

Table 4.4 Exchange energies of spin-saturated, closed-subshell atoms: LDA, second order GE
(GE2), PW91-GGA, PBE-GGA and B88-GGA energies (the results including gradient corrections
are discussed in Sect. 4.5.5) obtained by insertion of exact exchange-only densities into the func-
tionals (4.109), (4.178), (4.255), (4.256) and (4.286) in comparison with exact values (all energies
are in Hartree). Also given is the corresponding percentage error Δ .

Atom Exact LDA GE2 PW91 PBE B88
−Ex −Ex Δ −Ex Δ −Ex Δ −Ex Δ −Ex Δ

He 1.026 0.884 −13.82 1.007 −1.86 1.017 −0.88 1.014 −1.19 1.025 −0.03
Be 2.666 2.312 −13.26 2.581 −3.19 2.645 −0.77 2.636 −1.13 2.658 −0.30
Ne 12.105 11.033 −8.85 11.775 −2.73 12.115 0.08 12.067 −0.32 12.138 0.27
Mg 15.988 14.612 −8.61 15.510 −2.99 15.980 −0.05 15.915 −0.46 16.000 0.08
Ar 30.175 27.863 −7.66 29.293 −2.92 30.123 −0.17 29.996 −0.59 30.153 −0.07
Ca 35.199 32.591 −7.41 34.183 −2.89 35.165 −0.10 35.016 −0.52 35.192 −0.02
Zn 69.619 65.645 −5.71 68.109 −2.17 69.834 0.31 69.531 −0.13 69.867 0.36
Kr 93.833 88.624 −5.55 91.651 −2.33 93.831 0.00 93.426 −0.43 93.872 0.04
Sr 101.926 96.362 −5.46 99.560 −2.32 101.918 −0.01 101.479 −0.44 101.956 0.03
Cd 148.880 141.543 −4.93 145.702 −2.13 148.885 0.00 148.260 −0.42 148.930 0.03
Xe 179.064 170.566 −4.75 175.304 −2.10 178.991 −0.04 178.245 −0.46 179.043 −0.01
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only (x-only) calculations require a fully numerical evaluation of the poten-
tial corresponding to the expression (4.5) by the OPM (see Chap. 6). Self-
consistent KS calculations with this potential provide a large amount of in-
formation on the exact x-only ground state. In particular, one obtains the exact
x-only density which can then be inserted into any approximate exchange func-
tional. The resulting LDA values (as well as energies obtained with gradient
corrected functionals—see Sect. 4.4.3), are also given in Table 4.4, together
with their percentage deviation from the exact Ex. The LDA turns out to be
moderately accurate, with a consistent underestimation of the exact Ex.
The picture which emerges from Table 4.4 should not be generalized without
caution to other systems or to more subtle atomic quantities. It has already
been pointed out that the LDA does not predict any negative atomic ion to
be stable. This emphasizes the fact that there is a crucial difference between
integrated quantities like the energy and local quantities like the potential. Inte-
grated quantities can be more accurate due to a cancellation of local errors. In
addition, the accuracy of the LDA clearly depends on the specific system under
consideration. The less the density varies spatially, the higher is the accuracy
of the LDA. This point is investigated in more detail later.
Table 4.5 offers a similar comparison for the correlation energy. In this case it
is much more difficult to generate exact reference data. As the exact correlation
functional is not known, exact values for Ec can only be calculated indirectly
by subtraction of the x-only ground state energy obtained by insertion of the
exact KS orbitals into the functional (4.6) from the exact total ground state en-
ergy obtained with a non-DFT method. Although a few numbers of this type
are available, the comparison in Table 4.5 and all subsequent comparisons of
correlation energies rely on the conventional quantum chemical correlation en-
ergy EQC

c , defined by (4.9). This procedure is legitimate, since the difference
between Ec and EQC

c is found to be extremely small (compare the discussion of
Table 4.1 in Sect. 4.1). This statement is true in particular for the present analy-
sis: the LDA correlation energies obtained by insertion of the exact x-only den-
sities into Eq. (4.109) differ from EQC

c by a factor of two. The small differences
between Ec and EQC

c as well as the small differences between the LDA values
calculated from the x-only densities and the LDA energies resulting from the
exact densities are thus irrelevant. The same is true for the differences between
the various parameterizations of eHEG

c .
While an error of 100% seems to exclude the application of the LDA to atomic
systems, one should be aware of the fact that the absolute size of Ec is usually
much smaller than that of Ex, so that the accuracy of the exchange component
dominates. In addition, the LDA xc-energies often profit from error cancella-
tion between the underestimated Ex and the overestimated Ec.
Overall, one can state that the LDA is surprisingly accurate for a good number
of quite inhomogeneous systems. This accuracy can be understood on the basis
of (i) the size of the inhomogeneity corrections (see Sect. 4.4), and (ii) the sum
rules which the LDA satisfies (see Sect. 4.5). Further discussion of the merits
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Table 4.5 Correlation energies (−Ec) of unpolarized, closed-subshell atoms: LDA, second order
GE (GE2), PW91-GGA, LYP-GGA, PKZB-MGGA, TPSS-MGGA, B3LYP- and PBE0-hybrid
results obtained by insertion of exact exchange-only densities into (4.109) (using the VWN param-
eterization [134]), (4.183), (4.274), (4.289), (4.316), (4.326), (6.128) and (6.135) in comparison
with second order perturbation theory on HF basis (MP2) [144, 145] and the exact EQC

c [115] (all
energies are given in mHartree). The correlation component of the PBE0-hybrid is identical with
that of the PBE-GGA.

Atom MP2 Exact LDA GE2 PW91 LYP PKZB TPSS B3LYP PBE(0)
He 37 42 113 −82 46 44 42 43 64 42
Be 76 94 225 −213 94 94 86 87 133 86
Ne 388 391 746 −487 382 384 351 354 491 351
Mg 428 438 892 −607 450 459 411 415 587 411
Ar 709 722 1431 −962 771 751 707 711 950 707
Ca 798 1581 −1087 847 830 774 779 1049 774
Zn 1678 2668 −1471 1526 1431 1406 1410 1785 1406
Kr 1891 3284 −1801 1914 1749 1767 1771 2184 1767
Cd 2618 4571 −2425 2739 2423 2536 2540 3025 2536
Xe 3088 5199 −2768 3149 2744 2918 2920 3428 2918

and failures of the LDA, as well as additional numerical results, will be given
in connection with the extensions of the LDA.

(e) In the literature one sometimes meets some variants of the LDA for the ex-
change potential. The first of these is the Slater exchange [146],

vSlater
x (rrr) =

3
2

vLDA
x (rrr) .

This form is obtained if one identifies the exchange potential with 2eHEG
x /n,

rather than with the functional derivative of ELDA
x . This identification follows

the pattern set by the Hartree term, for which vH = 2eH/n. In applications,
vSlater

x is usually multiplied by an adjustable prefactor α , which defines the so-
called Xα-method [147],

vXα
x (rrr) =

3
2

α vLDA
x (rrr) . (4.114)

The standard value for α is 0.7, which essentially leads back to the LDA ex-
change.
The second modification of vLDA

x represents an attempt to resolve the prob-
lem expressed by (4.112): the Latter-correction [148] reestablishes the correct
asymptotic behavior (4.20) by hand,

vLatter
x (rrr) =

{
vLDA

x (rrr) for |rrr| ≤ R(r̂rr)
−e2/|rrr| for |rrr| > R(r̂rr)

, (4.115)

where R(r̂rr) (r̂rr = rrr/|rrr|) denotes the distance of the largest closed surface around
the finite system for which
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vLDA
x (Rr̂rr) = − e2

R(r̂rr)

from the center of the system.
(f) Already the first density functional established in the literature [13, 14], an

approximation for the kinetic energy Ts[n], was based on the same concept as
the LDA for Exc (for details see Appendix D). For the discussion of Ts[n] the
kinetic energy density of the noninteracting HEG has to be considered,

tHEG
s (n0) =

3(3π2)2/3

10
h̄2

m
n5/3

0 . (4.116)

The functional (4.116) can be utilized for inhomogeneous systems, if tHEG
s is

evaluated locally with the actual rrr-dependent densities of these systems,

T TF
s [n] =

∫
d3r tHEG

s (n(rrr)) . (4.117)

T TF
s [n] constitutes the basis for the Thomas-Fermi approach, in which the

many-body problem is tackled by an explicit solution of the variational equa-
tion (2.38).

4.3.6 Spin-Polarized Electron Gas: Local Spin-Density
Approximation (LSDA)

The discussion of the previous section is based on the assumption that one has as
many electrons with spin-up as with spin-down in the electron gas, n↑ = n↓ = n0/2.
On the other hand, for actual applications one often needs an approximation for the
spin-density functional Exc[n↑,n↓]. A spin-density-dependent version of the LDA
(local spin-density approximation—LSDA) is easily constructed for the exchange
functional. In this case one can combine the exact relation (4.19) with (4.109),

ELSDA
x [n↑,n↓] =

1
2

{
ELDA

x [2n↑]+ELDA
x [2n↓]

}
. (4.118)

The correlation energy of a spin-polarized HEG is much more difficult to extract.
It can, however, be evaluated numerically within the RPA [34, 134]. The result is
usually expressed in terms of the total gas density n and the fractional polarization

ζ =
n↑ −n↓
n↑ +n↓

, (4.119)

rather than in terms of n↑ and n↓. One finds that the spin-dependence of the correla-
tion energy has some similarity with that of the exchange energy (4.118), which can
be written as
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eHEG
x (n,ζ ) = eHEG

x (n,ζ = 0)+
[
eHEG

x (n,ζ = 1)− eHEG
x (n,ζ = 0)

]
f (ζ ) (4.120)

f (ζ ) =
(1+ζ )4/3 +(1−ζ )4/3 −2

2(21/3 −1)
. (4.121)

This similarity has first been noticed by von Barth and Hedin in their numerical RPA
data [34], which suggests an analytical parameterization of the form

eHEG,RPA
c (n,ζ ) ≈ eHEG,RPA

c (n,0)+
[
eHEG,RPA

c (n,1)− eHEG,RPA
c (n,0)

]
f (ζ ) .

(4.122)
However, VWN found that the form (4.122) is rather inaccurate for small ζ , even

in the case of the RPA [134]. They suggested the improved parameterization

eHEG
c (n,ζ ) = eHEG

c (n,0)+αc(n)
f (ζ )
f ′′(0)

[1−ζ 4]

+
[
eHEG

c (n,1)− eHEG
c (n,0)

]
f (ζ )ζ 4 , (4.123)

with the spin-stiffness

αc(n) =
d2eHEG

c (n,ζ )
dζ 2

∣∣∣∣
ζ=0

. (4.124)

The form (4.123) reproduces the exact ζ -dependence of eHEG
c (n,ζ ) to lowest or-

der. This can be verified by a Taylor expansion for small ζ , using the fact that
f (ζ )/ f ′′(0) = ζ 2/2 for ζ → 0,

eHEG
c (n,ζ ) = eHEG

c (n,ζ = 0)+
1
2

αc(n)ζ 2 +O(ζ 4) . (4.125)

There is no term linear in ζ as there is no preferred spin direction in the HEG. For
ζ → 1, on the other hand, the term in the second line of (4.123) is dominant.

The ingredients of (4.123) are the correlation energy of the unpolarized gas,
eHEG

c (n,ζ = 0), the corresponding energy of a fully spin-polarized gas with the
same total density, eHEG

c (n,ζ = 1), and the spin-stiffness. For eHEG
c (n,ζ = 0) one

can use the Monte Carlo data already presented. Analogous results are available for
eHEG

c (n,ζ = 1) [141, 142]. They can be represented in terms of some analytical in-
terpolation formula, just as eHEG

c (n,ζ = 0). Figure 4.3 provides some explicit num-
bers. While the accuracy of these results is slightly lower than that for the unpolar-
ized situation, it is nevertheless sufficient for all practical purposes. It is worthwhile
to mention in this context that the Monte Carlo data suggest the fully spin-polarized
HEG to be energetically lower than both the unpolarized gas and the Wigner crystal
in the density range 75 < rs < 100.

The third quantity which enters (4.123), the spin-stiffness, is known analytically
only in the high-density limit [150–152, 134],
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Fig. 4.3 Correlation energy per electron (εc = eHEG
c /n0) of the fully spin-polarized homogeneous

electron gas as a function of the Wigner-Seitz radius rs, Eq. (4.103), for several parameterizations:
vBH—[34], VWN—[134], PW—[149], OB—[142] (VWN and PW data essentially coincide).

αc(n)
n0→∞−−−→ e2

a0

(
− 1

6π2 ln(rs)+0.03547+ . . .

)
. (4.126)

In addition, rather accurate numerical information is available within the RPA.
These RPA data are reproduced extremely well by an analytical ansatz for αc(n),
which obeys the limit (4.126) and has the same n-dependence as the interpola-
tion formula used for εHEG

c (n,0): for all densities the error is below 0.2%. This
leads VWN to the expectation that the same analytical form is suitable for the spin-
stiffness corresponding to the complete εHEG

c (n,ζ ). In order to utilize this ansatz for
intermediate densities, they fit its parameters to the numerical data for

2
ζ 2

[εHEG
c (n,1)− εHEG

c (n,0)]

[εHEG,RPA
c (n,1)− εHEG,RPA

c (n,0)]
[εHEG,RPA

c (n,ζ )− εHEG,RPA
c (n,0)] ,

for a number of low densities. This means that they use the ζ -dependence of the
RPA for all densities, but rescale the RPA spin-stiffness by the overall sensitivity of
εHEG

c (n,ζ ) to ζ . It turns out that the resulting αc(n) also reproduces the few avail-
able Monte Carlo data for the partially spin-polarized HEG fairly accurately [142]
(when combined with the optimum parameterizations of εHEG

c (n,1) and εHEG
c (n,0)).

The VWN ansatz for the spin-stiffness is also utilized in other modern parame-
terizations of εHEG

c (n,ζ ), as e.g. the Perdew-Wang form [149], the only exception
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being the Perdew-Zunger functional [143]. The overall accuracy of the resulting
εHEG

c (n,ζ ) is of the order of 1–3%.
The LSDA for correlation is then defined by use of (4.123) with the inhomoge-

neous spin-densities of the actual system,

ELSDA
c [n↑,n↓] =

∫
d3r eHEG

c (n(rrr),ζ (rrr)) . (4.127)

It shares the properties (a)–(d) with the unpolarized form of the LDA. In the fol-
lowing, we no longer distinguish between LDA and LSDA: the term LDA should
automatically be understood as LSDA whenever spin-polarization is present.

4.4 Nonlocal Corrections to the LDA

It has already been emphasized that the universal applicability of the LDA does not
imply that this functional covers the physics of all kinds of systems. Real systems are
more or less inhomogeneous, so that the adequacy of the LDA is not clear a priori.
Quite naturally the question arises whether one can derive corrections to the LDA
in a systematic fashion? The answer is yes, the underlying model system being the
weakly inhomogeneous electron gas [6]. The resulting contributions to Exc[n] and
the potential vxc are often referred to as nonlocal corrections, as the corresponding
energy density exc(rrr) and potential vxc(rrr) are not simple functions of the local den-
sity n(rrr). This terminology should, however, not be understood in the sense that vxc

would constitute a nonlocal potential, only its density dependence is nonlocal.

4.4.1 Weakly Inhomogeneous Electron Gas

The inhomogeneous electron gas is characterized by the Hamiltonian

Ĥ = T̂ +Ŵ +
∫

d3r n̂(rrr)δv(rrr) , (4.128)

with the external potential δv(rrr) assumed to be a weak perturbation (in some yet to
be specified sense). In order to keep control of the charge balance in the gas, one
has to think of the perturbation as being generated by a small positive charge density
δn+(rrr),

δv(rrr) = −
∫

d3r′ w(rrr− rrr′)δn+(rrr′) , (4.129)

where w(rrr− rrr′) denotes, as usual, the Coulomb interaction. Equation (4.129) cov-
ers both the case of a localized perturbation as well as some periodic structure. At
this point there is no need to restrict δn+ any further, so that the net charge δN+
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associated with δn+,

δN+ =
∫

d3r δn+(rrr) , (4.130)

could be nonzero in the case of a localized perturbing charge. For a periodic per-
turbation, on the other hand, only the choice δN+ = 0 ensures that the energy scale
remains unchanged, which requires that the average potential vanishes,∫

d3r δv(rrr) = 0 . (4.131)

The presence of δv leads to a redistribution of the electronic density, so that the total
n(rrr) deviates from the unperturbed value n0 by an induced shift δn(rrr),

n(rrr) = n0 +δn(rrr) . (4.132)

The gas thus consists of electrons with their two density components n0 and δn, the
constant positive background charge n+ = n0 and the given perturbing charge δn+.
A weakly inhomogeneous electron gas is characterized by

δn(rrr) � n0 . (4.133)

As soon as δv is assumed to be sufficiently small to ensure (4.133), a perturbative
treatment is legitimate. All pertinent quantities can be expanded in powers of δv,
most notably the induced density,

δn(rrr) = δn(1)(rrr)+δn(2)(rrr)+ . . . , (4.134)

where δn(i) is understood to be of the order (δv)i. For extended many-body systems
the perturbation expansion for δn is usually formulated in terms of the retarded
response functions of the system. The first order shift δn(1) is obtained via the linear
response function (4.39),

δn(1)(rrr) =
∫

d3r′ χR(rrr− rrr′,ω = 0)δv(rrr′) . (4.135)

The ground state of the unperturbed system defining χR in Eq. (4.39) represents, in
the present situation, the ground state of the HEG. All higher order contributions
to δn can, in complete analogy to (4.135), be expressed in terms of the associ-
ated higher order retarded response functions. However, even for the second order
(quadratic) response function only very limited information is available. In addition,
the response formalism becomes more and more involved with increasing order. The
present discussion is therefore restricted to linear response, which is expected to
dominate anyway in the case of a truly weak perturbation. As long as one keeps an
eye on the consistency of all subsequent results in δv, one can then simply identify
the complete induced density shift with δn(1),
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δn(rrr) ∼= δn(1)(rrr) . (4.136)

At this point it is convenient to go over to the momentum space representation of
all relevant quantities, as for instance

δn(rrr) =
∫

d3q
(2π)3 eiqqq·rrr δn(qqq) ; δn(qqq)∗ = δn(−qqq) . (4.137)

The relation between δn(qqq)∗ and δn(−qqq) follows from the fact that δn(rrr) is real
(the same holds for the Fourier transforms of δv and δn+). To first order the induced
density deviation can then be written as

δn(qqq) = χ(qqq,ω = 0)δv(qqq) , (4.138)

where Eq. (4.48) has been utilized to replace χR by the time-ordered response func-
tion χ (see Eq. (4.90) for the Fourier transformation of χ). Ultimately, the response
function will have to be evaluated in some detail, for which the standard machinery
of Green’s function theory (which can only be exploited for χ) provides an adequate
framework.

In any real, closed physical system the number of electrons remains unchanged
after switching on some perturbation. However, the HEG with its uncountable reser-
voir of electrons, can add a finite number of localized electrons without a change of
the average density n0. As a consequence, the net induced charge,

δN =
∫

d3r δn(rrr) = δn(qqq = 000) , (4.139)

does not necessarily vanish. In fact, insertion of (4.129) and of the Dyson equa-
tion (4.93) into (4.138) demonstrates that the induced density concentrates as much
charge around a localized perturbing charge δn+ as required for complete screening,

δn(qqq) = −χ(qqq,ω = 0)w(qqq)δn+(qqq) (4.140)

=
Π(qqq,ω = 0)

Π(qqq,ω = 0)−w−1(qqq)
δn+(qqq)

=⇒ δn(qqq = 000) = δn+(qqq = 000) = δN+ . (4.141)

Here w(qqq) = 4πe2/qqq2 has been used for the last line (limqqq→000 Π(qqq,ω = 0) �= 0).
In the case of the noninteracting HEG with χ = Π (0) the complete Rydberg series
of states generated by δv would be filled, as the bound electrons do not repel each
other (which corresponds to δN = ∞). As a consequence, a rigorous conservation
of the electronic norm, ∫

d3r δn(rrr) = δn(qqq = 000) = 0 , (4.142)

can only be ensured by a vanishing perturbing charge,
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d3r δn+(rrr) = δn+(qqq = 000) = 0 . (4.143)

For the present purpose, however, a strict conservation of the electron number is
essential. The ground states of the unperturbed and of the perturbed system must
correspond to exactly the same, mathematically well-defined particle number, in
order to allow the derivation of a first-principles density functional. For this rea-
son the class of legitimate external potentials has to be restricted to those satisfy-
ing Eqs. (4.142), (4.143). This neither excludes localized perturbations δv nor does
it require

∫
d3rδv(rrr) = δv(qqq = 000) to vanish as χ(qqq = 000,ω = 0) = 0. Of course,∫

d3rδv(rrr) = 0 is completely sufficient to ensure (4.142).
After these preliminaries one can consider the shift in the total energy which is in-

duced by δv. The xc-component of this energy shift serves as basis for the construc-
tion of inhomogeneity corrections to the LDA. In order to extract the xc-component
all other contributions to the total energy must be known. The most critical compo-
nent is the electrostatic energy, which requires some care due to the long range of the
Coulomb force. In order to discuss the electrostatic energy of the inhomogeneous
electron gas, one therefore works with a screened Coulomb interaction,

w(rrr,rrr′) −→ ws(rrr,rrr′) = e2 e−μ|rrr−rrr′|

|rrr− rrr′| , (4.144)

which suppresses all long-range singularities at intermediate steps. The limit μ → 0
leads back to the system of interest at the end of the calculation. With the interaction
(4.144) the total electrostatic energy is given by

Ees = e2
∫

d3r
∫

d3r′
e−μ|rrr−rrr′|

|rrr− rrr′|
{

1
2
[n+ +δn+(rrr)][n+ +δn+(rrr′)]

+
1
2
[n0 +δn(rrr)][n0 +δn(rrr′)]

− [n0 +δn(rrr)][n+ +δn+(rrr′)]
}

. (4.145)

In addition to the electronic charge density n = n0 +δn, the complete positive back-
ground charge density n+ + δn+ has been included in (4.145). The electrostatic
energy will not be finite in the limit μ → 0 without taking into account n+. The
inclusion of δn+, on the other hand, expresses the fact that δv is, as indicated by
Eq. (4.129), generated by some charge. Without this specification, the external po-
tential term

∫
d3rn̂δv would have an origin different than electrostatics. In this case

Ees would be given by the above expression with δn+ set to zero. The two ap-
proaches (inclusion of δn+ or not) just differ by the treatment of the external source.
They are completely equivalent in the electronic sector, as long as they are applied
consistently and mere additive constants in the Hamiltonian are ignored. The ap-
proach chosen here appears to be somewhat more transparent in a physical sense.

Using n+ = n0 one obtains
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Ees =
e2

2

∫
d3r

∫
d3r′

e−μ|rrr−rrr′|

|rrr− rrr′|
×{

δn+(rrr)δn+(rrr′)+δn(rrr)δn(rrr′)−2δn(rrr)δn+(rrr′)
}

.

As expected, the electron density n0 and the background charge n+ completely neu-
tralize each other. The limit μ → 0 can now be taken without any problem,

Ees = EH[δn+]+EH[δn]+
∫

d3r δn(rrr)δv(rrr) . (4.146)

The first contribution in (4.146) is the self-interaction of the fixed background
charge, which represents an irrelevant additive constant for the electronic problem
and can simply be ignored. The remaining two terms have exactly the form of the
electronic Hartree energy and the external energy functional. In the case of a local-
ized perturbation they are finite as long as δN+ < ∞ (for periodic perturbations the
energy density is the only relevant quantity).

The total energy of the weakly inhomogeneous electron gas is now easily ob-
tained via the coupling constant integration technique. The appropriate Hamiltonian
Ĥ(λ ), which reproduces the HEG in the limit λ = 0 and the inhomogeneous gas for
λ = 1, is given by

Ĥ(λ ) = T̂ +Ŵ HEG +λ
[∫

d3r [n̂(rrr)−n+]δv(rrr)+EH[δn+]
]

. (4.147)

In addition to the coupling between the electrons and the external potential, it con-
tains an additive constant which reproduces the total electrostatic energy (4.145)—
the interaction of the positive background charge n+ with itself and the HEG density
n0 is understood to be included in Ŵ HEG. Coupling constant integration then yields
(compare Eq. (4.32))

E0(1)−E0(0)

=
∫ 1

0
dλ

[∫
d3r [nλ (rrr)−n+]δv(rrr)+EH[δn+]

]

=
∫ 1

0
dλ

∫
d3r

[
n0 +λδn(1)(rrr)+O(δv2)−n+

]
δv(rrr)+EH[δn+]

=
1
2

∫
d3r δn(1)(rrr)δv(rrr)+EH[δn+]+O(δv3) . (4.148)

One should note that Eq. (4.148) includes all second order contributions in δv con-
sistently, although the density is only treated consistently to first order. This result
reflects the fact that knowledge of the first order wave function is sufficient to de-
termine the second order corrections to the energy within Rayleigh-Schrödinger
perturbation theory. On the other hand, all contributions beyond the order δv2 are
ignored in Eq. (4.148). Insertion of the HEG energy E0(0) and use of (4.135) leads
to
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E0(1) = T LDA
s [n0]+ELDA

xc [n0]+
∫

d3r δn(rrr)δv(rrr)+EH[δn+]

−1
2

∫
d3r

∫
d3r′ χ(rrr− rrr′,ω = 0)δv(rrr)δv(rrr′)+O(δv3) . (4.149)

The correction δn(1) has now been identified with the full δn, as the associated error
in E0(1) is of the order (δv)3.

In the next step one has to extract the xc-contribution to Eq. (4.149). One starts
with the exact energy functional for the weakly inhomogeneous electron gas, ob-
tained by inclusion of the total electrostatic energy (4.145),

E0(1) = Ts[n0 +δn]+
∫

d3r δn(rrr)δv(rrr)+EH[δn+]+EH[δn]+Exc[n0 +δn] .

(4.150)
This exact expression has to be compared with the result (4.149). One directly iden-
tifies the external potential energy and the self-interaction energy of the background
charge. In order to deal with the Hartree energy it is advantageous to go to momen-
tum space and to introduce the temporary abbreviation

E(LDA)
sxc [n] = T (LDA)

s [n]+E(LDA)
xc [n] . (4.151)

Combination of Eqs. (4.149) and (4.150), together with use of (4.137) and (4.138),
then leads to

Esxc[n0 +δn]+
1
2

∫
d3q

(2π)3 |δn(qqq)|2w(qqq)

= ELDA
sxc [n0]− 1

2

∫
d3q

(2π)3 |δv(qqq)|2χ(qqq,0)+O(δv3)

= ELDA
sxc [n0]− 1

2

∫
d3q

(2π)3

|δn(qqq)|2
χ(qqq,0)

+O(δn3) , (4.152)

where w(qqq) is given by (4.91). The last line indicates that, in view of (4.138), the
order in δv is equivalent to the order in δn. Use of the Dyson equation (4.93) in the
form

1
χ(qqq,ω)

=
1

Π(qqq,ω)
−w(qqq)

allows the elimination of EH[δn] from (4.152),

Esxc[n0 +δn] = ELDA
sxc [n0]− 1

2

∫
d3q

(2π)3

|δn(qqq)|2
Π(qqq,0)

+O(δn3) . (4.153)

The right-hand side of (4.153) is a functional of n0 and δn, but not yet a functional
of n = n0 +δn, as desired. This form can, however, easily be obtained for the LDA
components in (4.153): one can use the functional Taylor expansion of ELDA

sxc [n]
about the unperturbed density to rewrite (4.153) as
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Esxc[n0 +δn]

= ELDA
sxc [n0 +δn]−

∫
d3r

δELDA
sxc [n]

δn(rrr)

∣∣∣∣
n=n0

δn(rrr)

−1
2

∫
d3r d3r′

δ 2ELDA
sxc [n]

δn(rrr)δn(rrr′)

∣∣∣∣
n=n0

δn(rrr)δn(rrr′)− . . .− 1
2

∫
d3q

(2π)3

|δn(qqq)|2
Π(qqq,0)

= ELDA
sxc [n0 +δn]−

∫
d3r

deHEG
sxc (n0)
dn0

δn(rrr)

−1
2

∫
d3r d3r′

d2eHEG
sxc (n0)
dn2

0

δ (3)(rrr− rrr′)δn(rrr)δn(rrr′)− 1
2

∫
d3q

(2π)3

|δn(qqq)|2
Π(qqq,0)

.

One now uses norm conservation, Eq. (4.142), to eliminate the term linear in δn. In
addition, one can apply the compressibility sum rule [153], which relates the second
derivative of the energy per volume to the chemical potential μ(n0) and the long-
wavelength limit of the static irreducible polarization insertion of the interacting
HEG,

d2eHEG
sxc (n0)
dn2

0

=
d2

dn2
0

[
tHEG
s (n0)+ eHEG

xc (n0)
]

=
d

dn0
μ(n0) =

−1
Π(qqq = 000,ω = 0)

. (4.154)

In this fashion one is led to

Esxc[n0 +δn] = ELDA
sxc [n0 +δn]

−1
2

∫
d3q

(2π)3 |δn(qqq)|2
{

1
Π(qqq,0)

− 1
Π(000,0)

}
. (4.155)

Equation (4.155) can be split into a noninteracting (kinetic) component, obtained in
the limit e2 → 0,

Ts[n0 +δn] = T LDA
s [n0 +δn]

−1
2

∫
d3q

(2π)3 |δn(qqq)|2
{

1

Π (0)(qqq,0)
− 1

Π (0)(000,0)

}
, (4.156)

and a remainder, which contributes to the xc-functional,

Exc[n0 +δn] = ELDA
xc [n0 +δn]− 1

2

∫
d3q

(2π)3 |δn(qqq)|2 K(qqq2,n0) (4.157)

K(qqq2,n0) =
1

Π(qqq,0)
− 1

Π (0)(qqq,0)
− 1

Π(000,0)
+

1

Π (0)(000,0)
. (4.158)
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Equations (4.156) and (4.157) represent systematic inhomogeneity corrections to
the LDA. All ingredients are completely determined by the ground state of the HEG,
no free parameters are involved.

The only problem is that these expressions still depend on n0 and δn separately,
rather than on n0 + δn. The elimination of n0 and δn in favor of n0 + δn turns
out to be a nontrivial problem, if one wants to avoid any further approximation.
For this reason the linear response kernel in (4.157) is usually reduced to its long-
wavelength limit, which greatly simplifies the problem of elimination. Nevertheless,
we first take a closer look at the complete linear response functional, restricting the
discussion to the xc-component. Of course, the same steps can be taken for Ts (for a
brief discussion see Appendix D).

4.4.2 Complete Linear Response

The first step of the transition from (4.157) to a density functional is a back-
transformation to real space. The result for the nonlocal (i.e. non-LDA) contribution
to (4.157), denoted by ΔExc, reads

ΔExc = −1
2

∫
d3r d3r′ δn(rrr)K(|rrr− rrr′|,n0)δn(rrr′) (4.159)

K(|rrr|,n0) =
∫

d3q
(2π)3 eiqqq·rrr K(qqq2,n0) . (4.160)

One now has two options for the elimination of δn which lead to slightly different
results. The first option [6, 154–157] relies on the fact that∫

d3r K(|rrr− rrr′|,n0) = K(qqq2 = 0,n0) = 0 . (4.161)

This relation allows adding two vanishing contributions proportional to δn(rrr)2 and
δn(rrr′)2 to (4.159),

ΔE(a1)
xc =

1
4

∫
d3r d3r′

[
δn(rrr)−δn(rrr′)

]2
K(|rrr− rrr′|,n0)

=
1
4

∫
d3r d3r′

[
n(rrr)−n(rrr′)

]2
K(|rrr− rrr′|,n0) . (4.162)

In the second approach [158] one uses

∇∇∇δn(rrr) = ∇∇∇
(

n0 +δn(rrr)
)

= ∇∇∇n(rrr) (4.163)

to rewrite (4.157) as
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ΔE(a2)
xc = −1

2

∫
d3r d3r′

(
∇∇∇n(rrr) ·∇∇∇′n(rrr′)

)
L(|rrr− rrr′|,n0) (4.164)

L(|rrr|,n0) =
∫

d3q
(2π)3 eiqqq·rrr K(qqq2,n0)

qqq2 . (4.165)

Up to this point the forms (4.162) and (4.164) are not really different, rather they
can be transformed into each other by partial integration (for finite systems). In both
cases it remains to eliminate n0. Any substitution of n0, which reduces to n0 in the
limit of vanishing δn, is admissible for this step. On the other hand, both forms
immediately reveal the difficulty of the task: the kernel of the fully nonlocal linear
response functional depends on two positions rrr and rrr′, so that the replacement of n0

is ambiguous. In fact, an infinite number of possibilities exists, as one is not limited
to use some kind of local substitution. Nevertheless, two local substitutions offer
themselves quite naturally,

(i) n0 −→ n0 +δn

(
rrr + rrr′

2

)
= n

(
rrr + rrr′

2

)
(ii) n0 −→ 1

2

[
n0 +δn(rrr)+n0 +δn(rrr′)

]
=

1
2

[
n(rrr)+n(rrr′)

]
They correspond to two different partial resummations of the complete response
expansion. Both forms have been tested only for a very limited number of systems.
It turns out that (i) leads to divergences [155], while (ii) does not. Neither the few
results obtained with (4.162) for solids [154, 159, 155, 156] nor those obtained with
(4.164) for atoms [158] are completely satisfactory. A more suitable replacement
for n0 remains to be found. For this reason this type of functional is not used in
practice.5

4.4.3 Gradient Expansion

The situation is completely different for the second strategy to generate a density
functional from (4.157). In this approach [6] one assumes δn to vary only very
slowly with rrr. This implies that the Fourier transform δn(qqq) is strongly peaked at
small qqq and decays very rapidly with increasing |qqq|—note, however, that norm con-
servation requires δn(qqq = 000) = 0. One can then replace the static response function
in the kernel of (4.157) by its long-wavelength expansion,

Π(qqq,0) = a(n0)+b(n0)qqq2 + . . . , (4.166)

and carry through the inversion,

5 The expression (4.159), provides, however, the basis for a density functional approach to disper-
sion forces [160–170] (compare Sect. 6.1.2).
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K(qqq2,n0) = −
[

b(n0)
a(n0)2 − b0(n0)

a0(n0)2

]
qqq2 +O(qqq4) , (4.167)

as δn(qqq) is essentially zero for all qqq for which (4.166) and (4.167) are not valid
(a0(n0) and b0(n0) denote the expansion coefficients of the noninteracting response
function).

A more precise characterization of this approximation is the following: use of the
representation (4.167) of 1/Π , i.e. of Π(qqq)−1 ≈Π(0)−1[1− (Π(qqq)−Π(0))/Π(0)],
in (4.157) requires

∫
d3q

(2π)3 |δn(qqq)|2 � b(n0)
a(n0)

∫
d3q

(2π)3 qqq2 |δn(qqq)|2 , (4.168)

while the neglect of all higher order terms in (4.166) relies on

b(n0)
a(n0)

∫
d3q

(2π)3 qqq2 |δn(qqq)|2 � c(n0)
a(n0)

∫
d3q

(2π)3 qqq4 |δn(qqq)|2 . . . , (4.169)

where c(n0) denotes the coefficient of the qqq4-term of the expansion (4.166). In order
to analyze the conditions (4.168) and (4.169) further, one has to take a closer look
at the static response function. Quite generally, Π can be written as

Π(qqq,0) = − mkF

h̄2π2
J(Q,rs) . (4.170)

J is a dimensionless function of the dimensionless momentum

Q =
|qqq|
2kF

(4.171)

and the dimensionless Wigner-Seitz radius (4.103). J has a rather simple form in the
noninteracting limit [94] (it is the static Lindhard function),

Π (0)(qqq,0) = − mkF

h̄2π2

{
1
2

+
1−Q2

4Q
ln

∣∣∣∣1+Q
1−Q

∣∣∣∣
}

, (4.172)

and is also known [171] analytically for the first order diagrams (4.105),

Π (1)(qqq,0) = − mkF

h̄2π2

[(
4

9π

)1/3 rs

π
I(Q)

]
= −m2e2

h̄4π3
I(Q) , (4.173)

with

I(Q) =
1−Q4

48Q3

(
ln

∣∣∣∣1+Q
1−Q

∣∣∣∣
)3

− 1−Q2

24Q2

∫ Q

0
dx

1− x2

x2

(
ln

∣∣∣∣1+ x
1− x

∣∣∣∣
)3

+
1
8

[
1
Q

+
1−Q2

2Q2 ln

∣∣∣∣1+Q
1−Q

∣∣∣∣
]∫ Q

0
dx

1− x2

x2

(
ln

∣∣∣∣1+ x
1− x

∣∣∣∣
)2

. (4.174)
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The kernel (4.157) resulting from the approximation Π ≈ Π (0) + Π (1) is plotted
in Fig. 4.4. One recognizes the infinite slope at Q = 1, which originates from the

0

1
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4
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6

0 0.5 1 1.5 2

Π
−

1 −
Π

(0
),

−
1

Q = |q|/(2kF)

complete
GE2

Fig. 4.4 Kernel of nonlocal xc-functional (4.157) as a function of qqq (for rs = 2): Complete inverse
polarization insertion (solid line) versus long-wavelength expansion Π−1 = 1/a−bqqq2/a2 (dashed
line) corresponding to second order gradient expansion, Eqs. (4.166), (4.167). The polarization
insertion has been approximated by its x-only limit, Π ≈ Π (0) +Π (1).

derivative discontinuity of both Π (0) and Π (1) at Q = 1. While the derivative dis-
continuity of the first order diagrams (4.105) is damped by inclusion of screening
effects (see e.g. [172]), the quantity 1/(2kF) nevertheless represents the character-
istic length scale of the linear response functional (and that of its long-wavelength
expansion). It is obvious that the second order expansion (4.167) completely mis-
represents the correct kernel for |qqq|� 2kF (In fact, the Taylor expansion in powers of
qqq does not even converge for |qqq| > 2kF). Consequently, the long-wavelength expan-
sion of (4.157) is only legitimate, i.e. the conditions (4.168) and (4.169) can only be
satisfied, if δn(qqq) decays rapidly for |qqq| � 2kF.

Insert now (4.167) into (4.157), keeping the conditions (4.168) and (4.169) in
mind. After Fourier transformation to real space and use of (4.163) the inhomo-
geneity correction to the LDA reads

ΔE(b)
xc =

1
2

∫
d3r

[
b(n0)
a(n0)2 − b0(n0)

a0(n0)2

][
∇∇∇n(rrr)

]2
+O(∇∇∇4) . (4.175)

As indicated, the terms neglected involve at least four gradient operators (order qqq4).
The long-wavelength expansion of Π induces a gradient expansion (GE) for Exc.
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The elimination of n0 is now trivial. As the complete energy (4.157) is only consis-
tent to second order in δn, one can simply use a local density substitution,

ΔE(b)
xc =

1
2

∫
d3r

[
b(n(rrr))
a(n(rrr))2 − b0(n(rrr))

a0(n(rrr))2

]
[∇∇∇n(rrr)]2 +O(∇∇∇4)+O(δn3) . (4.176)

This local density substitution represents a partial resummation of the expansion in
powers of δn, just like the LDA. The resummation has the potential to extend the
range of validity of the (second order) gradient correction (4.176).

This point is illustrated in Fig. 4.5. The linear response expression (4.157) has

δn/n0

|∇n| /n4/3

GE
regime
after
n0 n

GE regime before n0 n

linear response regime

Fig. 4.5 Regimes of validity of linear response and gradient expansion.

been derived under the assumption δn/n0 � 1. This requirement has then been
combined with (4.168) and (4.169) to arrive at (4.175). The validity of the functional
(4.175) is therefore restricted to the shaded region in Fig. 4.5. However, one can also
approach this functional in a different way. If one first assumes (∇∇∇in)/n1+i/3 � 1,
one can establish the GE expression (4.176) without any recourse to the proper-
ties of the HEG. The density dependence of the unknown function b/a2 is com-
pletely determined by dimensional arguments, only numerical prefactors remain
open. However, for n = n0 +δn and δn/n0 � 1 the resulting expression must agree
with (4.175), which allows the determination of b/a2. In other words: the linear re-
sponse regime is only exploited to evaluate the numerical parameters in an otherwise
fixed, universal functional. This argument reflects the fact that alternative methods
for the derivation of gradient corrections, as the real-space GE [173], are available.
If viewed from this perspective the GE is valid as long as (∇∇∇in)/n1+i/3 � 1, in spite
of its relation to the weakly inhomogeneous electron gas.
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The crucial step in the explicit construction of the GE is the evaluation of the
long-wavelength expansion of Π(qqq2,0). This is trivial for the Lindhard-function,
which yields the second order GE for Ts,

ΔT [2]
s =

1
72m

∫
d3r

(∇∇∇n)2

n
. (4.177)

This functional has originally been suggested by von Weizsäcker [174] with a some-
what different prefactor, resulting from the kinetic energy of a system with a single
particle (like the hydrogen atom—see Appendix D). The correct prefactor is also
obtained with the commutator expansion of Kirzhnits [175], which is one variant of
the real-space GE. Both results illustrate the argument that the form of the gradi-
ent correction is fixed by dimensional requirements, so that a model system is only
needed to determine the numerical parameters in this general form. The functional
(4.177) provides the basis for all kinds of extended Thomas-Fermi-type approxima-
tions, in which the variational equation (2.38) is solved in its original form, rather
than via the KS scheme (for a detailed discussion of this approach see [7, 15]).

Unfortunately, the evaluation of the long-wavelength expansion of Π(qqq2,0) is
much more involved in the case of Exc. We first consider the exchange contribution
which is linear in e2. It is thus obtained from an expansion of the kernel (4.158) to
first order in e2,

1
Π(qqq,0)

=
1

Π (0)(qqq,0)

{
1− Π (1)(qqq,0)

Π (0)(qqq,0)
+ . . .

}
,

The relevant first order diagrams of Π have already been displayed in Eq. (4.105).
The loop integrations occurring in these diagrams are rather intricate, so that ini-
tially the small-qqq expansion was employed for the integrands of the Feynman in-
tegrals (4.105) and the loop integrations were carried out afterwards [176]. As the
resulting integrals exhibit an infrared divergence for qqq2 → 0, Yukawa-screening of
the Coulomb integration, Eq. (4.144), was utilized for all intermediate steps. After
all loop integrations were performed the screening was removed. In this way one
finds

ΔE [2]
x =

7
81

∫
d3r eHEG

x (n)ξ , (4.178)

with the dimensionless characteristic density gradient

ξ =
(

∇∇∇n(rrr)
2[3π2n(rrr)]1/3n(rrr)

)2

. (4.179)

The same result was obtained by the real-space GE, for which intermediate Yukawa-
screening was also used [177].

Later, it was observed that the small-qqq expansion does not commute with the loop
integration [178], due to the singular structure of the Coulomb interaction for small
momenta. A complete calculation of Π (1) without Yukawa-screening, followed by
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a small-qqq expansion of the final Π (1)(qqq,0), leads to a different exchange coefficient
[178–180, 171],

ΔE [2]
x = Cx

∫
d3r eHEG

x (n)ξ ; Cx =
10
81

. (4.180)

As the form of the functional is completely determined from the very outset, only its
prefactors can be a matter of debate. Moreover, Eqs. (4.179), (4.180) demonstrate
explicitly that after the local density replacement the appropriate length scale for
measuring gradients is given by 2[3π2n(rrr)]−1/3. The form of ξ is a direct conse-
quence of the form of the response function (4.173).

It should be pointed out that the functional (4.180) is only determined up to some
partial integration. For instance, partial integration of one of the density gradients in
(4.180) yields

ΔE [2]
x = −Cx

∫
d3r eHEG

x (n)
[

η − 4
3

ξ
]

(4.181)

η =
∇∇∇2n(rrr)

4[3π2n(rrr)]2/3n(rrr)
, (4.182)

where the surface contribution is assumed to vanish (which requires a suitable
decay of n(rrr) for large rrr). The expressions (4.180) and (4.181) are completely
equivalent—they lead to the same energy and the same potential. While the en-
ergy density is only defined up to contributions which integrate up to zero, the total
energy and the xc-potential are unambiguous quantities.

The second order gradient contribution has also been studied for the density func-
tional Ẽx[n] for the HF exchange, defined by Eqs. (4.1)–(4.3). The corresponding
approximation for Π consists of Π (1) plus additional exchange-type diagrams of
higher order in e2. For the evaluation of the corresponding Feynman integrals again
Yukawa-screening has been introduced, in order to carry through the small-qqq expan-
sion before performing any loop integration. One finds that the resulting gradient
coefficient diverges in the limit of vanishing screening [181–184], the divergence
originating from the higher order diagrams. Given the fact that an erroneous gradi-
ent coefficient is obtained by application of the same procedure to Π (1), one might
wonder whether this negative result is a mathematical artefact. In order to give a
definitive answer to this question, one has to evaluate the relevant Feynman dia-
grams for Π without utilizing the small-qqq expansion before loop integration. The
result of a corresponding fully numerical study [185] shows a completely smooth
behavior in the small-qqq regime. Unfortunately, the analytical form in this regime has
not been extracted from the numerical data. It is thus not clear whether the leading
term of the small-qqq expansion is proportional to qqq2 (as implied by Eq. (4.166)) or
approaches zero in a different fashion (e.g. as qqq2 ln |qqq|).

The evaluation of the correlation contributions to Π is even more involved than
that of Π (1). In this case only the first strategy, in which the small-qqq expansion is
applied inside the Feynman integrals, has been pursued [186, 187]. The net result
reads [188],
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ΔE [2]
xc =

∫
d3r eHEG

x (n)ξ Cxc(n) (4.183)

Cxc(n) = − 16π(3π2)1/3

3000︸ ︷︷ ︸
=0.0518349

2.568+23.266rs +0.007389r2
s

1+8.723rs +0.472r2
s +0.07389r3

s
, (4.184)

where (4.184) represents a parameterization of the original numerical data by Gel-
dart and Rasolt [187]. Equation (4.183) still contains the exchange term (4.180),
which, however, is easily subtracted,

Cc(n) = Cxc(n)−Cx . (4.185)

Cc is plotted in Fig. 4.6 as a function of rs, rather than of the density. Cc turns out to
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Fig. 4.6 Second order gradient coefficient Cc, Eq. (4.185) as a function of rs. Also shown are two
data points for Cc based on Monte Carlo simulations for the local field factor [172].

be only weakly dependent on rs.
A number of comments are required at this stage:

1. The derivation of the functional (4.183) starts with the gradient corrections re-
sulting from the RPA energy (4.101) by the replacement of G0 by the propagator
of the weakly inhomogeneous electron gas and subsequent expansion to second
order in δv. Expressed in terms of Π , this procedure amounts to the inclusion
of the screened exchange as well as of the so-called fluctuation diagrams. Taken
together, these diagrams constitute the RPA-approximation for Π ,
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RPA = + + + +i Π , (4.186)

in which the Coulomb interaction only enters in RPA-screened form,

= + . (4.187)

In this way the high-density limit of ΔE [2]
c , which gives the dominant contribution

to (4.183), is treated rigorously via standard Green’s function techniques. The
result is afterwards extended to metallic densities, relying on a Hubbard-type
approximation [187].
The final gradient coefficient (4.184) can, however, be compared with results
for Cc obtained from fixed-node diffusion Monte Carlo calculations for the local
field correction G [172]. This quantity is equivalent to the irreducible polarization
insertion,

G(qqq,ω) =
1

w(qqq)

[
1

Π(qqq,ω)
− 1

Π (0)(qqq,ω)

]
, (4.188)

so that its behavior for small qqq allows the determination of the gradient coef-
ficient. Two such data points are included in Fig. 4.6. They have been extracted
under the assumption that the numerical value for G at |qqq|= 1.01kF is completely
due to the leading term of the long-wavelength expansion which contributes to
Cc. Given the uncertainty in this procedure, the resulting data points are con-
sistent with the parameterization (4.184), at least for moderately high metallic
densities as rs = 2.

2. According to present knowledge, the interchange of the small-qqq expansion with
the loop integration is legitimate for the diagrams contributing to (4.186). The
RPA-screening suppresses the infrared singularity of the Coulomb interaction,
which is responsible for the problem with the exchange diagrams (4.105). In
other words: the screened exchange diagrams are regularized in a physical fash-
ion, so that a mathematical regularization via Yukawa-screening is no longer
necessary.

3. The result (4.183) represents an inhomogeneity correction to the LDA, which
has been derived systematically and is not restricted to high densities. There are
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no adjustable parameters in ΔE [2]
c . The expression (4.183) reappears as the hard

core of all first-principles gradient functionals.
4. In the high-density limit the functional (4.183) leads to a term linear in e2, just

as the exchange. This is a result of the resummation of the RPA-contributions to
Π , similar to the ln(rs)-term in the correlation energy of the HEG.

5. The gradient contribution to the correlation energy dominates over the exchange
term. This becomes more obvious if the high-density limit of Cxc(n) is compared
with Cx = 0.123,

Cxc(n → ∞) = −0.133 =⇒ Cc(n → ∞) = −0.257 . (4.189)

As a consequence ΔE [2]
c has the opposite sign as ΔE [2]

x and ELDA
c .

Before examining the validity of the GE we extend the results (4.180) and (4.183) to
spin-density functional theory. This extension is straightforward for the exchange,
if one uses the general relation (4.19),

ΔE [2]
x [n↑,n↓] =

1
2

{
ΔE [2]

x [2n↑]+ΔE [2]
x [2n↓]

}
. (4.190)

On the other hand, an evaluation of the response function of the spin-polarized elec-
tron gas would be required in the case of correlation. This is an extremely involved
task, so that only the high-density limit has been examined [189]. Fortunately, the

general form of ΔE [2]
c [n↑,n↓] is already fixed by the symmetry of the system. Includ-

ing the exchange, one has

ΔE [2]
xc [n↑,n↓] =

∫
d3r

{
eHEG

x (2n↑)ξ↑↑C↑↑
xc (n↑,n↓)

+ eHEG
x (2

√
n↑n↓)ξ↑↓C↑↓

xc (n↑,n↓)

+ eHEG
x (2n↓)ξ↓↓C↓↓

xc (n↑,n↓)
}

, (4.191)

with the dimensionless gradient given by

ξσσ ′ =

(
∇∇∇nσ

2[6π2nσ ]1/3nσ

)
·
(

∇∇∇nσ ′

2[6π2nσ ′ ]1/3nσ ′

)
. (4.192)

For n↑ = n↓ the gradient ξσσ ′ reduces to (4.179), the complete energy (4.191) ap-
proaches (4.183). Moreover, the spin-symmetry requires

C↑↑
xc (n↓,n↑) = C↓↓

xc (n↑,n↓) ⇐⇒ C↑↑
xc (n,−ζ ) = C↓↓

xc (n,ζ ) (4.193)

C↑↓
xc (n↓,n↑) = C↑↓

xc (n↑,n↓) ⇐⇒ C↑↓
xc (n,−ζ ) = C↑↓

xc (n,ζ ) . (4.194)

The spin-density-dependent functions Cσσ ′
xc which result from the numerical calcu-

lation of the high-density limit can be parameterized as [190],
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lim
n→∞

Cσσ ′
xc (n↑,n↓) = −8π(6π2)1/3

3000

7

∑
k=0

aσσ ′
k

(
n↑
n↓

)k

, (4.195)

where ↓ is assumed to be the majority spin and the coefficients aσσ ′
k are given in

Table 1 of [190]. If ↑ is the majority spin, the expressions for C↑↑
xc and C↓↓

xc have to
be interchanged according to (4.193), (4.194). It is generally believed that the spin-
dependence observed in the high-density limit is also quite accurate for the more
relevant intermediate densities, which leads to the functional

ΔE [2]
xc [n↑,n↓] =

∫
d3r

{
eHEG

x (2n↑)ξ↑↑

[
lim
n→∞

C↑↑
xc (n↑,n↓)

Cxc(n↑ +n↓)

]

+ eHEG
x (2

√
n↑n↓)ξ↑↓

[
lim
n→∞

C↑↓
xc (n↑,n↓)

Cxc(n↑ +n↓)

]

+ eHEG
x (2n↓)ξ↓↓

[
lim
n→∞

C↓↓
xc (n↑,n↓)

Cxc(n↑ +n↓)

]}
×Cxc(n↑ +n↓) , (4.196)

with Cxc(n) being the coefficient obtained for the unpolarized gas, Eq. (4.184).
A reformulation of (4.196) paves the way to an even simpler, but still quite accu-

rate approximation [191],

ΔE [2]
xc [n↑,n↓] =

∫
d3r eHEG

x (n)
{ (

∇∇∇n

2(3π2n)1/3n

)2

Cxc(n,ζ )

+
(

∇∇∇n ·∇∇∇ζ
4(3π2n)2/3n

)
C̃xc(n,ζ )

+
(

∇∇∇ζ
2(3π2n)1/3

)2
˜̃Cxc(n,ζ )

}
. (4.197)

The coefficients Cxc, C̃xc and ˜̃Cxc can be derived directly from the original functions
Cσσ ′

xc . One finds that in the high-density limit Cxc is much larger than the other two
coefficients,

|Cxc(n,ζ )| 	 |C̃xc(n,ζ )| 	 | ˜̃Cxc(n,ζ )| .
This suggests that C̃xc and ˜̃Cxc may be neglected (see also [192]). In addition, one
finds that the spin-dependence of the remaining coefficient Cxc(n,ζ ) is very well
represented by

Cxc(n,ζ )
Cxc(n,0)

≈ g(ζ ) =
1
2

[
(1+ζ )2/3 +(1−ζ )2/3

]
, (4.198)

which is the exact spin-dependence of the x-only limit,
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Cx(n,ζ )
Cx(n,0)

= g(ζ ) . (4.199)

The ζ -dependence of Cxc deviates by less than 1% from that of Cx [191]. With these
approximations the spin-dependent second order gradient correction finally reads

ΔE [2]
xc [n↑,n↓] =

∫
d3r eHEG

x (n)ξ Cxc(n)g(ζ ) , (4.200)

with Cxc(n) given by (4.184).
The applicability of the GE is limited by the fact that it requires all density gradi-

ents to be small. This point is illustrated by consideration of the lowest order (fourth
order) gradient corrections which have been neglected in (4.180) and (4.183). Fourth
order corrections have been derived in various ways in the case of Ts [193–195], but
are known only partially even for Ex [171, 196]. Of course, the general form of the
fourth order gradient corrections for Ex is again clear on dimensional grounds [197],

ΔE [4]
x = C[4]

x

∫
d3r eHEG

x (n)
[
η2 +aηξ +bξ 2] . (4.201)

The coefficient C[4]
x = 146/2025 can be extracted from Π (1) [171], a = −2.5±0.5

from its quadratic response counterpart [196]. If one combines (4.109), (4.180) and
(4.201), the GE for Ex[n] reads

EGE
x [n] =

∫
d3r eHEG

x (n)
{

1+
10
81

ξ +
146

2025

[
η2 − 5

2
ηξ +bξ 2

]
+ . . .

}
. (4.202)

Equation (4.202) reveals some sufficient criteria for the validity of the LDA and the
second order GE (GE2) in a quantitative form: the LDA is an accurate approxima-
tion if the local gradient corrections 10ξ/81, 146η2/2025 etc are all small com-
pared to 1. The GE2 is accurate if 146η2/2025 � 10ξ/81 etc. This argument can
be easily extended to higher gradients. Of course, these criteria are nothing but the
real-space equivalents of (4.168) and (4.169), interpreted locally in accordance with
the local density replacement.

The two lowest gradients can be explicitly examined for all interesting systems.
As only an estimate of the form and magnitude of ξ and η is required, it is not nec-
essary to use the exact density. Any approximate n, resulting e.g. from an exchange-
only or an LDA calculation, is sufficient. Figures 4.7–4.10 provide some illustrative
examples. Figure 4.7 shows both gradients for the calcium atom. Three spatial re-
gions can be distinguished:

• For very small r, i.e. in the vicinity of the nucleus, ξ is finite, in accordance with
the cusp condition for point nuclei (Kato’s theorem [198]),

n′(0)
n(0)

= −2
Z
a0

=⇒ ξ (0) =
Z2

a2
0[3π2n(0)]2/3

. (4.203)
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Fig. 4.7 Characteristic gradients of the density for ground state of Ca: ξ = (∇∇∇n)2/[4(3π2n)2/3n2],
η = ∇∇∇2n/[4(3π2n)2/3n]. The density was obtained by a KS calculation with the exact exchange.

Here n′ denotes the derivative of the radially symmetric n(r) with respect to r
and a0 is the Bohr radius (4.104). On the other hand, η diverges at the origin,

η(r → 0) ∼ 1

4[3π2n(0)]2/3

[
n′′(0)
n(0)

+
2
r

n′(0)
n(0)

]
. (4.204)

• For intermediate r-values both ξ and η are of the order of 1. Both gradients
clearly exhibit the atomic shell structure.

• Finally, for large r, for which the density decays exponentially, the gradients
diverge exponentially,

n(rrr) ∼ e−αr =⇒ ξ (r),η(r) ∼ e+2αr/3 . (4.205)

The same behavior is observed for all other atoms. In the case of spin-polarized
atoms the spin-densities follow this pattern individually, as is shown for chromium
in Fig. 4.8. ξ and η also remain of the order of 1–3 in the bonding region of
molecules and the interstitial region of solids, as can be seen in Figs. 4.9 and 4.10. In
fact, ξ necessarily vanishes at some point in the bonding region. On the other hand,
in the inner shell regime the atomic behavior is reproduced by the poly-atomic den-
sity gradients.

These figures lead to the following conclusions:
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Fig. 4.8 Characteristic gradients of the spin-densities for ground state of Cr: ξσ =
(∇∇∇nσ )2/[4(6π2nσ )2/3n2

σ ], ησ = ∇∇∇2nσ /[4(6π2nσ )2/3nσ ]. The spin-densities were obtained by a
KS calculation with the exact exchange.

(a) The GE cannot converge locally in the vicinity of the nucleus.
Fortunately, the contribution of this region to the energy is suppressed by the
volume element 4πr2, so that the energy (4.180), but also (4.201), does not
diverge in the small-r region. On the other hand, the potential obtained from
(4.180) by functional differentiation has the form

Δv[2]
x = vLDA

x (n)Cx

[
ξ − 3

2
η
]

, (4.206)

so that the second order potential is proportional to 1/r for small r. This di-
vergence is somewhat unpleasant, but does not cause any serious problems, as
the 1/r-term in the total potential is dominated by the nuclear charge. In other
words: the “effective charge”

ZGE =
5

27π
Z

[3π2n(0)]1/3

m

h̄2 (Ztotal = Z +ZGE) (4.207)

introduced by the GE is much smaller than the nuclear charge Z. For this reason

a regularization of Δv[2]
x for small r is neither required nor usual.

This is no longer true for the fourth order potential obtained from ΔE [4]
x ,

Eq. (4.201),
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Fig. 4.9 Characteristic gradients of the density for ground state of N2: ξ = (∇∇∇n)2/[4(3π2n)2/3n2],
η = ∇∇∇2n/[4(3π2n)2/3n]. The density was obtained by a KS calculation with the exact exchange.
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Fig. 4.10 Characteristic gradients of density for ground state of bulk silicon (diamond structure):
ξ = (∇∇∇n)2/[4(3π2n)2/3n2], η = ∇∇∇2n/[4(3π2n)2/3n], The density was obtained by a KS pseudopo-
tential calculation with the LDA.
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Δv[4]
x =

146
2025

1

16(3π2n)4/3

×
[

3
2

(
(∇∇∇4n)

n
−4

(∇∇∇3n) · (∇∇∇n)
n2 −3

(∇∇∇2n)2

n2 +6
(∇∇∇2n)(∇∇∇n)2

n3

)

− 3
2

a

(
(∇∇∇2n)2

n2 − (∇∇∇∇∇∇n) · (∇∇∇∇∇∇n)
n2 +3

(∇∇∇n) ·∇∇∇(∇∇∇n)2

n3 −6
(∇∇∇n)4

n4

)

+3b

(
− (∇∇∇2n)(∇∇∇n)2

n3 − (∇∇∇n) ·∇∇∇(∇∇∇n)2

n3 +3
(∇∇∇n)4

n4

)]
, (4.208)

which diverges like 1/r2. In order to utilize this expression in KS calculations
a regularization is required for small r [199]. Fortunately, this cut-off does not
significantly affect the potential and orbitals for intermediate and large r. Nev-
ertheless, this divergence clearly shows the inadequacy of the GE in the vicinity
of the nucleus.

(b) The GE appears to be useful in the intermediate regime, at least in the sense of
an asymptotic expansion.
Taking into account the upper limit for ξ of roughly 3 and its prefactor of 10/81
in the GE (4.202), the second order correction contributes less than 40% of the
leading term even locally. At first glance, this seems to indicate the convergence
of the GE. However, a closer look at the fourth order terms proves the opposite.
In fact, the general argument on the validity of the long-wavelength expansion
(4.167), given earlier, immediately explains why the GE can not converge even
for ξ ,η ≈ 1 (corresponding to |qqq| ≈ 2kF). The GE is not applicable as soon as
the density changes substantially over a length scale of 1/[2(3π2n)1/3].
One should keep in mind, however, that

(i) ξ � 1 does not automatically imply that the GE energy density and po-
tential diverge, but rather that they become inaccurate, and

(ii) the local divergence of the GE energy density or potential does not nec-
essarily lead to a divergence of the integrated GE energy.

(c) The GE definitively diverges in the asymptotic region of finite systems.
In fact, insertion of (4.205) into (4.206) yields

n(rrr) ∼ e−αr =⇒ Δv[2]
x (r → ∞) ∼ e+αr/3 . (4.209)

While the exponential divergence is suppressed by the vanishing Cxc(n) in the

total xc-functional, Δv[2]
xc nevertheless does not approach zero for large r,

Δv[2]
xc = vLDA

x (n)
{(

Cxc(n)− 3
4

n
dCxc

dn
(n)

)
ξ − 3

2
Cxc(n)η

}
(4.210)

=⇒ Δv[2]
xc (r → ∞) ∼ const . (4.211)
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An indication of the net accuracy of the second order GE (GE2) for atoms is

given in Tables 4.4 and 4.5. In the case of the exchange the inclusion of ΔE [2]
x leads

to an improvement, reducing the error of the LDA by roughly 50%. Consistent with

Cxξ � 1, the integrated ΔE [2]
x represents a small correction to the LDA. Unfortu-

nately, the same is not true for ΔE [2]
c : here one finds that the second order energy is

larger than the LDA energy itself. As ΔE [2]
c is positive, the resulting atomic correla-

tion energies even have the wrong sign. This indicates a complete failure of the GE
for correlation. Obviously, the criteria for the legitimate size of ξ and higher gradi-
ents derived from the exchange contribution to Π are not applicable to correlation.

In summary, one can state that the GE can not be applied to atoms, molecules
or surfaces without suitable modification. On the other hand, there are no technical
reasons which prevent GE calculations for solids. The adequacy of this approach
can only be established by explicit applications. Only few such calculations with
the original GE have been reported in the literature, the reason being the failure of
the GE2 for metallic iron. The GE2 predicts, as the LDA, an incorrect paramagnetic
fcc ground state [200]. For this reason one is forced to consider extensions of the
GE2. In fact, already very early the failure of the GE2 has prompted suggestions for

the regularization of ΔE [2]
xc [186, 197] in the form

ΔExc[n] =
∫

d3r eHEG
x (n)ξ gxc(n,ξ ) (4.212)

gxc(n,ξ ) =
{

Cxc(n) for ξ → 0
0 for ξ → ∞ . (4.213)

Functionals of this form are called Generalized Gradient Approximations (GGAs).
They represent a de facto standard in DFT applications. GGAs will therefore be
discussed in detail in the next section.

4.5 Generalized Gradient Approximation (GGA)

Let us summarize the main problems with the second order GE:

(i) The GE2 exchange potential diverges for exponentially decaying densities.
(ii) The GE2 gives only moderately accurate exchange energies and unacceptable

atomic correlation energies.
(iii) The GE2 does not lead to an improvement over the LDA even in the case of

solids.

On the other hand, the semi-local structure of gradient-dependent functionals is very
attractive for applications. They are computationally much less demanding than cal-
culations with fully nonlocal functionals like (4.162). For this reason much effort has
been spent on the systematic construction of improved gradient-based functionals,
which do not suffer from the shortcomings of the GE2. Two complementary variants
have been investigated, in order to understand the failure of the GE on a formal level
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and, with this information, to formulate extensions of the GE. While the first of these
is based on a momentum space analysis of the GE [201, 202, 114, 203, 192], the
second relies on real space arguments [204–207]. Both variants are quite instructive,
so that both will be discussed explicitly in the following.

4.5.1 Momentum Space Variant

Let us first go through the momentum space analysis [201, 202, 114, 203, 192].
The starting point for the derivation of gradient corrections is the linear response
expression (4.157) with its kernel depending on the inverse polarization insertion.

In the high-density limit, which dominates the final ΔE [2]
xc , Π−1 can be approximated

by

1
Π(qqq2,0)

≈ 1

Π (0)(qqq2,0)

{
1− Π RPA(qqq2,0)

Π (0)(qqq2,0)
+ . . .

}
, (4.214)

with Π RPA given by (4.186). Equation (4.214) contains all contributions of the or-
der e2, which is the only order which will be treated consistently in the following.
Insertion into (4.157) leads to

ΔE [2+]
xc = −

∫
d3q

(2π)3 eHEG
x (n0)

qqq2 δn(qqq)δn(−qqq)
(2(3π2n0)1/3n0)2

Zxc(qqq2,n0) , (4.215)

with the dimensionless kernel

Zxc(qqq2,n0) =
2k2

F

9πe2

4k2
F

qqq2

[
Π RPA(qqq2,0,n0)
Π (0)(qqq2,0,n0)2

− Π RPA(0,0,n0)
Π (0)(0,0,n0)2

]
. (4.216)

The value of Zxc at qqq2 = 0 determines the GE2 (in the high-density limit). One can
now consider a wavevector decomposition of Zxc with respect to the momentum
kkk which runs through the interaction line in the Feynman diagrams (4.186) which
constitute Π RPA:

k

k

q

q+k

k

q

k +k

q+k

q+k +k

k

k

q

q+k k

q

q+k k

q

Separation of the integration over |kkk| from all other loop integrations leads to the
wavevector decomposition zxc,

Zxc(qqq2,n0) =
∫ ∞

0
dk zxc(qqq2,k,n0) . (4.217)
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A sketch of the correlation contribution to the quantity zxc as a function of k is shown
in Fig. 4.11 for several values of

Q =
√

3
|qqq|
kTF

, (4.218)

where kTF denotes the (inverse) Thomas-Fermi screening length,

kTF =

(
4
π

(
4

9π

)1/3

rs

)1/2

kF =
(

4kF

πa0

)1/2

= 2

(
3
π

)1/6 (
n0

a3
0

)1/6

. (4.219)

One immediately notices the extreme sensitivity of zc on qqq for small qqq-values. In
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z c
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Fig. 4.11 Schematic plot of the wavevector-decomposition of the nonlocal corrections to the
xc-energy in the high-density limit, Eq. (4.217), for different external momenta Q =

√
3|qqq|/kTF

(adopted from [203]).

particular, one finds

lim
k→0

lim
q→0

zxc(qqq2,k,n0) 
= lim
q→0

lim
k→0

zxc(qqq2,k,n0) = 0 . (4.220)

The second order gradient correction results from the curve with |qqq| = 0. One thus
realizes that the wavevector decomposition of the GE2 is quite different from that of
the complete linear response kernel. This sensitive qqq-dependence is transfered into
the integrated quantity Zc, which is plotted in Fig. 4.12. For |qqq| < kTF/

√
3 the total

Zxc is well approximated by

Zxc(qqq2,n0) =
1
9

[1.1978+0.77Q ln(Q)−1.25Q] . (4.221)
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Fig. 4.12 Correlation contribution to the linear response kernel in the high-density limit,
Eq. (4.216), according to the parameterization (4.221) [203]. Also given are two data points for
Zc extracted from fixed-node diffusion Monte Carlo simulations for the local field factor [172].
They correspond to the (metallic) density rs = 2.

with Q given by (4.218) [208] (note that 9Cxc(n = ∞) = −1.1978). Figure 4.12 is
then obtained by subtraction of Zx,

Zx(qqq2,n0) = −1
2

(2kFn0)2

eHEG
x (n0)

1
qqq2

[
Π (1)(qqq2,0,n0)
Π (0)(qqq2,0,n0)2

− Π (1)(0,0,n0)
Π (0)(0,0,n0)2

]
(4.222)

= −10
81

− 146
2025

qqq2

4k2
F

− . . . .

In order to appreciate the strong qqq-dependence of Zc, one has to relate it to the qqq-
dependence of Zx. The appropriate scale for the qqq-dependence of Zc is kTF, while
the Fermi momentum occurs in Zx. In view of Eq. (4.219) an explicit comparison of
Fig. 4.12 with (4.222) is only possible for a given density. For instance, for rs = 2
one has kTF = 1.15kF . The corresponding Zx is plotted in Fig. 4.13. Zx is almost
constant over the range of Q for which Zc is given in Fig. 4.12. While Zx(qqq2) is
comparatively well approximated by its long-wavelength limit Zx(0), this is not
the case for Zc. In other words: while 1/(2kF) is the appropriate length scale for
exchange, the much larger

√
3/kTF is the inherent length scale for correlation. One

thus concludes that higher order gradient corrections are much more important for
correlation than for exchange.

In fact, the GE2-limit zc(qqq2 = 0,k) is much less characteristic for the inhomo-
geneity corrections in real systems than the behavior of zc(qqq2,k) for qqq2 > 0, most no-
tably the fact that zc(qqq2,k = 0) = 0. On the other hand, the zc(qqq2,k) obtained for dif-
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Fig. 4.13 Exchange contribution to (4.216) for rs = 2.

ferent qqq2 soon approach each other with increasing k. This observation has prompted
Langreth and Mehl to introduce a cut-off into the wavevector-decomposition of Zc

in such a way, that the behavior of zc(qqq2,k,n0) for vanishing k is enforced even for
qqq2 = 0,

zLM
c (qqq2,k,n0) = zc(qqq2 = 0,k,n0)Θ

(
k− f

|∇∇∇n|
n

)
. (4.223)

The step function cuts off the GE2-result zc(qqq2 = 0,k) for all k smaller than f |∇∇∇n|/n.
The quantity |∇∇∇n|/n serves as a measure of the inhomogeneity of the real sys-
tem under consideration and thus as a measure of the momentum |qqq| below which
zc(qqq2,k) should drop to zero. The smaller |∇∇∇n|/n is, the closer is zLM

c (qqq2,k,n0) to
the GE2. f is a fit parameter which absorbs all numerical prefactors involved. Lan-
greth and Mehl then use an analytical parameterization of their numerical RPA data
for zc(qqq2 = 0,k),

zc(qqq2 = 0,k,n0) ≈ −Cc(n = ∞)
2
√

3
kTF

exp

[
−2

√
3

k
kTF

]
, (4.224)

to carry through the k-integration in (4.217). The result reads

ELM
c [n] = Cc(n = ∞)

∫
d3r eHEG

x (n)ξ exp

[
−(9πa3

0)
1/6 f

|∇∇∇n|
n7/6

]
. (4.225)

For f a value of approximately 0.15 turned out to be a good compromise between
the optimum f found for different systems like surfaces and atoms. As it stands,
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Eq. (4.225) covers only the high-density limit of the RPA (order e2) consistently.
It has later been extended by inclusion of the contributions of the second order
exchange graphs [192]. In addition, a spin-dependent version has been put forward
by Hu and Langreth [209],

EHLM
c [n↑,n↓] = Cc(n = ∞)

∫
d3r

eHEG
x (n)
d(ζ )

ξ exp

[
−(9πa3

0)
1/6 f

|∇∇∇n|
n7/6

]
, (4.226)

with

d(ζ ) = 21/3

[(
1+ζ

2

)5/3

+
(

1−ζ
2

)5/3
]

(4.227)

and ζ given by Eq. (4.119).
While LM have established the GGA approach, ELM

c [n] is no longer used in appli-
cations today. One reason is the fact that ELM

c [n] does not cover the metallic density
range (in analogy to the observation made for RPA for eHEG

c ). This statement is cor-
roborated by Fig. 4.12, in which two data points extracted from fixed-node diffusion
Monte Carlo simulations for the local field factor G, Eq. (4.188), at rs = 2 are given
[172]. The relation between the xc-kernel and G is established after extension of Zxc

to arbitrary densities. Using the compressibility sum rule (4.154), one finds

Zxc(qqq2,n0) = − 2k2
F

9πe2

4k2
F

qqq2

[
1

Π(qqq2,0)
− 1

Π (0)(qqq2,0)
− 1

Π(0,0)
+

1

Π (0)(0,0)

]

= − 2k2
F

9πe2

4k2
F

qqq2

[
4πe2

qqq2 G(qqq)+
d2eHEG

xc

dn2
0

(n0)
]

. (4.228)

The derivative of the xc-energy density can be rewritten in terms of the correlation
energy per particle εc,

d2eHEG
xc

dn2
0

(n0) = −πe2

k2
F

− rs

3n0

d
drs

[
εc(rs)− rs

3
d

drs
εc(rs)

]
,

which allows an evaluation of d2eHEG
xc /dn2

0 for instance via the VWN parameteriza-
tion for εc, Eq. (4.108). It is obvious that the Monte Carlo results for rs = 2 are quite
different from the high-density limit.

For this reason the first important step to be taken is a generalization to arbitrary
densities. Such a generalization has been suggested by Perdew [210], relying on the

density dependence of ΔE [2]
c , Eq. (4.183),

EP86
c [n] =

∫
d3r Cc(n)eHEG

x (n)ξ exp

[
− (9πa3

0)
1/6 f̃

Cc(∞)
Cc(n)

|∇∇∇n|
n7/6

]
. (4.229)

The factor Cc(n) is a very natural extension of the LM prefactor Cc(∞) to intermedi-
ate densities, as it reintroduces the complete second order gradient correction. The
underlying assumption is that the small-k behavior of the wavevector-decomposition
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observed for the RPA is also roughly correct for the complete zc(qqq2,k,n0). The ad-
ditional density dependence in the exponential function leads to a faster cut-off for
low densities. The fit parameter f̃ was adjusted to the correlation energy of the neon
atom, which led to f̃ = 0.11. For spin-dependent systems Perdew suggests the uti-
lization of the same overall scaling as in Eqs. (4.226), (4.227). The P86-GGA for
correlation is still used today in applications.

4.5.2 Real Space Variant

The starting point of the complementary real-space analysis of the GE [204–207]
is the adiabatic connection formula, expressed in terms of the xc-hole hxc. After
explicit insertion of the Coulomb interaction and a suitable shift of the integration
variable rrr′, the corresponding relation (4.82) can be written as

Exc[n] =
e2

2

∫
d3r n(rrr)

∫
d3u

1
|uuu| hxc(rrr,rrr +uuu) , (4.230)

with hxc given by Eq. (4.81). hxc satisfies a number of exact relations [77]. In view
of the definition (4.76) of the pair-correlation function, integration over uuu yields∫

d3uhxc(rrr,rrr +uuu)

=
∫

d3r′
{

1
n(rrr)

∫ 1

0
dλ 〈Ψ0(λ )|[n̂(rrr)−n0(rrr)][n̂(rrr′)−n0(rrr′)]|Ψ0(λ )〉

−δ (3)(rrr− rrr′)
}

=
1

n(rrr)

∫ 1

0
dλ 〈Ψ0(λ )|[n̂(rrr)−n0(rrr)][N̂ −N]|Ψ0(λ )〉−1

= −1 . (4.231)

This sum rule can then be decomposed into an exchange and a correlation compo-
nent, hxc = hx +hc. The exchange component (linear in e2) is obtained from the KS
pair-correlation function (i.e. the noninteracting limit—compare Eq. (3.46)),

gx(rrr,rrr′) = 1− ∑
σσ ′

|∑i Θiφi(rrrσ)φ ∗
i (rrr′σ ′)|2

n(rrr)n(rrr′)
(4.232)

⇒ hx(rrr,rrr′) = −∑
σ

|∑α Θασ φασ (rrr)φ ∗
ασ (rrr′)|2

n(rrr)
, (4.233)

where the φi represent KS orbitals. Integration immediately leads to∫
d3uhx(rrr,rrr +uuu) = −1 , (4.234)
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so that (4.231) requires ∫
d3uhc(rrr,rrr +uuu) = 0 . (4.235)

Two further exact relations directly emerge from (4.233),

hx(rrr,rrr +uuu) ≤ 0 ∀ rrr,uuu (4.236)

hx(rrr,rrr) = −n(rrr)
2

(for unpolarized systems) . (4.237)

Both the sum rules (4.234) and (4.235) as well as the local conditions (4.236) and
(4.237) are satisfied by the LDA xc-hole. The compliance with these rigorous prop-
erties is one of the major advantages of the LDA. In particular, the compliance with
the sum rule (4.231) has been identified as the main reason for the surprising per-
formance of the LDA in the case of atoms [155]: due to the validity of Eq. (4.231)
the spherically averaged xc-hole,∫

dΩuuu

4π
hxc(rrr,rrr +uuu) ,

which determines Exc via Eq. (4.230), is well reproduced by the LDA.
The situation is quite different for the exchange hole resulting from the gradient

expansion. Within the real-space method of Kirzhnits one finds [177],

hx(rrr,rrr +uuu) = −n(rrr)
2

{
f [0]
x (rrr,uuu)+ f [1]

x (rrr,uuu)+ f [2]
x (rrr,uuu)+ . . .

}
(4.238)

f [0]
x (rrr,uuu) = J(z) (4.239)

f [1]
x (rrr,uuu) = 12L(z)

ûuu ·∇∇∇n
2kFn

(4.240)

f [2]
x (rrr,uuu) =

[
M(z)− 4

3
zL(z)

](
ûuu ·∇∇∇n
2kFn

)2

+4zL(z)
(ûuu ·∇∇∇)2n

4k2
Fn

−
[

N(z)+
1
3

zL(z)
](

∇∇∇n
2kFn

)2

+2N(z)
∇∇∇2n

4k2
Fn

, (4.241)

with the abbreviations

z = 2kF|uuu| kF = (3π2n)1/3 ûuu =
uuu
|uuu| (4.242)

J(z) =
72
z6

[
4+ z2 +(z2 −4)cos(z)−4zsin(z)

]
(4.243)

L(z) =
1
z3

[
2−2cos(z)− zsin(z)

]
(4.244)

M(z) =
1
z

[
− zcos(z)+ sin(z)

]
(4.245)



4.5 Generalized Gradient Approximation (GGA) 177

N(z) =
2
z4

[
−4− z2 +(4− z2)cos(z)+4zsin(z)

]
. (4.246)

The real-space GE of hx(rrr,rrr + uuu) essentially represents a Taylor series expansion
with respect to powers of the operator uuu ·∇∇∇. For this reason Yukawa-screening has to
be utilized to regularize the uuu-integration in (4.230), if the GE2 for Ex is evaluated
by insertion of (4.238) [177]—without screening the convergence of the integral
for large |uuu| is not ensured (note, however, that an incorrect gradient coefficient is
obtained in this way).

The important observation [204] is that the second order gradient correction to
hx neither satisfies the sum rule (4.234) nor the negativity condition (4.236). In
fact, the individual terms in (4.238) even lead to divergent uuu-integrals, as the func-
tions (4.244)–(4.246) do not decay sufficiently fast for large |uuu|. These integrals can
no longer be kept under control by some regularization: as soon as the screening
is removed after the uuu-integration, the divergences show up again. While the uuu-
integral obtained by insertion of (4.238) into (4.230) is just not well-defined without
Yukawa-screening, the uuu-integral in (4.234) simply diverges.

In view of their importance Perdew therefore suggests to reinforce the conditions
(4.234) and (4.236) a posteriori [204]. In order to introduce a corresponding real-
space cut-off first an integration by parts is performed in (4.230) (with respect to the
uncritical variable rrr). This leads to a modified exchange hole,

h̃x(rrr,rrr +uuu) = −n(rrr)
2

f̃ (rrr,uuu) (4.247)

f̃ (rrr,uuu) = J +12L
ûuu ·∇∇∇n
2kFn

− M
3

(
ûuu ·∇∇∇n
2kFn

)2

+[zL+N]
(

∇∇∇n
2kFn

)2

+ . . . . (4.248)

The form (4.247) avoids the presence of second density gradients, which simplifies
the subsequent analysis. Of course, h̃x violates the conditions (4.234) and (4.236)
just as the original hx does. For this reason two cut-offs are applied to (4.247),

hGGA
x (rrr,rrr +uuu) := h̃[2]

x (rrr,rrr +uuu)Θ
(

f̃ (rrr,uuu)
)

Θ (Rc(rrr)−|uuu|) . (4.249)

While (4.236) is reinstalled by Θ( f̃ (rrr,uuu)), the sum rule (4.234) is implemented via
the function Rc(rrr). Rc is that value of |uuu| for which

∫
d3uhGGA

x (rrr,rrr +uuu) =
−1

48π2

∫ 2kFRc

0
z2dz

∫
dΩuuu f̃ (rrr,uuu)Θ

(
f̃ (rrr,uuu)

)
= −1 (4.250)

holds for a given rrr (z = 2kF|uuu|). Insertion of (4.248) demonstrates that the violation
of (4.234) becomes more and more serious with increasing gradient of n: the larger
the prefactor ξ = (∇∇∇n)2/(2kFn)2 is, the earlier does the |uuu|-integral in (4.250) ex-
haust the sum rule. On the other hand, there is no additional explicit rrr-dependence
found in the exchange hole (4.247). Consequently, the cut-off is a function of ξ only,
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which can be determined by solution of (4.250) for arbitrary ξ . Insertion of (4.249)
into (4.230) then defines a GGA,

EGGA
x [n] =

e2

2

∫
d3r n(rrr)

∫
d3u

1
|uuu| hGGA

x (rrr,rrr +uuu)

=
∫

d3r eHEG
x (n) f (Rc(ξ )) (4.251)

f (Rc(ξ )) =
1

36π

∫ 2kFRc

0
zdz

∫
dΩuuu f̃ (rrr,uuu)Θ

(
f̃ (rrr,uuu)

)
. (4.252)

The numerical results for f (Rc(ξ )) can finally be parameterized in the form

f PW86(ξ ) =
[
1+15Cxξ +14ξ 2 +0.2ξ 3]1/15

. (4.253)

Initially, the Sham coefficient CSham
x = 7/81 has been used in (4.253). However, the

sum rule (4.250) is not very sensitive to ξ for very small gradients, so that f (Rc(ξ ))
can not be determined with high accuracy in the limit ξ → 0. In fact, the numerical
results for small ξ even suggest a dependence on

√
ξ [207]. For consistency the

small-ξ behavior has therefore later been adjusted to the correct gradient coefficient
Cx = 10/81. The GGA (4.251), (4.253) is the exchange complement to the GGA
(4.229) for Ec[n].

The concept of the real-space cut-off of h[2]
x has subsequently been refined by

Perdew and Wang [206, 211] with the aim to incorporate the Lieb-Oxford lower
bound for the exchange energy [212],

Ex ≥ Exc ≥ E |Ψ0〉
xc ≥ 2.273

∫
d3r eHEG

x (n) (4.254)

(here the inequality (3.31) between Exc and the non-classical part of the interac-
tion energy of the interacting system, E |Ψ0〉

xc = 〈Ψ0|Ŵ |Ψ0〉−EH[n0], Eq. (3.27), has
been used). Interpreted locally, this exact relation implies f (ξ ) ≤ 2.273. Combin-
ing this requirement with an improved analytical parameterization of the numerical
f (Rc(ξ )) and the correct gradient coefficient, one ends up with the PW91-GGA for
exchange [206],

f PW91(ξ ) = 1+
[a1 +(Cx −a1)e−100ξ ]ξ −a2ξ 2

1+b1
√

ξ arsh(b2
√

ξ )+a2ξ 2
, (4.255)

with a1 = 0.2743≈ 2.2Cx, a2 = 0.004, b1 = 9a1/(4π) and b2 = 2(6π2)1/3b1. While
the kernel (4.255) reproduces the exact second order gradient term for ξ = 0, f PW91

shows a very sensitive ξ -dependence for small ξ (which is nevertheless consistent
with the results of the real-space cut-off procedure (4.250) in the small-ξ regime).
However, the strong variation of f PW91 for small ξ leads to undesired (though un-
critical) peak structures in the corresponding exchange potential [213].

In a later contribution, a simplified form of f PW91 has been suggested [207],
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f PBE(ξ ) = 1+
aξ

1+bξ
, (4.256)

with

a = −
[
Cc(∞)+

3
81

]
= 0.21951 ≈ 1.8Cx and b = 0.2730 .

In this GGA the gradient coefficient has been chosen so that exchange and correla-
tion cancel each other in the limit of small ξ , i.e. that the total second order gradient
correction vanishes. This construction essentially relies on the argument that the
LDA is more accurate for weakly inhomogeneous systems than the GE2.

It is obvious from this discussion that, in spite of the first-principles background
of GGAs, there remains some uncertainty in the determination of their precise form.
The final form depends on the set of criteria which are used for its construction and
the priorities between the criteria. On the other hand, practical results show only
a moderate dependence on the precise form of the GGA, if one keeps a realistic
perspective of the overall accuracy of this type of functional (compare the discussion
below).

The transition to spin-density functional theory is again achieved by (4.19).

4.5.3 Combination of Momentum and Real Space Variants

In view of the successful real-space cut-off procedure for hx the question arises
whether a similar scheme can be applied to the correlation hole? As a direct real-
space GE of hc is not available, information on the correlation hole can only be
obtained indirectly. In order to extract this information one first has to remember
that the xc-energy only depends on the spherically averaged xc-hole

Exc[n] =
1
2

∫
d3r n(rrr)

∫ ∞

0
4πu2du

e2

u
hxc(rrr,u) (4.257)

hxc(rrr,u) =
∫

dΩuuu

4π
hxc(rrr,rrr +uuu) . (4.258)

One can now use the Fourier representation of the Coulomb interaction,

e2

|uuu| =
∫

d3k
(2π)3 eikkk·uuu 4πe2

k2

=
∫ ∞

0

4πk2dk
(2π)3

sin(ku)
ku

4πe2

k2 , (4.259)

to rewrite Exc as

Exc[n] =
1
2

∫
d3r n(rrr)

∫ ∞

0

4πk2dk
(2π)3

4πe2

k2 hxc(rrr,k) (4.260)
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hxc(rrr,k) =
∫ ∞

0
4πu2du

sin(ku)
ku

hxc(rrr,u) . (4.261)

This result can be compared with the wavevector decomposition (4.215)–(4.217),

ΔE [2+]
c = −

∫
d3q

(2π)3 eHEG
x (n0)

qqq2 δn(qqq)δn(−qqq)
4(3π2n0)2/3n2

0

∫ ∞

0
dk zc(qqq2,k,n0)

=
∫

d3r
∫

d3r′ δn(rrr)δn(rrr′)
∫ ∞

0

4πk2dk
(2π)3

4πe2

k2

×
∫

d3q
(2π)3 e−iqqq·(rrr−rrr′) qqq2 −eHEG

x (n0)
4(3π2n0)2/3n2

0

(2π)3

(4πe)2 zc(qqq2,k,n0) . (4.262)

The qqq-integral can easily be carried through, if one restricts (4.262) to the lowest
order gradient contribution. The usual local density substitution then leads to

ΔE [2]
c =

1
2

∫
d3r n(rrr)

∫ ∞

0

4πk2dk
(2π)3

4πe2

k2

×[∇∇∇n(rrr)]2
−eHEG

x (n(rrr))
4(3π2n(rrr))2/3n(rrr)3

π
e2 zc(0,k,n(rrr)) . (4.263)

Comparison with (4.261) allows the direct identification of the high-density limit of
the spherically averaged hc,

hc
HDL(rrr,u) = (∇∇∇n)2 −eHEG

x (n)
4(3π2n)2/3n3

1
2πe2

∫ ∞

0
k2dk

sin(ku)
ku

zc(0,k,n) .

(4.264)
With the analytical parameterization of zc(0,k,n), Eq. (4.224), one can perform the
k-integration (see [214], Eq. 2.667.5),

hc
HDL(rrr,u) = −Cc(n = ∞)

(
∇∇∇n

2kTFn

)2 36
π3a0

k2
TF

[12+(kTFu)2]2
. (4.265)

Insertion into (4.257) and subsequent evaluation of the uuu-integration leads back to
the high-density limit of the GE2, Eq. (4.183). In order to recover the complete

E [2]
c , one has to extend (4.265) to arbitrary densities. To this aim one notes that hc

essentially depends on the product kTFu, so that high densities are equivalent to large
particle–particle separations u. Similarly, low densities are equivalent to small u, so
that the low-density limit of hc corresponds to its short-range behavior. Perdew and
Wang [206] suggest the following ansatz for the short-range component, which is

missing in hc
HDL

,

hc
[2](rrr,u) = hc

HDL(rrr,u)− 1
18π3a0

(
∇∇∇n

2kTFn

)2

k2
TF e−b(kTFu)2

(4.266)

b =
1

54[Cc(n)−Cc(∞)]
. (4.267)
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It is worthwhile to verify explicitly that (4.266) reproduces the second order gradient
correction (4.183). In fact, insertion into (4.257) gives

ΔE [2]
c =

1
2

∫
d3r n(rrr)

∫ ∞

0
4πu2du

e2

u
h

[2]
c (rrr,u)

= −e2

2

∫
d3r n(rrr)

∫ ∞

0
udu

(
∇∇∇n
n

)2 1
π2a0

[
36Cc(∞)

[12+(kTFu)2]2
+

e−b(kTFu)2

18

]

= −e2
∫

d3r n(rrr)
(

∇∇∇n
2kFn

)2 kF

4π

∫ ∞

0
dy

[
36Cc(∞)
[12+ y]2

+
e−by

18

]
=

∫
d3r eHEG

x (n)Cc(n)ξ , (4.268)

which is the desired result.
Once a reasonably accurate representation of h

[2]
c (rrr,u) has been established, one

can check whether it satisfies the sum rule (4.235). It is no surprise that (4.235) is
violated, ∫ ∞

0
4πu2duhc

[2](rrr,u) 
= 0 . (4.269)

The sum rule is therefore reinforced by introduction of a real-space cut-off Rc in
complete analogy to (4.249),

hc
GGA(rrr,u) := hc

[2](rrr,u)Θ(Rc −u) , (4.270)

with Rc determined by

∫ Rc

0
4πu2du

[
hc

[0](rrr,u)+hc
[2](rrr,u)

]
= 0 . (4.271)

If more than one value of Rc solves (4.271), the solution with the largest value
is chosen. Insertion of (4.266) into (4.271) immediately exhibits the quantities on
which Rc depends,

∫ Rc

0
4πu2duhc

[2](rrr,u) = −
(

∇∇∇n
2kTFn

)2 4
π2kTF

∫ kTFRc

0
x2dx

[
36Cc(∞)
[12+ x2]2

+
e−bx2

18

]
.

One identifies

t :=
|∇∇∇n|

2kTFn
(4.272)

as characteristic dimensionless density gradient of the correlation functional. In ad-
dition, Rc depends on the density. The GGA for Ec[n] is defined by
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ΔEGGA
c =

1
2

∫
d3r n(rrr)

∫ Rc

0
4πu2du

e2

u
h

[2]
c (rrr,u) . (4.273)

The construction of the GGA is completed by an analytical parameterization of the
t- and n-dependent kernel resulting from the condition (4.271),

ΔEPW91
c =

∫
d3r n(rrr)

[
f1(t,n)+ f2(t,n)

]
(4.274)

f1(t,n) =
β 2

2α
ln

[
1+

2α
β

t2 +At4

1+At2 +A2t4

]
(4.275)

f2(t,n) = − 3
π2

e2

a0

[
Cc(n)−Cc(∞)− 3

81

]
t2 e−100ξ (4.276)

β = − 3
π2

e2

a0

[
Cc(∞)+

3
81

]
; α = 0.09

e2

a0
(4.277)

A =
2α
β

[
exp

(
−2α

β 2

eHEG
c (n)

n

)
−1

]−1

. (4.278)

Equation (4.274) is to be combined with the PW91-GGA for exchange, Eq. (4.255).
It remains to make the transition to spin-dependent systems. Relying on the ne-

glect of ∇∇∇ζ and the approximation (4.198) (which led to the gradient term (4.200))
and expressing the fi in terms of the actually occurring variables, the transition can
be made by

fi

(
t,ξ ,Cc(n),

eHEG
c (n)

n

)
−→ g3 fi

(
t
g
,g2ξ ,Cc(n),

eHEG
c (n)
g3n

)
, (4.279)

with g(ζ ) given by Eq. (4.198).
A simplified variant of (4.274) has been put forward by Perdew, Burke and Ernz-

erhof [207],

ΔEPBE
c =

∫
d3r n(rrr) f1(t,n) . (4.280)

It is based on the concept of a complete cancellation of the total second order gra-
dient term, which originates from the observation that the LDA is more accurate
for weakly inhomogeneous systems than the GE2. Together with the PBE-GGA
for exchange, Eq. (4.256), the functional (4.280) leads to a vanishing second order
gradient coefficient for the complete Exc.

4.5.4 Semi-Empirical Construction of GGAs

The fact that the basic form of GGA-type functionals is already determined by di-
mensional arguments has prompted quite a number of semi-empirical schemes for
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their construction. This route has been pursued in particular in quantum chemistry,
often aiming at specific classes of systems. Alternatively, GGA-type expressions are
combined with a fraction of the exact exchange (4.5), which constitutes the class of
hybrid functionals [215–217] discussed in Sect. 6.5.4. It is beyond the scope of this
work to review the wealth of semi-empirical functionals which can be found in the
literature. Only the original and best-known GGAs of this type will be discussed.

The structure of the GGA is most obvious for the exchange part, as Ex is linear
in e2,

EGGA
x [n] =

∫
d3r eHEG

x (n) fx(ξ ) . (4.281)

The dimensionless function fx can only depend on the dimensionless gradient ξ ,
as any further density dependence requires the presence of e2—otherwise it is not
possible to generate a dimensionless quantity (as rs). Moreover, in analogy to the
first-principles GGAs the dependence on higher gradients of the density has been
neglected. Of course, fx(ξ ) has to satisfy a number of criteria. Some of them are
of fundamental nature, others are motivated by practical considerations. Given the
universality of Ex and the rigorous information available for the HEG, fx has to
approach the LDA for vanishing ξ ,

(a) fx(ξ = 0) = 1 . (4.282)

In addition, the structure of the second order gradient term has to be reproduced,

(b) fx(ξ � 1) = 1+aξ + . . . . (4.283)

While the weakly inhomogeneous electron gas requires a = Cx, this parameter is
often treated as adjustable, only the functional form of the second order gradient
correction is kept. In addition to these more fundamental requirements one wants
to obtain a non-diverging exchange potential for exponentially decaying densities,
which restricts the behavior of fx for large ξ ,

(c) fx(ξ → ∞) ≤ c
√

ξ . (4.284)

The simplest realization of a kernel which obeys the conditions (a)–(c) is a [1,1]-
Padé function

f B86
x (ξ ) = 1+

aξ
1+bξ

, (4.285)

as suggested by Becke in his seminal contribution [218]. The gradient coefficient
a of the B86-GGA was not restricted to the exact coefficient Cx. Rather both pa-
rameters a and b were fitted to a set of atomic exchange energies, with the result
a = 0.2351 ≈ 1.9Cx and b = 0.24308.

An extension of this concept leads to the most frequently used semi-empirical
GGA (B88) [219]. With the alternative ansatz
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f B88
x (ξ ) = 1+

aξ
1+b

√
ξ Arsh[2(6π2)1/3

√
ξ ]

(4.286)

one can not only reproduce atomic Ex even more accurately than with (4.285) (with
a = 0.2743 ≈ 2.2Cx), the choice b = 9a/(4π) also allows the incorporation of the
correct asymptotic behavior of the exchange energy density, Eq. (4.24). In fact, in-
sertion of the asymptotic forms of n and ξ , Eq. (4.205), into (4.286) leads to

eHEG
x (n) f B88

x (ξ ) −−−→
|rrr|→∞

−e2n(rrr)
2|rrr| . (4.287)

However, as emphasized earlier, the energy density is not uniquely defined, so that
the physical relevance of (4.287) remains open at this point. In contrast to exc the
xc-potential is an unambiguous quantity. Asymptotically the exact vx behaves like
1/r, Eq. (4.20). On the other hand, one finds for the B88-GGA (see e.g. [220]),

vB88
x (rrr) −−−→

|rrr|→∞
− C
|rrr|2 . (4.288)

As the asymptotic relations (4.20) and (4.24) both originate from the nonlocal char-
acter of the self-interaction contribution to the exact Ex, the mismatch between
(4.287) and (4.288) indicates that (4.287) does not have the desired physical back-
ground.

The discussion of semi-empirical GGAs is closed by a remark on the functional
suggested by Lee, Yang and Parr (LYP) [221], which often serves as the counterpart
to the B88-GGA (4.286) (the combined functional is termed BLYP). The LYP-GGA
is based on the orbital-dependent correlation functional of Colle and Salvetti [222]
(see Sect. 6.5.2), whose crucial ingredient is the Laplacian of the noninteracting 2-

particle density (3.46). The Laplacian of n(2)
s can be rewritten as the sum of simple

gradients of the density and the KS kinetic energy density (relying on the fact that
normalizable KS states can always be chosen to be real). LYP then approximate the

KS kinetic energy density by its second order GE, so that the Laplacian of n(2)
s is

expressed as a density functional. The final functional reads (in atomic units)

ELYP
c [n↑,n↓] = −a

∫
d3r γ

n
α
− 3ab

5

∫
d3r γβ ∑

σ
(6π2nσ )2/3 n2

σ (4.289)

−ab
4

∫
d3r γβ

{
1
9 ∑

σ

[
(∇∇∇nσ )2 +3nσ ∇∇∇2nσ

]
− (∇∇∇n)2 +n∇∇∇2n

}
,

with the abbreviations

α(rrr) = 1+dn(rrr)−1/3

β (rrr) =
n(rrr)−5/3 exp[−cn(rrr)−1/3]

α(rrr)



4.5 Generalized Gradient Approximation (GGA) 185

γ(rrr) = 4
n↑(rrr)n↓(rrr)

n(rrr)2 .

The parameters used by LYP are the original values of Colle and Salvetti [222] (see
Sect. 6.5.2), whose a = 0.04918me4/h̄2, b = 0.132, c = 0.2533/a0, d = 0.349/a0,
which are optimized to reproduce the correlation energy of the helium atom.

4.5.5 Merits and Limitations of GGAs

Some illustrative GGA results for atoms are included in Tables 4.4 and 4.5. For the
comparison with the LDA and GE2 the most frequently used GGAs have been cho-
sen. An impressive improvement is observed both for exchange and for correlation.
Compared to the LDA, the net error is reduced by more than an order of magni-
tude in both cases. Moreover, while the differences originating from the different
kernels of the GGAs are not completely negligible, they are much smaller than the
differences between any of the GGAs and the LDA.

The accuracy of the xc-energies is directly transfered to the total ground state en-
ergies obtained by selfconsistent calculations with these functionals. This is demon-
strated in Table 4.6 for the case of closed-subshell atoms. Exact total energies for

Table 4.6 Exchange-only ground state energies of closed-subshell atoms: Selfconsistent LDA,
PW91-GGA, PBE-GGA and B88-GGA energies versus exact results [223] (all energies in
mHartree).

Atom Etot Etot −Eexact
tot

Exact LDA PW91 PBE B88
He −2861.7 138.0 6.5 9.6 −1.7
Be −14572.4 349.1 18.2 27.4 6.1
Ne −128545.4 1054.7 −23.5 25.3 −44.7
Mg −199611.6 1362.8 −0.5 64.7 −20.4
Ar −526812.2 2294.8 41.2 169.5 12.4
Ca −676751.9 2591.8 25.7 175.9 −1.0
Zn −1777834.4 3924.5 −252.6 51.5 −285.2
Kr −2752042.9 5176.8 −18.4 389.3 −57.7
Sr −3131533.4 5535.4 −8.8 432.2 −45.7
Pd −4937906.0 6896.0 −65.2 524.8 −109.6
Cd −5465114.4 7292.6 −31.9 595.6 −76.3
Xe −7232121.1 8463.8 54.9 803.1 4.5

these systems are available in the x-only limit, while highly accurate numbers for
the complete energy are only known for a few, very light atoms. In order to allow an
unambiguous comparison Table 4.6 is therefore restricted to the x-only limit. The
improvement provided by GGAs is obvious.
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In fact, quite convincing numbers are found for a wide range of systems and
properties (see e.g. [211, 224, 225]). Some illustrative results for diatomic molecules
are given in Table 4.7. This table lists all first and second row diatomic molecules

Table 4.7 Bond lengths Re, dissociation energies De (including the zero-point energies [226])
and harmonic frequencies ωe of first and second row diatomic molecules: Selfconsistent LDA
[134], PBE-GGA [207] and BLYP-GGA [219, 221] results versus experimental data (taken from
[227–229]—see also http://cccbdb.nist.gov/). For the atomic ground state non-spherical densities
have been allowed.
A) Hydrogen and first row homonuclear diatomics.

Molecule Method Re De ωe

[Bohr] [eV] [cm−1]
H2 Exact 1.401 4.747 4401
1Σ LDA 1.446 4.913 4203

PBE 1.418 4.538 4318
BLYP 1.410 4.749 4347

Li2 Expt. 5.051 1.058 351
1Σ LDA 5.118 1.027 332

PBE 5.153 0.868 325
BLYP 5.119 0.895 327

B2 Expt. 3.005 3.071 1051
3Σ LDA 3.033 3.855 1032

PBE 3.057 3.340 1007
BLYP 3.057 2.911 987

C2 Expt. 2.348 6.333 1855
1Σ LDA 2.353 7.249 1878

PBE 2.369 6.258 1824
BLYP 2.371 5.866 1799

N2 Expt. 2.074 9.905 2359
1Σ LDA 2.068 11.601 2393

PBE 2.082 10.583 2344
BLYP 2.082 10.440 2327

O2 Expt. 2.282 5.213 1580
3Σ LDA 2.274 7.590 1621

PBE 2.301 6.248 1552
BLYP 2.321 5.902 1488

F2 Expt. 2.668 1.658 917
1Σ LDA 2.614 3.395 1043

PBE 2.672 2.295 948
BLYP 2.710 2.127 894

Mean abs. LDA 0.030 1.101 66
deviation PBE 0.032 0.442 37

BLYP 0.034 0.355 49

contained in the G2 test set [225]. The G2 set is a collection of experimentally well-
studied molecules, for which the spectroscopic constants can serve as reference data
for benchmarking theoretical approaches. There exists a number of further test sets,
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Table 4.7 continued: B) Hydrogen and first row heteronuclear diatomics.

Molecule Method Re De ωe

[Bohr] [eV] [cm−1]
LiH Expt. 3.015 2.501 1406
1Σ LDA 3.031 2.640 1377

PBE 3.031 2.322 1375
BLYP 3.018 2.525 1387

FH Expt. 1.732 6.126 4138
1Σ LDA 1.761 7.039 4045

PBE 1.758 6.167 4012
BLYP 1.762 6.129 3972

CO Expt. 2.132 11.243 2170
1Σ LDA 2.128 12.968 2179

PBE 2.145 11.674 2127
BLYP 2.145 11.372 2113

NO Expt. 2.175 6.625 1904
2Π LDA 2.165 8.633 1944

PBE 2.185 7.413 1883
BLYP 2.193 7.150 1840

OH Expt. 1.832 4.642 3738
2Π LDA 1.861 5.350 3628

PBE 1.857 4.552 3605
BLYP 1.860 4.563 3568

NH Expt. 1.958 3.605 3282
3Σ LDA 1.992 4.141 3150

PBE 1.983 3.844 3177
BLYP 1.984 3.889 3140

CH Expt. 2.116 3.629 2858
2Π LDA 2.154 3.984 2720

PBE 2.147 3.544 2735
BLYP 2.138 3.558 2732

CN Expt. 2.214 7.849 2069
2Σ LDA 2.202 9.519 2135

PBE 2.217 8.576 2087
BLYP 2.218 8.308 2067

LiF Expt. 2.955 6.022 910
1Σ LDA 2.930 6.785 942

PBE 2.975 6.034 918
BLYP 2.979 6.097 918

BeH Expt. 2.537 2.373 2061
2Σ LDA 2.568 2.620 1981

PBE 2.557 2.409 1994
BLYP 2.541 2.474 2022

Mean abs. LDA 0.023 0.906 73
deviation PBE 0.019 0.263 68

BLYP 0.017 0.175 79
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Table 4.7 continued: C) Second row homonuclear diatomics.

Molecule Method Re De ωe

[Bohr] [eV] [cm−1]
Na2 Expt. 5.818 0.745 159
1Σ LDA 5.668 0.879 161

PBE 5.834 0.770 151
BLYP 5.788 0.768 150

Al2 Expt. 4.660 1.628 350
3Σ LDA 4.648 1.978 349

PBE 4.702 1.674 340
BLYP 4.761 1.309 312

Si2 Expt. 4.244 3.258 511
3Σ LDA 4.283 4.040 492

PBE 4.315 3.531 482
BLYP 4.341 3.316 464

P2 Expt. 3.578 5.080 781
1Σ LDA 3.570 6.224 796

PBE 3.594 5.283 767
BLYP 3.609 5.290 762

S2 Expt. 3.570 4.414 726
3Σ LDA 3.577 5.876 719

PBE 3.606 5.013 703
BLYP 3.639 4.684 668

Cl2 Expt. 3.757 2.514 560
1Σ LDA 3.738 3.626 567

PBE 3.783 2.863 539
BLYP 3.849 2.540 500

Mean abs. LDA 0.039 0.831 8
deviation PBE 0.035 0.249 18

BLYP 0.070 0.151 38

which either cover larger collections of molecules or specialize in particular types
of bonds. However, for the present purpose of illustrating the overall accuracy of
xc-functionals the G2 set appears to be best suited.

Before discussing its content, a few remarks on the technical details behind Ta-
ble 4.7 seem to be appropriate. The theoretical data in Table 4.7 have been obtained
by solution of Eq. (3.98) with a basis set expansion for the KS orbitals. Large two-
center basis sets [230] have been employed in order to make sure that the basis set
limit is reached. For each diatomic molecule the ground state energy has been cal-
culated for a number of internuclear distances. The resulting discrete values for the
energy surface have finally been fitted to a Morse-type potential, from which the
spectroscopic constants can be directly extracted. It is this last step which limits the
accuracy of the data in Table 4.7 most severely. Their uncertainty is roughly given by
0.002 Bohr in the case of Re, 0.002 eV for De and 10–20 cm−1 for ωe, respectively.

Turning to the actual results in Table 4.7, one immediately notices that the molec-
ular binding energies are substantially improved by use of the GGA, at least for the
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Table 4.7 continued: D) Second row and mixed hydrogen/first row—second row heteronuclear
diatomics.

Molecule Method Re De ωe

[Bohr] [eV] [cm−1]
HCl Expt. 2.409 4.618 2991
1Σ LDA 2.440 5.228 2888

PBE 2.434 4.621 2890
BLYP 2.438 4.538 2846

ClF Expt. 3.077 2.610 786
1Σ LDA 3.063 4.144 807

PBE 3.115 3.149 754
BLYP 3.156 2.934 715

ClO Expt. 2.966 2.801 854
2Π LDA 2.927 4.564 927

PBE 2.974 3.470 873
BLYP 3.012 3.181 821

SiO Expt. 2.853 8.306 1242
1Σ LDA 2.856 9.731 1240

PBE 2.882 8.542 1204
BLYP 2.888 8.498 1195

SO Expt. 2.799 5.426 1149
3Σ LDA 2.807 7.284 1148

PBE 2.835 6.148 1109
BLYP 2.852 5.882 1072

CS Expt. 2.901 7.468 1285
1Σ LDA 2.894 8.763 1288

PBE 2.919 7.800 1259
BLYP 2.923 7.483 1240

PN Expt. 2.817 6.446 1337
1Σ LDA 2.805 7.784 1372

PBE 2.828 6.800 1335
BLYP 2.831 6.840 1321

NaCl Expt. 4.461 4.245 366
1Σ LDA 4.413 4.516 378

PBE 4.491 4.104 354
BLYP 4.512 3.984 352

Mean abs. LDA 0.020 1.262 31
deviation PBE 0.024 0.375 34

BLYP 0.041 0.263 56

vast majority of molecules. In fact, the binding energy is always reduced by in-
clusion of the gradient corrections. While this reduction sometimes overshoots the
desired correction, it definitively represents progress. This statement is true for both
GGAs included in Table 4.7, the first-principles PBE form, Eqs. (4.256), (4.280),
and the semi-empirical BLYP-GGA, Eqs. (4.286), (4.289). Moreover, the improve-
ment of De is roughly the same for all subsets of molecules grouped together in
Table 4.7, which reflects the universal character of the GGAs (for completeness the
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corresponding average absolute deviations for the complete set of molecules are
listed in Table 4.8).

Table 4.8 Bond lengths Re, dissociation energies De (including zero-point energies [226]) and
harmonic frequencies ωe of first and second row diatomic molecules: Mean absolute deviation of
selfconsistent LDA [134], PBE-GGA [207] and BLYP-GGA [219, 221] results from experimental
data (taken from [227–229]—see also http://cccbdb.nist.gov/) for the set of molecules listed in
Table 4.7. The corresponding mean absolute errors obtained by a posteriori application of the
PKZB [231] and TPSS [232] MGGAs on the basis of selfconsistent PBE-GGA solutions are also
given (see Sect. 4.8).

Method Re De ωe

[Bohr] [eV] [cm−1]
LDA 0.027 1.027 48
PBE 0.026 0.329 43

BLYP 0.037 0.234 59
PKZB 0.051 0.172 52
TPSS 0.025 0.168 31

On the other hand, the GGA bond lengths are not really superior to the cor-
responding numbers obtained with the LDA (at least for this, somewhat arbitrar-
ily chosen, set of molecules). The same is true for the form of the potential well,
for which the vibrational frequencies provide some measure. Looking at the indi-
vidual numbers, one finds that the gradient corrections stretch the bonds almost
consistently. While this improves the agreement with experiment for a number of
molecules, the GGA also increases the bond lengths in many cases in which the
LDA already overestimates the experimental values. The only exception from this
general tendency are the hydrogen bonds, which are significantly shortened by the
inclusion of gradient terms. As this bond length reduction is accompanied by a re-
duction of the dissociation energy, GGAs account for hydrogen bonds much better
than the LDA (for additional examples see [233–236]).

An analogous comparison for a number of metals is given in Table 4.9. Again the
GGA results compare quite favorably with the LDA values. As a general trend the
GGA leads to larger lattice constants, which goes hand in hand with a reduction of
the bulk moduli. GGAs most notably predict the correct ferromagnetic bcc ground
state of metallic iron [200], in contrast to the LDA for which the paramagnetic fcc
phase has a lower energy.

The brief overview of GGA results given so far makes it quite clear why GGAs
represent the de facto standard approximation in present-day applications of DFT.
One should, however, keep a realistic perspective of the predictive power of GGAs.
The point to be noted in this context is the fact that physical and chemical processes
are controlled by energy differences, rather than absolute energies (as those given in
Tables 4.4–4.6). The best-known examples are atomic ionization potentials (IP) and
electron affinities (EA), molecular atomization energies and the cohesive energies
of solids. In these energy differences the major contribution to the total energies
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Table 4.9 Lattice constants a and bulk moduli B of metals: Selfconsistent LDA and PW91-GGA
results versus experimental data. All calculations rely on the full potential linearized-augmented-
plane-wave scheme (a: [237], b: [238], c: [239]).

Solid a [Bohr] B [GPa]

LDA GGA Expt. LDA GGA Expt.
Lia (bcc) 6.36 6.49 6.57 15 12 13
Ala (fcc) 7.54 7.65 7.65 84 74 72
Vc (bcc) 5.56 5.69 5.71 187 183 159
Fea (bcc) 5.36 5.41 215 172
Cub (fcc) 6.65 6.84 6.81 192 151 138
Nba (bcc) 6.17 6.27 6.24 199 177 170
Pdc (fcc) 7.30 7.49 7.35 222 175 195

due to the core electrons usually cancels out (as the core electrons do not really
participate in the process of interest). The percentage error in energy differences is
therefore primarily determined by the description of the valence states, for which
xc-effects play a much more prominent role than for the core electrons. One finds
that the improvement of GGAs over the LDA is often less impressive for energy
differences. As a first illustration of this statement one can compare the accuracy
of the total energies in Table 4.6 with that of the dissociation energies in Table 4.7.
The most prominent example, however, are atomic IPs, for which some numbers are
listed in Table 4.10. This table (relying again on the x-only limit) demonstrates that
GGAs can yield worse results for IPs than the LDA.

Table 4.10 also lists the eigenvalues of the highest occupied KS states obtained
with the three functionals. These eigenvalues are generally referred to as HOMO
(highest occupied molecular orbital) eigenvalues, in spite of the fact that they are
of atomic nature. We will follow this terminology. According to Sect. 3.6.1, the
exact KS HOMO eigenvalues are identical with the corresponding IPs. Table 4.10
demonstrates that the LDA, but also the GGA underestimate the exact results by
roughly a factor of 2, with a marginal improvement by the GGA. As the HOMO
eigenvalue is particularly sensitive to the form of the KS potential for large r, this
drastic underestimation indicates a rather poor behavior of the LDA and GGA xc-
potential in the asymptotic region. We will come back to this point below.

Closely related to the quality of HOMO eigenvalues is that of the band gap of
semiconductors. As discussed in Sect. 3.6.3, the band gap reduces to the difference
between the highest occupied and the lowest unoccupied KS eigenvalue, if the xc-
functional applied does not show a derivative discontinuity. Neither the LDA nor
the GGA do that, so that the value for the gap directly reflects the KS eigenvalues.
Numbers for some prototype semiconductors are given in Table 4.11. Similar to the
situation for the HOMO eigenvalue of finite systems, the LDA and GGA band gaps
underestimate the experimental values drastically. This fact has obvious implica-
tions for all observables related to virtual or real excitation processes, such as the
optical conductivity.
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Table 4.10 Exchange-only ionization potentials of atoms: Selfconsistent LDA, PW91-GGA and
B88-GGA data versus exact results (all energies in mHartree). All atoms have been treated nonrel-
ativistically.

Atom IP IP−IPexact −εHOMO

Exact LDA PW91 B88 LDA PW91 B88
He 862 −51 4 7 517 555 554
Be 295 −15 5 1 170 182 181
Mg 242 −4 12 6 142 150 149
Ca 188 1 12 7 111 117 116
Sr 171 3 13 8 103 107 106
Ba 152 4 12 8 91 95 94

Cu 231 47 54 52 159 164 163
Ag 215 36 41 38 142 145 143
Au 216 38 43 39 145 148 146

Li 196 −11 3 1 100 110 109
Na 181 −2 10 6 97 103 102
K 147 2 10 7 80 85 84
Rb 137 4 11 8 76 80 79
Cs 123 4 11 8 69 72 72

Zn 276 34 44 39 185 191 190
Cd 252 30 37 32 168 172 170
Hg 248 33 39 34 169 172 170

Yb 174 8 18 12 107 112 111

Table 4.11 Band gap of semiconductors: LDA and PBE-GGA results obtained with self-consistent
LAPW [240] and plane-wave pseudopotential [103, 241] calculations versus experimental data
(taken from [242]) (all energies in eV).

Exc Method C Si GaAs
LDA PW-PP 4.16 0.49 0.32
LDA LAPW 4.11 0.47 0.30
PBE LAPW 4.15 0.57 0.53

Expt. 5.45 1.17 1.52

As in the case of the LDA, the quality of GGA results is to some extent based on
error cancellation between exchange and correlation. This statement is illustrated in
Table 4.12, in which a subset of the molecules in Table 4.7 is considered in the x-
only limit. In this limit the spectroscopic constants can be evaluated exactly via the
OPM (Chap. 6). It turns out that the x-only bond lengths and vibrational frequencies
obtained with the GGA are consistently further away from the exact numbers than
their LDA counterparts, with the (only) exception of hydrogen bonds. Even the error
in the binding energies reduces by only 30–50%, when going from the LDA to
the GGA. The mean absolute deviations for the set of molecules chosen amount
to 2.76 eV in the case of the LDA and to 1.87 eV for the GGA, which has to be
compared to 1.03 eV (LDA) and 0.33 eV (GGA) for the average deviations including
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Table 4.12 Exchange-only spectroscopic constants of diatomic first row molecules: Selfconsistent
LDA, PW91-GGA and TPSS-MGGA results versus exact x-only data [243].

Molecule Method Re De ωe

[Bohr] [eV] [cm−1]
H2 Exact 1.386 3.637 4585

LDA 1.476 3.552 4059
PW91 1.424 3.686 4254
TPSS 1.409 3.758 4359

Li2 Exact 5.264 0.169 337
LDA 5.300 0.292 305
PW91 5.267 0.343 310
TPSS 5.298 0.262 310

B2 Exact 3.069 0.608 971
LDA 3.085 3.450 987
PW91 3.103 2.516 945
TPSS 3.107 2.157 939

C2 Exact 2.332 0.282 1932
LDA 2.384 5.743 1839
PW91 2.398 4.328 1746
TPSS 2.399 3.779 1733

N2 Exact 2.012 4.970 2737
LDA 2.089 9.191 2338
PW91 2.099 7.995 2262
TPSS 2.096 7.511 2278

O2 Exact 2.184 1.440 1980
LDA 2.304 6.384 1554
PW91 2.352 4.584 1422
TPSS 2.355 3.910 1416

F2 Exact 2.497 −1.607 1283
LDA 2.653 2.752 1015
PW91 2.755 1.430 905
TPSS 2.763 1.138 875

LiH Exact 3.037 1.483 1427
LDA 3.114 1.477 1290
PW91 3.086 1.639 1312
TPSS 3.057 1.610 1356

FH Exact 1.693 4.202 4499
LDA 1.782 5.902 3846
PW91 1.777 5.118 3857
TPSS 1.777 4.817 3873

CO Exact 2.080 7.521 2445
LDA 2.149 11.348 2088
PW91 2.163 9.740 2055
TPSS 2.162 9.180 2063

Mean abs. LDA 0.078 2.757 291
deviation PW91 0.087 1.867 313

TPSS 0.087 1.542 299
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correlation (see Table 4.8). Error cancellation between exchange and correlation
improves the net accuracy by a factor of 3–4. A similar behavior is observed for the
mean deviations of bond lengths and vibrational frequencies.

In order to understand these observations one has to analyze the accuracy of
xc-functionals on a local level, for which the corresponding potential provides an
unambiguous measure. The exact exchange potential is known for a number of sys-
tems ranging from atoms to solids (see Chap. 6). Even the exact correlation potential
is available for a few atoms [83]. Unfortunately, the comparison of LDA and GGA
potentials with these reference results turns out to be disappointing. While GGAs
come closer to the exact potential than the LDA in the case of exchange, no improve-
ment at all is observed for vc [83]. The local error of the GGA exchange potential,6

vGGA
x (rrr) = vLDA

x (n)
{

fx(ξ )− 3
2

d fx

dξ
(ξ )η − 3

2
d2 fx

dξ 2 (ξ )
∇∇∇n ·∇∇∇ξ

4(3π2n)2/3n

}
, (4.290)

is much larger than deviation of the GGA exchange energy from the corresponding
exact Ex [223, 244]. Examples for these statements are given in Figs. 4.14–4.17.
Figure 4.14 shows the exchange potential of the calcium atom, for which the closed-

–16

–14

–12

–10

–8

–6

–4

–2

 0

 0.01  0.1  1  10

v x
 [

H
ar

tr
ee

]

r [Bohr]

Ca

exact
LDA
GGA

Fig. 4.14 Exchange potential for atomic calcium. The LDA and GGA potentials have been gener-
ated by insertion of the exact exchange-only density corresponding to the exact vx. For the GGA
the PW91-form has been used.

subshell structure leads to a spherically symmetric density and potential. The exact
exchange potential has been generated by the OPM, as explained in Chap. 6. The

6 The result (4.290) is obtained by direct functional differentiation of the general form (4.281)).
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resulting density, i.e. the exact x-only density, has then been inserted into the LDA
and the PW91-GGA in order to evaluate the corresponding potentials.

One first of all observes a clear oscillatory structure in the exact vx, which reflects
the individual atomic shells. For small r the exact potential approaches a finite value,
for large r one rediscovers the −1/r-decay, Eq. (4.20). The LDA potential, on the
other hand, averages over the shell oscillations and vanishes exponentially for large
r. This behavior is more clearly seen in Fig. 4.15, which shows the outermost shell
and the asymptotic region on an enlarged scale. The GGA clearly improves the
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Fig. 4.15 Valence and asymptotic region of Fig. 4.14 on enlarged scale.

situation in comparison with the LDA. While the GGA does not reproduce the exact
shell structure very accurately, there is at least some resemblance of this feature.
The GGA potential goes like 1/r for r → 0, in accordance with the behavior of
the second order gradient term, Eq. (4.206). Finally, for large r the GGA potential
decays as fast as its LDA counterpart. In fact, one can show quite generally that
GGAs cannot simultaneously reproduce the asymptotic behavior of the exact ex

and the exact vx for finite systems [220]. This result simply reflects their semi-local
functional form. As a consequence, GGAs cannot describe atomic negative ions.

There is one further, related consequence of the semi-locality of the LDA and
GGA worth to be noted. As soon as one considers open-shell systems the differ-
ence between the highest occupied eigenvalues of the majority spin (spin-up) and
the minority spin (spin-down) channels comes into play. This difference determines
the relative stability of the various spin states and therefore the magnetization. As
the highest occupied eigenvalues strongly depend on vx, the balance between the
spin-up and the spin-down exchange potential has a major impact on the local mag-
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netic moments. In Fig. 4.16 the difference between the spin-up and the spin-down
exchange potentials of Cr is shown. The deviations of the LDA and the GGA from
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Fig. 4.16 Exchange potential of Cr: Spin balance obtained with LDA and GGA versus exact result.
The LDA and GGA potentials have been generated by insertion of the exact exchange-only density
corresponding to the exact vx. For the GGA the PBE-form has been used.

the exact result are obvious [223]. For large r the exact vx,σ is dominated by the
−1/r-tail in case of both spins. In the valence regime the exact difference vx,↑−vx,↓
is thus less affected by the actual positions of the spin-aligned 4s- and 3d-electrons

than vLDA/GGA
x,↑ −vLDA/GGA

x,↓ , which directly reflect the structures of the valence spin-
densities: the exact vx,↑−vx,↓ is close to zero and repulsive, while its LDA and GGA
counterparts necessarily have to be attractive. The difference between the spin-up
and spin-down densities essentially vanishes in the L- and K-shell regime, so that
vx,↑ − vx,↓ approaches zero in the LDA and GGA. The exact result, on the other
hand, shows an almost constant shift between vx,↑ and vx,↓. The nonlocality of the
exact Ex propagates the differences between the spin-up and spin-down densities in
the valence regime into the inner shell region.

An idea of the behavior of the GGA exchange potential in the bonding region of
molecules is given in Fig. 4.17, in which results for the hydrogen dimer are plotted.
The individual potentials have been generated in the same way as for the atomic
case. It is obvious that the GGA-potential is not particularly close to the exact vx

in the bonding region. As H2 is a spin-saturated two-electron system, the exact
vx only provides the required self-interaction correction (as in the case of helium,
Eq. (4.22)). This Coulomb integral of the molecular density has a broad minimum
in the center between the two protons. The LDA exchange potential (4.111), on



4.5 Generalized Gradient Approximation (GGA) 197

H2

–2
–1

0
–3 –2 –1 0 1 2 3

–1

–0.8

–0.6

–0.4

–0.2

0

v x
 [

H
ar

tr
ee

]
v x

 [
H

ar
tr

ee
]

v x
 [

H
ar

tr
ee

]
exact

–2
–1

0
–3 –2 –1 0 1 2 3

–1

–0.8

–0.6

–0.4

–0.2

0

LDA

–2
–1

0
–3 –2 –1 0 1 2 3

–1

–0.8

–0.6

–0.4

–0.2

0

GGA

x [Bohr]

z [Bohr]

Fig. 4.17 Exchange potential of H2. LDA and PBE-GGA versus exact vx. The LDA and GGA
potentials have been generated by insertion of the exact exchange-only density. The two protons
are located at z = ±0.7Bohr, x = y = 0.
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the other hand, is proportional to n1/3, which leads to peaks at the positions of the
nuclei. The GGA potential even diverges at these points. However, the GGA gener-
ates a somewhat more attractive potential in the bonding region and, in that sense,
improves results compared to the LDA.

Figure 4.18 provides a corresponding comparison for N2. In addition to the fea-
tures already observed for H2, one can now see the shell structure in the molecular
vx.7 The GGA potential also shows an indication of the shell structure, while this
feature is completely absent in the LDA.

Finally, Fig. 4.19 illustrates the statement on the GGA correlation potential
for the example of the neon atom (for the technical details behind Fig. 4.19 see
Sect. 6.6.3). It is obvious that neither the LDA nor the GGA agree with the exact
vc [83]. The LDA is again strictly negative and smooth, in contrast to the exact
potential, which can be positive and shows some shell-related structure. The GGA
also generates some structures, which, however, have nothing in common with the
exact data. The large local errors in vx and vc explain why GGAs improve energy
differences often much less than total energies, as these differences usually imply
the removal of a localized part of the electronic density.

How can one understand the discrepancy between the rather accurate GGA ener-
gies and the partial failure of the GGA potentials? The answer is seen most clearly
on the basis of the virial relation (5.31), which Ex satisfies. For finite systems partial
integration allows the reformulation

Ex =
∫

d3r [3n(rrr)+ rrr ·∇∇∇n(rrr)]vx(rrr) . (4.291)

The virial relation originates from a scaling analysis of Ex[n], i.e. from dimensional
arguments. It is thus not only satisfied by the exact Ex[n], but also by approximations
like GGAs. The deviation of GGA exchange energies from the exact Ex can, using
(4.291), be expressed in terms of the corresponding potentials,

Ex −EGGA
x =

∫
d3r [3n(rrr)+ rrr ·∇∇∇n(rrr)][vx(rrr)− vGGA

x (rrr)] ≈ 0 .

While the local error vx(rrr)−vGGA
x (rrr) is quite substantial, the integrated error is very

small [244]. An illustration of this fact is given in Fig. 4.20, in which the zinc atom
is shown. The local error in vx oscillates according to the atomic shell structure. In
the virial relation (4.291) positive and negative deviations then integrate up to zero.
As the GGA potential is only slightly closer to the exact vx than the LDA potential,
one concludes that the extreme accuracy of GGAs for atomic Ex results from the
cancellation of local errors and does not fully reflect the inherent quality of this type
of functional.

7 In the case of the exact exchange the KLI approximation (6.63) is used for the evaluation of vx.
The result is, however, very close to the exact vx (see Chap. 6).
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Fig. 4.18 Exchange potential of N2. LDA and PBE-GGA versus exact vx. The LDA and GGA
potentials have been generated by insertion of the density corresponding to the exact vx. The two
nitrogen nuclei are located at z = ±1.05Bohr, x = y = 0.
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Fig. 4.19 Correlation potential for atomic neon. The LDA and GGA potentials have been gener-
ated by insertion of the exact density. For the GGA the PW91-form has been used (the exact vc is
taken from [83]).
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4.6 Weighted Density Approximation (WDA)

There exists yet another class of nonlocal xc-functionals which is based on the adia-
batic connection (4.80), the weighted density approximation (WDA) [245, 246, 155]
and its precursor, the average density approximation (ADA) [247]. Starting from
(4.80), the WDA is based on an approximate expression for the coupling constant
integrated pair-correlation function

g̃(rrr,rrr′) =
∫ 1

0
dλ gλ (rrr,rrr′) . (4.292)

The function g̃ is then subject to the sum rule (4.231), which can be rewritten as∫
d3r′ n(rrr′) [g̃(rrr,rrr′)−1] = −1 . (4.293)

This procedure represents a systematic extension of the LDA if g is approximated
by the pair-correlation function of the HEG.

This concept is most easily demonstrated in the case of the exchange. The pair-
correlation function of the noninteracting HEG is obtained from Eq. (4.232), with
the φi given by plane-wave states. It already featured as the lowest order contribution
to the GE of the exchange hole in Eqs. (4.238), (4.239). The function J(2kF|rrr− rrr′|)
can be written in a more suitable form, which leads to

gHEG
x (rrr− rrr′,n0)−1 = −9

2

[
sin(kF|rrr− rrr′|)
(kF|rrr− rrr′|)2

]2

. (4.294)

The coupling constant integration in (4.292) is trivial in the case of exchange,
g̃x = gx. The remaining task is to find a suitable local density replacement for the
gas density n0, which is reminiscent of the analogous problem for the full linear re-
sponse functional (4.157). Within the WDA this task is performed via the sum rule
(4.293). Choosing the local replacement to be a function of rrr only,

n0 −→ n(rrr) ,

one can determine n by the requirement∫
d3r′ n(rrr′)

[
gHEG

x (rrr− rrr′,n(rrr))−1
]

= −1 , (4.295)

which has to be satisfied for all rrr. The resulting local n(rrr) is then inserted into the
functional (4.80),

EWDA
x [n] =

1
2

∫
d3r

∫
d3r′ n(rrr)w(rrr,rrr′)n(rrr′)

[
gHEG

x (rrr− rrr′,n(rrr))−1
]

. (4.296)
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An older variant of this approach is the ADA in which the sum rule (4.293) is
utilized in the form

n(rrr)
∫

d3r′
[
gHEG

x (rrr− rrr′,n(rrr))−1
]

= −1 . (4.297)

Of course, the screening density n(rrr) depends on the system under consideration.
The WDA and ADA thus require the solution of (4.293) in each step of a KS calcu-
lation.

The results obtained with the functional (4.296) for atoms are rather disap-
pointing. In addition, little is known about the correlation contribution to the pair-
correlation function. For this reason often empirical forms are used for g̃.

An additional problem with the WDA is its inherent violation of the symmetry
of g̃(rrr,rrr′) with respect to interchange of rrr and rrr′. As a result the corresponding
exchange potential does not satisfy the exact relation (4.20),

vWDA
x (rrr) −−−→

|rrr|→∞
− e2

2|rrr| . (4.298)

in spite of the fully nonlocal character of the WDA functional. Due to the facts that
the WDA is much more difficult to handle numerically than gradient-based func-
tionals and that its performance is not very satisfactory, the WDA has rarely been
used in applications so far (for some results see [248–253]). Extensions of the WDA
have, however, been successfully applied to the problem of freezing [254–256], in
particular in the theory of nonuniform classical liquids [257, 258].

4.7 Self-Interaction Corrections (SIC)

There is one important deficiency which is shared by all functionals based on
the HEG: none of these approximations can describe a 1-particle system such as
the hydrogen atom properly. In order to demonstrate this fact, let us look at the
spin-density dependent version of the LDA, ELDA

xc [n↑,n↓]. In contrast to the exact
exchange (4.16), the LSDA exchange does not reduce to a pure Coulomb self-
interaction integral, if only a single particle with spin up and density n↑ = |φ1,↑|2
is present,

ELDA
x [|φ1,↑|2,0] 
= Eexact

x [|φ1,↑|2,0] = −e2

2

∫
d3r d3r′

|φ1,↑(rrr)|2|φ1,↑(rrr′)|2
|rrr− rrr′| .

(4.299)
In addition, the LDA for correlation does not vanish in this limit,

ELDA
c [|φ1,↑|2,0] 
= Eexact

c [|φ1,↑|2,0] = 0 . (4.300)

In a many-particle system this self-interaction error is present for each of the parti-
cles in the system. The same observation is made for GGA-type functionals.
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Given the fact that the LDA and the GGA are exact in the opposite limit of an
infinite HEG, it is tempting to try to eliminate the self-interaction in an ad hoc
fashion [259, 260, 143, 261]. In the self-interaction corrected LDA (SIC-LDA)
[259, 143] the erroneous terms are subtracted a posteriori for the individual KS
states of both spins,

ESIC−LDA
xc = ELDA

xc [n↑,n↓]−∑
k,σ

Θk,σ

{
EH

[|φk,σ |2
]
+ELDA

xc

[|φk,σ |2,0
]}

= ELDA
xc [n↑,n↓]−∑

k,σ
Θk,σ ELDA

xc

[|φk,σ |2,0
]

−e2

2 ∑
k,σ

Θk,σ

∫
d3r d3r′

|φk,σ (rrr)|2|φk,σ (rrr′)|2
|rrr− rrr′| . (4.301)

By construction, ESIC−LDA
xc reproduces the exact xc-energy of a single particle. The

same scheme can be applied to any other density functional, in particular to GGAs.
A closer inspection of (4.301), however, reveals that the SIC-LDA is not a density

functional, but rather an orbital-dependent functional, just as the exact exchange. It
thus belongs to the class of implicit functionals, for which, as a matter of princi-
ple, the OPM (for details see Chap. 6) has to be utilized for the calculation of the
corresponding xc-potential [262]. On the other hand, the standard procedure for the
application of the SIC-LDA relies on the use of orbital-dependent KS potentials,
derived by minimization of (4.301) with respect to the φk,σ : a separate KS equa-
tion is solved for each individual KS state. This procedure leads to non-orthogonal
KS orbitals, so that an a posteriori orthogonalization is required [259]. In practice,
the orthogonality of the KS orbitals turns out to be only weakly violated by the
orbital-dependent SIC-LDA potential, so that the explicit orthogonalization is often
neglected. In any case, the problem of non-orthogonality is automatically avoided
by use of the OPM, which produces the multiplicative potential corresponding to a
given orbital-dependent expression.

On the other hand, the OPM does not resolve the unitarity problem which is
inherent in the SIC functional [263–265]: if one performs a unitary transformation
among the KS orbitals, the individual orbital densities will change, even if the trans-
formation only couples degenerate KS states. Consequently, the value of ESIC−LDA

xc
also changes. An additional prescription which defines a suitable representation of
the KS orbitals (which usually implies a localization) is necessary for practical cal-
culations [266]. While the results for atoms are not very sensitive to this problem
of unitarity, it becomes more important in extended systems (for some numbers see
Sect. 6.6.2). For this reason the SIC-LDA has rarely been applied to molecules [267–
269]. It has mainly been used to handle the localized d-and f -electrons in transition
metal elements (see, for instance, [270–272]).

One way to overcome the unitarity problem is an approximate elimination of the
orbital densities in favor of the spin-densities. The first suggestion of this type goes
back to Stoll, Pavlidou and Preuss [260], who modify the correlation component of
(4.301) as
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ESIC−SPP
c [n↑,n↓] = ELDA

c [n↑,n↓]−∑
σ

ELDA
c

[
nσ ,0] . (4.302)

It is obvious that (4.302) vanishes in the case of a single particle. However, the SIC-
functional (4.302) is no longer exact for a truly homogeneous system. This problem
is resolved by the most straightforward replacement of the orbital density [261],

|φi,σ (rrr)|2 −→ nσ (rrr)
Nσ

. (4.303)

By construction, this replacement is exact for a single particle. For correlation one
obtains in this way

ESIC−VW
c [n↑,n↓] = ELDA

c [n↑,n↓]−∑
σ

Nσ ELDA
c

[
nσ
Nσ

,0

]
. (4.304)

Since

lim
n0→0

eHEG
c (n0)

n0
= 0

(see Eq. (4.107)), the SIC-correction in (4.304) vanishes for the HEG. On the other
hand, application of (4.303) to the exchange part of (4.301) yields

ESIC−FA
x [n↑,n↓] =

1
2 ∑

σ

{
ELDA

x [2nσ ]−Nσ ELDA
x

[
2

nσ
Nσ

]
− 2

Nσ
EH[nσ ]

}
. (4.305)

The main ingredient of (4.305) is the Fermi-Amaldi term ∑σ EH[nσ ]/Nσ [273]. For
the remaining terms once more (4.19) has been utilized.

In practice, the forms (4.302), (4.304) and (4.305) have not been applied very
often, in spite of their simple form.

4.8 Meta-GGA (MGGA)

Given the limitations of standard GGA-type functionals discussed in Sect. 4.5.5, an
extension of the GGA’s rather restricted set of density variables (i.e. n and ∇∇∇n) by
other semi-local functionals of the density offers itself quite naturally.8 The most
obvious variable for such an extension is the Laplacian of the density, ∇∇∇2n, which
is the key quantity in the second order gradient correction for Ex, Eq. (4.201), as
well as in the corresponding expansion for Ec. The simplest extension of the GGA
(4.281) for exchange is thus obtained by inclusion of ∇∇∇2n in an extended kernel
Fx(ξ ,η). Functionals of this type have been suggested quite early [197, 199]. How-
ever, the potential corresponding to expressions as (4.201), Eq. (4.208), involves the
fourth gradient of the density, which diverges severely at the positions of nuclei and
is very difficult to evaluate numerically. In fact, already the evaluation of ∇∇∇2n is

8 For a completely different approach based on the properties of surfaces see [274].
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numerically much more demanding than that of the first gradient. For this reason,
GGAs depending directly on ∇∇∇2n have not been pursued intensively (for one such
functional see [275]).

In addition to ∇∇∇2n, the kinetic energy density9

ts(rrr) :=
h̄2

2m ∑
k

Θk |∇∇∇φk(rrr)|2 , (4.306)

has been used for the representation of Exc[n] [276–280, 231, 232]. In fact, ts can
serve as a substitute for ∇∇∇2n [231]. In order to verify this statement, one has to con-
sider the gradient expansion of ts. The lowest order terms of the gradient expansion
of the total kinetic energy Ts have already been given in Eqs. (4.117) and (4.177),

T GE
s [n] =

h̄2

m

∫
d3r

{
3(3π2)2/3

10
n5/3 +

1
72

(∇∇∇n)2

n
+ . . .

}
. (4.307)

However, the total Ts defines the local ts(rrr) only up to terms which integrate to zero.
One can easily demonstrate by use of Gauss’ theorem that one consistent second
order gradient term,

h̄2

m

∫
d3r ∇∇∇2n ,

vanishes for finite systems. As a result, the contribution of h̄2

m ∇∇∇2n to ts is no longer
visible in the total Ts.

A complete determination of the GE for ts(rrr) via the linear response approach
of Sect. 4.4 is impossible. Rather one has to resort to a direct evaluation of ts in
real space, for which the commutator expansion of Kirzhnits [175] (or related tech-
niques) are well suited. In this way one obtains as GE for the kinetic energy density
(4.306) to second order [193–195]

ts =
h̄2

m

{
3(3π2)2/3

10
n5/3 +

1
72

(∇∇∇n)2

n
+

1
6

∇∇∇2n

}
. (4.308)

Combination of Eqs. (4.179), (4.182) and (4.308) then yields [231]

η =
m

h̄2

3ts
2(3π2)2/3n5/3

− 9
20

− ξ
12

. (4.309)

One can therefore replace η by the right-hand side of this relation (with ts evaluated
by Eq. (4.306)), the result being correct to second order in the gradients. Abbreviat-
ing the right-hand side of (4.309) by η , one can then consistently rewrite the fourth
order GE for Ex, Eq. (4.202), as

9 While any energy functional defines the corresponding energy density only up to partial integra-
tion, it has become standard to define the kinetic energy density by Eq. (4.306).
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EGE
x [n] =

∫
d3r eHEG

x (n)
{

1+
10
81

ξ +
146

2025

[
η2 − 5

2
ηξ +bξ 2

]
+ . . .

}
. (4.310)

In the next step one constructs a GGA-type functional which reproduces the
fourth order terms in (4.310). Such an extended GGA, termed Meta-GGA (MGGA),
necessarily involves an extended kernel Fx(ξ ,η),

EMGGA
x [n] =

∫
d3r eHEG

x (n)Fx(ξ ,η) . (4.311)

A simple kernel in the spirit of the PBE-GGA, which reproduces the GE (4.310) in
the limit of slowly varying density, is [231]

FPKZB
x (ξ ,η) = 1+κ − κ

1+ x/κ
(4.312)

x =
10
81

ξ +
146
2025

η2 − 73
405

ηξ +

[
b+

1
κ

(
10
81

)2
]

ξ 2 . (4.313)

The parameter κ drops out of the two leading gradient terms, so that the limit (4.310)
is obtained for arbitrary values of κ . This parameter is then used to ensure that
the MGGA (4.311) obeys the Lieb-Oxford bound (4.254) locally, which leads to a
value of κ = 0.804. Lacking any rigorous information on the gradient coefficient
b, Perdew et al. [231] fit this coefficient to the dissociation energies of a set of
20 molecules (which gives b = 0.113). As usual in the case of the exchange, the
extension to spin-polarized systems is provided by Eq. (4.19).

Ideally, one would like to apply the same strategy for the extension of the correla-
tion part of the GGA. However, no information on the fourth order gradient correc-
tions for Ec[n↑,n↓] is available. In their MGGA Perdew et al. [231] therefore utilize
the kinetic energy density only for the elimination of the inherent self-interaction in
the GGA, while retaining the properties of the GGA for slowly varying densities. In
order to avoid the unitarity problem of the conventional SIC-LDA approach (4.301),
the MGGA starts from the SPP-SIC (4.302). This expression has the disadvantage
that it does not preserve the limit of a uniform gas, i.e. the SPP-SIC is not restricted
to the subtraction of the correlation energy of the individual particles. A quantity
which allows to distinguish between a single particle and the HEG is the kinetic
energy density. Splitting the total ts into the two spin-channels,

ts(rrr) = ∑
σ

ts,σ (rrr) , (4.314)

the kinetic energy density of a single particle in the state φσ can be easily expressed
in terms of its density [174], if one chooses φσ to be real,

ts,σ (rrr) −−−−→
nσ =φ2

σ
tW,σ (rrr) =

h̄2

8m
[∇∇∇nσ (rrr)]2

nσ (rrr)
. (4.315)
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While the so-called von Weizsäcker functional tW,σ coincides with the exact ts,σ
for a single particle, it vanishes for uniform density. The ratio tW,σ/ts,σ is therefore
well suited to suppress contributions in the limit of slowly varying density (compare
the discussion in Sect. 6.5.4). In fact, if (tW,σ/ts,σ )2 is used as switching factor,
this factor vanishes like a fourth order gradient term for vanishing ∇∇∇nσ , leaving the
second order gradient correction unaffected. The final MGGA for correlation is thus
given by

EPKZB
c [n↑,n↓] =

∫
d3r

{
eGGA

c (n↑,n↓,∇∇∇n↑,∇∇∇n↓)

[
1+C

(
∑σ tW,σ

∑σ ts,σ

)2
]

− (1+C)∑
σ

(
tW,σ
ts,σ

)2

eGGA
c (nσ ,0,∇∇∇nσ ,000)

}
. (4.316)

This expression vanishes for a single particle and reproduces the GGA without any
SIC for slowly varying densities. For eGGA

c the MGGA utilizes the combination of
the LDA and the PBE gradient correction (4.280). The coefficient C has been cho-
sen so that EPKZB

c gives essentially the same correlation contribution to the surface
energies of jellium (i.e. a semi-infinite electron gas experiencing the attractive po-
tential of a positive background density which is constant in one half of space and
vanishes in the other) as the PBE-GGA, which leads to C = 0.53.

The MGGA has later been revised [232], in response to the inaccurate equilib-
rium bond lengths which the PKZB form predicts [281]. In the case of the exchange
the revision is primarily based on the non-uniqueness of the representation (4.312),
(4.313). The construction of an optimized kernel Fx starts with an alternative repre-
sentation of η . One first defines a suitable ratio of kinetic energies densities,

α =
ts − tW
tHEG
s

=
ts

tHEG
s

− 5
3

ξ , (4.317)

where tW denotes the von Weizsäcker functional (4.315) for a spin-saturated many-
electron system,

tW = ∑
σ

tW,σ =
h̄2

m
(∇∇∇n)2

8n
. (4.318)

If expanded to second order in the gradients, α reduces to

α = 1+
20
9

η − 40
27

ξ , (4.319)

which is easily verified by insertion of Eq. (4.308) into (4.317). Using this limit, it
is straightforward to show that the quantity

η̃ =
9

20
α −1

[1+βα(α −1)]1/2
+

2
3

ξ (4.320)
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approaches η for slowly varying density, irrespective of the value of β : this com-
ponent of the denominator does not enter the second order GE, it merely introduces
some freedom to satisfy some constraint yet to be chosen (see below).

Now the form of Fx(ξ , η̃) needs to be specified. In order to remove some of the
ambiguity in this expression one has to incorporate additional conditions on Fx. To
this aim Tao et al. [232] consider a spin-saturated 2-electron system. For this system
the exact ts reduces to the von Weizsäcker expression (4.318), so that α vanishes.
This implies a fixed relation between η̃ and ξ ,

η̃ = − 9
20

+
2
3

ξ .

If this limit is inserted into Fx, a purely ξ -dependent kernel is obtained, i.e. an ex-
pression like the kernel fx of standard GGAs,

Fx

(
ξ , η̃ = − 9

20
+

2
3

ξ
)

−−−−−−→
2−electron

fx(ξ ) . (4.321)

In general, the corresponding potential (4.290) diverges at the positions of the
nucleus, due to its η-dependence (in complete analogy to the GE2 potential,
Eq. (4.206)). This divergence can be avoided by requiring

d fx(ξ )
dξ

∣∣∣∣
ξ=ξ0

= 0 , (4.322)

with ξ0 denoting the value of ξ at the origin of the 2-electron atom. In addition, Tao
et al. assumed the parameter b in (4.310) to be zero. A kernel which satisfies these
two additional conditions is

FTPSS
x (ξ , η̃) = 1+κ − κ

1+ x̃/κ
, (4.323)

with

x̃ =

{[
10
81

+ γ
z2

(1+ z2)2

]
ξ +

146
2025

η̃2 − 73
405

η̃

[
1
2

(
3
5

z

)2

+
1
2

ξ 2

]1/2

+
1
κ

(
10
81

)2

ξ 2 +2
√

δ
10
81

(
3
5

z

)2

+δ μξ 3

}
1

(1+
√

δ ξ )2
(4.324)

z =
tW
ts

. (4.325)

The value of κ is the same as for the PKZB-MGGA. The parameters γ = 1.59096
and δ = 1.537 are chosen to enforce the condition (4.322) and to yield the correct ex-
change energy of the hydrogen atom (for H one has Ex =−EH =−0.3125 Hartree).
Moreover, β is chosen to have the smallest value which ensures that FTPSS

x is
a monotonically increasing function of ξ for any fixed value of α (which gives
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β = 0.4). Finally, μ = 0.21951 restores the behavior of the PKZB-MGGA for large
ξ .

The revision of the correlation part of the MGGA aims at an improved description
of spin-polarization. The TPSS-MGGA for correlation is given by [232]

ETPSS
c [n↑,n↓] =

∫
d3r erevPKZB

c

[
1+

D
n

(
tW
ts

)3

erevPKZB
c

]
(4.326)

erevPKZB
c = ePBE

c (n↑,n↓,∇∇∇n↑,∇∇∇n↓)

[
1+C(ζ ,ρ)

(
tW
ts

)2
]

− [1+C(ζ ,ρ)]
(

tW
ts

)2

×∑
σ

max

[
ePBE

c (nσ ,0,∇∇∇nσ ,000),

nσ
n

ePBE
c (n↑,n↓,∇∇∇n↑,∇∇∇n↓)

]
(4.327)

C(ζ ,0) = 0.53+0.87ζ 2 +0.50ζ 4 +2.26ζ 6 (4.328)

C(ζ ,ρ) =
C(ζ ,0)

{1+ρ2[(1+ζ )−4/3 +(1−ζ )−4/3]/2}4
. (4.329)

Here ζ denotes the spin-polarization (4.119) and

ρ =
|∇∇∇ζ |

2(3π2n)1/3
. (4.330)

One first notes that the core of the SIC term involves the maximum of the local
values of ePBE

c (nσ ,0,∇∇∇nσ ,000) and ePBE
c (n↑,n↓,∇∇∇n↑,∇∇∇n↓), unlike the PKZB-MGGA.

This modification implements the rigorous constraint that the value of Ec[n↑,n↓] has
to be negative for all possible spin-densities—in the PKZB-MGGA the positive SIC
term can become slightly larger than the negative main term in regions in which only
a single spin-orbital is non-vanishing, as in the asymptotic region of the Li atom.

It remains to discuss the treatment of spin in the SIC components. One first ob-
serves that the energy density (4.327) vanishes for a system containing only a single
particle,

n↑ = φ 2 , n↓ = 0 =⇒ ts = tW , ζ = ±1 ,

irrespective of the value of C(ζ ,ρ). On the other hand, for a spin-saturated many-
particle system one has
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erevPKZB
c = ePBE

c

(
n
2
,

n
2
,

∇∇∇n
2

,
∇∇∇n
2

) [
1+C(0,0)

(
tW
ts

)2
]

−2[1+C(0,0)]
(

tW
ts

)2

ePBE
c

(
n
2
,0,

∇∇∇n
2

,000

)
.

If applied to the completely delocalized states of the jellium problem, the SIC should
give no contribution to the surface correlation energy. This can be achieved for
the standard range of valence electron densities (2≤ rs ≤6—see Table 4.2) by set-
ting C(0,0) = 0.53 (as in the PKZB-form) and by introducing the additional factor
1+(D/n)(tW/ts)3erevPKZB

c in the TPSS-MGGA (4.326) with D = −2.8 h̄2/(me4).
The form of C(ζ ,0) is motivated by the limit of very strong interaction. In this

limit the Coulomb repulsion completely dominates over quantum effects, so that
the correlation energy becomes independent of the spin-polarization of the system.
This behavior is implemented via the form (4.328), which ensures that the TPSS
correlation energy obtained from non-uniform spin-densities with uniform ζ ,

∇∇∇ζ = 000 =⇒ (1−ζ )∇∇∇n↑ = (1+ζ )∇∇∇n↓ ,

is independent of ζ in the range 0 ≤ |ζ | ≤ 0.7.
Finally, the SIC-term should not affect the transition region between the valence

and the core regime of a monovalent atom like Li. While in the valence regime one
has ζ =±1 and thus ρ = 0, ζ and ρ are close to zero in the core regime. In the region
in which core and valence densities overlap ζ switches between these two values,
so that ρ is large. The ρ-dependence of C(ζ ,ρ) lets this quantity become small in
the overlap zone, in this way suppressing the SIC ingredient of the first term on the
right-hand side of Eq. (4.327) (compare [282], for an extensive discussion of the
MGGA see [283]).

The functionals (4.311), (4.316) and (4.323), (4.326) avoid the singularities re-
sulting from the potential (4.208). The price to be paid, however, is the dependence
of the MGGA on the KS orbitals. As in the case of the SIC-LDA the corresponding
potential has, as a matter of principle, to be evaluated via the optimized potential
method discussed in Chap. 6. This procedure is computationally much more de-
manding than a standard GGA calculation. However, the additional gradient terms
in the MGGA are expected to give only a limited correction to the GGA poten-
tial. In practice, the MGGA is therefore often applied a posteriori, using the so-
lutions obtained by a self-consistent GGA calculation (Post-GGA approach). Al-
ternatively, selfconsistent calculations with the MGGA are based on the HF-type
equations which emerge from a minimization of the total MGGA energy with re-
spect to the individual orbitals, rather than the density—this procedure is sometimes
termed generalized KS (GKS) approach (see also Sect. 6.5.4).

Some reference data for atomic exchange energies obtained with the MGGA
are provided in Table 4.13, atomic MGGA correlation energies are included in Ta-
ble 4.5. Table 4.8 lists the mean absolute errors in the spectroscopic constants of
the molecules in Table 4.7 resulting from the two MGGAs via the Post-GGA treat-
ment. One finds no improvement over standard GGAs for bond lengths and only
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Table 4.13 Exchange energies of spin-saturated, closed-subshell atoms: PKZB-MGGA, TPSS-
MGGA, B3LYP-hybrid and PBE0-hybrid energies obtained by insertion of exact exchange-only
densities into the functionals (4.311), (4.323), (6.127) and (6.134) in comparison with exact values
(all energies are in Hartree). Also given is the corresponding percentage error Δ . The hybrid data
are discussed in Sect. 6.5.4.

Atom Exact PKZB TPSS B3LYP PBE0

−Ex −Ex Δ −Ex Δ −Ex Δ −Ex Δ
He 1.026 1.020 −0.54 1.030 0.44 1.014 −1.13 1.017 −0.89
Be 2.666 2.648 −0.66 2.677 0.43 2.632 −1.28 2.643 −0.84
Ne 12.105 11.951 −1.27 12.180 0.62 12.043 −0.51 12.076 −0.24
Mg 15.988 15.745 −1.52 16.050 0.38 15.887 −0.63 15.933 −0.35
Ar 30.175 29.644 −1.76 30.216 0.14 29.974 −0.66 30.041 −0.44
Ca 35.199 34.587 −1.74 35.249 0.14 34.986 −0.61 35.061 −0.39
Zn 69.619 68.651 −1.39 69.798 0.26 69.480 −0.20 69.553 −0.09
Kr 93.833 92.295 −1.64 93.719 −0.12 93.444 −0.41 93.527 −0.33
Sr 101.926 100.250 −1.64 101.761 −0.16 101.502 −0.42 101.591 −0.33
Cd 148.880 146.558 −1.56 148.493 −0.26 148.329 −0.37 148.415 −0.31
Xe 179.064 176.257 −1.57 178.449 −0.34 178.369 −0.39 178.450 −0.34

a very moderate advance for vibrational frequencies, but much better atomization
energies. A more detailed inspection of the individual data shows that the TPSS
functional also provides an improved description of hydrogen bonds [282]. In addi-
tion, the TPSS-MGGA often significantly reduces the error in the lattice constants
of solids in comparison with the PBE-GGA [232].

4.9 LDA+U

It is a long-standing problem for effective single-particle methods to deal with the
simultaneous presence of highly delocalized (itinerant) band states and of strongly
localized, atomic-like states in many compounds containing rare-earth or late tran-
sition metal elements. While the d- and, in particular, the f -states essentially retain
their atomic character in solids, the valence s- and p-states tend to form bands.
The preceding discussion of the properties of the LDA indicates that the LDA has
difficulties with the description of highly localized states, primarily due to the in-
sufficient treatment of the SIC. As a result the LDA predicts itinerant d-states and
a metallic ground state for many transition metal oxides, for which a sizable energy
gap between occupied and unoccupied subbands is observed in experiment (an ex-
ample is given in Fig. 6.3). Moreover, in spite of its overall improvement over the
LDA, the GGA does not really provide a satisfactory SIC either (see also Fig. 6.3).

The fact that the band picture is not adequate for rare-earth and transition metal
compounds suggests a decomposition of the complete Hilbert space into two subsys-
tems, following the Anderson model [284]: (i) the localized d- or f -states for which
a more explicit, orbital-dependent treatment of all Coulomb effects is required,
and (ii) the s- and p-states which are well described by the LDA (or GGA). The
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technical implementation of this concept in DFT is the LDA+U method [285–288].
For its derivation the only assumption required is that the d- or f -states are localized
within well-separated atomic spheres, so that the bulk states are well represented by
a superposition of the corresponding atomic states only.

The starting point of the discussion is the spin-resolved form of the sum of the
Hartree and the exact exchange energy, Eq. (4.16),

EH +Ex =
1
2 ∑

σ ,σ ′
∑

α,α ′
ΘασΘα ′σ ′

∫
d3r d3r′ |φασ (rrr)|2 w(rrr,rrr′) |φα ′σ (rrr′)|2

−1
2 ∑

σ
∑

α,α ′
ΘασΘα ′σ

∫
d3r d3r′

×φ ∗
ασ (rrr)φα ′σ (rrr)w(rrr,rrr′)φ ∗

α ′σ (rrr′)φασ (rrr′). (4.331)

The states φασ can e.g. be Bloch states, for which α corresponds to the combination
of the crystal momentum kkk and a band index (in this case one of the spatial integra-
tions has to be restricted to one unit cell). The intra-shell contribution to EH + Ex,
i.e. the complete Hartree plus exchange energy associated with a single atomic shell
nl of an atom at site a, is obtained by projection of the actual KS states φασ onto
the standard set of atomic orbitals ϕanlm with principal quantum number n, angular
momentum quantum number l and corresponding z-projection m at site a,

cασ ;anlm =
∫

d3r ϕ∗
anlm(rrr)φασ (rrr) . (4.332)

For given nl and a this overlap vanishes for all φασ , except the few localized states
which emerge from the ϕanlm in the solid (or molecule). The bulk states formed by
the ϕanlm, on the other hand, can be expanded in terms of the orthonormal set of
atomic orbitals: within the atomic sphere in which φασ is localized at site a one
simply has ∫

d3r ϕ∗
anlm(rrr)ϕan′l′m′(rrr) = δnn′ δll′ δmm′ (4.333)

=⇒ φασ (rrr) = ∑
m

cασ ;anlm ϕanlm(rrr) . (4.334)

The energy associated with the shell nl at site a is thus obtained by insertion of
(4.334) into Eq. (4.331),

[EH +Ex]anl =
1
2 ∑

σ ,σ ′
∑
mmm

Λ σ ;anl
mm′′ Λ σ ′;anl

m′m′′′ (mm′|w|m′′m′′′)anl

−1
2 ∑

σ
∑
mmm

Λ σ ;anl
mm′′′ Λ σ ;anl

m′m′′ (mm′|w|m′′m′′′)anl , (4.335)

where the matrix elements of the basis functions
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(mm′|w|m′′m′′′)anl

=
∫

d3r d3r′ ϕ∗
anlm(rrr)ϕanlm′′(rrr)w(rrr,rrr′)ϕ∗

anlm′(rrr′)ϕanlm′′′(rrr′) , (4.336)

the occupation matrix

Λ σ ;anl
mm′′ = ∑

α
Θασ c∗ασ ;anlm cασ ;anlm′′ , (4.337)

and the abbreviation mmm ≡ m,m′,m′′,m′′′ have been introduced. At this point the ref-
erence to the shell nl as well as to the site a is dropped, direct and exchange matrix
elements are combined in an alternative fashion, and the intra-shell direct plus ex-
change energy is given its standard name,

EU [Λ σ ] := [EH +Ex]anl

=
1
2 ∑

σ
∑
mmm

Λ σ
mm′′Λ−σ

m′m′′′(mm′|w|m′′m′′′)

+
1
2 ∑

σ
∑
mmm

Λ σ
mm′′Λ σ

m′m′′′
[
(mm′|w|m′′m′′′)− (mm′|w|m′′′m′′)

]
. (4.338)

The derivation shows that this expression can be directly extended to the case of
more than one shell nl and/or more than one site a.

In the next step the Slater integrals (4.336) have to be evaluated. Insertion of the
atomic orbitals

ϕanlm(rrr) =
Pnl(r)

r
Ylm(Ω) (4.339)

(the center of the coordinate system is chosen to be at the location of site a) into
(4.336) and expansion of w(rrr,rrr′) in spherical harmonics allows a straightforward
calculation of these matrix elements (for all details of the expansion and the angular
integrations involved see [289]),

(mm′|w|m′′m′′′) =
2l

∑
L=0

aL(m,m′,m′′,m′′′)FL (4.340)

aL(m,m′,m′′,m′′′) = (L0 l0|l0)2
L

∑
M=−L

(LM lm′′|lm)(LM lm′|lm′′′) (4.341)

FL =
∫ ∞

0
dr

∫ ∞

0
dr′ Pnl(r)2wL(r,r′)Pnl(r′)2 , (4.342)

where (LM lm|l′m′) denotes the Clebsch-Gordan coefficients (in the definition of
Rose [289]). If w was the pure Coulomb interaction, one would have

wL(r,r′) = e2 rL
<

rL+1
>

with r< = min{r,r′}, r> = max{r,r′} .
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In reality, screening of the Coulomb interaction is important, so that usually an
effective, screened interaction is used to determine the radial Slater integrals FL.

Due to the exact cancellation of the self-interaction energy in the expression
(4.338), EU accounts for the intra-shell xc-energy much better than the LDA. In
order to correct the LDA one would therefore like to combine EU with the LDA
functional. However, when adding EU to ELDA, one has to make sure that double
counting of the intra-shell Hartree and xc-energy is avoided. The form of this dou-
ble counting correction could be determined by different strategies, depending on
the implementation of the combined functional. As long as no shape approximation
is used, the Hartree energy is handled exactly in ELDA, so that no modification of
this component is necessary. On the other hand, often a spherical approximation
(atomic sphere approximation—ASA) is used for the total KS potential experienced
by all localized states. The average Hartree energy per particle of the atomic shell
nl utilized in the ASA,

1
(2l +1)2 ∑

m,m′
(mm′|w|mm′) = F0

(compare the discussion below) differs significantly from the actual Hartree energy
resulting for the individual states ϕanlm. For instance, the self-interaction energy of
a single d-state with m = 0 is obtained as

(00|w|00) = F0 +
4

49
(F2 +F4) .

Thus, if the ASA is applied, not only the xc-energy, but also the Hartree term in
ELDA needs to be corrected for open-shell effects. In addition, one wants to in-
clude screening effects, as emphasized before (concerning screening, compare, how-
ever, the discussion of the tadpole contributions to the KS perturbation expansion in
Sect. 6.4.1). In the LDA+U approach the double counting (dc) correction is there-
fore chosen so that EU is cancelled by the dc correction, if the shell (of bands)
emerging from the atomic shell nl is completely filled, since in the case of filled
shells EH is handled correctly by ELDA even in the ASA.

In order to evaluate EU for a completely filled shell one starts by considering the
occupation matrix Λ σ

mm′′ , Eq. (4.337),

Λ σ
mm′′ = ∑

α
Θασ

∫
d3r

∫
d3r′ ϕ∗

anlm′′(rrr)φασ (rrr)φ ∗
ασ (rrr′)ϕanlm(rrr′) . (4.343)

Since the states φασ are eigenstates of the KS Hamiltonian, they form a complete
orthonormal basis. The completeness relation in the Hilbert space spanned by the
occupied states may therefore be written as (for each spin-channel separately)

∑
α

Θασ φασ (rrr)φ ∗
ασ (rrr′) = δ (3)(rrr− rrr′) (in the space of occupied states) . (4.344)
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If the shell is completely filled, this completeness relation can be used in all matrix
elements of the atomic states ϕanlm, as for instance10 for (4.343). This allows the
evaluation of the occupation matrix by use of the orthonormality relation (4.333),

Λ σ
mm′′ = δm,m′′ . (4.345)

Insertion of this result into EU gives

EU
closed = ∑

σ
∑

m,m′
(mm′|w|mm′)− 1

2 ∑
σ

∑
m,m′

(mm′|w|m′m) . (4.346)

Use of the matrix elements (4.340) as well as of the properties of the Clebsch-
Gordan coefficients then leads to

EU
closed = 2(2l +1)2 F0 − (2l +1)

2l

∑
L=0

(L0 l0|l0)2 FL . (4.347)

One now identifies the self-interaction correction contribution to the exchange en-
ergy (the monopole term) to rewrite EU

closed as

EU
closed =

1
2

Nanl(Nanl −1)U − 1
2 ∑

σ
Nanl

σ (Nanl
σ −1)J , (4.348)

where Nanl
σ = 2l + 1 is the number of spin-σ electrons in the shell nl, the quan-

tity Nanl = Nanl
↑ + Nanl

↓ is the total number of electrons in the shell, U ≡ F0 is the
screened Coulomb repulsion energy per electron and J denotes the Stoner exchange
parameter,

J =
1
2l

2l

∑
L=2

(L0 l0|l0)2 FL . (4.349)

If the complete shell is filled, subtraction of the energy (4.348) from the general
expression (4.338) gives zero. In order to correct the expression (4.338) for double
counting in the case of a partially filled shell, one therefore subtracts the energy11

10 Note that the completeness relation (4.344) could be used for all sites of a lattice which are
equivalent to the site a. On the contrary, use of the completeness relation for the ϕanlm is restricted
to the atomic sphere around site a.
11 The expression (4.350) is also obtained by averaging over all possible ways to distribute the Nanl

σ
electrons with spin σ among the 2l +1 available m-substates of an open-subshell atom [290],

EU
av = ∑

qqq
EU (qqq) with qσ

m = 0,1 ;
l

∑
m=−l

qσ
m = Nanl

σ

EU (qqq) =
1
2 ∑

σ ,σ ′
∑

m,m′
qσ

mqσ ′
m′ (mm′|w|mm′)− 1

2 ∑
σ

∑
m,m′

qσ
mqσ

m′ (mm′|w|m′m) ,

which, in turn is equivalent to a spherical average.
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Edc[Λ σ ] =
U
2

Nanl(Nanl −1)− J
2 ∑

σ
Nanl

σ (Nanl
σ −1) (4.350)

from EU , where, however, Nanl
σ now denotes the actual number of spin-σ electrons

in the shell (and Nanl = Nanl
↑ +Nanl

↓ 
= 2(2l +1)). This number is given by the occu-
pation factor Θασ weighted with the overlap of φασ and all ϕanlm,

Nanl
σ = ∑

α
Θασ ∑

m
|cασ ;anlm|2 = ∑

m
Λ σ

mm . (4.351)

In practice, the quantities U and J in Eq. (4.350) are often treated as parameters,
rather than evaluated from the integrals FL. In addition, sometimes modified double
counting corrections are utilized [291, 292].

The final LDA+U functional is then defined as [285]

ELDA+U [nσ ,Λ σ ] := ELDA[nσ ]+EU [Λ σ ]−Edc[Λ σ ] . (4.352)

This functional is orbital-dependent since the occupation matrix depends on the KS
states. Unlike the case of the SIC-LDA, however, invariance under unitary transfor-
mations among the KS states emerging from the shell nl is ensured.

Ignoring the exchange contributions beyond the SIC as well as the difference
between the intra-shell Coulomb integrals for the actual bulk states and the U of the
atomic orbitals, one can qualitatively express ELDA+U as

ELDA+U ∼ ELDA +
U
2 ∑

α 
=β
ΘαΘβ − U

2
N(N −1) ,

where Θα = 0,1 represents the occupation of the state α (the spin is now included
in α for brevity) and the sum over α,β only extends over all substates in the shell
nl. The orbital energies corresponding to this functional can then be obtained via
Janak’s theorem (see Sect. 3.4),

εα =
∂ELDA+U

∂Θα
∼ εLDA

α +U

(
1
2
−Θα

)
.

Compared to the LDA eigenvalue, one finds a lowering of the occupied states by
−U/2 and a raise of the unoccupied states by +U/2. The complete d- or f -band
thus splits up into occupied lower Hubbard bands and unoccupied upper Hubbard
bands, with an energy separation determined by the intra-shell Coulomb integral U .
The LDA+U method therefore recovers the physics of Mott-Hubbard insulators.

Due to its orbital-dependence ELDA+U basically belongs to the class of function-
als for which the OPM of Chap. 6 should be used to determine the corresponding po-
tential. As in the case of the SIC-LDA, this is, however, not the standard procedure.
Rather one resorts to a nonlocal Hamiltonian which is obtained by minimization of
ELDA+U with respect to φασ [287],
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[ĤLDA+U
σ φασ ](rrr) =

δELDA+U

δφ ∗
ασ (rrr)

= ĤLDA
σ φασ (rrr)+ ∑

m,m′′

∫
d3r′ ϕanlm(rrr)uσ

mm′′ϕ∗
anlm′′(rrr′)φασ (rrr′) (4.353)

uσ
mm′′ = ∑

m′,m′′′

[
∑
σ ′

Λ σ ′
m′m′′′(mm′|w|m′′m′′′)−Λ σ

m′m′′′(mm′|w|m′′′m′′)
]

−δm,m′′

[
U

(
Nanl − 1

2

)
− J

(
Nanl

σ − 1
2

)]
. (4.354)

The additional term compared to the LDA has the form of a projection operator on
the atomic subspace nl. As this operator acts on all KS states, the quality of the
LDA+U approach is determined by the degree to which the localized states φασ ,
for which the explicit treatment of the intra-shell Coulomb interaction is necessary,
retain the character of the atomic states ϕanlm. A clear separation of the complete
Hilbert space into the subspace emerging from the ϕanlm and a remainder must be
possible.

The LDA+U approach has been successfully applied to a wide variety of tran-
sition metal and rare earth compounds (see e.g. [288]). In particular, the LDA+U
provides an accurate account of the Mott-Hubbard character of the 3d transition
metal oxides, most notably MnO, FeO, CoO and NiO. This success seems particu-
larly noteworthy as, in spite of their localized nature, the 3d states strongly hybridize
with the oxygen 2p states in these compounds.
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Chapter 5
Virial Theorems

5.1 Scaling Behavior of Energy Contributions

Virial theorems are derived by considering the behavior of all relevant quantities
under a global scaling transformation of the position vectors rrri of the electrons,

rrri −→ λ rrri , (5.1)

while keeping all other length scales of the system (positions of the nuclei, box sizes
etc) fixed. This transformation is thus not equivalent to a simple rescaling of the unit
of length: in the latter case all(!) quantities with the dimension of a length are scaled
in a homogeneous fashion.

In accordance with the transformation (5.1) one defines the scaled ground-state
wavefunction of the interacting system as

(rrr1,σ1; . . .rrrN ,σN |Ψ0,λ 〉 := λ 3N/2 (λ rrr1,σ1; . . .λ rrrN ,σN |Ψ0〉 . (5.2)

The prefactor λ 3N/2 ensures proper normalization to 1,

〈Ψ0,λ |Ψ0,λ 〉 = λ 3N ∑
σ1...σN

∫
d3r1 . . .

∫
d3rN |(λ rrr1,σ1; . . .λ rrrN ,σN |Ψ0〉|2

= 〈Ψ0|Ψ0〉 = 1 . (5.3)

Similarly, one can introduce the scaled KS ground state,

(rrr1,σ1; . . .rrrN ,σN |Φ0,λ 〉 := λ 3N/2 (λ rrr1,σ1; . . .λ rrrN ,σN |Φ0〉 , (5.4)

which is a Slater determinant of scaled KS orbitals,

φi,λ (rrr,σ) := λ 3/2 φi(λ rrr,σ) . (5.5)

By construction, both (5.2) and (5.4) lead to the same scaled ground state density,

The original version of this chapter was revised. An erratum can be found at  
https://doi.org/10.1007/978-3-642-14090-7_12 
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nλ (rrr) := λ 3 n(λ rrr) . (5.6)

For λ → 0 the initial density n(rrr) is therefore smeared out in space, so that, on the
fixed external length scale(s), nλ (rrr) becomes uniform and probes the low-density
limit. On the other hand, nλ (rrr) approaches a δ -like peak for λ → ∞, if n(rrr) charac-
terizes a finite system.

On the basis of these definitions one can analyze the scaling behavior of various
ground state expectation values, starting with the kinetic energy. Taking into account
the scaling of the momentum operator ∇∇∇ = ∂/∂ rrr, one finds the same quadratic
scaling with λ for both the exact and the KS kinetic energy,

〈Ψ0,λ |T̂ |Ψ0,λ 〉 = λ 2 〈Ψ0|T̂ |Ψ0〉 (5.7)

〈Φ0,λ |T̂ |Φ0,λ 〉 = λ 2 〈Φ0|T̂ |Φ0〉 . (5.8)

Equation (5.8) can be reformulated as a scaling relation for Ts[n], Eq. (3.21),

Ts[nλ ] = 〈Φ0,λ |T̂ |Φ0,λ 〉 = λ 2 〈Φ0|T̂ |Φ0〉 = λ 2 Ts[n] , (5.9)

where the unique correspondence between |Φ0,λ 〉 and nλ as well as the universal-
ity of Ts[n] have been used on the left-hand side (the one-to-one correspondence
results from the Hohenberg-Kohn theorem for noninteracting particles, as soon as
v-representability of nλ is assumed). The next energy component of interest is the
external potential energy,

〈Ψ0,λ |V̂ext|Ψ0,λ 〉 = 〈Φ0,λ |V̂ext|Φ0,λ 〉
=

∫
d3r nλ (rrr)vext(rrr) =

∫
d3r n(rrr)vext(rrr/λ ) . (5.10)

Of course, no statement is possible without further specification of vext. The best-
known case is that of a single atom with the nuclear Coulomb potential centered at
the origin, ∫

d3r nλ (rrr)vatom
ext (rrr) = λ

∫
d3r n(rrr)vatom

ext (rrr) . (5.11)

The scaling factor can be absorbed into the positions of the nuclei in the more inter-
esting case of molecular or crystalline systems with the external potential (1.6),

∫
d3r nλ (rrr)vext(rrr) = −λ

∫
d3r n(rrr)∑

α

Zα e2

|rrr−λRRRα | . (5.12)

Finally, it remains to examine the interaction energy. For the Coulomb interaction
one has

〈Ψ0,λ |Ŵ |Ψ0,λ 〉 = λ 〈Ψ0|Ŵ |Ψ0〉 (5.13)

〈Φ0,λ |Ŵ |Φ0,λ 〉 = λ 〈Φ0|Ŵ |Φ0〉 , (5.14)
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with Ŵ given by Eq. (2.5) and w(rrr,rrr′) = e2/|rrr− rrr′|. By definition the expectation
value (5.14) consists of the Hartree and the exchange contribution,

EH[nλ ]+Ex[nλ ] = 〈Φ0,λ |Ŵ |Φ0,λ 〉 = λ 〈Φ0|Ŵ |Φ0〉 = λ
{

EH[n]+Ex[n]
}

. (5.15)

The scaling behavior of EH[n] is easily obtained from (3.25),

EH[nλ ] = λ EH[n] , (5.16)

so that one finds for the exchange functional [293],

Ex[nλ ] = λ Ex[n] . (5.17)

with the obvious definitions

T = 〈Ψ0|T̂ |Ψ0〉 (5.19)

W = 〈Ψ0|Ŵ |Ψ0〉 . (5.20)

What is the use of these scaling relations?1 The answer is given under the heading
of virial theorems.

5.2 Conventional Virial Theorem

We first consider the virial theorem of standard quantum many-body theory. The
crucial observation for its derivation is the fact that, for given, unscaled Hamiltonian,
the total energy of the system has its minimum for λ = 1, as |Ψ0,λ 〉 approaches the

1 A large variety of additional scaling relations for Exc, its components and the corresponding
functional derivatives have been established in the literature [294–306] (for a compact compilation
of the most important results see e.g. [307, 308]). In addition to the uniform coordinate scaling
(5.6), non-uniform scaling, such as nx

λ (x,y,z) = λn(λx,y,z), and scaling of the interaction strength
(either with or without simultaneous coordinate scaling) have been considered. These investiga-
tions have led to an overwhelming number of identities and inequalities for various parts and
limits of Exc, which have been extensively used as constraints in the construction of xc-functionals
[309, 206, 211, 310, 207, 231, 232].

The scaling properties of Ec[n] are more involved. It is clear that Ec[n] can not obey
the simple power law observed for the exact interaction energy, Eq. (5.13), since
Ec[n] contains the difference between the exact and the KS kinetic energy. In order to
derive a relation for Ec[n] one uses the fact that |Ψ0,λ 〉 minimizes 〈Ψλ |T̂ +λŴ |Ψλ 〉
[293]. On the other hand, the Levy-Lieb functional FLL[n], Eq. (2.59), minimizes
〈Ψ|T̂ +Ŵ |Ψ〉 for given constraint |Ψ〉 → n, so that one finds [293]

FLL[nλ ] ≤ 〈Ψ0,λ |T̂ +Ŵ |Ψ0,λ 〉 .

Decomposing FLL as usual, FLL = Ts,LL +EH +Exc,LL , then allows one to establish
an inequality for Exc,LL[n] under scaling [293],

Ec,LL[nλ ] ≤ λ 2(T −Ts,LL[n]
)
+λ

(
W −EH[n]−Ex,LL[n]

)
, (5.18)
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true ground state |Ψ0〉 in this limit. This corresponds to the relation

d
dλ

〈Ψ0,λ |Ĥ|Ψ0,λ 〉
∣∣∣∣
λ=1

= 0 . (5.21)

Insertion of (5.7), (5.12) and (5.13) yields

0 = 2〈Ψ0|T̂ |Ψ0〉+ 〈Ψ0|Ŵ |Ψ0〉− d
dλ

[
λ
∫

d3r n(rrr)∑
α

Zα e2

|rrr−λRRRα |
]

λ=1

= 2T +W −
∫

d3r n(rrr)∑
α

Zα e2

|rrr−RRRα |

−∑
β

RRRβ · ∂
∂RRRβ

[∫
d3r n(rrr)∑

α

Zα e2

|rrr−RRRα |
]

expl.

.

Here the relation

∂
∂RRRβ , j

RRRα,i = δαβ δi j (5.22)

has been utilized and the index “expl” indicates that only the explicit RRRα -dependence
has to be taken into account in the evaluation of the partial derivative (but not the im-
plicit dependence of n(rrr) on RRRα ). Identification of 〈Ψ0|V̂ext|Ψ0〉 leads to the desired
virial theorem

0 = 2T +W + 〈Ψ0|V̂ext|Ψ0〉+∑
α

RRRα · ∂
∂RRRα

〈Ψ0|V̂ext|Ψ0〉
∣∣∣∣
expl.

. (5.23)

In the special case of atoms Eq. (5.23) simplifies to the famous relation

0 = 2T +W + 〈Ψ0|V̂ atom
ext |Ψ0〉 = T +Eatom

tot . (5.24)

5.3 DFT Virial Theorem

In order to derive virial relations for density functionals, one first considers the
generic situation

A[nλ ] = λ k A[n] . (5.25)

Using the fact that A[nλ ] depends on λ only via the scaled density nλ (all other
length scales remain fixed), one obtains quite generally [311],

d
dλ

A[nλ ]
∣∣∣∣
λ=1

= k A[n] =
∫

d3r
dnλ (rrr)

dλ
δA[nλ ]
δnλ (rrr)

∣∣∣∣
λ=1

. (5.26)
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One can now insert (5.6),

k A[n] =
∫

d3r

[
3λ 2n(λ rrr)+λ 3rrr · ∂

∂ (λ rrr)
n(λ rrr)

]
λ=1

δA[n]
δn(rrr)

=
∫

d3r [3n(rrr)+ rrr ·∇∇∇n(rrr)]
δA[n]
δn(rrr)

. (5.27)

If n(rrr) decays sufficiently fast for large |rrr|, i.e. for finite systems, one can integrate
by parts,

k A[n] = −
∫

d3r n(rrr)rrr ·∇∇∇ δA[n]
δn(rrr)

. (5.28)

Either the form (5.27) or (5.28) has to be used, depending on the type of system
considered. For brevity, the subsequent discussion is restricted to the case of finite
systems.

One can now apply (5.28) to the individual energy components. For the kinetic
energy (5.9) the variational equation (3.54) (for the KS system) leads to

2Ts[n] = −
∫

d3r n(rrr)rrr ·∇∇∇ δTs[n]
δn(rrr)

=
∫

d3r n(rrr)rrr ·∇∇∇vs(rrr) . (5.29)

Similarly, Eqs. (5.16) and (5.17) lead to virial relations for the Hartree and the ex-
change energy functional [293],

EH[n] = −
∫

d3r n(rrr)rrr ·∇∇∇vH(rrr) (5.30)

Ex[n] = −
∫

d3r n(rrr)rrr ·∇∇∇vx(rrr) . (5.31)

The most complicated component is the correlation energy, as it does not exhibit
the straight power law behavior assumed for the derivation of (5.28). Nevertheless,
the steps which lead from Eq. (5.26) to the right-hand side of Eq. (5.28) can also be
applied to Ec [293],

d
dλ

Ec[nλ ]

∣∣∣∣
λ=1

= −
∫

d3r n(rrr)rrr ·∇∇∇vc(rrr) . (5.32)

Note that the relations (5.29)–(5.32) are valid for all kinds of external potentials
vext. Only the particle–particle interaction has been chosen to be Coulombic. These
relations thus allow a check of numerical procedures for a very general class of
problems.
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5.4 Hellmann-Feynman Theorem

The interaction between the external sources, the nuclei, has been ignored in the
discussion of the virial theorems (5.23) and (5.34). We now consider the complete
Born-Oppenheimer (BO) energy surface, including the energy (1.4). In order to es-
tablish a virial relation, one first evaluates the gradient of the total BO energy with
respect to the position of the nucleus α , RRRα ,

d
dRRRα

EBO =
d

dRRRα

[
E[n]+

1
2 ∑

β �=γ

Zβ Zγ e2

|RRRβ −RRRγ |

]
. (5.36)

The electronic part of this gradient is given by

d
dRRRα

E[n] =
∂

∂RRRα
E[n]

∣∣∣∣
expl.

+
∫

d3r
δE[n]
δn(rrr)

∂n(rrr)
∂RRRα

.

However, as F [n] is universal, an explicit RRRα -dependence of E[n] is only found in
Eext[n]. In addition, the variational equation (2.38) is valid on the BO surface, i.e. as
soon as the electronic ground state for given positions of the nuclei is reached,

d
dRRRα

E[n] =
∂

∂RRRα
〈Ψ0|V̂ext|Ψ0〉

∣∣∣∣
expl.

−μ
∂

∂RRRα

∫
d3r n(rrr)

On the basis of (5.9), (5.16), (5.17) and (5.32) one can derive the DFT analog of
Eq. (5.23). Starting from the minimum property of the total energy functional,

d
dλ

E[nλ ]

∣∣∣∣
λ=1

= 0 , (5.33)

one obtains with the decomposition (3.24) (see [312]),

0 = 2Ts[n]+EH[n]+Ex[n]−
∫

d3r n(rrr)rrr ·∇∇∇vc(rrr)

+〈Ψ0|V̂ext|Ψ0〉+∑
α

RRRα · ∂
∂RRRα

〈Ψ0|V̂ext|Ψ0〉
∣∣∣∣
expl.

, (5.34)

where (5.32) has been utilized for the evaluation of dEc[nλ ]/dλ and the treatment
of Eext[n] follows that in Eq. (5.23).

Combining (5.34) with (5.23), one finally obtains for the specific external poten-
tial (1.6) [312]

Ec[n] = −
∫

d3r n(rrr)rrr ·∇∇∇vc(rrr)−T +Ts[n] . (5.35)
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=
∂

∂RRRα
〈Ψ0|V̂ext|Ψ0〉

∣∣∣∣
expl.

=
∫

d3r n(rrr)
Zα e2(RRRα − rrr)
|RRRα − rrr|3 (5.37)

=⇒ d
dRRRα

EBO =
∫

d3r n(rrr)
Zα e2(RRRα − rrr)
|RRRα − rrr|3 − ∑

β �=α

Zα Zβ e2(RRRα −RRRβ )
|RRRα −RRRβ |3

. (5.38)

Equation (5.38) is an important result in itself, as it shows that the gradients of
the total BO energy, i.e. the forces on the nuclei (within a classical description), are
completely determined by the explicit RRRα -dependence of the electronic energy. This
result simplifies the calculation of forces in actual applications considerably.

Equations (5.37) and (5.38) represent the original form of the Hellmann-Feynman
theorem [313, 314], formulated in terms of the total energy functional. They are
special cases of a rather general result which can be proven for parameter-dependent
expectation values of the form

〈Ψ0,λ |Ĥλ |Ψ0,λ 〉 with Ĥλ |Ψ0,λ 〉 = Eλ |Ψ0,λ 〉 . (5.39)

The derivative of 〈Ψ0,λ |Ĥλ |Ψ0,λ 〉 with respect to the parameter λ reduces to the
derivative of the operator Ĥλ , as long as the eigenstates |Ψ0,λ 〉 of Ĥλ are normalized
to one for all values of λ ,

d
dλ

〈Ψ0,λ |Ĥλ |Ψ0,λ 〉

=
〈

dΨ0,λ
dλ

∣∣∣∣Ĥλ

∣∣∣∣Ψ0,λ

〉
+
〈

Ψ0,λ

∣∣∣∣dĤλ
dλ

∣∣∣∣Ψ0,λ

〉
+
〈

Ψ0,λ

∣∣∣∣Ĥλ

∣∣∣∣dΨ0,λ
dλ

〉

= Eλ
d

dλ
〈Ψ0,λ |Ψ0,λ 〉+

〈
Ψ0,λ

∣∣∣∣dĤλ
dλ

∣∣∣∣Ψ0,λ

〉

=
〈

Ψ0,λ

∣∣∣∣dĤλ
dλ

∣∣∣∣Ψ0,λ

〉
. (5.40)

In (5.37) and (5.38) the positions of the nuclei play the role of the parameter λ .
Equation (5.38) leads directly to a virial relation, if one considers a local or global

minimum of the BO energy. At a minimum the forces on the nuclei vanish,

∂
∂RRRα

〈Ψ0|V̂ext|Ψ0〉
∣∣∣∣
expl.

=
∫

d3r n(rrr)
Zα e2(RRRα − rrr)
|RRRα − rrr|3

= ∑
β �=α

Zα Zβ e2(RRRα −RRRβ )
|RRRα −RRRβ |3

. (5.41)

This allows an evaluation of the most complicated contribution to the general virial
theorems (5.23) and (5.34),
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∑
α

RRRα · ∂
∂RRRα

〈Ψ0|V̂ext|Ψ0〉
∣∣∣∣
expl.

=
1
2 ∑

α �=β

Zα Zβ e2

|RRRα −RRRβ |
. (5.42)

Insertion of (5.42) into the conventional virial relation (5.23) then yields a relation
between the total BO energy and the (full) kinetic energy of the electrons,

0 = 2T +W + 〈Ψ0|V̂ext|Ψ0〉+ 1
2 ∑

α �=β

Zα Zβ e2

|RRRα −RRRβ |
= T +EBO

=⇒ EBO = −T . (5.43)

Finally, combination of (5.42) with (5.34) yields the DFT variant of (5.43) (see
[312]),

0 = 2Ts[n]+Eext[n]+EH[n]+Ex[n]

−
∫

d3r n(rrr)rrr ·∇∇∇vc(rrr)+
1
2 ∑

α �=β

Zα Zβ e2

|RRRα −RRRβ |
(5.44)

=⇒ EBO = −Ts[n]+Ec[n]+
∫

d3r n(rrr)rrr ·∇∇∇vc(rrr) . (5.45)

Equation (5.45) provides a consistency check for actual calculations.



Chapter 6
Orbital Functionals: Optimized Potential
Method

6.1 Motivation

The illustrative results for (M)GGAs which have been presented in Chap. 4 demon-
strate the success of the GGA concept. Studies of the applicability and the ac-
curacy of different forms of the (M)GGA for a large variety of systems support
this statement [5, 200, 211, 224, 238, 315–326]. A completely different concept
[113, 114, 127] is introduced in this chapter. In this approach Exc is expressed in
terms of the KS orbitals and eigenvalues,1 rather than the density itself, so that Exc

becomes an implicit functional of n. The prototype functional of this class is the
exact exchange, Eq. (4.5).

Given the success of the GGA, one may ask why such orbital-dependent xc-
functionals are of any interest? The answer to this question necessarily consists in
a list of systems for which the GGA (and, of course, also the LDA) is not just
inaccurate, but rather fails completely.

6.1.1 Atomic Negative Ions

A first fundamental failure of the GGA is observed for atomic negative ions [327,
328]. This failure originates from the semi-local density-dependence of the GGA
exchange potential. The situation is more easily analyzed in the case of the LDA,
to which we restrict the explicit discussion. The LDA for the exchange potential is
given by Eq. (4.111). As the density of finite systems decays exponentially in the
asymptotic region, one finds an exponential decay of vLDA

x ,

n(rrr) −−−→
|rrr|→∞

e−αr =⇒ vLDA
x (rrr) −−−→

|rrr|→∞
e−αr/3 ,

1 In the following the term orbital-dependent is always understood to include a possible eigenvalue-
dependence.
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in obvious contradiction to the exact result (4.20). An equivalent exponential decay
is also obtained for the LDA correlation potential (1/rs ∼ n1/3). Moreover, for neu-
tral atoms the electrostatic potential of the nucleus cancels with the monopole term
in vH, Eq. (3.42). Consequently, the total vs decays faster than 1/r. This implies that
a neutral atom does not exhibit a Rydberg series of excited states within the frame-
work of the LDA and is therefore not able to bind an additional electron, i.e. to form
a negative ion.2

The same deficiency is found for all GGAs of the form (4.281), for which the
potential, Eq. (4.290), depends on the first two gradients of the density. While for
some forms of the kernel fx, Eq. (4.281), a power-law behavior of vGGA

x for large r
can emerge from (4.290), this standard form of the GGA potential necessarily de-
cays faster than −1/r [220] (see Sect. 6.3 for an explicit example of this behavior).
As a consequence, GGAs do not predict the existence of atomic negative ions either.
The same problem is observed for many negatively charged small molecules.

The −1/r-behavior of the exact vx results from the self-interaction contribution
to Ex, which is required to cancel the self-interaction included in EH, as discussed
in Sect. 4.1. This indicates that one needs a rather nonlocal exchange functional
to reproduce the −1/r-behavior: the self-interaction component of vx has to be as
nonlocal as the Coulomb integral in vH. In fact, an exact cancellation of the self-
interaction in EH is only possible if the same Coulomb matrix elements are present
in Ex. This requires an orbital-dependent representation of Ex.

6.1.2 Dispersion Forces

The LDA and GGA also fail to reproduce the London dispersion force (one of the
van der Waals forces) [329–331]. In this case the problem results from the short-
ranged nature of the LDA/GGA correlation functional. In the LDA the correlation
energy density is given by the energy density eHEG

c of the homogeneous electron
gas (HEG), evaluated with the local density, Eq. (4.109). As eHEG

c (n0 → 0) = 0
(see Eq. (4.107)), one realizes that only regions in space with a non-vanishing den-
sity contribute to the correlation energy. Now consider two neutral, closed-subshell
atoms, which are so far apart that their densities do not overlap. As indicated in
Fig. 6.1 the density of this system corresponds to the sum of the two atomic densi-
ties. In this situation dispersion forces become important, as there is neither an elec-
trostatic interaction between the two atoms nor can any bonding orbitals be formed.
Only the attraction between virtual (dipole) excitations of the two atoms can lead
to binding via the London dispersion force. In the LDA, however, any inter-atomic
interaction provided by Ec requires an overlap of the atomic densities, as the binding
energy Eb must result from the nonlinear density dependence of ELDA

c ,

2 Note, however, that (4.20) is only a necessary, but not a sufficient criterion for the stability of a
negative ion. Ultimately, the stability depends on the relative size of the total energies of the N and
the N +1 electron system.
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Fig. 6.1 Electronic density of two atoms at large separation.

Eb = ELDA
c [nA +nB]−ELDA

c [nA]−ELDA
c [nB] .

For this reason dispersion forces can not be reproduced by the LDA.
The behavior of the LDA in the case of dispersive bonds is illustrated in Fig. 6.2,

in which the BO surface of the He dimer is shown. He2 is a particularly sensitive
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Fig. 6.2 Energy surface Eb of He2: Selfconsistent LDA [134], BLYP [219, 221] and PBE [207]
data versus exact result [332].

system, as manifest in the meV scale of Fig. 6.2: the dispersive bond is extremely
weak, which leads to a highly delocalized ground state wavefunction [333]. He2

thus provides an ideal testing ground for approximate correlation functionals.
As is obvious from Fig. 6.2, the LDA predicts the minimum of Eb to be at much

smaller separation than the true Eb [332] and overestimates the corresponding well
depth by an order of magnitude. For large internuclear separations the LDA surface
vanishes exponentially (which is not apparent due to the scale of Fig. 6.2). The
figure confirms the argument that the LDA requires the densities of the two atoms
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to overlap, in order to produce binding. As a consequence, the dimer is contracted
far too much in the LDA. The LDA is not suitable to describe dispersive bonds, in
spite of the fact that it generates an attractive Eb.

As in the case of negative ions, this problem is not resolved by use of the GGA,
in which the energy density depends on the first two gradients of the density,

EGGA
c [n] =

∫
d3r eGGA

c (n,(∇∇∇n)2,∇∇∇2n) .

The ∇∇∇n-dependence of eGGA
c (rrr) only accounts for the density in the immediate

vicinity of rrr. eGGA
c (rrr) therefore vanishes wherever n(rrr) vanishes. Figure 6.2 ex-

plicitly illustrates this statement for two standard versions of the GGA. While the
PBE-GGA basically shows the same picture as the LDA, the BLYP-GGA remains
repulsive for all internuclear separations. The discrepancy between the two GGA
results already indicates the inadequacy of the GGA for this system. In spite of the
quantitative improvement of the PBE-form over the LDA, the attractive potential
generated by the PBE-GGA relies on the same mechanism as the potential pro-
duced by the LDA. Neither the LDA nor the GGA can mediate the long-range force
resulting from virtual excitations.3 Not only the exact exchange functional is highly
nonlocal, but also the exact correlation functional.

6.1.3 Strongly Correlated Systems

The third class of systems for which both the LDA and the GGA meet with prob-
lems are strongly correlated systems [338, 339, 237]. The most prominent examples
of this type of solids are the 3d transition metal monoxides MnO, FeO, CoO and
NiO. These systems, which crystallize in the rock salt structure,4 are insulating an-
tiferromagnets of type II.5 Both the LDA and the GGA predict, however, FeO and
CoO to be metallic and underestimate the band gap in MnO and NiO dramatically
[338, 339, 237]. This is illustrated in Fig. 6.3 in which the LDA and PBE-GGA band

3 The dispersion force between two well-separated perturbations in a uniform electron gas is,
however, included in the linear response contribution to the xc-functional, Eq. (4.159) [160, 161]:
for large separation R of the two localized perturbations one obtains the required attractive 1/R6-
interaction. This opens a route to account for the dispersion interaction by nonlocal, but still explic-
itly density-dependent functionals [162–170]. In an alternative approach the polarizability of the
interacting fragments is modeled in terms of multipole moments constructed from the exchange
hole on the two centers [334–337]. This model is then inserted into the closure approximated ex-
pression for the standard second order energy correction. The resulting functional depends, how-
ever, on the occupied KS orbitals.
4 One finds a minor rhombohedral distortion of the unit cell, which, however, appears to be irrele-
vant for the insulating nature of these compounds.
5 In the type II antiferromagnets the magnetic moments of all transition metal atoms in planes
orthogonal to the body-diagonal are aligned, with the direction of the spins alternating from plane
to plane.
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structures for FeO are plotted—the band structures obtained with most other GGAs
are rather similar [339, 237].
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Fig. 6.3 Band structure of antiferromagnetic (type II) FeO obtained by plane-wave-pseudo-
potential calculation with the LDA (solid lines) and PBE-GGA (dashed lines). The valence space of
Fe includes the 3s, 3p, 3d and 4s states, the cut-off energy of the plane-wave basis is Ecut =300 Ry,
20 special k-points have been used for the integration over the 1st Brillouin zone.

The origin of this problem is not a priori clear from the structure of the LDA and
GGA. There are, however, definite indications of the reason for these difficulties:

• On the one hand, there exists one parameterization of the GGA which predicts
FeO and CoO to be antiferromagnetic insulators [237]. This functional is the
only GGA whose kernel was explicitly optimized to reproduce the exact atomic
exchange potentials as accurately as possible [244]. Although the results obtained
with this GGA are not really convincing (in particular, the corresponding gaps
are still much too small), this suggests that the quality of the exchange potential
plays an important role in the description of Mott insulators.

• The SIC-LDA, Eq. (4.301), also leads to insulating ground states [270, 271].
• Similarly, partial inclusion of exact exchange (i.e. for the 3d states at the iron

sites) in the spirit of a hybrid functional (see Sect. 6.5.4) opens a gap [340].
• Finally, an LDA+U treatment solves the problem [285, 288].
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All these results indicate that once again the inappropriate handling of the self-
interaction (in this case of the 3d states) is a major reason for the failure of the LDA
and GGA.

6.1.4 Third Generation of DFT

Let us finally look at the concept of orbital-dependent xc-functionals from a some-
what wider perspective. The initial idea of DFT was to represent the total energy as a
functional of the density, E[n]. The many-body problem then reduces to the solution
of the variational equation δE[n]/δn(rrr) = μ , Eq. (2.38). In this first generation of
DFT one needs an explicit representation of Ts in terms of n, for which only Thomas-
Fermi-type functionals and nonlocal extensions based on linear response are avail-
able to date (see Appendix D). Even elementary properties of quantum systems,
most notably the atomic shell structure, are not reproduced with these functionals.
This was the reason to resort to an implicit representation of Ts in terms of the KS
orbitals, recasting the many-body problem in the form of the KS equations. Only an
explicit representation of Exc in terms of n is required in this variant of DFT (second
generation). Unfortunately, the explicitly density-dependent approximations for Exc

currently available exhibit the deficiencies discussed in the preceding sections. The
obvious next step for an improvement is a representation of Exc, or at least of Ex,
in terms of the KS orbitals. The formally correct way of implementing this third
generation of DFT is the so-called Optimized (Effective) Potential Method (OPM or
OEP), in which the many-body problem is approached by the simultaneous solution
of the KS equations and an integral equation which determines vxc (to be discussed
below).

Unfortunately, the OPM turns out to be computationally very demanding even
for rather simple orbital-dependent expressions. For this reason applications of
orbital-dependent xc-functionals often rely on the so-called generalized Kohn-Sham
(GKS) approach, in which the KS equations are replaced by the HF-type orbital-
dependent equations which result from a minimization of the total energy functional
with respect to the orbitals.6 Alternatively, orbital-dependent expressions are sim-
ply applied a posteriori by insertion of the solutions of a self-consistent GGA (or
even LDA) calculation (Post-GGA/LDA treatment), rather than implemented self-
consistently. The GKS or Post-GGA schemes are used in particular for the model-
based7 functionals of Sect. 6.5. In the following, however, we will focus completely
on the rigorous way of handling orbital-dependent functionals, i.e. the OPM. In fact,

6 If applied to the exact exchange without any correlation, the GKS scheme coincides with the HF
approach.
7 Lacking any better characterization, we call all those functionals model-based which either can
not be derived by a systematic sequence of approximations from the exact Exc, or contain parame-
ters which can be determined in more than one way. The class of model-based functionals includes
both non-empirical functionals whose parameters are adjusted to theoretical conditions, as well as
semi-empirical forms whose parameters are fitted to experimental observations.
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this is the standard approach in the case of the exact exchange and the first-principles
correlation functionals of Sect. 6.4.

In summary, there exist three basic variants of DFT, which differ both in qual-
ity and in computational efficiency. Depending on the physical phenomenon under
investigation, one can choose the method which is most appropriate. However, it
seems fair to say that, given the present computer power, the OPM implementation
of orbital-dependent functionals primarily serves to provide benchmark results and
proof-of-principle solutions.

6.2 Derivation of OPM Integral Equation

The most important question to be answered at this point is how to calculate the mul-
tiplicative potential (3.43), which corresponds to an xc-functional of the type (4.5).
There are three different ways for the derivation of the basic equation, which deter-
mines this potential. As each of these derivations is instructive by itself, all three will
be outlined below.8 However, before starting the discussion of the OPM equations,
we first introduce a notation which allows dealing with both spin-saturated (DFT)
and spin-polarized (SDFT) systems in a more coherent fashion.

6.2.1 Compact Notation

In Chaps. 1–4 the spin degree of freedom has always been specified explicitly as an
argument of the KS orbitals, φk(rrrσ), and related quantities such as Green’s func-
tions. This explicit notation allows a more ready access to the relations used in DFT,
be it at the price of somewhat lengthier equations. From this point on, we will use
the standard notation, in which the orbitals are understood as bispinors,

φk(rrr) ≡
(

φk(rrr↑)
φk(rrr↓)

)
. (6.1)

In the framework of both DFT and SDFT, to which we restrict the discussion in this
chapter, the quantum number k consists of an orbital quantum number α and a spin
quantum number s, according to either Eq. (3.9) for the case of spin-saturated sys-
tems or to Eq. (3.93) for spin-polarized systems. As the spinor character of φk is, in
this case, determined by the Pauli spinor χs, either its lower or its upper component
vanishes,

φk=α↑(rrr) =
(

φα↑(rrr)
0

)
φk=α↓(rrr) =

(
0

φα↓(rrr)

)
. (6.2)

8 For an extension of the OPM to excited states see [341], to time-dependent DFT see [342].
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The scalar orbitals φαs of the right-hand side are defined by either (3.9) or (3.93).
In order to distinguish between the bispinor on the left-hand sides of Eq. (6.2) and
the scalar orbitals on the right-hand sides, we will always label the bispinor with the
compact index k (etc) in the following, with the understanding that k ≡ αs.

This allows a unified representation of the KS equations, covering both DFT
and SDFT. If the KS potential vs is understood as the diagonal matrix of the spin-
dependent potentials (3.99),

vs(rrr) =

(
v↑s (rrr) 0

0 v↓s (rrr)

)
, (6.3)

and φk is the bispinor (6.1), the KS equations of both DFT and SDFT can be written
as {

− h̄2∇∇∇2

2m
+ vs(rrr)

}
φk(rrr) = εkφk(rrr) . (6.4)

If the spin-component of k corresponds to spin-up, only the upper component of φk

is nonzero, according to (6.2). Consequently, the matrix-spinor product vsφk reduces
to

vs φk = v↑s φα↑(rrr) ,

so that the KS equations for spin-up emerge (similarly for spin-down).
The nonlocal operator vs may be decomposed in the form

vs(rrr) = v↑s (rrr)P↑ + v↓s (rrr)P↓ , (6.5)

with the aid of the projection operators

P↑ =
(

1 0
0 0

)
= χ↑ χ†

↑ P↓ =
(

0 0
0 1

)
= χ↓ χ†

↓ . (6.6)

Using Pσ , the spin-density can be expressed as

nσ (rrr) = ∑
k

Θkφ †
k (rrr)Pσ φk(rrr) . (6.7)

6.2.2 Direct Functional Derivative

The simplest way to derive the basic equation of the OPM is the transformation of
the functional derivative (3.43) into derivatives with respect to φk and εk, using the
chain rule for functional differentiation [343, 344] (for a general discussion of the
chain rule see Appendix A). In the following we formulate this approach directly
for the more general situation of spin-density functional theory, assuming Exc to be
a functional of the KS orbitals φk and the corresponding eigenvalues εk. At the end
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of the discussion we will then reduce the spin-dependent equations to the limit of
spin-saturated systems.

Relying on the one-to-one correspondence between the set of spin-densities
(n↑,n↓) and the corresponding set of KS potentials (v↑s ,v↓s ), one first obtains

vσ
xc(rrr) =

δExc

δnσ (rrr)
= ∑

σ ′

∫
d3r′

δvσ ′
s (rrr′)

δnσ (rrr)
δExc

δvσ ′
s (rrr′)

. (6.8)

However, for given number of spin-up/down electrons, Nσ =
∫

d3rnσ (rrr), the spin-
density nσ is uniquely determined by vσ

s only, and vice versa. On the one hand,
the solutions φασ of the KS equation (3.98) are completely determined for given
vσ

s , irrespective of the form of the KS potential for the opposite spin. Therefore,
as soon as Nσ is fixed, nσ is fixed. On the other hand, for given nσ the associated
KS potential is fully determined (up to a constant) by virtue of the HK-theorem for
noninteracting systems, vσ

s =−δTs,L[n↑,n↓]/δnσ +μσ , since Ts,L[n↑,n↓], Eq. (3.96),
is additive with respect to spin. In other words: for given Nσ the two spin channels
are completely decoupled in the noninteracting KS system.9,10 As a consequence,
one has

δvσ ′
s (rrr′)

δnσ (rrr)
= δσσ ′

δvσ
s (rrr′)

δnσ (rrr)
, (6.9)

which simplifies Eq. (6.8). In a second step one utilizes the one-to-one correspon-
dence between vσ

s and the associated single-particle states (compare the discussion
following Eq. (3.21)),

vσ
xc(rrr) =

∫
d3r′

δvσ
s (rrr′)

δnσ (rrr) ∑
k

{∫
d3r′′

[
δφ †

k (rrr′′)
δvσ

s (rrr′)
δExc

δφ †
k (rrr′′)

+ c.c.

]

+
δεk

δvσ
s (rrr′)

∂Exc

∂εk

}
. (6.10)

The sum over k is not restricted to occupied states and includes both spin channels.
However, the variational derivative δφ †

k /δvσ
s vanishes if the spin-quantum number

in k is opposite to σ , as will be shown explicitly below. The functional derivative
δExc/δφ †

k is a bispinor. It has the simple form

9 Note that this statement is no longer correct, if only the total number of electrons is specified,
while Nσ is allowed to vary in accordance with N = N↑ +N↓. This is typically the case for infinite
systems for which the magnetic moment results from a minimization of the total energy with
respect to N↑,N↓. In this situation nσ depends on both v↑s and v↓s . Nevertheless, vσ

s is still uniquely
determined by nσ only (up to some constant, as usual).
10 This statement should not be mixed up with the fact that the total KS potentials in the KS
equations for the interacting system are constructed from both spin-channels: for the present task
of replacing functional derivatives via the chain rule only the one-to-one correspondence between
the spin-densities and potentials of the KS system is relevant.
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δExc

δφ †
k=α↑(rrr)

=

⎛
⎝ δExc

δφ ∗
α↑(rrr)
0

⎞
⎠ ;

δExc

δφ †
k=α↓(rrr)

=

⎛
⎝ 0

δExc

δφ ∗
α↓(rrr)

⎞
⎠

in the present situation.
The functional derivative δExc/δnσ has now been expressed in terms of quanti-

ties which can be evaluated: the derivatives δExc/δφk and ∂Exc/∂εk can be calcu-
lated for any explicit expression at hand. For instance, for the exact exchange (4.5)
one finds

δEx

δφ †
k (rrr′)

= −e2Θk ∑
l

Θlφl(rrr′)
∫

d3r
φ †

l (rrr)φk(rrr)
|rrr− rrr′| (6.11)

and ∂Ex/∂εk = 0. The additivity of Ex with respect to spin shows up in (6.11) as
soon as Eq. (6.2) is taken into account.

The derivatives δφ †
k /δvσ

s and δεk/δvσ
s can be evaluated by use of the KS equa-

tion (6.4). An infinitesimal variation δvs of the total KS potential (which corre-
sponds to a diagonal 2×2 matrix in the case of SDFT) induces infinitesimal changes
δφk and δεk of the KS states and eigenvalues, respectively,{

− h̄2∇∇∇2

2m
+ vs(rrr)+δvs(rrr)

}
[φk(rrr)+δφk(rrr)] = [εk +δεk] [φk(rrr)+δφk(rrr)] .

To first order one thus finds{
− h̄2∇∇∇2

2m
+ vs(rrr)− εk

}
δφk(rrr) = [δεk −δvs(rrr)]φk(rrr) . (6.12)

Multiplication by φ †
k (rrr), integration over rrr and use of the unperturbed KS equation

then yield

δεk =
∫

d3r φ †
k (rrr)δvs(rrr)φk(rrr) . (6.13)

Upon insertion into (6.12) one arrives at{
− h̄2∇∇∇2

2m
+ vs(rrr)− εk

}
δφk(rrr) =

[∫
d3r′ φ †

k (rrr′)δvs(rrr′)φk(rrr′)−δvs(rrr)
]

φk(rrr) .

This inhomogeneous differential equation can be solved with the aid of the associ-
ated Green’s function Gk,{

− h̄2∇∇∇2

2m
+ vs(rrr)− εk

}
Gk(rrr,rrr′) = δ (3)(rrr− rrr′)−φk(rrr)φ †

k (rrr′) , (6.14)
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which can be identified as11

Gk(rrr,rrr′) = ∑
l �=k

φl(rrr)φ †
l (rrr′)

εl − εk
. (6.15)

Gk has the obvious symmetry

G†
k(rrr,rrr

′) = Gk(rrr′,rrr) . (6.16)

In terms of the Green’s function, δφk is given by

δφk(rrr) = −
∫

d3r′ Gk(rrr,rrr′)δvs(rrr′)φk(rrr′) . (6.17)

It should be no surprise that Eqs. (6.13) and (6.17) are quite familiar from first order
perturbation theory. By insertion of (6.5) into (6.13), (6.17) one obtains

δφ †
k (rrr)

δvσ
s (rrr′)

= −φ †
k (rrr′)Pσ Gk(rrr′,rrr) (6.18)

δεk

δvσ
s (rrr)

= φ †
k (rrr)Pσ φk(rrr) . (6.19)

It remains to deal with the factor δvσ
s /δnσ . The inverse of this quantity is the

static response function of the KS system,

δnσ (rrr)
δvσ ′

s (rrr′)
≡ χσσ ′

s (rrr,rrr′) . (6.20)

As indicated by its name and notation, χσσ ′
s is related to the density–density

response function (4.67). The discussion of this point is, however, relegated to
Sect. 6.2.4. χσσ ′

s is easily calculated by insertion of (6.18) and its hermitian con-

11 A closer look at the expression (6.15) exhibits that Gk contains contributions from both spins.
With the explicit form of the quantum number k, k = αs, one finds in the case of SDFT,

Gαs(rrr,rrr′) = ∑
s′

∑
β

β �=α if s′=s

φβ s′ (rrr)φ †
β s′(rrr

′)

εβ s′ − εαs

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑
β

β �=α if s=↑

φβ↑(rrr)φ ∗
β↑(rrr

′)
εβ↑ − εαs

0

0 ∑
β

β �=α if s=↓

φβ↓(rrr)φ ∗
β↓(rrr

′)
εβ↓ − εαs

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The contribution to Gαs combining eigenvalues from both spin channels is a result of the particular
notation chosen, which covers spin-saturated and spin-polarized systems at the same time. It drops
out of all relevant formulae.
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jugate into (6.7),

χσσ ′
s (rrr,rrr′) = −∑

k

Θkφ †
k (rrr)Pσ Gk(rrr,rrr′)Pσ ′φk(rrr′)+ c.c. . (6.21)

χσσ ′
s is diagonal in spin, as can be shown by use of Eqs. (6.2) and (6.6),

χσσ ′
s (rrr,rrr′) = −δσσ ′ ∑

α
Θασ φ ∗

ασ (rrr)Gασ (rrr,rrr′)φασ (rrr′)+ c.c. . (6.22)

Insertion of Gk into (6.21) allows the derivation of an alternative form for χσσ ′
s .

Splitting the summation over all states l �= k in Gk into contributions from occupied
and unoccupied states, one arrives at

χσσ ′
s (rrr,rrr′) = − ∑

kl;l �=k

ΘkΘl φ †
k (rrr)Pσ

φl(rrr)φ †
l (rrr′)

εl − εk
Pσ ′φk(rrr′)+ c.c.

−∑
k

Θk ∑
l

(1−Θl)φ †
k (rrr)Pσ

φl(rrr)φ †
l (rrr′)

εl − εk
Pσ ′φk(rrr′)+ c.c. .

The first term on the right-hand side vanishes, as can be shown by interchanging the
indices k and l in the c.c. term,

c.c. = − ∑
kl;l �=k

ΘkΘlφ †
l (rrr′)Pσ ′

φk(rrr′)φ †
k (rrr)

εk − εl
Pσ φl(rrr) .

One thus finds

χσσ ′
s (rrr,rrr′) = −∑

kl

Θk(1−Θl)
φ †

k (rrr)Pσ φl(rrr)φ †
l (rrr′)Pσ ′φk(rrr′)

εl − εk
+ c.c. , (6.23)

which is often more useful than (6.21) in actual calculations.
If one multiplies Eq. (6.10) by χσσ

s (rrr,rrr′′′), integrates over rrr, and uses

∫
d3r

δnσ (rrr)
δvσ

s (rrr′′′)
δvσ

s (rrr′)
δnσ (rrr)

= δ (3)(rrr′′′ − rrr′)

as well as the symmetry of the response function (6.21),

χσσ
s (rrr′′′,rrr) = χσσ

s (rrr,rrr′′′) ,

one ends up with an integral equation for vσ
xc,∫

d3r′ χσσ
s (rrr,rrr′)vσ

xc(rrr
′) = Λ σ

xc(rrr) , (6.24)

with the inhomogeneity given by
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Λ σ
xc(rrr) = −∑

k

∫
d3r′

[
φ †

k (rrr)Pσ Gk(rrr,rrr′)
δExc

δφ †
k (rrr′)

+ c.c.

]

+∑
k

φ †
k (rrr)Pσ φk(rrr)

∂Exc

∂εk
. (6.25)

The xc-potential is spin-independent in the case of spin-saturated systems. Summing
(6.24) over both spins, one finds∫

d3r′ χs(rrr,rrr′)vxc(rrr′) = Λxc(rrr) , (6.26)

where χs denotes the complete static KS response function,

χs(rrr,rrr′) = ∑
σ

χσσ
s (rrr,rrr′) = −∑

k

Θkφ †
k (rrr)Gk(rrr,rrr′)φk(rrr′)+ c.c. , (6.27)

and the inhomogeneity is given by

Λxc(rrr) = ∑
k

{
−

∫
d3r′

[
φ †

k (rrr)Gk(rrr,rrr′)
δExc

δφ †
k (rrr′)

+ c.c.

]
+ |φk(rrr)|2 ∂Exc

∂εk

}
.

(6.28)
From now on we will no longer distinguish between Eq. (6.26) and its spin-
dependent counterpart (6.24)—for brevity, the subsequent discussion will be re-
stricted to the spin-saturated formalism.

Equation (6.26), termed the OPM integral equation, is the central equation of the
OPM. It allows the calculation of the multiplicative xc-potential for a given orbital-
and eigenvalue-dependent functional Exc, as soon as all φk and εk are available. As
Eq. (6.26) is linear in Exc, each of the components of Exc can be treated separately.

Each cycle of a selfconsistent KS calculation consists of two steps, (i) the solution
of the differential equations (3.44) for given vs, and (ii) the determination of this vs

for given KS orbitals. Step (ii) includes the evaluation of the xc-potential. In the
case of an LDA or GGA potential one calculates the density and its derivatives and
inserts these quantities into a given analytical formula. In the OPM the solution of
Eq. (6.26) replaces this simple insertion of n into a functional.

6.2.3 Total Energy Minimization

The physics behind the OPM integral equation becomes more transparent in the sec-
ond derivation of Eq. (6.26). This alternative approach, which constitutes the orig-
inal derivation of the OPM [124, 125], relies on energy minimization. The starting
point is a total energy functional expressed in terms of the KS orbitals and eigen-
values, E[φk,εk]. As the Hohenberg-Kohn theorem for noninteracting particles guar-
antees that there is a unique relation between n and vs, the standard minimization
of the total energy E with respect to n can be substituted by a minimization with
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respect to vs,

0 =
δE[φk,εk]

δvs(rrr)
(6.29)

(for fixed particle number). The derivative (6.29) can be handled in the same fashion
as in (6.10),

δE[φk,εk]
δvs(rrr)

= ∑
k

{∫
d3r′

[
δφ †

k (rrr′)
δvs(rrr)

δE

δφ †
k (rrr′)

+ c.c.

]
+

δεk

δvs(rrr)
∂E
∂εk

}
. (6.30)

In addition to the ingredients which are already known from the previous section,
Eq. (6.30) contains the functional derivatives of E with respect to φk and εk, which
can be evaluated from Eqs. (3.21), (3.24)–(3.26),

δE

δφ †
k (rrr)

= Θk

[
− h̄2∇∇∇2

2m
+ vext(rrr)+ vH(rrr)

]
φk(rrr)+

δExc

δφ †
k (rrr)

(6.31)

∂E
∂εk

=
∂Exc

∂εk
. (6.32)

One can now use the KS equations to rewrite δE/δφ †
k ,

δE

δφ †
k (rrr)

= Θk [εk − vxc(rrr)]φk(rrr)+
δExc

δφ †
k (rrr)

. (6.33)

Insertion of the unpolarized forms of (6.18), (6.19) as well as of (6.32), (6.33) into
(6.30) leads to

0 = ∑
k

∫
d3r′

[
φ †

k (rrr)Gk(rrr,rrr′)

(
Θkφk(rrr′)

(
vxc(rrr′)− εk

)
+

δExc

δφ †
k (rrr′)

)
+ c.c.

]

+∑
k

|φk(rrr)|2 ∂Exc

∂εk
. (6.34)

After identification of the various components of χs and Λxc, which show up in
Eq. (6.34), as well as use of the orthogonality relation∫

d3r φ †
k (rrr)Gk(rrr,rrr′) =

∫
d3r′ Gk(rrr,rrr′)φk(rrr′) = 0 (6.35)

(which is easily proven by insertion of Eq. (6.15)) one again obtains the OPM inte-
gral equation (6.26).

This derivation seems to indicate that the x-only limit of the OPM is identical
with the HF approach, as the total energy functional E[φk,εk] formally agrees with
the HF energy functional in this limit. The HF approach corresponds, however, to a
free minimization of the total energy functional with respect to φk and εk. Equation
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(6.29), on the other hand, is not equivalent to a free minimization of E: rather the
φk and εk have to satisfy the KS equations with their multiplicative total potential.
This requirement represents a subsidiary condition for the minimization of E, which
is actually implemented into the OPM equation via Eq. (6.33). This point will be
addressed further from a quantitative point of view in Sect. 6.3.

6.2.4 Invariance of Density

The starting point of the third derivation of the OPM integral equation is the equal-
ity of the KS density ns with the density n of the interacting system [102, 345],
Eq. (3.23),

0 = ns(rrr)−n(rrr) . (6.36)

Note that the relation (6.36) relies on the complete framework of the Hohenberg-
Kohn and KS formalism. In particular, it implies the application of the minimum
principle for the total ground state energy. This statement provides the link between
(6.36) and the arguments of Sects. 6.2.2 and 6.2.3.

The interacting density n can be expressed in terms of the 1-particle Green’s
function (3.118) of the interacting system. Similarly, ns can be expressed in terms
of the Green’s function Gs of the noninteracting KS system, Eq. (4.71). Gs has the
form (3.124), if φk and εk are understood as the KS states and eigenvalues. In both
cases the densities are obtained by taking the appropriate limit t ′ → t (compare
Eqs. (3.106), (3.122)),

0 = −i tr
{

Gs(rrrt,rrrt+)−G(rrrt,rrrt+)
}

. (6.37)

As usual, t+ indicates an infinitesimal positive time-shift of t, i.e.

f (t+) ≡ lim
ε→0

f (t + |ε|) .

The interacting Green’s function obeys the Dyson equation (3.123),

G(1,2) = G0(1,2)+
∫

d3d4G0(1,3)Σ(3,4)G(4,2) , (6.38)

where the (Harvard) notation

k ≡ (rrrktk) (6.39)∫
d3 ≡

∫
d3r3

∫
dt3 (6.40)

δ (3,4) ≡ δ (3)(rrr3 − rrr4)δ (t3 − t4) (6.41)

has been used. G0 represents the Green’s function of electrons which experience the
external potential vext, but do not interact, Σ is the full self-energy of the interacting
system, which may be split into an xc- and a Hartree contribution,
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Σ(3,4) = Σxc(3,4)+
1
h̄

δ (3,4)vH(rrr3) . (6.42)

On the other hand, the KS (single-particle) Green’s function satisfies a Dyson equa-
tion in which the self-energy is simply given by vH + vxc,

Gs(1,2) = G0(1,2)+
1
h̄

∫
d3d4G0(1,3)δ (3,4)[vH(rrr3)+ vxc(rrr3)]Gs(4,2) . (6.43)

If one now subtracts Eqs. (6.38) and (6.43) from each other, one finds a relation
between G and Gs,

G(1,2) = Gs(1,2)+
∫

d3d4Gs(1,3)
{

Σxc(3,4)− 1
h̄

δ (3,4)vxc(rrr3)
}

G(4,2) .

(6.44)
Equation (6.44) is a Dyson equation, whose irreducible kernel is given by the differ-
ence between the full self-energy and the KS self-energy. Upon insertion of (6.44)
into (6.37) one obtains

0 = −i tr
∫

d3d4Gs(1,3)
[

Σxc(3,4)− 1
h̄

δ (3,4)vxc(rrr3)
]

G(4,1+) . (6.45)

Equation (6.45), referred to as the Sham–Schlüter equation, is a complicated in-
tegral equation connecting the KS Green’s function, the xc-component of the full
self-energy, the xc-potential and the full Green’s function. Does this relation have
anything to do with the OPM equation (6.26)?

The first step towards an answer to this question is provided by repeated applica-
tion of the Dyson equation (6.44). After insertion of (6.44) the leading term in (6.45)
contains the product of Gs(1,3) with Gs(4,1). Partial evaluation of the 4-integration
then yields,∫

d3r3

∫
dt3 χs(1,3)vxc(rrr3)

= −i tr
∫

d3d4Gs(1,3)Σxc(3,4)Gs(4,1+)

−i tr
∫

d3d4Gs(1,3)
[

Σxc(3,4)− 1
h̄

δ (3,4)vxc(rrr3)
]

×
∫

d5d6Gs(4,5)
[

Σxc(5,6)− 1
h̄

δ (5,6)vxc(rrr5)
]

G(6,1+) , (6.46)

where the time-ordered KS response function (4.67),

χs(1,3) = − i
h̄

tr
[
Gs(1,3)Gs(3,1)

]
(6.47)

has been introduced in order to make the similarity of (6.46) with (6.26) more ap-
parent. In fact, the left-hand side of Eq. (6.46) is identical with the corresponding
term of the OPM equation, if one performs the dt3 integration and identifies the
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static response function (zero-frequency limit of the Fourier transform of χs(1,3)),∫
dt3 χs(1,3) =

∫
dt3 χs(rrr1,rrr3, t1 − t3) = χs(rrr1,rrr3,ω = 0) ≡ χs(rrr1,rrr3) . (6.48)

The identity of (6.48) with (6.27) can be verified explicitly via the Lehmann repre-
sentation (4.68). For ω = 0 the pole shifts in (4.68) are no longer relevant, so that
one ends up exactly with the form of χs given in Eqs. (6.27), (6.23).

On the other hand, the right-hand side of Eq. (6.46) is still different from the
inhomogeneity (6.28). In fact, the right-hand side depends on vxc itself, so that (6.46)
represents a nonlinear integral equation for vxc.

In order to explain the difference between Eqs. (6.46) and (6.26), one has to re-
member that an arbitrary, orbital-dependent Exc has been assumed in the discussion
of Sects. 6.2.2 and 6.2.3, i.e. the form of Exc has not been specified beyond the fact
that it depends on the φk and εk. The starting point (6.36) of the present approach,
together with the application of the Dyson equation for both the KS and the interact-
ing system, automatically implies the use of the exact Exc. In order to make closer
contact between the first two and the third derivation of the OPM equation, one has
to insert the exact Exc, studied in Sect. 4.2.1, into the OPM equation (6.26).

The comparison of Eq. (6.46) with Eq. (6.26) is rather straightforward in the x-
only limit, which corresponds to a lowest order expansion of Exc in powers of the
coupling constant e2. In this limit Eq. (6.46) reduces to∫

d3r3 χs(rrr1,rrr3)vx(rrr3) = −i tr
∫

d3d4Gs(1,3)Σx(3,4)Gs(4,1+) ,

since each factor of Σxc or vxc introduces an additional factor of e2 on the right-
hand side of (6.46). Insertion of the exchange contribution Σx to the full self-energy,
i.e. the standard 1-loop self-energy (3.125), leads to the exchange-only limit of
Eq. (6.26), which is obtained by insertion of (6.11) into the inhomogeneity (6.28).
This demonstrates explicitly that the Sham-Schlüter equation (6.46) agrees with the
standard OPM equation in the x-only limit.

The situation is much more complicated for the correlation contribution. A de-
tailed verification of the identity of (6.46) and (6.26) to all orders in e2 is not
available to date. Such a comparison is hampered by the fact that the exact Exc

in Eq. (4.65) not only depends on φk and εk via the Green’s function (4.71), but also
on its functional derivative vxc. On the one hand, this is exactly what is required in
view of the structure of the right-hand side of (6.46), which also depends on vxc.
On the other hand, the vxc-dependence implies that the derivative δExc/δφ †

k on the
right-hand side of (6.28) includes contributions from δvxc/δφ †

k , which can only be
handled within an expansion in powers of e2 (see Sect. 6.4.1). Nevertheless, there
can be little doubt about the general agreement of (6.46) and (6.26).
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6.2.5 Exact Relations Based on OPM Integral Equation

Before investigating the properties of orbital-dependent xc-functionals from a quan-
titative point of view, it seems worthwhile to list a few exact relations, which emerge
from an analysis of the OPM integral equation. One first of all recognizes that the
OPM equation determines vxc only up to an additive constant. In fact, as norm-
conservation, i.e. Eq. (6.35), requires∫

d3r χs(rrr,rrr′) =
∫

d3r′ χs(rrr,rrr′) = 0 , (6.49)

one can add any constant to vxc without altering the left-hand side of Eq. (6.26). The
same is true for the individual spin channels in the case of SDFT, i.e. of Eq. (6.24).
One therefore has to ensure the explicit normalization of vxc in the process of solving
the OPM equation.

For finite systems one usually requires vxc to vanish asymptotically,

lim
|rrr|→∞

vxc(rrr) = 0 . (6.50)

Let us therefore examine the solution of (6.26) for finite systems, with the aim to
extract the behavior of vxc for large |rrr|.

One starts with (6.34),

0 = ∑
k

∫
d3r′

{
φ †

k (rrr)Gk(rrr,rrr′)

[
Θkvxc(rrr′)φk(rrr′)− δExc

δφ †
k (rrr′)

]
+ c.c.

}

+∑
k

|φk(rrr)|2 ∂Exc

∂εk
. (6.51)

Further analysis of (6.51) requires a specification of the eigenvalue-dependence of Exc and thus of
the form of the correlation contribution to Exc. The discussion of (6.51) for large |rrr| will, therefore,
be restricted to the x-only limit. In addition, we assume the energetically highest occupied KS state
φh to be nondegenerate. This implies that all other occupied states decay exponentially faster than
φh, while φh decays exponentially faster than all unoccupied states.12 Insertion of Gk and (6.11)
into (6.51) gives

0 = ∑
kl;l �=k

Θk

∫
d3r′ φ †

k (rrr)
φl(rrr)φ †

l (rrr′)
εl − εk

Fk(rrr′)+ c.c. , (6.52)

with the abbreviation

12 It is sometimes helpful to think of finite systems as being enclosed in a large box or spherical
cavity of radius R, with hard-wall boundary conditions applied at the surface of the box or cavity
[346], in order to simplify the discussion of positive energy states. In this situation all KS states
vanish on the surface, so that at first glance the following arguments, based on exponential sup-
pression, appear to be incorrect. However, the behavior of bound, i.e. negative energy, states is
essentially unaffected by the boundary conditions at R in an extended region between the finite
system and the surface, as long as R is sufficiently large. For systems enclosed in a box the argu-
ments given in this section therefore apply to this intermediate range of large rrr, which are not yet
close to the surface.
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Fk(rrr′) = vx(rrr′)φk(rrr′)+ e2 ∑
j

Θ jφ j(rrr′)
∫

d3r′′
φ †

j (rrr
′′)φk(rrr′′)

|rrr′′ − rrr′| . (6.53)

In analogy to the derivation of Eq. (6.23), the sum over l can be split into two parts,

0 = ∑
kl;l �=k

ΘkΘl
φ †

k (rrr)φl(rrr)
εl − εk

∫
d3r′ φ †

l (rrr′)Fk(rrr′)+ c.c.

+∑
k

Θk ∑
l

(1−Θl)
φ †

k (rrr)φl(rrr)
εl − εk

∫
d3r′ φ †

l (rrr′)Fk(rrr′)+ c.c. . (6.54)

For very large |rrr| both expressions are dominated by the contributions of the highest occupied
orbital. This statement is easily verified for the first line. In the first expression the sum over l
is restricted to occupied states, so that the most weakly decaying pair φ †

k (rrr)φl(rrr) is obtained if
either k = h and l = h− 1 or vice versa. The analysis is somewhat more involved for the second
line. In this expression all φ †

k (rrr) are multiplied by an infinite series of unoccupied φl(rrr). In order
to conclude that the term k = h dominates the second line one thus has to make sure that the
summation over all unoccupied φl(rrr) does not lead to an exponential suppression of the term with
k = h relative to energetically lower states k. To this aim, let us examine the coefficient associated
with an individual pair φ †

k (rrr)φl(rrr),

akl =
1

εl − εk

∫
d3r′

[
φ †

l (rrr′)vx(rrr′)φk(rrr′)+ e2 ∑
j

Θ j

∫
d3r′′

φ †
l (rrr′)φ j(rrr′)φ †

j (rrr
′′)φk(rrr′′)

|rrr′′ − rrr′|

]
.

For a given l, akl becomes the larger, the less localized φk(rrr) is. This is immediately obvious for
the first contribution, as the degree of localization is reduced the higher the energy of a state is—
unoccupied states are always less localized than occupied ones, so that the overlap of φ †

l (rrr′) and
φk(rrr′) is maximized for the least localized φk, i.e. for k = h. In the second term the overlap be-
tween φ †

l (rrr′) and φ j(rrr′) is maximal for j = h. Simultaneous maximization of the overlap of the

second pair involved, φ †
j (rrr

′′) and φk(rrr′′), then requires k = h. This overlap argument is particularly
applicable to the completely delocalized high energy states. Consequently, in the second line of
Eq. (6.54) the term with k = h dominates asymptotically for each individual l, so that the summa-
tion over l cannot compensate differences in the asymptotic decay of the φk(rrr). The most weakly
decaying contribution to (6.54) is obtained for k = h—all other terms are suppressed exponentially.

Moreover, the combination φ †
h (rrr)φh−1(rrr), which dominates the first line of Eq. (6.54), always

decays faster than φ †
h (rrr)φl(rrr), if l is an unoccupied level. For large |rrr|, Eq. (6.54) thus reduces to

0 = φ †
h (rrr)

∫
d3r′ ∑

l

(1−Θl)
φl(rrr)φ †

l (rrr′)
εl − εh

Fh(rrr′)+ c.c. . (6.55)

At this point one can use the fact that all discrete states can be chosen to be real. In addition, all
the bispinors φk have only one non-vanishing component,

φ †
h φl = φ ∗

αs φβ s′δss′ if h = αs, l = β s′ .

One can thus divide Eq. (6.55) by the non-vanishing component of φh(rrr),

0 = ∑
l

(1−Θl)
φl(rrr)

εl − εh

∫
d3r′ φ †

l (rrr′)Fh(rrr′)+ c.c. ,

with the understanding that this relation only holds for that bispinor component of φl which is
projected out by φh. If one applies the operator
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− h̄2∇∇∇2

2m
+ vs(rrr)− εh

to this equation, one arrives at

0 = ∑
l

(1−Θl)φl(rrr)
∫

d3r′ φ †
l (rrr′)Fh(rrr′)+ c.c.

= Fh(rrr)−∑
l

Θlφl(rrr)
∫

d3r′ φ †
l (rrr′)Fh(rrr′)+ c.c. ,

where the completeness relation has been used to obtain the second line. Both contributions of the
second line are real, so that the c.c. term can be dropped. Asymptotically, the second expression is
dominated by the state l = h, all other terms are suppressed exponentially,

0 = Fh(rrr)−φh(rrr)
∫

d3r′ φ †
h (rrr′)Fh(rrr′) . (6.56)

Equation (6.56) allows to establish two important relations. As Fh(rrr) decays
faster than φh(rrr) (provided the normalization (6.50) is used), the asymptotically
leading term in (6.56) yields an identity for the highest occupied KS state (the
Krieger-Li-Iafrate identity) [347],

∫
d3r vx(rrr)|φh(rrr)|2 = −e2 ∑

j
Θ j

∫
d3r

∫
d3r′

φ †
h (rrr)φ j(rrr)φ †

j (rrr
′)φh(rrr′)

|rrr− rrr′| . (6.57)

The next to leading order term in (6.56) constrains the asymptotic behavior of vx,

Fh(rrr) −−−→|rrr|→∞
0 =⇒ vx(rrr) −−−→

|rrr|→∞
−e2

∫
d3r′

|φh(rrr′)|2
|rrr− rrr′| −−−→

|rrr|→∞
− e2

|rrr| , (6.58)

so that one ultimately ends up with Eq. (4.20).13 Equation (6.58) explicitly confirms
the earlier statements concerning the physical origin of the limit (4.20) (compare
Sect. 4.1). The present discussion is easily extended to Eq. (6.24), so that Eq. (6.58)
also applies to the individual spin channels.

Both Eqs. (6.57) and (6.58) allow an unambiguous normalization of vx in the
case of finite, non-degenerate systems. An analogous, though more complicated,
statement is available for vc [348]. It is clear from the physical background of (6.58)
that (4.20) also applies to degenerate KS systems. For solids, on the other hand, it is
more convenient to fix the average of vxc in the unit cell. The precise value of this
average is irrelevant for non-magnetic systems. In the case of spin-polarized solids,
however, the normalization of vxc is intrinsically related to the magnetic moment in
the unit cell, i.e. to the relative occupation of spin-up and spin-down bands. In this
case, the correct ground state is obtained by minimization of the total energy with
respect to the pair of spin-up and spin-down averages of vxc.

One further limit of (6.26) appears to be worth a comment. If there is only one
occupied orbital (k = h) for each spin, the x-only limit of Eq. (6.26) reads

13 Equation (6.58) has originally been proven for closed-subshell (spherical) atoms, using an alter-
native approach for the discussion of Gk [125].
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φ †
h (rrr)

∫
d3r′ Gh(rrr,rrr′)φh(rrr′)

[
vx(rrr′)+ e2

∫
d3r′′

φ †
h (rrr′′)φh(rrr′′)
|rrr′′ − rrr′|

]
+ c.c. = 0 .

One easily identifies

vx(rrr) = −e2
∫

d3r′
|φh(rrr′)|2
|rrr′ − rrr| = −e2

2

∫
d3r′

n(rrr′)
|rrr′ − rrr|

as the solution of the OPM integral equation for spin-saturated two-electron sys-
tems, in perfect agreement with Eq. (4.22). For these systems the exchange potential
just eliminates the self-interaction of the electrons, but does not include any Pauli
repulsion among equal spins.

The next point to be discussed at this stage is an exact property of Ec. In order to
derive this relation, we assume the KS system to have a completely discrete spec-
trum, i.e. all eigenstates φk to be normalizable. If required, this may be ensured by
enclosing the finite system in a very large box [346, 349]. Integration of (6.51) over
rrr and use of (6.35) then yields [350]

∑
k

δExc

δεk
= 0 . (6.59)

The sum rule (6.59) is automatically satisfied as long as Exc only depends on eigen-
value differences,

Exc = ∑
ln

Eln(εl − εn)

=⇒ ∑
k

∂Exc

∂εk
= ∑

k
∑
ln

∂Eln(ε)
∂ε

∣∣∣∣
ε=εl−εn

(δkl −δkn) = 0 . (6.60)

All first-principles approximations for Ec discussed so far in the literature (see be-
low), have the form (6.60).

Finally, it seems worthwhile to demonstrate that the OPM yields the conventional
functional derivative vxc = δExc/δn, if Exc depends explicitly on the density. In this
case Eq. (6.26) reduces to

∫
d3r′ χs(rrr,rrr′)vxc(rrr′) = −∑

k

∫
d3r′ φ †

k (rrr)Gk(rrr,rrr′)
δExc[n]
δφ †

k (rrr′)
+ c.c.

= −∑
k

∫
d3r′ φ †

k (rrr)Gk(rrr,rrr′)φk(rrr′)
δExc[n]
δn(rrr′)

+ c.c.

=
∫

d3r′ χs(rrr,rrr′)
δExc[n]
δn(rrr′)

.

If one now multiplies both sides by χ−1
s , one recovers the original definition of vxc.
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6.2.6 Krieger-Li-Iafrate Approximation (KLI)

One has now reached the point at which it is clear that, as a matter of principle,
orbital-dependent functionals can be handled in a fashion consistent with the spirit
of DFT. Moreover, the subsequent sections will show that the OPM integral equa-
tion can also be solved in practice. However, in view of the complicated structure of
Eqs. (6.26), (6.28) and, in particular, of Eq. (6.45), the question concerning the effi-
ciency of the OPM scheme arises quite naturally. The answer obviously depends on
the system under consideration and on the numerical implementation of the OPM
chosen. Nevertheless, as a rule of thumb, one can say that OPM calculations are
essentially one or two orders of magnitude more involved than corresponding GGA
calculations. Consequently, an approximate (semi-analytical) solution of the OPM
integral equation is of definitive interest.

The main reason for the demanding nature of the OPM is the presence of the
Green’s function (6.15) both in the response function (6.27) and in the inhomogene-
ity (6.28). The Green’s function depends on the complete KS spectrum and not just
on the occupied states. A full solution of (6.26) therefore requires the evaluation
and, perhaps, the storage of all occupied and unoccupied KS states.

One way to circumvent the explicit evaluation of unoccupied states is an approx-
imate procedure that has been suggested by Krieger, Li and Iafrate (KLI) [351]. The
idea is to use a closure approximation (also called common energy denominator ap-
proximation) for the Green’s function, i.e. to approximate the eigenvalue difference
in the denominator of (6.15) by some average Δε [124, 351],

Gk(rrr,rrr′) ≈ ∑
l �=k

φl(rrr)φ †
l (rrr′)

Δε
=

δ (3)(rrr− rrr′)−φk(rrr)φ †
k (rrr′)

Δε
. (6.61)

Insertion into the OPM integral equation leads to

vav
xc(rrr) =

1
2n(rrr) ∑

k

{[
φ †

k (rrr)
δExc

δφ †
k (rrr)

+ c.c.

]
+ |φk(rrr)|2

[
Δvk −Δε

∂Exc

∂εk

]}

Δvk =
∫

d3r

{
Θk|φk(rrr)|2vav

xc(rrr)−φ †
k (rrr)

δExc

δφ †
k (rrr)

}
+ c.c. . (6.62)

This approximation is completely unambiguous as soon as Exc is independent of εk.
On the other hand, the presence of ∂Exc/∂εk introduces a new energy scale in the
case of eigenvalue-dependent Exc (via Δε). Given the basic concept of the closure
approximation, it is obvious that this term should be neglected. The consequences
of this step have been investigated in detail for the relativistic exchange [350] (see
Chap. 8). In this case neglect of the ∂Exc/∂εk-contribution represents an excellent
approximation. One should note, however, that the relativistic exchange depends
only weakly on the eigenvalues εk, unlike orbital-dependent correlation functionals
(compare Sect. 6.5). In any case, no systematic scheme for the specification of Δε
has been suggested so far. The KLI approximation is thus always understood to
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imply neglect of the ∂Exc/∂εk-term,

vKLI
xc (rrr) =

1
2n(rrr) ∑

k

{[
φ †

k (rrr)
δExc

δφ †
k (rrr)

+ c.c.

]
+ |φk(rrr)|2ΔvKLI

k

}
. (6.63)

A careful look at Eqs. (6.62), (6.63) shows that one has not yet found a full
resolution of the problem, as vKLI

xc appears both on the left-hand and on the right-
hand side of (6.63). Fortunately, one can recast Eqs. (6.62), (6.63) as a set of linear
equations which allow the determination of ΔvKLI

k without prior knowledge of vKLI
xc

[351]. This provides an analytical solution of the integral equation (6.63). Alterna-
tively, one can iterate Eqs. (6.62), (6.63) until self-consistency, starting with some
approximation for ΔvKLI

k , e.g. obtained from the LDA.
When applied to the exact exchange, a calculation with the KLI method is as

efficient as a Hartree-Fock calculation, and often only slightly less efficient than a
GGA calculation. At this point one should nevertheless keep in mind that the KLI
approximation only speeds up the calculation of Gk, but not that of the other ingre-
dients of the OPM equation. The most time-consuming step in a KLI calculation
is usually the evaluation of δExc/δφ †

k : as soon as the exact exchange is used, the
evaluation of Slater integrals is required, which is generally more time consuming
than the calculation of density gradients.

The KLI approximation preserves both the identity (6.57) and the exact asymp-
totic behavior of vx for finite systems, Eq. (6.58). It is exact for spin-saturated two-
electron systems, i.e. it also satisfies Eq. (4.22).

A variant of the KLI approximation within the x-only limit is the so-called local-
ized HF approximation (LHF) [352, 328]. Its derivation is based on the assumption
that the HF and the x-only DFT ground state orbitals (resulting from the multi-
plicative LHF potential) are identical. Subtraction of the total HF and x-only DFT
energies, using this assumption, leads to the following expression for the exchange
potential,

vLHF
x (rrr) =

1
2n(rrr)

{
∑
k

[∫
d3r′ φ †

k (rrr)vHF
x (rrr,rrr′)φk(rrr′)+ c.c.

]

+∑
kl

ΘkΘl φ †
k (rrr)φl(rrr)Δvkl

}
(6.64)

Δvkl =
∫

d3r
∫

d3r′ φ †
k (rrr)

{
vLHF

x (rrr)δ (3)(rrr− rrr′)− vHF
x (rrr,rrr′)

}
φl(rrr′)+ c.c.

vHF
x (rrr,rrr′) = −e2 ∑

m
Θm

φm(rrr)φ †
m(rrr′)

|rrr− rrr′| . (6.65)

The KLI approximation is obtained from this result by neglect of the off-diagonal
terms,

Δvkl −→ Δvkk δkl .

Quantitatively one finds only limited differences between KLI and LHF results
[352].
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6.2.7 OPM in Case of Degeneracy

In the derivation of the OPM integral equation we have so far assumed that the KS
states are non-degenerate. We now consider the situation in which some symmetry
of the system leads to degenerate KS states. These states will be denoted by φkν in
the following, where k identifies all KS energy levels and ν distinguishes the KS
states within the degenerate subspaces,{

− h̄2∇∇∇2

2m
+ vs(rrr)

}
φkν(rrr) = εkφkν(rrr) . (6.66)

The functions φkν are assumed to be orthonormal,∫
d3r φ †

kν(rrr)φlρ(rrr) = δkl δνρ . (6.67)

Our derivation of the associated OPM equation follows the line of Sect. 6.2.2. The
discussion is restricted to the spin-saturated situation.

In order to evaluate δφkν/δvs, one introduces a perturbation, in analogy to
Eq. (6.12). In general, the perturbation δvs will lift the degeneracy of the unper-
turbed states. In the present situation, however, one is only interested in symmetry-
preserving perturbations, as the resulting potential is to be used in a self-consistent
calculation. The perturbed states can therefore be characterized by the same quan-
tum numbers as the unperturbed states. To first order in the symmetry-preserving
δvs one has{

− h̄2∇∇∇2

2m
+ vs(rrr)− εk

}
δφkν(rrr) = [δεk −δvs(rrr)]φkν(rrr) . (6.68)

Multiplication by φ †
kρ(rrr), integration over rrr and use of (6.66) allow the determina-

tion of the eigenvalue shifts,

δεk δνρ =
∫

d3r φ †
kρ(rrr)δvs(rrr)φkν(rrr) . (6.69)

Upon insertion into (6.68) one arrives at{
− h̄2∇∇∇2

2m
+ vs(rrr)− εk

}
δφkν(rrr)

=
[∫

d3r′ φ †
kν(rrr′)δvs(rrr′)φkν(rrr′)−δvs(rrr)

]
φkν(rrr) .

This differential equation can be solved via a suitably redefined Green’s function
Gk,



6.2 Derivation of OPM Integral Equation 251{
− h̄2∇∇∇2

2m
+ vs(rrr)− εk

}
Gk(rrr,rrr′) = δ (3)(rrr− rrr′)−∑

ν
φkν(rrr)φ †

kν(rrr′) (6.70)

Gk(rrr,rrr′) = ∑
l �=k

∑
ρ

φlρ(rrr)φ †
lρ(rrr′)

εl − εk
. (6.71)

Utilizing (6.69) and (6.70), δφkν is given by

δφkν(rrr) = −
∫

d3r′ Gk(rrr,rrr′)δvs(rrr′)φkν(rrr′) . (6.72)

At first glance, Eqs. (6.69), (6.72) are very similar to their non-degenerate counter-
parts (6.13), (6.17). However, the point to be noted is that δvs(rrr) can no longer be
varied arbitrarily: rather, the variation has to preserve the symmetry, which has to
be taken into account when performing the functional derivative.

One has basically two options to implement this constraint. The first is the direct
use of a form of δvs(rrr) relevant for the problem under investigation. For instance,
in the case of spherically symmetric systems δvs(rrr) just depends on |rrr|, so that the
angular coordinates can be integrated out in both (6.69) and (6.72). In this case the
functional derivative determining the OPM equation is a derivative with respect to
the spherically symmetric potential δvs(|rrr|), leading to an integral equation in the
variable |rrr|.

Alternatively, one may resort to an explicit symmetrization of an unconstrained
variation,

δF [vs]
δvs(rrr)

= lim
ε→0

1
ε

{
F

[
vs(rrr′)+

ε
h ∑

R
P̂R(rrr)δ (3)(rrr− rrr′)

]
−F

[
vs(rrr′)

]}
, (6.73)

where P̂R denotes the symmetry operators which commute with the KS Hamiltonian,[
P̂R, ĤKS

]
= 0 ∀ R , (6.74)

and the sum over R runs over all h elements of the symmetry group of ĤKS. Using
(6.73) in Eqs. (6.69), (6.72), the functional derivative can be implemented as an
unconstrained 3-dimensional variation of δvs(rrr), which leads to

δφ †
kν(rrr′)

δvs(rrr)
= − 1

h ∑
R

P̂R(rrr)φ †
kν(rrr)Gk(rrr,rrr′) (6.75)

δεk

δvs(rrr)
=

1
h ∑

R
P̂R(rrr)φ †

kν(rrr)φkν(rrr) . (6.76)

The ν-dependence of the right-hand side of Eq. (6.76) is eliminated automatically
by the sum over R (see below). One can now proceed as in Sect. 6.2.2 and derive an
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OPM equation of the form (6.26) with the ingredients14

χs(rrr,rrr′) = −1
h ∑

R
P̂R(rrr)∑

kν
Θkφ †

kν(rrr)Gk(rrr,rrr′)φkν(rrr′)+ c.c. (6.77)

Λxc(rrr) =
1
h ∑

R
P̂R(rrr)∑

kν

{
−

∫
d3r′

[
φ †

kν(rrr)Gk(rrr,rrr′)
δExc

δφ †
kν(rrr′)

+ c.c.

]

+ |φkν(rrr)|2 ∂Exc

∂εk

}
. (6.78)

In both expressions the symmetrization is applied to a product of two KS orbitals,
once Eq. (6.71) is utilized for Gk. The symmetrization can be carried through more
explicitly, if the quantum numbers of the KS states are chosen according to the
irreducible representations of the group of ĤKS,

φkν(rrr) −→ φaαν(rrr) ,

where α denotes the irreducible representations and a represents the remaining
quantum number(s). One can now utilize the fact that any symmetry operator P̂R

only couples states belonging to the same energy level and the same irreducible
representation,

P̂R(rrr)φaαν(rrr) =
lα

∑
i=1

D(α)
iν (R)φaαi(rrr) . (6.79)

The function D(α)
iν (R) denotes the matrix representation of the group element R in

the irreducible representation α and lα is the dimension of this representation. With
this choice the summation over all group elements present in Eqs. (6.77) and (6.78)
can be performed via the orthogonality theorem for irreducible representations,

1
h ∑

R
P̂R(rrr)φ †

aαν(rrr)φbβρ(rrr) =
1
h ∑

R

lα

∑
i=1

D(α)
iν (R)∗ φ †

aαi(rrr)
lβ

∑
j=1

D(β )
jρ (R)φbβ j(rrr)

=
lα

∑
i=1

lβ

∑
j=1

[
1
h ∑

R
D(α)

iν (R)∗D(β )
jρ (R)

]
φ †

aαi(rrr)φbβ j(rrr)

= δαβ δμρ
1
lα

lα

∑
i=1

φ †
aαi(rrr)φbαi(rrr) . (6.80)

The summations over states in Eqs. (6.77) and (6.78) then reduce to

14 Note that the general form of δExc/δφ †
kν automatically accounts for the correct symmetry, if the

appropriate form of the orbitals, i.e. φkν , is used for its evaluation.
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1
h ∑

R
P̂R(rrr) ∑

aαν
∑

bβρ ;bβ �=aα
φ †

aαν(rrr)φbβρ(rrr)Aaαν ,bβρ

= ∑
abα;b�=a

1
lα

lα

∑
i=1

φ †
aαi(rrr)φbαi(rrr)∑

ν
Aaαν ,bαν (6.81)

(the summation over bβρ results from the sums over l and ρ in Eq. (6.71)).
As an explicit illustration, we consider a spin-saturated, spherically symmetric

system, for which

φaαν(rrr) ≡ Pnl(r)
r

Ylm(Ωr)χs , (6.82)

i.e. a ≡ n, α ≡ l, ν ≡ m and lα = 2l + 1. After insertion of (6.81), the symmetry-
preserving response function (6.77) reduces to

χs(rrr,rrr′) = − ∑
nn′l;n′ �=n

Θnl

2l +1

l

∑
m′=−l

∑
ss′

Pnl(r)
r

Y ∗
lm′(Ωr)χ†

s
Pn′l(r)

r
Ylm′(Ωr)χs′

×
l

∑
m=−l

1
εn′l − εnl

Pn′l(r′)
r′

Y ∗
lm(Ωr′)χ†

s′
Pnl(r′)

r′
Ylm(Ωr′)χs + c.c.

= − 4
(4πrr′)2 ∑

nl

Θnl(2l +1)Pnl(r) ∑
n′;n′ �=n

Pn′l(r)Pn′l(r′)
εn′l − εnl

Pnl(r′) . (6.83)

Similarly, using (6.11), one finds for the inhomogeneity (6.78) in the x-only limit

Λx(rrr) =
2

4πr2 ∑
nn′l;n′ �=n

Θnl
Pnl(r)Pn′l(r)

εn′l − εnl

l

∑
m=−l

∫
d3r′

r′2
Pn′l(r

′)Y ∗
lm(Ωr′)

× ∑
n′′l′′m′′

Θn′′l′′Pn′′l′′(r
′)Yl′′m′′(Ωr′)

×
∫

d3r′′

r′′2
Pn′′l′′(r′′)Y ∗

l′′m′′(Ωr′′)Pnl(r′′)Ylm(Ωr′′)
|rrr′ − rrr′′|

+c.c. . (6.84)

Identifying

δEx

δPnl(r′)
= −4∑

m
∑

n′′l′′m′′
ΘnlΘn′′l′′

∫
dΩr′ Y

∗
lm(Ωr′)Pn′′l′′(r

′)Yl′′m′′(Ωr′)

×
∫

d3r′′

r′′2
Pn′′l′′(r′′)Y ∗

l′′m′′(Ωr′′)Pnl(r′′)Ylm(Ωr′′)
|rrr′ − rrr′′| , (6.85)

one can rewrite (6.84) as

Λx(rrr) = − 1
4πr2 ∑

nl

Pnl(r)
∫ ∞

0
dr′ ∑

n′;n′ �=n

Pn′l(r)Pn′l(r′)
εn′l − εnl

δEx

δPnl(r′)
. (6.86)
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Insertion of (6.84) and (6.86) into (6.26) leads to exactly the same OPM equation as
obtained by variation of the exchange energy of a spherical system with respect to a
manifestly spherical density [125, 223].

It remains to discuss the KLI approximation in the presence of degeneracy. Av-
eraging the eigenvalue denominator of (6.71) as in Eq. (6.61) gives

Gaα(rrr,rrr′) ≈ δ (3)(rrr− rrr′)−∑lα
ν=1 φaαν(rrr)φ †

aαν(rrr′)
Δε

. (6.87)

Insertion into the OPM integral equation with kernel (6.77) and inhomogeneity
(6.78) then yields

vKLI
xc (rrr) =

1
2n(rrr)

{
1
h ∑

R
P̂R(rrr) ∑

aαν

[
φ †

aαν(rrr)
δExc

δφ †
aαν(rrr)

+ c.c.

]

+ ∑
aαν

1
lα

φ †
aαν(rrr)φaαν(rrr)∑

ρ
ΔvKLI

aαρ

}
(6.88)

ΔvKLI
aαρ =

∫
d3r

{
Θaα φ †

aαρ(rrr)vKLI
xc (rrr)φaαρ(rrr)−φ †

aαρ(rrr)
δExc

δφ †
aαρ(rrr)

}
+ c.c. .

In the derivation of Eq. (6.88) the fact that (6.88) generates a manifestly symmetric
vKLI

xc has been used, so that an explicit symmetrization is not necessary. The result
(6.88) is invariant under a unitary transformation of the KS states within the degen-
erate subspaces.

6.3 Exchange-Only Results

Before addressing the issue of correlation in more detail, it is instructive to study
the x-only limit from a quantitative point of view. Quite a number of exact x-only
results have already been used for the analysis of the LDA and GGA (in Sects. 4.3.5
and 4.5.5). It is clear from this discussion that use of the exact exchange (often
termed EXX approach) is worth the increased computational effort in many situa-
tions. The present section supports this statement with additional results, focussing
on two aspects: the first is an assessment of the quality of the KLI approximation. It
has been pointed out in Sect. 6.2.6 that large-scale applications of orbital-dependent
functionals would benefit substantially from the efficiency of the KLI approxima-
tion. Before using the KLI approach in such applications one has to make sure that
it yields reasonable results at least for the simplest orbital-dependent functional, the
exact Ex. The second purpose of this section is to demonstrate the role of the exact
exchange in the electronic structure of solids. For additional results the reader is
referred to the extensive literature on practical realizations and applications of the
exact exchange [103, 125, 223, 241, 243, 244, 344, 351, 353–382].
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The x-only ground state energies of closed-subshell atoms resulting from the ex-
act DFT exchange are compared with the corresponding HF values in Table 6.1
(all calculations were performed fully numerically with finite differences methods).
The energies obtained by solution of the full OPM equation (6.26) for the exchange

Table 6.1 Exchange-only ground state energies of closed-subshell atoms: Selfconsistent OPM re-
sults [223] versus KLI, LDA, PW91-GGA [211] and HF [383] energies (all energies in mHartree).

Atom −Etot Etot −EOPM
tot

OPM KLI LDA GGA HF
He 2861.7 0.0 138.0 6.5 0.0
Be 14572.4 0.1 349.1 18.2 −0.6
Ne 128545.4 0.6 1054.7 −23.5 −1.7
Mg 199611.6 0.9 1362.8 −0.5 −3.1
Ar 526812.2 1.7 2294.8 41.2 −5.3
Ca 676751.9 2.2 2591.8 25.7 −6.3
Zn 1777834.4 3.7 3924.5 −252.6 −13.8
Kr 2752042.9 3.2 5176.8 −18.4 −12.0
Sr 3131533.4 3.6 5535.4 −8.8 −12.2
Pd 4937906.0 4.5 6896.0 −65.2 −15.0
Cd 5465114.4 6.0 7292.6 −31.9 −18.7
Xe 7232121.1 6.1 8463.8 54.9 −17.3
Ba 7883526.6 6.5 8792.5 15.7 −17.3
Yb 13391416.3 10.0 10505.6 −852.4 −39.9
Hg 18408960.5 9.1 13040.4 −221.5 −31.0
Rn 21866745.7 8.5 14424.3 8.3 −26.5
Ra 23094277.9 8.7 14807.2 0.5 −25.8
No 32789472.7 12.9 17202.9 −373.1 −39.5

(4.5) are given in the first column. This rigorous handling of the exact DFT exchange
functional provides the reference data for the x-only limit. The energies for all other
methods are given relative to this reference standard. The KLI approximation for
the exact exchange is of primary interest here—the LDA and GGA data are only
included for completeness. One observes that the KLI energies are extremely close
to the correct OPM energies. For helium the KLI approximation is, as explained
in Sect. 6.2.6, exact. All other KLI energies are higher than their full OPM coun-
terparts. This is consistent with the fact that the full OPM generates that potential
which minimizes the energy expression at hand. The deviation of the KLI approxi-
mation systematically increases with atomic size, i.e. the number of shells present.
Nevertheless, the deviation is still no larger than 15 mHartree even for very heavy
atoms. An indication of the relevance of this error is obtained by a comparison with
the corresponding error of LDA and GGA energies: even the GGA results differ
much more from the exact data than the KLI numbers.

We next compare OPM and Hartree-Fock results. It has been emphasized in
Sect. 6.2.3 that the x-only OPM represents a restricted HF energy minimization: the
same energy expression is minimized, but under the subsidiary condition of generat-
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ing a multiplicative exchange potential in the case of the OPM. The consequences of
this subsidiary condition can be gleaned from Table 6.1. The differences are rather
small. The OPM energy for He is identical with the HF value, as the HF equation for
the occupied state can be trivially recast as a KS equation with the OPM exchange
potential (4.22) in this case (this is only true for the occupied state, but not for the
rest of the spectrum). Even for the heaviest elements the differences between OPM
and HF energies are below 40 mHartree. The additional variational freedom of the
HF approach appears to be of limited importance. This observation is made in many
situations (see below). The x-only OPM is in many respects physically equivalent
to the HF approximation.

This statement is corroborated by Table 6.2, in which the x-only ground state
energies of a number of diatomic molecules are presented (evaluated at the exper-
imental bond lengths). For a reason that will become clear in a moment, the KLI

Table 6.2 Exchange-only ground state energies of diatomic molecules: Selfconsistent OPM [372]
results versus KLI [243], LDA and HF [384] energies at the experimental bond lengths (all energies
in mHartree).

Molecule State Re −Etot Etot −EKLI
tot

[Bohr] KLI OPM LDA HF
H2

1Σ 1.400 1133.6 0.5 89.9 0.0
Li2 1Σ 5.046 14870.5 473.7 −1.1
Be2

1Σ 4.600 29127.4 666.2 −6.3
B2

3Σ 3.003 49085.2 823.6
C2

1Σ 2.348 75394.0 956.3 −12.6
N2

1Σ 2.075 108985.1 5.6 1229.0 −8.0
O2

3Σ 2.281 149681.3 11.5 1447.0
F2

1Σ 2.678 198760.2 16.3 1703.3 −12.2
LiH 1Σ 3.014 7986.8 282.6 −0.5
BH 1Σ 2.336 25129.0 499.1 −2.6
NH 3Σ 2.047 54982.9 3.4 711.3
FH 1Σ 1.733 100067.5 11.0 916.3 −3.3
BF 1Σ 2.386 124162.1 1312.1 −6.7
CO 1Σ 2.132 112783.3 6.7 1252.5 −7.6
NO 2Π 2.175 129295.5 1336.5

energies [243] are used as a reference in Table 6.2. All other energies are given
relative to the KLI values. If one compares the KLI and HF energies one finds, as
expected, that the HF energies are always lower—with the exception of H2. For this
spin-saturated two-electron system both energies must be identical.

On the other hand, the full OPM results [372] are energetically higher than the
KLI data, even though the OPM produces, by construction, the optimum exchange
potential. The reason for this unexpected ordering can be found in the technical de-
tails of the calculations. The HF results are obtained fully numerically, using large
real-space grids [384]. All DFT calculations rely on basis set expansions. Extremely
large two-center basis sets have been used [243] in the case of the KLI (and LDA)
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calculations, so that the KLI numbers are essentially converged with respect to the
basis set size. On the other hand, the OPM results are obtained with standard Gaus-
sian basis sets of more modest size, so that the basis set limit is not yet reached.
Clearly, converged OPM energies must lie between KLI and HF results. In other
words: the ordering EHF ≤ EOPM ≤ EKLI must only be preserved if the same com-
putational basis is applied for all three methods. Table 6.3 demonstrates that this
ordering is actually maintained, if the OPM, KLI and HF energies are obtained with
the same, highly accurate basis set [371].15 The results allow the conclusion that the

Table 6.3 Exchange-only ground state energies of small molecules: Selfconsistent OPM, KLI
and HF energies obtained with the same, high-accuracy basis set [371] at the experimental bond
geometry (all energies in mHartree).

Molecule −Etot Etot −EOPM
tot

OPM KLI HF
CO 112784.9 2.0 −5.8
H2O 76064.8 0.8 −2.5
C2H2 76850.9 1.1 −4.7

error of the KLI approximation is smaller than the variation resulting from use of
different basis sets: an appropriate choice of the basis set is more important than the
exact implementation of the OPM integral equation. Compared with the full OPM,
the KLI approximation either allows a speed-up of molecular calculations (keeping
the basis set fixed) or a gain in accuracy by enlarging the basis set.

It has been emphasized before that the physical and chemical properties usually
depend on energy differences, rather than on total energies. In Table 6.4 the simplest
energy difference, the (first) ionization potential (IP), is studied for atoms. Again the
KLI results are extremely close to the OPM data, which in turn agree very well with
the HF IPs. Moreover, the exact x-only eigenvalues of the highest occupied (molec-
ular) orbitals (HOMO) are rather close to the corresponding IPs, consistent with
the statement in Sect. 3.6.1. This is a direct consequence of the correct asymptotic
−1/r-behavior of the exact x-only potential, which dominates the total KS poten-
tial in the case of neutral atoms and molecules. In view of the correct asymptotic
behavior of the KLI potential, vKLI

x (r → ∞) ∼ −1/r, it should be no surprise that
the HOMO eigenvalues obtained with the KLI approximation are generally close to
their OPM counterparts. Similar results for molecules [371] are given in Table 6.5.

A more critical energy difference is the electron affinity (EA). The EAs of the
prototype negative ions F− and Na− are listed in Table 6.6, together with the HOMO
eigenvalues obtained with the full OPM and the KLI approximation. One should first
note the mere existence of these systems within the OPM [354], in contrast to the
situation encountered in the LDA and the GGA. This deficiency of conventional

15 Note that the basis set used for the representation of the exchange potential has to be in balance
with that used for the KS orbitals [385, 386], i.e. the variational freedom in the exchange potential
must not be larger than that in the orbitals. Otherwise spurious results may be obtained [387].
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Table 6.4 Exchange-only ionization potentials of atoms: Selfconsistent OPM results versus KLI,
LDA, PW91-GGA and HF data. Also given is the eigenvalue εHOMO of the highest occupied
(molecular) orbital obtained in the OPM (all energies in mHartree).

Atom −εHOMO IP IP–IPOPM

OPM OPM KLI LDA GGA HF
He 918 862 0 −51 4 0
Be 309 295 0 −14 6 1
Mg 253 242 0 −4 12 1
Ca 196 188 0 1 12 0
Sr 179 171 0 3 13 0

Cu 240 231 −2 47 54 5
Ag 222 215 −1 36 41 3
Au 223 216 −2 38 42 2

Li 196 196 0 −11 4 0
Na 182 181 0 −2 10 1
K 148 147 0 2 10 0
Rb 138 137 0 4 12 1
Cs 124 123 0 5 11 0

Zn 293 276 0 34 44 5

Table 6.5 Exchange-only eigenvalues of highest occupied molecular orbital of small molecules:
OPM, KLI and HF energies obtained with the same, high-accuracy basis set [371] at the experi-
mental bond geometry (all energies in mHartree).

Molecule OPM KLI HF
CO 553 550 555
H2O 509 507 511
C2H2 411 410 411

Table 6.6 Exchange-only electron affinities of atoms: Selfconsistent KLI versus OPM results.
Also given is the highest occupied eigenvalue εHOMO (all energies in mHartree).

Atom Method −εHOMO EA
F− OPM 181.0 48.5

KLI 180.4 48.5

Na− OPM 13.3 58.4
KLI 13.2 58.3

density functionals, which was an important motivation for studying implicit func-
tionals (Sect. 6.1.1), is automatically resolved by use of the exact exchange. The
existence of atomic negative ions is a direct consequence of the −1/r-behavior of
the exact exchange potential in the large-r regime. Since the KLI approximation
preserves this feature, the KLI-EAs are almost identical to their OPM counterparts.

One next observes the huge difference between the EA and the HOMO eigen-
value εHOMO. This discrepancy is somewhat surprising, given the facts that (i) the
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IPs of neutral atoms are in reasonable agreement with the corresponding εHOMO

(see Table 6.4) and that (ii) the exact EA is identical with the exact εHOMO [92] (see
Sect. 3.6.1). One has to keep in mind, however, that the data in Table 6.6 correspond
to the x-only limit. The difference between the EA and εHOMO reflects the important
role which correlation plays for negative ions. In the case of singly charged negative
ions the otherwise asymptotically dominating −1/r-term in vext + vH + vx cancels
out completely, so that the total vs is particularly sensitive to its correlation com-
ponent. For that reason the x-only EAs should not be expected to be close to the
experimental EAs.

The most interesting quantities in quantum chemistry are the spectroscopic con-
stants. A set of data for some diatomic molecules is given in Table 6.7. As full OPM

Table 6.7 Exchange-only spectroscopic constants of diatomic molecules: Selfconsistent KLI [243]
versus HF [388, 384, 225] results.

Molecule Method Re De ω
[Bohr] [eV] [cm−1]

H2 KLI 1.386 3.638 4603
HF 1.386 3.631 4583

Li2 KLI 5.266 0.168 338
HF 5.259 0.176 337

B2 KLI 3.068 0.608 972
HF 3.096 0.75 939

C2 KLI 2.332 0.281 1933
HF 2.341 0.38 1898

N2 KLI 2.011 4.972 2736
HF 2.013 4.952 2713

O2 KLI 2.184 1.441 1981
HF 2.21 1.455 2002

F2 KLI 2.496 −1.607 1283
HF 2.507 −1.627 1276

LiH KLI 3.037 1.483 1427
HF 3.035 1.487 1430

FH KLI 1.694 4.203 4501
HF 1.695 4.197 4472

CO KLI 2.080 7.530 2444
HF 2.082 7.534 2416

Cl2 KLI 3.727 613
HF 3.726 618

results for these quantities are not yet available, the KLI numbers can only be com-
pared with HF data. However, the exact OPM energy must be somewhere between
the KLI and the HF energy for each individual molecular geometry (for fixed basis
set). As long as the KLI and HF energy surfaces are very close, one can be sure
that KLI and OPM results are equally close. This is exactly what one finds: the KLI
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and HF spectroscopic constants (as a measure for the energy surface) show very
good agreement—in particular, if one takes into account that not all HF results in
Table 6.7 might be fully converged with respect to the size of the basis set. In con-
clusion, one can state that KLI results for finite systems are generally very close to
the corresponding OPM values in the x-only limit.

Does this statement also apply to extended systems? The x-only lattice constants,
cohesive energies and bulk moduli of aluminum (fcc lattice) and silicon (diamond
structure) obtained with both the full OPM and the KLI approximation are given
in Table 6.8. Again the KLI results are found to be very close to the OPM data.

Table 6.8 Lattice constants a, cohesive energies Ecoh and bulk moduli B of prototype metals and
semiconductors: Selfconsistent OPM versus KLI results [380]. All calculations use the plane-wave
pseudopotential scheme [389, 103] in combination with self-consistent exact exchange pseudopo-
tentials [380] (for technical details see Figs. 6.6 and 6.7). The same pseudopotential is employed
for both the full OPM and the KLI calculation for a given system.

Solid Method a Ecoh B
[Bohr] [eV] [GPa]

Al OPM 7.814 1.662 63.9
KLI 7.816 1.658 63.2

Si OPM 10.409 6.213 103.8
KLI 10.406 6.120 104.2

Nevertheless, it is worthwhile to note that the cohesive energies differ by about
0.1 eV in the case of silicon. This is somewhat larger than the deviations obtained
for aluminum and most diatomic molecules.

Similar agreement is observed for the corresponding single-particle energies of
aluminum, as shown in Fig. 6.4a. However, the same is not true for the band struc-
ture of silicon, as illustrated in Fig. 6.4b. The KLI and OPM band energies of the va-
lence and conduction bands differ by about 0.3 eV, with the KLI approximation pro-
ducing less bound valence states and more strongly bound conduction band states.
As a consequence the band gap is underestimated by the KLI scheme by almost a
factor of 2, EOPM

g = 1.22eV versus EKLI
g = 0.69eV. One concludes that the KLI

spectrum of extended systems—in particular, of the unoccupied KS states—can be
seriously in error.

In order to understand this result, one has to analyze local quantities as the
xc-potential (compare the corresponding discussion for the LDA and GGA in
Sect. 4.5.5). The selfconsistent vKLI

x is compared with the exact vx for the case of
the neon atom in Fig. 6.5.16 The only difference between the full OPM result and
the KLI potential is found in the transition region from the K- to the L-shell, where

16 Note that the differences between a selfconsistent potential and the potential obtained by inser-
tion of a given density (as e.g. the exact KS density) into a functional are very small in the case of
atoms [390]. The same is true for the solution of the OPM equation, if different sets of orbitals are
utilized: the origin of the orbitals (and thus of the density) is much less important for the structure
of atomic vxc than the functional form of Exc.
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Fig. 6.4 Band structure of (a) aluminum (fcc structure) and (b) silicon (diamond structure): Self-
consistent x-only KLI versus full OPM result (for technical details see Figs. 6.6 and 6.7).
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Fig. 6.5 Exchange potential of Ne atom: Selfconsistent OPM, KLI, LDA and PW91-GGA results.

the shell oscillation of vKLI
x is not as pronounced as that of the exact potential. This

smoothing of shell oscillations is a general feature of the KLI approximation. For
large r both potentials explicitly show the −1/r-behavior discussed before, i.e. both
potentials are self-interaction free. Figure 6.5 explains the findings in Tables 6.2–6.8
from a microscopic perspective.

Figure 6.6 provides a comparison similar to Fig. 6.5 for the case of a metal.
The exchange potential of bulk aluminum is plotted along the [110] direction. As
all potentials originate from pseudopotential calculations, the attractive part of vx

associated with the core electrons is missing in Fig. 6.6—the comparison focuses
completely on the delocalized valence states of the metal (the corresponding valence
densities resulting from selfconsistent calculations with the same functionals are
shown in Fig. 6.6b). Again the KLI approximation is reasonably close to the OPM
potential. The agreement is particularly convincing in comparison with the GGA
result: the gradient corrections to the LDA even go into the wrong direction. In
fact, the dependence of the GGA on the local density gradients introduces some
completely artificial structures in the low density region.

The same overall picture can be observed in Fig. 6.7, which shows the exchange
potential of bulk silicon along the [111] direction. The only difference worth noting
in this case is an improvement over vLDA

x by the GGA in high density regions, i.e. in
the bonding regime between the nearest neighbor atoms. This result is corroborated
by the corresponding self-consistent valence densities, plotted in Fig. 6.7b.

However, as the 2D representations in Figs. 6.8 and 6.9 show, the KLI approxi-
mation misses some directional information present in the full OPM potential. This
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Fig. 6.6 (a) Exchange potential of fcc aluminum in [110] direction (surface diagonal of conven-
tional cubic unit cell): Full OPM versus KLI approximation, LDA and PBE-GGA. All vx have
been evaluated from the KS states resulting from a self-consistent x-only OPM calculation within
the plane-wave pseudopotential scheme (60 special k-points for integration over 1st Brillouin zone,
Ecut =40 Ry—this leads to about 460 states per k-point in Gk, a = 7.6 Bohr, • = positions of atoms).
(b) Self-consistent valence densities obtained by full OPM, KLI, LDA and PBE-GGA calculations.

effect is particularly pronounced for silicon, as demonstrated in Fig. 6.9. Obviously,
the closure approximation (6.61), on which the KLI scheme is based, leads to an
averaging over directions, as all states in the response of the system are treated
as being degenerate (similar to the fact that summation over the m-quantum num-
ber of atomic orbitals of type Pnl(r)Ylm(θ ,ϕ) is equivalent to spherical averaging).
The KLI approximation thus has particular problems with the treatment of localized
states which are energetically close, but not degenerate.

This can lead to rather fundamental failures, as demonstrated in Figs. 6.10 and
6.11. Figure 6.10 shows the band structure of FeO in the AF II phase which is
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Fig. 6.7 (a) Exchange potential of Si (diamond structure) along [111] direction (body diagonal):
Full OPM versus KLI approximation, LDA and PBE-GGA. All vx have been evaluated with the KS
states resulting from a self-consistent x-only OPM calculation within the plane-wave pseudopoten-
tial scheme (28 special k-points for integration over 1st Brillouin zone, Ecut =40 Ry—this leads to
about 1150 states per k-point in Gk, a = 10.26 Bohr, • = positions of atoms). (b) Self-consistent
valence densities obtained by full OPM, KLI, LDA and PBE-GGA calculations.

obtained by application of the exact exchange within the KLI approximation (com-
pare Sect. 6.1.3). Correlation is included via the LDA. The correlation contribution
has, however, only a minor impact on the resulting bands. One notices a substan-
tial rearrangement of essentially all bands in comparison with the LDA and GGA
band structures in Fig. 6.3. However, the EXX/KLI calculation still predicts FeO
to be a metal, in conflict with reality. On the other hand, a full OPM calculation
with the exact exchange and LDA correlation [391] leads to the bands plotted in
Fig. 6.11. One now observes a fundamental gap of 1.7 eV, in very rough agreement
with the experimental gap of 2.4 eV [392, 393]. The key factor for this success is the
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cell): Self-consistent OPM and KLI potentials resulting from exact exchange (technical details as
in Fig. 6.6).
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Fig. 6.9 Exchange potential of silicon (diamond structure) in (1,1,0) plane (diagonal plane of con-
ventional cubic unit cell): Self-consistent OPM and KLI potentials resulting from exact exchange
(technical details as in Fig. 6.7).
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Fig. 6.10 As Fig. 6.3 for exact exchange within the KLI approximation in combination with LDA
correlation.

complete cancellation of the self-interaction of the highly localized and oriented 3d
states: proper elimination of the self-interaction stabilizes one of the minority spin
t2g states (the so-called a1g state in the rhombohedral nomenclature—this state has
3(z′)2 − r2 character in the coordinate system with z′-axis perpendicular to the AF
II planes) so much that a population imbalance of three t2g states is energetically
favorable and a gap emerges. The full OPM exchange allows the exchange potential
to develop the very localized, attractive pockets, which are required to build up this
population imbalance, while these pockets are smeared out in the KLI approxima-
tion. The same effect is found for CoO [391], for which the minority spin t2g states
are split into two occupied and one unoccupied band. Figure 6.11 should, however,
not be interpreted as the final result, as replacement of the LDA correlation by some
appropriate orbital-dependent correlation functional is expected to lead to modifica-
tions of the band structure. In addition, a serious comparison with experimental gaps
requires the inclusion of the derivative discontinuity, Eq. (3.186), which is non-zero
for orbital-dependent functionals as the exact exchange.

Some further band gaps obtained with the exact exchange are listed in Ta-
ble 6.9, as a final illustration of the role of self-interaction in vx. All-electron OPM
results based on (i) the Korringa-Kohn-Rostoker (KKR) method and the atomic
sphere approximation (ASA) [360], (ii) the Linear-Muffin-Tin-Orbital method plus
ASA [358–360], and (iii) the Full-Potential Linearized-Augmented-Plane-Wave
(FP-LAPW) approach [394] are compared with full potential plane-wave pseudopo-
tential (PW-PP) [103, 241] data for C, Si, Ge and GaAs. All calculations use the full
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Fig. 6.11 As Fig. 6.3 for full OPM calculation with the exact exchange in combination with LDA
correlation [391] (Ecut =160 Ry). Also shown are the total (solid line) and partial densities of
states (DOS): O2p—dashed line; Fe3d at sites with majority spin ↑—dotted line; Fe3d at sites
with majority spin ↓—dash-dotted line.

Table 6.9 Fundamental band gap Eg and band gap at Γ -point Eg(Γ ) of semiconductors and in-
sulators: FP-LAPW [394], KKR-ASA [360], LMTO-ASA [360] and plane-wave pseudopotential
(PW-PP—in the spirit of [103, 377]) OPM results versus HF [395] and experimental data (all en-
ergies in eV—experimental values for Eg from [396–400], for Eg(Γ ) from [401–404]; for Eg(Γ )
of diamond one also finds 6.5±1.0 eV [405] and 7.3 eV [406]). The direct gap Δs and the exact
exchange contribution Δx [103, 241] to the derivative discontinuity of Exc, Eq. (3.185), are given
separately in the case of the EXX calculations.

Ex Ec Method C Si Ge GaAs Ne
Δs(Γ ) Exact — FP-LAPW 6.67 3.58 1.42 2.42 16.3

Exact — PW-PP 6.24 3.17 1.46 2.06 14.72
LDA LDA PW-PP 5.56 2.56 0.0 0.0 11.32

Eg(Γ ) Expt. (T > 0) 6.0±0.2 3.35 0.89 1.63 21.69

Δs Exact LDA KKR-ASA 4.58 1.12 1.03
Exact LDA LMTO-ASA 4.65 1.25 1.12
Exact LDA PW-PP 4.81 1.35 1.22 2.11 14.76
Exact PBE PW-PP 4.32 0.94 0.84 1.80
Exact — PW-PP 4.67 1.21 1.08 2.03 14.15

Δx Exact — PW-PP 8.70 5.62 4.81 5.28

Eg HF — LAPW/PW-PP 12.4 6.3 6.4 7.7
Expt. (T = 0) 5.48 1.17 0.79 1.52 21.69
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OPM, rather than the KLI approximation with its inherent limitations, illustrated in
Fig. 6.4b. Values resulting from the combination of the exact Ex with either LDA or
PBE-GGA correlation are listed in addition to the x-only data.

Results for both the fundamental band gap Eg (which is an indirect gap in the
case of C and Si) and for the gap Eg(Γ ) at the Γ -point, i.e. the origin of the first
Brillouin zone (kkk = (0,0,0)) are given.17 The single-particle contribution Δs, i.e.
the KS eigenvalue gap, is separated from the contribution Δx originating from the
derivative discontinuity of the exact exchange, according to Eqs. (3.185), (3.186).
The corresponding HF band gaps are listed for comparison.

Before comparing OPM results with experiment, one has to make sure that the
OPM data are not affected by technical limitations. Several aspects of the computa-
tion can be critical:

• The atomic sphere approximation (ASA) has been applied in the case of the KKR
and LMTO results. However, as shown in Fig. 6.9, the exchange potential in these
crystals with a diamond structure is not really spherical inside the ASA sphere
around the atomic sites (which implies that vx is essentially constant between the
sites).

• The PW-PP data, on the other hand, could suffer from an inadequate treatment
of the core–valence interaction: While the exact exchange interaction among the
valence states is included explicitly, the exchange component of the core–valence
interaction is frozen to have the form of the core–valence interaction of the cor-
responding atom (via the pseudopotential—compare, however, [407, 408]).

• In the case of all methods a restricted KS spectrum resulting from a small basis
set can lead to an inadequate representation of both the response function and the
inhomogeneity of the OPM equation. This point is illustrated in Fig. 6.12 which
shows the convergence of Δs with the resolution of the plane-wave basis used
for vx in case of the PW-PP scheme (for fixed cut-off energy for the KS states).
As potentials resulting from Coulomb integrals are smoother than the underly-
ing (orbital) densities, one would expect the representation of vx to require fewer
plane-waves than that of the KS states (whose spatial variation is determined by
the dominating components of the total KS potential, the pseudopotential and
vH). On the other hand, the solution of the OPM integral equation on the recipro-
cal lattice is the most costly step in PW-PP calculations with the exact exchange,
so that a truncation of the plane-wave expansion of vx below the value used for
the KS states suggests itself [241, 381, 407]. Figure 6.12 basically confirms this
procedure. However, even for silicon an accurate evaluation of the gap requires a
cut-off energy of more than 15 Ry.

• Finally, insufficient k-point sampling can spoil results. Use of a dense grid for the
integration over the first Brillouin zone is particularly costly in EXX calculations,
since the exact exchange scales quadratically with the number of grid points.

17 Note that, as a matter of principle, Eg(Γ ) is not a density functional, in contrast to the funda-
mental gap, Eq. (3.181). It is nevertheless usual to compare the KS eigenvalue gap at kkk = (0,0,0)
with the experimental Eg(Γ ).
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Fig. 6.12 Convergence of Δs with the energy cut-off used in the plane-wave representation of vx
within the PW-PP scheme for silicon. All results rely on a cut-off energy of 40 Ry for the KS states
and 28 special k-points for the integration over the 1st Brillouin zone.

As a result of the various limitations, the agreement of the gaps obtained with
different methods is not fully satisfactory. Nevertheless, it is obvious from Table 6.9
that Δs is consistently enlarged, when replacing the LDA exchange by the exact
Ex (compare Table 4.11). In fact, the Δs obtained with the exact Ex are in much
better agreement with the experimental data than the LDA gaps, irrespective of the
correlation functional used. Surprisingly, one finds that the inclusion of correlation
on the LDA level increases Δs compared with the x-only result, while use of the
PBE-GGA for Ec leads to a reduced gap. As a consequence, inclusion of GGA cor-
relation improves the agreement with experiment for Ge and GaAs, while it worsens
the agreement for Si and the insulator C.

The picture becomes even less clear as soon as the derivative discontinuity of
Ex is taken into account. The corresponding contribution Δx is much larger than Δs

[103], so that the agreement with experiment is completely lost. In fact, the sum
of Δs and Δx obtained in the x-only OPM calculation is almost equal to the very
large band gap which one finds in the Hartree-Fock approximation [395]. In this
sense the x-only OPM and the HF scheme are once more equivalent. Obviously, the
correlation contribution to Δxc must cancel most of the large Δx.

Indeed, the good agreement of EXX KS gaps with experimental data led to the
expectation that Δx and Δc cancel each other almost completely. Δx has therefore
often been ignored in discussions of EXX results. Recently, however, a first appli-
cation of the orbital-dependent RPA functional (see Sect. 6.4.2) demonstrated that
Δ EXX

x and Δ RPA
c do not cancel completely [409] (see also [410]). Rather, their sum

is of the same order of magnitude as the corresponding Δs, at least for the systems
considered in [409] (Si, LiF and Ar).

In view of all these contradicting results it seems to be too early to draw definitive
conclusions about the role of the exact exchange for band gaps. First some techni-
cal issues of the various implementations need to be clarified and an appropriate
functional for correlation has to be fully established. The only reliable information
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which can be extracted from Table 6.9 is the fact that the transition from LDA to
exact exchange leads to an increase of Δs (for fixed Ec[n]).

6.4 First-Principles Implicit Correlation Functionals

Some of the examples considered in the previous section already indicated that the
exact exchange, while providing obvious progress compared with LDA and GGA
exchange, has to be combined with an appropriate correlation functional, in order
to be really useful in practice. This statement is corroborated by the accuracy of
the spectroscopic constants resulting from the combination of the exact exchange
(EXX) and PBE-GGA correlation. As demonstrated in Table 6.10 for the diatomic
molecules of the G2 test set, the mean absolute errors obtained with the EXX-PBE
functional are worse than the corresponding deviations of the LDA data (compare
Table 4.8). In particular, the EXX-PBE approach leads to rather unsatisfactory re-
sults for bond lengths (see Table 6.16 for an explicit example). GGA and LDA cor-
relation functionals are not suitable for use with the exact exchange, so that one is
led to consider orbital-dependent correlation functionals. Given the first-principles
nature of the exact Ex, a systematic derivation of a corresponding functional from
the exact Ec suggests itself.

Suitable starting points for this endeavor have been established in Sect. 4.2:
both KS-based many-body theory and the adiabatic connection can be employed
[343, 361, 344, 362, 411–415]. It is beyond the scope of the present summary to
review the various lines of attack that have been followed during the last years—
the construction of first-principles orbital-dependent correlation functionals is still
a matter of current-day research. The discussion is therefore restricted to two basic
functionals of this type. The first of these functionals results from a perturbation
expansion of the exact Ec [343], for which Eq. (4.65) provides the most transparent
starting point (see Sect. 6.4.1). Due to its roots in perturbation theory, this functional
is not applicable to systems without an energy gap between the highest occupied and
lowest unoccupied KS state. The simplest functional available for gapless systems is
obtained from the RPA, applied within the framework of KS-based many-body the-
ory [361, 362, 411, 412]. The adiabatic connection formula (4.85) allows the most
direct derivation in this case (see Sect. 6.4.2). Other variants of partial resummation
of the KS perturbation expansion can be found in [416–421].

Both examples discussed below indicate that the structure of first-principles
orbital-dependent correlation functionals is much more involved than that of con-
ventional, density-based approximations. In particular, inclusion of higher order cor-
relation complicates applications dramatically. It is therefore tempting to combine
lowest order perturbation theory with a model-based representation of all higher
order contributions. The first functional implementing this concept, the interaction
strength interpolation (ISI) [422], is briefly discussed in Sect. 6.4.3.
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6.4.1 Kohn-Sham Perturbation Theory

Equation (4.65) provides an exact representation of Exc in terms of the KS orbitals
and eigenvalues (which enter via the KS Green’s function emerging from the appli-
cation of e.g. Wick’s theorem) as well as of its own functional derivative vxc. In fact,
the power series in Ĥ1 on the right-hand side of Eq. (4.65) includes arbitrary powers
of vxc, so that Eq. (4.65) and the resulting OPM equation are highly nonlinear.

How can one deal with this nonlinearity? Given the genesis of Eq. (4.65), an
expansion of Exc (and thus of vxc) in powers of e2 is the natural first approach to the
linearization of the OPM equation for the exact Exc [343]. This approach is usually
referred to as Kohn-Sham or Görling-Levy perturbation theory. The lowest order
term in this expansion is the exchange energy. All higher orders correspond to Ec,

Exc =
∞

∑
l=1

e2l E(l)
xc [n] = Ex +E(2)

c + . . . (6.89)

vxc =
∞

∑
l=1

e2l v(l)
xc [n] = vx + v(2)

c + . . . . (6.90)

After insertion of (6.89), (6.90) into the OPM equation (6.26) both its right-hand
and its left-hand side are given as power series with respect to e2. Identity of both
sides is then required order by order.

Unfortunately, the expression (4.65) does not lend itself to a direct expansion in
powers of e2: many-body perturbation theory for the energy (4.65) necessarily has
to start with an expansion in powers of Ĥ1, Eq. (4.25). The basic elements of this
expansion are the Green’s function Gs, the Coulomb interaction Ŵ and vxc. While
Ŵ is linear in e2, vxc itself involves a complete power series in e2. The lowest order
term in this series is vx (which is linear in e2), so that each power of vxc introduces
at least one order of e2. An expansion of (4.65) in powers of e2 thus consists of two
steps, first an expansion in powers of Ŵ and vxc, followed by an expansion of vxc in
powers of e2.

In lowest order (e2) the left-hand side of the OPM integral equation (6.26) just
contains vx, while the inhomogeneity is determined by (6.11). This simply reflects
the fact that Ex is a well-defined functional of only the φk. In lowest order one
therefore ends up with the standard OPM equation for the exact exchange,∫

d3r′ χs(rrr,rrr′)vx(rrr′) = Λx(rrr) (6.91)

Λx(rrr) = −∑
k

∫
d3r′ φ †

k (rrr)Gk(rrr,rrr′)
δEx

δφ †
k (rrr′)

+ c.c. . (6.92)

The first time that the nonlinearity comes into play is in the order e4. This low-
est order correlation contribution (often referred to as second order Görling-Levy
functional [343]) can be written as
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E(2)
c = EMP2

c +EΔHF
c . (6.93)

The first of these terms is an expression which basically looks like the standard
second order Møller-Plesset (MP2) correction to the HF energy,

EMP2
c =

e4

2 ∑
i jkl

ΘiΘ j(1−Θk)(1−Θl)
(i j||kl)[(kl||i j)− (kl|| ji)]

εi + ε j − εk − εl
. (6.94)

However, the Slater integrals (i j||kl) in (6.94),

(i j||kl) =
∫

d3r1

∫
d3r2

φ †
i (rrr1)φk(rrr1)φ †

j (rrr2)φl(rrr2)

|rrr1 − rrr2| , (6.95)

are calculated with the KS orbitals φk, and the denominator of (6.94) is determined
by the KS eigenvalues εk, so that EMP2

c can give results which are quite different
from standard MP2 data (see below). As usual, EMP2

c can be split into a direct con-
tribution (DIR) and an exchange term (second order exchange—SOX),

EMP2,DIR
c =

e4

2 ∑
i jkl

ΘiΘ j(1−Θk)(1−Θl)
(i j||kl)(kl||i j)

εi + ε j − εk − εl
(6.96)

EMP2,SOX
c = −e4

2 ∑
i jkl

ΘiΘ j(1−Θk)(1−Θl)
(i j||kl)(kl|| ji)

εi + ε j − εk − εl
. (6.97)

In the diagrammatic evaluation of (4.65) the direct term emerges from

, (6.98)

with the solid line representing the KS Green’s function (4.71) and the wavy line
being the Coulomb interaction (for the Feynman rules required to translate diagrams
into formulas and vice versa see Appendix L). The SOX term corresponds to

. (6.99)

The second contribution to (6.93) involves the difference between the orbital expec-
tation values of the nonlocal HF-type exchange potential and of vx,

EΔHF
c = ∑

il

Θi(1−Θl)
εi − εl

∣∣∣∣〈i|vx|l〉+ e2 ∑
j

Θ j(i j|| jl)
∣∣∣∣2 (6.100)
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〈i|vx|l〉 =
∫

d3r φ †
i (rrr)vx(rrr)φl(rrr) . (6.101)

EΔHF
c accounts for the fact that the present perturbation expansion is not based on

the HF Hamiltonian, but rather on the KS Hamiltonian. Diagrammatically, EΔHF
c

results from the remaining second order terms in (4.65), including the interaction of
the KS particles with the “external” potential vHxc, Eq. (4.26):

In these diagrams the wavy line with the cross denotes vHxc. After decomposition
of vHxc into vH and vxc, the Hartree contributions cancel with the tadpole diagrams.
The remaining terms can be added up to the expression (6.100) with vx replaced
by the full vxc. After this first step of the expansion the energy correction therefore
features the full difference between the single-particle KS and HF Hamiltonians,

〈rrr|ĥs|rrr′〉 = δ (3)(rrr− rrr′)
[
(−ih̄∇∇∇)2

2m
+ vext(rrr)+ vH(rrr)+ vxc(rrr)

]

〈rrr|ĥHF|rrr′〉 = δ (3)(rrr− rrr′)
[
(−ih̄∇∇∇)2

2m
+ vext(rrr)+ vH(rrr)

]
+ e2 ∑

j
Θ j

φ j(rrr)φ †
j (rrr

′)
|rrr− rrr′| .

However, due to the quadratic structure of (6.100) only the leading term vx is rele-
vant in the order e4. As net result one finds a well-defined, linear expression for the

correlation functional E(2)
c .

The contribution EΔHF
c once again illustrates the relation between the x-only

OPM and the standard HF approach. In the x-only limit the OPM, i.e. the EXX
approach, corresponds to a minimization of the HF energy expression under the
subsidiary condition that the orbitals satisfy the KS equations (see Sect. 6.2.2). The
EXX ground state energy is thus slightly higher than the HF value, which results
from a free minimization of the same energy expression. The difference between
the two energies can be evaluated order by order, using the difference between the
HF and the EXX Hamiltonian as perturbation. In lowest order this procedure leads
to the energy (6.100). This expression is always negative, consistent with the fact
that the HF energy must be below the x-only OPM value. On the other hand, if



6.4 First-Principles Implicit Correlation Functionals 275

one examines (6.100) quantitatively, one usually finds it to be rather small, which is
immediately clear from Tables 6.1 and 6.2 (see also Sect. 6.6).

As already emphasized, E(2)
c is well-defined as soon as vx is known. This implies,

that the first step of a selfconsistent application of (6.93) is a solution of the x-only
OPM equation (6.91) for given orbitals. Once vx is available, it remains to evaluate

v(2)
c (rrr) =

δE(2)
c [φk,εk,vx]

δn(rrr)
. (6.102)

The calculation of the functional derivative of EMP2
c with respect to n can be handled

in analogy to Eq. (6.10), as this term does not depend on vx. The same applies to the
φk- and εk-dependence of EΔHF

c . The subsequent discussion therefore focuses on the
handling of the vx-dependence of EΔHF

c .
One starts by realizing that the explicit vx-dependence of EΔHF

c is not fundamen-
tally different from the φk- and εk-dependence. One thus has to include a functional
derivative with respect to this additional variable, when eliminating the original
derivative δ/δn via the chain rule (as in (6.10)). This leads to an additional con-
tribution to the inhomogeneity (6.28),

ΔΛ (2)
c (rrr) =

∫
d3r′

δvx(rrr′)
δvs(rrr)

δEΔHF
c

δvx(rrr′)
. (6.103)

The first factor, the functional derivative of vx with respect to vs, is accessible via the
x-only OPM equation. If one differentiates Eq. (6.91) with respect to vs and isolates
the desired derivative one finds

δvx(rrr2)
δvs(rrr1)

=
∫

d3r3 χ−1
s (rrr2,rrr3)

{
δΛx(rrr3)
δvs(rrr1)

−
∫

d3r4
δ χs(rrr3,rrr4)

δvs(rrr1)
vx(rrr4)

}
. (6.104)

The functional derivative of Λx with respect to the KS potential can again be ob-
tained by use of the chain rule and the relations (6.18), (6.19),

δΛx(rrr3)
δvs(rrr1)

= −∑
k

∫
d3r4

{
φ †

k (rrr1)Gk(rrr1,rrr4)
δΛx(rrr3)
δφ †

k (rrr4)
+ c.c.

}

+∑
k

|φk(rrr1)|2 ∂Λx(rrr3)
∂εk

. (6.105)

The second new expression in (6.104) is the derivative of the linear response func-
tion with respect to the KS potential. Using the definition (6.27) of the linear KS
response function, one can rewrite this quantity as the second functional derivative
of n with respect to vs, i.e. the quadratic response function of the KS system,

δ χs(rrr3,rrr4)
δvs(rrr1)

=
δ 2n(rrr3)

δvs(rrr4)δvs(rrr1)
. (6.106)
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This function can be evaluated in the same fashion as χs (compare [350]). As the
derivative δEΔHF

c /δvx can be taken directly, all ingredients of (6.103) are known,

so that v(2)
c can be calculated.

In principle, one can proceed in the same fashion to approach higher order con-
tributions to Ec. However, Eqs. (6.103)–(6.106) indicate that even a self-consistent

application of E(2)
c represents quite a demanding computational task. For this reason

E(2)
c is often applied in post-EXX fashion, i.e. evaluated a posteriori with the KS or-

bitals resulting from a self-consistent EXX calculation. Alternatively, the complete

EΔHF
c or at least its contribution to v(2)

c are neglected, as one expects this energy
contribution to be small quite generally.

6.4.2 Kohn-Sham-Based Random Phase Approximation

The most straightforward way to go beyond E(2)
c is the resummation of certain dia-

grammatic classes of the KS perturbation expansion. The simplest and, at the same
time, most important of these classes are the so-called ring diagrams, which are
known to be crucial for the description of metals (see e.g. [94]). As in the case
of the homogeneous electron gas, the resulting correlation energy is termed random
phase approximation (RPA) [361, 362, 411–414, 423–425]. Its derivation starts with
the adiabatic connection formula (4.85). The heart of (4.85) is the time-ordered re-
sponse function χλ of the interacting system with coupling strength λ and external
potential uλ , which has the same ground state density as the actual system of inter-
est (obtained for λ = 1, uλ = vext). As in the case of any other interacting system,
one can formulate a Dyson equation for χλ . Its derivation is discussed in detail in
Sect. 7.4. This Dyson equation allows a systematic analysis of approximations for
χλ . At this point, however, we will introduce the RPA for χλ in an ad hoc fashion,
relying on the analogy with the RPA for the homogeneous electron gas, Eq. (4.100).
Translated to the inhomogeneous situation, this equation reads18

χRPA
λ (rrr,rrr′,ω) = χs(rrr,rrr′,ω)

+
∫

d3r′′
∫

d3r′′′ χs(rrr,rrr′′,ω)
λe2

|rrr′′ − rrr′′′|χ
RPA
λ (rrr′′′,rrr′,ω) . (6.107)

Physically, this approximation corresponds to a screening of the Coulomb interac-
tion by repeated, sequential excitation of a single virtual particle–hole pair, which,
in the present situation, is a KS particle–hole pair. Insertion of the iterated equation
(6.107) into (4.85) allows the evaluation of the coupling constant integral,

18 Comparison with the Dyson equation (7.127) shows that (6.107) amounts to a complete neglect
of the xc-kernel fxc.
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ERPA
c = − h̄

2

∫ ∞

0

dω
π

∞

∑
n=2

1
n

∫
d3r1

∫
d3r′1 · · ·

∫
d3rn

∫
d3r′n

× e2

|rrr1 − rrr′1|
χs(rrr′1,rrr2, iω) · · · e2

|rrrn − rrr′n|
χs(rrr′n,rrr1, iω)

=
h̄
2

∫ ∞

0

dω
π

Tr{ln [1−wχs(iω)]+wχs(iω)} , (6.108)

where the trace in the last line indicates integration over all spatial coordinates. In
order to arrive at a practically useful form of ERPA

c one has to specify χs in more
detail. Starting from (4.68), one first obtains

χs(rrr,rrr′, iω) = ∑
kl

φ †
k (rrr)φl(rrr)φ †

l (rrr′)φk(rrr′)Ckl(iω) (6.109)

Ckl(iω) = (Θk −Θl)
(εk − εl)− ih̄ω

(h̄ω)2 +(εk − εl)2 . (6.110)

Insertion into (6.108) gives

ERPA
c = − h̄

2

∫ ∞

0

dω
π

∞

∑
n=2

1
n ∑

k1l1

· · ·∑
knln

×(lnk1||knl1)Ck1l1(iω) · · ·(ln−1kn||kn−1ln)Cknln(iω) , (6.111)

where the Slater integrals (6.95) contain all spatial integrations. Comparison with
(6.96) shows that the lowest order contribution to ERPA

c is exactly the second order
direct term, EMP2,DIR

c . On the other hand, the SOX contribution (6.97) is not included
in the RPA.

Equation (6.111) can be brought into a more compact form by definition of the
matrix

Sik, jl(iω) := (k j||il)Cjl(iω) (6.112)

=⇒ ERPA
c = − h̄

2

∫ ∞

0

dω
π

∞

∑
n=2

1
n ∑

k1l1

· · ·∑
knln

Sknln,k1l1(iω) · · ·Skn−1ln−1,knln(iω)

=
h̄
2

∫ ∞

0

dω
π

Tr
{

ln
[
1−S(iω)

]
+S(iω)

}
. (6.113)

where the trace runs over the multi-index ik of the matrix S. Finally, one can use

Tr[ln(A)] = ln |det(A)|

to rewrite (6.113) as

ERPA
c =

h̄
2

∫ ∞

0

dω
π

{
ln
∣∣∣det

(
1−S(iω)

)∣∣∣+TrS(iω)
}

. (6.114)



278 6 Orbital Functionals: Optimized Potential Method

The corresponding potential can be calculated via the standard OPM integral equa-
tion (6.26).

As it stands, Eq. (6.114) is still completely general. A particularly useful form is obtained
by choosing real KS orbitals (which is always possible for discrete states, as long as the spin-
projection in z-direction is a good quantum number). In this case one of the contributions to (6.109),

−ih̄ω ∑
kl

φ †
k (rrr)φl(rrr)φ †

l (rrr′)φk(rrr′)
(Θk −Θl)

(h̄ω)2 +(εk − εl)2 ,

vanishes identically due to the symmetry of φ †
k (rrr)φl(rrr)φ †

l (rrr′)φk(rrr′) under exchange of k and l. In
addition, the remaining term can be reformulated as

χs(rrr,rrr′, iω) = ∑
kl

φ †
k (rrr)φl(rrr)φ †

l (rrr′)φk(rrr′)Ckl(iω) (6.115)

Ckl(iω) = Θk(1−Θl)
2(εk − εl)

(h̄ω)2 +(εk − εl)2 . (6.116)

The form (6.116) of Ckl simplifies the evaluation of the most critical ingredient of ERPA
c , the deter-

minant det
(

1−S(iω)
)

, as the multi-index of S now splits into two components—one index (k) is

restricted to occupied states, while the second (l) involves only unoccupied states.

6.4.3 Interaction Strength Interpolation (ISI)

Given the extremely complicated form of the correlation contributions beyond E(2)
c ,

one might ask whether it is possible to account for these higher order terms in a
more efficient fashion? This is the aim of the interaction strength interpolation (ISI)
[422], in which one attempts to express the higher order terms in the form of an
explicit density functional. The starting point for the derivation of the ISI is the
adiabatic connection (4.75). Insertion of χλ , Eq. (4.35), and use of the commutator
(4.33) leads to a formula similar to (4.32),

Exc =
∫ 1

0
dλ Wλ [n] , (6.117)

with19

Wλ [n] = 〈Ψ0(λ )[n]|Ŵ |Ψ0(λ )[n]〉−EH[n] . (6.118)

The basic idea of the ISI is to obtain Wλ in the interesting regime λ ≈ 1 from an
interpolation between the weak (λ � 1) and the strong (λ � 1) interaction limit.
The former limit is well-known by now: for weak interactions one can expand Exc

in powers of the coupling constant λ . This automatically yields a corresponding
expansion for Wλ ,

19 |Ψ0(λ )〉 denotes the ground state which results from (4.74)—see Sect. 4.2.2.
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Exc =
∫ 1

0
dλ

{
Ex +

∞

∑
l=2

lλ l−1E(l)
c

}
. (6.119)

The lowest two orders of Wλ are therefore determined by Ex and E(2)
c .

The strong interaction limit requires a different approach. As the electrostatic
forces completely dominate over kinetic effects for λ → ∞, a simple model system
(point charge plus continuum model) should be sufficient to extract Wλ [426]. In this
way one finds the leading two orders of the expansion of Wλ in powers of 1/

√
λ ,

lim
λ→∞

Wλ [n] = W∞[n]+W ′
∞[n]λ−1/2 + . . . , (6.120)

with

W∞[n] =
∫

d3r

{
An4/3 +B

(∇∇∇n)2

n4/3

}
(6.121)

W ′
∞[n] =

∫
d3r

{
Cn3/2 +D

(∇∇∇n)2

n7/6

}
(6.122)

(for the values of the coefficients A−D see [422]). Interpolation between Ex, E(2)
c

on the one hand and W∞, W ′
∞ on the other leads to

EISI
xc = W∞ +

2X
Y

[
(1+Y )1/2 −1−Z ln

(
(1+Y )1/2 +Z

1+Z

)]
, (6.123)

with the abbreviations

X =
xy2

z2 Y =
x2y2

z4 Z =
xy2

z3 −1

x = −4E(2)
c y = W ′

∞ z = Ex −W∞ . (6.124)

Equations (6.123), (6.124) should be understood as an effective resummation of the
KS perturbation series. The correlation part of EISI

xc is obtained by subtraction of the
exact Ex from (6.123).

6.5 Model-Based Orbital-Dependent Exchange-Correlation
Functionals

In view of the complexity of the first-principles implicit correlation functionals of
Sect. 6.4, one is automatically led to look for more accessible alternatives. Two func-
tionals of this type have been combined with the OPM quite early, two additional
options only very recently.
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All these functionals have the advantage that they only depend on the occupied
KS states, so that their application is much less time-consuming than that of the
functionals of Sect. 6.4. On the other hand, the correlation components of these
model-based forms are relatively local: their nonlocality is restricted to the first
gradient of the KS orbitals, with obvious limitations. As a consequence, none of
these functionals can deal with the London dispersion force. The argument given in
Sect. 6.1.2 for the LDA and GGA applies equally well to these types of functionals.

6.5.1 Self-Interaction Corrected LDA

The first functional of this type is the self-interaction corrected LDA (SIC-LDA)
[143, 262]. The SIC-LDA has already been introduced in Sect. 4.7 (to which we
refer the reader for all details). Applications of this functional usually do not rely
on the OPM, but rather on the use of orbital-dependent KS potentials. Few results
combining the SIC-LDA with the OPM have been reported in the literature [262,
353].

6.5.2 Colle-Salvetti Functional

A second model-based orbital-dependent expression which was originally intro-
duced in a different context is the Colle-Salvetti (CS) correlation functional [222]. It
was initially developed for use within the Hartree-Fock scheme. The starting point
for the derivation of the CS functional is an approximation for the correlated wave-
function Ψ0(rrr1σ1, . . .rrrNσN). The ansatz for Ψ0 consists of a product of the HF
Slater determinant and so-called Jastrow factors, which reflect the correlation be-
tween all pairs of particles,

Ψ0(rrr1σ1, . . .rrrNσN) = ΦHF
0 (rrr1σ1, . . .rrrNσN)∏

i< j

[
1−ϕ(rrri,rrr j)

]
. (6.125)

CS use a model for the correlation functions ϕ(rrri,rrr j) which satisfies the electron–
electron cusp condition at rrri = rrr j [198]. The free parameter in this model is adjusted
to the correlation energy of the He atom [222]. The final functional reads

ECS
c = −ab

4

∫
d3r βγ

[
4∑

kσ
Θkσ nσ (∇∇∇|φkσ |)2 −|∇∇∇n|2 −∑

σ
nσ ∇∇∇2nσ +n∇∇∇2n

]

−a
∫

d3r γ
n
α

, (6.126)

with the abbreviations

α(rrr) = 1+dn(rrr)−1/3
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β (rrr) =
n(rrr)−5/3 exp[−cn(rrr)−1/3]

α(rrr)

γ(rrr) = 4
n↑(rrr)n↓(rrr)

n(rrr)2

(for the values of the coefficients a–d see after Eq. (4.289)). This functional de-
pends on the spin-density nσ and the orbital kinetic energy density, |∇∇∇φkσ |2. In the
context of DFT, this dependence makes ECS

c an implicit functional for which the
OPM has to be utilized. Only a few OPM-based applications of the CS functional
are documented in the literature [427–429]. The CS functional is, however, the ba-
sis for the LYP-GGA, Eq. (4.289), which is one of the most often used correlation
functionals.

6.5.3 Meta-GGA

A third model-based orbital-dependent xc-functional is the Meta-GGA [231, 232]
already introduced in Sect. 4.8 (to which we refer the reader for all details). Sim-
ilar to the CS-functional, the Meta-GGA is usually not applied within the OPM.
Rather applications often utilize an a posteriori evaluation of the Meta-GGA energy
by insertion of selfconsistent GGA densities/orbitals. Alternatively, selfconsistent
calculations with the Meta-GGA rely on orbital-dependent potentials, i.e. on a min-
imization of the total energy in the spirit of the HF minimization (see also next
section).

6.5.4 Global, Screened and Local Hybrid Functionals

It has been realized quite early [215, 430] that an admixture of the exact exchange to
GGA-type functionals improves thermochemical results substantially, as compared
to pure GGAs. The standard form of such a global hybrid functional is given by

Ehyb
x = a0Eexact

x +a1EGGA
x +(1−a0 −a1)ELDA

x (6.127)

Ehyb
c = b1EGGA

c +(1−b1)ELDA
c . (6.128)

The form of the GGA and the mixing coefficients were originally chosen to op-
timally reproduce sets of thermochemical data. In this way one finds the B3LYP
functional [216], which relies on the B88-GGA for exchange [219], the LYP-GGA
for correlation [221] and a0 = 0.2, a1 = 0.72, b1 = 0.81. For ELDA

c the VWN pa-
rameterization is employed, with, however, (i) a set of parameters different from
those provided in Sect. 4.3, and (ii) the spin-dependence of the exchange: in B3LYP
ELDA

c is replaced by (4.122), with eHEG,RPA
c (n,0) and eHEG,RPA

c (n,1) parameterized
in the VWN form (4.108), using x0 = −0.409286, b = 13.0720 and c = 42.7198
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for the paramagnetic case and x0 = −0.743294, b = 20.1231 and c = 101.578 for
the ferromagnetic limit—this set of data corresponds to the RPA for the correlation
energy of the HEG [134] (compare the discussion in [431]).

The mean average errors obtained with this hybrid for the spectroscopic con-
stants of the molecules listed in Table 4.7 are given in Table 6.10 (atomic refer-
ence data obtained with the B3LYP functional are included in Tables 4.13 and 4.5).
The improvement of these thermochemical data by the B3LYP functional is ob-

Table 6.10 Bond lengths Re, dissociation energies De (including the zero-point energies [226])
and harmonic frequencies ωe: Mean absolute deviation of global and local hybrid results from
experimental data (taken from [227–229]—see also http://cccbdb.nist.gov/) for the set of diatomic
molecules listed in Table 4.7. B3LYP: Eqs. (6.127), (6.128) [430, 216]; PBE0: Eqs. (6.134), (6.135)
[217]); LH-BPW91: Eqs. (6.141), (6.146), (6.147) with B88-GGA exchange and PW91-GGA cor-
relation [432]; LH-LDA: Eqs. (6.141), (6.148), (6.147) with the LDA for exchange and correlation
[433]). The corresponding deviations of the combination of the exact exchange with the PBE-GGA
for correlation (EXX+PBE) [434] are also given (see Sect. 6.4).

Method Re De ωe

[Bohr] [eV] [cm−1]
B3LYP 0.018 0.148 33
PBE0 0.020 0.195 41

LH-BPW91 0.046 0.842 109
LH-LDA 0.026 0.215 35

EXX+PBE 0.088 1.187 213

vious. A good number of similar results can be found in the literature (see e.g.
[430, 216, 435, 436]).

The success of this construction immediately prompts the question concerning
its justification. A simple argument can be given on the basis of the adiabatic con-
nection (4.75) [215]. The crucial point is the decomposition of the total Exc[n] in
terms of the coupling strength λ ,

Exc[n] =
∫ 1

0
dλ Exc,λ [n] . (6.129)

Exc,λ is known for small λ , for which a power series expansion in the coupling
constant is legitimate,

Exc,λ [n] = A(0)[n]+λA(1)[n]+λ 2A(2)[n]+λ 3A(3)[n]+ . . . . (6.130)

The lowest order coefficients of (6.130) are given by the series (6.89), A(0) = Ex,

A(1) = 2E(2)
c . The simplest approximation for (6.129) relies on the representation of

the λ -dependence of Exc,λ by a straight line,

Exc,λ = Exc,λ=0 +λ
[
Exc,λ=1 −Exc,λ=0

]
(6.131)
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=⇒ Exc[n] =
1
2

[
Ex +Exc,λ=1

]
.

One can then argue that the LDA or GGA provide a reasonably accurate represen-
tation of Exc,λ at λ = 1 (as the xc-hole is deeper and thus more localized around its
electron for full coupling strength [217]) to end up with [215]

Exc[n] =
1
2

[
Ex +EGGA

xc

]
. (6.132)

This qualitative argument indicates why functionals of the form (6.127) could be
of interest. The quantitative performance of the functional (6.132) is less satisfying.
The argument given can, however, be refined by a more detailed analysis of the
shape of Exc,λ as a function of λ [217]. One starts with the ansatz

Exc,λ = EGGA
xc,λ +

[
Ex −EGGA

x

]
(1−λ )n−1 , (6.133)

which (i) is exact for λ = 0 (as EGGA
xc,λ=0 = EGGA

x ), and (ii) approaches EGGA
xc,λ=1 for

λ = 1, similar to (6.132). The form (6.133) allows, however, any power-law shape
for intermediate values of λ , not just a straight line. The appropriate power n de-
pends on the system under consideration. For molecules one can refer to the success
of many-body perturbation theory to fourth order in the coupling constant (the so-
called MP4 approximation). If one assumes this observation to be also characteristic
for the expansion of Exc, it suggests that the optimum shape of (6.133) is obtained
for n = 4.

If the GGA contribution to (6.133) is chosen to be of first-principles form, the
HEG limit is also correctly reproduced. The resulting hybrid functional reads [217]

EPBE0
x =

1
4

Eexact
x +

3
4

EPBE
x (6.134)

EPBE0
c = EPBE

c . (6.135)

Some prototype results obtained with this so-called PBE0 functional are given in
Table 6.11. The mean average errors found for the spectroscopic constants of the
diatomic molecules in the G2 set are included in Table 6.10. A comparison with
the PBE-GGA data in Tables 4.7 and 4.8 shows that the PBE0 hybrid improves the
accuracy of the dissociation energy. Additional results may be found in Sect. 6.6
and [437, 435, 438, 439].

Applications of hybrid functionals usually rely on a HF-type implementation of
their exact exchange component (often termed generalized Kohn-Sham approach—
GKS), rather than on the solution of the OPM equation for the exact Ex,

vx(rrr)φk(rrr) −→ [v̂xφk] (rrr) =
δEx

δφ †
k (rrr)

.

This is uncritical for most thermochemical calculations in quantum chemistry,
where the concept of hybrid functionals originated. However, as soon as one wants
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Table 6.11 Bond lengths Re, dissociation energies De (including the zero-point energies [226])
and harmonic frequencies ωe of diatomic molecules: Selfconsistent PBE0 [217] and local hybrid
(LH-LDA) results. The LH-LDA hybrid [433] combines Eqs. (6.141), (6.148), (6.147) with the
LDA for exchange and correlation. It is evaluated with the orbitals resulting from a global hybrid
in which 10% exact exchange is admixed to the LDA for exchange and correlation. For the atomic
ground state non-spherical densities have been allowed.

Molecule Method Re De ωe

[Bohr] [eV] [cm−1]
H2 PBE0 1.407 4.529 4406

LH-LDA 1.403 4.972 4491

Li2 PBE0 5.152 0.836 331
LH-LDA 5.214 0.846 329

B2 PBE0 3.047 2.848 1016
LH-LDA 3.071 2.482 963

C2 PBE0 2.351 5.219 1870
LH-LDA 2.358 4.884 1846

N2 PBE0 2.055 9.787 2464
LH-LDA 2.061 9.445 2428

O2 PBE0 2.251 5.406 1697
LH-LDA 2.262 5.334 1673

F2 PBE0 2.596 1.519 1067
LH-LDA 2.615 1.633 1018

LiH PBE0 3.014 2.296 1419
LH-LDA 3.039 2.560 1402

FH PBE0 1.734 5.939 4162
LH-LDA 1.738 6.243 4156

CO PBE0 2.120 11.090 2240
LH-LDA 2.126 11.025 2227

NO PBE0 2.150 6.603 2019
LH-LDA 2.159 6.379 1982

OH PBE0 1.833 4.414 3761
LH-LDA 1.836 4.577 3758

NH PBE0 1.960 3.697 3319
LH-LDA 1.960 3.650 3318

CH PBE0 2.124 3.501 2850
LH-LDA 2.120 3.548 2878

CN PBE0 2.186 7.754 2146
LH-LDA 2.195 7.356 2144

LiF PBE0 2.945 5.730 932
LH-LDA 2.994 5.970 893

BeH PBE0 2.544 2.422 2028
LH-LDA 2.550 2.544 2043
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to apply hybrid functionals to metallic systems, one has to face the logarithmic di-
vergence of the derivative of the HF single particle (band) energies with respect to
the crystal momentum at the Fermi surface (see Chap. 17 of [96]). This divergence
results from the combination of (i) the long range of the unscreened Coulomb inter-
action, and (ii) the nonlocal structure of the HF exchange potential. While an OPM
treatment of the exact exchange avoids the divergence, the GKS approach suffers
from it, just as the pure HF scheme.

Quite generally, the infinite range of the Coulomb interaction complicates HF
and also GKS calculations for metals substantially: while the range of the exchange
interaction decays exponentially for systems with a gap [440] (with the decay con-
stant being controlled by the size of the HOMO-LUMO or band gap), its decay is
only algebraic for metallic systems [441] (at zero temperature). As a consequence,
the real space methods typically applied in quantum chemistry become extremely
demanding: for each center the exchange interaction with a large number of neigh-
boring centers has to be taken into account.

In order to resolve this difficulty, the concept of screened hybrid functionals has
been introduced [441]. The starting point for this class of functionals is a decom-
position of the Coulomb interaction into a short-range and a long-range part. For
technical reasons (i.e. the fact that integrals with Gaussian basis functions can be
solved analytically) the decomposition is based on the error function,

1
|rrr| =

erfc(ω|rrr|)
|rrr|︸ ︷︷ ︸

short−range

+
erf(ω|rrr|)

|rrr|︸ ︷︷ ︸
long−range

(6.136)

erf(x) =
2√
π

∫ x

0
dt e−t2

erfc(x) = 1− erf(x)

⇒ erf(0) = 0 erf(∞) = 1 ,

where the empirical parameter ω remains to be determined. After insertion of
(6.136) the exchange functional of the global PBE0 hybrid, Eq. (6.134), splits into
four components,

EPBE0
x =

1
4

[
Eexact,sr

x +Eexact,lr
x

]
+

3
4

[
EPBE,sr

x +EPBE,lr
x

]
, (6.137)

where Eexact,sr
x denotes the Fock term with the interaction erfc(ω|rrr − rrr′|)/|rrr − rrr′|,

and Eexact,lr
x absorbs the remaining long-range part of (6.136). Similarly, EPBE,sr

x and
EPBE,lr

x are the PBE-type GGAs for exchange which result from use of the short-
and long-range Coulomb interactions inside the PBE exchange hole [441] (compare
Sect. 4.5.2).

The critical term in (6.137), which complicates calculations for metallic systems,
is Eexact,lr

x . However, for suitable values of ω this term is rather small. In addition,
Eexact,lr

x is often close to EPBE,lr
x . This suggests the replacement of the PBE0 ex-

change by
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EHSE
x =

1
4

Eexact,sr
x +

3
4

EPBE,sr
x +EPBE,lr

x . (6.138)

Obviously, EHSE
x approaches the PBE0 functional in the limit ω → 0. The correla-

tion component of the PBE0 functional, on the other hand, remains unmodified in
the screened hybrid,

EHSE
c = EPBE

c . (6.139)

Extensive tests showed that results are not particularly sensitive to the value of
ω , as long as this screening parameter is chosen sufficiently small. The value of
ω=0.11 Bohr−1 turned out to be a good compromise between accuracy and compu-
tational efficiency [441–443]. With this choice the accuracy of the screened hybrid
for standard sets of thermochemical data is comparable to that of its PBE0 parent
functional. A detailed assessment of the screened hybrid for solids may be found in
[444, 242, 443, 445, 446].

The major motivation for using the exact exchange functional is the complete
cancellation of the self-interaction in EH. Unfortunately, this cancellation remains
incomplete for hybrid functionals as (6.127) or (6.134). As a consequence, the corre-
sponding vxc does not satisfy (4.20), but rather decays like −a/r (for finite systems).
This local property of vxc, which is associated with the fact that asymptotically a
single orbital dominates the density, raises the question whether one can improve
hybrids by use of a local mixing procedure. Ideally, such a local mixing would al-
low the complete cancellation of the self-interaction in those regions in which the
system is close to a single particle system. In order to distinguish between different
regions of space a local hybrid [447] necessarily has to rely on the local admixture
of the exact exchange energy density eexact

x (rrr) to some LDA or GGA energy density.
Setting aside the issue of non-uniqueness of energy densities, the former quantity is
most naturally defined as

eexact
x (rrr) = −e2

2 ∑
kl

ΘkΘl

∫
d3r′

φ †
k (rrr)φl(rrr)φ †

l (rrr′)φk(rrr′)
|rrr− rrr′| (6.140)

(see also the discussion in [448]). The general form of a local hybrid [447] is then
given by

ELH
x =

∫
d3r

{
f (rrr)eexact

x (rrr)+ [1− f (rrr)]eLDA/GGA
x (rrr)

}
. (6.141)

Obviously, the crucial ingredient of (6.141) is the local mixing factor f (rrr), for which
some model is required.

Given the basic purpose of the local hybrid, the mixing factor has to distinguish
between the one-electron regime, in which the exact exchange energy density is
required for a complete cancellation of the self-interaction, and the electron gas
regime, in which GGA-type functionals become exact. These two limits are also
reflected in the kinetic energy density. Ignoring once more the non-uniqueness of
any energy density, one usually defines the exact KS kinetic energy density as



6.5 Model-Based Orbital-Dependent Exchange-Correlation Functionals 287

ts(rrr) =
h̄2

2m ∑
k

Θk [∇∇∇φk(rrr)]2 , (6.142)

where all orbitals have been chosen to be real. In the case of a single particle ts can
be written in the form of the von Weizsäcker energy density [174],

ts(rrr) −−−→
n=φ2

1

tW(rrr) =
h̄2

m
[∇∇∇n(rrr)]2

8n(rrr)
. (6.143)

On the other hand, tW vanishes in the limit of a homogeneous electron gas. Both ts
and tW are positive definite by construction and satisfy the inequality

ts(rrr) ≥ tW(rrr) . (6.144)

Equation (6.144) is easily proven by considering

0 ≤ ∑
kl

ΘkΘl [φk∇∇∇φl −φl∇∇∇φk]
2

= 2

[
∑

l

Θlφ 2
l

][
∑
k

Θk(∇∇∇φk)2

]
− 1

2 ∑
kl

ΘkΘl
(
∇∇∇φ 2

k

)(
∇∇∇φ 2

l

)
=

4m

h̄2 n(rrr) [ts(rrr)− tW(rrr)] .

One therefore finds

0 ≤ tW(rrr)
ts(rrr)

≤ 1 , (6.145)

with the left-hand bound being approached in regions in which the KS states are
close to plane waves, the right-hand bound in regions in which only a single orbital
is non-vanishing. As a consequence, the mixing factor

f (rrr) =
tW(rrr)
ts(rrr)

(6.146)

offers itself. Clearly, this choice is in no way unique, many alternatives being con-
ceivable (see [432, 449, 433]). The functional (6.141) is easily extended to spin-
polarized systems, using (4.19) and the corresponding statement for the kinetic en-
ergy.

It remains to define the correlation component of the local hybrid. As the can-
cellation of self-interaction is much more important for exchange than for correla-
tion, the correlation component of the local hybrid is chosen to be a conventional
(semi)local density functional,

ELH
c = ELDA/GGA

c . (6.147)
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Both the LDA and various GGAs have been utilized in connection with local hy-
brids. Applications initially relied on an evaluation of ELH

xc with LDA or GGA or-
bitals. Recently, also selfconsistent calculations, using either the OPM [432] or the
GKS scheme [450], have been reported. The differences between selfconsistent and
post-LDA/GGA results are, however, generally rather small, so that one may use the
more efficient post-LDA/GGA treatment.

It turns out that the results obtained with ELH
xc with the mixing factor (6.146)

are not fully convincing, irrespective of the approximation chosen for its semi-local
ingredient and of its treatment via the OPM, the GKS or the post-LDA/GGA proce-
dure [447, 432, 449, 433, 450]. On the one hand, the local hybrid clearly constitutes
an improvement over the global hybrid for systems in which the cancellation of the
self-interaction plays a predominant role, as symmetric radical cations (as e.g. H+

2 ,
He+

2 ) or reaction barriers [447]. On the other hand, the accuracy of ELH
xc for standard

thermochemical data is clearly lower than that of global hybrids [447, 432]. An il-
lustration of this statement is provided in Table 6.10. This table includes results from
a local hybrid, which combines Eq. (6.141) with the mixing factor (6.146) and the
B88-GGA for exchange as well as Eq. (6.147) with the PW91-GGA for correlation.

This poor performance has prompted attempts to optimize f (rrr) [432, 449, 433].
It was found that the choice

f (rrr) = 0.48
tW(rrr)
ts(rrr)

(6.148)

gives much improved thermochemical results, even if the exact exchange is com-
bined with the LDA [449, 433, 450]. Some prototype results obtained from a local
hybrid using the mixing factor (6.148) and the LDA [134] for the density-dependent
component of ELH

xc are included in Tables 6.11 and 6.10. One finds almost the same
average absolute error as with the best global hybrids.

6.6 Analysis of Orbital-Dependent Correlation Functionals

6.6.1 Dispersion Force

In view of the motivation for implicit correlation functionals given in Sect. 6.1.2,
first the question of dispersion forces has to be addressed. As none of the model-
based functionals of Sect. 6.5 can rigorously deal with these long-range forces, the
present discussion focuses on the second order correlation functional (6.93) as the
simplest first-principles functional. Some numerical results obtained with global hy-
brid functionals are provided at the end of this section.

Consider two neutral atoms A and B, separated by a sufficiently large distance
R, so that no molecular orbitals are formed. For this system the overlap between the
atomic orbitals φk,A centered on atom A and φl,B centered on atom B vanishes expo-
nentially with increasing R. Even if A and B represent the same type of atom, one



6.6 Analysis of Orbital-Dependent Correlation Functionals 289

can therefore choose the KS states of the two-center system to be atomic orbitals,
rather than molecular orbitals (which are trivial linear combinations of the atomic
orbitals). The sums over all KS states in (6.94) and (6.100) then effectively split up
into sums over the atomic states (compare e.g. [96]),

∑
i
−→ ∑

iA

+∑
iB

.

This implies that only those Slater integrals in E(2)
c contribute which do not in-

volve orbital pairs of type φ †
iA

(rrr)φ jB(rrr), i.e. which do not link orbitals from dif-

ferent atomic centers at the same point rrr. Consequently, for large R neither EΔHF
c ,

Eq. (6.100), nor the SOX component of EMP2
c , Eq. (6.97), contributes to the inter-

action between the two atoms, as for these terms all sums over states only couple
states belonging to the same atom,

EMP2,SOX
c = −e4

2 ∑
α=A,B

∑
iα jα kα lα

Θiα Θ jα (1−Θkα )(1−Θlα )

× (iα jα ||kα lα)(kα lα || jα iα)
εiα + ε jα − εkα − εlα

EΔHF
c = ∑

α=A,B
∑
iα lα

Θiα (1−Θlα )
εiα − εlα

∣∣∣∣〈iα |vx|lα〉+ e2 ∑
jα

Θ jα (iα jα || jα lα)
∣∣∣∣2 .

Only the direct matrix elements in EMP2,DIR
c , which corresponds to the ring diagram

(6.98), couple both centers for large R. In the present situation the complete ring
diagram decomposes into four terms, as the electron-hole pair in any of the rings
can either belong to atom A or atom B. The combinations AA and BB,

EMP2,DIR
c,AA+BB =

e4

2 ∑
α=A,B

∑
iα jα kα lα

ΘiαΘ jα (1−Θkα )(1−Θlα )

× (iα jα ||kα lα)(kα lα ||iα jα)
εiα + ε jα − εkα − εlα

,

contribute to the atomic (on-site) correlation energies of A and B, just as EΔHF
c and

EMP2,SOX
c . Only the combinations AB and BA, which represent the interaction of

virtual particle–hole excitations on two different centers, lead to molecular binding.
No other component of the total energy functional contributes to the interaction

between the two atoms, provided that A and B are closed-subshell atoms (so that
no static multipole moments are present). The interaction energy between A and B
therefore reduces to

Eint ≡ EMP2,DIR
c,AB+BA

= e4 ∑
iAkA

ΘiA(1−ΘkA) ∑
jBlB

Θ jB(1−ΘlB)
(iA jB||kAlB)(kAlB||iA jB)

εiA + ε jB − εkA − εlB
. (6.149)
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If one expands (6.149) in powers of 1/R and reintroduces the frequency integration
inherent in the ring diagram, one ends up with an expression [350] which is much
more familiar,

Eint = −C6

R6 ; C6 = −3e4
∫ ∞

0

du
π

αs,A(iu)αs,B(iu) . (6.150)

Here αs,A/B(iu) denotes the atomic KS polarizability (for the case of closed sub-
shells), evaluated at imaginary frequency,

αs(ω) = −
∫

d3r1

∫
d3r2 z1 z2 χs,R(rrr1,rrr2,ω) . (6.151)

The basic ingredient of α(ω) is the frequency-dependent, retarded KS response
function,

χs,R(rrr1,rrr2,ω) = ∑
k,l

[Θk −Θl ]
φ †

k (rrr1)φl(rrr1)φ †
l (rrr2)φk(rrr2)

h̄ω − εl + εk + iη
. (6.152)

Equation (6.150) has the standard form of a dispersion force. Obviously, E(2)
c is able

to reproduce the correct long-range behavior proportional to 1/R6. The same is true
for ERPA

c as the diagram (6.98) is included in the RPA (see Eq. (6.108)).
However, the exact result for the coefficient C6 involves the full atomic polariz-

abilities, while the present DFT-variant of C6 is determined by the KS polarizabil-
ities (as a consequence of second order perturbation theory). So, the next question
is how well do the KS coefficients reproduce the exact C6? Calculations [451] show
that Eq. (6.150) yields reasonably accurate values for light atoms: as indicated by
Table 6.12, the lowest order KS results overestimate the full C6 by 10–20%. On the

Table 6.12 Van der Waals coefficient C6: Eq. (6.150) versus accurate empirical results.

Atoms E(2)
c [451] Empirical [452, 453]

He–He 1.66 1.46
He–Ne 3.49 3.03
Ne–Ne 7.45 6.38
Xe–Xe 730.7 285.9

H–He 3.02 2.82 ± 0.02
H–Na 81.14 71.8 ± 0.3

other hand, for heavier atoms higher order correlation becomes important, so that
the C6 obtained from Eq. (6.150) differ substantially from empirical results.

At this point it is has been verified that the functional (6.93) reproduces the long-
range behavior of the dispersion force. It is not yet clear, however, how it performs in
the intermediate (bonding) regime. In order to predict the equilibrium geometry of a
van der Waals bonded molecule, it is not sufficient to obtain the correct asymptotic
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1/R6-attraction. Rather the complete energy surface must be accurate. This point is
illustrated in Fig. 6.13, in which the energy surface Eb(R) of the He dimer is shown
[454]. In Fig. 6.13 four different DFT results are compared with HF data [455]

4 5 6 7 8 9 10

−5

−4

−3

−2

−1

0

1

2

E
b 

[m
eV

]

R [Bohr]

exact

EXX+EC2

EXX+RPA

EXX+ISI

EXX

HF

He2

Fig. 6.13 Energy surface Eb of He2: Exact Ex in combination with E(2)
c (EXX+EC2) [454], ERPA

c
(EXX+RPA) and E ISI

c (EXX+ISI) versus EXX, HF [455] and exact data [332].

and the exact Eb, obtained by variational calculations with correlated wavefunctions
[332] (all Eb are strictly nonrelativistic). The x-only results demonstrate explicitly
that dispersive bonding is a pure correlation effect—both the EXX calculation and
its HF counterpart predict a repulsive energy surface (as in many other situations the
EXX data are rather close to the HF numbers—see Sect. 6.3).

Three “correlated” DFT results are also shown in Fig. 6.13. The first one is based

on the combination of the exact Ex with E(2)
c (EXX+EC2—after a selfconsistent

EXX calculation with the KLI approximation, E(2)
c is evaluated from the EXX or-

bitals and added to the EXX ground state energy). The agreement of the result-
ing EEXX+EC2

b (R) with the exact surface is far from perfect, but EEXX+EC2
b (R) is at

least qualitatively correct. One can conclude that E(2)
c does not only give the de-

sired asymptotic 1/R6-behavior, but also provides a realistic description of Eb(R)
for non-asymptotic R.

As pointed out before, the RPA contains the asymptotically leading term of E(2)
c .

It is therefore no surprise that the energy surfaces of the two functionals agree for
large R. However, the RPA also leads to quite realistic results in the vicinity of the
minimum of Eb(R) [456] (see Fig. 6.13). The same is not true for the ISI energy sur-
face, which is also plotted in Fig. 6.13. The He2 molecule is an extremely sensitive
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system, so that a model-based treatment of higher order correlations is particularly
difficult.

Since E(2)
c originates from second order perturbation theory, one might be tempted to consider

its success for He2 a trivial result: the arguments given in the beginning of this section apply to
any second order perturbative energy functional, so that the 1/R6-behavior is common to all of
them. However, the correct long-range behavior does not imply that the full function Eb(R) is
accurate. This is demonstrated explicitly in Fig. 6.14, in which four second order results for Eb(R)
are compared. In addition to the EXX+EC2-result, already shown in Fig. 6.13, the surface obtained
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Fig. 6.14 Energy surface Eb(R) of He2 obtained from different perturbation expansions to

second order: E(2)
c in combination with exact Ex evaluated with either self-consistent EXX

(EXX+EC2/EXX) or LDA (EXX+EC2/LDA) orbitals versus conventional MP2 [457] and ex-
act [332] result. Also shown is the result for LDA orbitals, if EΔHF

c , Eq. (6.101), is left out
(EXX+MP2/LDA).

in the conventional MP2 approach (second order perturbation theory on the basis of HF) is given.
The EXX+EC2-result overestimates the exact well depth to roughly the same extent as the MP2
surface underestimates it.

In the third second order approach the EXX+EC2 functional is evaluated with self-consistent

LDA orbitals, i.e. the difference between ELDA
xc and Ex + E(2)

c is added perturbatively to the
LDA surface. This is exactly the energy functional obtained from the perturbation expansion of
Sect. 4.2.1, if the self-consistent LDA Hamiltonian is used as reference Hamiltonian. In this case
the perturbing Hamiltonian is given by

Ĥ1 = Ŵ +
∫

d3r n̂(rrr)
[
vext(rrr)− vLDA

s (rrr)
]
,

where vLDA
s denotes the self-consistent total LDA potential. One can then follow the derivation of

Sect. 4.2.1 with this Ĥ1 until one arrives at Eq. (4.64) with Es = T LDA
s +

∫
d3r nLDAvLDA

s . Insertion
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of the present Ĥ1 and expansion to second order finally leads to the ground state energy

T LDA
s +

∫
d3r vextn

LDA +EH[nLDA]+Ex[φ LDA
i ]+E(2)

c [φ LDA
i ,εLDA

i ,vLDA
xc ] ,

where vLDA
xc enters into E(2)

c via EΔHF
c . By construction this functional yields the 1/R6-asymptotics.

However, the C6-coefficient obtained from (6.150) with LDA orbitals [451] is much larger than the
C6 resulting from EXX orbitals (which is already too large). This is reflected by the large-R be-
havior of the corresponding energy surface (see Fig. 6.14). Even more important is the complete
failure of the LDA-based second order expansion in the vicinity of the minimum of Eb. It either

yields by far too much bonding, if E(2)
c [φ LDA

i ,εLDA
i ,vLDA

xc ] is included completely, or by far too
little, if the component EΔHF

c , Eq. (6.101) is left out. This demonstrates that application of second
order perturbation theory does not automatically guarantee a realistic energy surface for disper-
sive bonds. A suitable noninteracting reference Hamiltonian, which provides the starting point for
the expansion, is required. The EXX Hamiltonian offers itself as a particularly consistent choice
(compare also [458, 459]).

For completeness, the energy surfaces obtained with two standard hybrid func-
tionals, B3LYP [430, 216] and PBE0 [217], are shown in Fig. 6.15. While B3LYP
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E
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Fig. 6.15 Energy surface Eb of He2: Self-consistent B3LYP and PBE0 results versus EXX, PBE
data as well as exact surface [332].

generates a strictly repulsive energy surface, PBE0 leads to an attractive potential
well whose depth and minimum position are reasonably close to the exact values
[437]. This success results from a suitable superposition of the much too attractive
PBE surface and the repulsive EXX surface (both are included in Fig. 6.15). As
a consequence of the subtle balance between the GGA and EXX components, the
energy surfaces obtained from hybrid functionals are quite sensitive to the precise
mixing ratio between exact and GGA exchange. This fact emphasizes the impor-
tance of the ratio of 1/4 derived from the adiabatic connection. Asymptotically, the
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PBE0 surface falls off much faster than 1/R6, consistent with the short-range char-
acter of its components.

6.6.2 Correlation Energy

After the demonstration that E(2)
c and related first-principles functionals are able to

deal with dispersion forces, the next step is a quantitative study of more conven-
tional properties. Correlation energies of closed-subshell atoms, obtained in various
approximations, are listed in Table 6.13 and compared with exact quantum chemi-
cal correlation energies [115] (which have been extracted by combining variational
results for two- and three-electron systems with experimental data for the ioniza-
tion energies of the remaining electrons). The difference (4.11) between the exact
DFT correlation energy and the quantum chemical correlation energy (4.9) is rather
small, so that EQC

c can serve as reference standard for the present comparison [116]

(compare the discussion of Table 4.1 in Sect. 4.1). E(2)
c clearly overestimates the

Table 6.13 Correlation energies (−Ec) of closed-subshell atoms: LDA [134], PW91-GGA [211],

CS [222], E(2)
c [343], ERPA

c [414, 421], ERPA+
c [460, 461, 421] and ISI [422] results (all DFT

energies have been obtained by insertion of EXX densities) in comparison with conventional MP2

[145, 144] and exact EQC
c [115] energies (in mHartree). The contribution (6.100) to E(2)

c is also
listed separately.

Atom MP2 −EQC
c ISI −E(2)

c −EΔHF
c −ERPA

c −ERPA+
c LDA GGA CS

He 37 42 39 48 0.0 83 47 113 46 42
Be 76 94 101 124 0.6 179 108 225 94 93
Ne 388 391 411 478 1.7 597 400 746 382 375
Mg 428 438 462 522 3.2 687 453 892 450 451
Ar 709 722 777 866 5.4 1101 742 1431 771 743
Ca 798 890 996 6.4 1581 847 824
Zn 1678 1789 2016 14.9 2668 1526 1426
Cd 2618 2847 3104 19.5 4571 2739 2412
Xe 3088 3214 3487 17.7 5199 3149 2732

exact atomic correlation energies, consistent with the result for the energy surface

of He2. The accuracy of E(2)
c is lower than that of the conventional MP2 scheme,

in particular for heavier atoms. The deviations are also much larger than those ob-

served for standard GGAs. On the other hand, the ISI extension of E(2)
c eliminates

most of the error produced by E(2)
c .

The component EΔHF
c of E(2)

c is listed separately in Table 6.13. It vanishes for
two-electron systems and is more than 2 orders of magnitude smaller than EMP2

c for
all other atoms. This suggests that EΔHF

c can be neglected in most situations, which

definitively simplifies the application of E(2)
c .
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A comparison of E(2)
c with ERPA

c , Eq. (6.114), illustrates the importance of the
SOX contribution (6.97) for finite systems [460, 461, 411, 421]. The RPA is not par-
ticularly useful for atoms and molecules without inclusion of some SOX correction.
However, as is clear from the discussion of dispersion forces, the SOX term is of
short-range nature. For this reason one would expect the LDA to give a reasonably
accurate account of the SOX contribution. The SOX energy, as well as other higher
order corrections, may thus be included in the form [460, 461]

ERPA+
c = ERPA

c +ELDA
c −ELDA−RPA

c , (6.153)

where ELDA−RPA
c denotes the LDA for ERPA

c . The RPA+ approach has been shown to
give rather accurate correlation energies for atoms [421]. Some examples are listed
in Table 6.13.

For completeness, Table 6.13 also includes the energies resulting from the CS-
functional (6.126). This functional leads to rather accurate values for light atoms,
but underestimates Ec for the heavier elements.

Comparable data for the He isoelectronic series are given in Table 6.14 [344].

These numbers demonstrate that E(2)
c obeys the correct scaling law with respect

Table 6.14 Correlation energies (−Ec) of the He isoelectronic series: LDA [134], PW91-GGA

[211], CS [222], E(2)
c [343], ERPA

c [421] and ISI [422] results (all energies obtained by insertion of
EXX densities) in comparison with conventional MP2 [462] and exact [81] energies (in mHartree).

Ion LDA GGA CS −ERPA
c −E(2)

c ISI Exact MP2
He 112.8 45.9 41.6 83.1 48.21 39.4 42.04 37.1
Ne8+ 203.0 61.7 40.6 90.8 46.81 45.0 45.69 44.4
Ca18+ 243.3 67.7 35.9 91.4 46.69 45.8 46.18 45.4
Zn28+ 267.2 71.3 33.2 91.5 46.67 46.34 45.7
Zr38+ 284.4 74.0 31.4 91.5 46.66 46.3 46.42 45.9
Sn48+ 297.7 76.0 30.0 46.65 46.47 46.0
Nd58+ 308.7 77.8 29.0 46.64 46.3 46.51
Yb68+ 318.0 79.3 28.2 46.63 46.53
Hg78+ 326.1 80.6 27.6 46.62 46.4 46.55
Th88+ 333.2 81.7 27.0 46.62 46.56
Fm98+ 339.6 82.8 26.0 46.62 46.4 46.57

to the nuclear charge Z: E(2)
c becomes exact in the limit of large Z, in which the

correlation energy of two-electron ions approaches a constant. The GGA energies,
on the other hand, exhibit a systematic increase with increasing Z. The opposite
behavior is found for the CS functional, with an error of about 50% for heavy ions.

The ISI functional, whose dominant component is E(2)
c , also approaches a constant

value for large Z.
A very sensitive test for correlation functionals is provided by atomic EAs. Ta-

ble 6.15 lists the EAs for H− obtained with various functionals. The exact exchange
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Table 6.15 Correlation energy and electron affinity of H−: Results obtained by combination of the
exact exchange with different correlation functionals (LDA [134], PW91-GGA [211], CS [222],

EC2 (E(2)
c ) [343], RPA (ERPA

c ) [361] and ISI [422]) in comparison with conventional MP2 [463]
and exact [464] energies (in mHartree). All correlation functionals have been evaluated with self-
consistent EXX orbitals.

Method −Ec EA
EXX — −12.1
EXX+LDA 75.7 62.6
EXX+GGA 35.5 22.8
EXX+CS 31.2 18.9
EXX+EC2 54.6 42.6
EXX+RPA 74.2 42.4
EXX+ISI 34.3 22.2

Exact 39.8 27.8
MP2 27.3 15.2

is used in all cases, only the correlation functional varies. The EXX calculation
predicts H− to be unbound, which emphasizes once more the importance of correla-
tion.20 Inclusion of LDA correlation produces an EA which is more than a factor of
2 too large, since the EA of H− directly reflects the accuracy of the correlation en-

ergy. E(2)
c also clearly overestimates the correlation energy of H−, so that the same is

true for the EA. E(2)
c and the conventional MP2 energy bracket the exact EA, in the

same fashion as they bracket the correlation energies of neutral atoms and positive

ions. The inclusion of higher order terms in E(2)
c via the ISI definitively improves

the agreement with the exact EA, although one notices a tendency to overcorrect the

error of E(2)
c .

The next topic of this quantitative investigation of orbital-dependent correlation
functionals are covalently bound molecules. Since the results for N2 are quite char-
acteristic for many diatomic molecules, the spectroscopic constants of N2 obtained
with a variety of approximations are listed in Table 6.16. One first of all observes
that the EXX approach yields a reasonably accurate bond length, but substantially
underestimates the experimental dissociation energy. In comparison to the EXX re-
sults, the combination of exact exchange with LDA or GGA correlation improves
De, even though the remaining error is quite large. At the same time Re is reduced
and ωe is increased, which worsens the agreement with experiment. Similar state-
ments apply if the CS functional is added to the exact exchange.

Turning to the first-principles orbital-dependent correlation functionals, one finds

that E(2)
c predicts N2 to be unbound. In order to understand this result one has to go

back to Eq. (6.94) and examine the structure of this expression. If the separation
of the two nitrogen atoms in N2 is increased, the highest occupied and the lowest
unoccupied KS levels in the molecule approach each other further and further. So,

20 Note that the EXX method yields a stable solution for the H− ion. However, the EXX ground
energy of the ion is higher than that of the neutral hydrogen atom.



6.6 Analysis of Orbital-Dependent Correlation Functionals 297

Table 6.16 Spectroscopic constants of N2: Results obtained by combination of the exact exchange

(EXX) with different correlation functionals (LDA [134], PW91-GGA [211], CS [222], EC2 (E(2)
c )

[343] ISI [422] and RPA [361, 411]) in comparison with HF, MP2, quadratic configuration inter-
action with single and double excitations (QCISD) [225], SIC-LDA [143], conventional LDA and
PW91-GGA, as well as experimental [227] results (all EXX calculations rely on the KLI approxi-
mation; EC2, ISI and RPA correlation have been evaluated with EXX orbitals; EXX+CS-data from
[428]).

Method Re De ωe

[Bohr] [eV] [cm−1]
Expt. 2.074 9.905 2359

HF 2.037 4.952 2738
MP2 2.135 9.333 2180
QCISD 2.105 8.488 2400

EXX 2.011 4.973 2736
EXX+LDA 1.994 7.381 2780
EXX+GGA 1.997 7.574 2804
EXX+CS 1.998 7.818
EXX+EC2 unbound
EXX+ISI 2.235 12.225 1401
EXX+RPA 2.077 9.603 2354

LDA 2.068 11.601 2393
PBE 2.082 10.583 2344
BLYP 2.082 10.440 2327
B3LYP 2.059 9.910 2416
PBE0 2.055 9.787 2464

SIC-LDA(x+c) 1.876 −49.490 3245

with increasing R the energy gap in the denominator of (6.94) shrinks more and
more. As this divergence is not compensated by vanishing Slater integrals in the
numerator, EMP2

c becomes larger and larger when the atoms are taken apart. This
effect sets in already in the vicinity of the equilibrium separation in the case of N2.
As a consequence, one does not even find a local minimum in the energy surface.

This problem is intrinsically related to (i) the perturbative nature of EMP2
c , and

(ii) the existence of a Rydberg series in the EXX spectrum. The same effect shows
up in other instances: one finds, for example, that the correlation energy of the beryl-

lium atom is particularly overestimated by E(2)
c , which is due to the presence of the

low-lying unoccupied 2p states (compare Table 6.13). The presence of the Rydberg
series is useful for the calculation of many atomic properties, most notably for the
description of negative ions or of excited states. On the other hand, it is not very
helpful if the treatment of correlation is based on perturbation theory. This state-
ment is corroborated by the fact that the conventional MP2 calculation gives quite
reasonable results for N2, as the underlying HF Hamiltonian does not yield a Ryd-
berg series.

On the other hand, the Rydberg states do no longer pose a problem, as soon
as a suitable partial resummation of the KS perturbation series is applied. This is
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demonstrated in Table 6.13 for the case of the RPA, which yields quite accurate
results for N2 (compare, however, [411]).

This statement raises the question whether the model-based resummation of the
perturbation series via the ISI can resolve this fundamental problem of a straight
perturbation expansion as well? The ISI functional indeed leads to a bound N2.
However, it does not perform particularly well quantitatively.

For completeness, Table 6.16 also contains the spectroscopic constants obtained with the SIC-
LDA for both exchange and correlation. In this calculation the standard molecular orbitals have
been used for the evaluation of the xc-energy and potential, without applying any additional local-
ization scheme. The importance of the unitarity problem discussed in Sect. 4.7 becomes obvious.
In particular, the dissociation energy is completely misrepresented. This problem can be traced to
the SIC energies of the molecular core states [267]: the Coulomb contribution to (4.301), resulting
from the two-center molecular core states (1σg, 1σu), differs substantially from the one obtained
with the one-center atomic core states (1s), as

φ1σg/u
≈ 1√

2

[
φA,1s ±φB,1s

]
.

Realistic SIC-LDA results for molecules or solids can only be obtained on the basis of some local-
ization prescription for quasi-degenerate states [267]. Such a scheme essentially consists of using
localized linear combinations of φ1σg/u

for the evaluation of the SIC functional and has to be ap-
plied to all core and semi-core states.

6.6.3 Correlation Potential

In the applications discussed in Sects. 6.6.1 and 6.6.2 all orbital-dependent function-
als have been evaluated with orbitals obtained by selfconsistent calculations with
the exact Ex, i.e. in post-EXX form. However, ultimately one would like to apply
any approximation for Ec in a selfconsistent fashion, so that the effective poten-
tial includes correlation effects. The correlation potentials obtained from the LDA
and GGA have, as illustrated in Sect. 4.5.5, little in common with the exact atomic
correlation potential [83]. This raises the question whether orbital-dependent func-
tionals provide any improvement, in particular, in view of the first-principles nature

of functionals like E(2)
c .

Unfortunately, in the case of functionals which depend on unoccupied KS states
the solution of the OPM integral equation (6.26) is not as straightforward as for
the exact exchange. The underlying problem has already surfaced in Sect. 6.2.5,
where the derivation of Eq. (6.59) required a discrete, normalizable KS spectrum.
Quite generally, the OPM integral equation does not have a solution, which satis-
fies the boundary condition (6.50), as soon as positive energy continuum KS states
are present [465, 466, 346]. This problem can be resolved by working with a com-
pletely discrete KS spectrum [467, 346], which is most elegantly introduced via a
suitable basis set [417, 468]. Alternatively, one can embed finite systems in a large
box or spherical cavity, requiring hard-wall boundary conditions at the surface of
the box [349]. If the surface of the box is sufficiently far from the system of interest,
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the boundary conditions do not affect results in any significant way. Most potentials
shown below have been generated with this approach. Note that in the case of pe-
riodic systems the standard Born-von Karman boundary conditions automatically
ensure a discrete positive energy spectrum.

The question whether E(2)
c provides an improvement over LDA and GGA is

addressed in Figs. 6.16–6.20, in which the correlation potentials of He, Be, Ne,
Li and N are shown. Exact reference potentials are available for He, Be and Ne.
These (numerically) exact vc have been obtained by inversion of the KS equations
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Fig. 6.16 Correlation potential of helium: vMP2
c = δEMP2

c /δn, Eq. (6.94), and vCS
c = δECS

c /δn,
Eq. (6.126), versus exact potential [83]. All approximations have been evaluated with the exact KS

density. Note that EΔHF
c vanishes for spin-saturated 2-electron systems, so that vMP2

c = v(2)
c .

[83] (see also [117–122]): In this approach first a Monte Carlo calculation is per-
formed in order to generate a highly accurate representation of the atomic ground
state density (on a numerical grid). This exact density is then used as input for the
actual inversion of the KS equations, which leads to the exact total KS potential
and the exact KS orbitals. Finally, subtraction of the exact vx, which is obtained by
solution of the x-only OPM integral equation resulting from the exact KS orbitals,
and the exact vH yields the exact vc. For consistency, all approximate correlation
potentials have also been evaluated with the exact ground state densities, which cor-

responds to the use of the exact KS orbitals in case of v(2)
c . Only the MP2 component

(6.94) has been included in the evaluation of v(2)
c , as EMP2

c is much larger than EΔHF
c

for the atoms discussed (compare Table 6.13) (EΔHF
c even vanishes for He).

Several features are obvious from Figs. 6.16–6.18:

• v(2)
c reproduces the shell-structure of the exact vc, unlike all available explicitly

density-dependent approximations (compare Fig. 4.19). However, the amplitudes
of the individual structures are considerably overestimated.
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Fig. 6.17 Correlation potential of beryllium: vMP2
c = δEMP2

c /δn, Eq. (6.94), and vCS
c = δECS

c /δn,
Eq. (6.126), versus exact potential [83]. All approximations have been evaluated with the exact KS
density.
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Eq. (6.126), versus exact potential [83]. All approximations have been evaluated with the exact
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• v(2)
c is asymptotically attractive on the left-hand side of the periodic table (Be) and

repulsive on the right-hand side (Ne), as required by the error in EXX ionization
potentials [469].

• v(2)
c reproduces the −α/(2r4)-behavior of the exact vc in the asymptotic regime

[92, 467]. However, the atomic polarizability α is substantially overestimated by

v(2)
c (as is already clear from the energy surface of the He dimer).

v(2)
c can equally well be evaluated for spin-polarized systems. Examples for open-

shell atoms are given in Figs. 6.19 and 6.20. As no Monte Carlo-based reference
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Fig. 6.19 Correlation potential of lithium: vMP2
c = δEMP2

c /δn, Eq. (6.94) versus LDA and LYP-
GGA potential. Thick lines correspond to the majority spin channel, thin lines provide the minority
spin potential. All approximations have been evaluated with the exact x-only spin-densities.

results are available for these spin-polarized atoms, the potentials in Figs. 6.19 and
6.20 have been evaluated with KS orbitals obtained from self-consistent calculations
with the exact exchange. For comparison the correlation potentials obtained with the
LDA and the LYP-GGA are also shown.

Besides the structures already observed for closed-subshell atoms, two new fea-
tures show up:

• In the core region, in which the densities of the two spin-channels are essentially
identical, the MP2 correlation potentials of the two channels differ by an almost
constant shift, while the corresponding LDA and GGA potentials are very close
(compare Fig. 4.16).

• In the case of Li the MP2 correlation potential of the majority-spin channel,
v↑c , is attractive, while the minority-spin potential, v↓c , is repulsive. This reflects
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Fig. 6.20 As Fig. 6.19 for nitrogen.

the fact that the majority-spin channel is dominated by the 2s orbital, so that
the resulting v↑c has some similarity with the correlation potential found for Be.
The minority-spin channel consists only of the 1s orbital. This channel therefore
resembles the closed-shell He configuration. On the other hand, the majority-spin
potential is repulsive in the case of N, while the minority-spin potential remains
close to zero in the valence regime and becomes attractive in the core region.
While the majority-spin channel with its completely filled 2p orbital has the same
basic structure as the correlation potential of Ne, the minority-spin channel is
qualitatively close to the Be potential.

Both features are also observed for the correlation potentials obtained by inversion
of accurate CI spin-densities [470].

So far, all orbital-dependent potentials have been evaluated for a given set of KS
orbitals. Ultimately, however, fully self-consistent calculations are desired. Unfor-
tunately, self-consistent application of EMP2

c is hampered by its perturbative origin:
EMP2

c is found to be variationally instable for systems with a small HOMO-LUMO
gap [349, 468], as, for instance, the beryllium atom. This behavior is easily under-
stood if one recalls the fact that the OPM scheme is equivalent to a total energy min-
imization. As EMP2

c is strictly negative, any increase of |EMP2
c |, which does not seri-

ously affect other energy components, leads to a lower total energy. If the HOMO-
LUMO gap is small, vMP2

c can reduce this gap substantially without modifying the
KS orbitals too much (which would change the remaining energy components) and
thereby increase the absolute value of EMP2

c . Once the gap shrinks more and more,
EMP2

c starts to dominate the total energy and vMP2
c controls the total KS potential,
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which further eases closing of the gap. This deficiency of EMP2
c reflects its origin

in KS-based perturbation theory, which relies on a clear separation of occupied and
unoccupied states.

Even for systems for which the HOMO-LUMO gap is too large to be closed by
vMP2

c one observes the same basic effect: the difference between the self-consistent
vMP2

c and the vMP2
c obtained from the exact KS states is larger than the correspond-

ing difference for any other known functional. This is illustrated in Fig. 6.21 for
neon. The shell oscillations of the self-consistent vMP2

c are clearly larger than those
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Fig. 6.21 Correlation potential of neon: vMP2
c obtained from the exact KS density versus self-

consistent vMP2
c [349], self-consistent vRPA

c [415], and exact result [83].

obtained by use of the exact KS orbitals in vMP2
c . In this way additional correlation

energy is gained, which lowers the total energy.
This observation points again at the importance of higher order correlation con-

tributions. However, a brute-force inclusion of all third and fourth order terms of KS
perturbation theory (in analogy to the MP4 level of quantum chemistry), is neither
desirable (due to the resulting computational cost) nor can it be expected to resolve

any problem originating from the perturbative nature of E(2)
c . One is therefore led to

consider some partial resummation of the KS perturbation series, such as the RPA.
It turns out that the RPA functional (6.114) is variationally stable for beryllium

[415]. The correlation potentials resulting from self-consistent calculations with the
combination of the exact Ex and ERPA

c for neon and beryllium [415] are included
in Figs. 6.21 and 6.22. In addition to the variational stability, one observes a clear
quantitative improvement over vMP2

c . Similar improvements have been obtained with
other resummation schemes [418–420, 471].
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Fig. 6.22 Correlation potential of beryllium: vMP2
c [420] obtained from the exact KS density versus

self-consistent vRPA
c [415], and exact result [83].

In summary: The results of Sects. 6.6.1–6.6.3 demonstrate the first-principles

background of E(2)
c and related functionals. In fact, these results may be considered

as a verification of the first-principles nature of DFT itself, as the formalism be-
hind these expressions provides a truly systematic route to the exact xc-functional.
On the other hand, the orbital-dependent treatment of correlation represents a much
more serious challenge than that of exchange. The systematic derivation of such
functionals via many-body theory leads to rather complicated expressions, in par-
ticular, if a resummation of the KS perturbation series is considered. Their rigorous
implementation within the OPM not only requires the evaluation of Coulomb matrix
elements of the complete set of KS states, but, in principle, also knowledge of higher
order response functions. In practical calculations these first-principles functionals
necessarily turn out to be rather difficult to handle, even if they are only applied
non-self-consistently on the basis of some self-consistent EXX or GGA calculation.

6.7 Orbital-Dependent Representation of 2-Particle Density

Many-body techniques based on the KS Hamiltonian can not only be utilized for the
derivation of first-principles xc-functionals, but also for the construction of density
functionals for other ground state expectation values. This is of particular interest
for quantities, which explicitly depend on the correlated motion of the electrons. A
prototype of these quantities is the 2-particle density n(2)(rrr1,rrr2), Eq. (3.45). Using
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the perturbative approach of Sect. 6.4.1 to first order in e2, one finds

n(2),(1)(rrr1,rrr2)

= −1
2 ∑

i
Θi ∑

k

(1−Θk)
∑ j Θ j(k j|| ji)+ 〈k|vx|i〉

εi − εk

×
{

φ †
i (rrr1)φk(rrr1)n(rrr2)+n(rrr1)φ †

i (rrr2)φk(rrr2)

−∑
l

Θl

[
φ †

l (rrr1)φk(rrr1)φ †
i (rrr2)φl(rrr2)+φ †

i (rrr1)φl(rrr1)φ †
l (rrr2)φk(rrr2)

]}

+
1
2 ∑

i, j
ΘiΘ j ∑

k,l

(1−Θk)(1−Θl)
(i j||kl)− (i j||lk)
εi + ε j − εk − εl

×φ †
i (rrr1)φk(rrr1)φ †

j (rrr2)φl(rrr2)+ c.c. . (6.154)

This expression represents an implicit density functional for n(2)(rrr1,rrr2) in the same
sense as (4.5) is an implicit density functional for the exchange energy.

The question of the quality of the description of the Coulomb correlation by
n(2),(1) is addressed in Fig. 6.23, which shows the 2-particle density of the He ground
state. In case of the He atom one has only three relevant coordinates, which charac-
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terize the positions of the two electrons relative to the nucleus in the plane spanned
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by the three particles (compare the discussion of Figs. 3.1 and 3.2 in Sect. 3.1). If the
nucleus defines, as usual, the origin of the coordinate system, suitable coordinates
are the radial distances of the two electrons from the origin, r1, r2, and the angle Θ
between the position vectors of the electrons, rrr1 · rrr2 = r1r2 cosΘ . In Fig. 6.23 r1 has
been chosen as 0.543 Bohr, which is the radius at which radial density r2

1n(r1) has
its maximum. Together with the nucleus at the origin the position of the first elec-
tron defines a straight line along which the second electron is moved, i.e. Fig. 6.23
shows the r2-dependence for Θ = 0 and Θ = π . For r2 =+0.543 Bohr and Θ = 0 the
two electrons are on top of each other.

The solid line represents the exact result, obtained from an accurate variational
wavefunction [80], the dashed line the pure KS 2-particle density (compare Figs. 3.1
and 3.2 and the associated discussion). As this comparison shows, the implicit func-
tional (6.154) incorporates most of the Coulomb correlation in n(2). It slightly over-
estimates the suppression of the on-top position, but, overall, is quite realistic (the
somewhat less pronounced cusp is a basis set, i.e. numerical, effect). This result
demonstrates explicitly that the concept of implicit functionals can not only be used
for a representation of xc-energies, but also for the description of local correlation,
which could be of interest in the context of scattering and multiple excitation pro-
cesses.



Chapter 7
Time-Dependent Density Functional Theory

Time-dependent density functional theory (TDDFT) has developed rapidly since
its beginnings in 1984 [472, 473]. TDDFT opens a direct access to excited states,
but also to truly time-dependent processes. As a topical example of such processes,
one may mention transport phenomena, like conduction through single molecules
or atomic wires [474–476] (i.e. conduction in the quantum regime). A review of
the large variety of applications of TDDFT is, however, not the aim of the present
chapter. For this we refer to a recent set of lecture notes [477] (see also [478]).
The present discussion is restricted to the basic elements of TDDFT, that is (i) the
theorem of Runge and Gross, (ii) the time-dependent Kohn-Sham equations, (iii) the
adiabatic local density approximation (ALDA) (sometimes called time-dependent
LDA) plus direct extensions, (iv) linear response within TDDFT, and (v) a TDDFT
approach to excitation energies.

7.1 Runge-Gross Theorem

The analog of the HK-theorem for time-dependent (td) systems is the Runge-Gross
(RG) theorem [472]. It establishes a map between the td many-particle state and
the corresponding td density. Since the reasoning behind the RG-theorem is quite
different from the argumentation leading to the HK-theorem, it is worthwhile to
discuss the proof of the RG-theorem in some detail.

The simplest Hamiltonian, which can be used to characterize a td system of in-
teracting spin-1/2 particles, is given by

Ĥ(t) = T̂ +V̂ext(t)+Ŵ , (7.1)

with an interaction between particles and external sources which couples the particle
density to a time-dependent potential vext(rrrt),

E. Engel, R.M. Dreizler, Time-Dependent Density Functional Theory. In: E. Engel, R.M.
Dreizler, Density Functional Theory, Theoretical and Mathematical Physics, pp. 307–349 (2011)
DOI 10.1007/978-3-642-14090-7 7 c© Springer-Verlag Berlin Heidelberg 2011
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V̂ext(t) =
N

∑
i=1

vext(rrrit) =
∫

d3r vext(rrrt) n̂(rrr) . (7.2)

As in the stationary case, the particle–particle interaction Ŵ is assumed to be sym-
metric and independent of spin (and, of course, independent of time). For all systems
of interest here Ŵ is the Coulomb interaction.

The many-body state |Ψ(t)〉 corresponding to the Hamiltonian (7.1) satisfies the
td Schrödinger equation,

ih̄∂t |Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 . (7.3)

In addition to the equation of motion, the complete characterization of a td problem
requires the specification of some initial value. In the present case the Schrödinger
equation (7.3) has to be solved for a given initial state |Ψ0〉 at time t0,

|Ψ(t0)〉 = |Ψ0〉 . (7.4)

The external potential (7.2) can describe many interesting td phenomena, as for
instance the adiabatic motion of nuclei which governs (i) the rotational and vibra-
tional excitations in molecules and solids, and (ii) low-energy ion-atom collisions.
It also represents a good approximation for many other situations, as the interaction
of atoms with applied laser fields. The explicit proof of the existence theorem of
TDDFT will therefore be restricted to the Hamiltonian (7.1).

It is nevertheless advantageous to start the discussion with a detour, in order to
prepare the actual proof. Let us for a moment consider a more general Hamiltonian,
including the coupling to a td magnetic field,

Ĥ = ∑
σ

∫
d3r ψ̂†(rrrσ)

{
1

2m

[
−ih̄∇∇∇+

e
c

AAAext(rrrt)
]2

+ vext(rrrt)
}

ψ̂(rrrσ)+Ŵ , (7.5)

where the standard relations between the external electro-magnetic fields and po-
tentials,

EEEext(rrrt) =
1
e

∇∇∇vext(rrrt)− 1
c

∂AAAext(rrrt)
∂ t

(7.6)

BBBext(rrrt) = ∇∇∇×AAAext(rrrt) , (7.7)

are supposed to hold. A point to be noted here is the fact that the vector potential
AAAext can be non-zero even for a vanishing magnetic field BBBext. One and the same
electric field EEEext (and thus the same physics) can either be represented in terms of
vext (with AAAext set to zero) or in terms of AAA′

ext (with v′ext = 0), if AAA′
ext is chosen as

AAA′
ext(rrrt) = −c

e

∫ t
dt ′ ∇∇∇vext(rrrt ′) . (7.8)

Equation (7.8) is a special case of a td gauge transformation, for which the most
general form is given by
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v′ext(rrrt) = vext(rrrt)− e
c

∂Λ(rrrt)
∂ t

(7.9)

AAA′
ext(rrrt) = AAAext(rrrt)−∇∇∇Λ(rrrt) . (7.10)

While for the stationary Hamiltonian (2.143) the electric (vext) and magnetic (AAAext)
potentials are not coupled by the gauge transformation (2.145)–(2.147), the situation
is no longer as simple for td Hamiltonians.

It is therefore necessary to study the relation between the td potentials vext(rrrt),
AAAext(rrrt) and the corresponding td state |Ψ(t)〉 in more detail, before discussing the
RG-theorem for the system (7.1). In view of the gauge freedom the obvious question
is: when does one consider two potentials to be physically non-equivalent? In order
to answer this question, one first notes that the gauge-transformed state

(rrr1σ1 . . .rrrNσN |Ψ′(t)〉 = exp

[
ie
h̄c

N

∑
k=1

Λ(rrrkt)

]
(rrr1σ1 . . .rrrNσN |Ψ(t)〉 (7.11)

is a solution of the td Schrödinger equation (7.3) with the potentials v′ext(rrrt),AAA′
ext(rrrt),

provided that |Ψ(t)〉 is the solution of (7.3) for the Hamiltonian (7.5) with the un-
primed potentials. One can, without loss of generality, choose Λ(rrrt0) = 0, so that the
initial states coincide, |Ψ′(t0)〉= |Ψ(t0)〉= |Ψ0〉. It is obvious that sets of potentials
vext,AAAext and v′ext,AAA

′
ext which are related by Eqs. (7.9), (7.10) are physically equiva-

lent. In turn, the uniqueness of the solution of the td Schrödinger equation leads to
the statement: two states which differ by more than the phase transformation (7.11)
can never emerge from two potentials which are related by Eqs. (7.9), (7.10).

The crucial question, which has to be answered, is: can |Ψ(t)〉 and |Ψ′(t)〉 be
related by a phase transformation of the form (7.11), if the potentials differ by more
than the gauge transformation (7.9), (7.10)? Obviously, an affirmative answer would
exclude any density functional approach from the very outset, as the densities cor-
responding to |Ψ′(t)〉 and |Ψ(t)〉 are identical in this case. Fortunately, the question
can be answered rigorously with “no”. For the case AAAext = 000, i.e. for the Hamilto-
nian (7.1), the answer is provided by the original RG-theorem [472]. This limit not
only excludes the presence of magnetic fields, but also implies a particular choice of
gauge. For the general Hamiltonian (7.5) a corresponding proof has been given by
Ghosh and Dhara [479] (see also [480]). The scheme of this proof follows closely
the line of RG. Our explicit discussion will therefore be restricted to the RG theo-
rem.

Before proceeding to the RG theorem for the Hamiltonian (7.1), it is instructive to
consider the reduced class of phase transformations allowed by the choice AAAext = 000,
i.e. transformations by a global td phase α(t),

|Ψ′(t)〉 = e−iNα(t)/h̄ |Ψ(t)〉 , (7.12)

in more detail. The additional phase can, as in the general situation discussed above,
be absorbed into a gauge-transformed potential v′ext,
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v′ext(rrrt) = vext(rrrt)+ α̇(t) (7.13)

(α̇ = ∂tα). On the other hand, as soon as the potentials vext and v′ext differ by more
than the trivial gauge transformation (7.13),

v′ext(rrrt) �= vext(rrrt)+ c(t) for t0 ≤ t < t1 , (7.14)

the solutions |Ψ(t)〉 and |Ψ′(t)〉 of (7.3) differ by more than a td global phase,

|Ψ′(t)〉 �= e−iNα(t)/h̄ |Ψ(t)〉 for t0 ≤ t < t1 , (7.15)

even if the same initial condition is chosen for both states.
The proof of this statement is based on reductio ad absurdum. Assume that, in

spite of the condition (7.14), Eq. (7.12) is valid. Now consider the corresponding
Schrödinger equations,

ih̄∂t |Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 (7.16)

ih̄∂t |Ψ′(t)〉 = Ĥ ′(t)|Ψ′(t)〉
=⇒ e−iNα(t)/h̄[Nα̇(t)+ ih̄∂t ]|Ψ(t)〉 = e−iNα(t)/h̄Ĥ ′(t)|Ψ(t)〉 . (7.17)

Upon subtraction of (7.17) from (7.16) one obtains

0 =
[
V̂ext(t)−V̂ ′

ext(t)+ α̇(t)N̂
]
|Ψ(t)〉 , (7.18)

(N̂|Ψ(t)〉 = N|Ψ(t)〉) or, in first quantized form,

0 =
N

∑
i=1

(
vext(rrrit)− v′ext(rrrit)+ α̇(t)

)
Ψ(rrr1σ1 . . .rrrNσN , t) . (7.19)

As in the stationary situation, one can now keep N − 1 of the rrri fixed and consider
(7.19) as a function of time and the N-th position. As the wavefunction in (7.19)
equals zero only for selected values of its arguments, the relation can only be satis-
fied, if

0 = vext(rrrt)− v′ext(rrrt)+ α̇(t) for t0 ≤ t < t1 ,

in obvious contradiction to the condition (7.14). One can therefore state: as soon
as v′ext(rrrt) differs from vext(rrrt) by more than a td function c(t) the corresponding
many-particle states differ by more than a global td phase. Of course, all these state-
ments have to be understood as statements for functions of time over a finite period
t0 < t < t1, not just for a single instant of time.

Now consider the set of all Hamiltonians of the form (7.1), (7.2) for which

(a) the Taylor expansion of the potential about the initial time t0 exists,

vext(rrrt) =
∞

∑
k=0

1
k!

∂ k
t vext(rrrt)

∣∣∣
t=t0

(t − t0)k , (7.20)
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(b) only one representative vext is included for each class of physically equivalent
potentials according to Eq. (7.14).

The last condition is an obvious extension of the situation for stationary systems for
which external potentials are only considered to be different if they differ by more
than a global constant. The mathematical role of condition (7.20) will become clear
later on. This requirement excludes the possibility that the td potential is switched
on at t0 in a step-like fashion. As realistic fields necessarily build up continuously,
this is not a fundamental restriction, but merely a requirement for the time scale on
which a process is considered.

The statement of the RG-theorem then is [472]:

For a given initial state |Ψ(t0)〉 there exists a one-to-one correspondence be-
tween the set of all potentials, which satisfy (7.14) and (7.20),

V =
{

vext(rrrt)
∣∣∣ vext(rrrt) =

∞

∑
k=0

1
k!

∂ k
t vext(rrrt)

∣∣∣
t=t0

(t − t0)k;

v′ext(rrrt) �= vext(rrrt)+ c(t)
}

, (7.21)

and the set of associated td densities,

N =
{

n(rrrt)
∣∣∣ n(rrrt) = 〈Ψ(t)|n̂(rrr)|Ψ(t)〉; ih̄∂t |Ψ(t)〉 = Ĥ(t)|Ψ(t)〉;

Ĥ = T̂ +
∫

d3r vext(rrrt) n̂(rrr)+Ŵ ; vext(rrrt) ∈ V
}

, (7.22)

within the finite time interval t0 < t < t1.

Note that it is not sufficient to specify the initial density

n0(rrr) = n(rrrt0) = 〈Ψ(t0)|n̂(rrr)|Ψ(t0)〉 (7.23)

instead of |Ψ(t0)〉. This signifies that the RG-theorem does not, in general, define
a pure density functional method. There is, however, an important class of situa-
tions in which the initial state |Ψ(t0)〉 is uniquely determined by n0, i.e. all those
time-dependent systems which are in their ground state until t = t0. In this case the
stationary HK-theorem applies at t0, so that |Ψ(t0)〉 is a functional of the ground
state density n(rrrt0).

The proof of the RG-theorem proceeds in two steps. In the first step a corre-
sponding statement for the current density is verified. This statement is extended to
the particle density in the second step.

Step 1(a): Consider the (paramagnetic) current density

jjjp(rrrt) = 〈Ψ(t)| ĵjjp(rrr)|Ψ(t)〉 (7.24)
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ĵjjp(rrr) =
−ih̄
2m

N

∑
i=1

[
∇∇∇iδ (3)(rrr− rrri)+δ (3)(rrr− rrri)∇∇∇i

]
=

−ih̄
2m ∑

σ

[
ψ̂†(rrrσ)

(
∇∇∇ψ̂(rrrσ)

)
−
(

∇∇∇ψ̂†(rrrσ)
)

ψ̂(rrrσ)
]
. (7.25)

The first time-derivative of jjjp(rrrt) can be analyzed via Heisenberg’s equation of
motion,

d
dt
〈Ψ(t)|Ô(t)|Ψ(t)〉 =

〈
Ψ(t)

∣∣∣dÔ(t)
dt

− i
h̄
[Ô(t), Ĥ(t)]

∣∣∣Ψ(t)
〉

, (7.26)

which is valid for the expectation value of any operator Ô(t). In Eq. (7.26) the
term with dÔ(t)/dt accounts for the time-dependence of the operator itself (in the
Schrödinger representation), while the time-derivative of the state |Ψ(t)〉 has been
reformulated using the Schrödinger equation (7.1). Application of (7.26) to the cur-
rent operator (7.25), which does not depend explicitly on time, leads to

∂t jjjp(rrrt) = − i
h̄
〈Ψ(t)|[ ĵjjp(rrr), Ĥ(t)

] |Ψ(t)〉 . (7.27)

With the aid of (7.27) one can compare the time-derivatives of the current densities
resulting from two different potentials v′ext(rrrt) and vext(rrrt) of the set V at the initial
time t0. Utilizing the basic commutation relation

[
ĵjjp(rrr), n̂(rrr′)

]
=

−ih̄
2m

{[
∇∇∇δ (3)(rrr− rrr′)

]
∑
σ

[
ψ̂†(rrrσ)ψ̂(rrr′σ)+ ψ̂†(rrr′σ)ψ̂(rrrσ)

]
−δ (3)(rrr− rrr′)∇∇∇n̂(rrr)

}
, (7.28)

one obtains for the Hamiltonian (7.1)

∂t
[

jjjp(rrrt)− jjj′p(rrrt)
]∣∣∣∣

t=t0

= − 1
m

n(rrrt0)∇∇∇
[
vext(rrrt0)− v′ext(rrrt0)

]
. (7.29)

Consequently, as long as the two potentials differ by more than a global constant at
t0, vext(rrrt0) �= v′ext(rrrt0)+ c0 , the currents jjjp(rrrt) and jjj′p(rrrt) differ at a time t which
is infinitesimally larger than t0.

However, the two potentials will often be identical at t = t0, most notably, if their
time-dependent components are switched on smoothly for t ≥ t0. One therefore has
to deal with the case that vext(rrrt0) = v′ext(rrrt0)+ c0, which requires an examination
of the second time-derivative of the current. It turns out that jjjp and jjj′p become
different immediately after t0 if ∂t [vext(rrrt)− v′ext(rrrt)]t=t0 is not identical with some
global constant. As this need not always be the case, one is led to consider the next
time-derivative of the current.

Step 1(b): It is thus necessary to discuss the general situation, in which a finite
number, say k− 1, of time-derivatives of v′ext(rrrt) and vext(rrrt) agree at t = t0 (up to
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global constants),

∂ l
t v′ext(rrrt)

∣∣∣
t=t0

= ∂ l
t vext(rrrt)

∣∣∣
t=t0

+ cl l = 0, . . .k−1 (7.30)

(which includes the special value k = 1). In this case one has to consider the (k+1)-
th derivative of the current. Quite generally, one finds by recursive use of (7.26),

∂ k+1
t jjjp(rrrt)

= ∂ k−1
t

〈
Ψ(t)

∣∣∣(− i
h̄

)
∂t
[

ĵjjp(rrr), Ĥ(t)
]
+
(
− i

h̄

)2[[
ĵjjp(rrr), Ĥ(t)

]
, Ĥ(t)

]∣∣∣Ψ(t)
〉

= ∂ k−2
t

〈
Ψ(t)

∣∣∣ (
− i

h̄

)
∂ 2

t

[
ĵjjp(rrr), Ĥ(t)

]
+
(
− i

h̄

)2

∂t

[[
ĵjjp(rrr), Ĥ(t)

]
, Ĥ(t)

]

+
(
− i

h̄

)2[
∂t
[

ĵjjp(rrr), Ĥ(t)
]
, Ĥ(t)

]

+
(
− i

h̄

)3[[[
ĵjjp(rrr), Ĥ(t)

]
, Ĥ(t)

]
, Ĥ(t)

]∣∣∣Ψ(t)
〉

.

From the lowest two orders indicated, one can already glean how order by or-
der more complicated combinations of time-derivatives and multiple commutators
emerge. In fact, all possible sequences of differentiation and commutation appear.
Ordered with respect to the number of derivatives to be taken, one finally obtains

∂ k+1
t jjjp(rrrt)

=
〈

Ψ(t)
∣∣∣ (

− i
h̄

)
∂ k

t

[
ĵjjp(rrr), Ĥ(t)

]
+
(
− i

h̄

)2 k−1

∑
j=0

∂ k−1− j
t

[
∂ j

t

[
ĵjjp(rrr), Ĥ(t)

]
, Ĥ(t)

]
+ · · ·
+
(
− i

h̄

)k+1 [
. . .

[[
ĵjjp(rrr), Ĥ(t)

]
, Ĥ(t)

]
, . . .Ĥ(t)

]
︸ ︷︷ ︸

(k+1)−times

∣∣∣Ψ(t)
〉

, (7.31)

where the last line denotes a (k +1)-fold commutator. Once all time-derivatives are
applied to the Hamiltonians in the individual expressions, all terms in (7.31) consist
of multiple commutators of ĵjjp with the Hamiltonian and its derivatives. The general
form of these expressions is given by

Dααα
n (Ĥ, t) :=

[
. . .

[[
ĵjjp(rrr),∂

α1
t Ĥ(t)

]
,∂ α2

t Ĥ(t)
]
, . . .∂ αn

t Ĥ(t)
]

︸ ︷︷ ︸
n−times

, (7.32)
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with the total number of derivatives and commutators being fixed by the order of the
derivative on the left-hand side of (7.31),

n

∑
i=1

αi +n = k +1 . (7.33)

An analogous relation holds for jjj′p in terms of Ĥ ′. For the present proof one has

to evaluate the difference between ∂ k+1
t jjjp and ∂ k+1

t jjj′p at t = t0. However, at t = t0
the first k−1 time-derivatives of Ĥ ′ can, in view of assumption (7.30), be expressed
in terms of the corresponding derivatives of Ĥ,

∂ l
t Ĥ ′(t)

∣∣∣
t=t0

= ∂ l
t [Ĥ(t)+ c(t)N̂]

∣∣∣
t=t0

for l = 0, . . .k−1 , (7.34)

with

c(t) :=
k−1

∑
l=0

cl

l!
(t − t0)l (7.35)

and N̂ denoting the particle number operator. This allows the replacement of Ĥ ′ in
Dααα

n (Ĥ ′, t0) by Ĥ +cN̂ for all n > 1, as none of the αi < k can be larger than k−1 in
this case,

Dααα
n>1(Ĥ

′, t0)

=
[
. . .

[[
ĵjjp,∂

α1
t

(
Ĥ + cN̂

)]
,∂ α2

t

(
Ĥ + cN̂

)]
, . . .∂ αn

t

(
Ĥ + cN̂

)]
︸ ︷︷ ︸

n−times

∣∣∣∣
t=t0

. (7.36)

Now one can use the fact that both ĵjjp and Ĥ commute with N̂,[
ĵjjp(rrr), N̂

]
= 0 ;

[
Ĥ(t), N̂

]
= 0 . (7.37)

As a consequence of (7.37) the contributions of all the terms ∂ αi
t c(t)N̂ in (7.36)

to the multiple commutator vanish, irrespective of the order of the time-derivatives
involved, [

∂ α
t Ĥ(t),∂ β

t c(t)N̂
]

=
(

∂ β
t c(t)

)
∂ α

t

[
Ĥ(t), N̂

]
= 0 .

One therefore finds

Dααα
n (Ĥ ′, t0) = Dααα

n (Ĥ, t0) for n > 1 . (7.38)

As a result only the first term on the right-hand side of (7.31) contributes to the
difference between ∂ k+1

t jjjp and ∂ k+1
t jjj′p at t = t0,
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∂ k+1
t

[
jjjp(rrrt)− jjj′p(rrrt)

]
t=t0

= − i
h̄

〈
Ψ(t)

∣∣∣∂ k
t

[
ĵjjp(rrr), Ĥ(t)− Ĥ ′(t)

]∣∣∣Ψ(t)
〉∣∣∣

t=t0
.

(7.39)
The evaluation of this expression again relies on Eq. (7.28),

∂ k+1
t

[
jjjp(rrrt)− jjj′p(rrrt)

]
t=t0

= − 1
m

n(rrrt0)∂ k
t ∇∇∇

[
vext(rrrt)− v′ext(rrrt)

]
t=t0

. (7.40)

Equation (7.40) shows why the existence of the Taylor expansion (7.20) had to be
assumed.

In order to complete Step 1 of the proof of the RG-theorem, one argues as fol-
lows. By assumption the potentials vext(rrrt) and v′ext(rrrt) differ by an rrr-dependent
function for all t > t0. This implies that at least one of the time-derivatives of the
two potentials at t0 differs by more than a global constant,

∇∇∇∂ k
t

[
vext(rrrt)− v′ext(rrrt)

]∣∣∣∣
t=t0

�= 0 for at least one k . (7.41)

As a consequence of (7.40) and (7.41) the current densities differ immediately after
t0,

jjjp(rrr, t0 + ε) �= jjj′p(rrr, t0 + ε) . (7.42)

This is the final result of Step 1 of the proof and at the same time an important result
in itself.

Step 2: The continuity equation,

∂tn(rrrt)+∇∇∇ · jjjp(rrrt) = 0 , (7.43)

allows the extension of the statement (7.42) to the td densities n and n′, which corre-
spond to jjjp and jjj′p, respectively. Let k again denote the lowest order time-derivative
for which the two potentials under consideration differ by more than a constant, so
that (7.30) and (7.41) apply. One can then rewrite the time-derivative of the density
as

∂ k+2
t

[
n(rrrt)−n′(rrrt)

]
t=t0

= −∇∇∇ ·∂ k+1
t

[
jjjp(rrrt)− jjj′p(rrrt)

]
t=t0

=
1
m

∇∇∇ ·
[
n(rrrt0)∇∇∇Δk(rrr)

]
, (7.44)

with the abbreviation

Δk(rrr) := ∂ k
t

[
vext(rrrt)− v′ext(rrrt)

]
t=t0

. (7.45)

In order to prove that n(rrrt) and n′(rrrt) differ for t > t0 one has to show that

∇∇∇ · [n(rrrt0)∇∇∇Δk(rrr)]
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does not vanish for at least one k and rrr. The proof proceeds by reductio ad absur-
dum. Assume that for all k

∇∇∇ ·
[
n(rrrt0)∇∇∇Δk(rrr)

]
= 0 ∀ rrr (7.46)

and consider the integral∫
d3r n(rrrt0)

[
∇∇∇Δk(rrr)

]2
= −

∫
d3r Δk(rrr)∇∇∇

[
n(rrrt0)∇∇∇Δk(rrr)

]
+

∮
dSSS ·

[
n(rrrt0)Δk(rrr)∇∇∇Δk(rrr)

]
. (7.47)

The first contribution on the right-hand side of (7.47) vanishes by assumption. The
second term, on the other hand, is a surface integral over a surface at infinity. For all
systems for which n(rrrt0)Δk(rrr)∇∇∇Δk(rrr) vanishes for |rrr| → ∞ one has∮

dSSS ·
[
n(rrrt0)Δk(rrr)∇∇∇Δk(rrr)

]
= 0 .

This relation is valid in particular for all finite systems, as long as the td potential
does not increase faster than n(rrrt0) falls off. On the other hand, in the case of ex-

tended systems the condition n(rrrt0)Δk(rrr)∇∇∇Δk(rrr)
|rrr|→∞−−−→ 0 requires Δk (or ∇∇∇Δk) to

decay for |rrr| → ∞ (compare [481, 482]). In both cases the assumption (7.46) leads
to ∫

d3r n(rrrt0)
[
∇∇∇Δk(rrr)

]2
= 0 .

In view of (7.41), which implies that[
∇∇∇Δk(rrr)

]2
> 0 ,

for some rrr, one thus ends up with a contradiction, provided, one excludes the case
that n(rrrt0) and ∇∇∇Δk(rrr) are nonzero in different regions of space.1 As a consequence
one has

n(rrr, t0 + ε) �= n′(rrr, t0 + ε) . (7.48)

Of course, if the densities n and n′ differ directly after t0, they differ as functions of
time in the time interval t0 < t < t1. Note, however, that this does not automatically
exclude the possibility that n and n′ coincide for some intermediate instant of time.

This concludes the proof of the RG-theorem. As a side-remark one may mention
that n and n′ already differ to first order in vext, i.e. on the linear response level, as
the right-hand side of Eq. (7.44) is of first order in vext.

1 This is a trivial situation as it means that the potentials differ in a region of space which is not
accessible to the particles, so that they can not experience any difference.
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The combination of the RG-theorem with the arguments given at the beginning
of this section establishes a unique relation between n(rrrt) and the td state |Ψ(t)〉.
Let us collect the various pieces of information. Provided that

(i) v′ext(rrrt) �= vext(rrrt)+ c(t),
(ii) both v′ext(rrrt) and vext(rrrt) can be expanded according to Eq. (7.20),
(iii) the gauge AAA′

ext = AAAext = 000 is chosen,

both the current densities jjj′p(rrrt) and jjjp(rrrt) and the charge densities n′(rrrt) and n(rrrt)
resulting from v′ext(rrrt) and vext(rrrt), respectively, differ, even if the time-evolution of
the primed and the unprimed system is started with the same initial state. However,
n′(rrrt) �= n(rrrt) requires that the corresponding states |Ψ′(t)〉 and |Ψ(t)〉 differ by
more than the phase transformation (7.11): as long as AAA′

ext = AAAext = 000, potentials v′ext
and vext which differ by more than a global td function lead to states which differ
by more than a local(!) td phase. In other words: the relation (7.11) between two td
states can only result from the gauge transformation (7.9), (7.10) of the potentials
vext(rrrt) and AAAext(rrrt), at least as long as BBBext = 000.

As n′(rrrt) �= n(rrrt) automatically implies that v′ext(rrrt) �= vext(rrrt) + c(t), one can
conclude: for a given initial state |Ψ(t0)〉 = |Ψ0〉, the td density n(rrrt) determines
|Ψ(t)〉 uniquely up to a global td phase. In mathematical terms this means that the
td state is a unique functional |Ψ[n,Ψ0](t)〉 of n(rrrt), up to some phase,

|Ψ(t)〉 = e−iNα(t)/h̄ |Ψ[n,Ψ0](t)〉 . (7.49)

There is a unique |Ψ[n,Ψ0](t)〉 for each set of physically equivalent potentials. The
phase α(t), on the other hand, cannot be determined at all by knowledge of n(rrrt) and
|Ψ0〉. Rather, the choice of the gauge for which α(t)≡ 0 is a matter of convenience:
it simply depends on the representative vext of each class of equivalent potentials
which is used to define |Ψ[n,Ψ0](t)〉.

Equation (7.49) allows the formulation of arbitrary expectation values as (unique)
density functionals. An important expectation value is the quantum mechanical ac-
tion,

A(t1, t0) :=
∫ t1

t0
dt 〈Ψ(t)|ih̄∂t − Ĥ(t)|Ψ(t)〉 . (7.50)

Variation of A with respect to the state 〈Ψ(t)| under the constraint of norm conser-
vation2 [483] leads to the Schrödinger operator (7.3),

δA
δ 〈Ψ(t)| =

[
ih̄∂t − Ĥ(t)

] |Ψ(t)〉 , (7.51)

i.e. A is stationary for the correct state |Ψ(t)〉 which develops from a given ini-
tial state |Ψ(t0)〉 (Frenkel’s variational principle). One can therefore solve the

2 Note that the variations |δΨ(t)〉 used in Eq. (7.51) need not necessarily satisfy any boundary
conditions. The only assumption required is that with |δΨ(t)〉 also |iδΨ(t)〉 is an allowed variation
[483].
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Schrödinger equation (7.3) by searching for the state |Ψ(t)〉 which makes A sta-
tionary.

The existence of |Ψ[n,Ψ0](t)〉 makes it possible to define an action density func-
tional,3

A[n] :=
∫ t1

t0
dt 〈Ψ[n,Ψ0](t)|ih̄∂t − Ĥ(t)|Ψ[n,Ψ0](t)〉+N [α(t1)−α(t0)] , (7.52)

which, at first glance, seems to suffer from the non-uniqueness of gauge. The phase
contribution can, however, be easily absorbed into the external potential,

A[n] =
∫ t1

t0
dt 〈Ψ[n,Ψ0](t)|ih̄∂t − Ĥ ′(t)|Ψ[n,Ψ0](t)〉 , (7.53)

where Ĥ ′ is obtained from Ĥ with the gauge transformation (7.13). Ĥ ′ and Ĥ are
physically equivalent, so that the stationarity of (7.53) is equivalent to that of (7.52).
In other words: once the gauge is fixed for all possible elements of V and both
|Ψ[n,Ψ0](t)〉 and the set of associated Hamiltonians is defined accordingly, the
gauge arbitrariness is eliminated. This gauge fixing could, for instance, be imple-
mented by keeping some spatial average of vext(rrrt) constant throughout time. From
now on the gauge is assumed to be chosen so that α(t) ≡ 0 for all t.

The functional (7.53) becomes stationary for the correct td density n(rrrt), due to
the one-to-one correspondence between n(rrrt) and the class of equivalent |Ψ(t)〉 (the
global phase is irrelevant at this point). This suggests that the variational equation4

[472]

δA[n]
δn(rrrt)

= 0 (7.54)

is equivalent to the td Schrödinger equation, in analogy to the equivalence of the
variational equation (2.38) with the stationary Schrödinger equation. However, the
td situation is complicated by the fact that the action (7.50) per se not only incor-
porates the time-evolution in positive direction of time, but also backward propa-
gation: variation of the action (7.50) with respect to the state |Ψ(t)〉 leads to the
time-reversed Schrödinger equation, as time-reversal simply amounts to complex
conjugation for the Hamiltonian (7.1). Therefore A also becomes stationary for the
state |Ψ(t)〉 which evolves backward in time from a given final state |Ψ(t1)〉. As a
result, stationarity of (7.53) with respect to the density cannot a priori distinguish
between propagation in positive and in negative direction of time5 [484].

3 As the functional |Ψ[n,Ψ0](t)〉 depends on the initial state |Ψ0〉, the same applies to all den-
sity functionals constructed from |Ψ[n,Ψ0](t)〉—for brevity, we do not indicate this dependence
explicitly, A[n,Ψ0] ≡ A[n].
4 In Eq. (7.54) the variation with respect to n(rrrt) is performed for fixed vext(rrrt).
5 By contrast, the equations resulting from variation of the ground state energy expectation value
of stationary systems with respect to 〈Ψ| and |Ψ〉 coincide, as one is dealing with a boundary value
problem, rather than the initial value problem (7.3).
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As it stands, Eq. (7.54) therefore leads to problems with causality [485, 486].
This problem is most easily identified by an analysis of the second functional deriva-
tive of A with respect to the external potential. For this analysis the total external po-
tential is split into a stationary part v0 and a td component v1, with a corresponding
decomposition of the total Hamiltonian,

vext(rrrt) = v0(rrr)+ v1(rrrt) ⇐⇒ Ĥ(t) = Ĥ0 + Ĥ1(t) . (7.55)

In addition, v1 is assumed to have all the properties required for the existence of the
functional Taylor expansion of the expectation value (7.50) about v1 = 0,

A[v1] = A[v1 = 0]+
∫ t1

t0
dt

∫
d3r

δA
δv1(rrrt)

∣∣∣∣
v1=0

v1(rrrt)

+
1
2

∫ t1

t0
dt

∫
d3r

∫ t1

t0
dt ′

∫
d3r′

δ 2A
δv1(rrrt)δv1(rrr′t ′)

∣∣∣∣
v1=0

v1(rrrt)v1(rrr′t ′)

+ . . . . (7.56)

For the true wavefunction corresponding to Ĥ(t), i.e. the wavefunction for which
A is stationary, A vanishes, so that the same holds for each individual term in the
expansion (7.56). In particular, one has

δ 2A
δv1(rrrt)δv1(rrr′t ′)

∣∣∣∣
v1=0

= 0 . (7.57)

It is instructive to verify Eq. (7.57) by an explicit evaluation. Functional differentiation of (7.50)
with respect to v1 at two times t ′ �= t ′′ with t0 < t ′, t ′′ < t1 yields

δ 2A
δv1(rrr′′t ′′)δv1(rrr′t ′)

=
∫ t1

t0
dt

[
〈 δ 2Ψ(t)

δv1(rrr′′t ′′)δv1(rrr′t ′)
|ih̄∂t − Ĥ(t)|Ψ(t)〉+ 〈Ψ(t)|ih̄∂t − Ĥ(t)| δ 2Ψ(t)

δv1(rrr′′t ′′)δv1(rrr′t ′)
〉
]

+
∫ t1

t0
dt

[
〈 δΨ(t)

δv1(rrr′′t ′′)
|ih̄∂t − Ĥ(t)| δΨ(t)

δv1(rrr′t ′)
〉+ 〈 δΨ(t)

δv1(rrr′t ′)
|ih̄∂t − Ĥ(t)| δΨ(t)

δv1(rrr′′t ′′)
〉
]

−
∫ t1

t0
dt

[
〈 δΨ(t)

δv1(rrr′′t ′′)
| δ Ĥ1(t)
δv1(rrr′t ′)

|Ψ(t)〉+ 〈 δΨ(t)
δv1(rrr′t ′)

| δ Ĥ1(t)
δv1(rrr′′t ′′)

|Ψ(t)〉
]

−
∫ t1

t0
dt

[
〈Ψ(t)| δ Ĥ1(t)

δv1(rrr′′t ′′)
| δΨ(t)
δv1(rrr′t ′)

〉+ 〈Ψ(t)| δ Ĥ1(t)
δv1(rrr′t ′)

| δΨ(t)
δv1(rrr′′t ′′)

〉
]

. (7.58)

Once the differentiation is executed, one can use the stationarity of A, so that the first term of the
right-hand side vanishes. After partial integration the stationarity of A can also be employed for the
second term of the right-hand side of (7.58),

∫ t1

t0
dt 〈Ψ(t)|ih̄∂t − Ĥ(t)| δ 2Ψ(t)

δv1(rrr′′t ′′)δv1(rrr′t ′)
〉

= ih̄ 〈Ψ(t)| δ 2Ψ(t)
δv1(rrr′′t ′′)δv1(rrr′t ′)

〉
∣∣∣∣t1
t0

. (7.59)
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An explicit representation of |Ψ(t)〉 in terms of v1 is required for the evaluation of the remaining
terms. However, |Ψ(t)〉 can be obtained from the initial state |Ψ0〉 by application of the time-
evolution operator in the Schrödinger representation,

|Ψ(t)〉 = ÛS(t, t0)|Ψ0〉 (7.60)

ÛS(t, t0) =
∞

∑
n=0

(−i)n

h̄nn!

∫ t

t0
dt1 · · ·

∫ t

t0
dtn T

[
Ĥ(t1) · · ·Ĥ(tn)

]
= T exp

[
− i

h̄

∫ t

t0
dt ′ Ĥ(t ′)

]
. (7.61)

By construction the operator ÛS ensures proper normalization, i.e. 〈Ψ(t)|Ψ(t)〉= 1 if 〈Ψ0|Ψ0〉= 1,

δ 〈Ψ(t)|Ψ(t)〉
δv1(rrr′t ′)

= 0 , (7.62)

as is required by the form (7.50) of the action. Using Eqs. (7.60), (7.61), the required derivatives
can be expressed as ∣∣∣∣ δΨ(t)

δv1(rrr′t ′)

〉
= − i

h̄
Θ(t − t ′)ÛS(t, t ′)n̂(rrr′)ÛS(t ′, t0)|Ψ0〉 (7.63)∣∣∣∣ δ 2Ψ(t)

δv1(rrr′′t ′′)δv1(rrr′t ′)

〉
= − 1

h̄2 Θ(t − t ′)Θ(t ′ − t ′′)

×ÛS(t, t ′)n̂(rrr′)ÛS(t ′, t ′′)n̂(rrr′′)ÛS(t ′′, t0)|Ψ0〉
− 1

h̄2 Θ(t − t ′′)Θ(t ′′ − t ′)

×ÛS(t, t ′′)n̂(rrr′′)ÛS(t ′′, t ′)n̂(rrr′)ÛS(t ′, t0)|Ψ0〉 (7.64)

δ Ĥ1(t)
δv1(rrr′t ′)

= δ (t − t ′)n̂(rrr′) . (7.65)

In the limit v1 → 0 Eqs. (7.63), (7.64) reduce to∣∣∣∣ δΨ(t)
δv1(rrr′t ′)

〉
= − i

h̄
Θ(t − t ′)e−iĤ0(t−t0)/h̄n̂0(rrr′t ′)|Ψ0〉 (7.66)∣∣∣∣ δ 2Ψ(t)

δv1(rrr′′t ′′)δv1(rrr′t ′)

〉
= − 1

h̄2 Θ(t − t ′)Θ(t ′ − t ′′)e−iĤ0(t−t0)/h̄n̂0(rrr′t ′)n̂0(rrr′′t ′′)|Ψ0〉

− 1

h̄2 Θ(t − t ′′)Θ(t ′′ − t ′)e−iĤ0(t−t0)/h̄n̂0(rrr′′t ′′)n̂0(rrr′t ′)|Ψ0〉 , (7.67)

where n̂0 denotes the density operator in the Heisenberg representation with respect to Ĥ0,

n̂0(rrrt) = eiĤ0(t−t0)/h̄ n̂(rrr)e−iĤ0(t−t0)/h̄ . (7.68)

With the aid of Eqs. (7.65)–(7.67) one can evaluate (7.58) in the limit v1 → 0. Collecting all terms,
one finds

δ 2A
δv1(rrr′′t ′′)δv1(rrr′t ′)

∣∣∣∣
v1=0

= − i
h̄

Θ(t ′ − t ′′)〈Ψ0|n̂0(rrr′t ′)n̂0(rrr′′t ′′)|Ψ0〉− i
h̄

Θ(t ′′ − t ′)〈Ψ0|n̂0(rrr′′t ′′)n̂0(rrr′t ′)|Ψ0〉

+
1

h̄2

∫ t1

t0
dt Θ(t − t ′′)〈Ψ0|n̂0(rrr′′t ′′)eiĤ0(t−t0)/h̄ [ih̄∂t − Ĥ0

]
Θ(t − t ′)e−iĤ0(t−t0)/h̄n̂0(rrr′t ′)|Ψ0〉
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+
1

h̄2

∫ t1

t0
dt Θ(t − t ′)〈Ψ0|n̂0(rrr′t ′)eiĤ0(t−t0)/h̄ [ih̄∂t − Ĥ0

]
Θ(t − t ′′)e−iĤ0(t−t0)/h̄n̂0(rrr′′t ′′)|Ψ0〉

− i
h̄

Θ(t ′ − t ′′)〈Ψ0|n̂0(rrr′′t ′′)n̂0(rrr′t ′)|Ψ0〉− i
h̄

Θ(t ′′ − t ′)〈Ψ0|n̂0(rrr′t ′)n̂0(rrr′′t ′′)|Ψ0〉

+
i
h̄

Θ(t ′′ − t ′)〈Ψ0|n̂0(rrr′′t ′′)n̂0(rrr′t ′)|Ψ0〉+ i
h̄

Θ(t ′ − t ′′)〈Ψ0|n̂0(rrr′t ′)n̂0(rrr′′t ′′)|Ψ0〉
= 0 , (7.69)

consistent with Eq. (7.57).

The relevance of this (obvious) result becomes more clear if A is split into two
contributions according to Eq. (7.55),

A = A0 −
∫ t1

t0
dt 〈Ψ(t)|Ĥ1(t)|Ψ(t)〉 . (7.70)

The functional derivative of the second term on the right-hand side can be directly
extracted from the preceding discussion. Combination with Eq. (7.69) gives

δ 2A0

δv1(rrr′′t ′′)δv1(rrr′t ′)

∣∣∣∣
v1=0

= − i
h̄

Θ(t ′ − t ′′)〈Ψ0|
[
n̂0(rrr′t ′), n̂0(rrr′′t ′′)

] |Ψ0〉

− i
h̄

Θ(t ′′ − t ′)〈Ψ0|
[
n̂0(rrr′′t ′′), n̂0(rrr′t ′)

] |Ψ0〉 . (7.71)

The expression on the right-hand side of Eq. (7.71) is easily identified as the retarded
response function of the Ĥ0-system, Eq. (4.39),

δ 2A0

δv1(rrr′′t ′′)δv1(rrr′t ′)

∣∣∣∣
v1=0

= χR(rrr′t ′,rrr′′t ′′)+ χR(rrr′′t ′′,rrr′t ′) , (7.72)

provided that |Ψ0〉 is assumed to be the ground state corresponding to Ĥ0 (compare
Sect. 4.2.1). The unsymmetric form of χR ensures that the response of the system
always appears after the perturbation which causes the response (for an explicit
derivation see e.g. [94], compare also Sect. 7.4). In the case of backward evolution
the advanced response function plays the same role,

χA(rrr′t ′,rrr′′t ′′) = χR(rrr′′t ′′,rrr′t ′) , (7.73)

so that (7.72) can also be expressed as

δ 2A0

δv1(rrr′′t ′′)δv1(rrr′t ′)

∣∣∣∣
v1=0

= χR(rrr′t ′,rrr′′t ′′)+ χA(rrr′t ′,rrr′′t ′′) . (7.74)

Yet another form of (7.72) is obtained by use of the time-ordered response (4.35)

δ 2A0

δv1(rrr′′t ′′)δv1(rrr′t ′)

∣∣∣∣
v1=0

= χ(rrr′t ′,rrr′′t ′′)+ χ∗(rrr′t ′,rrr′′t ′′) . (7.75)
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Equations (7.72), (7.74), (7.75) are explicit manifestations of the fact that each in-
dividual component of A is symmetric with respect to the direction of time—both
retarded and advanced contributions are included in the functional (7.53).

The same statements hold for the action density functional A[n] [484]. In order to
illustrate the relevance of these statements for TDDFT one has to consider the func-
tional derivative of A[n] with respect to the density. For this purpose it is convenient
to express A0 as a density functional

A0[n] := A[n]+
∫ t1

t0
dt

∫
d3r n(rrrt)v1(rrrt)

=
∫ t1

t0
dt 〈Ψ[n,Ψ0](t)|ih̄∂t − Ĥ0|Ψ[n,Ψ0](t)〉 . (7.76)

Compared with A[n], A0[n] has the advantage that it does not depend explicitly on
v1. The stationarity condition (7.54) then translates to

δA0[n]
δn(rrrt)

= v1(rrrt) , (7.77)

where v0 and v1 have to be kept fixed in the variational process on the left-hand side.
If one considers once more the second functional derivative of A with respect to

the td potential and uses the fact that A0[n] does not explicitly depend on v1, one
obtains

δ 2A
δv1(rrrt)δv1(rrr′t ′)

=
∫ t1

t0
dt ′′

∫
d3r′′

∫ t1

t0
dt ′′′

∫
d3r′′′

δn(rrr′′t ′′)
δv1(rrrt)

δn(rrr′′′t ′′′)
δv1(rrr′t ′)

δ 2A0[n]
δn(rrr′′t ′′)δn(rrr′′′t ′′′)

+
∫ t1

t0
dt ′′

∫
d3r′′

(
δA0[n]

δn(rrr′′t ′′)
− v1(rrr′′t ′′)

)
δ 2n(rrr′′t ′′)

δv1(rrrt)δv1(rrr′t ′)

− δn(rrrt)
δv1(rrr′t ′)

− δn(rrr′t ′)
δv1(rrrt)

. (7.78)

This relation is now evaluated for the density which makes A[n] stationary. One can
then use Eq. (7.77) for the second term on the right-hand side. On the other hand,
the left-hand side of Eq. (7.78) vanishes in the limit v1 → 0, Eq. (7.69). In this limit
one thus obtains ∫ t1

t0
dt ′′

∫
d3r′′

∫ t1

t0
dt ′′′

∫
d3r′′′

×
[

δn(rrr′′t ′′)
δv1(rrrt)

δn(rrr′′′t ′′′)
δv1(rrr′t ′)

δ 2A0[n]
δn(rrr′′t ′′)δn(rrr′′′t ′′′)

]
v1=0

=
δn(rrrt)

δv1(rrr′t ′)

∣∣∣∣
v1=0

+
δn(rrr′t ′)
δv1(rrrt)

∣∣∣∣
v1=0

. (7.79)
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The quantities on the right-hand side are identified as the response function of the
Ĥ0-system. In the case of forward evolution this is the retarded response

χR(rrrt,rrr′t ′) =
δn(rrrt)

δv1(rrr′t ′)

∣∣∣∣
v1=0

. (7.80)

However, the right-hand side of Eq. (7.79) features a combination of two response
functions, which is symmetric in t and t ′. In fact, the left-hand side of Eq. (7.79)
coincides with

δ 2A0

δv1(rrrt)δv1(rrr′t ′)

∣∣∣∣
v1=0

,

so that one can use Eq. (7.72) to rewrite (7.79) as∫ t1

t0
dt ′′

∫
d3r′′

∫ t1

t0
dt ′′′

∫
d3r′′′

×
[

δn(rrr′′t ′′)
δv1(rrrt)

δ 2A0[n]
δn(rrr′′t ′′)δn(rrr′′′t ′′′)

δn(rrr′′′t ′′′)
δv1(rrr′t ′)

]
v1=0

= χR(rrrt,rrr′t ′)+ χR(rrr′t ′,rrrt) . (7.81)

With the inverse of the retarded response function [487],

χ−1
R (rrrt,rrr′t ′) =

δv1(rrrt)
δn(rrr′t ′)

∣∣∣∣
v1=0

(7.82)

∫
dt ′

∫
d3r′ χ−1

R (rrrt,rrr′t ′)χR(rrr′t ′,rrr′′t ′′) = δ (t − t ′′)δ (3)(rrr− rrr′′) , (7.83)

Eq. (7.81) may finally be resolved as

δ 2A0[n]
δn(rrrt)δn(rrr′t ′)

∣∣∣∣
v1=0

= χ−1
R (rrrt,rrr′t ′)+ χ−1

R (rrr′t ′,rrrt) . (7.84)

This result can equivalently be expressed in terms of the inverse of the advanced
response function (7.73),

δ 2A0[n]
δn(rrrt)δn(rrr′t ′)

∣∣∣∣
v1=0

= χ−1
R (rrrt,rrr′t ′)+ χ−1

A (rrrt,rrr′t ′) . (7.85)

Irrespective of the response function chosen, the right-hand sides of (7.84), (7.85)
are symmetric in t and t ′. This symmetry reflects the fact that both retarded and
advanced contributions are included in the functional (7.76). The result (7.84) is the
TDDFT counterpart of Eq. (7.72). Both directions of time are covered by the action
density functional.

As a consequence, the stationarity condition (7.54) is not fully equivalent to the
td Schrödinger equation, whose form implies a specification of the direction of time.
In other words: Eq. (7.54) is a necessary condition for finding the true td density,



324 7 Time-Dependent Density Functional Theory

but not a sufficient condition. It must be supplemented by an explicit choice of the
direction of time. When one uses Eq. (7.54) in the context of causal propagation,
the appropriate retarded component of A0[n] has to be projected out [484].

The implications of the causality problem are still a matter of debate. For details
the reader is referred to the original literature [484, 488, 489, 487, 490–495]. One
option for a mathematically rigorous implementation of forward evolution is offered
by the Keldysh formalism [488, 489]. In this approach the action functional is re-
defined in terms of the Keldysh pseudo-time, which then allows the derivation of a
causal equation of motion. An alternative solution to the causality problem relies on
the inclusion of the additional boundary term resulting from the fact that the vari-
ation of the wavefunction is not restricted at the end point t1 [495]. This inclusion
restores causality, but leads to expressions which depend on the Berry curvature. A
detailed discussion of these two approaches is, however, beyond the scope of this
text (for an introduction to the Keldysh formalism and its application to TDDFT
see [477]). We will from now on apply the stationarity condition (7.54) with the
understanding that only its causal component is to be used.

Some further remarks on the functional A[n] are appropriate at this point:

• By construction, the domain of A[n] is restricted to those densities which are ob-
tained from the solution of the Schrödinger equation for some potential vext(rrrt),
i.e. to interacting v-representable densities. On the other hand, in order to guar-
antee that the functional derivative (7.54) exists, A[n] needs to be defined on a
sufficiently dense set of densities n(rrrt). Ideally, the domain of A[n] would be the
set of all normalizable n(rrrt). However, not even the stationary Hohenberg-Kohn
functional E[n] has such a large domain. One has to define A[n] in a more gen-
eral way, following the Levy-Lieb concept (see Sect. 2.3), in order to rigorously
ensure functional differentiability (for further details see [496, 497]).

• The functional A[n] is not only nonlocal in space, but also in time. All times
between t0 and t contribute via (7.54) to the time-evolved density at time t. A[n]
therefore involves “memory effects”, that is the properties of the system at time t
depend on the way the system has developed in the time interval from t0 to time
t.

• The functional |Ψ[n,Ψ0](t)〉 not only allows the definition of A[n], but also of
other density functionals. A quantity of obvious interest is the cross section,
which provides the essential information on excitation and collision processes.
The probability for the system to end up in a particular eigenstate of the asymp-
totic Hamiltonian for t → ∞ is given by the overlap of |Ψ[n,Ψ0](t → ∞)〉 with
this eigenstate. Unfortunately, the density alone is not very well suited to extract
information on these overlap matrix elements, as n(rrrt) does not convey any phase
information. Only observables which involve some spatial separation can be ob-
tained directly from the density. In this way one can e.g. differentiate electron
transfer, excitation and ionization in the case of collision processes. As a way out
of this restriction, the time-dependent Kohn-Sham state, discussed in Sect. 7.2,
offers itself.

• The functional
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B[n] := A[n]+
∫ t1

t0
dt

∫
d3r n(rrrt)vext(rrrt)

=
∫ t1

t0
dt 〈Ψ[n,Ψ0](t)|ih̄∂t − T̂ −Ŵ |Ψ[n,Ψ0](t)〉 (7.86)

is universal in the sense that it does not depend on vext—according to the RG-
theorem the td state is completely determined by the td density. B[n] coincides
with A0[n], Eq. (7.76), if one chooses6 v1 = vext, v0 = 0. All relations derived
for A0[n] therefore also apply to B[n], as soon as Ĥ0 is reduced to T̂ + Ŵ . In
particular, B[n] requires projection on causal evolution in the same way as A0[n].

• The generalization of the RG-theorem to the Hamiltonian (7.5) [479, 480] re-
quires the explicit use of the current density jjjp, Eq. (7.25), as basic DFT vari-
able, as is to be expected from stationary CDFT. One can show that the td charge
and current densities determine the td external potentials vext and AAAext up to the
gauge transformation (7.9), (7.10). As a consequence, the td state is determined
by n and jjjp up to a phase transformation of type (7.11). This then allows the
definition of a corresponding action density functional for the Hamiltonian (7.5)
[479].

• The combination of Eq. (7.27) with the continuity equation (7.43) yields a direct
hydrodynamic equation for n(rrrt),

∂ 2
t n(rrrt) =

i
h̄

∇∇∇ · 〈Ψ[n,Ψ0](t)|
[

ĵjjp(rrr), Ĥ(t)
] |Ψ[n,Ψ0](t)〉 , (7.87)

which is equivalent to the variational equation (7.54).

7.2 Time-Dependent Kohn-Sham Equations

The stationarity of the action functional, Eq. (7.54), could be explicitly exploited
as soon as a suitable approximation for A[n] was available. In practice, however,
the derivation of such an approximation is even more difficult than that of total
energy functionals for stationary systems. For this reason the standard way to set
up and apply a workable version of TDDFT is the use of time-dependent Kohn-
Sham (TDKS) equations. This approach automatically implements a choice for the
direction of time. The derivation of the TDKS equations closely follows the path
taken in the stationary limit (see Chap. 3).

The RG-theorem not only applies to interacting many-particle systems, but also
to noninteracting systems with td Hamiltonians of the type

Ĥs(t) = T̂ +V̂s(t) ; V̂s(t) =
∫

d3r n̂(rrr)vs(rrrt) . (7.88)

6 None of the results between Eqs. (7.55) and (7.85) depends on the presence of v0.
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The nature or presence of the interaction does not play any role in the proof given
in the preceding section. For a given initial state |Φ(t0)〉 the density of a noninter-
acting system thus determines the external potential vs(rrrt) of the system and the
corresponding state |Φ(t)〉,

ih̄∂t |Φ(t)〉 = Ĥs(t)|Φ(t)〉 , (7.89)

uniquely for all t ≥ t0.
The many-body state |Φ(t)〉 can be specified explicitly. If the initial state |Φ(t0)〉

is a Slater determinant constructed from N single-particle orbitals φi(rrrσt0), |Φ(t)〉
has a determinantal form for all t,

(rrr1σ1, . . .rrrNσN |Φ(t)〉 ≡ Φ(rrr1σ1, . . .rrrNσN , t)

=
1√
N!

det

⎛
⎜⎝ φ1(rrr1σ1t) · · · φN(rrr1σ1t)

...
...

φ1(rrrNσNt) · · · φN(rrrNσNt)

⎞
⎟⎠ , (7.90)

with the orthonormal single-particle orbitals being solutions of

ih̄∂tφi(rrrσt) =
{
− h̄2∇∇∇2

2m
+ vs(rrrt)

}
φi(rrrσt) . (7.91)

This statement can be easily verified. As a consequence of Eq. (7.91) the state (7.90)
manifestly satisfies the td Schrödinger equation for the Hamiltonian (7.88). As soon
as (7.90) satisfies the given initial condition, the uniqueness of the solution of the
noninteracting Schrödinger equation (7.89) guarantees that (7.90) is the correct td
state for all t. The density of the noninteracting system is therefore given by

n(rrrt) = ∑
σ

N

∑
i=1

|φi(rrrσt)|2 (7.92)

for all t (remember that the quantum number i includes the spin).
The RG-theorem ensures the existence of a DFT description of this noninteract-

ing system. For instance, the corresponding action functional is

As[n] = Bs[n]−
∫ t1

t0
dt

∫
d3r n(rrrt)vs(rrrt) (7.93)

Bs[n] =
∫ t1

t0
dt 〈Φ[n](t)|ih̄∂t − T̂ |Φ[n](t)〉 , (7.94)

where |Φ[n](t)〉 denotes the density functional obtained for the noninteracting state
(7.90) (the dependence of |Φ[n](t)〉 on the initial state |Φ(t0)〉 has been suppressed
for brevity). The stationarity condition

δAs[n]
δn(rrrt)

=
δBs[n]
δn(rrrt)

− vs(rrrt) = 0 (7.95)
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is a necessary condition for the solution of Eq. (7.89). As in the interacting situation,
however, application of (7.95) requires proper projection on forward evolution.

Once the density functional description of noninteracting, time-dependent sys-
tems is established, one can return to the interacting system (7.1) with initial state
(7.4). Let us assume that one can find a noninteracting system with potential vs(rrrt)
and determinantal state (7.90) for which the density (7.92) is identical with the den-
sity of the interacting system for all t ≥ t0. The existence of such an auxiliary non-
interacting system is not guaranteed. Without a suitable redefinition of the action
functional noninteracting v-representability is an assumption.

One may, however, convince oneself that at least the minimal requirements for
this assumption are fulfilled. Obviously, noninteracting v-representability first of
all requires the densities of the two systems to be identical at t = t0. This initial
density is fixed by the initial condition (7.4) via (7.23). An initial Slater determinant
for the auxiliary noninteracting system which reproduces the given density can be
explicitly constructed by the scheme discussed in Sect. 2.3. Of course, the state
|Φ(t0)〉 differs from the initial state of the interacting system. In addition, the initial
Slater determinant and hence the complete time-evolution of the noninteracting state
are not even determined uniquely. This poses no problem, however, as all equivalent
determinants (i) yield the same density and (ii) consist of single-particle orbitals
which satisfy the same differential equation (7.91) (the potential vs(rrrt) is uniquely
determined by the interacting n(rrrt), provided it exists). Consequently, the equivalent
determinants can only differ by unitary transformations.

The next step is a suitable decomposition of the interacting action functional,
using (7.93), (7.94),

A[n] = Bs[n]−
∫ t1

t0
dt

∫
d3r n(rrrt)vext(rrrt)

−1
2

∫ t1

t0
dt

∫
d3r

∫
d3r′ n(rrrt)w(rrr,rrr′)n(rrr′t)−Axc[n] , (7.96)

which defines the xc-action functional,7

Axc[n] = Bs[n]−B[n]− 1
2

∫ t1

t0
dt

∫
d3r

∫
d3r′ n(rrrt)w(rrr,rrr′)n(rrr′t) . (7.97)

Of course, Axc[n] is subject to the same causality problem as B[n] and its noninter-
acting limit Bs[n]. When using the exact Axc[n] or approximations, causality has to
be implemented explicitly.

In order to find the explicit form of vs(rrrt), one relies, in analogy to the stationary
situation, on the stationarity principle. The stationarity condition (7.54) implies

A[n+δn] = A[n]+O(δn2) , (7.98)

7 Note the sign convention for Axc[n], which differs from that of the total A[n].
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provided n is the density which makes A[n] stationary, i.e. the functional Taylor ex-
pansion of A[n] about the stationary point does not contain a first order contribution.
If both n and n + δn are noninteracting v-representable, the functional form (7.92)
applies to both n and n+δn,

n(rrrt)+δn(rrrt) = ∑
σ

N

∑
i=1

{
|φi(rrrσt)|2 +φ †

i (rrrσt)δφi(rrrσt)+δφ †
i (rrrσt)φi(rrrσt)

}
,

(7.99)
with the initial conditions

δn(rrrt0) = 0 ; δφi(rrrσt0) = 0 . (7.100)

Without (7.100) one would compare completely different systems. In the same fash-
ion as for (3.36) one can then derive

Bs[n+δn]−Bs[n] =
∫ t1

t0
dt

∫
d3r δn(rrrt)vs(rrrt) . (7.101)

Insertion of (7.101) and the functional Taylor expansion of the remaining compo-
nents of A[n] into (7.98) leads to

0 =
∫ t1

t0
dt

∫
d3r δn(rrrt)

{
vs(rrrt)− vext(rrrt)− vH(rrrt)− vxc(rrrt)

}
, (7.102)

with the definitions

vH[n](rrrt) =
∫

d3r′ w(rrr,rrr′)n(rrr′t) (7.103)

vxc[n](rrrt) =
δAxc[n]
δn(rrrt)

. (7.104)

Equation (7.102) must be valid for arbitrary variation δn(rrrt), so that the desired td
KS potential has the form

vs(rrrt) = vext(rrrt)+ vH(rrrt)+ vxc(rrrt) . (7.105)

vs depends on the density via (7.103) and (7.104). The td KS equations [498, 499]
read

ih̄∂tφi(rrrσt) =
{
− h̄2∇∇∇2

2m
+ vext(rrrt)+ vH(rrrt)+ vxc(rrrt)

}
φi(rrrσt) . (7.106)

A number of remarks are worthwhile at this point:

• Equation (7.106) is an initial value problem in which the time-evolution of the
orbitals is controlled by the td density. The time development of the orbitals is
coupled back to the orbitals themselves, so that indirectly the complete history of
the system enters the time-derivative of the orbitals at time t. In addition, the xc-
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action functional is nonlocal in time. The same is then true for the xc-potential,
so that also direct memory effects are contained in (7.106).
A second, different kind of memory effect is introduced into the xc-action func-
tional by the initial state dependence of |Ψ[n,Ψ0](t)〉.

• The KS equations have to be solved for given initial orbitals φi(rrrσt0) which yield
the initial density

n(rrrt0) = 〈Φ(t0)|n̂(rrr)|Φ(t0)〉 = 〈Ψ(t0)|n̂(rrr)|Ψ(t0)〉 . (7.107)

As already emphasized there exists more than one set of φi(rrrσt0) which satisfies
this condition. On the other hand, there is no criterion which of these sets one
should choose. Fortunately, all sets yield the same td density, so that all physical
quantities which do not explicitly depend on |Φ(t0)〉 are invariant against the
choice of the initial orbitals. The initial Slater determinant is unique if the system
is in its ground state for t ≤ t0. This removes any ambiguity in the situation which
is encountered most frequently.

• Use of the td KS equations amounts to a causal implementation of δBs[n]/δn,
i.e. of the leading component of the total action functional.

• The crucial quantity of TDDFT is the xc-action functional, which absorbs all
complicated many-body effects. Unfortunately, Axc[n] is plagued by the same
problems as A[n]: both retarded and advanced contributions are included. When
implementing approximations for the xc-action and/or the xc-potential, causality
has to be incorporated by hand.

• An extension of the td KS equations to time-dependent current density func-
tional theory, i.e. to the Hamiltonian (7.5), has also been formulated [479]. In
this scheme the td xc-potential depends on both n and the current density jjjp,
Eq. (7.24).

7.3 Exchange-Correlation Action: Adiabatic Local Density
Approximation and Beyond

The simplest concept for setting up approximations for Axc[n] is the use of xc-
functionals of stationary DFT with a replacement of the stationary density by the
actual td density [500, 501, 499, 502]. It can directly be illustrated for the LDA,

AALDA
xc [n] =

∫ t1

t0
dt

∫
d3r eHEG

xc (n(rrrt)) , (7.108)

where eHEG
xc (n0) is the xc-energy density of the (stationary) homogeneous elec-

tron gas at gas density n0. The functional (7.108) is usually called adiabatic LDA
(ALDA), as the use of a stationary functional with the td density is particularly ap-
propriate for adiabatic processes, in which the system has sufficient time to adjust to
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the td external potential. The ALDA is sometimes also referred to as time-dependent
LDA.

The corresponding ALDA potential vALDA
xc (rrrt) is completely determined by the

density at time t,

vALDA
xc (rrrt) =

δAALDA
xc [n]

δn(rrrt)
=

deHEG
xc (n)
dn

∣∣∣∣
n=n(rrrt)

= vLDA
xc (n(rrrt)) . (7.109)

The ALDA is local both in space and in time. It therefore shares the limitations
resulting from locality in space with the stationary LDA. As an example one may
mention the failure of the ALDA for long molecular chains [503]. In these systems
the axial polarizabilities and hyper-polarizabilities are by far overestimated by the
ALDA, due to the insensitivity of the ALDA potential in the center of the chain to a
rearrangement of the densities at the end points. The ALDA contains no memory of
the time-evolution of the system beyond the information that is contained in n(rrrt) at
time t. vALDA

xc automatically satisfies the causality requirement, if n(rrrt) results from
causal evolution.

In the same way one can base approximations on stationary GGA or spin-
dependent LDA functionals. The exact exchange, depending on the td KS orbitals
φi(rrrσt), can be used in a td situation as well. The calculation of δAxc[n]/δn has
to be performed by a time-dependent extension of the optimized potential method
[342, 488] in this case. However, the resulting xc-potentials vxc(rrrt) all depend on
either the density or the td KS orbitals at time t only.

The derivation of xc-action functionals with explicit memory, on the other hand,
turns out to be rather difficult. A simple functional with memory was developed
quite early within the framework of td linear response [473] (for a derivation see
Sect. 7.4). It was found, however, that this functional violates a fundamental con-
straint on the nonlocality of Axc[n] with respect to time [504]. Consider a finite
number of interacting electrons confined by a parabolic quantum well (rather than
by the Coulomb potential of the nuclei). The ground state density of this system is
denoted by n0(rrr). If now a uniform td electric field is switched on, the electrons
perform a collective motion, in which the shape of the td density remains identical
with that of n0(rrr), n(rrrt) = n0(rrr −RRR(t)). The electron density oscillates as a rigid
object (this result is often referred to as harmonic potential theorem [504]—see
also [505–507]). One can show that the exact td xc-potential is compatible with the
harmonic potential theorem. Quite generally, the exact td xc-potential satisfies the
relation [508]

vxc[n′](rrr, t) = vxc[n](rrr−RRR(t), t) , (7.110)

if the density n′ is obtained from n by a rigid boost RRR(t),

n′(rrr, t) = n(rrr−RRR(t), t) , (7.111)

and the system was in its ground state at t = 0, with RRR(0) = dRRR/dt(0) = 000.
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One can verify directly that the ALDA complies with Eq. (7.110). On the other
hand, compatibility with (7.110) is impossible for any functional which is nonlocal
in time, but local in space [509]. The combination of memory with Eq. (7.110)
necessarily requires the xc-functional to be nonlocal in space, which quite naturally
leads to a current dependence. A number of approximations for such a fully nonlocal
xc-functional have been suggested—for further details see [509–514].

7.4 Time-Dependent Linear Response

Let us now consider the important case that a weak time-dependent perturbation
is switched on at t = t0, while the system is in its ground state for t ≤ t0. This is,
for example, the situation encountered in photo-absorption processes. In the context
of TDDFT this special case has the advantage that all functionals are pure density
functionals: they do no longer depend on the initial state, as this state is uniquely
determined by the initial density.

The external potential is then given by

vext(rrrt) =
{

v0(rrr) for t ≤ t0
v0(rrr)+δv(rrrt) for t > t0

. (7.112)

The initial state at t0 is the ground state |Ψ0〉 with ground state density n0,

n(rrrt) =
{

n0(rrr) = 〈Ψ0|n̂(rrr)|Ψ0〉 for t ≤ t0
n0(rrr)+δn(rrrt) for t > t0

. (7.113)

n0 is obtained from the stationary KS orbitals corresponding to v0,{
− h̄2∇∇∇2

2m
+ v0(rrr)+ vH[n0](rrr)+ vxc[n0](rrr)

}
φi(rrrσ) = εiφi(rrrσ) , (7.114)

in the standard form,

n0(rrr) = ∑
i

Θi ∑
σ
|φi(rrrσ)|2 . (7.115)

For the examination of the linear (first order) response of the system to the per-
turbation δv one applies the linear response formalism to the induced density shift
δn,

δn(rrrt) = δn(1)(rrrt)+O(δv2) (7.116)

δn(1)(rrrt) =
∫

d3r′dt ′ χR(rrr,rrr′, t − t ′)δv(rrr′t ′) (7.117)

(for a derivation of Eq. (7.117) see e.g. Chap. 13 of [94]). Equation (7.117) repre-
sents the time-dependent extension of the density response of stationary systems,
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Eq. (4.135). The quantity χR is the retarded response function of the unperturbed
interacting system, Eq. (4.39),

χR(rrr,rrr′, t − t ′) = − i
h̄

Θ(t − t ′)〈Ψ0|[n̂(rrrt), n̂(rrr′t ′)]|Ψ0〉 . (7.118)

This definition is equivalent to

χR(rrr,rrr′, t − t ′) =
δn(rrrt)

δvext(rrr′t ′)
, (7.119)

which, in turn, is equivalent to Eq. (7.117). The equivalence of (7.118) and (7.119)
has already been apparent from Eqs. (7.79) and (7.72).

Alternatively, δn(1) can be evaluated within TDDFT. As the exact n(rrrt) is repro-
duced by the KS system, the same is true for its component δn(1)(rrrt) to first order
in δv. However, within the KS system δn(1)(rrrt) is obtained as linear response to the
total KS potential,

δn(1)(rrrt) =
∫

d3r′dt ′ χR,s(rrr,rrr′, t − t ′)δvs(rrr′t ′) , (7.120)

where χR,s is the retarded KS response function,

χR,s(rrr,rrr′, t − t ′) := − i
h̄

Θ(t − t ′)〈Φ0|[n̂(rrrt), n̂(rrr′t ′)]|Φ0〉 , (7.121)

and δvs is the change of the total KS potential to first order in δv. The precise form
of δvs is obtained from Eqs. (7.103)–(7.105), using a functional Taylor expansion
about the unperturbed density n0,

vs(rrrt) = v0(rrrt)+δv(rrrt)+
∫

d3r′ w(rrr,rrr′)
[
n0(rrr′)+δn(rrr′t)

]
+

δAxc[n]
δn(rrrt)

∣∣∣∣
n=n0(rrr)+δn(rrrt)

= v0(rrrt)+δv(rrrt)+ vH[n0](rrr)+
∫

d3r′ w(rrr,rrr′)δn(1)(rrr′t)+ vxc[n0](rrr)

+
∫

d3r′
∫

dt ′
δ 2Axc[n]

δn(rrrt)δn(rrr′t ′)

∣∣∣∣
n=n0(rrr)

δn(1)(rrr′t ′)+O(δv2) . (7.122)

The kernel of the last term is usually abbreviated as

fxc[n0](rrr,rrr′, t − t ′) :=
δ 2Axc[n]

δn(rrrt)δn(rrr′t ′)

∣∣∣∣
n=n0(rrr)

. (7.123)

Again projection on the causal component of Axc[n] is implied. With the help of
(7.117) one identifies
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δvs(rrrt) = δv(rrrt)+
∫

d3r′ w(rrr,rrr′)δn(1)(rrr′t)

+
∫

d3r′dt ′ fxc[n0](rrr,rrr′, t − t ′)δn(1)(rrr′t ′)

=
∫

d3r′dt ′
{

δ (3)(rrr− rrr′)δ (t − t ′)+
∫

d3r′′ w(rrr,rrr′′)χR(rrr′′,rrr′, t − t ′)

+
∫

d3r′′dt ′′ fxc[n0](rrr,rrr′′, t − t ′′)χR(rrr′′,rrr′, t ′′ − t ′)
}

×δv(rrr′t ′) . (7.124)

If one equates (7.117) and (7.120), one obtains a Dyson-type equation, relating the
full response with the KS response function,

χR(rrr,rrr′, t − t ′) = χR,s(rrr,rrr′, t − t ′)+
∫

d3r′′dt ′′
∫

d3r′′′dt ′′′ χR,s(rrr,rrr′′, t − t ′′)

×
{

δ (t ′′ − t ′′′)w(rrr′′,rrr′′′)+ fxc[n0](rrr′′,rrr′′′, t ′′ − t ′′′)
}

×χR(rrr′′′,rrr′, t ′′′ − t ′) . (7.125)

This relation allows the evaluation of an approximation for the full response function
from the much simpler KS response function for any given approximation for fxc.
Even if the ALDA is employed for fxc,

f ALDA
xc [n0](rrr,rrr′, t − t ′) =

δvALDA
xc [n](rrrt)
δn(rrr′t ′)

∣∣∣∣
n=n0(rrr)

=
d2eHEG

xc (n)
dn2

∣∣∣∣
n=n0(rrr)

δ (3)(rrr− rrr′)δ (t − t ′) , (7.126)

the resulting χR goes beyond the random phase approximation, which corresponds
to fxc = 0. However, within the ALDA the xc-interaction, represented by fxc, is
instantaneous.

For the derivation of more refined approximations for fxc it is advantageous to
formulate Eq. (7.125) in frequency space,

χR(rrr,rrr′,ω) = χR,s(rrr,rrr′,ω)+
∫

d3r′′
∫

d3r′′′ χR,s(rrr,rrr′′,ω)

×
{

w(rrr′′,rrr′′′)+ fxc[n0](rrr′′,rrr′′′,ω)
}

χR(rrr′′′,rrr′,ω) . (7.127)

The Fourier transforms follow the convention (4.41). In frequency space the instan-
taneous character of the ALDA for fxc leads to a function which does not depend
on the frequency

f ALDA
xc [n0](rrr,rrr′,ω) =

d2eHEG
xc (n)
dn2

∣∣∣∣
n=n0(rrr)

δ (3)(rrr− rrr′) . (7.128)
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Equation (7.127) reminds one of the Dyson equation for the time-ordered response
(4.35), which relates the full response function with its irreducible (proper) kernel
Π [94, 95],

χ(rrr,rrr′,ω) = Π(rrr,rrr′,ω)+
∫

d3r′′
∫

d3r′′′ Π(rrr,rrr′′,ω)w(rrr′′,rrr′′′)χ(rrr′′′,rrr′,ω)

(7.129)
(compare the discussion of Eq. (4.92)). The relation between (7.127) and (7.129)
can be exploited for the construction of a simple frequency-dependent extension
of the ALDA for fxc. To this aim one restricts both equations to the homogeneous
situation, i.e. to the homogeneous electron gas, for which a Fourier representation
in momentum space leads to algebraic equations,

χR(qqq,ω) = χR,s(qqq,ω)+ χR,s(qqq,ω) [w(qqq)+ fxc[n0](qqq,ω)]χR(qqq,ω)

χ(qqq,ω) = Π(qqq,ω)+Π(qqq,ω)w(qqq)χ(qqq,ω)

= Π (0)(qqq,ω)+Π (0)(qqq,ω)
[

w(qqq)+
1

Π (0)(qqq,ω)
− 1

Π(qqq,ω)

]
χ(qqq,ω) .

The connection between (7.127) and (7.129) is fully established, if one uses the
relation between the retarded and the time-ordered response function, which can be
derived on the basis of the Lehmann representation, Eq. (4.45),

fxc[n0](qqq,ω) =

⎧⎪⎪⎨
⎪⎪⎩

1

Π (0)(qqq,ω)
− 1

Π(qqq,ω)
for ω ≥ 0

1

Π (0)(qqq,ω)∗
− 1

Π(qqq,ω)∗
for ω ≤ 0

(7.130)

(Π (0) = χ(0) = χs for the HEG). Any approximation for Π defines, via (7.130),
an approximation for fxc. Note that causality has now been implemented in fxc by
treating fxc as an integral part of a causal equation.

On the basis of the compressibility sum rule (4.154) the ALDA can be charac-
terized in an alternative fashion. To this aim one extracts the xc-contribution from
(4.154),

1
Π(qqq,ω)

− 1

Π (0)(qqq,ω)
= − d2eHEG

xc (n)
dn2

∣∣∣∣
n=n0

, (7.131)

and verifies that the ALDA, Eq. (7.128), corresponds to the approximation

f ALDA
xc [n0](qqq,ω) =

1

Π (0)(qqq = 000,ω = 0)
− 1

Π(qqq = 000,ω = 0)
. (7.132)

The simplest extension of the ALDA is a smooth interpolation between the static
(ω = 0) and the high-frequency limit of Π . This is the concept behind the Gross-
Kohn (GK) approximation [473]
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f GK
xc [n0](qqq,ω) =

1

Π (0)(qqq = 000,ω)
− 1

Π(qqq = 000,ω)
(7.133)

f GK
xc [n0](rrr,rrr′,ω) =

[
1

Π (0)(qqq = 000,ω)
− 1

Π(qqq = 000,ω)

]
n=n0(rrr)

δ (3)(rrr− rrr′) .

In real space the frequency-dependence of f GK
xc turns into nonlocality in time. The

GK approximation thus is the simplest xc-functional with memory. It turns out,
however, that for intermediate and particularly for high densities the frequency-
dependence of f GK

xc is rather weak. This explains the somewhat surprising success of
the ALDA in the description of photo-absorption processes for atoms. On the other
hand, it also implies that the memory effects in the GK functional are only weak.
In addition, as indicated earlier, the GK approximation does not satisfy the exact
relation (7.110).

7.5 Spin-Polarized Time-Dependent Density Functional Theory

In general, spin-polarized systems are characterized by an external potential and an
external magnetic field which are both simultaneously spin- and time-dependent.
Restricting the discussion to the case of a magnetic field with only a z-component,
Bext(rrrt), one can express the external fields in terms of spin-up and -down potentials,

vσ
ext(rrrt) = vext(rrrt)− sign(σ)μBBext(rrrt) . (7.134)

In this limit the spin-densities nσ (rrrt) are the fundamental quantities of TDDFT,
so that all components of the action become functionals of nσ (rrrt) [515]. No new
concepts are involved in the derivation of the formalism, so that its details can be
suppressed. Only a brief list of the most important results is given. We start with the
corresponding spin-dependent TDKS equations, [515],

ih̄∂tφi(rrrσt) =
{
− h̄2∇∇∇2

2m
+ vσ

ext(rrrt)+ vH(rrrt)+ vσ
xc(rrrt)

}
φi(rrrσt) (7.135)

vσ
xc(rrrt) =

δAxc[n↑,n↓]
δnσ (rrrt)

(7.136)

nσ (rrrt) =
N

∑
i=1

|φi(rrrσt)|2 . (7.137)

The spin-dependent ALDA is based on the corresponding stationary LSDA func-
tional,

AALDA
xc [n↑,n↓] =

∫ t1

t0
dt

∫
d3r eHEG

xc (n↑(rrrt),n↓(rrrt)) (7.138)
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δAALDA
xc [n↑,n↓]
δnσ (rrrt)

=
deHEG

xc (n↑,n↓)
dnσ

∣∣∣∣
nσ =nσ (rrrt)

. (7.139)

The linear response approach [516] assumes a potential of the form

vσ
ext(rrrt) =

{
vσ

0 (rrr) for t ≤ t0
vσ

0 (rrr)+δvσ (rrrt) for t > t0
, (7.140)

with associated densities

nσ (rrrt) =

{
nσ ,0(rrr) = 〈Ψ0|n̂σ (rrr)|Ψ0〉 for t ≤ t0
nσ ,0(rrr)+δnσ (rrrt) for t > t0

. (7.141)

The resulting spin-dependent Dyson equation [516] then reads

χR(rrrσ ,rrr′σ ′,ω) = χR,s(rrrσ ,rrr′σ ′,ω)+ ∑
σ ′′σ ′′′

∫
d3r′′ d3r′′′ χR,s(rrrσ ,rrr′′σ ′′,ω)

×{
w(rrr′′,rrr′′′)+ fxc(rrr′′σ ′′,rrr′′′σ ′′′,ω)

}
×χR(rrr′′′σ ′′′,rrr′σ ′,ω) , (7.142)

with the retarded spin–spin response functions

χR(rrrσ ,rrr′σ ′, t − t ′) := − i
h̄

Θ(t − t ′)〈Ψ0|
[
n̂σ (rrrt), n̂σ ′(rrr′t ′)

] |Ψ0〉 (7.143)

χR,s(rrrσ ,rrr′σ ′, t − t ′) := − i
h̄

Θ(t − t ′)〈Φ0|
[
n̂σ (rrrt), n̂σ ′(rrr′t ′)

] |Φ0〉 (7.144)

and the spin-dependent xc-kernel

fxc(rrrσ ,rrr′σ ′, t − t ′) :=
δ 2Axc[n↑,n↓]

δnσ (rrrt)δnσ ′(rrr′t ′)

∣∣∣∣
nσ =nσ ,0(rrr)

. (7.145)

7.6 Excited States: Part II

Why should one be interested in the solution of the Dyson equations (7.127) or
(7.142) for some approximate fxc? The answer is provided by a look at the Lehmann
representation of the full response function. Straightforward extension of the result
(4.44) for the complete response function to the spin-resolved response gives8

8 For the basic properties of the retarded response function the reader is referred to the discussion
in Sect. 4.2.1.
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χR(rrrσ ,rrr′σ ′,ω) = ∑
n�=0

〈Ψ0|n̂σ (rrr)|Ψn〉〈Ψn|n̂σ ′(rrr′)|Ψ0〉
h̄ω −Ωn + iη

− ∑
n�=0

〈Ψ0|n̂σ ′(rrr′)|Ψn〉〈Ψn|n̂σ (rrr)|Ψ0〉
h̄ω +Ωn + iη

, (7.146)

where Ωn is the excitation energy of the N-particle state |Ψn〉, Eq. (4.42),

Ωn := En −E0 (7.147)

(the ground state is assumed to be non-degenerate, as usual). All excitation energies
of the stationary interacting system appear as poles of χR in the complex frequency-
plane. Consequently, one way to calculate the excitation energies is to identify the
poles of χR. For this reason the solution of the Dyson equation (7.142) is not only
of interest for the description of time-dependent phenomena, but also as a vehicle
for the discussion of excited states of stationary systems.

The obvious question that arises in this context concerns the relation between the
exact excitation energies Ωn and the KS excitation energies

ωβασ := εβσ − εασ , (7.148)

which show up in the Lehmann representation of the spin-resolved KS response
function (7.144),

χR,s(rrrσ ,rrr′σ ′,ω) = δσ ,σ ′ ∑
αβ

(Θασ −Θβσ )
φ ∗

ασ (rrr)φβσ (rrr)φ ∗
βσ (rrr′)φασ (rrr′)

h̄ω −ωβασ + iη
(7.149)

(the detailed form of the spin-dependent KS orbitals, Eq. (3.93), has been used to
arrive at this result). Note that only eigenvalue differences between excited single-
particle states (not occupied in the KS ground state) and the holes left in the ground
state determinant are relevant in (7.149), as

Θασ −Θβσ = Θασ (1−Θβσ )−Θβσ (1−Θασ ) .

If one compares (7.149) with (7.146) two points come to mind: the first concerns
the nature of the excitations. Only one particular class of excitations manifests it-
self as poles in the noninteracting response, i.e. the single-particle excitations. In
the noninteracting case double excitations require more than one interaction of the
particles with the perturbing potential and therefore do not show up in the linear
response function. One has to go to nonlinear (quadratic) response to generate such
excitations in a noninteracting system (for an attempt to utilize the linear KS re-
sponse for the description of double excitations see [517–519]). The second point
is: how can the complete spectrum of excitations present in (7.146) be generated by
the right-hand side of the Dyson equation (7.142), if the first term in this expression
has poles at quite different values of ω? And how can the poles at ωkl be suppressed
to reproduce the fact that the full function χR is finite at these values of ω?
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In order to answer these questions [520, 515, 516] one considers the Dyson equa-
tion (7.142) for frequencies in the vicinity of one of the true excitation energies, i.e.
in the limit h̄ω → Ωn. More precisely, one performs a Laurent expansion of both
sides of this equation about h̄ω = Ωn and then compares the residues of the pole
obtained on both sides. As long as there is no KS excitation energy ωβασ which
coincides with Ωn, the KS response function is finite at h̄ω = Ωn, so that only the
second term on the right-hand side of Eq. (7.142) contributes to the residue. Since all
Ωn > 0, the second sum of the Lehmann representation of the full response function,
Eq. (7.146), is also finite at this pole. Thus, if the excited state |Ψn〉 is nondegen-
erate, only a single term of the first sum over all states in (7.146) determines the
residue on both sides. After elimination of the common factor of 〈Ψn|n̂σ ′(rrr′)|Ψ0〉
from the residue one obtains

〈Ψ0|n̂σ (rrr)|Ψn〉 = ∑
σ ′′′

∫
d3r′′d3r′′′ ∑

αβ
(Θασ −Θβσ )

ραβσ (rrr)ρβασ (rrr′′)
Ωn −ωβασ + iη

×
[
w(rrr′′,rrr′′′)+ fxc(rrr′′σ ,rrr′′′σ ′′′,Ωn/h̄)

]
×〈Ψ0|n̂σ ′′′(rrr′′′)|Ψn〉 , (7.150)

where the abbreviation

ραβσ (rrr) := φ ∗
ασ (rrr)φβσ (rrr) ρ∗

αβσ (rrr) = ρβασ (rrr) (7.151)

has been introduced for the Lehmann amplitudes of the KS response function. The
pole shift η can now be dropped, as the validity of Eq. (7.150) rests on the assump-
tion that Ωn �= ωβασ for arbitrary occupied α and unoccupied β . Next one defines
the amplitudes

ξnαβσ :=
1

Ωn −ωβασ
∑
σ ′

∫
d3r

∫
d3r′ ρβασ (rrr)

×
[
w(rrr,rrr′)+ fxc(rrrσ ,rrr′σ ′,Ωn/h̄)

]
〈Ψ0|n̂σ ′(rrr′)|Ψn〉 , (7.152)

to rewrite Eq. (7.150) as

〈Ψ0|n̂σ (rrr)|Ψn〉 = ∑
αβ

(Θασ −Θβσ )ραβσ (rrr)ξnαβσ . (7.153)

Insertion of (7.153) into (7.152) then leads to [516](
Ωn −ωβασ

)
ξnαβσ = ∑

μνσ ′
Kαβσ ,μνσ ′(Ωn/h̄)(Θμσ ′ −Θνσ ′)ξnμνσ ′ , (7.154)

where the matrix element

Kαβσ ,μνσ ′(ω) :=
∫

d3r
∫

d3r′ ρβασ (rrr)
[
w(rrr,rrr′)+ fxc(rrrσ ,rrr′σ ′,ω)

]
ρμνσ ′(rrr′)

(7.155)
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has been introduced. At this point it is important to realize that only the ξnαβσ for
which either α denotes an occupied and β an unoccupied KS state or vice versa
contribute to the actual Lehmann amplitudes (7.153). All other amplitudes, though
properly defined via Eq. (7.152), are irrelevant for the excitation problem. Accord-
ingly, the single-particle indices in the set of linear equations (7.154) only include
all particle–hole pairs αβ and μν , but no particle–particle or hole–hole pairs.

Equation (7.153) can be loosely interpreted as a “basis set expansion” of the
Lehmann amplitudes in terms of the KS particle–hole amplitudes ρβασ (rrr). One
should note, however, the dimensionalities involved. If one uses an N-particle
Hilbert space spanned by the determinants generated by M linearly independent
single-particle basis functions, one finds

(
M
N

)
many-body states |Ψn〉 and thus

(
M
N

)
excitation energies Ωn (ignoring any symmetries). On the other hand, the number of
KS particle–hole amplitudes is only N(M −N). Consequently, Eq. (7.153) implies
that only N(M −N) Lehmann amplitudes vary independently (ignoring complex
conjugation). In other words: although the interacting response function contains
contributions from all

(
M
N

)
states of the Hilbert space, effectively only N(M −N)

independent excitations are described.
So far, the excited state |Ψn〉 has been assumed to be non-degenerate. How-

ever, an equivalent result can also be derived if there are several states degener-
ate with |Ψn〉. In this situation the Lehmann amplitudes of all degenerate states
contribute to the residue, so that a superposition of the corresponding factors
〈Ψ0|n̂σ (rrr)|Ψn〉〈Ψn|n̂σ ′(rrr′)|Ψ0〉 is obtained both on the left- and on the right-hand
side of Eq. (7.150). Nevertheless, if the coefficients ξnαβσ are redefined accordingly,

ξnαβσ (rrr′′σ ′′) :=
1

Ωn −ωβασ
∑
σ ′

∫
d3r

∫
d3r′ ρβασ (rrr)

×
[
w(rrr,rrr′)+ fxc(rrrσ ,rrr′σ ′,Ωn/h̄)

]
× ∑

deg.n

〈Ψ0|n̂σ ′(rrr′)|Ψn〉〈Ψn|n̂σ ′′(rrr′′)|Ψ0〉 , (7.156)

Eq. (7.154) emerges again.
Equation (7.154) can be recast in a slightly different form, in order to show that

one is dealing with a pseudo-eigenvalue problem [520, 515, 516],

∑
μνσ ′

[
ωβασ δαμ δβν δσσ ′ +Kαβσ ,μνσ ′(Ωn/h̄)(Θμσ ′ −Θνσ ′)

]
ξnμνσ ′

= Ωn ξnαβσ . (7.157)

The true excitation energies are therefore given by the zeros of the characteristic
polynomial,

det
[(

ωβασ −Ωn
)

δαμ δβν δσσ ′ +Kαβσ ,μνσ ′(Ωn/h̄)(Θμσ ′ −Θνσ ′)
]

= 0 . (7.158)

As in Eq. (7.154), the matrix indices are understood to run over all particle–hole
pairs αβ and μν . Unlike ordinary eigenvalue problems, however, Eq. (7.157) has
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more solutions for Ωn than linearly independent “eigenvectors” (ξnαβσ ), as long as
the matrix (Kαβσ ,μνσ ′) depends on Ωn.

An alternative, more symmetric pseudo-eigenvalue equation for the true excita-
tion energies can be derived, if the KS orbitals are chosen to be real. One starts with
the transformation α ↔ β in half of the right-hand side of Eq. (7.150) and uses the
symmetry ραβσ (rrr) = ρβασ (rrr) as well as ωαβσ = −ωβασ to express Eq. (7.150) as

〈Ψ0|n̂σ (rrr)|Ψn〉 = ∑
σ ′′′

∫
d3r′′d3r′′′ ∑

αβ
(Θασ −Θβσ )ωβασ

ραβσ (rrr)ρβασ (rrr′′)
Ω 2

n −ω2
βασ

×
[
w(rrr′′,rrr′′′)+ fxc(rrr′′σ ,rrr′′′σ ′′′,Ωn/h̄)

]
×〈Ψ0|n̂σ ′′′(rrr′′′)|Ψn〉 . (7.159)

In this case the amplitudes are defined as

ξ nαβσ :=

[
(Θασ −Θβσ )ωβασ

]1/2

Ω 2
n −ω2

βασ
∑
σ ′

∫
d3r

∫
d3r′ ρβασ (rrr)

×
[
w(rrr,rrr′)+ fxc(rrrσ ,rrr′σ ′,Ωn/h̄)

]
〈Ψ0|n̂σ ′(rrr′)|Ψn〉 (7.160)

=

[
(Θασ −Θβσ )ωβασ

]1/2

Ωn +ωβασ
ξnαβσ .

Insertion into Eq. (7.159) yields

〈Ψ0|n̂σ (rrr)|Ψn〉 = ∑
αβ

[
(Θασ −Θβσ )ωβασ

]1/2 ραβσ (rrr)ξ nαβσ . (7.161)

The result (7.161) can now be used to eliminate the Lehmann amplitude on the
right-hand side of the definition (7.160). With the kernel

Sαβσ ,μνσ ′(ω) := ω2
βασ δαμ δβν δσσ ′ +

[
(Θασ −Θβσ )ωβασ

]1/2

×Kαβσ ,μνσ ′(ω)
[
(Θμσ ′ −Θνσ ′)ωνμσ ′

]1/2
, (7.162)

Eq. (7.160) then becomes Casida’s equation [521, 522],

Ω 2
n ξ nαβσ = ∑

μνσ ′
Sαβσ ,μνσ ′(Ωn/h̄)ξ nμνσ ′ . (7.163)

Once again, the matrix indices are understood to run over all particle–hole pairs αβ
and μν . Compared with the initial pseudo-eigenvalue problem (7.157), Eq. (7.163)
has the advantage that the coefficient matrix (Sαβσ ,μνσ ′) is hermitian.9 As in the

9 Without any assumption on the causal structure of fxc one easily verifies that

fxc(rrrσ ,rrr′σ ′,ω) = f ∗xc(rrrσ ,rrr′σ ′,−ω) .
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case of Eq. (7.157) there must exist more solutions Ωn than there are linearly inde-
pendent “eigenvectors” (ξ nαβσ ). However, if fxc is approximated by a frequency-
independent expression (as in the ALDA), Eq. (7.163) becomes a regular hermitian
eigenvalue problem, so that the number of eigenvalues can not be larger than the
number of eigenvectors. In this approximation only a subset of the true excitation
energies is accessible.

The solution of the pseudo-eigenvalue equations (7.157) or (7.163) not only de-
termines the true excitation energies of the interacting system, it also provides infor-
mation about the Lehmann amplitudes via Eqs. (7.153) or (7.161). One of the cen-
tral quantities of interest is the dynamic polarizability, which determines the dipole
moment μμμ(t) induced by a homogeneous electric field10 EEE(t) = EEE0e−iω0t ,

μk(t) = −e
∫

d3r rk δn(rrrt) (7.164)

= e2
3

∑
l=1

αkl(ω0)E0,le
−iω0t . (7.165)

The relation between αkl and the density–density response function is easily es-
tablished after identification of the perturbing potential which corresponds to the
homogeneous electric field,

δv(rrrt) = errr ·EEE0 e−iω0t

=⇒ δv(rrrω) = errr ·EEE0 2π δ (ω −ω0) ,

and use of the linear response relation (7.117). Similar to the KS polarizability
(6.151), the exact dynamic polarizability is given in terms of the full retarded re-
sponse function as

αkl(ω) = −∑
σ

∫
d3r∑

σ ′

∫
d3r′ rk r′l χR(rrrσ ,rrr′σ ′,ω) . (7.166)

Use of the Lehmann representation (7.146) and of the relation (7.161) leads to

If, in addition, the symmetry of the functional derivative (7.123) is used (i.e. if the projection on
the causal contribution to (7.123) is not implemented), one has

fxc(rrrσ ,rrr′σ ′, t − t ′) = fxc(rrr′σ ′,rrrσ , t ′ − t)

and thus
fxc(rrrσ ,rrr′σ ′,ω) = fxc(rrr′σ ′,rrrσ ,−ω) .

10 Equations (7.164), (7.165) define the dipole moment and thus the polarizability in terms of
a complex electric field. The transition to a real field EEE0 cos(ω0t) by superposition of a second
field with frequency −ω0 is, however, straightforward via Eq. (4.46). Note also, that we have
extracted a factor of e2 from the polarizability tensor αkl compared to the standard definition of the
polarizability in classical electrodynamics (see e.g. [36]).
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αkl(ω) = − ∑
αβσ

∑
μνσ ′

Rkαβσ ∑
n�=0

[ ξ nαβσ ξ
∗
nμνσ ′

h̄ω −Ωn + iη
− ξ

∗
nαβσ ξ nμνσ ′

h̄ω +Ωn + iη

]
Rlμνσ ′ , (7.167)

with

Rkαβσ :=
[
(Θασ −Θβσ )ωβασ

]1/2
∫

d3r rk ραβσ (rrr) . (7.168)

A particularly simple result is obtained for the diagonal elements of αkl and thus for
the mean polarizability [521]. Denoting the vectors Rkαβσ and ξ nαβσ in the space

of KS particle–hole excitations αβ with spin σ by Rk and ξ
n
, respectively, and their

contraction by ∑αβσ in form of the matrix notation R†
k ξ

n
, one has

αkk(ω) = R†
k

[
∑
n�=0

2Ωn

Ω 2
n − (h̄ω + iη)2 ξ

n
ξ

†

n

]
Rk . (7.169)

Unfortunately, however, the pseudo-eigenvalue problems (7.157) and (7.163)
only determine the direction of the eigenvectors in the space of KS single-particle
excitations, but not the length of the eigenvectors. It therefore remains to discuss
the question of normalization. As a matter of principle, the normalization of the
eigenvectors is controlled by the normalization of the true eigenstates, 〈Ψn|Ψn〉= 1.
This condition, however, is not easily implemented in the present pseudo-eigenvalue
scheme.

The normalization is also restricted by various sum rules which the Lehmann am-
plitudes satisfy. The most important of these exact relations is the Thomas-Reiche-
Kuhn (TRK) sum rule ( f -sum rule). Starting from the Eq. (7.166), one arrives at

−i
∫ ∞

−∞

dω
2π

ω αkk(ω)

= −i ∑
n�=0

∣∣∣∣〈Ψ0|
∫

d3r rk n̂(rrr)|Ψn〉
∣∣∣∣2 ∫ ∞

−∞

dω
π

ωΩn

(h̄ω + iη)2 −Ω 2
n

=
1

h̄2

∫
d3r

∫
d3r′ rk r′k ∑

n
Ωn 〈Ψ0|n̂(rrr)|Ψn〉〈Ψn|n̂(rrr′)|Ψ0〉 (7.170)

by contour integration (note that Ω0 = 0). The excitation energies Ωn can be repre-
sented in terms of the full Hamiltonian by use of the Schrödinger equation, which
then allows to exploit the completeness of the |Ψn〉 and the fact that the right-hand
side of Eq. (7.170) is real,

− i
∫ ∞

−∞

dω
2π

ω αkk(ω) = − 1

2h̄2

∫
d3r

∫
d3r′ rk r′k 〈Ψ0|

[[
Ĥ, n̂(rrr)

]
, n̂(rrr′)

] |Ψ0〉 .

Use of the commutators (L.17) and (L.18) plus subsequent partial integration then
leads to the desired sum rule,



7.6 Excited States: Part II 343

− i
∫ ∞

−∞

dω
2π

ω αkk(ω) = − i
2h̄

∫
d3r

∫
d3r′ rk r′k ∇∇∇ · 〈Ψ0|

[
ĵjjp(rrr), n̂(rrr′)

] |Ψ0〉

=
N
2m

. (7.171)

Application of the TRK sum rule to (7.169) restricts the overall normalization of all
eigenvectors,

R†
k

[
∑
n�=0

Ωn ξ
n
ξ

†

n

]
Rk =

Nh̄2

2m
. (7.172)

While further conditions of this type can be derived, none of them allows to pin
down the normalization of individual eigenvectors. Sum rules can only be used as a
check on the basis sets used in applications.

One thus has to resort to a more indirect argument for the normalization of the
ξ

n
[521]. To this aim one solves the Dyson equation (7.142) by iteration, so that on

the right-hand side an infinite sum of the type

χR,s

∞

∑
n=0

[(w+ fxc)χR,s]
n

emerges. In order to express this sum in compact form, consider the basic element

B = ∑
σ ′′

∫
d3r′′ ∑

σ ′′′

∫
d3r′′′ χR,s(rrrσ ,rrr′′σ ′′,ω)

×
{

w(rrr′′,rrr′′′)+ fxc(rrr′′σ ′′,rrr′′′σ ′′′,ω)
}

χR,s(rrr′′′σ ′′′,rrr′σ ′,ω)

in more detail. Insertion of the KS response function (7.149) for real orbitals leads
to

B =
∫

d3r′′
∫

d3r′′′ ∑
αβσ ′′

δσσ ′′
(Θασ ′′ −Θβσ ′′)ωβασ ′′

(h̄ω + iη)2 −ω2
βασ

ραβσ (rrr)ρβασ ′′(rrr′′)

×
{

w(rrr′′,rrr′′′)+ fxc(rrr′′σ ′′,rrr′′′σ ′′′,ω)
}

× ∑
μνσ ′′′

δσ ′′′σ ′
(Θμσ ′′′ −Θνσ ′′′)ωνμσ ′′′

(h̄ω + iη)2 −ω2
νμσ ′

ρμνσ ′′′(rrr′′′)ρνμσ ′(rrr′) .

With the matrices

Λαβσ ,μνσ ′(ω) :=
δαμ δβν δσσ ′

(h̄ω + iη)2 −ω2
βασ

(7.173)

Mαβσ ,μνσ ′(ω) :=
[
(Θασ −Θβσ )ωβασ

]1/2
Kαβσ ,μνσ ′(ω)

×[
(Θμσ ′ −Θνσ ′)ωνμσ ′

]1/2
(7.174)
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B can be rewritten as

B = ∑
αβ

∑
μν

[
(Θασ −Θβσ )ωβασ

]1/2 ραβσ (rrr)

× ∑
α1β1σ1

∑
α2β2σ2

Λαβσ ,α1β1σ1
(ω)Mα1β1σ1,α2β2σ2

(ω)Λα2β2σ2,μνσ ′(ω)

×[
(Θμσ ′ −Θνσ ′)ωνμσ ′

]1/2 ρνμσ ′(rrr′) . (7.175)

In the Dyson equation this structure repeats itself to all orders. In addition, the lowest
order contribution, χR,s, is easily expressed in terms of Λαβσ ,μνσ ′(ω). Insertion of
the resulting Dyson series into Eq. (7.166) and use of the definition (7.168) allows
to express the polarizability in matrix notation as

αkk(ω) = −R†
k

[
Λ

∞

∑
n=0

[
M Λ

]n

]
Rk (7.176)

(
[
A
]0

is the unit matrix). The geometric series of matrices can be resummed,

αkk(ω) = R†
k

[(
M−Λ−1)−1

]
Rk , (7.177)

where Λ−1 and
(
Λ−1 −M

)−1
denote the corresponding inverse matrices. Due to

the diagonal structure of Λ the inverse is trivially given by

Λ−1
αβσ ,μνσ ′(ω) =

[
(h̄ω + iη)2 −ω2

βασ

]
δαμ δβν δσσ ′ , (7.178)

so that

Mαβσ ,μνσ ′(ω)−Λ−1
αβσ ,μνσ ′(ω) = Sαβσ ,μνσ ′(ω)− (h̄ω + iη)2 δαμ δβν δσσ ′ ,

(7.179)
with S defined by Eq. (7.162). One thus finally arrives at

αkk(ω) = R†
k

[(
S(ω)− (h̄ω + iη)21

)−1
]

Rk . (7.180)

A comparison of this result with Eq. (7.169) reminds one of the decomposition

of the operator
(

S(ω)− (h̄ω + iη)21
)−1

via the spectral theorem. In fact, if the

ξ
n

were regular, orthogonal eigenvectors, i.e. if fxc was frequency-independent, a
normalization of

ξ
†

n
ξ

n
=

1
2Ωn

(n �= 0) (7.181)

would lead to the completeness relation
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∑
n�=0

2Ωn ξ
n
ξ

†

n
= 1 . (7.182)

Any operator in the space of single-particle excitations could then be represented in
terms of the eigenvectors ξ

n
and eigenvalues Ωn [521], in particular

(
S− (h̄ω + iη)21

)−1
= ∑

n�=0

2Ωn

Ω 2
n − (h̄ω + iη)2 ξ

n
ξ

†

n
. (7.183)

In other words: if a frequency-independent approximation for fxc is used, the iden-
tity of (7.169) and (7.180) together with the orthogonality and completeness of the
eigenvectors requires the normalization (7.181). For the true fxc, the normalization
(7.181) is an approximation. Lowest order corrections for the frequency-dependence
can be obtained by a Taylor expansion of (7.183) about the eigenvalues Ωn [521].
A variety of results for molecular excitation energies and dynamic polarizabilities
obtained with the adiabatic approximation may be found in [523, 524].

The pseudo-eigenvalue equations (7.157) and (7.163) can be applied in a straight-
forward fashion, as soon as a basis set expansion of the KS orbitals is utilized. How-
ever, they also offer themselves for a perturbative evaluation. In fact, if one assumes
that there is only one single KS excitation energy ωβασ which is close to the true ex-
citation energy Ωn, the sum over all KS particle–hole pairs on the right-hand side of
Eq. (7.150) is completely dominated by a single term. If the sum is approximated by
this dominant contribution, i.e. if only the leading term of a Taylor expansion of the
right-hand side of (7.150) in powers of Ωn −ωβασ is kept, the pseudo-eigenvalue
problem (7.157) reduces to a single algebraic equation, which determines Ωn,

Ωn = ωβασ +Kαβσ ,αβσ (ωβασ /h̄) . (7.184)

Moreover, if there are several (q) degenerate KS excitations which are close to Ωn,

ωβ1α1σ = . . .ωβqαqσ ≡ ω ≈ Ωn > 0 , (7.185)

only the sum over these q particle–hole pairs shows up in Eq. (7.157). In addi-
tion, the non-linearity of (7.157) has disappeared, as Kαβσ ,μνσ ′(ω) has to be evalu-
ated at ω = ω/h̄. The corresponding true excitation energies are determined by the
finite-order characteristic polynomial (7.158), with Kαβσ ,μνσ ′(Ωn/h̄) replaced by
Kαβσ ,μνσ ′(ω/h̄).

As a result of this first order perturbative approach one can deal with nearly
degenerate states |Ψn〉 more easily, as the corresponding excitation energies are ob-
tained simultaneously by solution of a single eigenvalue problem. Nearly degenerate
excited states are often present in photo-absorption processes. As an example, con-
sider the excitation of an electron from a closed-shell ground state with total spin
0. Even if only a single spatial configuration is available to the excited electron, the
spin of the electron can be either parallel or antiparallel to the spin of the hole left in
the ground state. The excited state can thus either be a spin singlet or a spin triplet
state. The characteristic polynomial then has the form
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det

(
ω −Ω +K↑,↑ K↑,↓

K↓,↑ ω −Ω +K↓,↓

)
with Kσ ,σ ′ ≡ Kαβσ ,αβσ ′(ω/h̄) , (7.186)

since the KS excitation energies do not depend on the spin,

ωαβ↑ = ωαβ↓ = ω

(due to the spin-saturated ground state). The corresponding singlet and triplet exci-
tation energies are obtained as

Ω = ω +
K↑,↑ +K↓,↓

2
±
[(

K↑,↑ +K↓,↓
2

)2

−K↑,↑K↓,↓ +K↑,↓K↓,↑

]1/2

. (7.187)

This result can be simplified by use of the symmetries of Kσ ,σ ′ . As the initial state
is spin-saturated, n↑,0(rrr) = n↓,0(rrr), the KS orbitals do not depend on spin,

φα↑(rrr) = φα↓(rrr) ≡ φα(rrr) ,

and the kernel fxc(rrrσ ,rrr′σ ′,ω), Eq. (7.145), is symmetric with respect to spin,

fxc(rrrσ ,rrr′σ ′,ω) = fxc(rrrσ ′,rrr′σ ,ω) . (7.188)

These symmetries are transferred to Kσ ,σ ′ ,

Kσ ,σ ′ = Kσ ′,σ ; Kσ ,σ = K−σ ,−σ ; K∗
σ ,σ ′ = Kσ ,σ ′ , (7.189)

so that the excitations energies can be expressed as

Ω = ω +K↑,↑ ±K↑,↓ . (7.190)

It remains to identify the true states |Ψn〉 to which the solutions of Eq. (7.158)
correspond. For this identification necessarily some information on the |Ψn〉 is re-
quired. Fortunately, it is often sufficient to know the noninteracting states which
are approached by |Ψ0〉 and |Ψn〉 in the limit of vanishing interaction. If the eigen-
vectors are available, Eq. (7.153) then allows to establish a connection between the
solution Ωn and |Ψn〉.

Concerning the identification of the |Ψn〉, it is nevertheless instructive to recon-
sider the original residue equation (7.150). If there are q degenerate KS excitation
energies, as specified in Eq. (7.185), and if one aims at a first order perturbative
evaluation of the excitation energies, Eq. (7.150) reduces to

(Ωn −ω)〈Ψ0|n̂σ (rrr)|Ψn〉

=
q

∑
a=1

ραaβaσ (rrr) ∑
σ ′

∫
d3r′′d3r′′′ ρβaαaσ (rrr′′)

×
[
w(rrr′′,rrr′′′)+ fxc(rrr′′σ ,rrr′′′σ ′,ω/h̄)

]
〈Ψ0|n̂σ ′(rrr′′′)|Ψn〉 . (7.191)
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In order to proceed one has to specify suitable approximations for |Ψ0〉 and |Ψn〉, in
accordance with the forms of |Ψ0〉 and |Ψn〉 obtained in the noninteracting limit. Let
us again consider the excitation of a single electron from a spin-saturated, closed-
shell ground state to a spin singlet and a spin triplet excited state—degeneracies re-
sulting from spatial symmetries are suppressed for brevity. One could, for example,
think of the 1s2 → 1s2p excitation of the helium atom. A lowest order approxima-
tion for the true ground state of the helium atom is provided by the corresponding
KS ground state

(rrr1σ1rrr2σ2|Ψ0〉 ≈ φα(rrr1)φα(rrr2)χ00(σ1,σ2) , (7.192)

with χ00 given by (3.49). An approximation in terms of the KS orbitals is also pos-
sible for the excited states. In the case of the spin singlet one has

(rrr1σ1rrr2σ2|ΨS〉 ≈ 1√
2

[
φα(rrr1)φβ (rrr2)+φα(rrr2)φβ (rrr1)

]
χ00(σ1,σ2) , (7.193)

while the spin triplet is given by

(rrr1σ1rrr2σ2|ΨT,M〉 ≈ 1√
2

[
φα(rrr1)φβ (rrr2)−φα(rrr2)φβ (rrr1)

]
χ1M(σ1,σ2) (7.194)

χ10(σ1,σ2) =
1√
2

{
χ+(σ1)χ−(σ2)+ χ−(σ1)χ+(σ2)

}
(7.195)

χ1,±1(σ1,σ2) = χ±(σ1)χ±(σ2) . (7.196)

The Lehmann amplitudes of the true states can therefore to lowest order be ex-
pressed as

〈Ψ0|n̂σ (rrr)|ΨS〉 ≈ 1√
2

φ ∗
α(rrr)φβ (rrr) (7.197)

〈Ψ0|n̂σ (rrr)|ΨT,M〉 ≈ 1√
2

φ ∗
α(rrr)φβ (rrr)

[
δσ↓ −δσ↑

]
δM,0 . (7.198)

These results are also correct for comparable systems with more than 2 electrons.
Insertion of Eqs. (7.197) and (7.198) into (7.191) leads to

Ω S −ω = ∑
σ ′

Kσ ,σ ′ (7.199)

Ω T,0 −ω = ∑
σ ′

Kσ ,σ ′
(
δσ ′,σ −δσ ′,−σ

)
, (7.200)

with Kσ ,σ ′ defined as in (7.186). The final solutions for the excitation energies are
therefore

Ω S = ω +K↑,↑ +K↑,↓ (7.201)

Ω T,0 = ω +K↑,↑ −K↑,↓ , (7.202)
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in agreement with the earlier result (7.190). The lowest order approximations
(7.192)–(7.194) allow an unambiguous assignment of the solutions of the eigen-
value problem to the actual states.

Some illustrative results obtained with this approach are listed in Table 7.1 [486]
(many further results may be found in [516, 525]). In this table the excitation of the

Table 7.1 Energetically lowest s → p excitation energies of closed-subshell atoms: comparison
of spin-singlet and spin-triplet excitation energies obtained from first order perturbative approach,
Eqs. (7.201), (7.202), with the eigenvalue difference ω and experimental results. Also given is the
difference between the total energies obtained by self-consistent calculations for the excited and
the ground state (ΔSCF). The LDA has been used both in the KS calculation for the ground state as
well as for the xc-kernel in (7.188). All data are taken from [486].

Atom State ω Ωn [Ry]

[Ry] 1st order Expt. ΔSCF

Be 1P1 0.257 0.399 0.388 0.331
3P0 0.200
3P1 0.257 0.192 0.200 0.181
3P2 0.200

Mg 1P1 0.249 0.351 0.319 0.299
3P0 0.199
3P1 0.249 0.209 0.199 0.206
3P2 0.200

Ca 1P1 0.176 0.263 0.216 0.211
3P0 0.138
3P1 0.176 0.145 0.139 0.144
3P2 0.140

Zn 1P1 0.352 0.477 0.426 0.403
3P0 0.294
3P1 0.352 0.314 0.296 0.316
3P2 0.300

Sr 1P1 0.163 0.241 0.198 0.193
3P0 0.130
3P1 0.163 0.136 0.132 0.135
3P2 0.136

Cd 1P1 0.303 0.427 0.398 0.346
3P0 0.274
3P1 0.303 0.269 0.279 0.272
3P2 0.290

most weakly bound s-electron of the alkaline earth elements and the zinc series is
considered, so that the noninteracting limit of the ground state is given by a single
Slater determinant as in the example of helium. The s-electron is excited into the
lowest available p-level. Strictly speaking, one has to take into account an orbital
degeneracy in addition to the spin degeneracy leading to Eqs. (7.201), (7.202). For
simplicity, however, the threefold degeneracy associated with the z-projection of the
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angular momentum has been ignored in the evaluation of the first order excitations
energies. The average value of the excitation energy calculated in this way has to be
compared with the average of the experimental energies for the three levels 3P0,1,2.
The calculations are based on the LDA, both for the solution of the stationary KS
equations as well as for the evaluation of the matrix element (7.188). It is obvious
that the first order results are much closer to reality than the KS eigenvalue differ-
ences.

For comparison the total energy differences between the KS ground and excited
state are also given (following the approach discussed in Sect. 2.7). Again the LDA
has been utilized in the calculations. Over the small set of atoms considered here
this so-called ΔSCF-method gives excitation energies of similar quality as the first
order energies from TDDFT.
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Chapter 8
Relativistic Density Functional Theory

Given the success of nonrelativistic DFT, the question concerning a suitable rela-
tivistic extension arises quite naturally.1 Unfortunately, relativistic DFT (RDFT) is
not as easily established as its nonrelativistic counterpart. The difficulties originate
from the underlying many-body theory, that is quantum electrodynamics (QED).
A direct evaluation of expectation values, such as ground state energies or Green’s
functions is not possible because of divergences. These divergences result from the
presence of anti-particle (negative energy) states, which in particular complicates
the handling of electron-hole pairs. It needs an elaborate formalism, the so-called
renormalization program of QED, in order to deal with these divergences properly.
Without the renormalization procedure it is neither possible to prove the relativistic
equivalent of the Hohenberg-Kohn theorem nor can one derive simple density func-
tionals as e.g. the relativistic LDA. Once the existence theorem has been put onto a
proper foundation, the assembly of the relativistic Kohn-Sham equations (selfcon-
sistent Dirac equations with multiplicative potentials incorporating radiative correc-
tions) is reasonably straightforward, even though the handling of magnetic interac-
tions turns out to be rather involved.

Clearly, an exhaustive discussion of QED and the associated renormalization
scheme is beyond the scope of this book. On the other hand, it is not possible to
give convincing arguments in favor of an existence theorem of RDFT without ad-
dressing this issue. We therefore briefly review the relevant aspects of QED of inho-
mogeneous systems (bound state QED) in Sect. 8.2. Some background information
on the renormalization program of QED is provided in the Appendices F–I. This
material may serve as a reminder and reference for notation, but is not intended to
be a substitute for a text on QED. We nevertheless hope that with this information
the reader is able to follow the steps taken in Sect. 8.2 and is thus well-prepared for
the discussion of the existence theorem of RDFT in Sect. 8.3.2

1 In this text we will not address the issue of time-dependent RDFT. A corresponding existence
theorem has been put forward in [526] (see also [527, 528]).
2 The present text basically follows the line of [529]. For an alternative path through the QED
background see [28]).

The original version of this chapter was revised. An erratum can be found at  
https://doi.org/10.1007/978-3-642-14090-7_12 
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On the other hand, a reader not interested in the details of the existence theo-
rem and the various field theoretical facets of RDFT may skip Sects. 8.2–8.5 and
proceed directly in Sect. 8.6, in which RDFT within the no-pair approximation is
introduced. In this limit, which is the form of RDFT used in practice, all contribu-
tions originating from the creation of particle-antiparticle pairs are neglected.

8.1 Notation

Let us introduce our notation, before starting with the actual discussion of QED.
Space-time points are denoted by four vectors

x ≡ (xμ) = (ct,rrr) = (ct,r1,r2,r3) = (ct,ri) . (8.1)

Greek (Minkowski) indices always extend from 0 to 3, Roman indices always denote
spatial components, i, j, . . . = 1,2,3. The associated metric tensor reads

gμν ≡

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ =

(
1 0
0 −δi j

)
. (8.2)

Contraction of any four vector with the metric tensor transforms covariant into con-
travariant components and vice versa,

aμ = gμν aν ; aμ = gμν aν . (8.3)

The spatial vector aaa, which characterizes the actual physical three vector, consists
of the contravariant components aaa = (a1 ,a2 ,a3), from which the covariant com-
ponents ai differ by a minus sign, ai = −ai. Note that the distinction between con-
travariant and covariant components is not used in all previous chapters of this book.
In the nonrelativistic situation only contravariant vectors show up and are often la-
belled as ai. The four gradient is abbreviated by

∂μ ≡ ∂
∂xμ =

(
1
c

∂
∂ t

,∇∇∇
)

. (8.4)

The summation convention is used throughout,

aμ bμ ≡
3

∑
μ=0

aμ bμ ; aibi ≡
3

∑
i=1

aibi = −
3

∑
i=1

aibi = −a ·b . (8.5)

γμ , ααα and β are the standard Dirac matrices,

αμ = γ0γμ = (1,ααα) β = γ0 , (8.6)
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which satisfy the commutation relations

{γμ ,γν} = γμ γν + γν γμ = 2gμν (8.7){
α i,α j} = −2gi j = 2δi j (8.8){
α i,β

}
= 0 . (8.9)

Finally, it is often convenient to work with the forms

ψ̂ ≡ ψ̂†γ0 and φ k ≡ φ †
k γ0 (8.10)

of the hermitian conjugate field operator ψ̂† and wavefunction φ †
k , respectively. As

in all other chapters of this text we use e = |e|.

8.2 Field Theoretical Background

As already indicated, the appropriate starting point for a relativistic description of
the electronic structure of atoms, molecules and solids is QED. In a truly covari-
ant QED-approach to these systems both the electrons and the nuclei would have
to be treated as dynamical degrees of freedom (possibly on a classical level in the
case of the nuclei). However, in view of the large difference between the electron
mass and the nuclear mass (in particular for heavy nuclei) the Born-Oppenheimer
approximation is usually applied, at least for the discussion of ground state prop-
erties. The nuclei are treated as fixed external sources, assumed to be at rest in a
common Lorentz frame (which introduces a preferred reference frame). As exter-
nal sources, the nuclei may either be represented by classical charge distributions
which interact with the quantized photon field or in the form of a classical poten-
tial which couples to the electron field. Both viewpoints are completely equivalent.
In this contribution the second approach is chosen: the electrons interact with each
other by the exchange of photons and experience a static external potential. In order
to keep the discussion as general as possible, the external potential is represented
by a complete four vector, V μ(xxx). In addition to the Coulomb field of the nuclei, V μ

may also include external electromagnetic fields or nuclear magnetic moments.
The system is therefore characterized by the Lagrangian [530]

L = Le +Lγ +Lint +Lext . (8.11)

Here Le represents the Lagrangian of noninteracting fermions (i.e. of noninteracting
electrons plus their antiparticles, the positrons),

Le(x) =
1
4

{[
ψ̂(x),

(
ih̄cγμ →

∂ μ −mc2
)

ψ̂(x)
]

+
[
ψ̂(x)

(
−ih̄cγμ ←

∂ μ −mc2
)

, ψ̂(x)
]}

, (8.12)
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where ψ̂(x) denotes the fermion field operator,{
ψ̂a(t,xxx), ψ̂b(t,yyy)

}
=

{
ψ̂†

a (t,xxx), ψ̂†
b (t,yyy)

}
= 0 (8.13){

ψ̂a(t,xxx), ψ̂†
b (t,yyy)

}
= δab δ (3)(xxx− yyy) (8.14)

(a,b are the spinor indices), and the vector bars on top of the partial derivatives
indicate the direction in which the derivative has to be taken—in the second term of
Le the partial derivatives act on ψ̂ . Lγ is the Lagrangian of noninteracting photons,

Lγ(x) = − 1
16π

F̂μν(x)F̂μν(x)− λ
8π

(∂μ Âμ(x))2 . (8.15)

The operator Âμ(x) denotes the photon field operator,[
Âμ(t,xxx), Âν(t,yyy)

]
=

[
π̂μ(t,xxx), π̂ν(t,yyy)

]
= 0 (8.16)[

Âμ(t,xxx), π̂ν(t,yyy)
]

= igμν δ (3)(xxx− yyy) (8.17)

π̂μ(x) =
∂Lγ

∂
(
∂0Âμ(x)

) =
1

4π
[
F̂μ0(x)−λgμ0∂ν Âν(x)

]
, (8.18)

and F̂μν(x) is the associated field tensor,

F̂μν(x) = ∂μ Âν(x)−∂ν Âμ(x) . (8.19)

Finally, Lint and Lext represent the interaction between fermions and photons and
between fermions and the static external potential Vμ ,3 respectively,

Lint(x) = e ĵμ(x) Âμ(x) (8.20)

Lext(x) = e ĵμ(x) Vμ(xxx) (8.21)

(e = |e|). Here ĵμ is the fermion four current density,

ĵμ(x) =
1
2

[
ψ̂(x),γμ ψ̂(x)

]
. (8.22)

Both the fermion Lagrangian and the four current have been written in a form which
ensures their correct behavior under charge conjugation [530] (for details see Ap-
pendix F). The four current (as a charge current rather than a probability current)
must change its sign,

Ĉ ĵμ(x) Ĉ † = − ĵμ(x) , (8.23)

3 In Sects. 8.2–8.4 and the Appendices F–J the external four potential is denoted by Vμ in order to
allow an easy distinction from the photon field operator Âμ . The transition to the standard notation
used in nonrelativistic (C)DFT will be made in Sect. 8.6.



8.2 Field Theoretical Background 355

under the charge conjugation Ĉ , which transforms electrons into positrons and vice
versa. As a potential which attracts electrons repels positrons, the photon field be-
haves as Ĉ Âμ Ĉ † = −Âμ . Moreover, the Lagrangian Le is invariant under transfor-

mation with Ĉ (note the minus sign in front of icγμ ←
∂ μ in the second term). As a

result, the total Lagrangian transforms as

Ĉ L [V μ ] Ĉ † = L [−V μ ] . (8.24)

As expected, the fermion charge only manifests itself in the coupling to the external
potential V μ , which is not affected by Ĉ .

For the photon field we work in the covariant gauge [531], which relies on the
Gupta-Bleuler indefinite metric quantization. Compared to classical electrodynam-
ics, this approach requires the additional term

− λ
8π

(∂μ Âμ(x))2

in the Lagrangian. In the indefinite metric quantization the classical gauge condition
∂μ Aμ = 0 is not applied directly to the quantized photon field. Rather ∂μ Âμ �= 0
is required in order to set up a covariant quantization scheme, which necessarily
involves four independent fields. In addition to the two real transverse modes one
introduces two artificial fields in the first step. The gauge condition is then restored
and the two artificial degrees of freedom are eliminated by constraining the allowed
set of physical states, so that 〈Ψ|∂μ Âμ |Ψ〉 = 0. Explicit formulae will subsequently
be given for some particular choice of λ , which is, by misuse of language, also called
a particular gauge. The choice of this gauge primarily determines the form of one of
the building blocks of the theory characterized by (8.11), namely the propagator of
noninteracting photons. In Sects. 8.2–8.4 Feynman gauge (λ = 1) will be used. On
the other hand, the renormalization procedure of QED presented in the appendices
is more easily discussed in Landau gauge (λ → ∞).

The freedom to choose any of the covariant gauges for the photon field results
from the gauge invariance of the Lagrangian (8.11): a gauge transformation of the
photon field,

Âμ(x) −→ Â′
μ(x) = Âμ(x)+∂μΛ(x) ; ∂μ ∂ μΛ(x) = 0 , (8.25)

can be absorbed by an appropriate phase transformation of the fermion field

ψ̂(x) −→ ψ̂ ′(x) = exp[ieΛ(x)/(h̄c)] ψ̂(x) , (8.26)

leaving the Lagrangian (8.11) invariant,

L [ψ̂ ′, Â′] = L [ψ̂, Â] . (8.27)

On the other hand, due to the choice of a particular Lorentz frame, only static gauge
transformations are admitted for the external potential in order to remain within the
common rest frame of the nuclei,
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V ′
μ(xxx) = Vμ(xxx)+∂μΛ(x) (8.28)

ψ̂ ′(x) = exp[ieΛ(x)/(h̄c)] ψ̂(x) (8.29)

Λ(x) = Ct +λ (xxx) ; �λ (xxx) = 0 (8.30)

=⇒ L [ψ̂ ′,V ′] = L [ψ̂,V ] . (8.31)

Not only the Lagrangian, but also the four current ĵμ(x), Eq. (8.22), is invariant
under the transformations (8.25), (8.26) and (8.28)–(8.30). The invariances of L
and ĵμ under the combination of a gauge transformation of the internal or external
photon fields and a corresponding phase transformation of the fermion field operator
are manifestations of the gauge invariance of the expectation values 〈Ψ|L [ψ̂, Â]|Ψ〉
and 〈Ψ| ĵμ |Ψ〉. In the following, Coulomb gauge,

∂iV
i(xxx) = ∇ ·VVV (xxx) = 0 ,

will be applied consistently for the external potential, as already indicated by the
restricted set of gauge transformations in (8.30).

The field equations for the basic operators of QED follow from the Lagrangian
(8.11) via the principle of stationary action [531],[

ih̄cγμ ∂μ −mc2 + eγμ Âμ(x)+ eγμVμ(xxx)
]

ψ̂(x) = 0 (8.32)

∂μ ∂ μ Âν(x)− (1−λ )∂ ν∂μ Âμ(x)+4π e ĵν(x) = 0 . (8.33)

Their invariance under the transformations (8.25), (8.26) and (8.28)–(8.30) is di-
rectly obvious.

An immediate consequence of the local gauge invariance of the Lagrangian is
current conservation,4

∂μ ĵμ(x) = 0 , (8.34)

which implies the conservation of total charge,

Q̂ =
∫

d3x ĵ0(x) =
1
2

∫
d3x

[
ψ̂†(x), ψ̂(x)

]
. (8.35)

Any eigenstate of the system characterized by (8.11) can therefore be classified with
respect to its charge (but not particle number).

Energy conservation can be directly deduced from the “continuity” equation for
the energy momentum tensor T̂ μν , utilizing Noether’s theorem [530]. For the La-
grangian (8.11) T̂ μν reads5

4 Equation (8.34) may be derived directly by combining the field equation (8.32) with its hermitian
conjugate.
5 We base our considerations on the “symmetric” energy momentum tensor T̂ μν , rather than the
canonical tensor Θ̂ μν . Both versions of the energy momentum tensor satisfy identical “continuity”
equations, i.e. all physical results are independent of this choice. T̂ μν represents a covariant com-
bination of the energy, momentum and stress densities of the system.
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T̂ μν(x) =
ih̄c
8

[
ψ̂(x),

(
γμ →

∂
ν

+γν →
∂

μ
−γμ ←

∂
ν
−γν ←

∂
μ )

ψ̂(x)
]

+
1

4π

{
F̂μρ(x)F̂ ν

ρ (x)+
1
4

gμν F̂(x)2 − λ
2

gμν
(

∂ρ Âρ(x)
)2

−λ
(

∂ρ ∂τ Âτ(x)
)(

gμν Âρ(x)−gμρ Âν(x)−gνρ Âμ(x)
)}

+
e
2

(
ĵμ(x)Âν(x)+ ĵν(x)Âμ(x)

)
− e

2

(
ĵμ(x)V ν(xxx)− ĵν(x)V μ(xxx)

)
. (8.36)

The last line of Eq. (8.36) indicates that one is dealing with an open system: the
source field breaks the symmetry of T̂ μν . For this reason the “continuity” equation
for T̂ μν contains a source term,

∂μ T̂ μν(x) = −e ĵμ(x)∂ νV μ(xxx) . (8.37)

However, as V μ(xxx) does not depend on time, one finds

∂μ T̂ μ0(x) = 0 =⇒ ∂0

∫
d3x T̂ 00(x) = 0 . (8.38)

This implies conservation of energy in the rest frame of the sources and allows the
identification of the Hamiltonian,

Ĥ =
∫

d3x T̂ 00 = Ĥe + Ĥγ + Ĥint + Ĥext (8.39)

Ĥe(x0) =
1
2

∫
d3x

[
ψ̂†(x),

(−ih̄cααα ·∇∇∇+βmc2) ψ̂(x)
]

(8.40)

Ĥγ(x0) = − 1
8π

∫
d3x

{
[∂ 0Âμ(x)][∂ 0Âμ(x)]+∇∇∇Âμ(x) ·∇∇∇Âμ(x)

}
(8.41)

Ĥint(x0) = −e
∫

d3x ĵμ(x) Âμ(x) (8.42)

Ĥext(x0) = −e
∫

d3x ĵμ(x) Vμ(xxx) (8.43)

(Feynman gauge λ = 1 is used here).
The ground state |Ψ0〉 of the Hamiltonian Ĥ is in general nondegenerate, i.e.

as long as Vμ(xxx) does not exhibit some spatial symmetries. Not only continuous
symmetries, but also the discrete symmetries usually considered in QED [531] de-
pend on the special form of Vμ (compare [532]). For parity to be a good quantum
number reflection symmetry of the potential is required. Under charge conjuga-
tion the Hamiltonian shows the same transformation behavior as the Lagrangian,
Ĉ Ĥ[V μ ] Ĉ † = Ĥ[−V μ ]. Finally, time reversal symmetry requires purely electro-
static potentials of the form V μ = (V 0,000). While the twofold degeneracy, which
results for such potentials, leads to an additional conserved quantum number, this
does not cause any problems as the Fock space can be decomposed accordingly. In
the subsequent discussion it will always be assumed that |Ψ0〉 is nondegenerate.
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Unfortunately, a straightforward calculation of the ground state expectation value
〈Ψ0|Ĥ|Ψ0〉 of the Hamiltonian (8.39) is not possible: without further prescriptions
the theory based on the Lagrangian (8.11) is not well-defined, but suffers from three
types of divergences.6 These divergences show up both in the Green’s functions of
the theory as well as in the expectation values characterizing physical observables.
This is true in particular for the ground state energy and the ground state four cur-
rent density, which are the basic ingredients of the RDFT formalism. A physically
consistent removal of these divergences requires a renormalization of the fundamen-
tal parameters of the theory (the electron charge e and mass m as well as the nor-
malization of the field operators). The renormalization procedure, which is usually
formulated within the framework of perturbation theory, is described in detail in the
Appendices F–I, which address in particular the case of inhomogeneous systems.
Here only a brief summary is given.

The first type of divergence results directly from the presence of negative energy
states, whose contribution leads to divergent vacuum expectation values (e.g. for the
energy and the charge). This difficulty already exists for noninteracting fermions and
can be resolved by explicit subtraction of vacuum expectation values (or, alterna-
tively, by normal-ordering). For instance, if one considers noninteracting electrons
subject to some external potential, i.e. a Hamiltonian of the form

Ĥs = Ĥe + Ĥext , (8.44)

the renormalized Hamiltonian can be given as

Ĥ ′
s,R = Ĥs −〈0s|Ĥs|0s〉 , (8.45)

where |0s〉 represents the vacuum in the presence of the external potential. The
Hamiltonian (8.45) leads to a finite ground state energy by construction (for details
see Appendix F). However, the prescription (8.45) introduces different reference en-
ergies for different external potentials, i.e. it ignores the energy difference between
different vacua (the so-called Casimir energy [533]). This poses no problem as long
as only processes are considered in which V μ does not change (as e.g. the ionization
of an electron). In the context of RDFT, however, a universal energy standard is re-
quired, as one wants to compare the energy values associated with different external
potentials. A suitable definition of the renormalized Hamiltonian is in this case

Ĥs,R = Ĥs −〈00|Ĥe|00〉 , (8.46)

where |00〉 is the homogeneous vacuum corresponding to the noninteracting Hamil-
tonian Ĥe without any external potential. This universal choice of the energy zero
reintroduces, however, a divergence into the expectation values of Ĥs,R: while all
expectation values 〈Ĥs,R〉 remain finite if V μ vanishes, one encounters a divergence
proportional to V μ for non-vanishing potentials (see Appendix F). This singularity

6 The discussion of infrared divergences is not necessary for the present purpose and will be omit-
ted. Infrared divergences can be suppressed by enclosing the system in a large (cubic) box and
requiring periodic boundary conditions on the surface of the cube (compare [28]).
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has exactly the same form as the second type of divergences present in standard
QED without external potentials, the high-energy or ultraviolet (UV) divergences.

The removal of UV divergences constitutes the core of the renormalization pro-
gram of QED [531]. In this procedure the divergences are first suppressed at all
intermediate steps of calculations by introducing a suitable regularization of the
divergent integrals and then absorbed into a redefinition of the fundamental param-
eters in the Lagrangian. This redefinition leads to additional contributions to the
Green’s functions, the so-called counterterms, when the Green’s functions are ex-
pressed in terms of the actual physical parameters. The precise form of the countert-
erms is controlled by a few unique, elementary requirements on the vacuum Green’s
functions (called normalization conditions: for instance, one requires the Lehmann
representation of the electron single-particle Green’s function to have a simple pole
at E2 = ppp2c2 +m2c4 with m being the true mass of the electron—see Appendix G).
The complete program is usually set up for the vacuum state, proceeding order by
order in the electron–electron coupling constant α (i.e. in a perturbative manner). As
a result all vacuum Green’s functions of QED without external potential are finite.

Since this procedure associates well-defined counterterms with each individual
element (subdiagram) of the perturbation expansion, it also leads to finite Green’s
functions in the case of the relativistic homogeneous electron gas (RHEG), i.e. the
system characterized by the Hamiltonian

Ĥhom = Ĥe + Ĥγ + Ĥint , (8.47)

and a non-vanishing density n0 = 〈 ĵ0〉. The individual terms in the perturbation
expansions of the RHEG Green’s functions can be split into vacuum and electron
gas contributions. The renormalization of the former follows the pattern applied in
vacuum QED, the latter are finite without renormalization (Appendix H).

As final step of the UV renormalization program for inhomogeneous systems
characterized by the full Lagrangian (8.11) it remains to deal with the external po-
tential, not included in (8.47). The renormalization of Green’s functions and observ-
ables corresponding to (8.11) is straightforward, if a perturbation expansion with
respect to V μ is used. For instance, one obtains for the ground state four current
density (see Appendix I),

jμ(rrr) = 〈ΨRHEG
0 | ĵμ(x)|ΨRHEG

0 〉+Δ jμ(rrr)

+
∞

∑
n=1

(−e)n

n!

∫
d3r1 . . .

∫
d3rn χ(n+1)

c,μμ1...μn(rrr,rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn) , (8.48)

and an analogous perturbation expansion for the total counterterm Δ jμ ,

Δ jμ(rrr) = Δ jhom
μ +Δ jinhom

μ (rrr) (8.49)

Δ jinhom
μ (rrr) =

∞

∑
n=1

(−e)n

n!

∫
d3r1 . . .

∫
d3rn Δ χ(n+1)

μμ1...μn(rrr,rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn) . (8.50)
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Here Δ jhom
μ represents the counterterms which keep the current expectation value

of the interacting RHEG finite,

〈ΨRHEG
0 | ĵμ(x)|ΨRHEG

0 〉+Δ jhom
μ = gμ0n0 , (8.51)

and Δ χ(n)
μ1...μn denotes the counterterms required for the renormalization of the con-

nected, n-th order response function χ(n)
c,μ1...μn of the RHEG (where all individual

terms are understood to be regularized—for the precise definition of χ(n)
c,μ1...μn see

Appendix H; note that Eq. (8.48) may also be used to define the χ(n)
c,μ1...μn ). Both

Δ jhom
μ and all Δ χ(n)

μ1...μn are uniquely determined by the density n0. Similarly, the
ground state energy is given by

E = 〈ΨRHEG
0 |Ĥhom|ΨRHEG

0 〉−〈0|Ĥhom|0〉+ΔE

−e
∫

d3r 〈ΨRHEG
0 | ĵμ(x)|ΨRHEG

0 〉Vμ(rrr)

+
∞

∑
n=2

(−e)n

n!

∫
d3r1 . . .

∫
d3rn χ(n)

c,μ1...μn(rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn) , (8.52)

where |0〉 denotes the vacuum of interacting QED without external potential. Again
the counterterm ΔE can only be specified explicitly by an expansion,

ΔE = ΔEhom +ΔE inhom (8.53)

ΔE inhom = −e
∫

d3r Δ jhom
μ V μ(rrr)

+
∞

∑
n=2

(−e)n

n!

∫
d3r1 . . .

∫
d3rn Δ χ(n)

μ1...μn(rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn) . (8.54)

The quantity ΔEhom, which is independent of V μ , provides the counterterms for the
ground state energy of the interacting RHEG,

〈ΨRHEG
0 |Ĥhom|ΨRHEG

0 〉−〈0|Ĥhom|0〉+ΔEhom = ERHEG . (8.55)

With the aid of the perturbation expansion the renormalization of the inhomoge-
neous system is therefore reduced to the renormalization of the Green’s functions
of the RHEG. All counterterms can be explicitly specified order by order in the fine
structure constant and the external potential.

Expressing the perturbation expansions of the unrenormalized energy and current
in terms of the corresponding original expectation values, the renormalized ground
state energy E and ground state four current density jμ(xxx) can finally be written as

E = 〈Ψ0|Ĥ|Ψ0〉−〈0|Ĥhom|0〉+ΔE (8.56)
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jμ(rrr) = 〈Ψ0| ĵμ(x)|Ψ0〉+Δ jμ(rrr) . (8.57)

As the renormalization procedure by construction preserves current conservation,
Eq. (8.34), the current density (8.57) satisfies the relations∫

d3r j0(rrr) = N (8.58)

∇∇∇ · jjj(rrr) = 0 , (8.59)

with N being the number of (excess) electrons. Equations (8.48)–(8.59) form a suit-
able starting point for the discussion of the relativistic extension of the Hohenberg-
Kohn theorem, as one is now dealing only with finite quantities.

8.3 Existence Theorem

The extension of the HK-theorem to relativistic systems was first formulated by
Rajagopal and Callaway [91] (see also [534–536]), utilizing a QED-based Hamil-
tonian and four current. These authors applied the standard reductio ad absurdum
of HK to show that the ground state energy is a unique functional of the ground
state four current. As questions related to zero-point energies, radiative corrections
and, in particular, UV-divergences were not addressed, the argumentation was open
to criticism. The HK argument relies on the comparison of energy values, so that a
rigorous proof has to be based on the renormalized ground state energies and four
currents (8.56) and (8.57), respectively. In other words: one has to make sure that the
structure of the counterterms ΔE and Δ jμ is compatible with the logic of the HK
argument. The compatibility can be demonstrated explicitly within a perturbative
framework [72, 529], using the structure of the counterterms (8.49) and (8.53).

The argument of HK proceeds in two steps. In the first step the relation between
external potentials and ground states is considered. Let us assume that two different
potentials Vμ and V ′

μ yield the same (nondegenerate) ground state |Ψ0〉. The aim
of the argument is to find a statement which contradicts this assumption. One first
writes

Ĥ|Ψ0〉 = E|Ψ0〉 (8.60)

Ĥ ′|Ψ0〉 = E ′|Ψ0〉 , (8.61)

where Ĥ denotes the Hamiltonian (8.39) in the Schrödinger picture and Ĥ ′ is the
corresponding Hamiltonian with the potential V ′

μ . The issue of renormalization need
not yet be addressed at this point as no expectation values are taken. For the present
purpose a suitable regularization is sufficient. Upon subtraction of both eigenvalue
equations,

− e
∫

d3x ĵν(xxx)
[
Vν(xxx)−V ′

ν(xxx)
] |Ψ0〉 =

[
E −E ′] |Ψ0〉 , (8.62)
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one is left with the question, whether the state on the left-hand side of Eq. (8.62) can
be collinear with that on the right-hand side. If not, the desired contradiction would
have been found. While the operator

∫
d3x ĵν [Vν −V ′

ν ] in general does not commute
with the Hamiltonian Ĥ, this does not exclude the existence of a single common
eigenstate |Ψ0〉. An obvious contradiction only arises for multiplicative potentials
of the form V μ = (V 0,000). For purely electrostatic potentials one can therefore con-
clude that two potentials V0 and V ′

0 lead to different ground states, as long as V0 and
V ′

0 differ by more than an additive constant (V ′
0 �= V0 + const—as the total charge

operator commutes with the Hamiltonian). One is thus led to the question whether
the inclusion of a magnetic field can compensate the difference which results from
two different electrostatic components V0 and V ′

0, or whether two different magnetic
fields can yield the same ground state.

No rigorous answer to this question can be given to date. As discussed in
Sect. 2.5, one can demonstrate explicitly that in nonrelativistic spin-density func-
tional theory different magnetic fields can lead to the same ground state [37, 38].
However, the example given for this non-uniqueness relies crucially on the particu-
lar structure and the particular coupling of the magnetic field: the field simply adds
spin-dependent constants to the spin-up and spin-down potentials of collinear SDFT.
This counterexample can not be extended directly to the relativistic situation with its
jμV μ -coupling, so that a unique relation between V μ and the corresponding ground
state may or may not exist.

Fortunately, such a unique map between the space of four potentials and that of
the corresponding ground states is not required for the existence of a ground state
density functional. It is sufficient that the renormalized ground state four current
jμ , Eq. (8.57), determines the ground state |Ψ0〉 uniquely (the second step of the
HK argument). In order to prove this statement, let us compare two weakly inho-
mogeneous systems obtained by perturbing an electron gas with density n0 by two
external potentials Vμ and V ′

μ which differ by more than a gauge transformation
(the fact that the two systems must have the same average density just reflects the
requirement that their charge has to be identical). The resulting ground states, as-
sumed to be nondegenerate, are denoted by |Ψ0〉 and |Ψ′

0〉, the ground state four
current densities by jμ and jμ ′. Since Vμ and V ′

μ differ by more than a gauge trans-
formation, the same statement applies to the |Ψ0〉 and |Ψ′

0〉. According to Eq. (8.56),
the corresponding renormalized ground state energies are given by

E = 〈Ψ0

∣∣∣Ĥhom − e
∫

d3x ĵμVμ

∣∣∣Ψ0〉−〈0|Ĥhom|0〉+ΔE[V ] (8.63)

E ′ = 〈Ψ′
0

∣∣∣Ĥhom − e
∫

d3x ĵμV ′
μ

∣∣∣Ψ′
0〉−〈0|Ĥhom|0〉+ΔE[V ′] . (8.64)

Note that the counterterms do not depend on the state under consideration: within
the perturbative framework ΔE is completely determined by the external poten-
tial and the average density of the underlying homogeneous electron gas (see
Eqs. (8.48)–(8.55)).

As soon as |Ψ′
0〉 differs from |Ψ0〉, the state |Ψ′

0〉 has some overlap with at
least one of the excited states of the Hamiltonian with potential Vμ . In order
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to proceed with the usual HK-proof, one thus has to clarify how the expression
〈Ψ′

0|Ĥhom − e
∫

d3x ĵμVμ |Ψ′
0〉, i.e. the energy corresponding to the state |Ψ′

0〉 in
the unprimed system, is to be renormalized. To this aim one uses the fact that
the counterterms only depend on the density n0 and the associated potential, but
not on the state itself. Ultimately, the form of the counterterms is determined by
the normalization conditions for the Green’s functions of vacuum QED and there
is only one unique way to include these normalization conditions in perturbation
expansions with respect to the external potential, i.e. in Eqs. (8.48)–(8.55): as
long as the representation of the counterterms relies on the ground state response
functions of the RHEG, their precise form is defined by that potential for which
|Ψ′

0〉 is the ground state, i.e. V ′
μ . One therefore has to rewrite the excited state en-

ergy 〈Ψ′
0|Ĥhom − e

∫
d3x ĵμVμ |Ψ′

0〉 in such a way, that the ground state energy E ′,
Eq. (8.64), can be extracted,

〈Ψ′
0|Ĥhom − e

∫
d3x ĵμVμ |Ψ′

0〉 = 〈Ψ′
0|Ĥhom − e

∫
d3x ĵμV ′

μ |Ψ′
0〉

−e
∫

d3x〈Ψ′
0| ĵμ |Ψ′

0〉(Vμ −V ′
μ) .

Now the counterterms for the first term on the right-hand side are uniquely deter-
mined by (8.52), the counterterms for the second term by the unique renormalization
of 〈Ψ′

0| ĵμ |Ψ′
0〉 as in (8.48). The renormalized energy Ees associated with |Ψ′

0〉 in the
unprimed system is given thus by

Ees = 〈Ψ′
0

∣∣∣Ĥhom − e
∫

d3x ĵμV ′
μ

∣∣∣Ψ′
0〉−〈0|Ĥhom|0〉+ΔE[V ′]

−e
∫

d3x
[
〈Ψ′

0| ĵμ |Ψ′
0〉+Δ jμ [V ′]

]
(Vμ −V ′

μ) . (8.65)

This expression is easily rewritten as

Ees = E ′ − e
∫

d3x jμ ′(Vμ −V ′
μ) , (8.66)

where jμ ′ now denotes the renormalized current. At this point, all quantities in-
volved are finite.

As |Ψ0〉 is assumed to be nondegenerate, the energy (8.66) associated with |Ψ′
0〉

in the unprimed system must be higher than the ground state energy,

E < E ′ − e
∫

d3x jμ ′(Vμ −V ′
μ) . (8.67)

One can now interchange all primed and unprimed quantities in this argument to
arrive at

E ′ < E − e
∫

d3x jμ(V ′
μ −Vμ) . (8.68)

Upon addition of (8.67) and (8.68),
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E +E ′ < E +E ′ − e
∫

d3x( jμ − jμ ′)(Vμ −V ′
μ) , (8.69)

one finally realizes that a contradiction arises for jμ ′ = jμ . We have shown that for
states |Ψ′

0〉 and |Ψ0〉 which differ by more than a gauge transformation one also has
jμ ′ �= jμ , so that the ground state of any such system is uniquely determined by the
ground state four current.

On the other hand, if the two potentials only differ by a (static) gauge transfor-
mation,

V ′
μ(xxx) = Vμ(xxx)+∂μ λ (xxx) , �λ (xxx) = 0 ,

the four currents obtained from (8.48) are identical due to the transversality of the
response functions, Eq. (H.14). The same is then true for the counterterms (8.49)
and (8.53), so that the inequalities (8.67)–(8.69) become equalities,∫

d3x jμ(Vμ −V ′
μ) = −

∫
d3x jjj ·∇∇∇λ =

∫
d3xλ∇∇∇ · jjj = 0

(due to Eq. (8.59)). In other words: there is no Ritz principle for states which differ
by no more than a gauge transformation.7

Consequently, there exists a one-to-one correspondence between the class of
all ground states which just differ by gauge transformations and the associated
ground state four current. In mathematical terms one can state that |Ψ0〉 is a
unique functional of jμ once the gauge has been fixed universally,{

|Ψ0〉
∣∣∣ |Ψ0〉 from Vμ +∂μΛ

}
⇐⇒ jμ(xxx) =⇒ |Ψ0〉 = |Ψ0[ j]〉 . (8.70)

This situation is illustrated in Fig. 8.1. Note that for finite systems a unique
gauge for the spatial components VVV can be obtained by combining Coulomb gauge,

∇∇∇ ·VVV = 0, with the requirement VVV (rrr)
|rrr|→∞−−−→ 0 (Helmholtz’s theorem).

The proof given relies on a perturbation expansion with respect to both the
electron–electron interaction and V μ . The necessity for these expansions originates
from the recursive nature of the renormalization scheme which proceeds order by
order in the fine-structure constant and from the fact that the treatment of inhomo-
geneous systems has to be associated with the renormalization procedure for the
homogeneous QED vacuum. Only in this framework is it possible to extract the
structure of the required counterterms, which is the first important building block

7 In view of this result the reader might wonder how the inequality (2.168) of CSDFT can emerge
in the nonrelativistic limit. The point to be noted here is the fact that the Pauli Hamiltonian is not
a consistent expansion of the QED Hamiltonian in the order of 1/c: while all terms of the order
1/c are consistently included, there are additional terms of the order 1/c2 which are left out of the
Pauli Hamiltonian. It is exactly the order 1/c2 treated inconsistently which ensures the validity of
the Ritz inequality for states which only differ by a gauge transformation.
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Fig. 8.1 Correspondence between subsets Gi of ground states which differ by no more than a
gauge transformation and associated ground state four currents ji.

for establishing the inequality (8.69). The discussion is formally valid to all orders,
independent of the fact that the QED perturbation series is an asymptotic expansion.
In addition, the case of finite systems is covered, at least in principle, by the limit
n0 −→ 0. This limit is particularly transparent for noninteracting systems as the cor-
responding counterterms (I.5) and (I.11) are independent of n0 and are therefore
directly applicable to arbitrary inhomogeneous systems, as e.g. the KS system.

The second important ingredient of the inequality (8.69) is the existence of a
minimum principle for the ground state energy (8.56). While the Ritz variational
principle is well established in the nonrelativistic context, no rigorous proof of a
minimum principle for the renormalized ground state energies of bound state QED
seems to be available. On the other hand, it is exactly the requirement that the en-
ergy spectrum must have a lower bound which is the main motivation for the first
step of the renormalization program, the elimination of the divergent zero-point en-
ergy. This is not only true for standard QED without external potential, but also for
noninteracting electrons subject to some V μ (see Appendix F). Turning to interact-
ing systems, the mere assumption of a nondegenerate ground state |Ψ0〉 implies that
all other states lead to energies higher than that of |Ψ0〉. The perturbative approach
used here preserves this ordering and it does so in a unique fashion: it provides a
unique answer for the renormalization of the energy expectation value of any given
state, be it the ground state or any other (as discussed above). In fact, if the renor-
malized energies would not reflect the minimum principle for the energy which is
observed in nature, this would question the renormalization program, rather than the
minimum principle.

Fixing the gauge once and for all, the relation (8.70) allows an interpretation of all
ground state observables as unique functionals of jμ . The most important functional
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of this type is the ground state energy itself,

E[ j] = 〈Ψ0[ j]|Ĥ|Ψ0[ j]〉−〈0|Ĥhom|0〉+ΔE . (8.71)

In fact, in the case of the ground state energy functional the gauge problem is par-
ticularly irrelevant: similar to the situation for degenerate ground states discussed
in Sect. 2.2, the energy is uniquely determined by j, since the same ground state
energy is obtained for all states which only differ by gauge transformations.

The energy functional (8.71) not only contains all relativistic kinetic effects for
both electrons and photons, but also all radiative effects. Utilizing once again the
energy minimum principle, one may then formulate the basic variational principle
of RDFT as

δ
δ jν(rrr)

{
E[ j]−μ

∫
d3x j0(xxx)

}
= 0 . (8.72)

The subsidiary condition ensures charge conservation, Eq. (8.58), and all quantities
involved are supposed to be fully renormalized. Solution of (8.72) with the exact
functional E[ j] yields the exact ground state four current jμ and, upon insertion of
jμ into E[ j], the exact ground state energy.

As it stands the functional (8.71) is well defined for all jμ which result as ground
state four currents from some external potential V μ . Strictly speaking, this does not
yet guarantee the existence of the functional derivative δE[ j]/δ jμ on the set of
ground state four currents, which is a prerequisite for the applicability of the vari-
ational equation (8.72) (compare the discussion in Sect. 2.3). The question of the
existence of the functional E[ j] for a sufficiently dense set of jμ , i.e. the interact-
ing v-representability of E[ j], has been investigated by Eschrig and collaborators
[61, 28]. Interacting v-representability can be ensured on a formal level by a redef-
inition of E[ j] via the functional Legendre transform technique, which generalizes
the Lieb functional (2.106) to the relativistic domain and, at the same time, to arbi-
trary non-integer particle number (see also [537]). For details the reader is referred
to [28], which exposes the Legendre transform approach in detail for the nonrela-
tivistic situation.

In view of the difficulties associated with the renormalization procedure one may ask whether
it is possible to base RDFT on an approximate relativistic many-body approach, as e.g. the Dirac-
Coulomb (DC) Hamiltonian,

ĤDC = Ĥe + Ĥext + Ĥe−e (8.73)

Ĥe−e =
e2

2

∫
d3r

∫
d3r′

ψ̂†(rrr)ψ̂†(rrr′)ψ̂(rrr′)ψ̂(rrr)
|rrr− rrr′| , (8.74)

or its Dirac-Coulomb-Breit (DCB) extension, rather than on QED. In this case the so-called no-
pair approximation plays the role of the renormalization scheme. In this formalism a projection
operator Λ̂+ is used to project out all negative energy states, in order to avoid that electrons access
these states,

ĤDC
np = Λ̂+ĤDCΛ̂+ , ĵμ

np = Λ̂+ ĵμΛ̂+ . (8.75)



8.4 Relativistic Kohn-Sham Equations 367

However, Λ̂+ can be specified unambiguously only within some well-defined single-particle
scheme (as the HF or KS approach). Even in this case Λ̂+ depends on the actual single-particle
potential and in consequence on the external potential, Λ̂+[V μ ]. For this reason one finds that ĤDC

np
is a nonlinear functional of V μ , which does not allow the application of the usual reductio ad
absurdum strategy of the HK-proof. In addition, the no-pair approximation introduces a gauge
dependence of the ground state energy [350], so that an unambiguous comparison of two ground
state energies is only possible if one neglects the Breit interaction and restricts oneself to an ex-
ternal potential of the form V μ = (V 0,000). This demonstrates that the existence theorem of RDFT
has to be based on a field theoretical formalism. The no-pair approximation, which is used in all
applications, is much more easily introduced at a later stage, i.e. in the context of the single-particle
equations of RDFT.

8.4 Relativistic Kohn-Sham Equations

The starting point for the derivation of the relativistic KS (RKS) scheme is the as-
sumption that there exists a relativistic system of noninteracting particles with ex-
actly the same ground state four current jμ(rrr) as the interacting system that one is
actually interested in. The question whether such a noninteracting system always ex-
ists, i.e. the question of noninteracting v-representability, has not been examined in
the relativistic case. One would, however, expect similar statements as in the nonrel-
ativistic situation (compare Sect. 3.2). Since the auxiliary system is noninteracting,
its Hamiltonian is of the type (8.44), for which the renormalization procedure is dis-
cussed in detail in the Appendices F and I. The ground state corresponding to (8.44),
i.e. to the Hamiltonian (F.23), is given by (F.13) and its vacuum four current has the
form (F.26). Both the energy and the four current have to be renormalized. Sub-
traction of the appropriate zero-point energy is required according to Eq. (F.29), as
well as the elimination of the lowest order UV-divergences, as indicated in Eqs. (I.5)
and (I.11). The ground state four current jμ of the auxiliary system and hence, by
assumption, of the interacting system can be written as

jμ(rrr) = ∑
k

Θkφ †
k (rrr)αμ φk(rrr)+ jμ

v (rrr) (8.76)

jμ
v (rrr) =

1
2

{
∑

εk≤−mc2

φ †
k (rrr)αμ φk(rrr)− ∑

−mc2<εk

φ †
k (rrr)αμ φk(rrr)

}

+Δ jμ,(0)(rrr) (8.77)

Θk =

⎧⎨
⎩

0 for εk ≤−mc2

1 for −mc2 < εk ≤ εF

0 for εF < εk

. (8.78)

The quantities φk denote the single-particle spinors of the auxiliary system and
εF represents the Fermi level which separates occupied from unoccupied auxiliary
states. In (8.76) the total current has been decomposed into a vacuum contribution
jμ
v and the contribution of the actual electronic states. Δ jμ,(0)(rrr) is the lowest order
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counterterm which keeps the vacuum current jμ
v UV-finite. Using dimensional reg-

ularization, Δ jμ,(0)(rrr) is given by Eq. (I.5), with the total RKS-potential—specified
below—replacing V μ on the right-hand side.

In the next step one decomposes the ground state energy functional (8.71) in the
form

E = Ts +Eext +EH +Exc . (8.79)

The counterterms for E given in Eq. (8.56) are understood to be included in the indi-
vidual energy components. These are defined as follows: the noninteracting kinetic
energy functional Ts, i.e. the kinetic energy of the auxiliary system, is given by

Ts = ∑
k

Θk

∫
d3r φ †

k (rrr)
[− ih̄cααα ·∇∇∇+βmc2]φk(rrr)+Ts,v (8.80)

Ts,v =
1
2

∫
d3r

{
∑

εk≤−mc2

φ †
k (rrr)

[− ih̄cααα ·∇∇∇+βmc2]φk(rrr)

− ∑
−mc2<εk

φ †
k (rrr)

[− ih̄cααα ·∇∇∇+βmc2]φk(rrr)
}

−〈00|Ĥe|00〉+ΔT inhom
s , (8.81)

with counterterms as specified in Eqs. (F.29) and (I.14). The interaction of the elec-
trons with the external sources contributes the energy

Eext[ j] = −e
∫

d3r jμ(rrr) V μ(rrr) . (8.82)

The counterterm (I.13) has already been absorbed into the renormalized current jμ .
The (direct) Hartree energy EH is defined in a “covariant” fashion with the free
photon propagator D0

μν ,

D0,μν(x− y) = − i
e2

h̄c
〈00|T Âμ

0 (x)Âν
0 (y)|00〉 , (8.83)

where Âμ
0 denotes the noninteracting photon field operator, and |00〉 is the corre-

sponding noninteracting vacuum state (compare Appendix G). The prefactors have
been chosen so that D0,μν(x− y) approaches the Coulomb interaction in the limit
c → ∞,

lim
c→∞

D0,μν(x− y) = δ (x0 − y0)
e2

|xxx− yyy|g
μν

(in Feynman gauge). With this choice the Hartree energy is defined as

EH[ j] =
1
2

∫
d3x

∫
d4y jμ(xxx) D0

μν(x− y) jν(yyy) . (8.84)

It includes all direct matrix elements of the electron–electron interaction (via ex-
change of photons) of the order e2. EH does not depend on the gauge chosen for
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D0
μν , as the propagator is contracted with a conserved current. Moreover, the inte-

gration over the time-like component y0 can be performed for the full D0
μν with the

result

EH[ j] =
e2

2

∫
d3x

∫
d3y

jμ(xxx) jμ(yyy)
|xxx− yyy| . (8.85)

Finally, the xc-energy functional contains all remaining contributions to E[ j], i.e.
(8.79) defines Exc. As the HK argument is also valid for noninteracting systems for
which E = Ts + Eext one concludes that Ts is a density functional, Ts[ j], in spite of
its explicit orbital-dependent form. From this information and the fact that Eext and
EH are obvious density functionals follows the statement that Exc is also a unique
functional of jμ , Exc[ j].

As the ground state of the auxiliary system and therefore its ingredients φk are
uniquely determined by the four current of the interacting system, the basic vari-
ational principle may be exploited by minimizing E with respect to the φk, rather
than jμ (a more careful argument can be given along the lines of Sect. 3.1, see also
[537]). This minimization leads to the relativistic KS equations,{−ih̄cααα ·∇∇∇+βmc2 +αμ vμ

s (rrr)
}

φk(rrr) = εkφk(rrr) . (8.86)

The multiplicative KS four potential vμ
s consists of the sum of the external potential

V μ , the Hartree potential vμ
H and the xc-potential vμ

xc,8

vμ
s (rrr) = −eV μ(rrr)+ vμ

H(rrr)+ vμ
xc(rrr) (8.87)

vμ
H(rrr) = e2

∫
d3r′

jμ(rrr′)
|rrr− rrr′| (8.88)

vμ
xc(rrr) =

δExc[ j]
δ jμ(rrr)

. (8.89)

Equations (8.76), (8.86)–(8.89) have to be solved selfconsistently, of course.
As in nonrelativistic DFT, the xc-functional is the key ingredient of the KS equa-

tions. Exact representations for the relativistic Exc can be derived along the lines of
Sects. 4.2.1 and 4.2.2 [534, 350]. For instance, a relativistic extension of Eq. (4.65)
is obtained by application of the coupling constant integration scheme to the differ-
ence between the total Hamiltonian (8.39) and the relativistic KS Hamiltonian. The
result is [350]

8 Note that the spatial components of vμ
xc have been defined in a way which ensures consistency

with the Minkowski notation, but differs from the convention in nonrelativistic CDFT by a minus
sign, as the contravariant component jk corresponds to the physical three vector,

vk
xc(rrr) =

δExc[ j]
δ jk(rrr)

= − δExc[ j]
δ jk(rrr)

.

The transition to the standard CDFT notation will be made in the context of the no-pair approxi-
mation in Sect. 8.6.
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Exc =
1
2

lim
ε→0

∫
d4xδ (x0)

∫
d4ye−ε |y0| D0

μν(x− y)

×{〈Φ0|T ĵμ
0 (x) ĵν

0 (y)|Φ0〉− jμ(xxx) jν(yyy)
}

+ lim
ε→0

∞

∑
n=1

(−i)n

(n+1)!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

×〈Φ0|TŴ (0)Ŵ (t1) · · ·Ŵ (tn)|Φ0〉l , (8.90)

where Ŵ is defined as

Ŵ (x0) =
1
2

∫
d3x

∫
d4ye−ε(|x0|+|y0|) ĵμ

0 (x)D0
μν(x− y) ĵν

0 (y)

−
∫

d3xe−ε |x0|{vH,μ(xxx)+ vxc,μ(xxx)
}

ĵμ
0 (x) , (8.91)

ĵμ
0 (x) denotes the current operator of the KS system (in the Heisenberg representa-

tion), |Φ0〉 is the KS ground state and the subscript l indicates that only contributions
linked to Ŵ (0) are to be included in the evaluation of (8.90) via Wick’s theorem. The
counterterms required to keep Exc UV-finite are not noted explicitly. A relativistic
version of the adiabatic connection is also available [538].

Just as the kinetic energy (8.80), the xc-energy contains vacuum contributions.
The modification of Exc which results from these corrections is most readily illus-
trated for the exchange component. In direct extension of the nonrelativistic limit,
the exact exchange Ex is defined as the contribution to Exc, which is linear in e2 in a
perturbation expansion of Exc with respect to the KS Hamiltonian [350], i.e. by the
first term on the right-hand side of Eq. (8.90). Including the associated counterterms,
Ex can be expressed as

Ex =
1
2

∫
d3x

∫
d4yD0

μν(x− y) tr
[
Gs(x,y)γν Gs(y,x)γμ

]
−1

2

∫
d3x

∫
d4yD0

μν(x− y) tr
[
G0

v(x,y)γν G0
v(y,x)γμ

]
+ΔEhom

x +ΔE inhom
x . (8.92)

Here Gs(x,y) is the propagator of the KS system,

iGs(x,y) = 〈Φ0|T ψ̂0(x)ψ̂0(y)|Φ0〉 (8.93)

= Θ(x0 − y0) ∑
εF<εk

φk(xxx)φ k(yyy)e
−iεk(x0−y0)/(h̄c)

−Θ(y0 − x0) ∑
εk≤εF

φk(xxx)φ k(yyy)e
−iεk(x0−y0)/(h̄c) , (8.94)

and G0
v(x,y) denotes the noninteracting vacuum propagator (F.33). The second term

in (8.92) represents the exchange contribution to 〈0| Ĥe + Ĥγ + Ĥint |0〉. ΔEhom
x is

the counterterm of the exchange energy of the RHEG, as specified in the second
line of Eq. (H.50). ΔE inhom

x is the exchange component of ΔE inhom, determined by
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the first order vertex correction counterterm. In the case of the RHEG the expres-
sion (8.92) reduces to (H.50). On the other hand, the energy (8.92) constitutes the
exchange contribution to the Casimir energy, if Gs(x,y) is replaced by its vacuum
limit (Eq. (8.94) with εF = −mc2).

8.5 Towards a Workable RDFT Scheme: No-pair Approximation

The previous sections indicate the procedure for mapping the field theoretical many-
body problem (8.11) to the auxiliary KS problem. In practice, however, Eqs. (8.76),
(8.86)–(8.92) represent a computational problem of enormous complexity. The eval-
uation of essentially all quantities requires summation over all negative and positive
energy solutions and appropriate renormalization in each step of the iterative KS
procedure.9 As the solution of this selfconsistency problem is extremely involved
even in the case of atoms, one is bound to resort to approximations.

If one aims at electronic structure calculations for molecules or solids, neglect
of all effects related to the existence of antiparticle (negative energy) states is le-
gitimate, as these vacuum corrections only affect the innermost core states signif-
icantly. The technical implementation of this neglect is immediately clear for all
single-particle quantities of RDFT such as the four current jμ , Eq. (8.76), and the
kinetic energy of non-interacting particles Ts, Eq. (8.80),

jμ
v (rrr) = 0 ; Ts,v = 0 . (8.95)

In this way, all contributions to jμ and Ts resulting from the creation of virtual
particle-antiparticle pairs defined by the relativistic KS system, i.e. via the eigen-
states of the relativistic KS equations (8.86), are suppressed.

In the case of many-body terms the treatment of vacuum corrections can only
be specified explicitly in a perturbative framework. The noninteracting reference
Hamiltonian then defines the type of virtual particle-antiparticle pairs which one
deals with. In the present situation, consistency with Eq. (8.95) requires the sup-
pression of KS particle-antiparticle pairs, i.e. the use of a perturbation expansion
in terms of the KS Hamiltonian. All vacuum corrections in the xc-energy Exc are
consistently eliminated, if the contributions of the negative energy solutions to all
intermediate sums over states in the expansion (8.90) are omitted. This so-called
no-pair approximation can be implemented by neglect of the negative energy states
in the KS propagator Gs, which is used for the perturbative evaluation of (8.90),

iGs
np(x,y) = Θ(x0 − y0) ∑

εF<εk

φk(xxx)φ k(yyy)e
−iεk(x0−y0)/(h̄c)

−Θ(y0 − x0) ∑
−mc2<εk≤εF

φk(xxx)φ k(yyy)e
−iεk(x0−y0)/(h̄c) . (8.96)

9 It seems worthwhile to emphasize the fact that the KS vacuum |0s〉 depends on vμ
s and changes

during the iterative solution of (8.86).
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The no-pair approximation has to go hand in hand with an appropriate reordering
of the field operators in the interaction (8.91), so that creation operators are all left
of the annihilation operators. The correct form of Ŵ is obtained by normal-ordering
the product of current operators in the first line of (8.91),

ĵμ
0 (x) ĵν

0 (y) −→ ψ̂†
0 (y)

[
ψ̂†

0 (x)αμ ψ̂0(x)
]

αν ψ̂0(y) . (8.97)

This reordering has to be incorporated in the Feynman rules used for the evaluation
of (8.90). Whenever the end points of a KS Green’s function are linked by a single
photon propagator D0

μν , only the second term in Eq. (8.96) has to be included, as

the first term results from the ordering ψ̂0(x)ψ̂†
0 (y). This restriction can be easily

implemented in frequency space, using the Lehmann representation of (8.96),

Gs
np(x,y) =

∫
dω
2π

e−iω(x0−y0)/(h̄c) Gs
np(xxx,yyy,ω) (8.98)

Gs
np(xxx,yyy,ω) = ∑

εF<εk

φk(xxx)φ k(yyy)
ω − εk + iη

+ ∑
−mc2<εk≤εF

φk(xxx)φ k(yyy)
ω − εk − iη

. (8.99)

If xxx and yyy are linked by a single photon propagator D0
μν(x,y), one simply associates

a factor of eiωε (with an infinitesimal ε > 0) to Gs
np(xxx,yyy,ω), so that the contour of

the subsequent ω-integration has to be closed in the upper half of the complex ω-
plane. For instance, in the case of the exchange energy the no-pair approximation
plus reordering leads to

Enp
x =

1
2

∫
d3x

∫
d4yD0

μν(x− y)
∫

dω
2π

∫
dω ′

2π
e−i(ω−ω ′)(x0−y0)/(h̄c)

×ei(ω+ω ′)ε tr
[
Gs

np(xxx,yyy,ω)γν Gs
np(yyy,xxx,ω ′)γμ] . (8.100)

Quite generally, the no-pair approximation has to be incorporated in Exc during the
derivation of specific approximations.

Even within the no-pair approximation the physical background of the RDFT formalism is not
yet identical with that of the many-body methods based on the no-pair DC- or DCB-Hamiltonian.
In no-pair RDFT still the complete electron–electron interaction mediated by the photon propaga-
tor is taken into account both in the Hartree energy (8.85) and in the construction of approximations
for Exc (see Appendix H). On the other hand, RDFT can be readily restricted to the Coulomb or
Coulomb-Breit level. Choosing Feynman gauge, the full D0

μν , Eq. (8.83),

D0
μν (x− y) =

∫
d4q

(2π)4 e−iq·(x−y) D0
μν (q) (8.101)

D0
μν (q) =

−4πe2

q2 + iη
gμν , (8.102)

reduces to

D0,CB
μν (q) =

4πe2

qqq2

(
1+ (q0)2

qqq2 0

0 gi j

)
(8.103)

in the Coulomb-Breit limit and to
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D0,C
μν (q) =

4πe2

qqq2 gμ0gν0 (8.104)

on the Coulomb level. As soon as EH and the construction of Exc are based on one of these forms
the RDFT analog of the DC- or DCB-approach is obtained. It must be emphasized, however, that
the full propagator (8.102) and its Coulomb-Breit limit (8.103) are equivalent to their Coulomb
gauge counterparts (usually applied in quantum chemistry),

D0
μν (q) =

4πe2

qqq2

(
1 0

0 −qqq2

q2+iη

(
gi j +

qiq j

qqq2

))
(8.105)

D0,CB
μν (q) =

4πe2

qqq2

(
1 0

0 gi j +
qiq j

qqq2

)
, (8.106)

only in gauge invariant expressions.
In general, gauge invariance can only be ensured by the inclusion of the negative energy con-

tinuum states in all intermediate sums over states. As soon as the no-pair approximation is ap-
plied a gauge dependence is introduced (with the exception of the no-pair exchange of RDFT,
Eq. (8.100)—see [350]).

8.6 No-pair RDFT

Applications of the relativistic KS equations always rely on the no-pair approxima-
tion, in which all effects due the creation of particle-antiparticle pairs are neglected.
Let us therefore summarize the basic relations of RDFT in this approximation. This
also allows us to switch to the standard notation of nonrelativistic (C)DFT.

We start by recapitulating the existence theorem of RDFT:

There exists a one-to-one correspondence between the class of all ground
states which just differ by gauge transformations and the associated ground
state four current

jμ(rrr) =
(
n(rrr), jjj(rrr)/c

)
. (8.107)

This correspondence is visualized in Fig. 8.1. The ground state |Ψ0〉 is thus a
unique functional of (n, jjj), as soon as the gauge is fixed universally,

|Ψ0〉 = |Ψ0[ j]〉 ≡ |Ψ0[n, jjj]〉 .

As a result, all gauge invariant observables are unique functionals of (n, jjj), in
particular the total ground state energy,

E[ j] ≡ E[n, jjj] = 〈Ψ0[n, jjj]|Ĥ|Ψ0[n, jjj]〉 ,

where Ĥ is the QED Hamiltonian (8.39). The uniqueness of E[n, jjj] results
from the fact that all |Ψ0〉 which only differ by gauge transformations yield the
same ground state energy (similar to the situation encountered for degenerate
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ground states—compare Sect. 2.2). The functional E[n, jjj] has a minimum for
the ground state four current (n, jjj) which corresponds to the actual external
four potential V μ at hand,

E[n, jjj] < E[n′, jjj′] ∀ (n′, jjj′) �= (n, jjj) . (8.108)

The minimum principle (8.108) allows one to recast the relativistic many-body
problem as a minimization procedure for E[n, jjj]. Assuming that there exists a non-
interacting system whose no-pair ground state four current is identical with the
ground state four current of the interacting system, one can set up a correspond-
ing RKS scheme, which performs the minimization in practice. In this scheme the
components of four current are given by

n(rrr) = ∑
k

Θkφ †
k (rrr)φk(rrr) (8.109)

jjj(rrr) = c∑
k

Θkφ †
k (rrr)αααφk(rrr) , (8.110)

with the no-pair approximation implemented via the occupation factor Θk,

(8.111)

Current conservation implies that the no-pair density integrates up to the number of
electrons N, ∫

d3r n(rrr) = N , (8.112)

while the no-pair current satisfies the relation

∇∇∇ · jjj(rrr) = 0 , (8.113)

just as the complete current, Eq. (8.59). The total no-pair energy and its components
are obtained as

E = Ts +Eext +EC
H +ET

H +Exc (8.114)

Ts = ∑
k

Θk

∫
d3r φ †

k (rrr)
[− ih̄cααα ·∇∇∇+(β −1)mc2]φk(rrr) (8.115)

Eext =
∫

d3r
{

n(rrr)vext(rrr)+
e
c

jjj(rrr) ·AAAext(rrr)
}

(8.116)

EC
H =

e2

2

∫
d3r

∫
d3r′

n(rrr) n(rrr′)
|rrr− rrr′| (8.117)

Θk =

⎧⎨
⎩

0 for εk ≤−2mc2

1 for −2mc2 < εk ≤ εF
0 for εF < εk

.
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ET
H = − e2

2c2

∫
d3r

∫
d3r′

jjj(rrr) · jjj(rrr′)
|rrr− rrr′| , (8.118)

where the rest mass has now been subtracted from the kinetic energy. In addition, the
Hartree energy EH has been split into a Coulomb contribution EC

H and a transverse
component ET

H which reflects the presence of the magnetic (Breit) interaction. The
RKS equations have the same form as in the general situation. Splitting the total
KS potential vμ

s into its time-like and three vector components and switching to the
nonrelativistic notation,

vμ
s =

(
vs,−eAAAs

)
, (8.119)

the RKS equations have the form{−ih̄cααα ·∇∇∇+(β −1)mc2 + vs(rrr)+ eααα ·AAAs(rrr)
}

φk(rrr) = εkφk(rrr) . (8.120)

If the standard notation is also used for the components of vμ
s , the external potential

V μ , the Hartree potential vμ
H and the xc-potential vμ

xc,

V μ =
(− vext/e,AAAext

)
, vμ

H =
(
vH,−eAAAH

)
, vμ

xc =
(
vxc,−eAAAxc

)
, (8.121)

the relations between the potentials are given by

vs(rrr) = vext(rrr)+ vH(rrr)+ vxc(rrr) (8.122)

vH(rrr) = e2
∫

d3r′
n(rrr′)
|rrr− rrr′| (8.123)

vxc(rrr) =
δExc[n, jjj]

δn(rrr)
(8.124)

AAAs(rrr) = AAAext(rrr)+AAAH(rrr)+AAAxc(rrr) (8.125)

AAAH(rrr) = −e
c

∫
d3r′

jjj(rrr′)
|rrr− rrr′| (8.126)

AAAxc(rrr) =
c
e

δExc[n, jjj]
δ jjj(rrr)

. (8.127)

The actual solution of Eq. (8.120) can now be restricted to the positive energy
spectrum—usually one just needs the N energetically lowest positive energy states.
The restriction to positive energy states has be ensured technically by imposing
appropriate boundary conditions or using suitable basis sets. If desired, an a poste-
riori perturbative evaluation of vacuum corrections is possible on the basis of the
no-pair KS ground state |Φ0〉 [539]. While this state differs from the true ground
state, the inner core electrons for which radiative corrections become sizable are
well described within the effective single-particle picture.
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8.7 Variants of RDFT

Even within the no-pair approximation the RKS equations (8.120) are more in-
volved than the nonrelativistic KS equations, primarily due to the fact that the RKS
potential is a four vector. This raises the question whether one can find simplified
forms in which the RKS potential reduces to one or two components. Fortunately,
in most applications there is no external magnetic field

BBBext(rrr) = ∇∇∇×AAAext(rrr) . (8.128)

The external Hamiltonian reduces to

Ĥ ′
ext =

∫
d3x n̂(x)vext(xxx) ; n̂(x) = ĵ0(x) (8.129)

in this case. One can, as discussed in Sect. 8.3, then prove that there exists a one-to-
one mapping between vext, the ground state and the ground state density [535],{

vext

∣∣∣vext + const
}
⇐⇒

{
|Ψ0〉

∣∣∣ |Ψ0〉 from vext + const
}
⇐⇒ n(rrr) . (8.130)

The ground state can be interpreted as a unique functional of the density only,
|Ψ0[n]〉. The same is true for ground state observables as the total energy, E[n], and
its various components. As a consequence, one obtains only one single variational
equation, identical with the time-like component of (8.72), and the RKS equations
(8.109)–(8.127) reduce to{−ih̄cααα ·∇∇∇+(β −1)mc2 + vs(rrr)

}
φk(rrr) = εkφk(rrr) (8.131)

n(rrr) = ∑
k

Θkφ †
k (rrr)φk(rrr) (8.132)

vs(rrr) = vext(rrr)+ vH(rrr)+
δExc[n]
δn(rrr)

+
δET

H[ jjj[n]]
δn(rrr)

. (8.133)

It must be emphasized that a system with an external potential of the type
V μ = (V 0,000) can have a magnetic moment. In the present situation this implies that
the spatial components of the four current must be viewed as functionals of the den-
sity, jjj[n] = 〈Ψ0[n]| ĵjj|Ψ0[n]〉 �= 0. If this functional were known, one could include ET

H
exactly and reformulate the jμ -dependent Exc of Eq. (8.114) as a purely n-dependent
functional, Exc[n] ≡ Exc[n, jjj[n]]. This dependence is, however, not known, so that
one usually simply neglects ET

H and the jjj-dependence of Exc[n, jjj[n]] at this point.
Moreover, for the large class of time-reversal invariant systems (closed subshells) jjj
simply vanishes, so that jjj-dependent terms do not contribute anyway.

As a matter of principle, the density is sufficient for an exact RDFT treatment
of magnetic systems as long as BBBext = 000, similar to the situation in nonrelativistic
DFT. In practice, spin-density functional theory turned out to be necessary for the
treatment of spin-polarized ground states in the nonrelativistic case. In the relativis-
tic case full inclusion of magnetic effects is possible via the four current version of
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RDFT. However, the standard energy functionals of (R)DFT are based on the elec-
tron gas (see Chap. 4 and Sect. 8.8), for which jjj vanishes. Consequently, the deriva-
tion of explicitly jjj-dependent approximations for the energy has to be based on the
response of the electron gas to some perturbing field, for which, however, only lit-
tle information is available. Thus a relativistic extension of spin-density functional
theory is desirable, whose basic variables are suitably generalized spin-densities.

The starting point for this generalization is the Gordon decomposition, in which
the total current is split into the paramagnetic (orbital) component jjjp, a gauge term
proportional to the scalar density ρs and the curl of the magnetization density mmm (a
derivation of the Gordon decomposition is given in Appendix K),

jjj(rrr) = jjjp(rrr)+
e

mc
AAAext(rrr)ρs(rrr)+

c
e

∇∇∇×mmm(rrr) (8.134)

jjjp(rrr) = − ih̄
2m

〈Ψ0|ψ̂†(x)β
[
∇∇∇ψ̂(x)

]− [
∇∇∇ψ̂†(x)

]
βψ̂(x)|Ψ0〉 (8.135)

ρs(rrr) = 〈Ψ0|ψ̂†(x)βψ̂(x)|Ψ0〉 (8.136)

mmm(rrr) = μB〈Ψ0|ψ̂†(x)βΣΣΣψ̂(x)|Ψ0〉 , (8.137)

with

ΣΣΣ =
(

σσσ 000
000 σσσ

)
(8.138)

(the commutator form for operators is not used here, as the no-pair approximation
is implied; μB = eh̄/(2mc)). With the aid of this decomposition one can introduce
a relativistic “spin-density” functional formalism in the following fashion: on the
basis of the Hamiltonian

Ĥ ′′ = Ĥe + Ĥγ + Ĥint +
∫

d3r
{

n̂(rrr)vext(rrr)+ m̂mm(rrr) ·BBBext(rrr)
}

(8.139)

one can establish an existence theorem, which states that the ground state |Ψ0〉 is
uniquely determined by the ground state charge and magnetization densities n,mmm
[535, 540],

|Ψ0〉 ⇐⇒ (n,mmm) =⇒ |Ψ0〉 = |Ψ0[n,mmm]〉 . (8.140)

The expectation value 〈Ψ0[n,mmm]|Ĥ ′′|Ψ0[n,mmm]〉 then defines the ground state energy
functional E[n,mmm]. As E[n,mmm] depends on BBBext only via

〈Ψ0[n,mmm]|
∫

m̂mm ·BBBext|Ψ0[n,mmm]〉

the limit BBBext → 000 can be taken readily. If BBBext �= 000, the Hamiltonian (8.139) can be
viewed as an approximation, neglecting the coupling between BBBext and the orbital
current. On the other hand, for BBBext = 000 the Hamiltonian (8.139) provides an exact
representation of the system. As a consequence also the relativistic “spin” density
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functional formalism (often abbreviated as RSDFT) based on (8.139), i.e. the map
indicated in Eq. (8.140), becomes exact for BBBext = 000—in this limit RSDFT simply
covers a more general, though artificial, class of systems than required.

The RKS equations corresponding to (8.139) rely on a single-particle represen-
tation of the charge and the magnetization density [535, 541, 536, 542],{

− ih̄cααα ·∇∇∇+(β −1)mc2 + vs + μBβΣΣΣ ·BBBs

}
φk = εkφk (8.141)

n(rrr) = ∑
k

Θkφ †
k (rrr)φk(rrr) (8.142)

mmm(rrr) = μB ∑
k

Θkφ †
k (rrr)βΣΣΣφk(rrr) (8.143)

vs(rrr) = vext(rrr)+ vH(rrr)+
δExc[n,mmm]

δn(rrr)
+

δET
H[ jjj[n,mmm]]
δn(rrr)

(8.144)

BBBs(rrr) = BBBext(rrr)+
δExc[n,mmm]

δmmm(rrr)
+

δET
H[ jjj[n,mmm]]
δmmm(rrr)

. (8.145)

In Eqs. (8.141)–(8.145) ET
H has been included consistently, with the understand-

ing that jjj is a unique functional of n and mmm, due to (8.140). However, as in
Eqs. (8.131)–(8.133) ET

H is usually neglected at this point. Equations (8.141)–
(8.145) provide an appropriate starting point for density functional studies of mag-
netic systems with vanishing or small orbital currents. They can, in particular, be
used to discuss the magnetic anisotropy of solids [543]. They have nevertheless
not yet found widespread use.10 The reasons are their rather intricate structure
and the lack of practical approximations for Exc[n,mmm]. Only the relativistic LDA
(RLDA) for Ex[n,mmm] is available [544–546, 541]. Some prototype results obtained
with Eqs. (8.141)–(8.145) can be found in [547–549, 61].

An additional simplification offers itself, if the variation of the orientation of mmm
with rrr (i.e. the non-collinearity of mmm) is not relevant for the system. One can then
restrict the (artificial) coupling between the electrons and the magnetic field to its
z-component,

Ĥ ′′′ = Ĥe + Ĥγ + Ĥint +
∫

d3r {n̂(rrr)vext(rrr)+ m̂z(rrr)Bext,z(rrr)} , (8.146)

so that the ground state is uniquely determined by n and mz,

|Ψ0〉 ⇐⇒ (n,mz) =⇒ |Ψ0〉 = |Ψ0[n,mz]〉 , (8.147)

or, alternatively, by the generalized spin-densities n±,

n±(rrr) =
1
2

[
n(rrr)± 1

μB
mz(rrr)

]
. (8.148)

10 Compare, however, the discussion of the weakly relativistic limit of the mmm-dependent RDFT
formalism in Sect. 2.5.
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In terms of these quantities the corresponding RKS equations read{
−ih̄cααα ·∇∇∇+(β −1)mc2 + ∑

σ=±
Pσ vs,σ

}
φk = εkφk (8.149)

n±(rrr) = ∑
k

Θkφ †
k (rrr)P±φk(rrr) (8.150)

vs,σ (rrr) = vext(rrr)+ vH(rrr)+ vxc,σ (rrr) (8.151)

vxc,σ (rrr) =
δExc[n+,n−]

δnσ (rrr)
(8.152)

P± =
1±βΣz

2
. (8.153)

Here Bext,z has already been set to zero and ET
H has been neglected. The reason for

using the densities n±, rather than n and mz, becomes obvious as soon as one realizes
the explicit form of the projection matrices (8.153),

P+ =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ , P− =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ . (8.154)

After insertion of (8.154), Eqs. (8.149)–(8.152) are immediately identified as the
direct relativistic extension of the standard two-component form of nonrelativistic
spin-density functional theory. This suggests the use of nonrelativistic spin-density
functionals Exc[n↑,n↓] in Eq. (8.152), with n↑,n↓ replaced by n+,n−. With this ap-
proximation, which neglects relativistic contributions to Exc[n+,n−], Eqs. (8.149)–
(8.152) represent the standard RDFT approach to magnetic systems. Some prototype
results for atoms obtained with Eqs. (8.149)–(8.152) can be found in [550–556].
A comparison of collinear with non-collinear results for open-subshell atoms and
molecules is presented in [547, 548, 61].

It remains to discuss an alternative to the full RKS equations (8.120)–(8.127) for
systems with a non-vanishing orbital current. Such an approach necessarily has to
incorporate all components of the Gordon decomposition (8.134). The question then
is: can one recast the orbital current

jjjorb(rrr) = jjjp(rrr)+
e

mc
AAAext(rrr)ρs(rrr) (8.155)

in a way which allows a simpler combination with the magnetization density mmm than
Eq. (8.134)? The answer is yes [536, 537]. The starting point of this reformulation
is current conservation, Eq. (8.113). Applied to the Gordon decomposition of jjj,
current conservation leads to

∇∇∇ · jjjorb(rrr) = 0 . (8.156)
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However, according to Helmholtz’s theorem [557] any vector field with vanishing
divergence can be expressed as [536]

jjjorb(rrr) =
c
e

∇∇∇×mmml(rrr) , (8.157)

with

mmml(rrr) =
e
c

∫
d3r′

∇∇∇′ × jjjorb(rrr′)
4π|rrr− rrr′| =

e
c

∫
d3r′

jjjorb(rrr′)× (rrr− rrr′)
4π|rrr− rrr′|3 (8.158)

(provided this integral exists, which implies that jjjorb vanishes sufficiently fast in
the limit |rrr| → ∞). Obviously, mmml determines jjjorb uniquely via Eq. (8.157). On the
other hand, one can add an arbitrary gradient field to mmml without that jjjorb changes.

However, as soon as one requires ∇∇∇ ·mmml = 0 as well as mmml(rrr)
|rrr|→∞−−−→ 0 (which is

automatically legitimate for finite systems and may be implemented for extended
systems via a suitable limiting procedure), the representation (8.157), (8.158) be-
comes unique. This then establishes a one-to-one correspondence between jjj and
the sum of mmm and mmml [536],

jjj(rrr) =
c
e

∇∇∇×MMM(rrr) (8.159)

MMM(rrr) = mmml(rrr)+mmm(rrr) . (8.160)

The fact that MMM uniquely determines jjj can be exploited in two different ways.11

In the first approach one uses MMM for an indirect evaluation of the spatial components
AAAxc of the original xc-potential (8.127). One starts with the observation that, in view
of Eq. (8.159), the complete xc-functional Exc[n, jjj] can be directly expressed in
terms of MMM,

Exc[n, jjj] ≡ Ēxc[n,MMM] . (8.161)

Now consider the relation between AAAxc and the “magnetic field” resulting from
Ēxc[n,MMM],

BBBxc(rrr) :=
δ Ēxc[n,MMM]

δMMM(rrr)
. (8.162)

Use of the unique correspondence between MMM and jjj as well as of the chain rule
allows to rewrite BBBxc as (note the conventions (8.107) and (8.127))

11 In addition, one can, of course, rewrite the magnetic contribution to the external energy (8.116)
as

e
c

∫
d3r AAAext(rrr) · jjj(rrr) =

∫
d3r BBBext(rrr) ·MMM(rrr) ,

in order to avoid the problems resulting from the lacking periodicity of AAAext in the case of solids.
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Bk
xc(rrr) = ∑

l

∫
d3r′

δExc[n, jjj]
δ jl(rrr′)

δ jl(rrr′)
δMk(rrr)

= ∑
lmn

εlmn

∫
d3r′ Al

xc(rrr
′)

δ
δMk(rrr)

∂
∂ r′m

Mn(rrr′)

=⇒ BBBxc(rrr) = ∇∇∇×AAAxc(rrr) . (8.163)

As a direct consequence one finds

∇∇∇ ·BBBxc(rrr) = 0 . (8.164)

Given this relation, however, one can apply Helmholtz’s theorem to BBBxc to obtain
the relation

BBBxc(rrr) = ∇∇∇×
∫

d3r′
∇∇∇′ ×BBBxc(rrr′)

4π|rrr− rrr′| = ∇∇∇×
∫

d3r′
BBBxc(rrr′)× (rrr− rrr′)

4π|rrr− rrr′|3 .

In view of the identity (8.163) one thus arrives at

AAAxc(rrr) =
∫

d3r′
BBBxc(rrr′)× (rrr− rrr′)

4π|rrr− rrr′|3 , (8.165)

provided one ensures the uniqueness of AAAxc by choosing Coulomb gauge and the

boundary condition AAAxc(rrr)
|rrr|→∞−−−→ 0.

Equation (8.165) can replace the original determination of AAAxc by direct func-
tional differentiation of Exc[n, jjj]. In this alternative evaluation of AAAxc [536] one first
calculates the complete KS current, utilizing the Gordon decomposition,

jjj(rrr) = jjjorb(rrr)+
c
e

∇∇∇×mmm(rrr) , (8.166)

with

jjjorb(rrr) = − ih̄
2m ∑

k

Θk

[
φ †

k (rrr)[∇∇∇φk(rrr)]− [∇∇∇φ †
k (rrr)]φk(rrr)

]
+

e
mc

AAAs(rrr)∑
k

Θkφ †
k (rrr)βφk(rrr) (8.167)

and the KS magnetization density given as in (8.143). Only the total jjj is exactly re-
produced by the full KS equations, so that the quantity (8.167) need not be identical
with the exact orbital current (8.155) (for brevity we will nevertheless use the same
notation for the KS currents as for their “exact” counterparts). However, no error is
introduced, as long as both contributions to (8.166) are handled consistently. Once
jjjorb and mmm are available, one can evaluate MMM via Eqs. (8.160) and (8.158). Insertion
into Eq. (8.162) then yields BBBxc. Finally, AAAxc is obtained from Eq. (8.165).

Why could this rather involved determination of AAAxc be of any interest? The
answer is based on the fact that the functional dependence of Ēxc[n,MMM] on MMM is



382 8 Relativistic Density Functional Theory

the same as that of the purely spin-dependent functional Exc[n,mmm] (defined by the
mapping (8.140) on mmm), as the exact xc-functional only depends on the sum of mmm
and mmml and Exc[n,mmm] is exact for all systems with mmml ≡ 000. In actual applications of
the above approach one could thus e.g. use the nonrelativistic LDA for Ēxc[n,MMM].

In the second way to exploit the unique relation between jjj and MMM one gives up
the original form of the KS potential and rewrites the magnetic contribution to the
xc-potential in (8.120),

Θkeααα ·AAAxc(rrr)φk(rrr) =
∫

d3r′
δExc[n, jjj]

δ jjj(rrr′)
· δ jjj(rrr′)

δφ †
k (rrr)

=
∫

d3r′
δ Ēxc[n,MMM]

δMMM(rrr′)
· δMMM(rrr′)

δφ †
k (rrr)

. (8.168)

Using the decomposition (8.159), (8.160) for the KS current (8.166), one arrives at

Θkeααα ·AAAxc(rrr)φk(rrr) =
∫

d3r′ BBBxc(rrr′) · δmmml(rrr′)
δφ †

k (rrr)
+μB Θk BBBxc(rrr) ·βΣΣΣφk(rrr) . (8.169)

The second term on the right-hand side is immediately identified as the spin con-
tribution to the magnetic xc-potential, already included in the KS equation (8.141).
The first term represents the associated orbital contribution. For any given functional
Ēxc[n,MMM] Eq. (8.169) allows an inclusion of the complete orbital contribution to the
xc-potential in the KS equations,12

{
− ih̄cααα ·∇∇∇+(β −1)mc2 + vs + μBβΣΣΣ ·BBBxc + P̂orb

xc

}
φk = εkφk , (8.170)

with

ΘkP̂orb
xc φk(rrr) =

∫
d3r′ BBBxc(rrr′)

δmmml(rrr′)
δφ †

k (rrr)
(8.171)

=
e
c

∫
d3r′ BBBxc(rrr′) ·

∫
d3r′′

[
δ jjjorb(rrr′′)
δφ †

k (rrr)
× (rrr′ − rrr′′)

4π|rrr′ − rrr′′|3
]

(8.172)

12 The Breit contributions have been neglected in (8.170) for brevity. However, the transverse
Hartree potential (8.126) can also be rewritten following Eq. (8.168). Using Eq. (8.166), one ob-
tains [537]

ET
H = −1

2

∫
d3r

∫
d3r′

[∇∇∇×MMM(rrr)] · [∇∇∇′ ×MMM(rrr′)]
|rrr− rrr′| .

The resulting magnetic field is then given by

BBBH(rrr) =
δ ĒH[MMM]
δMMM(rrr)

=
e
c

∫
d3r′

jjj(rrr′)× (rrr− rrr′)
|rrr− rrr′|3 .

BBBH adds to BBBxc in the KS equation (8.170).
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The orbital polarization term P̂orb
xc φk can be evaluated further, if one uses the KS

representation of jjjorb, Eq. (8.167),

P̂orb
xc φk(rrr)

=
e

mc

∫
d3r′ BBBxc(rrr′) ·

[
(rrr− rrr′)

4π|rrr− rrr′|3 ×
[
−ih̄∇∇∇+

e
c

AAAs(rrr)
]

βφk(rrr)
]

(8.173)

=
e

mc

∫
d3r′

[
BBBxc(rrr′)× (rrr− rrr′)

4π|rrr− rrr′|3
]
·
[
−ih̄∇∇∇+

e
c

AAAs(rrr)
]

βφk(rrr) . (8.174)

Use of (8.165) finally yields

P̂orb
xc φk(rrr) =

e
mc

AAAxc(rrr) ·
[
−ih̄∇∇∇+

e
c

AAAs(rrr)
]

βφk(rrr) . (8.175)

As they stand, Eqs. (8.171)–(8.175) are not yet very helpful for applications, as
knowledge of AAAxc or related quantities is required (as in the original KS equations).
However, these equations offer themselves for an approximate treatment. One can,
for instance, establish a more direct relation between mmml and jjjorb than provided by
Eq. (8.158) in the case of specific situations (symmetries) [558] and then proceed
from Eq. (8.171). The same is possible if one uses some ansatz for mmml [537, 28]. In
order to utilize the forms (8.172)–(8.175) one can insert a complete set of localized
orbitals,

∑
l

ψl(rrr)ψ†
l (rrr′′) = δ (3)(rrr− rrr′′) , (8.176)

(neglecting the negative energy states in the no-pair approximation) to obtain

P̂orb
xc φk(rrr) = β ∑

l

Clk ψl(rrr) (8.177)

with Clk e.g. given by

Clk =
e

mc

∫
d3r′ BBBxc(rrr′)

·
∫

d3r′′ ψ†
l (rrr′′)

[
(rrr′′ − rrr′)

4π|rrr′′ − rrr′|3 ×
[
−ih̄∇∇∇′′ +

e
c

AAAs(rrr′′)
]

φk(rrr′′)
]

. (8.178)

The coefficients Clk may then be evaluated approximately, neglecting for instance all
relativistic corrections. Once the term AAAs/c is ignored, the remaining operator has
the structure of a nonlocal angular momentum, which suggests the approximation13

Clk ≈ e
mc ∑

n

∫
d3r′ ψ†

l (rrr′)BBBxc(rrr′) · [rrr′ × (−ih̄∇∇∇′)ψn(rrr′)]
∫

d3r ψ†
n (rrr)φk(rrr) .

(8.179)

13 One can show rigorously that the right-hand side of Eq. (8.179) is one contribution to the original
nonlocal angular momentum integral,
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If the localized states ψn are chosen as eigenfunctions of the angular momentum
ψn → ψnlmls and BBBxc is restricted to the collinear form (0,0,Bxc), the expression
(8.179) finally simplifies to

Cn′l′m′
l s
′,k ≈ 2μB ∑

nlmls

〈ψnlmls|φk〉ml

∫
d3r Bxc(rrr)ψ†

n′l′m′
l s
′(rrr)ψnlmls(rrr) , (8.180)

which can serve as motivation for empirical orbital polarization terms as the Brooks
correction [559] (see also [560] for a treatment of orbital polarization within non-
relativistic CDFT).

8.8 Relativistic Exchange-Correlation Functional: Concepts and
Illustrative Results

There is a large variety of applications of R(S)DFT in the literature (see [561–568]
for reviews, more specific results may e.g. be found in [569–587, 322, 62] for solids
and in [588–605] for molecules). As in the nonrelativistic context no attempt is
made here to review this vast body of literature. Rather the presentation focusses on
a brief introduction of the few inherently relativistic approximations for Exc and a
few prototype results. The latter primarily serve to illustrate the limited importance
of the relativistic contributions to Exc, in particular of the transverse corrections, for
standard electronic structure properties.

8.8.1 Relativistic Implicit Functionals: Optimized Potential Method

Given the importance of a proper cancellation of self-interaction in nonrelativis-
tic DFT, the question concerning an exact treatment of exchange in RDFT arises
automatically (for a relativistic extension of the SIC-LDA see [606]). The exact
exchange of RDFT is given by Eq. (8.100) (within the no-pair approximation). Ex-
plicit evaluation of (8.100) using Feynman gauge yields14 [350]

∫
d3r′ BBBxc(rrr′) ·

[∫
d3r′′ ψ†

l (rrr′′)
(rrr′′ − rrr′)×∇∇∇′′φk(rrr′′)

4π|rrr′′ − rrr′|3
]

=
∫

d3r′ ψ†
l (rrr′)BBBxc(rrr′) · [rrr′ ×∇∇∇′φk(rrr′)]

−
∫

d3r′
∫

d3r′′ ψ†
l (rrr′′)

[rrr′ ×∇∇∇′′φk(rrr′′)] · [(rrr′′ − rrr′) ·∇∇∇′]BBBxc(rrr′)
4π|rrr′′ − rrr′|3 .

14 The exchange energy defined in this fashion should not be confused with the relativistic HF
(RHF) exchange energy (at least from a rigorous point of view), as the RKS-orbitals satisfy the
RKS equations (8.120) with their multiplicative potential, rather than the nonlocal RHF-equations.
In fact, compared with the RHF-approach the exact exchange of RDFT has the advantage of be-
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Ex = −e2

2 ∑
k,l

ΘkΘl

∫
d3r

∫
d3r′

cos(ωkl |rrr− rrr′|)
|rrr− rrr′|

×φ †
k (rrr)αμ φl(rrr) φ †

l (rrr′)αμ φk(rrr′) (8.181)

(ωkl = |εk − εl |/(h̄c)), which can be decomposed into the standard Coulomb com-
ponent,

EC
x = −e2

2 ∑
k,l

ΘkΘl

∫
d3r

∫
d3r′

φ †
k (rrr)φl(rrr) φ †

l (rrr′)φk(rrr′)
|rrr− rrr′| , (8.182)

and a transverse remainder,

ET
x = Ex −EC

x . (8.183)

The expressions (8.181)–(8.183) represent implicit functionals of the four current
in the same sense as Ts is a functional of jμ : the RKS-spinors are unique func-
tionals of jμ , as the ground state Slater determinant of the KS system is a unique
functional of jμ by virtue of the relativistic existence theorem for noninteracting
particles. Orbital-dependent functionals can also be derived for the relativistic cor-
relation functional Ec = Exc−Ex, following the lines of Sect. 6.4 (see [350, 556] for
approximations of this type).

The evaluation of the xc-potential vμ
xc = δExc/δ jμ ,15 for functionals of the type

(8.181)–(8.183), requires the extension of the OPM introduced in Chap. 6. For this
relativistic generalization (ROPM) one can follow any of the methods of Sect. 6.2.
Here we use the chain rule for functional differentiation in order to replace the
derivative with respect to jμ by derivatives with respect to φk and εk [607, 350],

δExc[φ
(†)
k ,εk]

δ jμ(rrr)
=

∫
d3r′

δvρ
s (rrr′)

δ jμ(rrr) ∑
k

{∫
d3r′′

[
δφ †

k (rrr′′)
δvρ

s (rrr′)
δExc

δφ †
k (rrr′′)

+ c.c.

]

+
δεk

δvρ
s (rrr′)

∂Exc

∂εk

}
. (8.184)

The k-summation on the right-hand side of (8.184) runs over all KS-levels, including
the negative continuum states. As soon as the no-pair approximation is used for Exc,

it reduces, however, to states with εk >−mc2. The derivatives of φ (†)
k and εk with re-

spect to vρ
s on the right-hand side of (8.184) can be evaluated as in Sect. 6.2.2, using

the RKS equation (8.86). Multiplication of Eq. (8.184) by the static KS current–
current response function,

ing gauge invariant due to the multiplicative nature of the RKS exchange potential [350], which
justifies the use of the more simple Feynman gauge in (8.181).
15 For the discussion of the fully relativistic form of the ROPM it is advantageous to use the four
vector notation (8.89), rather than the nonrelativistic convention (8.124), (8.127). However, the
transition from the Minkowski form to the latter is easily possible via Eqs. (8.107) and (8.121).
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χμν
s (rrr,rrr′) =

δ jμ(rrr)
δvs,ν(rrr′)

= −∑
k

Θk φ †
k (rrr)αμ Gk(rrr,rrr′)αν φk(rrr′)+ c.c. (8.185)

Gk(rrr,rrr′) = ∑
l �=k

φl(rrr) φ †
l (rrr′)

εl − εk
, (8.186)

and subsequent integration leads to the ROPM integral equation,∫
d3r′ χμν

s (rrr,rrr′)vxc,ν(rrr′) = Λ μ
xc(rrr) , (8.187)

with the inhomogeneity

Λ μ
xc(rrr) = −∑

k

∫
d3r′

[
φ †

k (rrr)αμ Gk(rrr,rrr′)
δExc

δφ †
k (rrr′)

+ c.c.

]

+∑
k

φ †
k (rrr)αμ φk(rrr)

∂Exc

∂εk
. (8.188)

The integral equation (8.187) has to be solved selfconsistently together with the
RKS equations (8.86). Of course, the spatial components vi

xc of the solution of
Eq. (8.187) do not vanish in general, so that the use of orbital-dependent functionals
automatically accounts for the current dependence of Exc.

In this procedure one also has to fix the gauge of vμ
xc. First of all, similar to the

situation without magnetic fields, v0
xc is only defined up to a global constant, as∫

d3r′ χμ0
s (rrr,rrr′) =

∫
d3r χ0μ

s (rrr,rrr′) = 0 (8.189)

(due to charge conservation). This is, however, not a real problem. For finite sys-

tems the constant is usually defined by the requirement v0
xc(rrr)

|rrr|→∞−−−→ 0. For infinite
systems the average of v0

xc in the unit cell may be set to zero. The handling of the
spatial components of vμ

xc is somewhat more complicated. In the no-pair approxi-
mation the l-summation in Gk, Eq. (8.186), is restricted to εk > −mc2. If one uses
this approximation for Gk in (8.185), the transversality of χμν

s is lost (for a detailed
discussion of this issue see [350]),

∂iχ iν
s (rrr,rrr′) �= 0 . (8.190)

Therefore three-vector potentials vvvxc = −eAAAxc which differ by static gauge trans-
formations lead to different results for the left-hand side of (8.187). As a result, the
gauge of vvvxc is indirectly fixed. On the other hand, without the no-pair approxima-
tion the gauge of vvvxc must be chosen explicitly.

A closer analysis of the integral equation (8.187) reveals important properties of
the xc-potential [350]. One finds that both the KLI identity for the highest occupied
orbital, Eq. (6.57), and the asymptotic behavior of v0

x, Eq. (6.58),
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v0
x(rrr) −−−→

|rrr|→∞
− e2

r
, (8.191)

remain unchanged in the relativistic situation (for finite systems). Moreover, the
condition (6.59) also applies to the relativistic Exc. Equation (6.59) is, for instance,
manifestly satisfied by the exact exchange (8.181).

ROPM equations are also available for the variants of RDFT outlined in Sect. 8.7.
The purely n-dependent ROPM formalism [608, 609] is given by the time-like com-
ponents of Eqs. (8.185)–(8.188). On the other hand, for the mmm-dependent formalism
the set of coupled OPM equations [610, 556],∫

d3r′
{

χnn(rrr,rrr′)vxc(rrr′)+ χχχnm(rrr,rrr′) ·BBBxc(rrr′)
}

= −∑
k

∫
d3r′ φ †

k (rrr)Gk(rrr,rrr′)
δExc

δφ †
k (rrr′)

+ c.c. (8.192)

∫
d3r′

{
χχχmn(rrr,rrr

′)vxc(rrr′)+ χχχmm(rrr,rrr′) ·BBBxc(rrr′)
}

= −μB ∑
k

∫
d3r′ φ †

k (rrr)βΣΣΣGk(rrr,rrr′)
δExc

δφ †
k (rrr′)

+ c.c. , (8.193)

involves the response functions

χnn(rrr,rrr′) =
δn(rrr)

δvs(rrr′)
= −∑

k

Θkφ †
k (rrr)Gk(rrr,rrr′)φk(rrr′)+ c.c. (8.194)

χχχmn(rrr,rrr
′) =

δmmm(rrr)
δvs(rrr′)

= −μB ∑
k

Θkφ †
k (rrr)βΣΣΣGk(rrr,rrr′)φk(rrr′)+ c.c. (8.195)

χχχnm(rrr,rrr′) =
δn(rrr)

δBBBs(rrr′)
= χχχ†

mn(rrr
′,rrr) (8.196)

χχχmm(rrr,rrr′) =
δmmm(rrr)
δBBBs(rrr′)

= −μ2
B ∑

k

Θkφ †
k (rrr)βΣΣΣGk(rrr,rrr′)βΣΣΣφk(rrr′)+ c.c. , (8.197)

with Gk given by (8.186). Contributions to (8.192), (8.193) arising from ∂Exc/∂εk

have been suppressed for brevity. The derivation of Eqs. (8.192)–(8.197) follows
Sect. 6.2.2.

Finally, in the limit of collinear magnetization density, mmm = (0,0,mz), one can
express the OPM equations in terms of the generalized spin-densities (8.148),

∑
σ ′

∫
d3r′ χσσ ′(rrr,rrr′)vxc,σ ′(rrr′)

= −∑
k

∫
d3r′ φ †

k (rrr)Pσ Gk(rrr,rrr′)
δExc

δφ †
k (rrr′)

+ c.c. (8.198)

χσσ ′(rrr,rrr′) =
δnσ (rrr)

δvs,σ ′(rrr′)
= −∑

k

Θkφ †
k (rrr)Pσ Gk(rrr,rrr′)Pσ ′φk(rrr′)+ c.c. . (8.199)
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Gk again has the form (8.186), Pσ is given by (8.153). Each of the solutions vx,σ of
(8.198) satisfies the relation (8.191) in the case of finite systems [556].

The numerical solution of the integral equations (8.185)–(8.188), (8.192)–(8.197)
or (8.198), (8.199) is complicated by the fact that the evaluation of Gk requires a
summation over the complete positive energy spectrum. In the nonrelativistic situ-
ation the semi-analytical KLI approximation [351] has been introduced to address
this problem (see Sect. 6.2.6). The KLI approximation can be readily extended to all
variants of the relativistic OPM by use of a closure approximation for Gk [350, 610],
in analogy to Eq. (6.61) (for an alternative derivation see [607]). The relativistic
KLI scheme shares all the properties of its nonrelativistic counterpart discussed in
Sect. 6.2.6 (for further information see e.g. [529]).

8.8.2 Role of Relativistic Corrections in Exc: I. Prototype Results
for Atoms

The exact Ex allows an unambiguous investigation of the importance of relativistic
corrections in the xc-functional and provides reference data for an analysis of ap-
proximate functionals. Some illustrative results obtained by solution of the ROPM
equation (8.187) within the x-only limit (REXX) are given in Tables 8.1–8.5 and
Figs. 8.2–8.4. Table 8.1 lists the x-only ground state energies of closed-subshell
atoms obtained with three different forms of Ex: the Coulomb limit (8.182), the fully
relativistic exchange (8.181) and its Coulomb-Breit approximation. In all three cases

Table 8.1 Exchange-only ground state energies from REXX and RHF calculations for closed sub-
shell atoms: Coulomb(C)- and Coulomb-Breit(C+B)-limit in comparison with complete trans-
verse exchange (C+T) [350]. For the RHF approximation the energy difference with respect to
the REXX approach is given, ΔE = E(RHF)−E(REXX). These results are obtained by (a) finite
difference calculations [611] and (b) basis set expansion [462] (all energies in mHartree—nuclear
model and c as in [462]).

Atom −EC ΔEC ΔEC −EC+B ΔEC+B −EC+T

REXX RHFa RHFb REXX RHFb REXX
He 2862 0 0 2862 0 2862
Ne 128690 −2 −2 128674 −2 128674
Ar 528678 −5 −5 528546 −5 528546
Zn 1794598 −14 1793838 −12 1793841
Kr 2788849 −13 −12 2787423 −12 2787431
Cd 5593299 −20 5589466 −15 5589500
Xe 7446882 −19 −6 7441115 −3 7441179
Yb 14067621 −48 14053517 14053764
Hg 19648826 −39 19626225 9 19626715
Rn 23601947 −35 −19 23572625 11 23573332
No 36740625 −57 36685157 36686790
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standard finite difference methods have been applied in the REXX calculations, so
that there are no basis set limitations. In the Coulomb limit an unambiguous com-
parison with relativistic Hartree-Fock (RHF) results is possible, as accurate finite
difference RHF data are available in this limit [611]. The differences between the
Coulomb-REXX and Coulomb-RHF energies are very similar to those observed in
the nonrelativistic limit (compare Table 6.1): due to the multiplicative nature of the
OPM exchange potential, the REXX energies are slightly higher than the RHF data,
although the same energy expression is minimized. However, the actual differences
are extremely small. In fact, they are as small as those resulting from usual basis
set limitations: the differences between the fully numerical RHF energies and those
obtained with a Gaussian basis set are of the same order of magnitude as the dif-
ferences between REXX and RHF data. Table 8.1 also shows the fully relativistic
x-only ground state energies obtained by selfconsistent treatment of the complete
transverse exchange. It is obvious that retardation corrections to the Breit interac-
tion are only relevant for truly heavy atoms.

A microscopic analysis of the transverse exchange is provided in Fig. 8.2. Three
results for the relativistic vx of Hg (Coulomb, Coulomb-Breit and complete inter-
action) are shown together with the nonrelativistic vx. Taking into account that the
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Fig. 8.2 REXX potentials for neutral Hg: Selfconsistent Coulomb (C), Coulomb-Breit (C+B) and
fully transverse (C+T) results in comparison with nonrelativistic limit (NR).

r-expectation values of the 1s1/2 and 2s1/2 orbitals are 0.017 Bohr and 0.069 Bohr,
respectively, one realizes that the transverse corrections in vx are not only significant
for the K-shell, but also for the L-shell. In fact, the difference between the complete
relativistic vx and its Coulomb limit is as large as the difference between the latter
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and the nonrelativistic vx. The transverse exchange potential is repulsive, as is to be
expected from the fact that the retarded exchange of photons reduces the interaction
strength of the instantaneous Coulomb interaction.

The corrections shown in Fig. 8.2 are also visible in the single-particle spectrum
of Hg listed in Table 8.2. The table demonstrates that not only the K- and L-shell

Table 8.2 Exchange-only single particle energies (−εnl j) for neutral Hg from selfconsistent REXX
and RHF calculations, using (i) the complete relativistic exchange-only potential (C+T), (ii) its
Coulomb-Breit approximation (C+B), and (iii) its Coulomb (C) limit. Also given are RGGA re-
sults which have been obtained with the relativistic extension [612] of the Becke functional [219],
either for exchange-only (RB88) or including the Lee-Yang-Parr correlation GGA (RBLYP) [221]
(all energies in Hartree [613]).

Level REXX RHF RB88 RBLYP
C+T C+B C C C+T C+T

1s1/2 3036.871 3032.278 3047.431 3074.229 3036.453 3036.485
2s1/2 538.444 537.853 540.057 550.251 538.051 538.085
2p1/2 516.198 515.546 518.062 526.855 516.097 516.132
2p3/2 445.422 445.013 446.683 455.157 445.276 445.311
3s1/2 127.956 127.858 128.273 133.113 127.703 127.738
3p1/2 117.994 117.885 118.351 122.639 117.857 117.893
3p3/2 102.302 102.236 102.537 106.545 102.152 102.187
3d3/2 86.069 86.036 86.202 89.437 85.959 85.994
3d5/2 82.692 82.665 82.808 86.020 82.582 82.617
4s1/2 28.361 28.351 28.428 30.648 28.037 28.072
4p1/2 24.090 24.075 24.162 26.124 23.819 23.854
4p3/2 20.321 20.315 20.364 22.189 20.024 20.059
4d3/2 13.397 13.397 13.412 14.797 13.151 13.186
4d5/2 12.689 12.690 12.701 14.053 12.441 12.476
4 f 5/2 3.766 3.770 3.757 4.473 3.571 3.607
4 f 7/2 3.613 3.616 3.603 4.312 3.417 3.453
5s1/2 4.394 4.394 4.404 5.103 4.278 4.313
5p1/2 3.004 3.002 3.013 3.538 2.886 2.920
5p3/2 2.360 2.360 2.364 2.842 2.219 2.253
5d3/2 0.507 0.507 0.506 0.650 0.367 0.399
5d5/2 0.440 0.441 0.440 0.575 0.300 0.332
6s1/2 0.330 0.330 0.330 0.328 0.222 0.249

energies experience the transverse correction. Even in the case of the 4 f -levels the
energy shift induced by vT

x is as large as 25% of the shift resulting from inclusion of
correlation. On the other hand, the valence levels remain unaffected by vT

x .
The last statement is corroborated by the atomic ionization potentials (IPs) given

in Table 8.3. Table 8.3 focusses on the ionization of s-electrons, which experience
relativistic effects most strongly.16 The table confirms that the transverse interaction

16 The data in this table have been generated with the purely n-dependent version of RDFT, in
which all KS particles experience only the total vs, but no magnetic field. This is legitimate as
long as only methods are compared and all methods are applied in the same fashion. In the case
of the open s-shells studied in Table 8.3 the differences between the IPs of this approach and those
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Table 8.3 Exchange-only ionization potentials of neutral atoms calculated from total energy dif-
ferences between neutral and singly ionized states: for the REXX approach the selfconsistent inclu-
sion of the transverse exchange (C+T) is compared with complete neglect of ET

x (C). The (R)GGA
data have been obtained with the B88-functional [219] and its relativistic extension [612] (all en-
ergies in mHartree [613]).

Atom REXX GGA RGGA
C+T C C C+T

Li 196 196 179 179
Na 181 181 173 173
K 147 147 143 143
Rb 139 139 137 137
Cs 127 127 127 127
Fr 132 132 132 132

Cu 234 234 279 279
Ag 229 229 263 262
Au 279 280 321 319

Zn 284 284 339 339
Cd 269 269 316 315
Hg 312 313 365 363

is irrelevant for the outermost electrons and therefore for most quantities of interest
in quantum chemistry and condensed matter physics. If desired at all, transverse cor-
rections can be added perturbatively (for a detailed comparison of the selfconsistent
with the perturbative treatment of ET

x see [350, 529]).
The mmm-dependent REXX formalism allows the investigation of open-subshell

atoms. The obvious question in this context concerns the balance between spin–
orbit and exchange effects. The energetic ordering of the KS-levels and therefore of
the ground state predicted by an RKS calculation depends on the relative size of the
exchange interaction, favoring alignment of spins (more precisely, of magnetic mo-
ments), and of the spin–orbit splitting. This balance has been examined within the
collinear REXX approach (8.198), (8.199), neglecting transverse exchange [556].
Some prototype results for the 6p-elements are shown in Fig. 8.3. It is obvious that,
even for these quite heavy elements, the strong spin alignment, that results from the
exact exchange, breaks up the ordering of levels according to good total angular
momentum j induced by spin–orbit coupling. This is particularly noticeable in Pb,
for which the closing of a relativistic subshell is possible.

As a further illustration of the role of spin-alignment we consider the lowest-
lying states of the chromium atom. The experimental excitation energies from the
3d5(6S)4s 7S3 ground state to the first excited state, 3d5(6S)4s 5S2, and to the mul-
tiplet 3d44s2 5D are shown in Fig. 8.4. Due to their different symmetries all three
levels are basically accessible to DFT. The 3d5(6S)4s 5S level involves the inver-
sion of the 4s spin and the 3d44s2 5D multiplet the transfer of a d-electron to the
4s-state. The KS representations of the ground state and the first excited state are

resulting from the magnetization-dependent version of RDFT are very small. For Fr, for instance,
a total energy difference of 0.16 mHartree is found in the Coulomb-only limit.
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Fig. 8.3 KS eigenvalues of the 6p-subshell for 6p-elements with occupation 6pn: relativistic EXX
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Fig. 8.4 Low-lying levels of the chromium atom: relativistic EXX results versus complete PBE-
GGA [207], the combination of exact exchange with PBE correlation (EXX+PBE) and experimen-
tal [614] data. The experimental 3d5(6S)4s 5S2 state is only 0.7 mHartree lower than the lowest
state (J = 0) of the 3d44s2 5D multiplet and can therefore not be resolved on the scale used.
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unambiguous, due to the filled 3d-subshell. On the other hand, the 3d44s2 config-
uration can be realized in different ways, corresponding to different occupations of
the 3d-substates. The energetically lowest of the corresponding KS states can be
considered as a representation of the lowest state of the 3d44s2 5D multiplet. The
excitation energies resulting from the various occupations are indicated in Fig. 8.4,
together with the excitation energy of the 3d5(6S)4s 5S state. An accurate repro-
duction of these excitation energies has been a long-standing challenge for (R)DFT
[615–617], as is clear from the PBE-GGA results included in Fig. 8.4. Obviously,
the right balance between spin-alignment and kinetic effects is only obtained if the
exact exchange is used.

In fact, the REXX excitation energies are so close to their experimental counter-
parts that one might wonder whether the agreement still persists after inclusion of
correlation. Figure 8.4 demonstrates that this is not the case if GGA correlation is
added to the exact exchange. This result agrees with the observation that the combi-
nation of the exact exchange with LDA or GGA correlation does not give convincing
results for many electronic structure properties (compare Tables 6.10 and 4.8). The
cancellation of errors between exchange and correlation is no longer possible, if the
exact exchange is utilized. A suitable orbital-dependent correlation functional has
to be used in order to retain the quality of the pure REXX data [556].

8.8.3 Relativistic Local Density Approximation

In complete analogy to (4.109) the relativistic LDA (RLDA) for Exc[ j] is constructed
from the xc-energy density eRHEG

xc of the RHEG. As jjj vanishes in the RHEG, the
full jμ -dependence of the exact xc-energy functional reduces to a pure density-
dependence in the RLDA,

ERLDA
xc [n] =

∫
d3r eRHEG

xc (n(rrr)) . (8.200)

The derivation of its lowest order contribution, i.e. the exchange energy, is discussed
in detail in Appendix H. It illustrates in particular the UV-renormalization required.
The final result [618–621, 534, 535] can be expressed as the nonrelativistic exchange
energy density eHEG

x , Eq. (4.99), multiplied by a relativistic correction factor Φx.
Separation into its Coulomb and transverse part according to (8.182), (8.183) yields

eRHEG,C/T
x (n) = eHEG

x (n) ΦC/T
x (β ) , (8.201)

where β represents the dimensionless relativistic density variable,

β =
h̄(3π2n)1/3

mc
. (8.202)

The factors ΦC/T
x are explicitly given in (H.56), (H.57). The variation of ΦC/T

x as
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Fig. 8.5 Relativistic correction factor for the LDA exchange energy density: Coulomb contribution
(H.56), transverse contribution (H.57) and total correction ΦC

x +ΦT
x .

well as of ΦC
x + ΦT

x with β is shown in Fig. 8.5. One notices that the Coulomb
contribution dominates in the low density limit and that it depends only weakly on
β . ΦT

x shows a stronger dependence on β and dominates in the high density regime,
in which eRHEG

x even changes its sign.
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Fig. 8.6 Relativistic correction factor for the LDA exchange potential. The values of the densities
of Kr and Hg at the origin (r = 0) and the r-expectation values of the 1s-orbitals (r =< r >1s) from
RLDA-calculations are also indicated.
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In Fig. 8.6 we plot the density dependence of the resulting exchange potentials.
The range of density values relevant for electronic structure calculations is indicated
by the β -values at the origin and at the r-expectation values of the 1s1/2-orbitals of
the Kr and Hg atoms. As is obvious from Fig. 8.2 the exact vx is negative in the
vicinity of the origin even after inclusion of the transverse interaction. The fact that
the transverse term leads to a sign change in eRLDA

x and vRLDA
x for high densities

thus questions the usefulness of the RLDA from the very outset. The transverse
interaction is much more important for an infinite system as the RHEG, in which
the finite speed of light plays a role for electrons at large separation, than for atomic
systems with their highly localized inner core electrons.

Some results obtained with the x-only RLDA are included in Tables 8.4 and 8.5.
Table 8.4 shows that the RLDA produces ground state energies which are far from

Table 8.4 Selfconsistent exchange-only ground state energies of closed subshell atoms: RLDA,
RGGA and GGA results versus REXX reference data (all energies in mHartree; the model for the
form of the nuclei used here [613] differs from the one underlying Table 8.1). ET

x has been treated
selfconsistently in the RLDA, RGGA and REXX calculations. The PW91 form [206] has been
applied for the GGA.

Atom −E E −EREXX

REXX RLDA RGGA GGA
He 2862 138 6 6
Ne 128674 1080 −24 −43
Ar 528546 2458 41 −111
Zn 1793840 4702 −263 −1146
Kr 2787429 6543 −22 −1683
Cd 5589496 10556 −35 −4537
Xe 7441173 13161 83 −6705
Yb 14053750 20888 −894 −17660
Hg 19626705 29161 −257 −27253
Rn 23573354 35207 −9 −35145
No 36687173 56937 −1344 −68097

the exact REXX values for heavy atoms. The origin of this failure can be traced,
as to be expected from the preceding discussion, to the misrepresentation of ET

x by
the RLDA (see Table 8.5). Taking into account relativistic corrections to Exc via the
RLDA does not improve results compared to their complete neglect, i.e. the use of
the nonrelativistic LDA in the RKS equations.

A magnetization-dependent form of the RLDA for Ex has been derived from a po-
larized RHEG [544–546, 541]. Unfortunately, this functional, which has to be used
together with the KS equations (8.141) or (8.149), is not directly obtained as a func-
tional of n and mmm, but rather in terms of spin-up and -down Fermi momenta, kF,σ .
Its application requires an inversion of the function mmm(kF,↑,kF,↓). Due to this com-
plication and the numerically intricate form of the KS equations (8.141), (8.149),
this functional has not found widespread use (results for atoms may be found in
[550, 551, 555]). In addition, one can show that for atoms this functional yields
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Table 8.5 Transverse exchange energies (ET
x ) for closed subshell atoms: selfconsistent REXX,

RLDA and B88-RGGA results in comparison with perturbative RHF values (Coulomb gauge for
ET

x in the case of RHF—all energies in Hartree [613]).

Atom REXX RHF(p) RLDA RGGA
He 0.000064 0.000064 0.000147 0.000059
Ne 0.0167 0.0166 0.0350 0.0167
Ar 0.132 0.132 0.249 0.132
Zn 0.758 0.759 1.318 0.757
Kr 1.417 1.419 2.391 1.415
Cd 3.797 3.808 6.131 3.796
Xe 5.693 5.711 9.039 5.691
Yb 13.842 13.898 21.418 13.837
Hg 22.071 22.168 33.957 22.054
Rn 28.547 28.680 43.979 28.519
No 53.313 53.591 84.222 53.101

essentially the same results as the combination of the unpolarized RLDA (8.200)
with the spin-dependence of the nonrelativistic Ex, Eq. (4.19), applied to n±,

ERLSDA
x [n+,n−] =

1
2

{
ERLDA

x [2n+]+ERLDA
x [2n−]

}
. (8.203)

This statement is verified in Table 8.6, which lists some prototype ground state en-
ergies obtained with the two variants of treating the spin-dependence.17 Of course,

Table 8.6 Dependence of atomic x-only ground state energies (−E) on the treatment of spin:
correct magnetization-dependent form of the weakly relativistic LDA (XRR [546]) versus com-
bination of the unpolarized, weakly relativistic LDA functional with the spin-dependence of the
nonrelativistic Ex, Eq. (8.203) (all energies in mHartree).

both versions of spin-dependent functionals lead to more realistic results for open-
subshell atoms than the use of the unpolarized RLDA (8.200) (see e.g. [555]).

Correlation contributions to the RLDA have also been considered [538, 622].
Similar to the case of eRHEG

x , one finds that the relativistic correction in eRHEG
c is

17 The two variants of treating the spin are consistently restricted to first order in 1/c2, as the
magnetization-dependent functional of [546] is known analytically only in this weakly relativistic
limit.

Atom XRR Nonrel. spin
Cr 1045942.2 1045942.0
Fe 1267116.4 1267116.2
Eu 10814457.4 10814456.1
W 16101781.8 16101781.8

U 27925396.0 27925395.9
Am 30335911.4 30335911.0

Au 18966363.2 18966363.2
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substantial. However, it turns out that the RLDA completely misrepresents atomic
correlation energies [622]: in addition to the drastic overestimation of atomic Ec

on the nonrelativistic level (see Table 4.5) the RLDA yields relativistic corrections
which deviate by roughly 50% from the correct numbers (for a more extended dis-
cussion the reader is referred to [529]).

In summary, one can state that the RLDA does not give a realistic account of
relativistic xc-effects, neither in the case of the exchange nor for correlation.

8.8.4 Relativistic Generalized Gradient Approximation

The direct use of nonrelativistic GGAs in RDFT calculations leads to substantial
errors in total energies (see Table 8.4). Consequently, a relativistic extension of the
GGA (RGGA) is desirable. The most important ingredient of any GGA is the low-
est order gradient contribution proportional to (∇∇∇n)2. The structure of this term is
determined by the long-wavelength expansion of the linear response function of
the electron gas. As shown in Appendix J, this approach automatically leads to a
current-dependent functional in the relativistic situation. However, no result for the
response function of the RHEG beyond the noninteracting limit can be found in the
literature. Moreover, in addition to the term proportional to (∇∇∇n)2, GGAs necessar-
ily contain higher order gradient terms, whose form has to be fixed by additional
(model-based or semi-empirical) requirements. As a result, only a semi-empirical
form of the RGGA is available so far.

Neglecting any jjj-dependence, an appropriate form of the RGGA for Ex is

ERGGA
x =

∫
d3r eHEG

x (n)
[
Φx(β )+g(ξ )ΦGGA

x (β )
]
, (8.204)

with ξ = [∇∇∇n/(2(3π2n)1/3n)]2 and g(ξ ) denoting the gradient part of a nonrela-
tivistic GGA [612]. Following the strategy behind the B88-GGA [219], the rela-
tivistic correction factor ΦGGA

x for the gradient term may be obtained by making
a sufficiently flexible ansatz and fitting its coefficients to the exact relativistic Ex

of a number of closed-subshell atoms, while keeping g(ξ ) fixed18 (for details see
[612, 623]). As demonstrated in Tables 8.4 and 8.5, the RGGA leads to much more
accurate atomic Ex and ground state energies than both the RLDA and the GGA. The
RGGA reaches the same level of accuracy as the nonrelativistic GGA does for light
atoms. An improvement is also observed for vx and the resulting single particle-
energies (see Table 8.2). In the case of magnetic systems the RGGA (8.204) can be
combined with the nonrelativistic spin-dependence (4.19), in analogy to Eq. (8.203).

Following the same strategy, a RGGA for correlation can be set up [623]. How-
ever, the absolute size of the contributions resulting from the relativistic corrections
to the functional dependence of Ec on n is rather small. The accuracy of the RGGA

18 Fits for different GGAs lead to very similar functions ΦGGA
x , confirming the consistency of this

approach.
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for Ec is therefore completely dominated by the quality of its nonrelativistic basis.
In other words: on the present level of sophistication the inclusion of relativistic
corrections in GGAs for correlation is not necessary.

8.8.5 Role of Relativistic Corrections in Exc: II. Prototype Results
for Molecules and Solids

It remains to discuss the importance of relativistic corrections to the density-
dependence of Exc for standard electronic structure properties of molecules and
solids. Given the results for atomic IPs in Sect. 8.8.1, one may suspect that these
corrections can be safely ignored. This expectation has been confirmed by calcula-
tions both for noble metal compounds [624–626] and for bulk gold and platinum
[627]. Prototype results for Cu2 and Au2 are given in Table 8.7. Even for Au, which

Table 8.7 Spectroscopic constants of noble metal dimers: LDA and BP86-GGA versus BP86-
RGGA.

Method Cu2 Au2

Re De ωe Re De ωe

[Bohr] [eV] [cm−1] [Bohr] [eV] [cm−1]
LDA[624, 626] 4.05 2.86 307 4.64 3.00 196

GGA[624] 4.16 2.28 287 4.75 2.30 179
RGGA[624] 4.17 2.27 285 4.76 2.27 177

Expt. 4.20 2.05 265 4.67 2.30 191

usually exhibits the effects of relativity most clearly [628], the impact of the cor-
rection factors Φx/c on the molecular binding properties is marginal. It should be
noted, however, that in the case of the dissociation energy the similarity of GGA
and RGGA results originates from the cancellation of large relativistic corrections
to the individual ground state energies of the molecule and its constituents. The same
observation is made for solids, as can be gleaned from Table 8.8. In practice, one can
therefore resort to nonrelativistic xc-functionals, as long as an accurate description
of the inner shells is irrelevant.
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Table 8.8 Lattice constant a0 and cohesive energy Ecoh of Au and Pt obtained from LAPW cal-
culations with relativistic and nonrelativistic LDA and PW91-GGA [627] in comparison to exper-
iment [629, 238].

Method Au Pt

a0 −Ecoh −E(solid) −E(atom) a0 −Ecoh
[Bohr] [eV] [Ry] [Ry] [Bohr] [eV]

LDA 7.68 4.12 38075.445 38075.132 7.36 6.76
RLDA 7.68 4.09 37997.970 37997.669 7.37 6.73
GGA 7.87 2.91 38100.029 38099.815 7.51 5.34

RGGA 7.88 2.89 38049.253 38049.040 7.52 5.30
Expt. 7.67 3.78 7.40 5.85



Chapter 9
Further Reading

In the following we present a listing of topics which are not covered in the main text.
For a detailed account of these areas of DFT the reader is referred to the original
literature. The cited references can, however, only be indicative of the field, but in
no way exhaustive.

• As already mentioned, a density functional description is also possible for sys-
tems at non-zero temperature [8]. In this case it is the grand potential and the
intrinsic Helmholtz free energy which play the roles of the total energy func-
tional and F [n], respectively. Applications e.g. deal with plasmas [630–633] and
the process of freezing [634, 255, 256].

• The foundations of DFT for bosons are addressed in [635–637], for mixtures of
fermions and bosons in [638], TDDFT for bosons in [639]. It turns out that in the
presence of a macroscopic Bose condensate, i.e. for Bose-condensed liquids like
4He, two density variables are required for a characterization of the ground state:
the standard single-particle density together with the condensate density.1 The
dependence of the energy functional on the condensate density was not always
taken into account in early applications to 4He (see e.g. [640–642]). For further
applications see e.g. [643, 644].

• In the case of infinite, insulating solids subject to an electric field, i.e. dielectrics,
the basis for the formulation of the HK-theorem breaks down, as, strictly speak-
ing, there is no ground state2 [646]: in addition to the density the macroscopic
polarization is required for a complete description of insulators in the thermo-
dynamic limit [646–650] (see also [651–654] for a discussion of subtleties in-
volved). As a result, the total xc-potential contains an xc-electric field which, for
a symmetric crystal and small applied field, is linear in the macroscopic electric
field. A similar linear field dependence was observed for finite molecular chains
[655, 503].

1 Both densities are identical for noninteracting bosons at zero temperature.
2 In general, an infinite system in the presence of an electric field is in a metastable state, which
causes substantial difficulties in defining the polarization (see e.g. [645]).

E. Engel, R.M. Dreizler, Further Reading. In: E. Engel, R.M. Dreizler, Density Functional
Theory, Theoretical and Mathematical Physics, pp. 401–402 (2011)
DOI 10.1007/978-3-642-14090-7 9 c© Springer-Verlag Berlin Heidelberg 2011
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• It is impossible to handle very large systems, with say hundreds or thousands
of atoms, with conventional implementations of the KS equations, even on the
basis of the LDA. This class of problems can be approached in terms of order-N
methods, which involve segmentation of the system, as first utilized in the divide-
and-conquer technique [656–659]. The segmentation relies crucially on the near-
sightedness (W. Kohn) of quantum systems, which manifests itself most clearly
in the 1-particle density matrix γ(rrr,rrr′) [660–663]. Even for metals an exponen-
tial decay of γ(rrr,rrr′) with |rrr − rrr′| is found, as soon as non-zero temperature is
considered [662, 663] (at zero temperature γ decays as cos(kF|rrr− rrr′|)/|rrr− rrr′|2).
Further development of order-N methods was rapid and spawned a substantial
number of techniques, which can be sampled from [664, 665] and some recent
publications [666, 667] (for an order-N approach to exact exchange see [668]).

• A closely related aspect which is also not addressed in detail in this text is the
technical implementation of the various DFT methods, and in particular their em-
bedding in or combination with molecular dynamics or Green’s function meth-
ods. Information on this aspect can be found in [669, 665, 107].

• DFT for multi-component systems (primarily aiming at electrons plus nuclei) has
been formulated in [670, 671, 630, 672–675]. As can be expected, the densities of
all components feature in the energy functional. An extension to time-dependent
system can be found in [676, 677].

• A DFT approach to superconductivity based on the anomalous (or off-diagonal)
density (the order parameter of BCS superconductors) as an additional density
variable has been introduced in [678, 679], a time-dependent version in [680]. A
local density approximation for the electronic interactions is also available [681].
The coupling of the electrons to the nuclei in the sense of a multicomponent DFT
has been included in [682]. For applications see e.g. [683–694].

• The self-consistent mean field models, which have a longstanding tradition in
nuclear physics, can also be interpreted as density functional approaches. In
these models the interaction between the nucleons is basically described by phe-
nomenological, density-dependent (Skyrme or Gogny) forces (for a recent review
see [695]). An alternative approach to the discussion of nuclear properties is pro-
vided by meson exchange models. An existence theorem, the corresponding KS
equations and an LDA for the xc-energy functional have been formulated for one
of these models (quantum hadrodynamics) [696–698]. For more recent work on
the foundations of DFT for nuclei see [699–701]. Further progress in the appli-
cation of DFT in nuclear physics can be gleaned from [702] and [703].

• The existence theorem of (reduced) density matrix functional theory [11, 12] (see
also [704, 22, 705, 706]) has already been mentioned in the context of nonlocal
potentials. Density matrix functionals also promise a more accurate represen-
tation of the exchange-correlation energy [707] and have therefore recently at-
tracted renewed interest [708–718] (for use of the density matrix in TDDFT see
e.g. [719, 720]).

• Finally, it seems worthwhile to mention that there also exist density functional
approaches based on the 2-particle density (3.45) (also called pair density) [721–
725] and on the reduced 2-particle density matrix [726, 727].
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Erratum to:
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Equation (2.91) on page 31 should read
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Equation (5.18) The quantities involved satisfy an inequality,was revised
rather than an equality.

.

Chapter :5

E5

E[nλ ] = Ts[nλ ]+Eext[nλ ]+EH[nλ ]+Exc[nλ ]

not only for λ = 1, but also for λ �= 1. The correct relation between these two en-
ergies [293] follows from the fact that the unscaled ground state |Ψ0〉= |Ψ0,λ=1〉
minimizes the expectation value 〈Ψ|T̂ +Ŵ |Ψ〉, if |Ψ〉 is restricted to that part of
the Hilbert space which gives the correct ground state density,

E0 = min
n

{
min
|Ψ〉→n

〈Ψ|T̂ +Ŵ |Ψ〉+
∫

d3r n(rrr)vext(rrr)
}

.

As a consequence, the scaled state |Ψ0,λ 〉 minimizes 〈Ψλ |T̂ +λŴ |Ψλ 〉. In fact,
the scaling behavior of the expection values involved, Eqs. (5.7) and (5.13), di-
rectly leads to the relation

〈Ψλ |T̂ +λŴ |Ψλ 〉 = λ 2〈Ψ|T̂ +Ŵ |Ψ〉 .

The derivation of Eq. (5.18) was erroneously based on the implicit assumption
that the total energy obtained from the scaled full wavefunction |Ψ0,λ 〉, Eq. (5.2),
is identical with

The original version of this book was inadvertently published with errors. Those 
errors have been corrected as follows: 

_____________________ 
The updated online versions of these chapters can be found at 
https://doi.org/10.1007/978-3-642-14090-7_5 
https://doi.org/10.1007/978-3-642-14090-7_8 
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https://doi.org/10.1007/978-3-642-14090-7_8
https://doi.org/10.1007/978-3-642-14090-7_5
https://doi.org/10.1007/978-3-642-14090-7
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However, restricting |Ψ〉 on the right-hand side of this equation to give the correct
ground state density automatically implies that the density is restricted to nλ
on the left-hand side (by construction of |Ψλ 〉). Therefore |Ψ0,λ 〉 minimizes the
expectation value on left-hand side [293], instead of minimizing 〈Ψ|T̂ +Ŵ |Ψ〉.
This result can then be combined with the Levy-Lieb constrained search defi-
nition of the density functional FLL[n], Eq. (2.59). Since FLL[n] minimizes the
expectation value 〈Ψ|T̂ +Ŵ |Ψ〉 for given constraint |Ψ〉 → n, one finds [293]

FLL[nλ ] ≤ 〈Ψ0,λ |T̂ +Ŵ |Ψ0,λ 〉 .

Decomposing FLL as

FLL[nλ ] = Ts,LL[nλ ]+EH[nλ ]+Exc,LL[nλ ] ,

finally allows to establish an inequality for the correlation functional Exc,LL[n]
under scaling [293],

Ec,LL[nλ ] ≤ λ 2 [〈Ψ0|T̂ |Ψ0〉−Ts,LL[n]
]
+λ

[〈Ψ0|Ŵ |Ψ0〉−EH[n]−Ex,LL[n]
]
,

(5.18)
which has to replace the old Eq. (5.18). Note that this inequality is strict for
λ �= 1, while an identity is obtained for λ = 1. We thank Mel Levy for making
us aware of this mistake.

Page 224 
 

The order of the equations (5.33), (5.34) and (5.35) was changed and all three 
equations were renumbered. The updated order is shown below. 
 
Equation (5.33) (former 5.34):  

 
d

dλ
E[nλ ]

∣∣∣∣
λ=1

= 0 ,

Equation (5.18) was used to derive relation (5.35). However, Eq. (5.35) can 
also be established by combination of Eqs. (5.23) and (5.34), which are both 
independent of (5.18). Therefore Eq. (5.35) remains valid.

Equation (5.34) (former 5.35): 

 

0 = 2Ts[n]+EH[n]+Ex[n]−
∫

d3r n(rrr)rrr ·∇∇∇vc(rrr)

+〈Ψ0|V̂ext|Ψ0〉+∑
α

RRRα · ∂
∂RRRα

〈Ψ0|V̂ext|Ψ0〉
∣∣∣∣
expl.

,

Equation (5.35) (former 5.33): 

Ec[n] = −
∫

d3r n(rrr)rrr ·∇∇∇vc(rrr)−T +Ts[n] .
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Atom XRR Nonrel. spin

Cr 1045942.2 1045942.0
Fe 1267116.4 1267116.2
Eu 10814457.4 10814456.1
W 16101781.8 16101781.8
Au 18966363.2 18966363.2
U 27925395.7 27925395.6
Am 30335910.7 30335910.3

Page 396

Relativistic Density Functional Theory

Page 374

Θk =

⎧⎨
⎩

0 for εk ≤−2mc2

1 for −2mc2 < εk ≤ εF
0 for εF < εk

.

Chapter :8

Equation (8.111) was revised: Since in the no-pair RDFT formalism we have 
chosen to subtract the rest mass from the energy, the occupation function has to 
be adjusted accordingly. 

Table 8.6 was revised. The data for Au have been corrected and the updated 
version is shown below. 



Appendix A
Functionals and the Functional Derivative

In this Appendix we provide a minimal introduction to the concept of functionals
and the functional derivative. No attempt is made to maintain mathematical rigor. A
more extended and mathematically more precise discussion of the material summa-
rized here can be found in the books of Courant and Hilbert [728] and of Atkinson
and Han [29] (for the special context of DFT see also [28]).

A.1 Definition of the Functional

A functional is defined by a rule, which associates a number (real or complex) with
a function of one or several variables,

f (x) or f (rrr1, . . .) rule−→ F [ f ] , (A.1)

or, more generally, which associates a number with a set of functions,

f1, f2, . . .
rule−→ F [ f1, f2, . . .] . (A.2)

This definition is quite well described by the designation as a function of a function.
Some examples are:

• A definite integral over a continuous function f (x)

F [ f ] =
∫ x2

x1

f (x)dx (A.3)

(similarly one can have integrals with functions of several variables).
• A slightly more general form is

Fw[ f ] =
∫ x2

x1

w(x) f (x)dx , (A.4)

E. Engel, R.M. Dreizler, Appendices. In: E. Engel, R.M. Dreizler, Density Functional Theory,
Theoretical and Mathematical Physics, pp. 403–531 (2011)
DOI 10.1007/978-3-642-14090-7 c© Springer-Verlag Berlin Heidelberg 2011
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that is an integral over the function f with a fixed weight function w(x).
• A prescription which associates a function with the value of this function at a

particular point in the interior of a given interval [x1,x2]

F [ f ] = f (x0) x0 ∈ (x1, x2) . (A.5)

This functional can be represented in integral form with the aid of the δ -function,

Fδ [ f ] =
∫ x2

x1

δ (x− x0) f (x)dx , (A.6)

that is with a weight function in the form of a generalized function (a distribu-
tion).

The examples (A.3) and (A.5) directly show that a functional can itself be a function
of a variable, i.e. of one of the parameters in its definition, as the boundaries in the
integral (A.3) or the point x0 in the functional (A.5). The dependence on such a
parameter y is denoted as F [ f ](y).

So far, all examples are characterized by the fact that they depend linearly on the
function f (x), so that they satisfy the relation

F [c1 f1 + c2 f2] = c1F [ f1]+ c2F [ f2] , (A.7)

with c1,c2 being complex numbers. Examples of nonlinear functionals are:

• The energy functional of the simplest DFT, the Thomas-Fermi kinetic energy,

FTF[n] ≡ T TF
s [n] = CTF

∫
d3r n5/3(rrr) . (A.8)

• A nonlocal functional of two functions,

Fw[ f1, f2] =
∫

f1(x1)w(x1,x2) f2(x2)dx1dx2 . (A.9)

• The action integral of classical mechanics,

F [qqq] ≡ A[qqq] =
∫ t2

t1
dt L(qqq(t), q̇qq(t), t) . (A.10)

The abbreviation qqq(t) stands for a set of generalized coordinates, which depend
on time.

• Any matrix element of quantum mechanics, e.g. the ground state energy and the
S-matrix element of potential scattering theory,

F [Ψ0,Ψ∗
0] ≡ E[Ψ0,Ψ∗

0] =
∫

d3r Ψ∗
0(rrr)ĤΨ0(rrr)

F [Ψkkk,Ψ∗
qqq] ≡ S[Ψkkk,Ψ∗

qqq] =
∫

d3r Ψ∗
qqq(rrr)ŜΨkkk(rrr) .
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It seems worthwhile to emphasize that the two functions Ψ0 and Ψ∗
0 have to be

considered as being independent, so that one is dealing with a functional of two
functions. Alternatively, a dependence on the real and the imaginary part of the
wavefunctions can be used to characterize the functional.

A.2 Functional Derivative

Usually knowledge of the complete functional F [ f ], as for example the classical ac-
tion A[qqq] for all possible trajectories in phase space or the value of the integral (A.3)
for all continuous functions, is not required. Rather it is the behavior of the func-
tional in the vicinity of the function f0, which makes F [ f ] extremal or stationary,
which is of interest.1 The implementation of the search for f0 involves the explo-
ration of the space of functions in the vicinity of f0 in a suitable fashion.

A variation of any function f by an infinitesimal but arbitrary amount can be
represented in the form

δ f (x) = ε η(x) for one variable

δ f (rrr1,rrr2, . . .) = ε η(rrr1,rrr2, . . .) for several variables .
(A.11)

The quantity ε is an infinitesimal number, η is an arbitrary function. In order to
explore the properties of the functionals a generalization of the (ordinary or partial)
derivative (of first and higher order)—the functional derivative—is required. It can
be defined via the variation δF of the functional F [ f ] which results from variation
of f by δ f ,

δF := F [ f +δ f ]−F[ f ] . (A.12)

The technique used to evaluate δF is a Taylor expansion of the functional
F [ f +δ f ] = F [ f +εη ] in powers of δ f , respectively of ε . The functional F [ f +εη ]
is an ordinary function of ε . This implies that the expansion in terms of powers of ε
is a standard Taylor expansion,

F [ f + ε η ] = F [ f ]+
dF [ f + εη ]

dε

∣∣∣∣
ε=0

ε +
1
2

d2F [ f + εη ]
dε2

∣∣∣∣
ε=0

ε2 + . . . (A.13)

=
N

∑
n=0

1
n!

dnF [ f + εη ]
dεn

∣∣∣∣
ε=0

εn +O
(
εN+1) . (A.14)

As indicated, the sum in (A.14) can be finite or infinite. In the latter case, it has to be
assumed that the function F(ε) can be differentiated with respect to ε any number
of times.

1 Often functionals are introduced to recast some equation(s) in the form of an extremum or sta-
tionarity principle.
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The derivatives with respect to ε now have to be related to the functional deriva-
tives. This is achieved by a suitable definition. The definition of the functional
derivative (also called variational derivative) is

dF [ f + εη ]
dε

∣∣∣∣
ε=0

=:
∫

dx1
δF [ f ]
δ f (x1)

η(x1) . (A.15)

This definition implies that the left-hand side can be brought into the form on the
right-hand side, i.e. the form of a linear functional with kernel δF [ f ]/δ f acting on
the test function η . This is by no means guaranteed for arbitrary functionals and
arbitrary f . It is exactly this point where rigorous mathematics sets in. A functional
for which (A.15) is valid is called differentiable.2 We will, however, not go into any
details concerning the existence of the functional derivative, nor will we make any
attempt to characterize the space of (test) functions which are allowed in (A.15) (as
usual, the existence of all integrals involved is assumed, of course).

The definition (A.15) can be thought of as an extension of the first total differen-
tial of a function of several variables,

f (x1,x2, . . .) −→ d f =
N

∑
n=1

∂ f
∂xn

dxn ,

to the case of an infinite set of variables f (x1). The definition of the second order
functional derivative corresponds to the second order total differential,

2 More precisely, a functional F [ f ] which maps an open subset of some Banach space X (i.e. some
complete normed vector space) of functions f onto another Banach space Y (which could be the
set of real or complex numbers) is called Fréchet differentiable, if there exists a linear continuous
operator δFF

f : X → Y with the property

lim
‖η‖→0

‖F [ f +η ]−F[ f ]−δFF
f [η ]‖Y

‖η‖X
= 0 .

Here ‖F‖Y and ‖η‖X denote the norms in the two Banach spaces. The Fréchet derivative has to
be distinguished from the Gâteaux derivative, which exists if there is a linear continuous operator
δFG

f : X → Y such that

δFG
f [η ] = lim

λ→0

‖F [ f +λη ]−F[ f ]‖Y

λ
.

If the right-hand side of this relation exists, but does not yield a linear continuous operator, it is
called the Gâteaux differential,

F ′[ f ,η ] = lim
λ→0

‖F [ f +λη ]−F[ f ]‖Y

λ
.

Thus any Fréchet differentiable functional is also Gâteaux differentiable, but the converse is not
true. The existence of the Fréchet derivative is only ensured, if the Gâteaux derivative is continuous
or if the Gâteaux differential is uniform with respect to η with ‖η‖ = 1.
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d2F [ f + εη ]
dε2

∣∣∣∣
ε=0

=:
∫

dx1dx2
δ 2F [ f ]

δ f (x1)δ f (x2)
η(x1)η(x2) . (A.16)

The definition of the general derivative can be guessed at this stage. The functional
derivative of n-th order is given by

dnF [ f + εη ]
dεn

∣∣∣∣
ε=0

=:
∫

dx1 . . .dxn
δ nF [ f ]

δ f (x1) . . .δ f (xn)
η(x1) . . .η(xn) . (A.17)

This derivative constitutes the kernel of the Taylor expansion of a functional F in
terms of the variation δ f (x) = εη(x),

F [ f + εη ] =
N

∑
n=0

1
n!

∫
dx1 . . .dxn

δ nF [ f ]
δ f (x1) . . .δ f (xn)

δ f (x1) . . .δ f (xn)

+O
(
εN+1) , (A.18)

again with N being either finite or infinite.
The actual calculation of the functional derivative relies on the evaluation of the

difference (A.12). This will be illustrated with the aid of a few examples.

• According to Eq. (A.12), the variation of the functional (A.6) is

δFδ =
∫ x2

x1

δ (x− x0)εη(x)dx .

Comparison with the definition (A.15) shows that

δFδ
δ f (x)

= δ (x− x0) , (A.19)

as η(x) can vary freely. A very useful formula is obtained if the definition

Fδ [ f ] = f (x0)

is used explicitly,

δFδ
δ f (x)

=
δ f (x0)
δ f (x)

= δ (x− x0) . (A.20)

All higher order functional derivatives of Fδ vanish.
• This example is readily extended to the functional

f (x0)α =
∫

dxδ (x− x0) f (x)α .

Its variation can be evaluated by straightforward Taylor expansion,

δ f (x0)α =
∫

dxδ (x− x0) [( f (x)+ εη(x))α − f (x)α ]
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=
∫

dxδ (x− x0)
[

α f (x)α−1εη(x)

+
α(α −1)

2
f (x)α−2(εη(x))2 + . . .

]
.

The functional derivative is again identified by comparison with the definition
(A.15),

δ f (x0)α

δ f (x)
= δ (x− x0)α f (x)α−1 . (A.21)

In order to calculate the second functional derivative one can simply reuse
Eq. (A.21),

δ 2 f (x0)α

δ f (x1)δ f (x2)
= δ (x1 − x0)δ (x2 − x0)α(α −1) f (x)α−2 . (A.22)

• The variation of the Thomas-Fermi functional (A.8) is obtained from

δFTF = CTF

∫
d3r

[
(n(rrr)+ εη(rrr))5/3 −n(rrr)5/3

]
in the form of a binomial expansion

δFTF = CTF

∫
d3r n(rrr)5/3

∞

∑
k=1

(
5/3

k

)(
εη(rrr)
n(rrr)

)k

.

The functional derivatives, which can be extracted from this expression, are

δFTF

δn(rrr)
=

5
3

CTF n(rrr)2/3 (A.23)

for the first derivative and, applying (A.21),

δ 2FTF

δn(rrr)δn(rrr′)
=

10
9

CTF n(rrr)−1/3 δ (3)(rrr− rrr′)

for the second derivative.
• The variation of the nonlocal functional

Fw[ f ] =
∫ y2

y1

dx1

∫ y2

y1

dx2 f (x1)w(x1,x2) f (x2) (A.24)

is

δFw =
∫ y2

y1

dx1

∫ y2

y1

dx2 w(x1,x2)[ f (x1)εη(x2)+ f (x2)εη(x1)

+ εη(x1)εη(x2)] . (A.25)
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The variational derivatives are

δFw

δ f (x)
=

∫ y2

y1

dx2 [w(x,x2)+w(x2,x)] f (x2) (A.26)

and

δ 2Fw

δ f (x1) f (x2)
= w(x1,x2)+w(x2,x1) . (A.27)

All derivatives with n > 2 vanish for this example.

A.3 Calculational Rules

The calculation of the functional derivative can be abbreviated using a variation
in terms of the δ -function: for the functionals relevant in physics all local, δ -type
variations of f (x) are equivalent to probing the functional with arbitrary general
variations η(x). The functional derivative can therefore be recast in the form of the
(almost familiar) limiting value

δF
δ f (x1)

= lim
ε→0

F [ f (x)+ εδ (x− x1)]−F[ f (x)]
ε

. (A.28)

The reader may check that this form follows from the definition (A.15) with the
replacement η(x) −→ δ (x− x1) and that it reproduces the results of the examples.
When using the form (A.28), one has to remember that the variation δ f = εδ (x−x1)
should always be understood in the sense of a representation of the δ -function via
some sequence of regular functions, so that powers of the δ -function are uncritical.

As the functional derivatives constitute an extension of the concept of the ordi-
nary derivative, most of the rules for ordinary derivatives can be taken over. For
example, the product rule of functional differentiation can be obtained directly with
the argument[

d(F1[ f + εη ]F2[ f + εη ])
dε

]
ε=0

=
[

dF1[ f + εη ]
dε

F2[ f + εη ]
]

ε=0

+
[

F1[ f + εη ]
dF2[ f + εη ]

dε

]
ε=0

,

which is valid as F1 and F2 are functions of ε . In the actual limit ε → 0 there follows
with (A.15)

δ (F1F2)
δ f (x)

=
δF1

δ f (x)
F2 +F1

δF2

δ f (x)
. (A.29)
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Let us next extend the chain rule for functions to functionals. Consider a func-
tional F which depends on some function G(y), which itself is a functional of f (x),
G[ f ](y). The functional F therefore is also a functional of f (x). Its variation with f
is then given by

δFf = F [G[ f (x)+ εη(x)](y)]−F[G[ f (x)](y)]

=
dF [G[ f (x)+ εη(x)](y)]

dε

∣∣∣∣
ε=0

ε +O(ε2) (A.30)

=
∫ δF [ f ]

δ f (x)
εη(x)dx+O(ε2) , (A.31)

where the last line simply represents the definition of the functional derivative of F
with respect to f , according to Eq. (A.15). Similarly, the variation of G with f is
obtained as

δG(y) = G[ f (x)+ εη(x)](y)−G[ f (x)](y)

=
dG[ f (x)+ εη(x)](y)

dε

∣∣∣∣
ε=0

ε +O(ε2) (A.32)

=
∫ δG[ f ](y)

δ f (x)
εη(x)dx+O(ε2) . (A.33)

Now, to first order in ε one can express G[ f (x)+ εη(x)](y) via Eq. (A.33),

G[ f (x)+ εη(x)](y) = G[ f (x)](y)+
∫ δG[ f ](y)

δ f (x)
εη(x)dx+O(ε2) ,

to obtain

∫ δF [ f ]
δ f (x)

η(x)dx =
dF [G[ f (x)](y)+

∫ δG[ f ](y)
δ f (x) εη(x)dx+O(ε2)]

dε

∣∣∣∣∣
ε=0

+O(ε) . (A.34)

However, the derivative on the right-hand side has exactly the form of the variation
of F with G,

δFG = F [G(y)+ εη̄(y)]−F[G(y)]

=
dF [G(y)+ εη̄(y)]

dε

∣∣∣∣
ε=0

ε +O(ε2) , (A.35)

with η̄ given by

η̄(y) =
∫ δG[ f ](y)

δ f (x)
η(x)dx . (A.36)
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Provided that η̄(y) probes the complete space around G(y), in which F [G] is defined,
when η(x) goes through all legitimate variations of f (x), the expression (A.34)
coincides with the corresponding functional derivative of F with respect to G(y),

dF [G(y)+ εη̄(y)]
dε

∣∣∣∣
ε=0

=
∫ δF [G]

δG(y)
η̄(y)dy+O(ε) . (A.37)

Combination of Eqs. (A.34), (A.36) and (A.37) finally yields

∫ δF [ f ]
δ f (x)

η(x)dx =
∫ δF [G]

δG(y)
δG[ f ](y)

δ f (x)
η(x)dxdy ,

and thus, due to the arbitrary form of η(x),

δF [ f ]
δ f (x)

=
∫ δF [G]

δG(y)
δG[ f ](y)

δ f (x)
dy . (A.38)

Equation (A.38) represents the chain rule of functional differentiation. It is valid,
if the variation η(x) generates all possible variations η̄(y) in the neighborhood of
G[ f ](y). This is guaranteed if there is a one-to-one correspondence between the
admissible functions f (x) and the corresponding functions G(y) (at least locally)
and both spaces of functions are sufficiently dense to define a functional derivative.
The condition of a unique correspondence is satisfied in particular, if the kernel
δG[ f ](y)

δ f (x) is invertible.
It is worthwhile to note a special case of the rule (A.38). If there is a unique

relation between f (x) and G(y), i.e. if the form of the complete function G(y)
is uniquely determined by f (x) and vice versa, one can consider the functional
F [G[ f (x)](y)] ≡ f (x0). Application of the chain rule (A.38) then leads to

δ (x− x0) =
δ f (x0)
δ f (x)

=
δF [ f ]
δ f (x)

=
∫ δF [G]

δG(y)
δG[ f ](y)

δ f (x)
dy

=
∫ δ f (x0)

δG(y)
δG(y)
δ f (x)

dy . (A.39)

This relation shows that one can always insert a complete set of variations in a
variational derivative (here δ f (x0)/δ f (x)), as long as there exists a one-to-one cor-
respondence between the functions involved.

A.4 Variational Principle

An apt example for the discussion of variational principles on the basis of functional
calculus is the derivation of the Euler-Lagrange equations for the action functional
(A.10). For the case of one degree of freedom,
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A[q] =
∫ t2

t1
dt L(q, q̇, t) , (A.40)

which suffices to point out the main features, extrema are characterized by setting
the first variation equal to zero. This implies

δA =
∫ t2

t1
dt [L(q+δq, q̇+δ q̇, t)−L(q, q̇, t)] = 0 (A.41)

to first order in the variation of the variable and its derivative. Taylor expansion of
the first term to first order gives

δA =
∫ t2

t1
dt

[
∂L
∂q

δq+
∂L
∂ q̇

δ q̇

]
= 0 . (A.42)

This is followed by partial integration of the second term with the result

δA =
∫ t2

t1
dt

[
∂L
∂q

− d
dt

∂L
∂ q̇

]
δq+

[
∂L
∂ q̇

δq

]t2

t1

= 0 . (A.43)

For arbitrary variations δq the Euler-Lagrange equations have to be satisfied,

∂L
∂q

− d
dt

∂L
∂ q̇

= 0 . (A.44)

No further conditions apply, if the variation at the end points is restricted by bound-
ary conditions,

δq(t1) = δq(t2) = 0 . (A.45)

This restriction does not apply to the case of a free boundary, for which arbitrary
variations at the points t1 and t2 are permitted. Therefore it is necessary to demand
in addition the “natural boundary conditions” (see [728])[

∂L
∂ q̇

]
t1

=
[

∂L
∂ q̇

]
t2

= 0 (A.46)

in this case.



Appendix B
Second Quantization in Many-Body Theory

The language of second quantization allows a compact formulation of quantum
many-particle problems. The name “second quantization” arose actually in the con-
text of quantum field theory, where the need to accommodate particle creation or
annihilation processes demanded the replacement of wavefunctions by operators.
This Appendix provides an introduction to this tool tailored to the requirements of
many-body theory.

B.1 N-Particle Hilbert Space

B.1.1 Realization in First Quantized Form

The basic elements of the discussion are square-integrable single-particle wave-
functions in configuration or configuration-spin space. These functions span the
1-particle Hilbert space H1. They will be denoted by

φα(x) . (B.1)

The index α represents a set of quantum numbers, which characterize the state of
the particle completely, as e.g. the quantum numbers of the nonrelativistic hydrogen
problem,

α −→ n, l, m, ms . (B.2)

For the present purpose it is most convenient to characterize the states by a single
discrete label which orders all states in a well-defined sequence.

The variable x in Eq. (B.1) stands for the spatial coordinates rrr and, if applicable,
additional internal degrees of freedom. A relevant example are the components of
the bispinor wavefunction of a spin-1/2 fermion,
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φα(x) = φα(rrrσ) =

{
φα(rrr,+ 1

2 ) if σ = + 1
2 ≡↑

φα(rrr,− 1
2 ) if σ = − 1

2 ≡↓ . (B.3)

For brevity the complex functions (B.1) are supposed to be orthonormal∫
dxφ ∗

α(x)φβ (x) = δαβ . (B.4)

The integral
∫

dx abbreviates integration over space and summation over all internal
degrees of freedom, as e.g. in the case of spin-1/2 fermions∫

dx ≡ ∑
σ=↑,↓

∫
d3r .

In addition, the functions φα(x) are assumed to form a complete set,

∑
α

φα(x)φ ∗
α(x′) = δ (3)(rrr− rrr′)δσ ,σ ′ ≡ δ (x,x′) . (B.5)

The Hilbert space HN of N identical particles is the tensor product of N single-
particle Hilbert spaces,

HN = H1 ⊗H1 ⊗·· ·⊗H1 . (B.6)

This space is spanned by the product wavefunctions

Φc
α1···αN

(x1x2 · · ·xN) = φα1(x1)φα2(x2) · · ·φαN (xN) . (B.7)

In these canonical N-particle states particle number 1 with coordinates rrr1 and spin-
projection σ1 is in the single-particle state α1, particle number 2 at x2 in state α2,
and so on. Orthonormality and completeness of this basis of HN follow from the
corresponding properties of the 1-particle functions,∫

dx1 · · ·dxN Φc ∗
α1···αN

(x1 · · ·xN)Φc
β1···βN

(x1 · · ·xN)

=
∫

dx1 φ ∗
α1

(x1)φβ1
(x1) · · ·

∫
dxN φ ∗

αN
(xN)φβN

(xN)

= δα1β1
· · ·δαN βN

(B.8)

∑
α1···αN

Φc
α1···αN

(x1 · · ·xN)Φc ∗
α1···αN

(y1 · · ·yN)

= ∑
α1

φα1(x1)φ ∗
α1

(y1) · · ·∑
αN

φαN (xN)φ ∗
αN

(yN)

= δ (x1,y1) · · ·δ (xN ,yN) . (B.9)

The states Φc
α1···αN

are ordered with respect to the particles and their labels, which
is only possible if the individual particles can be distinguished. However, in the
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case of N identical quantum particles, their fermionic or bosonic nature has to be
taken into account, so that only the corresponding subspaces FN and BN of HN

are of interest. The wavefunctions of the fermion sector, to which we restrict the
discussion, are antisymmetric: any wavefunction Ψ describing N identical fermions
satisfies the relation

Ψ(xp1 · · ·xpN ) = (−1)PΨ(x1 · · ·xN) , (B.10)

where p1, . . . pN denotes an arbitrary permutation of the numbers 1, . . .N. The sign
of the permutations (−1)P corresponds to the property even (+) or odd (−), ac-
cording to the number P of pairwise transpositions necessary to restore the natural
order.1

A basis in FN can be constructed from the canonical basis by explicit antisym-
metrization,

Φα1···αN (x1x2 · · ·xN) =
1√
N!

∑
P∈SN

(−1)PΦc
αp1 ···αpN

(x1x2 · · ·xN)

=
1√
N!

∑
P∈SN

(−1)Pφαp1
(x1)φαp2

(x2) · · ·φαpN
(xN)

=
1√
N!

∑
P∈SN

(−1)Pφα1(xp1)φα2(xp2) · · ·φαN (xpN ) . (B.11)

The sum runs over all permutations of N ordered objects. This set of permutations
constitutes the symmetric group SN . The last lines indicate that the basis functions
of FN take the form of a determinant—a Slater determinant.

The antisymmetrized states Φα1···αN do no longer associate a particular single-
particle quantum number with a given particle. Their determinantal structure is a
direct manifestation of the Pauli principle which is expressed by Eq. (B.10). The
function Φα1···αN vanishes if two of the labels α1 · · ·αN are identical. This allows
a definite (although arbitrary) ordering of the quantum numbers in Φα1···αN in the
form α1 < α2 · · · < αN .

The basis functions (B.11) are orthonormal and complete in FN , provided the
1-particle basis is orthonormal and complete in H1. For the illustration of orthonor-
mality one simply uses the definition (B.11),∫

dx1 · · · dxN Φ∗
α1···αN

(x1 · · ·xN)Φβ1···βN
(x1 · · ·xN)

=
1

N! ∑
P,P′∈SN

(−1)P+P′
∫

dx1 φ ∗
αp1

(x1)φβp′1
(x1) · · ·

∫
dxN φ ∗

αpN
(xN)φβp′N

(xN)

=
1

N! ∑
P,P′∈SN

(−1)P+P′
δαp1 βp′1

· · ·δαpN βp′N
.

1 A given permutation can be generated by different sequences of pairwise transpositions. However,
the number of pairwise transpositions required is uniquely either even or odd.
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The sum over the permutations P′ in the last line yields, for a given permutation
P, exactly the same terms that are obtained with the regular ordering 1,2, . . .N.
The sign that is required to bring a given permutation p′1, . . . p′N into the natural
order is just (−1)P′

. One can therefore eliminate the multiplicity by arranging the
first indices of the Kronecker symbols in regular order and sum only over all the
permutations of the second,∫

dx1 · · · dxN Φ∗
α1···αN

(x1 · · ·xN)Φβ1···βN
(x1 · · ·xN)

= ∑
P∈SN

(−1)Pδα1βp1
· · ·δαN βpN

= det

⎛
⎜⎜⎜⎝

〈α1|β1〉 · · · 〈α1|βN〉
...

...
...

〈αN |β1〉 · · · 〈αN |βN〉

⎞
⎟⎟⎟⎠ . (B.12)

The final result takes the form of a determinant. It becomes simpler, if the state
labels are arranged in a given order. For

α1 < α2 < · · · < αN and β1 < β2 < · · · < βN (B.13)

one obtains∫
dx1 · · · dxN Φ∗

α1···αN
(x1 · · ·xN)Φβ1···βN

(x1 · · ·xN) = δα1β1
· · ·δαN βN

. (B.14)

The completeness relation follows in a similar fashion

∑
α1···αN

Φα1···αN (x1 · · ·xN)Φ∗
α1···αN

(y1 · · ·yN)

=
1

N! ∑
P,P′∈SN

(−1)P+P′
{

∑
α1

φα1(xp1)φ
∗
α1

(yp′1)

}
· · ·

{
∑
αN

φαN (xN)φ ∗
αN

(yp′N )

}

=
1

N! ∑
P,P′∈SN

(−1)P(−1)P′
δ (xp1 ,yp′1) · · ·δ (xpN ,yp′N )

= ∑
P∈SN

(−1)Pδ (x1,yp1) · · ·δ (xN ,ypN ) . (B.15)

The transition from the second to last to the last line involves the same argument
concerning the multiplicity of terms as in the case of the orthogonality relation.

The derivation of the completeness relation has to be augmented by one addi-
tional point: one has to take into account the fact that the operator

∑
α1···αN

Φα1···αN (x1 · · ·)Φ∗
α1···αN

(y1 · · ·)
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acts only on the antisymmetric states in FN . If a product of Kronecker symbols, as
in (B.15), is contracted with an arbitrary antisymmetric wavefunction Ψ, the permu-
tation of the coordinates y1, . . .yN leads to∫

dy1 · · ·dyN δ (x1,yp1) · · ·δ (xN ,ypN )Ψ(y1 · · ·yN) = (−1)PΨ(x1 · · ·xN) . (B.16)

Within the space FN one thus obtains

∑
α1···αN

Φα1···αN (x1 · · ·xN)Φ∗
α1···αN

(y1 · · ·yN) = N! δ (x1,y1) · · ·δ (xN ,yN) . (B.17)

The factor N! results from the overcompleteness of the basis set formed by the
Φα1···αN in the space FN : since all states Φα1···αN which differ only by a permutation
of the set α1, . . .αN coincide (up to an irrelevant sign), any basis state shows up N!
times in the sum on the left-hand side of Eq. (B.17). The factor is easily eliminated
by use of an ordered sum,

∑
α1<α2···<αN

Φα1···αN (x1 · · ·xN)Φ∗
α1···αN

(y1 · · ·yN) = δ (x1,y1) · · ·δ (xN ,yN) . (B.18)

B.1.2 Formal Representation

The same statements can be made on a more formal level, if one adopts the Dirac
notation.

The discussion of the formal representation also begins with a look at the Hilbert
space of one particle, H1. The 1-particle wavefunctions are interpreted as a scalar
product of two state vectors |x〉 and |α〉 ≡ |φα〉 which is written as

φα(x) ≡ 〈x|α〉 . (B.19)

A state vector of the form 〈x| is called a bra-vector, of the form |α〉 a ket-vector.
The scalar product itself is therefore often referred to as a bra-ket. Since Eq. (B.19)
relates the wavefunction to a scalar product, one finds for the complex conjugate
wavefunction,

φ ∗
α(x) = 〈α|x〉 . (B.20)

The state 〈α| is the adjoint of the state |α〉.
The set of vectors |α〉 and the set |x〉 are elements of different vector spaces. The

notation implies that “factors” with the label α carry the information concerning
the quantum labels, “factors” with x define the representation space of the particle
as position and spin space. The separation of the wavefunction in terms of two ab-
stract ingredients allows, for example, an easy transition to alternative representation
spaces as the momentum-spin space.
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The states |α〉 span the familiar Hilbert space H1. They form a complete and
orthonormal set. This is expressed by the relations2

∑
α
|α〉〈α| = 1̂H1 ; 〈α|β 〉 = δαβ . (B.21)

The consistency of these relations can be checked by considering

〈x|α〉 = ∑
β
〈x|β 〉〈β |α〉 = ∑

β
〈x|β 〉δαβ = 〈x|α〉 .

The vector |x〉 ≡ |rrrσ〉 is an eigenstate of the position operator r̂rr and the spin-
projection operator ŝz. It is characterized by the corresponding eigenvalues rrr and
σ = ±1,

r̂rr|x〉 = rrr |x〉 (B.22)

ŝz|x〉 = σ
h̄
2
|x〉 . (B.23)

The notation indicates that operators ô are, as the state vectors, abstracted elements.
The states |x〉 satisfy the improper orthogonality relation

〈x|x′〉 = δσσ ′ δ (rrr− rrr′) ≡ δ (x,x′) . (B.24)

Alternatively one may interpret 〈x|x′〉 as a wavefunction, the representation of an
eigenstate of the position/spin operator in position/spin space. Equation (B.24) then
states that the probability to find a particle at any other point in space than its eigen-
value vanishes for eigenstates of r̂rr. Two different wavefunctions 〈x|x′〉 and 〈x|x′′〉
are orthogonal, as required by their definition as eigenstates of r̂rr and ŝz,∫

dx〈x′|x〉〈x|x′′〉 = δ (x′,x′′) = 〈x′|x′′〉 . (B.25)

Equation (B.25) also demonstrates that the state vectors |x〉 are not properly normal-
izable, so that they are not elements of the Hilbert space H1. They can nevertheless
be used to represent the elements of H1 in the sense of a basis set expansion, as they
form a complete basis in a vector space which contains H1. An example for such
a representation is the Fourier representation of normalizable functions in terms of

2 These relations are replaced by

〈α|β 〉 = Sαβ ∑
αβ

|α〉S−1
αβ 〈β | = 1̂H1 ,

in the case of a non-orthogonal basis. The matrix elements S−1
αβ are elements of the inverse overlap

matrix, which is defined by

SS−1 = 1 → ∑
β

Sαβ S−1
βγ = δαγ .
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non-normalizable plane waves. The completeness relation for the states |x〉 can be
extracted from Eq. (B.25), which is valid for arbitrary |x′〉, |x′′〉,∫

dx |x〉〈x| ≡ ∑
σ

∫
d3r |rrrσ〉〈rrrσ | = 1̂ . (B.26)

The quantity 1̂ stands for the unit operator in the space which contains H1.
With these basic elements of the Dirac notation the orthogonality and complete-

ness relations of the one particle wavefunctions, (B.4) and (B.5) respectively, can
be reproduced in a consistent fashion. The notation also opens access to all formal
aspects of quantum mechanics.

In the next step the Dirac notation can be extended to deal with N-particle sys-
tems. The N-particle Hilbert space HN is spanned by the product states

|α1 · · · αN) = |α1〉⊗ · · · ⊗ |αN〉 . (B.27)

In these N-particle states the particle k is in the quantum state αk, i.e. the position
of a single-particle state in the tensor product on the right-hand side characterizes a
particular particle of the system. It is usual to omit the product sign ⊗, when working
with the states |α1 · · · αN). Nevertheless, the convention associating particle k with
position k still applies.

The bra-ket combination of (B.27) with

|x1 · · · xN) = |x1〉⊗ · · · ⊗ |xN〉 (B.28)

yields the product wavefunction (B.7),

Φc
α1···αN

(x1 · · ·xN) = (x1 · · · xN |α1 · · · αN) = 〈x1|α1〉 · · · 〈xN |αN〉 . (B.29)

The N-particle states (B.27) constitute a basis of HN . They form a complete set
provided the 1-particle basis is complete,

∑
α1···αN

|α1 · · · αN)(α1 · · · αN | = ∑
α1

|α1〉〈α1| · · ·∑
αN

|αN〉〈αN | = 1̂HN , (B.30)

where 1̂HN represents the unit operator in HN . Similarly, one has in the x-represen-
tation, ∫

dx1 · · ·dxN |x1 · · · xN)(x1 · · · xN | = 1̂N , (B.31)

where 1̂N is the unit operator of the (N-particle) space which contains HN .
The fermion and boson sectors of HN are defined in the same fashion as before.

The fermion sector is spanned by the antisymmetrized states3

3 Many-body states in the form of products will be denoted by | · · ·), antisymmetrized states by
| · · · 〉.
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|α1 · · · αN〉 =
1√
N!

∑
P∈SN

(−1)P|αp1 · · ·αpN )

=
1√
N!

∑
P∈SN

(−1)P|αp1〉 · · · |αpN 〉 . (B.32)

In the states |α1 · · · αN〉 the position of the quantum number is no longer related to
a particular particle. A given particle is not in a particular single-particle state. The
individual terms on the right-hand side of (B.32) are, however, product states of the
form (B.27), so that the position k in the product characterizes a particular particle.

The N-fermion wavefunction (B.11) is given by the bra-ket combination

(x1 · · · xN |α1 · · · αN〉 =
1√
N!

∑
P∈SN

(−1)P(x1 · · · xN |αp1 · · ·αpN )

=
1√
N!

∑
P∈SN

(−1)P〈x1|αp1〉 · · · 〈xN |αpN 〉

=
1√
N!

∑
P∈SN

(−1)P〈xp1 |α1〉 · · · 〈xpN |αN〉 . (B.33)

Note, that only one of the state vectors in the bra-ket scalar product is an antisym-
metrized state, either the bra or the ket vector,

Φα1 ···αN (x1 · · · xN) = 〈x1 · · · xN |α1 · · · αN) = (x1 · · · xN |α1 · · · αN〉 . (B.34)

The other is a simple product state.
The antisymmetric N-fermion state vectors satisfy the orthonormality relation

(B.12),

〈α1 · · · αN |β1 · · · βN〉 = ∑
P∈SN

(−1)Pδα1βp1
· · ·δαN βpN

, (B.35)

which may be verified by insertion of (B.32) and subsequent use of (B.21) for the in-
dividual particles. As a single-particle state can at most be occupied by one fermion,
at most one of the possible permutations of the single-particle overlap matrices can
be non-zero. If the state labels are arranged in a strict order, α1 < · · ·< αN , the result
can be written as

〈α1 · · · αN |β1 · · · βN〉 = δα1β1
· · ·δαN βN

. (B.36)

Similarly, the completeness relations (B.17) and (B.18) have the form

1
N! ∑

α1···αN

|α1 · · · αN〉〈α1 · · · αN | = 1̂FN (B.37)

∑
α1<α2···<αN

|α1 · · · αN〉〈α1 · · · αN | = 1̂FN . (B.38)
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B.2 Fock Space

There are several reasons to combine the Hilbert spaces for all possible particle
numbers into a more general space, the Fock space. Particle numbers of a particular
species are not necessarily conserved in quantum processes or there might be the
need to describe a thermodynamical equilibrium without a fixed number of particles.
The Fock space of fermions F is defined as the direct sum of the N-fermions spaces
FN for all particle numbers,

F = F0 ⊕F1 ⊕·· ·⊕FN ⊕·· · . (B.39)

In addition to the well-defined spaces FN , it includes a sector F0 containing no
particle at all. The only state in F0 is the so-called vacuum state

|0〉 with 〈0|0〉 = 1 . (B.40)

The actual specification of this state requires the application of the creation and
annihilation operators, which will be detailed in the next section. A complete and
orthonormal basis of F is obtained by combining all N-fermion basis sets with
|0〉〈0|, so that the completeness relation in F reads

|0〉〈0|+
∞

∑
N=1

1
N! ∑

α1···αN

|α1 · · · αN〉〈α1 · · · αN | = 1̂F . (B.41)

B.2.1 Creation and Annihilation Operators

The action of a fermion creation operator â†
α on a N-fermion basis state generates

an (N +1)-fermion basis state

â†
α |α1 · · · αN〉 := |α α1 · · · αN〉 . (B.42)

The (N + 1)-fermion state is properly normalized and antisymmetrized. The defi-
nition (B.42) of the operators â†

α is unambiguous, as all states involved are well-
defined. Extension of Eq. (B.42) to N = 0 defines the vacuum state as the state from
which â†

α generates the single-particle state |α〉,

â†
α |0〉 = |α〉 . (B.43)

Combination of the definitions (B.42) and (B.43) allows a representation of any
N-fermion basis state in terms of creation operators and the vacuum,

|α1 · · · αN〉 = â†
α1
· · · â†

αN
|0〉 . (B.44)
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The entire basis of Fock space can be generated by the repeated action of creation
operators on the vacuum state.

The associated annihilation operator âα is defined by hermitian conjugation of
â†

α

âα :=
(
â†

α
)†

. (B.45)

Consequently one has

〈α1| = 〈0| âα1

〈α1 α2 · · · αN | = 〈α2 · · · αN | âα1 = 〈0| âαN · · · âα1 .

The antisymmetry of fermion states of the form (B.44) is incorporated by demand-
ing specific commutation relations for the creation operators. With the interchange
of two quantum numbers in (B.44) one arrives at

|α1 α2 α3 · · · αN〉 = â†
α1

â†
α2

â†
α3
· · · â†

αN
|0〉

= −|α2 α1 α3 · · · αN〉
= −â†

α2
â†

α1
â†

α3
· · · â†

αN
|0〉 . (B.46)

This relation requires that the creation operators (and hence the annihilation opera-
tors) satisfy anticommutation relations,{

â†
α , â†

β

}
=

{
âα , âβ

}
= 0 with

{
Â, B̂

}
= ÂB̂+ B̂Â , (B.47)

as (B.46) must hold for arbitrary states |α3, . . .αN〉.
The commutation relation between creation and annihilation operators can be

derived in the following fashion: as first step consider the expectation value of an
annihilation operator for arbitrary basis set states,

〈α1 · · · αM|âμ |β1 · · · βN〉 = 〈μ α1 · · · αM|β1 · · · βN〉 . (B.48)

The right-hand side of (B.48) necessarily vanishes if M +1 �= N, irrespective of the
values of the quantum numbers involved. This shows that the state âμ |β1 · · · βN〉 is
a (N − 1)-particle state—the operator âμ annihilates one particle. In particular, the
expression 〈0|âμ |0〉 = 0 requires

âμ |0〉 = 0
(

similarly, 〈0|â†
μ = 0

)
. (B.49)

Particles can not be destroyed, if there are no particles.
The next step is an investigation of the action of the annihilation operator on an

arbitrary basis state. With the completeness relation (B.41) one obtains
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âμ |β1 · · · βN〉 =
∞

∑
M=1

1
M! ∑

α1···αM

|α1 · · · αM〉〈α1 · · · αM|âμ |β1 · · · βN〉

=
∞

∑
M=1

1
M! ∑

α1···αM

〈μ α1 · · · αM|β1 · · · βN〉 |α1 · · · αM〉

=
1

(N −1)! ∑
α1···αN−1

〈μ α1 · · · αN−1|β1 · · · βN〉 |α1 · · · αN−1〉 .

The last line can be processed further with the orthonormality relation (B.35),

âμ |β1 · · · βN〉
=

1
(N −1)! ∑

α1···αN−1

∑
P∈SN

(−1)Pδμβp1
δα1βp2

· · ·δαN−1βpN
|α1 · · · αN−1〉

=
1

(N −1)! ∑
P∈SN

(−1)Pδμβp1
|βp2 · · · βpN 〉 .

The sum over the N! permutations P can be written more explicitly in terms of an
expansion with respect to the entry with the index i as

âμ |β1 · · · βN〉 =
1

(N −1)!

N

∑
i=1

(−1)i−1δμβi ∑
P′∈SN−1

(−1)P′ |βp′1 · · · βi

/
· · · βp′N 〉 .

The sum over the permutations P′ of the numbers 1, . . . , i−1, i+1, . . .N (the omis-

sion of i is indicated by βi

/
) represents (N − 1)! times the same (N − 1)-particle

state

|β1 · · · βi−1 βi+1 · · · βN〉 =
1

(N −1)! ∑
P′∈SN−1

(−1)P′ |βp′1 · · · βi

/
· · · βp′N 〉 .

The final result

âμ |β1 · · · βN〉 =
N

∑
i=1

(−1)i−1δμβi
|β1 · · · βi−1 βi+1 · · · βN〉 (B.50)

shows: the right-hand is only non-zero, if the quantum number μ is identical with
one of the βi,

âμ |β1 · · · βN〉 =
{

(−1)i−1 |β1 · · · βi−1 βi+1 · · · βN〉 if μ = βi

0 otherwise
. (B.51)

Combination of (B.50) with (B.42) then yields

âμ â†
ν |α1 · · · αN〉 = δμν |α1 · · · αN〉

+
N

∑
i=1

(−1)iδμαi |να1 · · · αi−1 αi+1 · · · αN〉 , (B.52)
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as well as

â†
ν âμ |α1 · · · αN〉 =

N

∑
i=1

(−1)i−1δμαi |να1 · · · αi−1 αi+1 · · · αN〉 . (B.53)

Both relations are valid for arbitrary |α1 · · · αN〉, so that one can extract the anti-
commutation relation {

âμ , â†
ν
}

= δμν . (B.54)

With Eqs. (B.42)–(B.50) and (B.54) the set of basic relations for creation and anni-
hilation operators is complete. All operations and manipulations in Fock space can
be handled with these tools.

The creation or destruction of a particle has so far been associated with a basis
labelled by an index α . A transition to an alternative basis can be achieved with the
aid of completeness relations. For example, the relations (B.21) and (B.26) can be
used to write down the identities (valid for any kind of particle)

|α〉 =
∫

dx |x〉〈x|α〉 =
∫

dxφα(x)|x〉 (B.55)

|x〉 = ∑
α
|α〉〈α |x〉 = ∑

α
φ ∗

α(x) |α〉 , (B.56)

which can be interpreted as a unitary basis transformation in H1. The second of
these relations suggests the introduction of the operators ψ̂(x) and ψ̂†(x) with

|x〉 = ψ̂†(x)|0〉 and 〈x| = 〈0| ψ̂(x) . (B.57)

These operators describe the creation and the destruction of a particle at the “posi-
tion x”. For this reason they are usually referred to as field operators. In other words:
the basis transformations (B.55) and (B.56) induce a corresponding transformation
between the associated creation and annihilation operators,

ψ̂†(x) = ∑
α

φ ∗
α(x) â†

α = ∑
α
〈α|x〉 â†

α (B.58)

ψ̂(x) = ∑
α

φα(x)âα = ∑
α
〈x|α〉âα , (B.59)

with the inverse transformation

âα =
∫

dxφ ∗
α(x) ψ̂(x) (B.60)

â†
α =

∫
dx φα(x) ψ̂†(x) . (B.61)

The relations (B.58), (B.59) indicate directly that the field operators are objects with
two components in the case of spin 1/2 fermions,
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ψ̂(x) = ψ̂(rrrσ) =

{
ψ̂(rrr,+ 1

2 ) if σ = + 1
2

ψ̂(rrr,− 1
2 ) if σ = − 1

2

. (B.62)

The anticommutation relations (B.54) and (B.47) and the transformations (B.58)–
(B.61) can only be consistent, if the field operators satisfy{

ψ̂(x), ψ̂†(x′)
}

= δ (x,x′) (B.63){
ψ̂(x), ψ̂(x′)

}
=

{
ψ̂†(x), ψ̂†(x′)

}
= 0 . (B.64)

The structure of the commutation relations is conserved under basis transforma-
tions. A transformation between the basis |α〉 and any other (single-particle) basis
proceeds in the same fashion.

B.2.2 1-Particle Operators

The Pauli principle requires that quantum particles are indistinguishable. Observ-
ables of many particle systems can, as a consequence, only be represented by oper-
ators which are symmetric under exchange of particles.

An important class of operators in N-particle space are those constructed by sum-
mation over terms acting on a single particle,

F̂ =
N

∑
i=1

f̂i . (B.65)

They are referred to as 1-particle (or single-particle) operators. More correctly they
might be called 1-particle operators in an N-particle system. A second important
type of operators is constructed by summation of terms linking two particles,

Ŵ =
N

∑
i, j=1; i< j

ŵi j . (B.66)

These operators are therefore called 2-particle operators.
A 1-particle operator f̂ can be specified in the x -, the α - or any other represen-

tation. In the Dirac notation one obtains for instance for the operator of the kinetic
energy of a single particle in the x -representation

〈x|t̂|x′〉 = δ (x,x′)
(−ih̄∇∇∇′)2

2m
. (B.67)

The α - and the x -representation of an operator f̂ can be related with the aid of the
completeness relation

〈α| f̂ |β 〉 =
∫

dxdx′ 〈α|x′〉〈x′| f̂ |x〉〈x|β 〉 . (B.68)
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The action of f̂ on a 1-particle state |γ〉 can also be rewritten with the completeness
relation as

f̂ |γ〉 = ∑
α
|α〉〈α| f̂ |γ〉 . (B.69)

This implies that the representation of a 1-particle operator in terms of creation and
annihilation operators must have the form

f̂ = ∑
αβ

〈α| f̂ |β 〉 â†
α âβ . (B.70)

The operators â†
α and âβ are specified in terms of the single-particle basis to which

|γ〉 belongs. Equation (B.70) can be verified by insertion,

f̂ |γ〉 = ∑
αβ

〈α| f̂ |β 〉 â†
α âβ â†

γ |0〉 = ∑
α
〈α| f̂ |γ〉 â†

α |0〉 , (B.71)

and comparison with Eq. (B.69).
The 1-particle operator F̂ = ∑i f̂i in Fock space is completely characterized by the

action of f̂ within the 1-particle segment of this space. It follows that the operator
(B.70) can also serve as a representation of the operator F̂ ,

F̂ = ∑
αβ

〈α| f̂ |β 〉 â†
α âβ . (B.72)

Due to the combination â†
α âβ the operator only connects states of the same segment

of Fock space. In order to evaluate the action of this operator on a N-particle state
one may use the commutation relation

[
F̂ , â†

α
]
= ∑

βγ
〈β | f̂ |γ〉

[
â†

β âγ , â
†
α

]
= ∑

β
〈β | f̂ |α〉â†

β . (B.73)

Use of (B.73) allows a direct evaluation of F̂ |α1 · · ·αN〉 as soon as [F̂ , â†
α ] is intro-

duced by suitable addition and subtraction of terms,

F̂ â†
α1
· · · â†

αN
|0〉 = [F̂ , â†

α1
] â†

α2
· · · â†

αN
|0〉+ â†

α1
[F̂ , â†

α2
] â†

α3
· · · â†

αN
|0〉

+ · · ·+ â†
α1
· · · â†

α(N−1)
[F̂ , â†

αN
] |0〉 . (B.74)

After replacement of the commutator one obtains

= ∑
β1

〈β1| f̂ |α1〉 â†
β1

â†
α2
· · · â†

αN
|0〉+∑

β2

〈β2| f̂ |α2〉 â†
α1

â†
β2

â†
α3
· · · â†

αN
|0〉

+ · · ·+∑
βN

〈βN | f̂ |αN〉 â†
α1
· · · â†

αN−1
â†

βN
|0〉 . (B.75)

This explicit result can be written in the compact form
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F̂ |α1 · · ·αN〉 =
N

∑
i=1

∑
βi

〈βi| f̂ |αi〉 â†
α1
· · · â†

βi
· · · â†

αN
|0〉 . (B.76)

The notation indicates that â†
βi

stands at position i in the sequence of creation oper-
ators. Each of the particles is transferred with a certain probability, determined by
the matrix element 〈βi| f̂ |αi〉, into a single-particle state which is not already present
in |α1 · · ·αN〉. The result (B.75) can also be used to evaluate the only non-vanishing
matrix elements of F̂ ,

〈α1 · · ·αN |F̂ |α1 · · ·αN〉 = ∑
i=1

〈αi| f̂ |αi〉 (B.77)

〈α1 · · ·βk · · ·αN |F̂ |α1 · · ·αN〉 = 〈βk| f̂ |αk〉 . (B.78)

The label βk �= αi, i = 1, . . .N replaces αk in the bra-state of Eq. (B.78). 1-particle
operators can only connect states of Fock space with the same number of particles,
which differ at most in one occupation.

The operator (B.72) in the second quantized representation can alternatively be
written in terms of the field operators

F̂ = ∑
αβ

〈α| f̂ |β 〉â†
α âβ =

∫
dxdx′ ∑

αβ
〈α|x′〉〈x′| f̂ |x〉〈x|β 〉â†

α âβ

=
∫

dxdx′ ψ̂†(x′)〈x′| f̂ |x〉ψ̂(x) , (B.79)

or, for that matter, in terms of any other basis, which is related by a unitary transfor-
mation, as e.g.

b̂†
k = ∑

α
Ck,α â†

α b̂k = ∑
α

C∗
k,α âα (B.80)

with the inverse

â†
α = ∑

k

C∗
k,α b†

k âα = ∑
k

Ck,α b̂k . (B.81)

In the basis with the creation and annihilation operators b̂k, b̂
†
k one obtains

F̂ = ∑
k1,k2

〈k1| f̂ |k2〉 b̂†
k1

b̂k2 . (B.82)

The form of the representation is independent of the basis chosen.
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B.2.3 2-Particle Operators

Similar statements can be made for 2-particle operators, though detailed calculations
and proofs are more involved. These operators are characterized by matrix elements
in the 2-particle sector of the Fock space, e.g. in the x -representation by

(x′1x′2|ŵ|x1x2) .

The notation indicates that the matrix element under consideration is the canonical
matrix element, obtained with the product states of the 2-particle Hilbert space. One
example is the interaction between two particles, which is usually local with respect
to the coordinates of the two particles involved,

(x′1x′2|ŵ|x1x2) = δ (x1,x
′
1)δ (x2,x

′
2)w(x1,x2) . (B.83)

The function w(x1,x2) has to be symmetric and real, as

• the corresponding force has to satisfy Newton’s third axiom, and
• the operator ŵ has to be hermitian.

It may either be spin-dependent, or not,

w(x1,x2) = w(rrr1,rrr2) . (B.84)

Equation (B.84) applies in particular to the Coulomb interaction, which is of primary
interest in the present context. In fact, the Coulomb force is a good example for an
interaction which is, in addition, Galilei invariant. The function w(rrr1,rrr2) depends
only on the difference of the position vectors in this case

w(rrr1,rrr2) = w(rrr1 − rrr2) . (B.85)

The α -representation of the two-body interaction is again obtained with the aid of
the completeness relation,

(β1β2|ŵ|α1α2) =
∫

dx′1dx′2dx1dx2 (β1β2|x′1x′2)(x
′
1x′2|ŵ|x1x2)(x1x2|α1α2) , (B.86)

in detail for the case (B.83),

(β1β2|ŵ|α1α2) =
∫

dx1dx2 φ ∗
β1

(x1)φ ∗
β2

(x2)w(x1,x2)φα1(x1)φα2(x2) . (B.87)

The order of the quantum labels in the 2-particle bra- and ket-states is, as indicated
explicitly in (B.87), of relevance. The first label in the bra- and in the ket-state is
associated with the coordinate x1, the second with x2. The matrix element satisfies
the symmetry relations

(β1β2|ŵ|α1α2) = (β2β1|ŵ|α2α1) = (α1α2|ŵ|β1β2)∗ . (B.88)
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The action of a 2-particle operator on antisymmetric 2-particle states can be re-
formulated with the aid of the completeness relation (B.37),

ŵ|α1α2〉 =
1
2! ∑

β1β2

〈β1β2|ŵ|α1α2〉|β1β2〉 . (B.89)

The matrix element in (B.89) is the antisymmetric matrix element, which can be
expressed in terms of canonical matrix elements by use of Eq. (B.32),

〈β1β2|ŵ|α1α2〉 =
1
2

{
(β1β2|− (β2β1|

}
ŵ
{|α1α2)−|α2α1)

}
= (β1β2|ŵ|α1α2)− (β1β2|ŵ|α2α1) . (B.90)

The second line in Eq. (B.90) follows from the symmetry of the interaction against
the interchange of the two particles. The properties of this matrix element,

〈β1β2|ŵ|α1α2〉 = −〈β2β1|ŵ|α1α2〉 = −〈β1β2|ŵ|α2α1〉 (B.91)

= 〈β2β1|ŵ|α2α1〉 = 〈α1α2|ŵ|β1β2〉∗ ,

follow directly from the definition and the properties (B.88) of the direct matrix
elements involved. Combination of Eqs. (B.88)–(B.91) yields the alternative form

ŵ|α1α2〉 = ∑
β1β2

(β1β2|ŵ|α1α2) |β1β2〉 . (B.92)

The second quantized form of a 2-particle operator in Fock space that reproduces
(B.92) is

Ŵ =
1
2 ∑

αβγδ
(αβ |ŵ|γδ ) â†

α a†
β âδ âγ . (B.93)

One should take note of the sequence of the labels of the operators with respect to
the sequence of the labels of the states. The calculation of the action of this operator
on a 2-particle state of fermion Fock space involves the evaluation of

Ŵ |α1α2〉 =
1
2 ∑

β1β2γ1γ2

(β1β2|ŵ|γ1γ2) â†
β1

â†
β2

âγ2 âγ1 â†
α1

â†
α2
|0〉 . (B.94)

Rearrangement of the creation and annihilation operators,

â†
β1

â†
β2

âγ2 âγ1 â†
α1

â†
α2
|0〉 = (δα1γ1 δα2γ2 −δα1γ2 δα2γ1) â†

β1
â†

β2
|0〉 (B.95)

leads, with (B.91), to the same result as (B.92), namely

Ŵ |α1α2〉 = ∑
β1β2

(β1β2|ŵ|α1α2) |β1β2〉 . (B.96)
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The evaluation of the action of the operator Ŵ on a N-particle state also relies on
the use of a suitable commutator,[

Ŵ , â†
α
]
= ∑

β1β2α2

(β1β2|ŵ|αα2) â†
β1

â†
β2

âα2 . (B.97)

Consequent permutation of the commutator through the string of creation operators
of the N-particle state yields

Ŵ |α1 · · ·αN〉

=
N

∑
i=1

â†
α1
· · ·[Ŵ , â†

αi

] · · · â†
αN

|0〉

=
N−1

∑
i=1

∑
β1β2γ2

(β1β2|ŵ|αiγ2) â†
α1
· · · â†

αi−1
â†

β1
â†

β2
âγ2 â†

αi+1
· · · â†

αN
|0〉 . (B.98)

The expression â†
β1

â†
β2

âγ2 stands exactly at the position of â†
αi (the contribution with

i = N has been omitted, as it vanishes). The pair â†
β2

âγ2 now has to be commuted
through the chain of operators to its right,

Ŵ |α1 · · ·αN〉 =
N−1

∑
i=1

N

∑
j=i+1

∑
β1β2

(β1β2|ŵ|αiα j)

×â†
α1
· · · â†

αi−1
â†

β1
â†

αi+1
· · · â†

α j−1
â†

β2
â†

α j+1
· · · â†

αN
|0〉 . (B.99)

This expression can be symmetrized with respect to i and j by use of

N−1

∑
i=1

N

∑
j=i+1

Ai j =
N

∑
j=2

j−1

∑
i=1

Ai j

and subsequent simultaneous relabelling i ↔ j, β1 ↔ β2 in half of the right-hand
side,

Ŵ |α1 · · ·αN〉 =
1
2

N

∑
i, j=1;i�= j

∑
β1β2

(β1β2|ŵ|αiα j)

×â†
α1
· · · â†

αi−1
â†

β1
â†

αi+1
· · · â†

α j−1
â†

β2
â†

α j+1
· · · â†

αN
|0〉 .

The canonical matrix element can be replaced by its antisymmetric counterpart by
using the commutation relations to interchange the positions of â†

β1
and â†

β2
in the

sequence of creation operators,

Ŵ |α1 · · ·αN〉 =
1
4

N

∑
i, j=1;i�= j

∑
β1β2

〈β1β2|ŵ|αiα j〉

×â†
α1
· · · â†

αi−1
â†

β1
â†

αi+1
· · · â†

α j−1
â†

β2
â†

α j+1
· · · â†

αN
|0〉 . (B.100)
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This result shows that at most two of the particles in |α1 · · ·αN〉 are promoted to
different single-particle states by application of Ŵ . The matrix elements, which are
non-zero, are

• the expectation value,

〈α1 · · ·αN |Ŵ |α1 · · ·αN〉 =
1
2

N

∑
i, j=1

〈αiα j|ŵ|αiα j〉 , (B.101)

• matrix elements with N-particle states, which differ in one quantum number
(βk �= αi, i = 1 . . .N),

〈α1 · · ·αk−1βkαk+1 · · ·αN |Ŵ |α1 · · ·αk · · ·αN〉 =
N

∑
i=1

〈βkαi|ŵ|αkαi〉 , (B.102)

• matrix elements with N-particle states, which differ in two quantum numbers
(βk,βl �= αi, i = 1 . . .N),

〈α1 · · ·αk−1βkαk+1 · · ·αl−1βlαl+1 · · ·αN |Ŵ |α1 · · ·αk · · ·αl · · ·αN〉
= 〈βkβl |ŵ|αkαl〉 (B.103)

(with the understanding that βk stands on position k etc.).
The second quantized form of a 2-particle operator in the x -representation can

be obtained from the α -representation with the aid of completeness relation (B.31).
Insertion of (B.31) into (B.93) and subsequent use of (B.29) leads to

Ŵ =
1
2 ∑

β1β2α1α2

∫
dx1dx2 (β1β2|x1x2)w(x1,x2)(x1x2|α1α2) â†

β1
â†

β2
âα2 âα1

=
1
2

∫
dx1dx2 ∑

β1β2α1α2

φ ∗
β1

(x1)φ ∗
β2

(x2)w(x1,x2)φα1(x1)φα2(x2)

× â†
β1

â†
β2

âα2 âα1 .

With Eqs. (B.58), (B.59) one finally obtains

Ŵ =
1
2

∫
dx1dx2 ψ̂†(x1)ψ̂†(x2)w(x1,x2)ψ̂(x2)ψ̂(x1) . (B.104)

Once again, specific attention should be given to the order of the arguments of the
annihilation operators.



Appendix C
Scaling Behavior of Many-Body Methods

In order to provide some background for the discussion of the scaling behavior
of many-body methods with the basis set size M indicated in the Introduction, we
explicitly consider the most relevant expressions which one has to deal with in this
Appendix. The analysis is still quite simple for the class of matrix elements, which
have to be evaluated in any of the ab-initio methods, i.e. the matrix elements of a
single-particle operator. Let us thus first consider a multiplicative potential v as the
prototype of such an operator.

In an algebraic eigenvalue problem of the type (1.24) usually two steps are in-
volved. In order to determine the eigenvectors bi,lσ the Hamilton matrix has to be
evaluated first. Once the bi,lσ are known, other quantities, like the energy of the sys-
tem can be calculated in a second step.1 In the case of a multiplicative potential v
M2 integrals

〈ηk|v̂|ηl〉 =
∫

d3r η∗
k (rrr)v(rrr)ηl(rrr) k, l = 1, . . .M , (C.1)

have to be evaluated in the first step.2 Three aspects are relevant in this context:

• If v is a given potential the M2 integrals have to be evaluated only once. However,
the single-particle potential is often determined during the calculation, rather than
given a priori. This is the case, in particular, for the HF scheme, which represents
the starting point for many of the more advanced approaches. In a selfconsis-
tent scheme the evaluation of the matrix elements 〈ηk|v̂|ηl〉 has to be repeated
a number of times. This repetition introduces an additional factor into the total
computational cost, which, however, is independent of M and will be ignored in
the following.

• On the other hand, the construction of v itself usually depends on M. The asso-
ciated scaling cannot be determined without specification of a particular method
and will therefore be examined later.

1 In practice, these two steps often go hand in hand, of course.
2 For Hermitian operators the actual number is M(M + 1)/2, which for large M corresponds to
O(M2).
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• It remains to address the cost of handling the spatial integral in (C.1). If the
integral is known analytically, one can simply store the M2 coefficients 〈ηk|v̂|ηl〉
for repeated use. However, this is rarely the case, so that a numerical evaluation
of (C.1) is usually unavoidable.3 The summation over a spatial grid introduces an
additional scaling factor of M, as the number of grid points required to represent
M linearly independent basis functions is proportional to M. In the following the
number of grid points will therefore simply be identified with M. As a result M3

operations are needed in order to set up the table of all 〈ηk|v̂|ηl〉, if numerical
integration is used in Eq. (C.1).

Once the matrix elements〈ηk|v̂|ηl〉 are available and the eigenvalue problem (1.24)
is solved, the evaluation of the associated energy,

N

∑
i=1

〈φi|v̂|φi〉 =
N

∑
i=1

M

∑
k,l

∑
σ

b∗i,kσ bi,lσ 〈ηk|v̂|ηl〉 , (C.2)

involves a summation over N terms for each of the M2 matrix elements kl (the
multiplicities associated with spin are irrelevant at this point). The scaling of N and
M is, however, intrinsically related, i.e. M increases linearly with N. For the present
discussion N can therefore simply be replaced by M, so that one ends up with a total
scaling of M3.

It is instructive to compare this procedure with an alternative possibility for the
calculation of (C.2). The first step of this second path is the evaluation of all orbitals
(1.23), for which a summation over M terms is required for all N = M orbitals on
all M grid points. Once all φi(rrr) are stored, it takes M2 operations to calculate the
density

n(rrr) = ∑
σ

N

∑
i=1

|φi(rrrσ)|2 . (C.3)

The energy (C.2) can finally be evaluated by numerical integration over n(rrr)v(rrr),
which is linear in M. Again one ends up with an M3 scaling. In the alternative
approach the storage of the M × M array φi(rrr) replaces the storage of the M ×
M array 〈ηk|v̂|ηl〉 necessary in the first approach, so that no additional memory is
needed.

The second approach can easily be extended to nonlocal single-particle poten-
tials. In this case one would pre-evaluate the 1-particle density matrix

γ(rrrσ ,rrr′σ ′) =
N

∑
i=1

φi(rrrσ)φ ∗
i (rrr′σ ′) , (C.4)

rather than the density. This step scales as M3. The integration

3 The numerical integration can be avoided if v is expanded in terms of a separate basis set which
allows an analytical treatment of 〈ηk|v̂|ηl〉. This point will, however, not be expanded here.
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∑
σ ,σ ′

∫
d3r

∫
d3r′ γ(rrrσ ,rrr′σ ′)v(rrrσ ,rrr′σ ′)

then requires M2 operations.
The same arguments can be applied to the kinetic energy. This is immediately

clear if the gradients of ηk can be evaluated analytically. However, even if the partial
derivatives of ηk (or φi) have to be calculated numerically, the total scaling is not
affected, as differentiation is linear in M.

In summary: the numerical calculation of the Hamilton matrix scales like M3

with the basis set size, as long as the Hamiltonian consists only of single-particle
operators, whose evaluation does not introduce an additional M-dependence. The
same scaling behavior is found for the actual diagonalization of the Hamilton ma-
trix by standard techniques.4 In practice, however, the diagonalization is less time
consuming than the evaluation of the matrix elements.

The situation becomes more complicated as soon as the Coulomb interaction, a
2-particle operator, is taken into account, i.e. as soon as the determination of v̂eff,σσ ′
is addressed. Let us explicitly consider the HF approximation in which only very
specific Coulomb matrix elements are required. In order to extract the scaling be-
havior it is sufficient to analyze the exchange contribution

Ex = −e2

2

N

∑
i, j=1

∑
σ ,σ ′

∫
d3r

∫
d3r′

φ ∗
i (rrrσ)φ ∗

j (rrr
′σ ′)φ j(rrrσ)φi(rrr′σ ′)
|rrr− rrr′| , (C.5)

which is the most demanding term in the HF approach. One possible method for the
evaluation of (C.5) consists of the following sequence of operations:

1. evaluate and store φi(rrrσ) (scales as M3)
2. evaluate and store γ(rrrσ ,rrr′σ ′) (scales as M3)

3. evaluate Ex = −e2

2 ∑
σ ,σ ′

∫
d3r

∫
d3r′

|γ(rrrσ ,rrr′σ ′)|2
|rrr− rrr′| (scales as M2)

A net scaling of M3 is found. The same is true for the exchange contribution to the
effective single-particle Hamiltonian

N

∑
j=1

(ηkφ j| 1
|rrr− rrr′| |φ jηn) =

N

∑
j=1

∫
d3r

∫
d3r′

η∗
k (rrr)φ ∗

j (rrr
′σ ′)φ j(rrrσ)ηn(rrr′)
|rrr− rrr′| (C.6)

=
∫

d3rη∗
k (rrr)

[∫
d3r′

γ(rrrσ ,rrr′σ ′)
|rrr− rrr′| ηn(rrr′)

]
.

The calculation of the quantity in brackets scales as M3. Once it is stored for all rrr
and n, one can perform the rrr-integration for all k, l, which again scales as M3.

However, the numerical evaluation of matrix elements of the Coulomb interac-
tion is complicated by the singularity at rrr = rrr′ and by the long range of the inter-

4 Here we ignore advanced techniques as iterative diagonalization [729], the Car-Parrinello method
[730] and conjugate gradient methods [731, 732, 669] for brevity.
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action. In addition, the procedure described, requires substantial memory as both
the M×M arrays γ(rrrσ ,rrr′σ ′) and

∫
d3r′γ(rrrσ ,rrr′σ ′)ηn(rrr′)/|rrr− rrr′| have to be stored

simultaneously. It is therefore preferable to use basis functions for which the matrix
elements

(ηkηl ||ηmηn) =
∫

d3r
∫

d3r′
η∗

k (rrr)η∗
l (rrr′)ηm(rrr)ηn(rrr′)
|rrr− rrr′| (C.7)

can be calculated analytically (like Gaussian or plane-wave basis functions). If the
quantities (ηkηl ||ηmηn) are easily recalculated, it is not even necessary to store
the matrix elements. Alternatively, one can store all (ηkηl ||ηmηn) before any other
operation is performed. In this case the exchange term in the Hamilton matrix has
the form

N

∑
j=1

(ηkφ j| 1
|rrr− rrr′| |φ jηn) =

M

∑
l,m=1

N

∑
j=1

b∗j,lσ ′b j,mσ (ηkηl ||ηmηn) , (C.8)

which suggests an effort proportional to NM4. However, the evaluation of the ex-
pression (C.8) and that of the exchange energy can again be split into several in-
dependent steps, which improves the scaling behavior. One first sums up the M2

coefficients ∑N
j=1 b∗j,lσ ′b j,mσ and stores them. This step requires M3 operations. In

the second step the resulting matrix in l,m is folded with the known matrix elements
(ηkηl ||ηmηn) for each pair k,n, which requires M4 operations. If one again stores
the resulting M2 matrix elements, the summations over i,k,n required for the cal-
culation of the complete exchange energy are independent of the previous steps, so
that the third set of summations scales as M2 (as ∑N

i=1 b∗i,kσ bi,nσ ′ is already available).
Taking all steps together, one ends up with a scaling of the HF scheme proportional
to M4 in this standard implementation.

As soon as arbitrary 2-particle matrix elements

(φiφ j| 1
|rrr− rrr′| |φkφl)

have to be calculated, as is the case for all correlated ab-initio methods, the M4-
scaling can no longer be preserved by some clever sequence of operations. In addi-
tion, the scaling behavior again depends sensitively on the technical implementation.
It is beyond the scope of this text to provide any details.



Appendix D
Explicit Density Functionals for the Kinetic
Energy: Thomas-Fermi Models and Beyond

The theorem of Hohenberg and Kohn provides a justification of early density func-
tional models which relied on a representation of the complete ground state energy
E0 in terms of the density,

E0 = E[n0] . (D.1)

The first density functional of this type was the model of Thomas and Fermi (TF),
which was established in the years 1927/28 [13, 14]. These authors considered a
uniform gas of noninteracting electrons, the homogeneous electron gas (HEG) of
Sect. 4.3, in order to derive a representation of the kinetic energy in terms of the
density.

Their result can be derived by the Green’s function techniques utilized in Sect. 4.3
for the discussion of the xc-energy of the HEG. In order to provide some alterna-
tive to this approach, however, a more elementary route for the derivation of the
TF functional is taken in this Appendix. The Schrödinger equation for the single-
particle states of the noninteracting electron gas reads

− h̄2∇∇∇2

2m
φi(rrrσ) = εiφi(rrrσ) . (D.2)

The solutions of (D.2) are given by

φkkks(rrrσ) = C eikkk·rrr χs(σ) (quantum number i ≡ kkks) , (D.3)

with the Pauli spinors χs(σ) and the eigenvalues

εkkk =
h̄2kkk2

2m
. (D.4)

Normalizable solutions can only be obtained if kkk is real. However, even in the case
of real kkk the norm of φkkks is infinite, as soon as the complete space is considered.
Moreover, the differential equation (D.2) allows arbitrary real values of kkk, so that
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one finds more than countably many states. It is thus necessary to regularize the
problem by an additional boundary condition which ensures the normalizability of
the φkkks and at the same time discretizes the spectrum. For this regularization one
chooses a cubic box with sides of length L. Requiring periodic boundary conditions
for all three Cartesian directions,

φkkks(x+L,y,z,σ) = φkkks(x,y+L,z,σ) = φkkks(x,y,z+L,σ) = φkkks(x,y,z,σ) , (D.5)

leads to a quantization (i.e. discretization) of all components of kkk,

ki =
2π
L

αi with αi = 0,±1,±2, . . . (i = 1,2,3) . (D.6)

Normalization to 1 inside the box is obtained for C = 1/
√

L3,

∫ L

0
dx

∫ L

0
dy

∫ L

0
dxe

2πi
L (ααα ′−ααα)·rrr ∑

σ=↑,↓
χs(σ)χs′(σ) = L3 δαααααα ′ δss′ . (D.7)

The single-particle states which are properly normalized within a cubic box are thus
given by

φkkks(rrrσ) =
eikkk·rrr

L3/2
χs(σ) kkk =

2π
L

ααα with αi = 0,±1,±2, . . . . (D.8)

In the ground state of the noninteracting homogeneous electron gas each level
is filled with one spin-up and one spin-down electron. The number of levels which
are occupied is determined by the number of particles in the box. The eigenvalue
of the energetically highest occupied state is identified with the Fermi energy εF.
Consequently, the density of the system is

n0 =
∞

∑
i=1

Θ(εF − εi) ∑
σ=↑,↓

φ ∗
i (rrrσ)φi(rrrσ)

=
∞

∑
α1,α2,α3=0

Θ(εF − εkkk) ∑
σ=↑,↓

φ ∗
kkks(rrrσ)φkkks(rrrσ)

=
∞

∑
α1,α2,α3=0

Θ

(
εF − h̄2kkk2

2m

)
2
L3 . (D.9)

Similarly one obtains for the kinetic energy per volume element

Ts(V )
V

=
1
V

∞

∑
i=1

Θ(εF − εi) ∑
σ=↑,↓

∫
V

d3r φ ∗
i (rrrσ)

−h̄2∇∇∇2

2m
φi(rrrσ)

=
1
L3

∞

∑
α1,α2,α3=0

Θ(εF − εkkk) ∑
σ=↑,↓

∫ L

0
dx

∫ L

0
dy

∫ L

0
dzφ ∗

kkks(rrrσ)
h̄2kkk2

2m
φkkks(rrrσ)
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=
∞

∑
α1,α2,α3=0

Θ

(
εF − h̄2kkk2

2m

)
2
L3

h̄2kkk2

2m
. (D.10)

At this point all expressions have been evaluated to a point at which the limit L → ∞
can be taken, which leads back to the electron gas of infinite extension. In this limit
the spacing between adjacent momenta kkk becomes infinitesimally small, so that the
summation over all discrete values of kkk goes over into an integration over kkk. The
volume element of this kkk-integration is obtained from the volume in kkk-space which
is associated with each of the discrete kkk-values. For each of the Cartesian directions
two neighboring ki-values differ by 2π/L, so that the kkk-space volume per discrete
kkk-value is (2π/L)3,

Δki =
2π
L

Δαi =⇒ Δα1 Δα2 Δα3 =
(

L
2π

)3

Δ 3k

∞

∑
α1,α2,α3=0

L→∞−→
(

L
2π

)3 ∫
d3k . (D.11)

Introducing the Fermi momentum

kF :=
√

2mεF

h̄
, (D.12)

the density and kinetic energy density are now easily evaluated using spherical co-
ordinates,

n0 =
(

L
2π

)3 ∫
d3kΘ (kF −|kkk|) 2

L3

=
k3

F

3π2 (D.13)

Ts(V )
V

=
(

L
2π

)3 ∫
d3kΘ (kF −|kkk|) 2

L3

h̄2kkk2

2m

=
h̄2k5

F

10π2m
. (D.14)

Finally, one can invert the relation between n0 and kF,

kF =
(
3π2n0

)1/3
, (D.15)

to end up with the desired relation between the kinetic energy density ts and the
density n0,

ts ≡ Ts(V )
V

=
h̄2(3π2n0)5/3

10π2m
. (D.16)
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In order to apply this result to atoms, Thomas and Fermi (TF) relied on the lo-
cal density approximation discussed in Sect. 4.3. In this approximation the energy
density ts(rrr) of the actual inhomogeneous system is replaced by the energy density
of the electron gas, Eq. (D.16), evaluated with the local density n(rrr). The complete
kinetic energy is then given by

T TF
s =

3(3π2)2/3h̄2

10m

∫
d3r n(rrr)5/3 . (D.17)

This expression is manifestly a density functional. As it is derived from the non-
interacting gas it represents an approximation for the Kohn-Sham kinetic energy
functional Ts[n], introduced in Sect. 3.1.

The total energy functional of Thomas and Fermi neglected all exchange and
correlation effects, so that only the direct Coulomb repulsion (Hartree energy) and
the coupling to the external potential remain,

ETF[n] = T TF
s [n]+

e2

2

∫
d3r

∫
d3r′

n(rrr)n(rrr′)
|rrr− rrr′| +

∫
d3r vext(rrr)n(rrr) . (D.18)

Applications can be based directly on the variational equation (2.38), reflecting the
minimum principle (2.28). The welcome feature is the fact that the variational ap-
proach reduces the many-particle problem to a form which is independent of the
particle number.

Considerable effort was expended in order to improve this model. The first and
most important step was the inclusion of exchange by Dirac in 1930 [131]. Dirac
followed the path of Thomas and Fermi and considered the exchange energy of the
uniform electron gas. The exact exchange energy of the gas in the cubic box of
volume V = L3 has the form

Ex(V ) = −e2

2

∞

∑
i, j=1

Θ(εF − εi)Θ(εF − ε j)

× ∑
σ ,σ ′=↑,↓

∫
V

d3r
∫

d3r′
φ ∗

i (rrrσ)φ j(rrrσ)φ ∗
j (rrr

′σ ′)φi(rrr′σ ′)
|rrr− rrr′| . (D.19)

Insertion of the states (D.8) of the uniform gas yields for the exchange energy per
volume element (after an appropriate shift of rrr′ by rrr)

ex ≡ Ex(V )
V

= −e2 ∑
αααβββ

Θ (kF −|kkkααα |)Θ
(
kF −|kkkβββ |

)∫
d3r′

ei(kkkααα−kkkβββ )·rrr′

L6|rrr′| . (D.20)

One can now use the fact that for L → ∞ the summation over all integers ααα can be
replaced by an integration over kkk, Eq. (D.11), to obtain

ex = −e2
∫

d3k
(2π)3

∫
d3q

(2π)3 Θ(kF −|kkk|)Θ(kF −|qqq|)
∫

d3r′
ei(kkk−qqq)·rrr′

|rrr′| . (D.21)
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Next, the rrr′-integration can be carried out by introducing a suitable intermediate reg-
ularization factor e−μ|rrr′| in the integral and taking the limit μ → 0 after integration
(compare Eq. (4.144) and the subsequent discussion in Sect. 4.4.1),

ex = −e2
∫

d3k
(2π)3

∫
d3q

(2π)3 Θ(kF −|kkk|)Θ(kF −|qqq|) 4π
(kkk−qqq)2 . (D.22)

One now first performs the qqq-integration. Choosing the z-axis of the coordinate sys-
tem for qqq so that it is parallel to kkk, the qqq-integration can be done in spherical coor-
dinates,

ex = −e2

π

∫
d3k

(2π)3 Θ(kF − k)
∫ kF

0
q2dq

∫ +1

−1
d cos(θ)

1
k2 +q2 −2kqcos(θ)

=
e2

2π3

∫ kF

0
kdk

∫ kF

0
qdq [ln |k−q|− ln(k +q)] .

The remaining integrations are straightforward, after splitting the range of the inner
integration over q into the subregimes [0,k] and [k,kF],

ex = − e2

4π3 k4
F . (D.23)

Insertion of the Fermi momentum (D.15) then leads to

ex = − e2

4π3

(
3π2n0

)4/3
. (D.24)

Using the local density approximation, one finally arrives at the density functional

ED
x [n] = − 3(3π2)1/3e2

4π

∫
d3r n(rrr)4/3 . (D.25)

ED
x [n] is an approximation for the exact exchange energy functional Ex[n] of DFT.

As is clear from its construction, ED
x [n] is nothing but the LDA for exchange,

Eqs. (4.99), (4.109), in modern terminology. Adding this term to the energy (D.18)
constitutes the Thomas-Fermi-Dirac model.

The next step towards extending the TF model was taken by von Weizsäcker in
1935 [174]. Von Weizsäcker observed that one can express the kinetic energy of a
single particle in terms of the density. In fact, if there is only one particle bound by
some potential, the corresponding ground state orbital

φi(rrrσ) = ϕ0(rrr)χs(σ)

may be chosen real, so that its kinetic energy may be written as1

1 The surface term does not contribute in the partial integration since a normalizable orbital decays
sufficiently rapidly for |rrr| → ∞.
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Ts = ∑
σ=↑,↓

∫
d3r φ ∗

i (rrrσ)
−h̄2∇∇∇2

2m
φi(rrrσ) =

∫
d3r

[h̄∇∇∇ϕ0(rrr)]2

2m
. (D.26)

The corresponding density is given by

n(rrr) = ∑
σ=↑,↓

|φi(rrrσ)|2 = ϕ0(rrr)2 .

Insertion into (D.26) leads to the von Weizsäcker functional

T vW
s [n] =

h̄2

m

∫
d3r

[∇∇∇n(rrr)]2

8n(rrr)
. (D.27)

This density functional also represents the exact kinetic energy in the case of a
noninteracting 2-particle system in which both particles occupy the same orbital
ϕ0, but have opposite spins. T vW

s [n] thus agrees with the exact Ts[n] of Kohn-Sham
theory for a single particle and a spin-saturated pair of two particles.

The expression for T vW
s [n] also indicates how the TF kinetic energy can be ex-

tended in order to better account for the inhomogeneity of real systems: obviously,
the gradient of the density is the simplest purely density-dependent measure of the
inhomogeneity in a many-particle system. The only parameter-free expression for ts
which (i) depends only locally on ∇∇∇n and (ii) does not depend on the characteristics
of the external potential (as for instance on some preferred axis) is the functional
(D.27). It is thus no surprise that a systematic derivation of gradient corrections for
the kinetic energy, either using some form of the so-called commutator expansion
[173] or following the lines of Sect. 4.4, leads to an expression which differs from
T vW

s [n] only by an overall prefactor λ = 1/9 (for all details, including higher order
gradient corrections [175, 733, 194, 195, 734], see Chap. 5 of [7]). Adding λT vW

s [n]
to ETF[n]+ED

x [n] constitutes the Thomas-Fermi-Dirac-Weizsäcker model.
Without going into detail, we list some further extensions of the TF-model:

• First correlation contributions were introduced by Wigner as early as 1934 [138]
(see Sect. 4.3.4).

• Gradient corrections to the Dirac exchange energy were calculated subsequently,
but were found to lead to a divergent behavior for small and large separations
from the nucleus in atoms—compare Sect. 4.4.3.

Nonetheless, the endeavors to improve TF-type density functionals were essentially
abandoned until recently, since the explicitly density-dependent representation of Ts

used in these models does not allow to reproduce shell structure.
Renewed interest in functionals of the type (D.1) has been stimulated by the N3-

scaling of the Kohn-Sham approach with system size: if one wants to perform calcu-
lations for truly large quantum systems without any periodicity or other symmetry
(e.g. disordered solids or huge (bio)molecules), an N3-scaling is still prohibitive. In
this case use of a kinetic energy density functional (KEDF) is highly attractive. In
view of the limitations of the TF-type semi-local functionals a fully nonlocal ansatz
is chosen for modern KEDFs [735–749]. The general form of these approximations
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is2

T nl
s [n] = T TF

s [n]+T vW
s [n]

+
h̄23(3π2)2/3

10m

∫
d3r d3r′ n(rrr)α wαβ

(
ξγ(rrr,rrr′),rrr− rrr′

)
n(rrr′)β , (D.28)

with the 2-body Fermi wavevector

ξγ(rrr,rrr′) =

[
(3π2n(rrr))γ/3 +(3π2n(rrr′))γ/3

2

]1/γ

(D.29)

(the structure of (D.28) can be motivated by scaling arguments [750]). By construc-
tion the functional T nl

s [n] can be exact for the electron gas with ∇∇∇n = 000 and for
a 2-particle system, if the density-dependent kernel w is chosen appropriately. So,
obviously one has the requirement

wαβ
(
ξγ ,rrr− rrr′

)
= 0

in the electron gas limit. Moreover, in order to recover the exact linear response re-
sult for the weakly inhomogeneous electron gas, Eq. (4.156), the kernel has to satisfy
a differential equation, which allows to determine its shape. In fact, this differential
equation can even be solved analytically [749], which, in spite of the nonlocality
of ξγ(rrr,rrr′), leads to an N ln(N) scaling of the computational effort with the system
size. KEDFs can therefore provide the basis for multiscale modelling.

Selfconsistent calculations with KEDFs are usually based on pseudopotentials.
The pseudopotentials have to be local, as projecting out part of the all-electron
Hilbert space is not possible, if no states are involved. However, an accurate de-
scription by local pseudopotentials can only be expected for simple metals. Ap-
plications of KEDFs to bulk aluminum, aluminum surfaces and aluminum clusters
[742, 743, 746, 749] demonstrated that the functional (D.28) accurately reproduces
the geometry, energetics (including vacancy formation) and density profiles of the
full Kohn-Sham solutions. In particular, one finds very accurate results for the rel-
ative energies of different crystal structures [746]. KEDFs perform even better for
sodium [742, 743].

2 Sometimes, even several nonlocal kernels of the form (D.28) are superposed [745],

∑
αβ

λαβ 〈n(rrr)α wαβ n(rrr′)β 〉 ,

in order to allow for more flexibility. In this case ∑αβ λαβ = 1 is required.



Appendix E
Asymptotic Behavior of Quasi-Particle
Amplitudes

In this Appendix the asymptotic behavior of the quasi-particle amplitudes fk,
Eq. (3.104), for the case of finite systems is extracted from the differential equation
(3.112). One starts by noting that a multipole expansion of the interaction w(rrr,rrr′) is
legitimate for large |rrr|, as 〈ΨN−1

k |n̂(rrr′)|ΨN−1
l 〉 decays exponentially for large |rrr′|—

only bound states k are of interest, so that |ΨN−1
k 〉 represents a localized wavefunc-

tion which vanishes exponentially for large |rrr|. Restricting the discussion to the
Coulomb interaction, one has

w(rrr,rrr′) =
e2

|rrr− rrr′| =
e2

|rrr|
{

1+
rrr · rrr′
|rrr|2 + . . .

}
. (E.1)

Insertion into the nonlocal term in Eq. (3.112) leads to

∑
l

∫
d3r′ w(rrr,rrr′)〈ΨN−1

k |n̂(rrr′)|ΨN−1
l 〉 fl(rrrσ)

=
e2

|rrr| ∑l

{
(N −1)δkl +

rrr
|rrr|2 · 〈ΨN−1

k |
∫

d3r′ rrr′n̂(rrr′)|ΨN−1
l 〉

}
fl(rrrσ)

+O(|rrr|−3) . (E.2)

The kernel of the first order term is exactly the operator of the dipole moment,

D̂DD = e2
∫

d3r rrr n̂(rrr) . (E.3)

A multipole expansion is also possible for the external potential. Using again the
Coulomb form, one obtains

vext(rrr) = −∑
α

Zα e2

|rrr−RRRα | = −Ze2

|rrr| − rrr
|rrr|3 ·∑

α
Zα e2RRRα + . . . ; Z = ∑

α
Zα , (E.4)

where Zα and RRRα denote the charge and position of nucleus α . Insertion of (E.2)–
(E.4) into (3.112) yields the asymptotic differential equation for the fk,
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− h̄2∇∇∇2

2m
− (Z −N +1)e2

|rrr| − h̄ωk

}
fk(rrrσ)+

rrr
|rrr|3 ·∑

l

DDDkl fl(rrrσ) = 0 . (E.5)

All electronic and nuclear dipole contributions have been absorbed into DDDkl . The
asymptotically leading term of the potential in (E.5) is the spherically symmetric
monopole term. The general solution of (E.5) thus has the form

fk(rrrσ) −→|rrr|→∞

[
∑
lm

clm
kσ Ylm(Ω)

]
rβkσ−1 e−αkσ r , (E.6)

with coefficients clm
kσ , βkσ and αkσ which remain to be determined. Insertion into

(E.5) gives

0 = ∑
lm

Ylm(Ω)

{[
∂ 2

∂ r2 − l(l +1)
r2 +2

m

h̄2

(
h̄ωk +

(Z −N +1)e2

r

)]
clm

kσ rβkσ

−2
m

h̄2

rrr
r3 ·∑

n
DDDkn clm

nσ rβnσ e(αkσ−αnσ )r

}
e−αkσ r . (E.7)

As all fk are coupled by the dipole moment matrix elements DDDkn and these matrix
elements do not vanish for k �= n, all fk must have the same exponential decay.
This statement can be verified by reductio ad absurdum. Assume that there is one
amplitude fq which shows the weakest decay, i.e. αqσ < αkσ for all k �= q. Now
consider the asymptotic equation for k �= q. The dipole contribution of fq dominates
this asymptotic equation, i.e. the sum over n breaks down to the single term with n =
q. Due to αkσ −αqσ > 0, however, this term diverges exponentially, thus requiring
clm

qσ = 0. One ends up with a contradiction, so that all αkσ must be identical. The
same result is found for Hartree-Fock orbitals [751], which also satisfy coupled
equations of the type (E.5).

With αkσ ≡ ασ Eq. (E.7) reduces to

0 = ∑
lm

Ylm(Ω)
{[

βkσ (βkσ −1)
r2 −2

ασ βkσ
r

+α2
σ − l(l +1)

r2

+2
m

h̄2

(
h̄ωk +

(Z −N +1)e2

r

)]
clm

kσ rβkσ

−2
m

h̄2

rrr
r3 ·∑

n
DDDkn clm

nσ rβnσ

}
. (E.8)

Consider now the amplitude q with the largest exponent βkσ ,

βqσ > βkσ ∀ k �= q . (E.9)

In the asymptotic equation for fq the dipole term is suppressed by 1/r with respect
to the two leading orders. Consequently one obtains
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α2
σ = −2

m
h̄

ωq ; βqσ =
√

m

h̄2

(Z −N +1)e2√−2h̄ωq
. (E.10)

The largest exponent is therefore found for the smallest |ωq|, i.e. for q = 0,

ασ =

√
−2mω0

h̄
=

√
2m IP
h̄

; β0σ =
√

m

h̄2

(Z −N +1)e2
√−2h̄ω0

. (E.11)

All other k must be suppressed relative to this leading amplitude by a factor of
1/r2, in order to satisfy the asymptotic equation. Only in this case can the leading
contribution of the dipole term be compensated by the leading contribution of the
remaining terms in the asymptotic equation (E.8) for all states k �= 0,

0 = ∑
lm

Ylm(Ω)
{

2h̄(ωk −ω0)clm
kσ rβkσ −2

rrr
r3 ·DDDk0 clm

0σ rβ0σ
}

(E.12)

(as β0σ > βnσ for n > 0, the sum over n breaks down to a single term). One ends up
with

βkσ = β0σ +2 ∀ k > 0 (E.13)

and the coefficients clm
kσ have to satisfy

0 = ∑
lm

Ylm(Ω)
{

h̄(ωk −ω0)clm
kσ − rrr

r
·DDDk0 clm

0σ

}
. (E.14)

Equations (E.6), (E.11), (E.13), (E.14) determine the asymptotic behavior of all fk.



Appendix F
Quantization of Noninteracting Fermions in
Relativistic Quantum Field Theory

This Appendix summarizes the quantum field theoretical description of noninteract-
ing spin-1/2 particles. In particular, the quantization procedure is reviewed, empha-
sizing the close relation between the minimum principle for the ground state energy
and the renormalization scheme. At the same time this Appendix provides the back-
ground for the field theoretical treatment of the KS system, i.e. Eqs. (8.76)–(8.89).
For brevity, we use h̄ = c = 1 in this Appendix.

The starting point is the classical field theory characterized by the Lagrangian

Ls(x) = Le(x)+Lext(x) = ψs(x)
[
iγμ ∂μ −m+ eγμVμ(xxx)

]
ψs(x) , (F.1)

where V μ(xxx) is a given, stationary external potential. V μ may either represent some
nuclear potential or a composite object as the total KS potential vμ

s . The orthonormal
eigenfunctions of the corresponding classical field equations will be denoted by φk,
the associated single-particle energies by εk,[−iααα ·∇∇∇+βm− eαμV μ(xxx)

]
φk(xxx) = εkφk(xxx) . (F.2)

A sketch of the eigenvalue spectrum resulting in the case of an attractive V μ is
shown in Fig. F.1. It consists of a continuum of negative energy states with energies
below −m (i.e. −mc2), a continuum of positive energy states with energies above
+m and a countable number of discrete levels in between (which are at least twofold
degenerate in the case of time-reversal invariant systems).

In the first step one has to quantize the classical field theory. The standard canoni-
cal quantization via equal-time commutation relations for the fermion field operator
ψ̂s yields

ψ̂s(x) = ∑
k

b̂kφk(xxx)e−iεkt , ψ̂†
s (x) = ∑

k

b̂†
kφ †

k (xxx)eiεkt , (F.3)

where the sums run over all negative and positive energy solutions of (F.2) and the
operator-valued expansion coefficients b̂k satisfy the commutation relations
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–mc2

0

ε
+mc2

εk

negative continuum

discrete levels

positive continuum

F

Fig. F.1 Eigenvalue spectrum of noninteracting fermions in attractive potential.

{
b̂k, b̂l

}
=

{
b̂†

k , b̂
†
l

}
= 0 ,

{
b̂k, b̂

†
l

}
= δkl . (F.4)

b̂k destroys a particle in state k, so that ψ̂s(x) destroys a particle at point xxx and time
t. The canonical Hamiltonian obtained from (F.1) by insertion of (F.3) is given by

Ĥs =
∫

d3x ψ̂†
s (x)

[
− iααα ·∇∇∇+βm− eαμV μ(xxx)

]
ψ̂s(x)

= ∑
k

εkb̂†
k b̂k = ∑

εk≤−m
εkb̂†

k b̂k + ∑
−m<εk

εkb̂†
k b̂k , (F.5)

while the canonical charge operator reads

Q̂s =
∫

d3x ψ̂†
s (x)ψ̂s(x) = ∑

k

b̂†
k b̂k = ∑

εk≤−m
b̂†

k b̂k + ∑
−m<εk

b̂†
k b̂k . (F.6)

A naive application of Fermi statistics would require that all levels below the Fermi
energy εF are occupied for the ground state |Φs〉 of this system. This would imply
that, in addition to a finite number of discrete levels between −m and εF, all negative
energy states are filled,

|Φs〉 = ∏
εk≤εF

b̂†
k |0′s〉 , (F.7)
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where |0′s〉 denotes the vacuum with the property that b̂k|0′s〉= 0 for all k. Obviously,
Ĥs is not bounded from below for this kind of state and the charge 〈Φs|Q̂s|Φs〉
diverges.

The well-established solution to this problem is the reinterpretation of the neg-
ative energy states as unoccupied antiparticle states with positive energy −εk. The
annihilation of a particle with εk ≤−m via b̂k then has to be understood as the cre-
ation of an antiparticle and vice versa, which is reflected by a redefinition of the
negative energy annihilation and creation operators,

d̂k := b̂†
k , d̂†

k := b̂k ∀k with εk ≤−m . (F.8)

Equations (F.3), (F.4) then take on the forms{
b̂k, b̂l

}
=

{
b̂†

k , b̂
†
l

}
=

{
d̂k, d̂l

}
=

{
d̂†

k , d̂†
l

}
=

{
d̂(†)

k , b̂(†)
l

}
= 0 (F.9){

b̂k, b̂
†
l

}
=

{
d̂k, d̂

†
l

}
= δkl (F.10)

ψ̂s(x) = ∑
εk≤−m

d̂†
k φk(xxx)e−iεkt + ∑

−m<εk

b̂kφk(xxx)e−iεkt , (F.11)

so that ψ̂s(x) now annihilates a unit of charge at point xxx and time t, rather than a
particle. The vacuum must be redefined accordingly,

b̂k|0s〉 = 0 ∀ εk > −m , d̂k|0s〉 = 0 ∀ εk ≤−m , (F.12)

in order to ensure that neither a particle nor an antiparticle is present in the state
|0s〉. The ground state of the N-particle system is then simply given by N particles
added to this vacuum,

|Φs〉 = ∏
−m<εk≤εF

b̂†
k |0s〉 . (F.13)

Insertion of (F.8) into the Hamiltonian yields

Ĥs = ∑
εk≤−m

εkd̂kd̂†
k + ∑

−m<εk

εkb̂†
k b̂k

= ∑
εk≤−m

(−εk)d̂
†
k d̂k + ∑

−m<εk

εkb̂†
k b̂k + ∑

εk≤−m
εk , (F.14)

so that one finds as ground state and vacuum energies,

〈Φs|Ĥs|Φs〉 = ∑
εk≤εF

εk , 〈0s|Ĥs|0s〉 = ∑
εk≤−m

εk . (F.15)

Due to the simultaneous redefinition of the negative energy states and the vacuum,
Eq. (F.12), the Hamiltonian is still not bounded from below. Its boundedness must
be implemented by a renormalization of the energy scale, i.e. by explicit subtraction
of the vacuum expectation value of Ĥs,
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Ĥ ′
s,R := Ĥs −〈0s|Ĥs|0s〉 =⇒ 〈Φs|Ĥ ′

s,R|Φs〉 = ∑
−m<εk≤εF

εk . (F.16)

For this renormalized Hamiltonian one can then immediately establish a minimum
principle, since any admixture of a single-particle state above εF to the N-particle
state leads to a well-defined energy which is higher than 〈Φs|Ĥ ′

s,R|Φs〉. Moreover, if
one adds an antiparticle to |Φs〉, the resulting energy is at least m (i.e. mc2) above the
ground state energy (in the noninteracting theory a particle-antiparticle pair cannot
annihilate). The same procedure is applied to Q̂s,

Q̂′
s,R := Q̂s −〈0s|Q̂s|0s〉 = − ∑

εk≤−m
d̂†

k d̂k + ∑
−m<εk

b̂†
k b̂k (F.17)

=⇒ 〈Φs|Q̂′
s,R|Φs〉 = ∑

−m<εk≤εF

1 , (F.18)

which directly illustrates the opposite charges of particles and antiparticles. The
subtraction of the vacuum expectation values in (F.16) and (F.17) is equivalent to a
normal-ordering of the creation/annihilation operators in Ĥs and Q̂s.

The operators (F.16) and (F.17) are finite at this point, but they do not yet show
the correct behavior under charge conjugation. Each individual field operator (F.11)
transforms as [530, 531]

ψ̂c
s (x) := Ĉ ψ̂s(x)Ĉ † = ηcCψ̂T

s (x) , C = iγ2γ0 (F.19)

(T =transposition) with an unobservable phase ηc, so that charge conjugation re-
orders the field operators in the current density,

Ĉ ψ̂s(x)γ
μ ψ̂s(x)Ĉ † =

4

∑
a,b,c=1

ψ̂s,a(x)γ
μ
baγ0

cbψ̂†
s,c(x)

=
[
γ0γμ ψ̂s(x)

]T [
ψ̂†

s (x)
]T

. (F.20)

The proper transformation behavior of the current density operator, Eq. (8.23), thus
requires the presence of both possible operator orderings, which leads to the anti-
commutator form (8.22). For the charge operator one then obtains

Q̂s =
1
2

∫
d3x [ψ̂†

s (x), ψ̂s(x)] =
1
2

{
∑

εk≤−m

[
d̂k, d̂

†
k

]
+ ∑

−m<εk

[
b̂†

k , b̂k

]}
. (F.21)

This more appropriate form of Q̂s also leads to a more symmetric form of the coun-
terterm 〈0s|Q̂s|0s〉 in the renormalized charge operator Q̂′′

s,R,

Q̂′′
s,R = Q̂s −〈0s|Q̂s|0s〉 〈0s|Q̂s|0s〉 =

1
2

{
∑

εk≤−m
1− ∑

−m<εk

1

}
. (F.22)
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In the case of the homogeneous vacuum with V μ = 0 each state with energy εk ≥+m
has a unique counterpart with energy εk ≤ −m, so that the sums on the right hand
side of (F.22) cancel each other and 〈0s|Q̂s|0s〉 vanishes.

One can proceed in a similar way for the Hamiltonian,

Ĥs =
1
2

∫
d3x

[
ψ̂†

s (x),
(− iααα ·∇∇∇+βm− eαμV μ(xxx)

)
ψ̂s(x)

]
=

1
2

{
∑

εk≤−m
εk

[
d̂k, d̂

†
k

]
+ ∑

−m<εk

εk

[
b̂†

k , b̂k

]}
. (F.23)

As the vacuum expectation value does not vanish,

〈0s|Ĥs|0s〉 =
1
2

{
∑

εk≤−m
εk − ∑

−m<εk

εk

}
, (F.24)

the renormalized Hamiltonian is not identical with Ĥs,

Ĥ ′′
s,R := Ĥs −〈0s|Ĥs|0s〉 = − ∑

εk≤−m
εkd̂†

k d̂k + ∑
−m<εk

εkb̂†
k b̂k . (F.25)

The operator (F.25) measures the energy of a given state |Φ〉 with respect to the
vacuum |0s〉 in the presence of the external potential. In the noninteracting situation
these energy differences correspond directly to the “observable” ionization energies.
However, the operator (F.25) does not yet reflect the fact that the vacuum energies
resulting from different external potentials are not identical (Casimir effect). The
differences between vacua corresponding to different Vμ are most easily seen on
a local scale: the vacuum expectation value of the current density operator (8.22)
reads

〈0s| ĵμ(x)|0s〉 =
1
2

{
∑

εk≤−m
φ k(xxx)γ

μ φk(xxx)− ∑
−m<εk

φ k(xxx)γ
μ φk(xxx)

}
. (F.26)

While the net charge of the vacuum is zero, (F.26) shows the local polarization of
the vacuum by the external potential. The corresponding energy difference becomes
relevant as soon as the total energies associated with different external potentials
are to be compared, as in the case of the HK theorem or the KS selfconsistency
procedure. For such comparisons one needs a universal vacuum energy standard for
which one chooses the vacuum |00〉 of the noninteracting system with V μ = 0, i.e.
the homogeneous vacuum with 〈00| ĵμ(x)|00〉 = 0,

b̂0,k|00〉 = 0 ∀ εk > −m , d̂0,k|00〉 = 0 ∀ εk ≤−m . (F.27)

The corresponding field operator will be denoted by ψ̂0,

ψ̂0(x) = ∑
εk≤−m

d̂†
0,kφ0,k(xxx)e−iε0,kt + ∑

−m<εk

b̂0,kφ0,k(xxx)e−iε0,kt , (F.28)



454 F Quantization of Noninteracting Fermions in Relativistic Quantum Field Theory

where the single-particle orbitals φ0,k and eigenvalues ε0,k are the standard free
plane-wave spinors and energies [531]. The final renormalized Hamiltonian is de-
fined as

Ĥs,R := Ĥs −〈00|Ĥ0|00〉 = Ĥ ′′
s,R + 〈0s|Ĥs|0s〉−〈00|Ĥ0|00〉 (F.29)

Ĥ0 =
1
2

∫
d3x

[
ψ̂†

0 (x),
(
− iααα ·∇∇∇+βm

)
ψ̂0(x)

]
. (F.30)

Unfortunately, there is a price to be paid for this universal definition of the energy
scale. While the expectation values of (F.25) are automatically finite, the same is not
true for (F.29). In order to understand the mechanism which leads to divergences,
let us consider the energy of the perturbed vacuum with respect to the homoge-
neous vacuum (often called Casimir energy) within perturbation theory. The basic
elements of the perturbation expansion are the Green’s function of the perturbed
vacuum,

iGs
v(x,y) = 〈0s|T ψ̂s(x)ψ̂s(y)|0s〉 (F.31)

= Θ(x0 − y0) ∑
−m<εk

φk(xxx)φ k(yyy)e
−iεk(x0−y0)

−Θ(y0 − x0) ∑
εk≤−m

φk(xxx)φ k(yyy)e
−iεk(x0−y0) , (F.32)

and its unperturbed counterpart G0
v,

iG0
v(x,y) = 〈00|T ψ̂0(x)ψ̂0(y)|00〉 (F.33)

(the explicit form of G0
v is identical to (F.32) with φk and εk replaced by φ0,k and ε0,k).

With these Green’s functions the energy of the perturbed vacuum can be expressed
as [752]

〈0s|Ĥs,R|0s〉 = − i
∫

d3x lim
y→x

s tr
[(

− iγγγ ·∇∇∇+m+ eV/ (xxx)
)

Gs
v(x,y)

]
+ i

∫
d3x lim

y→x
s tr

[(
− iγγγ ·∇∇∇+m

)
G0

v(x,y)
]
, (F.34)

where the symmetric limit,

lim
y→x

s ≡ 1
2

(
lim

y→x,y0>x0
+ lim

y→x,y0<x0

)∣∣∣∣∣
(x−y)2≥0

, (F.35)

is a consequence of the anticommutator form of Ĥs. Similarly, one can write the
current density of the perturbed vacuum as

〈0s| ĵμ(x)|0s〉 = − i lim
y→x

s tr [Gs
v(x,y)γμ ] . (F.36)
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For further analysis one can utilize a perturbation expansion of Gs
v(x,y) in powers of

the external potential, which is easily written down in terms of Feynman diagrams,

.Gs
v (F.37)

Here the solid line represents G0
v, the wavy line the external potential and the dot

denotes the vertex, i.e. in real space one has1 (including labels)

iG0
v,ab(x,y) = y,b x,a (F.38)

V μ(xxx) = xxx,μ (F.39)

i eγμ
ab =

a b

μ
z , (F.40)

where z represents the coordinates of the two Green’s functions and the potential
linked at the vertex (F.40), a,b are the spinor indices of the Green’s functions and μ
is the Minkowski index of the potential. As usual, integration over the coordinates
and summation over the spinor and Minkowski indices attached to all internal ver-
tices is implied in all composite diagrams as those of Eq. (F.37). After insertion of
(F.37) into (F.34) and (F.36), one realizes that the symmetric limit induces so-called
loop diagrams, as e.g.

i e〈0s| ĵμ(x)|0s〉 = + + + . . . . (F.41)

The evaluation of these expressions involves a loop-integration, either in real space
or, after Fourier transformation, in momentum space. While the first and third dia-
gram in (F.41) vanish (Furry’s theorem), one identifies the second loop as the lowest
order contribution to the vacuum polarization function (irreducible 2-point function)
of standard vacuum QED (i.e. interacting fermions without external potential). This
function is ultraviolet (UV) divergent, i.e. the loop integration diverges for large four
momenta, when performed in momentum space. This introduces an UV-divergence
in the current density and energy of the perturbed noninteracting vacuum: within
a perturbative treatment it does not matter whether the external potential or the
quantized photon field creates virtual electron–positron pairs. As a consequence,
a UV renormalization procedure is required to keep 〈0s|Ĥs,R|0s〉 and〈0s| ĵμ(x)|0s〉

1 Note that these Feynman rules follow the relativistic standard [531], rather than the nonrelativistic
standard. The choice (F.38)–(F.40) avoids that additional factors of i have to be assigned to a
diagram by some explicit rule.
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finite. Fortunately, the corresponding counterterms are completely determined by
the renormalization scheme for the Green’s functions of interacting vacuum QED
without external potential. We are thus led to consider standard QED in some detail,
which is the subject of the next Appendix.



Appendix G
Renormalization Scheme of Vacuum QED

In this Appendix we review the renormalization scheme of vacuum QED without
external potential, i.e. of the Lagrangian (8.11) with

V μ(xxx) = 0 (G.1)

and the system being in the state with zero net charge. This summary not only
serves as an introduction of the basic concepts of UV renormalization, as e.g. the
counterterm technique, but also provides a number of explicit results used in the
Appendices H and I. In fact, all counterterms required for inhomogeneous systems
with non-vanishing current density can be extracted from the study of the vacuum
Green’s functions of QED without external potential: neither the presence of a per-
turbing external potential nor that of bound electrons introduces any new feature
or new parameter. An explicit illustration of this statement has already been given
in Eq. (F.41) for the case of a noninteracting inhomogeneous system. Further exam-
ples will turn up in the analysis of the homogeneous and the weakly inhomogeneous
electron gas in the Appendices H and I, which also provide the background for the
discussion of the existence theorem of relativistic DFT in Sect. 8.3. For brevity, we
use h̄ = c = 1 in this and the other Appendices dealing with relativistic many-body
theory.

The basic vacuum Green’s functions to which we restrict the subsequent dis-
cussion are the fermion and photon propagators as well as the (reducible) vertex
function,

Gv(x,y) = −i〈0|T ψ̂(x)ψ̂(y)|0〉 (G.2)

Dμν
v (x,y) = −i〈0|TÂμ(x)Âν(y)|0〉 (G.3)

G(2,1)μ
v (x,y,z) = −〈0|T ψ̂(x)ψ̂(y)Âμ(z)|0〉 , (G.4)

where |0〉 denotes the vacuum of the interacting theory. Note that we have defined
the photon propagator without any prefactor of e2, which is most suitable for the dis-
cussion of renormalization (but differs from the definitions (8.83) and (H.8) which
are more adequate for the discussion of RDFT).
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The standard approach to the calculation of such Green’s functions is perturba-
tion theory with respect to the electron–electron coupling constant α = e2/(h̄c).
This procedure results in an expansion of the vacuum Green’s functions of the in-
teracting system in terms of vacuum expectation values of the noninteracting field
operators ψ̂0 and Âμ

0 (see e.g. [531]). For instance, for the electron propagator one
obtains

Gv(x− y) = −i
〈00|T ψ̂0(x)ψ̂0(y)exp[ie

∫
d4z ψ̂0(z)Â/0(z)ψ̂0(z)]|00〉

〈00|T exp[ie
∫

d4z ψ̂0(z)Â/0(z)ψ̂0(z)]|00〉
, (G.5)

where |00〉 is the noninteracting vacuum introduced in Eq. (F.27). In addition, the
Feynman dagger notation,

A/ = Aμ γμ , (G.6)

has been used. Analogous expressions are obtained for Dμν
v and G(2,1)μ

v . The actual
expansion of all vacuum expectation values of the type (G.5) in powers of e2 is con-
trolled by the Feynman rules resulting from the application of Wick’s theorem. The
basic ingredients are the noninteracting fermion propagator G0

v, Eq. (F.33), the non-
interacting photon propagator D0

μν , Eq. (8.83), and the bare fermion-photon vertex
(F.40) (together with the loop integrations and the fermion loop sign rule). It is this
perturbative framework in which the concept of renormalization is usually formu-
lated and we follow this standard.

Due to the translational invariance of QED without external potential, the situ-
ation is most conveniently analyzed in momentum space. The corresponding four-
dimensional Fourier transforms can be written as

Gv(x− y) =
∫

d4 p
(2π)4 e−ip·(x−y) Gv(p) (G.7)

Dμν
v (x− y) =

∫
d4q

(2π)4 e−iq·(x−y) Dμν
v (q) (G.8)

G(2,1)
v,μ (x,y,z) =

∫
d4 p

(2π)4

d4k
(2π)4 e−ip·(x−z)−ik·(z−y) G(2,1)

v,μ (p,k) . (G.9)

This leads to loop integrations over four momenta rather than space-time coordi-
nates (as in (G.5)), with four momentum conservation at the vertices. In momentum
space the noninteracting propagator G0

v, Eq. (F.33), is given by

p
.

p
iG0

v p i
m

p2 m2 iη
(G.10)

As discussed in Sect. 8.2 the form of the free photon propagator D0
μν(q) depends

on the choice of gauge. In Sects. 8.3–8.7 Feynman gauge (λ = 1) is used, for which
D0

μν is explicitly given by
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D0
μν(q) = D0(q2) gμν (G.11)

D0(q2) =
−4π

q2 + iη
. (G.12)

For the present purpose, however, Landau gauge is more adequate, which corre-
sponds to the choice λ = ∞,

iD0
μν(q) = i

(
gμν − qμ qν

q2

)
D0(q2) =

q
μ ν . (G.13)

It seems worthwhile to emphasize that all covariant gauges can be handled by the
same basic renormalization scheme. As 〈00|T ψ̂0(x)ψ̂0(y)Â

μ
0 (z)|00〉 = 0, the first

non-vanishing contribution to G(2,1)μ
v is found in first order of e,

G(2,1)
v,μ (p,k) = −D0

μν(p− k)G0
v(p)eγν G0

v(k) . (G.14)

Its core element is the simple vertex (F.40) in momentum space,

p k

μ q
↑

ieγ μ 2π 4 δ 4 p k q (G.15)

(the arrow above q indicates that this four momentum is supposed to be outgoing
from the vertex, so that the argument of the δ -function is the sum over all incoming
four momenta—in momentum space a direction has to be assigned to each interac-
tion line).

In the first step of the analysis the relevant Green’s functions are expressed in
terms of their irreducible kernels [753], the electron self-energy Σv(p), the vacuum
polarization tensor ωv,μν(q) and the irreducible vertex function Γv,μ(p,k). The con-
nection between these quantities is provided by Dyson equations (see e.g. [531]),

Gv(p) = G0
v(p)+G0

v(p)Σv(p)Gv(p) (G.16)

Dv,μν(q) = D0
μν(q)+D0

μρ(q)ωρλ
v (q)Dv,λν(q) (G.17)

G(2,1)
v,μ (p,k) = −eDv,μν(p− k)Gv(p) [γν +Γ ν

v (p,k)] Gv(k) . (G.18)

The relations (G.16)–(G.18) separate the nontrivial higher order contributions in the
perturbation expansions from trivial multiples of lower order terms, thus isolating
the essential information contained in the Green’s functions. These relations become
particularly simple if (G.16) is rewritten in terms of inverse propagators,

Gv(p)−1 = G0
v(p)−1 −Σv(p) = p/−m−Σv(p) , (G.19)

and if the tensor structure of ωμν
v (q),
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ωμν
v (q) =

(
q2gμν −qμ qν)ωv(q2) , (G.20)

is used in (G.17),

Dμν
v (q) =

(
gμν − qμ qν

q2

) −4π
q2[1+4πωv(q2)]

. (G.21)

The renormalization program of QED starts with and is most easily illustrated
for the first order. The lowest order contributions to the three relevant irreducible 2-
and 3-point functions read

− Σ ( )( ) = −

=
( π) μν( )γμ ( − )γν (G.22)

− ω( )
,μν( ) = −

μ

ν

= −
( π)

γμ ( )γν ( − ) (G.23)

Γ ( )
, ,μ ( ) = μ

−

−

= −
( π) ρν( )γρ ( − )γμ ( − )γν. (G.24)

Insertion of (G.10), (G.13) shows that these integrals diverge for large loop (four)
momentum. As these divergences result from the high energy regime they are called
UV-divergences—for brevity we ignore all problems related to the infrared (low
energy) regime. In order to establish a well-defined theory one first of all needs a
regularization scheme which suppresses these divergences at all intermediate steps
of the evaluation. Of course, this regularization must preserve the complete structure
of the theory, in particular the Ward-Takahashi identities, which link the irreducible
kernels (see e.g. [531]), as for example

(pμ − p′μ)Γ μ
v (p, p′) = Σv(p′)−Σv(p) (G.25)
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=⇒ Γ μ
v (p, p) = − ∂

∂ pμ
Σv(p) . (G.26)

For the present discussion we use dimensional regularization [754], in which all
integrals of the type (G.22)–(G.24) are evaluated in a reduced number of d dimen-
sions, rather than the 4-dimensional Minkowski space (after Wick rotation in order
to obtain integrals in Euclidean space—the details of this scheme are not relevant
at this point). The results evaluated for integer d are then analytically continued to
non-integer d, which then allows their extension to the physically interesting limit
d → 4. Using the abbreviation Δ = (4− d)/2 one finds for the integrals (G.22)–
(G.24)

Σ (1)
v (p) =

e2

4π
Γ (Δ)(−p/+4m)+Σ (1)

v,finite(p) (G.27)

ω(1)
v,μν(q) = (q2gμν −qμ qν)

(
e2

12π2 Γ (Δ)+ω(1)
v,finite(q

2)
)

(G.28)

Γ (1)
v,μ (p,k) =

e2

4π
Γ (Δ)γμ +Γ (1)

v,finite,μ(p,k) . (G.29)

Here Γ (Δ) denotes Euler’s Γ -function, in which the UV-divergences have been
isolated,

Γ (Δ) Δ→0−→ 1
Δ

+ . . . ,

and Σ (1)
v,finite, ω(1)

v,finite and Γ (1)
v,finite,μ represent the finite parts of the irreducible ker-

nels in which the limit d → 4 can be taken directly (the detailed form of Σ (1)
v,finite,

ω(1)
v,finite and Γ (1)

v,finite,μ is not relevant in this context). The UV-divergences now man-
ifest themselves as simple poles in the deviation of the space-time dimensionality
from d = 4. On the other hand, all other irreducible n-point functions are finite from
the very outset (to first order).

The next step is the actual renormalization procedure. The crucial observation
for both the physical interpretation as well as the technical success of this step is the
fact that the divergent contributions to the three relevant functions have the same
structure as the corresponding free propagators and the free vertex: the divergent

part of Σ (1)
v is just proportional to p/ and m, but not e.g. to p2, the divergent part of

ω(1)
v,μν has the same tensor structure as D0

μν , Eq. (G.13), and the divergent part of Γ (1)
v,μ

is proportional to the free vertex γμ (but does not depend on momentum). For this
reason the divergences can be absorbed into a redefinition of the constants m and e
as well as a modified normalization of the field operators in the original Lagrangian.
Given the form of this original, unrenormalized Lagrangian, Lunren(ψ̂, Âμ ,m,e), the
renormalized Lagrangian is usually written as

LR = Lunren

(√
Z2ψ̂,

√
Z3Âμ ,m−δm,

Z1e

Z2
√

Z3

)
. (G.30)
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The renormalization constants Z1, Z2, Z3 and δm have to be interpreted as functions
of the finite true physical charge e and mass m of the electrons. The relation between
these quantities remains to be determined order by order in the perturbation series.
In other words: the original fields and parameters in Lunren are no longer interpreted
as the correct physical fields and parameters, but rather as bare, unrenormalized
quantities,

ψ̂b(x) =
√

Z2ψ̂(x) (G.31)

Âμ
b (x) =

√
Z3Âμ(x) (G.32)

eb =
Z1

Z2
√

Z3
e (G.33)

mb = m−δm , (G.34)

so that the renormalized Lagrangian can be reformulated in terms of the bare quan-
tities,

LR = Lunren(ψ̂b, Â
μ
b ,mb,eb) . (G.35)

The structure of the theory, which e.g. expresses itself in Dyson equations and Ward-
Takahashi identities, remains completely unchanged, due to the form invariance of
the Lagrangian under the renormalization prescription. The renormalized Green’s
functions, i.e. the vacuum expectation values of ψ̂ and Âμ , are now obtained as

Gv,R(x,y) = −iZ−1
2 〈0|T ψ̂b(x)ψ̂b(y)|0〉

= Z−1
2 Gv(x,y,eb,mb) (G.36)

Dμν
v,R(x,y) = −iZ−1

3 〈0|T Âμ
b (x)Âν

b (y)|0〉
= Z−1

3 Dμν
v (x,y,eb,mb) (G.37)

G(2,1)μ
v,R (x,y,z) = −Z−1

2 Z−1/2
3 〈0|T ψ̂b(x)ψ̂b(y)Â

μ
b (z)|0〉

= Z−1
2 Z−1/2

3 G(2,1)μ
v (x,y,z,eb,mb) . (G.38)

In these relations it has been indicated explicitly that the unrenormalized Green’s
functions resulting from the Lagrangian (G.35) initially depend on the bare param-
eters eb and mb.

In order to determine the unknown renormalization constants one needs some
normalization conditions. These conditions result from the basic physical require-
ments for the Green’s functions: in order to describe real fermions, which satisfy
the dispersion relation p2 = (p0)2 − ppp2 = m2 with the finite experimental mass m
in the presence of the virtual photon cloud, Gv,R(p) should reduce to the form of
the free propagator G0

v(p) with physical mass m for on-shell momentum p2 = m2,
i.e. should have a simple pole with residue 1 for p2 = m2. If Σv is expressed as a
function of p/−m (using p/2 = p2) and the physical parameters,
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Σv(p,eb,mb) =
∞

∑
n=0

Σn(e,m)(p/−m)n , (G.39)

the renormalized inverse propagator can be written as

G−1
v,R(p) = Z2

[
δm−Σ0(e,m)+(p/−m)(1−Σ1(e,m))

−
∞

∑
n=2

Σn(e,m)(p/−m)n

]
. (G.40)

For Gv,R(p) to have a simple pole at p2 = m2, however, one must have

δm = Σ0(e,m) = Σv(p,eb,mb)
∣∣∣

p/=m
(G.41)

Z2 = (1−Σ1(e,m))−1 =
(

1− d
d p/

Σv(p,eb,mb)
∣∣∣

p/=m

)−1

. (G.42)

Only this choice guarantees that the higher order terms in the propagator itself are
finite for p2 = m2. In fact, insertion of (G.19), (G.39), (G.41) and (G.42) into (G.36)
yields

Gv,R(p) =
[
Z2

(
G0

v(p,mb)−1 −Σv(p,eb,mb)
)]−1

=

[
G0

v(p,m)−1

(
1−G0

v(p,m)Z2

∞

∑
n=2

Σn(e,m)(p/−m)n

)]−1

=
∞

∑
k=0

(
G0

v(p,m)Z2

∞

∑
n=2

Σn(e,m)(p/−m)n

)k

G0
v(p,m)

=
p/+m

p2 −m2 +
p/+m

p2 −m2

[
Z2

∞

∑
n=2

Σn(e,m)(p/−m)n

]
p/+m

p2 −m2 + . . . .

=
p/+m

p2 −m2 +

[
Z2

∞

∑
n=2

Σn(e,m)(p/−m)n−2

]
+ . . . .

Given the renormalized Green’s functions, one can also define the corresponding
renormalized irreducible kernels,

G−1
v,R(p) = p/−m−Σv,R(p) . (G.43)

The additional contributions to the renormalized Green’s functions resulting from
renormalization are usually called counterterms. From Eqs. (G.40), (G.43) one ex-
tracts as counterterms to the self-energy,

Σv,R(p) = Σv(p)+ΔΣv(p) , ΔΣv(p) =−Z2δm+(1−Z2)(p/−m) , (G.44)
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so that Σv,R satisfies the normalization conditions

Σv,R(p)
∣∣∣

p/=m
= 0 ,

d
d p/

Σv,R(p)
∣∣∣

p/=m
= 0 , (G.45)

which should be interpreted in the spirit of the expansion (G.39) as

Σ0,R(e,m) = Σ1,R(e,m) = 0 .

One proceeds in the same fashion for the other two divergent functions. In the
case of the massless photons the renormalized propagator must have a simple pole
at q2 = 0, which allows the determination of Z3. Combination of (G.37) with (G.21)
leads to

Dμν
v,R(q) =

(
gμν − qμ qν

q2

) −4π
q2[1+4πωv,R(q2)]

, (G.46)

with ωv,R defined by

1+4πωv,R(q2) = Z3
[
1+4πωv(q2,eb,mb)

]
. (G.47)

The zero mass pole requirement is thus satisfied, if

Z3 =
[
1+4πωv(q2 = 0,eb,mb)

]−1 ⇐⇒ ωv,R(q2 = 0) = 0 . (G.48)

Consistent with Eq. (G.20), one then defines the renormalized irreducible polariza-
tion tensor as

ωμν
v,R(q) =

(
q2gμν −qμ qν)ωv,R(q2) . (G.49)

Finally, the renormalized irreducible vertex function is defined via the Dyson equa-
tion (G.18),

G(2,1)
v,R,μ(p,k) = −eDR,μν(p− k)Gv,R(p)

[
γν +Γ ν

v,R(p,k)
]

Gv,R(k) , (G.50)

using the renormalized propagators (G.36), (G.37). Combination of (G.50) with
(G.38) and (G.33) then leads to

e
[
γμ +Γ μ

v,R(p,k)
]

= Z1e
[
γμ +Γ μ

v (p,k,eb,mb)
]
, (G.51)

which allows the formulation of a normalization condition for Z1. On the mass shell,
p/ = m, the vertex function must reduce to a pure vertex with physical charge e, in
order to reproduce the Coulomb interaction for well separated electrons,

γμ = Z1

(
γμ +Γ μ

v (p, p,eb,mb)
∣∣∣

p/=m

)
⇐⇒ Γ μ

v,R(p, p)
∣∣∣

p/=m
= 0 . (G.52)
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Using the Ward-Takahashi identity (G.26) and the expansion (G.39), one can ex-
plicitly verify that the resulting Z1,

Z1 =
[

1+
1
4

γμΓ μ
v (p, p,eb,mb)

∣∣∣
p/=m

]−1

, (G.53)

is identical with Z2, Eq. (G.42).
As perturbation theory on the basis of (G.35) yields the irreducible functions

in terms of the bare parameters, the expressions on the right-hand sides of (G.41),
(G.42), (G.48) and (G.53) are obtained by use of (G.33) and (G.34), so that they
themselves depend on the renormalization constants. Renormalization thus has to
proceed in a recursive fashion, i.e. order by order in perturbation theory.

Explicit results are easily obtained for the first order. Use of (G.27), (G.40) gives

G(1)
v,R(p)−1 = Z2

[
p/

(
1+

e2
b

4π
Γ (Δ)

)
−mb

(
1+

e2
b

π
Γ (Δ)

)

−Σ (1)
v,finite(p,eb,mb)

]
. (G.54)

One now expands the right-hand side of (G.54) consistently to first order, using

Z2 = 1+Z(1)
2 + . . . and mb = m−δm(1) + . . .,

G(1)
v,R(p)−1 = δm(1) − 3e2

4π
Γ (Δ)m+(p/−m)

(
1+

e2

4π
Γ (Δ)+Z(1)

2

)
−Σ (1)

v,finite(p,e,m) . (G.55)

The conditions (G.41), (G.42) or, alternatively, (G.45), then give

δm(1) =
3e2

4π
Γ (Δ)m+Σ (1)

v,finite(p,e,m)
∣∣∣

p/=m
(G.56)

Z(1)
2 = − e2

4π
Γ (Δ)+

d
d p/

Σ (1)
v,finite(p,e,m)

∣∣∣
p/=m

. (G.57)

From Eqs. (G.44), (G.56), (G.57) one extracts as first order counterterm to the self-
energy,

ΔΣ (1)
v (p) = −3e2

4π
Γ (Δ)m−Σ (1)

v,finite(p,e,m)
∣∣∣

p/=m

+
[

e2

4π
Γ (Δ)− d

d p/
Σ (1)

v,finite(p,e,m)
∣∣∣

p/=m

]
(p/−m) . (G.58)

Similarly, Z3 = 1+Z(1)
3 + . . . is determined by (G.28) and (G.48)

Z(1)
3 = − e2

3π
Γ (Δ)

(
ω(1)

v,finite(q
2 = 0) = 0

)
. (G.59)
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The associated counterterm for ω(1)
v,μν results from (G.47) and (G.49),

Δω(1)
v,μν(q) = −(q2gμν −qμ qν)

e2

12π2 Γ (Δ) . (G.60)

Finally, the vertex correction is renormalized by

ΔΓ (1)
v,μ (p,k) = Z(1)

1 γμ (G.61)

Z(1)
1 = − e2

4π
Γ (Δ)− 1

4
γμΓ (1)

v,finite,μ(p, p,e,m)
∣∣∣

p/=m
. (G.62)

At this point, all Green’s functions are finite to first order. At the same time, all
symmetries of the theory have been preserved, which may be checked by verification
of (G.26) for the renormalized functions.

This procedure can be repeated for all higher orders of perturbation theory [531],
after discussion of overlapping divergences, which occur for instance in the diagram

Note that all artificial divergences resulting from use of eb and mb inside the finite

parts of the Green’s functions or from multiplication of finite terms with Z(1)
1 etc

are eliminated by higher order contributions to the renormalization constants. No
further details are given at this point, as the first order provides all explicit results
required for our discussion of RDFT.

The final form of the renormalized Lagrangian of QED is

LR = Z2ψ̂(x)
(

i∂/−m+δm+ eV/ (xxx)+ eÂ/(x)
)

ψ̂(x)

− Z3

16π
F̂μν(x)F̂μν(x)− Z3λ

8π

(
∂ν Âν(x)

)2
, (G.63)

where we have now reintroduced the external potential V μ in order to indicate that
it has to be renormalized in the same spirit as the quantized photon field: this is
immediately obvious if one analyzes the Lagrangian (G.63) in terms of perturbation
theory with respect to V μ . The renormalization constants are thus uniquely deter-
mined by vacuum QED without any external potential, so that they do not depend on
the specific V μ present. If one bases the perturbation expansion on the Lagrangian
(G.63) all vacuum Green’s and n-point functions of the theory (defined in terms of
the physical fields ψ̂ and Âμ ) are UV finite.



Appendix H
Relativistic Homogeneous Electron Gas

In this Appendix we summarize some properties of the relativistic homogeneous
electron gas (RHEG) in order to illustrate the renormalization of ground state
energies (indicated in Sect. 8.2) and to provide the background for the RLDA
(Sect. 8.8.3) as well as for the relativistic gradient expansion (Appendix J). For
simplicity we restrict the discussion to the unpolarized RHEG (for details of the
polarized RHEG see [546] and references therein).

The basic concept of the RHEG follows that of the HEG, introduced in Sect. 4.3—
the RHEG consists of an infinite electron gas with density n0 plus a neutralizing pos-
itive background charge density n+ = n0, which suppresses long-range Coulomb di-
vergences. Now, however, the electrons and their interaction are treated on the level
of the QED, i.e. the Lagrangian (8.11) with V μ = 0.

As in the preceding Appendix we use h̄ = c = 1.

H.1 Basic Propagators

We start by noting the basic differences between the perturbative treatment of the
RHEG and that of vacuum QED, discussed in Appendix G. While the Hamiltonian
of the RHEG, Ĥhom, is identical to that of vacuum QED, the ground state |Ψ0〉 of the
RHEG represents a gas of electrons with finite density n0, in contrast to the ground
state |0〉 of vacuum QED. As a consequence the fermion propagator,

G(x,y) = −i〈Ψ0|T ψ̂(x)ψ̂(y)|Ψ0〉 , (H.1)

differs from Gv already on the noninteracting level. In momentum space the nonin-
teracting fermion propagator of the RHEG is given by

G0(p) = G0
v(p)+G0

d(p) = G−(p)+G+(p) (H.2)

G0
d(p) = 2πiδ (p0 −Ep)

p/+m
2Ep

Θ(kF −|ppp|) (H.3)
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G−(p) =
p/− +m

2Ep

−1
p0 +Ep − iη

(H.4)

G+(p) =
p/+ +m

2Ep

[
Θ(|ppp|− kF)
p0 −Ep + iη

+
Θ(kF −|ppp|)
p0 −Ep − iη

]
, (H.5)

where Ep =
√

ppp2 +m2, pμ
± = (±Ep, pi) and the Fermi momentum kF is related to

the electron density n0 of the RHEG as in the nonrelativistic case,

n0 =
k3

F

3π2 . (H.6)

Two alternative forms for G0 have been listed, the first one emphasizes its relation
to the vacuum propagator G0

v(p), Eq. (G.10), the second one indicates its decom-
position into positive energy (G+) and negative energy (G−) contributions. In the
nonrelativistic limit the upper left part of the matrix G+(p0 + m, ppp) goes over into
the standard nonrelativistic electron gas propagator. Note that due to charge conser-
vation the density of the RHEG is not changed by switching on the electron–electron
interaction, so that n0 also represents the density of the interacting RHEG. Equation
(H.6) thus also relates the interacting density to the noninteracting kF. Diagrammat-
ically the full G0(p), Eq. (H.2), will be represented by

iG0 p (H.7)

in the following. The other two basic elements of perturbation theory, the nonin-
teracting photon propagator and the simple vertex, remain unchanged. However, it
seems worth pointing out that the full photon propagator

Dμν(x,y) = −ie2〈Ψ0|T Âμ(x)Âν(y)|Ψ0〉 , (H.8)

and the full vertex function do not: in the case of the RHEG not only virtual electron-
positron pairs screen the bare interaction but also virtual electron-hole pairs. Note
that we have introduced an additional factor of e2 in the definition (H.8), as com-
pared with the definition (G.3). This reflects the fact that it is more convenient for
the subsequent discussion that the corresponding free propagator D0

μν approaches
the Coulomb interaction in the limit c → ∞.

H.2 Response Functions

Most information on the RHEG which is required in the present context is contained
in the response functions of the RHEG. In our notation the time-ordered current
response functions (n-point functions) are defined as

χ(n)
μ1...μn(x1, . . .xn) := (−i)n−1〈Ψ0|T δ ĵμ1(x1) . . .δ ĵμn(xn)|Ψ0〉 , (H.9)
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with the operator δ ĵμ for the induced current given by

δ ĵμ(t,rrr) = ĵμ(t,rrr)−〈Ψ0| ĵμ(t,rrr)|Ψ0〉 = ĵμ(t,rrr)− jμ(rrr) . (H.10)

For the time-independent systems of interest here a partial Fourier transformation

of χ(n)
μ1...μn is advantageous,

χ(n)
μ1...μn(t1,rrr1; . . .tn,rrrn) =

∫
dω1

2π
. . .

∫
dωn

2π
e−iω1t1...−iωntn

×2πδ (ω1 + . . .+ωn)

×χ(n)
μ1...μn(ω1,rrr1; . . .ωn,rrrn) . (H.11)

The static response functions utilized in Appendix I are then obtained by taking the
zero-frequency limit,

χ(n)
μ1...μn(rrr1, . . .rrrn) ≡ χ(n)

μ1...μn(ω1 = 0,rrr1; . . .ωn = 0,rrrn) . (H.12)

For the case of the RHEG further Fourier transformation is useful,

χ(n)
μ1...μn(q

0
1,rrr1; . . .q0

n,rrrn) =
∫

d3q1

(2π)3 . . .
∫

d3qn

(2π)3 eirrr1·qqq1+...+irrrn·qqqn

× (2π)3δ (3)(qqq1 + . . .+qqqn)

× χ(n)
μ1...μn(q1, . . .qn) . (H.13)

Current conservation then implies the transversality of χ(n)
μ1...μn with respect to all

arguments [755],

qμi
i χ(n)

μ1...μn(q1, . . .qn) = 0 ∀ i = 1, . . .n . (H.14)

This relation is easily established in real space. For brevity, we only consider the
linear response function explicitly,

∂ μ
x χ(2)

μν (x,y) = −i〈Ψ0|T
[
∂ μ δ ĵμ(x)

]
δ ĵν(y)|Ψ0〉

−iδ (x0 − y0)〈Ψ0|δ ĵ0(x)δ ĵν(y)−δ ĵν(y)δ ĵ0(x)|Ψ0〉 .

Now the first term on the right-hand side vanishes due to current conservation
(which is also valid on the level of the operator), the second term vanishes due
to the vanishing equal-time commutator,[

ψ̂†(t,xxx)ψ̂(t,xxx), ψ̂†(t,yyy)ψ̂(t,yyy)
]

=
[
ψ̂†(t,xxx)ψ̂(t,xxx), ψ̂†(t,yyy)αkψ̂(t,yyy)

]
= 0 .

The proof of (H.14) for higher order χ(n) proceeds analogously, with the difference
that all possible time orderings have to be taken into account in the second term. In
the following the connected contributions of the χ(n), for which all external vertices
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are linked to each other in some way, will be denoted by χ(n)
c , while the linear

response function of the RHEG will be abbreviated by χμν .
The latter function has a simple relation to the Fourier transform of the full pho-

ton propagator (H.8),

Dμν(q) = D0
μν(q)+D0

μρ(q)χρλ (q)D0
λν(q) . (H.15)

This relation can easily be established on the basis of the equivalent of (G.5) for the
photon propagator. In analogy to Eq. (G.17), one also finds a Dyson equation for the
response function χμν ,

χμν(q) = Π μν(q)+Π μρ(q) D0
ρλ (q) χλν(q) . (H.16)

Note that the present definition of the irreducible 2-point function Π μν differs from
that used in Appendix G (ωμν ) by a factor of e2. As already indicated in the discus-
sion of (H.8) it is more convenient for the present purpose to associate the factor of
e2 emerging from each pair of vertices in the perturbation expansion with the photon
propagator than with the polarization insertion.

As a consequence of (H.14), (H.16) Π μν also satisfies the transversality relation

qμ Π μν(q) = 0 , (H.17)

which determines the tensor structure of Π μν . In fact, there are only two indepen-
dent (4×4) polarization tensors which comply with Eq. (H.17),

Pμν
L (q) =

−1
qqq2q2

(
(qqq2)2 qqq2q0q j

qqq2q0qi (q0)2qiq j

)
(H.18)

Pμν
T (q) =

1
qqq2

(
0 0
0 qqq2gi j +qiq j

)
(gi j = −δi j) (H.19)

qμ Pμν
L/T(q) = qν Pμν

L/T(q) = 0 . (H.20)

Π μν can therefore be written as

Π μν(q) = Pμν
L (q)ΠL(q)−Pμν

T (q)ΠT(q) . (H.21)

For convenience, we note some useful properties of Pμν
L/T,

P ν
L,μ (q)P λ

L,ν (q) = P λ
L,μ (q) (H.22)

P ν
T,μ (q)P λ

T,ν (q) = P λ
T,μ (q) (H.23)

P ν
L,μ (q)P λ

T,ν (q) = 0 (H.24)

P 0
L,μ (q)P λ

L,0 (q) = −qqq2

q2 P λ
L,μ (q) (H.25)

Pμν
L (q)+Pμν

T (q) = gμν − qμ qν

q2 (H.26)
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P μ
L,μ (q) = 1 (H.27)

P μ
T,μ (q) = 2 . (H.28)

If one decomposes Π μν into its vacuum (v) limit (obtained for |Ψ0〉 → |0〉) and a
remainder (the electron gas component—d),

Π μν(q) = Π μν
d (q)+Π μν

v (q) (H.29)

ΠL(q) = ΠL,d(q)+Πv(q) (H.30)

ΠT(q) = ΠT,d(q)−Πv(q) , (H.31)

the vacuum contribution can be recast in the tensor form (G.20), with the polariza-
tion function Πv given by

Πv(q) =
q2

e2 ωv(q) . (H.32)

If one uses the polarization tensors (H.18), (H.19), the free photon propagator (G.13)
and the longitudinal and transverse polarization functions ΠL/T, the Dyson equation
for χμν can be resolved as

χμν(q) =
ΠL(q)

1−D0(q)ΠL(q)
Pμν

L (q)− ΠT(q)
1+D0(q)ΠT(q)

Pμν
T (q) , (H.33)

where, according to the modified definition (H.8), D0 is given by (G.12) times an
additional factor of e2.

The full photon propagator Dμν can now be obtained from Eq. (H.15) by inser-
tion of (H.33). For a discussion of the renormalization of Dμν it is instructive to
rewrite the resulting expression in terms of the full vacuum photon propagator,

Dv(q) =
D0(q)

1−D0(q)Πv(q)
. (H.34)

Insertion of (H.30) and (H.31) into (H.33) plus subsequent use of (H.34) allows a
decoupling of the screening effects due to vacuum polarization from those originat-
ing from the actual electron gas,

Dμν(q) =
Dv(q)

1−Dv(q)ΠL,d(q)
Pμν

L (q)+
Dv(q)

1+Dv(q)ΠT,d(q)
Pμν

T (q) . (H.35)

At first glance this form seems to suggest that Dμν is UV-finite as soon as Dv is
replaced by Dv,R defined by Eqs. (G.46)–(G.48). However, ΠL/T,d also contains UV-
divergent subgraphs. The following 2-loop contribution may illustrate this point,
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If one replaces G0 by G0
v +G0

d one recognizes that besides the obvious pure vacuum
loop absorbed in Dv also mixtures between the first order vertex correction loop of
the vacuum, Eq. (G.24), and G0

d-type propagators occur. The counterterms required
to keep such subgraphs finite are, however, completely determined by vacuum QED:
similar to the renormalization of overlapping divergences, each vacuum subgraph in
a (larger) non-vacuum diagram has to be supplemented individually by its associated
counterterm (this also holds for multi-loop vacuum subgraphs).

For the discussion of inhomogeneity corrections to the RLDA one also needs the
inverse response function χ−1

μν . However, χ−1
μν (q) can not be an inverse of χμν(q)

in the conventional understanding of an inverse matrix, as the transversality relation
(H.14) requires

qμ χμν(q)χ−1,νρ(q) = 0 ,

which is not compatible with

χμν(q)χ−1,νρ(q) = g ρ
μ .

In the present context χ−1,μν(q) is therefore defined to satisfy

χμν(q)χ−1,νρ(q) = g ρ
μ − qμ qρ

q2 . (H.36)

When multiplied with a quantity for which the transversality condition qμ f μ = 0
holds, χ−1,νρ behaves like an ordinary inverse. For this type of inverse one obtains

χ−1,μν(q) = −D0(q)gμν +Π−1,μν(q) (H.37)

Π−1,μν(q) =
1

ΠL(q)
Pμν

L − 1
ΠT(q)

Pμν
T . (H.38)

The product of (H.37) with χμν , Eq. (H.33), can be shown to satisfy Eq. (H.36) by
use of (H.22)–(H.24) and (H.26).

As far as explicit approximations for the polarization functions ΠL/T are con-
cerned, only very little is known even in the static limit. The complete frequency

dependence is available for the noninteracting limit Π (0)
L/T, i.e. the relativistic gener-

alization of the Lindhard function [620, 756]. In addition to its vacuum part (G.23)
one has

Π (0)
d,μν(q) = −i

∫
d4 p

(2π)4 tr
[
γμ G0

d(p)γν G0
d(p−q)

]
−i

∫
d4 p

(2π)4 tr
[
γμ G0

v(p)γν G0
d(p−q)

]
−i

∫
d4 p

(2π)4 tr
[
γμ G0

d(p)γν G0
v(p−q)

]
.
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Π (0)
d,μν is sometimes called the no-sea limit of the full Π (0)

μν —quite generally the no-
sea approximation Πns,μν is defined by neglect of all those contributions to a closed
fermion loop which do not vanish in the limit kF → 0. This no-sea form is not
identical with the result of the more frequently applied no-pair approximation. The
latter approximation amounts to neglecting the negative energy states completely.
In the present context projecting out the negative energy states at all steps of the
calculation is equivalent to a complete neglect of the negative energy component
G−(p) of the fermion propagator,

Π (0)
d,μν(q) 
= −i

∫
d4 p

(2π)4 tr
[
γμ G0

+(p)γν G0
+(p−q)

]
= Π (0)

np,μν(q) .

For subsequent use we note the long-wavelength expansion of the static limit of

Π (0)
μν ,

Π (0)
L,d(0,qqq) = −mkFη

π2

{
1− 1

3

[
1+2

β
η

arsinh(β )
]

Q2 + . . .

}
(H.39)

Π (0)
T,d(0,qqq) =

mkFη
π2

{
− 2

3
β
η

arsinh(β )Q2 + . . .

}
(H.40)

Π (0)
v,R(0,qqq) =

1
60π2

qqq4

m2 + . . . , (H.41)

where Q = |qqq|/(2kF) and

β =
(3π2n0)1/3

m
; η = (1+β 2)1/2 . (H.42)

Beyond the noninteracting limit only the vacuum part of the 2-loop contribution to
the polarization function has been evaluated [757, 758]. In addition, the screening
length ΠL,d(0,000) is related to the energy density via the compressibility sum rule
[759],

d2

dn2
0

[
ts(n0)+ exc(n0)

]
= − 1

ΠL,d(0,000)
, (H.43)

so that the long wavelength limit of higher orders of ΠL,d can be obtained from the
associated contributions to the energy density. Finally, in the context of the quark-
gluon gas the high temperature limits of certain classes of higher order diagrams
have also been examined (see e.g. [760]). These results are, however, only of limited
interest in the present context aiming at T = 0 and m ≥ |qqq|.

H.3 Ground State Energy

The exchange-correlation energy of the RHEG constitutes the basis for the RLDA.
At the same time, it provides an instructive example for the application of the renor-
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malization procedure described in Appendix G. We start by emphasizing that the
ground state energy is defined with respect to the vacuum energy as in (8.56) with
V μ = 0 (compare [621, 755]),

ERHEG = 〈Ψ0|Ĥhom|Ψ0〉−〈0|Ĥhom|0〉+ΔEhom , (H.44)

where 〈0|Ĥhom|0〉 is the energy of the interacting, homogeneous vacuum and ΔEhom

represents the counterterms required to keep ERHEG UV-finite. In the case of the
electron gas Eq. (H.44) is applied on the level of the energy density, rather than the
infinite energy itself.

The kinetic energy density ts of the noninteracting RHEG can be evaluated with-
out application of the UV-renormalization procedure [761],

ts(n0) = 〈Ψ0|
[
ψ̂(x),

(
− iγγγ ·∇∇∇+(1− γ0)m

)
ψ̂(x)

]
|Ψ0〉

−〈0|
[
ψ̂(x),

(
− iγγγ ·∇∇∇+(1− γ0)m

)
ψ̂(x)

]
|0〉

= i lim
y→x

s tr
[(

− iγγγ ·∇∇∇+(1− γ0)m
)

G0
d(x− y)

]
=

k5
F

10π2m
Φs(β ) (H.45)

Φs(β ) =
10
β 5

[
1
8

(
βη3 +β 3η − arsinh(β )

)
− 1

3
β 3

]
(H.46)

(the electron rest mass has been subtracted). The Hartree (electrostatic) energy of
the RHEG vanishes, if one takes the neutralizing positive charge background into
account. Following closely the derivation of Eq. (4.88), the xc-energy of the RHEG
can be written in terms of a coupling constant integral over the current–current re-
sponse function [618, 538],

exc(n0) =
i
2

∫ 1

0
dλ

∫
d4q

(2π)4 D0
μν(q)

[
χμν

λ (q)−χμν
v,λ (q)

]
+Δehom . (H.47)

χμν
λ is given by (H.33) with the coupling strength e2 replaced by λe2, χμν

v,λ repre-

sents its vacuum limit and Δehom is the energy density corresponding to the coun-
terterm ΔEhom.

The first order term (in e2) in (H.47), i.e. the exchange energy of the RHEG
(according to Eq. (8.92)), is the simplest energy contribution for which the UV-
renormalization is nontrivial. The basic problem associated with the renormalization
of energies (rather than Green’s functions) is that energy expressions can not be
rewritten entirely in terms of renormalized n-point functions. At least one overall
loop integration remains to be treated separately (the q-integration in (H.47)). As an
additional complication, this outermost loop integration often leads to overlapping
divergences. An example for this statement is provided by the exchange energy,
which is obtained if the full χμν

λ in Eq. (H.47) is replaced by its noninteracting limit

Π (0),μν . Visualizing the resulting integral graphically,
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,2iex n0 (H.48)

one realizes that three divergent 1-loop subgraphs contribute to the electron gas
loop,

,iΠ 0
μν iΣ 1 (H.49)

While the UV-divergence of the Π (0)
μν -subgraph is eliminated by the subtraction of

the vacuum exchange energy in (H.48), the two (identical) self-energy subgraphs
require additional counterterms. As one is facing overlapping divergences in (H.48)
each divergent subgraph has to be renormalized individually. Of course, only the
vacuum contribution to Σ (1) requires renormalization,

ex(n0) =
i
2

∫
d4q

(2π)4 D0
μν(q)

[
Π (0),μν(q)−Π (0),μν

v (q)
]

−i
∫

d4 p
(2π)4 tr

[
G0

d(p)ΔΣ (1)
v (p)

]
. (H.50)

The second line represents the lowest order contribution to the UV-counterterm

Δehom. As discussed in detail in Appendix G, the self-energy counterterm ΔΣ (1)
v is

defined so that the renormalized vacuum self-energy Σv,R, Eq. (G.44), satisfies the
standard on-shell normalization condition (G.45), i.e. on the 1-loop level one ob-
tains (G.58). Using the decomposition of G0, Eq. (H.2), ex(n0) can thus be rewritten
as

ex(n0) =
1
2

∫
d4q

(2π)4

∫
d4 p

(2π)4 D0
μν(q) tr

[
G0

d(p+q)γμ G0
d(p)γν]

−i
∫

d4 p
(2π)4 tr

[
G0

d(p)Σ (1)
v,R(p)

]
. (H.51)

The second term on the right-hand side vanishes according to Eqs. (H.3), (G.45),[
(p/+m)Σv,R(p)

]
p2=m2

= 0 .

Consequently, the standard renormalization scheme eliminates the vacuum correc-
tions to ex(n0) completely. The first line of (H.51) can be evaluated straightfor-
wardly [618–620],

ex(n0) = eNRHEG
x (n0) Φx(β ) (H.52)
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eNRHEG
x (n0) = − e2

4π3 k4
F (H.53)

Φx(β ) = 1− 3
2

[
η
β
− 1

β 2 arsinh(β )
]2

. (H.54)

Moreover, using the decomposition of the photon propagator into the Coulomb and
the transverse interaction, ex(n0) can be split accordingly [535, 620],

eC/T
x (n0) = eNRHEG

x (n0) ΦC/T
x (β ) (H.55)

ΦC
x (β ) =

5
6

+
1

3β 2 +
2η
3β

arsinh(β )

−2η4

3β 4 ln(η)− 1
2

(
η
β
− arsinh(β )

β 2

)2

(H.56)

ΦT
x (β ) =

1
6
− 1

3β 2 − 2η
3β

arsinh(β )

+
2η4

3β 4 ln(η)−
(

η
β
− arsinh(β )

β 2

)2

. (H.57)

The UV-renormalization procedure is particularly involved for the correlation
energy ec, which we also discuss here for completeness. Most of the counterterms
provided by Δehom are, however, included if the basic expression (H.47) is rewritten
in terms of the renormalized response function χμν

R,λ ,

exc(n0) =
i
2

∫ 1

0
dλ

∫
d4q

(2π)4 D0
μν(q)

[
χμν

R,λ (q)−χμν
v,R,λ (q)

]
+Δ ẽhom (H.58)

(the exchange energy has not been subtracted). The only remaining divergence (to
be eliminated by Δ ẽhom) now originates from the outermost loop integration in
(H.58). It can be explicitly discussed within the so-called random phase (or ring) ap-

proximation (RPA) in which ΠL/T is approximated by its 1-loop contribution Π (0)
L/T

[618, 762]. Insertion of Eq. (H.33) into (H.58) then gives

eRPA
xc (n0) =

i
2

∫ 1

0
dλ

∫
d4q

(2π)4

[
D0(q)Π (0)

L (q)

1−λD0(q)Π (0)
L (q)

−2
D0(q)Π (0)

T (q)

1+λD0(q)Π (0)
T (q)

−3
D0(q)Π (0)

v,R(q)

1−λD0(q)Π (0)
v,R(q)

]
+Δ ẽhom,RPA .

The coupling constant integration can be performed directly, if Eqs. (H.30), (H.31)
and (H.34) are used,
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eRPA
xc (n0) = − i

2

∫
d4q

(2π)4

[
ln
[
1−Dv,R(q)Π (0)

L,d(q)
]

+2ln
[
1+Dv,R(q)Π (0)

T,d(q)
]]

+Δ ẽhom,RPA . (H.59)

At this point it is convenient to define the vacuum-screened exchange energy,

ex,s(n0) =
i
2

∫
d4q

(2π)4

[
Dv,R(q)Π (0)

L,d(q)−2Dv,R(q)Π (0)
T,d(q)

]
+Δ ẽhom,RPA , (H.60)

which requires renormalization similar to its unscreened counterpart. After subtrac-
tion of ex,s from eRPA

xc one obtains for the correlation energy [762]

eRPA
c,s (n0) = − i

2

∫
d4q

(2π)4

[
ln
[
1−Dv,R(q)Π (0)

L,d(q)
]

+2ln
[
1+Dv,R(q)Π (0)

T,d(q)
]

+Dv,R(q)Π (0)
L,d(q)−2Dv,R(q)Π (0)

T,d(q)
]
. (H.61)

This expression is UV-convergent as it stands, as the lowest order diagram included

in (H.61) contains Π (0)
L/T,d already two times.1 Finally, one can define the no-sea

approximation of (H.61) by neglecting all screening effects due to vacuum polariza-
tion. Decomposing the result into a Coulomb and a transverse component, one ends
up with

eC,RPA
c,ns (n0) = − i

2

∫
d4q

(2π)4

{
ln
∣∣∣1−D0(q)Π (0)

L,d(q)
∣∣∣+D0(q)Π (0)

L,d(q)
}

(H.62)

eT,RPA
c,ns (n0) = −i

∫
d4q

(2π)4

{
ln
∣∣∣1+D0(q)Π (0)

T,d(q)
∣∣∣−D0(q)Π (0)

T,d(q)
}

. (H.63)

eC/T,RPA
c,ns (n0) has been evaluated numerically for arbitrary n0 [538, 622]. The high-

density (ultrarelativistic) limit of eRPA
c,ns is given by [618, 621]

eRPA
c,ns (n0) −−−→

β�1

e4k4
F

12π4

(
3
2

ln
α
π

+1.3761+ . . .

)
=

e4k4
F

12π4

(−7.796+ . . .
)
, (H.64)

where α is the fine structure constant.
In order to arrive at the RPA+, which we understand as the combination of the

RPA with the remaining second order (e4) contributions, the two second order ex-
change (SOX) diagrams,

1 After Wick-rotation of q0 in (H.61) one e.g. finds Π (0)
L,d(iq0,qqq) ∼ (qqq2 +q2

0)
−1 and Π (0)

v,R(iq0,qqq) ∼
(qqq2 + q2

0) ln |qqq2 + q2
0| for large q0 and |qqq| so that two factors of Π (0)

L,d(iq
0,qqq) together with the two

photon propagators are sufficient to ensure UV-convergence of the outermost loop integral.
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2 2 , (H.65)

have to be added to eRPA
c . In contrast to the nonrelativistic situation the two right-

most diagrams do not vanish. Both types of diagrams require renormalization be-
yond the subtraction of their vacuum limit indicated in Eq. (H.65). The density
dependence of these diagrams is not known completely. In the ultrarelativistic limit
one finds for the sum of both graphs (the individual contributions are not gauge
invariant) [621]

eSOX
c (n0) −−−→

β�1

e4k4
F

12π4

(−3.18±0.12
)
, (H.66)

so that eSOX
c amounts to roughly 40% of the RPA in this limit.

One can also analyze the 2-loop contribution to the screened exchange (H.60),

,

which (in our definition) is beyond the no-sea approximation. Its ultrarelativistic
limit is [621],

e(2)
x,s (n0) −−−→

β�1

e4k4
F

12π4

[
ln

(
2

kF

m

)
− 11

6

]
. (H.67)

In the limit of very high densities e(2)
x,s thus dominates over all other known xc-energy

contributions. However, the densities required for e(2)
x,s to be of the same order of

magnitude as eRPA+
c are extremely high, kF/m ≈ 103, so that e(2)

x,s is not relevant for
electronic structure calculations.

No calculations of ec beyond the RPA+ are found in the literature.

H.4 Ground State Four Current

After the extensive discussion of the ground state energy little remains to be said
concerning the ground state four current of the RHEG. Due to norm conserva-
tion, the interacting current must be identical with the current of the noninteracting
RHEG, that is n0 gμ0, in real space. If one expresses the current expectation value in
terms of the interacting propagator (H.1),

〈Ψ0| ĵμ(x)|Ψ0〉 = − i lim
y→x

s tr
[
G(x,y)γμ

]
,
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one realizes that all higher order contributions resulting from the perturbation ex-
pansion of G must cancel order by order. This will be demonstrated explicitly for
all first order vacuum contributions. To first order one obtains diagrammatically

.

One first observes that in the pure vacuum limit, G0 → G0
v, all loops vanish, as at

least one part of the graph is a fermion loop with an odd number of vertices (Furry’s
theorem)—only mixtures of vacuum subgraphs with non-vacuum components can
contribute to jμ . Moreover, the right-hand first order diagram need not be consid-
ered any further, as in addition to the electronic charge density the neutralizing pos-
itive background charge density has to be coupled to the polarization graph. Con-
sequently, all diagrams containing tadpoles do not contribute. One is thus left with
the vacuum subgraphs in the remaining first order diagram. Two vacuum subgraphs
are identified, the vertex correction (left part) and the self-energy (right part). How-
ever, after renormalization the vertex correction vanishes on the mass shell due to
the normalization condition (G.52). Therefore the combination of this vacuum sub-
graph with the remainder of the diagram, i.e. the product Γv,RG0

d, is zero. Similarly,
the vacuum self-energy is proportional to (p/−m)2 on the mass shell, Eq. (G.45),
so that products as G0

dΣv,RG0
v vanish. Consequently, after renormalization the terms

containing vacuum subgraphs give no contribution to the four current, as required.
It is obvious that the argument given also applies to higher order contributions. The
necessary counterterms will be denoted as Δ jhom

μ ,

jμ = 〈Ψ0| ĵμ(x)|Ψ0〉+Δ jhom
μ = n0 gμ0 . (H.68)

As in the case of Δehom, Δ jhom
μ is determined by the renormalization of all relevant

vacuum subgraphs.



Appendix I
Renormalization of Inhomogeneous Electron
Gas

In order to prepare the discussion of the relativistic generalization of the HK-
theorem in Sect. 8.3 we finally consider the renormalization procedure for inho-
mogeneous systems, i.e. the full Lagrangian (8.11). Since the underlying renormal-
ization program of vacuum QED is formulated within a perturbative framework (see
Appendix G), we assume that the perturbing potential V μ is sufficiently weak to al-
low a power series expansion of all relevant quantities with respect to V μ . Within
this approach one can explicitly derive the counterterms required for the field the-
oretical version of the relativistic KS equations, i.e. for the four current and kinetic
energy of noninteracting particles. In this Appendix again h̄ = c = 1 is used.

The first quantity of interest is the four current δ jμ(rrr) induced by V μ(rrr). The
perturbation expansion of δ jμ with respect to V μ can be written as

δ jμ(rrr) =
∞

∑
n=1

(−e)n

n!

∫
d3r1 . . .

∫
d3rn χ(n+1)

c,μμ1...μn(rrr,rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn) + Δ jinhom
μ (rrr) , (I.1)

where χ(n)
c,μ1...μn represents the static, connected response functions of the RHEG

(for their precise definition see Appendix H) and Δ jinhom
μ denotes the counterterms

which keep δ jμ UV-finite. Of course, δ jμ satisfies current conservation,

∂μ δ jμ(rrr) = ∇∇∇ ·δ jjj(rrr) = 0 ,
∫

d3r δ j0(rrr) = 0 , (I.2)

which is directly related to the transversality of χ(n)
c,μ1...μn displayed in Eq. (H.14).

The induced current (I.1) is automatically UV-finite if the expansion is based on
renormalized response functions, i.e. Δ jinhom

μ just sums up the terms required for

the transition from the unrenormalized χ(n)
c,μ1...μn to their renormalized counterparts.

Introducing an expansion of Δ jinhom
μ in powers of V μ one thus has
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Δ jinhom
μ =

∞

∑
n=1

(−e)n

n!

∫
d3r1 . . .

∫
d3rn Δ χ(n+1)

μμ1...μn(rrr,rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn) , (I.3)

where Δ χ(n)
μ1...μn represents the counterterms which keep the connected response

function χ(n)
c,μ1...μn of the RHEG finite.

It is instructive to analyze Δ jinhom
μ for the noninteracting limit of (I.1). Using the

notation of Eqs. (F.39), (F.40) and (H.7) and taking into account the fermion sign
rule, the induced current is given graphically by

ieδ j 0
μ (I.4)

(the multiplicities resulting from different ordering of vertices in case of the higher
order response functions with n ≥ 2 compensate the prefactor 1/n! in (I.1)). While
the noninteracting 3-point function, i.e. the second graph, is UV-finite due to Furry’s
theorem, the noninteracting 4-point function (third diagram) is UV-finite due to its
transversality and all higher order response functions are overall convergent. The
only divergent term to be examined is contained in the first diagram. The counter-

term for the vacuum component of χ(0)
μν , χ(0)

v,μν = Π (0)
v,μν = ω(0)

v,μν/e2, has been de-
rived in Appendix G. Using dimensional regularization, one obtains Eq. (G.60) as
counterterm to the lowest order 2-point function and thus after Fourier transforma-
tion,

Δ j(0)
μ (rrr) =

e
12π2 Γ

(
4−d

2

)
∇∇∇2Vμ(rrr) , (I.5)

if Coulomb gauge, ∇∇∇ ·VVV (rrr) = 0, is used.
The second quantity of interest is the energy shift resulting from the perturbing

potential. This shift can be evaluated by use of the coupling constant integration
technique with respect to V μ . If one scales the associated Hamiltonian (8.43) by λ ,

Ĥext(λ ) = −λe
∫

d3r ĵμ(rrr)Vμ(rrr) , (I.6)

one obtains for the corresponding renormalized ground state energy

E(λ ) = 〈Ψ0(λ )|Ĥhom + Ĥext(λ )|Ψ0(λ )〉
−〈0|Ĥhom|0〉+ΔEhom +ΔE inhom(λ ) . (I.7)

Here |Ψ0(λ )〉 denotes the ground state of the scaled Hamiltonian Ĥhom + Ĥext(λ ).
ΔEhom provides the counterterms which, together with the vacuum expectation
value 〈0|Ĥhom|0〉, keep E(λ ) finite for λ = 0. ΔE inhom(λ ) contains all remaining
counterterms. The energy of actual interest, corresponding to λ = 1, can be ob-
tained by coupling constant integration, following the scheme in Sect. 4.2.1. Using
proper normalization for all λ ,
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〈Ψ0(λ )|Ψ0(λ )〉 = 1 ,

one obtains by differentiation of (I.7) with respect to λ and subsequent integration
from 0 to 1,

E(λ = 1) = ERHEG − e
∫ 1

0
dλ

∫
d3r jμ(λ ,rrr) Vμ(rrr)+ΔE inhom(λ = 1) .

In this expression jμ(λ ,rrr) stands for the ground state current resulting for the cou-
pling strength λ ,

jμ(λ ,rrr) = 〈Ψ0(λ )| ĵμ(rrr)|Ψ0(λ )〉 ,

and ERHEG = E(λ = 0) is to be understood as renormalized (ΔEhom has been ab-
sorbed into ERHEG). Insertion of (I.1) then allows to perform the λ -integration,

E = ERHEG − e
∫

d3r 〈Ψ0(λ = 0)| ĵμ(rrr)|Ψ0(λ = 0)〉Vμ(rrr)

+
∞

∑
n=2

(−e)n

n!

∫
d3r1 . . .

∫
d3rn χ(n)

c,μ1...μn(rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn)
+ΔE inhom . (I.8)

At this point one can examine ΔE inhom in more detail. Its component linear in V μ ,

ΔE inhom = −e
∫

d3r ΔE(1)
μ V μ(rrr)+O(V 2) ,

has to keep the current expectation value of the unperturbed system, i.e. of the in-
teracting RHEG, finite,

〈Ψ0(0)| ĵμ(rrr)|Ψ0(0)〉+ΔE(1)
μ = n0 gμ0 . (I.9)

It agrees with Δ jhom
μ defined via Eq. (H.68). As discussed in Appendix F, Δ jhom

μ
vanishes in the noninteracting limit. All higher order ingredients of ΔE inhom are de-

termined by the renormalization of the χ(n)
c,μ1...μn . The counterterm ΔE inhom is there-

fore closely related to Δ jinhom
μ , Eq. (I.3),

ΔE inhom =
∞

∑
n=1

(−e)n

n!

∫
d3r1 . . .

∫
d3rn Δ χ(n)

μ1...μn(rrr1, . . .rrrn)

×V μ1(rrr1) . . .V μn(rrrn) , (I.10)

where Δ χ(1)
μ ≡ Δ jhom

μ has been introduced for brevity. The only counterterm on the
noninteracting level, corresponding to (I.5), is given by

ΔE(0),inhom = − e2

24π2 Γ
(

4−d
2

)∫
d3rVμ(rrr)∇∇∇2V μ(rrr) . (I.11)
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The total energy counterterm (I.10) can be decomposed into contributions to the
individual energy components. Again this can be demonstrated directly for the non-
interacting case. Here the total energy is just a sum of the external potential energy,

Eext = −e
∫

d3rVμ(rrr)
[
gμ0n0 +δ jμ(rrr)

]
+ΔE(0),inhom

ext , (I.12)

which, consistent with (I.5), requires the counterterm

ΔE(0),inhom
ext = − e2

12π2 Γ
(

4−d
2

)∫
d3rVμ(rrr)∇∇∇2V μ(rrr) , (I.13)

and the noninteracting kinetic contribution Ts which absorbs the remainder of (I.11),

ΔT inhom
s =

e2

24π2 Γ
(

4−d
2

)∫
d3rVμ(rrr)∇∇∇2V μ(rrr) . (I.14)

The first order counterterms (I.5) and (I.11) are an explicit manifestation of the fact
that, quite generally, Δ jμ and ΔE inhom are completely determined by the external
potential and the average density n0 of the weakly inhomogeneous system. Only
these two quantities enter Eqs. (I.3) and (I.10). The resulting dependence of Δ jμ and
ΔE inhom on V μ is obvious, while that on n0 results from the multi-loop contributions
to the response functions.



Appendix J
Gradient Corrections to the Relativistic LDA

While the RLDA for Exc[ j] is based on the xc-energy density of the RHEG,
Eq. (H.47), the expansions (I.1) and (I.8) allow the derivation of systematic correc-
tions to the RLDA. Restricting the discussion to the linear response contributions,
Eq. (I.1) reduces to

δ jμ(qqq) = −eχμν(q0 = 0,qqq)Vν(qqq) , (J.1)

with the total current given by jμ(xxx) = n0gμ0 + δ jμ(xxx) (response functions are al-
ways understood to be renormalized in this appendix, so that counterterms are not
displayed explicitly; h̄ = c = 1 is again used). Using the inverse of χμν , Eq. (H.36),
one can rewrite (J.1) as

χ−1
ρμ (0,qqq)δ jμ(qqq) = −eVρ(qqq) , (J.2)

where Coulomb gauge has been utilized. With Eqs. (J.1) and (J.2) the second order
(V 2) contribution to (I.8) can be rewritten as

δELR = −e
∫

d3q
(2π)3 δ jμ(qqq)Vμ(qqq)− 1

2

∫
d3q

(2π)3 δ jμ(qqq)χ−1
μν (0,qqq)δ jν(−qqq) .

After insertion of the result (H.37) for the inverse response function,

δELR = −e
∫

d3q
(2π)3 δ jμ(qqq)Vμ(qqq)+

1
2

∫
d3q

(2π)3 δ jμ(qqq)D0(−qqq2)δ jμ(−qqq)

−1
2

∫
d3q

(2π)3 δ jμ(qqq)Π−1
μν (0,qqq)δ jν(−qqq) , (J.3)

one can identify the first term as the linear response contribution to Eext, Eq. (8.82),
the second one as the induced Hartree energy (8.84). The third term represents
the inhomogeneity corrections to the kinetic energy (δT LR

s ) and to the xc-energy
(δELR

xc ). δT LR
s is obtained from the noninteracting limit of Π−1

μν (qqq,0), so that the two
contributions can be separated easily. Utilizing the tensor structure of Π−1

μν (qqq,0),
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Eq. (H.38), as well as current conservation, qqq · jjj(qqq) = 0, one arrives at

δT LR
s +δELR

xc = −1
2

∫
d3q

(2π)3

{
δ j0(qqq)δ j0(−qqq)

ΠL(0,qqq)
+

jjj(qqq)· jjj(−qqq)
ΠT(0,qqq)

}
, (J.4)

where δ jjj(qqq) = jjj(qqq) has been used.
In the next step one extracts that component of (J.4) which is part of the RLDA.

This procedure involves only the δ j0-dependent term in (J.4) and follows closely
the discussion of Sect. 4.4.1. For the weakly inhomogeneous gas of interest an ex-
pansion of the RLDA energy to the order (δ j0)2 gives

T RLDA
s [n0 +δ j0]+ERLDA

xc [n0 +δ j0]

=
∫

d3r
[
ts(n0 +δ j0(rrr))+ exc(n0 +δ j0(rrr))

]
=

∫
d3r

[
ts(n0)+ exc(n0)+

(
dts
dn0

(n0)+
dexc

dn0
(n0)

)
δ j0(rrr)

+
1
2

(
d2ts
dn2

0

(n0)+
d2exc

dn2
0

(n0)
)

δ j0(rrr)2 + . . .

]
. (J.5)

The first order term in (J.5) vanishes due to norm conservation, Eq. (I.2). The second
order term can be rewritten by use of the compressibility sum rule (H.43),

T RLDA
s [n0 +δ j0]+ERLDA

xc [n0 +δ j0]

=
∫

d3r [ts(n0)+ exc(n0)]− 1
2

∫
d3q

(2π)3

δ j0(qqq) δ j0(−qqq)

Π (0)
L (0,000)

. (J.6)

The second order term in (J.6) has to be subtracted from the complete inhomogene-
ity correction (J.4) as it is already contained in the RLDA,

δ T̃ LR
s +δ ẼLR

xc = −1
2

∫
d3q

(2π)3

{
δ j0(qqq)

[
1

ΠL(0,qqq)
− 1

ΠL(0,000)

]
δ j0(−qqq)

+
jjj(qqq)· jjj(−qqq)
ΠT(0,qqq)

}
. (J.7)

Equation (J.7) explicitly demonstrates the current-dependence of relativistic den-
sity functionals. However, at this point δ T̃ LR

s and δ ẼLR
xc are given as functionals

of n0 (inside ΠL/T) and δ j0, but not yet as functionals of the complete density
j0 = n0 + δ j0. Two paths can be followed towards the construction of actual den-
sity functionals: on the one hand, one can rewrite (J.7) as a fully nonlocal den-
sity functional utilizing either that j0(xxx)− j0(yyy) = δ j0(xxx)− δ j0(yyy) [6, 85] or that
∇∇∇ j0(xxx) = ∇∇∇δ j0(xxx) [158] (compare Sect. 4.4.2). On the other hand, one can restrict
oneself to a long-wavelength expansion of the response kernels in (J.7), assuming
δ jμ(qqq) to be strongly localized around qqq = 000, i.e. δ jμ(xxx) to be rather delocalized.
The latter approach leads to gradient corrections.
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However, due to the limited information available for the relativistic polarization
functions ΠL/T no applications of (J.7) to Exc have been reported so far. In order to
illustrate the basic scheme of the gradient expansion we therefore consider Ts. After
insertion of (H.39) and (H.40) into (J.7) and subsequent Fourier transformation one
finds

δT [2]
s =

1
72m

∫
d3x

1
n0η

[
1+2

β
η

arsinh(β )
][

∇∇∇δ j0(xxx)
]2

+
3π
4

∫
d3x

∫
d3y

1
arsinh(β )

jjj(xxx) · jjj(yyy)
|xxx− yyy| , (J.8)

where the long-wavelength expansion has been taken into account to order qqq2 (de-
noted by the superscript [2]—β ,η are given by Eq. (H.42)) and current conservation
has been used in the second term. In the first term on the right-hand side of (J.8) one
can now utilize ∇∇∇δ j0(xxx) = ∇∇∇ j0(xxx) and, correct to second order, kF = [3π2 j0(xxx)]1/3.
However, the density-dependent prefactor 1/arsinh(β ) of the current component
cannot be expressed unambiguously in terms of j0(xxx) as now two spatial variables
are available. As in the case of the complete linear response corrections (J.7) one is
left with a choice for this substitution.1 If one abbreviates this (symmetric) function
of xxx and yyy by β̄ (xxx,yyy), one obtains

δT [2]
s [ j] =

1
72m

∫
d3x

[∇∇∇ j0(xxx)]2

j0(xxx)
1
η

[
1+2

β
η

arsinh(β )
]

+
3π
4

∫
d3x

∫
d3y

1

arsinh(β̄ (xxx,yyy))
jjj(xxx) · jjj(yyy)
|xxx− yyy| , (J.9)

where β is now understood as β = [3π2 j0(xxx)]1/3/m (η =
√

1+β 2). Equation (J.9)
demonstrates that current density functionals are inherently nonlocal, even in the
long-wavelength limit.

One should note that the vacuum parts of Π (0)
L/T do not contribute to δT [2]

s as
the normalization condition (G.48) together with (H.32) suppresses any vacuum

contribution of the order qqq2. On the other hand, Π (0)
v,R does contribute to higher order

inhomogeneity corrections (for details and a comparison with the real space gradient
expansion of Ts see [532]).

In principle, this formalism can be extended to quadratic and cubic response,
which allows the derivation of higher order gradient terms. In practice, however, the
limited knowledge of the corresponding response functions restricts the usefulness
of a first-principles determination of relativistic gradient corrections.

As a final point one should mention that gradient corrections to the relativistic
Ts[n] have also been derived by real-space methods [764–766, 763, 767]. These gra-
dient terms serve as an extension of the relativistic Thomas-Fermi model [761, 768],
in which the many-body problem is approached by direct solution of the basic vari-

1 In contrast to the linear response approach the real space gradient expansion of Ts[ j] determines
the current contribution to the second order gradient correction completely [763].
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ational equation (8.72). A summary of results and details, as e.g. use of the renor-
malization procedure, can be found in [72, 532, 769, 770]. Expressing the noninter-
acting relativistic kinetic energy in terms of the density n = j0,

Ts =
∫

d3x
{

t [0]
s [n]+ t [2]

s [n]+ t [4]
s [n]+ . . .

}
, (J.10)

one finds for the case of a purely electrostatic external potential (in contrast to the
case of a full four potential) the expressions

t [0]
s [n] =

(3π2n)5/3

π2m
1
β

[
1
8

(
βη3 +β 3η − arsinhβ

)− β 3

3

]
(J.11)

t [2]
s [n] =

1
72m

(∇n)2

nη

[
1+2

β
η

arsinhβ
]

. (J.12)

The more complicated expression for t [4]
s [n] will not be given here. The agreement

of (J.11) with (H.45) and of (J.12) with the density-dependent contribution to (J.9)
is obvious.

Results for atoms and molecules obtained by direct application of the variational
principle (without the intermediary of orbitals) are not of chemical accuracy. The
functionals can, however, be useful for obtaining reasonable estimates of properties
of systems that can not be investigated in such detail, for instance systems in the
astrophysical field. For this purpose, it is of interest to note, that a temperature-
dependent version of the relevant functionals has been derived as well [771].



Appendix K
Gordon Decomposition

The starting point for the derivation of the Gordon decomposition of the spatial
components of the relativistic four current operator,

ĵμ = ψ̂†αμ ψ̂ (αμ = γ0γμ) , (K.1)

is the field equation satisfied by the field operators ψ̂ , i.e. the Dirac equation,(
ih̄cγμ ∂μ −mc2 − eγμ Aμ

)
ψ̂ = 0 , (K.2)

in which the potential Aμ may be operator-valued (∂μ is defined in Eq. (8.4)). Note,
however, that all subsequent steps can equally well be gone through for a current
expressed in terms of single-particle orbitals,

jμ = ∑
k

Θkφ †
k αμ φk ,

as long as the orbitals satisfy a differential equation of the type (K.2) (as, for in-
stance, the KS spinors).

The hermitian conjugate of (K.2) is given by

ψ̂†γ0
(
−ih̄cγμ←−∂μ −mc2 − eγμ Aμ

)
γ0 = 0 , (K.3)

as (γμ)† = γ0γμ γ0. The vector bar over
←−
∂μ indicates that the derivative acts on the

field operator to its left. Contraction of the field equation (K.2) with ψ̂†αk and of its
hermitian conjugate (K.3) with αkψ̂ gives

ψ̂†αk (ih̄cγμ ∂μ −mc2 − eγμ Aμ
)

ψ̂ = 0

ψ̂†γ0
(
−ih̄cγμ←−∂μ −mc2 − eγμ Aμ

)
γ0αkψ̂ = 0 .

If one adds up both equations, one obtains
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ψ̂†
[
ih̄cγ0

(
γkγμ ∂μ − γμ γk←−∂μ

)
−2mc2αk − eγ0

(
γkγμ + γμ γk

)
Aμ

]
ψ̂ = 0 .

In the next step the scalar products in Minkowski space are split into their space-time
components, utilizing the commutation relations (8.7)–(8.9),

ψ̂†
[
− ih̄c

(
γk∂0 + γk←−∂0

)
+ ih̄cγ0

(
γkγ l∂l − γ lγk←−∂l

)
−2mc2αk −2eγ0Ak

]
ψ̂ = 0 .

At this point one can use

γkγ l =
1
2

({
γk,γ l

}
+
[
γk,γ l

])
= gkl − iεkl jΣ j with Σ j =

(
σ j 0
0 σ j

)
(K.4)

to obtain

− ih̄c∂0

(
ψ̂†γkψ̂

)
+ ih̄cψ̂†γ0

(
∂ k −

←−
∂ k

)
ψ̂ + h̄cεkl j∂l

(
ψ̂†γ0Σ jψ̂

)
−2mc2ψ̂†αkψ̂ −2eAkψ̂†γ0ψ̂ = 0 .

Most of the individual terms in this equation are easily identified with established
quantities. With the definitions1

ĵμ =
(

n̂,
ĵjj
c

)
(K.5)

ĵjjp = − ih̄
2m

ψ̂†γ0
(−→

∇∇∇ −←−
∇∇∇
)

ψ̂ (K.6)

m̂mm =
eh̄

2mc
ψ̂†γ0ΣΣΣψ̂ (K.7)

ρ̂s = ψ̂†γ0ψ̂ (K.8)

(note the additional factor of c which is included in the three-vector jjj as compared
to the spatial components of jμ !) for the paramagnetic current ĵjjp, the magnetization
density m̂mm and the scalar density ρ̂s one finds

− ih̄c∂0
(
ψ̂†γγγψ̂

)
+2mc ĵjjp +

2mc2

e
∇∇∇× m̂mm−2mc ĵjj−2eAAAρ̂s = 0 .

Extracting the spatial components of the current, one finally ends up with

1 Note the relation between the gradient vector and the covariant components ∂k,

∇∇∇ =
(

∂
∂ r1 ,

∂
∂ r2 ,

∂
∂ r3

)
= (∂1,∂2,∂3) .
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ĵjj = − ih̄
2m

∂0
(
ψ̂†γγγψ̂

)
+ ĵjjp +

c
e

∇∇∇× m̂mm− e
mc

AAAρ̂s . (K.9)

In the case of stationary systems the first operator on the right-hand side does not
contribute to any expectation value of ĵjj,

〈Ψ0| ĵjj|Ψ0〉 = 〈Ψ0| ĵjjp|Ψ0〉+ c
e

∇∇∇×〈Ψ0|m̂mm|Ψ0〉− e
mc

AAA〈Ψ0|ρ̂s|Ψ0〉 . (K.10)

Note that the precise definition of AAA (in particular, its sign) is determined by the
differential equation (K.2).



Appendix L
Some Useful Formulae

The body of this text relies on the knowledge of a largish number of mathematical
relations. A much abbreviated list is offered here.

• Laurent expansion, theorem of residues:
A complex-valued function f (z), which is analytic in the domain D ⊂ C and has
an isolated pole of k-th order at a point z0 enclosed by D , can be expanded for
all z ∈ D as (Laurent expansion)

f (z) =
∞

∑
n=−∞

an(z− z0)n , (L.1)

with the coefficients an given by

an =
∮

C

dz′

2πi
f (z′)

(z′ − z0)n+1 . (L.2)

Here the closed path C is contained fully in the domain, has a counterclockwise
orientation, and encloses z0, but no other singular point. The coefficient a−1, the
residue, is given by

a−1 =
∮

C

dz
2πi

f (z) . (L.3)

A generalization to the case that the path encloses a set of isolated poles is the
theorem of residues,∮

C

dz
2πi

f (z) = sum of the residues of all poles enclosed by C . (L.4)

A prominent example for the application of (L.4) is the contour integral repre-
sentation of the step function,

Θ(x) =
∫ ∞

−∞

dω
2πi

eiωx

ω − iη
, (L.5)
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which is used to implement the time-ordering required for many response and
Green’s functions in frequency space.

• Dirac identity:
For integrations over frequency often the integral representation of the δ -function,

δ (x) =
∫ ∞

−∞

dω
2π

eiωx , (L.6)

or the Dirac identity,

2πiδ (x) =
1

x− iη
− 1

x+ iη
(L.7)

1
x− iη

= P
1
x

+πiδ (x) (L.8)

1
x+ iη

= P
1
x
−πiδ (x) (L.9)

is used (P denotes the Cauchy principal value integral).
• Fourier representation of Coulomb interaction:

Whenever the Coulomb interaction has to be integrated over the complete space,
use of the following regularized form is necessary

∫
d3q

(2π)3

eiqqq·rrr

qqq2 + μ2 =
e−μ|rrr|

4π|rrr| . (L.10)

• General identities for commutators:

[ÂB̂,Ĉ] = Â[B̂,Ĉ]+ [Â,Ĉ]B̂ (L.11)

eÂ B̂e−Â =
∞

∑
n=0

1
n!

[
Â,

[
Â,

[
. . .

[
Â, B̂

]]
. . .

]]︸ ︷︷ ︸
n times

. (L.12)

• Commutators involving field operators:
The following basic commutator of four field operators can be derived directly
from the anticommutation rules (2.6) and (2.7),[

ψ̂†(rrr1σ1)ψ̂(rrr2σ2) , ψ̂†(rrr3σ3)ψ̂(rrr4σ4)
]

= −δ (3)(rrr1 − rrr4)δσ1σ4 ψ̂†(rrr3σ3)ψ̂(rrr2σ2)

+δ (3)(rrr2 − rrr3)δσ2σ3 ψ̂†(rrr1σ1)ψ̂(rrr4σ4) . (L.13)

Use of this result leads to

0 =
[
ψ̂†(rrrσ)ψ̂(rrrσ) , ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)

]
(L.14)

0 =
[∫

d3r ψ̂†(rrrσ)∇∇∇2ψ̂(rrrσ) ,
∫

d3r′ ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)
]

(L.15)
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0 =
[
ψ̂†(rrrσ)ψ̂(rrrσ)ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′) , ψ̂†(rrr′′σ ′′)ψ̂(rrr′′σ ′′)

]
=

[
ψ̂†(rrrσ)ψ̂†(rrr′σ ′)ψ̂(rrr′σ ′)ψ̂(rrrσ) , ψ̂†(rrr′′σ ′′)ψ̂(rrr′′σ ′′)

]
. (L.16)

With the relation (L.13) one can also evaluate the commutator of the density (2.4)
and the paramagnetic current (2.158)[

ĵjjp(rrr), n̂(rrr′)
]

=
−ih̄
2m

[
∇∇∇δ (3)(rrr− rrr′)

]
∑
σ

[
ψ̂†(rrrσ)ψ̂(rrr′σ)+ ψ̂†(rrr′σ)ψ̂(rrrσ)

]
+

ih̄
2m

δ (3)(rrr− rrr′)∇∇∇n̂(rrr) . (L.17)

Similarly, one obtains for the commutator of the kinetic energy and density op-
erators [

T̂ , n̂(rrr)
]

= ih̄∇∇∇ · ĵjjp(rrr) . (L.18)

• Pauli matrices:
The basic commutators (anticommutators) of the Pauli matrices,

[σi,σ j] = 2i ∑
k

εi jk σk (L.19){
σi,σ j

}
= 2δi j , (L.20)

indicate that these operators are generators of the group SU(2) . The matrices
are hermitian σ†

i = σi . These properties, together with a statement on the two
eigenvalues of σz , allows the determination of an explicit representation

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (L.21)

For handling Pauli matrices the following identity is often helpful,

(σσσ ·aaa) (σσσ ·bbb) = aaa ·bbb+ iσσσ · (aaa×bbb) , (L.22)

which can be derived from the basic commutators.
The corresponding commutation relations of the relativistic (4×4) Pauli matrices
(8.138) are [

Σ i,Σ j] = 2i ∑
k

εi jk Σ k (L.23){
Σ i,Σ j} = −2gi j . (L.24)

A standard representation is

ΣΣΣ =
(

σσσ 000
000 σσσ

)
. (L.25)
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• Feynman rules:
These rules define the transition between the Feynman diagrams representing the
individual contributions to the perturbation expansion of Green’s functions (and
all quantities related to them) and the corresponding analytical expressions. They
are set up here in a rather general form which allows a coherent treatment of all
kinds of (sub)diagrams in real space, including diagrams contributing to n-point
functions such as the self-energy and the response function. The critical diagrams
which require this extended form are those for which there are vertices to which
only a single line (electron or interaction) is attached, as for instance the first
order self-energy (3.125).
The four basic elements of Feynman diagrams representing the perturbation ex-
pansion for inhomogeneous systems are:

– The noninteracting (as for instance the KS) Green’s function (3.124),

G0(rrrσt,rrr′σ ′t ′) =
∫

dω
2π

e−iω(t−t ′) G0(rrrσ ,rrr′σ ′,ω) (L.26)

= r σ t rσt

G0(rrrσ ,rrr′σ ′,ω) = ∑
l

{
(1−Θl)

φl(rrrσ)φ ∗
l (rrr′σ ′)

ω − εl/h̄+ iη
+Θl

φl(rrrσ)φ ∗
l (rrr′σ ′)

ω − εl/h̄− iη

}
.

– The Coulomb interaction, suitably extended to the time domain, in order to
simplify the rules,

w(rrr− rrr′, t − t ′) = δ (t − t ′)
e2

|rrr− rrr′| = r t rt . (L.27)

– The simple vertex, drawn as a bold dot,

rσt

The lines attached to the dot only serve as an indication that there are (at most)
two solid and one wiggly line connected to a single vertex.

– If present, an additional perturbing external potential,

vext r rt (L.28)

Any given Feynman diagram is translated into an algebraic expression according
to the following rules:

1. Distinguish between simple endpoints of lines (be it solid or wiggly), i.e. end-
points not attached to a bold dot, and endpoints at vertices, characterized by
the bold dot. The former endpoints will be called external points in the fol-
lowing, the latter internal endpoints.
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2. Distinguish between internal vertices, at which one incoming and one outgo-
ing solid (electron) line and one wiggly (interaction) line meet, and external
vertices, at which one or two of these attached lines are missing.

3. Label all vertices and external points by some number i.
4. Replace each directed solid line for which the arrow points from a vertex or

an external point j to a vertex or an external point i by G0(rrriσiti,rrr jσ jt j).
5. Replace each wiggly line connecting the vertices or external points i and j by

w(rrri − rrr j, ti − t j) (the direction plays no role, as the interaction is symmetric
under exchange of its arguments).

6. Replace each wiggly line with a cross at its end attached to vertex i by vext(rrri).
7. Replace each external vertex i with only one line attached by

δ (3)(rrri − rrri′)δ (ti − ti′)δσi,σi′ .

The space-time labels rrriti and rrri′ti′ are two of the arguments of the n-point
function to which the diagram contributes. The same applies to both spin la-
bels, if a wiggly line is attached to the vertex. On the other hand, if a solid
line is attached to the vertex, the spin label σi is the spin index of this internal
solid line attached, while σi′ denotes a spin argument of the n-point function.

8. Integrate over all coordinates and times associated with internal vertices,∫
d3ri dti ,

and sum over all spins associated with internal endpoints of solid lines.
9. If the rules lead to Green’s functions G0 for which both time arguments co-

incide, ti = t j = t, interpret these functions as G0(rrriσit,rrr jσ jt + η) and take
the limit η → 0+ at the end of the calculation. This can only happen if the
solid line ends at the same point as it starts, or if the start and end point of G0

are connected by a single interaction line. This procedure ensures the proper
operator ordering of ψ̂0 and ψ̂†

0 at equal times.
10. Multiply the resulting expression by a factor of

(−i/h̄)n+m il (−1)F

for a diagram which contains n interaction, m external potential and l electron
lines as well as F closed loops of solid lines.

11. Adjust the overall prefactor to the quantity (Green’s or response function, den-
sity, energy, . . . ) which is evaluated, in accordance with the definition of this
quantity. In the case of an energy (or vacuum amplitude) diagram take care of
the multiplicities involved (see e.g. [95]).

For a homogeneous system, for which no external potential is present, a represen-
tation in momentum space is the appropriate choice. The three remaining basic
elements after Fourier transformation are:

– The noninteracting Green’s function:
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(k
k k

,ω ,σσ δσσ
Θ( )

ω ε � η
Θ( |)

ω ε � η
.

kωσk k

(L.29)
– The Coulomb interaction (in the screened form given above):

( ) =
π
+ μ

= . (L.30)

– The simple vertex:

ω σ ω σ

ω
.

k

k

(L.31)

The Feynman rules for a distinct diagram are in this case:

1. Assign a direction to each interaction (wiggly) line; associate energy (ω) and
momentum to each line (be it solid or wiggly) and conserve energy and mo-
mentum at each vertex.

2. Replace each directed solid line for which the arrow points from vertex or
external point j to vertex or external point i by G0(kkk,ω,σiσ j).

3. If a solid line ends at the same point as it starts, or if the start and end point of a
solid line are connected by a single interaction line, interpret the associated G0

as eiωη G0(kkk,ω,σiσ j) and take the limit η → 0+ at the end of the calculation.
4. Replace each wiggly line by w(qqq).
5. Wherever two solid lines meet at some vertex conserve the spin σ at the vertex

and sum over σ .
6. Integrate over all energies and momenta which do not correspond to argu-

ments of the Green’s or n-point function.
7. Multiply the resulting expression by a factor of

(−i/h̄)n+m il (−1)F

for a diagram which contains n interaction, m external potential and l electron
lines as well as F closed loops of solid lines.

8. Adjust the overall prefactor to the quantity (Green’s or response function, den-
sity, energy, . . . ) which is evaluated, in accordance with the definition of this
quantity. In the case of an energy (or vacuum amplitude) diagram take care of
the multiplicities involved.

These rules are identical with those given in [94], Chaps. 9–12.
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10. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)
11. T.L. Gilbert, Phys. Rev. B 12, 2111 (1975)
12. M. Berrondo, O. Goscinski, Int. J. Quantum Chem. 9S, 67 (1975)
13. L.H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927)
14. E. Fermi, Z. Phys. 48, 73 (1928)
15. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University

Press, New York, NY, 1989)
16. W. Kohn, in Highlights of Condensed Matter Theory, ed. by F. Bassani, F. Fumi, M.P. Tosi

(North-Holland, Amsterdam, 1985), p. 1
17. M. Levy, Phys. Rev. A 26, 1200 (1982)
18. E.H. Lieb, in Physics as Natural Philosophy, ed. by A. Shimony, H. Feshbach (MIT Press,

Cambridge, 1982), p. 111
19. H. Englisch, R. Englisch, Physica 121A, 253 (1983)
20. J.T. Chayes, L. Chayes, M.B. Ruskai, J. Stat. Phys. 38, 497 (1985)
21. M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol.4 (Academic, New York,

NY, 1978)
22. M. Levy, Proc. Natl. Acad. Sci. 76, 6062 (1979)
23. E.H. Lieb, Int. J. Quantum Chem. 24, 243 (1983)
24. J.E. Harriman, Phys. Rev. A 24, 680 (1981)
25. G. Zumbach, K. Maschke, Phys. Rev. A 28, 544 (1983)
26. G. Zumbach, K. Maschke, Phys. Rev. A 29, E 1585 (1984)
27. R. van Leeuwen, Adv. Quantum Chem. 43, 25 (2003)
28. H. Eschrig, The Fundamentals of Density Functional Theory (Edition am Gutenbergplatz,

Leipzig, 2003)
29. K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework

(Springer, Berlin, 2009)
30. H. Englisch, R. Englisch, Phys. Stat. Sol. (b) 123, 711 (1984)
31. H. Englisch, R. Englisch, Phys. Stat. Sol. (b) 124, 373 (1984)

499



500 References

32. I. Ekeland, R. Teman, Convex Analysis and Variational Problems (North-Holland, Amster-
dam, 1976)

33. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)
34. U. von Barth, L. Hedin, J. Phys. C 5, 1629 (1972)
35. M.M. Pant, A.K. Rajagopal, Solid State Commun. 10, 1157 (1972)
36. R.D. Jackson, Classical Electrodynamics (Wiley, New York, NY, 1975)
37. K. Capelle, G. Vignale, Phys. Rev. Lett. 86, 5546 (2001)
38. H. Eschrig, W. Pickett, Solid State Commun. 118, 123 (2001)
39. N.I. Gidopoulos, in The Fundamentals of Electron Density, Density Matrix and Density

Functional Theory in Atoms, Molecules and the Solid State, ed. by N.I. Gidopoulos, S. Wil-
son (Kluwer, Dordrecht, 2003), p. 195

40. N.I. Gidopoulos, Phys. Rev. B 75, 134408 (2007)
41. N. Argaman, G. Makov, Phys. Rev. B 66, 052413 (2002)
42. Y. Tsunoda, J. Phys.: Condens. Matter 1, 10427 (1989)
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102. L.J. Sham, M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983)
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379. S. Kümmel, J.P. Perdew, Phys. Rev. Lett. 90, 043004 (2003)
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626. W. Liu, C. van Wüllen, J. Chem. Phys. 113, 2506 (2000)
627. R.N. Schmid, E. Engel, R.M. Dreizler, P. Blaha, K. Schwarz, Adv. Quantum Chem. 33, 209

(1998)
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asymptotic behavior 113, 246, 257, 258
atoms

exchange-only 260
LDA, GGA 194
spin-dependence 196

Becke 88
asymptotic behavior 184

generalized gradient approximation
asymptotic behavior 195

GGA 194
gradient expansion

fourth order 165, 204
second order 165

Krieger-Li-Iafrate approximation 249
degenerate states 254

LDA 138
local density approximation

asymptotic behavior 195, 227
localized Hartree-Fock approximation

249
molecules

LDA, GGA 197, 199
relativistic corrections
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atoms 389
solids

exchange-only 262
Exchange-correlation action

adiabatic local density approximation 329
causality 329
definition 327
time-dependent local density approximation

329
time-dependent spin-density functional

theory 335
Exchange-correlation energy

homogeneous electron gas 130
inhomogeneous electron gas

linear response 486
relativistic corrections

atoms 388
relativistic homogeneous electron gas 474

Exchange-correlation energy density
exact representation 115
Kohn-Sham perturbation theory 115

Exchange-correlation energy functional 61
adiabatic connection 126, 127

frequency space 128, 129
complete linear response 152, 230
current density functional theory 102
current-dependence 486
exact representation 123, 127
functional differentiability 72
Generalized gradient approximation 170
global hybrids 281
gradient expansion 153, 156, 169

potential 168
hybrids 281, 293
in terms of exchange-correlation hole 128
in terms of pair correlation function 128
in terms of the exchange-correlation hole

175
LDA+U 216
Lieb functional 72
Local density approximation 138
local hybrids 286
nonlocal corrections 145
relativistic

linear response 486
relativistic density functional theory 369,

370
screened hybrids 285
self-interaction corrected LDA 280

Perdew-Zunger 203
Stoll-Pavlidou-Preuss 203
Vosko-Wilk 204

semi-empirical forms 183

spherically averaged exchange-correlation
hole 179

third generation functionals 232
Exchange-correlation functional

relativistic density functional theory 384
Exchange-correlation hole 128

models 230
spherically averaged 176
sum rules 175

Exchange-correlation kernel
adiabatic local density approximation 334
definition 332
Gross-Kohn approximation 335
time-dependent spin-density functional

theory 336
Exchange-correlation magnetic field

current spin density functional theory
106–108

relativistic density functional theory 380
relativistic spin density functional theory

378
Exchange-correlation potential

current density functional theory 102
gauge properties 104

current spin density functional theory 106,
108

density functional theory 65
no-pair relativistic density functional theory

375
spin-density functional theory

collinear 82
time-dependent density functional theory

328
Exchange-only ground state energy

relation to Hartree-Fock ground state energy
111

Excitation energy 1
ΔSCF method 349
time-dependent density functional theory

atoms 348
Excited states 55, 80, 336
Existence theorem

relativistic density functional theory 361
External energy functional

current density functional theory 102
current spin density functional theory 106
density functional theory 61
relativistic density functional theory 368
scaling behavior 220
spin-density functional theory 81

External potential
crystal lattice 91
current spin density functional theory 46
density functional theory 11
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pseudopotentials 12
relativistic density functional theory 375
spin-density functional theory 40, 43
time-dependent current density functional

theory 308
time-dependent density functional theory

307
EXX approach 254

F

f -sum rule 342
Fermi energy 58

spin-density functional theory 82
Fermi momentum 131

homogeneous electron gas
noninteracting 439
relativistic 468

Fermi surface 88
homogeneous electron gas 88
inequivalence of Kohn-Sham and exact 99
interacting system

definition 98
Kohn-Sham

definition 99
Fermi-Amaldi term 204
Fermi-liquid theory 98
Fermion propagator

homogeneous electron gas
relativistic 467

interacting
quantum electrodynamics 457, 458

noninteracting
quantum electrodynamics 458

renormalized 462, 463
Feynman diagrams 455
Feynman gauge 355
Field equations

of quantum electrodynamics 356
Field operators

commutation relations 425, 494
definition 424
Kohn-Sham 122

Field tensor 354
First Brillouin zone 93
Fock space

definition 421
Foldy-Wouthuysen transformation 46
Four current 354

renormalization 359
Four current density

first order
counterterm 482

inhomogeneous electron gas 481

counterterms 481
relativistic homogeneous electron gas 478

Four gradient 352
Fractional particle number 37
Frenkel variational principle 317
Functional derivative

chain rule 411
definition 405
definition via δ -function 409
Euler-Lagrange equations 411
examples 407
product rule 409

Functional Taylor expansion 150
action 319
exchange-correlation energy 64
ground state energy 63

Functionals
general definition 403

Furry theorem 455

G

γ-Fe 44
Gâteaux differential 35
Gauge invariance

Lagrangian 355
Gauge transformation 46

current spin density functional theory 46
relativistic density functional theory 364
time-dependent density functional theory

308
wavefunction 47

Gell-Mann-Low theorem 122
Generalized gradient approximation 170

correlation energy
atoms 141

exchange energy
atoms 139

exchange potential 194
relativistic extension 397

Generalized Kohn-Sham approach 210, 232,
283

Görling-Levy perturbation theory 272
Gordon decomposition

current 491
current operator 490

Gradient corrections
relativistic 485

Gradient expansion 153
convergence 164
correlation energy

atoms 141
correlation energy functional 158

spin-polarized 161, 163
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exchange energy
atoms 139

exchange energy functional 158
fourth order 163, 205

exchange hole 176
exchange potential

fourth order 168, 204
second order 165

exchange-correlation energy functional
156, 169

exchange-correlation potential 168
kinetic energy functional

second order 205
Green’s function

Dyson equation 89, 90
in terms of quasi-particle amplitudes 89
interacting 88

Fourier representation 89
periodic systems 93, 96
quantum electrodynamics 457

interpretation 89
Kohn-Sham system 125
Lehmann representation 89

periodic systems 94
noninteracting 90

Fourier representation 90
orbital 236, 250
periodic systems 95
relativistic 454

pole shifts 89
single-particle 88

Ground state density 14
noninteracting, spin-saturated systems 59
homogeneous electron gas 131
in terms of Green’s function 91
in terms of quasi-particle amplitudes 85
interacting

asymptotic behavior 87
interacting system 60
interacting versus noninteracting 241
Kohn-Sham system 59
noninteracting

asymptotic behavior 87
Ground state density functional

current density functional theory 51
current spin density functional theory 51
interacting systems 16
noninteracting systems 59
relativistic density functional theory 364,

373
spin-density functional theory 41, 43

Ground state energy
alternative form 70
atoms

exchange-only 255
exchange-only limit

atoms 185
definition 110
relation to Hartree-Fock ground state

energy 111
first order

counterterm 483
inhomogeneous electron gas

counterterms 483
linear response 485
renormalized 482

molecules
exchange-only 256, 257

noninteracting systems 59
relativistic corrections

atoms 388
relativistic homogeneous electron gas 474
relativistic LDA, GGA

atoms 395
open-shell atoms 396

Ground state energy functional
current spin density functional theory 52,

106
decomposition 61

current density functional theory 101
no-pair relativistic density functional

theory 374
relativistic density functional theory 368

degenerate ground states 21, 23
density functional theory 17
derivative discontinuity 39
ensemble densities 23
fractional particle number 37
LDA+U 216
minimum principle 17
noninteracting systems 59
relativistic density functional theory 366
spin-density functional theory 41, 43, 81

collinear 82
variational property 63

Ground state four current
no-pair relativistic density functional theory

374
relativistic density functional theory 373
relativistic Kohn-Sham system 367

Ground state wavefunction
Coulomb correlation 69
helium

exact 67
G2 test set 186
Gupta-Bleuler indefinite metric quantization

355
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H

Hamiltonian
ab-initio 2
current density functional theory 46
Dirac-Coulomb 366
Dirac-Coulomb-Breit 366
Heisenberg 2
interacting 85
model 2
noninteracting fermions

charge conjugation 453
renormalized 451, 454

relativistic density functional theory 357
stationarity 4
stationary systems

nonrelativistic 11
time-dependent current density functional

theory 308
time-dependent density functional theory

307
Harmonic potential theorem 330
Hartree energy functional 61

no-pair relativistic density functional theory
374

relativistic density functional theory 368
scaling behavior 221
virial relation 223

Hartree potential 65
no-pair relativistic density functional theory

375
time-dependent density functional theory

328
Hartree-Fock approximation 5

direct potential 7
exchange potential 7
ground state 6
total energy 6

Hartree-Fock equations 6
basis set expansion 8
scaling with basis set size 8

Hartree-Fock orbitals
asymptotic behavior 446

Heisenberg equation of motion 312
Heisenberg Hamiltonian 2
Heisenberg representation 88
Hellmann-Feynman theorem 225
Helmholtz theorem 380
Hilbert space

N-particle 414
antisymmetric basis 415
canonical basis 414, 419

single-particle 413
Hölder inequality 31

Hohenberg-Kohn energy functional
domain 31

Hohenberg-Kohn theorem 11
current density functional theory 51
current spin density functional theory 51
degenerate ground states 18, 19
excited states 55
for lowest state with given symmetry 56
maps 13
minimum principle 17
noninteracting systems 59
nonlocal potentials 13
physical interpretation 17
reductio ad absurdum 15
spin-density functional theory 40
statements 16

Homogeneous electron gas 129
compressibility sum rule 151
relativistic 467
spin-polarized 142

Hubbard bands 216
Hubbard U 215
Hybrid functionals

correlation 282, 283, 286, 287
correlation energy

atoms 141
dispersion force 293
exchange 281, 283, 285, 286
exchange energy

atoms 211
global 281
local mixing 286
screened 285

I

Infrared divergences 358
Inhomogeneous electron gas 145

background charge density 148
correction to exchange-correlation energy

151
correction to kinetic energy 151
correction to total energy 149
electrostatic energy 148
induced density 147
linear response 146
relativistic 481
renormalization 481
screening 147

Integral equation
optimized potential method 238
relativistic optimized potential method

386
magnetization-dependent 387
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spin-dependent 387
Interacting v-representability 21

counterexamples 21
ensemble 22
Levy-Lieb constrained search 25
Lieb functional 32
N-representability 26
on grid 25
pure-state 22
relativistic density functional theory 366
time-dependent density functional theory

324
Ion–ion interaction 3
Ionization potential 39, 79, 86, 87, 100

atoms
exchange-only 258

LDA, GGA
atoms 192

relativistic corrections
atoms 391

J

Janak theorem 76, 77, 216
Jastrow factors 280

K

Kato theorem 163
Kinetic energy

homogeneous electron gas
noninteracting 438, 439

inequality between interacting and
noninteracting 62

relativistic homogeneous electron gas 474
Kinetic energy functional

current density functional theory
behavior under gauge transformation

103
degenerate ground states 75
density-dependent forms 442
functional differentiability 71
gradient expansion 157

second order 205
Lieb functional 71
linear response 64
minimization 62, 72
no-pair relativistic density functional theory

374
noninteracting systems 60
nonlocal forms 442
relativistic density functional theory 368
scaling behavior 220
spin-density functional theory 81

collinear 82
universality 60
von Weizsäcker functional 207

Kinetic energy operator 11
electrons 3
nuclei 3

Kohn-Sham eigenvalues
highest occupied orbital 87
interpretation 84
molecules

exchange-only 258
relativistic corrections

atoms 390, 392
Kohn-Sham equations 57

comparison with Hartree-Fock approach
69, 274

current density functional theory 101, 102
gauge covariance 102

current spin density functional theory 106
degenerate ground states 73, 75
density functional theory 65
no-pair relativistic density functional theory

375
relativistic density functional theory 369,

382
relativistic spin density functional theory

collinear 379
non-collinear 378

self-consistent solution 65
spin-density functional theory 80, 81

collinear 82
time-dependent density functional theory

325, 328
initial values 329
memory 329

time-dependent spin-density functional
theory 335

Kohn-Sham ground state 66
Kohn-Sham kinetic energy 60

relativistic
counterterm 484

Kohn-Sham kinetic energy functional
current-dependence 487
gradient expansion

relativistic 488
Kohn-Sham magnetic field

spin-density functional theory 81
Kohn-Sham perturbation theory 272
Kohn-Sham potential

current density functional theory 102
density functional theory 65
derivation 63
no-pair relativistic density functional theory

375
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relativistic density functional theory 369
spin-density functional theory 81

collinear 82
time-dependent density functional theory

328
Kohn-Sham single-particle states

asymptotic behavior 87
density functionals 60
spin-density functional theory 81
spin-saturated systems 58

Kohn-Sham system 57
definition 60
Fermi surface

definition 99
ground state 57
Slater determinant 57
spin-density functional theory 80

collinear form 81
Krieger-Li-Iafrate identity 246

L

Lagrangian
fermions 353
noninteracting fermions 449
photons 354
quantum electrodynamics

renormalized 461, 466
relativistic density functional theory 353

Landau gauge 355
Latter correction 141
Laurent expansion 493
LDA+U method 212

atomic Slater integrals 213
double counting correction 216
occupation matrix 213

Lehmann representation
Green’s function 89

periodic systems 94
noninteracting Green’s function 90
response function 118

Levy-Lieb constrained search 25
Levy-Lieb functional 25

functional differentiability 36
Lieb functional 28, 32

convexity 33
functional differentiability 34, 36
in terms of density matrices 36
Lower semicontinuity 34
Tangent functional 34

Lieb-Oxford bound 178
Lindhard function 131

relativistic 472
Linear response

stationary density functional theory 146
time-dependent density functional theory

331
Local density approximation 129

correlation energy
atoms 140, 141

definition 138
exchange energy

atoms 139
exchange potential 138

asymptotic behavior 138
kinetic energy functional 142
potential 138
relativistic exchange 393
spin density functional theory 142, 145

Local field correction 160
Local functional approximation

for superconductors 402
Local spin-density approximation

correlation 145
exchange 142

Long-wavelength expansion 153
Luttinger theorem 88

M

Møller-Plesset energy 273
Magnetic moment

nuclear 4
Magnetization density 40

relativistic 490
relativistic density functional theory 377
spin-density functional theory 80

Meta generalized gradient approximation
correlation energy

atoms 141
exchange energy

atoms 211
Perdew-Kurth-Zupan-Blaha 206, 207
Tao-Perdew-Staroverov-Scuseria 208, 209

Meta-GGA 206
Metric tensor 352
Minimum principle

current spin density functional theory 52
degenerate ground states 21
noninteracting systems 60
relativistic density functional theory 365,

374
total energy 6

Minkowski indices 352
Multiplet states 56

N

N-particle Hilbert space
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basis 7
N-particle states

representation in terms of creation operators
421

N-representability 26
Negative energy states 358
Negative ions 227
No-pair approximation 371

relativistic ground state energy functional
374

relativistic Kohn-Sham equations 375
Noether theorem 356
Non-collinear magnetism

in molecules 45
in solids 45

Non-collinearity 44
Non-uniqueness of ground state in current spin

density functional theory 53
Non-uniqueness of ground state in spin-density

functional theory 42
Noninteracting ensemble v-representability

71
Noninteracting fermions

canonical quantization 449
charge operator

canonical 450
renormalized 452

Green’s function 454
Hamiltonian

canonical 450
renormalized 451, 454

Noninteracting v-representability 60, 70
Lieb functional 71
time-dependent density functional theory

327
Notation

bra-ket 417
bra-vector 417
charge of electron 3
derivative with respect to vector 42
Dirac 417
eigenstates of interacting Hamiltonian 85
Fermi energy 58
Feynman diagrams

quantum electrodynamics 458, 459
first/second quantization 13
Gaussian units 3
Harvard 241
ket-vector 417
local spin density approximation 145
magnetization density 40
many-particle states 6
matrix elements

antisymmetric 429

canonical 428
particle–particle interaction 428
2-particle operators 428

N-particle states 419
antisymmetrized basis 419
ordered basis 419

photon propagator 368, 457, 468
pole shifts 89
relativistic density functional theory 352,

373, 375
response function

relativistic 470
second quantization 413
single-particle states 6
Slater integral 273
(spin) density functional theory, compact

233
spin quantum number 6, 12

Nuclear potential 6
Nuclei, characterization of 4

O

Occupation number 59
degenerate ground states 74, 75
Fermi distribution 59
fractional 76, 78, 79
spin-density functional theory 82

Optimized (effective) potential method 233
degenerate states 250, 252
integral equation

exchange-only 243
identity with Sham-Schlüter equation

243
normalization of solution 246

relativistic density functional theory 384
spherically symmetric systems 253

Optimized potential method
integral equation 238

Orbital current
relativistic density functional theory 379

Orbital magnetization density 380
Orbital polarization 383, 384
Orbital-dependent exchange-correlation

functionals 227
self-interaction corrected LDA 203

Order-N methods 402
Orthonormality relation

N-particle
first quantized form 415
second quantized form 420

single-particle
first quantized form 414
improper 418
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second quantized form 418

P

Pair density functional theory 402
Pair-correlation function 127

exchange only 175
Paramagnetic current density 101

definition 48
gauge transformation 49
relativistic 490
relativistic density functional theory 377
time-dependent density functional theory

311
Particle number conservation

current spin density functional theory 52
density functional theory 21
periodic systems 98
quantum electrodynamics 361
relativistic density functional theory 374

Particle–particle interaction 11
symmetry, spin-independence 12

Pauli correlation 7, 67
Pauli Hamiltonian 46
Pauli matrices 40

commutation relations 495
identity 495

Pauli spinors 58
Perturbation expansion

quantum electrodynamics 458
Petersilka-Gossmann-Gross equation 338

degeneracy 345
pseudo-eigenvalue problem 339
singlet-triplet excitation 347

Photon propagator
in Coulomb gauge 373
interacting

homogeneous electron gas 468
quantum electrodynamics 457, 458
relativistic homogeneous electron gas

471
noninteracting 368

quantum electrodynamics 458
renormalized 462, 464

Point charge plus continuum model 279
Polarizability

atomic 290
dynamic 341

Pole shifts 89
Post-GGA/LDA treatment 232
Preferred reference frame 353
Primitive vectors 91
Pseudo-eigenvalue problem

time-dependent density functional theory
339

pseudopotentials 12

Q

Quantum electrodynamics 351, 457
Quasi-particle 97
Quasi-particle amplitudes 85

asymptotic behavior 87, 445–447
definition 85
differential equation 86
noninteracting limit 86
periodic systems 94

R

Random phase approximation
correlation energy functional 277
relativistic homogeneous electron gas 477

Real-space cut-off 177, 181
Reciprocal lattice 92
Reductio ad absurdum 15

relativistic density functional theory 361
Relativistic density functional theory 351

notation 352
scalar potential only 376
time-dependent systems 351

Relativistic ground state energy
renormalization 360

Relativistic Kohn-Sham equations 367, 369
Relativistic spin density 379
Relativistic spin density functional theory

collinear 378
non-collinear 377

Renormalization
four current 359
Green’s functions 359
interacting Hamiltonian 359
noninteracting Hamiltonian 358
relativistic density functional theory 364
relativistic ground state energy 360

Renormalization constants 462
Response function 117

advanced 321
analytic properties 119
density–density 117
Dyson equation

homogeneous electron gas 130
frequency space 118
homogeneous electron gas 129

relativistic 471
RPA 132

interacting
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relativistic homogeneous electron gas
468

irreducible 130
relativistic homogeneous electron gas

470
Lehmann representation 119
noninteracting

relativistic homogeneous electron gas
472

proper 130
properties 118
random phase approximation 276
relativistic

transversality 469
relativistic Kohn-Sham system 386
retarded 321

definition 118
interacting system 332, 337
Kohn-Sham system 290, 332, 337

RPA 159
static

Kohn-Sham system 238, 243
symmetry relations 120
time-ordered 124

definition 117
Kohn-Sham system 124

Ritz principle 15
gauge transformation 50

Ritz principle: see also minimum principle 7
Runge-Gross theorem 307, 311

time-dependent current density functional
theory 325

S

s-d transfer energy 392
Scalar density 490

relativistic density functional theory 377
Scaling transformation

density 219
Kohn-Sham states 219
position vector 219
wavefunction 219

Scaling with basis set size 433
exchange matrix elements 436
single-particle matrix elements 434

Schrödinger equation
noninteracting homogeneous electron gas

437
admissible wavefunctions 28
coupled electron-nucleus system 5
interacting system 5, 85
single-particle 57
stationary 13

time-dependent 308
Schwartz inequality 30
Screening

Coulomb interaction 494
Second order exchange 273
Second order exchange energy

relativistic homogeneous electron gas 478
Second order Görling-Levy functional 272

potential 275
Second quantization 13
Self-Consistent-Field approximation 6
Self-energy

exchange contribution 91
exchange-correlation contribution 241
first order 90

quantum electrodynamics 460
renormalized 465, 475

irreducible 90
proper 90
quantum electrodynamics 459
renormalized 463

Self-interaction correction 202, 211, 228
unitarity problem 203

Self-interaction energy
in exchange energy functional 113
in Hartree term 113

Selfconsistent iteration
Hartree-Fock equations 7

Sham-Schlüter equation 242
Shell structure 1
ΣΣΣ -matrices 377

commutation relations 495
Single-particle operators

definition 425
matrix elements 427
second quantized form 426, 427

Single-particle spectrum
degenerate ground states 73

Slater determinant 6, 415
time-dependent Kohn-Sham system 326

Slater exchange 141
Slater integral

atomic 213
notation 273

Spectroscopic constants
exchange-only limit 259

LDA, GGA 193
hybrids 282, 284
LDA, GGA 186, 190
MGGA 190
orbital-dependent functionals 297
relativistic corrections 398

Spin–orbit interaction 4
Spin-density
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definition 43
Spin-density wave 45

bulk Cr 46
Spin-projection on z-axis 58
Spin-spiral 45
Spin-stiffness 143
Stoner exchange 215
Strong interaction limit 279
Strongly correlated systems 230
Summation convention 352
Susceptibility 117

T

Theorem of residues 493
Thomas-Fermi kinetic energy functional

142, 440
Thomas-Fermi models 18, 440
Thomas-Fermi screening length 171
Thomas-Reiche-Kuhn sum rule 342
Time-dependent density

Kohn-Sham system 326
Time-dependent density functional theory

relativistic extension 351
Time-dependent Schrödinger equation

Kohn-Sham system 326
Time-dependent state as density functional

317
Time-evolution operator 122, 320
Time-ordering of operators 88
Total energy minimization 240
Transition metal oxides 217, 230
Transition state 80
Transverse exchange energy 385

relativistic LDA, GGA
atoms 396

Transverse interaction 4, 375
2-Particle density 127

definition 66
helium 68

Kohn-Sham ground state 68
Kohn-Sham perturbation theory 305

orbital-dependent functional 304
Slater determinant 66

2-Particle density matrix functional theory
402

2-Particle operators
definition 425
matrix elements 431
second quantized form 429–431

U

Ultraviolet divergences 359

Uniform electron gas: see homogeneous
electron gas 129

Unit cell 91
Universality 16, 61

time-dependent density functional theory
325

V

Vacuum energy 453
Vacuum polarization 453

first order 460
renormalized 475

quantum electrodynamics 459
renormalized 464

Vacuum state
definition 421

Van der Waals forces 153, 228, 289
C6 coefficient

atoms 290
second order Görling-Levy functional

290
Variational derivative

chain rule 411
definition 405
definition via δ -function 409
Euler-Lagrange equations 411
examples 407
product rule 409

Variational equation
current spin density functional theory 52
density functional theory 21
relativistic density functional theory 366
spin-density functional theory 42, 44

Vertex
quantum electrodynamics 459

Vertex function
first order

quantum electrodynamics 460
irreducible

quantum electrodynamics 459
quantum electrodynamics 457, 458
renormalized 462, 464

Virial relation
exchange energy functional 223
Hartree energy functional 223

Virial theorem
conventional 221, 222, 226
density functional theory 222, 224, 226
Hellmann-Feynman theorem 224

Von Weizsäcker kinetic energy functional
207, 287, 442

Vorticity
current density functional theory 103
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current spin density functional theory 107

W

Ward-Takahashi identity 460
Wavevector decomposition 170

cut-off procedure 173
Weighted density approximation 201

Wigner crystal 135
Wigner-Seitz radius 133

atoms 134
solids 134

X

Xα exchange 141
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