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Preface

The concept of reflection positivity (RP) occurs as an important theme in various
areas of mathematics and physics:

¢ In the representation theory of Lie groups, it establishes a passage of a unitary
representation of a symmetric Lie group (such as the euclidean motion group) to
a unitary representation of the Cartan dual group (such as the Poincaré¢ group)
[FOS83, JOI00, JO198, NO14, JPTI15].

e In constructive Quantum Field Theorem (QFT), it arises as the condition of
Osterwalder—Schrader (OS) positivity for a euclidean field theory to correspond
to a relativistic one [GJ81, Ja08, Jal8, Os95a, Os95b, OS73, OS75].

e For stochastic processes, it is weaker than the Markov property and specifies
processes arising in lattice gauge theory. It plays a central role in the mathe-
matical study of phase transitions and symmetry breaking [FILS78, 1J16, JJ17,
Nel73].

e In analysis, it is a crucial condition that leads to inequalities such as the Hardy—
Littlewood—Sobolev inequality [FL10].

Only recently, it became apparent that there are many hidden and still not
sufficiently well-understood structures underlying the duality between unitary
representations of a symmetric Lie group and its dual. Establishing reflection
positivity in this context requires new analytic methods and new geometric insight
into constructions and realizations of representations in analytic contexts. New
developments concern analytic issues such as criteria for integrating Lie algebra
representations to Lie group representations, reflection positive functions, distri-
butions and kernels, new dilation techniques for representations and unexpected
connections between Kubo—Martin—Schwinger (KMS) states of C*-algebras and
reflection positive unitary representations.

This was our motivation to write this “light” introduction to the representation
theoretic aspects of reflection positivity to present this perspective on a level
suitable for doctoral students.
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Chapter 1 ®)
Introduction Check for

In the context of quantum physics reflection positivity is often related to Wick rota-
tion, which roughly means multiplying the time coordinate by i = +/—1. This can be
made precise and used in analytic constructions if this process is related to analytic
continuation of the time variable to a domain in the complex plane which provides
a means to go back and forth between real and imaginary time.

A duality of a similar flavor also exists in the context of Lie groups, where it arose
almost a century ago in the work of E. Cartan on the classification of symmetric
spaces. Here one considers a symmetric Lie group (G, 7),1.e.,aLie group G, endowed
with an involutive automorphism t. Then the Lie algebra g of G decomposes into
T-eigenspaces

hb={xeg:tx=x} and q={xeg: 7x = —x}.

From the bracket relations [h, h] € b, [h, q] < g, and [q, q] < b it then follows that
the Cartan dual

g =D +iq

also is a Lie subalgebra of the complexified Lie algebra gc = g é i g. We thus obtain
a duality relation between symmetric Lie groups (G, ) and (G¢, ), where G°
denotes a Lie group with Lie algebra G° and t¢ an involutive automorphism acting
by x +iy + x — iy on the Lie algebra g° = h 4+ iq. The classical examples from
quantum physics are the euclidean motion group G = E(d) = R¢ x O,4(R) and the
automorphism 7 of E(d) induces by time reflection. This establishes a duality with
the Poincaré group G¢ = P(d) = R"! x 0y 4_1(R).

In many cases both groups G and G¢ are contained in one complex Lie group G¢
and H = G N G° is a Lie subgroup with Lie algebra fj, contained in both. Therefore
any passage from G to G¢ should be related to analytic continuation to domains in
G¢ whose closure intersects both groups G and G°. On the Lie algebra level the
passage from g = h @ q to g° = b D iq very much resembles Wick rotation because
the elements of q are multiplied by i (cf. [HH17], where this context is discussed for
pseudo-Riemannian manifolds). Simple examples are
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e the circle group G = T € G¢ = C* with the dual group G° = R* and t(z) =
7.

e the additive group G = R C G¢ = C with 7(x) = —x and G° = iR.

e the group G = GL,(R) € G¢ = GL,(C) with 7(g) = ¢~ " and G° = U, (C).

e the group G = O,,(R) € G¢ = O, (C) with t(g) = rgr, where r is an orthogonal
reflection in a hyperplane and G° = Oy ,_; (R).

e thegroupG = 0y ,(R) € G¢ = 0,41 (C) with t(g) = 0g6, where 0 is an orthog-
onal reflection in a Minkowski hyperplane and G¢ = O, (R).

If U: G — U(&) is a unitary representation of G, then, for x € g, the infinitesi-
mal generator AU (x) of the unitary one-parameter ¢ — U (exp tx) is a skew-adjoint
operator, and multiplication by i leads to a selfadjoint operator. Therefore we cannot
expect unitary representations of G and G° to live on the same Hilbert space. What we
need instead is some extra structure on & that permits us to construct another Hilbert
space on which a unitary representation of G may be implemented. This is where
reflection positivity comes in as a framework establishing a bridge between unitary
representations of G and G°. This perspective isolates many of the key features of
reflection positivity and subsumes not only the representation theoretic aspects of
classical applications along the lines of Osterwalder and Schrader [OS73, OS75], but
also quite recent developments in Algebraic Quantum Field Theory (AQFT), where
Haag—Kastler nets of operator algebras are constructed on space times by meth-
ods relying very much on the unitary or anti-unitary representations of the groups
involved [B092, BIM16, NO17, Nel69]. Another recent branch of applications of
reflection positivity for the euclidean conformal group along these lines concerns
Hardy-Littlewood—Sobolev inequalities in analysis (see [FL10, FL11, NO14]).

The extra structure required on the Hilbert space & can be specified axiomatically
as follows. A reflection positive Hilbert space is a triple (&, &4, 0), consisting of a
Hilbert space & with a unitary involution 6 and a closed subspace & satisfying

(E7E>0 = (576%‘) >0 for E S éi_.

This structure immediately leads to a new Hilbert space & that we obtain from the
positive semidefinite form (-, -}y on &,. We writeg: & — &, & — Efor the natural
map. Bounded or unbounded operators S on & preserving the kernel of ¢ induce
an operator S on & via §§ = 55 The passage S — S is called the Osterwalder—
Schrader (OS) transform.

On the level of & (the euclidean side), we consider a unitary representation U of a
symmetric Lie group (G, t) on a reflection positive Hilbert space (&, &5, 0). There
are several ways to express the compatibility of the representation U with &, and 6.
One is the compatibility relation

9Ug9 = Uf(g) for geCG

between t and the unitary involution 6 and another is the invariance of & under
the operators Uy, where h belongs to the identity component H := G of the group
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G" of t-fixed points in G. These two already ensure that the OS transform yields a
unitary representation (U n)her ON &. We are aiming at a unitary representation of the
Cartan dual group G on & and this can only be achieved by additional requirements.

On the algebraic level, if we only consider the representation AU of the Lie algebra
g on the subspace & of smooth vectors for (U, &), it suffices to have a subspace
9 C & N & which is g-invariant. Then OS transformation immediately leads to a
representation of g¢ = ) 4 iq by skew-symmetric operators on the subspace 7 - &
by

x+iy+— (dU(x)Ig + idU(y)|9)”T

This simple passage already shows how the 6-twisting of the scalar product on &
turns the symmetric operators idU (y), y € ¢, on Z into skew-symmetric operators
on 9, but it completely ignores all issues related to essential selfadjointness and,
accordingly, integrability to group representations. We therefore need more global
ways to express the reflection positivity requirements.

One way to express such requirements refers to subsemigroups S € G which are
symmetric in the sense that they are invariant under the involution s +— s° := 7(s)~".
Then we call (U, &) reflection positive with respect to S if U;&y C & holds for
s € S. Then OS transformation yields a x-representation (ﬁ_v)se s of the involutive
semigroup (S, ), and if S has interior points one can expect this representation
to “extend analytically” to a unitary representation of a dual group G°. A typical
situation arises for (G, S, 7) = (R, R;, —idR) 1n euclidean field theory from the
one-parameter group of time translations. Then (U,),>0 is a one-parameter group of
hermitian contractions on é" hence of the form U, = e~*# fora positive selfadjoint
operator H, and U¢ := ¢'"" defines a unitary representation of the dual group G =
iR with positive spectrum (in QFT H corresponds to the Hamiltonian, the energy
observable, which should be positive).

There are, however, many situations where there are no natural symmetric sub-
semigroups S € G, or some which do not have interior points, such as the subsemi-
group S of the euclidean motion group mapping a closed half space into itself. In this
case the reflection positivity requirements on (U, &, &, ) have to be formulated
differently. Instead of a subsemigroup, we consider a domain Gy € G (mostly open
or with dense interior) and the reflection positivity condition is inspired by situations
in QFT, where Hilbert spaces are generated by field operators: Instead of fixing & a
priori, we consider a real linear space V and a linear map j: V — 5 whose range
generates & under Ug and 0 and call (U, &, j, V) reflection positive with respect to
G if the subspace &, :=[U (il Jj (V)] is 8-positive. The prototypical examples arise
for circle groups G = R/BZ with 1(g) = ¢!, where G = [0, 7] + BZ is a half
circle. In physics they occur in the context of quantum statistical mechanics, where
B plays the role of an inverse temperature [Frol1]. Both approaches, the one based
on semigroups S and on domains G lead to situations in which we can use suitable
integrability results (cf. Chap. 6) to obtain unitary representations of the 1-connected
Lie group G¢ with Lie algebra g = h + iq on &.



4 1 Introduction

We now turn to the contents of this book. We shall not turn to finer aspects
of unitary representations of higher-dimensional Lie groups before Chap. 6. In the
first half, Chaps.2-5, we deal with rather concrete contexts and how they relate to
reflection positivity. Various aspects concerning general Lie groups are postponed to
Chaps. 6-9.

Chapter2 develops the notion of a reflection positive Hilbert space (&, &, 0)
from various perspectives. For instance 0-positive subspaces &’ can be constructed
as graphs of contractions from the 1 to the —1-eigenspace of 8 (Sect.2.2). In physics
reflection positive Hilbert spaces often arise from distributions. Here & is a Hilbert
space arising by completing the space C2° (M) of smooth test functions on a manifold
with respect to a singular scalar product

(E.n) = f E()n(y)dD(x, y), (1.1)
MxM

where D is a positive definite distribution on M x M. Then 6 is supposed to come
from a diffeomorphism of M and &, from an open subset M, C M, which leads to
the reflection positivity condition

/M . EM)E()AD@B(x),y) =0 for &e C®(M,) (1.2)

(Section2.4). Typical concrete examples arise from reflections of complete Rieman-
nian manifolds and resolvents (A1 — A)~! of the Laplacian (Sect.2.5). Motivated by
these examples, we briefly describe an abstract operator theoretic context for reflec-
tion positivity that we feel should be developed further (Sect.2.6; [JRO7, Anl3,
AFG86, Di04]). In probabilistic contexts, one encounters situations satisfying the
Markov condition, i.e., there exists a subspace & < & mapped isometrically onto
& (Sect.2.3).

The connection between reflection positive Hilbert spaces and representation the-
ory is introduced in Chap. 4. After discussing some general properties of the OS trans-
form, we introduce symmetric Lie groups (G, 7), symmetric subsemigroups S C G
and various kinds of reflection positivity conditions for unitary representations. As
in the representation theory of operator algebras, where cyclic representations are
generated from states, it is an extremely fruitful approach to generate representations
of groups and semigroups by positive definite functions via the Gelfand—Naimark—
Segal (GNS) construction. Here reflection positivity requirements lead to the concept
of a reflection positive function whose values may also comprise bounded operators
or bilinear forms (Sect. 3.4).

After these generalities, we turn in Chap. 4 to the most elementary concrete sym-
metric Lie group (G, ) = (R, —idgr), where the RP condition is based on the sub-
semigroup R . Although this Lie group is quite trivial, reflection positivity on the
real line has many interesting facets and is therefore quite rich. As reflection positive
functions play a crucial role, we start Chap. 4 with functions on intervals (—a, a) £ R
which are reflection positive in the sense that both kernels
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(QD(X - y))—a/2<x,y<a/2 and ((P(x + y))0<x,y<a/2

are positive definite. For a = oo, this combines the positive definiteness of the group
(R, +) with the positive definiteness on the involutive semigroup (R, idg). Accord-
ingly, these two conditions ask for techniques related to Fourier- and Laplace trans-
forms.

Reflection positive representations of (R, R, —idg) are unitary one-parameter
groups (U;),cg on areflection positive Hilbert space (£, &, 0) satisfying U, &, € &,
fort > 0 and OU,0 = U_, for t € R. On & this leads to a semigroup (l7,),>o of
hermitian contractions and we show in particular that, under the OS transform, fixed
points of U on & correspond to fixed points of Uiné& (Proposition4.2.6).

For (R, R, —idr), we obtain a complete classification of reflection positive rep-
resentations in terms of integral formulas, resp., spectral theorems. From these results
one obtains an interesting converse of the OS transform in this context. Any hermi-
tian contraction semigroup (C,),;>o on a Hilbert space .7 has a so-called minimal
dilation represented by the reflection positive function v (¢) := Cj;; on R.

We conclude Chap.4 by showing that, for any reflection positive one-parameter
group for which & is cyclic and fixed points are trivial, the space & is outgoing
in the sense of Lax—Phillips scattering theory (Proposition4.4.2). This establishes a
remarkable connection between reflection positivity and scattering theory that leads
to anormal form of reflection positive one-parameter groups by translations on spaces
of the form & = L%*(R, J7) with &, = L*(R,, ). Applying the Fourier transform
to our concrete dilation model leads precisely to this normal form.

In Chap.5 we still work with the same symmetric group (R, —idgr) or rather
its quotient circle group R/287Z = T, but now reflection positivity is based on the
interval [0, B8], where B > O is interpreted as an inverse temperature in physical
models [NOISb, KL81, KL81b, Froll, NOI6]. In this context reflection positivity
is closely connected with the Kubo—Martin—Schwinger (KMS) condition for states
of C*-dynamical systems [Frol1, BRO2]. This connection is established by a purely
representation theoretic perspective on the KMS condition formulated as a property
of form-valued positive definite functions on R: Let V be a real vector space and
Bil(V) be the space of real bilinear maps V x V — C. For 8 > 0, we consider the
open strip

S =1{ze€C:0<Imz < B}.

We say that a positive definite function ¢ : R — Bil(V) (Definition A.1.5) satisfies
the B-KMS condition if y extends to a pointwise continuous function v on . which
is pointwise holomorphic on the interior . and satisfies

V@ip+1)=v@) for teR.

The classification of such functions in terms of an integral representation is based on
relating them to standard (real) subspaces of a complex Hilbert space which occur
naturally in the modular theory of operator algebras [Lo08]. These are closed real
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subspaces V C ¢ forwhich V N iV = {0} and V 4+ iV is dense. Any standard sub-
space determines a pair (A, J) of modular objects, where A is a positive selfadjoint
operator and J is an anti-linear involution (a conjugation) satistying JAJ = A~!,
The connection is established by

V =Fix(JA'?) = (£ € 2(AY?): A e = &),

This connects reflection positivity very naturally to the aforementioned recent devel-
opments in AQFT initiated by the work of Borchers [Bo92] and now exploited
systematically in the constructions of QFTs (see [BIM16, BLS11, LL14, LW11] for
typical applications). Here standard subspaces can be considered as “one-particle
space analogs” of the modular data (A, J) arising in Tomita—Takesaki theory in the
context of von Neumann algebras [Lo08, LL14].

After the discussion of the concrete examples, the reader should be prepared to
appreciate the Lie theoretic aspects of the theory, which start in Chap.6 with the
development of the integration techniques that are used to obtain a unitary repre-
sentation of the simply connected Lie group G° on & from a reflection positive
representation of (G, 7) on (&, &, 0). Our techniques are based on the fact that the
Hilbert spaces are mostly constructed from G-invariant positive definite kernels or
positive definite G-invariant distributions. We have already seen that any reflection
positive representation of (G, 7) immediately yields a unitary representation U of
H = G{ on &, so that it remains to find a unitary representation of the one-parameter
groups expg. (Rix) forx € q. By Stone’s Theorem, the main point is to show that, for
y € g, the symmetric operator au () defined on a dense subspace of &is essentially
selfadjoint. In our geometric setting, this can be derived from Frohlich’s Theorem
[Fro80] which provides a criterion for the essential selfadjointness of a symmetric
operator in terms of the existence of enough local solutions of the corresponding
linear ODE. The natural setting for the corresponding integrability results are pairs
(B, o) of ahomomorphism 8: g — 7 (M) to the Lie algebra ¥ (M) of smooth vec-
tor fields on a manifold M which is compatible with a smooth H -action o'. Then, for
any smooth kernel K on M satisfying a suitable invariance condition with respect to
(B, o), a unitary representation of G¢ on 7% exists (Theorem6.2.3). We also show
that a similar result holds if we replace the kernel K by a positive definite distri-
bution K € C~*°(M x M) compatible with (8, o) (Theorem6.3.6). From this we
easily derive the existence of a unitary representation of the simply connected group
G° on & for a reflection positive representation (U, &) of (G, 7). Our exposition
is based on new aspects developed in [MNO15] which complements the classical
approach from [FOS83].

The most effective tool to deal with reflection positive representations of symmet-
ric Lie groups (G, 7) are reflection positive distributions on G and their relation with
reflection positive distribution vectors of unitary representations. A key advantage of
this method, outlined in Chap. 7, is that is leads naturally to reflection positive repre-
sentations in Hilbert spaces of distributions on homogeneous spaces G/ H, where H
may be non-compact. To illustrate this technique, we apply it to spherical representa-
tions of the Lorentz group G = Oy ,(R). These representations consist of two series,
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the principal series and the complementary series. Both have natural realizations in
spaces of distributions on the n-sphere S" = G/ P on which the Lorentz group acts
by conformal maps; the principal series can even be realized in L2(S").

In Chap. 8 we take a closer look at the representations of the Poincaré group cor-
responding to scalar generalized free fields and their euclidean realizations by rep-
resentations of the euclidean motion group E (d). In particular, we discuss Lorentz
invariant measures on the forward light cone V,, and the corresponding unitary repre-
sentations of the Poincaré group. Applying the dilation construction to the time trans-
lation semigroup leads immediately to a Hilbert space & on which we have a unitary
representation of the euclidean motion group. We also characterize those representa-
tions which extend to the conformal group O, 4 (R) of Minkowski space R"“~!. Then
the euclidean realization is a unitary representation of the Lorentz group O; 44 (R),
acting as the conformal group on euclidean R¢.

A particularly fascinating aspect of reflection positivity is its intimate connection
with stochastic processes which is briefly scratched in Chap. 9. This is already inter-
esting in the context of one-parameter groups, where it surfaces for example in the
fact that the unitary one-parameter group (U;);cr leads by OS transform to the one-
parameter group U = e~"4 on L?(IR"), respectively to the heat semigroup '4, is the
translation action of R on a suitable Lebesgue—Wiener space. This connection was
observed by Nelson in [Nel64] and led to a new approach to Feynman—Kac type inte-
gral formulas. In Chap. 9 we describe some recent generalizations of classical results
of Klein and Landau [K178, KL75] concerning the interplay between reflection posi-
tivity and stochastic processes. Here the main step is the passage from the symmetric
semigroup (R, R, , —idr) to a more general context (G, S, t). This leads to the con-
cept of a (G, S, t)-measure space generalizing Klein’s Osterwalder—Schrader path
spaces for (R, R, —idg). A key result of this theory is the correspondence between
(G, S, v)-measure spaces and the corresponding positive semigroup structures on
the Hilbert space &.

Notation

We write R~ := [0, 0o) for the closed half line, R, = (0, o) for the open half line
and N = {1, 2, 3, ...} for the set of natural numbers.

As customary in physics, all scalar products on Hilbert spaces .7 will be linear
in the second argument. A subset S of .77 is called rotal if it spans a dense subspace.
We write[[S]] := span S.

We write U(.77) for the unitary group of a Hilbert space 7.

For a measure space (X, G, ), we accordingly write

(f.g) = fx fgx)du(x) for f, geL*(X, .

We write elements of R? as x = (xg, X1, ..., Xs_1) = (xo, X). The standard inner
product on R is denoted (x,y) =x-y =xy = Z‘;;(l) xjy;j, and the Lorentzian
inner product by

[x, y] = xoy0 — xy.
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In d-dimensional Minkowski space M? we write
oy — d. 2 2
Vi={p=(po,p) € R": pp >0, pj >p~}

for the open forward light cone.

We write C2°(M) for the space of complex-valued test functions and .’ (R?) is
the space of complex-valued Schwartz functions on R¢. For the Fourier transform
of a measure (v on the dual V* of a finite-dimensional real vector space V, we write

n(x) = / e du(a).
The Fourier transform of an L'-function f on R? is defined by

f(p) = f e~ P f(x) d (x)=# f e”P) f(x)dx (1.3)
o Jwe ¢ (2m)4/? Jra .

which corresponds to the Fourier transform of the measure f,, where di,(x) :=
(2m)~4/2 . dx is a suitably normalized Lebesgue measure. We likewise define con-
volution of L'-functions with respect to A4.

For tempered distributions D € .’ (R?), which we define as continuous anti-
linear functionals on the Schwartz space . (R?), we define the Fourier transform
by

D) := D@). where F(p)=d(—p) = fR N A, (1)

For Ds(p) = fRd ¢ (x) f(x)drs(x), we then have 5} = D7 and for a tempered
measure p the corresponding distribution D, (¢) = f @du satisfies D, = Dy if
we consider & as a function. For the point measure 8y we then have in particular the

relation
1 =4

which corresponds to the normalized Lebesgue measure A,.



Chapter 2 ®)
Reflection Positive Hilbert Spaces oo

In this chapter we discuss the basic framework of reflection positivity: reflection
positive Hilbert spaces. These are triples (&£, &, 6), consisting of a Hilbert space
&, a unitary involution 6 on & and a closed subspace & which is 6-positive in the
sense that (§, 0§) > 0 for§ € &.. This structure immediately leads to a new Hilbert
space & and a linear map ¢ : &, — & with dense range. When the so-called Markov
condition is satisfied, there even exists a closed subspace & C &, mapped isomet-
rically onto & (Sect.2.3). Reflection positive Hilbert spaces arise naturally in many
different contexts: as graphs of contractions (Sect. 2.2), from reflection positive dis-
tribution kernels on manifolds (Sect. 2.4) and in particular from dissecting reflections
of complete Riemannian manifolds and resolvents of the Laplacian (Sect.2.5). This
motivates the short discussion of an abstract operator theoretic context of reflection
positivity in Sect.2.6.

2.1 Reflection Positive Hilbert Spaces

We start with the definition of a reflection positive Hilbert space:

Definition 2.1.1 (Reflection positive Hilbert space) Let & be a real or complex
Hilbert space and 6 € U(&) be a unitary involution. A closed subspace & C &
is called 6-positive if (n, 6n) > 0 for n € &,. We then call the triple (&, &, 6) a
reflection positive Hilbert space.

If (&, &, 0) is a reflection positive Hilbert space, then
N ={ne &y (n,0n) =0 ={nedé: (V¢ &) (L 0n) =0}
is the subspace of & on which the new scalar product

© The Author(s) 2018 9
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(n,&)e == (n,08)
degenerates. We thus consider the quotient map
q: & — EJN, 7 (2.1)

and write & for the Hilbert space completion of &, /.4 with respect to the norm

171l 2 == 1771l == /{n, On).

2.2 Reflection Positive Subspaces as Graphs

To get a better picture of how reflection positive Hilbert spaces arise, we now describe
a construction of these structures in terms of contractions on a subspace of &°.

We start with a unitary involution 6 on the Hilbert space &. Then 6 is diagonaliz-
able with the two eigenspaces &4 ;= {n € &: On = £n}and & = &1 D &-1. Then
the twisted inner product (-, -)¢ is positive definite on &;; and negative definite on
(f_l .

(Er +E Ep+E Do = 5N — 161> for &x € . 22)

Denote by p. the projection onto &4. Let & C & be a 0-positive subspace and
F = p,(&}) be its projection onto &y;. Then & N & = {0} implies that there
exists a linear map C: .# — &_; such that

E =9C)={u+Cu:uec.F}

is the graph of C. Now (2.2) yields (u 4+ Cu, u + Cu)g = ||lu||> — ||Cu||*> > Oforu e
Z,sothat ||C|| < 1,i.e., Cisacontraction. If, conversely, # C & is asubspace and
C: # — &_is acontraction, then its graph 4 (C) C & @ &1 = & is O-positive.
Since ¢(C) is closed if and only if .% is closed, we obtain the following lemma
which provides a description of all #-positive subspaces in terms of contractions (cf.
[JN16, Lemma5.1]):

Lemma 2.2.1 A closed subspace & C & is 0-positive if and only if there exists a
closed subspace F C &1 and a contraction C: F — & such that & = 4 (C).

Remark 2.2.2 Let (&, &4, 0) be a reflection positive Hilbert space.

(a) Put& :=0(&,). Then & N &_ is the maximal f-invariant subspace of &, and
O-positivity of & implies that it coincides with & := {v € &, : v = v}. This
is the maximal subspace of &, on which ¢ is isometric.

(b) For & = ¥(C) as in Lemma2.2.1, we have & = &, N &1 = ker(C). In par-
ticular, &, = {0} if and only if C is injective.

(c) Writing & as & @ &) with &) := éOOL, the reflection positive Hilbert space is
a direct sum of the trivial reflection positive Hilbert space (&, &, id) and
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the reflection positive Hilbert space (&1, &1+, 61), where 0, :=0|g,, &1+ =
g] N Cg:_, and éﬂ’o = {O}

(d) If (&, &, 0) is a reflection positive Hilbert space, then (&, &_, 0) is reflection
positive as well. If & = ¢(C) as above, then & = 4 (—C).

2.3 The Markov Condition

For a reflection positive Hilbert space (&, &, 0), (2.2) shows that the subspace
o =1{5 €&, : 06 =§}

is maximal with respect to the property that g|s, : 6o — & is isometric. In particular,
6o = q(&) is a closed subspace of &.

An interesting special case arises if & = g(&). Then g restricts to a unitary
operator &y — &, so that ¢: & — & is a partial isometry with kernel
N = &4 © &. The following lemma characterizes this situation in terms of the
Markov condition that originally arose in the context of stochastic processes
(cf. Chap.9).

Definition 2.3.1 Let (&, &4, 6) be a reflection positive Hilbert space. If &; C &
is a closed subspace, &_ := 6(&’,), and Py, P+ are the orthogonal projections onto
&y and &4, then we say that (&, &, &4, 0) is a reflection positive Hilbert space of
Markov type if

P.PyP_ = P,P_. 2.3)

Lemma 2.3.2 The Markov condition (2.3) is equivalent to &5 = & and q(ép) = &
If it is satisfied, then

@ I':=qlg: & — &isa unitary isomorphism and g = I" o Pyl ¢, .
(b) If & + & is dense in &, then & is maximal 0-positive.

Proof If & = & and q(&) = &, then A = &, N &+ = ker g implies that .4 =
&4 © &. This leads to the orthogonal decomposition & + &- = 0(N) & & D N
and to & = &, N &_. Therefore P PyP_ = Py = P, P_.

Suppose, conversely, that the Markov condition holds. Foru € &y € &_, we have
PyP_u =u,but P, PhP_u = Pyu, so that & = &;. As & C ker(6 — 1), we have
Py0 = 0 Py = Py. This implies

P+9P+ =P+P_9 =P+P(]P_9= P09P+= P()P+ = PO.
For u € &, we thus obtain (i, Ou) = (u, PLOP u) = (u, Pou) = || Pou||*>. There-

fore / =kerq = & © & and ¢ (&) = &. The remaining assertions are now clear.
This implies the first assertion and (a).
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We now verify (b). From A4 = &, © &) we derive that & = &, & 6(.4"), so that
&+ E = & @ 0(A) is an orthogonal decomposition and our assumption implies
that & = &, @ 6(4"). It follows that any proper enlargement &, 2 &4 contains a
non-zero 0(§),& € 4. Then C& 4+ CH(&) C & is O-positive and f-invariant, hence
contained in &Y, which contradicts the orthogonality of .4 and 6 (.4"). O

Remark 2.3.3 (Relation to stochastic processes) Let (X;),cr be a full stochastic
process on the probability space (Q, X', i) (see Definition9.2.1) and ¥, € X' the
smallest o -subalgebra for which X; is measurable. Accordingly, we define X' as
the o-subalgebra generated by all X, for £¢ > 0. In & := L>(Q, ¥, 1) we thus
obtain closed subspaces &4 := L*(Q, X+, ) and & := L*(Q, Xy, ). If P+ and
Py are the corresponding projections (corresponding to conditional expectations in
this context), then the Markov condition (2.3) holds for all translates of the process
(X?)ser if and only if it is a Markov process (cf. [JT17, Sect. 7]).

2.4 Reflection Positive Kernels and Distributions

There are many ways to specify Hilbert spaces concretely. Often they arise as L>-
spaces of measures, but here we shall mostly deal with spaces on which the inner
product is specified differently, namely by a positive definite kernel. For detailed
definitions and basic properties of positive definite kernels in various contexts, we
refer to Appendix A.1.

Definition 2.4.1 Suppose that K: X x X — C is a positive definite kernel on the
set X andthatt: X — X isaninvolution leaving K invariant: K (tx, ty) = K (x, y)
forx,y € X.If X, C X is a subset with the property that the kernel

K': X, xX, —>C, K'(x,y):=K(x,1y) 2.4)

is also positive definite, then we say that K is reflection positive with respect to
(X ) X +> T)'

Lemma 2.4.2 Let K: X x X — C be a kernel which is reflection positive with
respectto (X, X4, 1) andlet & := H#x < CX denote the corresponding reproducing
kernel Hilbert space. Then the following assertions hold:

(a) 6f := f ot defines a unitary involution on &.

(b) & :=[K,: x € Xl is a O-positive subspace, so that (&, &y, 0) is reflection
positive. R

(c) Themap & — C*+, f > f o Tlx, induces aunitary isomorphism & — Hk-,
so that we may identify & with the reproducing kernel space - and write
a(f) = fotlx..

Proof (a) The invariance of K under t implies the existence of a unitary involution
0 on % with 8(K,) = K. Then (6f)(x) = (K,,0f) = (K:x, f) = f(tx)
shows that 0f = f o t.
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(b) Forx,y € X, we have (K,,0K,) = (K., K;,) = K(x,7y) = K*(x, y), and
this implies that the closed subspace &, C & generated by (K,),cx, is 0-
positive. R

(c) The Hilbert space & is generated by the elements ¢(K,), x € X, and we have

(q(Kyx), Q(K)»(? = (K,, 9Ky> = K"(x, y).

This implies that &= Hk- and that the function on X ;. corresponding to g(f) €
& is given by ¢ (f)(x) = (q(Kx),q(f)) gz = (K., 0f) = f(rx). O

All reflection positive spaces can be construction from reflection positive kernels:
If (&, &, 0) is a reflection positive Hilbert space, then the scalar product defines a
reflection positive kernel K (1, ¢) := (n, ¢) on X = &, and this kernel is reflection
positive with respect to (&, &4, 6).

Example 2.4.3 On X = R, we consider the involution 7 (x) = —x.

(a) We claim that, for every A > 0, the kernel K (x, y) = e M=yl s reflection pos-
itive with respect to (R, R, ).
The positive definiteness of K means that the function ¢y (x) := e~ *I*! (multi-
ples of euclidean Green’s functions [DG13]) is a positive definite function on the
group (R, +). In view of Bochner’s Theorem (Theorem A.2.1), this is equivalent
to ¢, being the Fourier transform of a positive measure. In fact,

) A d
0. (x) = e = [Rf”p dp;(p), where du,(p) = Py _fpz

(2.5)
is the Cauchy distribution. To verify reflection positivity, we observe that, for
x,y =0,

Kt(x y) = e—A|x+y\ — e—k(x-&—y) — MMy

This factorization implies positive definiteness by Remark A.1.2.
(b) Hereis arelated example corresponding to a periodic function. Fix 8 > 0,1 > 0,
and consider on X = R the B-periodic function given by

O(x)=e ™ 4D for 0<x<§

(multiples of thermal euclidean Green’s functions [DG13]). We claim that the
kernel K (x, y) := ¢, (x — y) is reflection positive for X := [0, 8/2].
A direct calculation shows that the Fourier series of ¢, is given by

_2BA(1 — e PP

— 2minx/B ith — )
@1.(x) che with ¢, PR+ Qan)

nez

(2.6)

As ¢, > 0 for every n € Z, the function ¢, is positive definite, i.e., K is positive
definite.
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Next we observe that, for 0 < x, y < /2, we have
K'(x,y) =g (x +y) = e Mty + e M) — g Ry + oM oM gy

Here both summands are positive definite kernels by Remark A.1.2.

Example 2.4.4 Reflection positive kernels show up naturally in the context of dis-
tributions if X is a manifold. We write C2°(X) for the space of complex-valued
compactly supported smooth functions on X and C~*°(X) for the space of distribu-
tions, the space of continuous anti-linear functionals on C°(X) — C with respect
to the natural LF topology on this space [Tr67].

The “distribution analog” of a positive definite kernel on X is a distribution D €
C~*°(X x X) which is positive definite in the sense the hermitian form

KM%W%ZD@®WP:/ @)Y (y)dD(x, y)

XxX
on C°(X) is positive semidefinite (this form is linear in the second argument because
D is anti-linear). Then the corresponding reproducing kernel space J¢p := %,

consists of functions on C.(X) which are continuous and anti-linear, hence is a
linear subspace of the space C~°°(X) of distributions on X. The natural map

ip: C(X) — p S C™(X), W) =Kpy, tw{)(@)=DeY),

then has dense range and

(tp(@), tp(Y)) = D(p ® ¥). 2.7)

Definition 2.4.5 Let X be a smooth manifold, D a positive definite distribution on
X x X, let t: X — X be an involutive diffeomorphism of X and X; € X be an
open subset. We say that D is reflection positive with respect to (X, X, t) if the
distribution DT on X, x X defined by

D" (¢) := D(p o (idx x1)) = /x X@(x, t(»)dD(x,y) for ¢ e (X4 x Xy)

X
is positive definite.

Specializing Lemma2.4.2 to the context of reflection positive distributions, where
the set X is replaced by the space C2°(X), we obtain:

Lemma 2.4.6 If the distribution D on X x X is reflection positive with respect to
(X, X4, 1), then & := Fp, 0(E)(¢) := E(pot) and &, = 1p(CX(Xy)) defines
a reflection positive Hilbert space of distributions. Further, & = p, € C~*°(X,),
where the map q is realized by

q: 6~ E=Hp..  q(E)g) = (p(¢).0E) = E(p o 1).
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Example 2.4.7 Form > 0, we consider the distribution D,, := (m?> — A)~'8, on R?
which is the fundamental solution of the elliptic PDE (m* — A)D,, = 8. As 8y = T
is the Fourier transform of the normalized Lebesgue measure di,(x) = (2;[1,1% and
aix,- D= (—ix; D) for any tempered distribution D on R, it follows that D,, = Dy
for the measure

1 d
drg(p) = —— P (2.8)

dvy,(p) = (27T)d/2 m2 + p2

m2 + p2
For d = 1, we obtain a multiple of the function from Example 2.4.3:

. 1 Nz
Vm(x) = _e_mm = e—mlx\'

V2 m V2m

It is easy to see that this distribution is reflection positive with respect to
(R?,RY, 7), where

Rf‘i ={x=(x0,X): xo >0} and t(x9,X) = (—xp, X)

is the reflection in the hyperplane xo = 0. First we observe that, for every test function
¥ on R?, we have

Dy (Y ® 0Y) = dp for p=(po.p) e R xR

f 70, p>”’( ”Ol’f’)

Q@ )d/2

For each p € R?~!, the function hp(po) = 1://\ (—po, p) is a Schwartz function with
supp(hp) € (0, 00), and

= hp(po)hp(—po)
-0y dv,, = e P g do.
[Tevan= [ ([ R dm)ar

hp([’(])hp(_pt))

The reflection positivity of D,, now follows from fR o
0

dpy > 0 forp €

R4, which is a consequence of Example 2.4.3a.

Form = 0, the measure dvy(p) = p~2dAr,(p) is locally finite if and only if d > 3.
In this case the above arguments even show that Dy := Dy is a reflection positive
distribution on (R, R‘i, 7). For d = 2 we still obtain a reflection positive functional
(defined in the obvious fashion) on the subspace of all test functions ¢ € C2° (R?) with
Jg> ¢(x)dx = 0,andford = 1 wehave toimpose in addition that [, x¢(x) dx = 0.

In the following section we shall see a common geometric source of the preceding
example and Example2.4.3.
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2.5 Reflection Positivity in Riemannian Geometry

In this section we describe a very natural class of reflection positive Hilbert spaces
arising from isometric reflections of Riemannian manifolds.

Let M be a connected complete Riemannian manifold. An involution t €
Isom(M) is called a reflection if there exists a fixed point p € M* such that 7,,(7) is
a hyperplane reflection in the tangent space 7,(M). Then ¥ := M is a submanifold
of M and the connected component containing p is of codimension one. We say that
areflection is dissecting if M \ X has exactly two connected components which are
exchanged by 7, i.e.,

M =M, UXUM_ with t(My)=M-_.

We consider the Laplace—Beltrami operator Ay on L>(M) as a negative self-
adjoint operator on L?(M) [Str83, Theorem2.4]. For each m > 0, we thus obtain a
bounded positive operator C := (m* — Ay)~'on L2(M).

Theorem 2.5.1 Ift isadissecting reflection on the connected complete Riemannian
manifold M and m > 0. Then the involution 6 on L*(M) defined by 6f := f ot
satisfies

(9. COp) =0 for ¢ e CX(M,).

Proof (cf. [An13, Theorem 8.3]) The starting point is the divergence formula on a
Riemannian manifold M with boundary

/dideV:/ (X,n)dS, (2.9)
M

oM

where X is a compactly supported vector field and n is the outward normal vector
field of M. In index notation, this reads

/VL,X“dV=/ n‘X,ds. (2.10)
M oM

For ¢ € C°(M) and u = Co the function u is analytic in M \ supp(¢) because
it satisfies the elliptic equation (m*> — A)u = 0 on this open subset. We now have

(Co,09) 2 =f che(pdv:/ wC 'ouav
M M

=f EC_IHu—Q(u)C_lﬁdV ((p=C_1u vanishes on M_)

= f w(m? — 2)0) — Ou)(m* — Audv = / 0(u) Al — uAO () dV.
M M

ISee [AFO1, Sect.3.8, Satz 26] and also [GHL87, Proposition4.9], which has different sign con-
ventions.
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For ¥ = 0M_, we also obtain

/H(u)Vnﬁ—ﬁVHQ(u)dSzf(n,@(u)Vﬂ—ﬁV@(u))dS
z b))

:/ div(6 () Vi — Vo)) dV

= / (VO(u), Vi) + 0(u) Al — (Vii, VOu)) — uA0 ) dV

= / Ou)Au —u - A6(u)dV.

This finally leads to

(Co, 0¢) 2 =/ Q(u)Vnﬁ—ﬁVne(u)dSz/ 0(u) Vit + 40 (Vau) dS
X P

=/ anﬁ+ﬁVnudS=2Re/ uVauds.
z z

Now

/EV,,MdS:/(n,ﬁVu)dSzf div(ﬁVu)dV:/ (Vit, Vu) + uAudV
X X M_

=/ (Vit, Vu) +am*udV = [ Vul|7, ) +m lullf

shows that (Cy, O¢);2 > 0. O

Remark 2.5.2 For M = R? and 7 (x¢, X) = (—Xo, X), the reflection positivity of the
distribution D,, in Example?2.4.7 is a very special case of Theorem?2.5.1.

Let & := ¢ denote the completion of L?(M) with respect to the scalar product
(f, h)yc := (Cf, h) 2. Then 6 induces on & a unitary involution ¢, and Theo-
rem2.5.1 implies that the subspace &} generated by C2°(M. ) is O¢-positive. We
thus obtain a reflection positive Hilbert space (&, &4, 6¢).

Another interpretation of Theorem2.5.1 is that the distribution D on
M x M defined by D(¢ ® V) := (¢, CJ)Lz(M) is reflection positive with respect
to (M, M., 0). From this perspective, we have & = 7} as in Example2.4.4 and
& can be identified with the Hilbert space .75 € C~°° (M) of distributions on M.

2.6 Selfadjoint Extensions and Reflection Positivity

In this section we briefly indicate an operator theoretic approach to reflection positiv-
ity which makes it particularly clear how the space & depends on the choice of certain
selfadjoint extensions of symmetric operators, resp., suitable boundary conditions.
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We consider a Hilbert space .77 with a unitary involution 6 and a closed subspace
. such that 772 = 0() = Jff. Then we may identify .7 with %, @ S, on
which 6 acts by O (v, v_) = (v—, vy).

We consider a (densely defined) non-negative symmetric operator A on 7, C 72,
and a selfadjoint extension L of A on 7 which commutes with 6 and which is
bounded from below.? For —A < inf Spec(L) we thus obtain a positive operator
A1 + L with a bounded inverse

C:=01+L)""

Accordingly, we obtain on .7# a new scalar product (v, w)¢ := (v, Cw) and a cor-
responding completion & := #°C. We identify .# with a linear subspace of & and
write & for the closure of 77, in & and 6¢ for the unitary involution on & obtained
by extending 6.

Definition 2.6.1 We say that L is reflection positive if (&, &, 0¢) is a reflection
positive Hilbert space, i.e., if

(£,0CE) >0 for £e&,. (2.11)

The following proposition shows that non-trivial spaces & can only be derived
from operators L which are not simply the closure of A @ 6 A6 on Z, & 0(Z;).

Proposition 2.6.2 Ifthe symmetric operator A is essentially selfadjoint on .., then
L is reflection positive and & = {0}.

Proof As A1 + L is strictly positive, there exists an ¢ > 0 with
(L+AD5,5) = ells)*> for &€ (L)

This implies in particular that ((A + A&, &) > ¢||&]|> for £ € Z,. Since A is
essentially selfadjoint and non-negative, it follows that the selfadjoint operator
A1+ A on &, satisfies A1 + A > ¢. In particular, it is invertible on .7#,. Therefore
Z(M + A) = (A1 + A)Z, is dense in ;. We conclude that the continuous oper-
ator C = (A1 + L)™' maps the dense subspace Z(A1 + A) of J#, into J#,, so that
Co. C .. Now 0CO = C further implies that C77 Q;\%{, sothat (0&,&)c =0
for & € J7,. This shows that L is reflection positive with & = {0}. O

Corollary 2.6.3 If J7 is finite dimensional, then &= {0}.

If L is reflection positive, then the continuous linear map g.» := gl : 5 — &
has dense range, so that its adjoint g%, : & — J#, is injective. We may therefore
consider %‘? as a linear subspace of J#,. The following observation shows that the
image of & in 7, consists of solutions of the eigenvalue equation

2See [AS80, AG82] for a systematic discussion of the set of positive extensions of positive sym-
metric operators.
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A =—0E, § € D(AY) C .

Proposition 2.6.4 Suppose that L is reflection positive. Then q maps the
eigenspace ker(\1 + A*) onto a dense subspace of &, the image of q*, is contained
inker(A1 + A*), and

ker(gr) = O + LY(Z(L) N A) N A 2.12)
Proof For & € 7, the relation g (§) = 0 is equivalent to
0=(n,COE) = (A1 + L) ', 0(5) forall e ;. (2.13)
Ifé¢ = (A1 + A)¢ for¢ € 2, then also & = (A1 + L)¢, so that
CO(E)=0CE =0¢ € A
implies that Z(A1 + A) = (A1 + A) 2, C ker(q.»). We now obtain
im(q%,) C ker(qr)" € 201+ At = ker(A1 + A¥).

This in turn shows that the restriction of g to Z(A1 + A)* = ker(A1 + A*) has
dense range. Finally, we note that (2.13) is equivalent to CO& = 0Cé& € jﬁl =
¢, which in turn is equivalent to C&€ € 77, i.e.,t0 & € (A1 4+ L), . This proves
(2.12). O

For general results on the existence of reflection positive extensions of semi-
bounded symmetric operators, we refer to [Nel8].

Example 2.6.5 The preceding discussion is an operator theoretic abstraction of the
geometric example in Sect.2.5. To match the abstract framework, we put J7 :=
L*(M), 5. := L*(M.) and consider the positive selfadjoint operator L := —A as
af-invariant extension of the restriction A := —A|cx (). In this case the eigenvalue
equation

A*f =—Af for [ e DA*) C

is equivalent to (A1 — A) f LC>®(M.), which means that f € 4, = L*(M.) sat-
isfies the PDE
Af =Arf on My (2.14)

in the distribution sense. Ellipticity of A implies that f* can be represented on M
by an analytic function ([Ru73, Theorem 8.12]). We thus obtain a realization of & in
the space of L2-solutions of (2.14) on the open subset M.

Example 2.6.6 For the simple example M = R with 7(x) = —x and M, = (0, 00)
with Af = — f”, we consider A = m? for some m > 0. Then the solutions of (2.14)
on R are for A = m? of the form f(x) = ae” + be™"*, so that the L?-condition
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leads to f(x) = be™™*. This already shows that dim & < 1 and that g must be
a multiple of the linear functional 4 +— fooo h(x)e ™ dx = £ (h)(m) (cf. Exam-
ple2.4.3).

Notes

The Markov condition (2.3) in Sect.2.3 is an abstraction of the Markov condition
for Osterwalder—Schrader positive processes that one finds in [K177, K178, NO15 aj.
For a detailed analysis of its operator theoretic aspects we refer to [JT17], where
one also finds a discussion of reflection positive Hilbert spaces in terms of graphs of
contractions.

Example2.4.7 corresponds to OS-positivity for free fields in d-space ([GJ81,
JaO08]).

Theorem2.5.1 and several variants can be found in [An13] and the work of Jaffe
and Ritter [JRO7]; see also [AFG86, Theorem 2] and [Di04, Theorem 2] for related
results.



Chapter 3 ®)
Reflection Positive Representations oo

In this chapter we turn to operators on reflection positive (real or complex) Hilbert
spaces and introduce the Osterwalder—Schrader transform to pass from operators
on &, to operators on & (Sect.3.1). The objects represented in reflection positive
Hilbert spaces (&, &, 0) are symmetric Lie groups (G, 1), i.e., a Lie group G,
endowed with an involutive automorphism t. A typical example in physics arises
from the euclidean motion group and time reversal. There are several ways to specify
compatibility of a unitary representation (U, &) of (G, t) with & and 6 and thus
to define reflection positive representations (Sect.3.3). One is to specify a subset
G, C G and assume that &, is generated by applying Gjrl to a suitable subspace
of &,. The other simpler one applies if S := G;l is a subsemigroup of G invariant
under the involution s — s% = t(s)~!. Then we simply require &, to be S-invariant.
In both cases we can use the integrability results in Chap.7 to obtain unitary repre-
sentations of the 1-connected Lie group G with Lie algebra g = h +iq on &. As
reflection positive unitary representations are mostly constructed by applying a suit-
able Gelfand—Naimark—Segal (GNS) construction to reflection positive functions,
we discuss this correspondence in some detail in Sect. 3.4. In particular, we discuss
the Markov condition in this context (Proposition 3.4.9).

3.1 The OS Transform of Linear Operators

We have already seen how to pass from a reflection positive Hilbert space (&, &, 0)
to the new Hilbert space &. We now follow this passage for linear operators on &, .

Definition 3.1.1 (OS transform) Suppose that S: & D Z(S) — & is a linear
operator (not necessarily bounded) with S(Z(S) N .4") € A". Then S induces a
linear operator

S: 2(8) = §(\S) —[ive 25— &, Su:=38.

© The Author(s) 2018 21
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The passage from S to Sis called the Osterwalder—Schrader transform (or OS trans-
form for short).

Lemma 3.1.2 Let (&, &4, 0) be a real of complex reflection positive Hilbert space.
Suppose that 9 C &, is a linear subspace such that 9= {v:v e D}isdensein &,
and that S, T: 9 — &, are linear operators. Then the following assertions hold:

@ If(Sn,¢)e = (n,TC)g forn, ¢ € P, then S(N) C N, s0 that $,T: 9 — &
are well-defined and

(S7.0) = @, 7¢) for 7,C€D.

(b) Let S € U(&) be unitary with S&, = & and 056 = S’;\For Dy =& and S =
S l¢,, the operator S extends to a unitary operator on &.

(©) If (Sn, &) = (n, SCYg forall n, ¢ € D, then §1s a symmetric operator. If, in
addition, S is bounded and 9 = &, then so is S, and ||S|| < IS

(d) If U e U(&) satisfies U&, = & and OUO = U™, then U2 idgz. Further,
& is a direct sum of reflection positive Hilbert subspaces (&, / Né&y,0)7)
and (4,9 N &L, 0ly), invariant under U and U~", such that G = {0} and
(Ulz)> =1

Proof (a) For n, ¢ € &, we obtain from (Sn, {)g = (n, T¢)g that n € 4 implies
that EE =0, i.e., Sn € 4. Therefore §ﬁ = §1\7 is well-defined and the remainder
of (a) follows.

(b) In this case (a) holds with 7 = §~!, so that S and T are well-defined and
mutually inverse on 2.In particular, we have S% = . From

(Sn, S¢)o = (Sn,0S¢) = (Sn, S6¢) = (0, ¢)g for &,ne€ &y,

it further follows that S:9 > Jis unitary. Therefore it extends uniquely to a unitary
operator on &.

(c) From (a) it follows that S is well-defined and symmetric. Now we assume that
S is bounded and defined on all of &. Then

IS“91% = @, S*7) < [ANISHF for ne &,
and therefore

-~ on on= 1 2nl 4 on— -2 2nl 271—2 A2”A om_ 1
IS < IS 131 < IS9P 1+ < < IST RN

We also have ||S’”?;\||2 ©8™n, S™n) < ISI7"Inl|*>, which leads to

ISTN < USI Il "
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We conclude that
i~ . 27~ 1=2"" —~
1S71l < [IS]] ~n1ggo(llnll 171 ) = ISl

Therefore S is bounded with ||§|| < IS

(d) From (c) it follows that U is a well-defined symmetric contraction. The same
argument applies to V := U~! and leads to another symmetrlc contraction V. Now
ovvy —ﬁv = v v for Tevery v € &y implies that Uv = id 7. We likewise get VU =
idgz, so that U~! = V. This shows that U~" also is a symmetric contraction. We
conclude that (U ) € {—1, 1}, which further leads to U U*=id 2

Next we observe that &, is invariantunder U and U !, so that £° := &, + 6’((51)L
is also invariant under U*' and 6. Since the closed subspace A C &, is invari-
ant under U and V = U™, the subspace &' := A4 @ 0(AH) C (&) is invariant
under U, U~" and 6, and this property is inherited by &2 := (£ & &")*. With
& = &N &, we now obtain a direct sum decomposition of the reflection posi-
tive Hilbert space (&, &4, 6) into the orthogonal sum of the three reflection positive
spaces (&7, &1, 01g1),j =0,1,2.Weput¥ = &° & &'and F = &2 Asé”0 {0}
and é”l A, we have G = {0} and, accordingly, F =& Funher N NFL=1{0}
1mp11es that g| #, is injective. Hence g o Ulgs, = Uo q implies that Uy := Ul #,
also satisfies U_% =1. Likewise Ulopz, = 0U,0 is an involution. By construction,
F, 4+ 60(F,) is dense in .Z, and this leads to (U|#)> = 1. O

Remark 3.1.3 (a) Typical operators to which part (b) of the preceding lemma applies
are unitary operators S € U(&) with & = & and 656 = S.

(b) Suppose that & is finite-dimensional and that U € U(&) satisfies U&, C
&, and AUA = U~'. Then the finite dimension implies that U&, = &, so that
Lemma 3.1.2(d) shows that U? = 1.

For symmetries of the whole structure encoded in (&', &, 0), the corresponding
actions on &, resp., &y lead to unitary operators on &:

Proposition 3.1.4 Let & be a real or complex Hilbert space, 0 be a unitary involution
on &, and & C & be a O-positive subspace. Suppose that (U, &) is a strongly
continuous unitary representation of a topological group G on & such that

U, €& and U0 =60U, for geG.
Then the OS transform defines a continuous unitary representation (17 , & ) of G.

As we shall see below, far more interesting situations arise from unitary represen-
tations not commuting with 6 and not leaving &, invariant. The structure required
in this context is introduced in the following section.
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3.2 Symmetric Lie Groups and Semigroups

Definition 3.2.1 (Symmetric Lie groups) Let G be a Lie group with Lie algebra g
and let T : G — G be an involutive automorphism. We then call (G, t) a symmetric
Lie group. Likewise, a symmetric Lie algebra (g, T) is a Lie algebra g, endowed with
an involutive automorphism of g.

We shall see below that it is often convenient to encode t in the larger group

G, =G x {idg, 7}. 3.1

Then t € G, and conjugation with 7 on the normal subgroup G satisfies 1gt = 7(g)
for g € G.

We put H := (G7)p, where  stands for the connected component containing the
identity element e.

The involution t induces an involution dt : g — g. We also write

h:={xeg:dr(x)=x} and q:={x eg:dr(x)=—x}.
Then g = b @ q and b is the Lie algebra of H. Furthermore,

[b,bl+[q,91 €H and [h,q] Cgq.

In particular g¢ := b @ iq is a Lie subalgebra of the complexification gc = g + ig,
called the Cartan dual of g. We denote by G¢ a simply connected Lie group with
Lie algebra g°. We observe that

g i=1(g)"" satisfies (g =g and (gh)’ = h'g, (3.2)
so that # defines on G the structure of an involutive (semi-) group.

Example 3.2.2 Let G = E(n) = R" x O,(R) be the euclidean motion group and
g = e¢(n) beits Lie algebra. Its elements (b, A) acton R" by (b, A).v = Av + b. The
product in G is given by (x, A)(y, B) = (x + Ay, AB).

Let ry := diag(—1, 1, ..., 1) and define an involution on G by

T(x, A) = (rox, roArg) .

ab a —b ab
) (c D) ro = (—c D) for (c D) e M,(R),
g~ (iR x R"™!) x50y, 1(R) = R~ x50y, 1(R) =: p(n) is the Lie algebra
of the Poincaré group P (n). We then obtain the duality relation

e(n) =p(n),
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which is of fundamental importance in physics (cf. Chap. 8).

Example 3.2.3 (a) The affine group Aff(V) = V x GL(V) of a vector space V car-
ries a natural structure of a symmetric Lie group. We write its elements as pairs (b, A),
corresponding to the map v — Av + b. Then (b, A) := (—b, A) is an involutive
automorphism of Aut(V).

For G = Aff(V), we then have G = GL(V), g =V x gl(V), h = gl(V) and
q = V. Since [q, q] = {0}, we have g = g.

(b) We obtain a particularly important example for V = R, the “ax + b-group”.
Here

S:=Rso,+) x RY, ) ={b,a): (b,a)Ry TRy} ={(b,a): b>0,a >0}
is a closed g-invariant subsemigroup of Aff(R).

Example 3.2.4 Ifr € O, (R) is any involution of determinant —1, then t(g) := rgr
defines an involutive automorphism of SO, (R) such that O, (R) = SO,,(R), in the
sense of (3.1).

Definition 3.2.5 A symmetric semigroup is a triple (G, S, t), where (G, 1) is a
symmetric Lie group and S C G is a subsemigroup satisfying

(S1) S is invariant under s — s*, so that (S, ) is an involutive semigroup.
(82) HS=S.
(S3) 1e€5S.

If (S1) holds for a subsemigroup S € G we simply call it a symmetric subsemi-
group of (G, ). We shall mostly use only (S1). Note that (S1/2) imply that also
SH =(HS)!=5.

Examples 3.2.6 (a) (R,Ry, —idr) and (Z, Ny, —idz) are the most elementary
examples of symmetric semigroups.

(b) If R14~! = R? is d-dimensional Minkowski space and G = (R¢, +) its trans-
lation group, then time reversal 7 (xg, X) = (—xp, X) is an involutive automorphism
and the open light cone V, € R'¥~! is a subsemigroup invariant under the map
x = xt=—1t(x) = (x9, =X).

A closely related example is the euclidean space G = (R?, +) with the same
involution and the open half space § = Ri = {(x0, x): xo > 0}.

(c) Semigroups with polar decomposition: Let (G, t) be a symmetric Lie group
and H be an open subgroup of G* = {g € G: t(g) = g}. We denote the derived
involution g — g by the same letter and define h = {x € g: 7(x) =x} =g¢* and
g={xeg: t(x) =—x} =g ". Then g = h @ q. We say that the open subsemi-
group S € G has a polar decomposition if there exists an H-invariant open convex
cone C C qsuch that S = HexpC and the map H x C — S, (h, X) — hexp X
is a diffeomorphism (cf. [La94, Nel64, HN93]). Typical examples are the com-
plex Olshanski semigroups in complex simple Lie groups such as SU, ,(C)c =
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SL, 14 (C). Complex Olshanski semigroups exist if and only if the non-compact Rie-
mannian symmetric space associated to G is a bounded symmetric domain. This is
equivalent to the existence of a G-invariant convex cone C C ig such that G exp C
is a subsemigroup of G¢, if G¢ 2 G is an injective complexification of G. More
generally, we have the causal symmetric spaces of non-compact type like de Sit-
ter space dS" = SO; ,(R)'/ SO, ,_1 (R)" ([HO97]; see also Sect.7.3.3. In this case
q ~ R1"~! is the n-dimensional Minkowski space and C corresponds to the open
light-cone in q.

(d) The simply connected covering group G := SL,(R) of SL,(R) carries an
involution 7 acting on g = sl (R) by

(22)=(22)
7 —x -z —Xx
and there exists a closed subsemigroup S € G whose boundary is

05 = H(S) =SNS5 =exp(t) with b= (’8 _yx> :x,y eR}).

This semigroup satisfies S* = S, and the subgroup H (S) is t-invariant, but strictly
larger than Gg.

3.3 Reflection Positive Representations

Suppose that (G, t) is a symmetric Lie group. For a unitary representation (U, &)
of G on the reflection positive Hilbert space (&, &, 8), the condition U6 = Uy (y)
for g € Gisequivalentto U, := 6 defining a unitary representation U : G, — U(&)
(cf. (3.1)). Accordingly, we shall always work with representations of the enlarged
group G- in the following and assume that 0 = Uj,.

Next we address the additional requirements that make a unitary representation
(U, 72) of G, on areflection positive Hilbert space compatible with the subspace & .
An obvious natural assumption is that the operators (U, ) ey act by automorphisms of
the full structure, i.e., Uy &y = &, forh € H.Since Uy commutes with 6, it preserves
both eigenspaces &4 = ker(@ F 1). If & = ¥4(C) is the graph of a contraction
C: & 2 .F — &1 asinSect.2.2, then the invariance of & under Uy is equivalent
to C being an intertwining operator for the representations of H on &, and &_.

Eventually, one would like to impose conditions that can be used to derive a
unitary representation of the simply connected Lie group G* with Lie algebra g on
the space &. The group G always contains a subgroup with the Lie algebra f, so
that the representation of this subgroup is provided directly by Proposition 3.1.4, but
for the operators generated by the subspace iq C g¢ it is less clear how they should
be obtained (cf. Chap. 7).
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One way to express such requirements uses to symmetric subsemigroups of G,
but in many relevant examples there are no such subsemigroups with interior points
and one has to consider more general domains G, € G.

Definition 3.3.1 Let (G, ) be a symmetric Lie group and (U, &) be a unitary rep-
resentation of G, on the Hilbert space &. We put 8 := Uj,.

(a) Let G4 € G be a subset. We consider a real linear space V and a linear
map j: V — S whose range is cyclic for the unitary representation U of G, i.e.,
[Ug,j(V)] = 4. Then we say that (U, &, j, V) is reflection positive with respect
to the subset G+ C G if the subspace & := [[Uc_lj(V)]] is 6-positive.

(b) If S C G is a f-invariant subsemigroup and (&, &4, 0) is a reflection positive
Hilbert space, then (U, &) is said to be reflection positive with respect to S if U; &y €
&, forevery s € S. Then the conditions under (a) are satisfied for V = &, j = idy,
and G, 1= S~ = 1(9).

Lemma 3.3.2 Let (&, &y, 0) be a reflection positive Hilbert, & = 0&, and put
Ut := QU0 for U € U(&). Then

is a subsemigroup of U(&), and S(&%., 0) := S(&4) N S(&)* is t-invariant. The OS
transform defines a -representation (I', &) of the involutive semigroup (S(&., 0), 1)
by contractions on & which is continuous with respect to the strong operator topolo-
gieson S(&4,0) and B(&).

Proof Clearly, S := S(&4, 0) is t-invariant and hence an involutive semigroup. For
&, n € & we have

(UE, n)e = (UE, 0m) = (£,U'0n) = (£,0U"n) = (£, U'n)e,  (3.3)

and this implies
(U, Ug)g = (£, UUE),. (34

Lemma 3.1.2 shows that any U € S induces a linear operator U on the dense
subspace q(&y) < & Since U*U is also contained in S, we obtain from Lemma 3.1.2
that ||UﬁU|| < |U*U| = 1. With (3.4) we thus get ||U|| < 1 so that U extends to a
contraction, also denoted U=r (U), on &. The relation U V=UV for U Ves
follows on the dense subspace ¢ (&£’;) immediately from the definition, and U* = Ut
is a consequence of (3.3).

The continuity of I" with respect to the weak operator topology on B(é‘) ) fol-
lows from the fact that, for & € &, the function rr E(U) =, Ué) (On, UE)
is continuous on §, endowed with the strong operator topology (which equals the
weak operator topology). Now [Nel64, Cor. IV.1.18] implies that I" is strongly
continuous. O
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The preceding lemma implies that, for symmetric subsemigroups, reflection pos-
itive representations lead by the OS transform to x-representations of § by contrac-
tions on &

Proposition 3.3.3 (OS transform of a representation) If (U, &) is a unitary repre-
sentation of G, on the reflection positive Hilbert space (&, &, 0) which is reflection
positive with respect to the symmetric subsemigroup S < G, then the OS transform
defines a strongly continuous *-representation (fj , &) of the involutive semigroup
(S, #) by contractions.

Proof The invariance of S under  and the relation Ug: = U, -1y = 0U;'0 = Ul
imply that Us € S(&,, 0). The remaining assertions now follow immediately from
Lemma 3.3.2.

Definition 3.3.4 In the context of Proposition 3.3.3, we call (U, &,8,,0) a
euclidean realization of the contractive *x-representation (U, &) of S.

In Chap. 6 we shall encounter methods to derive by analytic continuation from
a *-representation U of S (if S has interior points) a unitary representation of the
simply connected c-dual group G¢ (cf. Example 6.4.2). In this context, we also speak
of euclidean realizations of unitary representations of G°.

Example 3.3.5 For (G, S, 1) = (R, R>¢, —idg), the s1tuat10n is particularly sim-
ple. Then U: R, — U(&) is a unitary representation and U: Rso — B(&) is a
continuous one-parameter semigroup of hermitian contractions, hence of the form
ﬁ = ¢~ for some selfadjoint positive operator H = H* > 0. Then Uy := e”H
defines a unitary representation U° of the c-dual group G° = R on & related to U

by analytic continuation. We shall analyze such examples more closely in Chap. 4.

There is also the following rather weak notion of a reflection positive representa-
tion:

Definition 3.3.6 Let (G, H) be asymmetric Lie group and (&, &4, 0) be areflection
positive Hilbert space. A unitary representation (U, &) of G, is called infinitesimally
reflection positive if

(a) U,&, = &, forevery h € H, and
(b) there exists a subspace Z C &> N &, such that 2 is dense in & and AU (W2 C
2.

Remark 3.3.7 Condition (a) in Definition 3.3.6 implies the existence of a unitary
representation Uof Hon & given by U, = U, (Proposition 3.1. 4) Condition (b)
ensures that each operator AU (x) X € ¢, hasan OS transform auv (x) (x): 7 — .@ and
one easily verifies the relation dU(Ad(h)x) = UhdU(x)Uhfu forh e Hand x € q.

Example 3.3.8 Recall the setting of Theorem 2.5.1, where M is a Riemannian man-
ifold and we obtain the reflection positive Hilbert space (&, &4, 6¢) with & = .
Since the operator C commutes with the unitary representation of the Lie group
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G :=Isom(M) on L3*(M), we obtain a unitary representation (U€, &) of this
group which also contains 6. For the identity component H := Gg, we then have
U,&, = & because elements in H cannot map M. to M_. Now the image & of
C°(My) in &4 is a Uy-invariant dense subspace invariant under the action of the
Lie algebra g of G which acts by Lie derivatives

(Zx f)(m) = % t:Of(eXP(tX)-m),

where we identify g with a Lie algebra of vector fields on M. We conclude that all
requirements of Definition 3.3.6 are satisfied.

Remark 3.3.9 (Infinitesimally unitary representations) On the infinitesimal level,
the core idea of reflection positivity is easily seen. Starting with a symmetric Lie
algebra (g, ), we obtain the corresponding decomposition g = h & q and form the
dual Lie algebra g° :=h @ iq C gc.

Let (2, Y4, 0) be a complex reflection positive pre-Hilbert space (defined as in
Definition 2.1.1 but omitting the completeness of & and the closedness of &) and
7 be a representation of g on 2 by skew-symmetric operators. We also assume that
O (x)0 = mw(tx) forx € gand that Z, is g-invariant. Then complex linear extension
leads to a representation of g on 2. by operators which are skew-symmetric with
respect to the twisted scalar product (-, -)g. By the OS transform, we then obtain an
infinitesimally unitary representation of g¢ on the associated pre-Hilbert space & via

wé(x +iy) = @ + in/(E.

This is the basic idea behind the reflection positivity correspondence between
infinitesimally unitary representations of g on & and g¢ on &.

What this simple picture completely ignores are issues of integrability and essen-
tial selfadjointness of operators. There are various natural ways to address these prob-
lems. Important first steps in this direction have been undertaken by Klein and Landau
in [KL81, KL82], and Frohlich, Osterwalder and Seiler introduced in [FOS83] the
concept of a virtual representation, which was developed in greater generality by
Jorgensen in [Jo86, Jo87]. We shall return to these issues in Chap. 7.

3.4 Reflection Positive Functions

Definition 3.4.1 Let V be areal vector space and (G, t) be a symmetric Lie group.
We recall the group G, = G x {idg, t} from Definition 3.2.1.

(a) A function ¢ : G; — Bil(V) (the space of bilinear forms on V) is called
reflection positive with respect to the subset G, G if

(RP1) ¢ is positive definite (cf. Sect. A.1) and
(RP2) the kernel (s, 1) — @(st*1) = @(stt~") is positive definite on G.
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(b) A t-invariant function ¢ : G — Bil(V) is called reflection positive with
respect to G if the extension ¢ of ¢ to G, by 9(g, T) := ¢(g) has this property,
i.e., if the kernel (<p(stﬁ))x,teg+ is positive definite.

(c) A function ¢ : G — Bil(V) is called reflection positive with respect to the
symmetric subsemigroup S C G if

(RP1) ¢ is positive definite and t-invariant and
(RP2) the kernel (¢(s1%));. ;s is positive definite on S, i.e., the restriction ¢|g is a
positive definite function on the involutive semigroup (S, #).

This can also be phrased as the requirement that the kernel K (g, k) := ¢(gh™") on
G is reflection positive with respect to the symmetric subsemigroup S € (G, ) in
the sense of Definition 2.4.1.

Remark 3.4.2 Let ¢: G, — Bil(V) be a positive definite function, so that the
kernel K ((x,v), (y,w)) :=@(xy ")(v,w) on G, x V is positive definite. The
involution t acts on G, x V by t.(g,v) := (g7, v) and the corresponding kernel
K'((x,v), (y,w)) := K((x,v), (yT,w)) = @(xty~ (v, w) is positive definite on
G x V if and only if ¢ is reflection positive in the sense of Definition 2.4.1.

From Lemma 2.4.2(c) it follows that the corresponding space & can be identified
with #%- € (V*)+ such that

q: & — Hy, q(f)g) = f(x(g), gel,.

The following lemma shows that positive definite functions on G extend canoni-
cally to G, if they are r-invariant:

Lemma 3.4.3 Let V be a real vector space and let (G, t) be a symmetric Lie group.
Then the following assertions hold:

1) If ¢: G — Bil(V) is a positive definite function which is t-invariant in the
sense that ¢ o T = @, then (g, ©) := ¢(g) defines an extension to G, which is
positive definite and t-biinvariant.

(i) Let (U, 7) be a unitary representation of G, let 0 :== Uy, let j: V —
be a linear map, and let ¢(g)(v,w) = (j(v), Uy j(w)) be the corresponding
Bil(V)-valued positive definite function. Then the following are equivalent:

(@) 8j(v) = j(v) foreveryv e V.
(b) ¢ is t-biinvariant.
(c) ¢ isleft t-invariant.

Proof (i) From the GNS construction (Proposition A.1.6), we obtain a continuous
unitary representation (U, ) of G and a linear map j: V — ¢ such that

@)V, w) ={(j(v),Ugj(w)) for geG,v,weV.

As p(g)(v,w) = ¢(t(g))(v, w), the uniqueness in the GNS construction provides a
unitary operator 0 : ¢ — S with
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O0U,j(v) =Urj(v) for geG,velV.

Note that 0 fixes each j (v). Therefore U, := 6 defines an extension of U to a unitary
representation of G, on 7. Hence ¥ (g)(v, w) = (j (v), U, j(w)) defines a positive
definite t-biinvariant Bil(V')-valued function on G, with V| = ¢.

(ii) Clearly, (a) = (b) = (c). It remains to show that (c) implies (a). So we assume
that p(tg) = ¢(g) for g € G,. This means that, for every v, w € V, we have

(JO), Ugjw)) = 0@ (v, w) = p(Tg)(v,w) = (j(v),0Ug j(w)) = (0 (v), Ugj (W)).
Since Ug, j (V) is total in .77, this implies that 6 (v) = j(v) foreveryv € V. O

Remark 3.4.4 If S € G is a symmetric subsemigroup, then a function ¢: G —
Bil(V) is reflection positive with respect to S if and only if its T-biinvariant extension
to G, (Lemma 3.4.3) is reflection positive with respect to G, = S.

Theorem 3.4.5 (GNS construction for reflection positive functions) Let V be a real
vector space, let (U, &) be a unitary representation of G, and put 6 := U,. Then
the following assertions hold:

() If (U, 22, j, V) is reflection positive with respect to G 1, then
@, w):={(j(),Ugjw)), geGCGr,v,weV,

is a reflection positive Bil(V)-valued function.

(i) Ifp: G, — Bil(V) is a reflection positive function with respect to G ., then the
corresponding GNS representation (U?, 7, j, V) is a reflection positive rep-
resentation, where & := J;, C CC*V is the Hilbert subspace with reproducing
kernel K ((x,v), (y,w)) 1= @(xy~")(v, w) on which G acts by

(U f)x,v) = f(xg,v).

Further, &, = [[Ugij(V)}] and & = - for the kernel K™ (s, t) := o(stt™") on
G4, where q: & — k-, q(f)(g) := f(gT).

Proof (i) Fors,t € G, we have

PNV w) = (), Ugr1 jw)) = (U1 j (v), Ur U1 j (W)
— (U1 j (), Uy j (W),
so that the kernel (¢(s tt‘l))s,,e@ is positive definite by Proposition A.1.6.
(i) Recall the relation ¢(g)(v, w) = (j(v), Uy j(w)) for g € G,v,w € V from
Proposition A.1.6. Moreover, (6f)(x,v) = f(xt,v), and

UL j0), UL jw) = (j0), UL jw) = e(stt™ ) (v, w),
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so that the positive definiteness of the kernel (go(srt‘l))s,,eg+ implies that we
obtain with & = J7;, and &, := [[(U&)’1 J (V)] areflection positive Hilbert space
(&, &, 0). The remaining assertions follow from Remark 3.4.2. O

Definition 3.4.6 Let S C (G, 7) be a symmetric subsemigroup. A triple (U, &, ¥),
where (U, &) is a unitary representation of G, and 7 C & is a G-cyclic subspace
fixed pointwise by 6 = U, is said to be a a reflection positive ¥ -cyclic representa-
tion if the closed subspace &, := [Us¥] is 0-positive. If, in addition, ¥ = C§ is
one-dimensional, then we call the triple (i, &, &) a reflection positive cyclic repre-
sentation.

Corollary 3.4.7 (Reflection positive GNS construction—operator-valued case) Let
S be a symmetric subsemigroup of (G, T).

W) If (U,&,7) is an V-cyclic reflection positive representation of G, and
P: & — V the orthogonal projection, then ¢(g) := PU,P* is a reflection
positive function on G with ¢(e) = 1y.

(ii) Let ¢: G — B(Y) is a reflection positive function with respect to S on G
with ¢(e) = 1y and let 7, C V'C be the Hilbert subspace with reproducing
kernel K (x,y) 1= @(xy~YY onwhich G actsby (U?(g) f)(x) := f(xg) andt by
Of = f ot. Weidentify ¥ with the subspace ev; V' C ;. Then (U, 5¢,, V)
is a V -cyclic reflection positive representation and we have an S-equivariant
unitary map

r:&— #,,, I'(H=7fls for fe& =[UY].

Proof (i) To match this with Theorem 3.4.5(i), we put V := % and consider
the inclusion map j: V — 2. Then ¢(g) € Bil(V) corresponds to the operator
J*U,j = PU,P* € B(V). Therefore ¢ is positive definite with ¢(e) = 1. That ¢ is
t-invariant follows from 6|y = idy (cf. Lemma 3.4.3).

(i) We use the second half of Example A.1.8, i.e., the special case of Proposi-
tion A.1.6 dealing with operator-valued positive definite functions, and identify #
with ev ¥ C J7,. Lemma 3.4.3 implies that 0 fixes ¥ pointwise.

To see that &, := [U¢ 7] is O-positive, we note that

0(&) = [Uf5,07]=UL 7],

and this subspace is 6-positive by Theorem 3.4.5(ii). Therefore & is also -positive
(Remark 2.2.2). From Theorem 3.4.5(ii) we further derive that

0(&) — Hx- S (VHS, f> (FoDls=0(fls

induces a unitary isomorphism & — Hx-, fr—) fls, and this implies that I" is
unitary. O
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Corollary 3.4.8 Let S C (G, t) be a symmetric subsemigroup.

() If (U, &, &) is a cyclic reflection positive representation of G, then U%(g) :=
(&, U,&) is a reflection positive function on G.

(ii) If is a reflection positive function on G, then (U?, 72, @) is a cyclic reflection
positive representation.

The following result characterizes reflection positive representations for which
(&, &4, 0) is of Markov type.

Proposition 3.4.9 Let (U, &) be a reflection positive unitary representation on
(&, &y, 0) with respect to the unital symmetric subsemigroup S C (G, t). Let
Py: & — & be the orthogonal projection and consider the reflection positive definite
Sunction ¢(g) = PyU, Py. Then the following assertions hold:

() If ¢|s is multiplicative and &, = [Us&], then (&, &, 6) is of Markov type.

(b) If (&, &4, 0) is of Markov type and I" = qls,: &y — & is the corresponding
unitary isomorphism, then ¢|s is multiplicative and ¢(s) = I’ *U I fors € S,
i.e., I' intertwines @|s with the contraction representation (U & ) of S.

Proof That ¢ is reflection positive follows from Corollary 3.4.7(i).

(a) By Corollary 3.4.7(ii), the restriction map I": & — 5, f)\—> flsis a uni-
tary S-intertwining operator. From &, = [Us&y] it follows that & = [[ﬁ sq(&0)],
so that the multiplicativity of ¢|g implies that I" (&) = & (Lemma A.1.9), i.e.,
(&, &4, 0) is of Markov type.

(b)Let % C 7 be the U-invariant closed subspace generated by & and let (&)©
denote the linear space of all maps G — &j. Then the map

D H — (&), DPE)gQ) = PoUyE

is an equivalence of the representation U of G on %" with the GNS representation
defined by ¢ (Proposition A.1.6). Further, the representation UofSon 5 isequivalent
to the GNS representation defined by ¢|s, where the map ¢ : &, — & corresponds
to the restriction f > f|s (Corollary 3.4.7(ii)). The inclusion ¢: & — JZ, is given
by 1(§)(g) = PoU,& = ¢(g)& for g € G, and likewise the inclusion 7: & — 7,
is given by 1(§) = ¢ - £&. Lemma 2.3.2 implies the surjectivity of 7. In view of
Lemma A.1.9, this is equivalent to the multiplicativity of ¢|s.

Recall ¢ = I" o Py|e, from Lemma 2.3.2. For s € S, the relation U, oq =
q o Ugle, leads to U FP()|(B = I'PyUs|e,, so that F*U I' = PhU; Py = ¢(s),
i.e., I intertwines ¢(s) with U

Example 3.4.10 Let (G, t) be a symmetric Lie group and let o : G; — Diff (M)
be a smooth right action of G, on the manifold M. Then ty, := o, is an involutive
diffeomorphism of M. Further, let K : M x M — B(V) be a G-invariant reflection
positive kernel with respect to (M, M, ty;) (Definition 2.4.1), where M, € M isa
H -invariant subset.
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Then U, f := f o0, defines a unitary representation of G on %. It clearly
satisfies
K.oU,=K,, andthus U,K} = K;g,l. (3.5)

Here the unitarity of U follows from the G-invariance of K, and the H-invariance
of &, follows from the H-invariance of M, and (3.5).

A special case of this construction arises for G = M and right-invariant kernels of
the form K (x, y) = ¢(xy~!), where ¢ : G — B(V) is areflection positive function.
Here the t-invariance of K is equivalent to the relation ¢ o T = ¢.

Notes

Section 3.1: Variants of Lemma 3.1.2 also appear in [JO100].

Section 3.3: In the context of intervals in the real line which we discuss in Chap. 4,
the notion of reflection positive functions already appears in [KL81], where such
functions are called (OS)-positive.

Proposition 3.3.3 is already in [JOI00].

A version of Proposition 3.4.9 for the case (R, R, —idg) can already be found
in [K177] (see also [JT17, Sect.7]).

Reflection positivity for the lattice G = Z¢ and T (xg, X) = (—xo, X) is discussed
in the context of correlation functions by Usui in [Us12].



Chapter 4 ®)
Reflection Positivity on the Real Line oo

After providing the conceptual framework for reflection positive representations in
the preceding two chapters, we now turn to the fine points of reflection positivity
on the additive group (R, +). Although this Lie group is quite trivial, reflection
positivity on the real line has many interesting facets and is therefore quite rich.
We thus describe its main features in this and the subsequent chapter. As reflection
positive functions play a crucial role, we start in Sect.4.1 with reflection positive
functions on intervals (—a, a) € R. Here we already encounter the main feature of
reflection positivity dealing with two different notions of positivity, one related to
the group structure on R and the other related to the *-semigroup structure on R,
resp., the convex structure of intervals. All this is linked to representation theory in
Sect.4.2, where we start our investigation of reflection positive representations of
the symmetric semigroup (R, R, —idgr). These are unitary one-parameter groups
(Ur)rer on a reflection positive Hilbert space (&, &4, 0) satistying U, &, C &, for
t >0and OU,0 = U_, fort € R. On & this leads to a semigroup ((7,),20 of hermi-
tian contractions. The main result in Sect.4.2 is that the OS transform “commutes
with reduction”, where reduction refers to the passage to the fixed points of U and
U in & and £ respectively (Proposition 4.2.6). Reflection positive functions for
R, R4, —idg) are classified in terms of integral representations in Sect.4.3. We
shall see in particular that any hermitian contraction semigroup (C;);>¢ on a Hilbert
space .7# has a so-called minimal dilation represented by the reflection positive
function ¥ (t) := C;. We also provide a concrete model for this dilation on the
space & = L*(R, ) with (U, f)(p) = €' f(p), where &, = Li(R, F) is the
positive spectral subspace for the translation group, which is, by the Laplace trans-
form, isomorphic to the .7#’-valued Hardy space H*(C., .%#) on the right half plane
C, = Ry + iR. We conclude this chapter by showing that, for any reflection posi-
tive one-parameter group for which & is cyclic and fixed points are trivial, the space
&, is outgoing in the sense of Lax—Phillips scattering theory (Proposition 4.4.2).
This establishes a remarkable connection between reflection positivity and scatter-
ing theory that leads to a normal form of reflection positive one-parameter groups by
© The Author(s) 2018 35
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translations on spaces of the form & = L*(R, ) with &, = L>(R,, J#). Applying
the Fourier transform to our concrete dilation model leads precisely to this normal
form.

4.1 Reflection Positive Functions on Intervals

Before we turn to representation theoretic issues, we briefly discuss reflection positive
functions on open intervals in R. There are two natural types of positive definiteness
conditions for functions on real intervals. The first one comes from the additive group
(R, +), for which a function ¢ : R — C is positive definite if and only if the kernel
(¢(x — ¥))x,yer is positive definite. This condition makes also sense on symmetric
intervals of the form (—a/2,a/2) if f is defined on (—a, a). Bochner’s Theorem
(Theorem A.2.1) asserts that a continuous function on the additive group R is positive
definite if and only if it is the Fourier transform ¢ (x) = [, e~"** d (1) of a bounded
positive Borel measure u on R.

The second type makes sense for functions ¢: (a, b) — C on any real interval
and requires that the kernel ((p()‘;ry ))a<x’v< , 1s positive definite. Widder’s Theorem
below asserts that this is equivalent to f being a Laplace transform of a positive
Borel measure « on R. For (a, b) = (0, 00), this is precisely the condition of positive
definiteness on the x-semigroup (0, co) with the trivial involution t* = ¢ for r > 0.

Theorem 4.1.1 (Widder; [Wi34], [Wi46, Theorem VI.21]) Let —00 < a < b < oc.
A function ¢ : (a, b) — R is positive definite in the sense that the kernel (p(%) is
positive definite if and only if there exists a positive Borel measure |1 on R such that

o) = L) = Ae’“ du(h) for te(a,b).

This implies in particular that ¢ is analytic.

The following theorem provides a characterization of functions ¥ : (0, 00) — R
which are completely monotone,i.e., (—1)*y® > Ofork = 1,2, 3, ... (see [JNO18,
Theorem 3.6], [SSV10, Theorem 1.4], [Wi46, Theorem IV.12b]). Its most remarkable
point is that it characterizes the global property of positive definiteness on the addi-
tive semigroup (0, co) in terms of the infinitesimal condition of being completely
monotone.

Theorem 4.1.2 (Hausdorff—Bernstein—Widder) For a function ¢: (0, c0) — [0, 00),
the following are equivalent:

(i) ¢ is completely monotone.
(1) ¢ is a Laplace transform of a positive Borel measure on [0, 00).
(iii) ¢ is decreasing and positive definite on the x-semigroup ((0, 00), id).

After these preparations, we now turn to reflection positive functions on intervals.
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Definition 4.1.3 Let a € (0, oo] and consider the interval (—a, a), endowed with

the reflection t(¢) = —¢ about the midpoint. We call a function ¢: (—a,a) - R
reflection positive if both kernels
t—s t+s
4 o(=-) 4.1
(p( 2 )7a<s,t<a an ¢ 2 O<s,t<a ( )

are positive definite. For the kernel K (s, 1) := (p(’%s), this corresponds to the situa-
tion of Definition 2.4.1 with X = (—a, a), X+ = (0,a) and 7(x) = —x.

Since the kernels in (4.1) are both hermitian, reflection positive functions on
(—a, a) satisty p(—t) = ¢(t) = ¢(t). Therefore Widder’s Theorem 4.1.1 provides
a positive Borel measure . on R with

w(t)=$(u)(|tl)=/e—*"'du()\) for |t| < a. 4.2)
R

Conversely, for such functions the kernel (p(“”TY) is positive definite on (0, a). There-

fore ¢ is reflection positive if and only if the kernel (p(’_Tg) is positive definite on
(—a, a). So the main point is to relate this condition to properties of the measure p.

Example 4.1.4 (a) For A > 0, the functions ¢, (t) := e *l are positive definite
(Example 2.4.3(a)). Therefore .Z () (|t|) is reflection positive if  is supported
by [0, 00).

(b) Basic examples of positive definite S-periodic functions on R are given by

i) =e +e P =272 cosh((E — 1) for 0<t<p,A>0
(Example 2.4.3(b)). For || < B, we then have
L(t) = fi(lt]) = e " 4 e Pl = o7l g p=hllrlR, 4.3)

Hence, for reflection positivity on a finite interval (—g, B), it is not necessary that
the measure w in (4.2) is supported by the positive half line, as in (a).

From the positive definiteness of the functions f; for every § > 0, we conclude
that, for a fixed @ > 0 and a positive Borel measure p on [0, 00) X [a, 00), the
function

F@) = / M 4 P 4o B) 4.4
[0,00) x[a,00)

is reflection positive on (—a, a) whenever the integrals are finite.

The proof of the following theorem ([JNO18, Theorem 5.8]) uses Pélya’s classical
result relating positive definiteness of real-valued functions on R, with convexity
([Luk70, Theorem4.3.1]) and provides a sufficient conditions for positive definite-
ness.
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Theorem 4.1.5 (Characterization of reflection positive functions on [—a, a]) Fix
a > 0and let u be a finite positive Borel measure on R for which ¢(t) := £ (u)(|t])
exists for |t| < a.

(1) If the left-sided derivative in a satisfies £ () (a—) < 0, then ¢ is reflection
positive on [—a, a] and extends to a symmetric positive definite function on R.

(ii) Ifisreflection positive on [—a, a] and non-constant, then there exists a number
b € (0, al with £ (u)' (b—) < 0.

Remark 4.1.6 1f b is as in (ii), then it follows from part (a) that the positive definite
function ¢|[_; ;) extends to a positive definite function on R. But this extension does
not have to coincide with ¢ if b < a.

Remark 4.1.7 (The B-periodic case) We consider the group G = (R, +) and the
open interval G, := (0, 8/2). Then a symmetric continuous function f: R — C
is reflection positive with respect to G if it is positive definite and the kernel
( f@+ S))0<s, 1<p)2 is positive definite (Definition 3.4.1(b)), which implies that f
is reflection positive on the interval (—g, §) (Definition 4.1.3). As f is symmetric
and B-periodic, it is also symmetric with respect to 8/2,1.e., f(B8 —t) = f(¢). The
latter relation implies that the corresponding measure o on R satisfies du(—A) =
e P*du()), hence has the form

dp) =duy () + ePrdp (=) (4.5)

for a measure p on R>(. We thus obtain the integral representation
oo
f() = / e e B gu (v for 0<t<§B,
0

which determines f by B-periodicity. That, conversely, all such functions are reflec-
tion positive follows from Example 2.4.3(b). Note that f o g; is convex and symmet-
ric with respect to 8/2, where it has a global minimum. In particular Theorem 4.1.5
only applies to the restriction of f to the interval [—8/2, 8/2] which also determines

f by B-periodicity.

4.2 Reflection Positive One-Parameter Groups

We now turn to reflection positivity on the whole real line X = R with respect
to the right half line X, = R = [0, 0co0) which is an additive *-semigroup with
s* = s. Therefore reflection positive functions provide close relations between uni-
tary representations of R and one-parameter semigroups of hermitian contractions.
Specializing Definition 3.3.1 to the symmetric semigroup (R, R, —idg), we obtain:

Definition 4.2.1 A reflection positive unitary one-parameter group on the reflection
positive Hilbert space (&, &4, 0) is a strongly continuous unitary one-parameter
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group (U;);cr on & for which &, is invariant under U, for t > 0 and 6U,60 = U_,
forr € R.

From Proposition 3.3.3 we immediately obtain:

Proposition 4.2.2 If (U;);cr is a reflection positive unitary one-parameter group
on (&, &4, 0), then (U;)>0 is a strongly continuous one-parameter semigroup of
symmetric contractions on &.

Definition 4.2.3 In the context of Proposition 4.2.2, we call the quadruple
(&, <§’+, 0, U) a euclidean realization of the contraction semigroup (U & ). Writ-
ing U, = e 'H witha H = H* > 0, we obtain by analytic continuation the unitary
one-parameter group U¢ := ¢/ (Example 3.3.5). Accordingly, we also speak of a
euclidean realization of (Uf)/cr.

We shall see in Proposition 4.3.5 below that every strongly continuous contraction
semigroup on a Hilbert space has a euclidean realization, but there are many non-
equivalent ones with different sizes and different specific properties (Example 4.3.8).

The following lemma provides a criterion for the density of a subspace of &'. We
shall use it to verify that certain operators on & are densely defined.

Lemma 4.2.4 Let (U,);cr be a reflection positive unitary one-parameter group on
(&, &4,0). If D < & is a subspace invariant under the operators (Uy);~o, for which

={ved&:@AT >0 Urv e 7}

is dense in &y, then 9 C & is dense.

Proof Forw € 52 thereexistsa7 > Owith Urw € Z,and this implies that Uw e 7
fort > T Since the curve Ry — &t Uw,is analytic, Uw e @foreveryt > 0,

and therefore w € 9 follows from the strong continuity of the semigroup (U,),>0
(Proposition 4.2.2). As @@0 is dense in &, it follows that s dense in &. O

Remark 4.2.5 (Reduction to the &y-cyclic case if éoo is cyclic in & ) Assume that
(U,),er is reflection positive on (&, &4, 0) and that g (&p) is U- -cyclic in &

Let & C & denote the closed U-invariant subspace generated by & and &y =
&N &y. Then OU, & = U_,6068y = U_,; &) implies that & is 6- -invariant. Therefore
U/ := Uyl ; is a reflection positive unitary one-parameter group on (&, &4, 0] z).
Since q| ér has dense range, all the relevant data is contained in &. It is therefore

natural to assume that & is U-cyclic in & whenever ¢ (&p) = & is cyclic in &

The following proposition shows that the OS transform is compatible with the
passage to the space of fixed points.

Proposition 4.2.6 (OS transform commutes with reduction) Let (U, ),cr be a reflec-
tion positive unitary one-parameter group on (&, &y, 0). Suppose that &, is U -cyclic
and that ( ﬁ,) 1>0 IS the corresponding one-parameter semigroup of contractions on
&. Let &4« denote the subspace of elements fixed under all U, and &g« the subspace
of fixed points for the semigroup (0,),>0. Then the following assertions hold:



40

(a)
(b)
()
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&ix © &, the space of 0-fixed points in &
The map qls,, : éix — &hix, V V is a unitary isomorphism.
Eix = oo = [ Nyo Ui

Proof (a) We write P: & — &5« for the orthogonal projection onto the subspace

(b)

(©)

of U-fixed points in &. Then

1 N
lim —/ U, dt =
N—oo N Jy

holds in the strong operator topology ([ENOO, Corollary V.4.6]). For any v €
U;&) and s € R, there existsa T > 0 with U;v € &, fort > T. Since

1 T
lim —/ U,dt =0,
N Jo

N—o00

we obtain Pv € &, for every v € U;&;. As & is U-cyclic, we thus obtain
Eix = P& C &,. Since OU,0 = U_, for t € R, the subspace &y is O-invariant.
Now the #-positivity of &, implies that 6|, > 0, and thus & € &°.

Since P commutes Wlth 0, Lemma 3 1.2(c) shows that P defines a hermitian
contraction P: & — & with Pv = Pv for v € &,.Forv,w € &, we obtain

1 [y ~
lim —/ @, Uw)dt = lim N/ Ov, Uw)dt = (Bv, Pw) = (v, PW).
0

N—oo N N—oo

Hence [ENOO, Corollary V.4.6] implies that P is the orthogonal projection
onto &jy.

Letg: & — é" v > 7, denote the canonical projection onto &. Then goP =
Po q implies that q(&sx) = q(P&L) = Pq (&}), and hence that g (&£5x) C éaﬁx
is a dense subspace. On the other hzy}d, &ix € &) implies that g/, is isometric,
hence a unitary isomorphism onto &jy.

The subspace &, is closed and it is easily seen to be invariant under U. Therefore
F = Ex + 08y is invariant under U and 6, so that we obtain a reflection
positive unitary one-parameter group V; := U, |z on (¥, %, 0| #) with J+
Enos satlsfylng V7, = F, forevery t > 0. Now Lemma 3.1.2(d) leads to v, =
V, /212 =1 for every t > 0. Therefore Z C éaﬁx, and (b) implies that 7 -
q(&hx), sothat & = F C &ix + N

Since the elements of &, are f-fixed and A = & N O(&EL), we have A L&y
From &5 C &y it thus follows that &, = & D (N N E) is a U-invariant
orthogonal decomposition. As .4 N & is orthogonal to the U-cyclic subspace
0(&,), it must be zero, and this shows that &, = &ix. O

Remark 4.2.7 Let &' := & in the context of Proposition 4.2.6. Then the reflec-
tion positive one-parameter group is adapted to the orthogonal decomposition

& =

é')ﬁx@é’)lj
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E=Ex@68, 0=106, U =10U/

with respect to the obvious notation. The data corresponding to &y is trivial and
the one-parameter group (U,),cr on (&', &, 0) has the additional property that
&1 = {0}. We also have that & = & @ &).

4.3 Reflection Positive Operator-Valued Functions

We start with a characterization of continuous reflection positive functions for the
symmetric semigroup (G, 7, §) = (R, —idr, R,). This is motivated by the GNS
construction in Theorem 3.4.5.

Proposition 4.3.1 (Integral representation of reflection positive functions) Let &
be a Hilbert space and ¢ : R — B(.%) be strongly continuous. Then ¢ is reflection
positive if and only if there exists a finite Herm(.%) 1 -valued Borel measure Q on
[0, 00) such that

p(x) = / " i dO). (4.6)
0

Proof Suppose first that ¢ is reflection positive for (R, R, —id) and consider the
additive unital semigroup S := ([0, 00), +). Then ¢y := ¢|s is positive definite
with respect to the trivial involution and corresponds to a contraction representa-
tion of S because |(&, p(s)&)| < (&, ¢(e)&) holds for the positive definite functions
055 (x) = (€, p(x)E), & € .F ([Nel64, Corollary ITI.1.20(i1)]). Using (A.6) in Exam-
ple A.1.8 to write ¢(s) = evgoUY o ev;, for the GNS representation (U?, 77;,) of §
and representing U¥ by a spectral measure P on [0, c0) as

u¢ =/ e dP())
0

(here we use that the operators U, ¥ are contractions), we obtain the desired integral
representation of ¢ with Q := evgoP(-) o ev;. Now (4.6) follows from the fact that
¢(—x) = ¢(x)* = ¢(x) holds for x > 0.

For the converse, we assume that ¢ has an integral representation as in (4.6). This
immediately implies that ¢|s is positive definite on S for the involution s* = s and
that ¢ is continuous ([Ne18b, Proposition II.11]). To show that ¢ is positive definite,
we first recall from Example 2.4.3 that

el = / ey 1 dy.
R TAT+Y?

This implies that
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ix | A
¢<x>=Ae y(/o S d0M) dy.

and since Q( y) = fooo ﬁ}z d Q()) is an integrable function with values in positive
operators, the positive definiteness of ¢ follows from Theorem A.2.1. O

Specializing Proposition 4.3.1 to % = C, we obtain the following integral repre-
sentation (cf. Example 4.1.4(a)):

Corollary 4.3.2 A continuous function ¢ : R — C is reflection positive if and only
if it has an integral representation of the form

o(x) = / e gy, @7
0

where v is a finite positive Borel measure on [0, 00).

‘We note the following corollary to the first part of the proof of Proposition 4.3.1:

Corollary 4.3.3 Let % be a Hilbert space and ¢ : [0, 0c0) — B(F) be a bounded
strongly continuous function which is positive definite on the x-semigroup ([0, 00),
id). Then ¥ (t) := @(|t]) is reflection positive for (R, Ry, —idg).

Definition 4.3.4 (Minimal unitary dilation) If (C,),>¢ is a one-parameter semigroup
of hermitian contractions on the Hilbert space .# and v (¢) := C is the correspond-
ing reflection positive function from Corollary 4.3.3, then the unitary representation
UV of R on the reproducing kernel Hilbert space 77, (Theorem A.1.6) is called the
minimal unitary dilation of C

As ¥ (0) =1, the space .# may be considered as a subspace of 7}, and the
orthogonal projection P: J¢), — F satisfies

@(s) = PUY P* for s>0. (4.8)

For a detailed account on unitary dilations of semigroups, we refer to [SzZN10]; see
in particular Proposition 4.3.5 below.

From Proposition 3.4.9 we now derive that (C,);>( has a canonical euclidean real-
ization of Markov type in the sense of Definition 3.3.4, but this euclidean realization
is rather large as we shall see in Example 4.3.8.

Proposition 4.3.5 For every strongly continuous one-parameter semigroup (C;);>0
of hermitian contractions on a Hilbert space F€, there exists a euclidean realization
(U)ier of Markov type on (&, &y, 6) with & cyclic in & and & = [Ur, &]l. Any
realization with these two properties is equivalent to the minimal unitary dilation
obtained by the B(J¢)-valued positive definite function  (t) :== Cj;; on R.

We now develop a concrete picture of the minimal unitary dilation of a contraction
semigroup.
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Example 4.3.6 Let (C,),>0 be a continuous semigroup of hermitian contractions on
. We write C; = e~ for a selfadjoint non-negative operator H > 0. To exclude
trivialities, we assume that ker H = 0, so that the spectral measure E of H is sup-
ported by (0, 00) and we have H = [;° x dE(x).

(a) On the Hilbert space & := L?(R, s#) we consider the unitary one-parameter
group given by (U, f)(p) = €'”? f(p). We claim that (U, &) is equivalent to the
minimal unitary dilation of (C;),>. To verify this claim, we consider the map

ji =&, jE)p) :=LH1/2(H+ip1)—'g for p #0.
JT

For p # 0, the operators H'/2(H =+ ip1)~! are bounded. For &, n € J#, we have

(@, U jm) = % / (H'?(H +ip) "¢, " H'*(H + ip1)"'n) dp
R

1 *° i
_// P AESI(x)dp for EST = (£, E()n)
7 Jr Jo x2+p2

_/OO< 1 X itp 4 )dEE’"( )
= ; ]Rr[xz-l—ng p X

- /oo e M AdES (x) = (£, e " y) = (&, Cyym).
0

For ¢ = 0, this calculation implies that j is isometric onto the subspace & :=
j () of & and that the representation on the subspace & := [Ur&p]l is equiv-
alent to the GNS representation (U, ) for ¥ (t) := Cyy, hence the minimal
unitary dilation.

To verify our claim, it remains to show that & = & ,1.e., that & is U -cyclic. Since
J is generated by the C-invariant spectral subspaces 47, := E([a, b]).F,
0 < a < b, of H, it suffices to argue that & contains all subspaces L*(R, Hab).
Multiplication with m(p) := H V2(H +i pl)’1 defines for ¢ < d a bounded
invertible operator (Af)(p) = m(p)f(p) on each subspace L*([c,d], 7, ;)
which commutes with U. Hence

L% (e, d), #;, ) = AL*(lc, d, #,p) = [IL™®(c, dD)j (5 )] S [URJ (H )]

follows from Uy = L*°(R) and therefore & is U-cyclic and & =8.
(b) Now we determine the subspace &} = [[Ugr, &1 and the involution 6. From
& C &%,0U,6 = U_, and the cyclicity of &), we immediately obtain

O () = LZIPL oy m (H = ip)(H + ip) " f(—p)
fp—H+l.p1f p) = ip ip)™" f(—p),

so that U is reflection positive on (&, &, 8). The Markov property follows from
the multiplicativity of ¥ () = C); for t > 0 (Proposition 3.4.9).
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Next we show that & C & coincides with L (R, 5¢) := F L*(Ry, ), where
Z is the Fourier transform. Writing C,. := R, + iR for the right half plane, the
map

l o0
EX: L*(R,, #) — OC,, ), Z(f)(2) =/0 e f(x)dx (4.9)

is isometric onto the .7#-valued Hardy space H*(C.,, #) with the norm
IfII? = lim / If Gz +ip)l*dp.
z—04 R

Its reproducing kernel Q(z, w) € B(J¢)is givenby Q(z, w) = Z Tl because

the functions Q,; := (271)’1/26,3)(&% e L*(R,, ) with e,(x) = ¢** and
& € J satisty

1 - W 1 (&, 1)
— x(z+w) dx =
<Qz.§:v Qw,n) = ) /(; € (gv n)dx = 27 2 W (4.10)

That & is contained in Li(R, ) follows from the following calculation for
Re z > 0 (and evaluating in z = ip), where we put E% := E(-)&:

X172

HY?(H + z1)~ g_foo dEf(x) / / reM N2 g\ d Ef (x)

/ f kg =i ‘/szf(x)dx—/ e‘“(e_’\HH'/zé)d)».

Now &, = [[Ur, &l € L? 1+ (R, ) follows from the invariance of L2 R, 22)
under the operators U, FoV,oF ! for t >0, where (V, Hx) =
f(x — ). In view of the maximal 6-positivity of &, (Lemma 2.3.2), equality will
follow if the Hardy space is 6-positive. This is verified as follows. The functions
foe(p) == Z+lp$ = [, e *CrPEgdx, Rez > 0, & € A, generate L% (R, ).
We have

(&, (H —ip)(H +ipD)~'n)
(z—ip)(w —ip)

dp for Rez,Rew > 0.
4.11)

(fz,‘g‘s efw,n) :/
R

Since the function

(6, (H —ic)(H +i¢)'n) _ & —i¢H(H +ig)'n)
(z—iH)(w—ig) € +i)¢+iw)

G(¢) =

is meromorphic in the lower half plane {Im ¢ < 0} with poles in —iz and —i w
and lim;_, o | G(¢)| = 0, the Residue Theorem, applied to negatively oriented
paths in the lower half plane which lead to winding number —1, yields for z # w:
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(fo&,0fwn) =2mi(—Res_;.(G) — Res_;,(G)),

where
(&, (H — z1)(H + z1)~ ') (&, (H — Z1)(H + z1)" ')
Res_;;(G) = — : — - !
—iZ+1iw 7 —w
and
—w —1\—1 L .
Res_; (G) = _EH-WHH WD n) _ 6 H Wwl)(H + wl) n

—iw+iz z—w

We thus arrive at

2 _ i
(Fog:Ofuan) = (6 (1= H)(H + 217" = (W1 = H)(H + WD) ')
=4m (&, (H+z)""H(H +w)™'n)
=dn(H'*(H +z1) 7', H'*(H +w1) ™ 'n),
which obviously is a positive definite kernel on C, x .7, and therefore

Li (R, 22) is O-positive.
(c) Finally we note that the map

(T)(p) :=/TH'*(H +ipl) f(p)

maps L2(R, ) unitarily onto the space & of all #-valued L2-functions with
respect to the norm given by

1
£ = - /R (f(p), HH* + p»)~' f(p)) dp.

The operator T intertwines U with the representation U, f)(p) = € f(p) and
the involution 6 with (6 f)(p) := f(—p).

Example 4.3.7 We take a closer look at the Hardy space H*(Cy, #) = 3 C
O(Cy, 7€) with the reproducing kernel Q(z,w) = H;Wl introduced in
Example 4.3.6(b). For simplicity we omit the factor %, so that the Laplace transform
L L’ Ry, ) — H*(C,, S) is unitary.

(a) For the translation action (V; f)(x) = f(x —t) on L*(R, 5¢) we have fort > 0
and f € L*(R,, J):

L) = f e f(x — 1) di = / M £ () di = e L(f)(2),
t ’ 4.12)
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(b)
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so that the subsemigroup R, € R acts on H*(C,,.s#) by multiplication
(U f)(z) = e "* f(z), t > 0. This action is isometric because the boundary val-
ues of e_,(z) = e'* on iR have absolute value 1.

We now specialize to the scalar case where # = C and C, = ¢~"* for some
A > 0.Then Example 4.3.6(a) shows that the subspace & of &, = H?*(C,, C)is

generated by the function Q;(z) = 7 with || Q]| = Q(A, ) = 5. Therefore

the quotient map ¢: &, = H*(C,,C) — E=Cis given by evaluation:
q4(f) = V20(Qs. f) = V201 ().
This formula also shows immediately that
qU, f)=e"q(f) for feH*Cy C),t>0.
(Anti-unitary involutions) On the space & = L*(R), the conjugation
UN(p) = f(=p)

commutes with (U,);cr and satisfies J&, = &, and JQ, = Oz for Rez > 0.
Therefore it induces on the Hardy space H?(C, C) the conjugation given by

JNH@) =f@) for fe.

We also observe that J& = 6J on L*(R), and since J Q; = Q,, it induces on
& = C the involution given by complex conjugation.

Example 4.3.8 (Cyclic contraction semigroups) For a o-finite measure space
(X, &, p) and a measurable function : X — [0, 00), consider on J# := L*(X, p)
the hermitian contraction semigroup C; f = e~ f. By the Spectral Theorem, all
cyclic contraction semigroups can be represented this way with a finite measure p
on X = [0, co) and h(A) = A, so that 1 is a cyclic vector.

()

(b)

With Example 4.3.6(c), we obtain a euclidean realization of Markov type (and,
in general, infinite multiplicity) by

LAY apo
7 h(O)? +x2 x) P,

Ui, = f(x, 1), 0f)(x, ) = f(=x, ).

& =L2R* x X,7), di(x,)) = (

Here & = L*(X, p) is the subspace of functions f(x, 1) = f () not depending
on x and this subspace is U-cyclic in &

For a finite measure p on X =[0,00) =Rs¢ and A(X) = A, a multiplic-
ity free euclidean realizations can be obtained as follows. The projection
pr: R x R>g — R, pr(x, A) := x maps the measure ¢ to the measure v := pr, ¢
given by
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1, [
dv(x):;(/o mdp(k))dx. (4.13)

Then .# := L*(R, v) can be identified with the U-invariant subspace of & con-
sisting of functions not depending on A. For %, := .% N &}, we obtain on
(Z, ZF,,0) a reflection positive one-parameter group (V;);cg by restriction.
Now %y = ﬁﬁ = &y N % = Clisthe space of constant functions. Here 1 € %
is a cyclic vector corresponding to the reflection positive function

o) = (1, V1) :/e*f’-*dv(x):fooe*k"‘dp(x)
R 0

(Example 2.4.3(a)). Its restriction to R, leads to a GNS representation equivalent
to the multiplication representation of R, on .5# = L?(R, p) given by C, so
that (V, %, %, 0) also is a euclidean realization of (C, J¢), but not of Markov
type if p is not a point measure.

In both cases, the subspaces & and %\0, respectively, are cyclic, but in the first
case the Markov condition ¢ (&) = & holds, whereas in the second case .%, =
C1 is one-dimensional.

For dim & = 1 and C, = e~™*, A > 0, the minimal dilation ¢(t) = e~*" from
(a) leads to the Hilbert space & = L*(R, % ,\;{:xﬁ) because p = §;, is a point
measure. In this case the realizations in (a) and (b) coincide.

4.4 A Connection to Lax—Phillips Scattering Theory

One parameter groups and reflection positivity are closely related to the Sinai/Lax-
Phillips scattering theory and translation invariant subspaces ([LP64, LP67, LPS§1,
Sin61]). In short, this theory says that every unitary representation of R on a Hilbert
space & satisfying some simple conditions stated below can be realized by transla-
tions in L>(R, .#) for some multiplicity Hilbert space .7 .

Let (U, &) be a unitary representation of R. A closed subspace &, C & is called

outgoing if

(LP1) &, isinvariant under U,, t > 0,
(LP2) & := ﬂ U&= {0},

t>0

(LP3) U U,&y isdense in &.

t<0

The following theorem is classical ([LP64, Theorem 1]):

Theorem 4.4.1 (Lax—Phillips Representation Theorem) If & is outgoing for
(U, &), then there exists a Hilbert space .M such that & ~ L*(R, #), &, ~
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L?([0, 00), A), and U is represented by translations (U; f)(x) = f(x —t). This
representation is unique up to isomorphism of M.

This realization of (U, &) is called the outgoing realization of U.

Proof 'Fort € R, we put &, := U,&, and write E, for the corresponding projection.
Then our assumptions imply that

lim £, ={0} and Im E, =1
—>00 ——00

in the strong operator topology. We further have lim,_,,_ E; = E,. In fact, & C &;
for s <t implies that E; := lim,_,,_ E; > E, exists. If, conversely, v € E[ & =
(-, &:» we have for every h > 0 that U,v € &; and thus v € &, by closedness. Thus
E < E;, and therefore E; = E,. We conclude that the family (E;);cr defines a
Stieltjes spectral measure P on B(R) such that P([t, 00)) = E, fort € R.

Consider the unitary one-parameter group defined by V; := fR e"* d P(x). Then
U,E, = E,; shows that U; P([x, 00)) = P([x + ¢, 00)) for x, t € R, and therefore
U:P([a,b]) = P([t +a,t + b]) fora < b. This implies

U,v,U_, :/eisde(x+t):/e”(x_”dP(x) = e By,
R R

Therefore we obtain a unitary representation of the Heisenberg group Heis(R?) =
T x R? with the product

(2,8, 0, s 1) = (zZe™ s+s,1+1) by n(zs,1):=zV,U,.

Now the assertion follows from the Stone—von Neumann Theorem ([Nel64, Theo-
rem X.3.1]). |

We now connect the Lax—Phillips construction to the dilation process. The fol-
lowing proposition is an obvious consequence of the Lax—Phillips Theorem 4.4.1
and Proposition 4.2.6.

Proposition 4.4.2 Let (U;);cr be a reflection positive unitary one-parameter group
on (&, &y, 0) for which &, is cyclic and & = {0}. Then &, is outgoing, so that
(U, &) is unitarily equivalent to the translation representation on L*(R, .#) for
some Hilbert space .# . This realization is unique up to isomorphism of A .

Example 4.4.3 Aswehave seenin Example 4.3.6, the Fourier transform immediately
yields an outgoing realization of the minimal dilation representation of a contraction
semigroup (C;)=o with trivial fixed points on . on the space & = L*(R, 7).

Remark 4.4.4 Proposition 4.4.2 shows in particular that, up to a direct summand
consisting of fixed points, the spectrum of any euclidean realization is all of R and
the representation is a multiple of the translation representation of R on L?(R).

'We thank Bent @rsted for communicating this short representation theoretic proof.
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Proposition 4.4.2 suggests to attempt a classification of reflection positive one-
parameter groups in an outgoing realization on & = L*(R,.#) with &, =
L*(R,, .#) by classifying the unitary equivalence classes of corresponding unitary
involutions.

The Fourier transform of the subspace &y = L*(R., .#) is the .# -valued Hardy
space & = H*(C,., s#) € O(C,, .#) which can be considered as a closed sub-
space of &= LXR, H) by the natural boundary-value map. The translation action
of R on & leads to the multiplication action

U, )2 =e""f(z) for feé&,.

To classify reflection positive one-parameter groups (without fixed points) now corre-
sponds to the problem to determine the involutions ¢ on & for which &, is O-positive
and GU,Q = U_,. Since the commutant of the multiplication action on & is the von
Neumann algebra L (R, B(.#)), the involution § must be of the form

©@f)(p) =m(p)f(—p), where m: R — U(A)

is a unitary operator in L*(R, B(.#)), which basically is a measurable map with
values in U(.#)) satisfying m(—p) = m(p)* = m(p)~' almost everywhere. That
the Hardy space is 6-positive is by (4.11) equivalent to the positive definiteness of
the B(.#)-valued kernel

_ om(p)
R(z,w) := | ——————dp. 4.14)
r (2 —ip)(W —ip)
In Example 4.3.6, we have seen that this is the case if m(p) = g;—;ﬁ for a strictly

positive operator H on .# . This corresponds to the case of reflection positive one-
parameter groups of Markov type.

Problem 4.4.5 Characterize unitary-valued functions m € L*(R, B(.#)) with
m(—p) = m(p)* for which the kernel (4.14) on C, is positive definite.

Notes

Section 4.1: The material discussed briefly in Sect. 4.1 is contained in [JNO18]. For
recent progress in the local theory of positive definite functions on groups we refer
to [JN16, JPT15].

Section 4.2: A version of Corollary 4.3.2 for reflection positivity on the group Z
can be found in [FILS78, Proposition 3.2]. In this context reflection positivity is also
analyzed in [JT17].

For the special case where ¢(0) = 1, strongly continuous reflection positive func-
tions ¢: R — B(V) are called (OS)-positive covariance functions in [K177], and
Proposition 4.3.1 specializes to [K177, Remark 2.7].
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Corollary 4.3.3 can also be found in [SzN10, TheoremI.8.1]. For a detailed
account on unitary dilations of semigroups, we refer to [SzN10]; see in particular
Proposition 4.3.5.



Chapter 5 ®)
Reflection Positivity on the Circle oo

In this chapter we turn to the close relation between reflection positivity on the
circle group T and the Kubo—Martin—Schwinger (KMS) condition for states of C*-
dynamical systems. Here a crucial point is a pure representation theoretic perspective
on the KMS condition formulated as a property of form-valued positive definite
functions on R: For 8 > 0, we consider the open strip

Sp={zeC:0<Imz < B}

For a real vector space V, we say that a positive definite function ¢ : R — Bil(V)
(Definition A.1.5) satisfies the S-KMS condition if Y extends to a pointwise con-
tinuous function ¥ on ?jg which is pointwise holomorphic on .# and satisfies
V(i +1)=v({) fort € R.

The key idea in the classification of positive definite functions satisfying a KMS
condition is to relate them to standard (real) subspaces of a (complex) Hilbert space
which occur naturally in the modular theory of operator algebras [LoO8]. These
are closed real subspaces V C J# for which V NiV = {0} and V + iV is dense.
Any standard subspace determines a pair (A, J) of modular objects, where A is a
positive selfadjoint operator and J an anti-linear involution (a conjugation) satisfying
JAJ = A~'. The connection is established by

V =Fix(JAY?) = (£ € 2(AY?): JAY?e = &), 5.1)

A key result is the characterization of the KMS condition in terms of standard sub-
spaces (Theorem 5.1.7) which also contains a classification in terms of an integral
representation.

For a function ¢ satisfying the -KMS condition, analytic continuation to 7};
leads to an operator-valued function

¢: (0,81 > B(Vc) by (&, ¢M)n) =&, n) for §neV.

© The Author(s) 2018 51
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This function satisfies ¢(8) = ¢(0), hence extends uniquely to a weak operator
continuous function ¢: R — B(V() satisfying

Gt +B)=¢() for teR (5.2)

Here we write complex linear operators on Ve as A + i B with A, B € B(V) and put
A+iB=A—-iB.

Recall the group R; = R x {e, t} with 7(¢) = —t¢. In Theorem 5.2.3 we show
that there exists a natural positive definite function

f: R, — Bil(V) satisfying f(t,t) = ¢(t).

The function f is 28-periodic, hence factors through a function on the group

Tapr =R /228 = O2(R)

and it is reflection positive for G = T»g and G = [0, B] + 2BZ. This leads to a
natural euclidean realization of the unitary one-parameter group U, = A~/# asso-
ciated to . We conclude this section with a description of the GNS representation
of T4, ; in a natural space of sections of a vector bundle over the circle R/Zg with
two-dimensional fiber on which the scalar product is given by a resolvent of the
Laplacian as in Sect. 2.5; see also Sect. 7.4.2.

5.1 Positive Definite Functions Satisfying KMS Conditions

In this section we present a characterization (Theorem 5.1.7) of form-valued posi-
tive definite functions on R satisfying a KMS condition. We also explain how the
corresponding representation of R can be realized in a Hilbert space of holomorphic
functions on the strip .#,, with continuous boundary values (Proposition 5.1.11).

We call afunction  : ?jg — Bil(V) pointwise continuous if, for allv, w € V, the
function ¥"" (z) := ¥ (z) (v, w) is continuous. Moreover, we say that i is pointwise
holomorphic in ./, if, for all v, w € V, the function y¥""| s is holomorphic. By
the Schwarz reflection principle, any pointwise continuous pointwise holomorphic
function ¥ is uniquely determined by its restriction to R.

Definition 5.1.1 For a real vector space V, we say that a positive definite function
¥ : R — Bil(V) satisfies the KMS condition for 8 > 0 if ¢ extends to a function
¥ % — Bil(V) which is pointwise continuous and pointwise holomorphic on .%%,
and satisfies

V@i +1)=v(@) for reR. (5.3)
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Lemma 5.1.2 Suppose that  : R — Bil(V) satisfies the KMS condition for § > 0.
Then

Y(iB+2=vQ@) =y (-2 for z€.7. (5.4)
The function ¢: [0, B] — Bil(V), ¢(t) := ¥ (it) has hermitian values and satisfies
o(B—1) =) for 0<t<8§. (5.5)

It extends to a unique strongly continuous symmetric 2B-periodic function
¢ : R — Herm(V) satisfying

e(B+1)=9() and ¢(—t) =) for teR.

Proof Note that ¢ (—t) = WT = 1 (1)* holds for every positive definite function
¥ : R — Bil(V). By analytic continuation (resp., the Schwarz Reflection Principle),
this leads to the second equality in (5.4). Likewise, condition (5.3) leads to the first
equality in (5.4). This in turn implies (5.5), and the remainder is clear. U

To obtain a natural representation of ¥, we now introduce standard subspaces
V C JZ and the associated modular objects (A, J).

Definition 5.1.3 A closed real subspace V of a complex Hilbert space 77 is said to
be standard if

VNiV={0} and V +4+iV =7.

For every standard real subspace V C 7, we define an unbounded anti-linear
operator

S: 928 =V+iV >, SE+in):=&—in for & neV.

Then S is closed and has a polar decomposition § = J A!/2, where J is an anti-unitary
involution and A a strictly positive selfadjoint operator (cf. [NO15b, Lemma 4.2];
see also [BRO2, Proposition 2.5.11], [Lo08, Proposition 3.3]). We call (A, J) the
pair of modular objects of V.

Remark 5.1.4 (a) From S? = id, it follows that the modular objects (A, J) of a
standard subspace satisfies the modular relation

JAJ = A7 (5.6)
If, conversely, (A, J) is a pair of a strictly positive selfadjoint operator A and an

anti-unitary involution J satisfying (5.6), then S := J A'/2 is an anti-linear involution
with Z(S) = 2(A'/?) whose fixed point space Fix(S) is a standard subspace. Thus
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standard subspaces are in one-to-one correspondence with pairs (A, J) satisfying
(5.6) (cf. [Lo08, Proposition 3.2] and [NO]Sb, Lemma 4.4]).

(b) As the unitary one-parameter group (A'),cr commutes with J and A, it leaves
the real subspace V = Fix(S) invariant.

The following proposition ((NO15b, Proposition 3.1]) provides various charac-
terizations of unitary one-parameter groups with reflection symmetry. As we shall
see below, these are precisely those for which a euclidean realization on Tog ; can
be obtained by a positive definite function satisfying the S-KMS condition.

Proposition 5.1.5 For a unitary one-parameter group (U,);cr on F€ with spectral
measure E : B(R) — B(J7), the following are equivalent:

(1) There exists an anti-unitary involution J on 7 with JU,J = U, fort € R.
(il) For s := E(RY)H, the unitary one-parameter groups U,+ = Ul and
U .= U_|»_ are unitarily equivalent.
(iii) The unitary one-parameter group (U, F7) is equivalent to a GNS representation
wv, ), where yr : R — B(V) is a symmetric positive definite function.
(iv) There exists a unitary involution 6 on ¢ with U0 = U_, fort € R.

Remark 5.1.6 1t is easy to see that conditions (i)—(iv) even imply the existence of
an extension of U to a representation of the group R, x {1} = (R*); = O, (R)
by unitary and anti-unitary operators, where 7 is represented by a unitary involution
and (0, —1) by a conjugation J. Since any unitary representation is a direct sum of
cyclic ones, it suffices to verify our claim in the cyclic case. Under the assumption of
Proposition 5.1.5, (U, %) is equivalent to the representation in .7’ = L*(R, v) fora
finite symmetric measure v givenby (U, f)(p) = e''? f(p). Then (0f)(p) := f(—p)
is a unitary involution with OU,0~! = U_, and (Jf)(p) := f(—p) is an anti-unitary
involution with JU,J~! = U, fort € R. Clearly, 6 and J commute.
For a systematic discussion of anti-unitary representations we refer to [NO17].

Theorem 5.1.7 (KMS Characterization Theorem:; [NO16, Theorem 2.6]) Let V be
a real vector space, let f > 0, and let ¥ : R — Bil(V) be a pointwise continuous
positive definite function. Then the following are equivalent:

(1)  satisfies the B-KMS condition.
(ii) There exists a standard subspace V, in a Hilbert space 7 and a linear map
Jj: V. — Vi such that

YOE ) =&, A i) for 1eREneV. (5.7)

(iii) There exists a (uniquely determined) regular Borel measure p on R with values
in the cone Bilt (V) C Bil(V), consisting of forms with a positive semidefinite
extension to V¢, which satisfies di (—1) = e P*d (L) and

w(t)zfe'”du(,\) for teR.
R



5.1 Positive Definite Functions Satisfying KMS Conditions 55

If these conditions are satisfied, then the function : 7}3 — Bil(V) is pointwise
bounded.

The equivalence of (i) and (ii) in this theorem describes the tight connection
between the KMS condition and the modular objects associated to a standard sub-
space. Part (iii) provides an integral representation that can be viewed as a classifi-
cation result in the sense that it characterizes those measures whose Fourier trans-
forms satisfy the KMS condition from the perspective of Bochner’s Theorem (The-
orem A.2.1).

Example 5.1.8 1If V =R and Bil(V) = C, Bil" (V) = R, the integral represen-
tation in Theorem 5.1.7(iii) specializes to the integral representation obtained in
Remark 4.1.7 for B-periodic reflection positive functions on R:

p() ==y it) =2Z(w@) for 0=<1=8§,

for a finite measure © on R that can be written as du(A) = du()) + Eﬂ)‘du+(—)h)
for a measure p on Rso. This shows already that, in this case, the S-periodic
extension of the function ¢ to R is reflection positive. Below we shall see how this
observation can be extended to the general case.

The corresponding Hilbert space can be identified with 7 = L*(R, 1), where
U, f)(X) = €™ f (1), so that U, = A~/"/# leads to the modular operator

AN =e P f).

As pisfinite, 1 € 77 and we have ¥ (1) = (1, U, 1) fort € R. To determine a suitable
standard subspace V|, respectively, a conjugation J commuting with U, we note that
the requirement 1 € V) and the requirement that J commutes with U lead to

(IR = e P f(=h),

so that the corresponding operator S := JA'/? is given by (Sf)(A) = f(—1), and
this leads to

Vi={fe Lz(R, w: f(=x) = m w-almost everywhere}.

We shall continue the discussion of this example in Remark 5.2.6 below.

Remark 5.1.9 The KMS condition is well known in Quantum Statistical Mechanics
as a condition characterizing quantum versions of Gibbs states, resp., equilibrium
states. The monograph [BR96] and the lecture notes [Frol1] are excellent sources
for more information on KMS states and their applications.

We now explain how the classical context of KMS states of operator algebras
relates to our setup. Consider a C*-dynamical system (<, R, a), i.e., a homomor-
phisma: R — Aut(</), where <7 is a C*-algebra. Here we deal with the real linear
space
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Vi=o) ={Aed: A" = A}

of hermitian elements in <7, so that any state w € «/* defines an element of Bil(V)
by (A, B) — @w(AB). An a-invariant state @ on .« is called a S-KMS state if and
only if

¥: R — Bil(e), ¥()(A, B) := w(Ax;(B))

satisfies the S-KMS condition (cf. [N()le, Proposition 5.2], [RvD77, Theorem
4.10)). If (w,, U, 5, £2) is the corresponding covariant GNS representation of
(«, R, a) (cf. [BGN17, BR02]), then

w(A) = (2,7,(A)2) for Aceo/ and U’R2 =5 for teR.
Therefore

V(1)(A, B) = w(Ax,(B)) = (£2, 7, (A (B))S$2)
= (2, 1,(A)U7,(B)U®,2) = (7,(A)$2, Uf’r,,(B)$2)

for A, B € «f,. We conclude that the corresponding standard subspace of J7, is
Vi =1, (#,)S2.

Corollary 5.1.10 Ify : R — Bil(V) satisfies the 8-KMS condition, then the kernel
K: yﬁ/z X yﬂ/z — Bll(V), K(Z,W)(E, 77) = W(Z—W)(E,U) (58)
is positive definite.

Proof From (5.7) in the KMS Characterization Theorem 5.1.7, we obtain by unique-
ness of analytic continuation

Y—WE ) = (AP jE), AP i), EneV,zwe Fpp (59)
Now Remark A.1.2 shows that K is positive definite. (]

Now that we know from Corollary 5.1.10 that the kernel K in (5.8) is positive
definite, we obtain a corresponding reproducing kernel Hilbert space consisting of
functions on /> x V which are linear in the second argument and holomorphic
on #g> in the first. We may therefore think of these functions as having values
in the algebraic dual space V* := Hom(V, R) of V. We write & (%, V*) for the
space of functions f: % — V* for which all function f"(z) := f(z)(n),n € V,
are continuous on .#,> and holomorphic on the open strip .#,». For a proof of the
following proposition, see [NO16, Proposition 2.9].
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Proposition 5.1.11 (Holomorphic realization of /%, ) Assume that 1 : R — Bil(V)
satisfies the B-KMS condition, let ?}; — Bil(V) denote the corresponding exten-
sion and 7ty C O(Spj2, V*) denote the Hilbert space with reproducing kernel

K(Zv W)(éa 77) = I//(Z _W)($3 77) for 51 ne V,

iLe.,

f@@E) =(K.e, f) for feHy, where K.:w)m)=vymw—2)0,E).
Then

U H@) = fz+1), teRzeTpp
defines a unitary one-parameter group on Jy,

JjrV = Ay, j@) =@, n) = Koy

is a linear map with UV -cyclic range, and

Y(OE ) = (&), U jm) for 1eREnEV.

The anti-unitary involution J, on 3¢, corresponding to the standard subspace

Vi C S, from Theorem 5.1.7 is given by (J; f)(2) := f(Z—i— %)

5.2 Reflection Positive Functions and KMS Conditions

In this section we build the bridge from positive definite functions ¥ : R — Bil(V)
satisfying the S-KMS condition to reflection positive functions on the group Tog ; =
0, (R).

We have already seen in Lemma 5.1.2 that analytic continuation leads to a sym-
metric 2-periodic function ¢: R — Bil(V) satisfying ¢(t + 8) = (1) for t € R
and ¢(¢) = Y (it) for 0 <t < B. We shall construct a positive definite extension
f: R, = Bil(V) with f(z, t) = ¢(¢) for t € R; actually the values of f will be
represented by bounded operators on V¢, so that we also consider it as a B(V)-
valued function. By construction, f is then reflection positive with respect to the
interval [0, 8/2] =: G+ € G := R in the sense of Definition 3.4.1.

Building on Theorem 5.1.7, our first goal is to express, for a standard subspace
V C 4, the Bil(V)-valued function

ey : [0, ] = Bil(V),  @y()(E, n) = yinE, n) = (AV2g, a2y (5.10)
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from (5.9) in terms of a B(V¢)-valued function. To this end, we shall need the
description of a standard subspace V| in terms of a skew-symmetric strict contraction
C on V| (||ICv| < ||v|| for O # v), and this leads to a quite explicit description of ¢
that is used to obtain the main theorem asserting that, for every positive definite
function ¢ : R — Bil(V) satisfying the B-KMS condition, there exists a reflection
positive function f: R, — B(V¢) satisfying

vnGE,n =&, far,on) for §neV,0<r<p.

Then the corresponding GNS representation (U, #7) of the group Top » = O (R) is
aeuclidean realization of the unitary one-parameter group ( ATH/BY, g corresponding
to ¥ via (5.7) because & = 7 leads to & = Jy,, , = H;, (cf. Theorem 3.4.5).

The following lemma describes the complex-valued scalar product on a standard
real subspace in terms of the corresponding modular objects (A, J). Forv,w e V,
we write (v, w)y := Re(v, w) ».

Lemma 5.2.1 Let V C 7 be a standard subspace. Then there exists a skew-
symmetric strict contraction C on V with

Im(§, n)w = (§,Cn)y for & neV. (5.11)

Proof Since w(v, w) := Im(v, w) 4 defines a continuous skew-symmetric bilinear
form on V, there exists a uniquely determined skew-symmetric operator C € B(V)
withw (v, w) = (v, Cw)y forv,w € V. As | Im{v, w) | < |Iv| - ||w| forv,w e V,
we have ||C|| < 1,1i.e., C is a contraction.

To see that C is a strict contraction, assume ||Cv|| = |||, i.e., v € ker(C? + 1).
For w := Cv we then have C(v 4+ iw) = w — iv = (—i)(v + iw). This leads to the
relation (v —iw,v —iw)» = 0and thusv —iw = O impliesv € V. NiV = {0}. O

With the preceding lemma, we can express the function ¢y from (5.10) in terms
of C by bounded operators on V.

Lemma 5.2.2 ([N()l6, Lemma 4.2]) Let V C 3 be a standard subspace with
modular objects (A, J) and C be the skew-symmetric strict contraction from
Lemma 5.2.1. Then the function gy (t)(&, n) = (AV?PE, A?Py) 4 from (5.10) can
be written as

ov(O(E ) = (E, @)y, for te€[0,Bl.6,ne Ve (5.12)
with
Pty =1 +iC)'FA —iC)P e B(Vp).

Note that ¢(0) = 1+ iC is not real if C # 0 and that both operators 1 £ iC are
bounded positive hermitian with a possibly unbounded inverse. Therefore
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Y(2) = A+iC)"* P A —iC)~/F e B(Vp)

is well-defined for 0 <Imz < 8, strongly continuous and holomorphic for
0 < Imz < B. One also verifies immediately the 8-KMS relation

m=lﬁ(iﬂ +7) for 0<Rez<§g.

Theorem 5.2.3 (Reflection positive extension) Let V C S be a standard subspace
andlet C = I|C| € B(V) be the skew-symmetric strict contraction satisfying (5.11).
We assume that ker C = {0}, so that I defines a complex structure on V. We define
a weakly continuous function ¢ : R — B(V¢) by

§@)=A+iO)'"PA—-iC)P for 0<t<p and §t+B)=¢(1)

for t e R. Write ¢(t) = ut(t) +ilu=(t) with ut(t) € B(V) and u*(t +B) =
+u*(t). Then

fiR, — B(Vp), ft,t):=u"@t)+ GD)u"(t), teR,eeci0,1},

is a weak-operator continuous positive definite function with f(t,t) = ¢(t) for
t € R. It is reflection positive with respect to the subset [0, B/2] € R in the sense
that the kernel f((t, T)(—s, e)) = f({t+s,7),0 <s,t < B/2, is positive definite.

Combining the preceding theorem with Lemma 5.2.2, we obtain in particular:

Corollary 5.2.4 Let V be a real vector space and let ¥ : R — Bil(V) be a con-
tinuous positive definite function satisfying the B-KMS condition. Then there exists
a pointwise continuous function f: R; — Bil(V) which is reflection positive with
respect to the subset [0, /2] C R and satisfies

ft,ry=vGt) for 0<t<§p and f(@t+B,1)= f(t,t) for teR.

In Theorem 5.2.3 we obtained for certain functions ¢ on the coset R x {t} C
R, reflection positive extensions f to all of R;. The following lemma shows that,
conversely, every reflection positive function on T4 ; leads by analytic extension to
a positive definite function on R satisfying the S-KMS condition.

Lemma 5.2.5 Let f: R, — Bil(V) be a pointwise continuous function which is
reflection positive with respect to [0, /2] CR such that the function
¢: R — Bil(V), p(t) := f(¢, 7) satisfies

p(t) =p(=t) =B +1) for teR. (5.13)
Then there exists a unique -KMS positive definite function ¥ : R — Bil(V) with

@) =y () for 0<t=<§p.
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Proof Reflection positivity implies that the kernel w(%) for0 <1t,s < Bispositive
definite. By Theorem A.2.3 there exists a Bil " (V)-valued Borel measure 1 on R such
that

<p(t)=/e—“du(,\) for 0<1t<§B. (5.14)
R

The continuity of ¢ on [0, 8] actually implies that the integral representation also
holds on the closed interval [0, 8] by the Monotone Convergence Theorem. In partic-
ular, the measure 1 is finite. Therefore its Fourier transform v (1) := [, " du(2)
is a pointwise continuous Bil(V)-valued positive definite function on R. Further,
(5.13) implies

P du(—1r) = d(n) (5.15)

and Theorem 5.2.3 shows that ¢(¢) = ¥ (it) holds for the B-KMS function
¥: R — Bil(V). [

Remark 5.2.6 From (5.14) it follows that the function ¢ is real-valued if and only if
the measure p takes values in the subspace of real-valued forms in Bilt (V).

For the case where V C J7 is a standard subspace and ¢ = @y as in (5.10), we
have ¢y (0) =1+ iC, so that C = 0 if ¢y is real-valued, and this in turn implies
that @y is constant.

Therefore the only way to obtain non-constant real-valued functions is to ensure
that the map j: V — V) in Theorem 5.1.7 takes values in a subspace j (V) which
is isotropic for the skew-symmetric form w (&, ) := (¢, Cn)y = Im(&, n) 5. This
condition corresponds to ¢(0) being real, but is still weaker than ¢(#) being real for
every t € [0, B].

If ¢ is real-valued, then f (¢, t°) := ¢(¢) for t € R, ¢ € {0, 1} is r-biinvariant,
B-periodic and reflection positive on R, (Lemma 3.4.3(ii)).

It is instructive to take another look at Example 5.1.8, where # = L*(R, u) fora
finite measure satisfyingdu (1) = du, (1) + e#*d (=) for ameasure 114 on Ro.
Here the standard subspace V| consists of all functions satisfying f(—1) = f()
almost everywhere on R. For simplicity we assume that £ ({0}) = 0 (which excludes
constant summands). For& € Vi, therestriction &, := &|r, determines § completely,
so that we may consider V; as a space of functions on R ;. The scalar product on this
space is given by

E o = fR EMn) dur) = fo E ML) + E Iy We PY) dpy (b).

For the real part we obtain

(E,m)v, =Rel&, n)wr = fo Re (E-(Mn+ )AL+ e Py dus (),
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and
oo
(&, n) =1Im(§, n)r = / Im (£, Wy () — e Py dpy ()
0
for the imaginary part. We conclude that

Vi Z LRy, (1 +e ) dpy(r); C)

and that the skew-symmetric operator C representing w is given by

1—e P
CHM®N) =CH)f(), where C) = —l—l g

(cf. [N016, Lemma B.9]). Hence the corresponding complex structure is given by

(If)(A) = —if(X) and |C| = iC corresponds to multiplication with the positive

function iC (1) = % onR,.

I+e
The subspace
V= PRy, (1+ e ) duy (1 R)
of real-valued functions is w-isotropic. As it is invariant under the operators
o) = A+i0O)'FPA—i0)F =@+ |Ch' A —|cn,
the corresponding function

¢: [0, B] = Bil(V), @@)(E.n) =&, ¢®n), §neV

is real-valued.

From the scalar case (V = R) in Remark 4.1.7 one easily obtains the following
characterization of B-periodic operator-valued reflection positive functions on R.
It is concerned with the case where ¢ is real-valued, so that f is tr-biinvariant
(Lemma 3.4.3), corresponding to function on the circle group Ty (see also [KL8I,
Theorem 3.3]).

Theorem 5.2.7 A B-periodic pointwise continuous function ¢: R — Bil(V) is
reflection positive with respect to [0, B/2] if and only if there exists a BilT (V)-valued
Borel measure (1 on [0, 00) such that

o) = f e e B (0 for 0<t<B§B. (5.16)
0

Then the measure 1 is uniquely determined by .
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Definition 5.2.8 (Euclidean realization in the periodic case) For any reflection pos-
itive function f as in Lemma 5.2.5, the general discussion in Theorem 3.4.5 shows
that, for the corresponding reflection positive representation on & = 77, we obtain
&= Ao

As ¢ is pointwise holomorphic on the strip .#%, it further follows by restriction
that 7, , = 7 (cf. Proposition 5.1.11). Therefore the unitary one-parameter
group (Uf f)(z) := f(z+1) on & whose infinitesimal generator is given by diz,
is obtained from the unitary representation U/ on & by the OS transform as in
Example 3.3.5, even ifitis not positive. We thus call (U, ;) aeuclidean realization
of U¢ (cf. Definition 3.3.4).

At this point it is a natural question which unitary one-parameter groups (U¢, .7¢)
have a euclidean realization. This can now be stated in terms of the conditions
discussed in Proposition 5.1.5 ([NOle, Theorem 3.4]):

Theorem 5.2.9 (Realization Theorem) A unitary one-parameter group (Uf);cr on
a Hilbert space ¢ has a euclidean realization in terms of a reflection positive
representation of (Tog, Tap 4, 0) if and only if there exists an anti-unitary involution
J on S commuting with U°.

In the setting of Theorem 5.2.9, a particular euclidean realization can be obtained
as follows. Let U¢ = ¢''# be a unitary one-parameter group on .7 and J be a unitary
involution on % with JHJ = —H. Then A := e satisfies JAJ = A~L, so that
V := Fix(J A'/?) is a standard subspace and Theorem 5.1.7 leads to a positive defi-
nite function ¥ : R — Bil(V) satisfying the 5-KMS condition. Now Theorem 5.2.3
yields a reflection positive function on R, resp., T»g ;, which provides a euclidean
realization of U°¢.

5.3 Realization by Resolvents of the Laplacian

Before we describe a realization of the GNS representation (U, ;) in spaces of
sections of a vector bundle, let us recall the general background for this.

Remark 5.3.1 For a B(V)-valued positive definite function f: G — B(V), the
reproducing kernel Hilbert space ¢y = J¢k with kernel K (g, h) = p(gh™) =
K, K is generated by the functions

Kpw = K/w with K, (g) = K,Kjw = K(g, h)w = p(gh™"Hw.
The group G acts on this space by right translations

(Ugs)(h) :=s(hg).

If P € G is a subgroup and (p, V) is a unitary representation of P such that
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f(hg) =ph) f(g) forall geG,heP,

then
I S F(G, V), ={s:G—V: (Vg eG)(Yh € P)sthg) = p(h)s(g)}.

Therefore 7, can be identified with a space of sections of the associated vector
bundle

V:=(V xpG)=(V xG)/P,

where P acts on the trivial vector bundle V x G over G by h.(v, g) = (p(h)v, hg).

To derive a suitable characterization of the functions f arising in Theorem 5.2.3,
we identify 2g-periodic functions s on R via s = s; + s_ with pairs of func-
tions (s, s_) satisfying s+ (8 + ) = %54 (¢). Accordingly, any 2 8-periodic function
s: R — V¢ defines a function

S:R— Vé, §=(sy,s_) with §(ﬂ+t)=((l)_01>§(t).

In this sense § is a section of the vector bundle over Ty with fiber V¢ defined by

the representation of BZ, specified by p(8) = <(1) _01> . Splitting the B(V)-valued

positive definite function
f: R, — B(Vp), f&, ™) =ut@)+u" )G for teR,ee{0,1)

asin Theorem 5.2.3 into even and odd part with respect to the -translation, we obtain
the following lemma which shows in particular that we may identify the Hilbert space
M} = H}: as a space of section of a Hilbert bundle VZ x, R, over the circle Tg
with fiber V2.

Lemma 5.3.2 For the subgroup P := (ZB); = Zp x {e, t} of G :=R,, we con-
sider the unitary representation p : P — U(Vé) defined by

p(B.e) = ((1) _°1> and  p(0,7) = ((1) 101)

where I is the complex structure from the polar decomposition C = I|C| on the real
Hilbert space V. Then

~ ¢ + 0
F* R = BOR) = MyBOVE).  fi.t) = (“ o w i ,)g>

is a positive definite function satisfying



64 5 Reflection Positivity on the Circle

fi(hg) = p(h) f*(g) for he P,gegG. (5.17)

The corresponding GNS representation (U . F}+) is equivalent to the GNS repre-
sentation (U7, Fr).

Proof The first assertion follows from

: oy _ (a0 0 _(v@o 0
f((o”)(”))_( 0 w(—r)(il)”‘)_( 0 “‘0)("’)”1>

and

ey _ (U@ 0
ACRE )_( 0 —u_(t)(i1)5>

As the GNS representation (U/, 7#}) decomposes under the unitary involution U ﬁf

into the 4 1-eigenspaces, it is equivalent to the GNS representation (U7, F}:) cor-
responding to f*. O

Remark 5.3.3 (a) In view of (5.15), there exists a Bil™(V)-valued measure v on
[0, 0o) for which we can write dju(}) = dv(r) + e?*dv(—A). For v = v; + ivs,
this leads for0 <t < B to

o0 o0
o) = / e e B gy (h) +i / e —em B gy (1), (5.18)
0 0

In particular, the most basic examples correspond to Dirac measures of the form
v =6, - (y + iw), where §, is the Dirac measure in A > 0:

(p(t) — (e—t)u + e—(ﬁ—l))u)y + i(e—t)\ _ e—(ﬁ—f))»)w — e—t)uh + e—(ﬁ—l))\ﬁ’
where i :=y 4+ iw € Bilt (V).

Writing w (&€, n) = y (&, Cn) (Lemma 5.2.1) and replacing V by the real Hilbert
space defined by the positive semidefinite form y on V, we obtain the B(V¢)-valued
function
)= (™ 4e B 4 (e — e BDNic = A +iC)+ e P a1 - i0)
for 0 <t < B. This leads to

F@. 1) =1+ e YU (1 +u; (1)|CIGT)F) for teR, &€ (0,1},

where

N e ie*(ﬂ*l‘)k N N
M}‘(I)ZW for OSIEIB, u; (t+,3)::|:bt)\ ([)
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(b) This can also be formulated in terms of forms. With y (&, n) = (&, n)y and
hE,m=yE n+ioE n=E A+iCn)y. = A +iI|CDn)v.,

we get f(1, 79§, n) = (1 +e )&, (ul ()1 +u; OICIGDH?)n).

We have seen above how to obtain a realization of the Hilbert space .7/ as a space
Hy: of sections of a Hilbert bundle V with fiber V2 over the circle Ty = R/BZ. In
this section we provide an analytic description of the scalar product on this space if

|C] = ul,0 < u < 1,sothat if—‘lg: = e*1for A := log (if—ﬁ) > 0. We shall see that

it has a natural description in terms of the resolvent (A> — A)~! of the Laplacian A
of T acting on section of the bundle V.
As in Lemma 5.3.2, we write

4
ft(t, %) = (M)L (()l‘)l M;(t;)(il)‘E) IS B(Vé) = M,(B(Vp)),

— print/p +_ p - _ )
F(;lr X)) =e we then have u; =), ¢5, xon and u;, =, ;501 Xont1s
where

g I=(=Dre P 2B 1—(=D)e P+ 2 1
A= =

- T +e P B2+ mm)?  1+ePr B A2+ (n/B)?

for n € 7Z (the rightmost factors are called bosonic Matsubara coefficients if n is even
and fermionic if # is odd [DG13, Sect. 18]). With

1—e P 2n BN 24 21
A - = _ ) — A N
k= = tanh( 5 ) 3 and ¢* : 5 (5.19)

we thus obtain

A A
A C+ c

- A -
Con = A2+ 2nm/B)?’ Comy1 = W+ (@nt /B2 (5.20)

The following proposition shows that the positive operator (A>1 — Ag)~' on the
Hilbert space of L?-section of V defines a unitary representation of R, which is
unitarily equivalent to the representation on ¢} (cf. Lemma 5.3.2).

Proposition 5.3.4 For . > 0, let 5, be the Hilbert space obtained by completing
the space

T, :=1{s € C*R,, V@): (Vg € R, h € (ZB).) s(hg) = p(h)s(g)}

with respect to
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N 21— Ap)~! d h A—d2
(81, 82) '_ﬁ/o (s1(t,e), (W1 — AR) " '52)(t,e)) dt, where R= 5

On S, we have a natural unitary representation U* of R, by right translation which
is unitarily equivalent to the GNS representation (U ﬁ, J}:). Here the corresponding
inclusion map is given by

v i 0 () =V S () Ve e (1) 62

nez nez

This result provides a natural euclidean realization of our representation on the
Riemannian manifold Ty = S' in the spirit of Theorem 2.5.1. For more recent work
in this direction see [NO17, FNO18].

Remark 5.3.5 In the context of anti-unitary representations, it is interesting to
observe that the reflection positive representation of R, resp., Top . described in
Proposition 5.3.4 carries a natural anti-unitary involution given by

(I)t, %) :=s(L —1,7¢) for teR,ee{0,1).

In fact, one readily verifies that J defines an anti-unitary involution on %, . We further
have JU,J = U, and JU,;J = U_, fort € R.

Notes

The material in this chapter mainly draws from [NO16] which continued the investi-
gations from [NO15b] only dealing with real-valued functions ¢. This was motivated
by the work of Klein and Landau in [KL81]. A long term goal is to combine our
representation theoretic approach to reflection positivity with KMS states of operator
algebras and Borchers triples corresponding to modular inclusions [NO17, BLS11,
B092, Lo08, Sch99]. R

We have seen that the unitary one-parameter groups (U¢, &) arising from reflec-
tion positivity on T,g always commute with an anti-unitary involution. It would be
nice to incorporate anti-unitary operators such as conjugations and anti-conjugations
more systematically into the whole setup of the OS transform on the level of repre-
sentations. This requires a better understanding of the role of anti-unitary operators
on the euclidean side. Some first steps to a more systematic understanding of anti-
unitary representations have been undertaken in [NO17, Nel8], but this has not yet
been connected to reflection positivity.

For KMS states of the CCR (canonical commutation relations), resp. the corre-
sponding Weyl algebra, we refer to the two papers of B. S. Kay [Ka85, Ka85b],
dealing with uniqueness of KMS states for a given one-parameter group of symme-
tries and the embedding of KMS representations into irreducible ones by a doubling
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procedure (see also [BR96] for a more direct but less conceptual approach to the
uniqueness of KMS states).

Interesting references for the relation of the KMS condition with (quantum) sta-
tistical mechanics are [Frol1] and [BR96].



Chapter 6 ®)
Integration of Lie Algebra e
Representations

A central problem in the context of reflection positive representations of a symmetric
Lie group (G, 7) on a reflection positive Hilbert space (&', &, 0) is to construct on
the associated Hilbert space & a unitary representations of the 1-connected Lie group
G*¢ with Lie algebra g¢ = h 4+ iq. As we have seen in Remark 3.3.9, the main point
is to “integrate” a unitary representation of the Lie algebra g¢ on a pre-Hilbert space.
In general this problem need not have a solution, but we shall see below that in the
reflection positive contexts, where the Hilbert spaces are mostly constructed from
G-invariant positive definite kernels or positive definite G-invariant distributions,
there are natural assumptions that apply in all cases that we consider.

For any reflection positive representation of (G, 7), we immediately obtain a
unitary representation of the subgroup H = G{, on &, so that we have to find a
unitary representation on the one-parameter group expg.(Riy) for y € q. Since we
have already a symmetric operator d/l\](x) on a dense subspace of &, the essential
point is to show that it is essentially selfadjoint.

In Sect. 6.1 we introduce Frohlich’s Theorem which provides a criterion for the
essential selfadjointness of a symmetric operator. In Sect. 6.2 we connect this tool
with the geometric context, where we consider a pair (8, o) of a homomorphism
B g — V(M) to the Lie algebra of smooth vector fields on a manifold M which is
compatible with a smooth H-action o. For any smooth kernel K on M satisfying a
suitable invariance condition with respect to (8, o), a unitary representation of G°¢
on % exists (Theorem 6.2.3). In Sect. 6.3 we show that this result remains valid
if we replace the kernel K by a positive definite distribution K € C~*°(M x M)
compatible with (8, o) (Theorem 6.3.6). We finally explain in Sect. 6.4 how these
results apply to reflection positive representations.

Throughout this section M denotes a smooth manifold modeled on a Banach
space, if not stated otherwise, and # (M) denotes the Lie algebra of smooth vector
fields on M.
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6.1 A Geometric Version of Frohlich’s Selfadjointness
Theorem

We start with Frohlich’s Theorem on unbounded symmetric semigroups as it is stated
in [Fro80, Cor. 1.2] (see also [MN12]). Actually Frohlich assumes that the Hilbert
space 7 is separable, but this is not necessary. Replacing the assumption of weak
measurability by weak continuity, all arguments in [Fro80] work for non-separable
spaces as well.

Theorem 6.1.1 (Frohlich’s Selfadjointness Theorem) Let H be a symmetric opera-
tor defined on the dense subspace 9 of the Hilbert space 7. Suppose that, for every
& € 9, there exists an gz > 0 and a differentiable curve ¢ : (0, &¢) — 2 satisfying

¢'(t) = Ho(t) and lim () = &.

Then the operator H is essentially selfadjoint and ¢(t) = e’ﬁé inthe sense of spectral
calculus of selfadjoint operators.

For later applications, we explain how Frohlich’s Theorem applies to linear vector
fields on locally convex spaces. Let V be a locally convex space and the kernel
K : V xV — C be a continuous positive semidefinite hermitian form. Then the
corresponding reproducing kernel space /% can be identified with a linear subspace
of the space V* of anti-linear continuous functionals on V (cf. Sect. A.1). It is
generated by the functionals K,,(v) := K (v, w), w € V, satisfying

<va KW) =K,(v) =K@, w).
So it can also be interpreted as the completion of V' with respect to the hermitian
form K.
The continuity of the kernel K implies that the linear map V — %, v+ K, is
continuous. For any continuous linear operator L V — V, the formula

LY. 9, - s, LEr:=—-roL, 9,:={reH# CV*:roL e i)

defines an unbounded closed operator on .7#% . If there exists an operator L* : V. — V
with

K(@,Lw)=K(L*v,w) for v,weV,

then we have
LXK, =K_;., for veV. (6.1)

We can now obtain from Theorem 6.1.1 ((MNO15, Cor. 4.9]):



6.1 A Geometric Version of Frohlich’s Selfadjointness Theorem 71

Corollary 6.1.2 Let L : V — V be a continuous linear operator on the locally
convex space V which is K-symmetric in the sense that K (Lv, w) = K (v, Lw) for
v,w € V. Suppose that, for everyv € V, there exists a curve y, : [0, ¢,] — V start-
ing in v and satisfying the differential equation

W) = Ly ().

Then the restriction LX| s 1o the dense subspace %ﬁ? ={K,:veV}C # is
essentially selfadjoint with closure LX. For 0 <t < ¢,, we have e K, = Ky, -

Now we turn to the nonlinear setting of smooth positive definite kernels on man-
ifolds. Here symmetric operators are obtained from smooth vector fields.

Definition 6.1.3 Let K € C*°(M x M, C) be a smooth positive definite kernel and
Hx S C*>(M) be the corresponding reproducing kernel Hilbert space.
(a) For a smooth vector field X € ¥ (M), we write

Zx 1 C¥(M) > C*(M), (Zxf)(m) :=dfm)X(m)

for the Lie derivative on smooth functions. We thus obtain on the reproducing kernel
space ¢k the unbounded operator

ff = ZXx|gy : Dx - Hx, Where Dy ={p € Hyx : Lxp € Hk}.
(6.2)
(b) A vector field X € ¥ (M) is said to be K -symmetric (K -skew-symmetric) if

D?;K:s.f)%l( for e=1, resp., &=—1.

Here the superscripts indicate whether the Lie derivative acts on the first or the second
argument of K.

The following theorem can be obtained quite directly from Frohlich’s Theorem if
the Hilbert space under consideration has a smooth positive definite kernel ((MNOL15,
Theorem 4.6]):

Theorem 6.1.4 (Geometric Frohlich Theorem) Let M be a smooth manifold and
K be a smooth positive definite kernel. If X is a K -symmetric vector field on M, then
Zx |wo is an essentially selfadjoint operator on Fx whose closure coincides with
the operator Z§. For m € M and an integral curve vy, : [0, &,] — M of X with
Y (0) = m, we have 4K, = Ky, o for0 <t <e,.

6.2 Integrability for Reproducing Kernel Spaces

We now turn to actions of a symmetric Lie algebra (g, t) on a smooth manifold M
that are compatible with a smooth positive definite kernel K. Our first main result is
Theorem 6.2.3 which provides a sufficient condition for the Lie algebra representation
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of the dual Lie algebra g° coming from an action of g on ¢ by Lie derivatives
to integrate to a unitary representation of the corresponding simply connected Lie
group G°. Applying this result to open subsemigroups of Lie groups, we further
obtain an interesting generalization of the Liischer—Mack Theorem [LM75, HN93]
for semigroups which no longer requires the existence of a polar decomposition.

Definition 6.2.1 Let (g, 7) be a symmetric Lie algebra, and let 8 : g — 7 (M) be
a homomorphism. A smooth positive definite kernel K € C*°(M x M, C) is said to
be B-compatible if the vector fields in S(h) are K-skew-symmetric and the vector
fields in B(q) are K-symmetric.

Definition 6.2.2 Let H be a connected Lie group with Lie algebra . A smooth right
action of the pair (g, H) on M is a pair (8, o), where

(@) 0: M x H— M, (m,h) — o,(m) =m.h is a smooth right action,
(b) B:g— V(M) is ahomomorphism of Lie algebras, and
(¢) do(x) = B(x) forx € b.

In the following K denotes a smooth S-compatible positive definite kernel on
M x M. For x € g, we abbreviate .Z, := fﬂ’fx) for the maximal restriction of the
Lie derivatives to 2, := gy from (6.2) and we extend this definition in a complex
linear fashion to gc. We also consider the subspace

9 = {§0 € %K :(Vn € N)(Vxl, R P~ g) gﬂ(xl) .. 'gﬂ(xn)gﬁ (S g%ﬂ](}

on which
a:gc — End(2), x > Z\o

defines a Lie algebra representation such that g¢ acts by skew-symmetric operators.
The following theorem ([MNO15, Theorem 5.12]) asserts the integrability of a|ge.
Besides the usual technicalities, a key point in its proof is to apply the Geometric
Frohlich Theorem 6.1.4 to the vector fields B(y), y € q.

Theorem 6.2.3 Let K be a smooth positive definite kernel on the manifold M com-
patible with the smooth right action (B, o) of (g, H), where g = h @ q is a symmetric
Lie algebra and H is a connected Lie group with Lie algebra V). Let G be a sim-
ply connected Lie group with Lie algebra g° =) + iq. Then there exists a unique
continuous unitary representation (U€, #) such that

(i) dU(x) = ZX forx €.
(i) AU<(iy) =i L} fory € q.

Remark 6.2.4 Note that (i) implies that the restriction of U* to the integral subgroup
(exp h) € G° induces the same representation on the universal covering group H
of H as the unitary representation (U hH f)(m) := f(m.h) of H on .7 because their
derived representations coincide (cf. Chap. 7).
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Example 6.2.5 Let (G, t) be a symmetric Lie group with Lie algebrag = § + g and
let H = G, be the integral subgroup corresponding to the Lie subalgebra h = g*.
Further,let U = U H C G be an open subset. A smooth function ¢ : Ut (U yl = C
is called t-positive definite if the kernel

K(x,y):=pxt(»)™h

is positive definite.

Then oy,(g) := gh and B(x)(g) := g.x define a smooth right action of (g, H)
on the manifold U and the kernel K is B-compatible. We therefore obtain for a
I-connected Lie group G¢ a corresponding unitary representation U¢ on ¢ C
C*(U, C) with

Um)y)(g) =v(gh) for geU,heH
and
avcy)yy =iy for ¢ e J°,y €q.

So far we worked with scalar-valued kernels, but the corresponding results easily
extend to the operator-valued setting as follows:

Example 6.2.6 (Passage to operator-valued kernels) Let (G, 7) be a symmetric Lie
group and g* = 7(g)~'. We consider a smooth right action of G on the manifold X,
a complex Hilbert space V, and a hermitian kernel Q : X x X — B(V). Further,
suppose that J : G x X — GL(V), (g, x) — J,(x) satisfies the cocycle condition
jglgz(x):-/gl(x)-]gz(x-gl) fOr glv ngG,xGX,

so that (g.f)(x) := Jy(x) f(x.g) defines a representation of G on VX, We also
assume that the kernel satisfies the corresponding invariance relation

Jo()Q(x.g,y) = OQ(x,y.89)J:(»)* for x,yeX,geG

(cf. [Nel64, Proposition I1.4.3]). On the set M := X x V, we then obtain a G-right
action by

(x,v).g == (x.g, Jo(x)™v).
We also obtain a positive definite kernel
K:MxM—C, K(x,v), (. w):= (v, 0, y)w)

which satisfies the natural covariance condition
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K((x,v).8, (y,w)) = K((x.8, Jo(x)™), (y, w)) = (Jg(x)"v, Q(x.g, y)w)
= (1, Jy(0)Q(x.g. yIw) = (v, Q(x, y.8°) Sz (y)"W)
= K((x,v), (8% T (0)*w) = K((x,v), (v, w).8%).
Let X, € X be an open H-invariant subset on which the kernel Q is positive
definite, so that K is positive definite on M := X x V. The corresponding repro-

ducing kernel Hilbert space ¢ C CM+ consists of functions that are continuous
anti-linear in the second argument, and it is easy to see that the map

Ay — Ay, I'(f)x,v):= (v, f(x))
is unitary (Example A.1.4). In view of

F(g.f)x,v) = (v, Jg(x) f(x.8)) = (Jo(x)v, f(x.8)) = I'(/H((x,v).8),
it intertwines the representation of G on VX with the action on C¥ by

(g.F)(x,v) = F((x,v).2).

Assume that the G-action on the Banach manifold M is smooth, i.e., that the map
GxXxV—V,(gx,v) > J,(x)*v is smooth. Then we obtain a smooth right
action of (g, H) on M, compatible with the kernel K, and thus Theorem 6.2.3 yields
a unitary representation of G on the Hilbert /7% = 7.

6.3 Representations on Spaces of Distributions

Now we slightly change our context. To extend the theory from smooth kernels to dis-
tribution kernels, we assume that M is a finite dimensional smooth manifold and that
K € C7°°(M x M) is a positive definite distribution so that #x € C~*°(M) holds
for the corresponding reproducing kernel Hilbert space (Sect. 2.4). The canonical
map

1:CX(M) - Hx, ¢ K,

is continuous ([MNO15, §7.1]) and therefore the kernel K defines a continuous
hermitian form on C2°(M). Hence Corollary 6.1.2 applies in particular to K.

Definition 6.3.1 The Lie derivative defines on C°(M) the structure of a ¥ (M)-
module, and we consider on C~*° (M) the adjoint representation:

(ZxD)(p) := —D(Zxyp) for X e ¥V (M),DeC (M), ¢ C (M).
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For a distribution D € C™°(M x M) and X € ¥ (M), we write
(LD)p®Y) :=—D(Zxp®@Y) and (Z5D)(¢ V) :=—D(p & LxV).

We say that X is D-symmetric, resp., D-skew-symmetricif £y D = e £z D fore = 1,
resp., —1.

Remark 6.3.2 Let K be a positive definite distribution on M. If X is K-symmetric
(resp. K-skew-symmetric), then Zx defines a symmetric (resp. skew-symmetric)
operator on C°(M) with respect to (-, -) k.

The next observation allows us to use Corollary 6.1.2 and to adapt the methods
used in Sect. 6.2.

Remark 6.3.3 Let X € V(M) and ¢ € C>°(M). We write M, C M for the open
subset of all points m € M for which the integral curve of X through m is defined in
t € R. The corresponding time ¢ flow map is denoted ®* : M, — M. If suppgy C
M_,, then ¢ o @ has compact support @*, (supp ¢) C M, and therefore defines an
element of C°(M).

Theorem 6.3.4 (Geometric Frohlich Theorem for distributions) Let M be a smooth
manifold and K € C~°(M x M) be a positive definite distribution. If X € V' (M) is
K -symmetric, then the Lie derivative Ly defines an essentially selfadjoint operator
%”,? — Hk whose closure ff coincides with £x|4,, where

@X = {D S %K ngD (S %K}
If the local flow ®@* is defined on [0, €] x supp(p) for some ¢ € C>°(M), then
UK, = Kyopx, for 0 <t <e. (6.3)

Proof For every ¢ € C>°(M), there exists an & > 0 such that the flow @* of X is
defined on the compact subset [0, €] x supp(¢) of R x M. Then the curve

y [0,6] = C°(M), y(t) :=¢od

satisfies y'(t) = —Zx ¢ in the natural topology on C°(M). Therefore the assump-
tions of Corollary 6.1.2 are satisfied with V = C>*(M) and L = —%x. We con-
clude that Z | g 1s essentially selfadjoint with closure equal to £k and that (6.3)
holds. H

Definition 6.3.5 Let g = b + q be a symmetric Lie algebra with involution t and
B g — ¥ (M) be ahomomorphism of Lie algebras. A positive definite distribution
K e C7°(M x M, C) is said to be B-compatible if
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1 _ 2
LK = —L5pK for xeg.

In the following we assume that K is a positive definite distribution on M com-
patible with the smooth right action (8, o) of (g, H) (cf. Definition 6.2.2). For
z=Xx 41y € gc, we put

Lpo) = Lpw T 1Ly
and we write ., for the restriction of ;) to its maximal domain
D, ={D e Ay : LyyD € Hk).
As in Sect. 6.2, we consider the subspace
D ={D e Ay : Vn e N)(Vx1, ..., Xy € 9) Lo(x)) Ly D € FHk}

which carries the Lie algebra representation « gc — End(2) for which the operator
a(x) is skew-hermitian forx € g° = b + ig. From (6.1) and Remark 6.3.2 we deduce
that

ZK,=Kg

¢

for ¢ € C®(M), (6.4)

hence jf,? C Z. In particular, & is dense in 7% .

Theorem 6.3.6 Let K € C~°°(M x M) be a positive definite distribution compat-
ible with the smooth right action (B, o) of the pair (g, H) on M, where g =h @ q
is a symmetric Lie algebra and H is a connected Lie group with Lie algebra h. Let
G€ be a simply connected Lie group with Lie algebra g¢ = by + iq. Then there exists
a unique smooth unitary representation (U¢, ) of G¢ such that

au¢(x) =%, and AU(iy)=i%, for xebh,yeq.

6.4 Reflection Positive Distributions and Representations

In this subsection we connect the previously described integrability results to reflec-
tion positive representations. Let D € C~*°(M x M, C) be a positive definite dis-
tribution which is reflection positive with respect to the involution 6 : M — M on
the open subset M, € M (cf. Definition 2.4.5). Our main result is Theorem 6.4.1
which asserts that, under the natural compatibility requirements for an action of a
symmetric Lie group (G, H, t) on (M, 0), the representation of the pair (g, H) on
the Hilbert space .77 corresponding to the positive definite distribution kernel D’
on M, integrates to a unitary representation of the simply connected group G with
Lie algebra g°.
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Let (G, H, t) be a symmetric Lie group acting on M such that 6(g.m) =
7(g).0(m) and H.M, = M. We assume that D is invariant under G and 7. Then
we have a natural unitary representation (Ug, &) of G on the Hilbert subspace
& = Hx € C™°(M). As M, and therefore &, is H-invariant, this representation
is infinitesimally reflection positive in the sense of Definition 3.3.6.

From the invariance condition

ff}(x)D = —ZE(X)D for xeg (6.5)
we derive
LoD = L3 ,,D’ for xeg. (6.6)

This implies that the assumptions of Theorem 6.3.6 are satisfied, so that we obtain:

Theorem 6.4.1 Let M be a smooth finite dimensional manifold and
D € C=(M x M) be a positive definite distribution which is reflection positive
with respectto (M, M., 0). Let (G, H, t) be a symmetric Lie group acting on M such
that 6(g.m) = 1(g).0(m) and H.M, = M. We assume that D is invariant under
G and t. Let G be a simply connected Lie group with Lie algebra g¢¢ = b + iq and
define (Z;)xeq on its maximal domain in the Hilbert subspace #ps € C~*°(M,.).
Then there exists a unique unitary representation (U€, 7o) of G¢ such that

au¢(x) =%, and AUc(iy) =i, for xebh,yeq.

Example 6.4.2 The preceding theorem applies in particular to the situation where
M =G,, t(g) =gt and My = G, is an open subset of G with G, H = G
(Remark 3.4.2). Here we start with a reflection positive distribution D € C~*°(G.)
(Definition 7.2.1). It defines a G ;-invariant distribution kernel D on G; x G, which
is reflection positive with respect to G ;.. We thus obtain a positive definite distribution
D7 on G xGy.

Example 6.4.3 Reflection positive representations of the euclidean motion group
E(d) (cf. Example 3.2.2) lead to unitary representations of the simply connected
covering G¢ = R? x Spin; ;_;(R) of the identity component P (d), of the Poincaré
group. More concretely, we consider M = R4, M, = Ri, T(x9, X) = (—xp, X) and
G = E(d) = RY x O4(R). Then the G-invariance of a distribution D on R? x R¢
means that it is determined by an O, (R)-invariant distribution D € C~*°(R9) by

D@®y) =D v), ¢"x):=g(—x).

For any reflection positive rotation invariant distribution D € C~>°(R?), we thus
obtain a reflection positive representation (Us, &) of G and a representation of the
group G on & = Hpe.

For d > 3, the natural inclusion SO,_;(R) — O; 4_;(R), g — idr x g induces a
surjective homomorphism 71 (SO;_1 (R)) — 71(0; 4-1(R)), and since U¢ is com-
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patible with the unitary representation U of H on 3;, the representation U¢
factors through a representation of the connected Poincaré group P(d)o = R? x
SO 4-1(R).

The concrete case of generalized free fields discussed in Chap. 8 is of basic interest.

Notes

Main reference for this section is [MNO15], where the results on smooth kernels
are developed in the more general context of Banach—-Lie groups acting on locally
convex manifolds. Here we choose the simpler context of Banach manifolds because
in this context every smooth vector field has a local flow.

Frohlich’s results from [Fro80] have later been refined in several ways, in par-
ticular by Klein and Landau in [KL81, KL82]. Frohlich, Osterwalder and Seiler
introduced in [FOS83] the concept of a virtual representation, which was developed
in greater generality by Jorgensen in [Jo86, Jo87].

In the context of involutive representations of a subsemigroup S € G with polar
decomposition S = H exp C, where C # ) is an Ad(H )-invariant open convex cone
in q, the Liischer—Mack Theorem [LM75, HN93, MN12] provides a corresponding
unitary representation of the dual group G°.



Chapter 7 ®)
Reflection Positive Distribution Vectors Geda

In this chapter we first introduce the concept of a distribution vector of a unitary
representation (Sect. 7.1). It turns out that certain distribution vectors semi-invariant
under a subgroup H correspond naturally to realizations of the representation in a
Hilbert space of distributions on the homogeneous space G/ H . In this context reflec-
tion positive representations can be constructed from reflection positive distributions
on G/H (Sect. 7.2). Such distributions can often be found and even classified in
terms of the geometry of the homogeneous space.

To illustrate this technique, we apply it in Sect. 7.3 to spherical representations
of the Lorentz group G = Oy, (R). These representations consist of two series, the
principal series and the complementary series. Both have natural realizations in
spaces of distributions on the n-sphere S" = G/P on which the Lorentz group G
acts by conformal maps; the principal series can even be realized in L>(S"). That some
of the representation of the complementary series exhibit reflection positivity with
respect to the subsemigroup of conformal compressions of a half-sphere is shown in
Sect. 7.4.1. In Sect. 7.4.2 we build a bridge from the natural reflection positivity on
the sphere S as a Riemannian manifold obtained from resolvents (m> — A)~! of the
Laplacian (cf. Sect. 2.5) and unitary representations. Here the Lorentz group occurs
as the dual group G° of the isometry group G = O,+1(R) of S" and we identify the
unitary representations of G¢ on the corresponding Hilbert spaces & as spherical
representations of G° realized in a space of holomorphic functions in the crown
domain of hyperbolic space.

7.1 Distribution Vectors

In this subsection we introduce the notion of distribution vectors and in the following
section we connect it with reflection positivity. We start with the basic structures
related to distributions on Lie groups and homogeneous spaces.
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7.1.1 Distributions on Lie Groups and Homogeneous Spaces

Definition 7.1.1 Let G be a Lie group. We fix aleft invariant Haar measure ug on G.
This measure defines on L' (G) := L'(G, u¢) the structure of a Banach-x-algebra
by the convolution product

(pxY)(u) = fG eV (g ' wdus(g), and ¢*(g) = (g HAg(®)™" (7.1

is the involution, where Ag : G — R} is the modular function determined by

f e dug(y) = / ey HAc() 'dug(y) and
G G

AG(X)/GMW)dMG(y)=fG<p(y)dMG(y) for ¢ € Cc(G).

The formulas above show that we have two isometric actions of G on L'(G),
given by
)@ = f(g7'x) and (o, f)(x) = f(xg)Ac(g). (7.2)

Note that (A, f)* = p, f™.

Let H C G be a closed subgroup and X := G/H = {gH : g € G} be the space
of H-left cosets, endowed with its canonical manifold structure. Let gy denote a
left Haar measure on H. Then the map

a: CP(G) —> CX(X), o> ¢’ ¢"(gH) :=/ @(gh) dpp (h)
H

is a topological quotient map, i.e., surjective, continuous and open (cf. [Wa72, p. 475]
and [vDO09, p. 136]). Its adjoint thus provides an injection

a*: C™®(X) = C™(G), D+~ D*, D*(p):= D(¥")

of the space of distributions on X = G/H into the space of distributions on G.

On C°(X) the group G acts naturally by left translations (A,¢)(x) := 0(g™'x)
and, accordingly, by (A;D)(¢) := D(k;lw) on distributions. We also recall the two
G-actions (7.2) on C°(G) < L'(G) by left and right translations and note that they
induce actions on the dual space C~*°(G). As

aorg=A,oa and aop,=Ac(W)Ayh)y'a for he H,geG, (1.3)
the map « and its adjoint intertwine the left translation actions of G on C~*°(X) and

C~(G). It also follows that p,a*(D)(¢) = D(a(p,'¢)) = gggga*(z))(go), and
we even have:
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Lemma 7.1.2 The range of o* is the space C~*°(G)y of all distributions D €
C~>°(G) satisfying

Ag(h)

onD = Ag/u(h)™'D  with A u(h) := 20

for heH. (7.4)

Proof Let D € C~*°(G)y. As « is a quotient map, we have to show that ker o C
ker D because im(«)* = (ker ). First we note that, for ¥ € C(G), the distribu-
tion defined by (i x D)(¢) := D(y* * ¢) has a smooth density W with respect to
e satisfying p, ¥ = Ag,u(h)~'W forh € H.

Let p: G — (0, o0) denote a smooth function on G with

pe)=1 and p(gh) = p(@)Agu()~" for geG,heH,

and write pug,p for the corresponding quasi-invariant measure on G/H defined by
/ ¢"(gH) dpgn(gH) = / 9()p(g) duc(g)
G/H G

([Wa72, p. 475]). That g,y is well defined requires to verify that ¢* = 0 implies
that the right hand side vanishes. Now

(W * D)(g) = D™ % ¢) = /G P (g) dug () = /G @ @ dcn et

= f P (gH)(Wp~ ") (9) dug n(gH) = 0.
G/H

Replacing ¥ by a §-sequence in C2°(G), we obtain for n — oo that D(p) =0. O

The distribution D, (¢) := f G 0(g)dug(g) is left and right invariant, hence
contained in C~*°(G)y if and only if A,y = 1. If this is the case, then D, = Dﬁx
for a G-invariant measure it x on X . One can even show that, conversely, the existence
of such a measure implies the vanishing of Ag,y (cf. [Wa72] or [HN12, Sect. 10.4]).

7.1.2 Smooth Vectors and Distribution Vectors

Now let (U, #Z) be aunitary representation of the Lie group G, i.e., a homomorphism
U:G— U(), g — U,, such that for each n € 7 the orbit map U"(g) = U,n
is continuous. We say that n € 7 is smooth if U" : G — S is smooth. The space
of smooth vectors is denoted by .7°°°. This space carries a representation AU of the
Lie algebra g on 77> given by
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Ux x! =
dU(x)WZ}LI%LM~

For a basis xq, ..., x;y of gand m = (my, ..., my) € N’(‘) the family of semi-norms

gm(m) = |AU (x)™" -+ - AU (xi)™ |

defines a Fréchet space topology on S#°*° such that the inclusion J#*° — 7 is
continuous. The space S is G-invariant and AU (Ad(g)x) = UgdU(x)Ug’l.

For ¢ € L'(G) the operator-valued integral U,, := fG p(g)Ug dug(g) exists and
is uniquely determined by

(n, Uy?) Z/w(g)m,Ug{)nd(g) for n,¢e . (7.5)
G

Then || U, || < ll¢lli and the so-obtained continuous linear map LY (G) - B(¥) is
a representation of the Banach-x-algebra L'(G), i.e., Uysy = U,Uy and Uy« = U,.
Note that U,U, = U, , and U Uy = U, .

The space .77 of smooth vectors is G-invariant and we denote the corresponding
representation by U®. If ¢ € C2°(G) and & € 2, then U,& € S and

d
AU (x)Uyé = Ugy, o6, where dicp = 7 t_okexp,xgo.

This follows directly by differentiation under the integral sign. If (¢,).en is a
§-sequence, then Uy, & — &, so that S is dense in JZ.
The space of continuous anti-linear functionals on .7 is denoted by .77~°°. Its

elements are called distribution vectors. The group G and its Lie algebra g act on
™ by

Uy ®m©€) :=nUZ§), resp., (AU *@)m(E) == —n(@Ux)§). g€ G.x €g.

We then have U ®n:=no U(;’S for ¢ € C°(G). We obtain natural G-equivariant
linear embeddings

e O, n@=08)

and note that U, .72~ C H% for ¢ € C°(G).

Example 7.1.3 Let H C G be a closed subgroup and X = G/H. Then there exists
a quasi-invariant measure px on X with a smooth density with respect to Lebesgue
measure in any chart; for details see [F095, Sec. 2.6], [Fa00, p.146ff] and [HN12, Sect.
10.4]. Thus there exists a smooth strictly positive function j : G x X — R, suchthat
forallp € C°(X)and g € G wehave [, p(g.x) dux(x) = [, 9(x)j(g, x) dux(x)
or, equivalently,
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/w(g_l~X)j(g,X)dux(X)=/<0(X)dux(x) for ¢ € C(X). (7.6
X X

We will also write j,(x) = j(g, x). As a consequence of (7.6), we obtain a family
of unitary representation, the quasi-regular representation of G on L*(X) by

Ulp(x) == j(g.x)"" (g7 .x) for reiR,geGandg e L*(X). (7.7)

If (U, 7€) is a unitary representation of G and n € J#~°°, then the adjoint of the
linear map C°(G) — %, ¢ — quoor;, defines a linear map

jni TP — C_OO(G)v jn(a)(‘p) = a(U(p—oon).

Forg € G,wehave j, o U, = 4,4 o jy.1.e., j, intertwines the action of G on R A
with the left translation action on C~*°(G).
We now introduce the concepts used in the proposition below.

Definition 7.1.4 We call the distribution vector n € 5~ cyclicif UC_??(’G) n is dense
in 2. ‘

Definition 7.1.5 We call a distribution D € C~*°(G) positive definite if the

sesquilinear kernel

Kp(p,¥) =D " x¢) on CF(G) (7.8)

is positive semidefinite. This is equivalent to the positive definiteness of the distri-
bution D on G x G determined by

DY ®¢)=DW**¢) for ¢, ¢ € CX(G).

We also note that (7.8) is equivalent to D defining a positive functional on the x-algbra
C2(G), endowed with the convolution product. The corresponding reproducing
kernel Hilbert space ¢} := J#%, is a linear subspace of C~°°(G) in which the
distributions defined by ¥ * D = Ay (D), i.e., (Y * D)(¢) := D(¥* x ¢), form a
dense subspace with

(o D,y *D)=D{*x¢) for ¢, ¢ € CI(G). (7.9)

Inparticular, D € J;,°°, jp(D) = Dand jp|s,: H#p < C~°°(G)isthe inclusion
map.

Proposition 7.1.6 (Realization in spaces of distributions) Let (U, ) be a unitary
representation of G and n € F€~°. Then the following assertions hold:

(@) The map j,: S~ — C~*°(G) is injective if and only if n is cyclic.
(b) The distribution D, = j,(n) is positive definite.
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(c) Ifnis cyclic, then j, : € — I := j, () C C~*(G) is a G-invariant uni-
tary operator onto the reproducing kernel Hilbert space of distribution on G for
which the inner product and the reproducing kernel are determined by

(n(U, %), Jy WUy m)oe, = (U, %0, Uy n)r = Dy(Y* * ¢).

(d) If H C G is a closed subgroup, then j,(7€~°) C C~*°(G)y if and only if
U, n = Ag,u(h)n holds for allh € H.

Proof For (a), we first observe that the injectivity of j, on 7 is trivially equivalent to
n being cyclic. To see that this even implies that j,, is injective on .7#~°°, assume that
Jn(a) = 0. Then equivariance implies j, (Uw’ooa) = 0 for every ¢ € C°(G). For
any §-sequence (8,),en in C2°(G), we have U, Szoooz — « in the weak-x-topology on
€7, and since j, is obviously weak-x-continuous, it follows that j, (o) = 0.

For (b) we derive from D, (¢) = n(U, o ) the relation

Dy (Y™ x @) =nU,5,m =nURU0, %n) = U, U, *n = (U, *n, U, ~n).

By Remark A.1.2, this implies that D, is positive definite.
(c) follows from the fact that, for ¢, ¥ € C°(G),

(U m () = (U, %n, U, *n) = Dy(y* * @) = (Y * Dy)(9).

To obtain (d), we first observe the relation j,()(@) = jo(n)(e*) for o, n €
2~°°, which easily follows from the existence of a factorization ¢ = ¢, * ¢, with
¢; € CX(G) (Dixmier-Malliavin Theorem [DM78, Theorem 3.1]). For h € H, this
leads to

(pnDy) (@) = Dy(p;, ' @) = n(U, ¥U, ) = Ju=sn (@) = jy (U, (%),
so that the assertion follows from (7.4). ]

From the preceding proposition we derive:

Theorem 7.1.7 A unitary representation (U, 7)) can be realized on a Hilbert sub-
space of C~*°(G/ H) if and only if there exists a cyclic distribution vectorn € 7~
satisfying U, > n = Ag/u(h)n forh € H.

Example 7.1.8 (a) Let G be a Lie group and H a closed subgroup such that
X = G/H carries a G-invariant measure jtx. Then G acts unitarily on L*(X) =
L*(X, ux) by A0 (x) = (g~ '.x). The space L2(X)® of smooth vectors is the space
of smooth functions ¢ € C®°(X) such that A, f € L2(X) for all u € U(g) ([Po72,
Theorem 5.1]). If X is compact, then L?(X)>® = C*®(X) and L*(X)~® = C~°(X)
is the space of distributions on X.

(b) Let G = Heis(R?") =T x R" x R" be the Heisenberg group acting on
L?(R") via the Schrodinger representation
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(m(z, %, Y) )W) = z&'" f(u — y)

(cf. the proof of Theorem 4.4.1). Then the space L?>(R")> of smooth vectors is
7 (R"), the Schwartz space of rapidly decreasing functions.

For later reference, we record the following lemma ([NOISa, Lemma D.7]) which
identifies the distribution vectors in representations of G = R by multiplication
operators.

Lemma 7.1.9 Let (X, S, u) be a measure space. We write M (X, C) for the vec-
tor space of measurable functions X — C. For (H;) =1, q4 in M(X,R) and R :=

\/ Z‘;:l sz, we consider the continuous unitary representation of R? on L*(X, ),
given by

U(f) = Dm0 f o for t=(, ... 1a).

Then
Y [h e M(X,C): @neN) [(14+R)™"fll, < oo],

where the pairing 7> x 7~ — C is given by (f, h) — fx fhdu. Moreover,
the following assertions are equivalent:

(i) The constant function 1 is a distribution vector.
(ii) For the measurable map n = (Hy, ..., Hy): X — R?, the measure n.u on
R? is tempered.
(iii) @on e L*(X, ) for every ¢ € CX(RY).

If these conditions are satisfied, then the corresponding distribution on R? is given
by the Fourier transform of n. .

7.2 Reflection Positive Distribution Vectors

In this chapter (U, &) will always denote a unitary representation of a Lie group G
and H C G will be a closed subgroup.

Definition 7.2.1 Let (G, t) be a symmetric Lie group and G, = G % {idg, t}.

(a) A positive definite T-invariant distribution D € C~*°(G) is called reflection pos-
itive with respect to (G, G4, 1) if

D(¢*x9) >0 for ¢ e CX(G,), 9 (g) == ¢*(1(2)). (7.10)

This is equivalent to the corresponding distribution DY ® ¢) = D(¥* % ¢) on
G x G being reflection positive with respect to (G, G4, ) (cf. Definition 2.4.5).
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(b) Let (U, &) be a unitary representation of G, and 6 := U,. Then a t-invariant
distribution vector 7 is said to be reflection positive with respect to (G, G4, T)
if the subspace &, := I[UC_L;‘EG+)77]] is O-positive (cf. Definition 3.3.1).

(¢c) If n € &~ is cyclic and reflection positive, then we say that (U, &, n) is a
distribution cyclic reflection positive representation of G .

For the special case, where G = S C G holds for an open #-invariant subsemi-
group S C G, a positive definite distribution D € C~°°(G) is reflection positive if
D = D and D|; is positive definite as a distribution on the involutive semigroup
(S, #),i.e., D(¢" x p) > 0forp € C(S) and ¢*(s) := ¢*(t(s)). For a unitary rep-
resentation of G, a T-invariant distribution vector n € &~ is reflection positive with
respect to S if the subspace &, := [[Ug;j‘zsm]] is O-positive (cf. Definition 3.4.6).

‘We now obtain easily:

Theorem 7.2.2 For (G, G., t) as above, the following assertions holds:

(@) If (U, &, n) is a distribution cyclic reflection positive representation of G, with
respect to (G, G, 1), then D, is reflection positive with respect to (G, G, T).

(b) If D € C~°(G) is reflection positive with respect to (G, G 1, T), then (Up, 5¢p,
D) is a distribution cyclic reflection positive representation. If Gy = S is a
fi-invariant open subsemigroup, then we have an S-equivariant unitary map

[':&— Hp, CC(S), T'(gxD)=gls.
Proof For ¢ € C°(G,), we have
Dy (¢ % 9) = n(U,22m) = (U, 00, U, n) = (g, ¢)o = 0.

The other parts of (a), as well as (b), now follow from Lemma 2.4.6. ]

7.3 Spherical Representation of the Lorentz Group

In this, and the following section, we discuss reflection positivity related to the
conformal geometry of R”, resp., of its conformal completion S". We first discuss
the complementary series of the conformal group G := Oy_,41 (R)" and then we turn
to the reflection positivity arising in Riemannian geometry from resolvents of the
Laplacian on S" as described in Sect. 2.5.

7.3.1 The Principal Series

We write elements of R"*2 as (x_j, xo, x). Correspondingly, elements of R"*! are
written as (xo, X), and e_1, e, €, . . . , e, denotes the standard basis of R"*2. We then
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identify ey, ..., e, with the standard basis for R"*!. Elements of G are written as
T

g = ab ,wherea € R, b,c e R"! andd € M, .1 (R). Recall also the notation
cd

[x, y] = x_;y_1 — (x, y) and consider the set
L = {x e R"™: [x,x] = 0, x_; > 0}

of positive lightlike vectors. The embedding & : S" — L'fl, x = (1, x), yields a
diffeomorphism §" — L' /R’. As the standard linear action of G on R"*? Jeaves
" !-invariant, we thus obtain a smooth action on the quotient space "' /R’ and
hence on the sphere S" via

gx:=J(g,x) Nc+dx)=E"J (g, x) 'gEX))) (7.11)

with
J(g,x) :=a+ (b, x) = (g.5(x))o- (7.12)

Let
1
K = {(O 2) td e On+1(R)} = Op+1(R) .

Then K is a maximal compact subgroup of G acting transitively on the sphere via
the standard action on R"*! and S" = K /M for M := K,, >~ 0,(R). Note that K
is the stabiliser of e_; in G with respect to the standard linear action.

As ahomogeneous space of G, the sphereis G/ P, where P = G, is the stabilizer
of eg. We have P = M AN, where

cosh(t) sinh(z) O
A= 1{a,=|sinh(¢) cosh(#) 0 | :reR; =R

0 0 I,
and v v
v v T
1+ 2 T2 v
N:=1n,= ||V2H‘ 1— ||V2H‘ vIl:veR"y ~ R
% v I,
We define

L(g.v):=J@g w1, Qu,v):=1—(u,v) and Qx(u,v):= Qu,v)* 2.

Part (a) of the following lemma is [vD09, Proposition 7.5.8]. It also follows from
[N()l4, Rem. 5.2] by the transformation formula for integrals, and the remainder is
obtained by direct calculation.



88 7 Reflection Positive Distribution Vectors

Lemma 7.3.1 Letg, g1, g € Gandu,v € S". Forthe K -invariant probability mea-
sure usr on S", we have

@ [o 9g)J1(g. V) dus:(v) = [5, (V) dus: (v) for ¢ € L'(S").
(b) Jin(g182,Vv) = Jr(g1, &2.v) 1 (g2, V).
(©) Oi(u,v) =J_(g,u)0;(g.u, gv)J_(g,v).

Definition 7.3.2 For every A € C, we obtain a representation of G on C*°(§") by
Uro)v) = Ji(g~  me(g™" ). (7.13)

We denote by C5° the space C*(S") with the G-action given by U*. Similarly, C; *°
will denote the space of distributions with the contragradient action.

From Lemma 7.3.1 we get:
Lemma 7.3.3 For ¢, € C®(S") and g € G, we have

(U0, Ukp) 2 = (0. 9) 0. (7.14)

(@) The representation U* extends to a unitary representation of G on L*(S") if and
only if . € iR.
(b) The linear map y > (-, )2 defines a linear and G-equivariant map from C;
into C; .
The following theorem follows from [vD09, Cor. 7.5.12], which is stated for
the space C(S") of continuous functions, but the same argument works for smooth
functions.

Theorem 7.3.4 The representation (U*, C®(S")) is irreducible if £\ ¢ 5 + No. In
particular, the unitary representation (U*, L>(S")) is irreducible for A € iR.

7.3.2 The Complementary Series

In this section we explain how U* can be made unitary for A € (=5,%). As
Lemma 7.3.3 easily implies that U* ~ U~* holds for the corresponding unitary
representations, we shall assume that A € (0, ’%).

Recall that the tangent space at u € S" is given by T,(S") = u* and that the
stabilizer of u in K acts by the natural linear action on 7, (S"). We also write

Su§") = {w e T,(S"): wll = 1}.
The Riemannian exponential map Exp,, : 7,,(S") — S”" is given by

sin([|v])

vl

Exp, (v) = cos(||vI)u + (7.15)
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i.e., for ||v|| = 1, the geodesic starting in u in the direction of v is given
X, (2, v) := y,(t) = cos(t)u + sin(t)v. (7.16)

The map (¢, v) — p,(¢),t € (0, ), v € S,(S") defines the polar coordinates on S".
For further references we recall the following facts about the Beta and Gamma
function. The Beta function is defined by

F'@rmw)

— 7 Rez, Rew>0.
C(z+w)’

1
B(z,w) :=/ r 1 =) ldr =
0

Lemma 7.3.5 ForRez,Rew > 0, the following assertions hold:

@ B(zw) = [y o

(b) 7T (2z) = 2%~ ‘F(z)F(z +1/2).

(c) fll(l — ) A =) ldr = 2272 B(w, w4z — 1.
(d) The euclidean surface measure of the sphere is Vol(S"™!) =
(e) ForReo > —n and Re i > n we have

/2
T(/2)"

- (@ +n)/2T(n = (0 +n)/2)
1 2\—u dy = n/2
A idy = ORI

Proof (a) follows with r = #t and (b) can be found in [WW63, Sect. 12.15].
Formula (c) follows from (b) by the substitution u = (1 4 r)/2, (d) is [Fa08, Sect.
9.1], and (e) follows from (a) and (d) by using polar coordinates and substituting
u=r2. O
rgh

= ey we have

Lemma 7.3.6 Forc, =

/S u)dus () = cn /0 /S @ (t, v) sin" () dpugui vy dt - for ¢ € LYS).

If ¢ is K,-invariant, then ¢(cost) := ¢(x,(t, v)) is independent of v € S, and

1
f odus :cn/ o1 —r3: " dr. (7.17)
s —1

Proof See [Fa08, Proposition 9.1.2]. The value of the constant follows from

Lemma 7.3.5(c) by taking A = n/2 and ¢ = 1. O

Lemma 7.3.7 For A € R, the kernel Q; is integrable as a function of one or two
variables if and only if A > 0. In that case we have for all 7 € S":

2A+%_]F n+l Cx
0.z, Y)dpus: (y) (=)'

d = = d n
2 NZINVRE) B
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Proof As Q; and the function fs 0,(, y)do(y) are K -invariant, we have

/Sn Oz, y)dus:(y) = /S O(eo, y) dug (y) = /SfS Oi(x, y)dus (y) dug (x).

The function Q; (e, -) is invariant under K. Lemmas 7.3.6 and 7.3.5(c) imply that

s NSV NPY)
VAT +5)

1
/SQx(eo,y)d,U«Sn(y)=Cn/ (1= —rH): " dr =
L -1

Clearly the integral is finite if and only if Re A > 0. O
For Re A > 0, define

1
dk,n

(A40)(x) = /S 0,(r, Vo) duse (y) for ¢ € C¥(S).

Then (¢, Ay ) = (A7, ¥) and A, 1 = 1. In particular, if A is real then (¢, A, ¥) =

(A @, ¥). Furthermore A, : L*(S") — L*(S") is bounded if Re A > 5 because in
this case the kernel Q; is continuous and hence in L>.

Theorem 7.3.8 Let ¢ € C*°(S"). Then the following assertions hold:
(@) AUl =U,"Ap for g € G. In particular, the form

(gﬂ, Wh = <(p’ AKw)LZ

is U}-invariant if . > 0.

(b) The map {» € C: Rer > 0} — L%(S"), A — A,, is holomorphic and has a
meromorphic extension to all of C. Furthermore, the intertwining relation in (a)
holds then for almost all ).

Proof The first part of (a) follows from Lemma 7.3.1(a, c) and the second part is a
consequence of Lemma 7.3.3. For (b), we refer to [VW90, Theorem 1.5] or [vD09,
Theorem 9.2.12]. A more direct argument can be based on Ar~ = a4+ Dr—2
on R”. m]

We will now determine those A > O for which the form (-, -); is positive semidef-
inite. For that it is easier to work with the realization in a space of functions on R”".
For that we recall the stereographic projection

1— ||)C||2 2x > T
s:R" = S§"\ {—¢}, x+— , =n, .e 7.18
Vel (1 AW G

with inverse s ! (yo, y) = ﬁy.
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Lemma 7.3.9 For ¢ € C®(S") put ¢ (x) := ¢(s(x))(1 + ||x|[*)™*~2. For the pos-
itive constants ) 41
on—lpcntl r 2
L RO VR )

T 72 ()

we then have

(@ ,/Sn §0(V) d,U«S” W) =a, v/]R” w(s(x))(l + ”x”Z)fn dx for 0 LI(S”)
(6) Qu(s(x).s() = 2" E(1 4 ) A+ Iy D)7 e =y
© A)G@) = A+ x5 /R ol =y dy

d (@, ¥) = anbx/ . ()Y Wllx — yII* " dx dy for o, ¢ € C¥(S").
n XRU

Proof Up to a constant (a) follows from [Fa08, Example 9.1]. The exact value of the

constant can then be evaluated using Lemma 7.3.5. Parts (b) and (c) follow from (a)

and Lemma 7.3.1(b,c). Finally (d) follows from (c). m]

Proposition 7.3.10 The function x +— ||x||~° is locally integrable on R" if and only
if s < n. The corresponding distribution is positive definite if and only if 0 < s < n.

Proof This follows by using polar coordinates and the fact that

'((n—1s)/2
Fr) = 71“"/2—((" $)/ )r“"
I'(s/2)
(see [Sch73, Example 5, VII.7.13]). The right hand side is positive for 0 < s < n.
The case s = 0 is obvious. 0O

As a consequence we get the following theorem, up to the non-degeneracy of the
form:

Theorem 7.3.11 For A > 0 the form (-, -), is positive semi-definite on C*°(S") if
and only if 0 < A < 5. Let &, denote the corresponding Hilbert space. For . = %
this space is one-dimensional and for 0 < A < 5 the form is non-degenerate. We
thus obtain irreducible unitary representations (U*, &)00\5%, where (U2, &n2)
is trivial.

Proof For 0 < A < 5 the non-degeneracy of the kernel on C*°(§") follows from
Theorem 7.3.4 which asserts that the representation U* on C*®(S") is irreducible.
As the space of null-vectors is invariant and proper, it is zero. O

Definition 7.3.12 The representations (U*, &),0 < A < %, are called the comple-
mentary series representations of G.

To unify notation we put &, = L*(S") for A € iR (cf. Lemma 7.3.3). The proof
of the following can be found in [vDO09, p. 119]. We shall encounter this theorem
again in the next section.
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Theorem 7.3.13 The irreducible unitary representations (U, &) of G which are
spherical in the sense that &% # {0} are exactly the representations (U*, &) with
L eiRU (0, %] In these cases &% = C1 is one dimensional.

The function ¢, (g) = (1, U ; 1), is K-biinvariant. It is called the spherical func-
tion with spectral parameter A.

7.3.3 H-Invariant Distribution Vectors

On G = O1,n+1(1R)T we define an involution 7 : G — G by 1(g) := rogro, where
r; is the orthogonal reflection in ejl. Then, with respect to the linear action on R2,

a0bl
H=G,=1[010]€c0ii®aeR b ceR" 1 deM, (R} CGT
c0 d

is a subgroup isomorphic to Ol,n(R)T. The relation ro&(v) = &(rox) implies that
ro(x.v) = 7(x).ro(v). Here we have also viewed rq as a reflection in R”*! via restric-
tion.

In S§”, the subgroup H has two open orbits

H.(£eg) =S = {(x0,X): £x9 >0}
and the closed orbit H.e,, = {(0,x): x € "1} = S~ 1,

Considering the standard linear action of G on R"*2, we note that G.ey = G/H
is the (n + 1)-dimensional de Sitter space

ds™t! = {(x_1, x0, X): X%, — x5 — [Ix]|* = —1}.

Both G and H are unimodular. Hence, there exists a G-invariant measure on dS™t!.
Define

[£(x), Feol”? o (Ex)t 3
= Xsn(x) = —
L((k—2+1)/2) T((k—2+1)/2)

pi(x) == xsi(x), xeS"

and let
P = p; + p;. (7.19)

For Re A > n/2 the functions pf and p; are continuous and hence integrable on S".
We define a distribution (_o(p3) := 75 € C; > by

M (p) = /S @) pi(x) dps (x) = (¢, ps)r2  for Rek > g
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Then A — 1, (p) is antiholomorphic on {A € C: Re (1) > 5}. We define ﬁit in the
same way.

Theorem 7.3.14 The families of distributions T,, ﬁiﬁ are antiholomorphic for
Rel > % and have an antiholomorphic extension to C. The distributions 7, ﬁf
are H-invariant and for almost all > we have (C; ) = Cp + Cp;.

Proof For the analytic continuation we refer to [vD09, Proposition 9.2.9]. It is clear
that p; is ro-invariant. A simple calculation shows that J_5(h, x) ™! p; (h.x) = p;(x)
which implies that U,;\p;\ = p; for h € H. Hence 7; is H-invariant for Re A < —%.
The uniqueness of analytic extension then implies the assertion for all L. The last

statement can be found in [vB88, Theorem 5.10]. O

For Proposition 7.1.6 we adjust the definition so that »; := 7, for A € iR and
1.(@) = 7_5(Arp) for A € (0, 5). Then n, is still invariant under H and 7. Fur-
thermore, as U* is irreducible and »; # 0, it follows that #,, is cyclic. Hence Theo-
rem 7.1.7 gives:

Theorem 7.3.15 The unitary representation (U }‘)AeiRU(o,g) can be realized in a
Hilbert space of distributions on de Sitter space dS"*' = G /H.

7.4 Reflection Positivity

‘We now turn to reflection positivity, as it manifests itself for spherical representations
of the Lorentz group.

7.4.1 Reflection Positivity for the Conformal Group

In this section we discuss the reflection positivity of the representation (U*, &) of
G = 01,11 (R)! for A € (0, ). We consider again the involutions T and rq. Define
0: & — & by 8(p) :== ¢ ory. Then Op; = p,, G(U(é(p) = Url(g)&p and A0 =
0 A;. In particular

O, ), = /S . ©(X)Y () 0;.(rox, y) dps (x) d s (). (7.20)

We let &}, be the space generated by the functions supported by the half sphere S/} .
For the positivity of the twisted inner product on &, we switch to the realization of
(U*, &) as acting on functions on R" via the stereographic projection s from (7.18).

n

Lemma 7.4.1 Let Ry (x,y) := (1 — {x, ) + Ix|I?I¥]>)*"2 and define o : R" —

R" by o(x) = ﬁ Then the following holds:
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(@) The stereographic projection s : Bi(0) — S from (7.18) is a diffeomorphism
from the open unit ball B1(0) € R" onto S',.. In particular, supp ¢ C S’} if and
only if supp(¢ o s) C B1(0).

(b) 6 =s"'oryos.

© llo@) = yI? = x>0 = 2¢x, ) + [IxI* 11

(d) (9‘% 1/’))» = é fBl(O)XBl(O) (ﬂk(x)lﬂx(y)R/\(x, y) dx dyfo"@v 1// € CSO(S,}F)

Proof (a) follows from 1 — ||x||> > O if and only if ||x|| < 1 and (b) and (c) are
simple calculations and then (d) follows from (c), Lemma 7.3.9 and (7.20). |

Theorem 7.4.2 ([N014, Proposition 6.2]) Let n > 1. The kernel R; is positive def-
inite on B1(0) if and only if . = 5 or A < min{3, 1}.

The group H = O1,,(R)" maps S”. into itself, so that U};&} ;. = &, ... Further-
more dUA(g)COO(S’jr) C C*(S}). The subsemigroup S :={s € G: s.@ CSt}is
open and f-invariant with ¢ € S. Combining Theorem 7.4.2 with Theorem 7.3.11,
we obtain:

Theorem 7.4.3 Forn > 2, the following assertions hold:

(a) The subspace space &, 4 is Ué-invariantfor all » € iRU (0, n/2).

(b) For A € iR we have &, + L 06, 4, so that (&, &, +,0) is reflection positive
with &, = {0}.

(c) For0 < A < 7, thetriple (&, &+, 0) and the distribution vector 1, are reflec-
tion positive with respect to (G, S, T) if and only if A < 1. In this case g‘} is
infinite dimensional except for n = 2 and A = 1, where &), is one dimensional.

Remark 7.4.4 (a) The domain where R; is positive definite includes the half-line,
A < min{l, 7}. On this half line we always have an G-invariant hermitian form on
C3* whichis positive definite only for A > 0. This leads to the situation where we have
a Fréchet space with a G-invariant hermitian form which is not positive definite, but
the induced form on & ; is positive leading to a OS-quantization for a non-unitary
representation of G. For detailed discussion see [FOQIS, JO198, JO100, OIOO].

(b) The group G¢ is the universal covering of the group SO, , (R)y. It acts transi-
tively on the Lie ball

P ={z=E+ineC" € +n" +2/E> — En? < 1}
The stabilizer of 0 € Z is the universal cover K¢ of S(02(R) x 0,(R))g and ¥ =
G°/K°.
The real ball B;(0) is a totally real submanifold in 2. Furthermore

Ri(z,w) := (1 — 2w+ 22w°)* 72, (7.21)

where st = ) s;t; and s = ss, is well-defined, holomorphic in the first variable,
antiholomorphic in the second variable and R; (z, w) = R, (w, z). Thus R; is ahermi-
tian kernel on & and positive definite if A = 5 or A < min{1, 5}. The representation
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U, which exists by Theorem 6.2.3, is a negative energy representation of G¢ (i.e.,
a highest weight representation). We refer to [FK94, Chap. XIII] and [Ne0OO] for
detailed discussion of such representations.

7.4.2 Resolvents of the Laplacian on the Sphere

Now we continue the example of the sphere by specializing the construction from
Sect. 2.5 based on resolvents (m?> — A)~!, m > 0, of the Laplacian on S" with the
involution ry. In this section the starting group will be O, (R) acting on the sphere
S", whereas Oy, (R)" will play the role of the dual group. We therefore change our
notationalittleandlet G = O, (R) and K = G,, = O, (R). Accordingly, reflection
positivity leads to unitary representations of G¢ depending on the parameter m.
Accordingly, in the discussion about the representations (U*, &*) the n in Sect. 7.3
will change ton — 1.
We start with some general simple facts.

Lemma 7.4.5 Let v be adissecting reflection on the connected complete Riemannian
manifold M and m > 0. Let C = (m* — Ap)~" and 0 be as in Theorem 2.5.1. Let
® : M — M be an isometric diffeomorphism. Then the following assertions hold:

(a) CoB®,=0,0C. .
(b) Let D bethe reflection positive distribution defined by D (¢ ® ¥) = (@, C¥) 12(m).
Then D((©49) ® ¥) = D(¢ ® (0, '¥)).

Note that (m% — Apy)D(x, y) = dp(x, y), where the distribution §yy on M x M
is given by Sy () = f y 9(x, x)dVy(x), where Vy, denotes the volume measure
on M. This implies in particular

(m* — Ay)D = (m* — Ay)yD = (m* — Ay (m* — Ay),D =0

off the diagonal in M x M and that (Ay — m).(Ay — m), is an elliptic differential
operator on M x M we have:

Lemma 7.4.6 On the open submanifold (M x M) \ diag(M), the distribution D is
represented by an analytic function ®, which is invariant under the isometry group
Isom(M).

Define C* := C o t,. Then, by the above lemma, there exists an analytic function
W on M, x M, such that

(CTp)(x) = / W, oAV (y) for x € My,

My

As (m? — Ay)CT ¢ = 0for p € C°(M.,) it follows that C7 ¢ is analytic on M and
Ap(C@ly,) = m*CT ¢, .
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Since cyclic one-parameter semigroups of contractions are given by multiplication
with functions on L?-spaces, we take a closer look at this special situation. We give
here one example, a second example is discussed in the following subsection.

After these general remarks, we now specialize to

M=S">M, =8 ={xeS": x>0}

To work with the exponential function we introduce the analytic functions

C(z) := i (=1 7 and S(z) = i izk (7.22)
0 (2k)! 2k + 1))

which satisfy cos z = C(z?) and “Zﬂ = S(z%) for z € C*. We thus obtain as in (7.15)
that
Exp,(v) = C(V) - u+S0* -v, ueS.ves,. (7.23)

The complex sphere
St ={u e C"":u* =1} = 0,41(C).e9 = 0,41(C)/ 0,(C)

also is a symmetric space (in the category of complex manifolds) with respect to the
reflections s5,(y) := y — 2(xy)x, for x, y € S and the corresponding exponential
map is

Exp,(v) = C(v}) -u+ SO0 -v for ueSk,veTT,(S). (7.24)
Definition 7.4.7 Let ((x) = (x¢, ix) and V := (R"*! = Rey @ iR". Define
[tx, tyly == wx -ty = xoyo — Xy

and note that [g.u, g.vly = [u,v]y for u,v eV and all elements g € G :=
2 Ol,n (R)TL
On C"*! we consider the conjugations

UR(Z()a M) Zl‘l) = (%a M) Z_ﬂ) and O—V(Z()a ) Zn) = (%7 _aa M) _Z)

with respect to the real subspaces R"*! and V, respectively. The conjugations og
and oy commute and the holomorphic involution ogroy is —rg. The involution oy
commutes with G¢, but or does not, and ogrgor = rogro = t(g) is the involution
on G* whose fixed point group is K = G, = O0,(R).

We also note that [x, y]ly = xy = Zj x;jy; for x, y € C**! is the unique com-
plex bilinear extension of [-, -]y to V 4+iV = C"*!. This notation underlines the
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Lorentzian nature of the situation rather than the euclidean one. We also consider the
following sets:

Vi={peV:[v,v] >0,vg > 0} = L(]Rl’") the forward light cone in V;

H’Z, = H" =Sz NV, = G°.eg = G°/K, the hyperboloid of one sheetin V;
She: —{zeS”'RezO>0}

the tube domain Ty, :=iV 4+ V4 = SO, ,41(R)/S(02(R) x On41(R)); and

E:=GS] C¥ ¢

The domain E is called the crown of H,. Note that G°.V =V, G°.Ty, = Ty, and
G¢.S¢ = Sg.

Proposition 7.4.8 The following assertions hold:

@ Ty, "R =R and S® = Ty, NS".

(b)) E=Tv, NS ¢ =Ty, NSE.

(c) We have oyE = oprE = E and BV = BNV =Hj, and B* = B NR =
St

d Cg:={z€eC: u,ve E)z=[u,v]ly} =C\ (—o0, —1].

Proof (a) This follows from z = u +iv € Ty, N R**! if and only if u = rep with
r > 0andiv = (0, v) withv € R".

(b) By (i) we have E = G°.S, = G°.(Ty, NS") C Ty, NSg. Letz =u+iv e
Ty, NS¢. Then up > 0 and, as G¢ acts transitively on all level sets [u, u] =r > 0
in V., we may assume that u = rep with r > 0. Thus z = (r + ivg, v) with vy € R
andv € R". As z € S, we have | = zz = r? — v} + 2irvy + v>. Hence vy = 0 and
this implies that z € S” E. Finally, we note that, if z € Ty, , then Re zo > 0, hence

. NSg =Ty, NS,

(c) follows from (a) and (b).

(d) follows from a lengthy, but elementary, calculation; see [NC)IS, Lemma 3.8]
for details. O

We point out the following two simple consequences of Proposition 7.4.8

Corollary 7.4.9 The subset B is an open complex submanifold of S{. on which
the group G acts by holomorphic maps. The fixed point setfixed point sets S, =
8% and T}, = B of the antiholomorphic involutions or and oy are totally real
submanifolds of .

7.4.3 The Distribution Kernel of (m? - A)~1

In this section we use polar-coordinates x,,(f,u) = cos(t)ey + sin(f)u. If
¢: S" — Cis K-invariant, then it is determined by the values on x,,(t, e,), 0 <
t < m, and we may simply write ¢(t) := @(x,,(t, e,)). Let S} :==S" \ {—ep} and
note that S? is K-invariant as K fixes %eo.
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Lemma 7.4.10 ([Fa08, Cor. 9.2.4]) For ¢ € CZ(SZ)K andt € (0, )

— " ~/ _ #i . n—1 i ~
(Asr @) (xey (1, u)) = @ (1) + (n — 1) cot(t)@'(r) = () dr (sm (t)dt> @(1).

In particular, Asi¢ = m>g if and only if
@) + (n — 1) cot(t)@' (t) — m*@(r) = 0. (7.25)
We already discussed the case n = 1 in Chap. 5 and will therefore assume that

n > 1.The substitutions = sin’(1/2) = 1=5%1,0 < 1 < 7,and&(s) := @(x,, (7, €,))
transforms (7.25) into the hypergeometric differential equation:

s(1 — $)E"(s) + (g - ns) E'(s) — m2E(s) = 0. (7.26)

As & does not have a singularity in s = 0, this leads to

E(s) = F("_l+/\ n—1 /\”~) (7.27)
S)=7¢C- 21 2 s 2 ,2,S .

with

it m?< —1)2

("‘1)2
c=£&0) and A:= 2 2 2 ,
iv/m it m?> %) .

We recall here the definition of , F; and refer to [WW63, Sect. 14.2] for more
details. Fora@ € Cand k € N let

(7.28)

k—1

(@ = [J@+j) =T(@+k)/T(@).

j=0
Fora,b € C and c € C\ —Nj, we have

— (@) (b); 2
2Fi(a,b,c;2) = /2 for |z|] < 1. (7.29)
g ©r K

For a,b,c >0 or b=a, ¢ >0, (7.29) implies that ,Fi(a, b;c;z) > 0 for
0<z<l,and,Fi(a,b;c;0)=1.As,F(a,b;c;z) =,F|(b,a;c;z)andm > 0,
we obtain the same function if we replace A by —A. In particular,

n—1 n—1 n
2 F , i—:x) >0 for 0<x <.
2 2 2
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We now apply this to the kernel W,,(u, v) corresponding to C*. Because of the
G-invariance it follows that the function ¢ := W,,(-, eg) € C*°(S}) is K-invariant.
It also satisfies the differential equation Ag:yy = m?>y on S" (Sect. 7.4.2). Hence
there exists a constant y such that

( [4 ( ’ )) 2 ’ 2
]Zr X t.v . F —_— + )\
0 y 2147

1
-, g; sinz(t/Z)) .

Theorem 7.4.11 For every m > O, there exists a constant y,, > 0 such that the G°-
invariant kernel V,,, corresponding to C*, extends to a hermitian kernel on & x B
is given by

n—1 n—1 n l—[x,o
\Dm()@y):ym.zFl <_+)\’__)\_[—V(y)]v

9 b 7.30
2 2 2 2 ) (7.50)

=
(@'

and defines a positive definite hermitian kernel on &

X
Proof First note that sin®(/2) = § (1 — cos(t)) = 1 (1 — [x,,(t, v), ov(eo)]y) for
v € ¢y . Hence, by the above discussion:

W (x, €0) = ¢ -2k (’12—1 + 2, % — A, g; M)

The hypergeometric function ] has an analytic continuation to C\ [1, 00),
see [WW63, p. 288]. It follows from Proposition 7.4.8(d) that the right hand side,
and hence also W, (-, ¢p), has an extension to E x & given by (7.30). The exten-
sion is unique as S} is a totally real submanifold in E (Proposition 7.4.8(c)). It is
holomorphic in the first variable and antiholomorphic in the second variable and
W, (x,y) = ¥, (y, x) which follows from (7.29) and the form of the parameters. As
the kernel C is reflection positive, W,, (u, v) is positive definite on % x S, . Hence
Theorem A.1 in [NO14] implies that W,,, is positive definite on & x Z. In particular
W, (eg, ep) > 0. It follows that ¢ > 0. O

Above we introduced the principal and complementary series representations
u*, & reiRU(0, 251y and just after Theorem 7.3.13 we defined the spherical function
©,.(g) with spectral parameter A. We will use this now for to the group G°. The
following proposition follows from [OP13, p. 1158] and [vD09, p. 126]:

Proposition 7.4.12 For ¥, (x) = 1W,,(x, ¢,) and ). = (%)2 — m? as before, we
have Y, | = ;. In particular, the spherical function @, extends to a holomorphic
function on & and the unitary representation of G¢ on the reproducing kernel space
My C O(B) with kernel V,, is equivalent to (U*, &).

m

The last statement on analytic continuation in Proposition 7.4.12 is a special case
of the general theorem due to Krotz and Stanton [KS04, KS05].

In view of Proposition 7.4.12, we will from now on use the notation ¢; and &,
for the normalized version of v, and V,,, where X is defined by (7.28).
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Lemma 7.4.13 Let V¥ # 0 be a hermitian positive definite G¢-invariant kernel on
2 X E. If\peoh[-ﬂ"‘/ =0, then ¥ = 0.

Proof As Hly, is totally real in E by Corollary 7.4.9, W, |g; = 0 implies W,, =0
on all of E. By the G-invariance it follows that W (z, x) = 0 for all z € E and all
x € H,. As W(z, -) is antiholomorphic, it vanishes on all of &. O

Theorem 7.4.14 If V is a positive definite G°-invariant kernel on E x E for which
the canonical representation (U, 7y) of G is irreducible, then there exist ¢ > 0
and A € iRU (0, %] such that ¥ = c¢®, and (U, 54y) is equivalent to (U*, &*).

Proof The function ¥, is K-invariant. Hence Theorem 7.3.13 implies that there
exists a A € iR U (0, %] such that (L, 54,) ~ (U*, 5%). We can assume that
W(ep,eg) = 1. Then W(eg, g.€0) = (Wey, Woop) = (Weys LoWe,) = (1, Ug{\l) =
©:.(8)- ]

The Boundary of the Crown and the Spherical Function ¢,

In this subsection we describe the boundary of the crown as a disjoint union of two
orbits. Both are homogeneous spaces that we have already met, the de Sitter space
dS" and the forward pointing light like vectors I} which we have already introduced

in Sects. 7.3.3 and 7.3.1, respectively. For details we refer to [NO18].
A simple calculation shows that the boundary of & in S{, is given by

o — ; v emtl. [wuly =0,u0 >0,
au—{Z—M+lVEV+lV—(C '[v,v]V:—l,[u,v]Vzo} (7.31)

(INO18, Lemma 3.10]). If u = 0, then (7.31) leads to a realization of de Sitter space
dS" :=ifveV:[v,vly =1} =iVNSEg = G.ie, = G°/H CIENIV

where H >~ Oy ,—1(R) is the stabilizer of ¢, € dS".

Let&y := ey + ie, and write Ggu = M N, where M and N are similar to the groups
introduced in Sect. 7.3.1 except one has to replace v by i v and interchange the second
and last columns and second and last row as we now consider e, as a base point.

Lemma 7.4.15 Suppose thatn > 2 and let 0 := G .(eq + ie, + e,_1). The bound-
ary of the crown is the union two G°-orbits

9B =dS"Uo.
In particular, dS" is the unique open G€-orbit in the boundary. The projection of O
onto V is I, and the projection onto iV is dS".

The orbit G°.ie, = dS" is called the Shilov boundary of & in S. The tangent
space of dS" at e, is the n-dimensional Minkowski space
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T, (dS") = iIR@®R"' ~ R 1,
By (7.23), we have
Exp, () = S(z))z+ C(z%)e, for zeT,dS)c=Ca®C''. (732
We now describe how one can obtain the crown by moving inward from the de

Sitter space dS”.

Theorem 7.4.16 For g € G let VI, , ={veg.Vi:[v,vly < 7%} C Ty, (dS").
Then
E = G“.Exp, (V],) = U Exp, (V).
peds”

Proof In view of the G-invariance of E and the equivariance of the exponential
map of S, it suffices to verify the first equality. From (7.32) we obtain for v €
R, ®@iR"! CiT, (dS") and R, = (0, 00):

Exp, (v) = S([v,vlv)v + C([v, vlv)en (7.33)

and this is contained in Ty, NS¢ = Eif [v, v]y € (0, 7%). Therefore Exp, (£2.,) €
E.If, conversely,z € E = G°.§', , thereexistsat € (0, ) suchthat z is G°-conjugate
tox = (sint,0,...,0,cost). Butthentey € nyen,and (7.33)yields x = Exp, (teo).
This proves the claim. O

In this section we give a different description of the spherical function ¢, and the
kernel ®@; (x, y) (cf. Sect. 7.4.3) using the space L"} . For that we have to assume that

m > % (which corresponds to the principal series), which we do from now on.

Recall the map £ : S"~! — L} = G°.&,x — (1,x) and the action of G° on
St =1L /RX, given by
E(gu) = J(g, u)'g(Ew)).
Lemma 7.4.17 Letz € Eand & € L. ThenRe [z, &1y > 0.
Proof Write z =u +iv € E C Ty, (Proposition 7.4.8). Then u € V.. implies that

Re [z, &lv = [u, éolv =uo —u, >0 for & =ey+ie, €V.

But then Re [z, g.&]y = Re[g ™.z, &]v > Oforall g € G°. O
For A € C we define the analytic kernel

n—1

K, :ExL] - C, Ki(z,8):=Ke(2):= [z,é]t; 2 (7.34)

This kernel is continuous for Re A > (n — 1)/2. Note the similarity with the distri-
bution vector p, from (7.19).
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Theorem 7.4.18 For A € i[0, co) U (0, (n — 1)/2), the assignment

P, LS » 0(8), (29):) = K. (z, &) u) d g1 (u)

St

defines a G-intertwining operator (U*, L*>(S"™1)) — (L, #%,) with 2,1 = ¢,.

Notes

Most of Sects. 7.1-7.3 is from [NO14], with slightly different notation. Under some
additional assumptions, Theorem 7.1.7 can be found in [vD09, Theorem 8.2.1], and
in [NO14, Sect. 2] for the special case H = {e}. In Sect. 7.3 we added some material
on the principal series representations and the H -invariant distributions vectors. The
notation in Sect. 7.3 has also been adapted to the standard notation from [J0198,
JO100, 0100, FO(Z)18] as well as the notation for the last section in this chapter. The
material about the sphere is from [NO18]; for its relation to construction of QFTs on
de Sitter space, we refer to [BIM16].

The crown is the maximal G¢-invariant domain for the holomorphic exten-
sion of all spherical functions on the Riemannian symmetric space G°/K. It is
shown in [KSO05], that in our case the crown is a Riemannian symmetric space
S0,.,(R)o/(SO2(R) x SO, (R)); see also [NC)IS] for a direct argument. For more
information about the crown see [AG90, KOO8, KS04].



Chapter 8 ®)
Generalized Free Fields Chack or

We now turn to representations of the Poincaré group corresponding to scalar gener-
alized free fields and their euclidean realizations by representations of the euclidean
motion group. We start in Sect. 8.1 with a brief discussion of Lorentz invariant mea-
sures on the forward light cone V,; and turn in Sect. 8.2 to the corresponding unitary
representations. Applying the dilation construction to the time translation semigroup
leads immediately to a euclidean Hilbert space & on which we have a unitary rep-
resentation of the euclidean motion group. In Sect. 8.3 we characterize those repre-
sentations which extend to the conformal group O, 4(R) of Minkowski space. Then
the euclidean realization is a unitary representation of the Lorentz group Oy 4+ (R),
acting as the conformal group on euclidean R?.

8.1 Lorentz Invariant Measures on the Light Cone
and Their Relatives

Before we turn to unitary representations of the Poincaré group, it is instructive to
have a closer look at Lorentz invariant measures /4 on the forward light cone V. and
their projections to R?~!. We shall also see that these measures are directly related
to rotation invariant measures v on euclidean space R¢, and this establishes the key
link between unitary representations of the Poincaré group P(d) and the euclidean
group E(d).

Definition 8.1.1 Form > 0 ord > 1, we define a Borel measure u,, on

H, :={p eR': [p, pl = p; —p> =m", py > 0}
CVi={p=(po.p) €R?: py=0,[p, pl = pj —p* = 0}
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by

dp
d m = 2 27 e
L s = [ sV D)

(cf. [RS75, Chap.IX], [vD09, Lemma9.1.2/3]). These measures are invariant under
the Lorentz group Oy 4_; (R)" and every Lorentz invariant measure 1 on V/ is of the
form

M=6‘50+/ M dp (m), (8.1)
0

where ¢ > 0 and p is a Borel measure on [0, co) (with p({0}) = 0 ford = 1) whose
restriction to R is a Radon measure (see [NO15a, TheoremB.1]).!

Remark 8.1.2 (a) Ford = 1, we have H,, = {m} form > 0and Hy = . Therefore
1o does not make sense. For m > 0, we have u,, = %3,”, where §,, is the Dirac
measure in m.

(b) Ford = 2, the measure p is singular in 0, but every ¢ € .#(R?) vanishing in 0
is integrable (cf. [GJ81, p.103]). In particular, this measure does not define
a distribution, it defines a functional on the smaller space of test functions
Y*(Rd) = {p € SRY): ¢(0) = 0}.

(c) By [NOI15a, Theorem B.1], the measure w in (8.1) is tempered if and only if the
measure p is tempered and, in addition,

1 1 1
/—dp(m)<oo for d=1, /ln(m_l)dp(m)<oo for d=2.

o m 0
(8.2)

Example 8.1.3 (Generalized free fields)

(a) For the scalar generalized free field of spin zero on R4, the corresponding one-
particle Hilbert space is .7# := L*(R?, i), where u is a Lorentz invariant mea-
sure on V. (see (8.1)). Here the time translation semigroup C; acts by the con-
tractions

(C:Hp)=ef(p).

The dilation construction from Example 4.3.8 leads to the space & := LZ(R4+! | ¢)
with
Po

1 .
Az p) = o m dhdu(p) and U Y, p) =€ f(h, p). (83)
0

For pr, (%, po, p) = (A, p), the projected measure v := (pr,),¢ on RY is given,
in the special case © = [, by the measure v,, from Example2.4.7:

In Quantum Field Theory this is known as the Lehmann Spectral Formula for two-point functions;
see [GJ81, Theorem 6.2.4].
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1 /m?+p? 1 1 dp

dv(po. p) == — d dp=————, (84
Vi (Po. P) APt P Po\/’m p xm 2 (8.4)
so that
L [ dp(m)
dv(po,p>=—/ e dpden = (- [ Yap =0 dp,
(8.5)
for O (p) := 1 [ dotm)

0 m*+p?
(b) Since elements of L2(R¢, v) correspond to functions in L?(R%*!, ¢) not depend-
ing on the second argument py, we obtain an isometric embedding

pri: L*(RY,v) — & = L*(R'*! ¢). (8.6)

(c) The free scalar field of mass m and spin s = 0 on R (withm > 0ord > 1)
corresponds to the measure p = w,, (cf. [GJ81, p.103]). In this case pr} is
surjective, so that we can identify L?(R¢, v) with &. The measure v,, is finite if
and only if d = 1 and m > 0. It is tempered if and only if d > 2 orm > O.

Definition 8.1.4 We call a positive Borel measure p on [0,00) tame if
fooo % < oo. Note that this implies in particular that p is tempered.

Remark 8.1.5 In view of [NC)]Sa, Lemma7.1], the measure p is tame if and only if
O (p) < oo for every p € R and this in turn is equivalent to L>(R?, v) # {0}.

If this is the case, then the measure v on R? is tempered if and only if d > 2
or the conditions (8.2) characterizing the temperedness of u for d = 1, 2 are satis-
fied (INO15b, Proposition7.3]). As tameness of p implies that p is tempered, u is
tempered if v has this property.

8.2 From the Poincaré Group to the Euclidean Group

We have already seen in Example 8.1.3 that Lorentz invariant measures on the forward
light cone lead by the dilation construction to rotation invariant measures on euclidean
space. We now take a closer look of the implications of this correspondence for unitary
representations of the Poincaré group P(d) and the euclidean group E(d). In QFT,
this corresponds to the one-particle representations of scalar generalized free fields.

Example 8.2.1 (One particle representation of generalized free fields) Let n be a
Lorentz invariant Radon measure as in (8.1) on the forward light cone V_+ C R? with
¢ = u({0}) = 0. Then we have a natural unitary representation of the Poincaré group
G = P(d)¢ = Rd X O]yd_l(R)T on

A =L*Vi, ) by (U x,g)f)(p) :=ePf(g " p).
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Analytic continuation of the time-translation group leads to the contraction semi-
group
(C )(p) = (U"(iteo, 1) f)(p) = e ™ f(p),

and the dilation construction from Example4.3.8, applied to this contraction semi-
group, leads to the Hilbert space

— 1
E=L2RxV;,¢)=L2R" ¢) with d¢(h, p) = ——1o— drdp(p)
T pg+ A2
(cf. Example 8.1.3).

We consider the unitary representation U of the euclidean translation group of RY
on &, given by

(U(x0, %) f) (%, po, p) = e ") £, po, p). (8.7)

The constant function 1 on R**! is a distribution vector for U if and only if
the projected measure v = (pr,).{ under pr,(x, po,p) = (x,p), it tempered
(cf.Remark 8.1.5 for criteria), and then the corresponding distribution is D =7V
(Lemma7.1.9).

It is remarkable that the measure v on R? is rotation invariant, so that dilation with
respect to the contraction semigroup (C;);>o leads directly from the representation
U* of the Poincaré group on L*(RY, i) to a representation U" of the euclidean
motion group E(d) on L>(R?, v) by

U (x, ) f)(p) :=e ™ f(g " p).

For i = pu,,, the representation U*" of the Poincaré group is irreducible because
the measure 1, lives on a single O; 4_; (R)-orbit in R? (it is Oy 4_; (R)"-ergodic).
As the measure v, is a proper superposition of the invariant measures on spheres of
any radius, the corresponding representation U"" of E(d) is reducible and a direct
integral of representations corresponding to the invariant measures on the spheres
of radius r. Since all measures (v,,),,~0 are equivalent to Lebesgue measure, all
representations (U""),,-¢ are actually equivalent.

Proposition 8.2.2 If p is a tame measure on [0, 00) for which the measure v is
tempered, then the rotation invariant distributionv € C~(R?) is reflection positive
for (R4, Ri, 0) and 6 (xp, X) = (—x9, X), i.e.,

Rd?elﬁd\) >0 for feCORY).

Proof (seealso[GJ81,Proposition 6.2.5]) Writingv = f0°° v, dp(m)withdv,,(p) =
nlmi’r’pz , the assertion follows from the reflection positivity of the distributions v,

verified in Example 2.4.7. O
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We now assume that the measure v is tempered (cf. Remark 8.1.5). Then the cor-
responding distribution D = is reflection positive by Proposition 8.2.2. Let

F =pry(L*(RY,v)) € & = LR ¢)

be the image under the isometry pry from (8.6). It coincides with [Uce gy 1]
(see 8.7), and reflection positivity of U implies that the subspace #, := [U co@d) 1l
is @-positive.

To see how this fits the subspace & and &, of &, we first note that

Fo=F NE&E

consists of those function in & that are also independent of py. This is the L>-space of
the projected measure v := (pr,),v on R?~! for pr,(po, p) = p. Since v = (pr,)«¢,
we also have vV := (pr, ), i. According to [NO15a, Theorem B.1], % = L*(R¢~!, 7)
is non-zero if and only if the measure V is tempered, which is equivalent to the

additional condition %
/ dolm) _ (8.8)
1 m

on the growth of p at infinity. Assume that V' is tempered. Then 1 is a distribution
vector for the representation U|ge-1 on &, and the corresponding cyclic subspace
coincides with Fy C &y (Lemma7.1.9). This in turn 1mphes that %, C &,. Further,
&= L2(R?, 1) contains the subspace .Zo = %, = L>(R4~!, ) of functions not
depending on py, and the canonical map .7y — éoo is unitary. Accordingly, the “time
zero-subspace” % is the same on the euclidean and the Minkowski side.

Since . is U-cyclic in .7, the subspace JO is U- cyclic in &, showing that
F = &. Therefore the representation U" of the euclidean group E (d) on .% provides
a euclidean realization of the representation (U*, L>(R?, 1)) of P(d)'. To see how
Z is generated from .%,, we now determine the corresponding positive definite
operator-valued function

¢: R — B(F), @)= PU(t,0)Fy,
where Py: & — % is the orthogonal projection. This function is determined by the
relation

(. 0(n) = (& Um) for & neF.

‘We have

(&, o) = /R M@ (p) dv(p) = /R @D Opo. p) dpo dp

/Rdlé_n(p)/ ~"© (po, p) dpo dp = / E(p)n(p)©;(p) dp,
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where (8.5) yields
O:(p) == f e O (po, p)dpo = ! f f L — dp(m) dpo
R ’ 7 JrJo m? +p* + P(Z)
Z/oo (l/ eq’tpoL2 dPO) d,o(m)
0o 7w Jr (m? +p?) + py

o0
_ n —Itl/m>+p?
= —¢ dp(m).
/0 Vm? + p?

Here we have used Example 2.4.3 in the calculation. Now dv(p) = ©y(p)dp implies
that the operator ¢(t) on % is given by multiplication with the function ©, /6.
For the subspace .%) C & and f, g € %, the relation

(F.U.8) = (f,0U,8) = (f, Uig) = (f, 0()g) = (], p()8)

implies that ¢|r, is the positive definite function on R corresponding to the cyclic
subspace %y C &.

Example 8.2.3 For the special case where p = §,, withm > 0 or d > 2, we have

m X2 @,(X) ERPIIYw)
O(x) = ————¢ V" and = = g lIVmx
() vm? +x2 O (x)

is multiplicative for # > 0. This corresponds to the fact that ¢ (&) = & (the Markov
case; Proposition3.4.9), which in turn is due to the fact that the inclusion
L>(R41,%,) < L2(RY, w,,) is surjective. R

This has the interesting consequence that, if we consider elements of & as functions

fiR. xR 5 C
as in the preceding example, we have
f@.p) = (U0, p) = V" £ (0, p). (8.9)

This in turn leads by analytic continuation to

fGt,p) = (UL )0, p) = "™V™+ (0, p). (8.10)

These formulas provide rather conceptual direct arguments for formulas like [GJ81,
Proposition 6.2.5].

Remark 8.2.4 A unitary representation (U, 7€) of the Poincaré group is said to be of
positive energy if the spectrum of the time translation group is non-negative. In view
of the covariance with respect to the Lorentz group Oy 4— 1(R)?, this is equivalent
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to the spectral measure of U|g« to be supported in the closed forward light cone
V_+ because this is the set of all orbits of O 4_ (R)" on which the function py is
non-negative.

If such a representation is multiplicity free on RY, then # = L>(V, i) for a
measure /4 on V_+ which is quasi-invariant under Olqd,l(R)T. Since the action of
O1.4-1 (R)" on V_+ has a measurable cross section and every orbit carries an invariant
measure, the measure p can be chosen O g_ (R)"-invariant. The representation U
is irreducible if and only if the measure u is ergodic, i.e., 4 = u,, for some m > 0
(withm > 0 ford = 1) or u = 8 (the Dirac measure in 0).

For all the multiplicity free representations (U*, L2(V+, w)), Example 8.2.1 pro-
vides a euclidean realization in the dilation space & = L?(R,. x V., ¢), as far as the
representation of the subgroup R? x O4_; (R) is concerned. The subspace & C & is
invariant under the subgroup G* = R?~! x O4_; (R), which also implies the invari-
ance of &, under this group.

A euclidean realization for the full group is obtained in Example 8.1.3 for irre-
ducible representations, i.e., 4 = [,,. In the general case we assume that v is tem-
pered. Then the following theorem is the bridge between the reflection positive
representation U" of E(d) on .# = L*(R?, v) and the representation U = U* of
the Poincaré group on .# = L*(R?, ).

Theorem 8.2.5 If v is tempered, then 1 € &~ is a reflection positive distribution
vector for the representation U of R?. Accordingly, we obtain a reflection positive
representation of RY on the subspace F C & generated by U~°(C*(R?))1. The
corresponding reflection positive distribution v on R? is rotation invariant, so that
F carries a reflection positive representation of E(d) for which %y and %, are
invariant under H := E(d)* = R4 % 04 1(R)

Moreover T = L*(V_, ), q: F. — Z is H-equivariant and we have the rela-
tion U (t, O) = U"(it, 0, 1) for the positive energy representation U" of the Poincaré
group P(d)" on Z.

Proof We have already seen that 1 € £~ is equivalent to v being tempered
(Lemma?7.1.9). To determine the corresponding space .%, we have to take a closer
look at the corresponding reflection positive distribution D =7V for (R?, Ri, 0)
(Proposition 8.2.2). In view of [NO14, Proposition 2.12], this follows if we can show
that D|ga coincides with the Fourier-Laplace transform

FLW(x) = / e "™ du(p).

d

First we observe that the temperedness of u implies that % % () (x) exists p01nt-
wise and defines an analytic function on Rd Here the main point is that, on V. we
have p? = p +p? < 2p0 (cf. [NO14, Example4.12]). We have
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FLG(x) = /fe—“me""pdu(p): / / e me™ dp(po, p)
0 Ri-1

Vi
> 1 it Po i
= _ é Xo—dt) etxpd ’
,/(; Ad—l (j‘[ \/]R p(z) + 12 M(po P)

= [ e et po, p) = / e 0P gy (¢, p) = D(x).
RxR4 R4

If w is infinite, then the triple integral only exists as an iterated integral in the correct
order, not in the sense that the integrand is Lebesgue integrable. One can deal with this
problem by integrating against a test function on R , and then the above calculation
shows that . %% (u) coincides with U on Ri as a distribution. m]

8.3 The Conformally Invariant Case

In this section we study the special case where the measure 1 on V, is semi-invariant
under homotheties. This provides a bridge to the complementary series representa-
tions of Oy 441 (R)" discussed in Sect.7.3.2 because then the representation of E (d)
on L*(R4, v) extends to the conformal group Oy g4 (R) of RY.

Lemma 8.3.1 ([NOISb_, Lemma5.17]) An  Ojq4-; (R)-invariant measure
w= fooo WUm dp(m) on V. is semi-invariant under homotheties if and only if

do(m) =m*"'dm forsome s eR.

If this is the case, then p is tempered if and only if s > 0, and p is tempered if d > 1
or s > 1. For d > 1, the measure v on R~ is tempered if and only if s > 1. For
d = 1, the measure | is never finite.

From now on we write dp; (m) = m*~! dm on [0, 00). As the measure 1 is semi-
invariant under homotheties, we can expect the corresponding representation of the
Poincaré group to extend to the conformal group SO, ;(R) of Minkowski space.

Lemma 8.3.2 ([NOISb, Lemma5.18], Proposition7.3.10) The measure v =
Oy - dp corresponding to p is tempered if and only if 0 <s <2 for d > 1 and
if0<s <1 ford=1. In this case Oy is a multiple of || p|l*~* and the Fourier
transformV is a positive multiple of ||x || =925,

The preceding lemma implies in particular that the distribution ||x||~¢ on R? is
reflection positive for d — 2 < a < d, which has been obtained in [N()l4, Proposi-
tion6.1], [FL10, Lemma?2.1] and [FL11, Lemma3.1] by other means. This connec-
tion is made more precise in the following theorem:
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Theorem 8.3.3 Let0 <s <2, resp., | <s <2 ford = 1. Then

(i) The canonical representation of the conformal motion group
CE(d) := R x (O4(R) x RY)

on & = L*R?,v) = s for D(x) = ||x||7¢">~ extends to a complemen-
tary series representation of the orthochronous euclidean conformal group
O1,a4+1(R) 4.

(ii) The corresponding representation of the conformal Poincaré group

CP@@" =R x (L' xRY)

is irreducible and extends to a representation of a covering of the relativistic
conformal group SO3 4(R)o.

Proof (i) From Lemma8.3.2 we know that & := L?(R?, v) can be identified with
the Hilbert space 7, obtained by completion of C2°(R¢) with respect to the

scalar product
/ / oY) dx dy
Re Ja 6 =y 42

(cf. Definition 2.4.5). Now Theorem 7.3.8 implies that the representation of E(d)
on this space extends to an irreducible complementary series representation of
the conformal group O; 441 (R)+

(i1) The irreducibility of the representation U¢ follows from the transitivity of the
action of R} Oy 4_; (R)" on the open light cone V... To see that this representation
extends to SO, 4(R)g, we can use the fact that the representation U of the con-
formal group of R is reflection positive with respect to the open subsemigroup
of strict compressions of the open half space R_dF in the conformal compactifi-
cation S¢. As explained in [JOIOO, Sects. 6, 10], see also [HN93], [J()l98], the
reflection positivity and the Liischer-Mack Theorem now provide an irreducible
representation of the simply connected c-dual group G¢ on &. O



Chapter 9 ®)
Reflection Positivity and Stochastic oo
Processes

In this chapter we describe some recent generalizations of classical results by Klein
and Landau [K178, KL75] concerning the interplay between reflection positivity
and stochastic processes. Here the main step is the passage from the symmetric
semigroup (R, R, —idgr) to more general triples (G, S, 7). This leads to the concept
ofa (G, S, v)-measure space generalizing Klein’s Osterwalder—Schrader path spaces
for (R, R4, —idgr). A key result is the correspondence between (G, S, r)—measu;;
spaces and the corresponding positive semigroup structures on the Hilbert space &.
The exposition in this chapter is minimal in the sense that the main results are
explained and full definitions are given. For more details we refer to [JN15].

9.1 Reflection Positive Group Actions on Measure Spaces

We start with the basic concepts related to (G, S, t)-measure spaces which provide
a measure theoretic perspective on reflection positive representations of symmetric
semigroups (G, S, 7).

Definition 9.1.1 Let (G, ) be a symmetric group. A (G, t)-measure space is a
quadruple ((Q, X, n), Xy, U, 0) consisting of the following ingredients:

(GP1) a measure space (Q, X', u),

(GP2) asub-o-algebra X of X,

(GP3) ameasure preservingaction U : G, — Aut(&) on the von Neumann algebra
o = L*®(Q, ¥, n), for which the corresponding unitary representation on
L?(Q, w) is continuous, and

(GP4) 6 = U, satisfies O Egf = Eg, where Ey: L*™°(Q, X, u) — L®°(Q, Xy, ) is
the conditional expectation.

(GP5) X is generated by the sub-o-algebras X, := U, Xy, g € G.

If 11 is a probability measure, we speak of a (G, ©)-probability space. If S = S* € G
is a symmetric subsemigroup, then we write X1 for the sub-o-algebra generated by
(Xy)ses+1, and E4 for the corresponding conditional expectations.
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Definition 9.1.2 (a) A (G, t)-measure space is called reflection positive with respect
to the symmetric subsemigroup S if

Of, f) =0 for fe& :=L*Q, 2, p.

This is equivalent to E,6E, > 0 as an operator on L>(Q, X, u) and obviously
implies 0 Ey = Ej. If this condition is satisfied and, in addition, X is invariant
under the unit group H(S) := SN S~!, then we call it a (G, S, 7)-measure space."

(b) A Markov (G, S, t)-measure space is a (G, S, T)-measure space with the
Markov property EL E_ = E{ EoE_ (cf. Definition 2.3.1).

Proposition 3.4.9 immediately provides a reflection positive representation on the
corresponding L2-space:

Proposition 9.1.3 For a (G, S, t)-measure space ((Q, X, u), Xy, U, 0), we put
& :=L1L*0, 2, n), & :=L*Q, Xy, w)and &y = L*(Q, X, ). Then the natural
action of G on & defines a reflection positive representation of (G, S, 7).

The Markov property is equivalent to the natural map & — & being unitary
and this implies that the positive definite function ¢: S — B(&), ¢(s) = EoUEy
is multiplicative and the unitary representation U of G on (&, &y, 0) is a euclidean
realization of the x-representation (¢, &) of (S, 1).

Example 9.1.4 Typical examples arise in QFT as follows. Let & be a real Hilbert
space and X = &™* be its algebraic dual space, i.e., the space of all linear function-
als & — R, continuous or not. On this set we consider the smallest o -algebra for
which all evaluation functionals ¢ (&) («) := «(€) are measurable. Then there exists a
Gaussian measure ¢ on X such that any tuple (¢(&1), ..., ¢(&,)) is jointly Gaussian
with covariance ((§;, &;))1<i, j<» [JN15, Example4.3], [Sim05, Theorem 2.3.4]. The
orthogonal group O(&’) acts in a measure preserving way on X by Ua :=a o U™\,

If we start with a reflection positive unitary representation (U, &, &4, 0) of
(G, S, 1), for which &y is U-cyclic and &, is generated by Uy, then all this struc-
ture is reflected in (X, ¥, u). In particular, we obtain a measure preserving action
of G, on X. We write Xy € X for the smallest o -subalgebra for which all functions
(¢(§))eecs, are measurable. Then X is generated by the translates (U; Xy)ses and
(GP1-5) are satisfied.

The following concept aims at an axiomatic characterization of the corresponding
semigroup representations on the spaces &’. It generalizes the corresponding classical
concepts for the case (G, S, 7) = (R, R, —idg) ([K178] for (a) and [KL75] for (b)).

Definition 9.1.5 (a) A positive semigroup structure for a symmetric semigroup
(G, S, 7) is a quadruple (7, P, <7, §2) consisting of

(PS1) a Hilbert space 7,

! Note that EL0E > Oisequivalent to the kernel K%(A, B) := n(AN6(B))on X4 being positive
definite, i.e., the kernel K (A, B) := u(A N B) on X isreflection positive with respectto (¥, X, 0)
(Definition 2.4.1).
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(PS2) a strongly continuous x-representation (Ps);cs of (S, ) by contractions
on 7,

(PS3) acommutative von Neumann algebra .7 on 7 normalized by the operators
(Pn)nesns-1> and

(PS4) a unit vector 2 € 7, such that

(i) P82 = 2 forevery s € S.
(i1) £2 is cyclic for the (not necessarily selfadjoint) subalgebra & C B(J7)
generated by o7 and {P;: s € S}.
(iii) For positive elements Ay, ..., A, € &/ and sy, ..., s, € S, we have

<~QvA1PslA2"’Psn,1AnQ) 20

(b) A standard positive semigroup structure for a symmetric semigroup (G, S, 7)
consists of a o-finite measure space (M, G, v) and

(SPS1) arepresentation (Py)cs of S on L°°(M, v) by positivity preserving opera-
tors, i.e., Ps f > 0 for f > 0.

(SPS2) P;1 =1 fors € S (the Markov condition).

(SPS3) P is involutive with respect to v, i.e., [,, Py(f)hdv = [, f Py:(h) dv for
ses, f,h>0.

(SPS4) P is strongly continuous in measure, ie., for each
feL'M,v)NL®(M,v) and every §>0, speS, we have
lime o v({[Ps f — Py, f1 = 8} = 0.

The main difference between these two concepts is that (b) concerns the situation
where .77 is an L?-space, but it also leaves some additional freedom because the
measure v is not required to be finite so that the constant function 1 need not be L>.

The following proposition shows that the requirement that £2 is cyclic for .«
describes those positive semigroup structures which are standard.

Proposition 9.1.6 Let (M, G, v) be a probability space and (Py)scs be a positivity
preserving continuous x-representation of (S, ) by contractions on L*(M, v), i.e.,

Pil=1 and P;f >0 for f>0,s€S.

Then (L*>(M), Q, L®(M), 1) is a standard positive semigroup structure for which
1 is a cyclic vector for L*°(M).

Conversely, let (7€, P, </, §2) be a positive semigroup structure for which
2 is a cyclic vector for <f. Then there exists a probability space M and a
positivity preserving semigroup (Qs)ses on L*>(M) such that (€, P, o, 2) =
(L*(M), Q, L®(M), 1) as positive semigroup structures.

The following theorem characterizes the positive semigroup structures arising
in the Markov context as those for which £2 is a cyclic vector for <7, which is
considerably stronger than condition (PS4)(b).
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T,l\le(/)\rem 9.1.7 Let ((Q, X, n), Xo, U, 0) be a (G, S, t)-probability space and let
(&,U, o, §2) be its associated positive semigroulz\structure. Then ((Q, X, u),
X, U, 0) is Markov if and only if 2 is o/ -cyclic in &.

Proof The Markov property is equivalent to g (&p) = & (Proposition 9.1.3). Since
o/ - 11is dense in &y, this is equivalent to £2 = ¢ (1) being «7-cyclic in &. |

Example 9.1.8 (The real oscillator semigroup) We consider the Hilbert space 57 =
L?(R%), with respect to Lebesgue measure.
(a) On JZ we have a unitary representation by the group GL,(R) by

(Ty, ) (x) := | det(h)|~“? f(h~'x) for h e GL4(R),x € RY,

and we also have two representations of the additive abelian semigroup Sym,(R)
(the convex cone of positive semidefinite matrices):

(1) Each A € Sym,(R), defines a multiplication operator (M4 f)(x) := e~ (A0

f (x) which is positivity preserving on L°(R") but does not preserve 1; it pre-
serves the Dirac measure §y in the origin.

(2) Each A € Sym,(R); specifies a uniquely determined (possibly degenerate)
Gaussian measure 4 on RY whose Fourier transform is given by 74 (x) =
e~ A¥x)/2_ Then the convolution operator C, f := f * 1, is positivity preserv-
ing and leaves Lebesgue measure on R? invariant. For A = 1, we thus obtain
the heat semigroup as (14;1);>0-

Any composition of these 3 types of operators 7j,, M 4 and C 4 is positivity preserv-
ing on L>®(RY), and they generate a *-representation of the Olshanski semigroup
S := H exp(C) in the symmetric Lie group G := Sp,,(R), where H = GL;(R),
C = Sym,;(R)+ x Sym,(R); < Sym,(R) & Sym,(R) = q, and

A B\ (A -B A B I
T(C —AT)_<—C —AT> for (C _AT>€5p2d(R) with B —B,C =C

(cf. Examples 3.2.6). The real Olshanski semigroup S is the fixed point set of
an antiholomorphic involutive automorphism of the so-called oscillator semigroup
Sc = G°exp(iW) which is a complex Olshanskii semigroup [How88, Hi89]. The
elements in the interior of S act on L?(R?) by kernel operators with positive Gaussian
kernels and the elements of S¢ correspond to complex-valued Gaussian kernels. The
semigroup S contains many interesting symmetric one-parameter semigroups such
as the Mehler semigroup e~/ generated by the oscillator Hamiltonian

. 1 & d
E 2 § : 2

HOSC = — E)J + Z )Cj — 51 (91)
j=1 j=1

which fixes the Gaussian e~ IX1°/4,
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(b) The subsemigroup § := Sym,(R)+ x GL4(R) € Sp,,(R) also is a symmet-
ric subsemigroup of (G, t) with G = Sym,(R) % GL;(R) and t(4, g) = (—A, g).
Here the commutative von Neumann algebra 7 = L (R?) is invariant under con-
jugation with the operators 7}, so that (A, h) +— C4T}, defines a x-representation of
(S, 1) that leads to a standard positive semigroup structure on L?(R?).

9.2 Stochastic Processes Indexed by Lie Groups

We now introduce stochastic processes where the more common index set R is
replaced by a Lie group G. The forward direction is then given by a subsemigroup
S of G. So called stationary stochastic processes correspond naturally to measure
preserving G-actions on spaces G of all maps Q — G.

Definition 9.2.1 Let (Q, X, u) be a probability space. A stochastic process indexed
by a group G is a family (X,),cc of measurable functions X,: O — (B, B), where
(B, *B) is a measurable space, called the state space of the process. It is called full
if, up to sets of measure zero, X' is the smallest o-algebra for which all functions
(X¢)gec are measurable.

For such a process, we obtain a measurable map

D: 0 — BC, P(q) = (Xg(g))gec

with respect to the product o-algebra BC. Then v := &, is a measure on BY,
called the distribution of the process (X g)¢ec. This measure is uniquely determined
by the measures vy on G”, obtained for any finite tuple g := (g1, ..., g,) € G" asthe
image of u under the map X, = (X,,, ..., X,,): Q — B" (cf. [Hid80, Sect. 1.3]).
If g = (g) for some g € G, then we write v, for v,.

The process (X,)gec is called stationary if the corresponding distribution on B¢
is invariant under the translations

(Ugv)p :==vg1y, for g, h eG.

If r € Aut(G) is an automorphism, then we call the process t-invariant if its distri-
bution is invariant under (tv); := v, for b € G.

The connection with (G, S, T)-measure spaces is now easily described:

Example 9.2.2 Let (G, T) be a symmetric Lie group and (X, )z be a stationary, -
invariant, full stochastic process on (Q, X', (). Then its distribution (B G BY )
satisfies the conditions (GP1, 2, 4, 5) of a (G, t)-probability space with respect to
the canonical actions of G and t on B, where X, is the o-algebra generated by
(Xn)negr, 1.e., the smallest subalgebra for which these functions are measurable. In
this context (GP3) is equivalent to the continuity of the unitary representation of G
on L?(B%, 8% v).
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9.3 Associated Positive Semigroup Structures
and Reconstruction

The main result of this section is the Reconstruction Theorem. It asserts that, if
G = SUS™!, positive semigroup structures come from (G, S, T)-measure spaces.
For a subsemigroup S C G, we consider the left invariant partial order <s on G
definedby g <s hif g7 'h € S,i.e.,h € gS.

Lemma 9.3.1 Let ((Q, X, n), X9, U, 0) be a (G, S, t)-measure space. Consider
the von Neumann algebra o/ := L*(Q, X, i) on

&:=L*Q,Z, 1) 2 & :=LHQ, Ty, 1) 2 & = L*Q, Zo, p),

and the canonical map q : &, — &. Then the following assertions hold:

(a) For f € 4, let My denote the correspondmg multiplication operator on &.
Then there exists a bounded operator Mf S B(é’) with g o Myle, = Mf oq
and ||Mf|| = 1 f lloo-

®) Uf):= M 7 s a faithful weakly continuous representation of the commutative
von Neumann algebra </ on &

(c) Inthe Markov case we identify & with &y and g with E (Proposition9.1.3). For
g1 <s 82 <s -+ <s & in G, non-negative functions fi, ..., f, € o and f,, =
Ugffj, we have

ffgl o d/,L /Mfl 'e” Mfﬂ Un gannld/,L.

If, in addition, v is finite, then 2 := u(Q)~'*q(1) satisfies:

(d) Forgi <s g <s- - =<s & inG, fi,..., fo € & and fy, := Uy, f;, we have
/;fgl "'fgn dp = (MflUgl"gz"'an Ug ! g an‘Q"Q>'

(e) L2 is a separating vector for </ and I)J\X.Q = §2 for every s € S.
(f) 2 is cyclic for the algebra B generated by <7 and (Uy);cs.

Definition 9.3.2 The preceding lemma shows that, if ((Q, X, n), 2o, U,0) is a
finite (G, S, 7)- -measure space, then (é" U o, q(1)) is a positive semigroup struc-
ture for &/ {Mf f e L>®(Q, Xy, n)}. We call it the associated positive semi-
group structure.

We now turn to our version of Klein’s Reconstruction Theorem. Note that every
discrete group is in particular a O-dimensional Lie group, so that the following the-
orem applies in particular to discrete groups.
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Theorem 9.3.3 (Reconstruction Theorem) Let (G, S, t) be a symmetric semigroup
satisfying G = S U S~. Then the following assertions hold:

(a) Every positive semigroup structure for (G, S, t) is associated to some (G, S, 7)-
probability space ((Q, X, ), Xy, U, 0).

(b) Every standard positive semigroup structure for (G, S, t) is associated to
some (G, S, t)-measure space ((Q, X, u), Xy, U, 0) which is unique up to G-
equivariant isomorphism of measure spaces.

Remark 9.3.4 Without going into details of the proof, it is instructive to take a closer
look at the construction of the measure space (Q, X', 1) in the proof of Theorem 9.3.3
in [JN15]. Here G acts unitarily on the Hilbert space 77 = L*(M, &, v). For sim-
plicity, we assume that (M, G, v) (cf. Proposition9.1.6) is a polish space, i.e., M
carries a topology for which it is completely metrizable and separable and G is
the o -algebra of Borel sets. Then [Ba96, Corollary 35.4] implies the existence of a
Borel measure 1« on the measurable space (MY, &%) with the projections onto finite
products satisfying

/ fl(w(gl))~~fn(w(gn))du(w)=/ My Pyorg, -~ My, P, My, 1dv
MG 0

forO< fi,..., fu € L°(M,S,v) and g| <5 --- <5 g,. We thus obtain a realiza-
tion of our (G, S, T)-measure space on (M G, &Y, ), where the measure preserving
G-action on MY is given by (g.0)(h) := w(g~'h).

Definition 9.3.5 ([Ba78]) (a) Let (Q, X) and (Q’, X’) be measurable spaces. Then
afunction K: Q x X’ — [0, oo] is called a kernel if

(K1) forevery A’ € X', the function K4 (w) := K (w, A’) is ¥-measurable, and
(K2) forevery w € Q, the function K, (A") := K(w, A’) is a (positive) measure.

A kernel is called a Markov kernel if the measures K, are probability measures.
(b) A kernel K: Q x X’ — [0, oo] associates to a measure p on (Q, X) the
measure

(WK)(A) = / Wd)K (@, A) = /Q K (@, A dp(w).

(c) If (Qj, X})j=1,2,3 are measurable spaces, then composition of kernels K
on Q) x X, and K, on Q, x X3 is defined by (K| K»)(w;, A3) = le (w1, dwy)
K> (wy, Az). If S is a semigroup, then a family (Py),cs of Markov kernels on the
measurable space (Q, X) is called a semigroup of (Markov) kernels if P;P; = Py,
for st € S.

Remark 9.3.6 (a) Let (P,);>o be a Markov semigroup on the polish space (Q, X).
Then we obtain for 0 <# <...<t, and t = (¢1,...,1,) a Markov kernel P; on
0 x X" by



120 9 Reflection Positivity and Stochastic Processes
Pt B) = [ tmCon e 5 Py G0 dx) P 1)+ Py )
er

[Ba78, Satz 64.2]. Fixing x,, we thus obtain a a projective family of measures, which
leads to a probability measure P, on the o-algebra X®+ on Q®+ whose restrictions
to cylinder sets are given by the P;(x, -). We thus obtain a Markov kernel P (x, -) :=
P.(-) on Q x X®+ Foranyt > 0, we then have

P (x, B) :/ xp(@(t)) P(x,dw) = P(x,{w(t) € B}),
R+
which leads to
(P f)(x) =/QPz(x,dy)f(y) =me P(x,dw) f(o(t)) . 9.2)

This is an abstract version of the Feynman—Kac—Nelson formula that expresses the
value of P, f in x € Q as an integral over all paths [0, ] — Q starting in x with
respect to the probability measure P, .

(b) For any measure v on Q, we thus obtain a measure P’ := v P on (Q®+, XF+),
If v is a probability measure, then PV likewise is, and we obtain a stochastic pro-
cess (X;);>o with state space (Q, X') and initial distribution v [Ba78, Satz62.3].
According to [Ba78, Satz65.3], the so obtained stochastic process has the Markov
property.

For t > 0, we have the relation

/ f(w(t))dP“(w)=/ v(dx)Pi(x,dy) f(y) for reR,
o% 0
and, fort < s,
/Q/Qfl(JC)v(dX)I"x—t(x,dy)fz(y)=/QR filw®)) fr(w(s))dP" (w).

(c) In the special case where Q = G is a topological group and P, f = f * u, for
probability measures u; on G, we have

(P f)(x) =/Gf(xy)dm(y)=/GPz(x,dy)f(y) for Pi(x, A) = p,(x~"'A).

Let P(G) := G® be the path group of all maps R — G and let P,(G) be the
subgroup of pinned paths P,.(G) = {w € P(G): w(0) = e}. We have the relations

fl(w(o))fz(w(f))dpv(w)=/G/;fl(gl)fz(glgz)dv(gl)dﬂr(gz)

P(G)
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fort > 0, and

f(w(t))dP”(w)=//f(xg)dV(X)dur(g)=/f(g)d(V*Mz)(g)~
G) GJG G

Py (

This leads for f € L*(G,v)andt > 0to

(P f)(x) = (f * o) (x) =/Gf(xg)duz(g) = fGR fxo())dP ().

This is a group version of the Feynman—Kac—Nelson formula (9.2).

We now assume that G is a second countable locally compact group and that
(t4)¢>0 1s a convolution semigroup of probability measures on G which is strongly
continuous in the sense that lim,_,o u, = §, = o weakly on the space C,(G) of
bounded continuous functions on G. We further assume that v is a measure on G
satisfying v * u, = v for every ¢ > 0, and, in addition, that the operators P; f :=
f % u; on L%(G,v) are symmetric. If v is a right Haar measure, then the symmetry
of the operators P; is equivalent to i} = p,. Then we obtain for #; < --- <, and
t:= (f,...,t,) on G" a consistent family of measures

Ptﬂ = W)V tpy—ty @ - Q tiy—1, ),

where ¥, (g1,...,8n) = (81,8182, -, & - &n). This in turn leads to a unique
measure P" on the two-sided path space GR with (evy), P’ = P fort; <--- <ty

From the Klein—Landau Reconstruction Theorem we obtain the following spe-
cialization.

Theorem 9.3.7 Suppose that G is a second countable locally compact group. Let
PV be the measure on G® corresponding to the convolution semigroup (i;);=o of
symmetric probability measures on G and the measure v on G for which the operators
P, f = f % u, define a positive semigroup structure on L*>(G, v). Then the transla-
tion action (U,w)(s) := w(s — t) on G® is measure preserving and P’ is invariant
under (Ow)(t) := w(—t). We thus obtain a reflection positive one-parameter group
of Markov type on

& = LZ(GR, BE W) with respectto &y := LZ(GR, BR+ w,

for which &y := evg(Lz(G, V) = L*(G,v) and &= L*(G,v) with g(F) = EoF
for F € &. We further have

EgUEy = P; for Pif = f*u,,

so that the U-cyclic subrepresentation of & generated by & is a unitary dilation of
the one-parameter semigroup (P;),=o of hermitian contractions on L*(G, v).
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Example 9.3.8 (a) For G = R, the heat semigroup is given on L?(R¢) by

1 llx12
tA —_ o
e f=f=xy where dy,(x)= (27”)d/ze 2 dx.

We call the corresponding measure on G® the Lebesgue—Wiener measure (cf. The-
orem9.3.7).

(b) If G is any finite dimensional Lie group and Xy, ..., X, is a basis of the
Lie algebra, then we obtain a left invariant Laplacian by A := Z;zl L%(,» where
Lx, denotes the left invariant vector field with Lx,(e) = X ;. Then there also exists
a semigroup (u,);>o of probability measures on G such that ¢’ Af = fxu, for
t > 0 [Nel69, Sect. 8]. Accordingly, we obtain a Haar—Wiener measure on the path
space G&.

Notes

The material in this section is condensed from [JN15] to which we refer for more
details and background. This paper draws heavily from the work of Klein and Landau
[KL75, K178]. In particular, the Markov (G, S, t)-measure spaces generalize the path
spaces studied by Klein and Landau in [KL75]. For (G, S, ) = (R, R, —idg), the
work of Klein and Landau was largely motivated by Nelson’s work on the Feynman—
Kac Formula in [Ne0O].

In A. Klein’s papers [K177, KI178] concerning (G, S, t) = (R, R;, —id), the
reflection positivity condition from Definition9.1.2 is called Osterwalder—Schrader
positivity. Theorem9.1.7 is adapted from [K178, Theorem3.1].

Stochastic processes index by Lie groups also appear in [AHHS86].



Appendix
Background Material

In this appendix we collect precise statements of some basic facts on positive definite
kernels and positive definite functions on groups and semigroups.

A.1 Positive Definite Kernels

Let X be a set. Classically, reproducing kernels arise from Hilbert spaces .72 which
are subspaces of the space CX of complex-valued functions on X, for which the
evaluations f +— f(x) are continuous, hence representable by elements K, € 7
by

fx) =(K,, f) for feH, xelX.

Then
K:XxX—>C, K(x,y):=K,x) = (K,, Ky)

is called the reproducing kernel of 7. As the kernel K determines 7 uniquely,
we write #% C CX for the Hilbert space determined by K and % C #% for the
subspace spanned by the functions (K, ),cx. A kernel function K: X x X — C is
the reproducing kernel of some Hilbert space if and only if it is positive definite in the
sense that, for any finite collection x1, ..., x, € X, the matrix (K (x;, xx))1<jk<n 18
positive semidefinite (cf. [Ar50], [Nel64, Chap. 1]). There is a natural generalization
to Hilbert spaces .7 of functions with values in a Hilbert space 7/, i.e., 5 C
¥X . Then K.(f) = f(x) is a linear operator K, : ## — 7 and we obtain a kernel
K(x,y) := KKy € B(?') with values in the bounded operators on ¥'. However,
there are also situations where one would like to deal with kernels whose values are
unbounded operators, so that one has to generalize this context further. The notion of
a positive definite kernel with values in the space Bil(V) of bilinear complex-valued
forms on a real linear space V provides a natural context to deal with all relevant
cases.

© The Author(s) 2018 123
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Physics, https://doi.org/10.1007/978-3-319-94755-6



124 Appendix: Background Material

Definition A.1.1 Let X be a set and V be a real vector space. We write Bil(V) =
Bil(V, C) for the space of complex-valued bilinear forms on V. We call a map
K: X x X — Bil(V) a positive definite kernel if the associated scalar-valued kernel

K':(XxV)x(XxV)—C, K((x,v),(y,w) =K, y)(v,w)

is positive definite.
The corresponding reproducing kernel Hilbert space %> € C**V is generated
by the elements K ;,v, x € X, v € V, with the inner product

(Ko Ky ) = K, p)(v,w) =t K] (x,0),

x,v? y,w
so that, for all f € J#%», we have
@) = (K}, f). (A.1)

We identify %> with a subspace of the space (V*)X of functions on X with values
in the space V* of complex-valued linear functionals on V by identifying f € J¢%»
with the function f*: X — V*, f*(x) := f(x,-). We call

Hy =" f € Hp) S (VHY
the (vector-valued) reproducing kernel space associated to K . The elements
K.y = (K )" with K.,(y) =K@, x)(,v) for x,yeX,v,weV,
then form a dense subspace of % with
(K, Kyw) = K(x, y)(v, w) (A2)

and
(Kyw, )= f()(v) for fedk,xeX velV. (A.3)

Remark A.1.2 Equation (A.2) shows that positive definiteness of K implies the exis-
tence of a Hilbert space 7 and amap y : X — Hom(V, %), y (x)(v) := K, such
that

K, y)(v,w) =y (x)(»), y ) (W)).
If, conversely, such a factorization exists, then the positive definiteness follows from

n n 2
> Gk G0 = Y Galepe), @) = | Y areoeo| = o.
k=1 k=1 k=1
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Example A.1.3 1tV is acomplex Hilbert space, then we write Sesq(V) < Bil(V) for
the linear subspace of sesquilinear maps, i.e., maps which are anti-linear in the first
and complex linear in the second argument. If X isasetand K: X x X — B(V)is
an operator-valued kernel, then K is positive definite if and only if the corresponding
kernel

K:(XxV)x(XxV)=C, K(x,v),yw):= Kx,yw)

is positive definite (Definition A.1.1). Then, for each f € %%, the linear functionals
f*(x): V — C are continuous, hence can be identified with elements of V. Accord-
ingly, we consider 7% as a space of V-valued functions (see [Nel64, Chap. 1] for
more details).

Example A.1.4 Let o be a C*-algebra. A linear functional w € &* is called pos-
itive if the kernel K, (A, B) := w(A*B) on &/ x & is positive definite. Then the
corresponding Hilbert space .77, := %, can be realized in the space <% of anti-
linear functionals on 7. It can be obtained from the GNS representation (7, 72, 2)
[BRO2, Corollary 2.3.17] by

I: A, — % TE)A) = (mTA)R,E)

because (7 (A)2, 7(B)Q2) = w(A*B) = K, (A, B). Note that .« has a natural rep-
resentation on 7% by (A.B)(B) := B(A*B) and that I'" is equivariant with respect
to this representation. !

If X = G is a group and the kernel K is invariant under right translations, then it
is of the form K (g, h) = ¢(gh™") for a function ¢: G — Bil(V).

Definition A.1.5 Let G be a group and let V be a real vector space. A function
¢: G — Bil(V) is said to be positive definite if the Bil(V)-valued kernel K (g, ) :=
@(gh™") is positive definite.

Suppose, more generally, that (S, *) is an involutive semigroup,i.e., asemigroup S,
endowed with an involutive map s > s* satisfying (st)* = t*s* fors, r € S. A func-
tion ¢: § — Bil(V) is called positive definite if the kernel K (s, t) := ¢(st*) is pos-
itive definite.

The following proposition generalizes the GNS construction to form-valued pos-
itive definite functions on groups [NO15b, Proposition A.4].

Proposition A.1.6 (GNS-construction for groups) Let V be a real vector space.

(a) Let ¢: G — Bil(V) be a positive definite function. Then (U{ f)(h) := f(hg)
defines a unitary representation of G on the reproducing kernel Hilbert space
H, = Ay < (V*)C with kernel K (g, h) = ¢(gh™") and the range of the map

I'This realization of the Hilbert space .7, has the advantage that we can view its elements as elements
of the space .«7* (see [Nel64] for many applications of this perspective). Usually, .7, is obtained as
the Hilbert completion of a quotient of <7 by a left ideal which leads to a much less concrete space.
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Ji V= Ay JOE@W) =e@w,v),  jO) =K.,

is a cyclic subspace, i.e., US. j (V) spans a dense subspace of 7. We then have

P, w) = (jv), Ugjw)) for geG,v,w,eV. (A4)

(b) If;, conversely, (U, F) is a unitary representation of G and j: V. — € alinear
map, then
¢: G — Bil(V), (@), w) = (j(v), Ugj(w))

is a Bil(V)-valued positive definite function. If, in addition, j(V) is cyclic, then
(U, H) is unitarily equivalent to (U?, 7).

Proof (a) Forthekernel K (g, h) := ¢(gh™") and v € V, the right invariance of the
kernel K on G implies on %, the existence of well-defined unitary operators
U, with
UgKp,y = Kpg-1, for g, heG,velV.

In fact, (A.2) shows that

(Kpyg=1 vy Kipg=1.vy) = K(hig™ " hog 1. v2) = K(h1, ho) (01, v2) = (Kny vy s Kig vy )-
For f € J,, we then have

WU )W) = (Kny, Ug f) = (Ug1 Ky, f) = (Kngvs f) = f(h) V),

ie., (Uy f)(h) = f(hg).Further, j(v) = K., satisfies Uy j(v) = K;-1,, which
shows that Ug j (V) is total in JZ;,. Finally we note that

(J), Ugjw)) = (Kep, Kg1,) = K(8)(v, w) = () (v, w).

(b) The positive definiteness of ¢ follows with Remark A.1.2 easily from the relation
p(gh™H(v,w) = (Ug’lv, Uh_]w). Since j (V) is cyclic, the map I"(§)(g)(v) :=
(Ug'j(v), §) defines an injection .2 < (V*)“ whose range is the subspace .7%;,
and which is equivariant with respect to the right translation representation U¥®.

|

Remark A.1.7 (a) If ¢: G — Bil(V) is a positive definite function, then (A.4)
shows that,if V := j(V), which is the real Hilbert space defined by completing
V with respect to the positive semidefinite form ¢(e), then

P (v, w) = (v, Ugw) (A.5)
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defines a positive definite function
¢: G — Bil(V) with ¢(@)(j(»).jw) =@, w) for v,weV.

Therefore it often suffices to consider Bil(V)-valued positive definite functions
for real Hilbert space V for which ¢(e) is a positive definite hermitian form on
V whose real part is the scalar product on V. In terms of (A.4), this means that
j: V — S is an isometric embedding of the real Hilbert space V.

(b) If ¥ is a real Hilbert space and j is continuous, then the adjoint operator
Jj*: 7 — ¥ is well-defined and we obtain from (A.5) the B(¥')-valued positive
definite function ¢(g) := j*U,j which can be used to realize . in ¥ ©.

Example A.1.8 (Vector-valued GNS construction for semigroups) [Nel64, Sect.3.1]
Let (U, 5¢) be a representation of the unital involutive semigroup (S, *, ), ¥ be a
Hilbert space and j: ¥ — ¢ be alinear map for which Ug j () is total in 7. Then
@(s) := j*U,j is a B(¥)-valued positive definite function on S with ¢(e) = j*j
(which is 1 if and only if j is isometric) because we have the factorization

p(st*) = jUsj = (G U)DGUD"

The map
O:H— VS, dW)(s) = j U

is an S-equivariant realization of . as the reproducing kernel space 5, € ¥5, on
which § acts by right translation, i.e., (U £)(¢) = f(ts).

Conversely, let S be a unital involutive semigroup and ¢ : S — B(7') be a positive
definite function. Write .7, € ¥'® for the corresponding reproducing kernel space
with kernel K (s, t) = ¢(st*) and %’;0 for the dense subspace spanned by K, =
eviv,s € S,ve¥. Then (U f)(t) := f(ts) defines a *-representation of S on
%0. We say that ¢ is exponentially bounded if all operators U¢ are bounded, so that
we actually obtain a representation of S by bounded operators on 7, (cf. [Nel64,
Sect.2.4]). Then ev, oU{ = ev, leads to

p(s) =evsev, =ev,Ufev) and gv=eviv=K,,. (A.6)

If S = G is a group with s* = s~!, then ¢ is always exponentially bounded and
the representation (U?, %7;,) is unitary.

Lemma A.1.9 Let (S, *, ) be a unital involutive semigroup and¢: S — B(¥)bea
positive definite function with ¢(e) = 1. We write (U, J£,) for the representation on
the corresponding reproducing kernel Hilbert space F;, < VS by (U*(s) f)(t) 1=
f(s). Then the inclusion 1: V' — H,, 1(v)(s) 1= @(s)v, is surjective if and only if
¢ is multiplicative, i.e., a representation.

Proof If ¢ is multiplicative, then (U1 (V) () = @(ts)v = @(t)p(s)v € ((¥). There-
fore the S-cyclic subspace ¢(¥") is invariant, which implies that ¢ is surjective.
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Suppose, conversely, that ¢ is surjective. Then each f e JZ, satisfies f(s) =
@(s)f(e). Forv e ¥ and t,s € S, this leads to

p(styy = (ULL)(s) = ¢(s) - (UL 1)) (&) = p(sN((1) = () p(t)v.

Therefore ¢ is multiplicative. (]

A.2 Integral Representations

For arealization of unitary representations associated to positive definite functions in
L?-spaces, integral representations are of crucial importance. The following result is
a straight-forward generalization of Bochner’s Theorem for locally compact abelian
groups. Here we write Sesq™ (V) C Sesq(V) for the convex cone of positive semidef-
inite forms if V is a complex linear space.

Theorem A.2.1 Let G be a locally compact abelian group. Then a function

¢: G — Sesq(V) for which all functions ¢"" = @(-)(v,w),v,w € V, are contin-
uous is positive definite if and only if there exists a (uniquely determined) finite
Sesq™ (V)-valued Borel measure p on the locally compact group G such that

a(g) = fG x(g)du(x) = ¢(g) holds for every g € G pointwiseon V. x V.

Proof If o = 1 holds for a finite Sesq™ (V)-valued Borel measure re p on the locally

compact group G, then the kernel e(gh™H(E, n) = fG x (@) x (W) dué"(x) on
G x V is positive definite because

n

> gV &) = Z / X ()% (80 A5 (x)

J.k=1 J.k=1

Z/ X K@ () = /duéé>0

J.k=1

holds for & := }77_, x(g;)§; and u®"(-) = pu(-)(§, n).

Suppose, conversely, that ¢ is positive definite. Then Bochner’s Theorem for
scalar-valued positive definite functions yields for every v € V a finite positive mea-
sure u” on G such that

9" (g) =1 (g) = /G x (@) du’ (x).

By polarization, we obtain for v, w € V complex measures u"" := i Z,f:() i~k w‘”kw
on G with " = u¥». Then the collection (™). wey of complex measures on
G defines a Sesq™ (V)-valued measure by u(-)(v, w) := u”" forv, w € V, and this

measure satisfies i = ¢. ([l
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Remark A.2.2 Suppose that E is the spectral measure on the character group G
for which the continuous unitary representation (U, S¢) is represented by U, =
fé %x(g) dE(x). Then, for & € S, the positive definite function U® (g) := (&, U,§)
is the Fourier transform of the measure E5¢ = (£, E(-)&). This establishes a close
link between spectral measures and the representing measures in the preceding the-
orem.

The following theorem follows from [NO15b, Theorem B.3]:

Theorem A.2.3 (Laplace transforms and positive definite kernels) Let E be a finite
dimensional real vector space and 9 C E be a non-empty open convex subset. Let
V be a Hilbert space and ¢: 9 — B(V) be such that

(L1) the kernel K (x, y) = ga()%) is positive definite.

(L2) ¢ is weak operator continuous on every line segment in 9, i.e., all functions
t = (v, o(x +th)v), v € V, are continuous on {t € R: x +th € Z}.

Then the following assertions hold:

(i) There exists a unigue Herm™ (V)-valued Borel measure [ on the dual space
E* such that

0(x) = L(u)(x) = f D duGy for xe P,

B
(i) Let Ty = P +iE C Ec be the tube domain over 9. Then the map
T LXE*, 13 V) = 0Ty, V), (£, .F(f)Q) = (ezpé. f)

is unitary onto the reproducing kernel space J;, := x corresponding to the
kernel associated to . It intertwines the unitary representation

(U (@) =€ f(@) on L*E*,pn) and
(U f)(@) = f(z—2ix) on

(iii) @ extends to a unique holomorphic function ¢ on the tube domain Ty which is

positive definite in the sense that the kernel @(”TW) is positive definite.
Corollary A.2.4 A continuous function ¢ : 9 — C on an open convex subset of a
finite dimensional real vector space E is positive definite if and only if there exists a
positive measure u on E* such that ¢ = £ ()| 4.

The preceding theorem generalizes in an obvious way to Sesq(V)-valued func-
tions, where the corresponding measure y has values in the cone Sesqt (V). One can
use the same arguments as in the proof of Bochner’s Theorem (Theorem A.2.1).
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The following lemma sharpens the “technical lemma” in [KL82, Appendix A].
We recall the notation .3 = {z € C: 0 < Imz < B} for horizontal strips in C.

Lemma A.2.5 LetU, = ' be aunitary one-parameter group on 7, E the spectral
measure of H, £ € 7, E := (£, E()E), B > 0 and ¢(1) := (£, U) = Jre™ dEE ().
Then the following are equivalent:

(1) There exists a continuous function ¥ on %, holomorphic on S, such that
ViR = @.
(i) Z(E5(B) = fR e PAdES (L) < o0.
(iil) & € 2(e PH/?).

Proof That (i) implies (ii) follows from [Ri66, p. 311]. If, conversely, (ii) is satisfied,
then ¥ (z) := ZL(Ef)(—iz) is defined on 7};, holomorphic on 5 and ¥|r = ¢.
Finally, the equivalence of (ii) and (iii) follows from the definition of the unbounded
operator e ##/2 in terms of the spectral measure E. O

Lemma A.2.6 (Criterion for the existence of £ (w)(x)) Let ¥ be a Hilbert space
and 1 be a finite Herm™ (¥)-valued Borel measure on R, so that we can consider its
Laplace transform £ (), taking values in Herm(¥"), whenever the integral

w(LeS) = [ e au ey for dudGy = (sdue)
R

exists for every positive trace class operator S on V. This is equivalent to the finiteness
of the integrals £ (") (x) for everyv € ¥, where di’(A) = (v, du(X)v).

Proof For x € R, the existence of £ (u)(x) implies the finiteness of the integrals
Z(u)(x) forv € 7. Suppose, conversely, that all these integrals are finite. Then we
obtain by polarization a hermitian form (v, w) := fR e (v, dpu(M)w) on V. We
claim that § is continuous. As ¥ is in particular a Fréchet space, it suffices to show
that, for every w € ¥, the linear functional A(v) := B(w, v) is continuous [Ru73,
Theorem2.17].

The linear functionals f,(v) := ["

o e (w, du())v) are continuous because p
is a bounded measure and the functions e, (1) := ¢*™® are bounded on bounded
intervals. By the Monotone Convergence Theorem, combined with the Polarization
Identity, f,, — f holds pointwise on ¥/, and this implies the continuity of f [Ru73,
Theorem2.8].

For a positive trace class operators S = Y (v, -)v, withtr S =Y [[v,[1* < o0,
we now obtain

L) =Y L) =Y B va) < 18I Ivall* < 0.
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reproducing, 123
KMS condition, 5
positive definite function, 51, 52
KMS state, 56

L

Laplace—Beltrami operator, 16
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Lie derivative, 71

Lie group
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Markov condition, 11
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OS transform
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cyclic representation, 32
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function, 37
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operator, 18
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unitary one-parameter group, 38
V -cyclic representation, 32
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S
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