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Preface

The concept of reflection positivity (RP) occurs as an important theme in various
areas of mathematics and physics:

• In the representation theory of Lie groups, it establishes a passage of a unitary
representation of a symmetric Lie group (such as the euclidean motion group) to
a unitary representation of the Cartan dual group (such as the Poincaré group)
[FOS83, JOl00, JOl98, NÓ14, JPT15].

• In constructive Quantum Field Theorem (QFT), it arises as the condition of
Osterwalder–Schrader (OS) positivity for a euclidean field theory to correspond
to a relativistic one [GJ81, Ja08, Ja18, Os95a, Os95b, OS73, OS75].

• For stochastic processes, it is weaker than the Markov property and specifies
processes arising in lattice gauge theory. It plays a central role in the mathe-
matical study of phase transitions and symmetry breaking [FILS78, JJ16, JJ17,
Nel73].

• In analysis, it is a crucial condition that leads to inequalities such as the Hardy–
Littlewood–Sobolev inequality [FL10].

Only recently, it became apparent that there are many hidden and still not
sufficiently well-understood structures underlying the duality between unitary
representations of a symmetric Lie group and its dual. Establishing reflection
positivity in this context requires new analytic methods and new geometric insight
into constructions and realizations of representations in analytic contexts. New
developments concern analytic issues such as criteria for integrating Lie algebra
representations to Lie group representations, reflection positive functions, distri-
butions and kernels, new dilation techniques for representations and unexpected
connections between Kubo–Martin–Schwinger (KMS) states of C�-algebras and
reflection positive unitary representations.

This was our motivation to write this “light” introduction to the representation
theoretic aspects of reflection positivity to present this perspective on a level
suitable for doctoral students.

v
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Chapter 1
Introduction

In the context of quantum physics reflection positivity is often related to Wick rota-
tion, which roughly means multiplying the time coordinate by i = √−1. This can be
made precise and used in analytic constructions if this process is related to analytic
continuation of the time variable to a domain in the complex plane which provides
a means to go back and forth between real and imaginary time.

A duality of a similar flavor also exists in the context of Lie groups, where it arose
almost a century ago in the work of É. Cartan on the classification of symmetric
spaces.Here one considers a symmetric Lie group (G, τ ), i.e., aLie groupG, endowed
with an involutive automorphism τ . Then the Lie algebra g of G decomposes into
τ -eigenspaces

h = {x ∈ g : τ x = x} and q = {x ∈ g : τ x = −x}.

From the bracket relations [h, h] ⊆ h, [h, q] ⊆ q, and [q, q] ⊆ h it then follows that
the Cartan dual

gc := h + iq

also is a Lie subalgebra of the complexified Lie algebra gC = g ⊕ ig. We thus obtain
a duality relation between symmetric Lie groups (G, τ ) and (Gc, τ c), where Gc

denotes a Lie group with Lie algebra Gc and τ c an involutive automorphism acting
by x + iy �→ x − iy on the Lie algebra gc = h + iq. The classical examples from
quantum physics are the euclidean motion group G = E(d) ∼= R

d
� Od(R) and the

automorphism τ of E(d) induces by time reflection. This establishes a duality with
the Poincaré group Gc = P(d) ∼= R

1,d−1
� O1,d−1(R).

In many cases both groups G and Gc are contained in one complex Lie group GC

and H = G ∩ Gc is a Lie subgroup with Lie algebra h, contained in both. Therefore
any passage from G to Gc should be related to analytic continuation to domains in
GC whose closure intersects both groups G and Gc. On the Lie algebra level the
passage from g = h ⊕ q to gc = h ⊕ iq very much resembles Wick rotation because
the elements of q are multiplied by i (cf. [HH17], where this context is discussed for
pseudo-Riemannian manifolds). Simple examples are

© The Author(s) 2018
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2 1 Introduction

• the circle group G = T ⊆ GC = C
× with the dual group Gc = R

× and τ(z) =
z−1.

• the additive group G = R ⊆ GC = C with τ(x) = −x and Gc = iR.
• the group G = GLn(R) ⊆ GC = GLn(C) with τ(g) = g−
 and Gc = Un(C).
• the group G = On(R) ⊆ GC = On(C)with τ(g) = rgr , where r is an orthogonal
reflection in a hyperplane and Gc = O1,n−1(R).

• the groupG = O1,n(R) ⊆ GC = On+1(C)with τ(g) = θgθ , where θ is an orthog-
onal reflection in a Minkowski hyperplane and Gc = O2,n−1(R).

If U : G → U(E ) is a unitary representation of G, then, for x ∈ g, the infinitesi-
mal generator dU (x) of the unitary one-parameter t �→ U (exp t x) is a skew-adjoint
operator, and multiplication by i leads to a selfadjoint operator. Therefore we cannot
expect unitary representations ofG andGc to live on the sameHilbert space.Whatwe
need instead is some extra structure on E that permits us to construct another Hilbert
space on which a unitary representation of Gc may be implemented. This is where
reflection positivity comes in as a framework establishing a bridge between unitary
representations of G and Gc. This perspective isolates many of the key features of
reflection positivity and subsumes not only the representation theoretic aspects of
classical applications along the lines of Osterwalder and Schrader [OS73, OS75], but
also quite recent developments in Algebraic Quantum Field Theory (AQFT), where
Haag–Kastler nets of operator algebras are constructed on space times by meth-
ods relying very much on the unitary or anti-unitary representations of the groups
involved [Bo92, BJM16, NÓ17, Nel69]. Another recent branch of applications of
reflection positivity for the euclidean conformal group along these lines concerns
Hardy–Littlewood–Sobolev inequalities in analysis (see [FL10, FL11, NÓ14]).

The extra structure required on the Hilbert space E can be specified axiomatically
as follows. A reflection positive Hilbert space is a triple (E ,E+, θ), consisting of a
Hilbert space E with a unitary involution θ and a closed subspace E+ satisfying

〈ξ, ξ 〉θ := 〈ξ, θξ 〉 ≥ 0 for ξ ∈ E+.

This structure immediately leads to a new Hilbert space ̂E that we obtain from the
positive semidefinite form 〈·, ·〉θ on E+.Wewrite q : E+ → ̂E , ξ �→ ̂ξ for the natural
map. Bounded or unbounded operators S on E+ preserving the kernel of q induce
an operator ̂S on ̂E via ̂Ŝξ := ̂Sξ . The passage S �→ ̂S is called the Osterwalder–
Schrader (OS) transform.

On the level of E (the euclidean side), we consider a unitary representationU of a
symmetric Lie group (G, τ ) on a reflection positive Hilbert space (E ,E+, θ). There
are several ways to express the compatibility of the representationU with E+ and θ .
One is the compatibility relation

θUgθ = Uτ(g) for g ∈ G

between τ and the unitary involution θ and another is the invariance of E+ under
the operators Uh , where h belongs to the identity component H := Gτ

0 of the group
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Gτ of τ -fixed points in G. These two already ensure that the OS transform yields a
unitary representation (̂Uh)h∈H on ̂E . We are aiming at a unitary representation of the
Cartan dual groupGc on ̂E and this can only be achieved by additional requirements.
On the algebraic level, if we only consider the representation dU of the Lie algebra
g on the subspace E ∞ of smooth vectors for (U,E ), it suffices to have a subspace
D ⊆ E+ ∩ E ∞ which is g-invariant. Then OS transformation immediately leads to a
representation of gc = h + iq by skew-symmetric operators on the subspace ̂D ⊆ ̂E
by

x + iy �→ (

dU (x)|D + idU (y)|D
)

.̂

This simple passage already shows how the θ -twisting of the scalar product on E+
turns the symmetric operators idU (y), y ∈ q, on D into skew-symmetric operators
on ̂D , but it completely ignores all issues related to essential selfadjointness and,
accordingly, integrability to group representations. We therefore need more global
ways to express the reflection positivity requirements.

One way to express such requirements refers to subsemigroups S ⊆ G which are
symmetric in the sense that they are invariant under the involution s �→ s� := τ(s)−1.
Then we call (U,E ) reflection positive with respect to S if UsE+ ⊆ E+ holds for
s ∈ S. Then OS transformation yields a ∗-representation (̂Us)s∈S of the involutive
semigroup (S, �), and if S has interior points one can expect this representation
to “extend analytically” to a unitary representation of a dual group Gc. A typical
situation arises for (G, S, τ ) = (R, R+,− idR) in euclidean field theory from the
one-parameter group of time translations. Then (̂Ut )t≥0 is a one-parameter group of
hermitian contractions on ̂E , hence of the form ̂Ut = e−t H for a positive selfadjoint
operator H , andUc

t := eit H defines a unitary representation of the dual group Gc =
iR with positive spectrum (in QFT H corresponds to the Hamiltonian, the energy
observable, which should be positive).

There are, however, many situations where there are no natural symmetric sub-
semigroups S ⊆ G, or some which do not have interior points, such as the subsemi-
group S of the euclidean motion group mapping a closed half space into itself. In this
case the reflection positivity requirements on (U,E ,E+, θ) have to be formulated
differently. Instead of a subsemigroup, we consider a domain G+ ⊆ G (mostly open
or with dense interior) and the reflection positivity condition is inspired by situations
in QFT, where Hilbert spaces are generated by field operators: Instead of fixing E+ a
priori, we consider a real linear space V and a linear map j : V → H whose range
generates E under UG and θ and call (U,E , j, V ) reflection positive with respect to
G+ if the subspace E+ :=[[U−1

G+ j (V )]] is θ -positive. The prototypical examples arise
for circle groups G = R/βZ with τ(g) = g−1, where G+ = [0, π ] + βZ is a half
circle. In physics they occur in the context of quantum statistical mechanics, where
β plays the role of an inverse temperature [Fro11]. Both approaches, the one based
on semigroups S and on domains G+ lead to situations in which we can use suitable
integrability results (cf. Chap.6) to obtain unitary representations of the 1-connected
Lie group Gc with Lie algebra gc = h + iq on ̂E .



4 1 Introduction

We now turn to the contents of this book. We shall not turn to finer aspects
of unitary representations of higher-dimensional Lie groups before Chap. 6. In the
first half, Chaps. 2–5, we deal with rather concrete contexts and how they relate to
reflection positivity. Various aspects concerning general Lie groups are postponed to
Chaps. 6–9.

Chapter2 develops the notion of a reflection positive Hilbert space (E ,E+, θ)

from various perspectives. For instance θ -positive subspaces E+ can be constructed
as graphs of contractions from the 1 to the −1-eigenspace of θ (Sect. 2.2). In physics
reflection positive Hilbert spaces often arise from distributions. Here E is a Hilbert
space arising by completing the spaceC∞

c (M) of smooth test functions on amanifold
with respect to a singular scalar product

〈ξ, η〉 =
∫

M×M
ξ(x)η(y) dD(x, y), (1.1)

where D is a positive definite distribution on M × M . Then θ is supposed to come
from a diffeomorphism of M and E+ from an open subset M+ ⊆ M , which leads to
the reflection positivity condition

∫

M+×M+
ξ(x)ξ(y) dD(θ(x), y) ≥ 0 for ξ ∈ C∞

c (M+) (1.2)

(Section2.4). Typical concrete examples arise from reflections of complete Rieman-
nian manifolds and resolvents (λ1 − Δ)−1 of the Laplacian (Sect. 2.5). Motivated by
these examples, we briefly describe an abstract operator theoretic context for reflec-
tion positivity that we feel should be developed further (Sect. 2.6; [JR07, An13,
AFG86, Di04]). In probabilistic contexts, one encounters situations satisfying the
Markov condition, i.e., there exists a subspace E0 ⊆ E+ mapped isometrically onto
̂E (Sect. 2.3).

The connection between reflection positive Hilbert spaces and representation the-
ory is introduced inChap.4.After discussing some general properties of theOS trans-
form, we introduce symmetric Lie groups (G, τ ), symmetric subsemigroups S ⊆ G
and various kinds of reflection positivity conditions for unitary representations. As
in the representation theory of operator algebras, where cyclic representations are
generated from states, it is an extremely fruitful approach to generate representations
of groups and semigroups by positive definite functions via the Gelfand–Naimark–
Segal (GNS) construction. Here reflection positivity requirements lead to the concept
of a reflection positive function whose values may also comprise bounded operators
or bilinear forms (Sect. 3.4).

After these generalities, we turn in Chap.4 to the most elementary concrete sym-
metric Lie group (G, τ ) = (R,− idR), where the RP condition is based on the sub-
semigroup R+. Although this Lie group is quite trivial, reflection positivity on the
real line has many interesting facets and is therefore quite rich. As reflection positive
functions play a crucial role, we start Chap. 4with functions on intervals (−a, a) ⊆ R

which are reflection positive in the sense that both kernels
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(ϕ(x − y))−a/2<x,y<a/2 and (ϕ(x + y))0<x,y<a/2

are positive definite. For a = ∞, this combines the positive definiteness of the group
(R,+)with the positive definiteness on the involutive semigroup (R+, idR). Accord-
ingly, these two conditions ask for techniques related to Fourier- and Laplace trans-
forms.

Reflection positive representations of (R, R+,− idR) are unitary one-parameter
groups (Ut )t∈R ona reflectionpositiveHilbert space (E ,E+, θ) satisfyingUtE+ ⊆ E+
for t > 0 and θUtθ = U−t for t ∈ R. On ̂E this leads to a semigroup (̂Ut )t≥0 of
hermitian contractions and we show in particular that, under the OS transform, fixed
points of U on E correspond to fixed points of ̂U in ̂E (Proposition4.2.6).

For (R, R+,− idR), we obtain a complete classification of reflection positive rep-
resentations in terms of integral formulas, resp., spectral theorems. From these results
one obtains an interesting converse of the OS transform in this context. Any hermi-
tian contraction semigroup (Ct )t≥0 on a Hilbert space H has a so-called minimal
dilation represented by the reflection positive function ψ(t) := C|t | on R.

We conclude Chap.4 by showing that, for any reflection positive one-parameter
group for which E+ is cyclic and fixed points are trivial, the space E+ is outgoing
in the sense of Lax–Phillips scattering theory (Proposition4.4.2). This establishes a
remarkable connection between reflection positivity and scattering theory that leads
to a normal formof reflection positive one-parameter groups by translations on spaces
of the form E = L2(R,H )with E+ = L2(R+,H ). Applying the Fourier transform
to our concrete dilation model leads precisely to this normal form.

In Chap.5 we still work with the same symmetric group (R,− idR) or rather
its quotient circle group R/2βZ ∼= T, but now reflection positivity is based on the
interval [0, β], where β > 0 is interpreted as an inverse temperature in physical
models [NÓ15b, KL81, KL81b, Fro11, NÓ16]. In this context reflection positivity
is closely connected with the Kubo–Martin–Schwinger (KMS) condition for states
of C∗-dynamical systems [Fro11, BR02]. This connection is established by a purely
representation theoretic perspective on the KMS condition formulated as a property
of form-valued positive definite functions on R: Let V be a real vector space and
Bil(V ) be the space of real bilinear maps V × V → C. For β > 0, we consider the
open strip

Sβ := {z ∈ C : 0 < Imz < β}.

We say that a positive definite function ψ : R → Bil(V ) (DefinitionA.1.5) satisfies
the β-KMS condition ifψ extends to a pointwise continuous functionψ onSβ which
is pointwise holomorphic on the interior Sβ and satisfies

ψ(iβ + t) = ψ(t) for t ∈ R.

The classification of such functions in terms of an integral representation is based on
relating them to standard (real) subspaces of a complex Hilbert space which occur
naturally in the modular theory of operator algebras [Lo08]. These are closed real
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subspaces V ⊆ H for which V ∩ iV = {0} and V + iV is dense. Any standard sub-
space determines a pair (Δ, J ) of modular objects, where Δ is a positive selfadjoint
operator and J is an anti-linear involution (a conjugation) satisfying JΔJ = Δ−1.
The connection is established by

V = Fix(JΔ1/2) = {ξ ∈ D(Δ1/2) : JΔ1/2ξ = ξ}.

This connects reflection positivity very naturally to the aforementioned recent devel-
opments in AQFT initiated by the work of Borchers [Bo92] and now exploited
systematically in the constructions of QFTs (see [BJM16, BLS11, LL14, LW11] for
typical applications). Here standard subspaces can be considered as “one-particle
space analogs” of the modular data (Δ, J ) arising in Tomita–Takesaki theory in the
context of von Neumann algebras [Lo08, LL14].

After the discussion of the concrete examples, the reader should be prepared to
appreciate the Lie theoretic aspects of the theory, which start in Chap.6 with the
development of the integration techniques that are used to obtain a unitary repre-
sentation of the simply connected Lie group Gc on ̂E from a reflection positive
representation of (G, τ ) on (E ,E+, θ). Our techniques are based on the fact that the
Hilbert spaces are mostly constructed from G-invariant positive definite kernels or
positive definite G-invariant distributions. We have already seen that any reflection
positive representation of (G, τ ) immediately yields a unitary representation Uc of
H = Gτ

0 on ̂E , so that it remains to find a unitary representation of the one-parameter
groups expGc(Ri x) for x ∈ q. By Stone’s Theorem, themain point is to show that, for
y ∈ q, the symmetric operator̂dU (y) defined on a dense subspace of ̂E is essentially
selfadjoint. In our geometric setting, this can be derived from Fröhlich’s Theorem
[Fro80] which provides a criterion for the essential selfadjointness of a symmetric
operator in terms of the existence of enough local solutions of the corresponding
linear ODE. The natural setting for the corresponding integrability results are pairs
(β, σ ) of a homomorphism β : g → V (M) to the Lie algebra V (M) of smooth vec-
tor fields on a manifold M which is compatible with a smooth H -action σ . Then, for
any smooth kernel K on M satisfying a suitable invariance condition with respect to
(β, σ ), a unitary representation of Gc on HK exists (Theorem6.2.3). We also show
that a similar result holds if we replace the kernel K by a positive definite distri-
bution K ∈ C−∞(M × M) compatible with (β, σ ) (Theorem6.3.6). From this we
easily derive the existence of a unitary representation of the simply connected group
Gc on ̂E for a reflection positive representation (U,E ) of (G, τ ). Our exposition
is based on new aspects developed in [MNO15] which complements the classical
approach from [FOS83].

The most effective tool to deal with reflection positive representations of symmet-
ric Lie groups (G, τ ) are reflection positive distributions on G and their relation with
reflection positive distribution vectors of unitary representations. A key advantage of
this method, outlined in Chap.7, is that is leads naturally to reflection positive repre-
sentations in Hilbert spaces of distributions on homogeneous spaces G/H , where H
may be non-compact. To illustrate this technique, we apply it to spherical representa-
tions of the Lorentz group G = O1,n(R). These representations consist of two series,
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the principal series and the complementary series. Both have natural realizations in
spaces of distributions on the n-sphere S

n ∼= G/P on which the Lorentz group acts
by conformal maps; the principal series can even be realized in L2(Sn).

In Chap.8 we take a closer look at the representations of the Poincaré group cor-
responding to scalar generalized free fields and their euclidean realizations by rep-
resentations of the euclidean motion group E(d). In particular, we discuss Lorentz
invariant measures on the forward light cone V+ and the corresponding unitary repre-
sentations of the Poincaré group. Applying the dilation construction to the time trans-
lation semigroup leads immediately to a Hilbert space E on which we have a unitary
representation of the euclidean motion group. We also characterize those representa-
tionswhich extend to the conformal groupO2,d(R) ofMinkowski spaceR

1,d−1. Then
the euclidean realization is a unitary representation of the Lorentz group O1,d+1(R),
acting as the conformal group on euclidean R

d .
A particularly fascinating aspect of reflection positivity is its intimate connection

with stochastic processes which is briefly scratched in Chap.9. This is already inter-
esting in the context of one-parameter groups, where it surfaces for example in the
fact that the unitary one-parameter group (Ut )t∈R leads by OS transform to the one-
parameter groupUc

t = e−i tΔ on L2(Rn), respectively to the heat semigroup etΔ, is the
translation action of R on a suitable Lebesgue–Wiener space. This connection was
observed by Nelson in [Nel64] and led to a new approach to Feynman–Kac type inte-
gral formulas. In Chap. 9 we describe some recent generalizations of classical results
of Klein and Landau [Kl78, KL75] concerning the interplay between reflection posi-
tivity and stochastic processes. Here the main step is the passage from the symmetric
semigroup (R, R+,− idR) to a more general context (G, S, τ ). This leads to the con-
cept of a (G, S, τ )-measure space generalizing Klein’s Osterwalder–Schrader path
spaces for (R, R+,− idR). A key result of this theory is the correspondence between
(G, S, τ )-measure spaces and the corresponding positive semigroup structures on
the Hilbert space ̂E .

Notation

We write R≥0 := [0,∞) for the closed half line, R+ = (0,∞) for the open half line
and N = {1, 2, 3, . . .} for the set of natural numbers.

As customary in physics, all scalar products on Hilbert spaces H will be linear
in the second argument. A subset S ofH is called total if it spans a dense subspace.
We write[[S]] := span S.

We write U(H ) for the unitary group of a Hilbert space H .
For a measure space (X,S, μ), we accordingly write

〈 f, g〉 =
∫

X
f (x)g(x) dμ(x) for f, g ∈ L2(X, μ).

We write elements of R
d as x = (x0, x1, . . . , xd−1) = (x0, x). The standard inner

product on R
d is denoted 〈x, y〉 = x · y = xy = ∑d−1

j=0 x j y j , and the Lorentzian
inner product by

[x, y] = x0y0 − xy.
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In d-dimensional Minkowski space Md we write

V+ := {p = (p0,p) ∈ R
d : p0 > 0, p20 > p2}

for the open forward light cone.
We write C∞

c (M) for the space of complex-valued test functions and S (Rd) is
the space of complex-valued Schwartz functions on R

d . For the Fourier transform
of a measure μ on the dual V ∗ of a finite-dimensional real vector space V , we write

μ̂(x) :=
∫

V ∗
e−iα(x) dμ(α).

The Fourier transform of an L1-function f on R
d is defined by

̂f (p) :=
∫

Rd

e−i〈p,x〉 f (x) dλd(x) = 1

(2π)d/2

∫

Rd

e−i〈p,x〉 f (x) dx (1.3)

which corresponds to the Fourier transform of the measure f λd , where dλd(x) :=
(2π)−d/2 · dx is a suitably normalized Lebesgue measure. We likewise define con-
volution of L1-functions with respect to λd .

For tempered distributions D ∈ S ′(Rd), which we define as continuous anti-
linear functionals on the Schwartz space S (Rd), we define the Fourier transform
by

̂D(ϕ) := D(ϕ̃), where ϕ̃(p) = ϕ̂(−p) =
∫

Rd

ei〈p,x〉ϕ(x) dλd(x). (1.4)

For D f (ϕ) = ∫

Rd ϕ(x) f (x) dλd(x), we then have ̂D f = D
̂f and for a tempered

measure μ the corresponding distribution Dμ(ϕ) := ∫

ϕ dμ satisfies ̂Dμ = Dμ̂ if
we consider μ̂ as a function. For the point measure δ0 we then have in particular the
relation

1 = ̂δ0

which corresponds to the normalized Lebesgue measure λd .



Chapter 2
Reflection Positive Hilbert Spaces

In this chapter we discuss the basic framework of reflection positivity: reflection
positive Hilbert spaces. These are triples (E ,E+, θ), consisting of a Hilbert space
E , a unitary involution θ on E and a closed subspace E+ which is θ -positive in the
sense that 〈ξ, θξ 〉 ≥ 0 for ξ ∈ E+. This structure immediately leads to a new Hilbert
space ̂E and a linear map q : E+ → ̂E with dense range. When the so-called Markov
condition is satisfied, there even exists a closed subspace E0 ⊆ E+ mapped isomet-
rically onto ̂E (Sect. 2.3). Reflection positive Hilbert spaces arise naturally in many
different contexts: as graphs of contractions (Sect. 2.2), from reflection positive dis-
tribution kernels onmanifolds (Sect. 2.4) and in particular from dissecting reflections
of complete Riemannian manifolds and resolvents of the Laplacian (Sect. 2.5). This
motivates the short discussion of an abstract operator theoretic context of reflection
positivity in Sect. 2.6.

2.1 Reflection Positive Hilbert Spaces

We start with the definition of a reflection positive Hilbert space:

Definition 2.1.1 (Reflection positive Hilbert space) Let E be a real or complex
Hilbert space and θ ∈ U(E ) be a unitary involution. A closed subspace E+ ⊆ E
is called θ -positive if 〈η, θη〉 ≥ 0 for η ∈ E+. We then call the triple (E ,E+, θ) a
reflection positive Hilbert space.

If (E ,E+, θ) is a reflection positive Hilbert space, then

N := {η ∈ E+ : 〈η, θη〉 = 0} = {η ∈ E+ : (∀ζ ∈ E+) 〈ζ, θη〉 = 0}

is the subspace of E+ on which the new scalar product

© The Author(s) 2018
K.-H. Neeb and G. Ólafsson, Reflection Positivity, SpringerBriefs in Mathematical
Physics, https://doi.org/10.1007/978-3-319-94755-6_2
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〈η, ξ 〉θ := 〈η, θξ 〉

degenerates. We thus consider the quotient map

q : E+ → E+/N , η 	→ η̂ (2.1)

and write ̂E for the Hilbert space completion of E+/N with respect to the norm
‖η̂‖

̂E := ‖η̂‖ := √〈η, θη〉.

2.2 Reflection Positive Subspaces as Graphs

To get a better picture of how reflection positiveHilbert spaces arise, we nowdescribe
a construction of these structures in terms of contractions on a subspace of E θ .

We start with a unitary involution θ on the Hilbert space E . Then θ is diagonaliz-
able with the two eigenspaces E±1 := {η ∈ E : θη = ±η} and E = E+1 ⊕ E−1. Then
the twisted inner product 〈·, ·〉θ is positive definite on E+1 and negative definite on
E−1:

〈ξ+ + ξ−, ξ+ + ξ−〉θ = ‖ξ+‖2 − ‖ξ−‖2 for ξ± ∈ E±1. (2.2)

Denote by p± the projection onto E±1. Let E+ ⊆ E be a θ -positive subspace and
F := p+(E+) be its projection onto E+1. Then E+ ∩ E−1 = {0} implies that there
exists a linear map C : F → E−1 such that

E+ = G (C) = {u + Cu : u ∈ F }

is the graph ofC . Now (2.2) yields 〈u + Cu, u + Cu〉θ = ‖u‖2 − ‖Cu‖2 ≥ 0 for u ∈
F , so that ‖C‖ ≤ 1, i.e.,C is a contraction. If, conversely,F ⊆ E+1 is a subspace and
C : F → E−1 is a contraction, then its graph G (C) ⊆ E+1 ⊕ E−1 = E is θ -positive.
Since G (C) is closed if and only if F is closed, we obtain the following lemma
which provides a description of all θ -positive subspaces in terms of contractions (cf.
[JN16, Lemma5.1]):

Lemma 2.2.1 A closed subspace E+ ⊆ E is θ -positive if and only if there exists a
closed subspace F ⊆ E+1 and a contraction C : F → E−1 such that E+ = G (C).

Remark 2.2.2 Let (E ,E+, θ) be a reflection positive Hilbert space.

(a) Put E− := θ(E+). Then E+ ∩ E− is the maximal θ -invariant subspace of E+, and
θ -positivity of E+ implies that it coincides with E0 := {v ∈ E+ : θv = v}. This
is the maximal subspace of E+ on which q is isometric.

(b) For E+ = G (C) as in Lemma2.2.1, we have E0 = E+ ∩ E+1 = ker(C). In par-
ticular, E0 = {0} if and only if C is injective.

(c) Writing E as E0 ⊕ E1 with E1 := E ⊥
0 , the reflection positive Hilbert space is

a direct sum of the trivial reflection positive Hilbert space (E0,E0, id) and
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the reflection positive Hilbert space (E1,E1,+, θ1), where θ1 := θ |E1 , E1,+ =
E1 ∩ E+, and E1,0 = {0}.

(d) If (E ,E+, θ) is a reflection positive Hilbert space, then (E ,E−, θ) is reflection
positive as well. If E+ = G (C) as above, then E− = G (−C).

2.3 The Markov Condition

For a reflection positive Hilbert space (E ,E+, θ), (2.2) shows that the subspace

E0 = {ξ ∈ E+ : θξ = ξ}

is maximal with respect to the property that q|E0 : E0 → ̂E is isometric. In particular,
E0 ∼= q(E0) is a closed subspace of ̂E .

An interesting special case arises if ̂E = q(E0). Then q restricts to a unitary
operator E0 → ̂E , so that q : E+ → ̂E is a partial isometry with kernel
N = E+ � E0. The following lemma characterizes this situation in terms of the
Markov condition that originally arose in the context of stochastic processes
(cf. Chap. 9).

Definition 2.3.1 Let (E ,E+, θ) be a reflection positive Hilbert space. If E ′
0 ⊆ E0

is a closed subspace, E− := θ(E+), and P0, P± are the orthogonal projections onto
E ′
0 and E±, then we say that (E ,E ′

0,E+, θ) is a reflection positive Hilbert space of
Markov type if

P+P0P− = P+P−. (2.3)

Lemma 2.3.2 The Markov condition (2.3) is equivalent to E ′
0 = E0 and q(E0) = ̂E .

If it is satisfied, then

(a) Γ := q|E0 : E0 → ̂E is a unitary isomorphism and q = Γ ◦ P0|E+ .
(b) If E+ + E− is dense in E , then E+ is maximal θ -positive.

Proof If E ′
0 = E0 and q(E0) = ̂E , then N = E+ ∩ E ⊥− = ker q implies that N =

E+ � E0. This leads to the orthogonal decomposition E+ + E− = θ(N ) ⊕ E0 ⊕ N
and to E0 = E+ ∩ E−. Therefore P+P0P− = P0 = P+P−.

Suppose, conversely, that the Markov condition holds. For u ∈ E0 ⊆ E−, we have
P+P−u = u, but P+P0P−u = P0u, so that E0 = E ′

0. As E0 ⊂ ker(θ − 1), we have
P0θ = θ P0 = P0. This implies

P+θ P+ = P+P−θ = P+P0P−θ = P0θ P+ = P0P+ = P0 .

For u ∈ E+, we thus obtain 〈u, θu〉 = 〈u, P+θ P+u〉 = 〈u, P0u〉 = ‖P0u‖2. There-
foreN = ker q = E+ � E0 and q(E0) = ̂E . The remaining assertions are now clear.
This implies the first assertion and (a).
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We now verify (b). FromN = E+ � E0 we derive that E− = E0 ⊕ θ(N ), so that
E+ + E− = E+ ⊕ θ(N ) is an orthogonal decomposition and our assumption implies
that E = E+ ⊕ θ(N ). It follows that any proper enlargement ˜E+ ⊇ E+ contains a
non-zero θ(ξ), ξ ∈ N . ThenCξ + Cθ(ξ) ⊆ ˜E+ is θ -positive and θ -invariant, hence
contained in E θ , which contradicts the orthogonality of N and θ(N ). �
Remark 2.3.3 (Relation to stochastic processes) Let (Xt )t∈R be a full stochastic
process on the probability space (Q,Σ,μ) (see Definition9.2.1) and Σt ⊆ Σ the
smallest σ -subalgebra for which Xt is measurable. Accordingly, we define Σ± as
the σ -subalgebra generated by all Σt for ±t ≥ 0. In E := L2(Q,Σ,μ) we thus
obtain closed subspaces E± := L2(Q,Σ±, μ) and E0 := L2(Q,Σ0, μ). If P± and
P0 are the corresponding projections (corresponding to conditional expectations in
this context), then the Markov condition (2.3) holds for all translates of the process
(Xt )t∈R if and only if it is a Markov process (cf. [JT17, Sect. 7]).

2.4 Reflection Positive Kernels and Distributions

There are many ways to specify Hilbert spaces concretely. Often they arise as L2-
spaces of measures, but here we shall mostly deal with spaces on which the inner
product is specified differently, namely by a positive definite kernel. For detailed
definitions and basic properties of positive definite kernels in various contexts, we
refer to AppendixA.1.

Definition 2.4.1 Suppose that K : X × X → C is a positive definite kernel on the
set X and that τ : X → X is an involution leaving K invariant: K (τ x, τ y) = K (x, y)
for x, y ∈ X . If X+ ⊆ X is a subset with the property that the kernel

K τ : X+ × X+ → C, K τ (x, y) := K (x, τ y) (2.4)

is also positive definite, then we say that K is reflection positive with respect to
(X, X+, τ ).

Lemma 2.4.2 Let K : X × X → C be a kernel which is reflection positive with
respect to (X, X+, τ ) and let E := HK ⊆ C

X denote the corresponding reproducing
kernel Hilbert space. Then the following assertions hold:

(a) θ f := f ◦ τ defines a unitary involution on E .
(b) E+ :=[[Kx : x ∈ X+]] is a θ -positive subspace, so that (E ,E+, θ) is reflection

positive.
(c) Themap E+ → C

X+ , f 	→ f ◦ τ |X+ induces a unitary isomorphism ̂E → HK τ ,
so that we may identify ̂E with the reproducing kernel space HK τ and write
q( f ) = f ◦ τ |X+ .

Proof (a) The invariance of K under τ implies the existence of a unitary involution
θ on HK with θ(Kx ) = Kτ x . Then (θ f )(x) = 〈Kx , θ f 〉 = 〈Kτ x , f 〉 = f (τ x)
shows that θ f = f ◦ τ .
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(b) For x, y ∈ X+, we have 〈Kx , θKy〉 = 〈Kx , Kτ y〉 = K (x, τ y) = K τ (x, y), and
this implies that the closed subspace E+ ⊆ E generated by (Kx )x∈X+ is θ -
positive.

(c) The Hilbert space ̂E is generated by the elements q(Kx ), x ∈ X+, and we have

〈q(Kx ), q(Ky)〉̂E = 〈Kx , θKy〉 = K τ (x, y).

This implies that ̂E ∼= HK τ and that the function on X+ corresponding to q( f ) ∈
̂E is given by q( f )(x) = 〈q(Kx ), q( f )〉

̂E = 〈Kx , θ f 〉 = f (τ x). �

All reflection positive spaces can be construction from reflection positive kernels:
If (E ,E+, θ) is a reflection positive Hilbert space, then the scalar product defines a
reflection positive kernel K (η, ζ ) := 〈η, ζ 〉 on X = E , and this kernel is reflection
positive with respect to (E ,E+, θ).

Example 2.4.3 On X = R, we consider the involution τ(x) = −x .

(a) We claim that, for every λ ≥ 0, the kernel K (x, y) = e−λ|x−y| is reflection pos-
itive with respect to (R,R+, θ).
The positive definiteness of K means that the function ϕλ(x) := e−λ|x | (multi-
ples of euclidean Green’s functions [DG13]) is a positive definite function on the
group (R,+). In view of Bochner’s Theorem (TheoremA.2.1), this is equivalent
to ϕλ being the Fourier transform of a positive measure. In fact,

ϕλ(x) = e−λ|x | =
∫

R

e−i xp dμλ(p), where dμλ(p) = λ

π

dp

λ2 + p2
(2.5)

is the Cauchy distribution. To verify reflection positivity, we observe that, for
x, y ≥ 0,

K τ (x, y) = e−λ|x+y| = e−λ(x+y) = e−λxe−λy .

This factorization implies positive definiteness by RemarkA.1.2.
(b) Here is a related example corresponding to a periodic function. Fixβ > 0,λ ≥ 0,

and consider on X = R the β-periodic function given by

ϕλ(x) := e−λx + e−λ(β−x) for 0 ≤ x ≤ β

(multiples of thermal euclidean Green’s functions [DG13]). We claim that the
kernel K (x, y) := ϕλ(x − y) is reflection positive for X+ := [0, β/2].
A direct calculation shows that the Fourier series of ϕλ is given by

ϕλ(x) =
∑

n∈Z
cne

2π inx/β with cn = 2βλ(1 − e−βλ)

(λβ)2 + (2πn)2
. (2.6)

As cn ≥ 0 for every n ∈ Z, the function ϕλ is positive definite, i.e., K is positive
definite.
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Next we observe that, for 0 ≤ x, y ≤ β/2, we have

K τ (x, y) = ϕλ(x + y) = e−λ(x+y) + e−λβeλ(x+y) = e−λxe−λy + e−λβeλxeλy .

Here both summands are positive definite kernels by RemarkA.1.2.

Example 2.4.4 Reflection positive kernels show up naturally in the context of dis-
tributions if X is a manifold. We write C∞

c (X) for the space of complex-valued
compactly supported smooth functions on X and C−∞(X) for the space of distribu-
tions, the space of continuous anti-linear functionals on C∞

c (X) → C with respect
to the natural LF topology on this space [Tr67].

The “distribution analog” of a positive definite kernel on X is a distribution D ∈
C−∞(X × X) which is positive definite in the sense the hermitian form

KD(ϕ, ψ) := D(ϕ ⊗ ψ) =:
∫

X×X
ϕ(x)ψ(y) dD(x, y)

onC∞
c (X) is positive semidefinite (this form is linear in the second argument because

D is anti-linear). Then the corresponding reproducing kernel space HD := HKD

consists of functions on Cc(X) which are continuous and anti-linear, hence is a
linear subspace of the space C−∞(X) of distributions on X . The natural map

ιD : C∞
c (X) → HD ⊆ C−∞(X), ιD(ψ) = KD,ψ , ιD(ψ)(ϕ) = D(ϕ ⊗ ψ),

then has dense range and

〈ιD(ϕ), ιD(ψ)〉 = D(ϕ ⊗ ψ). (2.7)

Definition 2.4.5 Let X be a smooth manifold, D a positive definite distribution on
X × X , let τ : X → X be an involutive diffeomorphism of X and X+ ⊆ X be an
open subset. We say that D is reflection positive with respect to (X, X+, τ ) if the
distribution Dτ on X+ × X+ defined by

Dτ (ϕ) := D(ϕ ◦ (idX ×τ)) =
∫

X×X
ϕ(x, τ (y)) dD(x, y) for ϕ ∈ C∞

c (X+ × X+)

is positive definite.

Specializing Lemma2.4.2 to the context of reflection positive distributions, where
the set X is replaced by the space C∞

c (X), we obtain:

Lemma 2.4.6 If the distribution D on X × X is reflection positive with respect to
(X, X+, τ ), then E := HD, θ(E)(ϕ) := E(ϕ ◦ τ) and E+ := ιD(C∞

c (X+)) defines
a reflection positive Hilbert space of distributions. Further, ̂E ∼= HD+ ⊆ C−∞(X+),
where the map q is realized by

q : E+ → ̂E ∼= HD+ , q(E)(ϕ) := 〈ιD(ϕ), θE〉 = E(ϕ ◦ τ).
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Example 2.4.7 Form > 0, we consider the distribution Dm := (m2 − Δ)−1δ0 onRd

which is the fundamental solution of the elliptic PDE (m2 − Δ)Dm = δ0. As δ0 =̂1
is the Fourier transform of the normalized Lebesgue measure dλd(x) = dx

(2π)d/2 and
∂

∂x j
̂D = (−i x j D)̂ for any tempered distribution D onRd , it follows that Dm = Dν̂m

for the measure

dνm(p) = 1

m2 + p2
dλd(p) = 1

(2π)d/2

dp

m2 + p2
. (2.8)

For d = 1, we obtain a multiple of the function from Example2.4.3:

ν̂m(x) = 1√
2π

π

m
e−m|x | =

√
π√
2m

e−m|x |.

It is easy to see that this distribution is reflection positive with respect to
(Rd ,Rd+, τ ), where

R
d
+ = {x = (x0, x) : x0 > 0} and τ(x0, x) = (−x0, x)

is the reflection in the hyperplane x0 = 0. First we observe that, for every test function
ψ on R

d+, we have

Dm(ψ ⊗ θψ) = 1

(2π)d/2

∫

Rd
̂ψ(p0, p)

̂ψ(−p0,p)

m2 + p2
dp for p = (p0, p) ∈ R × R

d−1.

For each p ∈ R
d−1, the function hp(p0) := ̂ψ(−p0,p) is a Schwartz function with

supp(̂hp) ⊆ (0,∞), and

∫

Rd

̂ψ · θ̂ψ dνm =
∫

Rd−1

(

∫

R

hp(p0)hp(−p0)

p20 + m2 + p2
dp0

)

dp.

The reflection positivity of Dm now follows from
∫

R

hp(p0)hp(−p0)
p20+m2+p2

dp0 ≥ 0 for p ∈
R

d−1, which is a consequence of Example2.4.3a.
Form = 0, themeasure dν0(p) = p−2dλd(p) is locally finite if and only if d ≥ 3.

In this case the above arguments even show that D0 := Dν̂0 is a reflection positive
distribution on (Rd ,Rd+, τ ). For d = 2 we still obtain a reflection positive functional
(defined in the obvious fashion) on the subspace of all test functionsϕ ∈ C∞

c (R2)with
∫

R2 ϕ(x) dx = 0, and for d = 1wehave to impose in addition that
∫

R
xϕ(x) dx = 0.

In the following section we shall see a common geometric source of the preceding
example and Example2.4.3.
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2.5 Reflection Positivity in Riemannian Geometry

In this section we describe a very natural class of reflection positive Hilbert spaces
arising from isometric reflections of Riemannian manifolds.

Let M be a connected complete Riemannian manifold. An involution τ ∈
Isom(M) is called a reflection if there exists a fixed point p ∈ Mτ such that Tp(τ ) is
a hyperplane reflection in the tangent space Tp(M). ThenΣ := Mτ is a submanifold
of M and the connected component containing p is of codimension one. We say that
a reflection is dissecting if M \ Σ has exactly two connected components which are
exchanged by τ , i.e.,

M = M+∪̇Σ∪̇M− with τ(M+) = M−.

We consider the Laplace–Beltrami operator ΔM on L2(M) as a negative self-
adjoint operator on L2(M) [Str83, Theorem2.4]. For each m > 0, we thus obtain a
bounded positive operator C := (m2 − ΔM)−1 on L2(M).

Theorem 2.5.1 If τ is a dissecting reflection on the connected complete Riemannian
manifold M and m > 0. Then the involution θ on L2(M) defined by θ f := f ◦ τ

satisfies
〈ϕ,Cθϕ〉 ≥ 0 f or ϕ ∈ C∞

c (M+).

Proof (cf. [An13, Theorem8.3]) The starting point is the divergence formula on a
Riemannian manifold M with boundary

∫

M
divX dV =

∫

∂M
〈X,n〉 dS, (2.9)

where X is a compactly supported vector field and n is the outward normal vector
field of ∂M .1 In index notation, this reads

∫

M
∇a X

a dV =
∫

∂M
na Xa dS. (2.10)

For ϕ ∈ C∞
c (M+) and u = Cϕ the function u is analytic in M \ supp(ϕ) because

it satisfies the elliptic equation (m2 − Δ)u = 0 on this open subset. We now have

〈Cϕ, θϕ〉L2 =
∫

M−
Cϕθϕ dV =

∫

M−
uC−1θu dV

=
∫

M−
uC−1θu − θ(u)C−1u dV (ϕ = C−1u vanishes on M−)

=
∫

M−
u(m2 − Δ)θ(u) − θ(u)(m2 − Δ)u dV =

∫

M−
θ(u)Δu − uΔθ(u) dV .

1See [AF01, Sect. 3.8, Satz 26] and also [GHL87, Proposition4.9], which has different sign con-
ventions.
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For Σ = ∂M−, we also obtain
∫

Σ

θ(u)∇nu − u∇nθ(u) dS =
∫

Σ

〈n, θ(u)∇u − u∇θ(u)〉 dS

=
∫

M−
div

(

θ(u)∇u − u∇θ(u)
)

dV

=
∫

M−
〈∇θ(u),∇u〉 + θ(u)Δu − 〈∇u,∇θ(u)〉 − uΔθ(u) dV

=
∫

M−
θ(u)Δu − u · Δθ(u) dV .

This finally leads to

〈Cϕ, θϕ〉L2 =
∫

Σ

θ(u)∇nu − u∇nθ(u) dS =
∫

Σ

θ(u)∇nu + uθ(∇nu) dS

=
∫

Σ

u∇nu + u∇nu dS = 2Re
∫

Σ

u∇nu dS.

Now
∫

Σ

u∇nu dS =
∫

Σ

〈n, u∇u〉 dS =
∫

M−
div(u∇u) dV =

∫

M−
〈∇u,∇u〉 + uΔu dV

=
∫

M−
〈∇u,∇u〉 + um2u dV = ‖∇u‖2L2(M−) + m2‖u‖2L2(M−)

shows that 〈Cϕ, θϕ〉L2 ≥ 0. �
Remark 2.5.2 For M = R

d and τ(x0, x) = (−x0, x), the reflection positivity of the
distribution Dm in Example2.4.7 is a very special case of Theorem2.5.1.

Let E := H C denote the completion of L2(M) with respect to the scalar product
〈 f, h〉C := 〈C f, h〉L2(M). Then θ induces on E a unitary involution θC , and Theo-
rem2.5.1 implies that the subspace E+ generated by C∞

c (M+) is θC -positive. We
thus obtain a reflection positive Hilbert space (E ,E+, θC).

Another interpretation of Theorem2.5.1 is that the distribution D on
M × M defined by D(ϕ ⊗ ψ) := 〈ϕ,Cψ〉L2(M) is reflection positive with respect
to (M, M+, θ). From this perspective, we have E = HD as in Example2.4.4 and
̂E can be identified with the Hilbert spaceHDτ ⊆ C−∞(M+) of distributions on M+.

2.6 Selfadjoint Extensions and Reflection Positivity

In this section we briefly indicate an operator theoretic approach to reflection positiv-
ity whichmakes it particularly clear how the space ̂E depends on the choice of certain
selfadjoint extensions of symmetric operators, resp., suitable boundary conditions.



18 2 Reflection Positive Hilbert Spaces

We consider a Hilbert spaceH with a unitary involution θ and a closed subspace
H+ such thatH− := θ(H+) = H ⊥+ . Then we may identifyH withH+ ⊕ H+ on
which θ acts by θ(v+, v−) = (v−, v+).

We consider a (densely defined) non-negative symmetric operator A onD+ ⊆ H+
and a selfadjoint extension L of A on H which commutes with θ and which is
bounded from below.2 For −λ < inf Spec(L) we thus obtain a positive operator
λ1 + L with a bounded inverse

C := (λ1 + L)−1.

Accordingly, we obtain on H a new scalar product 〈v,w〉C := 〈v,Cw〉 and a cor-
responding completion E := H C . We identify H with a linear subspace of E and
write E+ for the closure ofH+ in E and θC for the unitary involution on E obtained
by extending θ .

Definition 2.6.1 We say that L is reflection positive if (E ,E+, θC) is a reflection
positive Hilbert space, i.e., if

〈ξ, θCξ 〉 ≥ 0 for ξ ∈ E+. (2.11)

The following proposition shows that non-trivial spaces ̂E can only be derived
from operators L which are not simply the closure of A ⊕ θ Aθ on D+ ⊕ θ(D+).

Proposition 2.6.2 If the symmetric operator A is essentially selfadjoint onH+, then
L is reflection positive and ̂E = {0}.
Proof As λ1 + L is strictly positive, there exists an ε > 0 with

〈(L + λ1)ξ, ξ 〉 ≥ ε‖ξ‖2 for ξ ∈ D(L).

This implies in particular that 〈(A + λ1)ξ, ξ 〉 ≥ ε‖ξ‖2 for ξ ∈ D+. Since A is
essentially selfadjoint and non-negative, it follows that the selfadjoint operator
λ1 + A on E+ satisfies λ1 + A ≥ ε. In particular, it is invertible on H+. Therefore
R(λ1 + A) = (λ1 + A)D+ is dense in H+. We conclude that the continuous oper-
ator C = (λ1 + L)−1 maps the dense subspaceR(λ1 + A) ofH+ intoH+, so that
CH+ ⊆ H+. Now θCθ = C further implies thatCH− ⊆ H−, so that 〈θξ, ξ 〉C = 0
for ξ ∈ H+. This shows that L is reflection positive with ̂E = {0}. �

Corollary 2.6.3 IfH is finite dimensional, then ̂E = {0}.
If L is reflection positive, then the continuous linearmap qH := q|H+ : H+ → ̂E

has dense range, so that its adjoint q∗
H : ̂E → H+ is injective. We may therefore

consider ̂E as a linear subspace of H+. The following observation shows that the
image of ̂E inH+ consists of solutions of the eigenvalue equation

2See [AS80, AG82] for a systematic discussion of the set of positive extensions of positive sym-
metric operators.
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A∗ξ = −λξ, ξ ∈ D(A∗) ⊆ H+.

Proposition 2.6.4 Suppose that L is reflection positive. Then qH maps the
eigenspace ker(λ1 + A∗) onto a dense subspace of ̂E , the image of q∗

H is contained
in ker(λ1 + A∗), and

ker(qH ) = (λ1 + L)(D(L) ∩ H+) ∩ H+. (2.12)

Proof For ξ ∈ H+, the relation qH (ξ) = 0 is equivalent to

0 = 〈η,Cθ(ξ)〉 = 〈(λ1 + L)−1η, θ(ξ)〉 for all η ∈ H+. (2.13)

If ξ = (λ1 + A)ζ for ζ ∈ D+, then also ξ = (λ1 + L)ζ , so that

Cθ(ξ) = θCξ = θζ ∈ H−

implies that R(λ1 + A) = (λ1 + A)D+ ⊆ ker(qH ). We now obtain

im(q∗
H ) ⊆ ker(qH )⊥ ⊆ R(λ1 + A)⊥ = ker(λ1 + A∗).

This in turn shows that the restriction of qH to R(λ1 + A)⊥ = ker(λ1 + A∗) has
dense range. Finally, we note that (2.13) is equivalent to Cθξ = θCξ ∈ H ⊥+ =
H−, which in turn is equivalent to Cξ ∈ H+, i.e., to ξ ∈ (λ1 + L)H+. This proves
(2.12). �

For general results on the existence of reflection positive extensions of semi-
bounded symmetric operators, we refer to [Ne18].

Example 2.6.5 The preceding discussion is an operator theoretic abstraction of the
geometric example in Sect. 2.5. To match the abstract framework, we put H :=
L2(M), H± := L2(M±) and consider the positive selfadjoint operator L := −Δ as
a θ -invariant extension of the restriction A := −Δ|C∞

c (M+). In this case the eigenvalue
equation

A∗ f = −λ f for f ∈ D(A∗) ⊆ H+

is equivalent to (λ1 − Δ) f ⊥C∞
c (M+), which means that f ∈ H+ = L2(M+) sat-

isfies the PDE
Δ f = λ f on M+ (2.14)

in the distribution sense. Ellipticity of Δ implies that f can be represented on M+
by an analytic function ([Ru73, Theorem8.12]). We thus obtain a realization of ̂E in
the space of L2-solutions of (2.14) on the open subset M+.

Example 2.6.6 For the simple example M = R with τ(x) = −x and M+ = (0,∞)

with A f = − f ′′, we consider λ = m2 for some m > 0. Then the solutions of (2.14)
on R+ are for λ = m2 of the form f (x) = aemx + be−mx , so that the L2-condition
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leads to f (x) = be−mx . This already shows that dim ̂E ≤ 1 and that qH must be
a multiple of the linear functional h 	→ ∫ ∞

0 h(x)e−mx dx = L (h)(m) (cf. Exam-
ple2.4.3).

Notes

The Markov condition (2.3) in Sect. 2.3 is an abstraction of the Markov condition
for Osterwalder–Schrader positive processes that one finds in [Kl77, Kl78, NÓ15a].
For a detailed analysis of its operator theoretic aspects we refer to [JT17], where
one also finds a discussion of reflection positive Hilbert spaces in terms of graphs of
contractions.

Example2.4.7 corresponds to OS-positivity for free fields in d-space ([GJ81,
Ja08]).

Theorem2.5.1 and several variants can be found in [An13] and the work of Jaffe
and Ritter [JR07]; see also [AFG86, Theorem2] and [Di04, Theorem2] for related
results.



Chapter 3
Reflection Positive Representations

In this chapter we turn to operators on reflection positive (real or complex) Hilbert
spaces and introduce the Osterwalder–Schrader transform to pass from operators
on E+ to operators on ̂E (Sect. 3.1). The objects represented in reflection positive
Hilbert spaces (E ,E+, θ) are symmetric Lie groups (G, τ ), i.e., a Lie group G,
endowed with an involutive automorphism τ . A typical example in physics arises
from the euclidean motion group and time reversal. There are several ways to specify
compatibility of a unitary representation (U,E ) of (G, τ ) with E+ and θ and thus
to define reflection positive representations (Sect. 3.3). One is to specify a subset
G+ ⊆ G and assume that E+ is generated by applying G−1

+ to a suitable subspace
of E+. The other simpler one applies if S := G−1

+ is a subsemigroup of G invariant
under the involution s �→ s� = τ(s)−1. Then we simply require E+ to be S-invariant.
In both cases we can use the integrability results in Chap.7 to obtain unitary repre-
sentations of the 1-connected Lie group Gc with Lie algebra gc = h + iq on ̂E . As
reflection positive unitary representations are mostly constructed by applying a suit-
able Gelfand–Naimark–Segal (GNS) construction to reflection positive functions,
we discuss this correspondence in some detail in Sect. 3.4. In particular, we discuss
the Markov condition in this context (Proposition 3.4.9).

3.1 The OS Transform of Linear Operators

We have already seen how to pass from a reflection positive Hilbert space (E ,E+, θ)

to the new Hilbert space ̂E . We now follow this passage for linear operators on E+.

Definition 3.1.1 (OS transform) Suppose that S : E+ ⊇ D(S) → E+ is a linear
operator (not necessarily bounded) with S(D(S) ∩ N ) ⊆ N . Then S induces a
linear operator

̂S : D(̂S) := ̂D(S) = {̂v : v ∈ D(S)} → ̂E , ̂Sη̂ := ̂Sη.

© The Author(s) 2018
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The passage from S tôS is called theOsterwalder–Schrader transform (or OS trans-
form for short).

Lemma 3.1.2 Let (E ,E+, θ) be a real of complex reflection positive Hilbert space.
Suppose that D ⊆ E+ is a linear subspace such that ̂D = {̂v : v ∈ D} is dense in ̂E ,
and that S, T : D → E+ are linear operators. Then the following assertions hold:

(a) If 〈Sη, ζ 〉θ = 〈η, T ζ 〉θ for η, ζ ∈ D , then S(N ) ⊆ N , so that ̂S, ̂T : ̂D → ̂E
are well-defined and

〈̂Sη̂,̂ζ 〉 = 〈̂η, ̂T̂ζ 〉 for η̂,̂ζ ∈ ̂D .

(b) Let S̃ ∈ U(E ) be unitary with S̃E+ = E+ and θ S̃θ = S̃. ForD+ = E+ and S :=
S̃|E+ , the operator ̂S extends to a unitary operator on ̂E .

(c) If 〈Sη, ζ 〉θ = 〈η, Sζ 〉θ for all η, ζ ∈ D , then ̂S is a symmetric operator. If, in
addition, S is bounded and D = E+, then so is ̂S, and ‖̂S‖ ≤ ‖S‖.

(d) If U ∈ U(E ) satisfies UE+ = E+ and θUθ = U−1, then ̂U 2 = id
̂E . Further,

E is a direct sum of reflection positive Hilbert subspaces (F ,F ∩ E+, θ |F )

and (G ,G ∩ E+, θ |G ), invariant under U and U−1, such that ̂G = {0} and
(U |F )2 = 1.

Proof (a) For η, ζ ∈ D , we obtain from 〈Sη, ζ 〉θ = 〈η, T ζ 〉θ that η ∈ N implies
that ̂Sη = 0, i.e., Sη ∈ N . Therefore ̂Sη̂ := ̂Sη is well-defined and the remainder
of (a) follows.

(b) In this case (a) holds with T = S−1, so that ̂S and ̂T are well-defined and
mutually inverse on ̂D . In particular, we have S ̂D = ̂D . From

〈Sη, Sζ 〉θ = 〈Sη, θ Sζ 〉 = 〈S̃η, S̃θζ 〉 = 〈η, ζ 〉θ for ξ, η ∈ E+,

it further follows that̂S : ̂D → ̂D is unitary. Therefore it extends uniquely to a unitary
operator on ̂E .

(c) From (a) it follows that̂S is well-defined and symmetric. Now we assume that
S is bounded and defined on all of E+. Then

‖̂Sk η̂‖2 = 〈̂η,̂S2k η̂〉 ≤ ‖η̂‖‖̂S2k η̂‖ for η ∈ E+

and therefore

‖̂Sη̂‖2n ≤ ‖̂S2η̂‖2n−1‖η̂‖2n−1 ≤ ‖̂S4η̂‖2n−2‖η̂‖2n−1+2n−2 ≤ · · · ≤ ‖̂S2n η̂‖‖η̂‖2n−1.

We also have ‖̂Sm η̂‖2 = 〈θ Smη, Smη〉 ≤ ‖S‖2m‖η‖2, which leads to

‖̂Sη̂‖2n ≤ ‖S‖2n‖η‖‖η̂‖2n−1.
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We conclude that

‖̂Sη̂‖ ≤ ‖S‖ · lim
n→∞

(‖η‖2−n‖η̂‖1−2−n ) = ‖S‖‖η̂‖.

Therefore ̂S is bounded with ‖̂S‖ ≤ ‖S‖.
(d) From (c) it follows that ̂U is a well-defined symmetric contraction. The same

argument applies to V := U−1 and leads to another symmetric contraction ̂V . Now
̂ÛV v̂ =̂UV v̂ = v̂ for every v ∈ E+ implies that ̂ÛV = id

̂E . We likewise get ̂V ̂U =
id

̂E , so that ̂U−1 = ̂V . This shows that ̂U−1 also is a symmetric contraction. We
conclude that (̂U ) ⊆ {−1, 1}, which further leads to ̂U 2 = id

̂E .

Nextweobserve thatE+ is invariant underU andU−1, so thatE 0 := E+ + θ(E+)
⊥

is also invariant under U±1 and θ . Since the closed subspace N ⊆ E+ is invari-
ant under U and V = U−1, the subspace E 1 := N ⊕ θ(N ) ⊆ (E 0)⊥ is invariant
under U , U−1 and θ , and this property is inherited by E 2 := (E 0 ⊕ E 1)⊥. With
E j

+ := E j ∩ E+, we now obtain a direct sum decomposition of the reflection posi-
tive Hilbert space (E ,E+, θ) into the orthogonal sum of the three reflection positive
spaces (E j ,E j

+, θ |E j ), j = 0, 1, 2.WeputG = E 0 ⊕ E 1 andF := E 2.AsE 0+ = {0}
and E 1+ = N , we have ̂G = {0} and, accordingly, ̂F = ̂E . FurtherN ∩ F+ = {0}
implies that q|F+ is injective. Hence q ◦U |E+ = ̂U ◦ q implies that U+ := U |F+
also satisfies U 2+ = 1. Likewise U |θF+ = θU+θ is an involution. By construction,
F+ + θ(F+) is dense inF , and this leads to (U |F )2 = 1. ��
Remark 3.1.3 (a) Typical operators to which part (b) of the preceding lemma applies
are unitary operators S ∈ U(E ) with SE+ = E+ and θ Sθ = S.

(b) Suppose that E is finite-dimensional and that U ∈ U(E ) satisfies UE+ ⊆
E+ and θUθ = U−1. Then the finite dimension implies that UE+ = E+, so that
Lemma 3.1.2(d) shows that ̂U 2 = 1.

For symmetries of the whole structure encoded in (E ,E+, θ), the corresponding
actions on E , resp., E+ lead to unitary operators on ̂E :

Proposition 3.1.4 LetE be a real or complexHilbert space, θ be a unitary involution
on E , and E+ ⊆ E be a θ -positive subspace. Suppose that (U,E ) is a strongly
continuous unitary representation of a topological group G on E such that

UgE+ ⊆ E+ and Ugθ = θUg for g ∈ G.

Then the OS transform defines a continuous unitary representation (̂U , ̂E ) of G.

As we shall see below, far more interesting situations arise from unitary represen-
tations not commuting with θ and not leaving E+ invariant. The structure required
in this context is introduced in the following section.



24 3 Reflection Positive Representations

3.2 Symmetric Lie Groups and Semigroups

Definition 3.2.1 (Symmetric Lie groups) Let G be a Lie group with Lie algebra g
and let τ : G → G be an involutive automorphism. We then call (G, τ ) a symmetric
Lie group. Likewise, a symmetric Lie algebra (g, τ ) is a Lie algebra g, endowed with
an involutive automorphism of g.

We shall see below that it is often convenient to encode τ in the larger group

Gτ := G � {idG, τ }. (3.1)

Then τ ∈ Gτ and conjugation with τ on the normal subgroupG satisfies τgτ = τ(g)
for g ∈ G.

We put H := (Gτ )0, where 0 stands for the connected component containing the
identity element e.

The involution τ induces an involution dτ : g → g. We also write

h := {x ∈ g : dτ(x) = x} and q := {x ∈ g : dτ(x) = −x}.

Then g = h ⊕ q and h is the Lie algebra of H . Furthermore,

[h, h] + [q, q] ⊆ h and [h, q] ⊆ q.

In particular gc := h ⊕ iq is a Lie subalgebra of the complexification gC = g + ig,
called the Cartan dual of g. We denote by Gc a simply connected Lie group with
Lie algebra gc. We observe that

g� := τ(g)−1 satisfies (g�)� = g and (gh)� = h�g�, (3.2)

so that � defines on G the structure of an involutive (semi-) group.

Example 3.2.2 Let G = E(n) = R

n
� On(R) be the euclidean motion group and

g = e(n) be its Lie algebra. Its elements (b, A) act on R

n by (b, A).v = Av + b. The
product in G is given by (x, A)(y, B) = (x + Ay, AB).

Let r0 := diag(−1, 1, . . . , 1) and define an involution on G by

τ(x, A) = (r0x, r0Ar0) .

As

r0

(

a b
c D

)

r0 =
(

a −b
−c D

)

for

(

a b
c D

)

∈ Mn(R),

gc � (iR × R

n−1) � so1,n−1(R) � R

1,n−1
� so1,n−1(R) =: p(n) is the Lie algebra

of the Poincaré group P(n). We then obtain the duality relation

e(n)c ∼= p(n),
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which is of fundamental importance in physics (cf. Chap.8).

Example 3.2.3 (a) The affine group Aff(V ) ∼= V � GL(V ) of a vector space V car-
ries a natural structure of a symmetric Lie group.Wewrite its elements as pairs (b, A),
corresponding to the map v �→ Av + b. Then τ(b, A) := (−b, A) is an involutive
automorphism of Aut(V ).

For G = Aff(V ), we then have Gτ = GL(V ), g ∼= V � gl(V ), h = gl(V ) and
q ∼= V . Since [q, q] = {0}, we have gc ∼= g.

(b) We obtain a particularly important example for V = R, the “ax + b-group”.
Here

S := (R≥0,+) � (R×
+, ·) = {(b, a) : (b, a)R+ ⊆ R+} = {(b, a) : b ≥ 0, a > 0}

is a closed �-invariant subsemigroup of Aff(R).

Example 3.2.4 If r ∈ On(R) is any involution of determinant −1, then τ(g) := rgr
defines an involutive automorphism of SOn(R) such that On(R) ∼= SOn(R)τ in the
sense of (3.1).

Definition 3.2.5 A symmetric semigroup is a triple (G, S, τ ), where (G, τ ) is a
symmetric Lie group and S ⊆ G is a subsemigroup satisfying

(S1) S is invariant under s �→ s�, so that (S, �) is an involutive semigroup.
(S2) HS = S.
(S3) 1 ∈ S.

If (S1) holds for a subsemigroup S ⊆ G we simply call it a symmetric subsemi-
group of (G, τ ). We shall mostly use only (S1). Note that (S1/2) imply that also
SH = (HS)� = S.

Examples 3.2.6 (a) (R, R+,− idR) and (Z, N0,− idZ) are the most elementary
examples of symmetric semigroups.

(b) IfR

1,d−1 ∼= R

d is d-dimensional Minkowski space andG = (Rd ,+) its trans-
lation group, then time reversal τ(x0, x) = (−x0, x) is an involutive automorphism
and the open light cone V+ ⊆ R

1,d−1 is a subsemigroup invariant under the map
x �→ x� = −τ(x) = (x0,−x).

A closely related example is the euclidean space G = (Rd ,+) with the same
involution and the open half space S = R

d+ = {(x0, x) : x0 > 0}.
(c) Semigroups with polar decomposition: Let (G, τ ) be a symmetric Lie group

and H be an open subgroup of Gτ = {g ∈ G : τ(g) = g}. We denote the derived
involution g → g by the same letter and define h = {x ∈ g : τ(x) = x} = gτ and
q = {x ∈ g : τ(x) = −x} = g−τ . Then g = h ⊕ q. We say that the open subsemi-
group S ⊆ G has a polar decomposition if there exists an H -invariant open convex
cone C ⊂ q such that S = H expC and the map H × C → S, (h, X) �→ h exp X
is a diffeomorphism (cf. [La94, Nel64, HN93]). Typical examples are the com-
plex Olshanski semigroups in complex simple Lie groups such as SUp,q(C)C ∼=
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SLp+q(C). Complex Olshanski semigroups exist if and only if the non-compact Rie-
mannian symmetric space associated to G is a bounded symmetric domain. This is
equivalent to the existence of a G-invariant convex cone C ⊂ ig such that G expC
is a subsemigroup of GC, if GC ⊇ G is an injective complexification of G. More
generally, we have the causal symmetric spaces of non-compact type like de Sit-
ter space dSn ∼= SO1,n(R)↑/SO1,n−1(R)↑ ([HÓ97]; see also Sect. 7.3.3. In this case
q � R

1,n−1 is the n-dimensional Minkowski space and C corresponds to the open
light-cone in q.

(d) The simply connected covering group G := S̃L2(R) of SL2(R) carries an
involution τ acting on g = sl2(R) by

τ

(

x y
z −x

)

=
(

x −y
−z −x

)

,

and there exists a closed subsemigroup S ⊆ G whose boundary is

∂S = H(S) := S ∩ S−1 = exp(b) with b :=
{

(

x y
0 −x

)

: x, y ∈ R

}

.

This semigroup satisfies S� = S, and the subgroup H(S) is τ -invariant, but strictly
larger than Gτ

0.

3.3 Reflection Positive Representations

Suppose that (G, τ ) is a symmetric Lie group. For a unitary representation (U,E )

of G on the reflection positive Hilbert space (E ,E+, θ), the condition θUgθ = Uτ(g)

for g ∈ G is equivalent toUτ := θ defining a unitary representationU : Gτ → U(E )

(cf. (3.1)). Accordingly, we shall always work with representations of the enlarged
group Gτ in the following and assume that θ = Uτ .

Next we address the additional requirements that make a unitary representation
(U,H ) ofGτ on a reflection positiveHilbert space compatiblewith the subspaceE+.
An obvious natural assumption is that the operators (Uh)h∈H act by automorphisms of
the full structure, i.e.,UhE+ = E+ for h ∈ H . SinceUH commuteswith θ , it preserves
both eigenspaces E±1 = ker(θ ∓ 1). If E+ = G (C) is the graph of a contraction
C : E1 ⊇ F → E−1 as in Sect. 2.2, then the invariance of E+ underUH is equivalent
to C being an intertwining operator for the representations of H on E+1 and E−1.

Eventually, one would like to impose conditions that can be used to derive a
unitary representation of the simply connected Lie group Gc with Lie algebra gc on
the space ̂E . The group Gc always contains a subgroup with the Lie algebra h, so
that the representation of this subgroup is provided directly by Proposition 3.1.4, but
for the operators generated by the subspace iq ⊆ gc it is less clear how they should
be obtained (cf. Chap.7).
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One way to express such requirements uses to symmetric subsemigroups of G,
but in many relevant examples there are no such subsemigroups with interior points
and one has to consider more general domains G+ ⊆ G.

Definition 3.3.1 Let (G, τ ) be a symmetric Lie group and (U,E ) be a unitary rep-
resentation of Gτ on the Hilbert space E . We put θ := Uτ .

(a) Let G+ ⊆ G be a subset. We consider a real linear space V and a linear
map j : V → H whose range is cyclic for the unitary representation U of Gτ , i.e.,
�UGτ

j (V )� = H . Then we say that (U,E , j, V ) is reflection positive with respect
to the subset G+ ⊆ G if the subspace E+ := �U−1

G+ j (V )� is θ -positive.
(b) If S ⊆ G is a �-invariant subsemigroup and (E ,E+, θ) is a reflection positive

Hilbert space, then (U,E ) is said to be reflection positive with respect to S ifUsE+ ⊆
E+ for every s ∈ S. Then the conditions under (a) are satisfied for V = E+, j = idV ,
and G+ := S−1 = τ(S).

Lemma 3.3.2 Let (E ,E+, θ) be a reflection positive Hilbert, E− := θE+ and put
U � := θU ∗θ for U ∈ U(E ). Then

S(E+) := {U ∈ U(E ) : UE+ ⊆ E+}

is a subsemigroup ofU(E ), and S(E+, θ) := S(E+) ∩ S(E+)� is �-invariant. The OS
transform defines a ∗-representation (Γ, ̂E ) of the involutive semigroup (S(E+, θ), �)

by contractions on ̂E which is continuous with respect to the strong operator topolo-
gies on S(E+, θ) and B(̂E ).

Proof Clearly, S := S(E+, θ) is �-invariant and hence an involutive semigroup. For
ξ, η ∈ E+ we have

〈Uξ, η〉θ = 〈Uξ, θη〉 = 〈ξ,U−1θη〉 = 〈ξ, θU �η〉 = 〈ξ,U �η〉θ , (3.3)

and this implies
〈Uξ,Uξ 〉θ = 〈ξ,U �Uξ 〉θ . (3.4)

Lemma 3.1.2 shows that any U ∈ S induces a linear operator ̂U on the dense
subspace q(E+) ⊆ ̂E . SinceU �U is also contained in S, we obtain fromLemma 3.1.2

that ‖̂U �U‖ ≤ ‖U �U‖ = 1. With (3.4) we thus get ‖̂U‖ ≤ 1 so that ̂U extends to a
contraction, also denoted ̂U = Γ (U ), on ̂E . The relation̂UV = ̂ÛV for U, V ∈ S
follows on the dense subspace q(E+) immediately from the definition, and ̂U ∗ = ̂U �

is a consequence of (3.3).
The continuity of Γ with respect to the weak operator topology on B(̂E ) fol-

lows from the fact that, for ξ ∈ E+, the function Γ η̂,̂ξ (U ) := 〈̂η, ̂Ûξ 〉 = 〈θη,Uξ 〉
is continuous on S, endowed with the strong operator topology (which equals the
weak operator topology). Now [Nel64, Cor. IV.1.18] implies that Γ is strongly
continuous. ��
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The preceding lemma implies that, for symmetric subsemigroups, reflection pos-
itive representations lead by the OS transform to ∗-representations of S by contrac-
tions on ̂E :

Proposition 3.3.3 (OS transform of a representation) If (U,E ) is a unitary repre-
sentation of Gτ on the reflection positive Hilbert space (E ,E+, θ) which is reflection
positive with respect to the symmetric subsemigroup S ⊆ G, then the OS transform
defines a strongly continuous ∗-representation (̂U , ̂E ) of the involutive semigroup
(S, �) by contractions.

Proof The invariance of S under � and the relation Us� = Uτ(s−1) = θU−1
s θ = U �

s

imply that US ⊆ S(E+, θ). The remaining assertions now follow immediately from
Lemma 3.3.2.

Definition 3.3.4 In the context of Proposition 3.3.3, we call (U,E ,E+, θ) a
euclidean realization of the contractive ∗-representation (̂U , ̂E ) of S.

In Chap.6 we shall encounter methods to derive by analytic continuation from
a ∗-representation ̂U of S (if S has interior points) a unitary representation of the
simply connected c-dual groupGc (cf. Example 6.4.2). In this context, we also speak
of euclidean realizations of unitary representations of Gc.

Example 3.3.5 For (G, S, τ ) = (R, R≥0,− idR), the situation is particularly sim-
ple. Then U : Rτ → U(E ) is a unitary representation and ̂U : R≥0 → B(E ) is a
continuous one-parameter semigroup of hermitian contractions, hence of the form
̂Ut = e−t H for some selfadjoint positive operator H = H∗ ≥ 0. Then Uc

t := eit H

defines a unitary representation Uc of the c-dual group Gc ∼= R on ̂E related to ̂U
by analytic continuation. We shall analyze such examples more closely in Chap.4.

There is also the following rather weak notion of a reflection positive representa-
tion:

Definition 3.3.6 Let (G, H) be a symmetric Lie group and (E ,E+, θ) be a reflection
positive Hilbert space. A unitary representation (U,E ) ofGτ is called infinitesimally
reflection positive if

(a) UhE+ = E+ for every h ∈ H , and
(b) there exists a subspaceD ⊆ E ∞ ∩ E+ such that ̂D is dense in ̂E and dU (q)D ⊂

D .

Remark 3.3.7 Condition (a) in Definition 3.3.6 implies the existence of a unitary
representation ̂U of H on ̂E given by ̂Uh = ̂Uh (Proposition 3.1.4). Condition (b)
ensures that each operator dU (x), x ∈ q, has an OS transform ̂dU (x) : ̂D → ̂D , and
one easily verifies the relation ̂dU (Ad(h)x) = ̂Uh ̂dU (x)̂Uh−1 for h ∈ H and x ∈ q.

Example 3.3.8 Recall the setting of Theorem 2.5.1, where M is a Riemannian man-
ifold and we obtain the reflection positive Hilbert space (E ,E+, θC ) with E = HD .
Since the operator C commutes with the unitary representation of the Lie group
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G := Isom(M) on L2(M), we obtain a unitary representation (UC ,E ) of this
group which also contains θ . For the identity component H := Gθ

0, we then have
UhE+ = E+ because elements in H cannot map M+ to M−. Now the image D of
C∞
c (M+) in E+ is a UH -invariant dense subspace invariant under the action of the

Lie algebra g of G which acts by Lie derivatives

(LX f )(m) = d

dt

∣

∣

∣

t=0
f (exp(t X).m),

where we identify g with a Lie algebra of vector fields on M . We conclude that all
requirements of Definition 3.3.6 are satisfied.

Remark 3.3.9 (Infinitesimally unitary representations) On the infinitesimal level,
the core idea of reflection positivity is easily seen. Starting with a symmetric Lie
algebra (g, τ ), we obtain the corresponding decomposition g = h ⊕ q and form the
dual Lie algebra gc := h ⊕ iq ⊆ gC.

Let (D,D+, θ) be a complex reflection positive pre-Hilbert space (defined as in
Definition 2.1.1 but omitting the completeness of E and the closedness of E+) and
π be a representation of g on D by skew-symmetric operators. We also assume that
θπ(x)θ = π(τ x) for x ∈ g and thatD+ is g-invariant. Then complex linear extension
leads to a representation of gc on D+ by operators which are skew-symmetric with
respect to the twisted scalar product 〈·, ·〉θ . By the OS transform, we then obtain an
infinitesimally unitary representation of gc on the associated pre-Hilbert space ̂D via

π c(x + iy) := ̂π(x) + îπ(y).

This is the basic idea behind the reflection positivity correspondence between
infinitesimally unitary representations of g on E and gc on ̂E .

What this simple picture completely ignores are issues of integrability and essen-
tial selfadjointness of operators. There are various natural ways to address these prob-
lems. Important first steps in this direction have been undertaken byKlein andLandau
in [KL81, KL82], and Fröhlich, Osterwalder and Seiler introduced in [FOS83] the
concept of a virtual representation, which was developed in greater generality by
Jorgensen in [Jo86, Jo87]. We shall return to these issues in Chap.7.

3.4 Reflection Positive Functions

Definition 3.4.1 Let V be a real vector space and (G, τ ) be a symmetric Lie group.
We recall the group Gτ = G � {idG, τ } from Definition 3.2.1.

(a) A function ϕ : Gτ → Bil(V ) (the space of bilinear forms on V ) is called
reflection positive with respect to the subset G+ ⊆ G if

(RP1) ϕ is positive definite (cf. Sect.A.1) and
(RP2) the kernel (s, t) �→ ϕ(st�τ ) = ϕ(sτ t−1) is positive definite on G+.
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(b) A τ -invariant function ϕ : G → Bil(V ) is called reflection positive with
respect to G+ if the extension ϕ̂ of ϕ to Gτ by ϕ̂(g, τ ) := ϕ(g) has this property,
i.e., if the kernel (ϕ(st�))s,t∈G+ is positive definite.

(c) A function ϕ : G → Bil(V ) is called reflection positive with respect to the
symmetric subsemigroup S ⊆ G if

(RP1) ϕ is positive definite and τ -invariant and
(RP2) the kernel (ϕ(st�))s,t∈S is positive definite on S, i.e., the restriction ϕ|S is a

positive definite function on the involutive semigroup (S, �).

This can also be phrased as the requirement that the kernel K (g, h) := ϕ(gh−1) on
G is reflection positive with respect to the symmetric subsemigroup S ⊆ (G, τ ) in
the sense of Definition 2.4.1.

Remark 3.4.2 Let ϕ : Gτ → Bil(V ) be a positive definite function, so that the
kernel K ((x, v), (y,w)) := ϕ(xy−1)(v,w) on Gτ × V is positive definite. The
involution τ acts on Gτ × V by τ.(g, v) := (gτ, v) and the corresponding kernel
K τ ((x, v), (y,w)) := K ((x, v), (yτ,w)) = ϕ(xτ y−1)(v,w) is positive definite on
G+ × V if and only if ϕ is reflection positive in the sense of Definition 2.4.1.

From Lemma 2.4.2(c) it follows that the corresponding space ̂E can be identified
withHK τ ⊆ (V ∗)G+ such that

q : E+ → HK τ , q( f )(g) := f (τ (g)), g ∈ G+.

The following lemma shows that positive definite functions on G extend canoni-
cally to Gτ if they are τ -invariant:

Lemma 3.4.3 Let V be a real vector space and let (G, τ ) be a symmetric Lie group.
Then the following assertions hold:

(i) If ϕ : G → Bil(V ) is a positive definite function which is τ -invariant in the
sense that ϕ ◦ τ = ϕ, then ϕ̂(g, τ ) := ϕ(g) defines an extension to Gτ which is
positive definite and τ -biinvariant.

(ii) Let (U,H ) be a unitary representation of Gτ , let θ := Uτ , let j : V → H
be a linear map, and let ϕ(g)(v,w) = 〈 j (v),Ug j (w)〉 be the corresponding
Bil(V )-valued positive definite function. Then the following are equivalent:

(a) θ j (v) = j (v) for every v ∈ V .
(b) ϕ is τ -biinvariant.
(c) ϕ is left τ -invariant.

Proof (i) From the GNS construction (Proposition A.1.6), we obtain a continuous
unitary representation (U,H ) of G and a linear map j : V → H such that

ϕ(g)(v,w) = 〈 j (v),Ug j (w)〉 for g ∈ G, v,w ∈ V .

As ϕ(g)(v,w) = ϕ(τ(g))(v,w), the uniqueness in the GNS construction provides a
unitary operator θ : H → H with
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θUg j (v) = Uτ(g) j (v) for g ∈ G, v ∈ V .

Note that θ fixes each j (v). ThereforeUτ := θ defines an extension ofU to a unitary
representation of Gτ onH . Hence ψ(g)(v,w) = 〈 j (v),Ug j (w)〉 defines a positive
definite τ -biinvariant Bil(V )-valued function on Gτ with ψ |G = ϕ.

(ii) Clearly, (a)⇒ (b)⇒ (c). It remains to show that (c) implies (a). So we assume
that ϕ(τg) = ϕ(g) for g ∈ Gτ . This means that, for every v,w ∈ V , we have

〈 j (v),Ug j (w)〉 = ϕ(g)(v,w) = ϕ(τg)(v,w) = 〈 j (v), θUg j (w)〉 = 〈θ j (v),Ug j (w)〉.

Since UGτ
j (V ) is total inH , this implies that θ j (v) = j (v) for every v ∈ V . ��

Remark 3.4.4 If S ⊆ G is a symmetric subsemigroup, then a function ϕ : G →
Bil(V ) is reflection positive with respect to S if and only if its τ -biinvariant extension
to Gτ (Lemma 3.4.3) is reflection positive with respect to G+ = S.

Theorem 3.4.5 (GNS construction for reflection positive functions) Let V be a real
vector space, let (U,E ) be a unitary representation of Gτ and put θ := Uτ . Then
the following assertions hold:

(i) If (U,H , j, V ) is reflection positive with respect to G+, then

ϕ(g)(v,w) := 〈 j (v),Ug j (w)〉, g ∈ Gτ , v,w ∈ V,

is a reflection positive Bil(V )-valued function.
(ii) If ϕ : Gτ → Bil(V ) is a reflection positive function with respect to G+, then the

corresponding GNS representation (Uϕ,Hϕ, j, V ) is a reflection positive rep-
resentation, whereE := Hϕ ⊆ C

Gτ ×V is theHilbert subspace with reproducing
kernel K ((x, v), (y,w)) := ϕ(xy−1)(v,w) on which Gτ acts by

(Uϕ
g f )(x, v) := f (xg, v).

Further, E+ := �U−1
G+ j (V )� and ̂E ∼= HK τ for the kernel K τ (s, t) := ϕ(sτ t−1) on

G+, where q : E+ → HK τ , q( f )(g) := f (gτ).

Proof (i) For s, t ∈ G+, we have

ϕ(sτ t−1)(v,w) = 〈 j (v),Usτ t−1 j (w)〉 = 〈Us−1 j (v),UτUt−1 j (w)〉
= 〈θUs−1 j (v),Ut−1 j (w)〉,

so that the kernel (ϕ(sτ t−1))s,t∈G+ is positive definite by Proposition A.1.6.
(ii) Recall the relation ϕ(g)(v,w) = 〈 j (v),Ug j (w)〉 for g ∈ G, v,w ∈ V from

Proposition A.1.6. Moreover, (θ f )(x, v) = f (xτ, v), and

〈θUϕ

s−1 j (v),U
ϕ

t−1 j (w)〉 = 〈 j (v),Uϕ

sτ t−1 j (w)〉 = ϕ(sτ t−1)(v,w),
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so that the positive definiteness of the kernel (ϕ(sτ t−1))s,t∈G+ implies that we
obtain with E = Hϕ and E+ := �(Uϕ

G+)−1 j (V )� a reflection positive Hilbert space
(E ,E+, θ). The remaining assertions follow from Remark 3.4.2. ��
Definition 3.4.6 Let S ⊆ (G, τ ) be a symmetric subsemigroup. A triple (U,E ,V ),
where (U,E ) is a unitary representation of Gτ and V ⊆ E is a G-cyclic subspace
fixed pointwise by θ = Uτ is said to be a a reflection positive V -cyclic representa-
tion if the closed subspace E+ := �USV � is θ -positive. If, in addition, V = Cξ is
one-dimensional, then we call the triple (π,E , ξ) a reflection positive cyclic repre-
sentation.

Corollary 3.4.7 (Reflection positive GNS construction—operator-valued case) Let
S be a symmetric subsemigroup of (G, τ ).

(i) If (U,E ,V ) is an V -cyclic reflection positive representation of Gτ and
P : E → V the orthogonal projection, then ϕ(g) := PUgP∗ is a reflection
positive function on G with ϕ(e) = 1V .

(ii) Let ϕ : G → B(V ) is a reflection positive function with respect to S on G
with ϕ(e) = 1V and let Hϕ ⊆ V G be the Hilbert subspace with reproducing
kernel K (x, y) := ϕ(xy−1)onwhichG acts by (Uϕ(g) f )(x) := f (xg)and τ by
θ f := f ◦ τ . We identify V with the subspace ev∗

e V ⊆ Hϕ . Then (Uϕ,Hϕ,V )

is a V -cyclic reflection positive representation and we have an S-equivariant
unitary map

Γ : ̂E → Hϕ|S , Γ ( ̂f ) = f |S for f ∈ E+ = �Uϕ

S V �.

Proof (i) To match this with Theorem 3.4.5(i), we put V := V and consider
the inclusion map j : V → H . Then ϕ(g) ∈ Bil(V ) corresponds to the operator
j∗Ug j = PUgP∗ ∈ B(V ). Therefore ϕ is positive definite with ϕ(e) = 1. That ϕ is
τ -invariant follows from θ |V = idV (cf. Lemma 3.4.3).

(ii) We use the second half of Example A.1.8, i.e., the special case of Proposi-
tion A.1.6 dealing with operator-valued positive definite functions, and identify V
with ev∗

e V ⊆ Hϕ . Lemma 3.4.3 implies that θ fixes V pointwise.
To see that E+ := �Uϕ

S V � is θ -positive, we note that

θ(E+) = �Uϕ

τ(S)θV � = �Uϕ

S−1V �,

and this subspace is θ -positive by Theorem 3.4.5(ii). Therefore E+ is also θ -positive
(Remark 2.2.2). From Theorem 3.4.5(ii) we further derive that

θ(E+) → HK τ ⊆ (V ∗)S, f �→ ( f ◦ τ)|S = θ( f )|S
induces a unitary isomorphism ̂E → HK τ , ̂f �→ f |S , and this implies that Γ is
unitary. ��
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Corollary 3.4.8 Let S ⊆ (G, τ ) be a symmetric subsemigroup.

(i) If (U,E , ξ) is a cyclic reflection positive representation of Gτ , then U ξ (g) :=
〈ξ,Ugξ 〉 is a reflection positive function on G.

(ii) If ϕ is a reflection positive function on G, then (Uϕ,Hϕ, ϕ) is a cyclic reflection
positive representation.

The following result characterizes reflection positive representations for which
(E ,E+, θ) is of Markov type.

Proposition 3.4.9 Let (U,E ) be a reflection positive unitary representation on
(E ,E+, θ) with respect to the unital symmetric subsemigroup S ⊆ (G, τ ). Let
P0 : E → E0 be the orthogonal projection and consider the reflection positive definite
function ϕ(g) = P0UgP0. Then the following assertions hold:

(a) If ϕ|S is multiplicative and E+ = �USE0�, then (E ,E+, θ) is of Markov type.
(b) If (E ,E+, θ) is of Markov type and Γ := q|E0 : E0 → ̂E is the corresponding

unitary isomorphism, then ϕ|S is multiplicative and ϕ(s) = Γ ∗
̂UsΓ for s ∈ S,

i.e., Γ intertwines ϕ|S with the contraction representation (̂U , ̂E ) of S.

Proof That ϕ is reflection positive follows from Corollary 3.4.7(i).
(a) By Corollary 3.4.7(ii), the restriction map Γ : E+ → Hϕ|S , ̂f �→ f |S is a uni-

tary S-intertwining operator. From E+ = �USE0� it follows that ̂E = �̂USq(E0)�,
so that the multiplicativity of ϕ|S implies that Γ (E0) = ̂E (Lemma A.1.9), i.e.,
(E ,E+, θ) is of Markov type.

(b) LetK ⊆ H be theU -invariant closed subspace generated byE0 and let (E0)G

denote the linear space of all maps G → E0. Then the map

Φ : K → (E0)
G, Φ(ξ)(g) := P0Ugξ

is an equivalence of the representation U of G on K with the GNS representation
defined byϕ (PropositionA.1.6). Further, the representation ̂U of S on ̂E is equivalent
to the GNS representation defined by ϕ|S , where the map q : E+ → ̂E corresponds
to the restriction f �→ f |S (Corollary 3.4.7(ii)). The inclusion ι : E0 ↪→ Hϕ is given
by ι(ξ)(g) = P0Ugξ = ϕ(g)ξ for g ∈ G, and likewise the inclusion ι̂ : E0 ↪→ Hϕ|S
is given by ι̂(ξ ) = ϕ · ξ . Lemma 2.3.2 implies the surjectivity of ι̂. In view of
Lemma A.1.9, this is equivalent to the multiplicativity of ϕ|S .

Recall q = Γ ◦ P0|E+ from Lemma 2.3.2. For s ∈ S, the relation ̂Us ◦ q =
q ◦Us |E+ leads to ̂UsΓ P0|E+ = Γ P0Us |E+ , so that Γ ∗

̂UsΓ = P0Us P0 = ϕ(s),
i.e., Γ intertwines ϕ(s) with ̂Us .

Example 3.4.10 Let (G, τ ) be a symmetric Lie group and let σ : Gτ → Diff(M)

be a smooth right action of Gτ on the manifold M . Then τM := στ is an involutive
diffeomorphism of M . Further, let K : M × M → B(V ) be a G-invariant reflection
positive kernel with respect to (M, M+, τM) (Definition 2.4.1), where M+ ⊆ M is a
H -invariant subset.
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Then Ug f := f ◦ σg defines a unitary representation of G on HK . It clearly
satisfies

Kx ◦Ug = Kx .g and thus UgK
∗
x = K ∗

x .g−1 . (3.5)

Here the unitarity of U follows from the G-invariance of K , and the H -invariance
of E+ follows from the H -invariance of M+ and (3.5).

A special case of this construction arises forG = M and right-invariant kernels of
the form K (x, y) = ϕ(xy−1), where ϕ : G → B(V ) is a reflection positive function.
Here the τ -invariance of K is equivalent to the relation ϕ ◦ τ = ϕ.

Notes

Section 3.1: Variants of Lemma 3.1.2 also appear in [JÓl00].
Section 3.3: In the context of intervals in the real line which we discuss in Chap. 4,

the notion of reflection positive functions already appears in [KL81], where such
functions are called (OS)-positive.

Proposition 3.3.3 is already in [JÓl00].
A version of Proposition 3.4.9 for the case (R, R+,− idR) can already be found

in [Kl77] (see also [JT17, Sect. 7]).
Reflection positivity for the lattice G = Z

d and τ(x0, x) = (−x0, x) is discussed
in the context of correlation functions by Usui in [Us12].



Chapter 4
Reflection Positivity on the Real Line

After providing the conceptual framework for reflection positive representations in
the preceding two chapters, we now turn to the fine points of reflection positivity
on the additive group (R,+). Although this Lie group is quite trivial, reflection
positivity on the real line has many interesting facets and is therefore quite rich.
We thus describe its main features in this and the subsequent chapter. As reflection
positive functions play a crucial role, we start in Sect. 4.1 with reflection positive
functions on intervals (−a, a) ⊆ R. Here we already encounter the main feature of
reflection positivity dealing with two different notions of positivity, one related to
the group structure on R and the other related to the ∗-semigroup structure on R+,
resp., the convex structure of intervals. All this is linked to representation theory in
Sect. 4.2, where we start our investigation of reflection positive representations of
the symmetric semigroup (R,R+,− idR). These are unitary one-parameter groups
(Ut )t∈R on a reflection positive Hilbert space (E ,E+, θ) satisfying UtE+ ⊆ E+ for
t > 0 and θUtθ = U−t for t ∈ R. On ̂E this leads to a semigroup (̂Ut )t≥0 of hermi-
tian contractions. The main result in Sect. 4.2 is that the OS transform “commutes
with reduction”, where reduction refers to the passage to the fixed points of U and
̂U in E and ̂E , respectively (Proposition 4.2.6). Reflection positive functions for
(R,R+,− idR) are classified in terms of integral representations in Sect. 4.3. We
shall see in particular that any hermitian contraction semigroup (Ct )t≥0 on a Hilbert
space H has a so-called minimal dilation represented by the reflection positive
function ψ(t) := C|t |. We also provide a concrete model for this dilation on the
space E = L2(R,H ) with (Ut f )(p) = eitp f (p), where E+ = L2+(R,H ) is the
positive spectral subspace for the translation group, which is, by the Laplace trans-
form, isomorphic to theH -valued Hardy space H 2(C+,H ) on the right half plane
C+ = R+ + iR. We conclude this chapter by showing that, for any reflection posi-
tive one-parameter group for which E+ is cyclic and fixed points are trivial, the space
E+ is outgoing in the sense of Lax–Phillips scattering theory (Proposition 4.4.2).
This establishes a remarkable connection between reflection positivity and scatter-
ing theory that leads to a normal form of reflection positive one-parameter groups by

© The Author(s) 2018
K.-H. Neeb and G. Ólafsson, Reflection Positivity, SpringerBriefs in Mathematical
Physics, https://doi.org/10.1007/978-3-319-94755-6_4

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94755-6_4&domain=pdf


36 4 Reflection Positivity on the Real Line

translations on spaces of the formE = L2(R,H )withE+ = L2(R+,H ). Applying
the Fourier transform to our concrete dilation model leads precisely to this normal
form.

4.1 Reflection Positive Functions on Intervals

Beforewe turn to representation theoretic issues,we briefly discuss reflection positive
functions on open intervals in R. There are two natural types of positive definiteness
conditions for functions on real intervals. The first one comes from the additive group
(R,+), for which a function ϕ : R → C is positive definite if and only if the kernel
(ϕ(x − y))x,y∈R is positive definite. This condition makes also sense on symmetric
intervals of the form (−a/2, a/2) if f is defined on (−a, a). Bochner’s Theorem
(TheoremA.2.1) asserts that a continuous function on the additive groupR is positive
definite if and only if it is the Fourier transform ϕ(x) = ∫

R
e−i xλ dμ(λ) of a bounded

positive Borel measure μ on R.
The second type makes sense for functions ϕ : (a, b) → C on any real interval

and requires that the kernel
(

ϕ
( x+y

2

))

a<x,y<b is positive definite. Widder’s Theorem
below asserts that this is equivalent to f being a Laplace transform of a positive
Borel measureμ onR. For (a, b) = (0,∞), this is precisely the condition of positive
definiteness on the ∗-semigroup (0,∞) with the trivial involution t∗ = t for t > 0.

Theorem 4.1.1 (Widder; [Wi34], [Wi46, TheoremVI.21]) Let−∞ ≤ a < b ≤ ∞.
A function ϕ : (a, b) → R is positive definite in the sense that the kernel ϕ

( x+y
2

)

is
positive definite if and only if there exists a positive Borel measure μ on R such that

ϕ(t) = L (μ)(t) :=
∫

R

e−λt dμ(λ) f or t ∈ (a, b).

This implies in particular that ϕ is analytic.

The following theorem provides a characterization of functions ψ : (0,∞) → R

which are completelymonotone, i.e., (−1)kψ(k) ≥ 0 for k = 1, 2, 3, . . . (see [JNO18,
Theorem3.6], [SSV10, Theorem1.4], [Wi46, TheoremIV.12b]). Its most remarkable
point is that it characterizes the global property of positive definiteness on the addi-
tive semigroup (0,∞) in terms of the infinitesimal condition of being completely
monotone.

Theorem 4.1.2 (Hausdorff–Bernstein–Widder) For a function ϕ : (0, ∞) → [0, ∞),
the following are equivalent:

(i) ϕ is completely monotone.
(ii) ϕ is a Laplace transform of a positive Borel measure on [0,∞).
(iii) ϕ is decreasing and positive definite on the ∗-semigroup ((0,∞), id).

After these preparations, we now turn to reflection positive functions on intervals.
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Definition 4.1.3 Let a ∈ (0,∞] and consider the interval (−a, a), endowed with
the reflection τ(t) = −t about the midpoint. We call a function ϕ : (−a, a) → R

reflection positive if both kernels

ϕ
( t − s

2

)

−a<s,t<a
and ϕ

( t + s

2

)

0<s,t<a
(4.1)

are positive definite. For the kernel K (s, t) := ϕ
(

t−s
2

)

, this corresponds to the situa-
tion of Definition 2.4.1 with X = (−a, a), X+ = (0, a) and τ(x) = −x .

Since the kernels in (4.1) are both hermitian, reflection positive functions on
(−a, a) satisfy ϕ(−t) = ϕ(t) = ϕ(t). Therefore Widder’s Theorem 4.1.1 provides
a positive Borel measure μ on R with

ϕ(t) = L (μ)(|t |) =
∫

R

e−λ|t | dμ(λ) for |t | < a. (4.2)

Conversely, for such functions the kernel ϕ
(

t+s
2

)

is positive definite on (0, a). There-
fore ϕ is reflection positive if and only if the kernel ϕ

(

t−s
2

)

is positive definite on
(−a, a). So the main point is to relate this condition to properties of the measure μ.

Example 4.1.4 (a) For λ ≥ 0, the functions ϕλ(t) := e−λ|t | are positive definite
(Example 2.4.3(a)). ThereforeL (μ)(|t |) is reflection positive if μ is supported
by [0,∞).

(b) Basic examples of positive definite β-periodic functions on R are given by

fλ(t) = e−tλ + e−(β−t)λ = 2e−βλ/2 cosh(( β

2 − t)λ) for 0 ≤ t ≤ β, λ ≥ 0

(Example 2.4.3(b)). For |t | < β, we then have

fλ(t) = fλ(|t |) = e−|t |λ + e−(β−|t |)λ = e−|t |λ + e−βλe|t |λ. (4.3)

Hence, for reflection positivity on a finite interval (−β, β), it is not necessary that
the measure μ in (4.2) is supported by the positive half line, as in (a).

From the positive definiteness of the functions fλ for every β > 0, we conclude
that, for a fixed a > 0 and a positive Borel measure μ on [0,∞) × [a,∞), the
function

f (t) :=
∫

[0,∞)×[a,∞)

e−λ|t | + e−βλeλ|t | dμ(λ, β) (4.4)

is reflection positive on (−a, a) whenever the integrals are finite.

The proof of the following theorem ([JNO18, Theorem5.8]) uses Pólya’s classical
result relating positive definiteness of real-valued functions on R+ with convexity
([Luk70, Theorem4.3.1]) and provides a sufficient conditions for positive definite-
ness.
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Theorem 4.1.5 (Characterization of reflection positive functions on [−a, a]) Fix
a > 0 and letμ be a finite positive Borel measure onR for which ϕ(t) := L (μ)(|t |)
exists for |t | ≤ a.

(i) If the left-sided derivative in a satisfies L (μ)′(a−) ≤ 0, then ϕ is reflection
positive on [−a, a] and extends to a symmetric positive definite function on R.

(ii) Ifϕ is reflection positive on [−a, a] and non-constant, then there exists a number
b ∈ (0, a] withL (μ)′(b−) < 0.

Remark 4.1.6 If b is as in (ii), then it follows from part (a) that the positive definite
function ϕ|[−b,b] extends to a positive definite function onR. But this extension does
not have to coincide with ϕ if b < a.

Remark 4.1.7 (The β-periodic case) We consider the group G = (R,+) and the
open interval G+ := (0, β/2). Then a symmetric continuous function f : R → C

is reflection positive with respect to G+ if it is positive definite and the kernel
(

f (t + s)
)

0<s,t<β/2 is positive definite (Definition 3.4.1(b)), which implies that f
is reflection positive on the interval (−β, β) (Definition 4.1.3). As f is symmetric
and β-periodic, it is also symmetric with respect to β/2, i.e., f (β − t) = f (t). The
latter relation implies that the corresponding measure μ on R satisfies dμ(−λ) =
e−βλdμ(λ), hence has the form

dμ(λ) = dμ+(λ) + eβλdμ+(−λ) (4.5)

for a measure μ+ on R≥0. We thus obtain the integral representation

f (t) =
∫ ∞

0
e−tλ + e−(β−t)λ dμ+(λ) for 0 ≤ t ≤ β,

which determines f by β-periodicity. That, conversely, all such functions are reflec-
tion positive follows from Example 2.4.3(b). Note that f |[0,β] is convex and symmet-
ric with respect to β/2, where it has a global minimum. In particular Theorem 4.1.5
only applies to the restriction of f to the interval [−β/2, β/2]which also determines
f by β-periodicity.

4.2 Reflection Positive One-Parameter Groups

We now turn to reflection positivity on the whole real line X = R with respect
to the right half line X+ = R≥0 = [0,∞) which is an additive ∗-semigroup with
s∗ = s. Therefore reflection positive functions provide close relations between uni-
tary representations of R and one-parameter semigroups of hermitian contractions.
SpecializingDefinition 3.3.1 to the symmetric semigroup (R,R+,− idR), we obtain:

Definition 4.2.1 A reflection positive unitary one-parameter group on the reflection
positive Hilbert space (E ,E+, θ) is a strongly continuous unitary one-parameter
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group (Ut )t∈R on E for which E+ is invariant under Ut for t > 0 and θUtθ = U−t

for t ∈ R.

From Proposition 3.3.3 we immediately obtain:

Proposition 4.2.2 If (Ut )t∈R is a reflection positive unitary one-parameter group
on (E ,E+, θ), then (̂Ut )t≥0 is a strongly continuous one-parameter semigroup of
symmetric contractions on ̂E .

Definition 4.2.3 In the context of Proposition 4.2.2, we call the quadruple
(E ,E+, θ,U ) a euclidean realization of the contraction semigroup (̂U , ̂E ). Writ-
ing ̂Ut = e−t H with a H = H∗ ≥ 0, we obtain by analytic continuation the unitary
one-parameter group Uc

t := eit H (Example 3.3.5). Accordingly, we also speak of a
euclidean realization of (Uc

t )t∈R.

We shall see in Proposition4.3.5 below that every strongly continuous contraction
semigroup on a Hilbert space has a euclidean realization, but there are many non-
equivalent ones with different sizes and different specific properties (Example 4.3.8).

The following lemma provides a criterion for the density of a subspace of ̂E . We
shall use it to verify that certain operators on ̂E are densely defined.

Lemma 4.2.4 Let (Ut )t∈R be a reflection positive unitary one-parameter group on
(E ,E+, θ). IfD ⊆ E+ is a subspace invariant under the operators (Ut )t>0, for which

E 0
+ := {v ∈ E+ : (∃T > 0) UT v ∈ D}

is dense in E+, then ̂D ⊆ ̂E is dense.

Proof Forw ∈ E 0+ there exists aT > 0withUTw ∈ D , and this implies that ̂Utŵ ∈ ̂D

for t ≥ T . Since the curveR+ → ̂E , t �→ ̂Utw, is analytic, ̂Utw ∈ ̂D for every t > 0,

and therefore w ∈ ̂D follows from the strong continuity of the semigroup (̂Ut )t≥0

(Proposition 4.2.2). As E 0+ is dense in E+, it follows that ̂D is dense in ̂E . �

Remark 4.2.5 (Reduction to the E0-cyclic case if ̂E0 is cyclic in ̂E ) Assume that
(Ut )t∈R is reflection positive on (E ,E+, θ) and that q(E0) is ̂U -cyclic in ̂E .

Let Ẽ ⊆ E denote the closed U -invariant subspace generated by E0 and Ẽ+ :=
Ẽ ∩ E+. Then θUtE0 = U−tθE0 = U−tE0 implies that Ẽ is θ -invariant. Therefore
U ′

t := Ut |Ẽ is a reflection positive unitary one-parameter group on (Ẽ , Ẽ+, θ |Ẽ ).
Since q|Ẽ ′+

has dense range, all the relevant data is contained in Ẽ . It is therefore

natural to assume that E0 is U -cyclic in E whenever q(E0) = ̂E0 is cyclic in ̂E .

The following proposition shows that the OS transform is compatible with the
passage to the space of fixed points.

Proposition 4.2.6 (OS transform commutes with reduction) Let (Ut )t∈R be a reflec-
tion positive unitary one-parameter group on (E ,E+, θ). Suppose thatE+ isU-cyclic
and that (̂Ut )t≥0 is the corresponding one-parameter semigroup of contractions on
̂E . Let Efix denote the subspace of elements fixed under all Ut and ̂Efix the subspace
of fixed points for the semigroup (̂Ut )t>0. Then the following assertions hold:
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(a) Efix ⊆ E0, the space of θ -fixed points in E+.
(b) The map q|Efix : Efix → ̂Efix, v �→ v̂ is a unitary isomorphism.
(c) Efix = E∞ := ⋂

t>0UtE+.

Proof (a) We write P : E → Efix for the orthogonal projection onto the subspace
of U -fixed points in E . Then

lim
N→∞

1

N

∫ N

0
Ut dt = P

holds in the strong operator topology ([EN00, CorollaryV.4.6]). For any v ∈
UsE+ and s ∈ R, there exists a T > 0 with Utv ∈ E+ for t > T . Since

lim
N→∞

1

N

∫ T

0
Ut dt = 0,

we obtain Pv ∈ E+ for every v ∈ UsE+. As E+ is U -cyclic, we thus obtain
Efix = PE ⊆ E+. Since θUtθ = U−t for t ∈ R, the subspace Efix is θ -invariant.
Now the θ -positivity of E+ implies that θ |Efix ≥ 0, and thus Efix ⊆ E θ .

(b) Since P commutes with θ , Lemma 3.1.2(c) shows that P defines a hermitian
contraction ̂P : ̂E → ̂E with ̂Pv̂ = ̂Pv for v ∈ E+. For v,w ∈ E+, we obtain

lim
N→∞

1

N

∫ N

0
〈̂v, ̂Utŵ〉 dt = lim

N→∞
1

N

∫ N

0
〈θv,Utw〉 dt = 〈θv, Pw〉 = 〈̂v, ̂Pŵ〉.

Hence [EN00, CorollaryV.4.6] implies that ̂P is the orthogonal projection
onto ̂Efix.
Let q : E+ → ̂E , v �→ v̂, denote the canonical projection onto ̂E . Then q ◦ P =
̂P ◦ q implies that q(Efix) = q(PE+) = ̂Pq(E+), and hence that q(Efix) ⊆ ̂Efix
is a dense subspace. On the other hand, Efix ⊆ E0 implies that q|Efix is isometric,
hence a unitary isomorphism onto ̂Efix.

(c) The subspace E∞ is closed and it is easily seen to be invariant underU . Therefore
F := E∞ + θE∞ is invariant under U and θ , so that we obtain a reflection
positive unitary one-parameter group Vt := Ut |F on (F ,F+, θ |F )withF+ :=
E∞, satisfying VtF+ = F+ for every t > 0. Now Lemma 3.1.2(d) leads to v̂t =
̂Vt/2v̂t/2 = 1 for every t > 0. Therefore ̂F ⊆ ̂Efix, and (b) implies that ̂F ⊆
q(Efix), so that E∞ = F+ ⊆ Efix + N .
Since the elements of Efix are θ -fixed andN = E+ ∩ θ(E+)⊥, we haveN ⊥Efix.
From Efix ⊆ E∞ it thus follows that E∞ = Efix ⊕ (N ∩ E∞) is a U -invariant
orthogonal decomposition. AsN ∩ E∞ is orthogonal to the U -cyclic subspace
θ(E+), it must be zero, and this shows that E∞ = Efix. �


Remark 4.2.7 Let E 1 := E ⊥
fix in the context of Proposition 4.2.6. Then the reflec-

tion positive one-parameter group is adapted to the orthogonal decomposition
E = Efix ⊕ E 1:
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E+ = Efix ⊕ E 1
+, θ = 1 ⊕ θ1, Ut = 1 ⊕U 1

t

with respect to the obvious notation. The data corresponding to Efix is trivial and
the one-parameter group (U 1

t )t∈R on (E 1,E 1+, θ) has the additional property that
E 1
fix = {0}. We also have that ̂E ∼= ̂Efix ⊕ ̂E1.

4.3 Reflection Positive Operator-Valued Functions

We start with a characterization of continuous reflection positive functions for the
symmetric semigroup (G, τ, S) = (R,− idR,R+). This is motivated by the GNS
construction in Theorem 3.4.5.

Proposition 4.3.1 (Integral representation of reflection positive functions) Let F
be a Hilbert space and ϕ : R → B(F ) be strongly continuous. Then ϕ is reflection
positive if and only if there exists a finite Herm(F )+-valued Borel measure Q on
[0,∞) such that

ϕ(x) =
∫ ∞

0
e−λ|x | dQ(λ). (4.6)

Proof Suppose first that ϕ is reflection positive for (R,R+,− id) and consider the
additive unital semigroup S := ([0,∞),+). Then ϕS := ϕ|S is positive definite
with respect to the trivial involution and corresponds to a contraction representa-
tion of S because |〈ξ, ϕ(s)ξ 〉| ≤ 〈ξ, ϕ(e)ξ 〉 holds for the positive definite functions
ϕξ,ξ (x) := 〈ξ, ϕ(x)ξ 〉, ξ ∈ F ([Nel64, Corollary III.1.20(ii)]). Using (A.6) in Exam-
pleA.1.8 to write ϕ(s) = ev0 ◦Uϕ

s ◦ ev∗
0 for the GNS representation (Uϕ,Hϕ) of S

and representing Uϕ by a spectral measure P on [0,∞) as

Uϕ
s =

∫ ∞

0
e−λs d P(λ)

(here we use that the operators Uϕ
s are contractions), we obtain the desired integral

representation of ϕ with Q := ev0 ◦P(·) ◦ ev∗
0. Now (4.6) follows from the fact that

ϕ(−x) = ϕ(x)∗ = ϕ(x) holds for x ≥ 0.
For the converse, we assume that ϕ has an integral representation as in (4.6). This

immediately implies that ϕ|S is positive definite on S for the involution s	 = s and
that ϕ is continuous ([Ne18b, Proposition II.11]). To show that ϕ is positive definite,
we first recall from Example 2.4.3 that

e−λ|x | =
∫

R

eixy
1

π

λ

λ2 + y2
dy.

This implies that
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ϕ(x) =
∫

R

eixy
(

∫ ∞

0

1

π

λ

λ2 + y2
dQ(λ)

)

dy,

and since Q̃(y) := ∫ ∞
0

λ
λ2+y2 dQ(λ) is an integrable function with values in positive

operators, the positive definiteness of ϕ follows from TheoremA.2.1. �

Specializing Proposition 4.3.1 toF = C, we obtain the following integral repre-

sentation (cf. Example 4.1.4(a)):

Corollary 4.3.2 A continuous function ϕ : R → C is reflection positive if and only
if it has an integral representation of the form

ϕ(x) =
∫ ∞

0
e−λ|x | dν(λ), (4.7)

where ν is a finite positive Borel measure on [0,∞).

We note the following corollary to the first part of the proof of Proposition 4.3.1:

Corollary 4.3.3 Let F be a Hilbert space and ϕ : [0,∞) → B(F ) be a bounded
strongly continuous function which is positive definite on the ∗-semigroup ([0,∞),

id). Then ψ(t) := ϕ(|t |) is reflection positive for (R,R+,− idR).

Definition 4.3.4 (Minimal unitary dilation) If (Ct )t≥0 is a one-parameter semigroup
of hermitian contractions on the Hilbert spaceF andψ(t) := C|t | is the correspond-
ing reflection positive function from Corollary 4.3.3, then the unitary representation
Uψ of R on the reproducing kernel Hilbert spaceHψ (Theorem A.1.6) is called the
minimal unitary dilation of C .

As ψ(0) = 1, the space F may be considered as a subspace of Hψ and the
orthogonal projection P : Hψ → F satisfies

ϕ(s) = PUψ
s P∗ for s ≥ 0. (4.8)

For a detailed account on unitary dilations of semigroups, we refer to [SzN10]; see
in particular Proposition 4.3.5 below.

From Proposition 3.4.9 we now derive that (Ct )t≥0 has a canonical euclidean real-
ization of Markov type in the sense of Definition 3.3.4, but this euclidean realization
is rather large as we shall see in Example 4.3.8.

Proposition 4.3.5 For every strongly continuous one-parameter semigroup (Ct )t≥0

of hermitian contractions on a Hilbert spaceH , there exists a euclidean realization
(Ut )t∈R of Markov type on (E ,E+, θ) with E0 cyclic in E and E+ = [[UR+E0]]. Any
realization with these two properties is equivalent to the minimal unitary dilation
obtained by the B(H )-valued positive definite function ψ(t) := C|t | on R.

Wenow develop a concrete picture of theminimal unitary dilation of a contraction
semigroup.
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Example 4.3.6 Let (Ct )t≥0 be a continuous semigroup of hermitian contractions on
H . We write Ct = e−t H for a selfadjoint non-negative operator H ≥ 0. To exclude
trivialities, we assume that ker H = 0, so that the spectral measure E of H is sup-
ported by (0,∞) and we have H = ∫ ∞

0 x dE(x).

(a) On the Hilbert space E := L2(R,H ) we consider the unitary one-parameter
group given by (Ut f )(p) = eitp f (p). We claim that (U,E ) is equivalent to the
minimal unitary dilation of (Ct )t≥0. To verify this claim, we consider the map

j : H → E , j (ξ)(p) := 1√
π
H 1/2(H + i p1)−1ξ for p �= 0.

For p �= 0, the operators H 1/2(H ± i p1)−1 are bounded. For ξ, η ∈ H , we have

〈 j (ξ),Ut j (η)〉 = 1

π

∫

R

〈H 1/2(H + i p1)−1ξ, eitpH 1/2(H + i p1)−1η〉 dp

= 1

π

∫

R

∫ ∞

0

x

x2 + p2
eitp dE ξ,η(x) dp for E ξ,η = 〈ξ, E(·)η〉

=
∫ ∞

0

(

∫

R

1

π

x

x2 + p2
eitp dp

)

dE ξ,η(x)

=
∫ ∞

0
e−x |t | dE ξ,η(x) = 〈ξ, e−|t |Hη〉 = 〈ξ,C|t |η〉.

For t = 0, this calculation implies that j is isometric onto the subspace E0 :=
j (H ) of E and that the representation on the subspace Ẽ := [[URE0]] is equiv-
alent to the GNS representation (Uψ,Hψ) for ψ(t) := C|t |, hence the minimal
unitary dilation.
To verify our claim, it remains to show that E = Ẽ , i.e., that E0 isU -cyclic. Since
H is generated by the C-invariant spectral subspaces Ha,b := E([a, b])H ,
0 < a < b, of H , it suffices to argue that Ẽ contains all subspaces L2(R,Ha,b).
Multiplication with m(p) := H 1/2(H + i p1)−1 defines for c < d a bounded
invertible operator (A f )(p) = m(p) f (p) on each subspace L2([c, d],Ha,b)
which commutes with U . Hence

L2([c, d],Ha,b) = AL2([c, d],Ha,b) = [[L∞([c, d]) j (Ha,b)]] ⊆ [[UR j (Ha,b)]]

follows from U ′′
R

= L∞(R) and therefore E0 is U -cyclic and Ẽ = E .
(b) Now we determine the subspace E+ = [[UR+E0]] and the involution θ . From

E0 ⊆ E θ , θUtθ = U−t and the cyclicity of E0, we immediately obtain

(θ f )(p) = H − i p1
H + i p1

f (−p) := (H − i p1)(H + i p1)−1 f (−p),

so thatU is reflection positive on (E ,E+, θ). TheMarkov property follows from
the multiplicativity of ψ(t) = C|t | for t ≥ 0 (Proposition 3.4.9).
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Next we show thatE+ ⊆ E coincideswith L2+(R,H ) := F L2(R+,H ), where
F is the Fourier transform. WritingC+ := R+ + iR for the right half plane, the
map

1√
2π

L : L2(R+,H ) → O(C+,H ), L ( f )(z) =
∫ ∞

0
e−zx f (x) dx (4.9)

is isometric onto the H -valuedHardy space H 2(C+,H ) with the norm

‖ f ‖2 = lim
z→0+

∫

R

‖ f (z + i p)‖2 dp.

Its reproducing kernel Q(z,w) ∈ B(H ) is given by Q(z,w) = 1
2π

1
z+w1 because

the functions Qz,ξ := (2π)−1/2e−zχR+ξ ∈ L2(R+,H ) with ez(x) = ezx and
ξ ∈ H satisfy

〈Qz,ξ , Qw,η〉 = 1

2π

∫ ∞

0
e−x(z+w)〈ξ, η〉 dx = 1

2π

〈ξ, η〉
z + w

. (4.10)

That E0 is contained in L2+(R,H ) follows from the following calculation for
Re z ≥ 0 (and evaluating in z = i p), where we put E ξ := E(·)ξ :

H 1/2(H + z1)−1ξ =
∫ ∞

0

x1/2

x + z
dE ξ (x) =

∫ ∞

0

∫ ∞

0
e−λze−λx x1/2 dλ dE ξ (x)

=
∫ ∞

0

∫ ∞

0
e−λze−λx x1/2 dE ξ (x) dλ =

∫ ∞

0
e−λz

(

e−λH H 1/2ξ
)

dλ.

Now E+ = [[UR+E0]] ⊆ L2+(R,H ) follows from the invariance of L2+(R,H )

under the operators Ut = F ◦ Vt ◦ F−1 for t ≥ 0, where (Vt f )(x) =
f (x − t). In view of themaximal θ -positivity of E+ (Lemma 2.3.2), equality will
follow if the Hardy space is θ -positive. This is verified as follows. The functions
fz,ξ (p) := 1

z+i p ξ = ∫ ∞
0 e−x(z+i p)ξ dx , Re z > 0, ξ ∈ H , generate L2+(R,H ).

We have

〈 fz,ξ , θ fw,η〉 =
∫

R

〈ξ, (H − i p1)(H + i p1)−1η〉
(z − i p)(w − i p)

dp for Re z,Rew > 0.

(4.11)
Since the function

G(ζ ) := 〈ξ, (H − iζ1)(H + iζ1)−1η〉
(z − iζ )(w − iζ )

= −〈ξ, (H − iζ1)(H + iζ1)−1η〉
(ζ + i z)(ζ + i w)

is meromorphic in the lower half plane {Im ζ < 0} with poles in −i z and −i w
and limζ→∞ |ζG(ζ )| = 0, the Residue Theorem, applied to negatively oriented
paths in the lower half planewhich lead towinding number−1, yields for z �= w:
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〈 fz,ξ , θ fw,η〉 = 2π i(−Res−i z(G) − Res−iw(G)),

where

Res−i z(G) = −〈ξ, (H − z1)(H + z1)−1η〉
−i z + i w

= −i
〈ξ, (H − z1)(H + z1)−1η〉

z − w

and

Res−i w(G) = −〈ξ, (H − w1)(H + w1)−1η〉
−i w + i z

= i
〈ξ, (H − w1)(H + w1)−1η〉

z − w
.

We thus arrive at

〈 fz,ξ , θ fw,η〉 = 2π

z − w
〈ξ, (z1 − H)(H + z1)−1 − (w1 − H)(H + w1)−1η〉

= 4π〈ξ, (H + z1)−1H(H + w1)−1η〉
= 4π〈H 1/2(H + z1)−1ξ, H 1/2(H + w1)−1η〉,

which obviously is a positive definite kernel on C+ × H , and therefore
L2+(R,H ) is θ -positive.

(c) Finally we note that the map

(T f )(p) := √
πH−1/2(H + i p1) f (p)

maps L2(R,H ) unitarily onto the space Ẽ of all H -valued L2-functions with
respect to the norm given by

‖ f ‖2H := 1

π

∫

R

〈 f (p), H(H 2 + p2)−1 f (p)〉 dp.

The operator T intertwinesU with the representation (Ũt f )(p) = eitp f (p) and
the involution θ with (θ̃ f )(p) := f (−p).

Example 4.3.7 We take a closer look at the Hardy space H 2(C+,H ) = HQ ⊆
O(C+,H ) with the reproducing kernel Q(z,w) = 1

z+w1 introduced in
Example 4.3.6(b). For simplicity we omit the factor 1

2π , so that the Laplace transform
L : L2(R+,H ) → H 2(C+,H ) is unitary.

(a) For the translation action (Vt f )(x) = f (x − t) on L2(R,H )we have for t ≥ 0
and f ∈ L2(R+,H ):

L (Vt f )(z) =
∫ ∞

t
e−xz f (x − t) dt =

∫ ∞

0
e−(x+t)z f (x) dt = e−t zL ( f )(z),

(4.12)
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so that the subsemigroup R+ ⊆ R acts on H 2(C+,H ) by multiplication
(Ut f )(z) = e−t z f (z), t ≥ 0. This action is isometric because the boundary val-
ues of e−t (z) = e−t z on iR have absolute value 1.

(b) We now specialize to the scalar case where H = C and Ct = e−tλ for some
λ > 0. Then Example 4.3.6(a) shows that the subspace E0 of E+ ∼= H 2(C+,C) is
generated by the function Qλ(z) = 1

λ+z with ‖Qλ‖2 = Q(λ, λ) = 1
2λ . Therefore

the quotient map q : E+ ∼= H 2(C+,C) → ̂E ∼= C is given by evaluation:

q( f ) = √
2λ〈Qλ, f 〉 = √

2λ f (λ).

This formula also shows immediately that

q(Ut f ) = e−tλq( f ) for f ∈ H 2(C+,C), t ≥ 0.

(c) (Anti-unitary involutions) On the space E = L2(R), the conjugation

(J f )(p) := f (−p)

commutes with (Ut )t∈R and satisfies JE+ = E+ and J Qz = Qz for Re z ≥ 0.
Therefore it induces on the Hardy space H 2(C+,C) the conjugation given by

(J f )(z) = f (z) for f ∈ HQ .

We also observe that Jθ = θ J on L2(R), and since J Qλ = Qλ, it induces on
̂E ∼= C the involution given by complex conjugation.

Example 4.3.8 (Cyclic contraction semigroups) For a σ -finite measure space
(X,S, ρ) and a measurable function h : X → [0,∞), consider onH := L2(X, ρ)

the hermitian contraction semigroup Ct f = e−th f . By the Spectral Theorem, all
cyclic contraction semigroups can be represented this way with a finite measure ρ

on X = [0,∞) and h(λ) = λ, so that 1 is a cyclic vector.

(a) With Example 4.3.6(c), we obtain a euclidean realization of Markov type (and,
in general, infinite multiplicity) by

E = L2(R× × X, ζ ), dζ(x, λ) =
( 1

π

h(λ)

h(λ)2 + x2
dx

)

dρ(λ),

(Ut f )(x, λ) = eitx f (x, λ), (θ f )(x, λ) := f (−x, λ).

Here E0 ∼= L2(X, ρ) is the subspace of functions f (x, λ) = f (λ) not depending
on x and this subspace is U -cyclic in E .

(b) For a finite measure ρ on X = [0,∞) = R≥0 and h(λ) = λ, a multiplic-
ity free euclidean realizations can be obtained as follows. The projection
pr : R × R≥0 → R, pr(x, λ) := x maps themeasure ζ to themeasure ν := pr∗ ζ

given by
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dν(x) = 1

π

(

∫ ∞

0

λ

λ2 + x2
dρ(λ)

)

dx . (4.13)

ThenF := L2(R, ν) can be identified with the U -invariant subspace of E con-
sisting of functions not depending on λ. For F+ := F ∩ E+, we obtain on
(F ,F+, θ) a reflection positive one-parameter group (Vt )t∈R by restriction.
NowF0 = F θ+ = E0 ∩ F = C1 is the space of constant functions.Here 1 ∈ F0

is a cyclic vector corresponding to the reflection positive function

ϕ(t) := 〈1, Vt1〉 =
∫

R

e−i t x dν(x) =
∫ ∞

0
e−λ|t | dρ(λ)

(Example 2.4.3(a)). Its restriction toR+ leads to aGNS representation equivalent
to the multiplication representation of R+ on H = L2(R≥0, ρ) given by C , so
that (V,F ,F+, θ) also is a euclidean realization of (C,H ), but not of Markov
type if ρ is not a point measure.
In both cases, the subspaces E0 and F0, respectively, are cyclic, but in the first
case the Markov condition q(E0) = ̂E holds, whereas in the second case F0 =
C1 is one-dimensional.

(c) For dim E0 = 1 and Ct = e−tλ, λ ≥ 0, the minimal dilation ϕ(t) = e−λ|t | from
(a) leads to the Hilbert space E ∼= L2(R, λ

π
dx

λ2+x2 ) because ρ = δλ is a point
measure. In this case the realizations in (a) and (b) coincide.

4.4 A Connection to Lax–Phillips Scattering Theory

One parameter groups and reflection positivity are closely related to the Sinai/Lax-
Phillips scattering theory and translation invariant subspaces ([LP64, LP67, LP81,
Sin61]). In short, this theory says that every unitary representation of R on a Hilbert
space E satisfying some simple conditions stated below can be realized by transla-
tions in L2(R,M ) for some multiplicity Hilbert space M .

Let (U,E ) be a unitary representation of R. A closed subspace E+ ⊂ E is called
outgoing if

(LP1) E+ is invariant under Ut , t > 0,
(LP2) E∞ :=

⋂

t>0

UtE+ = {0},

(LP3)
⋃

t<0

UtE+ is dense in E .

The following theorem is classical ([LP64, Theorem1]):

Theorem 4.4.1 (Lax–Phillips Representation Theorem) If E+ is outgoing for
(U,E ), then there exists a Hilbert space M such that E � L2(R,M ), E+ �
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L2([0,∞),M ), and U is represented by translations (Ut f )(x) = f (x − t). This
representation is unique up to isomorphism ofM .

This realization of (U,E ) is called the outgoing realization of U .

Proof 1For t ∈ R, we put Et := UtE+ and write Et for the corresponding projection.
Then our assumptions imply that

lim
t→∞ Et = {0} and lim

t→−∞ Et = 1

in the strong operator topology. We further have lims→t− Es = Et . In fact, Et ⊆ Es
for s < t implies that E−

t := lims→t− Es ≥ Et exists. If, conversely, v ∈ E−
t E =

⋂

s<t Es , we have for every h > 0 thatUhv ∈ Et and thus v ∈ Et by closedness. Thus
E−
t ≤ Et , and therefore E−

t = Et . We conclude that the family (Et )t∈R defines a
Stieltjes spectral measure P on B(R) such that P([t,∞)) = Et for t ∈ R.

Consider the unitary one-parameter group defined by Vs := ∫

R
eisx d P(x). Then

Ut Ex = Ex+t shows thatUt P([x,∞)) = P([x + t,∞)) for x, t ∈ R, and therefore
Ut P([a, b]) = P([t + a, t + b]) for a < b. This implies

UtVsU−t =
∫

R

eisxd P(x + t) =
∫

R

eis(x−t)dP(x) = e−ist Vs .

Therefore we obtain a unitary representation of the Heisenberg group Heis(R2) =
T × R

2 with the product

(z, s, t)(z′, s ′, t ′) = (zz′e−i ts ′
, s + s ′, t + t ′) by π(z, s, t) := zVsUt .

Now the assertion follows from the Stone–von Neumann Theorem ([Nel64, Theo-
remX.3.1]). �


We now connect the Lax–Phillips construction to the dilation process. The fol-
lowing proposition is an obvious consequence of the Lax–Phillips Theorem 4.4.1
and Proposition 4.2.6.

Proposition 4.4.2 Let (Ut )t∈R be a reflection positive unitary one-parameter group
on (E ,E+, θ) for which E+ is cyclic and Efix = {0}. Then E+ is outgoing, so that
(U,E ) is unitarily equivalent to the translation representation on L2(R,M ) for
some Hilbert space M . This realization is unique up to isomorphism of M .

Example 4.4.3 Aswehave seen inExample 4.3.6, theFourier transform immediately
yields an outgoing realization of the minimal dilation representation of a contraction
semigroup (Ct )t≥0 with trivial fixed points onH on the space E = L2(R,H ).

Remark 4.4.4 Proposition 4.4.2 shows in particular that, up to a direct summand
consisting of fixed points, the spectrum of any euclidean realization is all of R and
the representation is a multiple of the translation representation of R on L2(R).

1We thank Bent Ørsted for communicating this short representation theoretic proof.
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Proposition 4.4.2 suggests to attempt a classification of reflection positive one-
parameter groups in an outgoing realization on E = L2(R,M ) with E+ =
L2(R+,M ) by classifying the unitary equivalence classes of corresponding unitary
involutions.

The Fourier transform of the subspace E+ = L2(R+,M ) is theM -valued Hardy
space Ẽ+ = H 2(C+,H ) ⊆ O(C+,M ) which can be considered as a closed sub-
space of Ẽ := L2(R,M ) by the natural boundary-value map. The translation action
of R on E leads to the multiplication action

(Ũt f )(z) = e−t z f (z) for f ∈ Ẽ+.

To classify reflection positive one-parameter groups (without fixed points) now corre-
sponds to the problem to determine the involutions θ on Ẽ for which Ẽ+ is θ -positive
and θŨtθ = Ũ−t . Since the commutant of the multiplication action on Ẽ is the von
Neumann algebra L∞(R, B(M )), the involution θ must be of the form

(θ f )(p) = m(p) f (−p), where m : R → U(M )

is a unitary operator in L∞(R, B(M )), which basically is a measurable map with
values in U(M )) satisfying m(−p) = m(p)∗ = m(p)−1 almost everywhere. That
the Hardy space is θ -positive is by (4.11) equivalent to the positive definiteness of
the B(M )-valued kernel

R(z,w) :=
∫

R

m(p)

(z − i p)(w − i p)
dp. (4.14)

In Example 4.3.6, we have seen that this is the case ifm(p) = H−i p1
H+i p1 for a strictly

positive operator H on M . This corresponds to the case of reflection positive one-
parameter groups of Markov type.

Problem 4.4.5 Characterize unitary-valued functions m ∈ L∞(R, B(M )) with
m(−p) = m(p)∗ for which the kernel (4.14) on C+ is positive definite.

Notes

Section 4.1: The material discussed briefly in Sect. 4.1 is contained in [JNO18]. For
recent progress in the local theory of positive definite functions on groups we refer
to [JN16, JPT15].

Section 4.2: A version of Corollary 4.3.2 for reflection positivity on the group Z

can be found in [FILS78, Proposition3.2]. In this context reflection positivity is also
analyzed in [JT17].

For the special case where ϕ(0) = 1, strongly continuous reflection positive func-
tions ϕ : R → B(V ) are called (OS)-positive covariance functions in [Kl77], and
Proposition 4.3.1 specializes to [Kl77, Remark2.7].
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Corollary 4.3.3 can also be found in [SzN10, TheoremI.8.1]. For a detailed
account on unitary dilations of semigroups, we refer to [SzN10]; see in particular
Proposition 4.3.5.



Chapter 5
Reflection Positivity on the Circle

In this chapter we turn to the close relation between reflection positivity on the
circle group T and the Kubo–Martin–Schwinger (KMS) condition for states of C∗-
dynamical systems. Here a crucial point is a pure representation theoretic perspective
on the KMS condition formulated as a property of form-valued positive definite
functions on R: For β > 0, we consider the open strip

Sβ := {z ∈ C : 0 < Im z < β}.

For a real vector space V , we say that a positive definite function ψ : R → Bil(V )

(Definition A.1.5) satisfies the β-KMS condition if ψ extends to a pointwise con-
tinuous function ψ on Sβ which is pointwise holomorphic on Sβ and satisfies
ψ(iβ + t) = ψ(t) for t ∈ R.

The key idea in the classification of positive definite functions satisfying a KMS
condition is to relate them to standard (real) subspaces of a (complex) Hilbert space
which occur naturally in the modular theory of operator algebras [Lo08]. These
are closed real subspaces V ⊆ H for which V ∩ iV = {0} and V + iV is dense.
Any standard subspace determines a pair (Δ, J ) of modular objects, where Δ is a
positive selfadjoint operator and J an anti-linear involution (a conjugation) satisfying
JΔJ = Δ−1. The connection is established by

V = Fix(JΔ1/2) = {ξ ∈ D(Δ1/2) : JΔ1/2ξ = ξ}. (5.1)

A key result is the characterization of the KMS condition in terms of standard sub-
spaces (Theorem 5.1.7) which also contains a classification in terms of an integral
representation.

For a function ψ satisfying the β-KMS condition, analytic continuation to Sβ

leads to an operator-valued function

ϕ̃ : [0, β] → B(VC) by 〈ξ, ϕ̃(t)η〉 = ψ(i t)(ξ, η) for ξ, η ∈ V .

© The Author(s) 2018
K.-H. Neeb and G. Ólafsson, Reflection Positivity, SpringerBriefs in Mathematical
Physics, https://doi.org/10.1007/978-3-319-94755-6_5
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This function satisfies ϕ̃(β) = ϕ̃(0), hence extends uniquely to a weak operator
continuous function ϕ̃ : R → B(VC) satisfying

ϕ̃(t + β) = ϕ̃(t) for t ∈ R. (5.2)

Here we write complex linear operators on VC as A + i B with A, B ∈ B(V ) and put
A + i B = A − i B.

Recall the group Rτ = R � {e, τ } with τ(t) = −t . In Theorem 5.2.3 we show
that there exists a natural positive definite function

f : Rτ → Bil(V ) satisfying f (t, τ ) = ϕ̃(t).

The function f is 2β-periodic, hence factors through a function on the group

T2β,τ := Rτ /Z2β ∼= O2(R)

and it is reflection positive for G = T2β and G+ = [0, β] + 2βZ. This leads to a
natural euclidean realization of the unitary one-parameter group Ut = Δ−i t/β asso-
ciated to ψ . We conclude this section with a description of the GNS representation
of T2β,τ in a natural space of sections of a vector bundle over the circle R/Zβ with
two-dimensional fiber on which the scalar product is given by a resolvent of the
Laplacian as in Sect. 2.5; see also Sect. 7.4.2.

5.1 Positive Definite Functions Satisfying KMS Conditions

In this section we present a characterization (Theorem 5.1.7) of form-valued posi-
tive definite functions on R satisfying a KMS condition. We also explain how the
corresponding representation of R can be realized in a Hilbert space of holomorphic
functions on the stripSβ/2 with continuous boundary values (Proposition 5.1.11).

We call a functionψ : Sβ → Bil(V ) pointwise continuous if, for all v,w ∈ V , the
function ψv,w(z) := ψ(z)(v,w) is continuous. Moreover, we say that ψ is pointwise
holomorphic in Sβ , if, for all v,w ∈ V , the function ψv,w|Sβ

is holomorphic. By
the Schwarz reflection principle, any pointwise continuous pointwise holomorphic
function ψ is uniquely determined by its restriction to R.

Definition 5.1.1 For a real vector space V , we say that a positive definite function
ψ : R → Bil(V ) satisfies the KMS condition for β > 0 if ψ extends to a function
ψ : Sβ → Bil(V )which is pointwise continuous and pointwise holomorphic onSβ ,
and satisfies

ψ(iβ + t) = ψ(t) for t ∈ R. (5.3)
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Lemma 5.1.2 Suppose thatψ : R → Bil(V ) satisfies the KMS condition for β > 0.
Then

ψ(iβ + z) = ψ(z) = ψ(−z)
 for z ∈ Sβ. (5.4)

The function ϕ : [0, β] → Bil(V ), ϕ(t) := ψ(i t) has hermitian values and satisfies

ϕ(β − t) = ϕ(t) for 0 ≤ t ≤ β. (5.5)

It extends to a unique strongly continuous symmetric 2β-periodic function
ϕ : R → Herm(V ) satisfying

ϕ(β + t) = ϕ(t) and ϕ(−t) = ϕ(t) for t ∈ R.

Proof Note that ψ(−t) = ψ(t)

 = ψ(t)∗ holds for every positive definite function

ψ : R → Bil(V ). By analytic continuation (resp., the Schwarz Reflection Principle),
this leads to the second equality in (5.4). Likewise, condition (5.3) leads to the first
equality in (5.4). This in turn implies (5.5), and the remainder is clear. �

To obtain a natural representation of ψ , we now introduce standard subspaces
V ⊆ H and the associated modular objects (Δ, J ).

Definition 5.1.3 A closed real subspace V of a complex Hilbert spaceH is said to
be standard if

V ∩ iV = {0} and V + iV = H .

For every standard real subspace V ⊆ H , we define an unbounded anti-linear
operator

S : D(S) = V + iV → H , S(ξ + iη) := ξ − iη for ξ, η ∈ V .

Then S is closed andhas a polar decomposition S = JΔ1/2,where J is an anti-unitary
involution and Δ a strictly positive selfadjoint operator (cf. [NÓ15b, Lemma 4.2];
see also [BR02, Proposition 2.5.11], [Lo08, Proposition 3.3]). We call (Δ, J ) the
pair of modular objects of V .

Remark 5.1.4 (a) From S2 = id, it follows that the modular objects (Δ, J ) of a
standard subspace satisfies the modular relation

JΔJ = Δ−1. (5.6)

If, conversely, (Δ, J ) is a pair of a strictly positive selfadjoint operator Δ and an
anti-unitary involution J satisfying (5.6), then S := JΔ1/2 is an anti-linear involution
with D(S) = D(Δ1/2) whose fixed point space Fix(S) is a standard subspace. Thus
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standard subspaces are in one-to-one correspondence with pairs (Δ, J ) satisfying
(5.6) (cf. [Lo08, Proposition 3.2] and [NÓ15b, Lemma 4.4]).

(b) As the unitary one-parameter group (Δi t )t∈R commutes with J andΔ, it leaves
the real subspace V = Fix(S) invariant.

The following proposition ([NÓ15b, Proposition 3.1]) provides various charac-
terizations of unitary one-parameter groups with reflection symmetry. As we shall
see below, these are precisely those for which a euclidean realization on T2β,τ can
be obtained by a positive definite function satisfying the β-KMS condition.

Proposition 5.1.5 For a unitary one-parameter group (Ut )t∈R onH with spectral
measure E : B(R) → B(H ), the following are equivalent:

(i) There exists an anti-unitary involution J on H with JUt J = Ut for t ∈ R.
(ii) For H± := E(R×

±)H , the unitary one-parameter groups U+
t := Ut |H+ and

U−
t := U−t |H− are unitarily equivalent.

(iii) The unitary one-parameter group (U,H ) is equivalent to aGNS representation
(Uψ,Hψ), where ψ : R → B(V ) is a symmetric positive definite function.

(iv) There exists a unitary involution θ onH with θUtθ = U−t for t ∈ R.

Remark 5.1.6 It is easy to see that conditions (i)–(iv) even imply the existence of
an extension of U to a representation of the group Rτ × {±1} ∼= (R×)τ ∼= O1,1(R)

by unitary and anti-unitary operators, where τ is represented by a unitary involution
and (0,−1) by a conjugation J . Since any unitary representation is a direct sum of
cyclic ones, it suffices to verify our claim in the cyclic case. Under the assumption of
Proposition 5.1.5, (U,H ) is equivalent to the representation inH = L2(R, ν) for a
finite symmetricmeasure ν given by (Ut f )(p) = eitp f (p). Then (θ f )(p) := f (−p)
is a unitary involution with θUtθ

−1 = U−t and (J f )(p) := f (−p) is an anti-unitary
involution with JUt J−1 = Ut for t ∈ R. Clearly, θ and J commute.

For a systematic discussion of anti-unitary representations we refer to [NÓ17].

Theorem 5.1.7 (KMS Characterization Theorem; [NÓ16, Theorem 2.6]) Let V be
a real vector space, let β > 0, and let ψ : R → Bil(V ) be a pointwise continuous
positive definite function. Then the following are equivalent:

(i) ψ satisfies the β-KMS condition.
(ii) There exists a standard subspace V1 in a Hilbert space H and a linear map

j : V → V1 such that

ψ(t)(ξ, η) = 〈 j (ξ),Δ
−i t/β
V j (η)〉 for t ∈ R, ξ, η ∈ V . (5.7)

(iii) There exists a (uniquely determined) regular Borel measureμ on R with values
in the cone Bil+(V ) ⊆ Bil(V ), consisting of forms with a positive semidefinite
extension to VC, which satisfies dμ(−λ) = e−βλdμ(λ) and

ψ(t) =
∫
R

eitλ dμ(λ) for t ∈ R.
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If these conditions are satisfied, then the function ψ : Sβ → Bil(V ) is pointwise
bounded.

The equivalence of (i) and (ii) in this theorem describes the tight connection
between the KMS condition and the modular objects associated to a standard sub-
space. Part (iii) provides an integral representation that can be viewed as a classifi-
cation result in the sense that it characterizes those measures whose Fourier trans-
forms satisfy the KMS condition from the perspective of Bochner’s Theorem (The-
orem A.2.1).

Example 5.1.8 If V = R and Bil(V ) ∼= C, Bil+(V ) = R≥0, the integral represen-
tation in Theorem 5.1.7(iii) specializes to the integral representation obtained in
Remark 4.1.7 for β-periodic reflection positive functions on R:

ϕ(t) := ψ(i t) = L (μ)(t) for 0 ≤ t ≤ β,

for a finite measure μ on R that can be written as dμ(λ) = dμ+(λ) + eβλdμ+(−λ)

for a measure μ+ on R≥0. This shows already that, in this case, the β-periodic
extension of the function ϕ to R is reflection positive. Below we shall see how this
observation can be extended to the general case.

The corresponding Hilbert space can be identified with H = L2(R, μ), where
(Ut f )(λ) = eitλ f (λ), so that Ut = Δ−i t/β leads to the modular operator

(Δ f )(λ) = e−βλ f (λ).

Asμ is finite, 1 ∈ H andwe haveψ(t) = 〈1,Ut1〉 for t ∈ R. To determine a suitable
standard subspace V1, respectively, a conjugation J commuting withU , we note that
the requirement 1 ∈ V1 and the requirement that J commutes with U lead to

(J f )(λ) = e−λβ/2 f (−λ),

so that the corresponding operator S := JΔ1/2 is given by (S f )(λ) = f (−λ), and
this leads to

V1 = { f ∈ L2(R, μ) : f (−λ) = f (λ) μ-almost everywhere}.

We shall continue the discussion of this example in Remark 5.2.6 below.

Remark 5.1.9 The KMS condition is well known in Quantum Statistical Mechanics
as a condition characterizing quantum versions of Gibbs states, resp., equilibrium
states. The monograph [BR96] and the lecture notes [Fro11] are excellent sources
for more information on KMS states and their applications.

We now explain how the classical context of KMS states of operator algebras
relates to our setup. Consider a C∗-dynamical system (A , R, α), i.e., a homomor-
phism α : R → Aut(A ), whereA is a C∗-algebra. Here we deal with the real linear
space
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V := Ah := {A ∈ A : A∗ = A}

of hermitian elements in A , so that any state ω ∈ A ∗ defines an element of Bil(V )

by (A, B) 
→ ω(AB). An α-invariant state ω on A is called a β-KMS state if and
only if

ψ : R → Bil(Ah), ψ(t)(A, B) := ω(Aαt (B))

satisfies the β-KMS condition (cf. [NÓ15b, Proposition 5.2], [RvD77, Theorem
4.10]). If (πω,Uω,Hω,Ω) is the corresponding covariant GNS representation of
(A , R, α) (cf. [BGN17, BR02]), then

ω(A) = 〈Ω,πω(A)Ω〉 for A ∈ A and Uω
t Ω = Ω for t ∈ R.

Therefore

ψ(t)(A, B) = ω(Aαt (B)) = 〈Ω,πω(Aαt (B))Ω〉
= 〈Ω,πω(A)Uω

t πω(B)Uω
−tΩ〉 = 〈πω(A)Ω,Uω

t πω(B)Ω〉

for A, B ∈ Ah . We conclude that the corresponding standard subspace of Hω is
V1 := πω(Ah)Ω .

Corollary 5.1.10 Ifψ : R → Bil(V ) satisfies the β-KMS condition, then the kernel

K : Sβ/2 × Sβ/2 → Bil(V ), K (z,w)(ξ, η) := ψ(z − w)(ξ, η) (5.8)

is positive definite.

Proof From (5.7) in the KMSCharacterization Theorem 5.1.7, we obtain by unique-
ness of analytic continuation

ψ(z − w)(ξ, η) = 〈Δi z/β j (ξ),Δi w/β j (η)〉, ξ, η ∈ V, z,w ∈ Sβ/2. (5.9)

Now Remark A.1.2 shows that K is positive definite. �

Now that we know from Corollary 5.1.10 that the kernel K in (5.8) is positive
definite, we obtain a corresponding reproducing kernel Hilbert space consisting of
functions on Sβ/2 × V which are linear in the second argument and holomorphic
on Sβ/2 in the first. We may therefore think of these functions as having values
in the algebraic dual space V ∗ := Hom(V, R) of V . We write O(Sβ/2, V ∗) for the
space of functions f : Sβ/2 → V ∗ for which all function f η(z) := f (z)(η), η ∈ V ,
are continuous on Sβ/2 and holomorphic on the open strip Sβ/2. For a proof of the
following proposition, see [NÓ16, Proposition 2.9].
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Proposition 5.1.11 (Holomorphic realization ofHψ)Assume thatψ : R → Bil(V )

satisfies theβ-KMS condition, letψ : Sβ → Bil(V ) denote the corresponding exten-
sion and Hψ ⊆ O(Sβ/2, V ∗) denote the Hilbert space with reproducing kernel

K (z,w)(ξ, η) := ψ(z − w)(ξ, η) for ξ, η ∈ V,

i.e.,

f (z)(ξ) = 〈Kz,ξ , f 〉 for f ∈ Hψ, where Kz,ξ (w)(η) = ψ(w − z)(η, ξ).

Then

(Uψ
t f )(z) := f (z + t), t ∈ R, z ∈ Sβ/2

defines a unitary one-parameter group on Hψ ,

j : V → Hψ, j (η)(z) := ψ(z)(·, η) = K0,η(z)

is a linear map with Uψ -cyclic range, and

ψ(t)(ξ, η) = 〈 j (ξ),Uψ
t j (η)〉 for t ∈ R, ξ, η ∈ V .

The anti-unitary involution J1 on Hψ corresponding to the standard subspace

V1 ⊆ Hψ from Theorem 5.1.7 is given by (J1 f )(z) := f
(
z + iβ

2

)
.

5.2 Reflection Positive Functions and KMS Conditions

In this section we build the bridge from positive definite functions ψ : R → Bil(V )

satisfying the β-KMS condition to reflection positive functions on the groupT2β,τ
∼=

O2(R).
We have already seen in Lemma 5.1.2 that analytic continuation leads to a sym-

metric 2β-periodic function ϕ : R → Bil(V ) satisfying ϕ(t + β) = ϕ(t) for t ∈ R

and ϕ(t) = ψ(i t) for 0 ≤ t ≤ β. We shall construct a positive definite extension
f : Rτ → Bil(V ) with f (t, τ ) = ϕ(t) for t ∈ R; actually the values of f will be
represented by bounded operators on VC, so that we also consider it as a B(VC)-
valued function. By construction, f is then reflection positive with respect to the
interval [0, β/2] =: G+ ⊆ G := R in the sense of Definition 3.4.1.

Building on Theorem 5.1.7, our first goal is to express, for a standard subspace
V ⊆ H , the Bil(V )-valued function

ϕV : [0, β] → Bil(V ), ϕV (t)(ξ, η) := ψ(i t)(ξ, η) = 〈Δt/2βξ, Δt/2βη〉 (5.10)
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from (5.9) in terms of a B(VC)-valued function. To this end, we shall need the
description of a standard subspace V1 in terms of a skew-symmetric strict contraction
C on V1 (‖Cv‖ < ‖v‖ for 0 �= v), and this leads to a quite explicit description of ϕ

that is used to obtain the main theorem asserting that, for every positive definite
function ψ : R → Bil(V ) satisfying the β-KMS condition, there exists a reflection
positive function f : Rτ → B(VC) satisfying

ψ(i t)(ξ, η) = 〈ξ, f (i t, τ )η〉 for ξ, η ∈ V, 0 ≤ t ≤ β.

Then the correspondingGNSrepresentation (U f ,H f )of the groupT2β,τ
∼= O2(R) is

a euclidean realization of the unitary one-parameter group (Δ−i t/β )t∈R corresponding
to ψ via (5.7) because E = H f leads to Ê ∼= Hϕ|(0,β)

∼= Hψ (cf. Theorem 3.4.5).
The following lemma describes the complex-valued scalar product on a standard

real subspace in terms of the corresponding modular objects (Δ, J ). For v,w ∈ V ,
we write 〈v,w〉V := Re〈v,w〉H .

Lemma 5.2.1 Let V ⊆ H be a standard subspace. Then there exists a skew-
symmetric strict contraction C on V with

Im〈ξ, η〉H = 〈ξ,Cη〉V for ξ, η ∈ V . (5.11)

Proof Since ω(v,w) := Im〈v,w〉H defines a continuous skew-symmetric bilinear
form on V , there exists a uniquely determined skew-symmetric operator C ∈ B(V )

with ω(v,w) = 〈v,Cw〉V for v,w ∈ V . As | Im〈v,w〉H | ≤ ‖v‖ · ‖w‖ for v,w ∈ V ,
we have ‖C‖ ≤ 1, i.e., C is a contraction.

To see that C is a strict contraction, assume ‖Cv‖ = ‖v‖, i.e., v ∈ ker(C2 + 1).
For w := Cv we then have C(v + iw) = w − iv = (−i)(v + iw). This leads to the
relation 〈v − iw, v − iw〉H = 0 and thus v − iw = 0 implies v ∈ V ∩ iV = {0}. �

With the preceding lemma, we can express the function ϕV from (5.10) in terms
of C by bounded operators on VC.

Lemma 5.2.2 ([NÓ16, Lemma 4.2]) Let V ⊆ H be a standard subspace with
modular objects (Δ, J ) and C be the skew-symmetric strict contraction from
Lemma 5.2.1. Then the function ϕV (t)(ξ, η) = 〈Δt/2βξ,Δt/2βη〉H from (5.10) can
be written as

ϕV (t)(ξ, η) = 〈ξ, ϕ̃(t)η〉VC
for t ∈ [0, β], ξ, η ∈ VC (5.12)

with

ϕ̃(t) = (1 + iC)1−t/β(1 − iC)t/β ∈ B(VC).

Note that ϕ̃(0) = 1 + iC is not real if C �= 0 and that both operators 1 ± iC are
bounded positive hermitian with a possibly unbounded inverse. Therefore
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ψ̃(z) = (1 + iC)1+i z/β(1 − iC)−i z/β ∈ B(VC)

is well-defined for 0 ≤ Im z ≤ β, strongly continuous and holomorphic for
0 < Im z < β. One also verifies immediately the β-KMS relation

ψ̃(z) = ψ̃(iβ + z) for 0 ≤ Re z ≤ β.

Theorem 5.2.3 (Reflection positive extension) Let V ⊆ H be a standard subspace
and let C = I |C | ∈ B(V ) be the skew-symmetric strict contraction satisfying (5.11).
We assume that kerC = {0}, so that I defines a complex structure on V . We define
a weakly continuous function ϕ̃ : R → B(VC) by

ϕ̃(t) = (1 + iC)1−t/β(1 − iC)t/β for 0 ≤ t ≤ β and ϕ̃(t + β) = ϕ̃(t)

for t ∈ R. Write ϕ̃(t) = u+(t) + i I u−(t) with u±(t) ∈ B(V ) and u±(t + β) =
±u±(t). Then

f : Rτ → B(VC), f (t, τ ε) := u+(t) + (i I )εu−(t), t ∈ R, ε ∈ {0, 1},

is a weak-operator continuous positive definite function with f (t, τ ) = ϕ̃(t) for
t ∈ R. It is reflection positive with respect to the subset [0, β/2] ⊆ R in the sense
that the kernel f

(
(t, τ )(−s, e)

) = f (t + s, τ ), 0 ≤ s, t ≤ β/2, is positive definite.

Combining the preceding theorem with Lemma 5.2.2, we obtain in particular:

Corollary 5.2.4 Let V be a real vector space and let ψ : R → Bil(V ) be a con-
tinuous positive definite function satisfying the β-KMS condition. Then there exists
a pointwise continuous function f : Rτ → Bil(V ) which is reflection positive with
respect to the subset [0, β/2] ⊆ R and satisfies

f (t, τ ) = ψ(i t) for 0 ≤ t ≤ β and f (t + β, τ) = f (t, τ ) for t ∈ R.

In Theorem 5.2.3 we obtained for certain functions ϕ on the coset R � {τ } ⊆
Rτ reflection positive extensions f to all of Rτ . The following lemma shows that,
conversely, every reflection positive function on T2β,τ leads by analytic extension to
a positive definite function on R satisfying the β-KMS condition.

Lemma 5.2.5 Let f : Rτ → Bil(V ) be a pointwise continuous function which is
reflection positive with respect to [0, β/2] ⊆ R such that the function
ϕ : R → Bil(V ), ϕ(t) := f (t, τ ) satisfies

ϕ(t) = ϕ(−t) = ϕ(β + t) for t ∈ R. (5.13)

Then there exists a unique β-KMS positive definite function ψ : R → Bil(V ) with

ϕ(t) = ψ(i t) for 0 ≤ t ≤ β.



60 5 Reflection Positivity on the Circle

Proof Reflection positivity implies that the kernel ϕ
(
t+s
2

)
for 0 ≤ t, s ≤ β is positive

definite. By TheoremA.2.3 there exists a Bil+(V )-valued Borelmeasureμ onR such
that

ϕ(t) =
∫
R

e−λt dμ(λ) for 0 < t < β. (5.14)

The continuity of ϕ on [0, β] actually implies that the integral representation also
holds on the closed interval [0, β] by theMonotone Convergence Theorem. In partic-
ular, the measure μ is finite. Therefore its Fourier transform ψ(t) := ∫

R
eitλ dμ(λ)

is a pointwise continuous Bil(V )-valued positive definite function on R. Further,
(5.13) implies

eβλ dμ(−λ) = dμ(λ) (5.15)

and Theorem 5.2.3 shows that ϕ(t) = ψ(i t) holds for the β-KMS function
ψ : R → Bil(V ). �

Remark 5.2.6 From (5.14) it follows that the function ϕ is real-valued if and only if
the measure μ takes values in the subspace of real-valued forms in Bil+(V ).

For the case where V ⊆ H is a standard subspace and ϕ = ϕV as in (5.10), we
have ϕ̃V (0) = 1 + iC , so that C = 0 if ϕV is real-valued, and this in turn implies
that ϕV is constant.

Therefore the only way to obtain non-constant real-valued functions is to ensure
that the map j : V → V1 in Theorem 5.1.7 takes values in a subspace j (V ) which
is isotropic for the skew-symmetric form ω(ξ, η) := 〈ξ,Cη〉V = Im〈ξ, η〉H . This
condition corresponds to ϕ(0) being real, but is still weaker than ϕ(t) being real for
every t ∈ [0, β].

If ϕ is real-valued, then f (t, τ ε) := ϕ̃(t) for t ∈ R, ε ∈ {0, 1} is τ -biinvariant,
β-periodic and reflection positive on Rτ (Lemma 3.4.3(ii)).

It is instructive to take another look at Example 5.1.8, whereH = L2(R, μ) for a
finitemeasure satisfyingdμ(λ) = dμ+(λ) + eβλdμ+(−λ) for ameasureμ+ onR≥0.
Here the standard subspace V1 consists of all functions satisfying f (−λ) = f (λ)

almost everywhere on R. For simplicity we assume that μ({0}) = 0 (which excludes
constant summands). For ξ ∈ V1, the restriction ξ+ := ξ |R+ determines ξ completely,
so that we may consider V1 as a space of functions on R+. The scalar product on this
space is given by

〈ξ, η〉H =
∫
R

ξ(λ)η(λ) dμ(λ) =
∫ ∞

0
(ξ+(λ)η+(λ) + ξ+(λ)η+(λ)e−βλ

)
dμ+(λ).

For the real part we obtain

〈ξ, η〉V1 = Re〈ξ, η〉H =
∫ ∞

0
Re

(
ξ+(λ)η+(λ)

)
(1 + e−βλ) dμ+(λ),
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and

ω(ξ, η) = Im〈ξ, η〉H =
∫ ∞

0
Im

(
ξ+(λ)η+(λ)

)
(1 − e−βλ) dμ+(λ)

for the imaginary part. We conclude that

V1
∼= L2(R+, (1 + e−βλ) dμ+(λ); C)

and that the skew-symmetric operator C representing ω is given by

(C f )(λ) = C(λ) f (λ), where C(λ) = −i
1 − e−βλ

1 + e−βλ

(cf. [NÓ16, Lemma B.9]). Hence the corresponding complex structure is given by
(I f )(λ) = −i f (λ) and |C | = iC corresponds to multiplication with the positive
function iC(λ) = 1−e−βλ

1+e−βλ on R+.
The subspace

V := L2(R+, (1 + e−βλ) dμ+(λ); R)

of real-valued functions is ω-isotropic. As it is invariant under the operators

ϕ̃(t) = (1 + iC)1−t/β(1 − iC)t/β = (1 + |C |)1−t/β(1 − |C |)t/β,

the corresponding function

ϕ : [0, β] → Bil(V ), ϕ(t)(ξ, η) = 〈ξ, ϕ̃(t)η〉, ξ, η ∈ V

is real-valued.

From the scalar case (V = R) in Remark 4.1.7 one easily obtains the following
characterization of β-periodic operator-valued reflection positive functions on R.
It is concerned with the case where ϕ is real-valued, so that f is τ -biinvariant
(Lemma 3.4.3), corresponding to function on the circle group Tβ (see also [KL81,
Theorem 3.3]).

Theorem 5.2.7 A β-periodic pointwise continuous function ϕ : R → Bil(V ) is
reflection positive with respect to [0, β/2] if and only if there exists aBil+(V )-valued
Borel measure μ+ on [0,∞) such that

ϕ(t) =
∫ ∞

0
e−tλ + e−(β−t)λ dμ+(λ) for 0 ≤ t ≤ β. (5.16)

Then the measure μ+ is uniquely determined by ϕ.
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Definition 5.2.8 (Euclidean realization in the periodic case) For any reflection pos-
itive function f as in Lemma 5.2.5, the general discussion in Theorem 3.4.5 shows
that, for the corresponding reflection positive representation on E = H f , we obtain
Ê ∼= Hϕ|(0,β)

.
As ψ is pointwise holomorphic on the strip Sβ , it further follows by restriction

that Hϕ|(0,β)
∼= Hψ (cf. Proposition 5.1.11). Therefore the unitary one-parameter

group (Uc
t f )(z) := f (z + t) on Ê whose infinitesimal generator is given by d

dz ,
is obtained from the unitary representation U f on E by the OS transform as in
Example 3.3.5, even if it is not positive.We thus call (U f ,H f ) a euclidean realization
of Uc (cf. Definition 3.3.4).

At this point it is a natural question which unitary one-parameter groups (Uc,H )

have a euclidean realization. This can now be stated in terms of the conditions
discussed in Proposition 5.1.5 ([NÓ15b, Theorem 3.4]):

Theorem 5.2.9 (Realization Theorem) A unitary one-parameter group (Uc
t )t∈R on

a Hilbert space H has a euclidean realization in terms of a reflection positive
representation of (T2β, T2β,+, θ) if and only if there exists an anti-unitary involution
J on H commuting with Uc.

In the setting of Theorem 5.2.9, a particular euclidean realization can be obtained
as follows. LetUc

t = eit H be a unitary one-parameter group onH and J be a unitary
involution onH with J H J = −H . Then Δ := e−βH satisfies JΔJ = Δ−1, so that
V := Fix(JΔ1/2) is a standard subspace and Theorem 5.1.7 leads to a positive defi-
nite function ψ : R → Bil(V ) satisfying the β-KMS condition. Now Theorem 5.2.3
yields a reflection positive function on Rτ , resp., T2β,τ , which provides a euclidean
realization of Uc.

5.3 Realization by Resolvents of the Laplacian

Before we describe a realization of the GNS representation (U f ,H f ) in spaces of
sections of a vector bundle, let us recall the general background for this.

Remark 5.3.1 For a B(V )-valued positive definite function f : G → B(V ), the
reproducing kernel Hilbert space H f = HK with kernel K (g, h) = ϕ(gh−1) =
KgK ∗

h is generated by the functions

Kh,w := K ∗
hw with Kh,w(g) = KgK

∗
hw = K (g, h)w = ϕ(gh−1)w.

The group G acts on this space by right translations

(Ugs)(h) := s(hg).

If P ⊆ G is a subgroup and (ρ, V ) is a unitary representation of P such that
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f (hg) = ρ(h) f (g) for all g ∈ G, h ∈ P,

then

H f ⊆ F (G, V )ρ := {s : G → V : (∀g ∈ G)(∀h ∈ P) s(hg) = ρ(h)s(g)}.

Therefore H f can be identified with a space of sections of the associated vector
bundle

V := (V ×P G) = (V × G)/P,

where P acts on the trivial vector bundle V × G over G by h.(v, g) = (ρ(h)v, hg).

To derive a suitable characterization of the functions f arising in Theorem 5.2.3,
we identify 2β-periodic functions s on R via s = s+ + s− with pairs of func-
tions (s+, s−) satisfying s±(β + t) = ±s±(t). Accordingly, any 2β-periodic function
s : R → VC defines a function

s̃ : R → V 2
C
, s̃ = (s+, s−) with s̃(β + t) =

(
1 0
0 −1

)
s̃(t).

In this sense s̃ is a section of the vector bundle over Tβ with fiber V 2
C
defined by

the representation of βZ, specified by ρ(β) =
(
1 0
0 −1

)
. Splitting the B(VC)-valued

positive definite function

f : Rτ → B(VC), f (t, τ ε) = u+(t) + u−(t)(i I )ε for t ∈ R, ε ∈ {0, 1}

as in Theorem5.2.3 into even and odd part with respect to theβ-translation, we obtain
the following lemmawhich shows in particular that wemay identify theHilbert space
H f

∼= H f � as a space of section of a Hilbert bundle V 2
C

×ρ Rτ over the circle Tβ

with fiber V 2.

Lemma 5.3.2 For the subgroup P := (Zβ)τ ∼= Zβ � {e, τ } of G := Rτ , we con-
sider the unitary representation ρ : P → U(V 2

C
) defined by

ρ(β, e) :=
(
1 0
0 −1

)
and ρ(0, τ ) :=

(
1 0
0 i I

)
,

where I is the complex structure from the polar decomposition C = I |C | on the real
Hilbert space V . Then

f � : Rτ → B(V 2
C
) ∼= M2(B(VC)), f �(t, τ ε) :=

(
u+(t) 0
0 u−(t)(i I )ε

)

is a positive definite function satisfying
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f �(hg) = ρ(h) f �(g) for h ∈ P, g ∈ G. (5.17)

The corresponding GNS representation (U f �

,H f � ) is equivalent to the GNS repre-
sentation (U f ,H f ).

Proof The first assertion follows from

f �((0, τ )(t, τ ε)) =
(
u+(−t) 0

0 u−(−t)(i I )ε+1

)
=

(
u+(t) 0
0 u−(t)(i I )ε+1

)

and

f �(β + t, τ ε) =
(
u+(t) 0
0 −u−(t)(i I )ε

)
.

As the GNS representation (U f ,H f ) decomposes under the unitary involution U f
β

into the ±1-eigenspaces, it is equivalent to the GNS representation (U f �

,H f � ) cor-
responding to f �. �

Remark 5.3.3 (a) In view of (5.15), there exists a Bil+(V )-valued measure ν on
[0,∞) for which we can write dμ(λ) = dν(λ) + eβλdν(−λ). For ν = ν1 + iν2,
this leads for 0 ≤ t ≤ β to

ϕ(t) =
∫ ∞

0
e−tλ + e−(β−t)λ dν1(λ) + i

∫ ∞

0
e−tλ − e−(β−t)λ dν2(λ). (5.18)

In particular, the most basic examples correspond to Dirac measures of the form
ν = δλ · (γ + iω), where δλ is the Dirac measure in λ > 0:

ϕ(t) = (e−tλ + e−(β−t)λ)γ + i(e−tλ − e−(β−t)λ)ω = e−tλh + e−(β−t)λh,

where h := γ + iω ∈ Bil+(V ).

Writing ω(ξ, η) = γ (ξ,Cη) (Lemma 5.2.1) and replacing V by the real Hilbert
space defined by the positive semidefinite form γ on V , we obtain the B(VC)-valued
function

ϕ̃(t) = (e−tλ + e−(β−t)λ)1 + (e−tλ − e−(β−t)λ)iC = e−tλ(1 + iC) + e−(β−t)λ(1 − iC)

for 0 ≤ t ≤ β. This leads to

f (t, τ ε) = (1 + e−βλ)(u+
λ (t)1 + u−

λ (t)|C |(i I )ε) for t ∈ R, ε ∈ {0, 1},

where

u±
λ (t) = e−tλ ± e−(β−t)λ

1 + e−βλ
for 0 ≤ t ≤ β, u±

λ (t + β) = ±u±
λ (t).
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(b) This can also be formulated in terms of forms. With γ (ξ, η) = 〈ξ, η〉V and

h(ξ, η) = γ (ξ, η) + iω(ξ, η) = 〈ξ, (1 + iC)η〉VC
= 〈ξ, (1 + i I |C |)η〉VC

,

we get f (t, τ ε)(ξ, η) = (1 + e−βλ)〈ξ,
(
u+

λ (t)1 + u−
λ (t)|C |(i I )ε)η〉.

We have seen above how to obtain a realization of the Hilbert spaceH f as a space
H f � of sections of a Hilbert bundle V with fiber V 2

C
over the circle Tβ = R/βZ. In

this section we provide an analytic description of the scalar product on this space if
|C | = μ1, 0 < μ < 1, so that 1+|C |

1−|C | = eλ1 for λ := log
( 1+μ

1−μ

)
> 0. We shall see that

it has a natural description in terms of the resolvent (λ2 − Δ)−1 of the Laplacian Δ

of Tβ acting on section of the bundle V.
As in Lemma 5.3.2, we write

f �(t, τ ε) =
(
u+

λ (t)1 0
0 u−

λ (t)(i I )ε

)
∈ B(V 2

C
) ∼= M2(B(VC)),

For χn(t) = eπ int/β we then have u+
λ = ∑

n∈Z c
λ
2nχ2n and u−

λ = ∑
n∈Z c

λ
2n+1χ2n+1,

where

cλn = cλ−n = 1 − (−1)ne−βλ

1 + e−βλ
· 2βλ

(βλ)2 + (nπ)2
= 1 − (−1)ne−βλ

1 + e−βλ
· 2λ

β
· 1

λ2 + (nπ/β)2

for n ∈ Z (the rightmost factors are called bosonicMatsubara coefficients if n is even
and fermionic if n is odd [DG13, Sect. 18]). With

cλ
+ := 1 − e−βλ

1 + e−βλ

2λ

β
= tanh

(βλ

2

)2λ
β

and cλ
− := 2λ

β
, (5.19)

we thus obtain

cλ
2n = cλ+

λ2 + (2nπ/β)2
, cλ

2n+1 = cλ−
λ2 + ((2n + 1)π/β)2

. (5.20)

The following proposition shows that the positive operator (λ21 − ΔR)−1 on the
Hilbert space of L2-section of V defines a unitary representation of Rτ which is
unitarily equivalent to the representation on H f (cf. Lemma 5.3.2).

Proposition 5.3.4 For λ > 0, let Hλ be the Hilbert space obtained by completing
the space

�ρ := {s ∈ C∞(Rτ , V
2
C
) : (∀g ∈ Rτ , h ∈ (Zβ)τ ) s(hg) = ρ(h)s(g)}

with respect to
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〈s1, s2〉 := 1

2β

∫ 2β

0
〈s1(t, e), ((λ21 − ΔR)−1s2)(t, e)〉 dt, where ΔR = d2

dt2
.

OnHλ we have a natural unitary representation Uλ of Rτ by right translation which
is unitarily equivalent to theGNS representation (U f �

,H f � ). Here the corresponding
inclusion map is given by

j : V → Hλ, j

(
v1
v2

)
=

√
cλ+

∑
n∈Z

χ2n

(
v1
0

)
+

√
cλ−

∑
n∈Z

χ2n+1

(
0
v2

)
. (5.21)

This result provides a natural euclidean realization of our representation on the
Riemannian manifold Tβ

∼= S
1 in the spirit of Theorem 2.5.1. For more recent work

in this direction see [NÓ17, FNO18].

Remark 5.3.5 In the context of anti-unitary representations, it is interesting to
observe that the reflection positive representation of Rτ , resp., T2β,τ described in
Proposition 5.3.4 carries a natural anti-unitary involution given by

(Js)(t, τ ε) := s
(

β

2 − t, τ ε
)

for t ∈ R, ε ∈ {0, 1}.

In fact, one readily verifies that J defines an anti-unitary involution onHλ.We further
have JUτ J = Uτ and JUt J = U−t for t ∈ R.

Notes

The material in this chapter mainly draws from [NÓ16] which continued the investi-
gations from [NÓ15b] only dealing with real-valued functions ϕ. This was motivated
by the work of Klein and Landau in [KL81]. A long term goal is to combine our
representation theoretic approach to reflection positivity with KMS states of operator
algebras and Borchers triples corresponding to modular inclusions [NÓ17, BLS11,
Bo92, Lo08, Sch99].

We have seen that the unitary one-parameter groups (Uc, Ê ) arising from reflec-
tion positivity on T2β always commute with an anti-unitary involution. It would be
nice to incorporate anti-unitary operators such as conjugations and anti-conjugations
more systematically into the whole setup of the OS transform on the level of repre-
sentations. This requires a better understanding of the role of anti-unitary operators
on the euclidean side. Some first steps to a more systematic understanding of anti-
unitary representations have been undertaken in [NÓ17, Ne18], but this has not yet
been connected to reflection positivity.

For KMS states of the CCR (canonical commutation relations), resp. the corre-
sponding Weyl algebra, we refer to the two papers of B. S. Kay [Ka85, Ka85b],
dealing with uniqueness of KMS states for a given one-parameter group of symme-
tries and the embedding of KMS representations into irreducible ones by a doubling
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procedure (see also [BR96] for a more direct but less conceptual approach to the
uniqueness of KMS states).

Interesting references for the relation of the KMS condition with (quantum) sta-
tistical mechanics are [Fro11] and [BR96].



Chapter 6
Integration of Lie Algebra
Representations

A central problem in the context of reflection positive representations of a symmetric
Lie group (G, τ ) on a reflection positive Hilbert space (E ,E+, θ) is to construct on
the associated Hilbert space ̂E a unitary representations of the 1-connected Lie group
Gc with Lie algebra gc = h + iq. As we have seen in Remark 3.3.9, the main point
is to “integrate” a unitary representation of the Lie algebra gc on a pre-Hilbert space.
In general this problem need not have a solution, but we shall see below that in the
reflection positive contexts, where the Hilbert spaces are mostly constructed from
G-invariant positive definite kernels or positive definite G-invariant distributions,
there are natural assumptions that apply in all cases that we consider.

For any reflection positive representation of (G, τ ), we immediately obtain a
unitary representation of the subgroup H = Gτ

0 on ̂E , so that we have to find a
unitary representation on the one-parameter group expGc(Riy) for y ∈ q. Since we
have already a symmetric operator ̂dU (x) on a dense subspace of ̂E , the essential
point is to show that it is essentially selfadjoint.

In Sect. 6.1 we introduce Fröhlich’s Theorem which provides a criterion for the
essential selfadjointness of a symmetric operator. In Sect. 6.2 we connect this tool
with the geometric context, where we consider a pair (β, σ ) of a homomorphism
β : g → V (M) to the Lie algebra of smooth vector fields on a manifold M which is
compatible with a smooth H -action σ . For any smooth kernel K on M satisfying a
suitable invariance condition with respect to (β, σ ), a unitary representation of Gc

on HK exists (Theorem 6.2.3). In Sect. 6.3 we show that this result remains valid
if we replace the kernel K by a positive definite distribution K ∈ C−∞(M × M)

compatible with (β, σ ) (Theorem 6.3.6). We finally explain in Sect. 6.4 how these
results apply to reflection positive representations.

Throughout this section M denotes a smooth manifold modeled on a Banach
space, if not stated otherwise, and V (M) denotes the Lie algebra of smooth vector
fields on M .

© The Author(s) 2018
K.-H. Neeb and G. Ólafsson, Reflection Positivity, SpringerBriefs in Mathematical
Physics, https://doi.org/10.1007/978-3-319-94755-6_6

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94755-6_6&domain=pdf


70 6 Integration of Lie Algebra Representations

6.1 A Geometric Version of Fröhlich’s Selfadjointness
Theorem

We start with Fröhlich’s Theorem on unbounded symmetric semigroups as it is stated
in [Fro80, Cor. 1.2] (see also [MN12]). Actually Fröhlich assumes that the Hilbert
space H is separable, but this is not necessary. Replacing the assumption of weak
measurability by weak continuity, all arguments in [Fro80] work for non-separable
spaces as well.

Theorem 6.1.1 (Fröhlich’s Selfadjointness Theorem) Let H be a symmetric opera-
tor defined on the dense subspaceD of the Hilbert spaceH . Suppose that, for every
ξ ∈ D , there exists an εξ > 0 and a differentiable curve ϕ : (0, εξ ) → D satisfying

ϕ′(t) = Hϕ(t) and lim
t→0

ϕ(t) = ξ.

Then the operator H is essentially selfadjoint andϕ(t) = etHξ in the sense of spectral
calculus of selfadjoint operators.

For later applications, we explain how Fröhlich’s Theorem applies to linear vector
fields on locally convex spaces. Let V be a locally convex space and the kernel
K : V × V → C be a continuous positive semidefinite hermitian form. Then the
corresponding reproducing kernel spaceHK can be identified with a linear subspace
of the space V 	 of anti-linear continuous functionals on V (cf. Sect. A.1). It is
generated by the functionals Kw(v) := K (v,w),w ∈ V, satisfying

〈Kv, Kw〉 = Kw(v) = K (v,w).

So it can also be interpreted as the completion of V with respect to the hermitian
form K .

The continuity of the kernel K implies that the linear map V → HK , v �→ Kv is
continuous. For any continuous linear operator L V → V , the formula

LK : DL → HK , LKλ := −λ ◦ L , DL := {λ ∈ HK ⊆ V 	 : λ ◦ L ∈ HK }

defines an unbounded closed operator onHK . If there exists an operator L∗ : V → V
with

K (v, Lw) = K (L∗v,w) for v,w ∈ V,

then we have
LK Kv = K−L∗v for v ∈ V . (6.1)

We can now obtain from Theorem 6.1.1 ([MNO15, Cor. 4.9]):
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Corollary 6.1.2 Let L : V → V be a continuous linear operator on the locally
convex space V which is K -symmetric in the sense that K (Lv,w) = K (v, Lw) for
v,w ∈ V . Suppose that, for every v ∈ V , there exists a curve γv : [0, εv] → V start-
ing in v and satisfying the differential equation

γv
′(t) = Lγv(t).

Then the restriction LK |H 0
K
to the dense subspace H 0

K = {Kv : v ∈ V } ⊆ HK is

essentially selfadjoint with closure LK . For 0 ≤ t ≤ εv, we have e−t LK
Kv = Kγv(t).

Now we turn to the nonlinear setting of smooth positive definite kernels on man-
ifolds. Here symmetric operators are obtained from smooth vector fields.

Definition 6.1.3 Let K ∈ C∞(M × M, C) be a smooth positive definite kernel and
HK ⊆ C∞(M) be the corresponding reproducing kernel Hilbert space.

(a) For a smooth vector field X ∈ V (M), we write

LX : C∞(M) → C∞(M), (LX f )(m) := d f (m)X (m)

for the Lie derivative on smooth functions. We thus obtain on the reproducing kernel
space HK the unbounded operator

L K
X := LX |D X : DX → HK , where DX := {ϕ ∈ HK : LXϕ ∈ HK }.

(6.2)
(b) A vector field X ∈ V (M) is said to be K-symmetric (K -skew-symmetric) if

L 1
X K = εL 2

X K for ε = 1, resp., ε = −1.

Here the superscripts indicatewhether the Lie derivative acts on the first or the second
argument of K .

The following theorem can be obtained quite directly from Fröhlich’s Theorem if
theHilbert space under consideration has a smooth positive definite kernel ([MNO15,
Theorem 4.6]):

Theorem 6.1.4 (Geometric Fröhlich Theorem) Let M be a smooth manifold and
K be a smooth positive definite kernel. If X is a K -symmetric vector field on M, then
LX |H 0

K
is an essentially selfadjoint operator on HK whose closure coincides with

the operator L K
X . For m ∈ M and an integral curve γm : [0, εm] → M of X with

γm(0) = m, we have etL
K
X Km = Kγm (t) for 0 ≤ t ≤ εm.

6.2 Integrability for Reproducing Kernel Spaces

We now turn to actions of a symmetric Lie algebra (g, τ ) on a smooth manifold M
that are compatible with a smooth positive definite kernel K . Our first main result is
Theorem6.2.3whichprovides a sufficient condition for theLie algebra representation
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of the dual Lie algebra gc coming from an action of g on HK by Lie derivatives
to integrate to a unitary representation of the corresponding simply connected Lie
group Gc. Applying this result to open subsemigroups of Lie groups, we further
obtain an interesting generalization of the Lüscher–Mack Theorem [LM75, HN93]
for semigroups which no longer requires the existence of a polar decomposition.

Definition 6.2.1 Let (g, τ ) be a symmetric Lie algebra, and let β : g → V (M) be
a homomorphism. A smooth positive definite kernel K ∈ C∞(M × M, C) is said to
be β-compatible if the vector fields in β(h) are K -skew-symmetric and the vector
fields in β(q) are K -symmetric.

Definition 6.2.2 Let H be a connected Lie group with Lie algebra h. A smooth right
action of the pair (g,H) on M is a pair (β, σ ), where

(a) σ : M × H → M, (m, h) �→ σh(m) = m.h is a smooth right action,
(b) β : g → V (M) is a homomorphism of Lie algebras, and
(c) dσ(x) = β(x) for x ∈ h.

In the following K denotes a smooth β-compatible positive definite kernel on
M × M . For x ∈ g, we abbreviate Lx := L K

β(x) for the maximal restriction of the
Lie derivatives toDx := Dβ(x) from (6.2) and we extend this definition in a complex
linear fashion to gC. We also consider the subspace

D := {ϕ ∈ HK : (∀n ∈ N)(∀x1, . . . , xn ∈ g)Lβ(x1) · · ·Lβ(xn)ϕ ∈ HK }

on which
α : gC → End(D), x �→ Lx |D

defines a Lie algebra representation such that gc acts by skew-symmetric operators.
The following theorem ([MNO15, Theorem 5.12]) asserts the integrability of α|gc .
Besides the usual technicalities, a key point in its proof is to apply the Geometric
Fröhlich Theorem 6.1.4 to the vector fields β(y), y ∈ q.

Theorem 6.2.3 Let K be a smooth positive definite kernel on the manifold M com-
patible with the smooth right action (β, σ ) of (g, H), where g = h ⊕ q is a symmetric
Lie algebra and H is a connected Lie group with Lie algebra h. Let Gc be a sim-
ply connected Lie group with Lie algebra gc = h + iq. Then there exists a unique
continuous unitary representation (Uc,HK ) such that

(i) dUc(x) = L K
x for x ∈ h.

(ii) dUc(iy) = iL K
y for y ∈ q.

Remark 6.2.4 Note that (i) implies that the restriction ofUc to the integral subgroup
〈exp h〉 ⊆ Gc induces the same representation on the universal covering group ˜H
of H as the unitary representation (UH

h f )(m) := f (m.h) of H onHK because their
derived representations coincide (cf. Chap. 7).
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Example 6.2.5 Let (G, τ ) be a symmetric Lie group with Lie algebra g = h + q and
let H = Gτ

0 be the integral subgroup corresponding to the Lie subalgebra h = gτ .
Further, letU = UH ⊆ G be an open subset. A smooth function ϕ : Uτ(U )−1 → C

is called τ -positive definite if the kernel

K (x, y) := ϕ(xτ(y)−1)

is positive definite.
Then σh(g) := gh and β(x)(g) := g.x define a smooth right action of (g, H)

on the manifold U and the kernel K is β-compatible. We therefore obtain for a
1-connected Lie group Gc a corresponding unitary representation Uc on HK ⊆
C∞(U, C) with

(Uc(h)ψ)(g) = ψ(gh) for g ∈ U, h ∈ H

and

dUc(iy)ψ = iLyψ for ψ ∈ H ∞
K , y ∈ q.

So far we worked with scalar-valued kernels, but the corresponding results easily
extend to the operator-valued setting as follows:

Example 6.2.6 (Passage to operator-valued kernels) Let (G, τ ) be a symmetric Lie
group and g	 = τ(g)−1. We consider a smooth right action of G on the manifold X ,
a complex Hilbert space V , and a hermitian kernel Q : X × X → B(V ). Further,
suppose that J : G × X → GL(V ), (g, x) �→ Jg(x) satisfies the cocycle condition

Jg1g2(x) = Jg1(x)Jg2(x .g1) for g1, g2 ∈ G, x ∈ X,

so that (g. f )(x) := Jg(x) f (x .g) defines a representation of G on V X . We also
assume that the kernel satisfies the corresponding invariance relation

Jg(x)Q(x .g, y) = Q(x, y.g	)Jg	 (y)∗ for x, y ∈ X, g ∈ G

(cf. [Nel64, Proposition II.4.3]). On the set M := X × V , we then obtain a G-right
action by

(x, v).g := (x .g, Jg(x)
∗v).

We also obtain a positive definite kernel

K : M × M → C, K ((x, v), (y,w)) := 〈v, Q(x, y)w〉

which satisfies the natural covariance condition
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K ((x, v).g, (y,w)) = K ((x .g, Jg(x)
∗v), (y,w)) = 〈Jg(x)∗v, Q(x .g, y)w〉

= 〈v, Jg(x)Q(x .g, y)w〉 = 〈v, Q(x, y.g	)Jg	 (y)∗w〉
= K ((x, v), (y.g	, Jg	 (y)∗w)) = K ((x, v), (y,w).g	).

Let X+ ⊆ X be an open H -invariant subset on which the kernel Q is positive
definite, so that K is positive definite on M+ := X+ × V . The corresponding repro-
ducing kernel Hilbert space HK ⊆ C

M+ consists of functions that are continuous
anti-linear in the second argument, and it is easy to see that the map

Γ : HQ → HK , Γ ( f )(x, v) := 〈v, f (x)〉

is unitary (Example A.1.4). In view of

Γ (g. f )(x, v) = 〈v, Jg(x) f (x .g)〉 = 〈Jg(x)∗v, f (x .g)〉 = Γ ( f )((x, v).g),

it intertwines the representation of G on V X with the action on C
M by

(g.F)(x, v) := F((x, v).g).

Assume that the G-action on the Banach manifold M is smooth, i.e., that the map
G × X × V → V, (g, x, v) �→ Jg(x)∗v is smooth. Then we obtain a smooth right
action of (g, H) on M+ compatible with the kernel K , and thus Theorem 6.2.3 yields
a unitary representation of Gc on the Hilbert HK

∼= HQ .

6.3 Representations on Spaces of Distributions

Nowwe slightly change our context. To extend the theory from smooth kernels to dis-
tribution kernels, we assume that M is a finite dimensional smooth manifold and that
K ∈ C−∞(M × M) is a positive definite distribution so thatHK ⊆ C−∞(M) holds
for the corresponding reproducing kernel Hilbert space (Sect. 2.4). The canonical
map

ι : C∞
c (M) → HK , ϕ �→ Kϕ

is continuous ([MNO15, §7.1]) and therefore the kernel K defines a continuous
hermitian form on C∞

c (M). Hence Corollary 6.1.2 applies in particular to K .

Definition 6.3.1 The Lie derivative defines on C∞
c (M) the structure of a V (M)-

module, and we consider on C−∞(M) the adjoint representation:

(LX D)(ϕ) := −D(LXϕ) for X ∈ V (M), D ∈ C−∞(M), ϕ ∈ C∞
c (M).
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For a distribution D ∈ C−∞(M × M) and X ∈ V (M), we write

(L 1
X D)(ϕ ⊗ ψ) := −D(LXϕ ⊗ ψ) and (L 2

X D)(ϕ ⊗ ψ) := −D(ϕ ⊗ LXψ).

Wesay that X is D-symmetric, resp., D-skew-symmetric ifL 1
X D = εL 2

X D for ε = 1,
resp., −1.

Remark 6.3.2 Let K be a positive definite distribution on M . If X is K -symmetric
(resp. K -skew-symmetric), then LX defines a symmetric (resp. skew-symmetric)
operator on C∞

c (M) with respect to 〈·, ·〉K .
The next observation allows us to use Corollary 6.1.2 and to adapt the methods

used in Sect. 6.2.

Remark 6.3.3 Let X ∈ V (M) and ϕ ∈ C∞
c (M). We write Mt ⊆ M for the open

subset of all points m ∈ M for which the integral curve of X through m is defined in
t ∈ R. The corresponding time t flow map is denoted ΦX

t : Mt → M . If suppϕ ⊆
M−t , then ϕ ◦ ΦX

t has compact support ΦX−t (suppϕ) ⊆ Mt and therefore defines an
element of C∞

c (M).

Theorem 6.3.4 (Geometric Fröhlich Theorem for distributions) Let M be a smooth
manifold and K ∈ C−∞(M × M) be a positive definite distribution. If X ∈ V (M) is
K -symmetric, then the Lie derivativeLX defines an essentially selfadjoint operator
H 0

K → HK whose closureL K
X coincides with LX |D X , where

DX := {D ∈ HK : LX D ∈ HK }.

If the local flow ΦX is defined on [0, ε] × supp(ϕ) for some ϕ ∈ C∞
c (M), then

etL
K
X Kϕ = Kϕ◦ΦX−t

for 0 ≤ t ≤ ε. (6.3)

Proof For every ϕ ∈ C∞
c (M), there exists an ε > 0 such that the flow ΦX of X is

defined on the compact subset [0, ε] × supp(ϕ) of R × M . Then the curve

γ [0, ε] → C∞
c (M), γ (t) := ϕ ◦ ΦX

−t

satisfies γ ′(t) = −LXϕ in the natural topology on C∞
c (M). Therefore the assump-

tions of Corollary 6.1.2 are satisfied with V = C∞
c (M) and L = −LX . We con-

clude thatLX |H 0
K
is essentially selfadjoint with closure equal toL K

X and that (6.3)
holds. ��
Definition 6.3.5 Let g = h + q be a symmetric Lie algebra with involution τ and
β : g → V (M) be a homomorphism of Lie algebras. A positive definite distribution
K ∈ C−∞(M × M, C) is said to be β-compatible if
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L 1
β(x)K = −L 2

β(τ(x))K for x ∈ g.

In the following we assume that K is a positive definite distribution on M com-
patible with the smooth right action (β, σ ) of (g, H) (cf. Definition 6.2.2). For
z = x + iy ∈ gC, we put

Lβ(z) := Lβ(x) + iLβ(y)

and we write Lz for the restriction of Lβ(z) to its maximal domain

Dz = {D ∈ HK : Lβ(z)D ∈ HK }.

As in Sect. 6.2, we consider the subspace

D := {D ∈ HK : (∀n ∈ N)(∀x1, . . . , xn ∈ g)Lβ(x1) · · ·Lβ(xn)D ∈ HK }

which carries the Lie algebra representation α gC → End(D) for which the operator
α(x) is skew-hermitian for x ∈ gc = h + iq. From (6.1) andRemark 6.3.2we deduce
that

Lx Kϕ = KL τ(x)ϕ for ϕ ∈ C∞
c (M), (6.4)

hence H 0
K ⊆ D . In particular, D is dense inHK .

Theorem 6.3.6 Let K ∈ C−∞(M × M) be a positive definite distribution compat-
ible with the smooth right action (β, σ ) of the pair (g, H) on M, where g = h ⊕ q
is a symmetric Lie algebra and H is a connected Lie group with Lie algebra h. Let
Gc be a simply connected Lie group with Lie algebra gc = h + iq. Then there exists
a unique smooth unitary representation (Uc,HK ) of Gc such that

dUc(x) = Lx and dUc(iy) = iLy for x ∈ h, y ∈ q.

6.4 Reflection Positive Distributions and Representations

In this subsection we connect the previously described integrability results to reflec-
tion positive representations. Let D ∈ C−∞(M × M, C) be a positive definite dis-
tribution which is reflection positive with respect to the involution θ : M → M on
the open subset M+ ⊆ M (cf. Definition 2.4.5). Our main result is Theorem 6.4.1
which asserts that, under the natural compatibility requirements for an action of a
symmetric Lie group (G, H, τ ) on (M, θ), the representation of the pair (gc,H) on
the Hilbert space HDθ corresponding to the positive definite distribution kernel Dθ

on M+ integrates to a unitary representation of the simply connected group Gc with
Lie algebra gc.
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Let (G, H, τ ) be a symmetric Lie group acting on M such that θ(g.m) =
τ(g).θ(m) and H.M+ = M+. We assume that D is invariant under G and τ . Then
we have a natural unitary representation (UE ,E ) of G on the Hilbert subspace
E := HK ⊆ C−∞(M). As M+, and therefore E+, is H -invariant, this representation
is infinitesimally reflection positive in the sense of Definition 3.3.6.

From the invariance condition

L 1
β(x)D = −L 2

β(x)D for x ∈ g (6.5)

we derive

L 1
β(x)D

θ = −L 2
β(τ(x))D

θ for x ∈ g. (6.6)

This implies that the assumptions of Theorem 6.3.6 are satisfied, so that we obtain:

Theorem 6.4.1 Let M be a smooth finite dimensional manifold and
D ∈ C−∞(M × M) be a positive definite distribution which is reflection positive
with respect to (M, M+, θ). Let (G, H, τ ) be a symmetric Lie group acting on M such
that θ(g.m) = τ(g).θ(m) and H.M+ = M+. We assume that D is invariant under
G and τ . Let Gc be a simply connected Lie group with Lie algebra gc = h + iq and
define (Lx )x∈g on its maximal domain in the Hilbert subspace HDθ ⊆ C−∞(M+).
Then there exists a unique unitary representation (Uc,HDθ ) of Gc such that

dUc(x) = Lx and dUc(iy) = iLy for x ∈ h, y ∈ q.

Example 6.4.2 The preceding theorem applies in particular to the situation where
M = Gτ , τ(g) = gτ and M+ = G+ is an open subset of G with G+H = G+
(Remark 3.4.2). Here we start with a reflection positive distribution D ∈ C−∞(Gτ )

(Definition 7.2.1). It defines a Gτ -invariant distribution kernel ˜D on Gτ × Gτ which
is reflection positivewith respect toG+.We thus obtain a positive definite distribution
˜Dτ on G+ × G+.

Example 6.4.3 Reflection positive representations of the euclidean motion group
E(d) (cf. Example 3.2.2) lead to unitary representations of the simply connected
covering Gc = R

d
� Spin1,d−1(R) of the identity component P(d)0 of the Poincaré

group. More concretely, we consider M = R
d , M+ = R

d+, τ(x0, x) = (−x0, x) and
G = E(d) = R

d
� Od(R). Then the G-invariance of a distribution ˜D on R

d × R
d

means that it is determined by an Od(R)-invariant distribution D ∈ C−∞(Rd) by

˜D(ϕ ⊗ ψ) := D(ϕ∨ ∗ ψ), ϕ∨(x) := ϕ(−x).

For any reflection positive rotation invariant distribution D ∈ C−∞(Rd), we thus
obtain a reflection positive representation (UE ,E ) of G and a representation of the
group Gc on ̂E ∼= HDθ .

For d ≥ 3, the natural inclusion SOd−1(R) → O1,d−1(R), g �→ idR ×g induces a
surjective homomorphism π1(SOd−1(R)) → π1(O1,d−1(R)), and since Uc is com-
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patible with the unitary representation ̂UH of H on ̂E , the representation Uc

factors through a representation of the connected Poincaré group P(d)0 = R
d

�

SO1,d−1(R).
The concrete case of generalized freefields discussed inChap. 8 is of basic interest.

Notes

Main reference for this section is [MNO15], where the results on smooth kernels
are developed in the more general context of Banach–Lie groups acting on locally
convex manifolds. Here we choose the simpler context of Banach manifolds because
in this context every smooth vector field has a local flow.

Fröhlich’s results from [Fro80] have later been refined in several ways, in par-
ticular by Klein and Landau in [KL81, KL82]. Fröhlich, Osterwalder and Seiler
introduced in [FOS83] the concept of a virtual representation, which was developed
in greater generality by Jorgensen in [Jo86, Jo87].

In the context of involutive representations of a subsemigroup S ⊆ G with polar
decomposition S = H expC , whereC �= ∅ is an Ad(H)-invariant open convex cone
in q, the Lüscher–Mack Theorem [LM75, HN93, MN12] provides a corresponding
unitary representation of the dual group Gc.



Chapter 7
Reflection Positive Distribution Vectors

In this chapter we first introduce the concept of a distribution vector of a unitary
representation (Sect. 7.1). It turns out that certain distribution vectors semi-invariant
under a subgroup H correspond naturally to realizations of the representation in a
Hilbert space of distributions on the homogeneous spaceG/H . In this context reflec-
tion positive representations can be constructed from reflection positive distributions
on G/H (Sect. 7.2). Such distributions can often be found and even classified in
terms of the geometry of the homogeneous space.

To illustrate this technique, we apply it in Sect. 7.3 to spherical representations
of the Lorentz group G = O1,n(R). These representations consist of two series, the
principal series and the complementary series. Both have natural realizations in
spaces of distributions on the n-sphere S

n ∼= G/P on which the Lorentz group G
acts by conformalmaps; the principal series can evenbe realized in L2(Sn). That some
of the representation of the complementary series exhibit reflection positivity with
respect to the subsemigroup of conformal compressions of a half-sphere is shown in
Sect. 7.4.1. In Sect. 7.4.2 we build a bridge from the natural reflection positivity on
the sphere S

n as a Riemannian manifold obtained from resolvents (m2 − Δ)−1 of the
Laplacian (cf. Sect. 2.5) and unitary representations. Here the Lorentz group occurs
as the dual group Gc of the isometry group G = On+1(R) of S

n and we identify the
unitary representations of Gc on the corresponding Hilbert spaces ̂E as spherical
representations of Gc realized in a space of holomorphic functions in the crown
domain of hyperbolic space.

7.1 Distribution Vectors

In this subsection we introduce the notion of distribution vectors and in the following
section we connect it with reflection positivity. We start with the basic structures
related to distributions on Lie groups and homogeneous spaces.

© The Author(s) 2018
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Physics, https://doi.org/10.1007/978-3-319-94755-6_7
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7.1.1 Distributions on Lie Groups and Homogeneous Spaces

Definition 7.1.1 LetG be a Lie group.We fix a left invariant HaarmeasureμG onG.
This measure defines on L1(G) := L1(G, μG) the structure of a Banach-∗-algebra
by the convolution product

(ϕ ∗ ψ)(u) =
∫

G
ϕ(g)ψ(g−1u) dμG(g), and ϕ∗(g) = ϕ(g−1)ΔG(g)−1 (7.1)

is the involution, where ΔG : G → R+ is the modular function determined by

∫

G
ϕ(y) dμG(y) =

∫

G
ϕ(y−1)ΔG(y)−1 dμG(y) and

ΔG(x)
∫

G
ϕ(yx) dμG(y) =

∫

G
ϕ(y) dμG(y) for ϕ ∈ Cc(G).

The formulas above show that we have two isometric actions of G on L1(G),
given by

(λg f )(x) = f (g−1x) and (ρg f )(x) = f (xg)ΔG(g). (7.2)

Note that (λg f )∗ = ρg f ∗.

Let H ⊆ G be a closed subgroup and X := G/H = {gH : g ∈ G} be the space
of H -left cosets, endowed with its canonical manifold structure. Let μH denote a
left Haar measure on H . Then the map

α : C∞
c (G) → C∞

c (X), ϕ �→ ϕ�, ϕ�(gH) :=
∫

H
ϕ(gh) dμH (h)

is a topological quotient map, i.e., surjective, continuous and open (cf. [Wa72, p. 475]
and [vD09, p. 136]). Its adjoint thus provides an injection

α∗ : C−∞(X) ↪→ C−∞(G), D �→ D
, D
(ϕ) := D(ϕ�)

of the space of distributions on X = G/H into the space of distributions on G.
On C∞

c (X) the group G acts naturally by left translations (λgϕ)(x) := ϕ(g−1x)
and, accordingly, by (λgD)(ϕ) := D(λ−1

g ϕ) on distributions. We also recall the two
G-actions (7.2) on C∞

c (G) ⊆ L1(G) by left and right translations and note that they
induce actions on the dual space C−∞(G). As

α ◦ λg = λg ◦ α and α ◦ ρh = ΔG(h)ΔH (h)−1α for h ∈ H, g ∈ G, (7.3)

the map α and its adjoint intertwine the left translation actions of G on C−∞(X) and
C−∞(G). It also follows that ρhα

∗(D)(ϕ) = D(α(ρ−1
h ϕ)) = ΔH (h)

ΔG (h)
α∗(D)(ϕ), and

we even have:
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Lemma 7.1.2 The range of α∗ is the space C−∞(G)H of all distributions D ∈
C−∞(G) satisfying

ρh D = ΔG/H (h)−1D with ΔG/H (h) := ΔG(h)

ΔH (h)
for h ∈ H. (7.4)

Proof Let D ∈ C−∞(G)H . As α is a quotient map, we have to show that ker α ⊆
ker D because im(α)∗ = (ker α)⊥. First we note that, for ψ ∈ C∞

c (G), the distribu-
tion defined by (ψ ∗ D)(ϕ) := D(ψ∗ ∗ ϕ) has a smooth density � with respect to
μG satisfying ρh� = ΔG/H (h)−1� for h ∈ H .

Let ρ : G → (0, ∞) denote a smooth function on G with

ρ(e) = 1 and ρ(gh) = ρ(g)ΔG/H (h)−1 for g ∈ G, h ∈ H,

and write μG/H for the corresponding quasi-invariant measure on G/H defined by

∫

G/H
ϕ�(gH) dμG/H (gH) =

∫

G
ϕ(g)ρ(g) dμG(g)

([Wa72, p. 475]). That μG/H is well defined requires to verify that ϕ� = 0 implies
that the right hand side vanishes. Now

(ψ ∗ D)(ϕ) = D(ψ∗ ∗ ϕ) =
∫

G
ϕ(g)�(g) dμG(g) =

∫

G/H
(ϕ�ρ−1)�(gH) dμG/H (gH)

=
∫

G/H
ϕ�(gH)(�ρ−1)(g) dμG/H (gH) = 0.

Replacing ψ by a δ-sequence in C∞
c (G), we obtain for n → ∞ that D(ϕ) = 0. ��

The distribution DμG (ϕ) := ∫G ϕ(g) dμG(g) is left and right invariant, hence
contained inC−∞(G)H if and only ifΔG/H = 1. If this is the case, then DμG = D


μX

for aG-invariantmeasureμX on X . One can even show that, conversely, the existence
of such a measure implies the vanishing ofΔG/H (cf. [Wa72] or [HN12, Sect. 10.4]).

7.1.2 Smooth Vectors and Distribution Vectors

Now let (U,H ) be a unitary representation of theLie groupG, i.e., a homomorphism
U : G → U(H ), g �→ Ug , such that for each η ∈ H the orbit map U η(g) = Ugη

is continuous. We say that η ∈ H is smooth if U η : G → H is smooth. The space
of smooth vectors is denoted byH ∞. This space carries a representation dU of the
Lie algebra g on H ∞ given by
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dU (x)η = lim
t→0

Uexp t xη − η

t
.

For a basis x1, . . . , xk of g and m = (m1, . . . ,mk) ∈ N
k
0 the family of semi-norms

qm(η) = ‖dU (x1)
m1 · · ·dU (xk)

mkη‖

defines a Fréchet space topology on H ∞ such that the inclusion H ∞ ↪→ H is
continuous. The space H ∞ is G-invariant and dU (Ad(g)x) = UgdU (x)U−1

g .
For ϕ ∈ L1(G) the operator-valued integralUϕ := ∫G ϕ(g)Ug dμG(g) exists and

is uniquely determined by

〈η,Uϕζ 〉 =
∫

G
ϕ(g)〈η,Ugζ 〉 dμG(g) for η, ζ ∈ H . (7.5)

Then ‖Uϕ‖ ≤ ‖ϕ‖1 and the so-obtained continuous linear map L1(G) → B(H ) is
a representation of the Banach-∗-algebra L1(G), i.e.,Uϕ∗ψ = UϕUψ andUϕ∗ = U ∗

ϕ .

Note that UgUϕ = Uλgϕ and UϕUg = Uρgϕ .
The spaceH ∞ of smooth vectors isG-invariant andwe denote the corresponding

representation by U∞. If ϕ ∈ C∞
c (G) and ξ ∈ H , then Uϕξ ∈ H ∞ and

dU (x)Uϕξ := Udλxϕξ, where dλxϕ = d

dt

∣

∣

∣

t=0
λexp t xϕ.

This follows directly by differentiation under the integral sign. If (ϕn)n∈N is a
δ-sequence, then Uϕnξ → ξ , so that H ∞ is dense inH .

The space of continuous anti-linear functionals onH ∞ is denoted byH −∞. Its
elements are called distribution vectors. The group G and its Lie algebra g act on
H −∞ by

(U−∞
g η)(ξ) := η(U∞

g−1ξ), resp., (dU−∞(x)η)(ξ) := −η(dU (x)ξ), g ∈ G, x ∈ g.

We then have U−∞
ϕ η := η ◦ U∞

ϕ∗ for ϕ ∈ C∞
c (G). We obtain natural G-equivariant

linear embeddings

H ∞ ι∞(ξ)=ξ−−−−−−−−−→H
ι−∞(ξ)=〈·,ξ〉−−−−−−−−−→H −∞

and note that U−∞
ϕ H −∞ ⊆ H ∞ for ϕ ∈ C∞

c (G).

Example 7.1.3 Let H ⊆ G be a closed subgroup and X = G/H . Then there exists
a quasi-invariant measure μX on X with a smooth density with respect to Lebesgue
measure in any chart; for details see [Fo95, Sec. 2.6], [Fa00, p.146ff] and [HN12, Sect.
10.4]. Thus there exists a smooth strictly positive function j : G × X → R+ such that
for all ϕ ∈ C∞

c (X) and g ∈ G we have
∫

X ϕ(g.x) dμX (x) = ∫X ϕ(x) j (g, x) dμX (x)
or, equivalently,
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∫

X
ϕ(g−1.x) j (g, x) dμX (x) =

∫

X
ϕ(x) dμX (x) for ϕ ∈ C∞

c (X). (7.6)

We will also write jg(x) = j (g, x). As a consequence of (7.6), we obtain a family
of unitary representation, the quasi-regular representation of G on L2(X) by

Uλ
g ϕ(x) := j (g, x)λ+1/2ϕ(g−1.x) for λ ∈ iR, g ∈ G and ϕ ∈ L2(X). (7.7)

If (U,H ) is a unitary representation of G and η ∈ H −∞, then the adjoint of the
linear map C∞

c (G) → H ∞, ϕ �→ U−∞
ϕ η, defines a linear map

jη : H −∞ → C−∞(G), jη(α)(ϕ) := α(U−∞
ϕ η).

For g ∈ G, we have jη ◦ U−∞
g = λg ◦ jη, i.e., jη intertwines the action ofG onH −∞

with the left translation action on C−∞(G).
We now introduce the concepts used in the proposition below.

Definition 7.1.4 Wecall the distribution vectorη ∈ H −∞ cyclic ifU−∞
C∞
c (G)η is dense

inH .

Definition 7.1.5 We call a distribution D ∈ C−∞(G) positive definite if the
sesquilinear kernel

KD(ϕ, ψ) := D(ψ∗ ∗ ϕ) on C∞
c (G) (7.8)

is positive semidefinite. This is equivalent to the positive definiteness of the distri-
bution D̃ on G × G determined by

D̃(ψ ⊗ ϕ) = D(ψ∗ ∗ ϕ) for ϕ,ψ ∈ C∞
c (G).

Wealso note that (7.8) is equivalent to D defining a positive functional on the∗-algbra
C∞
c (G), endowed with the convolution product. The corresponding reproducing

kernel Hilbert space HD := HKD is a linear subspace of C−∞(G) in which the
distributions defined by ψ ∗ D = λψ(D), i.e., (ψ ∗ D)(ϕ) := D(ψ∗ ∗ ϕ), form a
dense subspace with

〈ϕ ∗ D, ψ ∗ D〉 = D(ψ∗ ∗ ϕ) for ϕ,ψ ∈ C∞
c (G). (7.9)

In particular, D ∈ H −∞
D , jD(D) = D and jD|H D : HD ↪→ C−∞(G) is the inclusion

map.

Proposition 7.1.6 (Realization in spaces of distributions) Let (U,H ) be a unitary
representation of G and η ∈ H −∞. Then the following assertions hold:

(a) The map jη : H −∞ → C−∞(G) is injective if and only if η is cyclic.
(b) The distribution Dη := jη(η) is positive definite.
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(c) If η is cyclic, then jη : H → Hη := jη(H ) ⊂ C−∞(G) is a G-invariant uni-
tary operator onto the reproducing kernel Hilbert space of distribution on G for
which the inner product and the reproducing kernel are determined by

〈 jη(U−∞
ϕ η), jη(U

−∞
ψ η)〉H η

= 〈U−∞
ϕ η,U−∞

ψ η〉H = Dη(ψ
∗ ∗ ϕ).

(d) If H ⊂ G is a closed subgroup, then jη(H −∞) ⊆ C−∞(G)H if and only if
U−∞

h η = ΔG/H (h)η holds for all h ∈ H.

Proof For (a), we first observe that the injectivity of jη onH is trivially equivalent to
η being cyclic. To see that this even implies that jη is injective onH −∞, assume that
jη(α) = 0. Then equivariance implies jη(U−∞

ϕ α) = 0 for every ϕ ∈ C∞
c (G). For

any δ-sequence (δn)n∈N in C∞
c (G), we haveU−∞

δn
α → α in the weak-∗-topology on

H −∞, and since jη is obviously weak-∗-continuous, it follows that jη(α) = 0.
For (b) we derive from Dη(ϕ) = η(U−∞

ϕ η) the relation

Dη(ψ
∗ ∗ ϕ) = η(U−∞

ψ∗∗ϕη) = η(U∞
ψ∗U−∞

ϕ η) = (U−∞
ψ η)(U−∞

ϕ η) = 〈U−∞
ϕ η,U−∞

ψ η〉.

By Remark A.1.2, this implies that Dη is positive definite.
(c) follows from the fact that, for ϕ,ψ ∈ C∞

c (G),

jη(U
−∞
ψ η)(ϕ) = 〈U−∞

ϕ η,U−∞
ψ η〉 = Dη(ψ

∗ ∗ ϕ) = (ψ ∗ Dη)(ϕ).

To obtain (d), we first observe the relation jη(α)(ϕ) = jα(η)(ϕ∗) for α, η ∈
H −∞, which easily follows from the existence of a factorization ϕ = ϕ1 ∗ ϕ2 with
ϕ j ∈ C∞

c (G) (Dixmier–Malliavin Theorem [DM78, Theorem 3.1]). For h ∈ H , this
leads to

(ρh Dη)(ϕ) = Dη(ρ
−1
h ϕ) = η(U−∞

ϕ U−∞
h−1 η) = jU−∞

h−1 η(η)(ϕ) = jη(U
−∞
h−1 η)(ϕ∗),

so that the assertion follows from (7.4). ��
From the preceding proposition we derive:

Theorem 7.1.7 A unitary representation (U,H ) can be realized on a Hilbert sub-
space of C−∞(G/H) if and only if there exists a cyclic distribution vector η ∈ H −∞
satisfying U−∞

h η = ΔG/H (h)η for h ∈ H.

Example 7.1.8 (a) Let G be a Lie group and H a closed subgroup such that
X = G/H carries a G-invariant measure μX . Then G acts unitarily on L2(X) =
L2(X, μX ) byλgϕ(x) = ϕ(g−1.x). The space L2(X)∞ of smooth vectors is the space
of smooth functions ϕ ∈ C∞(X) such that λu f ∈ L2(X) for all u ∈ U (g) ([Po72,
Theorem 5.1]). If X is compact, then L2(X)∞ = C∞(X) and L2(X)−∞ = C−∞(X)

is the space of distributions on X .
(b) Let G = Heis(R2n) = T × R

n × R
n be the Heisenberg group acting on

L2(Rn) via the Schrödinger representation
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(π(z, x, y) f )(u) = zei〈x,u〉 f (u − y)

(cf. the proof of Theorem 4.4.1). Then the space L2(Rn)∞ of smooth vectors is
S (Rn), the Schwartz space of rapidly decreasing functions.

For later reference, we record the following lemma ([NÓ15a, LemmaD.7]) which
identifies the distribution vectors in representations of G = R

d by multiplication
operators.

Lemma 7.1.9 Let (X,S, μ) be a measure space. We write M(X, C) for the vec-
tor space of measurable functions X → C. For (Hj ) j=1,...,d in M(X, R) and R :=
√

∑d
j=1 H

2
j , we consider the continuous unitary representation of R

d on L2(X, μ),
given by

Ut( f ) := ei
∑d

j=1 t j Hj f for t = (t1, . . . , td).

Then
H −∞ ∼=

{

h ∈ M(X, C) : (∃n ∈ N) ‖(1 + R2)−n f ‖2 < ∞
}

,

where the pairing H ∞ × H −∞ → C is given by ( f, h) �→ ∫X f h dμ. Moreover,
the following assertions are equivalent:

(i) The constant function 1 is a distribution vector.
(ii) For the measurable map η := (H1, . . . , Hd) : X → R

d , the measure η∗μ on
R

d is tempered.
(iii) ϕ̂ ◦ η ∈ L2(X, μ) for every ϕ ∈ C∞

c (Rd).

If these conditions are satisfied, then the corresponding distribution on R
d is given

by the Fourier transform of η∗μ.

7.2 Reflection Positive Distribution Vectors

In this chapter (U,E ) will always denote a unitary representation of a Lie group G
and H ⊆ G will be a closed subgroup.

Definition 7.2.1 Let (G, τ ) be a symmetric Lie group and Gτ = G � {idG, τ }.
(a) A positive definite τ -invariant distribution D ∈ C−∞(G) is called reflection pos-

itive with respect to (G,G+, τ ) if

D(ϕ
 ∗ ϕ) ≥ 0 for ϕ ∈ C∞
c (G+), ϕ
(g) := ϕ∗(τ (g)). (7.10)

This is equivalent to the corresponding distribution D̃(ψ ⊗ ϕ) = D(ψ∗ ∗ ϕ) on
G × G being reflection positive with respect to (G,G+, τ ) (cf. Definition 2.4.5).
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(b) Let (U,E ) be a unitary representation of Gτ and θ := Uτ . Then a τ -invariant
distribution vector η is said to be reflection positive with respect to (G,G+, τ )

if the subspace E+ := [[U−∞
C∞
c (G+)η]] is θ -positive (cf. Definition 3.3.1).

(c) If η ∈ E −∞ is cyclic and reflection positive, then we say that (U,E , η) is a
distribution cyclic reflection positive representation of Gτ .

For the special case, where G+ = S ⊆ G holds for an open #-invariant subsemi-
group S ⊆ G, a positive definite distribution D ∈ C−∞(G) is reflection positive if
τD = D and D|S is positive definite as a distribution on the involutive semigroup
(S, #), i.e., D(ϕ# ∗ ϕ) ≥ 0 for ϕ ∈ C∞

c (S) and ϕ
(s) := ϕ∗(τ (s)). For a unitary rep-
resentation ofG, a τ -invariant distribution vector η ∈ E −∞ is reflection positive with
respect to S if the subspace E+ := [[U−∞

C∞
c (S)η]] is θ -positive (cf. Definition 3.4.6).

We now obtain easily:

Theorem 7.2.2 For (G,G+, τ ) as above, the following assertions holds:

(a) If (U,E , η) is a distribution cyclic reflection positive representation of Gτ with
respect to (G,G+, τ ), then Dη is reflection positive with respect to (G,G+, τ ).

(b) If D ∈ C−∞(G) is reflection positive with respect to (G,G+, τ ), then (UD,HD,

D) is a distribution cyclic reflection positive representation. If G+ = S is a

-invariant open subsemigroup, then we have an S-equivariant unitary map

� : ̂E → HD|S ⊂ C−∞(S), �(ϕ̂ ∗ D) = ϕ|S.

Proof For ϕ ∈ C∞
c (G+), we have

Dη(ϕ

 ∗ ϕ) = η(U−∞

ϕ
∗ϕ
η) = 〈U−∞

τ∗ϕ η,U−∞
ϕ η〉 = 〈ϕ, ϕ〉θ ≥ 0.

The other parts of (a), as well as (b), now follow from Lemma 2.4.6. ��

7.3 Spherical Representation of the Lorentz Group

In this, and the following section, we discuss reflection positivity related to the
conformal geometry of R

n , resp., of its conformal completion S
n . We first discuss

the complementary series of the conformal groupG := O1,n+1(R)↑ and then we turn
to the reflection positivity arising in Riemannian geometry from resolvents of the
Laplacian on S

n as described in Sect. 2.5.

7.3.1 The Principal Series

We write elements of R
n+2 as (x−1, x0, x). Correspondingly, elements of R

n+1 are
written as (x0, x), and e−1, e0, e1, . . . , en denotes the standard basis ofR

n+2.We then
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identify e0, . . . , en with the standard basis for R
n+1. Elements of G are written as

g =
(

a b�
c d

)

, where a ∈ R, b, c ∈ R
n+1 and d ∈ Mn+1(R). Recall also the notation

[x, y] = x−1y−1 − 〈x, y〉 and consider the set

L
n+1
+ := {x ∈ R

n+2 : [x, x] = 0, x−1 > 0}

of positive lightlike vectors. The embedding ξ : S
n → L

n+1
+ , x �→ (1, x), yields a

diffeomorphism S
n → L

n+1
+ /R

×
+. As the standard linear action of G on R

n+2 leaves
L
n+1
+ -invariant, we thus obtain a smooth action on the quotient space L

n+1
+ /R

×
+ and

hence on the sphere S
n via

g.x := J (g, x)−1(c + dx) = ξ−1(J (g, x)−1g(ξ(x))) (7.11)

with
J (g, x) := a + 〈b, x〉 = (g.ξ(x))0. (7.12)

Let

K :=
{(

1 0
0 d

)

: d ∈ On+1(R)

}

∼= On+1(R) .

Then K is a maximal compact subgroup of G acting transitively on the sphere via
the standard action on R

n+1, and S
n ∼= K/M for M := Ke0 � On(R). Note that K

is the stabiliser of e−1 in G with respect to the standard linear action.
As a homogeneous space ofG, the sphere isG/P , where P = Ge0 is the stabilizer

of e0. We have P = MAN , where

A =
⎧

⎨

⎩

at =
⎛

⎝

cosh(t) sinh(t) 0
sinh(t) cosh(t) 0

0 0 In

⎞

⎠ : t ∈ R

⎫

⎬

⎭

∼= R

and

N :=
⎧

⎨

⎩

nv =
⎛

⎝

1 + ‖v‖2
2 − ‖v‖2

2 v�
‖v‖2
2 1 − ‖v‖2

2 v�
v −v In

⎞

⎠ : v ∈ R
n

⎫

⎬

⎭

� R
n.

We define

Jλ(g, v) := J (g, v)−λ− n
2 , Q(u, v) := 1 − 〈u, v〉 and Qλ(u, v) := Q(u, v)λ− n

2 .

Part (a) of the following lemma is [vD09, Proposition 7.5.8]. It also follows from
[NÓ14, Rem. 5.2] by the transformation formula for integrals, and the remainder is
obtained by direct calculation.
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Lemma 7.3.1 Let g, g1, g2 ∈ G andu, v ∈ S
n. For the K -invariant probabilitymea-

sure μSn on S
n, we have

(a)
∫

Sn
ϕ(g.v)Jn

2
(g, v) dμSn (v) = ∫

Sn
ϕ(v) dμSn (v) for ϕ ∈ L1(Sn).

(b) Jλ(g1g2, v) = Jλ(g1, g2.v)Jλ(g2, v).
(c) Qλ(u, v) = J−λ(g, u)Qλ(g.u, g.v)J−λ(g, v).

Definition 7.3.2 For every λ ∈ C, we obtain a representation of G on C∞(Sn) by

(Uλ
g ϕ)(v) = Jλ(g

−1, v)ϕ(g−1.v). (7.13)

We denote by C∞
λ the space C∞(Sn)with the G-action given byUλ. Similarly, C−∞

λ

will denote the space of distributions with the contragradient action.

From Lemma 7.3.1 we get:

Lemma 7.3.3 For ϕ,ψ ∈ C∞(Sn) and g ∈ G, we have

〈U−λ
g ϕ,Uλ

g ψ〉L2 = 〈ϕ,ψ〉L2 . (7.14)

(a) The representation Uλ extends to a unitary representation of G on L2(Sn) if and
only if λ ∈ iR.

(b) The linear mapψ �→ 〈·, ψ〉L2 defines a linear and G-equivariant map from C∞
−λ̄

into C−∞
λ .

The following theorem follows from [vD09, Cor. 7.5.12], which is stated for
the space C(Sn) of continuous functions, but the same argument works for smooth
functions.

Theorem 7.3.4 The representation (Uλ,C∞(Sn)) is irreducible if ±λ /∈ n
2 + N0. In

particular, the unitary representation (Uλ, L2(Sn)) is irreducible for λ ∈ iR.

7.3.2 The Complementary Series

In this section we explain how Uλ can be made unitary for λ ∈ (− n
2 ,

n
2 ). As

Lemma 7.3.3 easily implies that Uλ � U−λ holds for the corresponding unitary
representations, we shall assume that λ ∈ (0, n

2 ).
Recall that the tangent space at u ∈ S

n is given by Tu(Sn) ∼= u⊥ and that the
stabilizer of u in K acts by the natural linear action on Tu(Sn). We also write

Su(S
n) := {w ∈ Tu(S

n) : ‖w‖ = 1}.

The Riemannian exponential map Expu : Tu(Sn) → S
n is given by

Expu(v) = cos(‖v‖)u + sin(‖v‖)

‖v‖ v, (7.15)
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i.e., for ‖v‖ = 1, the geodesic starting in u in the direction of v is given

xu(t, v) := γv(t) = cos(t)u + sin(t)v. (7.16)

The map (t, v) �→ γv(t), t ∈ (0, π), v ∈ Su(Sn) defines the polar coordinates on S
n .

For further references we recall the following facts about the Beta and Gamma
function. The Beta function is defined by

B(z,w) :=
∫ 1

0
r z−1(1 − r)w−1dr = �(z)�(w)

�(z + w)
, Re z,Rew > 0.

Lemma 7.3.5 For Re z,Rew > 0, the following assertions hold:

(a) B(z,w) = ∫∞
0

t z−1

(1+t)z+w dt .

(b)
√

π�(2z) = 22z−1�(z)�(z + 1/2).
(c)
∫ 1

−1(1 − r)z−1(1 − r2)w−1dr = 22w+z−2B(w,w + z − 1).

(d) The euclidean surface measure of the sphere is Vol(Sn−1) = 2 πn/2

�(n/2) .
(e) For Re σ > −n and Reμ > n we have

∫

Rn

(1 + ‖y‖2)−μ‖y‖σdy = πn/2 �((σ + n)/2)�(μ − (σ + n)/2)

�(n/2)�(μ)
.

Proof (a) follows with r = t
1+t and (b) can be found in [WW63, Sect. 12.15].

Formula (c) follows from (b) by the substitution u = (1 + r)/2, (d) is [Fa08, Sect.
9.1], and (e) follows from (a) and (d) by using polar coordinates and substituting
u = r2. ��
Lemma 7.3.6 For cn := �( n+1

2 )√
π�( n

2 )
, we have

∫

Sn
ϕ(u)dμSn (u) = cn

∫ π

0

∫

Su
ϕ(xu(t, v)) sinn−1(t) dμ

Sn−1 (v) dt for ϕ ∈ L1(Sn).

If ϕ is Ku-invariant, then ϕ̃(cos t) := ϕ(xu(t, v)) is independent of v ∈ Su and

∫

Sn

ϕ dμSn = cn

∫ 1

−1
ϕ̃(r)(1 − r2)

n
2 −1 dr. (7.17)

Proof See [Fa08, Proposition 9.1.2]. The value of the constant follows from
Lemma 7.3.5(c) by taking λ = n/2 and ϕ = 1. ��
Lemma 7.3.7 For λ ∈ R, the kernel Qλ is integrable as a function of one or two
variables if and only if λ > 0. In that case we have for all z ∈ S

n:

∫

Sn

Qλ(z, y)dμSn (y) = 2λ+ n
2 −1�( n+1

2 )�(λ)√
π�(λ + n

2 )
=: dλ,n
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Proof As Qλ and the function
∫

Sn
Qλ(·, y)dσ(y) are K -invariant, we have

∫

Sn

Qλ(z, y) dμSn (y) =
∫

Sn

Q(e0, y) dμSn (y) =
∫

Sn

∫

Sn

Qλ(x, y) dμSn (y) dμSn (x).

The function Qλ(e0, ·) is invariant under K . Lemmas 7.3.6 and 7.3.5(c) imply that

∫

Sn

Qλ(e0, y) dμSn (y) = cn

∫ 1

−1
(1 − r)λ− n

2 (1 − r2)
n
2 −1 dr = 2λ+ n

2 −1�( n+1
2 )�(λ)√

π�(λ + n
2 )

.

Clearly the integral is finite if and only if Re λ > 0. ��
For Re λ > 0, define

(Aλϕ)(x) := 1

dλ,n

∫

Sn

Qλ(x, y)ϕ(y) dμSn (y) for ϕ ∈ C∞(Sn).

Then 〈ϕ, Aλψ〉 = 〈Aλϕ, ψ〉 and Aλ1 = 1. In particular, if λ is real then 〈ϕ, Aλψ〉 =
〈Aλϕ, ψ〉. Furthermore Aλ : L2(Sn) → L2(Sn) is bounded if Re λ > n

2 because in
this case the kernel Qλ is continuous and hence in L2.

Theorem 7.3.8 Let ϕ ∈ C∞(Sn). Then the following assertions hold:

(a) AλUλ
g ϕ = U−λ

g Aλϕ for g ∈ G. In particular, the form

〈ϕ,ψ〉λ := 〈ϕ, Aλψ〉L2

is Uλ
G-invariant if λ > 0.

(b) The map {λ ∈ C : Re λ > 0} → L2(Sn), λ �→ Aλϕ, is holomorphic and has a
meromorphic extension to all of C. Furthermore, the intertwining relation in (a)
holds then for almost all λ.

Proof The first part of (a) follows from Lemma 7.3.1(a, c) and the second part is a
consequence of Lemma 7.3.3. For (b), we refer to [VW90, Theorem 1.5] or [vD09,
Theorem 9.2.12]. A more direct argument can be based on Δr−λ = λ(λ + 1)r−λ−2

on R
n . ��

Wewill now determine those λ > 0 for which the form 〈·, ·〉λ is positive semidef-
inite. For that it is easier to work with the realization in a space of functions on R

n .
For that we recall the stereographic projection

s : R
n → S

n \ {−e0}, x �→
(

1 − ‖x‖2
1 + ‖x‖2 ,

2x

1 + ‖x‖2
)

= n�
x .e0 (7.18)

with inverse s−1(y0, y) = 1
1+y0

y.
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Lemma 7.3.9 For ϕ ∈ C∞(Sn) put ϕλ(x) := ϕ(s(x))(1 + ‖x‖2)−λ− n
2 . For the pos-

itive constants

an := 2n−1�( n+1
2 )

π
n+1
2

and bλ = �(λ + n/2)

π
n
2 �(λ)

,

we then have

(a)
∫

Sn

ϕ(v) dμSn (v) = an

∫

Rn

ϕ(s(x))(1 + ‖x‖2)−n dx for ϕ ∈ L1(Sn).

(b) Qλ(s(x), s(y)) = 2λ− n
2 (1 + ‖x‖2)−λ+ n

2 (1 + ‖y‖2)−λ+ n
2 ‖x − y‖2λ−n.

(c) (Aλϕ)(s(x)) = (1 + ‖x‖2)−λ+n/2bλ

∫

Rn

ϕλ(y)‖x − y‖2λ−ndy

(d) 〈ϕ,ψ〉λ = anbλ

∫

Rn×Rn

ϕλ(x)ψλ(y)‖x − y‖2λ−n dx dy for ϕ,ψ ∈ C∞(Sn).

Proof Up to a constant (a) follows from [Fa08, Example 9.1]. The exact value of the
constant can then be evaluated using Lemma 7.3.5. Parts (b) and (c) follow from (a)
and Lemma 7.3.1(b,c). Finally (d) follows from (c). ��
Proposition 7.3.10 The function x �→ ‖x‖−s is locally integrable on R

n if and only
if s < n. The corresponding distribution is positive definite if and only if 0 ≤ s < n.

Proof This follows by using polar coordinates and the fact that

F (r−s) = π s−n/2 �((n − s)/2)

�(s/2)
r s−n

(see [Sch73, Example 5, VII.7.13]). The right hand side is positive for 0 < s < n.
The case s = 0 is obvious. ��

As a consequence we get the following theorem, up to the non-degeneracy of the
form:

Theorem 7.3.11 For λ ≥ 0 the form 〈·, ·〉λ is positive semi-definite on C∞(Sn) if
and only if 0 < λ ≤ n

2 . Let Eλ denote the corresponding Hilbert space. For λ = n
2

this space is one-dimensional and for 0 < λ < n
2 the form is non-degenerate. We

thus obtain irreducible unitary representations (Uλ,Eλ)0<λ≤ n
2
, where (Un/2,En/2)

is trivial.

Proof For 0 < λ < n
2 the non-degeneracy of the kernel on C∞(Sn) follows from

Theorem 7.3.4 which asserts that the representation Uλ on C∞(Sn) is irreducible.
As the space of null-vectors is invariant and proper, it is zero. ��
Definition 7.3.12 The representations (Uλ,Eλ), 0 < λ < n

2 , are called the comple-
mentary series representations of G.

To unify notation we put Eλ = L2(Sn) for λ ∈ iR (cf. Lemma 7.3.3). The proof
of the following can be found in [vD09, p. 119]. We shall encounter this theorem
again in the next section.
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Theorem 7.3.13 The irreducible unitary representations (U,E ) of G which are
spherical in the sense that E K �= {0} are exactly the representations (Uλ,Eλ) with
λ ∈ iR ∪ (0, n

2

]

. In these cases E K = C1 is one dimensional.

The function ϕλ(g) = 〈1,Uλ
g 1〉λ is K -biinvariant. It is called the spherical func-

tion with spectral parameter λ.

7.3.3 H-Invariant Distribution Vectors

On G = O1,n+1(R)↑ we define an involution τ : G → G by τ(g) := r0gr0, where
r j is the orthogonal reflection in e⊥

j . Then, with respect to the linear action on R
n+2,

H := Ge0 =
⎧

⎨

⎩

⎛

⎝

a 0 b�
0 1 0
c 0 d

⎞

⎠ ∈ O1,n+1(R)↑ : a ∈ R, b, c ∈ R
n−1, d ∈ Mn−1(R)

⎫

⎬

⎭

� Gτ

is a subgroup isomorphic to O1,n(R)↑. The relation r0ξ(v) = ξ(r0x) implies that
r0(x .v) = τ(x).r0(v). Here we have also viewed r0 as a reflection inR

n+1 via restric-
tion.

In S
n , the subgroup H has two open orbits

H.(±e0) = S
n
± = {(x0, x) : ± x0 > 0}

and the closed orbit H.en = {(0, x) : x ∈ S
n−1} ∼= S

n−1.
Considering the standard linear action of G on R

n+2, we note that G.e0 ∼= G/H
is the (n + 1)-dimensional de Sitter space

dSn+1 := {(x−1, x0, x) : x2−1 − x20 − ‖x‖2 = −1}.

Both G and H are unimodular. Hence, there exists a G-invariant measure on dSn+1.
Define

p±
λ (x) := [ξ(x), ∓e0]λ− n

2

�((λ − n
2 + 1)/2)

χS
n±(x) = (±x0)λ− n

2

�((λ − n
2 + 1)/2)

χS
n±(x), x ∈ S

n

and let
pλ := p+

λ + p−
λ . (7.19)

For Re λ > n/2 the functions p±
λ and pλ are continuous and hence integrable on S

n .
We define a distribution ι−∞(pλ) := η̃λ ∈ C−∞

λ by

η̃λ(ϕ) :=
∫

Sn

ϕ(x)pλ(x) dμSn (x) = 〈ϕ, pλ〉L2 for Re λ >
n

2
.
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Then λ �→ η̃λ(ϕ) is antiholomorphic on {λ ∈ C : Re (λ) > n
2 }. We define η̃±

λ in the
same way.

Theorem 7.3.14 The families of distributions η̃λ, η̃±
λ are antiholomorphic for

Re λ > n
2 and have an antiholomorphic extension to C. The distributions η̃λ, η̃±

λ

are H-invariant and for almost all λ we have (C−∞
λ )H = Cp+

λ + Cp−
λ .

Proof For the analytic continuation we refer to [vD09, Proposition 9.2.9]. It is clear
that pλ is r0-invariant. A simple calculation shows that J−λ(h, x)−1 pλ(h.x) = pλ(x)

which implies that Uλ
h pλ = pλ for h ∈ H . Hence η̃λ is H -invariant for Re λ < − n

2 .
The uniqueness of analytic extension then implies the assertion for all λ. The last
statement can be found in [vB88, Theorem 5.10]. ��

For Proposition 7.1.6 we adjust the definition so that ηλ := η̃λ for λ ∈ iR and
ηλ(ϕ) = η̃−λ(Aλϕ) for λ ∈ (0, n

2 ). Then ηλ is still invariant under H and τ . Fur-
thermore, as Uλ is irreducible and ηλ �= 0, it follows that ηλ is cyclic. Hence Theo-
rem 7.1.7 gives:

Theorem 7.3.15 The unitary representation (Uλ)λ∈iR∪(0, n2 ) can be realized in a
Hilbert space of distributions on de Sitter space dSn+1 ∼= G/H.

7.4 Reflection Positivity

Wenow turn to reflection positivity, as it manifests itself for spherical representations
of the Lorentz group.

7.4.1 Reflection Positivity for the Conformal Group

In this section we discuss the reflection positivity of the representation (Uλ,Eλ) of
G = O1,n+1(R)↑ for λ ∈ (0, n

2 ). We consider again the involutions τ and r0. Define
θ : Eλ → Eλ by θ(ϕ) := ϕ ◦ r0. Then θpλ = pλ, θ(Uλ

g ϕ) = Uλ
τ(g)θϕ and Aλθ =

θ Aλ. In particular

〈θϕ,ψ〉λ =
∫

Sn×Sn

ϕ(x)ψ(y)Qλ(r0x, y) dμSn (x) dμSn (y). (7.20)

We let Eλ+ be the space generated by the functions supported by the half sphere S
n+.

For the positivity of the twisted inner product on Eλ+ we switch to the realization of
(Uλ,Eλ) as acting on functions on R

n via the stereographic projection s from (7.18).

Lemma 7.4.1 Let Rλ(x, y) := (1 − 〈x, y〉 + ‖x‖2‖y‖2)λ− n
2 and define σ : R

n →
R

n by σ(x) = x
‖x‖2 . Then the following holds:
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(a) The stereographic projection s : B1(0) → S
n+ from (7.18) is a diffeomorphism

from the open unit ball B1(0) ⊆ R
n onto S

n+. In particular, suppϕ ⊂ S
n+ if and

only if supp(ϕ ◦ s) ⊂ B1(0).
(b) σ = s−1 ◦ r0 ◦ s.
(c) ‖σ(x) − y‖2 = ‖x‖−2(1 − 2〈x, y〉 + ‖x‖2‖y‖2).
(d) 〈θϕ,ψ〉λ = eλ

∫

B1(0)×B1(0)
ϕλ(x)ψλ(y)Rλ(x, y) dx dy for ϕ,ψ ∈ C∞

c (Sn+).

Proof (a) follows from 1 − ‖x‖2 > 0 if and only if ‖x‖ < 1 and (b) and (c) are
simple calculations and then (d) follows from (c), Lemma 7.3.9 and (7.20). ��
Theorem 7.4.2 ([NÓ14, Proposition 6.2]) Let n ≥ 1. The kernel Rλ is positive def-
inite on B1(0) if and only if λ = n

2 or λ ≤ min{ n2 , 1}.
The group H = O1,n(R)↑ maps S

n+ into itself, so that Uλ
HEλ,+ = Eλ,+. Further-

more dUλ(g)C∞(Sn+) ⊆ C∞(Sn+). The subsemigroup S := {s ∈ G : s.Sn+ ⊂ S
n+} is

open and 
-invariant with e ∈ S. Combining Theorem 7.4.2 with Theorem 7.3.11,
we obtain:

Theorem 7.4.3 For n ≥ 2, the following assertions hold:

(a) The subspace space Eλ,+ is Uλ
S -invariant for all λ ∈ iR ∪ (0, n/2).

(b) For λ ∈ iR we have Eλ,+ ⊥ θEλ,+, so that (Eλ,Eλ,+, θ) is reflection positive
with ̂Eλ = {0}.

(c) For 0 < λ ≤ n
2 , the triple (Eλ,Eλ,+, θ) and the distribution vector ηλ are reflec-

tion positive with respect to (G, S, τ ) if and only if λ ≤ 1. In this case ̂Eλ is
infinite dimensional except for n = 2 and λ = 1, where ̂Eλ is one dimensional.

Remark 7.4.4 (a) The domain where Rλ is positive definite includes the half-line,
λ ≤ min{1, n

2 }. On this half line we always have an G-invariant hermitian form on
C∞

λ which is positive definite only forλ ≥ 0. This leads to the situationwherewehave
a Fréchet space with a G-invariant hermitian form which is not positive definite, but
the induced form on Eλ,+ is positive leading to a OS-quantization for a non-unitary
representation of G. For detailed discussion see [FÓØ18, JÓl98, JÓl00, Ól00].

(b) The group Gc is the universal covering of the group SO2,n(R)0. It acts transi-
tively on the Lie ball

D := {z = ξ + iη ∈ C
n : ξ 2 + η2 + 2

√

ξ 2η2 − (ξη)2 < 1}

The stabilizer of 0 ∈ D is the universal cover Kc of S(O2(R) × On(R))0 and D ∼=
Gc/Kc.

The real ball B1(0) is a totally real submanifold in D . Furthermore

Rλ(z,w) := (1 − zw + z2w2)λ− n
2 , (7.21)

where st =∑ s j t j and s2 = ss, is well-defined, holomorphic in the first variable,
antiholomorphic in the second variable and Rλ(z,w) = Rλ(w, z). Thus Rλ is a hermi-
tian kernel onD and positive definite if λ = n

2 or λ ≤ min{1, n
2 }. The representation
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Uλc, which exists by Theorem 6.2.3, is a negative energy representation of Gc (i.e.,
a highest weight representation). We refer to [FK94, Chap. XIII] and [Ne00] for
detailed discussion of such representations.

7.4.2 Resolvents of the Laplacian on the Sphere

Now we continue the example of the sphere by specializing the construction from
Sect. 2.5 based on resolvents (m2 − Δ)−1, m > 0, of the Laplacian on S

n with the
involution r0. In this section the starting group will be On+1(R) acting on the sphere
S
n , whereas O1,n(R)↑ will play the role of the dual group. We therefore change our

notation a little and letG = On+1(R) and K = Ge0
∼= On(R). Accordingly, reflection

positivity leads to unitary representations of Gc depending on the parameter m.
Accordingly, in the discussion about the representations (Uλ,E λ) the n in Sect. 7.3
will change to n − 1.

We start with some general simple facts.

Lemma 7.4.5 Let τ beadissecting reflectionon the connected completeRiemannian
manifold M and m > 0. Let C = (m2 − ΔM)−1 and θ be as in Theorem 2.5.1. Let
� : M → M be an isometric diffeomorphism. Then the following assertions hold:

(a) C ◦ �∗ = �∗ ◦ C.
(b) Let D be the reflectionpositive distributiondefinedby D(ϕ ⊗ ψ) = 〈ϕ,Cψ〉L2(M).

Then D((�∗ϕ) ⊗ ψ) = D(ϕ ⊗ (�−1∗ ψ)).

Note that (m2 − ΔM)D(x, y) = δM(x, y), where the distribution δM on M × M
is given by δM(ϕ) = ∫M ϕ(x, x) dVM(x), where VM denotes the volume measure
on M . This implies in particular

(m2 − ΔM)x D = (m2 − ΔM)y D = (m2 − ΔM)x (m
2 − ΔM)y D = 0

off the diagonal in M × M and that (ΔM − m)x (ΔM − m)y is an elliptic differential
operator on M × M we have:

Lemma 7.4.6 On the open submanifold (M × M) \ diag(M), the distribution D is
represented by an analytic function �, which is invariant under the isometry group
Isom(M).

Define Cτ := C ◦ τ∗. Then, by the above lemma, there exists an analytic function
� on M+ × M+ such that

(Cτ ϕ)(x) =
∫

M+
�(x, y)ϕ(y)dVM (y) for x ∈ M+.

As (m2 − ΔM)Cτ ϕ = 0 for ϕ ∈ C∞
c (M+) it follows that Cτ ϕ is analytic on M+ and

ΔM(Cτ ϕ|M+) = m2Cτ ϕ|M+ .
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Since cyclic one-parameter semigroups of contractions are given bymultiplication
with functions on L2-spaces, we take a closer look at this special situation. We give
here one example, a second example is discussed in the following subsection.

After these general remarks, we now specialize to

M = S
n ⊃ M+ = S

n
+ = {x ∈ S

n : x0 > 0}.

To work with the exponential function we introduce the analytic functions

C(z) :=
∞
∑

k=0

(−1)k

(2k)! z
k and S(z) :=

∞
∑

k=0

(−1)k

(2k + 1)! z
k (7.22)

which satisfy cos z = C(z2) and sin z
z = S(z2) for z ∈ C

×.We thus obtain as in (7.15)
that

Expu(v) = C(v2) · u + S(v2) · v, u ∈ S
n, v ∈ Su . (7.23)

The complex sphere

S
n
C

= {u ∈ C
n+1 : u2 = 1} = On+1(C).e0 ∼= On+1(C)/On(C)

also is a symmetric space (in the category of complex manifolds) with respect to the
reflections sx (y) := y − 2(xy)x , for x, y ∈ S

n
C
and the corresponding exponential

map is

Expu(v) = C(v2) · u + S(v2) · v for u ∈ S
n
C
, v ∈ Tu(S

n
C
). (7.24)

Definition 7.4.7 Let ι(x) = (x0, ix) and V := ιRn+1 = Re0 ⊕ iRn . Define

[ιx, ιy]V := ιx · ιy = x0y0 − xy

and note that [g.u, g.v]V = [u, v]V for u, v ∈ V and all elements g ∈ Gc :=
ιO1,n(R)↑ι.

On C
n+1 we consider the conjugations

σR(z0, . . . , zn) := (z0, . . . , zn) and σV (z0, . . . , zn) := (z0, −z1, . . . , −zn)

with respect to the real subspaces R
n+1 and V , respectively. The conjugations σR

and σV commute and the holomorphic involution σRσV is −r0. The involution σV

commutes with Gc, but σR does not, and σRgσR = r0gr0 = τ(g) is the involution
on Gc whose fixed point group is K = Gc

e0
∼= On(R).

We also note that [x, y]V = xy =∑ j x j y j for x, y ∈ C
n+1 is the unique com-

plex bilinear extension of [·, ·]V to V + iV = C
n+1. This notation underlines the
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Lorentzian nature of the situation rather than the euclidean one. We also consider the
following sets:

• V+ := {v ∈ V : [v, v] > 0, v0 > 0} = ι(R
1,n
+ ), the forward light cone in V ;

• H
n
V := ιHn = S

n
C

∩ V+ = Gc.e0 ∼= Gc/K , the hyperboloid of one sheet in V ;
• S

n
+,C := {z ∈ S

n
C

: Re z0 > 0};
• the tube domain TV+ := iV + V+ ∼= SO2,n+1(R)/S(O2(R) × On+1(R)); and
• � := Gc.Sn+ ⊂ S

n
+,C.

The domain � is called the crown of H
n
V . Note that G

c.V = V , Gc.TV+ = TV+ and
Gc.Sn

C
= S

n
C
.

Proposition 7.4.8 The following assertions hold:

(a) TV+ ∩ R
n+1 = R

n+1
+ and S

n+ = TV+ ∩ S
n.

(b) � = TV+ ∩ S
n
+,C = TV+ ∩ S

n
C
.

(c) We have σV� = σR� = � and �σV = � ∩ V = H
n
V and �σR = � ∩ R

n+1 =
S
n+.

(d) C� := {z ∈ C : (∃u, v ∈ �) z = [u, v]V } = C \ (−∞, −1].
Proof (a) This follows from z = u + iv ∈ TV+ ∩ R

n+1 if and only if u = re0 with
r > 0 and iv = (0, v) with v ∈ R

n .
(b) By (i) we have � = Gc.Sn+ = Gc.(TV+ ∩ S

n) ⊆ TV+ ∩ S
n
C
. Let z = u + iv ∈

TV+ ∩ S
n
C
. Then u0 > 0 and, as Gc acts transitively on all level sets [u, u] = r > 0

in V+, we may assume that u = re0 with r > 0. Thus z = (r + iv0, v) with v0 ∈ R

and v ∈ R
n . As z ∈ S

n
C
, we have 1 = zz = r2 − v20 + 2irv0 + v2. Hence v0 = 0 and

this implies that z ∈ S
n+ ⊂ �. Finally, we note that, if z ∈ TV+ , then Re z0 > 0, hence

TV+ ∩ S
n
C

= TV+ ∩ S
n
+,C.

(c) follows from (a) and (b).
(d) follows from a lengthy, but elementary, calculation; see [NÓ18, Lemma 3.8]

for details. ��
We point out the following two simple consequences of Proposition 7.4.8

Corollary 7.4.9 The subset � is an open complex submanifold of S
n
C
on which

the group Gc acts by holomorphic maps. The fixed point setfixed point sets S
n+ =

�σR and H
n
V = �σV of the antiholomorphic involutions σR and σV are totally real

submanifolds of �.

7.4.3 The Distribution Kernel of (m2 − Δ)−1

In this section we use polar-coordinates xe0(t, u) = cos(t)e0 + sin(t)u. If
ϕ : S

n → C is K -invariant, then it is determined by the values on xe0(t, en), 0 ≤
t ≤ π, and we may simply write ϕ̃(t) := ϕ(xe0(t, en)). Let S

n∗ := S
n \ {−e0} and

note that S
n∗ is K -invariant as K fixes ±e0.
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Lemma 7.4.10 ([Fa08, Cor. 9.2.4]) For ϕ ∈ C2(Sn∗)K and t ∈ (0, π)

(ΔSnϕ)(xe0(t, u)) = ϕ̃′′(t) + (n − 1) cot(t)ϕ̃′(t) = 1

sinn−1(t)

d

dt

(

sinn−1(t)
d

dt

)

ϕ̃(t).

In particular, ΔSnϕ = m2ϕ if and only if

ϕ̃′′(t) + (n − 1) cot(t)ϕ̃′(t) − m2ϕ̃(t) = 0. (7.25)

We already discussed the case n = 1 in Chap. 5 and will therefore assume that
n > 1.The substitution s = sin2(t/2) = 1−cos t

2 , 0 ≤ t ≤ π , and ξ(s) := ϕ(xe0(t, en))
transforms (7.25) into the hypergeometric differential equation:

s(1 − s)ξ ′′(s) +
(n

2
− ns
)

ξ ′(s) − m2ξ(s) = 0 . (7.26)

As ξ does not have a singularity in s = 0, this leads to

ξ(s) = c · 2F1

(n − 1

2
+ λ,

n − 1

2
− λ,

n

2
; s
)

(7.27)

with

c = ξ(0) and λ :=
⎧

⎨

⎩

√

(

n−1
2

)2 − m2 if m2 <
(

n−1
2

)2

i
√

m2 − ( n−1
2

)2
if m2 ≥ ( n−1

2

)2
.

(7.28)

We recall here the definition of 2F1 and refer to [WW63, Sect. 14.2] for more
details. For α ∈ C and k ∈ N let

(α)k :=
k−1
∏

j=0

(α + j) = �(α + k)/�(α).

For a, b ∈ C and c ∈ C \ −N0, we have

2F1(a, b, c; z) =
∞
∑

k=0

(a)k(b)k
(c)k

zk

k! for |z| < 1. (7.29)

For a, b, c > 0 or b = a, c > 0, (7.29) implies that 2F1(a, b; c; z) > 0 for
0 ≤ z < 1, and 2F1(a, b; c; 0) = 1. As 2F1(a, b; c; z) = 2F1(b, a; c; z) and m > 0,
we obtain the same function if we replace λ by −λ. In particular,

2F1

(

n − 1

2
+ λ,

n − 1

2
− λ; n

2
; x
)

> 0 for 0 ≤ x < 1.

http://dx.doi.org/10.1007/978-3-319-94755-6_5
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We now apply this to the kernel �m(u, v) corresponding to Cτ . Because of the
G-invariance it follows that the function ψ := �m(·, e0) ∈ C∞(Sn∗) is K -invariant.
It also satisfies the differential equation ΔSnψ = m2ψ on S

n∗ (Sect. 7.4.2). Hence
there exists a constant γ such that

ψ(xe0(t, v)) = γ · 2F1

(

n − 1

2
+ λ,

n − 1

2
− λ,

n

2
; sin2(t/2)

)

.

Theorem 7.4.11 For every m > 0, there exists a constant γm > 0 such that the Gc-
invariant kernel �m, corresponding to Cτ , extends to a hermitian kernel on � × �

is given by

�m(x, y) = γm · 2F1

(

n − 1

2
+ λ,

n − 1

2
− λ; n

2
; 1 − [x, σV (y)]V

2

)

(7.30)

and defines a positive definite hermitian kernel on � × �.

Proof First note that sin2(t/2) = 1
2 (1 − cos(t)) = 1

2

(

1 − [xe0(t, v), σV (e0)]V
)

for
v ∈ e⊥

0 . Hence, by the above discussion:

�m(x, e0) = c · 2F1

(

n − 1

2
+ λ,

n − 1

2
− λ,

n

2
; 1 − [x, σV (e0)]V

2

)

.

The hypergeometric function 2F1 has an analytic continuation to C \ [1, ∞),
see [WW63, p. 288]. It follows from Proposition 7.4.8(d) that the right hand side,
and hence also �m(·, e0), has an extension to � × � given by (7.30). The exten-
sion is unique as S

n+ is a totally real submanifold in � (Proposition 7.4.8(c)). It is
holomorphic in the first variable and antiholomorphic in the second variable and
�m(x, y) = �m(y, x) which follows from (7.29) and the form of the parameters. As
the kernel C is reflection positive, �m(u, v) is positive definite on S

n+ × S
n+. Hence

Theorem A.1 in [NÓ14] implies that �m is positive definite on � × �. In particular
�m(e0, e0) > 0. It follows that c > 0. ��

Above we introduced the principal and complementary series representations
(Uλ,E λ)λ∈iR∪(0, n−1

2 ) and just after Theorem 7.3.13 we defined the spherical function
ϕλ(g) with spectral parameter λ. We will use this now for to the group Gc. The
following proposition follows from [ÓP13, p. 1158] and [vD09, p. 126]:

Proposition 7.4.12 Forψm(x) = 1
c�m(x, eo) andλ =

√

(

n−1
2

)2 − m2 as before, we
have ψm |Hn = ϕλ. In particular, the spherical function ϕλ extends to a holomorphic
function on � and the unitary representation of Gc on the reproducing kernel space
H�m ⊆ O(�) with kernel �m is equivalent to (Uλ,E λ).

The last statement on analytic continuation in Proposition 7.4.12 is a special case
of the general theorem due to Krötz and Stanton [KS04, KS05].

In view of Proposition 7.4.12, we will from now on use the notation ϕλ and �λ

for the normalized version of ψm and �m , where λ is defined by (7.28).
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Lemma 7.4.13 Let � �= 0 be a hermitian positive definite Gc-invariant kernel on
� × �. If �e0 |Hn

V
= 0, then � = 0.

Proof As H
n
V is totally real in � by Corollary 7.4.9, �e0 |Hn

V
= 0 implies �e0 = 0

on all of �. By the Gc-invariance it follows that �(z, x) = 0 for all z ∈ � and all
x ∈ H

n
V . As �(z, ·) is antiholomorphic, it vanishes on all of �. ��

Theorem 7.4.14 If � is a positive definite Gc-invariant kernel on � × � for which
the canonical representation (U,H�) of Gc is irreducible, then there exist c > 0
and λ ∈ iR ∪ (0, n−1

2

]

such that � = c�λ and (U,H�) is equivalent to (Uλ,E λ).

Proof The function �e0 is K -invariant. Hence Theorem 7.3.13 implies that there
exists a λ ∈ iR ∪ (0, n−1

2 ] such that (L ,H�) � (Uλ,Hλ). We can assume that
�(e0, e0) = 1. Then �(e0, g.e0) = 〈�e0 , �g.e0〉 = 〈�e0 , Lg�e0〉 = 〈1,Uλ

g 1〉 =
ϕλ(g). ��

The Boundary of the Crown and the Spherical Function ϕλ

In this subsection we describe the boundary of the crown as a disjoint union of two
orbits. Both are homogeneous spaces that we have already met, the de Sitter space
dSn and the forward pointing light like vectorsL

n+ which we have already introduced
in Sects. 7.3.3 and 7.3.1, respectively. For details we refer to [NÓ18].

A simple calculation shows that the boundary of � in S
n
C
is given by

∂� =
{

z = u + iv ∈ V + iV = C
n+1 : [u, u]V = 0, u0 ≥ 0,

[v, v]V = −1, [u, v]V = 0

}

(7.31)

([NÓ18, Lemma 3.10]). If u = 0, then (7.31) leads to a realization of de Sitter space

dSn := i{v ∈ V : [v, v]V = −1} = iV ∩ S
n
C

= Gc.ien ∼= Gc/H ⊆ ∂� ∩ iV

where H � O1,n−1(R) is the stabilizer of en ∈ dSn .
Let ξ0 := e0 + ien andwriteGc

ξ0
= MN , whereM and N are similar to the groups

introduced in Sect. 7.3.1 except one has to replace v by iv and interchange the second
and last columns and second and last row as we now consider en as a base point.

Lemma 7.4.15 Suppose that n ≥ 2 and letO := Gc.(e0 + ien + en−1). The bound-
ary of the crown is the union two Gc-orbits

∂� = dSn ∪̇O.

In particular, dSn is the unique open Gc-orbit in the boundary. The projection of O
onto V is L

n+ and the projection onto iV is dSn.

The orbit Gc.ien ∼= dSn is called the Shilov boundary of � in S
n
C
. The tangent

space of dSn at en is the n-dimensional Minkowski space
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Ten (dS
n) = iR ⊕ R

n−1 � R
1,n−1.

By (7.23), we have

Expen (z) = S(z2)z + C(z2)en for z ∈ Ten (dS
n)C = C ⊕ C

n−1. (7.32)

We now describe how one can obtain the crown by moving inward from the de
Sitter space dSn .

Theorem 7.4.16 For g ∈ G let V π+,g.en = {v ∈ g.V+ : [v, v]V < π2} ⊂ Tg.en (dS
n).

Then
� = Gc.Expen (V

π
+,en ) =

⋃

p∈dSn
Expp(V

π
+,p).

Proof In view of the Gc-invariance of � and the equivariance of the exponential
map of S

n
C
, it suffices to verify the first equality. From (7.32) we obtain for v ∈

R+ ⊕ iRn−1 ⊂ iTen (dS
n) and R+ = (0, ∞):

Expen (v) = S([v, v]V )v + C([v, v]V )en (7.33)

and this is contained in TV+ ∩ S
n
C

= � if [v, v]V ∈ (0, π2). Therefore Expen (�en ) ⊆
�. If, conversely, z ∈ � = Gc.Sn+, there exists a t ∈ (0, π) such that z isGc-conjugate
to x = (sin t, 0, . . . , 0, cos t). But then te0 ∈ V π+,en , and (7.33) yields x = Expen (te0).
This proves the claim. ��

In this section we give a different description of the spherical function ϕλ and the
kernel �λ(x, y) (cf. Sect. 7.4.3) using the space L

n+. For that we have to assume that
m ≥ n−1

2 (which corresponds to the principal series), which we do from now on.
Recall the map ξ : S

n−1 → L
n+ = Gc.ξ0, x �→ (1, x) and the action of Gc on

S
n−1 ∼= L

n+/R
×
+, given by

ξ(g.u) = J (g, u)−1g(ξ(u)).

Lemma 7.4.17 Let z ∈ � and ξ ∈ L
n+. Then Re [z, ξ ]V > 0.

Proof Write z = u + iv ∈ � ⊆ TV+ (Proposition 7.4.8). Then u ∈ V+ implies that

Re [z, ξ0]V = [u, ξ0]V = u0 − un > 0 for ξ0 = e0 + ien ∈ V .

But then Re [z, g.ξ0]V = Re [g−1.z, ξ0]V > 0 for all g ∈ Gc. ��
For λ ∈ C we define the analytic kernel

Kλ : � × L
n
+ → C, Kλ(z, ξ) := Kλ,ξ (z) := [z, ξ ]λ− n−1

2
V . (7.34)

This kernel is continuous for Re λ > (n − 1)/2. Note the similarity with the distri-
bution vector pλ from (7.19).
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Theorem 7.4.18 For λ ∈ i[0, ∞) ∪ (0, (n − 1)/2), the assignment

Pλ : L2(Sn−1) → O(�), (Pλϕ)(z) :=
∫

Sn−1
Kλ(z, ξ(u))ϕ(u) dμSn−1(u)

defines a Gc-intertwining operator (Uλ, L2(Sn−1)) → (L ,H�λ
) withPλ1 = ϕλ.

Notes

Most of Sects. 7.1–7.3 is from [NÓ14], with slightly different notation. Under some
additional assumptions, Theorem 7.1.7 can be found in [vD09, Theorem 8.2.1], and
in [NÓ14, Sect. 2] for the special case H = {e}. In Sect. 7.3 we added some material
on the principal series representations and the H -invariant distributions vectors. The
notation in Sect. 7.3 has also been adapted to the standard notation from [JÓl98,
JÓl00, Ól00, FÓØ18] as well as the notation for the last section in this chapter. The
material about the sphere is from [NÓ18]; for its relation to construction of QFTs on
de Sitter space, we refer to [BJM16].

The crown is the maximal Gc-invariant domain for the holomorphic exten-
sion of all spherical functions on the Riemannian symmetric space Gc/K . It is
shown in [KS05], that in our case the crown is a Riemannian symmetric space
SO2,n(R)0/(SO2(R) × SOn(R)); see also [NÓ18] for a direct argument. For more
information about the crown see [AG90, KO08, KS04].



Chapter 8
Generalized Free Fields

We now turn to representations of the Poincaré group corresponding to scalar gener-
alized free fields and their euclidean realizations by representations of the euclidean
motion group. We start in Sect. 8.1 with a brief discussion of Lorentz invariant mea-
sures on the forward light cone V+ and turn in Sect. 8.2 to the corresponding unitary
representations. Applying the dilation construction to the time translation semigroup
leads immediately to a euclidean Hilbert space E on which we have a unitary rep-
resentation of the euclidean motion group. In Sect. 8.3 we characterize those repre-
sentations which extend to the conformal group O2,d(R) of Minkowski space. Then
the euclidean realization is a unitary representation of the Lorentz group O1,d+1(R),
acting as the conformal group on euclidean R

d .

8.1 Lorentz Invariant Measures on the Light Cone
and Their Relatives

Before we turn to unitary representations of the Poincaré group, it is instructive to
have a closer look at Lorentz invariant measures μ on the forward light cone V+ and
their projections to R

d−1. We shall also see that these measures are directly related
to rotation invariant measures ν on euclidean space R

d , and this establishes the key
link between unitary representations of the Poincaré group P(d) and the euclidean
group E(d).

Definition 8.1.1 For m ≥ 0 or d > 1, we define a Borel measure μm on

Hm := {p ∈ R
d : [p, p] = p20 − p2 = m2, p0 > 0}

⊆ V+ = {p = (p0,p) ∈ R
d : p0 ≥ 0, [p, p] = p20 − p2 ≥ 0}

© The Author(s) 2018
K.-H. Neeb and G. Ólafsson, Reflection Positivity, SpringerBriefs in Mathematical
Physics, https://doi.org/10.1007/978-3-319-94755-6_8
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by ∫
Rd

f (p) dμm(p) =
∫
Rd−1

f
(√

m2 + p2,p
) dp√

m2 + p2

(cf. [RS75, Chap. IX], [vD09, Lemma9.1.2/3]). These measures are invariant under
the Lorentz group O1,d−1(R)↑ and every Lorentz invariant measure μ on V+ is of the
form

μ = cδ0 +
∫ ∞

0
μm dρ(m), (8.1)

where c ≥ 0 and ρ is a Borel measure on [0,∞) (with ρ({0}) = 0 for d = 1) whose
restriction to R+ is a Radon measure (see [NÓ15a, TheoremB.1]).1

Remark 8.1.2 (a) For d = 1, we have Hm = {m} form > 0 and H0 = ∅. Therefore
μ0 does not make sense. For m > 0, we have μm = 1

m δm , where δm is the Dirac
measure in m.

(b) For d = 2, the measure μ0 is singular in 0, but every ϕ ∈ S (R2) vanishing in 0
is integrable (cf. [GJ81, p. 103]). In particular, this measure does not define
a distribution, it defines a functional on the smaller space of test functions
S∗(Rd) := {ϕ ∈ S (Rd) : ϕ(0) = 0}.

(c) By [NÓ15a, TheoremB.1], the measure μ in (8.1) is tempered if and only if the
measure ρ is tempered and, in addition,

∫ 1

0

1

m
dρ(m) < ∞ for d = 1,

∫ 1

0
ln(m−1) dρ(m) < ∞ for d = 2.

(8.2)

Example 8.1.3 (Generalized free fields)

(a) For the scalar generalized free field of spin zero on R
d , the corresponding one-

particle Hilbert space isH := L2(Rd , μ), where μ is a Lorentz invariant mea-
sure on V+ (see (8.1)). Here the time translation semigroup Ct acts by the con-
tractions

(Ct f )(p) = e−tp0 f (p).

Thedilation construction fromExample4.3.8 leads to the spaceE := L2(Rd+1, ζ )

with

dζ(λ, p) = 1

π

p0
p20 + λ2

dλ dμ(p) and (Ut f )(λ, p) = eitλ f (λ, p). (8.3)

For pr2(λ, p0,p) = (λ,p), the projected measure ν := (pr2)∗ζ on R
d is given,

in the special case μ = μm , by the measure νm from Example2.4.7:

1In Quantum Field Theory this is known as the Lehmann Spectral Formula for two-point functions;
see [GJ81, Theorem6.2.4].
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dνm(p0,p) := 1

π

√
m2 + p2

m2 + p2 + p20
dp0

1√
m2 + p2

dp = 1

π

dp

m2 + p2
, (8.4)

so that

dν(p0,p) = 1

π

∫ ∞

0

1

m2 + p2
dp dρ(m) =

( 1

π

∫ ∞

0

dρ(m)

m2 + p2

)
dp = Θ(p) dp,

(8.5)
for Θ(p) := 1

π

∫ ∞
0

dρ(m)

m2+p2 .

(b) Since elements of L2(Rd , ν) correspond to functions in L2(Rd+1, ζ ) not depend-
ing on the second argument p0, we obtain an isometric embedding

pr∗2 : L2(Rd , ν) → E = L2(Rd+1, ζ ). (8.6)

(c) The free scalar field of mass m and spin s = 0 on R
d (with m > 0 or d > 1)

corresponds to the measure μ = μm (cf. [GJ81, p. 103]). In this case pr∗2 is
surjective, so that we can identify L2(Rd , ν) with E . The measure νm is finite if
and only if d = 1 and m > 0. It is tempered if and only if d > 2 or m > 0.

Definition 8.1.4 We call a positive Borel measure ρ on [0,∞) tame if∫ ∞
0

dρ(m)

1+m2 < ∞. Note that this implies in particular that ρ is tempered.

Remark 8.1.5 In view of [NÓ15a, Lemma7.1], the measure ρ is tame if and only if
Θ(p) < ∞ for every p ∈ R

d and this in turn is equivalent to L2(Rd , ν) 
= {0}.
If this is the case, then the measure ν on R

d is tempered if and only if d > 2
or the conditions (8.2) characterizing the temperedness of μ for d = 1, 2 are satis-
fied ([NÓ15b, Proposition7.3]). As tameness of ρ implies that ρ is tempered, μ is
tempered if ν has this property.

8.2 From the Poincaré Group to the Euclidean Group

Wehave already seen inExample8.1.3 that Lorentz invariantmeasures on the forward
light cone lead by the dilation construction to rotation invariantmeasures on euclidean
space.Wenow take a closer lookof the implications of this correspondence for unitary
representations of the Poincaré group P(d) and the euclidean group E(d). In QFT,
this corresponds to the one-particle representations of scalar generalized free fields.

Example 8.2.1 (One particle representation of generalized free fields) Let μ be a
Lorentz invariant Radon measure as in (8.1) on the forward light cone V+ ⊆ R

d with
c = μ({0}) = 0. Then we have a natural unitary representation of the Poincaré group
Gc := P(d)↑ = R

d
� O1,d−1(R)↑ on

H := L2(V+, μ) by (Uμ(x, g) f )(p) := eixp f (g−1 p).



106 8 Generalized Free Fields

Analytic continuation of the time-translation group leads to the contraction semi-
group

(Ct f )(p) = (Uμ(i te0, 1) f )(p) = e−tp0 f (p),

and the dilation construction from Example4.3.8, applied to this contraction semi-
group, leads to the Hilbert space

E = L2(R × V+, ζ ) = L2(Rd+1, ζ ) with dζ(λ, p) = 1

π

p0
p20 + λ2

dλ dμ(p)

(cf. Example8.1.3).
We consider the unitary representationU of the euclidean translation group of R

d

on E , given by

(
U (x0, x) f

)
(λ, p0,p) = e−i(x0λ+xp) f (λ, p0,p). (8.7)

The constant function 1 on R
d+1 is a distribution vector for U if and only if

the projected measure ν = (pr2)∗ζ under pr2(x, p0,p) = (x,p), it tempered
(cf.Remark8.1.5 for criteria), and then the corresponding distribution is D = ν̂

(Lemma7.1.9).
It is remarkable that the measure ν onR

d is rotation invariant, so that dilation with
respect to the contraction semigroup (Ct )t≥0 leads directly from the representation
Uμ of the Poincaré group on L2(Rd , μ) to a representation U ν of the euclidean
motion group E(d) on L2(Rd , ν) by

(U ν(x, g) f )(p) := e−i xp f (g−1 p).

For μ = μm , the representation Uμm of the Poincaré group is irreducible because
the measure μm lives on a single O1,d−1(R)↑-orbit in R

d (it is O1,d−1(R)↑-ergodic).
As the measure νm is a proper superposition of the invariant measures on spheres of
any radius, the corresponding representation U νm of E(d) is reducible and a direct
integral of representations corresponding to the invariant measures on the spheres
of radius r . Since all measures (νm)m>0 are equivalent to Lebesgue measure, all
representations (U νm )m>0 are actually equivalent.

Proposition 8.2.2 If ρ is a tame measure on [0,∞) for which the measure ν is
tempered, then the rotation invariant distribution ν̂ ∈ C−∞(Rd) is reflection positive
for (Rd , R

d+, θ) and θ(x0, x) = (−x0, x), i.e.,

∫
Rd

ψ̂ · θψ̂ dν ≥ 0 f or f ∈ C∞
c (Rd

+).

Proof (see also [GJ81, Proposition6.2.5])Writingν = ∫ ∞
0 νm dρ(m)withdνm(p) =

1
π

dp
m2+p2 , the assertion follows from the reflection positivity of the distributions ν̂m

verified in Example2.4.7. ��
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We now assume that the measure ν is tempered (cf.Remark8.1.5). Then the cor-
responding distribution D = ν̂ is reflection positive by Proposition8.2.2. Let

F := pr∗2(L
2(Rd , ν)) ⊆ E = L2(Rd+1, ζ )

be the image under the isometry pr∗2 from (8.6). It coincides with [[UC∞
c (Rd )1]]

(see8.7), and reflection positivity of ν̂ implies that the subspaceF+ := [[UC∞
c (Rd+)1]]

is θ -positive.
To see how this fits the subspace E0 and E+ of E , we first note that

F0 := F ∩ E0

consists of those function inE0 that are also independent of p0. This is the L2-space of
the projected measure ν̃ := (pr1)∗ν on R

d−1 for pr1(p0,p) = p. Since ν = (pr2)∗ζ ,
we also have ν̃ := (pr1)∗μ. According to [NÓ15a, TheoremB.1],F0

∼= L2(Rd−1, ν̃)

is non-zero if and only if the measure ν̃ is tempered, which is equivalent to the
additional condition ∫ ∞

1

dρ(m)

m
< ∞ (8.8)

on the growth of ρ at infinity. Assume that ν̃ is tempered. Then 1 is a distribution
vector for the representation U |Rd−1 on E , and the corresponding cyclic subspace
coincides withF0 ⊆ E0 (Lemma7.1.9). This in turn implies thatF+ ⊆ E+. Further,
Ê ∼= L2(Rd , μ) contains the subspace F̂0

∼= F0
∼= L2(Rd−1, ν̃) of functions not

depending on p0, and the canonical mapF0 → Ê0 is unitary. Accordingly, the “time
zero-subspace” F̂0 is the same on the euclidean and the Minkowski side.

Since F0 is U -cyclic in F , the subspace F̂0 is Û -cyclic in Ê , showing that
F̂ = Ê . Therefore the representationU ν of the euclidean group E(d) onF provides
a euclidean realization of the representation (Uμ, L2(Rd , μ)) of P(d)↑. To see how
F is generated from F0, we now determine the corresponding positive definite
operator-valued function

ϕ : R → B(F0), ϕ(t) = P0U (t, 0)P∗
0 ,

where P0 : E → F0 is the orthogonal projection. This function is determined by the
relation

〈ξ, ϕ(t)η〉 = 〈ξ,Utη〉 for ξ, η ∈ F0.

We have

〈ξ, ϕ(t)η〉 =
∫
Rd

e−i tp0ξ(p)η(p) dν(p) =
∫
Rd

e−i tp0ξ(p)η(p)Θ(p0,p) dp0 dp

=
∫
Rd−1

ξ(p)η(p)

∫
R

e−i tp0Θ(p0,p) dp0 dp =
∫
Rd−1

ξ(p)η(p)Θt (p) dp,
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where (8.5) yields

Θt (p) :=
∫
R

e−i tp0Θ(p0,p) dp0 = 1

π

∫
R

∫ ∞

0
e−i tp0

m

m2 + p2 + p20
dρ(m) dp0

=
∫ ∞

0

( 1

π

∫
R

e−i tp0
m

(m2 + p2) + p20
dp0

)
dρ(m)

=
∫ ∞

0

m√
m2 + p2

e−|t |
√

m2+p2 dρ(m).

Here we have used Example2.4.3 in the calculation. Now d ν̃(p) = Θ0(p)dp implies
that the operator ϕ(t) on F0 is given by multiplication with the function Θt/Θ0.

For the subspace F̂0 ⊆ Ê and f, g ∈ F0, the relation

〈 f̂ , Ût ĝ〉 = 〈 f, θUtg〉 = 〈 f,Utg〉 = 〈 f, ϕ(t)g〉 = 〈 f̂ , ϕ(t)ĝ〉

implies that ϕ|R+ is the positive definite function on R+ corresponding to the cyclic
subspace F̂0 ⊆ Ê .

Example 8.2.3 For the special case where ρ = δm with m > 0 or d > 2, we have

Θt (x) = m√
m2 + x2

e−|t |√m2+x2 , and
Θt (x)
Θ0(x)

= e−|t |√m2+x2

is multiplicative for t ≥ 0. This corresponds to the fact that q(E0) = Ê (the Markov
case; Proposition3.4.9), which in turn is due to the fact that the inclusion
L2(Rd−1, ν̃m) ↪→ L2(Rd , μm) is surjective.

This has the interesting consequence that, ifwe consider elements of Ê as functions

f : R+ × R
d−1 → C

as in the preceding example, we have

f (t,p) = (Ût f )(0,p) = e−t
√

m2+p2 f (0,p). (8.9)

This in turn leads by analytic continuation to

f (i t,p) = (Uc
t f )(0,p) = eit

√
m2+p2 f (0,p). (8.10)

These formulas provide rather conceptual direct arguments for formulas like [GJ81,
Proposition6.2.5].

Remark 8.2.4 Aunitary representation (U,H ) of the Poincaré group is said to be of
positive energy if the spectrum of the time translation group is non-negative. In view
of the covariance with respect to the Lorentz group O1,d−1(R)↑, this is equivalent
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to the spectral measure of U |Rd to be supported in the closed forward light cone
V+ because this is the set of all orbits of O1,d−1(R)↑ on which the function p0 is
non-negative.

If such a representation is multiplicity free on R
d , then H ∼= L2(V+, μ) for a

measure μ on V+ which is quasi-invariant under O1,d−1(R)↑. Since the action of
O1,d−1(R)↑ on V+ has a measurable cross section and every orbit carries an invariant
measure, the measure μ can be chosen O1,d−1(R)↑-invariant. The representation U
is irreducible if and only if the measure μ is ergodic, i.e., μ = μm for some m ≥ 0
(with m > 0 for d = 1) or μ = δ0 (the Dirac measure in 0).

For all the multiplicity free representations (Uμ, L2(V+, μ)), Example8.2.1 pro-
vides a euclidean realization in the dilation space E = L2(R+ × V+, ζ ), as far as the
representation of the subgroup R

d
� Od−1(R) is concerned. The subspace E0 ⊆ E is

invariant under the subgroup Gτ ∼= R
d−1

� Od−1(R), which also implies the invari-
ance of E+ under this group.

A euclidean realization for the full group is obtained in Example8.1.3 for irre-
ducible representations, i.e., μ = μm . In the general case we assume that ν is tem-
pered. Then the following theorem is the bridge between the reflection positive
representation U ν of E(d) on F ∼= L2(Rd , ν) and the representation Uc ∼= Uμ of
the Poincaré group on F̂ ∼= L2(Rd , μ).

Theorem 8.2.5 If ν is tempered, then 1 ∈ E −∞ is a reflection positive distribution
vector for the representation U of R

d . Accordingly, we obtain a reflection positive
representation of R

d on the subspace F ⊆ E generated by U−∞(C∞
c (Rd))1. The

corresponding reflection positive distribution ν̂ on R
d is rotation invariant, so that

F carries a reflection positive representation of E(d) for which F0 and F+ are
invariant under H := E(d)τ ∼= R

d−1
� Od−1(R).

Moreover, F̂ ∼= L2(V+, μ), q : F+ → F̂ is H-equivariant and we have the rela-
tion Û (t, 0) = Uμ(i t, 0, 1) for the positive energy representationUμ of the Poincaré
group P(d)↑ on F̂ .

Proof We have already seen that 1 ∈ E −∞ is equivalent to ν being tempered
(Lemma7.1.9). To determine the corresponding space F̂ , we have to take a closer
look at the corresponding reflection positive distribution D = ν̂ for (Rd , R

d+, θ)

(Proposition8.2.2). In view of [NÓ14, Proposition2.12], this follows if we can show
that D|Rd+ coincides with the Fourier–Laplace transform

FL (μ)(x) :=
∫
R

d+
e−x0 p0eixp dμ(p).

First we observe that the temperedness ofμ implies thatFL (μ)(x) exists point-
wise and defines an analytic function on R

d+. Here the main point is that, on V+ we
have p2 = p20 + p2 ≤ 2p20 (cf. [NÓ14, Example4.12]). We have
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FL (μ)(x) =
∫
V+

e−x0 p0eixp dμ(p) =
∫ ∞

0

∫
Rd−1

e−x0 p0eixp dμ(p0,p)

=
∫ ∞

0

∫
Rd−1

( 1

π

∫
R

eitx0
p0

p20 + t2
dt

)
eixp dμ(p0,p)

=
∫
R×Rd

ei(t x0+xp) dζ(t, p0,p) =
∫
Rd

ei(t x0+xp) dν(t,p) = ν̂(x).

If μ is infinite, then the triple integral only exists as an iterated integral in the correct
order, not in the sense that the integrand is Lebesgue integrable. One can dealwith this
problem by integrating against a test function on R

d+, and then the above calculation
shows that FL (μ) coincides with ν̂ on R

d+ as a distribution. ��

8.3 The Conformally Invariant Case

In this section we study the special case where the measureμ on V+ is semi-invariant
under homotheties. This provides a bridge to the complementary series representa-
tions of O1,d+1(R)↑ discussed in Sect. 7.3.2 because then the representation of E(d)

on L2(Rd , ν) extends to the conformal group O1,d+1(R) of R
d .

Lemma 8.3.1 ([NÓ15b, Lemma5.17]) An O1,d−1(R)↑-invariant measure
μ = ∫ ∞

0 μm dρ(m) on V+ is semi-invariant under homotheties if and only if

dρ(m) = ms−1 dm f or some s ∈ R.

If this is the case, then ρ is tempered if and only if s > 0, and μ is tempered if d > 1
or s > 1. For d > 1, the measure ν̃ on R

d−1 is tempered if and only if s > 1. For
d = 1, the measure μ is never finite.

From now on we write dρs(m) = ms−1 dm on [0,∞). As the measure μ is semi-
invariant under homotheties, we can expect the corresponding representation of the
Poincaré group to extend to the conformal group SO2,d(R) of Minkowski space.

Lemma 8.3.2 ([NÓ15b, Lemma5.18], Proposition7.3.10) The measure ν =
Θs · dp corresponding to ρs is tempered if and only if 0 < s < 2 for d > 1 and
if 0 < s < 1 for d = 1. In this case Θs is a multiple of ‖p‖s−2 and the Fourier
transform ν̂ is a positive multiple of ‖x‖−d+2−s .

The preceding lemma implies in particular that the distribution ‖x‖−a on R
d is

reflection positive for d − 2 < a < d, which has been obtained in [NÓ14, Proposi-
tion6.1], [FL10, Lemma2.1] and [FL11, Lemma3.1] by other means. This connec-
tion is made more precise in the following theorem:
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Theorem 8.3.3 Let 0 < s < 2, resp., 1 < s < 2 for d = 1. Then

(i) The canonical representation of the conformal motion group

CE(d) := R
d

� (Od(R) × R
×
+)

on E := L2(Rd , ν) ∼= HD for D(x) = ‖x‖−d+2−s extends to a complemen-
tary series representation of the orthochronous euclidean conformal group
O1,d+1(R)+.

(ii) The corresponding representation of the conformal Poincaré group

CP(d)↑ := R
d

� (L↑ × R
×
+)

is irreducible and extends to a representation of a covering of the relativistic
conformal group SO2,d(R)0.

Proof (i) From Lemma8.3.2 we know that E := L2(Rd , ν) can be identified with
the Hilbert space HD obtained by completion of C∞

c (Rd) with respect to the
scalar product

〈ϕ,ψ〉s :=
∫
Rd

∫
Rd

ϕ(x)ψ(y)

‖x − y‖d−2+s
dx dy

(cf.Definition2.4.5). NowTheorem7.3.8 implies that the representation of E(d)

on this space extends to an irreducible complementary series representation of
the conformal group O1,d+1(R)+

(ii) The irreducibility of the representation Uc follows from the transitivity of the
action ofR×

+O1,d−1(R)↑ on the open light cone V+. To see that this representation
extends to SO2,d(R)0, we can use the fact that the representation U of the con-
formal group of R

d is reflection positive with respect to the open subsemigroup
of strict compressions of the open half space R

d+ in the conformal compactifi-
cation S

d . As explained in [JÓl00, Sects. 6, 10], see also [HN93], [JÓl98], the
reflection positivity and the Lüscher–Mack Theorem now provide an irreducible
representation of the simply connected c-dual group Gc on Ê . ��



Chapter 9
Reflection Positivity and Stochastic
Processes

In this chapter we describe some recent generalizations of classical results by Klein
and Landau [Kl78, KL75] concerning the interplay between reflection positivity
and stochastic processes. Here the main step is the passage from the symmetric
semigroup (R, R+,− idR) tomore general triples (G, S, τ ). This leads to the concept
of a (G, S, τ )-measure space generalizingKlein’s Osterwalder–Schrader path spaces
for (R, R+,− idR). A key result is the correspondence between (G, S, τ )-measure
spaces and the corresponding positive semigroup structures on the Hilbert space ̂E .

The exposition in this chapter is minimal in the sense that the main results are
explained and full definitions are given. For more details we refer to [JN15].

9.1 Reflection Positive Group Actions on Measure Spaces

We start with the basic concepts related to (G, S, τ )-measure spaces which provide
a measure theoretic perspective on reflection positive representations of symmetric
semigroups (G, S, τ ).

Definition 9.1.1 Let (G, τ ) be a symmetric group. A (G, τ )-measure space is a
quadruple ((Q,Σ,μ),Σ0,U, θ) consisting of the following ingredients:

(GP1) a measure space (Q,Σ,μ),
(GP2) a sub-σ -algebra Σ0 of Σ ,
(GP3) ameasure preserving actionU : Gτ → Aut(A ) on the vonNeumann algebra

A := L∞(Q,Σ,μ), for which the corresponding unitary representation on
L2(Q, μ) is continuous, and

(GP4) θ = Uτ satisfies θE0θ = E0, where E0 : L∞(Q,Σ,μ) → L∞(Q,Σ0, μ) is
the conditional expectation.

(GP5) Σ is generated by the sub-σ -algebras Σg := UgΣ0, g ∈ G.

Ifμ is a probability measure, we speak of a (G, τ )-probability space. If S = S� ⊆ G
is a symmetric subsemigroup, then we write Σ± for the sub-σ -algebra generated by
(Σs)s∈S±1 , and E± for the corresponding conditional expectations.

© The Author(s) 2018
K.-H. Neeb and G. Ólafsson, Reflection Positivity, SpringerBriefs in Mathematical
Physics, https://doi.org/10.1007/978-3-319-94755-6_9
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Definition 9.1.2 (a)A (G, τ )-measure space is called reflection positivewith respect
to the symmetric subsemigroup S if

〈θ f, f 〉 ≥ 0 for f ∈ E+ := L2(Q,Σ+, μ).

This is equivalent to E+θE+ ≥ 0 as an operator on L2(Q,Σ,μ) and obviously
implies θE0 = E0. If this condition is satisfied and, in addition, Σ0 is invariant
under the unit group H(S) := S ∩ S−1, then we call it a (G, S, τ )-measure space.1

(b) A Markov (G, S, τ )-measure space is a (G, S, τ )-measure space with the
Markov property E+E− = E+E0E− (cf. Definition 2.3.1).

Proposition 3.4.9 immediately provides a reflection positive representation on the
corresponding L2-space:

Proposition 9.1.3 For a (G, S, τ )-measure space ((Q,Σ,μ),Σ0,U, θ), we put
E := L2(Q,Σ,μ),E0 := L2(Q,Σ0, μ)andE± := L2(Q,Σ±, μ). Then the natural
action of G on E defines a reflection positive representation of (G, S, τ ).

The Markov property is equivalent to the natural map E0 → ̂E being unitary
and this implies that the positive definite function ϕ : S → B(E0), ϕ(s) = E0UsE0

is multiplicative and the unitary representation U of G on (E ,E+, θ) is a euclidean
realization of the ∗-representation (ϕ,E0) of (S, �).

Example 9.1.4 Typical examples arise in QFT as follows. Let E be a real Hilbert
space and X = E ∗ be its algebraic dual space, i.e., the space of all linear function-
als E → R, continuous or not. On this set we consider the smallest σ -algebra for
which all evaluation functionals ϕ(ξ)(α) := α(ξ) aremeasurable. Then there exists a
Gaussian measure μ on X such that any tuple (ϕ(ξ1), . . . , ϕ(ξn)) is jointly Gaussian
with covariance (〈ξi , ξ j 〉)1≤i, j≤n [JN15, Example4.3], [Sim05, Theorem2.3.4]. The
orthogonal group O(E ) acts in a measure preserving way on X by Uα := α ◦U−1.

If we start with a reflection positive unitary representation (U,E ,E+, θ) of
(G, S, τ ), for which E0 is U -cyclic and E+ is generated by USE0, then all this struc-
ture is reflected in (X,Σ,μ). In particular, we obtain a measure preserving action
of Gτ on X . We write Σ0 ⊆ Σ for the smallest σ -subalgebra for which all functions
(ϕ(ξ))ξ∈E0 are measurable. Then Σ+ is generated by the translates (UsΣ0)s∈S and
(GP1-5) are satisfied.

The following concept aims at an axiomatic characterization of the corresponding
semigroup representations on the spaces ̂E . It generalizes the corresponding classical
concepts for the case (G, S, τ ) = (R, R+,− idR) ([Kl78] for (a) and [KL75] for (b)).

Definition 9.1.5 (a) A positive semigroup structure for a symmetric semigroup
(G, S, τ ) is a quadruple (H , P,A ,Ω) consisting of

(PS1) a Hilbert space H ,

1 Note that E+θE+ ≥ 0 is equivalent to the kernel K θ (A, B) := μ(A ∩ θ(B)) onΣ+ being positive
definite, i.e., the kernel K (A, B) := μ(A ∩ B) onΣ is reflection positivewith respect to (Σ,Σ+, θ)

(Definition 2.4.1).
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(PS2) a strongly continuous ∗-representation (Ps)s∈S of (S, �) by contractions
onH ,

(PS3) a commutative von Neumann algebraA onH normalized by the operators
(Ph)h∈S∩S−1 , and

(PS4) a unit vector Ω ∈ H , such that

(i) PsΩ = Ω for every s ∈ S.
(ii) Ω is cyclic for the (not necessarily selfadjoint) subalgebra B ⊆ B(H )

generated by A and {Ps : s ∈ S}.
(iii) For positive elements A1, . . . , An ∈ A and s1, . . . , sn−1 ∈ S, we have

〈Ω, A1Ps1 A2 · · · Psn−1 AnΩ〉 ≥ 0.

(b) A standard positive semigroup structure for a symmetric semigroup (G, S, τ )

consists of a σ -finite measure space (M,S, ν) and

(SPS1) a representation (Ps)s∈S of S on L∞(M, ν) by positivity preserving opera-
tors, i.e., Ps f ≥ 0 for f ≥ 0.

(SPS2) Ps1 = 1 for s ∈ S (the Markov condition).
(SPS3) P is involutive with respect to ν, i.e.,

∫

M Ps( f )hdν = ∫

M f Ps� (h) dν for
s ∈ S, f, h ≥ 0.

(SPS4) P is strongly continuous in measure, i.e., for each
f ∈ L1(M, ν) ∩ L∞(M, ν) and every δ > 0, s0 ∈ S, we have
lims→s0 ν({|Ps f − Ps0 f | ≥ δ}) = 0.

The main difference between these two concepts is that (b) concerns the situation
where H is an L2-space, but it also leaves some additional freedom because the
measure ν is not required to be finite so that the constant function 1 need not be L2.

The following proposition shows that the requirement that Ω is cyclic for A
describes those positive semigroup structures which are standard.

Proposition 9.1.6 Let (M,S, ν) be a probability space and (Ps)s∈S be a positivity
preserving continuous ∗-representation of (S, �) by contractions on L2(M, ν), i.e.,

Ps1 = 1 and Ps f ≥ 0 for f ≥ 0, s ∈ S.

Then (L2(M), Q, L∞(M), 1) is a standard positive semigroup structure for which
1 is a cyclic vector for L∞(M).

Conversely, let (H , P,A ,Ω) be a positive semigroup structure for which
Ω is a cyclic vector for A . Then there exists a probability space M and a
positivity preserving semigroup (Qs)s∈S on L2(M) such that (H , P,A ,Ω) ∼=
(L2(M), Q, L∞(M), 1) as positive semigroup structures.

The following theorem characterizes the positive semigroup structures arising
in the Markov context as those for which Ω is a cyclic vector for A , which is
considerably stronger than condition (PS4)(b).
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Theorem 9.1.7 Let ((Q,Σ,μ),Σ0,U, θ) be a (G, S, τ )-probability space and let
(̂E , ̂U ,A ,Ω) be its associated positive semigroup structure. Then ((Q,Σ,μ),

Σ0,U, θ) is Markov if and only if Ω is A -cyclic in ̂E .

Proof The Markov property is equivalent to q(E0) = ̂E (Proposition 9.1.3). Since
A · 1 is dense in E0, this is equivalent to Ω = q(1) being A -cyclic in ̂E . �

Example 9.1.8 (The real oscillator semigroup) We consider the Hilbert spaceH =
L2(Rd), with respect to Lebesgue measure.

(a) OnH we have a unitary representation by the group GLd(R) by

(Th f )(x) := | det(h)|−d/2 f (h−1x) for h ∈ GLd(R), x ∈ R
d ,

and we also have two representations of the additive abelian semigroup Symd(R)+
(the convex cone of positive semidefinite matrices):

(1) Each A ∈ Symd(R)+ defines a multiplication operator (MA f )(x) := e−〈Ax,x〉
f (x) which is positivity preserving on L∞(Rn) but does not preserve 1; it pre-
serves the Dirac measure δ0 in the origin.

(2) Each A ∈ Symd(R)+ specifies a uniquely determined (possibly degenerate)
Gaussian measure μA on R

d whose Fourier transform is given by μ̂A(x) =
e−〈Ax,x〉/2. Then the convolution operator CA f := f ∗ μA is positivity preserv-
ing and leaves Lebesgue measure on R

d invariant. For A = 1, we thus obtain
the heat semigroup as (μt1)t≥0.

Any composition of these 3 types of operators Th, MA andCA is positivity preserv-
ing on L∞(Rd), and they generate a ∗-representation of the Olshanski semigroup
S := H exp(C) in the symmetric Lie group G := Sp2d(R), where H = GLd(R),
C = Symd(R)+ × Symd(R)+ ⊆ Symd(R) ⊕ Symd(R) = q, and

τ

(

A B
C −A�

)

=
(

A −B
−C −A�

)

for

(

A B
C −A�

)

∈ sp2d(R) with B� = B,C� = C

(cf. Examples 3.2.6). The real Olshanski semigroup S is the fixed point set of
an antiholomorphic involutive automorphism of the so-called oscillator semigroup
SC = Gc exp(iW ) which is a complex Olshanskii semigroup [How88, Hi89]. The
elements in the interior of S act on L2(Rd) by kernel operators with positive Gaussian
kernels and the elements of SC correspond to complex-valued Gaussian kernels. The
semigroup S contains many interesting symmetric one-parameter semigroups such
as the Mehler semigroup e−t Hosc generated by the oscillator Hamiltonian

Hosc = −
n

∑

j=1

∂2
j + 1

4

n
∑

j=1

x2j − d

2
1 (9.1)

which fixes the Gaussian e−‖x‖2/4.
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(b) The subsemigroup S := Symd(R)+ � GLd(R) ⊆ Sp2d(R) also is a symmet-
ric subsemigroup of (G, τ ) with G = Symd(R) � GLd(R) and τ(A, g) = (−A, g).
Here the commutative von Neumann algebra A = L∞(Rd) is invariant under con-
jugation with the operators Th , so that (A, h) �→ CATh defines a ∗-representation of
(S, �) that leads to a standard positive semigroup structure on L2(Rd).

9.2 Stochastic Processes Indexed by Lie Groups

We now introduce stochastic processes where the more common index set R is
replaced by a Lie group G. The forward direction is then given by a subsemigroup
S of G. So called stationary stochastic processes correspond naturally to measure
preserving G-actions on spaces GQ of all maps Q → G.

Definition 9.2.1 Let (Q,Σ,μ) be a probability space. A stochastic process indexed
by a group G is a family (Xg)g∈G of measurable functions Xg : Q → (B,B), where
(B,B) is a measurable space, called the state space of the process. It is called full
if, up to sets of measure zero, Σ is the smallest σ -algebra for which all functions
(Xg)g∈G are measurable.

For such a process, we obtain a measurable map

Φ : Q → BG, Φ(q) = (Xg(q))g∈G

with respect to the product σ -algebra BG . Then ν := Φ∗μ is a measure on BG ,
called the distribution of the process (Xg)g∈G . This measure is uniquely determined
by themeasures νg onGn , obtained for any finite tuple g := (g1, . . . , gn) ∈ Gn as the
image of μ under the map Xg = (Xg1 , . . . , Xgn ) : Q → Bn (cf. [Hid80, Sect. 1.3]).
If g = (g) for some g ∈ G, then we write νg for νg.

The process (Xg)g∈G is called stationary if the corresponding distribution on BG

is invariant under the translations

(Ugν)h := νg−1h for g, h ∈ G.

If τ ∈ Aut(G) is an automorphism, then we call the process τ -invariant if its distri-
bution is invariant under (τν)h := ντ−1(h) for h ∈ G.

The connection with (G, S, τ )-measure spaces is now easily described:

Example 9.2.2 Let (G, τ ) be a symmetric Lie group and (Xg)g∈G be a stationary, τ -
invariant, full stochastic process on (Q,ΣQ, μQ). Then its distribution (BG,BG, ν)

satisfies the conditions (GP1, 2, 4, 5) of a (G, τ )-probability space with respect to
the canonical actions of G and τ on BG , where Σ0 is the σ -algebra generated by
(Xh)h∈Gτ , i.e., the smallest subalgebra for which these functions are measurable. In
this context (GP3) is equivalent to the continuity of the unitary representation of G
on L2(BG,BG, ν).
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9.3 Associated Positive Semigroup Structures
and Reconstruction

The main result of this section is the Reconstruction Theorem. It asserts that, if
G = S ∪ S−1, positive semigroup structures come from (G, S, τ )-measure spaces.
For a subsemigroup S ⊆ G, we consider the left invariant partial order ≺S on G
defined by g ≺S h if g−1h ∈ S, i.e., h ∈ gS.

Lemma 9.3.1 Let ((Q,Σ,μ),Σ0,U, θ) be a (G, S, τ )-measure space. Consider
the von Neumann algebra A := L∞(Q,Σ0, μ) on

E := L2(Q,Σ,μ) ⊇ E+ := L2(Q,Σ+, μ) ⊇ E0 := L2(Q,Σ0, μ),

and the canonical map q : E+ → ̂E . Then the following assertions hold:

(a) For f ∈ A , let M f denote the corresponding multiplication operator on E .
Then there exists a bounded operator ̂M f ∈ B(̂E ) with q ◦ M f |E+ = ̂M f ◦ q
and ‖ ̂M f ‖ = ‖ f ‖∞.

(b) U ( f ) := ̂M f is a faithful weakly continuous representation of the commutative
von Neumann algebra A on ̂E .

(c) In the Markov case we identify ̂E with E0 and q with E0 (Proposition9.1.3). For
g1 ≺S g2 ≺S · · · ≺S gn in G, non-negative functions f1, . . . , fn ∈ A and fg j :=
Ugj f j , we have

∫

Q
fg1 · · · fgn dμ =

∫

Q

̂M f1
̂Ug−1

1 g2 · · · ̂M fn−1
̂Ug−1

n−1gn
̂M fn1 dμ.

If, in addition, μ is finite, then Ω := μ(Q)−1/2q(1) satisfies:

(d) For g1 ≺S g2 ≺S · · · ≺S gn in G, f1, . . . , fn ∈ A and fg j := Ugj f j , we have

∫

Q
fg1 · · · fgn dμ =

〈

̂M f1
̂Ug−1

1 g2 · · · ̂M fn−1
̂Ug−1

n−1gn
̂M fnΩ,Ω

〉

.

(e) Ω is a separating vector for A and ̂UsΩ = Ω for every s ∈ S.
(f) Ω is cyclic for the algebra B generated by A and (̂Us)s∈S.

Definition 9.3.2 The preceding lemma shows that, if ((Q,Σ,μ),Σ0,U, θ) is a
finite (G, S, τ )-measure space, then (̂E , ̂U ,A , q(1)) is a positive semigroup struc-
ture for A = { ̂M f : f ∈ L∞(Q,Σ0, μ)}. We call it the associated positive semi-
group structure.

We now turn to our version of Klein’s Reconstruction Theorem. Note that every
discrete group is in particular a 0-dimensional Lie group, so that the following the-
orem applies in particular to discrete groups.
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Theorem 9.3.3 (Reconstruction Theorem) Let (G, S, τ ) be a symmetric semigroup
satisfying G = S ∪ S−1. Then the following assertions hold:

(a) Every positive semigroup structure for (G, S, τ ) is associated to some (G, S, τ )-
probability space ((Q,Σ,μ),Σ0,U, θ).

(b) Every standard positive semigroup structure for (G, S, τ ) is associated to
some (G, S, τ )-measure space ((Q,Σ,μ),Σ0,U, θ) which is unique up to G-
equivariant isomorphism of measure spaces.

Remark 9.3.4 Without going into details of the proof, it is instructive to take a closer
look at the construction of themeasure space (Q,Σ,μ) in the proof of Theorem9.3.3
in [JN15]. Here G acts unitarily on the Hilbert space H ∼= L2(M,S, ν). For sim-
plicity, we assume that (M,S, ν) (cf. Proposition9.1.6) is a polish space, i.e., M
carries a topology for which it is completely metrizable and separable and S is
the σ -algebra of Borel sets. Then [Ba96, Corollary35.4] implies the existence of a
Borel measure μ on the measurable space (MG,SG)with the projections onto finite
products satisfying

∫

MG

f1(ω(g1)) · · · fn(ω(gn)) dμ(ω) =
∫

Q
M f1 Pg−1

1 g2 · · · M fn−1 Pg−1
n−1gn

M fn1 dν

for 0 ≤ f1, . . . , fn ∈ L∞(M,S, ν) and g1 ≺S · · · ≺S gn . We thus obtain a realiza-
tion of our (G, S, τ )-measure space on (MG,SG, μ), where the measure preserving
G-action on MG is given by (g.ω)(h) := ω(g−1h).

Definition 9.3.5 ([Ba78]) (a) Let (Q,Σ) and (Q′,Σ ′) be measurable spaces. Then
a function K : Q × Σ ′ → [0,∞] is called a kernel if

(K1) for every A′ ∈ Σ ′, the function K A′
(ω) := K (ω, A′) is Σ-measurable, and

(K2) for every ω ∈ Q, the function Kω(A′) := K (ω, A′) is a (positive) measure.

A kernel is called aMarkov kernel if the measures Kω are probability measures.
(b) A kernel K : Q × Σ ′ → [0,∞] associates to a measure μ on (Q,Σ) the

measure

(μK )(A′) :=
∫

μ(dω)K (ω, A′) =
∫

Q
K (ω, A′) dμ(ω).

(c) If (Q j ,Σ j ) j=1,2,3 are measurable spaces, then composition of kernels K1

on Q1 × Σ2 and K2 on Q2 × Σ3 is defined by (K1K2)(ω1, A3) = ∫

K1(ω1, dω2)

K2(ω2, A3). If S is a semigroup, then a family (Ps)s∈S of Markov kernels on the
measurable space (Q,Σ) is called a semigroup of (Markov) kernels if Ps Pt = Pst
for st ∈ S.

Remark 9.3.6 (a) Let (Pt )t≥0 be a Markov semigroup on the polish space (Q,Σ).
Then we obtain for 0 ≤ t1 < . . . < tn and t = (t1, . . . , tn) a Markov kernel Pt on
Q × Σn by
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Pt(x0, B) =
∫

Qn

χB(x1, . . . , xn)Pt1(x0, dx1)Pt2−t1(x1, dx2) · · · Ptn−tn−1(xn−1, dxn)

[Ba78, Satz64.2]. Fixing x0, we thus obtain a a projective family of measures, which
leads to a probability measure Px0 on the σ -algebra ΣR+ on QR+ whose restrictions
to cylinder sets are given by the Pt(x0, ·). We thus obtain aMarkov kernel P(x, ·) :=
Px (·) on Q × ΣR+ . For any t ≥ 0, we then have

Pt (x, B) =
∫

QR+
χB(ω(t)) P(x, dω) = P(x, {ω(t) ∈ B}),

which leads to

(Pt f )(x) =
∫

Q
Pt (x, dy) f (y) =

∫

QR+
P(x, dω) f (ω(t)) . (9.2)

This is an abstract version of the Feynman–Kac–Nelson formula that expresses the
value of Pt f in x ∈ Q as an integral over all paths [0, t] → Q starting in x with
respect to the probability measure Px .

(b) For any measure ν on Q, we thus obtain a measure Pν := νP on (QR+ ,ΣR+).
If ν is a probability measure, then Pν likewise is, and we obtain a stochastic pro-
cess (Xt )t≥0 with state space (Q,Σ) and initial distribution ν [Ba78, Satz62.3].
According to [Ba78, Satz65.3], the so obtained stochastic process has the Markov
property.

For t > 0, we have the relation

∫

QR+
f (ω(t)) dPν(ω) =

∫

Q
ν(dx)Pt (x, dy) f (y) for t ∈ R,

and, for t < s,

∫

Q

∫

Q
f1(x)ν(dx)Ps−t (x, dy) f2(y) =

∫

QR+
f1(ω(t)) f2(ω(s)) dPν(ω).

(c) In the special case where Q = G is a topological group and Pt f = f ∗ μt for
probability measures μt on G, we have

(Pt f )(x) =
∫

G
f (xy) dμt (y) =

∫

G
Pt (x, dy) f (y) for Pt (x, A) = μt (x

−1A).

Let P(G) := GR be the path group of all maps R → G and let P∗(G) be the
subgroup of pinned paths P∗(G) = {ω ∈ P(G) : ω(0) = e}. We have the relations

∫

P(G)

f1(ω(0)) f2(ω(t)) dPν(ω) =
∫

G

∫

G
f1(g1) f2(g1g2) dν(g1)dμt (g2)
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for t > 0, and

∫

P∗(G)

f (ω(t)) dPν(ω) =
∫

G

∫

G
f (xg) dν(x)dμt (g) =

∫

G
f (g) d(ν ∗ μt )(g).

This leads for f ∈ L2(G, ν) and t ≥ 0 to

(Pt f )(x) = ( f ∗ μt )(x) =
∫

G
f (xg) dμt (g) =

∫

GR+
f (xω(t)) dP(ω).

This is a group version of the Feynman–Kac–Nelson formula (9.2).

We now assume that G is a second countable locally compact group and that
(μt )t≥0 is a convolution semigroup of probability measures on G which is strongly
continuous in the sense that limt→0 μt = δe = μ0 weakly on the space Cb(G) of
bounded continuous functions on G. We further assume that ν is a measure on G
satisfying ν ∗ μt = ν for every t > 0, and, in addition, that the operators Pt f :=
f ∗ μt on L2(G, ν) are symmetric. If ν is a right Haar measure, then the symmetry
of the operators Pt is equivalent to μ∗

t = μt . Then we obtain for t1 ≤ · · · ≤ tn and
t := (t1, . . . , tn) on Gn a consistent family of measures

Pμ
t := (ψn)∗(ν ⊗ μt2−t1 ⊗ · · · ⊗ μtn−tn−1),

where ψn(g1, . . . , gn) = (g1, g1g2, · · · , g1 · · · gn). This in turn leads to a unique
measure Pν on the two-sided path space GR with (evt)∗Pν = Pν

t for t1 < · · · < tn .
From the Klein–Landau Reconstruction Theorem we obtain the following spe-

cialization.

Theorem 9.3.7 Suppose that G is a second countable locally compact group. Let
Pν be the measure on GR corresponding to the convolution semigroup (μt )t≥0 of
symmetric probabilitymeasures onG and themeasure ν onG forwhich the operators
Pt f = f ∗ μt define a positive semigroup structure on L2(G, ν). Then the transla-
tion action (Utω)(s) := ω(s − t) on GR is measure preserving and Pν is invariant
under (θω)(t) := ω(−t). We thus obtain a reflection positive one-parameter group
of Markov type on

E := L2(GR,BR, μ) with respect to E+ := L2(GR,BR+ , μ),

for which E0 := ev∗
0(L

2(G, ν)) ∼= L2(G, ν) and ̂E ∼= L2(G, ν) with q(F) = E0F
for F ∈ E+. We further have

E0Ut E0 = Pt for Pt f = f ∗ μt ,

so that the U-cyclic subrepresentation of E generated by E0 is a unitary dilation of
the one-parameter semigroup (Pt )t≥0 of hermitian contractions on L2(G, ν).
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Example 9.3.8 (a) For G = R
d , the heat semigroup is given on L2(Rd) by

et� f = f ∗ γt where dγt (x) = 1

(2π t)d/2
e− ‖x‖2

2t dx .

We call the corresponding measure on GR the Lebesgue–Wiener measure (cf. The-
orem9.3.7).

(b) If G is any finite dimensional Lie group and X1, . . . , Xn is a basis of the
Lie algebra, then we obtain a left invariant Laplacian by � := ∑n

j=1 L
2
X j

, where
LX j denotes the left invariant vector field with LX j (e) = X j . Then there also exists
a semigroup (μt )t≥0 of probability measures on G such that et� f = f ∗ μt for
t ≥ 0 [Nel69, Sect. 8]. Accordingly, we obtain a Haar–Wiener measure on the path
space GR.

Notes

The material in this section is condensed from [JN15] to which we refer for more
details and background. This paper draws heavily from thework of Klein and Landau
[KL75, Kl78]. In particular, theMarkov (G, S, τ )-measure spaces generalize the path
spaces studied by Klein and Landau in [KL75]. For (G, S, τ ) = (R, R+,− idR), the
work of Klein and Landau was largely motivated by Nelson’s work on the Feynman–
Kac Formula in [Ne00].

In A. Klein’s papers [Kl77, Kl78] concerning (G, S, τ ) = (R, R+,− id), the
reflection positivity condition from Definition9.1.2 is called Osterwalder–Schrader
positivity. Theorem9.1.7 is adapted from [Kl78, Theorem3.1].

Stochastic processes index by Lie groups also appear in [AHH86].



Appendix
Background Material

In this appendix we collect precise statements of some basic facts on positive definite
kernels and positive definite functions on groups and semigroups.

A.1 Positive Definite Kernels

Let X be a set. Classically, reproducing kernels arise from Hilbert spacesH which
are subspaces of the space C

X of complex-valued functions on X , for which the
evaluations f �→ f (x) are continuous, hence representable by elements Kx ∈ H
by

f (x) = 〈Kx , f 〉 for f ∈ H , x ∈ X.

Then

K : X × X → C, K (x, y) := Ky(x) = 〈Kx , Ky〉

is called the reproducing kernel of H . As the kernel K determines H uniquely,
we write HK ⊆ C

X for the Hilbert space determined by K and H 0
K ⊆ HK for the

subspace spanned by the functions (Kx )x∈X . A kernel function K : X × X → C is
the reproducing kernel of some Hilbert space if and only if it is positive definite in the
sense that, for any finite collection x1, . . . , xn ∈ X , the matrix (K (x j , xk))1≤ j,k≤n is
positive semidefinite (cf. [Ar50], [Nel64, Chap.1]). There is a natural generalization
to Hilbert spaces H of functions with values in a Hilbert space V , i.e., H ⊆
V X . Then Kx ( f ) = f (x) is a linear operator Kx : H → V and we obtain a kernel
K (x, y) := Kx K ∗

y ∈ B(V ) with values in the bounded operators on V . However,
there are also situations where one would like to deal with kernels whose values are
unbounded operators, so that one has to generalize this context further. The notion of
a positive definite kernel with values in the space Bil(V ) of bilinear complex-valued
forms on a real linear space V provides a natural context to deal with all relevant
cases.

© The Author(s) 2018
K.-H. Neeb and G. Ólafsson, Reflection Positivity, SpringerBriefs in Mathematical
Physics, https://doi.org/10.1007/978-3-319-94755-6
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Definition A.1.1 Let X be a set and V be a real vector space. We write Bil(V ) =
Bil(V, C) for the space of complex-valued bilinear forms on V . We call a map
K : X × X → Bil(V ) a positive definite kernel if the associated scalar-valued kernel

K � : (X × V ) × (X × V ) → C, K �((x, v), (y,w)) := K (x, y)(v,w)

is positive definite.
The corresponding reproducing kernel Hilbert space HK � ⊆ C

X×V is generated
by the elements K �

x,v, x ∈ X, v ∈ V , with the inner product

〈K �
x,v, K

�
y,w〉 = K (x, y)(v,w) =: K �

y,w(x, v),

so that, for all f ∈ HK � , we have

f (x, v) = 〈K �
x,v, f 〉. (A.1)

We identifyHK � with a subspace of the space (V ∗)X of functions on X with values
in the space V ∗ of complex-valued linear functionals on V by identifying f ∈ HK �

with the function f ∗ : X → V ∗, f ∗(x) := f (x, ·). We call

HK := { f ∗ : f ∈ HK �} ⊆ (V ∗)X

the (vector-valued) reproducing kernel space associated to K . The elements

Kx,v := (K �
x,v)

∗ with Kx,v(y) = K (y, x)(·, v) for x, y ∈ X, v,w ∈ V,

then form a dense subspace of HK with

〈Kx,v, Ky,w〉 = K (x, y)(v,w) (A.2)

and
〈Kx,v, f 〉 = f (x)(v) for f ∈ HK , x ∈ X, v ∈ V . (A.3)

Remark A.1.2 Equation (A.2) shows that positive definiteness of K implies the exis-
tence of a Hilbert spaceH and a map γ : X → Hom(V,H ), γ (x)(v) := Kx,v such
that

K (x, y)(v,w) = 〈γ (x)(v), γ (y)(w)〉.

If, conversely, such a factorization exists, then the positive definiteness follows from

n∑

j,k=1

c j ck K (x j , xk )(v j , vk ) =
n∑

j,k=1

c j ck 〈γ (x j )(v j ), γ (xk )(vk )〉 =
∥∥∥

n∑

k=1

ckγ (xk )(vk )
∥∥∥
2 ≥ 0.
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Example A.1.3 If V is a complexHilbert space, thenwewrite Sesq(V ) ⊆ Bil(V ) for
the linear subspace of sesquilinear maps, i.e., maps which are anti-linear in the first
and complex linear in the second argument. If X is a set and K : X × X → B(V ) is
an operator-valued kernel, then K is positive definite if and only if the corresponding
kernel

K̃ : (X × V ) × (X × V ) → C, K̃ ((x, v), (y,w)) := 〈v, K (x, y)w〉

is positive definite (DefinitionA.1.1). Then, for each f ∈ HK̃ , the linear functionals
f ∗(x) : V → C are continuous, hence can be identified with elements of V . Accord-
ingly, we consider HK as a space of V -valued functions (see [Nel64, Chap.1] for
more details).

Example A.1.4 Let A be a C∗-algebra. A linear functional ω ∈ A ∗ is called pos-
itive if the kernel Kω(A, B) := ω(A∗B) on A × A is positive definite. Then the
corresponding Hilbert space Hω := HKω

can be realized in the space A � of anti-
linear functionals onA . It can be obtained from theGNS representation (πω,Hω,�)

[BR02, Corollary2.3.17] by

Γ : Hω → A �, Γ (ξ)(A) := 〈π(A)�, ξ 〉

because 〈π(A)�, π(B)�〉 = ω(A∗B) = Kω(A, B). Note that A has a natural rep-
resentation on A � by (A.β)(B) := β(A∗B) and that Γ is equivariant with respect
to this representation.1

If X = G is a group and the kernel K is invariant under right translations, then it
is of the form K (g, h) = ϕ(gh−1) for a function ϕ : G → Bil(V ).

Definition A.1.5 Let G be a group and let V be a real vector space. A function
ϕ : G → Bil(V ) is said to be positive definite if the Bil(V )-valued kernel K (g, h) :=
ϕ(gh−1) is positive definite.

Suppose,more generally, that (S, ∗) is an involutive semigroup, i.e., a semigroup S,
endowed with an involutive map s �→ s∗ satisfying (st)∗ = t∗s∗ for s, t ∈ S. A func-
tion ϕ : S → Bil(V ) is called positive definite if the kernel K (s, t) := ϕ(st∗) is pos-
itive definite.

The following proposition generalizes the GNS construction to form-valued pos-
itive definite functions on groups [NÓ15b, PropositionA.4].

Proposition A.1.6 (GNS-construction for groups) Let V be a real vector space.

(a) Let ϕ : G → Bil(V ) be a positive definite function. Then (Uϕ
g f )(h) := f (hg)

defines a unitary representation of G on the reproducing kernel Hilbert space
Hϕ := HK ⊆ (V ∗)G with kernel K (g, h) = ϕ(gh−1) and the range of the map

1This realization of theHilbert spaceHω has the advantage thatwe can view its elements as elements
of the spaceA � (see [Nel64] for many applications of this perspective). Usually,Hω is obtained as
the Hilbert completion of a quotient ofA by a left ideal which leads to a much less concrete space.
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j : V → Hϕ, j (v)(g)(w) := ϕ(g)(w, v), j (v) = Ke,v,

is a cyclic subspace, i.e., Uϕ

G j (V ) spans a dense subspace of H . We then have

ϕ(g)(v,w) = 〈 j (v),Uϕ
g j (w)〉 for g ∈ G, v,w,∈ V . (A.4)

(b) If, conversely, (U,H ) is a unitary representation of G and j : V → H a linear
map, then

ϕ : G → Bil(V ), ϕ(g)(v,w) := 〈 j (v),Ug j (w)〉

is a Bil(V )-valued positive definite function. If, in addition, j (V ) is cyclic, then
(U,H ) is unitarily equivalent to (Uϕ,Hϕ).

Proof (a) For the kernel K (g, h) := ϕ(gh−1) and v ∈ V , the right invariance of the
kernel K on G implies on Hϕ the existence of well-defined unitary operators
Ug with

UgKh,v = Khg−1,v for g, h ∈ G, v ∈ V .

In fact, (A.2) shows that

〈Kh1g−1,v1
, Kh2g−1,v2

〉 = K (h1g
−1, h2g

−1)(v1, v2) = K (h1, h2)(v1, v2) = 〈Kh1,v1 , Kh2,v2 〉.

For f ∈ Hϕ , we then have

(Ug f )(h)(v) = 〈Kh,v,Ug f 〉 = 〈Ug−1Kh,v, f 〉 = 〈Khg,v, f 〉 = f (hg)(v),

i.e., (Ug f )(h) = f (hg). Further, j (v) = Ke,v satisfies Ug j (v) = Kg−1,v, which
shows that UG j (V ) is total inHϕ . Finally we note that

〈 j (v),Ug j (w)〉 = 〈Ke,v, Kg−1,w〉 = K (g)(v,w) = ϕ(g)(v,w).

(b) The positive definiteness of ϕ followswith RemarkA.1.2 easily from the relation
ϕ(gh−1)(v,w) = 〈U−1

g v,U−1
h w〉. Since j (V ) is cyclic, the map Γ (ξ)(g)(v) :=

〈U−1
g j (v), ξ 〉 defines an injectionH ↪→ (V ∗)G whose range is the subspaceHϕ

and which is equivariant with respect to the right translation representation Uϕ .
�

Remark A.1.7 (a) If ϕ : G → Bil(V ) is a positive definite function, then (A.4)
shows that,if Ṽ := j (V ), which is the real Hilbert space defined by completing
V with respect to the positive semidefinite form ϕ(e), then

ϕ̃(g)(v,w) = 〈v,Ugw〉 (A.5)
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defines a positive definite function

ϕ̃ : G → Bil(Ṽ ) with ϕ̃(g)( j (v), j (w)) = ϕ(g)(v,w) for v,w ∈ V .

Therefore it often suffices to consider Bil(V )-valued positive definite functions
for real Hilbert space V for which ϕ(e) is a positive definite hermitian form on
V whose real part is the scalar product on V . In terms of (A.4), this means that
j : V → H is an isometric embedding of the real Hilbert space V .

(b) If V is a real Hilbert space and j is continuous, then the adjoint operator
j∗ : H → V iswell-defined andweobtain from (A.5) the B(V )-valued positive
definite function ϕ(g) := j∗Ug j which can be used to realize H in V G .

Example A.1.8 (Vector-valued GNS construction for semigroups) [Nel64, Sect. 3.1]
Let (U,H ) be a representation of the unital involutive semigroup (S, ∗, e), V be a
Hilbert space and j : V → H be a linearmap for whichUS j (V ) is total inH . Then
ϕ(s) := j∗Us j is a B(V )-valued positive definite function on S with ϕ(e) = j∗ j
(which is 1 if and only if j is isometric) because we have the factorization

ϕ(st∗) = j∗Ust∗ j = ( j∗Us)( jUt )
∗.

The map
Φ : H → V S, Φ(v)(s) = j∗Usv

is an S-equivariant realization ofH as the reproducing kernel space Hϕ ⊆ V S , on
which S acts by right translation, i.e., (Uϕ

s f )(t) = f (ts).
Conversely, let S be a unital involutive semigroup and ϕ : S → B(V ) be a positive

definite function. Write Hϕ ⊆ V S for the corresponding reproducing kernel space
with kernel K (s, t) = ϕ(st∗) and H 0

ϕ for the dense subspace spanned by Ks,v =
ev∗

s v, s ∈ S, v ∈ V . Then (Uϕ
s f )(t) := f (ts) defines a ∗-representation of S on

H 0
ϕ . We say that ϕ is exponentially bounded if all operatorsUϕ

s are bounded, so that
we actually obtain a representation of S by bounded operators on Hϕ (cf. [Nel64,
Sect. 2.4]). Then eve ◦Uϕ

s = evs leads to

ϕ(s) = evs ev
∗
e = eve U

ϕ
s ev∗

e and ϕv = ev∗
e v = Ke,v. (A.6)

If S = G is a group with s∗ = s−1, then ϕ is always exponentially bounded and
the representation (Uϕ,Hϕ) is unitary.

Lemma A.1.9 Let (S, ∗, e) be a unital involutive semigroup andϕ : S → B(V ) be a
positive definite function with ϕ(e) = 1. We write (Uϕ,Hϕ) for the representation on
the corresponding reproducing kernel Hilbert space Hϕ ⊆ V S by (Uϕ(s) f )(t) :=
f (ts). Then the inclusion ι : V → Hϕ, ι(v)(s) := ϕ(s)v, is surjective if and only if
ϕ is multiplicative, i.e., a representation.

Proof If ϕ is multiplicative, then (Uϕ
s ι(v))(t) = ϕ(ts)v = ϕ(t)ϕ(s)v ∈ ι(V ). There-

fore the S-cyclic subspace ι(V ) is invariant, which implies that ι is surjective.
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Suppose, conversely, that ι is surjective. Then each f ∈ Hϕ satisfies f (s) =
ϕ(s) f (e). For v ∈ V and t, s ∈ S, this leads to

ϕ(st)v = (Uϕ
t ι(v))(s) = ϕ(s) · (Uϕ

t ι(v))(e) = ϕ(s)ι(v)(t) = ϕ(s)ϕ(t)v.

Therefore ϕ is multiplicative. �

A.2 Integral Representations

For a realization of unitary representations associated to positive definite functions in
L2-spaces, integral representations are of crucial importance. The following result is
a straight-forward generalization of Bochner’s Theorem for locally compact abelian
groups. Herewewrite Sesq+(V ) ⊆ Sesq(V ) for the convex cone of positive semidef-
inite forms if V is a complex linear space.

Theorem A.2.1 Let G be a locally compact abelian group. Then a function
ϕ : G → Sesq(V ) for which all functions ϕv,w := ϕ(·)(v,w), v,w ∈ V , are contin-
uous is positive definite if and only if there exists a (uniquely determined) finite
Sesq+(V )-valued Borel measure μ on the locally compact group Ĝ such that
μ̂(g) := ∫

Ĝ χ(g) dμ(χ) = ϕ(g) holds for every g ∈ G pointwise on V × V .

Proof If ϕ = μ̂ holds for a finite Sesq+(V )-valued Borel measure μ on the locally
compact group Ĝ, then the kernel ϕ(gh−1)(ξ, η) = ∫

Ĝ χ(g)χ(h) dμξ,η(χ) on
G × V is positive definite because

n∑

j,k=1

ϕ(g j g
−1
k )(ξ j , ξk) =

n∑

j,k=1

∫

Ĝ
χ(g j )χ(gk) dμξ j ,ξk (χ)

=
n∑

j,k=1

∫

Ĝ
dμχ(g j )ξ j ,χ(gk )ξk (χ) =

∫

Ĝ
dμξ,ξ ≥ 0

holds for ξ := ∑n
j=1 χ(g j )ξ j and μξ,η(·) = μ(·)(ξ, η).

Suppose, conversely, that ϕ is positive definite. Then Bochner’s Theorem for
scalar-valued positive definite functions yields for every v ∈ V a finite positive mea-
sure μv on Ĝ such that

ϕv,v(g) = μ̂v(g) =
∫

Ĝ
χ(g) dμv(χ).

By polarization, we obtain for v,w ∈ V complex measures μv,w := 1
4

∑3
k=0 i

−kμv+ikw

on Ĝ with ϕv,w = ˆμv,w. Then the collection (μv,w)v,w∈V of complex measures on
Ĝ defines a Sesq+(V )-valued measure by μ(·)(v,w) := μv,w for v,w ∈ V, and this
measure satisfies μ̂ = ϕ. �
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Remark A.2.2 Suppose that E is the spectral measure on the character group Ĝ
for which the continuous unitary representation (U,H ) is represented by Ug =∫
Ĝ χ(g) dE(χ). Then, for ξ ∈ H , the positive definite function U ξ (g) := 〈ξ,Ugξ 〉
is the Fourier transform of the measure E ξ,ξ = 〈ξ, E(·)ξ 〉. This establishes a close
link between spectral measures and the representing measures in the preceding the-
orem.

The following theorem follows from [NÓ15b, TheoremB.3]:

Theorem A.2.3 (Laplace transforms and positive definite kernels) Let E be a finite
dimensional real vector space and D ⊆ E be a non-empty open convex subset. Let
V be a Hilbert space and ϕ : D → B(V ) be such that

(L1) the kernel K (x, y) = ϕ
( x+y

2

)
is positive definite.

(L2) ϕ is weak operator continuous on every line segment in D , i.e., all functions
t �→ 〈v, ϕ(x + th)v〉, v ∈ V , are continuous on {t ∈ R : x + th ∈ D}.

Then the following assertions hold:

(i) There exists a unique Herm+(V )-valued Borel measure μ on the dual space
E∗ such that

ϕ(x) = L (μ)(x) :=
∫

E∗
e−λ(x) dμ(λ) for x ∈ D .

(ii) Let TD = D + i E ⊆ EC be the tube domain over D . Then the map

F : L2(E∗, μ; V ) → O(TD , V ), 〈ξ,F ( f )(z)〉 := 〈e−z/2ξ, f 〉

is unitary onto the reproducing kernel spaceHϕ := HK corresponding to the
kernel associated to ϕ. It intertwines the unitary representation

(Ux f )(α) := eiα(x) f (α) on L2(E∗, μ) and

(Ũx f )(z) := f (z − 2i x) on Hϕ.

(iii) ϕ extends to a unique holomorphic function ϕ̂ on the tube domain TD which is
positive definite in the sense that the kernel ϕ̂

(
z+w
2

)
is positive definite.

Corollary A.2.4 A continuous function ϕ : D → C on an open convex subset of a
finite dimensional real vector space E is positive definite if and only if there exists a
positive measure μ on E∗ such that ϕ = L (μ)|D .

The preceding theorem generalizes in an obvious way to Sesq(V )-valued func-
tions, where the corresponding measureμ has values in the cone Sesq+(V ). One can
use the same arguments as in the proof of Bochner’s Theorem (TheoremA.2.1).
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The following lemma sharpens the “technical lemma” in [KL82, AppendixA].
We recall the notation Sβ = {z ∈ C : 0 < Imz < β} for horizontal strips in C.

Lemma A.2.5 LetUt = eit H beaunitary one-parameter grouponH , E thespectral
measure of H, ξ ∈ H , E ξ := 〈ξ, E(·)ξ 〉, β > 0 and ϕ(t) := 〈ξ,Ut ξ〉 = ∫

R
eitλ dEξ (λ).

Then the following are equivalent:

(i) There exists a continuous function ψ on Sβ , holomorphic on Sβ , such that
ψ |R = ϕ.

(ii) L (E ξ )(β) = ∫
R
e−βλ dE ξ (λ) < ∞.

(iii) ξ ∈ D(e−βH/2).

Proof That (i) implies (ii) follows from [Ri66, p. 311]. If, conversely, (ii) is satisfied,
then ψ(z) := L (E ξ )(−i z) is defined on Sβ , holomorphic on Sβ and ψ |R = ϕ.
Finally, the equivalence of (ii) and (iii) follows from the definition of the unbounded
operator e−βH/2 in terms of the spectral measure E . �

Lemma A.2.6 (Criterion for the existence of L (μ)(x)) Let V be a Hilbert space
and μ be a finiteHerm+(V )-valued Borel measure on R, so that we can consider its
Laplace transformL (μ), taking values in Herm(V ), whenever the integral

tr
(
L (μ)(x)S

) =
∫

R

e−λx dμS(λ) for dμS(λ) = tr(Sdμ(λ)),

exists for every positive trace class operator S onV . This is equivalent to the finiteness
of the integrals L (μv)(x) for every v ∈ V , where dμv(λ) = 〈v, dμ(λ)v〉.
Proof For x ∈ R, the existence of L (μ)(x) implies the finiteness of the integrals
L (μv)(x) for v ∈ V . Suppose, conversely, that all these integrals are finite. Then we
obtain by polarization a hermitian form β(v,w) := ∫

R
e−λx 〈v, dμ(λ)w〉 on V . We

claim that β is continuous. As V is in particular a Fréchet space, it suffices to show
that, for every w ∈ V , the linear functional λ(v) := β(w, v) is continuous [Ru73,
Theorem2.17].

The linear functionals fn(v) := ∫ n
−n e

−λx 〈w, dμ(λ)v〉 are continuous because μ

is a bounded measure and the functions ex (λ) := eλ(x) are bounded on bounded
intervals. By the Monotone Convergence Theorem, combined with the Polarization
Identity, fn → f holds pointwise on V , and this implies the continuity of f [Ru73,
Theorem2.8].

For a positive trace class operators S = ∑
n〈vn, ·〉vn with tr S = ∑

n ‖vn‖2 < ∞,
we now obtain

L (μS)(x) =
∑

n

L (μvn )(x) =
∑

n

β(vn, vn) ≤ ‖β‖
∑

n

‖vn‖2 < ∞.
�
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Index

Symbols
(G, S, τ )-measure space, 114
(G, S, τ )-measure space, Markov, 114
(G, τ )-measure space, 113
(G, τ )-measure space, reflection positive,

114
(G, τ )-probability space, 113
C∗-dynamical system, 55
C−∞(X): space of distributions, 14
C−∞

λ , 88
C∞

λ , 88
Gτ , 2
Gτ = G � {idG , τ }, 24
E0, 11
θ-positive subspace, 9
θ-positive subspace of Hilbert space, 9
B(X), Borel subsets of top. space X , 48

C
Conjugation

on Hilbert space, 6, 51
Convolution product, 80
Convolution semigroup, 121
Crown domain, 97

D
De Sitter space, dSn , 26, 100
Differential equation

hypergeometric, 98
Distribution

positive definite, 83
reflection positive, 85, 86

Distribution kernel
β-compatible, 72, 75
positive definite, 14

reflection positive, 14
Distribution vector, 82

cyclic, 83
reflection positive, 86

Dual symmetric Lie algebra, 1

E
Euclidean realization, 39, 62
Euclidean realization: of contraction repre-

sentation, 28
Euclidean realization: of unitary representa-

tion of Gc, 28

F
Feynman–Kac–Nelson formula, 120
Forward light cone, 8
Fourier transform

of a function, 8
of a measure, 8

Function
completely monotone, 36
form-valued

holomorphic, 52
pointwise continuous, 52

reflection positive, 37
spherical, 92
τ -positive definite, 73

H
Hardy space, 44
Hilbert space

reflection positive, 10
reproducing kernel, 124
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K
Kernel

Markov, 119
on measurable spaces, 119
positive definite, 123

operator-valued, 124
reproducing, 123

KMS condition, 5
positive definite function, 51, 52

KMS state, 56

L
Laplace–Beltrami operator, 16
Laplacian, on R

n , 122
Lie algebra

dual symmetric, 24
symmetric, 1, 24
symmetric dual, 1

Lie derivative, 71
Lie group

symmetric, 1, 24

M
Markov condition, 11
Markov property, 114
Measure

Haar–Wiener, 122
Lebesgue–Wiener, 122
tame Borel, 105

Minimal unitary dilation, 42
Modular function, 80
Modular objects, 6, 51, 53
Modular relation, 53

O
OS transform

of a representation, 28
OS transform: of an operator, 22
Osterwalder–Schrader (OS) transform, 2, 22
Outgoing

realization, 48
subspace, 47

P
Partial order ≺S , 118
Path group, 120
Positive definite

distribution kernel, 14
function

on group, 125

on involutive semigroup, 125
Positive functional, 125
Positive semigroup structure, 114

associated, 118
standard, 115

Q
Quasi-regular representation, on L2(G/H),

83

R
Reflection

dissecting, 16
of Riemannian manifold, 16

Reflection positive
cyclic representation, 32
distribution, 85
distribution kernel, 14
function, 37
function, w.r.t. subsemigroup S, 30
function, w.r.t. subset G+, 29
Hilbert space, 2

of Markov type, 11
kernel, 12
operator, 18
pre-Hilbert space, 29
unitary one-parameter group, 38
V -cyclic representation, 32

Representation
complementary series, 91
distribution cyclic, 86
exponentially bounded, 127
highest weight, 95
infinitesimally reflection positive, 28
negative energy, 95
positive energy, 109
reflection positive

w.r.t. subsemigroup S, 3, 27
w.r.t. subset G+, 3, 27

S
Semigroup

involutive, 125
of Markov kernels, 119

Sesquilinear maps on V , Sesq(V ), 125
Shilov boundary, 100
Smooth right action, 72
Smooth vector, 81
Standard subspace, 53
Stochastic process, 117

distribution of, 117
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full, 117
state space of, 117
stationary, 117
τ -invariant, 117

Strict contraction, 58
Subsemigroup

symmetric, 3, 25
Symmetric semigroup, 25

T
Theorem

Bochner, 128
Characterization of reflection positive
functions on interval, 38

Fröhlich’s Selfadjointness, 70
Geometric Fröhlich, 71
Geometric Fröhlich for distributions, 75
GNS construction for reflection positive
functions, 31

Hausdorff–Bernstein–Widder, 36
KMS Characterization, 54

Laplace transforms and positive definite
kernels, 129

Lax–Phillips Representation, 47
Realization in spaces of distributions, 84
Realization Theorem for unitary one-
parameter groups, 62

Reconstruction, for positive semigroup
structures, 118

Reflection positive extension, 59
Widder, 36

Time translation semigroup, 104
Time-zero subspace, 107
Total subsets of Hilbert space, 7
Two-sided path space, 121

V
Vector field

D-skew-symmetric, 75
D-symmetric, 75
K -skew-symmetric, 71
K -symmetric, 71
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