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Preface

This book presents selected contributions from the 4th International Conference on
Structural Nonlinear Dynamics and Diagnosis in the most active current lines of
recent advanced research in the field of nonlinear mechanics and physics. A wide
audience of scientists in this field may have an advantage of the material presented
in this book proceeding. The book includes fifteen chapters contributed by out-
standing scientists covering various aspects of applications, including road tankers
dynamics and stability, simulation of abrasive wear, energy harvesting, modeling
and analysis of flexoelectric nanoactuator, periodic Fermi–Pasta–Ulam problem,
nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating com-
posite, nonlinear vibrations of a shallow arch, extreme pulse dynamics in
mode-locked lasers, localized structures in a photonic crystal fiber resonator,
nonlinear stochastic dynamics, linearization of nonlinear resonances, hysteresis
across different material scales, treatment of a linear delay differential equation, and
fractional nonlinear damping. Researchers and engineers interested in challenges
posed by nonlinearities in the development of the topics considered in the book will
find here an outstanding introduction.

Casablanca, Morocco Mohamed Belhaq
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Chapter 1
Road Tanker Dynamics Interacting
with Liquid Sloshing Dynamics

Raouf A. Ibrahim

Abstract Research activities pertaining to road tankers dynamics and stability may
be classified into three groups. These are liquid sloshing dynamics in moving con-
tainers, trucks dynamics carrying solids, and dynamic coupling of liquid-vehicle
systems. The most serious problems of road tankers is rollover accidents due to
lateral acceleration during vehicle maneuvers. For this reason many countries have
imposed regulations for the minimum threshold of vehicle lateral acceleration during
its maneuvers. This threshold value is usually estimated on quasi-dynamic approach
which assumes that the liquid free surface takes a position orthogonal to the total
body forces due to gravity and lateral acceleration. The modal analysis of liquid
free surface on common tank cross-section geometries, such as horizontal circular,
elliptic and generic cross section is presented together with the corresponding equiv-
alent mechanical models. In particular, the Trammel equivalent pendulum received
extensive research activities and the main results are discussed. The most difficult
problem of road tankers is the coupling dynamics of liquid and vehicle dynamics
under different conditions such as braking and lateral acceleration. In view of its
complex nature, computer numerical simulations have been developed.

1.1 Introduction

A road tanker is a vehicle that has a tank whose capacity is greater than 3m3 and is
structurally attached to (or an integral part of) the vehicle. Aside from its own liquid
fuel, these vehicles usually transport non-hazardous liquids such as water and milk,
or hazardous liquids such as gasoline, liquefied petroleum gas (LPG) and anhydrous
ammonia. The hydrodynamic loads generated by the liquid sloshing in road tankers
can have a significant influence on their driving dynamics and stability. In particular,
lateral fluid sloshing during turning and sudden lane change maneuvers is the main
cause for low rollover threshold while longitudinal fluid sloshing due to braking

R.A. Ibrahim (B)
Department of Mechanical Engineering, Wayne State University, Detroit, MI 48098, USA
e-mail: ibrahim@eng.wayne.edu

© Springer International Publishing AG 2018
M. Belhaq (ed.), Recent Trends in Applied Nonlinear Mechanics and Physics,
Springer Proceedings in Physics 199, https://doi.org/10.1007/978-3-319-63937-6_1
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2 R.A. Ibrahim

or accelerating maneuvers can cause yaw instability or loss of directional control.
Liquid sloshing in a highway maneuver can lead to lateral and roll instabilities,
decreased controllability/maneuverability, and increased stress on tank structures.
This results in serious accidents and fireballs of fuel tanks. The problem has drawn
the attention of designers and engineers to examine different aspects of road tankers’
safety. The literature showed that considerations were given to predicting the liquid
slosh in various containers and vehicle stability based upon simplified mechanical
models or computational fluid dynamics codes. The study of dynamic interactions
of the liquid motion and vehicle stability is thus very important and is not a simple
task.

The most serious problem of road tankers is roll instability. Transport Canada’s
Transport Dangerous Goods Directorate documented a database of crashes involving
a vehicle carrying dangerous goods [17]. During the period 1990–1998 there were
810 (43%) of 1,874 incidents resulted in rollover, and 671 (83%) of the 810 vehicles
that rolled over were tank trucks [123]. Tilt tests to determine the rollover threshold
and rollover characteristics of tank truck configurations were reported by Billing
and Patten [17]. A computer simulation was used to project the lowest roll threshold
of each vehicle, with tanks full and loaded to its allowable gross weight. The main
reason that liquid tankers possess an elliptical cross-section, rather than circular cross-
section, is due to the fact the elliptic shape lowers the center of gravity resulting in
increasing the roll stability. Many countries introduced restrictions on the height of
the center of gravity for non-pressurized flammable liquid tankers. This is why many
studies were devoted to develop optimum design of tank cross-section geometry.

Road tanker dynamics is based on three basic problems. These are liquid sloshing
dynamics in typical road tank geometries, rollover dynamics and stability, and inter-
action of road tankers with liquid sloshing during vehicle maneuvers. Thses three
major problems will be discussed in the next sections.

1.2 Sloshing Modal Analysis

The theory of liquid sloshing dynamics in partially filled containers is based on
developing the fluid field equations, estimating the fluid free surface motion, and
the resulting hydrodynamic forces and moments. The boundary value problem is
usually solved for modal analysis and the dynamic response characteristics to exter-
nal excitations. The modal analysis of a liquid free surface motion in a partially
filled container constitutes estimating the natural frequencies and the corresponding
mode shapes. The knowledge of the natural frequencies is essential in the design
process of liquid tanks. The natural frequencies of the free liquid surface appear in
the combined boundary condition (kinematic and dynamic) rather than in the fluid
continuity (Laplace’s) equation. Explicit solutions are possible only for a few spe-
cial cases such as upright circular cylindrical and rectangular containers. This section
deals with the sloshing natural frequencies and free surface mode shapes in circular
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Fig. 1.1 Schematic diagram
of a horizontal circular
container of radius R and
length L, showing the
equivalent mechanical model
of a simple pendulum and
rigid mass

and elliptic cross-section horizontal containers as they are the most common used
for road tanker containers.

1.2.1 Circular Horizontal Cylinders

Lamb [59] presented an energy approach to determine the natural frequency of the
first transverse mode of liquid free surface in a half-filled horizontal cylinder, i.e.,
h = −R, see Fig. 1.1. The following expression for the kinetic energy T , of the fluid
free surface experiencing small oscillations of frequency ω was obtained,

T = 1

2
πρR4

(
4

π2
− 1

4

)
ω2 (1.1)

From this expression one can write the effective mass moment of inertia of the liquid
about the center of the cylinder

Io(e f f ) = πρR4

(
4

π2
− 1

4

)
(1.2)

which is much less than the moment of inertia of the frozen liquid. The potential
energy, U , is

U = 1

3
ρgR3θ2 (1.3)

Equating the maximum kinetic energy to the maximum potential energy, and assum-
ing sinusoidal oscillation, gives the natural frequency of the first sloshing mode

ω2
1 = 8π

48 − 3π2

g

R
= 1.36656

g

R
(1.4)
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Budiansky [26] formulated the boundary value problem of free liquid surface asym-
metric motion in two-dimensional cross-section of a horizontal canal. In view of the
geometrical symmetry, the natural modes of the free surface involve free surface dis-
placements that are either symmetric or anti-symmetric. The analysis was restricted
for the anti-symmetric modes since the symmetric modes are not generated under
lateral excitation. For small liquid free surface oscillation, the mode shape may be
expressed by the planar shape. Introducing the non-dimensional natural frequency
parameter, λn = ω2

n R/g, Budiansky [26] obtained the first mode natural frequency
by the expression

λ1 ≈ 1

3

[
2

π
− π

8

]
= 1.367 → ω1 = 1.169

√
g/R (1.5)

This result is identical to the one reported by Lamb and given by relation (1.4). The
first three modes and frequencies were evaluated numerically for different values of
fluid depth ratio, h/R. The numerical results are listed in Table1.1 and plotted in
Fig. 1.2 by solid curves as a function of the fluid depth ratio, h/R. It is seen that
the fundamental mode has its lowest frequency in the nearly empty state, whereas
the minimum frequency of a given higher mode appears to occur slightly below
the half full condition. As the fluid depth increases, the natural frequencies tend to
shift to more closely packed spectra and the ratio λn+1/λn decreases monotonically
with increasing depth ratio. McCarty and Stephen [66] obtained some numerical
experimental results of the dependence of the liquid natural frequency parameter
ωn

√
R/g on the depth ratio, h/2R. Fig. 1.3a, b show this dependence for transverse

and longitudinal (longitudinal tank length = L) sloshing modes, respectively.
A two-dimensional nonlinear random sloshing problem was studied by Wang

and Khoo [117] who considered the fully nonlinear wave velocity potential theory
based on the finite element method. A rectangular container filled with liquid sub-

Table 1.1 Liquid free-surface eigenvalues in circular canal for different fluid depth [26]

h/R α αλ1 αλ2 αλ3 λ1 λ2 λ3

−1.0 0.0 0.0 0.0 0.0 1.0 6.0 15.0

−0.8 0.6 0.627 3.23 6.51 1.045 5.38 10.85

−0.6 0.8 0.879 3.98 7.3 1.099 4.97 9.13

−0.4 0.917 1.068 4.34 7.63 1.165 4.74 8.33

−0.2 0.980 1.224 4.56 7.82 1.249 4.65 7.99

0.0 1.0 1.360 4.70 7.96 1.360 4.70 7.96

0.2 0.98 1.482 4.81 8.06 1.513 4.91 8.23

0.4 0.917 1.596 4.89 8.15 1.742 5.34 8.89

0.6 0.8 1.706 4.97 8.22 2.13 6.22 10.23

0.8 0.6 1.822 5.05 8.30 3.04 8.42 13.84

1.0 0.0 2.018 5.20 8.44 ∞ ∞ ∞
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jected to specified horizontal random oscillations is studied. Both wave elevation
and hydrodynamic force are obtained. The spectra of random waves and forces were
determined together with the effects of the peak frequencies and spectral width of the
specified spectrum used for the generation of the random oscillations. It was found
that the energy mainly concentrates at the natural frequencies of the container and
is dominant at the i-th order natural frequency when the peak frequency is close to
the i-th order natural frequency. Some results are compared between the fully non-
linear solutions, the linear solutions and the linear plus second-order solutions. A
numerical scheme for the analysis of liquids sloshing in horizontal cylindrical rigid
containers was developed by Dai and Xu [32]. The governing equations of the liquid
were transformed via three continuous coordinate transformations. The efficiency
of the proposed method was demonstrated by numerical simulations using the finite
difference method for two-dimensional circular containers and three-dimensional
cylindrical containers.

Rα

R

x

y

eR

1.2.2 Elliptic Horizontal Tanks

Natural frequencies and modes of oscillation of liquids in partially filled axisym-
metric ellipsoidal tanks were estimated using variational principle by Rattayya [92].
The liquid free surface natural frequencies of transverse sloshing modes in a half-
filled non-deformable horizontal cylindrical container of elliptical cross-sectionwere
determined byHasheminejad andAghabeigi [47] based on the linear potential theory.
The analysis was performed for the cases of the presence and absence of inflexible
horizontal longitudinal side baffles of arbitrary extension positioned at the free liq-
uid surface. The effects of surface-piercing or bottom-mounted vertical baffles on
two-dimensional liquid sloshing characteristics in a half-full non-deformable hori-
zontal cylindrical container of elliptical cross-section were reported by Hashemine-
jad and Aghabeigi [49]. The effects of vertical baffles on the hydrodynamic pressure
mode shapes and sloshingflowswere examined through appropriate two-dimensional
images. The surface-piercing vertical baffle was demonstrated to be an effective tool
in reducing the antisymmetric sloshing frequencies, especially for lower aspect ratio
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Fig. 1.2 Dependence of the liquid natural frequencies on the liquid depth ratio, h/R, for circular
horizontal cylinder (solid) and spherical tank (dashed). Budiansky [26]

tanks and higher modes. On the other hand, the bottom-mounted baffle was shown
to have a great influence on the higher antisymmetric slosh modes only when its
tip approaches the liquid free surface. The linear theory of surface gravity–capillary
waves in cylindrical containers with an elliptical cross-section was presented by
Oliva-Leyva [71]. General solutions for the velocity potential and the free surface
amplitude were given in terms of Mathieu functions. The numerical results showed
the dependence of the natural frequencies on the fluid properties and the eccentricity
of the container cross-section. The frequency shift and the wall damping ratio due to
viscous dissipation in the Stokes boundary layers were evaluated numerically.

Romero et al. [94] measured the natural frequencies of three tanks of different
cross-sections as shown in Fig. 1.4.The horizontal length (perpendicular to the page
of each tank was 10cm, and their cross-section dimensions were 12.5cm radius for
the circular tank (Fig. 1.4a), with semi-major and minor axes 15.1cm and 11cm,
respectively, for the elliptic tank (Fig. 1.4b), while Fig. 1.4c shows the generic tank
proposed by Kang et al. [53–55]. The generic tank periphery is obtained by compos-
ing a number of circular arcs symmetric about the vertical axis. This allows design
flexibility in view of the roll stability limits than the conventional tank shapes. These
tanks in their horizontal position will have variable fluid depth contrary to the uni-
form constant depth in a rectangular tank. Romero et al. [94] considered an average
fluid depth, h̄, so that a nonrectangular tank can be replaced by an equivalent rec-
tangular tank. This approximation was found to result in an error within the range
of 5–10%, depending on the fluid depth. For example, Fig. 1.5 shows comparison
of the fluid free surface natural frequencies in a circular tank with deep-water and
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7 , 40.6R cm L cm= = , 
10.9 , 38.1R cm L cm= = , 

15.2 , 30.5R cm L cm= = , 
15.2 , 61.0R cm L cm= =

theory (Budiansky, 1960), 

faired curve, 
7 , 40.6R cm L cm= = , 

10.9 , 38.1R cm L cm= = , 
15.2 , 30.5R cm L cm= = , 
15.2 , 61.0R cm L cm= = . 

Fig. 1.3 Dependence of liquid natural frequency on depth ratio for transverse and longitudinal
modes in circular canal [66]

26.2 cm
15.1 cm

12.5 cm 11 cm

(a) (b) (c)

Fig. 1.4 Three different tank cross-sections: a circular, b elliptic, and c generic

constant (finite) depth approximation. It is seen that the deep-water approximation
is only adequate for the higher fill levels. Nevertheless, the error is less than 10% for
fill levels between 50 and 62.5%, and less than 5% for fills above 62.5% fill.

Figures1.6, 1.7 and 1.8 show the measured and approximate natural frequencies
for tanks of circular, elliptical, and generic cross-sections, respectively. The theoreti-
cal curve in each case represents the approximation of constant depth (average depth
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Fig. 1.5 Dependence of natural frequency on tank fill ratio in a circular tank cross-section and
comparison deep-water (�) and constant (x) depth approximations. Romero et al. [94]
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Fig. 1.6 Natural frequencies of liquid in tanks of circular cross-section of diameter 0.25maccording
to …. measured and ____ approximate results. Romero et al. [94]

over the cross-section). For the circular tank (Fig. 1.6), it is seen that the approxima-
tion accurately predicts the experimental results, with a maximum error of about 5%
at the lowest fill level. For the elliptical tank, an improved approximation accounting
for the depth variation is also included in Fig. 1.7. The constant depth approximation
tends to underestimate the natural frequency, with the error decreasing as the fill
level increases. The maximum error is almost 10%, which is probably acceptable in
practice in most cases. For comparison purposes of the natural frequencies of the
three cross-section tanks, Romero et al. [94] plotted the dependence of the natural
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Fig. 1.7 Dependence of the fluid natural frequency on the tank fill ratio as measured (__×__) and
constant depth approximation (�__�) and variable depth approximation (− − � − −), for a tank
of elliptic cross-section of semi-axes 15.1cm × 11cm. Romero et al. [94]

0.375 0.500 0.626 0.750 0.875

Tank fill ratio
0.125 0.250

1.50

1.75
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1.25

2.25

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

2.00

2.50

Fig. 1.8 Dependence of the fluid natural frequency on the tank fill ratio as measured (- - - -) and
predicted (_____) for a tank of generic cross-section of base 26.2 cm. Romero et al. [94]

frequencies on the tank fill ratio as shown in Fig. 1.9 based on the theoretical esti-
mates of constant depth approximation. It is seen that the elliptic tank has the lowest
natural frequency over the entire range of the tank fill ratio. The generic tank, on the
other hand has the most rapidly increase of the natural frequency with the tank fill
ratio. The circular tank has slightly lower natural frequencies for higher fill levels
than the generic tank.

A semi-analytical mathematical model was developed by Hasheminejad and
Aghabeigi [48] who studied the transient liquid sloshing characteristics in half-
full horizontal cylindrical containers of elliptical cross-section subjected to arbitrary
lateral external acceleration. A ramp-step function is used to simulate the lateral
acceleration excitation during an idealized turning maneuver. The problem solution
is achieved by employing the linear potential theory in conjunction with conformal
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Circular

Generic

Elliptic

0.375 0.500 0.626 0.750 0.875
Tank fill ratio

0.125 0.250

1.50

1.75

1.00

1.25

2.00

2.25

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

Fig. 1.9 Dependence of the fluid natural frequencies on the tank fill ratio for the circular, elliptic,
and generic tank cross-sections as predicted for the scale model tanks. Romero et al. [94]

mapping were employed to yield linear systems of ordinary differential equations,
which were truncated and then solved numerically by implementing Laplace trans-
form technique followed byDurbin’s numerical inversion scheme. The effects of tank
aspect ratio, excitation input time, and baffle configuration on the resultant sloshing
characteristics were studied. The fluid structure interaction in an elliptical tank was
considered by Brar and Singh [25] who studied the movement of fluid in the tank
using simulation and experimental tests. The pressure exerted by the fluid on thewalls
of tank was estimated over a certain period of time. The dynamic response of baffled
liquid storage tank was studied to determine the influence of location and shapes of
baffles under external excitation. Different baffle configurations were examined and
role of combination of horizontal and vertical baffles were found to be significant in
controlling the sloshing.

1.2.3 Equivalent Mechanical Models

1.2.3.1 Principles of Equivalent Models

The liquid hydrodynamic pressure in rigid containers has two distinct components.
One component is directly proportional to the acceleration of the tank and is caused
by part of the fluid moving in unison with the tank. The second, known as “convec-
tive” pressure, experiences sloshing at the free surface. A realistic representation of
the liquid dynamics inside closed containers can be approximated by an equivalent
mechanical system. The equivalence is taken in the sense of equal resulting forces
and moments acting on the tank wall. By properly accounting for the equivalent
mechanical system representation of sloshing, the problem of overall dynamic sys-
tem behavior can be formulated more simply. For linear planar liquid motion, one
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can develop equivalent mechanical models in the form of a series of mass-spring
dashpot systems or a set of simple pendulums. For nonlinear sloshing phenomena,
other equivalent models such as spherical or compound pendulum may be devel-
oped to emulate rotational and chaotic sloshing. The principles for constructing a
mechanical model are based on the following conditions:

1. The equivalent masses and moments of inertia must be preserved.
2. The center of gravity must remain the same for small oscillations.
3. The system must possess the same modes of oscillations and produce the same

damping forces.
4. The force and moment components under certain excitation must be equivalent

to that produced by the actual system.

Bauer [13] developed an equivalent mechanical model consisting of a set of mass-
spring-dashpot systems to describe the liquid motion in rectangular and upright cir-
cular cylindrical containers. The equivalent model possesses the same liquid natural
frequencies as well as sloshing forces and moments exerted upon the various vehi-
cles. Slibar and Troger [106] employed similar equivalent mechanical models to
study the effect of liquid sloshing on the lateral wheel-load transfer of a tractor-
semitrailer-system under periodic steering. Ranganathan et al. [90] developed an
equivalent mass-spring system for liquid sloshing in a three-dimensional horizontal
circular cylindrical tank by a summation technique to study straight-line braking
performance of a tractor-semitrailer tank vehicle. A partially-filled tank was divided
into a number of rectangular elements and parameters of equivalent system were
calculated for each individual element based on the linear theory. The parameters
of equivalent mass-spring system for entire cylindrical tank were then computed
by summation of parameters calculated for each rectangular element. The proposed
model was validated in terms of fundamental frequency versus liquid fill level plot
obtained from experimental results of McCarty and Stephens [66].

A computational method equivalent to the method generated by Kobayashi et al.
[58] was used by Xu et al. [125] who studied the ride quality of partially-filled
compartmented tank trucks in presence of liquid sloshing effect. The liquid sloshing
effect was modeled by a linear mass-spring-dashpot system for the pitch motion. A
spatial andmechanical simulationmodel developedbyStedtnitz andAppel [109]who
modeled the liquid sloshing by the superposition of a spring-mass model describing
longitudinal sloshing and a pendulum model representing lateral sloshing in tank
trucks.

Khandelwal and Nigam [57] employed the pendulum analogy including one fixed
mass and one pendulum mass representing the fundamental mode of sloshing to
simulate the liquid sloshing in a rectangular railway wagon moving on a random
uneven railway track with constant longitudinal acceleration. The dynamic response
of vehicle-liquid system was determined by two models: a heave model and a heave-
pitch model. The model parameters were calculated for harmonic vertical acceler-
ation assuming small and stable displacement of free liquid surface. The effect of
damping was also considered by a viscous damper attached to the pendulum. Ran-
ganathan et al. [86] combined a pendulum equivalent model of liquid sloshing in
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Fig. 1.10 Locus of the center of mass of the shown liquid volume in an elliptic horizontal container

two-dimensional circular tanks subjected to lateral excitation to a three-dimensional
vehicle model to investigate the directional response of tank vehicle during steady
state maneuver. The entire vehicle was simulated by considering five degrees of free-
dom for sprung mass and two degrees of freedom including roll and vertical motion
for unsprung mass.

The pendulummodelwas used for the simulation of liquid sloshing in road tankers
by Aliabadi et al. [1]. The simulation results were compared with those predicted by
the finite element model for sloshing of liquids in tanker trucks. In the finite element
model, the full Navier–Stokes equations were solved for two fluids to obtain the
location and motion of the free surface. The comparison is for the non-dimensional
radial force as a function of time exerted on the tanker during turning showed that both
methods have relatively good agreementswhen the liquid inside the tanker is very low.
However, the difference between both the amplitude and frequency of sloshing was
found significant when there is a significant amount of liquid inside the tanker (near
half-fill). Godderidge et al. [44] presented and validated amodified pendulummethod
by simulating partially filled rectangular tanks periodically excited at frequencies
near the first sloshing mode. Results of the model confirmed computational dynamic
methods typically within 5–10% for both magnitude and frequency.

1.2.3.2 Equivalent Trammel Pendulum Modeling

The center of gravity of a fluid volume in an elliptic horizontal container was found
to follow an elliptical contour parallel to the tank wall as shown in Fig. 1.10. The
tank semi major and minor axes are designated by a and b, respectively, while the
corresponding semi axes of fluid center of mass contour are acg and bcg. For a given
orientation fluid volume its center of mass is located at distance R from the tank
center. Salem [99] determined the dependence of the fluid center of mass ratio R/b
on the fill volume percentage for different values of ellipse semi-axes ratio as shown
in Fig. 1.11.
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Fig. 1.11 Dependence of the location of fluid center of mass ratio R/b on the fill volume percentage
for different values of ellipse semi-axes ratio. Salem [99]

In studying the rollover stability of partially filled heavy-duty elliptical tankers
Gautam et al. [41] used a Trammel pendulum model to simulate the lateral motion
of the fluid. The selection of the appropriate pendulum parameters was based on
matching the pendulum dynamic effects with fluid sloshing dynamic effects obtained
using finite element fluid models [99–101]. It was found that the Trammel pendulum
model produced up to 20% more lateral forces and moments than the fluid models
(FLUENT and LSDyna 3D) beyond the linear range. The numerical simulation of
free-surface prediction using commercial computational fluid dynamics codes such
as FLUENT (2005), has allowed the incorporation of sloshing into the design stage
of tanker geometry [28]. The Arbitrary Eulerian-Lagrangian method, as embodied
in MSC-Dytran is of interest when fluid-structure interaction is concerned. Sloshing
in the tank may be controlled by incorporating baffles, and the effectiveness highly
depends on the shape, the location, and the number of baffles inside a tank. Due to
the complexities associated with the sloshing phenomenon, the CAE simulation is a
desired method to meet the design intent, and shorten the development time. Several
CAE codes were employed to simulate sloshing, such as, MSC-Dytran, Fluent, and
LSDYNA.

The Trammel pendulum model shown in Fig. 1.12 possesses an elliptic swing
trajectory, which approximately simulates the liquid sloshing in a partially filled
elliptic horizontal container. The mass of the pendulum, mp, is equivalent to the
mass of the liquid first sloshing mode while m f is the fluid fixed mass which moves
in unison with the rigid container, such that mm + m f = M= the total liquid mass
inside the container. The semi-major and minor axes of the Trammel pendulum are
ap and bp, respectively. As the pendulum swings, with angle θ , its trajectory is kept
elliptic by virtue of sliding on the two movable supports A and B.



14 R.A. Ibrahim

Fig. 1.12 Modeling of liquid by Trammel pendulum of massmp and total length ap and minor axis
bp moving on sliding supports at A and B. a The pendulum angle θ is measured counterclockwise
from the horizontal [61], b the pendulum angle θ is measured counterclockwise from the vertical
axis [99]

Fig. 1.13 Trammel pendulum in moving coordinate represented by the tank roll angle φ and lateral

displacement
→
x . Li et al. [61]

The equation of motion of Trammel pendulum in fixed coordinates (inertia frame)
was derived by Li et al. [61]

θ̈
(
a2p sin

2 θ + b2p cos
2 θ

) + 1

2
θ̇2

(
a2p − b2p

)
sin 2θ + gbp cos θ = 0 (1.6)

Note that both ap and bp depend on the tank fill ratio. Also the ratio of semi-axes is
constant, i.e.,

a

b
= acg

bcg
= ap

bp
.

In terms ofmoving coordinates, represented by the roll angle, φ and lateral motion
x , shown in Fig. 1.13, the equation of motion of the Trammel pendulumwas obtained
in the form:
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θ̈
(
a2p sin

2 θ + b2p cos
2 θ

)
+ φ̈

(
apbp + apb sin θ

) + φ̇2
[
1

2
sin 2θ

(
a2p − b2p

)
− bpb cos θ

]

+ 1

2
θ̇2

(
a2p − b2p

)
sin 2θ + g

(
bp cos θ cosφ − ap sin θ sin φ

) = ẍ
(
ap sin θ cosφ + bp cos θ sin φ

)
(1.7)

On the other hand, the equation of motion in terms of the tank roll angle, φ, is

φ̈
[(
b − bp sin θ

)2 + a2p cos
2 θ

]
+ 2θ̇ φ̇

[
1

2
sin 2θ

(
b2p − a2p

)
+ bpb cos θ

]
+ θ̈

(
apbp + apb sin θ

)

= ẍ
(
b cosφ + ab cos θ sin φ + bp sin θ cosφ

)
(1.8)

For the special case, when the tank is subjected only to lateral motion, x, and mea-
suring the pendulum angle from the vertical axis counterclockwise (see Fig. 1.12b),
(1.7) can be reduced to the form after setting θ by θ + 270◦ and yields the same
equation obtained by Salem [99]

θ̈
(
a2p cos

2 θ + b2p sin
2 θ

) − 1

2
θ̇2

(
a2p − b2p

)
sin 2θ + gbp sin θ = −ẍap cos θ (1.9)

Setting the righthand side to zero in (1.9), gives the free oscillation of the pendulum
for small angle

θ

θ̈ + θ̇2

(
b2p − a2p

a2p

)
θ + gbp

a2p
θ = 0 (1.10)

Onemay notice that (1.6) through (1.10) are independent of themass of the pendulum
as known in the dynamics of simple pendulum. The linearized natural frequency of
the Trammel pendulum model is given by the expression

ωnp =
√
gbp

a2p
(1.11)

The dependence of the Trammel pendulum natural frequency on the pendulum initial
angle, θ is shown in Fig. 1.14 for different values of the tank aspect ratio as estimated
by Salem [99]. It is seen that for the case of a circular cross-section, a/b = 1.0, the
natural frequency decreases with the increase of the pendulum angle. On the other
hand, the natural frequency increases gradually and peaks at a certain angle for aspect
ratios more than 1. This angle is close to 90◦ for a/b = 2.0. Similar results were
obtained by Zheng et al. [134] who also found that with an increase in the pendulum
amplitude its oscillation becomes periodic non-harmonic and nonlinear particularly
for the amplitude θ > 170◦.
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Fig. 1.14 Dependence of the Trammel pendulum natural frequency on its initial angle for different
values of the tank semi-axes ratio. Salem [99]

Fig. 1.15 Dependence of the fluid free surface natural frequency on the fluid fill level for a fluid
volume in an elliptical tank for different values of the semi-axes ratio a/b at initial fluid surface
angle 5◦ as estimated numerically by Salem [99]

Note that Bohn et al. [18] obtained another expression of the fluid natural fre-
quency in a partially filled elliptic container in the form

ωn =
√
3Ag

2V̄ 3
(1.12)
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where A is the fluid cross-section area and V̄ is half width of fluid surface at the
static equilibrium position. Equation (1.12) was checked using a half-full cylindri-
cal tank of radius R as a special case of a partially filled elliptical tank studied
earlier by Budiansky [26]. For example, the fundamental frequency obtained by
Rayleigh is ωn = 1.1644

√
g/R, by Lamb is ωn = 0.8266

√
g/R, by Budiansky is

ωn = 1.169
√
g/R, and by Bohn et al. is ωn = 1.535

√
g/R. Salem [99] employed a

finite element model for a sloshing fluid in half full cylindrical tank using LSDyna
3D and his result was close to the expression ωn = 1.1

√
g/R. Figure1.15 shows the

dependence of the fluid free surface natural frequency on the fluid fill level for a fluid
volume in an elliptical tank for different values of the semi-axes ratio a/b at initial
fluid surface angle 5◦ as estimated numerically by Salem [99].

Salem [99] and Salem et al. [101] simulated the lateral fluid sloshing in two-
dimensional partly-filled elliptical containers using equivalent Trammel pendulums.
The parameters of equivalent pendulum model including arms of Trammel pendu-
lum, fixed mass and pendulum mass, and the height of fixed mass with respect to
the tank base were calculated by matching of pendulum natural frequency, hori-
zontal force component and static moment around the tank base to those calculated
from finite element simulation of fluid motion. The proposed Trammel pendulum
approach represented an approximation of nonlinear liquid sloshing dynamics and
provided a computationally effective tool for coupled simulation of liquid sloshing
and vehicle dynamics compared to computational fluid dynamics simulation of liquid
sloshing. The multibody computer-aided engineering software packages DynaFlex-
Pro (DFP) and DynaFlexPro/Tire was used by [45] to model the Trammel pendulum
and the tractor and articulated tanker vehicle. The fundamental basis of selecting the
appropriate pendulum parameters were obtained bymatching the pendulum dynamic
effects with fluid sloshing dynamic effects as predicted by finite element fluidmodels
in the work of Salem [99]. A two-dimensional tanker model was developed and the
Trammel pendulum model was integrated to study the effect of sloshing on the roll
stability of heavy duty tankers. The rollover threshold of two-dimensional models
ranged from 0.9 to 0.25g.

Casasanta [27] developedmathematicalmodels that could be utilized inMATLAB
and implemented in real-time simulators to simulate the sloshing of low viscosity
fluids in partially filled truck tanks to study the resulting semi-tanker truck rollover
behavior. A Trammel pendulum model was adopted to simulate the fluid sloshing
effects for partially filled elliptical tank of semi-tanker trucks experiencing lateral
maneuvers. The Trammel pendulum model’s kinematic and dynamic effects were
studied and verified against fluid sloshing dynamic results obtained through finite
element analysis. The sloshing model was coupled to a two-dimensional rigid body
semi-tanker truck lateral dynamics model to determine the rollover stability of com-
mercial semi-tanker trucks when performing double lane change and constant radius
turn maneuvers. The rollover stability threshold of the rigid body vehicle model
ranged from 0.2 to 0.8 g’s, depending on the lateral maneuver and the tank aspect
ratio being considered. These results agreed with the rollover stability threshold
data reported in commercial vehicle rollover literature and research. The quasi-static
dynamic analysis was employed in the initial research phase of studying roll stabil-
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ity of partially filled road tankers and some improved algorithms were developed
to increase the accuracy of the predicted results [60, 122]. An equivalent Trammel
pendulum was utilized to analyze the dynamic characteristics of liquid sloshing in a
partially filled tank by Li et al. [61]. The dynamics of the Trammel pendulum in the
tank was described in terms of the tank-fixed coordinate system and its equation of
motion under the non-inertia coordinate system was derived using the Lagrangian
formulation. A typical tank truckwas used to study its driving stability under steering
angle step test.

Dynamic behavior of the large amplitude lateral sloshing in partially filled ellip-
tical tankers was analytically studied by Younesian et al. [131, 132]. The equivalent
mechanical elliptical Trammel pendulum was employed for modeling of the large
oscillation of the fluid inside the elliptical container. Nonlinear governing equation
of the motion is derived employing the Hamilton principle. Natural frequencies of
the free oscillation were analytically obtained as a function of the initial amplitude. It
was shown that the nonlinear dynamical system can behave mutually as a hardening
and softening system based on the tanker aspect ratio.

1.3 Rollover of Road Tankers

1.3.1 Overturning Metrics

When the steering frequency is close to the natural frequency of the free liquid
surface, the liquid mass will act like a pendulum swinging with the vehicle. This will
result in a distinct increase in load transfer. The load transfer is usually expressed by
the overturning risk factor � or the (load transfer factor) defined by the expression

� =
∣∣∣∣1 − Fl

Flo

∣∣∣∣ (1.13)

where Fl is the instantaneous wheel load on the left side, and Flo is the static wheel
load on the left side. As � → 1 the vehicle is close to experience overturning. The
value of � depends on the lateral acceleration whose critical value, known as the
overturning limit, is reached when � = 1. Lidström [62] and Strandberg [110] gen-
erated the dependence of the overturning limit on the lateral acceleration for different
values of harmonic oscillation frequencies and for 50% liquid volume in an elliptic
tank without baffles or cross walls. The roll dynamic performance of a vehicle com-
bination may also be evaluated in terms of the dynamic load transfer ratio (LTR),
defined as ratio of the sum of instantaneous absolute value of the difference between
right-wheel loads and left-wheel loads, to the sum of all the wheel loads, and (1.13)
may be expressed as [35, 82]:
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Fig. 1.16 Schematic
diagram of liquid
displacement in a moving
tanker (from [110])

LT R =
N∑
i=1

|Fzri − Fzli |
Fzri + Fzli

(1.14)

where N is number of axles and Fzr , Fzl are instantameous vertical loads on the right
and left wheels of an axle, respectively. The front steering axle is usually excluded
from the calculations because of its relatively high roll compliance. The LTR assumes
an initial value of zero and approaches unity when the wheels on the inside track
lift-off the ground.

If the steering frequency is greater than the natural frequency, the liquid pendulum
motionwill lag the tankmotion. Close to resonance, thismay be especially dangerous
if the risk factor with sloshing load is still close to its resonance level and thus will
exceed the corresponding peak for rigid loads. Above resonance, the liquid will
oscillate against the tank and stabilize the vehicle. Unfortunately, this stabilization
is not effective in real practice because the actual high steering frequencies are very
rare. Furthermore, roll motions act like a low-pass filter suppressing high frequency
motions in chassis before they reach the tank.

Large liquid displacement inside the tank will cause larger overturning moment
due to pure displacement of the center of mass and larger overturning forces when the
relative motion of the liquid is reversed by the tank wall. With reference to Fig. 1.16,
Strandberg [110] defines the side force coefficient (SC) by the expression

SC = mean − Fx

(me + ml)g − Fy
(1.15)

where me is the empty vehicle mass, ml is the liquid mass, Fx is the resultant force
to the left from the liquid load, Fy is the resultant upward force from the load after
subtracting the weight, and an is the lateral acceleration.

Lidström [62] examined the distinct stabilization effect from cross walls under
harmonic excitation and for a half filled tank. Consideration of tank cross-sectional
shape, while maintaining the tank bottom at the same level shows the center height
is higher for the circular horizontal tank than for the elliptic tank. The value of
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overturning limit and the worst oscillation frequency are found to be smaller for the
elliptic tanks than for the circular horizontal one. It was shown that the compartment
width is an important parameter in conventional tanks and it was recommended
that the compartment width must not exceed 0.6m for a peak lateral acceleration of
0.1g in order to ensure safe operation of the vehicle under cornering or lane change
maneuvers.

In studying the dynamic characteristics of heavy commercial vehicles, the like-
lihood of vehicle rollover was described by Ranganathan [82] and El-Gindy [35] in
terms of lateral load transfer. This load transfer is usually given by the dynamic load
transfer ratio (LTR) and dynamic vertical load factor (DLF). The dynamic vertical
load factor is defined as ratio of instantaneous vertical load on the left or right track
of a given axle to the static vertical load on that track, expressed as:

DLFr = 2Fzr

Fzr + Fzl
, and DLFl = 2Fzl

Fzr + Fzl
(1.16)

where Fzr and Fzl are instantaneous vertical loads on the right- and left-wheels of
an axle. The DLF assumes a unity value under static conditions and may approach
zero during a directional maneuver, when tires on the inner track lose contact with
the road. The DLF due to outer track tires in this situation will attain a maximum
value of two. This measure describes the roll dynamics of a particular axle.

The dynamic load shift were evaluated in terms of variations in the liquid center
of mass coordinates and mass moments of inertia, moments induced by cargo shift,
and dynamic normal load factor (DLF) defined as the instantaneous ratio of dynamic
vertical load on a wheel to its static vertical load, expressed as [53]:

DLFk = Fzk

Fzko
, k=1,2,...,N (1.17)

is unity and may approach zero when it loses contact with the road under directional
maneuver. Fzk and Fzk0 are the instantaneous dynamic and static vertical loads on
wheel k, respectively. The dynamic load shift characteristics in terms of dynamic
load factors (DLF) of different tires, was determined using (1.17) for 0.5◦ and 1.0◦
ramp-step steer input and a braking treadle pressure of 68.95 KPa (10 psi). The time
history records of the dynamic load factor of tires on different axles for liquid and
frozen liquid for both trailer and tractor wheels revealed that for 1◦ steer angle and
upon applying the brakes at 4 s, the dynamic load factor of the left tires of the trailer
reaches its maximum value close to 1.92, while its value vanishes at the right tires.
The influence of liquid dynamics is less dramatic for the case of tractor wheels.

Papadogiannis et al. [73] estimated the load share on groups of axles (bogies) and
the individual axles of the bogies in relation to the tank center of gravity positioning
on the vehicle chassis in both the longitudinal and the vertical plane. It was assumed
that the vehicle structure is rigid, symmetric about its centerline, the lateral deflection
of the suspension is negligible and the reaction forces from the road are applied at the
center of the tires. Robinson et al. [93] presented an assessment of petroleum road
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fuel tankers in the UK. A wide range of evidence points to rollover as a contributing
factor inmajor fuel spillage incidents of petroleum road fuel tankers.When a rollover
results in major spillage, a combination of overturning and sliding was associated
with tank rupture caused by puncturing impacts with road-side objects, as the tanker
slides on its side.

1.3.2 Quasi-Dynamic Approach

It was indicated by [68] that heavy vehicles exhibit unstable behavior at lateral
acceleration over the range 0.0–0.4g. The quasi-dynamic approach assumes the liq-
uid volume moves such that the free surface takes a position orthogonal to the total
body forces due to gravity and lateral acceleration [82, 103]. Note that the liquid
free surface is a tilted flat surface whose gradient is a function of vehicle’s lateral
acceleration and tank’s roll angle [83, 86, 105, 110]. It was found that the liquid load
shift depends on the fill level, vehicle speed, and steer input. The liquid load was
found to reach its maximum level at a liquid fill of 70%. Using the quasi-static fluid
slosh, it was demonstrated that the destabilizing roll moment of a partly-filled vehicle
subject to an idealized lane change excitation is considerably higher than that of an
equivalent rigid cargo vehicle. The effect of liquid load shift on stopping distance
performance of tank vehicles was examined by [91] who used the quasi-static liquid
slosh solution under a straight-line braking input.

The relationship between the liquid sloshing effect obtained by calculating the
movement of the liquid bulk center of mass and the actual liquid sloshing observed
effect was studied by some researchers (see, e.g., [67, 133, 134]). It was found that
the mean values of sloshing forces and the coordinates of the liquid bulk center of
mass are quite close between the estimated and observed results. This conclusion
demonstrates the validity of the quasi-static method. The location of the center of
mass of the liquid domain experiencing a lateral acceleration can be specified by
replacing the free liquid surface by a flat surface. The liquid center of mass experi-
ences a shift as shown in Fig. 1.17. This shift gives rise to an additional roll moment
due to liquid about the entire vehicle center of mass. With reference to Fig. 1.17, the
position of free surface in a model of a partially-filled tank truck experiencing lateral
acceleration due to the motion of the truck in a circular path of radius of curvature
Rc can be determined by writing the equations of motion along x− and y − axes of
a mass particle of mass ρdυ, where ρ is the fluid density and dυ = dxdydz is an
elemental volume of the fluid

ρ(dυ)an cos θ = ρ(dυ)g sin θ + �P(dydz) (1.18a)

ρ(dυ)an sin θ = −ρ(dυ)g cos θ + �P(dxdz) (1.18b)

Dividing both sides by dυ = dxdydz and rearranging
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Fig. 1.17 Schematic diagram of a fluid volume whose free surface assume a flat surface during
lateral acceleration due to vehicle turning

∂P

∂x
= ρan cos θ − ρg sin θ (1.19a)

∂P

∂y
= ρan sin θ + ρg cos θ (1.19b)

Dividing (1.19a) by (1.19b), gives the slope of the free surface

dy

dx
≈ (an/g) − θ

(an/g) θ + 1
= tan φ (1.20)

Note that the quasi-static approach cannot reflect the dynamic characteristics of liquid
sloshing. Furthermore, the dynamic liquid sloshing using the fluid potential theory
is not straightforward in elliptic and arbitrary geometric containers as in the case
of upright circular and rectangular containers. Alternatively, equivalent mechanical
models have proven very convenient in describing the dynamic characteristic of
liquid sloshing in partially filled containers [50, 51].

Strandberg [110] studied experimentally the influence of large amplitude move-
ments of the contents on the overturning and skidding stability of road tankers.
Considerable reductions of the effective capacity due to dynamic liquid motions
were found for partly loaded tanks. Steady state shifting of the liquid cargo center of
mass CGwasmodelled by different approaches, including geometrical modeling and
experimental methods. However, no straightforward formulation has been proposed
for the calculation of the overturning moments due to the quasi-static shifting of the
cargo. When a partly filled tank truck is subjected to a constant lateral acceleration,
the free surface of the liquid inclines at a slope ϕ. This slope is numerically equal to
the lateral acceleration, when θ = 0 as given by (1.20).

Under lateral acceleration the liquid center of mass CG shifts along an elliptical
path having an aspect ratio equivalent to the aspect ratio of the tank cross-section.
There is a geometric description of the liquid free surface orientation, which remains
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Fig. 1.18 Fluid free surface configuration under steady lateral acceleration according to quasi-static
approach

tangential to an ellipse that has the same aspect ratio as of the tank itself. Note that
the three ellipses of the tank cross-section, free-surface tangent, and CG path are
concentric and b f /a f = bc/ac = b/a = 
. The position (x f , y f )of the liquid in the
elliptic container depends on the dimensions of the ellipse that describes its position,
and on the angle β shown in Fig. 1.18. From the definition of the ellipse geometry,
we can write

x f = a f cosβ; and y f = b f sin β (1.21)

where a f and b f are the semi-axes of the ellipse. The slope of the liquid free surface
ϕ is

dy f

dx f
= b f cosβ

−a f sin β
= −


(
1

tan β

)
= ϕ (1.22)

The liquid center of mass CG is described by the parametric equations

x = ac cosβ; and y = bc sin β (1.23)

Thus the coordinates of the liquid CG are

x = ac cos

(
tan−1

(
−


ϕ

))
and y = ac sin

(
tan−1

(
−


ϕ

))
(1.24)

where ac and bc are known from the original position of the undisturbed liquid.
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1.3.3 Rollover of Road Tankers

A broad-range of simulations of the dynamics of tank-vehicle rollover was reported
by Winkler et al. [121] who used the TruckSim1 [116] computer simulation. Seven
cargo tank motor vehicles, two tank trucks, and five tractor semitrailer combinations
were simulated. Each was subjected to 126 simulated maneuvers intended to result
in rollover. Test maneuvers included mild, low-speed turns that just barely produced
rollover, more dynamic maneuvers on smooth surfaces, and high-speed impacts
with curbs and guardrails that result in rapid rollover combined with substantial
pitch and yaw. A nonlinear fluid slosh analysis of a partially filled circular tank was
developed by Modaressi-Tehrani et al. [67] to study the transient fluid motion on
the resulting destabilizing forces and moments imposed on the tank vehicle. The
analysis was performed on a clean bore tank of circular cross-section for various fill
volumes and subject to different magnitudes of steady as well as harmonic lateral
acceleration using the FLUENT software. A relationship between the lateral force
and the resulting roll moment was derived, which suggests that the roll moment could
be defined as a function of the horizontal force and tank radius. The deviations of
the forces and overturning moment from those predicted using quasi-static load shift
analysis were also presented. The results of the study suggested that the magnitude
of transient roll moment could be 1.57 times larger than corresponding mean values
that are very close to those predicted using the quasi-static analysis. The magnitude
of the peak overturningmoment was found to be strongly dependent on the frequency
of the lateral acceleration excitation.

The critical lateral acceleration for overturning of a typical tank truck was found
to be 5.4m/s2 when the tank is fully loaded, and only 2.4m/s2 when the tank is 50%
full. Note that although the center of gravity associated with the half-filled tank is
lower than the one for the fully filled tank, the critical lateral acceleration is smaller
due to the sloshing of the free surface. The danger of rollover is particularly severe
when the frequency content of driving maneuvers is close to the natural frequency
of the free surface as indicated by Strandberg [110], Ervin et al. [39], Aquaro [2]
and Aquaro et al. [2]. In view of the adverse influence of liquid sloshing on road
tanker stability and safety performance, some attempts were made to reduce sloshing
effects. These include separating walls or baffles as proposed by Strandberg [110]
and Bauer [14, 15] and Ibrahim [51]. The number, location and sizes of separating
walls and baffles, as well as the size of baffle orifices and their effect on slosh loads
were documented by Ibrahim [51].

Cargo load movement in cylindrical tanks was incorporated into the static roll
model by Southcombe et al. [107]. A “generalized ellipse” equation allows a variety
of cylindrical tank profiles to be analyzed. For a partially filled tank, the locus of

1TruckSim computer simulation system is a software package for predicting braking, steering, and
roll behavior of heavy trucks and combination vehicles. The models range in complexity from a
26-degree-of-freedom two-axle truck model to a 67-degree-of-freedom tractor-semitrailer model.
TruckSim does not have capabilities to simulate liquid loads, but in large part liquid motion is not
at issue for full loads. The exception is in regards to the roll moment of inertia of the payload.
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the cargo center of gravity locations was determined as a function of the cargo
surface slope. The cargo was then modeled as a single point mass that moves along
a curved guide shaped. The safety performance measures may be strongly affected
by the dynamic load shift and variations in mass moments of inertia of the moving
cargo and are evaluated in terms of dynamic load shift. In an effort of predicting the
dynamics of a fluid transport system, Wendel et al. [120] and Thomassy et al. [112]
reported the results of a multiphase program to develop and demonstrate the use
of computational fluid dynamics analysis coupled with vehicle dynamics analysis
encountering typical maneuvers. A one-quarter-scale model of a Tank Unit Liquid
Dispensing (TULD) tank was constructed, as well as a test fixture to simulate a
five-ton Family of Medium Tactical Vehicles (FMTV) truck. The reaction forces and
the fluid motions of the computational fluid dynamics analysis and the laboratory
test were compared for six simulated vehicle maneuvers including lane changes and
bumps. The computational fluid dynamics analysis was conducted with the FLOW-
3D software package. The net fluid force and moment predictions were added to the
force and moment predictions of a rigid body dynamic analysis of the empty tank
alone to compare to the corresponding measured values for the test tank. Figure1.19
shows the time history records of predicted and measured of rear axle roll moment
exerted by the tank half full of water mounted on a vehicle negotiating an Allied
Vehicle Test Publication (AVTP) lane change at 40-mph as reported by Wendel et
al. [120]. This figure demonstrates that the effect of liquid sloshing is significant and
will have significant effect on vehicle dynamics.

Rollover threshold is an essential factor in the study and design of road tanker.
Tesar [111] presented a method of identifying the influence of liquid motion in a
partially filled road tanker based on simulation using theMulti-body SystemAnalysis
software. The road tanker model was tested in compliance with the results obtained
by measuring carried out on a SCANIA 124 L truck combined with a ZVVZ trailer.
Simulation tests were carried out for the drive on a circular track and in a drive
around a roundabout, which is considered the most dangerous manoeuver that causes
vehicle rollover. A combined experimental and calculation method was presented by
Chondros et al. [30] to determine the overall torsion-angular displacement relation
for a road tanker on an inclined level under its own weight. Pape et al. [75] examined
the heavy truck rollover characterization. They considered a tanker-trailer used for
the on-track testing specially designed and fabricated so that the desired test load
distributions could be obtainedwithminimal complexity in terms of loading the tanks
with water and sand. The results provided insight into the relationship of torsional
stiffness to roll stability. It also provided insight into the roll stability and design
changes which can enhance roll stability.

The simulation of the liquid cargo–truck interaction was studied by Romero et
al. [96]. It was found that the rollover trend of the vehicle can increase due to fluid
sloshing, up to 50% for the container half full. The experimental assessment of lateral
sloshing forces developedwithin scaled road tankers as a function of fill level and con-
tainer shape was presented by Romero et al. [95] for high fill levels (from 90 to 98%)
and three container shapes (oval, modified oval, and circular). The lateral dimen-
sional characteristics of the containers represented a reduction scale of road tankers
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Fig. 1.19 Time history records of predicted and measured of rear axle roll moment exerted by the
tank with fluid of the vehicle under 40-mph lane change. Wendel et al. [120]

in the range of 1:5. Containers were subjected to a lateral excitation imparted by a
sinusoidal electromagnetic shaker that moved a wheeled container/support assembly
at a range of frequencies. Application of these normalized forces to actual size tank
trucks further suggests that the rollover threshold acceleration of a rigidly suspended
tank truck, due to sloshing, can be reduced by 2% for the 98% fill level, and around
10% for the 90% fill level. The rollover propensity of road tankers when subjected
to lateral perturbations derived from steering manoeuvers was experimentally mea-
sured by Romero et al. [97]. The testing principle involved a scaled down sprung
tank to analyze its rollover propensity as a function of various vehicle’s operational
and design parameters. Initial acceleration was generated a tilt table supported by a
hydraulic piston. The controlled release of the fluid in the hydraulic system generates
a perturbation situation for the tank, similar to the one that a vehicle experienceswhen
leaving a curved section of the road and going to a straight segment. Durations for
the maneuver and initial tilt angles were used to characterize both the corresponding
intensities of the steering maneuver.

1.3.4 International Standards of Roll Threshold and Drivers
Training

The basic measure of roll stability is the static rollover threshold, expressed as lateral
acceleration in gravitational units. A number of standards were proposed in several
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countries. For example, the Canadian National regulatory authorities adopted 0.40g
as the minimum roll threshold for tank trucks. New Zealand and Australia have a
minimum roll threshold of 0.35g, while the United Nations Economic Commission
for Europe has a minimum roll threshold of 0.40g for tank trucks by tilt test. The
threshold value 0.35g seems to be the lower limit for the roll threshold for all vehicles,
with 0.40g for tank trucks among many nations. An on-scene study of 42 road tanker
incidents with flammable loads was conducted in New South Wales over a period of
fifteen months [46]. Roll instability was a common factor and rollover of the tankers
occurred frequently. The reduced stability appeared to result from high center of
gravity, “soft” roll stiffness from suspension and turntables, and sloshing loads of
the liquid cargo. Road geometry factors contributing to the 42 incidents occurred nine
times and included curvature, cross-section, grade and width. The results of a study
of cryogenic tanker roll stability of a fleet of tankers, operated by the Linde Division
of the Union Carbide Corporation were reported by Ervin and Nisonger [38]. It
was found the Linde fleet is low in roll stability compared to tractor-semitrailers in
common freight service in USA. Rollover thresholds for the Linde fleet were found
to range from 0.26g to 0.36g. By way of contrast, MC 306 gasoline tankers in the
USA showed rollover thresholds around 0.32g and tractor-semitrailers in general
freight service were estimated to register typical values around 0.37g.

The handling- performance capability of most large commercial vehicles operat-
ing on US highways is generally established by the limits of roll stability [121]. For
heavy trucks, suspension properties play an important role in establishing the basic
roll stability of the vehicle. The inherent susceptibility of a given vehicle to rollover
was described by the rollover threshold [37, 42, 43].

Four complementary approaches to reducing the incidence of cargo tank truck
rollovers were evaluated by Pape et al. [74]. These includes improving the training
of drivers, deploying electronic stability aids, implementing new vehicle designs, and
learning lessons from highway designs. The safety of driving cargo tank trucks was
strongly addressed on rollover prevention [70, 76]. The emphasis is on the driver’s
role in an overall corporate safety culture. To the extent that a skill is emphasized, it
is the importance of avoiding sudden maneuvers that can induce slosh.

It is known that rollovers are among the most serious crashes of cargo tank motor
vehicles carrying hazardous materials [74]. In Battelle [9, 10, 12] extensive studies
were conducted to assess the additional risks posed by hazardous materials trans-
portation when compared to non-hazardous shipments. The average annual enroute
hazardous materials accident frequency was estimated to be 2,484 accidents. On the
other hand, non-hazardous materials shipments experienced an estimated 126,880
accidents in the portrait year. Total hazardousmaterials annual impacts for the portrait
year were estimated at about $1.2 billion. Enroute accidents with total impacts of just
over $1 billion account for about 89% of the total impacts. The safety benefits of an
improved version of theRollAdvisor andController (RA&C) on-board safety system
were considered [11]. The RA&C, comprised of two components that perform two
distinct functions: (1) To inform drivers when they have performed a maneuver with
a high risk of rollover (the roll stability advisor [RSA] component). (2) To initiate
autonomous braking to prevent a rollover (the Field Operational Test Roll Stability
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Control [RSC] component). The new safety standard, Federal Motor Vehicle Safety
Standard, FMVSS 136 (NHTSA, 2012), is designed to reduce rollovers and to mit-
igate severe understeer or oversteer conditions that lead to loss of control. It will
require the use of automatic computer-controlled braking and reduced engine torque
output to achieve its objectives.

1.3.5 Directional Stability and Dynamics

The stability of a vehicle about an axis which is perpendicular to its direction of
motion is usually referred to as directional stability. It is defined as the tendency of
a vehicle to return to its original direction in relation to the on-coming road medium
when rotated away from that original direction. If a vehicle is directionally stable,
a restoring moment is produced which is in a direction opposite to the rotational
disturbance. This “pushes” the vehicle to return it to the original orientation.

Dynamic response and stability characteristics of a partly filled articulated liquid
cargo vehicle with tanks of arbitrary cross-section were studied under braking-in-a-
turnmanoeuver. Tanks with circular, modified-oval and arbitrary cross-sections were
considered for deriving the longitudinal and lateral cargo shifts under longitudinal
as well as lateral acceleration fields. The three-dimensional quasi-static model of
the partly filled tanks was integrated to the dynamic model of the vehicle to study
the role of tank geometry and road adhesion on the dynamic behavior of the partly
filled liquid cargo vehicle. The directional dynamic characteristics under a braking-
in-a-turn manoeuver were evaluated in terms of moments induced by the moving
cargo, wheel dynamic load factor; load transfer ratio, yaw and roll response and
braking performance of the vehicle. The results showed that dynamic performance
of the partly filled liquid cargo vehicle deteriorates significantly due to considerable
magnitudes of roll, pitch and yaw moments imposed by the moving cargo. A partly
filled articulated tank vehicle, subject to braking-in-a-turn, is more susceptible to
rollover on dry roads, while it exhibits a higher propensity of trailer swing on slippery
roads. The results further indicate that tank cross-section yields certain influence on
the dynamic characteristics of the partly filled articulated liquid cargo vehicle under
braking-in-a-turn.

The directional response characteristics of double tankers (i.e., two articulated
tank-trailers in Tandem) were studied by Mallikarjunarao and Fancher [63]. It was
indicated that the double-trailer gasoline tanker configuration corresponding to that
used in Michigan has a lightly damped mode of “pup-trailer” (i.e., the second trailer)
oscillation that can be unstable at highway speeds. This occurred when the rear
compartment of the pup trailer is loaded and the other compartments of the pup trailer
are empty. The lateral acceleration of the pup-trailer was found much larger than
that of the tractor of the vehicle train in obstacle-avoidance maneuvers at highway
speeds. The influence of size and weight of heavy vehicles on handling and control
characteristics of liquid tank vehicles was examined by Sankar et al. [102]. The
influence of liquid motion within the tank, on the static stability behavior of the
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vehicle was investigated in terms of the lateral shift of center of mass and the tank
shape.

Roll stability issues involving the operation of heavy tanker combinations on two
segments of curved roadway were evaluated by Ervin and Mathew [40]. Two vehi-
cle configurations were examined, representing tankers for transporting petroleum
products. The analyses showed the comparison in static stability between the selected
vehicles and the performance of these vehicles on an existing and a proposed road
segment. The study provided recommendations for setting maximum speed values
for trucks operating on the subject curves. The dynamic stability limits of partially-
filled tank vehicle combination using computer simulation and field testing were
reported by SS [108]. Overturning limits of tank vehicles were investigated using a
kineto-static roll plan model. A three-dimensional tank-vehicle model, incorporating
a steady-state fluid slosh model, was developed and computer simulation was per-
formed to determine directional stability for various maneuvers, fill levels, vehicle
speeds, and tank design factors. A comparison of directional response characteristics
of tank vehicles with liquid and equivalent rigid cargo was conducted. As well, the
influence of dynamic slosh loads on the dynamic stability and directional response
characteristics of tank vehicles was investigated.

Thedirectional dynamics of partiallyfilled articulated tankvehicleswas studiedby
Sankar et al. [103, 104] using computer simulation under constant forward velocity.
The directional response characteristics of an articulated tank vehicle was examined
for various steering manoeuvers and compared to that of an equivalent rigid cargo
vehicle to demonstrate the destabilizing effects of liquid load shift. It was found that
during a steady steer input, the distribution of cornering forces caused by the liquid
load shift yields considerable deviation of the path followed by the tank vehicle. The
lateral load shift encountered in a partially filled tank vehicle during lane change
and evasive type of highway manoeuvers was found to give rise to roll and lateral
instabilities. The nonlinear fluid slosh equations were solved in an Eulerian mesh to
determine dynamic fluid slosh loads caused by the dynamic motion of the vehicle.
The dynamic fluid slosh forces andmoments were coupledwith the vehicle dynamics
model to study the directional response characteristics of tank vehicles. Simulation
results revealed that during a steady steer maneuver, the dynamic fluid slosh loads
introduce oscillatory directional response about a steady-state value calculated from
the quasi-dynamic vehicle model. It was concluded that the quasi-dynamic model
can predict the directional response characteristics of tank vehicles quite close to that
evaluated using the comprehensive fluid slosh model.

The vertical and lateral translation of the liquid cargo due to vehicle roll angle and
lateral acceleration, encountered during steady turning, were evaluated by Rakheja
et al. [78]. The adverse influence of the unique interactions of the liquid within the
tank vehicle, on the rollover limit of the articulated vehicle is demonstrated. The
influence of tank geometry and liquid fill level on the rollover immunity of the tank
vehicles was studied by Ranganathan et al. [85]. The rollover threshold levels of the
tank vehicle were compared to that of an equivalent rigid cargo vehicle for various
loading conditions. The influence of compartmenting of the tank and the influence of
the location of the trailer axles on the rollover immunity levelswas also studied and an
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optimal order to unloading the various compartments was established. The influence
of the lateral load shift on the dynamic response characteristics of an articulated tank
vehicle was studied under braking by Ranganathan and Yang [84] and Ranganathan
et al. [82]. The destabilizing effects of liquid load shift were studied by comparing
the directional dynamics of the partially filled tank vehicle to that of an equivalent
rigid cargo vehicle subject to steady steer input. The liquid load shift occurring in
the pitch plane of the vehicle during a braking maneuver was characterized using
the change in the gradient of the free surface of liquid and the corresponding shift in
the center of gravity of the fluid bulk. The braking characteristics of the tank vehicle
were compared to those of an equivalent rigid cargo vehicle in order to study the
impact of liquid load shift. Influence of various vehicle and tank design parameters
on the braking behavior and wheel lock-up condition is also investigated for typical
braking maneuvers. The distribution of cornering forces caused by the liquid load
shift yielded considerable deviation of the path followed by the liquid tank vehicle.
The influence of the vehicle speed on the dynamics of the liquid tank vehicle is also
investigated for variations in the fill levels and fluid density.

The directional dynamics of a partially filled tank truck was studied by Rakheja et
al. [79] using computer simulation of a three-dimensional vehicle model incorporat-
ing a quasi-dynamic roll plane model of the tank. Field tests were performed for typi-
cal lane change and turning manoeuvers, and the corresponding directional response
data were compared to the computer simulation results to validate the analytical
model. The rollover threshold of partially filled liquid cargo vehicles was estimated
by Rakheja and Ranganathan [80]. The primary overturning moment caused by the
lateral motion of the liquid cargo within the circular, elliptic or modified-oval cross-
section tanks was derived as a function of the lateral acceleration, roll angle, fill level,
and the tank geometry. The estimated values of rollover threshold were compared
to those obtained from a comprehensive kineto-static roll plane model of the tank
vehicle. Directional dynamics of a B-train2 tank vehicle was studied by Ranganathan
et al. [88] by integrating the three-dimensional vehicle model to the dynamics of free
surface of liquid cargo. The influence of liquid motion on the dynamic response
of the rearmost trailer was examined for both constant and transient steer inputs,
assuming constant forward speed. Directional response characteristics of the B-train
tank vehicle were compared to those of an equivalent rigid cargo vehicle.

The dynamics of vehicles subject to liquid slosh loadswasmodeled as amultibody
system byRumold [98]. The sloshing liquid dynamics was determined by solving the
Navier–Stokes equations. The concept of modular simulation was applied decom-
posing the dynamic system into subsystems. The system of equations resulting from
a finite volume discretization was solved by a multigrid method while the location of
free surfaces was determined by a volume-of-fluid approach. The interaction of liq-
uid sloshing and vehicle motion was used to determine the braking characteristics of
partially liquid-filled tank vehicles. It was shown that a loss of directional control due

2B-Train consists of two trailers linked together by a fifth wheel, which is located at the rear of the
lead, or first, trailer and is mounted on a “tail” section commonly located immediately above the
lead trailer axles. In North America this area of the lead trailer is often referred to as the “bridge”.
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to wheel lock-up is more likely for tank vehicles with sloshing liquid cargo than for
vehicles loaded with equivalent rigid cargo because of the dynamic liquid load shift.
The stability of articulated suspended cargo vehicles was studied byMangialardi and
Mantriota [64] to characterize possible conditions of instability that can be induced
by the presence of oscillating cargo. A linear mathematical model of the articulated
vehicle was used to determine the critical speed and to analyze the sensitivity of
the critical speed to the variation of some characteristic parameters of the vehicle.
Suspended cargo movements within articulated vehicles were found to cause the
greatest potential risk of road accidents. A mathematical model was proposed by
Mantriota [65] for studying the dynamics of articulated vehicles carrying suspended
cargoes. For different operational conditions, the effect of the suspended cargo for
the vehicle’s stability was assessed in terms of the critical speeds and the frequencies
of the vehicle. Later, Mantriota [65] proposed another analytical model to study the
directional stability of articulated tank vehicles. The liquid in the tank was simulated
through elementary pendulums distributed longitudinally. The critical speed of the
tank vehicle was calculated for different values of fill level. The most critical con-
dition was obtained for a fill level equal to approximately 70%, with a frequency of
0.38Hz. The decay time for the oscillations of the liquid was found strongly influ-
enced by the vehicle’s forward speed. The stability of the vehicle was examined by
varying the geometric greatness of the tank demonstrating a predominant effect of
the length compared to the radius.

The coupling of a mechanical subsystem model with a fluid subsystem model
was developed by Elliott et al. [36] and Barton et al. [8]. The approach was to link
a vehicle simulation based on ADAMS software [36] with the computational fluid
dynamics software Dytran. The result was a fully coupled tank truck simulation
that used state-of-the-art models for both the vehicle and the fluid. The method was
not easy to implement since vehicle simulations and fluid simulations are generally
solved using very different methods. Vehicle simulations use an implicit method in
which time within the simulation is virtually continuous whereas fluid simulations
use an explicit method in which the simulation time is broken into discrete instants.
In order to pass variables between the two simulations Elliott developed “glue code,”
which handles the exchange of data between the two solvers.

1.4 Coupled Dynamics of Liquid-Tanker Systems

1.4.1 Overview

The motion of road tanker affects the motion of liquid free surface inside its tank.
At the same time the resulting motion of liquid inside the tank will impart hydro-
dynamic loads on the vehicle that affects its dynamics and stability. The interaction
between the liquid with the vehicle dynamics has been the subject of many studies.
For heavy trucks without liquid tanks, Yang et al. [130] applied a system identifi-
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cation technique to determine the lateral dynamics of an articulated freight vehicle
subjected to three different steering excitations and levels of measurement noise.
An algorithm was proposed to extract an estimate of significant vehicle parameters.
It was found that the directional dynamics of the vehicle is influenced mostly by
the lateral and yaw dynamics, while the contributions due to roll dynamics are rel-
atively small. Thomassy et al. [112] developed a co-simulated software (referred to
CoSim), which simultaneously simulate vehicle dynamics and fluid slosh so that the
highly coupled behavior of fluid and vehicle motion is realized. The CoSim involves
a master program that manages the exchange of data between and synchronization of
two separate simulation codes. These codes are the vehicle dynamics and tank slosh
simulations. The master program (called the Glue Code) provides motion data from
the vehicle dynamics simulation to the tank slosh simulation and force data from the
tank slosh simulation to the vehicle dynamics simulation.

Solid–fluid interaction in vehicles carrying liquids was examined by Biglarbegian
and Zu [16]. The equations of motion for the vehicle system were coupled with
solid fluid interaction coupled. The coupled equations were solved to determine the
dynamic behavior of the system under different braking moments. As the braking
moments increase, braking time decreases. It was shown that vehicles carrying fluids
need a greater amount of braking moments in comparison to vehicles carrying solids
during braking. In addition, as the level of the fluid inside the tanker increases, from
one-third to two-third of the tanker’s volume, the sloshing forces applied to the
tanker’s walls increase.

The dynamic coupling between shallow-water fluid sloshing and themotion of the
transport vehicle was studied analytically byArdakani and Bridges [4, 5]. Horizontal
motion, translation and rotation of the vessel coupled to shallow-water sloshing were
considered. For the case of coupling with horizontal motion, the governing equations
ofmotionwere derived byCooker [31]. The couplingwas nonlinear while the vehicle
model is linear (linear spring).

Wu and Lin [124] studied the yaw/roll dynamics of tractor-trailer with multi-
axle-steering carrying a partial load of liquid during a transient steering operation
for various levels of tank filling. The lateral inertia forces and the vertical and lateral
translations of the center of mass of a liquid-carrying tanker fitted with multi-wheel
steering under conditions of steady-state steering response are presented. The tran-
sient directional responses of yaw and roll angles were studied under lane change
maneuvers. The results demonstrated that the use of multi-axle-steering reduces the
lateral forces caused by shifts of the liquid during steady turning, hence reducing roll
and lateral instabilities of the vehicle. The results were compared with those of a con-
ventional tanker fitter with a single front wheel steerable axle. The transient forces
and roll moment caused by fluid slosh within partly filled circular and conical cross-
section tanks, subject to a time-varying lateral acceleration field, were estimated
numerically by Yan et al. [127]. The variations in the center of mass coordinates,
vertical and lateral forces and roll moment were applied to the roll-moment model of
a 6-axle tractor-semi-trailer articulated tank vehicle for analysis of the steady-turning
rollover threshold. It was found that the magnitudes of transient lateral force and roll
moment approach significantly higher values, than those estimated from the quasi-



1 Road Tanker Dynamics Interacting with Liquid Sloshing Dynamics 33

static formulations. The mean values of the force and moment, however, were found
similar to those predicted from the quasi-static solution. The steady-turning rollover-
threshold accelerations of the vehicle combination with partly filled tanks were thus
considerably lower when transient slosh forces and moment are considered in the
moment equilibrium, specifically for the intermediate fill volumes. It was found that
the static roll stability limits for a conical cross-section tank are considerably higher
than that with a circular cross-section tank.

The nonlinear dynamic behavior of partially filled tank vehicles under large-
amplitude liquid sloshing was studied by Dai et al. [33]. A nonlinear impact model
for liquid sloshing in partially filled liquid tank vehicles was developed to examine
the longitudinal dynamic characteristics of tank vehicles under typical driving condi-
tions. The dynamic fluidmotionwithin the tankwasmodelled by utilizing an analogy
system together with an impact subsystem for longitudinal oscillations. The forces
on the fifth wheel and the axles of the vehicle were determined taking into account
the effects of the liquid sloshing in the tank. The nonlinear dynamic behavior of the
tank vehicle involving liquid sloshing, running over rough roads were analyzed and
compared with those of linear models.

A time-based finite element model for predicting the coupled dynamic response
of tanker trucks and their liquid payloads validated experimentally was presented by
Wasfy el al. [118, 119]. The tanker truck components were modeled using rigid bod-
ies, flexible bodies, joints and actuators. The model was validated using a full-scale
army heavy class tactical trailer carrying a water tank. The trailer is placed on an
n-post motion base simulator which was used to perform harmonic/ramp pitch, roll
and stir excitations of the trailer in order to simulate typical road maneuvers. Exper-
iments were carried out with an empty tank and a 65%-filled tank. The experimental
measurements were compared with the results predicted using the computational
model and it was shown that the model can predict with reasonably good accuracy
the test tanker-trailer’s dynamic response.

The liquid motion inside a road tank vehicle and its analytical modeling for stabil-
ity limits was studied by Bottiglione andMantriota [19, 20]. The experimental study
employed visual technique of the free surface of the fluid, accompanied by several
measurements of vehicle motion parameters. The analytical model, validated by the
experimental results, predicted the influence of several design and operative parame-
ters on dynamical properties of partially filled tank vehicles. It was shown that the
dynamical interaction between liquid and rigid cargo is considerably influenced by
the type of maneuver performed and the sharpness of the steering inputs applied. In
another study [21], the trailer was equipped with further instruments providing the
analysis of the vehicle dynamics. Experimental tests about a trial manoeuver consist-
ing of a 90◦ degrees curve of an articulated car-tank trailer system were performed.
The measured results were compared with the calculated results of a mathemati-
cal model of an articulated vehicle including a dynamic model for liquid motion.
Later, the work was extended by Bottiglione and Mantriota [22, 23] to experimen-
tally study the handling performance of an articulated vehicle carrying liquid cargo.
The test vehicle consists of a car with a single-axle trailer carrying a cylindrical
tank, fully instrumented to measure the interested parameters of vehicle dynamics
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and liquid-vehicle interactions. An original device for the visualization of the liquid
free surface inside the tank is also described. Comparisons between three different
kinds of mechanical models and test results revealed that the dynamical interaction
between liquid and rigid cargo is considerably influenced by the type of manoeuver
performed and the sharpness of the steering inputs applied.

An analytical model of longitudinal liquid sloshing was developed by Toumi et al.
[113] who used the Navier-Stokes equations and the principle of work and energy for
tankmodelswith lateral orifice baffles. The analysiswas performed under varying the
magnitude of the tank longitudinal acceleration for two different values of liquid fills.
The results obtained were compared with the simulation results and were presented
in terms of mean and peak of longitudinal and vertical shift of the center-of-mass
coordinates. Later, the stability and the behavior of the dynamics of tank vehicles
carrying liquid fuel cargo were studied by Toumi et al. [114, 115] and Bouazara et
al. [24]. A simplified analytical model of liquid sloshing was developed using the
Navier–Stokes equations. Simulation results obtained using the full complexNavier–
Stokes equations modulated with numerical commercial software are compared to
the simplified analytical model. The results showed a good correlation under single
or double lane change and turning manoeuvers. An analytical model of a modular
tank vehicle has been developed. The model included all the vehicle systems and
subsystems. Simulation results obtained using this model were compared with those
obtained using the popularTruckSimsoftware. Simulated directional response results
obtained for a vehicle transporting liquid load with that transporting rigid load under
several directional manoeuvers such as step steer, single lane and double lane change
revealed that the vehicle transporting liquid experiences more load transfer and the
difference was found to be 15–20%.

Jafari and Samadian [52] developed a dynamic model of a tractor semi-trailer
vehicle coupled with a three-dimensional full scale tank’s fluid dynamics to study
the dynamic behaviors of the vehicle subject to liquid slosh loads during steady and
transient steering inputs. The fluid forces and moments were derived from compu-
tational fluid dynamic model based on volume-of-fluid technique. The steady state
turning and lane-change maneuvers were performed and dynamic responses com-
pared with equivalent rigid cargo. It was found that the vehicle responses are affected
by fluid slosh. The roll angles highly affected by fluid movement but the yaw rate
changeswould be small. Roll stability of vehicle was also affected by fluidmovement
inside the tank, describing by dynamic load factor and load transfer ratio. The results
showed the fluid sloshingmodel interaction with the vehicle dynamic increases prob-
ability of roll over occurrence. This probability is higher in the lane changemaneuver
especially in the second half of lane-change maneuver. The directional response and
roll stability characteristics of a partly filled tractor semi-trailer vehicle were studied
by Azadi et al. [6, 7]. The effective parameters and conditions in the stability of a
tractor semi-trailer carrying liquid were found essentially to be the tank shape, fill
volume and vehicle steering input. The dynamic interaction of liquid cargo with the
tractor semi-trailer vehicle was evaluated by integrating a dynamic slosh model of
the partly filled tank with five-degrees-of-freedom of a tractor semi-trailer tank. The
vehicle model was analyzed for the different tank cross-sections, circular, modified-
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Fig. 1.20 Schematic diagramof the seven-degree of freedompitch-plane vehiclemodel as proposed
by Yan and Rakheja [129]

oval and reuleaux triangle. The dynamic fluid slosh within the tank is modelled
using three-dimensional Navier-Stokes equations, coupled with the volume-of-fluid
equations and analyzed using the FLUENT software.

1.4.2 Liquid-Vehicle Coupling During Braking

The coupling between fluid and vehicle body during straight line braking of a
partially-filled tank truck was developed by Yan and Rakheja [128, 129]. The analy-
sis was based on a seven-degree-of-freedom pitch-plane model in which the rear
three axles are represented by a single composite axle as shown in Fig. 1.20. The
model considers longitudinal, vertical and pitch motions of the sprung mass, vertical
motions of the two unsprungmasses, and angular motions of the wheels. The floating
fluid cargo within the tank is represented by its resultant transient dynamic forces
along the longitudinal and vertical axis, and the pitch moment, which are derived
from the slosh model and assumed to act on the vehicle sprung mass center of grav-
ity (Os). Figure1.20 shows the resultant longitudinal and vertical forces, F̄xl , F̄zl ,

respectively, and pitch moment, M̄yl , due to the liquid sloshing. The resultant liquid
sloshing forces and moment were computed along the (xyz)L coordinate system and
transformed to the inertial reference (xyz)s . The fluid slosh was modeled in the com-
putational fluid dynamics and experimentally validated for the scale model tank by
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Yan [126]. The resultant pitch moment due to the slosh forces was computed about
the center of gravity of sprung mass, Os . The resultant slosh forces and moments
were derived from the absolute slosh forces and moment by appropriately adjusting
for the inertial forces and moment due to an equivalent rigid cargo.

The equations of motion describing the longitudinal xs , vertical zs and pitch αs

motions of the sprung mass can be expressed as:

(
ms + mu f + mur + ml

)
ẍs = F̄xl − (

Fxbf + Fxbr
) − (

msg + mlg + F̄zl
)
αs

(1.25)
(ms + ml) z̈s = F̄zl − (

Fzs f + Fzsr
) + (ms + ml) g (1.26)

(
Iyys + Iyyl

)
α̈s = M̄yl + Fzs f L f − Fzsr Lr − (Hs − z)

(
Fxbf + Fxbr

)
(1.27)

where Fxbf and Fxbr are the braking forces developed at the front and rear tire-
road interfaces, respectively. Assuming no wheel lockup, the longitudinal braking
forces developed on the tire-road contact were derived from the widely used ‘Magic
Tire Formula’ developed originally by Pacejka and Bakker [72]. ms is the sprung
mass of the vehicle consisting of the chassis structure and the tank structure. ml is
the liquid mass, mu f and mur are the front and rear unsprung masses, respectively.
Iyys and Iyyl are the pitch mass moments of inertia of the sprung mass and the
floating cargo. Hs is the height of the sprung mass center of gravity position at the
static equilibrium position, L f and Lr are the longitudinal positions of the front and
rear axles, respectively, from the center of gravity of the sprung mass, as shown in
Fig. 1.20. Fzs f and Fzsr are the vertical forces developed due to the front and rear
suspensions, respectively. Assuming linear stiffness and damping properties of the
suspension system, the suspension forces are derived from:

Fzs f = ks f
(
zs − L f αs − zu f

) + cs f
(
żs − L f α̇s − żu f

)
(1.28)

Fzsr = ksr (zs + Lrαs − zur ) + csr
(
żs + L f α̇s + żur

)
(1.29)

where a dot denotes derivative with respect to time, ks f , and ksr are the stiffness
coefficients of the front and rear lumped axles, respectively, while cs f and csr are the
corresponding damping coefficients. zu f and zur are the vertical displacements of
the front and rear unsprung masses measured from the respective static equilibrium
position. The equations of motion for the unsprung masses, mu f and mur describing
the vertical motion can be expressed from the suspension and inertial forces in the
form:

mu f z̈u f = Fzs f − Fzt f + mu f g, and mur z̈ur = Fzsr − Fztr + mur g (1.30a, b)

where Fzt f and Fztr are the vertical force components due to tires on the front and
rear axles, respectively, and can be written by the expressions
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Fzt f = kt f zu f + ct f żu f , and Fztr = ktr zur + ctr żur (1.31a, b)

where k and c are the linear tire stiffness and damping coefficients, respectively.
Assuming uniform tire-road adhesion and that the braking forces remain below

the limit of tire-road adhesion (i.e., no wheel lockup), the angular motion of the
wheel/tire combination can be related to the braking force and braking torque by the
equations of motion:

I f �̇ f = Fxbf R f − T f , and Ir �̇r = Fxbr Rr − Tr (1.32)

where R is the effective radius of the indicated wheel, and I is the corresponding
polar mass moment of inertia of the tire-wheel assembly. The torque distribution
was assumed to be proportional to the static normal load on the front and rear axles.
The driver’s reaction time and the braking system time lag were taken as 0.75 − s,
while the braking torque gain of the braking system was set to be 98.2 Nm/kPa.
Yan and Rakheja [129] considered the tridem tank truck with 6.65-m wheel base,
3.5-m overall height and 11-m overall length. The gross mass of the truck was about
25,840-kg (including the liquid cargo). The sprung mass of the vehicle without the
cargo was 5250-kg, while the vehicle full payload capacity is 16,400-kg. The tridem
axles were assumed to have identical properties and responses, and were lumped to a
single composite axle. Three different liquid products were selected to achieve three
different fill volumes but nearly identical cargo load. These included: sulfuric acid,
dichloromethane and water, which resulted in fill volume ratios of 38.1%, 52.1% and
69.5%, respectively. The fill heights for the three different fill volumes were 0.63,
0.85 and 1.14-m from the tank bottom. The weight densities of the three fluids were
1826.3, 1326 and 998.2-kg/m3.

The measured liquid sloshing forces due to external harmonic excitation were
analyzed in terms of frequency and transient forces and moments for 50%-filled
multiple-orifice baffled tank and clean-bore tank subject to 1m/s2 lateral excitation
at 0.7Hz. Figure1.21 shows the power spectral density of measured slosh forces. It is
seen that the two tanks reveal similarmagnitudes of the spectral energy of lateral slosh
force, while considerable differences is evident for the longitudinal force responses.
Two predominant peaks near the excitation frequency, fe ≈ 0.7 Hz, and the lateral
mode fundamental frequency, fn,y = 1 Hz, are observed in the spectra of lateral force
as shown in Fig. 1.21a. The spectra of the longitudinal slosh force shown in Fig. 1.21b
exhibit prominent peaks near the excitation frequency, fe, longitudinalmode resonant
frequency, fn,x = 0.45 Hz, and lateral mode frequency, fn,y = 1 Hz. This suggests
that the variations of transient slosh forces are closely dependent on the external
excitation and the liquid sloshing natural frequency. Note that the longitudinal mode
resonance of the baffled tank is approximately 1.1Hz, close to the lateral mode
resonance. The higher frequency peaks exhibited in the spectra may be related to
higher slosh modes and structural modes. The three-dimensional slosh model of a
partly-filled tank with and without baffles was also integrated to a 7-DOF pitch plane
model of a tridem truck to analyze its straight-line braking characteristics in the
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Fig. 1.21 Frequency spectra of slosh force components measured on the 50%-filled un-baffled
(dashed-dotted plots) and baffled (solid plots) tanks subject to 1m/s2 lateral acceleration excitation
at 0.7Hz: a lateral force, b longitudinal force. Yan and Rakheja [129]

presence of fluid slosh. A degradation of the braking performance of the partly filled
tank truck was evident in the presence of transient fluid slosh, particularly in the
absence of baffles. The braking performance, however, was highly dependent upon
fill volume, presence of baffles, and severity of the braking input.

Dynamic behavior of a partly-filled liquid cargo vehicle subject to simultaneous
application of cornering and braking maneuvers was studied using computer simula-
tion by Kang et al. [55]. A three-dimensional quasi-dynamic model of a partly-filled
tank of circular cross-section was developed and integrated into a three-dimensional
model of an articulated vehicle to study its directional response under varying steering
and braking inputs, fill volumes and road surface friction. The liquid load movement
encountered under combined steering and braking was expressed in terms of varia-
tions in the instantaneous center of mass coordinates and mass moments of inertia
of the liquid bulk. The dynamic response characteristics of the partly-filled tank
vehicle under braking and turning were presented in terms of resulting cargo load
shift, moments induced by the cargo movement, load transfer ratio, yaw and roll
response, and braking performance of the vehicle. It was found that a partly-filled
articulated tank vehicle, subject to braking in a turn, is more susceptible to rollover
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on dry roads, while it exhibits a higher propensity of trailer swing on slippery roads.
The directional dynamic characteristics under a braking-in-a-turn manoeuver were
evaluated by Rakheja et al. [81] in terms of moments induced by the moving cargo,
wheel dynamic load factor, load transfer ratio, yaw and roll response, and braking
performance of the vehicle. Tanks with circular, modified-oval and arbitrary cross-
sections are considered for deriving the longitudinal and lateral cargo shifts under
longitudinal as well as lateral acceleration fields. It was shown that the dynamic
performance of the partly filled liquid cargo vehicle deteriorates significantly due
to considerable magnitudes of roll, pitch and yaw moments imposed by the moving
cargo. A partly filled articulated tank vehicle, subject to braking-in-a-turn, is more
susceptible to rollover on dry roads, while it exhibits a higher propensity of trailer
swing on slippery roads.

Steady-state fluid slosh model was applied by Rakheja [77] to derive the dynamic
response and stability characteristics of a partly-filled articulated liquid cargo vehicle
with tanks of arbitrary cross-section under steering and braking-in-a-turnmaneuvers.
The directional dynamic characteristics under a braking-in-a- turn maneuver were
evaluated in terms of moments induced by the moving cargo, wheel dynamic load
factor, load transfer ratio, yaw and roll response, and braking performance of the
vehicle. The results of the study revealed that a partly-filled articulated tank vehicle,
subject to braking-in-a-turn, is more susceptible to rollover on dry roads, while it
exhibits a higher propensity of trailer swing on slippery roads.

A computational fluid dynamics slosh model coupled with a lumped truck model
was developed by D’Alessandro [34]. The computational fluid dynamics model,
based on the Navier-Stokes equations, was incorporated with the volume-of-fluid
technique to model two immiscible fluids. A 14◦ of freedom truck model coupled
with the computational fluid dynamics model were combined to evaluate the vehicle
behavior in a lane change manoeuver in a braking maneuver. In both cases tests were
made at different velocities and different fill volumes and compared with experimen-
tal results available in literature. Moreover, the tilt table test have been simulated for
different fill volume in order to assess the influence of the fill volume on the Static
Rollover Threshold. The performed braking manoeuvers revealed that load trans-
fers, due to the fluid sloshing, can cause premature rear wheels locking up and then
effectiveness of baffles has been investigated. A comparison of simulations results,
between liquid and an equivalent rigid cargo, in a lane change manoeuvers have
allowed to evaluate how much the fluid sloshing affects the rollover in dynamical
conditions. During braking manoeuvers, fluid sloshing may lead to load transfers
causing rear wheels to lock up and loss of directional control, while during turning
or lane changes, it may cause rollover. A methodology for evaluating the interaction
between fluid sloshing and vehicle dynamics was proposed by Cheli et al. [29]. The
fluid and the tank were modelled using the computational fluid dynamics code FLU-
ENT, based on the Navier-Stokes equations and incorporating the volume-of-fluid
and the moving mesh techniques. The motion of the tank was determined based on
the response of a 14◦ of freedom vehicle model subjected to the forces due to the
fluid sloshing. Straight line braking manoeuvers and lane change manoeuvers were
introduced to evaluate the effects of fill level, baffles and tank shape.
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1.5 Conclusions and Closing Remarks

Road tankers constitute a complex dynamical system and its dynamic analysis
requires combined background of fluid dynamics in containers with cross-sections
that are difficult to analyze and dynamics of articulated vehicles. The dynamic inter-
action of these two systems is not a simple task. This article addressed some problems
and results of road tankers dynamics, stability and related problems.

The design of liquid containers of road vehicles requires full knowledge of the
liquid sloshing natural frequencies for different values of fill depth and tank cross-
section. The liquid natural frequencies in containers with cross-sections commonly
used in road tankers have been presented with more emphasis on elliptic and generic
cross-sections.Within the framework of linear theory, equivalent mechanical models
of liquid sloshing mass in the form of mass-spring-dashpot systems, simple pendu-
lum, and Trammel pendulum have been developed. Mass-spring-dashpot and simple
pendulum equivalent models are well documented by Ibrahim [51]. However, the
Trammel pendulum, convenient for elliptic containers, has been presented in details.
With reference to the design of tank cross-section, many researchers developed opti-
mum design of liquid containers geometry, which results in a minimum overturning
moment in certain ranges of the fill level and lateral acceleration. The results of these
studies have been discussed.

The rollover scenarios of road tankers based on computer simulations indicated
that the vehicle may fall onto its side but continue to rotate in roll on the flat ground
surface. During rollover, the dynamic load factor time evolution of tires on different
axels in the presence of liquid cargo and frozen liquid cargowere generated to identify
the influence of liquid sloshing loads on rollover. Equally important is the transient
liquid motion on the resulting destabilizing forces and moments imposed on the tank
vehicle. For this reason, there are international criteria and regulations established
to set a static rollover threshold for the lateral acceleration. Note that if a vehicle is
directionally stable, a restoring moment is produced in a direction opposite to the
rotational disturbance. The directional stability, which measures the tendency of a
vehicle to return to its original direction in relation to the on-coming road medium
when rotated away from that original direction has received many studies.

Most of theworkwas based on the quasi-dynamics approach although someefforts
have been devoted for computer simulation of utilizing computational fluid dynamics
incorporated with truck computer simulation. Note computational fluid dynamics
has its limitations, in particular when the fluid free surface experiences breaking
waves and hydrodynamic impact. The introduction of the power law for simulating
the hydrodynamic impact has not been utilized in the literature. Potential research
activities should be devoted to modify the Trammel pendulum to accommodate the
power law and to develop its equivalent parameters such as mass and its dimensions
for the first sloshing mode. One of the serious problems is the impact and rollover of
vehicles carrying hazardous liquids. Hydraulic jumps can result in extremely high
impact pressures acting on the tankwalls in gasoline. Thismay considerably endanger
the stability and maneuvering quality of the vehicle and may cause accidents of road
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tankers carrying hazard materials. It is vital that designers understand how the road
tankers behave under a wider range of impact and roll-over conditions. The study
of impact resistance of road tankers carrying hazardous materials may include the
severity of damage from a range of impacts on various parts of the tank, the effect
of changes to tank material, thickness and baffle spacing and the effect of tank side
protection.

Some research activities have beendevoted to study the dynamic coupling of liquid
sloshing dynamics with the vehicle dynamics under different maneuver scenarios.
For example, during vehicle braking, the analytical model of 11 equations of motion
based on the work of Yan and Rakheja [129] is presented. In view of complexity
of the coupled system, most studies were performed using computer simulations in
parallel to actual road experiments on test tracks. However, as mentioned, computer
simulations have their limitations.
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Chapter 2
Simulation of Abrasive Wear with a Coupled
Approach Considering Particles of Different
Sizes

Florian Beck and Peter Eberhard

Abstract Abrasive wear is a damage caused by small solid particles which are
transported by the working fluid of a hydraulic machine. In case of an impact of an
abrasive particle, material of the boundary surface is removed or deformed. Several
material parameters have an influence on the amount of the removed material. In
complex industrial applications, like the impact of a free jet with particle loading
on a pelton bucket of a turbine in a water power plant, the abrasive particles, i.e.
the loading of the fluid, often consist of geomaterials. In this paper a new approach
is presented for accurately modelling abrasive wear due to a loading consisting of
particles of geomaterialswith different sizes. Thefluid ismodelledwith theSmoothed
Particle Hydrodynamics method. This method is a complete meshless method which
is very suitable for highly transient flows with free surfaces. The loading is described
with two different methods depending on the size of the particle. Smaller particles
are modelled with a transport equation and larger ones with the Discrete Element
Method. In this study the resulting wear patterns, due to the impact of a free jet with
loading consisting of particles with different diameters, are presented.

2.1 Introduction

There are various reasons for the loss of efficiency of a hydraulic machine. One
of them is damage due to abrasive wear. Of course there are several other damage
mechanisms, e.g. like cavitation, but in this work the focus is on abrasive wear. Small
solid particles can cause damage to the surface of a hydraulicmachinewhen they have
a contact with the surface. The small solid particles are the loading of the fluid as it is
the case in many engineering systems, e.g. small sand particles from the reservoir in
a water power plant. Besides geomaterials like sand particles, the loading can consist
of other small particles, e.g. metall chipswhich are already removed from the surface.
Especially in closed systems this is a problem, because they are not removed from the
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Fig. 2.1 Impact of a free jet on a pelton bucket

cycle and can cause new damage. Here, it is assumed that the loading consists only
of geomaterials. Besides the loading of the fluid, the accurate modelling of the free
surface of a transient sloshing fluid can be a challenging task, like e.g. the scenario
with an impact of a free jet shown in Fig. 2.1.

In classical fluid dynamics a mesh is used for calculating the flow field. In case of
the impact of a free jet the free surface of the fluid is strongly deformed. The mesh
has to be remeshed, or a simulation method like the Volume of Fluid (VOF) method
has to be applied. Disadvantages of methods like the VOF method are, that large
areas have to be discretized and the surface has to be tracked. Here, an approach
for modelling abrasive wear is presented which consists only of mesh-free methods.
The fluid is described as in classical fluid dynamics simulations with the Navier-
Stokes equations and for the discretisation the Smoothed Particle Hydrodynamics
(SPH) method is applied. The loading is assumed to consist of geomaterials and
is modelled with two different methods. The newly developed approach which is
presented is able to handle various particle sizes simultaneously. The large particles
of the loading are simulated with the Discrete Element Method (DEM) and the
smaller ones with a transport equation. They are not resolved in detail like the larger
ones. The boundary geometry is described with triangles which are in the program
also handled as particles. The removed material due to the impact of a solid particle
from the loading of the fluid, is calculated with a wear model.

The article is structured as follows. First, the most important details of the SPH
method are presented. A typical example for the validation of the SPH method is
discussed, the lid driven cavity. This is a commonly used example in classical fluid
dynamics. Here, two different methods for modelling the loading of the fluid are
applied. The first one is the DEM which was successfully applied in [1]. Therefore,
some details about the DEM and the coupling of the DEM with the SPH method
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Fig. 2.2 Example of a heavily sloshing fluid simulated with the SPH method

are explained. Then, the second one, the transport equation which was successfully
applied in [2], is presented. Two different examples are shown where a fluid with
loading is simulated. The purpose is to demonstrate the use of a transport equation
for modelling a fluid with loading. These are a two dimensional sloshing simulation
of a collapsing water column and a multiphase flow problem. After the discussion
of the details for handling a fluid with loading which consists of solid particles
of different sizes, the results of a three dimensional collapsing water column with
loading are shown. Then the abrasive wear model for calculating the damage on
the boundary geometry is presented. Finally, in the end a simulation of free jet with
loading, impacting on a pelton bucket is discussed and conclusions are drawn.

2.2 Simulation Method

In the following section, the important details for the applied simulation methods
are introduced. Besides, some simulation results for the validation of the newly
developed and implemented methods are discussed.

2.2.1 Smoothed Particle Hydrodynamics Method

The SPH method, which was introduced by different groups, see e.g. [14] and [24],
can be used for the discretisation of partial differential equations. Commonly simu-
lated examples are highly transient sloshing processes in engineering systems which
have free surfaces with large deformations. Exemplarily, a two dimensional breaking
wave simulated with the SPH method is shown in Fig. 2.2. In this figure, the fluid is
color coded with the pressure (red maximum pressure and blue minimum pressure)
and for the visualisation a surface plot is chosen. For plotting a continuous surface a
Delaunay triangulation is applied.

The free surface of the wave can be accurately modelled without any additional
computational methods. This is possible due to the mesh-less character of the SPH
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method. The computation of complex interfaces with large deformations is one of the
strengths of the SPH method. Other examples, where the SPH method is applied for
modelling fluid flow, are scenarios with fluid-solid interaction [5, 21], free complex
surfaces [27, 28] or [38], and multi-phase flow [6, 18]. A detailed review about some
more research studies can be found in [22].

The fluid is described with the Navier-Stokes equations. Taking into account that
a fluid flow of an engineering process is investigated, turbulence is modelled like in
[44]. The conservation of mass of the fluid method requires

∇ · v = 0 (2.1)

and the conservation of the momentum is ensured by

ρ

(
∂v
∂t

+ v · ∇v
)

= μ∇2v − ∇ p + f + ∇R. (2.2)

In these equations, p is the pressure, f are the body forces acting on the fluid, v is the
velocity, ρ the density, μ the viscosity of the fluid andR are the Reynolds turbulence
stresses. They are calculated by

Ri j = ρ

(
2νt Si j − 2

3
kδi j

)
. (2.3)

In this equation νt is the turbulence eddy viscosity, k is the turbulence kinetic energy,
Si j are the components of the strain rate tensor and δi j is the Kronecker delta function
[23]. Other possibilities for modelling turbulence flows are the direct numerical
simulation or the large eddy simulation, but in this work we are only interested in the
forces and not the turbulent structures itself and so a simple description is sufficient.

There are two different approaches for calculating the pressure when applying the
SPH method. The first one is the use of an equation of state (EoS). When an EoS is
applied, it is called theweakly compressible approach. The pureweakly compressible
approach suffers from a noisy pressure field. For improving the accuracy a Riemann
solver can be applied, see [16, 45] or [34]. The second approach is to use the Poisson
equation

∇ ·
(
1

ρ
∇ p

)
= 1

�t
∇ · v∗, (2.4)

proposed by [7]. Here, v∗ is the intermediate velocity and t the time.
The basic steps for transforming the Navier-Stokes equations are the kernel and

the particle approximation. For details see [22]. One important point herein is the
choice of the so-called kernel function. In this work,mainly aWendland kernel [40] is
used, because lower order kernel functions have a negative influence on the accuracy
of the simulation [30].

A commonly used example for the validation of the simulation methods for clas-
sical mesh-based methods is the lid driven cavity. A small cavity is filled with a
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max

min

Fig. 2.3 Velocity amplitude of the lid driven cavity

Fig. 2.4 Velocity profile in x and y direction

fluid and at the top a constant horizontal fluid flow velocity is defined as boundary
condition. At the beginning the fluid is at rest and then a static flow is evolving, as
shown in Fig. 2.3.

The fluid is shown as a surface plot and color coded with the velocity amplitude.
For more details on the example see [46]. For the validation, the velocity profiles
along the x- and y-axis are compared. Here, the velocity profiles are compared with
[15]. In Fig. 2.4 the velocity profiles in x- and y-direction are shown.

The velocity profiles for two discretisations with different numbers of SPH parti-
cles and data from literature [15] (GGS82) are shown. It can be seen that the results
are in good agreement. The accuracy of the simulation results can be increased with
a finer discretisation. It can be observed that the SPH method is able to handle the
initial transient process and to describe the quasi-static solution of this example.
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2.2.2 Discrete Element Method

When simulating granular material, e.g. like the angle of repose of a sand pile, the
DEM is a suitable method. The method was introduced for the modelling of bulk
material [8], but it is also possible to describe particles that are freely moving inside
the simulation scenario [11]. Also, it is possible to model failure of geomaterials, like
e.g. breakable railway ballast [12]. The basic idea behind the method is, to describe a
single grain of a geomaterial, e.g. a sand grain, with a particle or apply some coarse-
graining approach [31]. The forces between adjacent particles are calculated with a
force law, e.g. a Hertzian contact law. The dynamics of a single particle is described
with the Newton-Euler equations, see [36], which yield

miai = fi , (2.5)

Ii · ω̇i + ωi × Ii · ωi = li . (2.6)

Here, Ii is the inertia tensor, mi is the mass, li and fi are applied torques and forces,
ai is the translational acceleration and ωi is the angular velocity.

One approach for calculating the contact force between two adjacent particles
is, to take into account the distance and the velocity difference between the two
particles and multiply them with constant factors. These constant factors have to be
calibrated for each simulation scenario. An approach which is more accurate is to
apply a Hertzian contact law where the force is calculated by

Fi j = ki jψ
3
2
i j + dψ̇i j (2.7)

with the abbreviations

ki j = 4

3π(hi + h j )

(
rir j

ri + r j

) 1
2

and h j = 1 − ν2
j

πE j
. (2.8)

Here, E j is the Young’smodulus of the granular material, r j is the radius of a particle,
ν j the Poisson number, d a damping parameter and ψi j the overlap of two particles.

2.2.3 DEM-SPH Coupling

There are different approaches for coupling DEM particles with SPH particles.
Depending on the simulation scenario the method for coupling the particles has to
be chosen. One possibility is to distinguish the approaches by the ratio of the initial
distance of the SPH particles to the diameter of the DEM particles. The diameter of
the DEMparticles depends on the geomaterials. For a ratio, where the initial distance
of the SPH particle is larger than the diameter of the DEM particles an approach like
[35] has to be applied. In this approach the force between two adjacent particles is
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Fig. 2.5 Sketch of the coupling of a DEM particle and SPH particles

modelled with a force law that takes into account drag, buoyancy, and shear stress
without resolving the flow around a single DEM particle. For a ratio where the initial
distance is significantly smaller, the contact forces can be modelled as penalty forces
like in [33]. In Fig. 2.5, the principle of this approach is shown.

The DEM particle is visualised with a circle and the SPH particles are visualised
with a point which represents the center and a dotted circle which marks the smooth-
ing length.

This approach is applied here for coupling DEM with SPH particles. The ratio
of the initial distance has to be chosen as shown in Fig. 2.5 to be able to resolve the
flow around the DEM particle accurately. The coupling force fc is calculated taking
into acount the distance and velocity difference. It is applied to the equation for the
conservation of momentum for the fluid which changes to the form

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇ p + μ∇2v + f + fc (2.9)

and for a DEM particle i
miai = fi + fc. (2.10)

This approach for coupling DEM and SPH particles has the advantage that it is
not limited to a certain Reynolds number due to the choice of the formula for the
settling-velocity in other approaches. However, the computational effort can increase
significantly depending on the flow and the geomaterials. The initial distance of the
SPH particles depends on the fluid flow, which has to be resolved in the simulation
scenario, and the diameter of the DEM particle, which depends on the geomaterials
to be modelled. Taking these factors into account the ratio of the initial distance of
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the SPH particles to the diameter of the DEM particles for the discretisation has to
be chosen.

2.2.4 Transport Equation

The other approach for handling the loading of the fluid besides the DEM is using
a transport equation. The idea behind this approach is, that a sand particle is not
resolved in detail but considered as a ratio of the amount of fluid to sand particles
at every SPH particle. Every SPH particle has therefore an additional property, the
loading concentration. In Fig. 2.6, a sloshing fluid with loading is shown, whereby
the loading is modelled with the transport equation. The SPH particles are visualised
with a dot and a transparent sphere which visualises the smoothing length.

At the beginning only a few SPH particles inside the water column are initialized
with a concentration greater than zero. The fluid sloshes then inside a closed tank
from the left to the right. The loading is distributed in the whole fluid due to this
highly transient sloshing process. The change in time of the concentration between
adjacent SPH particles during the simulation in this flow is calculated by

∂C

∂t
= −vs · ∇C + 1

ρ
∇(D∇C) + J. (2.11)

In this equation C is the concentration, vs is the sedimentation velocity of the sand
phase, D the diffusion coefficient, and a source term J . In this paper, the source term
is neglected in this equation, because there is no exchange of abrasive particles with
the boundary geometry.

The idea to describe the second phase of a multiphase flow with the transport
equation was also successfully applied for simulating salt diffusion [29], erosion
[20] or transport of sediment in coastal areas [37].

One important point of this approach is the choice of the sedimentation velocity.
One formula was used in [20] where the velocity is calculated by

vs = 2

9
r2s

ρs − ρf

μ
g f (C) (2.12)

with influence of the concentration

f (C) = 1 − (C/Cmax)
y . (2.13)

In these equations, rs is the radius of a sand grain, g the gravity, ρs is the density,
ρf is the density of the fluid and Cmax is the maximal concentration. The changing
concentration over the height of the fluid is taken into account with y = 4.5 for the
sedimentation velocity. A simplification would be to assume a constant value for
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maxmin

Fig. 2.6 Example of a collapsing water column with loading inside a closed tank. The loading is
modelled with the transport equation

the velocity [19]. One crucial point is that (2.12) is only valid for a small range of
Reynolds numbers.

Therefore, here the sedimentation velocity is calculated with a different equation
which is valid for a larger range. The velocity is calculated according to [43] by
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vs = Mν

Nd

⎡
⎣

√
1

4
+

(
4N

3M2
D3∗

)1/n
− 1

2

⎤
⎦
n

w f (C) (2.14)

with the scaled abrasive particle diameter

D∗ = d
[
(ρs/ρ − 1.0)

g

ν2

]1/3
, (2.15)

the coefficients

M = 53.5 · 10−0.65Sf , N = 5.65 · 10−2.5Sf (2.16)

for taking the shape of the abrasive particle into account and

n = 0.7 + 0.9Sf . (2.17)

Here, the shape factor is calculated as Sf = c/
√
ab. Thereby, a is the longest, b the

intermediate and c is the shortest axis of an abrasive particle. The gravity field w
describes the direction of the sedimentation velocity. Equation (2.14) is valid for
Reynolds numbers which are not only < 0.5 and one of the other advantages is that
the surface shape of the abrasive particles is considered.

Then, convective term of (2.11) can be calculated as

−vs · ∇Ci = −
∑
j

⎧⎨
⎩
m j

C j
ρ j

Ti j for 0 ≤ vs · ri j
mi

Ci
ρi

Ti j else
(2.18)

with the abbreviation

Ti j =
(
vs · ri j

|ri j |
)

∇W (ri j , h). (2.19)

Here,W is the kernel function, h is the smoothing length, ρ j is the density, m j is the
mass, andC j is the concentration of a particle j . The particle distance ri j is calculated
as ri j = ri − r j . Equation (2.18) was introduced by [20], another possibility was
proposed in [37], but the approach there is computationally more expensive.

The diffusive term of (2.11) is calculated as

1

ρ
∇(D∇C) =

∑
j

m j D

ρiρ j
Ci j

ri j
|ri j |2 + η

∇W (ri j , h) (2.20)

with the diffusion coefficient D = 0.1 and the difference of the concentration Ci j

of particle i and j . With this approach it is possible to describe a multiphase flow
problem including a fluid with loading. With respect to engineering processes it is
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min

max

min

max

min

max

Fig. 2.7 Simulation of three different phases, a light and a heavier fluid and sand particles as
loading (t1 = 1.4s, t2 = 2.0s and t3 = 13.2s)
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Table 2.1 Sand grain size
after DIN EN ISO 14688-1
[9]

Name Size (mm)

Fine sand 0.063−0.2

Middle sand 0.2−0.63

Coarse sand 0.63−2

also possible that the fluid is a mixture of different fluids, e.g. water and oil. In doing
so the proposed modelling approach for the loading can also be applied to a scenario
with three phases, two fluids and a solid phase. Exemplarily in Fig. 2.7, a multiphase
flow problem with three different phases is shown.

This example shows that it is possible to model the complex interface between
two different fluids and that the approach can handle three different phases. The
simulation is inspired by the Raylor-Taylor instability. The data for the fluids are
from [7]. At the beginning the heavier fluid is in the upper part of a two dimensional
fluid column and the lighter fluid in the lower part. The interface of the two fluids
is disturbed by a sine function. Only some of the particles of the heavier fluid are
initialized with a concentration greater than zero. The fluids are mixing up during
the simulation and in the end the lighter fluid is completely in the upper part. The
concentration is also mixed up inside the fluids, but the sedimentation process is
much slower and therefore the sediment is still distributed inside the fluid after the
segregation of the two fluids.

2.2.5 Loading with Different Particle Sizes

The loading of the fluid is assumed to consist of geomaterials like sand. The clas-
sification of sand particles after DIN EN ISO 14688-1 [9] is shown in Table2.1. In
engineering scenarios the loading consists of grains of different diameters, like e.g.
in a turbine [32], which can be classified after Table2.1. If the sand particles are
modelled only with DEM particles, the SPH discretisation, i.e. the initial distance
of the SPH particles, has to be chosen depending on the size of the smallest sand
particle.

The computational cost would not be acceptable using only these very fine DEM
and SPH particles. Therefore, here an approach, which couples different methods,
is applied for handling sand grains of different sizes. For an accurate modelling of
an engineering process it is necessary to take into account all particle sizes. Larger
particle can cause, e.g. blockage or a deadlock of a hydraulic machine and the load
spectrum due to several small particles can not be neglected.

In Fig. 2.8, three different states of a collapsing water column with loading are
shown. The loading consists of small and large sand particles.

The larger ones are describedwith theDEMand the smaller oneswith the transport
equation. The DEM particles are scaled in the visualisation. The fluid sloshes inside
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Fig. 2.8 Simulation of a sloshing fluid with loading inside a closed tank
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a closed tank from left to right. The loading is transported by the fluid and distributed
inside the whole tank together with the fluid.

2.2.6 Abrasive Wear Model

Resulting froman impact of an abrasive particle on the boundary geometry the surface
will be damaged. The damage can be distinguished into different mechanisms, such
as crack building, deformation, cuttingmechanisms, or slidingmechanisms [10]. The
damage or amount of removed material from the surface is depending on different
parameters like, e.g. the velocity of the particle, the impact angle or different material
parameters of the abrasive particle and the target. Here, a wear model for calculating
the damage on the boundary geometry is used. There exist many different wear
models in literature, which consider different wear mechanisms and have various
advantages as well as disadvantages. An overview of wear models can be found in
[26] or [25]. Here, a wear model is applied which was originally introduced in [3,
4]. This model was modified and extended by [13, 17, 42] and [41]. The removed
material is calculated by

W = 100

2
√
29

r3p

(
U

Ck

)n

sin2α
√
sinα + Mp(Usinα − Dk)

2

2Ef
(2.21)

with the characteristic cutting velocity

Ck =
√
3σR0.6

f

ρp
(2.22)

and the characteristic deformation velocity

Dk = π2

2
√
10

(1.59Y )2.5
(
Rf

ρt

)0.5
[
1 − q2

p

Ep
+ 1 − q2

t

Et

]2

. (2.23)

Here, rp is the radius,Mp themass, qp the Poisson ratio,U the absolut impact velocity
of the particle, α the impact angle, Ep Young’s modulus, ρp the density and Rf the
roundness factor of the particle, ρt the density, qt the Poisson ratio, Y the yield stress
and Ef is the Young’s modulus of the boundary, σ the plastic flow stress, Ef the
deformation erosion factor, and n the velocity exponent.
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max

min

max

Fig. 2.9 Simulation of impact of a free jet with loading
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min

max

Fig. 2.10 Trajectories of the DEM particles

min

max

Fig. 2.11 Damage pattern with the Bitter model



2 Simulation of Abrasive Wear with a Coupled Approach … 65

2.3 Results for the Pelton Turbine

A free jet with loading, which consists of geomaterials with particles of different
sizes, is simulated. The boundary geometry is a simplified pelton bucket. In Fig. 2.9,
three states of the simulation are shown.

The fluid is color coded with the concentration. The DEM particles in white are
scaled in their size for a better visibility. The boundary geometry is color coded with
the removed material. In Fig. 2.10, the trajectories of the DEM particles are shown.

With the newly proposed approach it is possible to track larger particles and
investigate their trajectories. Thereby, it is possible to predict the places where they
cause damage or settle down. Abrasive particles which settle down at certain places
can cause a binding of the hydraulic machine. In Fig. 2.11, exemplarily the damage
pattern of the simulation is shown.

It can be observed that most of the material is removed in the middle at the
upper part of the bucket, which also corresponds to experiments [32]. In the pre-
sented approach only the shape of the pattern is investigated. The analysis of the
absolute amount of the removed material needs further improvements of the applied
damage model.

2.4 Conclusion

A new meshless simulation approach for predicting wear patterns is presented. The
fluid is modelled with the SPH method. It is assumed that the loading consists of
geomaterials with particles of very different sizes. It is modelled, depending on
the size of the abrasive particles, with two different methods, a DEM approach
and a transport equation, respectively. It is possible to simulate a complex engi-
neering scenario like the impact of a free jet with loading on a pelton bucket. The
highly transient flow can be accurately simulated with the SPH method and it is
possible to model the wear pattern on the boundary geometry. In this study wear
models from literature were applied. In future further developments of the wear
models are necessary for the prediction of the absolute amount of the removed
material.
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Chapter 3
Energy Harvesting in a Hybrid
Piezoelectric-Electromagnetic Harvester
with Time Delay

Mustapha Hamdi and Mohamed Belhaq

Abstract The effect of time delay on the energy harvesting (EH) performance is
studied in a class of hybrid EH systems. The delayed hybrid energy harvester consists
in a nonlinear mono-stable harvester device composed of a forced mechanical com-
ponent coupled to piezoelectric and electromagnetic energy harvesting mechanisms
in which the time delay is introduced in the mechanical component of the harvester.
Analytical approximations of the steady-state amplitude as well as the amplitudes
of piezoelectric and electromagnetic powers output are obtained using a perturba-
tion method and the effect of delay parameters on the powers output performance
is examined. The optimal values of delay parameters and coupling coefficients at
which the EH performance is maximum are determined. To appreciate the influence
of the delay amplitude on the powers output performance, the results obtained in the
presence of time delay are compared to those obtained in the case without delay.
It is shown that in the presence of time delay the powers output performance is
significantly improved at certain ranges of time delay and delay amplitude.

3.1 Introduction

Delay feedback mechanism is usually used to reduce or suppress large-amplitude
vibrations [1–3]. For instance, in delayed self-excited oscillator [4, 5], limit cycle
oscillations can be suppressed for appropriate values of time delay and delay ampli-
tude. Likewise, in delayed forced nonlinear oscillators [6, 7], large-amplitude vibra-
tions can be quenched for appropriate combination of time delay parameters. Similar
studies were carried out to suppress limit cycle oscillations in the case where the time
delay is combined with a fast excitation [8–10]. However, large-amplitude vibrations
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can be desirable in certain applications, as in vibration-based EH. This is because
large-amplitude vibrations can be exploited to extract power from ambient sources
of vibration. As time delayed feedback can be used to reduce or suppress large-
amplitude vibrations, it can also be used to increase the amplitude of vibrations near
the resonance for certain range of delay parameters. Indeed, the concept of using time
delay has been used recently considering a delayed pure self-excited oscillator and it
was concluded that modulated delay amplitude increases significantly the amplitude
of vibrations [11]. This result was exploited positively to enhance the EH perfor-
mance in a delayed van der Pol harvester system using quasi-periodic vibrations
[12]. The concept of using delayed feedback mechanism was also used to extend the
dynamic range of an energy harvester with nonlinear damping [13] demonstrating
that this method can provide substantial performance in the EH capacity.

In this chapter we consider a hybrid harvester device consisting in a delayed
nonlinearmono-stable oscillator coupled to electric circuits through piezoelectric and
electromagnetic couplings. The objective is to study the influence of time delay on the
performanceof a general class of hybrid energyharvester. Thehybrid harvester device
consists of a nonlinear forced mechanical subsystem coupled to both piezoelectric
and electromagnetic EHmechanisms. This class of hybrid energy harvesters has been
examined in the absence of time delay [14]. The authors in [14] established a unified
approximationmethod to illustrate the effect of electromechanical couplingon theEH
systems. Here, the time delay in the position is present in the mechanical subsystem
and the influence of the delay parameters on the power output of the hybrid harvester
system is studied. The contribution of the present work is highlighted through a
systematic comparison with the case without time delay considered in [14].

This study can be useful for certain applications in which delayed state feedback
is present in the mechanical component of the harvester. For instance, in milling and
turning operations the inherent time delay in the position commonly arises in the
process [15–18] such that the time delay is not considered as an additional input
power in the harvester. Instead, when time delay is introduced in the system as an
input power, the problem of energy balance between the generated and the consumed
average powers should be examined.

The chapter is structured as follows. In Sect. 3.2, we present the delayed hybrid
energy harvester. Using a perturbation method, the steady-state response and the har-
vested powers extracted from piezoelectric and electromagnetic energy harvesting
mechanisms are derived near the primary resonance. The influence of delay parame-
ters of the harvesting system on the EH performance is examined in Sect. 3.3 for both
piezoelectric and electromagnetic coupling mechanisms. A summary of the results
is provided in the concluding section.

3.2 Harvester System and Powers Output

The energy harvester system under consideration consists of a delayed nonlinear
mono-stable oscillator coupled to electric circuits through piezoelectric and electro-
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Fig. 3.1 Schematic of the energy harvesting model

magnetic couplings. The schematic view of the harvester is given in Fig. 3.1. The
governing equations can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m
d2u∗

dt∗2
+ ξ u̇∗ + ku∗ + b̃u∗3 = λ̃u(t∗ − τ) − ψ̃1V1

∗ + γ̃ i2
∗ − m̂r̈

dV1
∗

dt∗ + V1
∗

R1C0ωn
= ψ2

C0

du∗
dt

di2∗
dt∗ + R2

�ωn
i2

∗ = − γ2
�

du∗
dt

(3.1)

where the variable u∗ represents the relative displacement of the mass m, ξ is the
damping coefficient, k and b are the linear and nonlinear stiffness of the restoring
force, 	̃1, 	2 and γ̃ , γ2 are the piezoelectric and electromagnetic coupling coef-
ficients, respectively, λ̃ is the delay amplitude, τ is the time delay, while i∗2 , V ∗

1 ,
di∗2
dt∗ and dV ∗

1
dt∗ have been substituted for electrical charge coordinate q (i∗2 = q̇ and

V ∗
1 = −R1q̇). The quantities R1, R2 represent piezoelectric and electromagnetic

loads, C0 and � are, respectively, the capacitance and the inductance of the coils.
In the absence of time delay, the hybrid energy harvester system (3.1) has been

considered and the effect of electromechanical coupling on vibration-based energy
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harvesting was examined [14]. Here we explore the influence of time delay on the
EH performance of the harvester. As mentioned in the introduction, in certain appli-
cations, in milling and turning operations, the time delay in the position is an inherent
characteristic of the process and cannot be considered as an additional input power
in the harvester.

In the case of harmonic excitations of the base, the forcing term in system (3.1)
takes the form m̂r̈ = 2F cos(ωt). To obtain a dimensionless form of (3.1), we intro-
duce the following non-dimensional parameters: t = ωnt∗, u = u∗

umax
, V1 = C0

	2umax
V ∗
1 ,

i2 = �
γ2umax

i∗2 , ζ = ξ

2mωn
, b = b̃u2max

mω2
n
, 	 = ψ1ψ2

C0
, γ = γ1γ2

�
, f = F

ω2
numax

, k1 = 1
R1C0ωn

,

k2 = R2
�ωn

, λ = λ
mω2

n
and Ω = ω

ωn
where umax is the maximum displacement of the

oscillator and ωn = √
k/m is the natural frequency of the mechanical oscillator.

Introducing a bookkeeping parameter ε, scaling the parameters ζ , b, 	, γ , λ and
f , and considering the case of primary resonance, i.e. 1 = Ω + εσ , where σ is a
detuning parameter from the resonance, Eq. (3.1) can be rewritten in terms of the
non-dimensional parameters as

⎧
⎪⎪⎨

⎪⎪⎩

d2u

dt2
+ ε2ζ

du

dt
+ Ω2u = ε

(
2Ωσu − bu3 − 	V1 + γ i2 − 2 f cos(Ωt) + λu(t − τ)

)

dV1
dt + k1V1 = du

dt
di2
dt + k2i2 = − du

dt

(3.2)

To approximate the steady-state response of the system, we use the method of
multiple scales [19, 20] by expanding the solution in terms of powers of ε as

⎧
⎨

⎩

u(T0, T1) = u0(T0, T1) + εu1(T0, T1) + ...

V1(T0, T1) = V10(T0, T1) + εV11(T0, T1) + ...

i2(T0, T1) = i20(T0, T1) + εi21(T0, T1) + ...

(3.3)

where T0 = t, T1 = εt . The time derivatives become d
dt = D0 + εD1,

d2

dt2 = D2
0 +

2εD0D1 + D2
1 + o(ε2).

Substituting (3.3) into (3.2), extracting systems of equation at different order
of ε and eliminating secular terms as usual, one obtains the following modulation
equations

⎧
⎨

⎩

ȧ = f

Ω
sin θ − a(ξ + � + λ

2Ω
sinΩτ)

aθ̇ = f
Ω
cos θ + a(η − σ − λ

2Ω cosΩτ) + 3b
8Ω a3

(3.4)

where a and θ are, respectively, the amplitude and the phase of the modulation,
while � = k1	

k21+Ω2 + k2γ
k22+Ω2 and η = 	Ω

k21+Ω2 + γΩ

k22+Ω2 represent, respectively, the real
and imaginary parts of the coupling expression.

The steady-state response of the modulation equations, corresponding to periodic
oscillations of (3.2), are determined by setting ȧ = θ̇ = 0. Eliminating θ and define
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ρ = a2, we obtain the following algebraic equation on ρ

S23ρ
3 − 2S2S3ρ

2 + (S21 + S22 )ρ − f 2

Ω2
= 0 (3.5)

where S1 = ξ + � + λ
2Ω sin(Ωτ), S2 = σ − η + λ

2Ω cos(Ωτ) and S3 = −3b
8Ω .

Note that in the absence of time delay (λ = 0), we recover the results obtained in
[14]. Next, we fix the damping parameter ζ = 0.01, the coupling terms 	 = 2 and
γ = 0.9 and the forcing amplitude f = 1.

The first order approximation of the steady-state solution reads

u0 = a cos(Ωt − θ) (3.6)

V10 = aΩ2

Ω2 + k21
cos(Ωt − θ) − aΩk1

Ω2 + k21
sin(Ωt − θ) (3.7)

i20 = aΩ2

Ω2 + k22
cos(Ωt − θ) + aΩk2

Ω2 + k22
sin(Ωt − θ) (3.8)

and the non-dimensional instantaneous piezoelectric and electromagnetic powers are
given, respectively, by

PP(t) = k1V1(t)
2 (3.9)

PM(t) = k2i2(t)
2 (3.10)

It follows that the average piezoelectric and electromagnetic powers can be obtained
by averaging over a single excitation period. This leads to

PavP = 1

T

∫ T

0
k1V1(t)

2dt (3.11)

PavM = 1

T

∫ T

0
k2i2(t)

2dt (3.12)

Using (3.6), (3.10) and the maximization procedure, one obtains, respectively, the
maximum piezoelectric and electromagnetic powers response as

Pmax P = k1Ω2

k21 + Ω2
a2 (3.13)

PmaxM = k2Ω2

k22 + Ω2
a2 (3.14)

and using (3.6), (3.12) the average piezoelectric and electromagnetic powers response
reads
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PavP = Ω2a2k1
2(Ω2 + k21)

(3.15)

PavM = Ω2a2k2
2(Ω2 + k22)

(3.16)

3.3 Main Results

In this section, the influence of time delay parameters λ, τ on the powers output
extracted from the piezoelectric and electromagnetic mechanisms is analyzed.

Figure3.2 shows in the absence of time delay (λ = 0) and for different negative
values of the delay amplitude (λ = −0.5,−1) the frequency-response curve near
the primary resonance, as given by (3.5). The plots indicate clearly that increasing
negative delay amplitude increases significantly the peak of the frequency response.
The analytical predictions (solid lines) are compared to results obtained by numerical
simulations (circles) using dde23 [21] algorithm. The box inset in the figure shows
time history for a given choice of parameters.

Figure3.3a–d illustrate, respectively, the effect of the delay amplitude on the
maximumand average output piezo-powers, Pmax P , PavP and output electromagnetic
powers PmaxM , PavM , versus the detuning parameter σ for the same values of λ
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Fig. 3.2 Frequency response for different values of λ and for b = 0.04, τ = 1.58, k1 = 1 and
k2 = 1.7. Analytical approximation: solid lines. Numerical simulation: circles
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Fig. 3.3 Powers amplitude versus σ for different values of λ and for b = 0.04, τ = 1.58, k1 =
1 and k2 = 1.7; a–c maximum powers response and b–d average powers response. Analytical
approximation: solid lines. Numerical simulation: circles

considered in Fig. 3.2. The results show that increasing negative λ the performance of
the output powers is significantly improved near the resonance. The powers amplitude
corresponding to the case without delay (λ = 0) are also reported for comparison.
The analytical approximations (solid lines) are compared to results obtained using
numerical simulations (circles). Inset in Fig. 3.3a, c are shown, respectively, time
histories of the output powers Pmax P and PmaxM obtained by integrating numerically
(3.2) and using (3.9), (3.10). It can be observed from Fig. 3.3 that the maximum
and average powers extracted from the piezoelectric mechanism (Pmax P , PavP ) are
slightly larger that those extracted from the electromagnetic harvester (PmaxM , PavM ).
The plots also show that for a small value of the nonlinear stiffness parameter (b =
0.04), the frequency response (Fig. 3.2) and the response of the powers amplitudes
(Fig. 3.3) have a linear behavior.

The variation of the steady-state amplitude versus the delay amplitude λ, as given
by (3.5), is presented in Fig. 3.4a for two different values of time delay (τ = 0.8, 1).
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Figure3.4b–e show the effect of time delay on the maximum and average output
powers, Pmax P , PavP , PmaxM , PavM , as function of λ. It can be observed that the EH
performance is maximum in a certain range of negative λ, negligible in the absence
of time delay (λ = 0) and insignificant for increasing positive values of λ. Inset in
Fig. 3.4a, b, d are shown, respectively, time histories of the steady-state response
and of the harvested powers obtained by integrating numerically (3.2) and using
(3.9)–(3.10).

It can also be observed from Fig. 3.4 that the output piezo-powers are larger that
the output electromagnetic powers.

In order to obtain the optimal values of delay parameters, λ and τ , at which the
EH performance is maximum, we plot in Fig. 3.5 the variation of the steady-state
amplitude as well as the maximum and average output powers versus time delay τ

for different negative values of λ. The plots show that the optimal values of delay
amplitude and time delay are obtained in certain small alternate ranges of time delay
τ and for increased negative values of λ. Inset in Fig. 3.5a, b, d are shown, for certain
values of λ and τ , time histories of the steady-state response and of the harvested
powers obtained by numerical simulations.

Figure3.6 shows the variation of the steady-state amplitude and the output powers
amplitude Pmax P , PavP , PmaxM and PavM versus the coupling coefficient k1 indicating
the improvement of the EH performance in the presence of time delay. It can be seen
that increasing k1, the steady-state amplitude increases to a certain optimal value
(k1 = 1) and then decreases for large values of k1. Time histories of the steady-state
response and of the harvested powers are shown inset in Fig. 3.6a, b, d.

Similarly, Fig. 3.7 depicts the variation of the amplitude of the periodic response
and the output powers amplitude versus the coupling term k2 in the presence and
absence of delay. The results show that the performance of the energy harvester
system is also improved in the presence of time delay.

Finally, it is interesting to evaluate in the presence of time delay the optimal values
of the nonlinear stiffness parameter, b, at which the performance of the harvester
system is improved. Figure3.8 presents the variation of the amplitude of the periodic
response and the output power versus b showing that there exists an optimal value
of b (≈ 0.05) at which the output power is maximum.
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Ω = 1.1, k1 = 1 and k2 = 1.7; a vibration response; b, d maximum powers response; c, e average
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3.4 Conclusions

In this chapter, the effect of time delay on the EH performance of a hybrid energy
harvester system is investigated. The delayed hybrid energy harvester consists in a
nonlinearmono-stable harvester device composed of a forcedmechanical component
coupled to piezoelectric and electromagnetic energy harvestingmechanisms inwhich
the time delay in the position is present. This can be found in certain applications as
in milling and turning operations in which the time delay in the position is inherently
present in the process. Using the multiple scales method, the frequency-response
of the harvester is derived and the amplitudes of piezoelectric and electromagnetic
powers output are obtained near the primary resonance. The influence of the delay and
coupling parameters on the steady-state response and the powers output is described
analytically and validated using numerical simulations. Specifically, it was shown
that the performance of the piezoelectric and electromagnetic output powers in the
presence of time delay is significantly improved over certain ranges of delay and
coupling parameters near the resonance with an advantage for the output piezo-
powers over the electromagnetic output power. This is confirmed by comparison to
the case in which the time delay is absent.

Moreover, the results indicate that increasing the coupling coefficient of the piezo-
electric component k1, the piezoelectric and electromagnetic output powers increase
to a certain maximum value and then decrease significantly. Instead, increasing the
coupling coefficient of the electromagnetic component k2 increases the output piezo-
power, while the electromagnetic output power decreases for large values of the cou-
pling. The optimal values of the nonlinear stiffness parameter b producing maximin
powers input are also obtained.
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Chapter 4
Modeling and Parametric Analysis
of a Piezoelectric Flexoelectric
Nanoactuator

Sourour Baroudi, Ahmed Jemai and Fehmi Najar

Abstract We investigate the piezoelectric flexoelectric response at the nanoscale
level of a cantilever beammade ofBaTiO3. In fact, the flexoelectric effect in dielectric
solids couples polarization and strain gradient, rather than polarization and strain for
piezoelectricity.We develop a comprehensive electromechanical analytical model of
the nanobeam taking into account the piezoelectric and the flexoelectric effects. The
distribution of the electrical potential inside the nanobeam is also solved analytically
while considering the self-field effect. Starting from the enthalpy density function,
theHamilton’s principle is applied to derive the governing coupled equationswith the
appropriate boundary conditions. The free vibration problem is solved first to extract
the mode shapes and natural frequencies associated to the transverse deflection and
the electrical potential along the longitudinal axis. Using a Galerkin procedure, we
use the obtained mode shapes to develop a reduced-order analytical time dependent
model valid for the static and dynamic responses of the nanobeam. The results are
validatedwith results found in the literature,without the self-field effect. Theobtained
static and dynamic results show that the flexoelectric effect significantly increases
the performance of the nanoactuator for high aspect ratio of the nanobeam. Finally,
we calculate analytically the electromechanical coupling coefficient and verified that
high values can be obtained when correctly tunning the geometry.

4.1 Introduction

Flexoelectricity, referring to the spontaneous polarization in response to strain gradi-
ent, is a universal effect in all classes of dielectric materials even for centrosymmetric
crystals. This phenomenon can be interpreted as a local dissymmetry of the material
structure caused by the strain gradient, allowing the creation of a dipole moments
and thus the induced polarization [2].
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Recently, Zubko et al. [3], Nguyen et al. [4] and Yudin and Tagantsev [5] have
conducted a thorough and comprehensive review elaborating the fundamentals of
the flexoelectricity in solids, its consequences in the physical properties of nano-
scale systems and the potential applications of this electromechanical phenomenon.
Moreover, at the nanoscale, where large strain gradients are expected, the flexoelec-
tric effect becomes more appreciable. Thus the size-dependent flexoelectricity may
contribute significantly to the electro-mechanical coupling of piezoelectric materials
at the nanoscale and it is necessary to incorporate such an effect when investigat-
ing the static and dynamic behaviors of those materials. Indeed, a comprehensive
theoretical framework incorporating flexoelectricity, surface effects and electrostatic
force was developed by Hu and Shen [9].

Then, the size-dependent electroelastic responses and dynamic behaviors of one-
dimensional piezoelectric nanostructures were investigated by Yan and Jiang in their
works [11, 12].Recently,Deng et al. [13]was particularly interested by the possibility
of using the phenomenon of flexoelectricity for energy harvesting and showed that
flexoelectric based energy harvesting can be a viable alternative to piezoelectricity.
In their work, Deng et al. [13] adopted a linear form of the electric potential and
considered only the strain gradient along the beam thickness direction.

Here we aim to study the electroelastic responses and dynamic behaviors of a
nanoactuator inwhich both the flexoelectricity and piezoelectricity effects are consid-
ered. Also, we propose to take into account the effect of the self-generated electrical
potential.

4.2 Problem Formulation

We consider a nanobeam with length L , width b and thickness h, covered by
two metallic electrodes where an electric potential v(t) is applied (Fig. 4.1). The
nanobeam is modeled using the Euler-Bernoulli beam theory. Thus the displacement
vector u of an arbitrary point located at (x, 0, z) of the nanobeam is given by

u = −z
∂w(x, t)

∂x
x + w(x, t)z (4.1)

= −zw′(x, t)x + w(x, t)z

where w(x, t) represent the transverse displacement component, (x, y, z) is the rec-
tangular orthonormal Cartesian basis, t is the time and the prime corresponds to
derivative with respect to x . From this displacement field, the only non-zero strain
component is εxx = −zw′′. Therefore, the non-zero strain gradient components are
εxx,x = −zw′′′ and εxx,z = −w′′. The polarization density field within the cantilever
beam is considered to be along the two axis: x-axis and z-axis, as follows:

P = Px (x, z, t)x + Pz(x, z, t)z (4.2)
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Fig. 4.1 Nanobeam actuator

We assume that the potential φ is approximated by the following formula [14]

φ(x, z, t) = ϕ(x, t) cos(
π

h
z) + z + h/2

h
v(t)(H(x) − H(x − L)) (4.3)

where v(t) is the voltage across the electrodes and H(x) is theHeaviside step function.
Referring to [8], given the above assumptions, the expression of the internal energy

density WL can be written as:

WL = 1

2
a11P

2
x + 1

2
a33P

2
z + 1

2
c11ε

2
xx + d11εxx Px + d13εxx Pz (4.4)

+ f11εxx,x Px + f14εxx,z Pz

We obtain then the explicit expressions of the nonzero components of the stress
tensor T, the higher order stress tensor T̃ and the electric filed E as follows:

T11 = c11εxx + d11Px + d13Pz (4.5)

T̃111 = f11Px (4.6)

T̃113 = f14Pz (4.7)

−E1 = a11Px + d11εxx + f11εxx,x (4.8)

−E3 = a33Pz + d13εxx + f14εxx,z (4.9)
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To derive the governing electroelastic equations and the boundary conditions of
the system, we apply the extended Hamilton principle as follows:

∫ t2

t1

(
δK −

∫
V

δH dV + δWnc

)
dt = 0 (4.10)

where K is the kinetic energy, H is the enthalpy density and Wnc is the work done
by the external nonconservative forces.

According to Toupin [8], the enthalpy density of perfectly elastic dielectrics is
defined as:

H = WL − 1

2
εφ2

,i + Piφ,i i = x, y, z (4.11)

where WL is the internal energy density, ε is the permittivity of the medium and the
index following a coma in the subscript corresponds to the derivative with respect to
the i th-direction.

Then the variation of the electric enthalpy density is given by:

δH = δWL + (
Px − εφ,x

)
δφ,x + (

Pz − εφ,z
)
δφ,z + φ,xδPx + φ,zδPz (4.12)

=
(
−zT11 − T̃113

)
δw′′ − zT̃111δw

′′′ + (
φ,x − E1

)
δPx + (

φ,z − E3
)
δPz

+ (
Px − εφ,x

)
δφ,x + (

Pz − εφ,z
)
δφ,z

The expression of the variation of the kinetic energy is reduced to

δK = −
∫ L

0
m0ẅ δwdx (4.13)

where m0 is the principal inertia given by m0 = ρA.
Assuming that the applied external force F is constant and concentrated at the

free end of the nanobeam, the variation of Wnc is given by

δWnc =
∫
V
Fδ(x − L)δwdV (4.14)

Inserting the expressions of K , H and Wnc in (4.10), setting the quantities δw, δPx ,
δPz and δφ as arbitrary yields to the following governing equations:

m0ẅ + M ′′ = Fδ(x − L)A (4.15)

Px,x + Pz,z − εφ,xx − εφ,zz = 0 (4.16)

φ,x − E1 = 0 (4.17)

φ,z − E3 = 0 (4.18)

The following boundary conditions are associated with (4.15).
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⎧⎨
⎩
w(0) = 0
w′(0) = 0
w′′(0) = 0

and

⎧⎨
⎩

M(L) = 0
M ′(L) = 0
M̃(L) = 0

(4.19)

where M is the bending moment and M̃ is a higher-order stress component given by

M =
∫
A

(
−zT11 − T̃113 + zT̃ ′

111

)
d A (4.20)

M̃ =
∫
A
zT̃111d A (4.21)

Now let us derive the equation in terms of the deflection w(x, t) and the potential
ϕ(x, t). In fact, combining equations (4.17) and (4.18) with equations (4.8) and (4.9),
we can obtain the following formulas of both Px and Pz as follows

Px = −φ,x

a11
− d11

a11
εxx − f11

a11
εxx,x (4.22)

Pz = −φ,z

a33
− d13

a33
εxx − f14

a33
εxx,z (4.23)

Using equation (4.3), we deduce the explicit expressions of Px and Pz as functions
of the two unknowns: the deflection w and the potential ϕ as follows:

Px = − 1

a11
cos(

π

h
z)ϕ′(x, t) − z + h/2

a11h
v(t) (δ(x) − δ(x − L)) (4.24)

+d11
a11

zw′′ + f11
a11

zw′′′

Pz = π

a33h
sin(

π

h
z)ϕ(x, t) − v(t)

a33h
(H(x) − H(x − L)) (4.25)

+d13
a33

zw′′ + f14
a33

w′′

Then inserting the above expressions of both Px and Pz into equation (4.16) gives
the differential equation in terms of the potential ϕ coupled with the deflection w as
follows

ϕ′′(x, t) = π2εr33

h2εr11
ϕ(x, t) + πd13

2a33εr11
w′′ − π

4
v(t)

(
δ′(x) − δ′(x − L)

)
(4.26)

where εr11 = ( 1
a11

+ ε) and εr33 = ( 1
a33

+ ε). Equation (4.26) is associated with the
following boundary conditions
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ϕ(0, t) = 0 and ϕ(L , t) = 0 (4.27)

Considering the bending moment M as given in equation (4.20) and inserting the
expressions of Px , Px,x and Pz gives the explicit expression of M as follows:

M = −
[((

−c11 + d11
2

a11
+ d2

13

a11

)
J + f14

2

a33
A

)
w′′ − f11

2

a11
Jw′′′′ (4.28)

+ 2d13bh

a33π
ϕ(x, t) − d11

a11
J
v(t)

h
(δ(x) − δ(x − L))

+ f11
a11

J
v(t)

h

(
δ′(x) − δ′(x − L)

)

− f14
a33

A
v(t)

h
(H(x) − H(x − L))

]

For convenience we introduce the following normalizing variables

ŵ = w

h
, ϕ̂ = ϕ

ϕ0
, x̂ = x

L
and t̂ = t

τ
(4.29)

where

τ =
√

L4m0

K ∗
1

and ϕ0 = πK ∗
1a33

2bL2d13
(4.30)

Then, dropping the hats, we obtain the following nondimensional system of cou-
pled partially derivative equations describing the transverse deflection and the elec-
trical potential variations of the considered nanobeam:

ẅ + wiv − α0w
vi = ϕ′′ + α1v(t)

(
δ′′′(x) − δ′′′(x − 1)

)
(4.31)

−α2v(t)
(
δ′′(x) − δ′′(x − 1)

)

−α3v(t)
(
δ′(x) − δ′(x − 1)

) + α4Fδ(x − 1)

ϕ′′ − β0ϕ = β1w
′′ − β2v(t)

(
δ′(x) − δ′(x − 1)

)
(4.32)

The nondimensional coefficients in equations (4.31) and (4.32) are given as follows

α0 = K ∗
2

L2K ∗
1

, α1 = f11 J

K ∗
1 h

2a11
, α2 = Ld11 J

K ∗
1h

2a11
, α3 = L2 f14A

K ∗
1a33h

2

α4 = L3

K ∗
1h

, β0 = L2π2εr33

h2εr11
, β1 = d13Aπ

2a33εr11bϕ0
, β2 = Aπ

4bhϕ0

where the quantities K ∗
1 , K

∗
2 and K ∗

3 are defined here by
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K ∗
1 = −

(
−c11 + d2

11

a11
+ d2

13

a33

)
J − f 214

a33
A, K ∗

2 = − f 211
a11

, K ∗
3 = f11d11

a11
J

where A = bh and J = bh3

12 .
The governing equations (4.31) and (4.32) are associated with the following nor-

malized boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

w(0, t) = 0
w′(0, t) = 0
w′′(0, t) = 0
ϕ(0, t) = 0

and

⎧⎪⎪⎨
⎪⎪⎩

w′′(1, t) − α0wiv(1, t) − ϕ(1, t) = 0
w′′′(1, t) − α0wv(1, t) − ϕ′(1, t) = 0
−w′′′(1, t) + γ0wiv(1, t) = 0
ϕ(1, t) = 0

(4.33)

where γ0 = K ∗
2

K ∗
3 L
.

4.3 Free Vibration Analysis

We propose to solve the eigenvalue problem associated to equations (4.31) and (4.32)
and their boundary conditions in order to calculate the natural frequencies and mode
shapes of the considered nanobeam at free vibration conditions, i.e. v(t) = 0 and
F = 0. Let’s first consider a harmonic response in the form

w(x, t) = W (x)eiωt , and ϕ(x, t) = ψ(x)eiωt (4.34)

For reason of simplicity, we propose to neglect the sixth order derivative of W
representing the nonlocal gradient influence. In such way the system of coupled
equations (4.31) and (4.32) are transformed to

−ω2W + Wiv = ψ ′′ (4.35)

ψ ′′ − β0ψ = β1W
′′ (4.36)

The general solution of (4.35) and (4.36) are obtained by considering an expo-
nential form of the solution. Therefore

W (x) =
6∑

i=1

Cie
λi x , and ψ(x) =

6∑
i=1

Ci Die
λi x (4.37)

where Ci is a vector of constant to be determined and (Di )(i=1..6) = β1λ
2
i

λ2
i −β0

. The cir-
cular eigenfrequencies ωn for the nth mode can be obtained by solving the following
equation

Det ([J0]) = 0 (4.38)
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Table 4.1 The first three
nondimensional natural
frequencies

ω1 ω2 ω3

3.5208 22.0731 61.7811

where the matrix J0 is given by

[J0] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
λ1 λ2 λ3 λ4 λ5 λ6

λ2
1e

λ1 λ2
2e

λ2 λ2
3e

λ3 λ2
4e

λ4 λ2
5e

λ5 λ2
6e

λ6

�1eλ1 �2eλ2 �3eλ3 �4eλ4 �5eλ5 �6eλ6

D1 D2 D3 D4 D5 D6

D1eλ1 D2eλ2 D3eλ3 D4eλ4 D5eλ5 D6eλ6

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.39)

in which (�i )(i=1..6) = −λ3
i + Diλi .

Considering the proposed general solutions (4.37), applying the boundary condi-
tions appearing in (4.33) and setting C1 as arbitrary constant, the constants C2 to C6

can be calculated.
For numerical results, we use BaT iO3 whose material properties are obtained

from [15]. Considering the plane stress condition, we calculate thematerial constants
as follows: the elastic constant c11 = 131GPa, the dielectric constants a11 = 0.897 ×
108Vm/C, a33 = 0.788 × 108Vm/C, the piezoelectric constants d11 = −18.52 ×
108V/m and d13 = 1.87 × 108V/m. The mass density is ρ = 6.02 × 103kg/m3. We
refer to [16] to deduce the flexoelectric constant f11 = −0.013V and following Yan
et al. [11, 12] we set the flexoelectric coefficient f14 = 5V.

Table4.1 gives the first three non-dimensional natural frequencies of piezoelectric
flexoelectric cantilever nanobeam. Figures4.2 and 4.3 show the first three mode
shapes of the transverse deflection W and the potential ψ , respectively.

4.4 Static Response

We apply the Galerkin approximation method and rewrite the static nondimensional
transverse deflection and the electrical potential as

w(x) =
Ni∑
i=1

QiWi (x), and ϕ(x) =
N j∑
j=1

Ujψ j (x) (4.40)

Substituting (4.40) into (4.31) and (4.32) multiplying the outcome by the corre-
sponding mode shape, integrating over the domain and applying the orthogonality
condition, we end up with two uncoupled equations in terms of the generalized
amplitudes (Qi )(i=1..Ni ) and (Uj )( j=1..N j ) as follows:
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Fig. 4.2 First three transverse deflection mode shapes

Qi J
(1)
in = α0Qi J

(2)
in +Uj J

(3)
jn + (

α1Θ
(1)
n − α2Θ

(2)
n − α3Θ

(3)
n

)
v + α4 f̄n (4.41)

Uj J
(4)
jm = β0Um + β1Qi J

(5)
im − β2VΘ(4)

m (4.42)

i, n = 1..Ni and j,m = 1..N j

where
J (1)
in = ∫ 1

0 Wi
′′′′(x)Wn(x)dx

J (2)
in = ∫ 1

0 Wi
vi (x)Wn(x)dx

J (3)
jn = ∫ 1

0 ψ
′′
j (x)Wn(x)dx

J (4)
jm = ∫ 1

0 ψ ′′
j (x)ψm(x)dx

J (5)
im = ∫ 1

0 W
′′
i (x)ψm(x)dx

Θ(1)
n = ∫ 1

0 Wiv
n (x)dx

Θ(2)
n = − ∫ 1

0 Wn
′′′(x)dx

Θ(3)
n = ∫ 1

0 Wn
′′(x)dx

Θ(4)
m = ∫ 1

0 ψm
′′(x)dx

f̄n = FWn(1)

(4.43)



94 S. Baroudi et al.

1st mode
2nd mode
3rd mode

−2

−1

0

1

2

x/L
0 0,2 0,4 0,6 0,8 1

Fig. 4.3 First three electrical potential modes

For numerical results,we consider that the nanobeam is loadedwith a concentrated
force F = 1nN and a constant voltage v = −0.1V. The dimensions of the nanobeam
are chosen so that b = h.

Figure4.4 represents the normalized deflection in comparison with Yan et al. [11]
showing a good convenience with our model if we consider only one dimensional
model and linear distribution of the electrical potential φ (i.e. ϕ(x) = 0). When the
fullmodel is considered (red curve in Fig. 4.4), amismatch is observed demonstrating
that effect of the self-field induced potential cannot be neglected, and that, under
these conditions, the model used by Yan et al. [11] underestimates the effect of the
flexoelectricity.

4.5 Dynamic Response

Here the dynamic behavior of the structure is investigated by considering an applied
voltage of the form v(t) = VeiΩt and by setting the static force F = 0. We consider
the time variation of the two variables w(x, t) and ϕ(x, t) as follows



4 Modeling and Parametric Analysis of a Piezoelectric Flexoelectric Nanoactuator 95

Fig. 4.4 Normalized defection variation in comparison with previous work [11] (V= −0.1,
L/h=20, h= 20nm, F= −1nN)

Fig. 4.5 Normalized deflection for different aspect ratios L/h (V = −0.1V, h = 20nm, F =
−1nN)
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Fig. 4.6 Effect of flexoelectriciy in the distribution of the normalized deflection in comparison
with the simplified model (V = −0.1V, L/h = 30, h = 20nm)

w(x, t) =
Ni∑
i=1

qi (t)Wi (x), and ϕ(x, t) =
N j∑
j=1

u j (t)ψ j (x) (4.44)

Introducing the diagonal dampingmatrix ξ defined as ξn = ωn
Q where Q is the quality

factor chosen equal to 10 and considering a harmonic behavior for the generalized
coordinate of displacement q(t), the generalized coordinate of the potential u(t), and
the voltage v(t), as follows q(t) = Qe jωt , u(t) = Ue jωt , v(t) = Ve jωt , we deduce
the dynamic response of our system in terms of the amplitude of the displacement
Q(t) and the amplitude of the electric potential U(t) as follows:

(−ω2 + jωξn)Qn + Qi J
(1)
in = α0Qi J

(2)
in +Uj J

(3)
jn (4.45)

+ (
α1Θ

(1)
n − α2Θ

(2)
n − α3Θ

(3)
n

)
V

Uj J
(4)
jm = β0Um + β1Qi J

(5)
im − β2VΘ(4)

m (4.46)

i, n = 1..Ni and j,m = 1..N j

Figure4.5 represents the normalized defection for different aspect ratios L/h and
a thickness equal to 20 × 10−9. It is clear that the response of the nanoactuator is
well accentuated for slender beam (L/h = 30 for example). Figure4.6 shows the
effect of the flexoelectric coupling for both the current model and the simplified one.
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Fig. 4.7 Comparison of nondimensional dynamic defection’s amplitude for different models (V=
−0.1, L/h=20, h=20nm)

One can clearly see that the flexoelectricity coupling tends to decrease the predicted
deflection since the stiffness of the structure is well modified. Figure4.7 represents
the normalized dynamic deflection for a thickness equal to 20 × 10−9 and an aspect
ratios L/h equal to 20. It is clear that the response of the nanoactuator of the nanoac-
tuator iswell increasedwhen considering our comprehensivemodel. The discrepancy
between the two models indicates that more accurate and exact results are obtained
thanks to our complete model and shows the necessity of taking into consideration
the current assumptions.

4.6 Electromechanical Coupling Coefficient

The Electromechanical Coupling Coefficient (EMCC) can be obtained by measuring
the variations of the energy stored in the nanobeam at open circuit (OC) and short
circuit (SC) conditions [17].

κ =
√
UOC −USC

UOC
(4.47)

whereUOC is the total energy measured at the OC , (i.e. the electric displacement D
is equal to zero), and USC is the total energy measured at the SC , (i.e. the electric
field E is equal to zero).
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Considering equations (4.8) and (4.9) and knowing that P = εE + D, we can
deduce the expression of P for both electric conditions.

4.6.1 Stored Energy at SC Conditions

For SC conditions, the expression of the polarization components PxSC and PzSC are
obtained by using their general expressions in (4.24) and (4.25), that is

PxSC = d11
a11

zw′′ + f11
a11

zw′′′ (4.48)

PzSC = d13
a33

zw′′ + f14
a33

w′′ (4.49)

Therefore, the total energy USC stores at SC condition is expressed as follows

USC =
∫
V
W L

SCdV =
∫
V

[
1

2
a11P

2
xSC + 1

2
a33P

2
zSC + 1

2
c11ε

2
xx + d11εxx PxSC + d13εxx PzSC

+ f11εxx,x PxSC + f14εxx,z PzSC
]
dV

= 1

2

[
K ∗
1

∫ L

0
w′′2(x, t)dx + K ∗

2

∫ L

0
w′′′2(x, t)dx−K ∗

3

∫ L

0
w′′(x, t)w′′′(x, t)dx

]
(4.50)

4.6.2 Stored Energy at OC Conditions

For OC conditions, the the total energy is given by

PxOC = d11
a11 + 1

ε

zw′′ + f11
a11 + 1

ε

zw′′′ (4.51)

PzOC = d13
a33 + 1

ε

zw′′ + f14
a33 + 1

ε

w′′ (4.52)

Therefore, the total energy UOC stored at OC condition is expressed as follows

UOC =
∫
V
W L

OCdV =
∫
V

[
1

2
a11P

2
xOC

+ 1

2
a33P

2
zOC

+ 1

2
c11ε

2
xx + d11εxx PxOC + d13εxx PzOC

+ f11εxx,x PxOC + f14εxx,z PzOC

]
dV

= 1

2

[
K ∗
4

∫ L

0
w′′2(x, t)dx + K ∗

5

∫ L

0
w′′′2(x, t)dx+K ∗

6

∫ L

0
w′′(x, t)w′′′(x, t)dx

]
(4.53)
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where K ∗
4 , K

∗
5 , K

∗
6 are defined as follows:

K ∗
4 =2

(
c11 + a11ε20

(1 + a11ε0)2
d2
11 + a33ε20

(1 + a33ε0)2
d2
13

)
J + 2a33ε20

(1 + a33ε0)2
f 214A

−
(

d2
11

1 + a11ε0
+ d2

13

1 + a33ε0

)
4ε0 J − 4ε0

1 + a33ε0
f 214A

K ∗
5 = − (2 − a11ε0) 2ε0 f 211 J(

1 + a11ε0)2
)

K ∗
3 =

(
2a11ε20

(1 + a11ε0)2
− ε0

3 (1 + a11ε0)

)
2 f11d11 J

4.6.3 Approximation of the Electromechanical Coupling
Coefficient

Applying the Galerkin approximation, we end up with the following expressions of
USC and UOC

USC = 1

2

[
K ∗

1Ξ
(1)
in + K ∗

2Ξ
(2)
in − K ∗

3Ξ
(3)
in

]
Q2

i (t) (4.54)

UOC = 1

2

[
K ∗

4Ξ
(1)
in + K ∗

5Ξ
(2)
in + K ∗

6Ξ
(3)
in

]
Q2

i (t) (4.55)

where Ξ
(1)
in , Ξ(2)

in and Ξ
(3)
in are integral terms given by

Ξ
(1)
in = L3

h2

∫ 1

0
W ′′

i (x)2Wn(x)dx (4.56)

Ξ
(2)
in = L5

h2

∫ 1

0
W ′′′

i (x)2Wn(x)dx (4.57)

Ξ
(3)
in = L4

h2

∫ 1

0
W ′′

i (x)W ′′′
i (x)Wn(x)dx (4.58)

Finally the EMCC κ is given by

κ =
√√√√

(
K ∗

4 − K ∗
1

)
Ξ

(1)
in + (

K ∗
5 − K ∗

2

)
Ξ

(2)
in + (

K ∗
6 + K ∗

3

)
Ξ

(3)
in

K ∗
4Ξ

(1)
in + K ∗

5Ξ
(2)
in + K ∗

6Ξ
(3)
in

(4.59)

In Fig. 4.8 the variation of the electromechanical coupling coefficient κ of the
nanobeam with the beam thickness h is illustrated. One can remark that κ is highly
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Fig. 4.8 Variation of the electromechanical coupling coefficient κ with the thickness h (L/h=20)

affected by the aspect ratio of the nanobeam. As it is predicted, the efficiency of
the flexoelectric device increases with the decrease of the beam thickness showing
the necessity of taking into consideration the flexoelectric coupling when designing
piezoelectric devices at the nanoscale.

4.7 Conclusion

In this work, a flexoelectric piezoelectric cantilever nanobeam is modeled to inves-
tigate the static and dynamic response of BaTiO3 nanoactuator. Starting with the
strain gradient linear theory of piezoelectricity and applying the extended Hamil-
ton principle, the governing system of coupled differential equations is derived for
the transverse deflection and a two dimensional distribution of the electric potential
inside the nanobeam. An eigenvalue problem is established to study the free vibration
of the device. Finally, using the Galerkin method, the static and dynamic bending
responses are studied and compared to previous and simplified works. Our results
show that considerable effect are observed especially when considering self-field
effect of the induced electric potential, which was not the case in previous published
analyses. We illustrate also that the flexoelectric coupling effect can be responsible
for increasing the size-dependent properties of dielectric materials at the nanoscale.
This conclusion was also verified by calculating the electromechanical coupling
coefficient.
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Chapter 5
Dynamics of a Chain with Four Particles,
Alternating Masses and Nearest-Neighbor
Interaction

Roelof Bruggeman and Ferdinand Verhulst

Abstract We formulate the periodic FPU problem with four alternating masses
which is the simplest nontrivial version. The analysis involves normal form calcu-
lations to second order producing integrable normal forms with three timescales. In
the case of large alternating mass the system is an example of dynamics with widely
separated frequencies and three timescales. The presence of approximate integrals
and the stability characteristics of the periodic solutions lead to weak interaction of
the modes of the system.

5.1 Introduction

For the mono-atomic case of the original periodic FPU-problem (Fermi-Pasta-Ulam
problem) with all masses (or particles) equal it was shown in [4] for up to six degrees-
of-freedom (dof) and for an arbitrary number of dof in [5], that the corresponding
normal forms are governed by 1 : 1 resonances and that these Hamiltonian normal
forms are integrable. This explains the recurrence phenomena near stable equilibrium
for long intervals of time.

In [1] we have studied the inhomogeneous FPU-problem which contains many
different resonance cases. In [9] and [10] recurrence and near-integrability aspects
of FPU cells were studied. The alternating case was studied in [2] for a FPU chain
with fixed end-points using analytic and numerical tools to obtain insight in the
equipartition of energy, in particular between the low (acoustic) frequency and the
high (optical) frequency part. A preliminary but important conclusion in [2] is that
for the masses considered and on long timescales no equipartition takes place; the
evidence is numerical. Inspired by [2] we will study the periodic FPU-problem in the
case of alternating masses. The simplest nontrivial form of this problem is for four
particles, it is necessary to understand this problem first. In a subsequent paper we
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will study the more general problem with an even number of particles. The emphasis
will be on periodic solutions, integrability of the normal forms (near-integrability of
the original system), invariant manifolds and recurrence phenomena; for recurrence
see also [9].

In a periodic chain, for (even) n particles with arbitrary masses m j > 0, position
q j and momentum p j = m j q̇ j , j = 1 . . . n, the Hamiltonian (see [1]) is of the form:

H(p, q) =
n∑

j=1

(
1

2m j
p2
j + V (q j+1 − q j )

)
with V (z) = 1

2
z2 + α

3
z3 + β

4
z4.

(5.1)
If α = 1,β = 0 we will call this an α-chain, if α = 0,β = 1 a β-chain. The quadratic
part of the Hamiltonian is not in diagonal form; for n = 4 the linearized equations
of motion can be written as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1q̈1 + 2q1 − q2 − q4 = 0,

m2q̈2 + 2q2 − q3 − q1 = 0,

m3q̈3 + 2q3 − q4 − q2 = 0,

m4q̈4 + 2q4 − q1 − q3 = 0.

(5.2)

In system (5.2) the 4 alternating masses are 1,m, 1,m, with m > 1. Although this
number of particles is small, the problem of the dynamics of such a periodic chain is
by no means trivial. Moreover we will indicate that the dynamics of a small number
of particles in the chain is in a certain sense typical for much larger systems.

The mass ratio m : 1 is the important parameter, we put a = 1/m, 0 < a < 1.
The eigenvalues of system (5.2) will be indicated by λi , i = 1, . . . , 4, the corre-
sponding frequencies of the linear normal modes are ωi = √

λi . The numerical
value of H2 for given initial conditions is indicated by E0. We will use symplec-
tic transformation to put the linear part of the equations of motion in quasi-harmonic
form. The solutions in the eigendirections of the equations of motion linearized near
the origin are called the linear normal modes of the system, they can be continued
for the nonlinear system. The transformation to quasi-harmonic form is natural but
introduces an interpretation problem. Intuitively we expect the masses 1 to be more
excitable than the masses m. However, after symplectic transformation we have in
the resulting equations of motion a mix of both sets of particles and at the same time
a splitting of the spectrum in O(1) frequencies with modes that we will call ‘optical’
and O(

√
a) frequencies called ‘acoustical’. The behaviour of the solutions within

the two sets of particles can not in a simple way be identified with the normal mode
(quasi-harmonic) equations corresponding with the optical and acoustical part of the
spectrum.

In the following sections the analysis by averaging-normal forms is a basic tool.
For the general theory and results in the case of Hamiltonian systems see [6]. Res-
onances in the frequency-spectrum of the linearized equations of motion, generated
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by the quadratic part of the Hamiltonian H2, play a fundamental part in the analysis.
The cubic part H3 and if necessary the quartic part H4 will be normalized to H̄3, H̄4.

In [1] we have discussed a number of technical normal form aspects of averaging
for Hamiltonian systems. In a system of n perturbed harmonic equations we will often
transform to polar coordinates. If the frequencies are ω j , 1 ≤ j ≤ n we introduce

x j = r j cos(ω j t + ϕ j ) , y j = −r j ω j sin(ω j t + ϕ j ) (1 ≤ j ≤ 7) (5.3)

to produce an equivalent first-order system in the variables

X = (r1, r2, . . . , rn,ϕ1, . . . ,ϕn) .

This system is equivalent with the n dof system of perturbed harmonic equations
outside the normal mode planes.

The numerical experiments were carried out by Matcont under Matlab with
ode solver 78. The precision was increased until the picture did not change any-
more with typical relative error e−15, absolute error e−17. A number of algebraic
manipulations were carried out using Mathematica.

It will turn out that for the α- and β-chain especially the analysis for large mass is
interesting. The normal form systems are in this case examples of integrable systems
with widely separated frequencies. The dynamics involves periodic solutions, among
which three normal modes; their stability can be established from the equations and
the integrals. The normal form analysis has to be carried out to second order and
uses three timescales. Using these results we can sketch a global picture of the
phase-flow with a number of characteristic examples of recurrence phenomena. In
the discussion we will mention the relevance of our results for FPU-systems with
many more particles.

5.2 Periodic FPU Chains with 4 Alternating Masses

We find from the equations of motion, both for an α- and for a β-chain, the momentum
integral:

q̇1 + mq̇2 + q̇3 + mq̇4 = constant. (5.4)

For the linear system (5.2) we find the 4 eigenvalues:

λi = 2(a + 1), 2, 2a, 0.

with frequencies ω2
i = λi , i = 1, . . . , 4. We perform a symplectic transformation to

eigenmodes of the form q = Lax , p = Ka y, with the matrices
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La =

⎛

⎜⎜⎜⎜⎜⎜⎝

− 1√
2a+2

− 1√
2

0
√

a
2 a+2

a√
2a+2

0 −
√
a√
2

√
a

2a+2

− 1√
2a+2

1√
2

0
√

a
2 a+2

a√
2a+2

0
√
a√
2

√
a

2a+2

⎞

⎟⎟⎟⎟⎟⎟⎠
, (5.5)

Ka =

⎛

⎜⎜⎜⎜⎜⎝

− 1√
2a+2

− 1√
2

0
√

a
2 a+2

1√
2a+2

0 − 1√
2
√
a

1√
a
√

2a+2

− 1√
2a+2

1√
2

0
√

a
2 a+2

1√
2a+2

0 1√
2
√
a

1√
a
√

2a+2

⎞

⎟⎟⎟⎟⎟⎠
. (5.6)

The coordinates (x4, y4) correspond to the momentum integral (5.4). We proceed with
the reduced system (x j , y j ), 1 ≤ j ≤ 3, in which the components of the Hamiltonian
take the following form:

⎧
⎪⎨

⎪⎩

H2 = (1 + a)x2
1 + x2

2 + ax2
3 + 1

2 (y
2
1 + y2

2 + y2
3 ),

H3 = −2
√

2a(1 + a)x1x2x3,

H4 = 1
4 ((1 + a)2x4

1 + x4
2 + 6ax2

2 x
2
3 + a2x4

3 + 6(1 + a)x2
1 (x

2
2 + ax2

3 )).

(5.7)

The usual procedure for normalization as an approximation procedure is to rescale in
a neighborhood of equilibrium, in this case xi → εxi , yi → εyi , i = 1, 2, 3 with ε
a small positive parameter. This procedure yields, after dividing by ε2 in the Hamil-
tonian a system with a small parameter which is a measure for the distance to equi-
librium. The procedure will be implicit in our statements in the case that a is not a
small parameter. If 0 < a � 1 (large mass m) we will also leave out the scaling with
ε as a will be a natural small parameter. Still, also in this case, we will assume for the
solutions to be in a neighborhood of equilibrium; when starting closer to equilibrium
(small energy) the normal form results will improve.

5.3 The α-Chain

The equations of motion are for the α-chain with γ = 2
√

2a(1 + a):

⎧
⎪⎨

⎪⎩

ẍ1 + 2(1 + a)x1 = γx2x3,

ẍ2 + 2x2 = γx1x3,

ẍ3 + 2ax3 = γx1x2.

(5.8)

Special solutions are the normal modes associated with the eigenvalues 2(1 + a), 2
and 2a. These exact solutions are harmonic for an α-chain. The equilibria of system
(5.8) are the origin in phase-space and the points with coordinates:
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(x1, x2, x3, y1, y2, y3) =
(

δ1√
2(1 + a)

,
δ2√

2
,

δ3√
2a

, 0, 0, 0

)
,

with δi = ±1, i = 1, 2, 3 with δ1δ2δ3 = 1. The energy value of the four equilibria
outside the origin is in all cases 0.5. The energy manifold bifurcates geometrically
in the critical points of the energy manifold, the corresponding equilibria of the
equations of motion are unstable. For values of the energy between 0 and 0.5, the
energy manifold is compact.

The first order resonances in a three dof system like (5.8) are 1 : 2 : 1, 1 : 2 : 2,
1 : 2 : 3 and 1 : 2 : 4. Considering the spectrum of the linearized system (5.8) we
find no three dof first order resonances in a cell with four particles.
Two dof first order resonances occur ifa = 1

4 ,
1
3 . Second order resonances arise ifa =

1
8 ,

1
9 and if 0 < a � 1. It was shown in [6] Sect. 10.4, that the normal form of a two

dof Hamiltonian system is integrable. Adding a third dof with non-commensurable
third frequency as is the case here keeps to high order these normal forms integrable
as the added terms remain separated from the resonant two dof.

We conclude that for 0 < a < 1 a periodic FPU α-chain with four alternating
masses is in normal form near-integrable. The dynamics (periodic solutions and
stability) of the two dof cases can be found in the literature (for references see [6])
but is in this case fairly degenerate. The case of values of a very close to zero have
to be considered separately.

5.3.1 The α-Chain for Large Mass m

For large values of the mass we have a in a neighborhood of zero. Two of the fre-
quencies will be near

√
2, one will be

√
2a, the associated modes will be called the

optical group (x1, x2) and the acoustical group (x3). System (5.8) is an example of a
system with widely separated frequencies, see [7] and further references there. Fol-
lowing the analysis in [7] we apply normalization considering x3 as slowly varying.
The slow dynamics of x3 becomes more transparent when rescaling the Hamiltonian
to a related standard form by

x3 → (2a)−
1
4 x3, y3 → (2a)+

1
4 y3. (5.9)

This results in:

H2 = (1 + a)x2
1 + x2

2 + 1

2
(y2

1 + y2
2 ) + 1

2

√
2a(x2

3 + y2
3 )

and
H3 = −γ̄x1x2x3, γ̄ = 2

5
4
√

1 + a a
1
4 .

http://dx.doi.org/10.1007/978-3-319-63937-6_10
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In the equations of motion we rescale xi → a
1
8 xi , i = 1, 2; this choice is optimal for

keeping as many interactive terms in the approximations as possible. In [8] this is
called a significant degeneration of the differential operator. System (5.8) becomes
with the rescalings:

⎧
⎪⎨

⎪⎩

ẍ1 + 2x1 = γ̄x2x3 − 2ax1,

ẍ2 + 2x2 = γ̄x1x3,

ẋ3 = √
2ay3, ẏ3 = γ̄a

1
4 x1x2 − √

2ax3.

(5.10)

The terms with small parameter γ̄ = O(a
1
4 ) dominate. Introducing polar coordinates

x1 = r1 cos(
√

2t + φ1), ẋ1 = −√
2r1 sin(

√
2t + φ1),

x2 = r2 cos(
√

2t + φ2), ẋ2 = −√
2r2 sin(

√
2t + φ2),

we find after transformation and normalization to O(γ̄):

⎧
⎪⎨

⎪⎩

ṙ1 = − γ̄

2
√

2
r2 sin(φ1 − φ2)x3, φ̇1 = − γ̄

2
√

2
r2
r1

cos(φ1 − φ2)x3,

ṙ2 = + γ̄

2
√

2
r1 sin(φ1 − φ2)x3, φ̇2 = − γ̄

2
√

2
r1
r2

cos(φ1 − φ2)x3,

ẋ3 = 0, ẏ3 = 0.

(5.11)

For the third mode we find with y3(0) = 0:

x3 = x3(0), y3 = 0.

We put χ = φ1 − φ2. The solutions of the normal form have error O(a
1
4 ) on the

timescale a− 1
4 , see the appendix.

Integrals of the normalization. System (5.11) has the integral of motion E3 =
1
2

√
2a(x2

3 + y2
3 ) and the second integral

1

2
(r2

1 + r2
2 ) = E1 (5.12)

with E1 a positive constant. This integral is valid with error O(a
1
4 ). The choice of

polar coordinates means that we have to exclude normal modes, but we know already
that the original system (5.8) has three normal mode solutions. We have

d

dt
χ = − γ̄

2
√

2

(
r2

r1
− r1

r2

)
x3 cos χ.

From the equations for r1 in system (5.11) and the equation for χ we find
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Fig. 5.1 Interactions with the x3 mode for a = 0.01 in system (5.8). Left the action I3 =
1
2 (ẋ

2
3 + 2ax2

3 )with initial conditions x1(0) = x2(0) = 0.5, x3(0) = 0.1 and initial velocities zero so
I1(0) = I2(0) = 0.25, I3(0) = 10−4 resulting in 0 < I3 < 0.18. Right I3 if x1(0) = 0.1, x2(0) =
0.5, x3(0) = 0.1 so I1(0) = 0.01, I2(0) = 0.25, I3(0) = 10−4 resulting in (much smaller) 0 <

I3 < 0.005

dr1

dχ
= r2

sin χ(
r2
r1

− r1
r2

)
cos χ

.

Eliminating r2 with integral (5.12) the equation becomes separable. We find:

r1r2 cos χ = C, (5.13)

which is a third integral of motion of system (5.11); C is a constant determined
by the initial conditions. We conclude that to first order of approximation we have
no interaction between the first two modes (the optical part) and the third mode
(the acoustical part). However, a numerical experiment suggests that the x3 mode is
interacting with the other modes, see Fig. 5.1, so to show this analytically we will
compute a second order approximation later on.
Periodic solutions. At first order a special solution arises if

χ = 0,π.

This is possible if

d

dt
χ = − γ̄

2
√

2

(
r2

r1
− r1

r2

)
x3 cos χ = 0. (5.14)

We conclude for this special solution r1 = r2 with solutions for x1, x2 given by:

x1(t) = √
E1 cos(

√
2t + φ0), x1(t) = ±x2(t), (5.15)
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Fig. 5.2 Recurrence indicated by the Euclidean distance d with respect to the initial values as
a function of time in the α-chain with the conditions as in Fig. 5.1. If x1(0) �= x2(0) (right) the
recurrence takes longer

an approximation valid on the timescale a−1/4. Choosing x3(0), y3(0), solutions
(5.15) are determined uniquely. These solutions (xi , yi , i = 1, 2, 3) form manifold
M1 embedded in the energy manifold defined by the quadratic integrals E3 and E1

of system (5.11).
Another special solution of (5.14) arises if

χ = π

2
, 3

π

2
.

In this case the solutions of system (5.11) are determined by:

{
r1(t) = A cos( γ̄

2
√

2
x3(0)t) + B sin( γ̄

2
√

2
x3(0)t),

r2(t) = ∓A γ̄

2
√

2
x3(0) sin( γ̄

2
√

2
x3(0)t) ± B γ̄

2
√

2
x3(0) cos( γ̄

2
√

2
x3(0)t),

(5.16)

with x3(t) = x3(0),φ1(0) − φ2(0) = π/2, 3π/2 and constants A, B; analogously to
the case of M1, the solutions xi , yi , i = 1, 2, 3 form manifold M2 embedded in the
energy manifold.

Both for special solution (5.15) and (5.16) we have families of periodic solutions
on the energy manifold. This may signal a degeneration of the normal form at first
order in the sense of Poincaré [3] vol. 1. This gives another reason to compute a
second order approximation.
Integrability and recurrence. The normal form (5.11) of the α-chain for large mass
is clearly integrable. The three normal form integrals can be written as quadratic
expressions:
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1

2

√
2a(x2

3 + y2
3 ) = E3, ẋ

2
1 + 2x2

1 + ẋ2
2 + 2x2

2 = 2E1, 2x1x2 + ẋ1 ẋ2 = 2C.

(5.17)
The three integrals are exact integrals of the normal form (5.11) and approximate
integrals of the original equations (5.10). Remarkably enough the recurrence prop-
erties of the phase flow are different in the two cases of Fig. 5.1. In the case where
x1(0) = x2(0) = 0.5, we have rather strong recurrence, see Fig. 5.2 left, in the case
x1(0) = 0.1, x2(0) = 0.5 the recurrence times are longer; see Fig. 5.2. The two spe-
cial solutions obtained above suggest an explanation. Starting at the first special
solution we have to first approximation periodicity with period

√
2π, for the second

special solution we find a modulation of the period O(γ̄x3(0)).
We conclude that even if we have a system with integrable normal form, its recurrence
properties depend strongly on the initial conditions. We will return to this in Sect. 5.6.

5.3.2 Second Order Approximation for the α-Chain

A second order approximation according to [6] can be computed using Mathemat-
ica. As before we do not change the notation for the variables r1,φ1 etc. to avoid
too many new symbols. We find with γ̄ = O(a

1
4 ) (and a mix of variables):

⎧
⎪⎨

⎪⎩

ṙ1 = − γ̄

2
√

2
r2x3 sin χ, φ̇1 = − γ̄

2
√

2
r2
r1
x3 cos χ − 1

4a
1
2 x2

3 ,

ṙ2 = + γ̄

2
√

2
r1x3 sin χ, φ̇2 = − γ̄

2
√

2
r1
r2
x3 cos χ − 1

4a
1
2 x2

3 ,

ẋ3 = (2a)
1
2 y3, ẏ3 = −(2a)

1
2 x3 + (2)

1
4 (a)

1
2 r1r2 cos χ.

(5.18)

We deduce from system (5.18) that the quadratic integral (5.12) persists; dχ/dt does
not change at second order, so also the quadratic integral (5.13) persists. The two
special solutions (5.15) and (5.16) are slightly modified but correspond at second
order still with manifolds of special solutions. For x3, y3 we can write

ẍ3 + 2ax3 = 2ar1r2 cos χ.

Using integral (5.13) we have with y3(0) = 0 as second order approximation:

x3(t) = (x3(0) − C) cos(
√

2a t) + C (5.19)

with C = r1(0)r2(0) cos χ(0). This establishes the interaction with the x3 normal
mode as for initial values of x1, x2 producing an O(1) value of C , the amplitude of
x3 will grow even if x3(0) is small.
From system (5.8), so before rescaling, we can find the equivalent integral equation
for x3(t) which also holds for the rescaled quantities:
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x3(t) = x3(0) cos
√

2at + 2
√

1 + a
∫ t

0
x1(τ )x2(τ ) sin(

√
2a(t − τ ))dτ , (5.20)

where we have chosen ẋ3(0) = 0. The oscillating integral can be evaluated using
approximations for x1(t), x2(t) for instance the special solutions (5.15) (interaction
timescales t and a1/2t) and (5.16) (interaction timescales t, a1/4t and a1/2t).
Note that inspection of system (5.10) shows that neglecting terms O(a), we have
x1(t) = ±x2(t) exactly. This means that in this particular case x1(t)x2(t) will be sign
definite in the integral of (5.20) at this level of approximation.

5.4 The β-Chain for Large Mass m

The Hamiltonian given by (5.7) is positive definite outside the origin, so the origin is
the only equilibrium. The energy manifolds are compact. The remarks on the possible
resonances of the α-chain apply also to the β-chain. So we restrict ourselves to the
case of large mass m. The equations of motion are more complicated and are without
scaling of the coordinates:

⎧
⎪⎨

⎪⎩

ẍ1 + 2(1 + a)x1 = −(1 + a)2x3
1 − 3(1 + a)x1(x2

2 + ax2
3 ),

ẍ2 + 2x2 = −x3
2 − 3ax2x2

3 − 3(1 + a)x2
1 x2,

ẍ3 + 2ax3 = −3ax2
2 x3 − a2x3

3 − 3a(1 + a)x2
1 x3.

(5.21)

The three normal modes are exact solutions (elliptic functions) of the system. To
apply normalization we will assume that a is small and will rescale with respect to
equilibrium:

(xi , yi ) → a
1
4 (xi , yi )i = 1, 2, x3 → (2a)−

1
4 x3, y3 → (2a)+

1
4 y3.

This scaling keeps as many interaction terms as possible. We find after scaling:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ1 + 2x1 = −2ax1 − √
a(1 + a)2x3

1 − 3
√
a(1 + a)x1(x2

2 + 1
2

√
2x2

3 )),

ẍ2 + 2x2 = −√
ax3

2 − 3
2

√
2ax2x2

3 − 3
√
a(1 + a)x2

1 x2,

ẋ3 = √
2ay3, ẏ3 = −√

2ax3 − a( 3
2

√
2x2

2 x3 + 1
2 x

3
3 + 3

2

√
2(1 + a)x2

1 x3).

(5.22)

Neglecting terms O(a) we find with χ = φ1 − φ2 the normal form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṙ1 = + 3
√
a

8
√

2
r1r2

2 sin 2χ, φ̇1 =
√
a

16

(
3
√

2(r2
2 cos 2χ + 2r2

2 + r2
1 ) + 12x2

3

)
,

ṙ2 = − 3
√
a

8
√

2
r2

1r2 sin 2χ, φ̇2 =
√
a

16

(
3
√

2(r2
1 cos 2χ + 2r2

1 + r2
2 ) + 12x2

3

)
,

ẋ3 = √
2ay3, ẏ3 = −√

2ax3.

(5.23)
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We find again the integral E3 = 1
2

√
2a(x2

3 + y2
3 ) and the second normal form integral

(5.12). The equation for χ becomes

d

dt
χ = −3

√
2

8

√
a(r2

1 − r2
2 ) cos2 χ.

From system (5.23) we find also the third integral (5.13):

r1r2 cos χ = C,

with C determined by the initial conditions.
A special solution with constant amplitudes r1 and r2 may arise if

χ = ϕ1 − φ2 = 0,π/2,π, 3π/2.

From the equation for χ = φ1 − φ2 we find the requirement r1 = r2 correspond-
ing with four periodic solutions of the first order normal form. The initial val-
ues x3(0), y3(0) are still free, the solutions xi , yi , i = 1, 2, 3 produce manifold M1

embedded in the energy manifold.
Analogous to the case of the α-chain we find solutions from the equation for dχ/dt
with constant phase difference. These are found if

r1 �= r2, χ = π

2
, 3

π

2
.

For r1(t), r2(t) we find in this case goniometric functions of
√
at and, as for the α-

chain, a manifold M2 of special solutions xi , yi , i = 1, 2, 3 embedded in the energy
manifold.

At this level of approximation we find no interaction between the optical and the
acoustical group. This motivates us to compute the second order normal form.

5.4.1 Second Order Approximation for the β-Chain

A second order approximation according to [6] can be computed using again
Mathematica. We do not change the notation for the variables r1,φ1 etc. to avoid
too many new symbols. We find for the O(a)-terms to be added to the derivatives
ṙ1, φ̇1, ṙ2, φ̇2, ẋ3, ẏ3 in the normal form of system (5.23):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 3
512r1r2

2 sin(2χ)
(

17
√

2
(
r2

1 + r2
2

)
+ 48x2

3

)

−288x2
3

(
r2

2 (cos(2χ)+2)+r2
1

)
−51

√
2

(
2r2

2 r
2
1 (2 cos(2χ)+3)+r4

2 (2 cos(2χ)+3)+r4
1

)
−144

√
2x4

3

1024 + 1√
2

3
512r

2
1r2 sin(2χ)

(
17

√
2
(
r2

1 + r2
2

)
+ 48x2

3

)

−288 x2
3

(
r2

1 (cos(2χ)+2)+r2
2

)
−51

√
2

(
r4

1 (2 cos(2χ)+3)+2r2
2 r

2
1 (2 cos(2χ)+3)+r4

2

)
−144

√
2x4

3

1024

0

− 1
4 x3

(
3
√

2
(
r2

1 + r2
2

)
+ 2x2

3

)

(5.24)

Integral (5.12) is conserved again to second order. The condition for constant ampli-
tudes r1 and r2 is again

χ = ϕ1 − φ2 = 0,π/2,π, 3π/2.

The requirement dχ/dt = 0 is satisfied for r1 = r2 + O(
√
a), producing four peri-

odic solutions.
For the third mode we find with integral (5.12) the equation:

ẍ3 + (2a + 3a
3
2 E1)x3 = −1

2

√
2a

3
2 x3

3 . (5.25)

The only critical point (equilibrium) is (0, 0)which is stable. This means that starting
near the origin, the solution will not move away. The results show for the β-chain
weak interaction between acoustical and optical group and dependence on the ini-
tial conditions. In general the solutions for the β-chain depend on the timescales
t,

√
at, at .

5.5 Stability of the Periodic Solutions for Large Mass m

The first and second order normal form analysis enables us to establish the stability of
the periodic solutions. Note however that for three and more dof instability in Hamil-
tonian systems from a perturbation (normal form) analysis is conclusive, stability is
not. Purely imaginary eigenvalues guarantee ‘stability on a certain timescale’.

• The x1 and x2 normal modes.
If either x1(0) or x2(0) is small, we conclude with integral (5.13) that C is small.
For the α- and the β-chain this implies with (5.19) and (5.25) that if x3(0) is small,
x3(t) remains small.
Consider now a neighborhood of the x1 normal mode for the α-chain.
Choose x3(0) > 0,χ(0) = 0 and ε > 0 such that if r2(0) = ε we have C =
x3(0)/2. From integral (5.13) we have that cos χ(t) can not vanish so that χ(t)
has to oscillate between −π/2 and +π/2. As x3(t) may only change sign on
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the timescale 1/
√
a, we have that dχ/dt is sign definite unless r2(t) grows. We

conclude to instability of the x1 normal mode.
The same reasoning applies to the x2 normal mode of the α-chain.
For the β-chain the reasoning is similar but simpler as the equation for χ does not
depend on x3. With χ(0) = 0 we have that χ(t) has to oscillate between −π/2
and +π/2. The second order normal form for dχ/dt can only change sign if
r2

1 − r2
2 + O(

√
a) changes sign. Both normal modes are unstable for the β-chain.

• The x3 normal mode.
If both x1 and x2 are small we conclude with integral (5.12) that these modes
remain small. The normal mode x3 is stable both for the α- and the β-chain.

• The solution manifold M1 for r1 = r2,χ = 0,π.
We will use the first order approximations as using the second order does not change
the results qualitatively. We can consider the stability behavior with respect to the
x1, x2 modes and the x3 mode in the first order approximations separately.
The α-chain. Regarding the behaviour with respect to the x1, x2 modes we elimi-
nate r2 with integral (5.12) after which we linearize the normal form equations of
motion (5.11) and (5.23) in a neighborhood of r1 = r2,χ = 0,π. For the α-chain
we have the system:

ṙ1 = − γ̄

2
√

2
x3

√
2E1 − r2

1 sin χ), χ̇ = γ̄

2
√

2
x3

⎛

⎝

√
2E1 − r2

1

r1
− r1√

2E1 − r2
1

⎞

⎠ cos χ.

(5.26)
The Jacobian matrix yields if r1 = r2 = √

E1,χ = 0,π the eigenvalue equation:

λ2 − 4
γ̄2

2
x2

3 = 0.

This produces eigenvalues with opposite signs, we have instability.
From integral (5.12) we find C = ±E1. The approximation for x3 of the α-chain
(5.19) shows that also x3 will grow in size.
The β-chain. Repeating the analysis for the β-chain we find for the x1, x2 modes
the corresponding equations:

ṙ1 = +3
√
a

8
√

2
r1(2E1 − r2

1 ) sin 2χ, χ̇ = −3
√

2

4

√
a(r2

1 − E1) cos2 χ.

The Jacobian matrix yields if r1 = r2 = √
E1,χ = 0,π the eigenvalue equation:

λ2 + 9

8
aE2

1 = 0

and purely imaginary eigenvalues; the second order does not change this.
The second order approximation of x3 for the β-chain described by (5.25) does
not grow in size; we have stability of M1 for the β-chain.
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• The solution manifold M2 for χ = π/2, 3π/2.
In this case there is no restriction on r1, r2. We can expand the normal form equation
for χ near χ = π/2, 3π/2. We find from the equations obtained above for dχ/dt
that if r1 �= r2, χ will change. The case r1 = r2 produces eigenvalues zero and is
left as a degenerate case. Both for the α-chain and the β-chain we find instability
if r1 �= r2.

5.6 The Global Picture for Large Mass

We consider compact energy manifolds for the α-chain (energy between 0 and 0.5)
and the β-chain not too far from the origin of phase-space. The energy manifolds and
of course the manifold corresponding with H2 = E0 (constant), are topologically the
sphere S5. Both for the α- and the β-chain, we have that the x1 and x2 modes for
fixed E1 are restricted to the ellipsoid M12 which is S3 described by integral (5.12)
and is embedded in the energy manifold with in general 0 < E1 < E0.

A transversal of the flow on S5 will be 4-dimensional. Consider the transversal D
determined by y3 = 0 with x3 eliminated using the integral H2 = E0. The coordinate
plane x1, y1 is located in D containing as boundary the x1 normal mode which is S1.
Perpendicular to this plane is the coordinate plane x2, y2 in D with as a boundary
the normal mode x2; the boundary does not belong to the transversal. As for the x2

normal mode we have x1 = y1 = 0, the x2 normal mode will go through this point
in the centre of the x1, y1 coordinate plane. This means that the x1 and x2 normal
modes are linked. We can repeat this reasoning for a transversal containing the x3

normal mode. We conclude that the three normal modes are linked on S5. The stable
normal modes are surrounded by invariant tori embedded in the energy manifold.

The x3 mode plays a special part. The dynamics on M12 is still determined by
the third mode through the phases (or angles in action-angle representation). The
integral (5.13) restricts the dynamics on manifold M12. The solutions around the x3

normal mode move on tori on the 5-dimensional energy manifold that extend to the
normal modes x1 and x2 and of which the size depends on the initial conditions of
all variables.

The special solution (5.15) produces a torus M1 on the energy manifold with
r1 = r2 and shrinking diameter as x3(t) becomes more prominent. For the α-chain,
the torus is unstable, for the β-chain we have stability if x3(0) is small enough.

The special solution (5.16) of the normal form produces a torus M2 for which in
general r1 �= r2. It is unstable and may not persist under higher order perturbations.
For the α-chain the instability poses a problem when connecting the stable normal
mode x3 with the unstable tori. Note however that the instability of M1 arises only
if C of integral (5.13) is not small which it is near the x3 normal mode. As a further
illustration consider the linearization of the normal form (5.26). If r1, r2 = O(a

1
4 )

and r1 �= r2 we have near the x3 normal mode that ṙ1 = O(
√
a), χ̇ = O(a

1
4 ) which

is an obstruction to the validity of linearization.
For an illustration of the stability results by an amplitude-simplex see Fig. 5.3.
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Fig. 5.3 The amplitude-symplex for the α-chain that is a projection omitting the phases (or angles).
The front triangle corresponds with H2 = constant. The dots at the vertices indicate normal mode
periodic solutions. The manifolds M1 (r1 = r2) corresponds with tori that are unstable in the case
of the α-chain, stable for the β-chain. M2 is unstable if r1 �= r2 with r1 = r2 undecided

Fig. 5.4 Recurrence for 1000 timesteps indicated by the Euclidean distance d with respect to the
initial values as a function of time in the α-chain with a = 0.04, energy 0.1762. Left the conditions
x1(0) = 0.05, x2(0) = 0.4168, x3(0) = 0.01 near the x2 normal mode; we have recurrence with
0 ≤ d ≤ 0.9. Right the case where x3(0) is also small but more removed from the normal modes
with x1(0) = 0.4, x2(0) = 0.1, x3(0) = 0.01; the instability weakens the recurrence (0 ≤ d ≤ 0.9)

Consequences for recurrence
Recurrence of the flow as guaranteed by the Poincaré recurrence theorem, provides
us with additional information about the dynamics in phase-space. We will consider
some aspects for the α-chain as this chain has most instability. In Fig. 5.4 we start
near the stable x2 normal mode which results in relatively strong recurrent motion,
as expected. The result is rather different when starting away from the normal modes
with x1(0) �= x2(0); the recurrence is weakened by the instability of M2 although the
normal form is integrable.

In Fig. 5.5 we start near manifold M1 to observe good short-time recurrence. Right
we move to more general position on the energy manifold with x1(0) �= x2(0); this
produces rather bad recurrence.
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Fig. 5.5 Recurrence for 1000 timesteps indicated by the Euclidean distance d with respect to the
initial values as a function of time in the α-chain with a = 0.04, energy 0.1762. Left the conditions
x1(0) = 0.2943, x2(0) = 0.2943, x3(0) = 0.01; starting near M1 we have fairly good recurrence
with 0 ≤ d ≤ 1.1. Right the case where x1(0) = 0.37, x2(0) = 0.2167 and x3(0) = 0.5, away from
the normal modes; the motion along the tori weakens the recurrence (0 ≤ d ≤ 1.1). Extending the
picture to 5000 time steps does not improve the recurrence

5.7 Conclusions and Discussion

1. The periodic FPU-problem with 4 particles and alternating masses can be reduced
to a three dof Hamiltonian problem. The normal modes are exact periodic solu-
tions of the reduced system both for the α- and the β-chain.

2. Normal form calculations lead to an integrable system with three normal form
integrals and additional periodic solutions.

3. A second order normal form calculation is necessary to characterize the phase-
flow. This involves three timescales with the conclusion that we have weak inter-
action between the acoustical and the optical part of the system.

4. The integrability of the normal form, corresponding with approximate integrabil-
ity of the original system, keeps the system recurrent with fairly short intervals
of time.

5. We will show in a subsequent paper the important fact that the dynamics of the
four particles problem is in a certain sense typical for periodic FPU problems
with alternating masses and many more particles.

Appendix

In the error estimates of the normal form analysis integral inequalities can be useful.
We will use the specific Gronwall lemma formulated in [6], lemma 1.3.3.

Lemma 5.1 Let φ be a real-valued continuous (or piecewise continuous) functions
on a real t interval I : t0 ≤ t ≤ T . Assume φ(t) > 0 on I and δ1(ε), δ2(ε) positive
order functions (ε a small, positive parameter). If the inequality
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φ(t) ≤ δ2(ε)(t − t0) + δ1(ε)

∫ t

t0

φ(s)ds,

holds on I , then

φ(t) ≤ δ2(ε)

δ1(ε)
eδ1(ε)(t−t0).

We apply the specific Gronwall lemma to obtain:

Lemma 5.2 Consider the perturbation problem:

ẋ = δ1(ε) f (t, x) + δ2(ε)R(t, x), x(t0) = x0,

for I : t0 ≤ t ≤ T, x ∈ D ⊂ R
n, δ1, δ2, δ3(ε) order functions with δ2(ε) = o(δ1(ε))

as ε → 0 and continuous differentiability of the vector fields f, R on I × D; in
particular we have ||R(t, x)|| ≤ M,M > 0 for t ≥ 0. We neglect small terms to
consider the solution of

ẏ = δ1(ε) f (t, y), y(t0) = x0

andwe approximate y(t) by a procedure (averaging) for which we know that ||y(t) −
ȳ(t)|| = O(δ3(ε)) on the timescale 1/δ1(ε). Then we have on the timescale 1/δ1(ε)
the estimate

x(t) − y(t) = O(
δ2(ε)

δ1(ε)
+ δ3(ε)) on the timescale 1/δ1(ε).

Proof We formulate the equivalent integral equations for x(t), y(t):

x(t) = x0 + δ1(ε)

∫ t

t0
f (x(s), s)ds + δ2(ε)

∫ t

t0
R(x(s), s)ds, y(t) = x0 + δ1(ε)

∫ t

t0
f (y(s), s)ds.

Subtracting the two equations we have:

x(t) − y(t) = δ1(ε)

∫ t

0
( f (x(s), s) − f (y(s), s))ds + δ2(ε)

∫ t

0
R(x(s), s)ds.

Using the Lipschitz continuity of f (Lipschitz constant L) and the estimate for R we
have:

||x(t) − y(t)|| ≤ δ1(ε)L
∫ t

t0

||x(s) − y(s)||ds + δ2(ε)Mt,

and with Lemma 5.1:

||x(t) − y(t)|| ≤ δ1(ε)
M

L
eδ1(ε)Lt − δ2(ε)

δ1(ε)

M

L
.



120 R. Bruggeman and F. Verhulst

We conclude that y(t) approximates x(t)with error O( δ2(ε)
δ1(ε)

) on the timescale 1/δ1(ε).
We conclude with the triangle inequality that

||x(t) − ȳ(t)|| = ||x(t) − y(t) + y(t) − ȳ(t)|| ≤ ||x(t) − y(t)|| + ||y(t) − ȳ(t)||,

or

||x(t) − ȳ(t)|| ≤ O

(
δ2(ε)

δ1(ε)

)
+ O(δ3(ε))

on the timescale 1/δ1(ε).
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Chapter 6
Linear Versus Nonlinear Stability
in Hamiltonian Systems

Ferdinand Verhulst

Abstract The stability of periodic solutions of time-independent Hamiltonian sys-
tems is often studied by linearization techniques. In the case of two degrees of
freedom near stable equilibrium this is a correct procedure, in the case of three or
more degrees of freedomwe present some counterexamples. The case of the classical
Fermi-Pasta-Ulam chain with cubic and quartic interactions illustrates the instability
phenomenon.

6.1 Introduction

It iswell-known that linearizing procedures in dissipative systems produce no conclu-
sive evidence regarding stability if the eigenvalues are purely imaginary. An example
is given in [6] ex. 3.2 where a second order autonomous equation with a centre equi-
librium point is perturbed by nonlinear terms. For various choices of the nonlinear
terms we may obtain asymptotic stability or instability of the equilibrium.

For Hamiltonian systems the stability question is more complicated. Suppose we
have a time-independent Hamiltonian H(p, q) with p, q ∈ R

n so that we have n
degrees of freedom and a 2n dimensional system of differential equations. Suppose
that the system has a nontrivial periodic solution φ(t) (in fact there will be many in
general). We want to establish its stability by small perturbations in a neighborhood
of φ(t). The usual practice is to linearize the perturbed system and consider the
characteristic exponents.

From now on we will also assume that we consider the system near stable equi-
librium so that we have a family of compact energy manifolds. This will enable us to
apply known theorems and, if necessary, normalization techiques. If we have one or
more positive Lyapunov exponents, the periodic solution will be unstable. To have
only negative parts in the Hamiltonian case is impossible because of the symmetry
of the spectrum in Hamiltonian systems.
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A periodic solution corresponds with a fixed point of a suitable Poincaré map
of the phase-flow. Suppose now that the spectrum of the linearized flow near this
fixed point has purely imaginary parts only. In many papers it is assumed then that
the periodic solution is stable. We will argue that this is correct in the case of two
degrees of freedom but not necessarily if n ≥ 3. There can be various causes for
instability, for instance higher order resonance or diffusion processes in phase-space.
Our analysis may also have consequences for conservative, nonlinear wave equations
whereGalerkin projection leads to finite-dimensional but largeHamiltonian systems.

6.2 Two Degrees of Freedom

The system of equations of motion is four-dimensional, the energy manifolds near
stable equilibrium are three-dimensional and compact. Apart from degenerate cases
one can quite generally apply the KAM theorem that guarantees a foliation of tori
of the energy manifolds around stable periodic solutions, see for instance [1] or [2]
and further references there. The Weinstein theorem [7] guarantees the existence
of at least two periodic solutions on an energy manifold near stable equilibrium.
One can construct a transversal to the flow on the energy manifold that results in an
area-preserving map, a Poincaré map, of the transversal into itself. We can choose
the map so that the periodic solution produces a fixed point of the map. Because of
the area-preserving character of the map, the eigenvalues associated with the fixed
point will generically be real (positive and negative) or purely imaginary. The KAM
tori around the stable periodic solutions are two-dimensional, the tori separate the
three-dimensional energy manifold; the solutions between the tori can not escape.
This means that purely imaginary eigenvalues imply stability of the solution in the
nonlinear system.

6.3 Counter-Examples for More Degrees of Freedom

In the case of three or more degrees of freedom we can also apply the KAM theorem
quite generally. However, the energy manifolds are 2n − 1 dimensional, the tori at
most n-dimensional. The tori do not separate the energy manifolds for n ≥ 3. We
will discuss examples showing various causes of instability but with common feature
resonance.

6.3.1 The Influence of Quartic Terms

This example shows that higher order Hamiltonian perturbations may introduce
instability. Indicating the quadratic, cubic and quartic parts of the Hamiltonian by
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H2, H3, H4 respectively we have:

H2 = 1

2
(ẋ21 + x21 + ẋ22 + 2x22 + ẋ23 + x23 ), H3 = −x1x2x3, H4 = −(

1

4
x41 + x21 x

2
3 + 1

4
x43 ).

The equations of motion can be written as:

⎧
⎪⎨

⎪⎩

ẍ1 + x1 = x2x3 + x31 + 2x1x23 ,

ẍ2 + 2x2 = x1x3,

ẍ3 + x3 = x1x2 + 2x21 x3 + x33 .

(6.1)

The origin of phase-space correspondswith stable equilibrium. Localizing in a neigh-
borhood of this equilibrium we can rescale ẋi , xi → εẋi , εxi , i = 1, . . . , 3 resulting
in:

⎧
⎪⎨

⎪⎩

ẍ1 + x1 = εx2x3 + ε2(x31 + 2x1x23 ),

ẍ2 + 2x2 = εx1x3,

ẍ3 + x3 = εx1x2 + ε2(2x21 x3 + x33).

(6.2)

The system induced by Hamiltonian H2 + εH3 + ε2H4 admits the three normal
modes in the coordinate planes. Consider the x1 normal mode to O(ε), the solution
is harmonic:

x1(t) = φ(t) = r0 cos(t + θ0).

Puttting x1 = y + φ(t) and linearizing near the normal mode in system (6.2) to O(ε)
we obtain:

⎧
⎪⎨

⎪⎩

ÿ + y = 0,

ẍ2 + 2x2 = εφ(t)x3,

ẍ3 + x3 = εφ(t)x2.

(6.3)

We have kept the notation x2, x3 to avoid too many new symbols. The righthand
sides of the last two equations contain non-resonant quasi-periodic terms that keep
the inhomogeneous solutions O(|x3|), O(|x2|) respectively. Put in a different way,
normalizing the equations for x2, x3 involves non-resonant terms to any order. We
conclude to linear stability of the x1 normal mode. The higher order terms O(ε2)
destroy this picture as was shown in [5] that the system induced by H2 + H4 contains
two unstable normal modes; for an illustration see Fig. 6.1.

We can also linearize around the normal mode including the cubic terms of the
equations. The x1 normal mode satisfies to O(ε2) the equation

ẍ1 + x1 = ε2x31 .
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Fig. 6.1 The actions of system (6.2) with x1(0) = 1, x2(0) = x3(0) = 0.1, velocities zero; ε = 0.1
and 6000 time-steps. The action I1 = 1

2 (ẋ
2
1 + x21 ) associated with the x1 normal mode starts in 0.5

and shows recurrence on around 3400 time-steps. The sum of the actions I2 + I3 associated with
the x2, x3 modes starts near zero and shows similar recurrence

The solutions are elliptic functions that are more complicated to handle. However,
for ε small we can determine the solution by the Poincaré-Lindstedt (or Poincaré
continuation) method; see [6] ch. 10. The solution can be written as

φ(t) = r0(ε
2) cos(t + ε2η(ε2)t + φ0)

where r0(ε2), η(ε2) have convergent Taylor expansions with respect to their argu-
ment. In this way we find linear stability but again instability in the full, nonlinear
system.

6.3.2 Instability by the Presence of Mathieu-Tongues

Consider the Hamiltonian with

H2 = 1

2
(ẋ21 + 4x21 + ẋ22 + 4x22 + ẋ23 + ω2x23 ), H3 = −(x1 + x2)x

2
3 .



6 Linear Versus Nonlinear Stability in Hamiltonian Systems 125

Applying the same scaling with small, positive parameter ε as before we have:

⎧
⎪⎨

⎪⎩

ẍ1 + 4x1 = εx23 ,

ẍ2 + 4x2 = εx23 ,

ẍ3 + ω2x3 = ε2(x1 + x2)x3.

(6.4)

The x1 normal mode is harmonic, we put for this solution

x1(t) = φ(t) = r0 cos(2t + θ0).

We assume now that ω2 is close but not equal to 1. Puttting x1 = y + φ(t) and
linearizing near the normal mode in system (6.4) we find:

⎧
⎪⎨

⎪⎩

ÿ + 4y = 0,

ẍ2 + 4x2 = 0,

ẍ3 + ω2x3 = 2εφ(t)x3.

(6.5)

Stability or instability depends now on the Mathieu instability tongues of the third
equation. Given ω near 1, x3(0) can be chosen small enough to produce stability of
the x1 normal mode, see Fig. 6.2 right, so formally the x1 normal mode is stable.
However, a slightly smaller perturbation of the frequency 1 may put the solution
x3(t) with the same initial conditions in the unstable Mathieu tongue, see Fig. 6.2
left. These phenomena are subtle and should be kept in mind near resonance.

Fig. 6.2 The action I3 = 1
2 (ẋ

2
3 + ω2x23 ) in two cases of system (6.4) with x1(0) = 1, x2(0) =

0.1, x3(0) = 0.01, velocities zero; ε = 0.1 and 1000 time-steps. Left the case ω2 = 1.1 leading to
instability of the x1 normal mode, 0 < I3 < 0.23. Right the slightly more detuned case ω2 = 1.15
leading to stability of the x1 normal mode, the fluctuations of I3 are of size 10−4
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6.4 Application to a Chain with 4 Interacting Particles

Consider a periodic chain consisting of four particles of equal mass (m = 1) with
quadratic and cubic nearest-neighbor interaction. With position q j and momentum
p j = q̇ j , j = 1 . . . 4, the Hamiltonian is of the form

H(p, q) =
4∑

j=1

(
1

2
p2j + V (q j+1 − q j )) with V (z) = 1

2
z2 + α

3
z3 + β

4
z4. (6.6)

This is a low-dimensional case of the periodic Fermi-Pasta-Ulam problem; usually
many more particles are considered in this classical problem. We will choose

α = 1,β = −1.

The corresponding equations of motion were studied in [4] where the stability
and instability of the short-periodic solutions was established for arbitrary α and β.
The equations induced by Hamiltonian (6.6) have a second integral of motion, the
momentum integral

∑4
1 p j = constant. This enables us to reduce the 4 degrees-of-

freedomequations ofmotion to 3degrees-of-freedom.The symplectic transformation
was carried out in [3] producing with α = 1,β = −1:

{
H2 = 2x21 + x22 + x23 + 1

2 (ẋ
2
1 + ẋ22 + ẋ23 ), H3 = −4x1x2x3,

H4 = − 1
4 (4x

4
1 + x42 + 6x22 x

2
3 + x43 + 12x21 (x

2
2 + x23 )).

(6.7)

Rescaling as before xi → εxi , ẋi → εẋi , i = 1, 2, 3 in a neighborhoodof stable equi-
librium we find the equations of motion:

Fig. 6.3 The actions for 3000 timesteps near the unstable x2 normal mode of system (6.8) with
ε = 0.1, initial conditions x1(0) = x3(0) = 0.1, x2(0) = 1 and initial velocities zero.Left the action
I3(t) = 1

2 (ẋ
2
3 + 2x23 ) starting near zero and increasing to values near 1. Right I2(t) starting at

I2(0) = 1 and I1(t) which remains small
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⎧
⎪⎨

⎪⎩

ẍ1 + 4x1 = 4εx2x3 + ε2
(
4x31 + 6x1(x22 + x23 )

)
,

ẍ2 + 2x2 = 4εx1x3 + ε2(x32 + 3x2x23 + 6x21 x2),

ẍ3 + 2x3 = 4εx1x2 + ε2(x33 + 3x22 x3 + 6x21 x3).

(6.8)

The three normal modes (in the coordinate planes) satisfy the equations of system
(6.8). It was shown in [4] that the x1 normal mode is stable, the x2 and x3 normal
modes are unstable. Consider normal mode x2. Linearization near the normal mode
to O(ε) produces stability as in the examples presented before. The instability is
illustrated in Fig. 6.3.
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Chapter 7
Dynamics and Saturation Control
of Rotating Composite Beam with Embedded
Nonlinear Piezoelectric Actuator

Jaroslaw Latalski and Jerzy Warminski

Abstract In this research we consider a saturation adaptive control strategy to sup-
press vibrations of a system consisting of a rotating rigid hub and a thin-walled
composite blade with an embedded piezoelectric active element. The adopted math-
ematical model of the beam considers non-classical effects like a circumferentially
asymmetric stiffness lamination scheme that result in strong mutual coupling of the
bending-twisting deformations as well as a higher order piezoceramic constitutive
relation. The discussed structure has been investigated for possible levels of orig-
inal system simplifications starting from the fully linearised one up-to the control
applied to the nonlinear structure performing the full rotation. Obtained results of
numerical simulations prove the applied nonlinear saturation control to be the robust
and effective method for beam vibration suppression in near-by resonance zones for
a non-rotating as well as rotating structures. It is shown that vibration of the beam
can be suppressed to similar levels independently of the model simplification degree
presuming the condition of proper controller tuning is preserved. However, signifi-
cant differences in the width of vibration suppression zones are observed for studied
subcases. Moreover, the analysis of the system response sensitivity to feedback and
control gains is discussed.

7.1 Introduction

One of the most important issues in modern structures design is an enhancement
of their static and dynamic characteristics. The objective might be efficient noise
reduction, suppressing undesired structural vibrations, shape morphing, retrofitting
existing structures, structural integrity monitoring etc. These aims can be achieved
by a concept of structural control that is now becoming a standard technology.
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There are a huge variety of structural control strategies available to control engi-
neer. Based on operational mechanisms these can be classified into four main groups:
passive, semi-active, active, and hybrid methods.

In passive systems the control is activated by the structural motion and the input
energy is dissipated by damping devices and proper isolation of the plant. No external
force or energy is applied to effect the control. Semi-active control devices are a nat-
ural extension of passive ones. The embedded active elements control the properties
of passive devices and adapt their behaviour based on the collected information on
excitation and structural response, magneto-rheological dampers may serve as an
example. In active control strategies system control is achieved by the externally
activated actuators applying control load directly to the structure. The phase and
magnitude of the control signal is evaluated on the basis of the measurements of
external disturbance and temporary structural response.

A state of the art review of different control methods in civil and mechanical engi-
neering was presented by Saaed et al. [21]. A comprehensive discussion on structural
control strategies was supplemented by an overview of passive and active devices
used in control engineering. Finally, some innovative practical implementations of
modern control transducers were given. Further reading on different active vibration
control methods and comparison of individual strategies performance may be found
in recent review studies by Warminski et al. [30] and Orivuori et al. [13].

One of possible implementations of active control methods to suppress structural
vibrations is the strategy based on a saturation phenomenon. This technique exploits
the effect exhibited by two-to-one autoparametric resonance systems with quadratic
nonlinearities. The strategy provides for the introduction of a second-order controller
and coupling it with the plant through a sensor and an actuator, where both the feed-
back and control signals are quadratic. Setting the natural frequency of the controller
to one-half of the plant natural frequency, the response of the excited mode gets sat-
urated and plant vibrations are suppressed. Comparing to other control techniques,
the saturation control has two important advantages [23]. In opposite to many con-
ventional control strategies, the saturation method is very effective for controlling
systems excited at near-resonant frequencies. Moreover, the saturation control is not
sensitive to the amplitude of the external excitation. Thus, any increase in the energy
applied to the plant is merely transferred to the controller without spilling back and
keeping the plant response constant.

Since its discovery by Nayfeh in early 70s the saturation phenomenon has been
the subject of extensive theoretical and experimental studies. Nayfeh and Oueini
research group [14, 15] proposed a vibration absorber based on the saturation phe-
nomena and implemented it for a cantilever beam made of isotropic material. The
feedback signal was achieved from a strain gage and transferred to the control circuit
assembled with analog electronic hardware. The beam actuation was accomplished
through a pair of piezoceramic transducers attached to its surface. Laboratory tests
for controller performance were conducted in the transient and steady-states under
multifrequency resonant excitations. Conducted experiments demonstrated the strat-
egy to be very effective in suppressing the vibration of tested beams. The saturation
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phenomenon was the subject of further intense theoretical and experimental studies
by other researchers [3, 16, 22, 23, 30].

The above mentioned technology of structural actuation and response sensing via
distributed compact piezoelectric patcheswas introduced in 80-ties and since than has
found a relevant role in active vibration control. A key advantage of this technology is
a small weight of the control mechanism if compared to structural weight. Moreover,
the controller consists of only electronic components, and a further weight saving
can be achieved. More theoretical studies and investigations focused on vibration
reduction achieved by piezoelectric patches and combined with the control system
can be found in [16, 18, 20, 26, 28].

In most analytical models of coupled beam-controller systems developed to study
the dynamics of piezoelectrically actuated structures the mass and stiffness of the
piezoceramic transducers are neglected. In reality, bonding actuators onto the light-
weight structure introduces non-uniformities in the studied system. To address the
question whether it is reasonable to neglect the mass and stiffness contributions of
the actuators when calculating the beam dynamic response Saguranrum et al. [23]
performed a series of comparative studies. Authors enhanced the standard approach
and included in the mathematical model of the coupled beam-controller system the
non-uniformity effects resulting from bonded piezoceramic patches. Numerical sim-
ulations demonstrated that the presence of piezoelectric actuators resulted in system
modal coupling and could affect the performance of a saturation controller. The dif-
ference was particularly apparent for systems having just a segment of specimen
span covered by PZTs and at higher modes responses.

Further improvement in system control performance can be achieved by an exact
modelling of structural kinematics and piezoceramic constitutive relations. This
refers especially to commonly posed assumptions that the main features of the
electro-mechanical system might be captured by a linear theory. Indeed, in most
typical situations responses of the piezoelectric structures are sufficiently accurately
evaluated by simple linear models. However, numerous laboratory tests of piezoce-
ramic materials confirm that the high electrical fields and high stresses lead to the
significant differences between linear and nonlinear approach to structural analysis
[1, 7, 17]. Further investigations demonstrated that the inherent piezoelectric nonlin-
earities were not limited only to high magnitudes of electrical and mechanical load-
ings. Wagner and Hagedorn [29] and Stanton et al. [25] indicated that the observed
discrepancies were non-negligible when the electro-elastic system was excited at its
near-resonant frequencies even if amplitudes remained geometrically linear and the
electric field was small. This observation seems to be critical if modelling control
systems that are supposed to operate in near-resonance frequency zone.

Above referenced studies indicate the need to use a nonlinear model of the piezo-
ceramic to obtain realistic and accurate results when modelling controlled electro-
elastic structures. A complex approach to this issue was proposed by Leadenham and
Erturk [11]. Authors developed a unified, two-way coupling framework accounting
for softening and dissipative system nonlinearities to analyse piezoelectric cantilever
structures. The elaborated analytical model was verified experimentally for sens-
ing and dynamic actuation behaviour as well as for energy harvesting applications.
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Experiments were performed over a wide (low to moderately high) range of mechan-
ical and electrical excitation levels. Excellent agreement between the model and
laboratory investigation was found, providing evidence that quadratic stiffness and
electromechanical coupling effects accurately represented predominantly observed
nonlinear effects in geometrically linear vibration of piezoelectric cantilever beams.
Analytical model of an active piezoelectric cantilever developed by Leadenham and
Erturk was used later on by Gatti et al. [4]. Authors examined the influence of non-
linear terms in piezoceramic constitutive relation on the dynamics of a structure and
its energy harvesting performance. Different levels of base acceleration were tested
with the intention to evaluate the limits of the linear model. It was concluded the non-
linearity played an unavoidable role in predicting charge generation for the tested
systems since the observed discrepancy of the linear model was evident even for
very low acceleration levels. Further reading regarding modelling of piezoceramic
nonlinearities may be found in e.g. [1, 12, 19, 24, 34].

Analytical studies on electro-mechanical systems with piezoceramic constitutive
nonlinearities have been done also by Latalski [8]. Author developed a fully coupled
analytical model of a rotating flexible piezolaminated composite beam. In the math-
ematical formulation the reversible nonlinear behaviour of piezoceramic layer was
considered. This nonlinearity was modelled by an up-to the third order constitutive
relationship with respect to electric field. In the mathematical formulation of the
problem the full two-way piezoelectric coupling effect was considered by adopting
the assumption of spanwise electric field variation. Studies on system free vibration
and analysis of individual components of mode shapes showed the significant diver-
sities in electric field distribution regarding the angular speed of the plant and type
of master structure deformation. Most prominent effects were observed for lower
modes, where for higher speeds the difference between the electric field magnitudes
at free end and the clamping point increased. For higher modes with a negligible
bending/shear component the electric field spanwise distribution was almost uni-
form and close to zero on the full specimen span. Finally, the forced vibrations
analysis confirmed the presence of the softening effect in systems with nonlinear
piezoceramic material.

This paper is a continuation of the mentioned already research as well as other
previous authors’ studies on beams vibrations and their controlmethods. In particular
Warmiński et al. [30, 31] discussed an application of the saturation control method
as well as other control strategies to suppress vibrations of a clamped isotropic
beam subjected to high levels of excitation amplitudes [30], and in conditions of two
simultaneous excitations [31]. In the mathematical model of the structure, inertial as
well as geometrical nonlinearities were taken into account.

Next Latalski et al. [9] studied on the performance of a rotating composite box
beam exhibiting the coupled flexural-flexural vibrations. The control capabilities of
the structure resulted from a piezoelectric layer distributed along the full span of the
specimen inducing the boundary bendingmoment at the beam tip. A feedback control
lawwas implemented to relate the control bendingmoment to the various kinematical
response quantities of the structure. Within the performed studies various linear
proportional control strategies were tested in terms of modal coupling magnitude
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and possible cross-over frequency shifting. Afterwards Warmiński and Latalski [32]
examined the efficiency of the nonlinear saturation control algorithm to suppress the
coupled vibrations of a rotating piezolaminated composite box beam. The considered
blade featured the circumferential asymmetric stiffness lamination scheme, thus it
exhibited inherent couplingbetweenbending and twistingmodes.However, the linear
properties of the piezoceramic material were assumed.

The idea of this research is to combine results of recent studies [32] with the
mathematical modelling of nonlinear piezolaminated composite beams proposed
in [8]. In particular, comparing to [32], different reinforcing fibres orientations in
beam laminate are studied since this parameter strongly influences the magnitude
of beam inherent flexural-torsional vibration modes coupling. Moreover, the impact
of nonlinearities coming from hub-beam dynamics, as well as nonlinear properties
of the PZT element is examined to evaluate the robustness and effectiveness of the
saturation algorithm. Regarding the referenced papers and to the best of authors
knowledge these aspects of saturation control strategy were not studied in detail yet.

7.2 Structural Model and Governing Equations

The model of the studied rotating structure (Fig. 7.1) is composed of a rigid hub with
a clamped flexible beam. This has a prismatic cross section that is spanwise uniform
(no taper) and without initial twist in its natural state. In the analysis it is assumed
the original shape of the cross-section is maintained in its plane, but is allowed to
warp out of the plane due to an elastic deformation of the specimen. The blade is
clamped to the hub at the presetting angle θ = −π/2. Therefore, the beam flapwise
bending plane coincides with the plane of lead-lag structure deformation.

C

(a)

CAS

0

y

(b)

PZTlayer

sensor
controller

Fig. 7.1 Model of the hub-beam structure; the outer surfaces of the blade fully electroded with
piezoceramic material (a), the circumferentially asymmetric stiffness (CAS) composite configura-
tion (b)
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The discussed blade is made of multilayered laminate with reinforcing fibres
placed according to the circumferentially asymmetric stiffness (CAS) scheme—
see Fig. 7.1b. This configuration results in bending-twisting deformation coupling
the magnitude of which depends on the reinforcing fibres orientation [10]. Apart
from the fibre unidirectional layer, there are two additional piezoceramic layers
located on the outer surfaces of profile flanges that cover the full span of the beam.
The active material is poled through its thickness and equipped with traditional
surface electrodes. This is the typical geometry for ‘3-1’mode operating piezoelectric
actuators and sensors.

Further accepted kinematic and structural assumptions for the mathematical for-
mulation of the problem can be found in previous authors papers [5, 10]. The dis-
cussion on their significance is also given there.

The rotation of the hub-beam system is excited by an external driving torque Text,z,
that is an algebraic sum of steady-state and periodic components. The structure is
controlled through a nonlinear control unit adopting the saturation control strategy
in order to reduce beam oscillations.

The general partial differential governing equations for the system under consid-
eration as derived in [8] are as follows:

• for the rigid hub

Jhψ̈(t) + (B22 + B4l)ψ̈(t) + B4lϑ̈y

+
∫ l

0

{
b1(R0 + x)

[
2u0ψ̈(t) + 2u̇0ψ̇(t) − ẅ0

]}
dx − Text,z(t) = 0 (7.1)

• displacement in lead-lag plane w0

b1ẅ0 + 2b1u̇0 ψ̇(t) − b1w0ψ̇
2(t)

+ b1(R0 + x + u0)ψ̈(t) − a55ϑy
′ − a55w

′′
0 − (

Txw
′
0

)′ = 0 (7.2)

with boundary conditions

w0

∣∣
x=0 = 0,

(
ϑy + w′

0

)∣∣
x=l = 0

• transverse shear ϑy

B4ϑ̈y−B4ϑyψ̇
2(t)−B4ψ̈(t) + a55(ϑy + w′

0)

−a33ϑy
′′ − a37ϕ

′′ − a3eE
′
3 − a3b

[
sgn(E3)E

2
3

]′ − a3 f
(
E3
3

)′ = 0 (7.3)

with boundary conditions

ϑy

∣∣
x=0 = 0,

[
a33ϑy

′ + a37ϕ
′ + a3eE3 + a3b sgn(E3)E

2
3 + a3 f E

3
3

]∣∣
x=l = 0
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• profile twist angle ϕ

(B4 + B5)ϕ̈ + (B4 − B5)ϕψ̇2(t) − a37ϑy
′′ − a77ϕ

′′ − (
Trϕ

′)′ = 0, (7.4)

with boundary conditions

ϕ
∣∣
x=0 = 0,

(
a37ϑy

′ + a77ϕ
′)∣∣

x=l = 0,

• electrostatic equation E3

aE3ϑy
′ − aEeE3 − aEb sgn(E3)(E3)

2 − aE f E
3
3 = 0 (7.5)

Terms Tx (x) and Tr (x) present in (7.2) and (7.4) correspond to system stiffening
resulting from rotational transportation motion and they are defined as

Tx (x) = b1(l − x)
[
R0 + 1

2 (l + x)
]
ψ̇2(t) Tr (x) = γ Tx(x)

where γ = B4+B5
m0β

and β is cross-section perimeter.

Term m0 is an averaged blade mass density per unit length, and b1, B4 and B5 are
inertia coefficients as defined in [5]. The coefficient a33 corresponds to bending stiff-
ness, a55 to transverse shear stiffness, a77 is torsional one and a37 is bending-torsion
coupling stiffness. Coefficients a3e = aE3, a3b, a3 f and aEb, aE f are electromechan-
ical reduced stiffnesses resulting from piezoelectric and electrostatic properties of
the actuators, where (�)b and (�) f subscripts refer to higher order electric field E3

terms present in nonlinear constitutive relation of piezoceramics [6, 27, 33]. For their
definition please refer to [8].

The derived equations of motion for the rigid hub-thin-walled piezoelectric-
composite beamconstitute a systemofnonlinear coupledpartial differential equations.
It can be observed the electrical degree of freedom (dof) and individual mechanical
ones representing bending and profile twist are coupled through the transverse shear
deformation (7.3). Higher order electric field terms are present in this equation, as
well as in electrostatic one. These terms naturally result from the discussed nonlinear
piezoelectric effect.

7.3 Hub-Beam System Dynamics

The presented in the previous section, the full system of partial differential govern-
ing equations, is transformed into ordinary differential ones taking into account the
normal modes projection with the associated orthogonality condition. To this aim
the Galerkin procedure for the first natural mode is applied. Next, the system is con-
verted to the dimensionless notation. The coupled flexural-torsional mode projection
results in the final set of nonlinear ODEs as follows
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(1 + Jh + αh12q
2
1 )ψ̈ + ζhψ̇ + αh11q̈1 + αh13q1q̇1ψ̇ = μ

q̈1 + ζ1q̇1 + α12ψ̈ + (α11 + α13ψ̇
2)q1 + α14q1q̇1ψ̇

+α15sgn(q1)q
2
1 + α16q

3
1 = 0 (7.6)

where q1 is the generalized coordinate corresponding to the studied coupled flexural–
torsional mode, coefficients αh1 j ( j = 1, 2, 3) and α1 j ( j = 1, . . . , 4) are obtained
from the modes projection; ζ1, ζh are the beam and the hub damping coefficients, and
Jh is the dimensionless mass moment of inertia of the hub. External torque supplied
to the hub is expressed as a sum of a constant component μ0 and a periodic function
of time t . Thus

μ = μ0 + ρ cosωt (7.7)

where ρ and ω are the amplitude and the frequency of the excitation, respectively.
As we can notice, (7.6) are nonlinear and mutually coupled. The driving (7.6)1

represents dynamics of the hub and it is nonlinear due to the coupling with the beam
motion. The (7.6)2 is nonlinear for two reasons: (a) an existence of centrifugal and
Coriolis forces resulting from the hub rotation and (b) the nonlinear electric field of
PZT layers. Furthermore, additional couplings of beam and hub motions occur due
to inertia terms q̈1 and ψ̈ each present in both equations.

Dimensionless coefficients α and ζ for the studied structure geometry given in
[10] take the following values:

α11 = 10.864, α12 = 1.772, α13 = 0.349, α14 = −1.55,

α15 = −2.327, α16 = 0.0, αh11 = −0.532, αh12 = −0.404,

αh13 = −0.808, ζh = 0.1, ζc = 0.001, ζ1 = 0.01 × ω0,

ω0 = √
α11 Jh = 1.0

In further analysis components of the external torque (i.e. μ0, ρ and excitation fre-
quencyω) are considered as bifurcation parameters and subject to variation. Dynam-
ics of the system will be investigated around the main resonance zone ω1, where

ω1 =
√

α11 + α13ψ̇2

1 − α12αh1
1+Jh

(7.8)

The above expression comes from the set (7.6) after neglecting the nonlinear terms,
damping and external excitation, but keeping rotation effect and the mass moment
of hub inertia.

7.3.1 Analysis of a Linear Model

Let us start with the simplest case neglecting all beam interactions present in the
driving (7.6)1. Thus we get
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J ψ̈ + ζhψ̇ = μ0 + ρ cosωt (7.9)

where J = 1 + Jh.
This equation can be solved in a closed form. Performing integration and posing

initial conditions ψ(t = 0) = ψ0 = 0 and ψ̇(t = 0) = ψ̇0, we get solutions for the
hub angular velocity and angle of rotation (i.e. temporary position of the system)

ψ̇ = 1

ζ 2
h + J 2ω2

(
μ0

ζh
−ρ Jω cosωt+ρζh sinωt

)
+

(
ψ̇0− μ0

ζh
+ρ

Jω

ζ 2
h + J 2ω2

)
e

−ζh
J t

ψ = 1

ζh

(
J ψ̇0 + ρ

ω
− μ0

J

ζh

)
+ 1

ζ 2
h + J 2ω2

(
μ0

ζh
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Plots of the hub angular velocity ψ̇ and angle of rotation ψ versus time are
presented in Fig. 7.2. Since the driving torque is composed of constant and periodic
terms, so the angular speed solution tends to a steady state after some transient
period. System oscillations are set around an average value Ωh equal to μ0/ζh. For
the assumed data μ0 = 0.005, ρ = 0.005, ω = 2.715, Jh = 1, we get Ωh = 0.05
which corresponds to 177 rpm in physical units.

In the subsequent simulation the reduced, one DOF model (7.9) is extended to
include dynamics of the beam. Higher order nonlinear terms of beam dynamics are
neglected. However, the nonlinear term coming from angular velocity that couples
hub andbeammotions is preserved to capture the centrifugal stiffening effect properly
within the linear formulation frame. The resulting system of governing equations is

(a) (b)

Fig. 7.2 Angular velocityΩh (a) and angle of rotationψ (b) of a simplified linear model forced by
torque composed of constant and variable componentsμ = μ0 + ρ cosωt ;μ0 = 0.005, ρ = 0.005,
ω = 2.715, Jh = 1
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(a) (b)

Fig. 7.3 The linear beam model; resonance curves of (a) maximal beam displacement and (b) hub
angular velocity; μ0 = 0.005, ρ = 0.005, Jh = 1

(a) (b)

Fig. 7.4 The linear beam model forced by the torque μ = μ0 + ρ cosωt—influence of the μ0
parameter; bifurcation plots for (a) maximal beam displacement q1 and (b) hub angular velocity
ψ̇ ; ρ = 0.005, ω = 2.715, Jh = 1

(1 + Jh)ψ̈ + ζhψ̇ + αh11q̈1 =μ

q̈1 + ζ1q̇1 + α12ψ̈ + (α11 + α13ψ̇
2)q1 =0 (7.11)

The response of such a system to the external torque supplied to the hub is analysed
around first natural frequency of the structure. The curves presented in Fig. 7.3 have
classical linear nature. Either beam or hub amplitudes increase around the resonance
zone. Note that the hub response curve starts from a non zero value. This comes from
the nonzero value of torque constant component μ0.

The effect of system rotation velocity and expected beam centrifugal stiffening is
demonstrated in Fig. 7.4. The analysis has been performed for the fixed excitation fre-
quency and amplitudeω = 2.715, ρ = 0.005 and the variedμ0 component. Studying
the plot (b) one observes the increasing μ0 magnitude results in higher angular hub
velocities. The relation is almost linear with just a small perturbation aroundμ0 = 0.
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(a) (b)

Fig. 7.5 The linear beam model forced by the torque μ = μ0 + ρ cosωt ; resonance curves of (a)
maximal beam displacement q1 and (b) hub angular velocity ψ̇ ; μ = 0–black, μ0 = 0.01–blue;
ρ = 0.005, Jh = 1

(a) (b)

Fig. 7.6 The linear beam model forced by the torque; resonance curves of (a) maximal beam
displacement q1 and (b) hub angular velocity; μ = 0—black, μ0 = 0.1—blue, μ0 = 0.3—green,
μ0 = 0.5—red; ρ = 0.005, Jh = 1

The increased angular speed makes the beam stiffer therefore the resonance zone is
shifted and blade response amplitude is decreased (Fig. 7.4a). For the analysed case
beam oscillations are almost fully suppressed if −0.25 > μ0 > 0.25.

The influence of the μ0 parameter is demonstrated also in resonance curves
(Fig. 7.5) computed for μ0 = 0 (black curve) and μ0 = 0.01 (blue one). Although
the difference in the beam response amplitude is minor (Fig. 7.5a), the hub angular
velocity curves are separated (Fig. 7.5b). The differences are becoming more evident
if μ0 is further increased. The system resonance zone gets shifted towards higher
frequencies and amplitudes are substantially reduced due to stronger centrifugal
stiffening effect (see Fig. 7.6 for beam response (a) and hub angular velocity (b)).

Results of previous authors research [10] indicated the hub inertia might play an
important role when studying the hub-beam system behaviour. In particular, if its
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(a) (b)

Fig. 7.7 Response of the linear beammodel against the Jh parameter;amaximal beamdisplacement
and b hub angular velocity; μ0 = 0.005, ρ = 0.005, ω = 2.715

ratio to beam inertia is not high, then it has a crucial impact on the natural frequencies
of the structure. However, for high hub to beam ratios changes in hub inertia do not
affect the system natural frequencies. In the limit case of an infinitely heavy hub
the beam dynamics corresponds to a cantilever specimen behaviour in a rotating
coordinates frame.

Considering a linear beam model and its coupling with the hub as given in (7.11)
we compute periodic solution of the whole hub-beam assembly against Jh, treated as
a bifurcation parameter. To this aim external torque parameters are set toμ0 = 0.005,
ρ = 0.005, and ω = 2.715 and two μ0 cases are analysed. The obtained results are
shown in Fig. 7.7. One observes the periodic solution becomes unstable below the
limit Jh ≈ 0.69. The unstable solutions presented by dashed branch occurs via torus
bifurcation, periodic motion transits into quasi-periodic one.

Time histories for the cases close to the bifurcation point exhibit beating phenom-
enon (Fig. 7.8). For a point Jh = 0.7 on the stable branch, after long transient state,
the solution becomes periodic (Fig. 7.8a, b), but for a point on the unstable branch
Jh = 0.65, beating oscillations increase (Fig. 7.8c).

7.3.2 Analysis of a Nonlinear Model

The dynamics of a full model without control is represented by a set of (7.6) which is
nonlinear due to the coupling of the hub and beam motions and due to the nonlinear
constitutive characteristic of the PZT element embedded into the plant.

Resonance curves, either for the beam or the hub, exhibit softening effect which
arises from both mentioned above factors. In order to demonstrate a separated influ-
ence of the nonlinearity resulting from system dynamics resonance curves are plotted
imposing linear properties of the PZT element—see Fig. 7.9. To this aim α15 and α16

coefficients has been set to zero. In fact, a slope of response characteristics becomes
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(a)

(c)

(b)

Fig. 7.8 Time histories of beam response for stable Jh = 0.7 (a, b) and unstable Jh = 0.65 zones
(c); the linear beam model; μ0 = 0.005, ρ = 0.005, ω = 2.715

(a) (b)

Fig. 7.9 The hub-beam system with the linear PZT element; resonance curves of (a) beam dis-
placement and (b) hub angular velocity; ρ0 = 0.005—black, ρ0 = 0.01—blue; μ = 0, Jh = 1

evident for large amplitudes; for the beam exceeding even 0.3 of its length (blue line,
left plot). For small or average oscillations this effect is almost invisible (black line)
but still present.

The impact of the separated nonlinearity of piezoceramics is presented inFig. 7.10,
where resonance curves for the nonlinear PZT element (blue line) and a linear one
(black line) are put together. Independently of the piezoceramics model case nonlin-
earities coming from system dynamics are retained. As we may notice, the nonlin-
earity of the piezoelectric constitutive model dominates and decisively determines
the softening effect. This results from high magnitudes of the electric field corre-
sponding to large oscillations of the beam. The softening effect is also present on
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(a) (b)

Fig. 7.10 Resonance curves around natural frequency, (a) beam and (b) hub response, black line
linear PZT model, blue line nonlinear PZT model; ρ = 0.005, Jh = 1, μ0 = 0; system without
control

(a) (b)

Fig. 7.11 Bifurcation diagram of a hub-beam model with nonlinear PZT element against μ0 para-
meter, (a) beam displacement and (b) hub angular velocity; ρ = 0.005, Jh = 1, ω = 2.715

hub characteristic plot. Therefore, one may conclude the constitutive nonlinearity of
the piezoceramic has to be taken into account in near resonant conditions.

The influence of both nonlinearities is also clearly visible in bifurcation diagrams
of the beam and hub responses versus constant component μ0 of the driving torque
(Fig. 7.11). Comparing this result with linear model presented in Fig. 7.4 we observe
double nonlinear resonance peaks with stable and unstable branches on the bifurca-
tion diagram. Nonlinearity is also observed on hub response plot (Fig. 7.11b).

The bifurcation diagram versus hub inertia Jh demonstrates a nonlinearity of
a hardening-like effect (Fig. 7.12). There is a saddle-node bifurcation about Jh = 1
but for small values of Jh the system loses stability through a torus bifurcation, in
a very similar way to that presented for a linear system—see Fig. 7.7.
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(a) (b)

Fig. 7.12 The hub-beam model with nonlinear PZT forced by the torque μ = μ0 + ρ cosωt—
influence of the Jh parameter; a maximal beam displacement q1 and b hub angular velocity ψ̇ ;
μ0 = 0.005, ρ = 0.005, ω = 2.715

7.3.3 Nonlinear Model with Control

The applied control method should be effective considering the fully nonlinear sys-
tem, thus it should take into account complete hub-beam dynamics, as well as dis-
cussed nonlinear properties of the PZT element. The controller is expected to work
effectively for a periodic motion, so we avoid system parameters leading to torus
bifurcation and quasi-periodicity.

The proposed in this research control strategy is based on an additional oscillator
(7.12)3 added to the original governing system (7.6) and acting as a controller

(1 + Jh + αh12q
2
1 )ψ̈ + ζhψ̇ + αh11q̈1 + αh13q1q̇1ψ̇ = μ

q̈1 + ζ1q̇1 + α12ψ̈ + (α11+α13ψ̇
2)q1 + α14q1q̇1ψ̇

+α15sgn(q1)q
2
1 + α16q

3
1 = g1q

2
c

q̈c + ζcq̇c + ω2
0cqc = g2qcq1 (7.12)

The control input signal qc is squared and multiplied by the gain g1 and added to
the right hand side of (7.6)2. On the other hand, the controller equation is coupled
with beam oscillations by a product of q1 and qc signals multiplied by the gain
g2. To fully exploit the effectiveness of the postulated control method both gains g1
and g2 should be properly tuned [2]. Such a control method results in the so called
amplitude saturation phenomenon and has been successfully applied for non-rotating
systems [14, 15, 30]. It should be noted that the proposed control method introduces
additional nonlinearities to the system, and these coexist with nonlinearities of the
basic hub-beam system (the plant) presented in Sect. 7.3.2.

The postulated saturation control method is highly effective in a wide range of
near resonant frequencies provided the controller is properly tuned to the plant. The
requirement is the natural frequency of the controller ω0c has to be set to one-half
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of the plant natural frequency ω1. Since the natural frequency of the separated beam
differs from natural frequency of the entire hub-beam system a complete hub-beam
assembly has always to be considered while examining the natural frequencies of
the plant [10]. Moreover, system rotation that leads to beam stiffening effect due to
centrifugal load has to be taken into account.

The rotating beam natural frequency, considered as a rotating cantilever beam
(i.e. separated from the hub) is defined as

ωbeam =
√

α11 + α13ψ̇2 (7.13)

The frequency of the full hub-beam system ω1 has to be evaluated from (7.8), where
the hub inertia term Jh is present. In the limit case Jh → ∞ the final result tends to
formula (7.13).

To verify the robustness of the postulated saturation strategy for the hub-beam
system several numerical simulations are performed. To this aim frequency-response
curves are constructed around itsfirst resonance zone. Moreover, controller response
curves are plotted to verify the saturation phenomenon for the considered system.

7.3.3.1 Oscillations of the System About Neutral Position

At the first stage we consider the periodic torque μ supplied to the hub with its
constant component equal to zero μ0 = 0—see (7.7). Responses of the uncontrolled
and controlled system are presented in Fig. 7.13. One can observe amplitudes of the
beam as well as the hub get reduced almost to zero (blue line in Fig. 7.13a, b) around
the system natural frequencyω1 = 2.715. The peak of the nonlinear resonance curve
becomes unstable due to the controller activation (Fig. 7.13c). It is worth mentioning
that responses of the beam and the hub are harmonic while the controller is sub-
harmonic with respect to the frequency of excitation. The most effective vibration
suppressing is observed directly around the system natural frequency. Time histories
plotted in Fig. 7.13d at ω = 2.715 for the beam without control (black) and for the
activated controller case (blue) confirm the results presented in response curves plot
Fig. 7.13a.

As reported in other research papers [2, 30] efficiency of the implemented control
method depends on gains g1, g2 applied for input and output signals. To find the
optimal settings for the structure the influence of both gain factors on the controller
response is studied in more detail.

Two simulations have been performed for fixed structural parameters, as well as
excitation amplitude and frequency. In the first case the control gain g1 has been
varied in the range of 〈0, 1〉 while keeping the gain g2 constant and set to value 1.
The obtained controller signal is shown in Fig. 7.14a. Next, the feedback gain g2
has been varied at gain g1 = 0.01 (Fig. 7.14b). It is evident high amplitudes of the
controller may be expected for low values of the gain g1. Opposite effect is present
in the second simulation, where high controller responses occur at higher values of
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(a) (b)

(c)
(d)

Fig. 7.13 Resonance curves around natural frequency with activated controller, (a) beam response,
(b) hub angular velocity, (c) controller response and (d) time histories of beam response without
control—black line, with control—blue line for ω = 2.715; g1 = 0.01, g2 = 1, ρ = 0.005

(a) (b)

Fig. 7.14 Response of the controller against (a) gain g1 and fixed g2 = 1, (b) gain g2 and fixed
g1 = 0.01; μ0 = 0, ω = 2.715; ρ = 0.005, Jh = 1
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(b)

Fig. 7.15 Resonance curves of the controller (a) for selected values of gain g1: g1 = 0.1—black,
g1 = 0.271—green, g1 = 0.5—pink, g1 = 1—blue, g1 = 5—red and (b) time histories of con-
troller response g1 = 0.1—black, g1 = 5—red; ω = 2.715, g2 = 1, ρ = 0.005, μ0 = 0, Jh = 1

the feedback gain g2. Moreover, it is observed the increase of any gains results in the
controller response asymptotically approaching a limit value. Thus, above a certain
thresholds, gains changes have no effect on the controller response.

To verify these results resonance curves for selected values of gain g1 and corre-
sponding time histories of the controller response are presented in Fig. 7.15. Based
on Figs. 7.14 and 7.15 we may conclude that g1 = 0.5 and g2 = 1 are appropriate
values in terms of controller performance. They guarantee effective plant vibration
suppression combined with a rational engagement of the controller.

Resonance curves computed for gains g1 = 0.5 and g2 = 1 are presented in
Fig. 7.16. In this case vibrations of the beam and the hub are well reduced around
system natural frequency (Fig. 7.16a, b) with a relatively small engagement of the
controller (Fig. 7.16c). Time histories of the beam and the controller are shown in
Fig. 7.16d.

The potential consequences of an incorrect choice of gains g1 and g2 are demon-
strated in Fig. 7.17. For the case g1 = 1 and g2 = 0.12 the control strategy is basically
ineffective. The reason is the activation of the controller in a very narrow range of fre-
quencies that do not cover the part of the characteristic corresponding to peak beam
responses—see Fig. 7.17a. Furthermore, the amplitude of the controller is restrained
(see Fig. 7.14) thus the plant vibrations are weakly suppressed. Hence it may be con-
cluded that the appropriate selection of control and feedback gains is a key factor in
terms of successful vibrations suppression.

7.3.3.2 The Full Rotation Case

To consider the full rotation case we assume the constant torque component μ0 to
be a non-zero value. Then the average angular velocity is different from zero and
the system performs the full rotation—see also Fig. 7.2. This results in the beam
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(a) (b)

(c)
(d)

Fig. 7.16 Resonance curves around the first natural frequency with activated NSC for (a) the beam,
(b) the hub, (c) the controller, g1 = 0.5, g2 = 1, ρ = 0.005,μ0 = 0, and (d) time histories of beam
response (black) and controller (red) ω = 2.715

(a) (b)

Fig. 7.17 Resonance curves of the beam (a) and controller (b) for selected values of gain g1 = 1,
g2 = 0.12; ρ = 0.005, μ0 = 0, Jh = 1
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(a) (b)

(c)

Fig. 7.18 Bifurcation diagram against μ0 parameter for a nonlinear hub-beam model forced by
torque with constant and periodic components,μ = μ0 + ρ cosωt , and nonlinear control, (a) beam
displacement, (b) hub angular velocity and (c) controller response; ρ = 0.005, Jh = 1, ω = 2.715,
g1 = 0.01, g2 = 1

stiffening due to centrifugal load. Eventually, the system response characteristic is
shifted to higher frequency values.

To check the effectiveness of the controller for a fully rotating structure, we keep
the already agreed values of controller gains g1 and g2 and vary theμ0 component of
the torque. Outcomes of numerical simulations are presented in Fig. 7.18. Studying
the beam response curve (plot (a)) one observes the activation of the controller results
in the significant reduction of beam vibrations around the μ0 = 0 value—see also
Fig. 7.11a for comparison. For the absolute values of μ0 close to 0.1 and higher the
postulated control strategy is not effective due to the significant stiffening effect and
expected de-tuning of the controller with respect to the altered natural frequency
of the system. Meanwhile, the hub response is not affected by the control unit,
especially around theμ0 = 0 value (Fig. 7.18b). Interesting observation can be made
with respect to the controller signal. In the range ofμ0 ∈ 〈−0.05, 0.05〉 (corresponds
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(a) (b)

(c)
(d)

Fig. 7.19 Resonance curves around the first natural frequency with activated NSC for (a) the beam,
(b) the hub, (c) the controller, g1 = 0.5, g2 = 1, ρ = 0.005, μ0 = 0.05, and (d) time histories of
beam response (black) and hub response (blue) ω = 2.73

to rotational speed varied from −1770 rpm to +1770 rpm) its magnitude remains
stable and on almost the same level—plateau in Fig. 7.18c.

To confirm the above given outcomes the subsequent simulation is performed
for the specific case of μ0 = 0.05 and keeping the torque amplitude ρ = 0.005.
These settings make the hub to rotate with instantaneous speed oscillating about
an average value of 1770 rpm expressed in physical units. Resonance curves of the
hub-beam system are presented in Fig. 7.19. Due to the rotation the natural frequency
of the structure is slightly shifted into higher frequencies comparing to the system
performing oscillations about neutral position (Fig. 7.16).

Another observation is that a part of the resonance branch of the controller
(Fig. 7.19c) and, correspondingly, of the beam and the hub becomes unstable as
well (Fig. 7.19a, b). This effect can lead to dangerous phenomena if the controller
is not properly tuned or gets out of tune while operating. However, around the res-
onance zone, oscillations are suppressed very well. Time histories of the beam and
the hub response for ω = 2.73 are presented in Fig. 7.19d by black and blue colours,
respectively.
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Considering the given results we may conclude that the proposed saturation strat-
egy is also effective if the structure performs full rotation. However, special care shall
be devoted to precise controller tuning to avoid system operation in unstable zones.

7.4 Conclusions and Final Comments

In this research we consider a nonlinear adaptive control of the rotating hub-beam
structure using the saturation phenomenon. The aim of the control is to suppress cou-
pled bending-torsional vibrations of the composite thin-walled beam made of CAS
laminate with an embedded piezoceramic material exhibiting nonlinear constitutive
relation. The excitation of the structure is provided by the driving torque expressed as
a sum of its mean value and a periodic component. A two-to-one internal-resonance
condition is maintained between the plant and the controller to fully exploit the effec-
tiveness of the strategy. The mathematical model of the system under consideration
has been derived directly from previous authors’ papers [8, 10].

The discussed structure has been investigated for possible levels of original sys-
tem simplifications. In subsequent simulations the following specific cases have been
considered: (a) a fully linear model neglecting all beam interactions present in the
governing equation, (b) a nonlinear model of the uncontrolled structure with inde-
pendent analysis of nonlinearities due to the coupling of hub and beam motions
and due to nonlinear constitutive characteristics of the PZT element, (c) control of
the nonlinear system subjected to periodic zero-mean value driving torque, and (d)
control of the nonlinear system performing the full rotation.

Obtained results of numerical simulations prove the applied nonlinear control to
be a robust and effectivemethod for beam vibration suppression in near-by resonance
zones for a non-rotating as well as rotating structure. It is shown that vibration of the
beam can be suppressed to similar levels independently of the model simplification
degree presuming the condition of proper controller tuning is preserved. However,
significant differences in the width of vibration suppression zones are observed for
the studied subcases.

Performednumerical tests allow to conclude the system is sensitive to the feedback
gain. In its lower range of magnitude values the response of the controller increases
rapidly, while for higher ones the impact is much less pronounced. On the other
hand, the control gain is shown to be inversely proportional to the controller output
and high amplitudes of the controller may be expected for low values of the gain g1.
Moreover, it is observed the increase of any gains results in the controller response
asymptotically approaching a limit value. Thus, above a certain thresholds, gains
changes have no effect on the controller response.

While discussing performed tests it is been highlighted that the hub-beam assem-
bly has to be considered as a whole system since the hub mass moment of inertia
has an essential impact on natural frequencies of the structure. If the controller is
tuned in a classical way, i.e. considering only dynamics of a separated non-rotating
cantilever beam, the undesirable results are obtained. The controller is activated
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within an improper and extremely narrow zone; moreover an additional resonance
with large amplitudes is observed. The above recommendation is referred also to
a nonlinear problem that requires an adaptive frequency-tuning mechanism, because
of the reported softening characteristic of the system response.

The obtained results prove the possible reduction of complex vibration modes
that exhibit strong coupling of torsion and bending deformations resulting from the
circumferentially asymmetric stiffness (CAS) lamination scheme just by one active
element.
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Chapter 8
Nonlinear Vibrations of a Shallow Arch
Subject to Resonant and Low Harmonic
Frequency Excitations Under 1:1 Internal
Resonance

Abdelbassit Chtouki, Faouzi Lakrad and Mohamed Belhaq

Abstract In the present work the nonlinear dynamics of a two degree of freedom
shallow arch model, excited by resonant external harmonic forcing and subject to
an imposed slow harmonic motion of its support, are investigated. The case of 1:1
internal resonance between the first and the second bending modes is studied. The
charts of behaviors are obtained analytically using the multiple scales method, both
in the presence and the absence of the slow excitation, and they are validated numer-
ically. It is shown that the low parametric frequency excitation triggers the existence
of periodic bursters in vicinity of the boundaries between the different dynamics of
the arch.

8.1 Introduction

Arches are widely used in civil, mechanical and aerospace engineering [1]. They
are also used in MEMS switches, actuators, resonators [2], band-pass filters [3] and
in energy harversting [4]. Arches are characterized, compared to straight beams,
by their initial curvature, strength and the bi-stability behavior or the snap-through
phenomenon.

Arches can be classified following their shallowness parameter [5], that is the sag
to the span ratio, as shallow or non-shallow. In the present paper only shallow arches,
i.e., small shallowness parameter, are considered.
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Many authors studied the nonlinear dynamics of shallow arches under various
types of loadings and internal resonances. Tien et al. [6, 7] investigated global bifur-
cations, using aMelnikovmethod, to determine the chaos occurrence in a two degree-
of-freedom (dof) model of a shallow arch subject to a static and a resonant harmonic
loading under 1:2 and 1:1 internal resonances.

In the framework of the effect of low frequency excitations on shallow arches,
Lakrad and Schiehlen [8] studied the effect of a slowly varying parametric excitation
on a single dof shallow arch model. Periodic bursters and chaos were observed and
analyzed using a Poincaré map and the Melnikov method. It is worth pointing out
that from geometrical point of view periodic bursters can be seen as generalized
heteroclinic orbits, see [5] for more mathematical details. It was shown in [9] that a
necessary condition for the occurrence of periodic bursters is that the slow excitation
is parametric.

Lakrad and coworkers [10, 11] investigated analytically and numerically non-
linear dynamics of a two dof model of a shallow arch with 1:2 internal resonance
and subject to a resonant external harmonic forcing and to a very slow harmonic
imposed displacement of one of its supports. Periodic bursters are found to exist
in the boundaries of the instability regions. Various bursters involving fixed points,
quasi-periodic and chaotic solutions are found.

In the present work, we investigate the nonlinear dynamics of the same reduced
order model of the shallow arch as [10, 11], in the presence of 1:1 internal resonance
and the principal external resonance.

The paper is organized as follows. In the second section themathematicalmodel of
flexural vibrations of the shallow arch is presented. Then, a two dofmodel is obtained
using the Galerkin method through the projection of the equation of motion over the
two first bending modes of the arch. In the third section, the effects of the initial
rise and the static load on the static equilibria are investigated. In the fourth section,
the method of multiple scales is applied around the unbuckled static equilibrium to
determine the slowly modulated amplitudes and phases equations. Finally, charts
of behaviors are determined, especially the zones of existence of periodic bursters.
Analytical approximations of solutions are computed and comparisons to numerical
simulations are provided.

8.2 Mathematical Model

We consider a double-hinged shallow arch having an unloaded shapew0(x), with x ∈
[0, L], see Fig. 8.1. It is subjected to a lateral sinusoidal loading P(x, t), consisting
in a static and a harmonic loadings, and to an imposed horizontal slow harmonic
motion of its support u(L , t).

Our mathematical model obeys the following assumptions [5]

• Small change of curvature.
• Large extensional strain.



8 Nonlinear Vibrations of a Shallow Arch Subject to Resonant … 155

Fig. 8.1 The shallow arch
model

• Negligible longitudinal inertia.
• Constant elongation along the axis.

The nonlinear equation of motion governing the inplanar lateral deflection w(x, t)
of the shallow arch is given by the following partial differential equation [6]

mẅ + cẇ + E Iw
′′′′ − E A

L
(w

′′
0 + w

′′
)
[
u(L , t) + 1

2

∫ L

0
(w

′2 + 2w
′
0w

′
)dx

] = P(x, t)

(8.1)

where the dot and the prime denote the derivatives with respect to time t and to the
variation of the length x , respectively. The material and geometric properties of the
arch are labelled as follows

m : the mass per unit length c : the viscous damping coefficient

A : the cross-sectional area I : the second moment of the cross-section

E : the Young’s modulus L : the projected length of the arch

The unloaded initial shape of the arch is taken sinusoidal and the excitations are as
follows

Unloaded shape w0(x) = −q0 sin(
πx

L
) (8.2)

Lateral loading P(x, t) = (p0 + ρ cos(νt)) sin(
πx

L
) (8.3)

Imposed displacement u(L , t) = H cos(Ωt) (8.4)

where q0 is the initial rise, p0 is the static loading, ρ and ν represent amplitude and
frequency of the lateral loading, respectively, while H and Ω represent amplitude
and frequency of periodic motion of the end point of the arch, respectively. The
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arch is doubly-hinged, and consequently it is subjected to the following boundary
conditions:

w(0, t) = w(L , t) = 0, w
′′
(0, t) = w

′′
(L , t) = 0 (8.5)

TheGalerkinmethod is used to reduce the partial differential equation (8.1) governing
the dynamics of the shallow arch to a set of ordinary differential equations. This is
done by projecting (8.1) on appropriate shape functions. In our case the linear normal
modes of undamped flexural vibrations of simply supported beams are used. Thus,
the transversemotionw(x, t) of the arch is approximated by the following expression

w(x, t) =
N∑

n=1

qn(t) sin(
nπx

L
) (8.6)

For convenience, we introduce the following non-dimensional variables:

The new time scale t∗ = (
π

L
)2

√
E I

m
t

The viscous damping parameter β = cL2

π2
√
E Im

The radius of gyration of the cross section r =
√

I

A
,

The initial rise parameter q∗
0 = q0

2r
,

The static loading parameter λ0 = p0
2r E I

(
L

π
)4

The amplitude of the imposed displacement h = HL

r2π2

The frequency of the imposed displacement Ω∗ = ΩL2

π2

√
m

E I

The amplitude of the harmonic loading ρ∗ = ρ

2r E I
(
L

π
)
4

The frequency of the harmonic loading ν∗ = νL2

π2

√
m

E I

Straightened amplitude of the first mode Q1 = q1
2r

− q∗
0

Amplitude of the nth mode with n �= 1 Qn = qn
2r

The slow time scale τ = Ω∗t∗

To obtain the reduced order model, (8.6) is substituted into (8.1). The outcome is
then multiplied by the shape function and is integrated over the arch span.
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In what follows the stars will be omitted for simplicity of notations. Therefore,
the non-dimensional equations of motion describing the evolution of the amplitudes
of the nth mode of the shallow arch, with n ∈ {1, ..., N }, can be written as:

Q̈n + β Q̇n + n2Qn[n2 − q2
0 + h cos(τ ) +

N∑

j=1

j2Q2
j ] = δn1(λ0 − q0 + ρ cos(νt))

(8.7)

The low frequency Ω = O(εk) with the integer k ≥ 2 and ε is a bookeeping small
parameter, see [10] for more details. Furthermore, δn1 is the Kroneker delta function,
with δn1 = 1 if n = 1 and vanishes otherwise.

In the set of coupled differential equation (8.7) there exist two kinds of nonlinear-
ities: (i) quadratic nonlinearities that are caused by the static load λ0 and the initial
curvature q0; (ii) cubic nonlinearities caused by the large extensional strain. Only the
mode 1 is directly excited by the external harmonic excitation and all modes have
parametric slow harmonic excitation caused by the base motion.

In the present work, the approximated solution (8.6) is truncated to two funda-
mental normal modes i.e., N = 2. Thus, (8.7) gives the following two equations

Q̈1 + β Q̇1 + (1 + h cos(τ ))Q1 + Q1(Q
2
1 − q2

0 + 4Q2
2) + q0 − λ0 = ρ cos(νt)

(8.8)

Q̈2 + β Q̇2 + 4(4 + h cos(τ ))Q2 + 4Q2(Q
2
1 − q2

0 + 4Q2
2) = 0 (8.9)

The generalized coordinates Q1 and Q2 are the amplitudes of the symmetric and the
asymmetric modes, respectively.

8.3 Static Analysis

The static equilibria of the arch are computed from (8.8) and (8.9) by dropping the
time derivatives and excitations. Two types of solutions are found: the first type
corresponds to Q2 = 0 and the second one to Q2 �= 0. The first type solutions are
ruled by the following cubic algebraic equation

Q3
1 + Q1(1 − q2

0 ) + q0 − λ0 = 0 (8.10)

This equation can have either one or three real solutions depending on the parameters
of control q0 and λ0. In what follows the unbuckled stable static equilibrium will be
noted as Q1 = η0. It is obvious that when q0 = λ0, the static equilibria will be ruled
by a Pitchfork bifurcation, as was studied in [8].

In Fig. 8.2 are shown the number of static equilibria in the plane (q0, λ0). Zones
1 and 2 correspond to Q2 = 0 and to the existence of one stable static solution of
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Fig. 8.2 Number of static equilibria in the plane (q0, λ0). In zones 1 and 2: existence of one static
solution that is stable corresponding to Q2 = 0. This solution corresponds to a buckled configuration
in zone 1 and to an unbuckled solution in zone 2. In Zone 3: existence of three solutions with
Q2 = 0 with two that are stable. In zone 4: coexistence of equilibria of zone 3 and two unstable
static solutions with Q2 �= 0

(a) λ0 =−0.8 (b) λ0 = 0.5 (c) λ0 = 2

Fig. 8.3 Static configurations for q0 = 0.8 and for various static load λ0. The thick and the thin
lines correspond to statically deformed arch and undeformed arch, respectively. Figures a and b
belong to zone 2 and Figure c belongs to zone 1

(a) λ0 =−1 (b) λ0 = 0.9 (c) λ0 = 2

Fig. 8.4 Static configurations for q0 = 1.5 and for various static load λ0. Thin lines corresponds to
the undeformed arch. Continuous thick and dotted lines correspond to stable and unstable statically
deformed arch, respectively. Figures a and b belong to zone 2 and Figure c belongs to zone 3

Q1. This latter corresponds to a buckled state in zone 1 and to an unbuckled solution
in zone 2, see Fig. 8.3 for the deformed configurations of the arch for q0 = 0.8 and
various static loading λ0. It is worth pointing out that increasing initial rise q0 of the
arch increases the critical static loading λ0 that causes buckling.

The zone 3 corresponds to Q2 = 0 and three static solutions of Q1. Two of these
three equilibria are stable and are the buckled and the unbuckled configurations. In
Fig. 8.4 are shown the static equilibria configurations of the arch for q0 = 1.5 and
various static loading λ0. The boundaries of zone 3 with zones 1 and 2 in the plane
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(q0, λ0) are given by

λ0 = q0 ± 2

9

√
3q6

0 − 9q4
0 + 9q2

0 − 3 (8.11)

In zone 4, there is coexistence of the zone 3 static equilibria and two unstable equi-
libria corresponding to

Q1 = (q0 − λ0)/3; Q2 = ±1

2

√
q2
0 − 4 − Q2

1 = ±1

6

√
8q2

0 + 2q0λ0 − λ2
0 − 36

(8.12)

The boundaries of the zone 4 in the plane (q0, λ0) are given by

λ0 = q0 ±
√
9q2

0 − 36 (8.13)

In the rest of this paper, we will work around the unbuckled stable static equilibrium
(Q1 = η0, Q2 = 0) far from the snap-through bifurcation.

8.4 Perturbation Analysis

We perturb the variables (Q1, Q2) in (8.8) and (8.9) around the stable unbuckled
static solution (η0, 0). Thus,

Q1(t) = η0 + εx1(t), Q2(t) = εx2(t) (8.14)

where ε is a small positive parameter. In order to use the multiple scales method [12],
parameters of control are scaled as follows: ρ = ε3ρ̃, h = ε2h̃, β = ε2β̃.
Equations (8.8) and (8.9) up to the order O(ε3) become

ẍ1 + ω2
1x1 = −ε(h̃η0 cos(τ ) + 4η0x

2
2 + 3η0x

2
1 )

− ε2(β̃ ẋ1 + h̃ cos(τ )x1 + x31 + 4x1x
2
2 + ρ̃ cos(νt)) (8.15)

ẍ2 + ω2
2x2 = −ε(8η0x1x2) − ε2(β̃ ẋ2 + 4h̃ cos(τ )x2 + 4x21 x2 + 16x32) (8.16)

The linearized frequencies ω1 and ω2 corresponding to the first and second modes
are given by

ω1 =
√
3η2

0 + 1 − q2
0 ; ω2 =

√
4η2

0 + 16 − 4q2
0 (8.17)

The two frequencies depend solely on q0 and λ0 since η0 depends on these two
control parameters. In the absence of the static load, i.e., λ0 = 0, η0 = −q0 and
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Fig. 8.5 Various internal
resonances, relating ω1 and
ω2, in the plane (q0, λ0). The
black zone corresponds to
2:1 resonance; the strong
grey zone to 1:1 resonance
and the light grey zone to 1:2
resonance
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0 and ω2 = 4. This result is in agreement with [13] where it was
shown that, in the case of a double-hinged shallow arch, the only natural frequency
that is affected by the initial rise q0 is the first one. In fact, increasing the initial
rise q0, i.e., tending towards the non-shallow arch case, leads to the increase of the
frequency of the first mode, that is asymmetric, till reaching the first overall point
where the symmetric mode becomes the fundamental one, see [13] for more details.

Indeed, the initial rise q0 and the static load parameter λ0 can be used to tune
the natural frequencies ω1 and ω2 in order to realize various internal resonances.
Figure8.5 shows various zones of internal resonances in the plane (q0, λ0). These
regions are computed by setting

p − 0.1 ≤ ω1

ω2
≤ p + 0.1; with p = 1

2
, 1, 2. (8.18)

In Fig. 8.5, the black zone corresponds to 2:1 internal resonance. The light and strong
grey zones correspond to 1:2 and 1:1 internal resonances, respectively. For more
results and discussions about internal resonances in mechanical structures see [14].

In what follows, we shall perform the analysis in the strong grey zone i.e., 1:1
internal resonance in the presence of the principal external resonance

ω1 = ω2 + σ1 ; ν = ω2 + σ2 (8.19)

where σi = εσ̃i , with i = 1, 2, are detuning parameters.
Using the multiple scales method [12] one can eliminate the fast time scale depen-

dence.Thismethodultimately results in the followingmodulation equations of ampli-
tudes a1, a2 and phases of the first and second modes, respectively
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ȧ1 = −β

2
a1 − ρ

2ω1
sin(γ1) − k1

8ω1
a1a

2
2 sin(2γ1 − 2γ2)

a1γ̇1 = (σ2 − σ1)a1 − ρ

2ω1
cos(γ1) − k2

8ω1
a31 − k1

8ω1
a1a

2
2 cos(2γ1 − 2γ2)

− k3
8ω1

a1a
2
2 − hX

2ω1
a1 cos(τ ) (8.20)

ȧ2 = −β

2
a2 + k4

8ω2
a21a2 sin(2γ1 − 2γ2)

a2γ̇2 = σ2a2 − k4
8ω2

a21a2 cos(2γ1 − 2γ2) − k5
8ω2

a32 − k3
8ω2

a21a2 − 2hY

ω2
a2 cos(τ )

Here we have considered the slowly varying parametric excitation as constant during
the averaging process. In Appendix are listed the parameters X and Y that express
the contribution of the low frequency base motion. The Appendix shows also the
cubic nonlinearities parameters ki , with i = 1..5.

By setting u1 = a1 cos(γ1) ; v1 = a1 sin(γ1) ; u2 = a2 cos(γ2) ; v2 = a2
sin(γ2), equations of modulations (8.20) can be written in Cartesian form as

u̇1 = −β

2
u1 − (σ2 − σ1)v1 + k1

4ω1
u1u2v2 + Xh

2ω1
cos(τ )v1

+ 1

8ω1
(k1(v

2
2 − u22) + k2(u

2
1 + v21) + k3(u

2
2 + v22))v1

v̇1 = −β

2
v1 + (σ2 − σ1)u1 − k1

4ω1
v1u2v2 − Xh

2ω1
cos(τ )u1

− 1

8ω1
(k1(u

2
2 − v22) + k2(u

2
1 + v21) + k3(u

2
2 + v22))u1 − ρ

2ω1
(8.21)

u̇2 = −β

2
u2 − σ2v2 + k4

4ω2
u1v1u2 + 2Yh

ω2
cos(τ )v2

+ 1

8ω2
(k3(u

2
1 + v21) + k5(u

2
2 + v22) − k4(u

2
1 − v21))v2

v̇2 = −β

2
v2 + σ2u2 − k4

4ω2
u1v1v2 − 2Yh

ω2
cos(τ )u2

− 1

8ω2
(k3(u

2
1 + v21) + k5(u

2
2 + v22) + k4(u

2
1 − v21))u2

TheCartesian formof themodulation equations is very useful in the stability analysis,
especially in the case of the singlemode i.e.,a2 = 0.An approximation of the solution
of (8.8) and (8.9), up to order O(ε2), is given by
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Q1(t) = η0 + a1 cos(νt − γ1) + c1
2
a22 cos(2νt − 2γ2) + c2

2
a21 cos(2νt − 2γ1)

+ c3(
3a21
2

+ 2a22) − hη0

ω2
1

cos(Ωt) (8.22)

Q2(t) = a2 cos(νt − γ2) + d1
2
a1a2 cos(2νt − γ1 − γ2) + d2

2
a1a2 cos(γ1 − γ2)

(8.23)

8.5 Results and Discussions

In this section we will discuss the effects of the low frequency harmonic parametric
excitation on the local dynamics of the shallow arch under both principal external and
1:1 internal resonances. Thus, we first present results corresponding to the case of
the absence of the low frequency excitation i.e., h = 0. Then, the case of h �= 0 will
be discussed. In all the numerical applications, q0 = 2.52, λ0 = 5 and the damping
coefficient β = 0.03. The unbuckled static position is (η0 = −2.03, Q2 = 0), the
natural frequncies ω1 = 2.653 and ω2 = 2.668.

8.5.1 Absence of the Low Frequency Excitation i.e., h = 0

Steady state solutions of the modulation equations (8.20) can be obtained by elim-
inating all time dependences. In Fig. 8.6, we show the behavior chart of the steady
state solutions of the modulation equations (8.20) in the external excitation parame-
ters (ν, ρ) plane, in the absence of the base displacement i.e., h = 0. In what follows
a single mode refers to (a1 �= 0, a2 = 0) and the coupled mode to (a1 �= 0, a2 �= 0).

• The single mode solutions are obtained by solving the following sixth order alge-
braic equation

[(σ2 − σ1)a1 − k2
8ω1

a31]2 + (
β

2
a1)

2 − (
ρ

2ω1
)2 = 0 (8.24)

• The coupledmodes solutions exist when a1 ≥ 2ω2

√
β

k4
and are obtained by solving

the following two coupled algebraic equations

β2

4
+

(
σ2 − k5a22

8ω2
− k3a21

8ω2

)2

− k24a
4
1

64ω2
2

= 0 (8.25)
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Fig. 8.6 Boundaries of dynamic instability of the modulation equations (8.20) in the external
excitation parameters plane (ν, ρ) for h = 0. Region A, existence of one stable single mode. Region
B, existence of one single and one coupledmodes that are stable. Region C, existence of three single
modes two among them are stable, and one stable coupledmode. Region a, existence of one unstable
single mode and one stable coupled mode. Zones b and c, existence of three single modes with one
of them stable, and one stable coupled mode. Region d, contains three unstable solutions of the
single mode and one stable coupled mode

(

(σ2 − σ1)a
2
1 − k2a41

8ω1
− k3a21a

2
2

8ω1
− k1ω2a22

k4ω1
(σ2 − k5a22

8ω2
− k3a21

8ω2
)

)2

+ β2(
a21
2

+ k1ω2a22
2ω1k4

)2

= a21ρ
2

4ω2
1

(8.26)

For the considered external loading parameters ρ and ν, simple bifurcations, such
as saddle-node and pitchfork bifurcations, are ruling the stability and the existence
of various solutions. Eight various zones in the (ν, ρ)-plane summirize and explain
bifurcations of steady state solutions of the amplitudes modulation equations (8.20),
see Fig. 8.6. The determination of these zones is based mainly on the single modes
bifurcations. Large regions are denoted by capital letters and the small regions with
lower case letters.

Indeed, single modes exist always, since they are directly excited by the external
loading, and at most three of them can coexist. The coupled modes have only one
stable solution when they exist. They exist in all regions other than A.

In region A, there is existence of only one stable single mode. In region B, there
is coexistence of one stable single mode and coupled modes. In region C coexistence
of three single modes solutions with two among them that are stable. Region a
corresponds to the existence of one unstable single mode. Zones b and c correspond
to the existence of three single mode solutions with one of them stable. The small
zone d contains three unstable solutions of the single mode.
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Fig. 8.7 Steady-state amplitudes a1 (left) and a2 (right) versus ν for ρ = 0.0102. When increasing
ν, the visited regions are regions A → a → A. Thick lines correspond to single modes and thin
lines to coupled modes. The continuous lines correspond to stable solutions and the dashed one to
unstable solutions

Fig. 8.8 Steady-state amplitudes a1 (left) and a2 (right) versus ν for ρ = 0.02. When increasing
ν, the visited regions are regions A → B → c → d → a → B → A

Figures8.7, 8.8, 8.9 and 8.10 show steady state amplitudes a1 and a2 versus the
frequency of the harmonic excitation ν for various values of the amplitude of the
harmonic excitation ρ. This latter is chosen such that when varying ν the dynamics
will cross various regions that are shown in Fig. 8.6. The amplitudes corresponding
to the single mode are plotted in thick lines and those corresponding to the coupled
modes in thin lines. Moreover, the continuous and the dashed lines correspond to
stable and unstable solutions, respectively. These figures where obtained by solving
analytically and numerically (8.24)–(8.26). The bifurcation continuation package
Auto [15] was also used. Thus, for instance, in Fig. 8.7, for ρ = 0.0102, the dynamics
is crossing regions A, a and A. In Fig. 8.8, for ρ = 0.02, the dynamics is crossing
successivelly in the following order: regions A, B, c, d, a, b and A.
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Fig. 8.9 Steady-state amplitudes a1 (left) and a2 (right) versus ν for ρ = 0.028. When increasing
ν, the visited regions are regions A → B → c → C → b → B → A

Fig. 8.10 Steady-state amplitudes a1 (left) and a2 (right) versus ν for ρ = 0.04. When increasing
ν, the visited regions are regions A → C → b → B → A

8.5.2 Effects of the Low Frequency Excitation

In the presence of the low frequency parametric harmonic excitation, the equations
of modulations (8.20) can be written as a slow-fast system

εż = f(z, τ ); τ̇ = 1 (8.27)

where the state vector z = (a1, γ1, a2, γ2) and the dot is the derivative with respect
to the very slow time scale τ = Ωt , with Ω = O(ε2). In the limit ε → 0 one can
compute the slow manifold given by M = {(z, τ ) : f(z, τ ) = 0}. It is composed of
two types of quasi-static solutions:
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• The single mode quasi-static solutions given by

(
ρ

2ω1
)2 = [(σ2 − σ1 − hX

2ω1
cos(τ ))a1(τ ) − k2

8ω1
a1(τ )3]2 + (

β

2
a1(τ ))2

(8.28)

a2(τ ) = 0. (8.29)

• The coupled modes quasi-static solutions are obtained by solving the following
two coupled algebraic equations
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(8.31)

In Fig. 8.11, we show the evolution of the chart behaviors of the modulation equa-
tions (8.20) for h = 0.01 and h = 0.02 in the plane of external excitation parameters
(ν, ρ). The behaviors of the solutions in the big zones A, B and C are similar to
Fig. 8.6. However, instead of fixed points we deal now with periodic solutions of
the modulation equations. Consequently, in regions A, B and C the solutions of the

(a) h= 0.01 (b) h= 0.02

Fig. 8.11 Boundaries of dynamic instability of the modulation equations (8.20) in the external
excitation parameters plane (ν, ρ) for a h = 0.01; and b h = 0.02. The blue lines correspond to
the case h = 0. The grey zones correspond to the presence of periodic bursters. See Fig. 8.6 for the
explaination of the white zones
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(a) h= 0 (b) h= 0.02

Fig. 8.12 Snap-through boundaries in the plane of the external forcing parameters (ν, ρ), for
Ω = 0.0005 and for h = 0 and h = 0.02. The black zone corresponds to the buckled state and the
white zone to the unbuckled state

original equations (8.8) and (8.9) are quasi-periodic. In the grey zones these quasi-
periodic solutions are changing their nature and/or stability during one period of
the slow time scale τ . These zones are where periodic bursters exist. In fact, areas
of these zones are increasing with increasing the amplitude of the base motion h.
Moreover, the small regions a, b, c and d disappear from the chart of behavior.

It is worth pointing out that all the presented charts of behaviors are based on the
study of local dynamics near the stable unbuckled static equilibrium. Consequently,
this study is not valid when the snap-through occurs.

In Fig. 8.12 are shown in black the snap-through zone in the plane of the external
forcing parameters (ν, ρ), for h = 0 and h = 0.02. The arch is considered to be
undergoing snap-through if the straightened amplitude Q1(t) ≥ 0 at any time during
the numerical integration of the original equations (8.8) and (8.9). Figure8.12 shows
that the snap-through is occurring for ρ > 0.2. Thus, our local analysis is valid since
the considered ρ is below the threshold of this escape phenomenon.

In order to validate the perturbation method, Fig. 8.13 shows comparisons, for
various h and ρ between the analytical solutions (8.22) and (8.23) and the numer-
ical solutions of (8.8) and (8.9). Figure8.13a shows a quasi-periodic solution and
Fig. 8.13b shows a periodic burster relating a stationary solution and a quasi-periodic
solution. It is worth noting that the numerical solution in Fig. 8.13b is delayed with
respect to the analytical one, this is due to the metastability phenomenon caused by
the low frequency excitation. For more insight about this delay phenomenon see [8].
In Fig. 8.14 are shown two samples of periodic bursters that cross the zones A and a.
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(a) (b)

Fig. 8.13 A quasi-periodic and a periodic burster solutions of Q2(t) for ν = 2.64, Ω = 0.0005.
aρ = 0.025 and h = 0.038, bρ = 0.013 and h = 0.036. The black color for the perturbation
method’s solution (8.22) and (8.23) and the grey color for the numerical solution of (8.8) and
(8.9)

(a) (b)

Fig. 8.14 Periodic bursters solution Q2(t), crossing zones A, a and A, of the original equations
(8.8) and (8.9) for h = 0.01 a ν = 2.641, ρ = 0.0095 and Ω = 0.0005, b ν = 2.645, ρ = 0.0087
and Ω = 0.0002

8.6 Conclusions

In the present work, we have studied the nonlinear dynamics of a two dof model
of a shallow arch subject to a resonant and a low frequency harmonic excitations
under 1:1 internal resonance and principal external resonance. The low frequency
harmonic excitation, that is acting as a parametric forcing, is caused by an imposed
displacement of one of the bases of the arch. The role of the initial rise and the dead
load in causing various static behaviors and tuning internal resonances is investigated.
After the application of the Galerkin method, the multiple scales method is applied
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to the reduced order model of the arch. Then, in the absence of the low frequency,
the charts of behaviors of the amplitudes modulation equations reveal the existence
of two types of solutions: the single and the coupled modes. The first mode involves
only the fundamental mode of bending of the arch and the second involves the
first and the second modes. The main effect of the low frequency is revealed by
the modifications imposed to the charts of behaviors, especially in the boundaries
between various dynamics. It is shown that periodic bursters exist in these boundaries.
Finally, validations of the analytically approximated solutions and the numerical
simulations are shown.

Future investigations will focus on the effect of the low frequency excitation in
suppressing an existing chaotic behavior.

Appendix

Parameters of the modulation Eq. (8.20) and the approximated solutions Q1 and Q2

given in (8.22) and (8.23) are given by
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Chapter 9
Extreme Pulse Dynamics in Mode-Locked
Lasers

Wonkeun Chang, José M. Soto-Crespo, Peter Vouzas and Nail Akhmediev

Abstract This chapter is devoted to dissipative solitons that produce sharp peaks
(spikes) on top of its high amplitude central part. The peak amplitude of these spikes
can exceed several times the amplitude of the soliton base. This unusual phenom-
enon is found for solutions of the complex cubic-quintic Ginzburg-Landau equation
(CGLE) in a special region of its free parameters. Depending on them, the spikes
can appear chaotically or regularly. Both regimes are discussed in this chapter. The
spikes with chaotic appearance can be considered as rogue waves and the probabil-
ity density function confirms this. The solitons with spikes can also be considered
as noise-like pulses that have been discussed in several recent publications without
actually revealing the nature of the noise. The wide spectrum of these pulses sug-
gests their application for generation of super-continuum directly out of lasers. The
transition from regular to chaotic dynamics can be used in experiments to investigate
this new interesting phenomenon.

9.1 Introduction

Mode-locked laser systems generating ultrashort pulses [1] have witnessed a rapid
development in the past decade [2–5]. Femtosecond pulses with high average power
are useful in numerous applications, including advanced material processing [6,
7], biomedical applications [8, 9], nonlinear frequency conversions [10], frequency
comb generation [11, 12] and fundamental science [13, 14]. Until recently, most
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of the research focus has been placed on conventional stationary regimes of mode-
locked lasers. Far less study has been carried out on non-stationary regimes.However,
a swift research progress in this field is pushing the limits of our knowledge, requiring
us to get a comprehensive understanding of various other operation regimes.

There is a very large variety of operation regimes of mode-locked lasers that has
been reported in the literature so far. These include stationary regimes, aswell asmany
other regimes of non-stationary nature where consecutive pulses are different, such
as pulsating regimes and a multiplicity of chaotic regimes [15]. Particular examples
include noise-like pulses with a broadband spectrum [16, 17] or “broadband quasi-
stationary pulses” [18]. The number of publications on this subject is continuously
growing [19, 20]. Many studies have shown that these non-stationary regimes appear
at the boundaries of the region of existence of stable stationary pulse regimes [15].
Various types of chaotic pulses have been observed experimentally [21–26]. Finding,
characterizing and understanding this large variety of mode-locked laser operation
regimes constitute important contributions to the research progress in this direction.

The concept of dissipative soliton laser provides an excellent framework to study
various mode-locked laser configurations [2]. It is based on the notion of dissipative
soliton,which refers to the formation of a localized structure in a nonlinear dissipative
system due to mechanisms of self-organization [27]. The concept can be used to
describe complex phenomena observed in many different disciplines, such as pattern
formation in reaction-diffusion systems [28], vegetation clustering in arid lands [29,
30], and ultrashort pulse generation in mode-locked laser systems [31]. Even though
these systems are physically different and therefore require different sets of equations
to describe them, they have basic common ingredients that enable us to consider them
from a single perspective, i.e. the energy/matter gain and loss through the soliton
interactions with its surroundings, and the effects of dispersion and nonlinearity
which redistribute the energy/matter within the soliton.

A dissipative soliton is the result of the complex balance between dispersion,
nonlinearity, gain and loss [32]. In a mode-locked laser, the gain is provided by the
active medium in the cavity, and losses are present in the cavity as well as in the
mode-locking device. The dispersion and nonlinearity are also present in the optical
components comprising the cavity.Amode-locked laser operates in a stationary pulse
regimewhen the balance between these four ingredients ismaintained throughout the
laser operation. If the balance forms a limit-cycle, it operates in a pulsating regime
[15]. Chaotic pulsesmay be also formed in the laser whenwe have a complex balance
dynamics.

In particular, the noise-like pulse regime [16, 17, 19, 20] is characterized by its
output that has: (1) a very broad and smooth spectrum; (2) a temporal autocorrelation
tracewith a narrowpeak standing on awide pedestal; and (3) low temporal coherence.
These output features indicate that a noise-like pulse has a fine inner structure of
ultrashort intense peaks whose duration, amplitude and phase change chaotically. Its
first experimental observation was reported by Horowitz and his co-workers in an
erbium-doped fiber laser [16] and many other reports followed thereafter in other
mode-locked laser configurations [33–35].
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Optical rogue waves are table-top counterparts of destructive giant waves that
appear in the deep ocean [36–38]. There is currently a large research activity on them,
as they provide a convenient way to understand oceanic rogue waves, and possibly
other extreme events, in a controlled laboratory environment. Investigations have
shown that some, but not all, chaotic regimes exhibit optical rogue waves, and the
likelihood of rogue wave appearance is determined by the system parameters. Rogue
waves can appear in both conservative and dissipative systems.

Optical rogue waves were first observed in the super-continuum radiation gener-
ated in an optical fiber by Solli et al. in 2007 [39]. The idea quickly spread into other
fields of physics [40]. Rogue waves have been predicted to exist in plasmas, Bose-
Einstein condensates [41] and even in the financial world [42]. From a mathematical
point of view, a rogue wave could be defined as a solution of an evolution equation,
localized both in space and time [43, 44]. For a conservative system such as the
NLSE, the simplest form of a rogue wave is the Peregrine soliton [45]. Higher-order
solutions localized in time and in space consist of several of them [43]. The Peregrine
soliton has been experimentally observed in optics [46] and for water waves [47] thus
proving the idea of being the prototype of a rogue wave [44]. Higher-order rogue
wave solutions have also been observed [48, 49]. Solutions in the form of rogue
waves can appear in a turbulent wave field [50, 51]. More generally, rogue waves
can be caused by the interaction and cross-interaction of solitons and breathers [52,
53]. In optical fibers, in the presence of energy exchange between solitons, rogue
waves appear as solitons with the highest amplitude generated as a result of their
interactions [54–56].

Extreme optical peaks have been also observed in two dimensions [57–59]. Both
linear [58] and nonlinear [57] phenomena can lead to a non-Gaussian statistics which
is a signature of extreme waves in the system. Mathematically, 2D rogue waves can
be modeled using exact solutions of a higher-dimensional NLS equation [60] or
the Kadomtsev-Petviashvili equation [61]. Reviews of mechanisms for rogue wave
formation can be found in [40, 62–64].

For dissipative systems, the equations governing nonlinear waves are different.
One of them is a generalization of the NLSE, known as the complex cubic-quintic
Ginzburg-Landau equation, widely used to model passively-mode-locked lasers. In
these cases, exact solutions for rogue waves are not known. They can be found using
numerical simulations. The natural name for these objects would be dissipative rogue
waves [65]. Their properties are different from those of rogue waves in conservative
systems. There are many types of such solutions [66–70], and the list is still very far
from being completed.

The progress in the theory of rogue waves goes hand in hand with the progress
in experimental techniques to measure them. As each rogue wave is unique and
different from others, traditional accumulation techniques used to work with trains of
identical pulses are not suitable for this purpose.Newmethods capable of dealingwith
individual pulses have been developed in optics [71]. They include time stretching
analog-to-digital conversions [72, 73], timemicroscopy [74] and time lensmagnifiers
[75]. The main idea of these techniques is to lock the pulse in a given time window
and to stretch it in time to the extent that electronic devices can measure its profile
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with sufficient resolution. These experimental techniques open a new era in optics
making it possible real time measurements of individual pulses rather than averages
over many pulses.

Dissipative systems offer infinite possibilities in generating pulses with unex-
pected features. In addition to those listed above, we can mention spiny solitons [76]
and other formations with extreme spikes on top of existing stationary structures [77,
78]. Finding these solutions require massive numerical simulations on a trial-and-
error basis. So far, we did not find a systematic way to predict the properties of the
pulses obtained for a given set of the system parameters. This can hardly be done
because of the multiplicity of bifurcations that the solutions experience when chang-
ing parameters [79]. Predictions of simple stationary or pulsating solitons can be done
using trial functions and method of moments [80] or Lagrangian techniques [81].
However, pulses with chaotically changing parameters do not allow such approxi-
mations. The pulse profile in this case changes on propagation and modeling it is a
difficult task.

In this chapter, we present several non-stationary regimes of mode-locked lasers
that exhibit extreme pulse dynamics. They have been discovered numerically in [76–
78] by solving the master equation for mode-locked lasers. These solutions are found
in the case of normal cavity dispersion, although the results might be extended to the
anomalous dispersion case as well.

9.2 Modeling Passively Mode-Locked Lasers

One of the main techniques used in the modeling of passively mode-locked lasers is
the so-called master equation approach [82]. This approach was first suggested by
Haus [83, 84], and later developed into a cubic-quintic Ginzburg-Landau equation
(CGLE), as the equation of minimal complexity [85] that admits stable soliton solu-
tions, thus allowing us to describe pulse generation phenomena by optical oscillators.
The presence of several parameters in the CGLEmakes the dynamical system highly
complicated [15]. Each equation parameter can be related to an actual parameter of
a particular laser system [86] although the relation depends on the specific laser and
varies significantly from one type to another.

The CGLE in its standard form is given by [2]:

iψz + D

2
ψt t + |ψ |2ψ + ν|ψ |4ψ = iδψ + iβψt t + iε|ψ |2ψ + iμ|ψ |4ψ , (9.1)

where for mode-locked lasers, t is the normalized time in a reference frame that
moves with the pulse in the cavity and z is related to the cavity round-trip number. ψ
is the complex envelope of the optical field. Reactive terms are given on the left-hand
side; D is the average cavity dispersion: D > 0 for anomalous dispersion and D < 0
for normal dispersion, and ν, which can be either positive or negative, describes the
quintic refractive index.Dissipative terms are presented on the right-hand side; δ (<0)
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represents linear loss; the term containingβ (>0) describes parabolic gain dispersion;
ε (>0) andμ (<0) are the nonlinear gain and gain saturation coefficients, respectively.
Despite (9.1) being an approximate general model for describing systems far from
equilibrium, most of the complex pulse dynamics reported in passively mode-locked
lasers have been found as solutions of this equation. Hence, it is a powerful equation
that can provide a universal approach to study various mode-locked laser systems.

Although dealing with a single equation facilitates the finding, to some extent,
of analytical exact or approximate solutions, in general, we need to rely on numer-
ical methods to solve (9.1). We use a split-step Fourier technique. One of the most
important issues in dealing with extreme pulse dynamics is that the numerical grid
has to be sufficiently wide, in both time and frequency domains, to have practically
zero values at the edges of the grids, while conveniently sampling all the features
happening in different time- or z- scales. We used up to 524,228 mesh points in the
transverse window to sample a t-interval of up to [−200, 200], which ensured that
the localized solutions are contained well within the boundaries of the grids, and
at the same time that a sufficient number of grid points described extreme aspects
of the solution. Moreover, we used an adaptive step-size control in the propagation
direction to optimize the computational efficiency, while minimizing the numerical
errors.

There are six system parameters that can be varied in (9.1). In order to obtain
meaningful localized solutions, each one of the system parameters has to be chosen
within a narrow interval. Without any prior knowledge of the solutions nearby, this
can be a very exhaustive task. However, this is a crucial part of discovering new
dynamics in mode-locked laser systems that may have very important implications.

9.3 Formation of Extreme Amplitude Spikes

Our search resulted in finding quite unusual pulsations of a single pulse, when D =
−2.5, ν = −0.002, δ = −0.08, β = 0.18, ε = 0.04 andμ = −0.000025. As shown
in Fig. 9.1, these pulsations are characterized by a sharp growth of the amplitude of
the pulse followed by an even sharper drop. This spike appears and disappears within
a very short propagation interval. The lifetime of the spike is significantly shorter
than the period of pulsation. The peak amplitude of the spike is alsomuch higher than
the amplitude of the low-lying pulse, which is around 15.A second spike, slightly
different, immediately follows the first one, while the situation remains basically
stationary in the rest of the period. For the above set of equation parameters, the
spikes appear as asymmetric pairs as shown in Fig. 9.1.

The sharp growth can be considered as unexpected, as during most of the period,
the pulse amplitude slightly varies, remaining near 15.We can refer to this part of the
pulse as pedestal. The width of the extreme pulse is much narrower than the width
of the pedestal. The same data are presented in a false color plot in Fig. 9.2. The
two red spots in this figure represent the two extreme pulses forming the pair. After
the sharp growth up to the maximal value, the central amplitude sharply drops to a
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Fig. 9.1 Extreme pulses found for the following set of (9.1) parameters: D = −2.5, ν = −0.002,
δ = −0.08, β = 0.18, ε = 0.04 and μ = −0.000025. Extreme pulses are located on top of a wider
pulse which acts as its pedestal. Only the central part of the pulse is shown here: note that the vertical
scale starts from 10

Fig. 9.2 Same data as in
Fig. 9.1 in false color. The
color scale is saturated at 40
to show the spikes, which
otherwise would not be
visible
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value ≈2 which is much lower than the average amplitude of the pedestal. It is even
more surprising that the extreme pulse generation is repeated after a short interval
following the first peak.

The whole evolution is periodic with two extreme maxima in each period.
Figure9.3 shows the evolution of the field amplitude at its center (red solid-line),
i.e. at the point t = 0, and the total pulse energy Q (z) which is

∫ ∞
−∞|ψ (z, t)|2dt

(black dashed-line). The amplitudes of the two extreme peaks are similar but not
exactly the same. The first peak is slightly higher than the second one. Accordingly,
the total energy when the second peak appears is lower than that of the first one. The
major fraction of the energy is contained within the pedestal. The increase of energy
when the first extreme pulse appears is around 30% of the average energy of the
pulse. The pulse energy increases gradually well before the appearance of the first
spike as shown in Fig. 9.3. The period of pulsations is much longer than the lifetime
of each peak. The pair generation is repeated indefinitely.
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Fig. 9.3 Evolution of the
pulse amplitude at its center
|ψ (z, t = 0)| (red solid-line)
and the pulse energy Q (z)
(black dashed-line) for the
same parameters as in
Fig. 9.1
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Fig. 9.4 Evolution of the
spectrum of the pulse shown
in Fig. 9.4
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Another observation from Fig. 9.3 is that the amplitude of the extreme peaks in the
solution are approximately five times higher than the amplitude of the pedestal. This
means that the intensity amplification factor of the peak is around 25. This creates
interesting possibilities for practical applications of this effect. A single laser oscil-
lator can be used for generating high amplitude ultrashort pulses without additional
compressors provided that the correct parameters of the system are found and care-
fully tuned to match the period of the evolution with the cavity length. According to
these simulations, this can be done in lasers with normal average cavity dispersion.

The evolution of the pulse spectrum is shown in Fig. 9.4. The z-interval of this plot
is the same as in Fig. 9.1. It includes the two extreme peaks of the pair. The extreme
peaks cause the widening of the spectrum. Two sidebands are clearly seen on each
side of the main spectral peak. They vary in size from the first peak to the second
one. These sidebands are not related to the periodicity of the overall evolution. They
quickly vanish when the high peaks disappear.
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9.4 Bifurcation Diagram

The regime of pulse generation presented in Sect. 9.3 is periodic with high accuracy.
The existence of two different spikes within each spatial period is an unusual feature
of this periodic solution. As in other dissipative systems, periodic motion here should
be considered as relaxation oscillations. These are usually sensitive to the parameters
of the system. Changing any of them leads to drastic changes of the oscillation
dynamics. Figure9.5 shows the bifurcation diagram of the peak amplitude of the
spikes when the dispersion parameter D is changed from −2.49 to −2.67. Let us
recall that previous figures correspond to the value D = −2.5. At this point, we
have two maximal amplitudes that are shown by two dots one above the other on
this diagram. Reducing the parameter D, i.e. moving towards the left, we observe a
smooth increase of the two amplitudes.

The two spikes can be observed up to the point D ≈ −2.64. At this point, a
bifurcation causes the merging of the two spikes into one. In the interval −2.662 <

D < −2.64 the soliton has only one spike in each period. Thus we have a single
curve on the bifurcation diagram. An example of the pulse amplitude evolution at
one point of this interval is shown in Fig. 9.6. The point D ≈ −2.664 represents the
transition to a chaotic state where the spikes appear randomly. Every point on the
vertical lines in this region represents a given realization of the spike amplitude. As
the plot shows, the amplitudes here can take even higher values than in the region
of regularly pulsating evolution. Thus, the region of the dispersion parameter lower
than D = −2.662, would be the one where we can look for optical rogue waves [66,
87–89].

We have chosen D to be variable for the bifurcation diagram as the dispersion
is the parameter of a laser system that can be changed with a relative ease. Similar
bifurcation diagrams can be obtained when changing other parameters of the system.
An important point is that the peak amplitude of the spikes remain extremely high
relative to the peak amplitude of the pedestal in the whole interval of D presented
in Fig. 9.5. They also remain high when we change other parameters. For example,

Fig. 9.5 Bifurcation
diagram: spike amplitudes
versus dispersion parameter
D. Pairs merge into a single
high peak at D ≈ −2.64.
The soliton becomes
unstable and disappears at
D > −2.49. The soliton
enters a chaotic regime of
evolution at D < −2.662
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Fig. 9.6 Equally separated
spikes on top of a soliton
when D = −2.65. All spikes
are now located at the center
(t = 0) of the pulsating
soliton
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Fig. 9.7 Spiny soliton
obtained for D = −2.67.
The rest of parameters are the
same as in Fig. 9.1. The blue
and red curves correspond to
two different z. The red
curve has an exceptionally
high amplitude spike
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increasing the parameter ε from 0.04 to 0.042 while leaving other parameters fixed
also results in the merging of the pair of peaks within a period into a single one. Still,
the motion remains periodic in z although the period changes approximately from
0.27 to 0.045, i.e. it is reduced approximately six times. Further increase of ε up to
ε = 0.0423 leads to a chaotic pulse evolution while a small decrease of ε from 0.04
to 0.039, results in pulse decay and its subsequent disappearance.

9.5 Spiny Solitons

As shown in Fig. 9.5, the system enters a chaotic regime when D < −2.662.We now
look at the details of the chaotic operation regime in this region. Examples of the
chaotic solutions at D = −2.67 for two different values of z are shown in Fig. 9.7.
The upper part of the pulse evolves chaotically while the whole pulse stays localized
having well defined exponentially decaying tails. It exhibits many features of the
noise-like pulses, except that chaotically varying ultrashort structures are present on
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top of a long pulse rather than from the zero background as in typical noise-like
pulses. Hence, we name the solutions shown in Fig. 9.7, “spiny solitons”.

Similar to the solutions studied in Sect. 9.3, the spiny solitons also have a localized
pedestal with short-lived spikes that appear and disappear on top of it. However, in
drastic contrast to the regular pulsating pattern observed before, the appearance of
the spikes are random, both in t and z directions. The peak amplitudes also vary
chaotically, andmay reach very high values. For example, one spike shown in Fig. 9.7
has a particularly high amplitude ≈80. Only the tails of the solution have a regular
exponential decay.

The appearance of these chaotic spikes is the most prominent feature of the solu-
tion for a given set of (9.1) parameters. In order to see this more clearly, we present
in Fig. 9.8 the false color plot of the field amplitude evolution |ψ | in the (t ,z)-plane.
Several spikes, chaotically appearing and quickly disappearing across the soliton,
are shown in the figure. The points with the highest amplitudes of these spikes can
be seen as red spots. These spots are very small in comparison to the width of the
soliton. They are exceptionally narrow both in z and in t directions. However, their

Fig. 9.8 False color plot of
the field amplitude of the
spiny soliton on the
(t ,z)-plane. Narrow
high-amplitude (>40) spikes
randomly appear on top of
the soliton. The horizontal
scale here is zoomed in
comparison to Fig. 9.7,
allowing us to see more
clearly the central part of the
soliton
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Fig. 9.9 Absolute maximum
field amplitude for all t at
each z, for the same data as
in Fig. 9.8. Spikes have
similar profiles but different
amplitudes
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amplitude exceeds the highest red level in the color scale shown on the right hand
side of this plot, that for the sake of clarity of the whole pattern has been set to 40.

In order to see the real values of the amplitudes of these peaks, we selected
the absolute maximum of each field amplitude profile |ψ (t)| and plotted this value
against z. Figure9.9 represents these data for the same z-interval as in Fig. 9.8. As
we can see, these peaks are generated with randomly changing amplitudes, but the
height of most of them is above the level of 70.

9.6 Probability Density Functions and Optical Rogue
Waves

The chaotically appearing spikes with extreme amplitudes may represent optical
rogue waves. We find this out by calculating the probability density function (PDF)
for the peak maxima in the region where chaotic behavior is observed. First, we have
found that consecutive profiles separated by a z-interval of 0.02 appear completely
uncorrelated, thus confirming that the field profiles are truly chaotic. As a second step,
we counted all localmaxima appearing on top of each soliton profile |ψ (t)| separated
by �z = 0.02 for 50 different realizations. We considered various separations larger
than 0.02, but did not observe perceptible differences when increasing �z. Counting
millions of local maxima this way we calculated the density of probability for each
amplitude. The amplitude slots have been chosen sufficiently small for curves to be
smooth enough, but sufficiently large to have adequate number of data within each
slot.

The PDFs for the data exemplified by Fig. 9.8 are shown in Fig. 9.10. Probability is
plotted in logarithmic scale. The probability curves are calculated for four different
values of D. The curves do not change much when D is varied. They show the
maximum of probability around the amplitude of the pedestal and decrease at each
side of this maximum. The data with very small amplitudes have been removed, and

Fig. 9.10 Probability
density functions calculated
for several values of D. The
rest of the parameters are the
same as in Fig. 9.1. The
dashed lines represent the
best fit for the exponential
tails of each probability
density function curve. The
vertical dotted lines
correspond to rogue wave
thresholds
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Table 9.1 The total number of wave maxima counted in simulations, the calculated significant
wave-height (SWH), the rogue wave amplitude (2.2 × SWH) and the total probability of a rogue
event for four different values of D

D Number of
maxima

SWH Rogue wave
amplitude

Rogue wave
probability

−2.7 27,041,311 20.80 >45.77 0.003

−2.8 27,310,749 20.78 >45.71 0.003

−2.9 31,313,312 20.73 >45.61 0.003

−3.0 27,460,729 20.65 >45.42 0.003

the significant wave height (SWH) is calculated using its standard definition, which
is the mean wave height of the highest third of the waves. The values of the SWH
for each case are given in Table9.1. Rogue waves are defined as the waves that have
an amplitude exceeding 2.2 times the SWH. The rogue wave threshold for each D
is also presented in Table9.1.

From Fig. 9.10, we can clearly see the elevated tail of the PDF at the region of
spikes, i.e. at the amplitudes around 70–80. The probability in this region is several
orders of magnitude higher than expected from a simple exponential approximation
of the main part of the curve. Hence, these spikes indeed represent optical rogue
waves. The total probability of the appearance of rogue waves is calculated as an
integral of the area below the PDF curve above the rogue wave threshold. This
probability is found to be 0.003 for all four cases as can be seen from Table9.1.

9.7 Measurement Techniques

It may not be possible to register the short spikes in optical experiments. A com-
plete characterization of the chaotic spikes through shot-to-shot measurements often
requires highly-sensitive ultrafast diagnostic tools that may not be readily available.
What could be possible to measure is the average profile of the pulses. An exam-
ple of average profile is shown in Fig. 9.11a. The curve is calculated as the average
of profiles taken at 10,000 equidistantly located values of z along the direction of
propagation. The spikes are then averaged out and the resulting soliton has a flat top.

The fine structure of a pulse can be studied experimentally through its autocor-
relation function. In particular, noise-like pulses have been characterized from these
measurements [16, 90]. The standard way of measuring the intensity autocorrelation
function uses the second harmonic generation (SHG) technique with a nonlinear
crystal where two beams cross each other with a time delay τ . The autocorrelation
function C (τ ) obtained from the SHG data can be calculated as:
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Fig. 9.11 a The average
profile of the chaotic soliton
at D = −2.67. The spikes
are averaged out and the
soliton has a flat top. b
Average autocorrelation
function for the same data as
in (a). c Corresponding
average spectrum for the
same data. The rest of the
parameters are the same as in
Fig. 9.1
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∫ ∞
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Ii (t) Ii (t − τ) dt , (9.2)

where I (t) = |ψ (t)|2 and the sum signifies averaging on N data set chosen to be
equally spaced along z. We set N to be large enough (10,000) to make sure that many
rogue wave events occur within the interval. In order to have a convenient normal-
ization, this function is divided by its maximum value C (0). The autocorrelation
function defined this way is shown in Fig. 9.11b for the same data as in Fig. 9.11a.
The base of the autocorrelation function naturally depends on the soliton width.
Here, the peak height relative to the base indicates that there is a strong background
of dissipative soliton that results in the base. On the other hand, the width of the
autocorrelation peak is not necessarily defined by the widths of spikes on top of the
pulse. The coherence length across the chaotic profile is actually wider than the size
of the spikes. Comparing our results with the data available in the literature, we have
found that the shape of the autocorrelation function in Fig. 9.11b is close to the one
obtained in [90, 91] rather than the one in [16].
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We have also calculated the average spectrum using the same number of data
(10,000). It is shown in Fig. 9.11c. Although, we used a relatively large amount of
data for averaging, the spectrum still shows a chaotic component in its central part.
The slight asymmetry of the spectrum is also related to the insufficient number of
data taken for the averaging. The specific shape of this spectrum may potentially be
used in experiments for identification of this type of dissipative solitons. Indeed, the
spectrum has a unique shape with characteristic shoulders and horns. It is different
from the smooth narrow [16, 19] or wide [33] spectra observed in experimental
studies of noise-like pulses. It is also different from the complicated multi-peak
spectra observed in [92]. However, there are common features of our spectrum with
those observed in [18]. Although, we cannot compare the autocorrelation functions
in this case. Generally, it is very likely that the solitons observed in our present
numerical simulations comprise a new class of dissipative solitons, yet to be observed
experimentally.

Modern experimental techniques allow us to measure short pulses simultaneously
in frequency and in time domains. One of these powerful techniques is known as
cross-correlation frequency-resolved optical gating (XFROG) [93]. The technique is
especially useful when dealing with pulses having a rich structure. In order to give
an idea of how the XFROG diagram may look like in the case of spiny solitons, we
have calculated one example which is shown in Fig. 9.12. For these calculations, we
used the gate pulse in the form of a Gaussian with full-width at half maximum of
0.1. In order to obtain the XFROG diagram, we used one profile ψ (t, z0) of the data
shown in Fig. 9.8. We have chosen the profile at z0 = 0.0259, which simultaneously
contains one spike and a peak growing into a spike. These two points are separated
in τ . The spike corresponds to the white spot in Fig. 9.12 at τ ≈ −1.1 while the
growing peak corresponds to the red spot at τ ≈ 2.3.

These two parts of the spectrogram show the two stages of the spike evolution
in time. The trace of earlier stage at τ ≈ 2.3 is tilted demonstrating that the spike is
in the stage of compression. The tilt would be better seen if the diagram is zoomed
along the τ -axis. The stage at τ ≈ −1.1 corresponds to completely compressed

Fig. 9.12 Cross-correlation
frequency-resolved optical
gating diagram calculated
with the same data as in
Fig. 9.8 at z = 0.0259
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spike. Consequently, it does not have a tilt. The spectrum in most part of the XFROG
pattern is relatively narrow.However, at τ ≈ −1.1, it significantlywidens and extends
beyond the frame of the plot from −100 to +100.

9.8 Conclusions

In conclusion, we have presented numerical results demonstrating the existence of
solitons with short-life narrow spikes on top of its wide base, i.e. the spikes are
localized both in space and time in contrast to the base soliton that is localized only
in transverse direction. The spikes may appear periodically following a strict cycle
or chaotically in both space and time. We named the chaotic objects “spiny soli-
tons”. Spiny solitons may appear in different forms depending on the parameters
of the equation that governs the dynamics. We dealt with the complex cubic-quintic
Ginzburg-Landau equation (CGLE) that models many phenomena in physics includ-
ing the generation of short pulses in passively mode-locked lasers. Our results are
discussed in terms of optical pulses but the versatility of the CGLE suggests that
periodic spikes and spiny solitons may appear in a variety of settings. Spiny solitons
can appear in the form of rogue waves or noise-like pulses. Their width is narrower
than the base soliton thus providing the way for generating ultra-short pulses. Their
amplitude is higher than the amplitude of its base suggesting that these pulses can
carry significant amount of energy. The controlled transition from regular to chaotic
generation of spikes is another practical way of dealing with these pulses. They can
be generated in the form of rogue waves as well as in the form of periodic train of
pulses. The width of their spectrum can also be controlled by the external parameters.
This provides us with a new way of generating super-continuum in optics. Hence
the periodic spike formations and the spiny solitons have a number of interesting
properties that can be used in various applications. The region of parameters of the
CGLE that we gave in this chapter is not the only one that produces these solitons.
Further studies may produce even more interesting solutions that will enrich our
knowledge of dissipative solitons and their applications.
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Chapter 10
Periodic and Localized Structures
in a Photonic Crystal Fiber Resonator

L. Bahloul, L. Cherbi, A. Hariz, A. Makhoute, E. Averlant and M. Tlidi

Abstract We consider a photonic crystal fiber resonator, driven by a coherent beam.
The threshold for appearance of dark localized structures is estimated analytically and
numerically by using a weakly nonlinear analysis in the vicinity of the modulational
instability threshold.Thenonlinear analysis allows to determine the parameter regime
where the transition from supercritical to subcritical modulational instability takes
place. This transition determines the threshold associated with the formation of dark
cavity solitons. Numerical simulations of the governing model equation are in good
agreement with the analytical results.

10.1 Introduction

Localized structures (LS’s) often called cavity solitons belong to the class of dissipa-
tive structures found far from equilibrium. They can be localized in space and consist
of bright or dark pulses. Typically, LS’s are generated in a sub-critical domain where
a uniform solution and a periodic structure coexist. They exhibit a high degree ofmul-
tistability in a finite range of parameters called a pinning region. Spatial confinement
is a universal phenomenon observed in a wide variety of nonlinear systems such as
biology, plant ecology, chemistry, fluidmechanics, nonlinear optics and laser physics.
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The emergence of LS’s is a well-documented issue (see latest overviews on this issue
[1–5]). For broad area optical cavities, LSs were fist predicted in [6, 7] and found
experimentally in optical bistable systems. They appear when a single homogeneous
steady state coexists with periodic structures such as hexagons and stripes [8]. When
they are sufficiently separated from each other, bright or dark peaks are independent
and randomly distributed in space. However, when the distance between peaks or
dips decreases they start to interact via their oscillating, exponentially decaying tails.
This interaction then leads to the formation of clusters [9–12].

In fiber cavities, the coupling between chromatic dispersion and nonlinearity may
be the source of a temporal modulational instability [13]. The theoretical description
of all-fiber resonators is well described by thewell knownLugiato and Lefevermodel
(LL model, [14]). As in the case of spatial cavities, LS’s are nonlinear bright peaks
that have been theoretically predicted [15] and experimentally observed [16] in all
fiber cavity driven by a coherent injected signal. This simple and robust device has
attracted growing interest in fiber optics due to potential applications for all-optical
control of light. All fiber resonators could allow for either the conception of all-optic
systems for generation of signals with high repetition rate or to operate as all-optical
memories with a bitrate that can reach 25 Gbits/s [16]. Temporal LS’s are generated
in the pinning range of parameters where the system exhibits a coexistence between
two states: the uniform background and the train of pulses of light that emerges
from subcritical modulational instability [17]. It has been shown that temporal LSs
exhibits a homoclic snaking type of bifurcation [17].

When all fiber cavities are operating close to the zero dispersion regime, it is
necessary to take into account high-order chromatic dispersion effects. These effects
mayplay an important role in the dynamics of photonic crystal fibers (PCF’s) [18–20].
PCF’s allow a high control of the dispersion curve and permit exploring previously
inaccessible parameter regimes [21–24]. The inclusion of the fourth order dispersion
allows the modulational instability to have a finite domain of existence delimited
by two pump power values [25]. Fourth order dispersion has also been predicted to
stabilize dark temporal cavity solitons in PCF resonators [17]. Together with this
effect, the third order dispersion causes a spontaneous broken reflection symmetry
and allows a motion of both periodic and localized structures [26]. The influence of
higher order dispersion on the nonlinear dynamical properties of bright temporal LS’s
in all photonic crystal fiber cavities has been investigated in [27]. Temporal soliton
families and resonant radiation near zero group-velocity dispersion have been also
reported [28].

The paper is organised as follows. After an introduction, we describe a photonic
crystal cavity in Sect. 10.1. We provide a detailed weakly nonlinear analysis near
the second threshold associated with the modulational instability in Sect. 10.3. The
stationary and drifting LS’s are presented in in Sect. 10.4. We conclude in Sect. 10.5.
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10.2 Mean Field Model for Photonic Crystal Fiber Cavities

We consider an optical system in which a continuous wave (CW) of power S2 is
launched into a single mode photonic crystal fiber resonator by means of a beam
splitter, as shown inFig. 10.1. The free propagation of light along thefiber is described
by a generalized nonlinear Schrödinger equation (NLS) [29] where the propagation
constant is expanded to the fourth order of dispersion in Taylor series. The NLS
combined with appropriate cavity boundary conditions leads to the model equation
[25]:

tr
∂E(t, τ )

∂t
= (−α − iδ0 + iγL|E |2 − iβ2

L

2

∂2

∂τ 2
(10.1)

+β3
L

6

∂3

∂τ 3
+ iβ4

L

24

∂4

∂τ 4
)E(t, τ ) + √

T S,

where E(t, τ ) is the slowly varying envelope of the electric field, tr is the time of
one cavity round trip, t is the slow time scale that describes the evolution of the field
envelope from one cavity round trip to the other, and τ is the fast time in the reference
framemovingwith the group velocity of the light, δ0 is the detuning between the input
beam frequency, and the closest cavity resonance. The coefficients β2,3,4 account for
the second, third and fourth order chromatic dispersion, respectively, γ is nonlinear
parameter, α represents the linear dissipation and T is the transmission coefficient
of the beam splitter. In addition, we have neglected nonlinear phenomena such as
two-photon absorption and Raman scattering, since we deal with pulses width larger
than 1 ps [17].

Equation (10.1) is valid when the cavity finesse is high, and when the nonlinear
phase shift and losses are much smaller than unity. We furthermore assume that the
optical field maintains its polarization as it propagates along the fiber. The (10.1) can
be further simplified to obtain a generalized Lugiato-Lefever model in an adimen-
sional form [25]

Fig. 10.1 Schematic setup
of PCF cavity. The
transmission and the
reflexion coefficients of the
beam spitter (BS) are denoted
by R and T , respectively.
The slowly varying envelope
of the electric field
circulation inside the cavity
is represented by E , and S is
the injected field amplitude
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∂E

∂t
= S − (1 + i�)E + i |E |2 E − i B2

∂2E

∂τ 2
(10.2)

+B3
∂3E

∂τ 3
+ i B4

∂4E

∂τ 4
.

The link between the adimensional variables and parameters and the physical ones
are defined in [25]. The homogeneous steady states (HSS) of (10.2) satisfy S =
[1 + i(� − |Es |2)]Es . We perform a linear stability analysis of the HSS with respect
to finite frequency perturbations of the form exp(λt + i�τ ). This analysis yields the
eigenvalues

λ = −1 + i B3�
3 ±

√
I 2s − (−� + 2Is + B2�2 + B4�4)2 (10.3)

where Is = |Es |2 corresponds to the uniform intensity background of light.
The system becomes unstable when one of these two eigenvalues becomes zero

with a finite frequency. The system exhibits a modulational instability between
the first threshold Ic1 = 1, and the second threshold Ic2 = [2κ + √

κ2 − 3]/3 with
κ = B2

2/(4B4) + �. It has been shown in [25, 27] that the fourth-order disper-
sion limits the region of modulation instability between these two intensity lev-
els. Indeed, when B4 = 0, the second threshold does not exist. We note also
frequency degeneracy �2

l and �2
u at the first instability threshold where �2

l,u =
[−B2 ±

√
B2
2 + 4B4(� − 2)]/(2B4). At the second threshold Ic2, a new critical fre-

quency appears �2 = −B2/2B4.
In what follows, we remove the frequency degeneracy for the first threshold by

choosing B2, B4 and � such as B2
2 + 4(� − 2)B4 = 0. In this case, the MI zone

is limited between two thresholds, the first at I1c = 1 and the second will be at
I2c = 5/3, while the destabilized frequencies in both thresholds will be equal to
�2

c = �2
l = �2

u = −B2/(2B4).

10.3 Weakly Nonlinear Analysis

We shall describe the nonlinear evolution of the system in the vicinity of the second
instability point I2c = 5/3. The small-amplitude inhomogeneous stationary solu-
tions, i.e., solutions that are independent of slow t and fast τ times can be calculated
analytically by employing the standard theory [30, 31]. For this purpose, we first
decompose the electric field into its real and imaginary parts: E = x1 + i x2 and intro-
duce the excess variables as (x1(t, τ ), x2(t, τ )) = (x1s, x2s) − (U (t, τ ), V (t, τ ))

with x1s and x2s are, respectively, the real and the imaginary parts of the homo-
geneous solutions independent of t and τ . The homogeneous solutions of (10.2)
obey to
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− x1s + S − x2s(x
2
1s + x22s − �) = 0 , (10.4)

−x2s + x1s(x
2
1s + x22s − �) = 0 . (10.5)

Next, we introduce a small parameter ε � 1 which measures the distance from the
critical modulational point. We expand all variables around their critical values at
the bifurcation point.

S = S2c + εμ1 + ε2μ2 + · · · (10.6)

(U, V ) = ε(U0, V0) + ε2(U1, V1) + ε3(U2, V2) + · · · (10.7)

(x1s, x2s) = (a0, b0) + ε(a1, b1) + ε2(a2, b2) + · · · (10.8)

We expand the time as

∂

∂t
= ∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ · · · (10.9)

At the leading order in εwefind that a0 = b0 = μ1 = 0. At this order, near the critical
point we can approximate soltuions by a linear superposition of the corresponding
critical frequencies �c and Qc

(U0, V0) =
(
1,

ρ + 3

1 − 3ρ

)
W̃ exp i(QcT0 + �cτ ) + c.c. (10.10)

where c.c. denotes the complex conjugate and ρ = 5/3 − �. The complex amplitude
W̃ associated with the frequancy �c does not depend on the time τ , it depends only
on the time T0. The quantities ai , bi ,Ui , and Vi can be calculated by inserting (10.6–
10.9) into (10.2, 10.4, 10.5) and equating terms with the same powers of ε. At order
ε2, the solvavility condition imposes that a1 = b1 = μ1 = 0. The application of the
solvability condition to the order ε3 brings an amplitude equation for the unstable
mode. In terms of the unscaled amplitudes (W = ε W̃+ · · · ), we obtain

∂W

∂t
= μW + ( fr + i fi )W |W |2 (10.11)

in which

μ = S − S2c
(3ρ + 1))(ρ + 3)Sc

with S2c =
√
5

3

√
1 + ρ2 (10.12)

fr = ac + bd

c2 + d2
and fi = bc − ad

c2 + d2
(10.13)

where the coefficients a, b, c and d are expressed in term of the detuning parameter
� = 5/3 − ρ as
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a = −4(� − 2)(α1 + α2) + α3

α1 = 59049�7 − 798255�6 + 4417983�5 − 13345641�4

α2 = 24735807�3 − 29605896�2 + 21969258� − 7708940

α3 = 600(486�6 − 5508�5 + 24435�4 − 57654�3 + 82686�2 − 73156� + 30792)B3�
3

b = −60(3� − 4)(243�5 − 2268�4 + 7398�3 − 11412�2 + 11040� − 7304)B3�
3

c = 3(3�2 − 20� + 28)(3� − 4)2c1

c1 = (9�2 − 30� + 34)2(100(B3�
3)2 − 81�2 + 348� − 372)

d = −60(� − 2)(3� − 14)(3� − 4)2(9�2 − 30� + 34)2B3�
3

When fr (�) < 0, the modulational instability is subcritical. In this case, it is neces-
sary to retain the fifth order in ε, since (10.11) loses its meaning. Thus, if fr (�) > 0,
the modulational instability is supercritical, leading to stable small amplitude tempo-
ral structures. The parameter regime where the bifurcation is supercritical is plotted
in Fig. 10.2a. The transition from super- to sub-critical modulationnal instability
is explicitly given by fr = 0. This condition corresponds to the threshold of the
emergence of temporal cavity solitons that we shall discuss is the next section. The
dependence of the threshold as a function of the third order dispersion coefficient
and of the detuning parameter is shown in Fig. 10.2b. Note, however, that the third
order dispersion affects the threshold of the modulational instability as well. In the
supercritical case where fr (�) > 0, we seek for solutions of (10.11) in the form of
W = A exp (i Rt). Inserting this ansatz in (10.11), the stationary solutions are

As = 0, As = ±
√

−μ

fr
and R = μ fi

fr
(10.14)

The third order dispersion breaks the symmetry (τ ,−τ ). This breaking symmetry
induces a motion of temporal structures and the linear and nonlinear correction to
their velocity is

fr(Δ)

Δ

-3

0

3

6

9

1.401 1.5 1.6 1.7

(a)

Δ

1.48

1.4

1.3

0 1 2
B3

(b)

subcritical

supercritical

Fig. 10.2 The threshold associated with the transition from super- to sub-critical modulational
instability is plotted a as a function of the detuning parameter � for B3 = 0; b in the plane (B3,
�). Others parameters are B4 = 0.5, and B2 = √

4B4(2 − �)
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Fig. 10.3 Linear velocity of the periodic structure and its nonlinear correction with respect to B3.
Dashed curve denotes the linear velocity. The velocitywith its nonlinear correction (10.15) is plotted
by a solid line. The velocity obtained from direct numerical simulations of (10.2) are indicated by
circles. Parameters are S = 1.4307, ε2 = 0.006, � = 1.2, B4 = 0.1, and B2 = −0.5657
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Fig. 10.4 Bifurcation diagram associated with the temporal train of periodic pulses that emerges
from subcritical modulational instability. Parameter are B4 = 0.1, B2 = −0.3347, B3 = 0, � =
1.72, The full (dashed) curve indicates stable (unstable) solutions. The open circles represent the
numerical values of the minimum intensity of the temporal train of periodic pulses

v = vl + vnl with vl = ∂λi

∂�
and vnl = ∂R

∂�
(10.15)

In terms of the dynamical parameters the linear and the nonlinear velocities are

vl = 3B3�
2 and vnl = μ

fr

∂ fi
∂�

(10.16)
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The velocity as a function of the third order dispersion coefficient (10.16) is plotted in
Fig. 10.3. The velocity of moving temporal structures calculated through numerical
simulations of the model, (10.2), is in good agreement with the one estimated from
the above analysis.

10.4 Moving Localized Structures

In this section, we are interested in the situation where the bifurcation towards modu-
lational instability appears subcritically. In the absence of the third order dispersion,
the typical bifurcation diagram is shown in Fig. 10.4. In the domain, denoted by L ,
the system exhibits a coexistence between two stable solutions: the homogeneous
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Fig. 10.5 Stationary temporal dark cavity solitons with up to 6 dips. a-f corresponding to 1–6 dips
or holes in the insensity profiles, respectively. Parameters are the same as Fig. 10.3 with B3 = 0
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Fig. 10.6 Moving temporal dark cavity solitons with up to 4 dips. a-f are the intensity profiles in
the PCF cavity at t = 0, whereas e-h are space-time maps in the (t,τ ) plane. Parameters are the
same as Fig. 10.3 with B3 = 0.1

steady state (uniform background) and the temporal train of periodic pulses that
emerges from subcritical modulational instability. Temporal dark cavity solitons,
connecting the HSS and a branch of periodic solutions, are found in a well-defined
region of parameters called a pinning zone denoted L in Fig. 10.4. It has been shown
that temporal cavity solitons exhibit a homoclinic snaking type of bifurcation [17].
Depending on the initial condition used, a single dip, or multiple ones in the intensity
profile can be generated in direct numerical simulations of (10.2). Examples of sta-
tionary temporal dark cavity solitons involving one to six dips as shown in Fig. 10.5.
They are obtained from the same values of parameters and they are characterized by
an oscillating exponentially decaying tails.

Let us now investigate the effect of third order dispersion on the dark cavity
solitons. As we have already mentioned, this effect breaks the reflexion symmetry
(τ → −τ ) of temporal cavity solitons emerging from subcritical bifurcation point.
This symmetry breaking induces a drift of the temporal cavity solitonswith a constant
velocity. Examples of drifiting temporal dark cavity solitons are shown in τ -t maps
of the Fig. 10.6.

10.5 Conclusions

In this paper, we have investigated the weakly nonlinear dynamics of all fiber cavi-
ties with both fourth and third order dispersions in the neighborhood of the second
modulational instability point. We have estimated the velocity of moving temporal
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train of periodic pulses that emerge from supercritical modulational instability point.
The drift is a consequence of the third order dispersion that breaks the reflexion
symmetry (τ → −τ ). When the modulational instability appears subcritically, we
found moving temporal dark solitons that can be either isolated or self-organized.
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Chapter 11
Exploring the Nonlinear Stochastic Dynamics
of an Orchard Sprayer Tower Moving
Through an Irregular Terrain

Americo Cunha Jr, Jorge Luis Palacios Felix and José Manoel Balthazar

Abstract In agricultural industry, the process of orchards spraying is of extreme
importance to avoid losses and reduction of quality in the products. In orchards spray-
ing process an equipment called sprayer tower is used. It consists of a reservoir and
fans mounted over an articulated tower, which is supported by a vehicle suspension.
Due to soil irregularities this equipment is subject to random loads, which may ham-
per the proper dispersion of the spraying fluid. This work presents the construction
of a consistent stochastic model of uncertainties to describe the non-linear dynamics
of an orchard sprayer tower. In this model, the mechanical system is described by as
a multi-body with three degrees of freedom, and random loadings as a harmonic ran-
dom process. Uncertainties are taken into account through a parametric probabilistic
approach, where maximum entropy principle is used to specify random parameters
distributions. The propagation of uncertainties through the model is computed via
Monte Carlo method.

11.1 Introduction

The spraying process of orchards has extreme importance in fruit growing, not only
to prevent the economic damages associated with the loss of a production, but also to
ensure the quality of the fruit that will arrive the final consumer. This process uses an
equipment, called sprayer tower, which is illustrated in Fig. 11.1. This equipment is
composed by a vehicle suspension and a support tower, equipped with several fans,
and in a typical operating condition it vibrates nonlinearly [2, 8].
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Fig. 11.1 Sketch of the orchard sprayer tower (courtesy of Máquinas Agrícolas Jacto S/A)

Understanding the dynamics of this equipment is essential to its design and also
to discover operating conditions that may be harmful to the spraying process. In this
sense, this work aims to model the nonlinear dynamics of the sprayer tower, taking
into account the deterministic and stochastic aspects. In particular, it is of great
interest to predict the maximum amplitude of the lateral vibration of the structure,
and verify if the uncertainties in the soil-induced loadings are capable of generating
undesirable levels of oscillations.

The rest of this chapter is organized as follows. In Sect. 11.2 it is presented the
deterministic model and analysis for the mechanical system. A stochastic model
to take into account the uncertainties associated to the model parameters, and the
corresponding stochastic simulations are shown in Sect. 11.3. Finally, in Sect. 11.4,
final remarks are highlighted.

11.2 Deterministic Analysis

In the modeling process developed here, the mechanical system is considered as
the multibody system illustrated in Fig. 11.2. The masses of the chassis and the
tank are assumed to be concentrated at the bottom of the double pendulum, as a
point mass denoted by m1. On the other hand, the point mass m2, at the top of the
double pendulum, takes into account the masses of the fans. The point of articulation
between the moving suspension and the tower is denoted by P and its distance to
the suspension center of gravity is L1. The junction P has torsional stiffness kT ,
and damping torsional coefficient cT . The tower has length L2, and is considered
to be massless. The left wheel of the vehicle suspension is represented by a pair
spring/damper with constant respectively given by k1 and c1 located at a distance B1

from suspension center line, and it is subject to a vertical displacement ye1. Similarly,
the right wheel is represented by a pair spring/damper characterized by k2 and c2, it
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Fig. 11.2 Schematic
representation of the
mechanical-mathematical
model: an inverted double
pendulum, mounted on a
moving suspension

is B2 away from suspension center line, and displaces vertically ye2. The moments
of inertia of the suspension and of the tower, with respect to their centers of gravity,
are respectively denoted by I1 and I2. The acceleration of gravity is denoted by g.
Finally, introducing the inertial frame of reference XY , the vertical displacement
of the suspension is measured by y1, while its rotation is computed by φ1, and the
rotation of the tower is denoted by φ2. Therefore, this model, which was developed
by [7, 8], has three degrees of freedom: y1, φ1 and φ2.

It can be deduced from the geometry of Fig. 11.2 that tower horizontal (lateral)
displacement is given by

x2 = −L1 sin φ1 − L2 sin φ2. (11.1)

Typically, the sprayer tower moves on an irregular terrain during its operation,
which induces oscillatory displacements (loads) in the tires. In order to reproduce a
typical load (induced by soil) the left and right tires displacements are respectively
assumed to be periodic functions in time, out of phase, with the same amplitude, and
a single frequencial component,

ye1(t) = A sin (ω t) , and ye2(t) = A sin (ω t + ρ) , (11.2)

where A and ω respectively denotes the amplitude and frequency of the tires dis-
placements, and ρ is the phase shift between the two tires.

Employing a Lagrangian formalism to obtain the nonlinear dynamical system
associated to the mechanical system, the following set of ordinary differential equa-
tions is obtained
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[M]

⎛
⎝

ÿ1
φ̈1

φ̈2

⎞
⎠ + [N ]

⎛
⎝

ẏ21
φ̇2
1

φ̇2
2

⎞
⎠ + [C]

⎛
⎝

ẏ1
φ̇1

φ̇2

⎞
⎠ + [K ]

⎛
⎝

y1
φ1

φ2

⎞
⎠ = g − h, (11.3)

where [M], [N ], [C] and [N ] are 3 × 3 (configuration dependent) real matrices,
respectively, defined by

[M] =
⎡
⎣

m1 + m2 −m2 L1 sin φ1 −m2 L2 sin φ1

−m2 L1 sin φ1 I1 + m2 L2
1 m2 L1 L2 cos (φ2 − φ1)

−m2 L2 sin φ1 m2 L1 L2 cos (φ2 − φ1) I2 + m2 L2
2

⎤
⎦ ,

(11.4)

[N ] =
⎡
⎣
0 −m2 L1 cosφ1 −m2 L2 cosφ2

0 0 −m2 L1 L2 sin (φ2 − φ1)

0 −m2 L1 L2 sin (φ2 − φ1) 0

⎤
⎦ , (11.5)

[C] =
⎡
⎣

c1 + c2 (c2 B2 − c1 B1) cosφ1 0
(c2 B2 − c1 B1) cosφ1 cT + (c1 B2

1 + c2 B2
2 ) cos

2 φ1 −cT
0 −cT cT

⎤
⎦ , (11.6)

[K ] =
⎡
⎣

k1 + k2 0 0
(k2 B2 − k1 B1) cosφ1 kT −kT

0 −kT kT

⎤
⎦ , (11.7)

and let g, and h be (configuration dependent) vectors in R3, respectively, defined by

g =
⎛
⎝

(k2 B2 − k1 B1) sin φ1 + (m1 + m2)g
(k1 B2

1 + k2 B2
2 ) sin φ1 cosφ1 − m2 g L1 sin φ1

−m2 g L2 sin φ2

⎞
⎠ , (11.8)

and

h =
⎛
⎝

k1 ye1 + k2 ye2 + c1 ẏe1 + c2 ẏe2
−B1 cosφ1 (k1 ye1 + c1 ẏe1) + B2 cosφ1 (k2 ye2 + c2 ẏe2)

0

⎞
⎠ . (11.9)

Considering the static equilibrium configuration as initial condition, the result-
ing nonlinear initial value problem is integrated using a Runge-Kutta method [1].
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Table 11.1 Nominal
parameters used in the
simulations of the mechanical
system

Parameter Value Unit

m1 6500 kg

m2 800 kg

L1 0.2 m

L2 2.4 m

I1 6850 kgm2

I2 6250 kgm2

k1 465 × 103 N/m

k2 465 × 103 N/m

c1 5.6 × 103 N/m/s

c2 5.6 × 103 N/m/s

B1 0.85 m

B2 0.85 m

kT 45 × 103 N/rad

cT 50 × 103 N m/rad/s

A 0.15 m

w 2π rad/s

ρ π/4 rad

Fig. 11.3 Time series of
tower horizontal dynamics:
x2
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The evolution of this nonlinear dynamic system is investigated in the interval
[t0, t f ] =[0,30]s, adopting for the physical and geometrical parameters the nomi-
nal (deterministic) values shown in Table11.1.

The time series corresponding to the tower horizontal (lateral) dynamics x2 can
be seen in Fig. 11.3, while the corresponding phase space trajectories projections (in
R3 and R2) are presented in Fig. 11.4.

From a qualitative point of view, the simulation results shown in Figs. 11.3 and
11.4 allow one to see that, after a transient regime of approximately 5 s, the sprayer
tower dynamics accumulate into a limit cycle. Hence, for any practical purpose,
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Fig. 11.4 Projections of horizontal dynamics phase space trajectory. a x2 atractor in R3; b x2
atractor in R2

the permanent behavior is periodic. In addition, from the quantitative point of view,
these same results show that the tower can oscillate with amplitude bigger then 0.2m,
which is the value of B1 and B2. This shows that the sprayer tower can reach a critical
level of horizontal (lateral) vibration, which can be harmful to the spraying process.

This analysis used a deterministic model for dynamics, where amplitude and fre-
quency of external loading are assumed to be known. However, in practice, amplitude
and frequency of external excitation are not known with precision, which induces
uncertainties to the dynamic response of the structure. Taking into account the effect
of these uncertainties on the model response is essential for a robust design, being
the purpose of the next section.

11.3 Stochastic Analysis

Consider a probability space (�,�,P), where � is a sample space, � is a σ -field
over �, and P : � → [0,1] is a probability measure. In this probabilistic space,
the amplitude A and the frequency ω are respectively modeled by the independent
random variables A : � → R and ­ : � → R.

To specify the distribution of these random parameters, based only on theoretical
information known about them, the maximum entropy principle is employed [5,
10]. For A, which is a positive parameter, it is assumed that: (i) the support of the
probability density function (PDF) is the positive real line, i.e.,Supp pA = (0,+∞);
(ii) the mean value is known, i.e. E {A} = μA ∈ (0,+∞); and (iii) A−1 is a second
order random variable, so that E {lnA} = q, |q| < +∞. Besides that, for ­, that is
also a positive parameter, the only known information is assumed to be the support
Supp p­ = [ω1, ω2] ⊂ (0,+∞).

Consequently, the distributions which maximize the entropy have the following
PDFs
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pA(a) = 1(0,+∞)(a)
1

μA

(
1

δ2A

)(
1

δ2A

)
1


(1/δ2A)

(
a

μA

)(
1

δ2A
−1

)

exp

(
− a

δ2AμA

)
,

(11.10)

and

p­(ω) = 1[ω1,ω2](ω)
1

ω2 − ω1
, (11.11)

which correspond, respectively, to the gamma and uniform distributions. In the above
equations 1X (x) denotes the indicator function of the set X , and 0 ≤ δA = σA/μA <

1/
√
2 is a dispersion parameter, being σA the standard deviation of A.

The stochastic simulations reported here adopted, for the random variables A and
­, the following parameters μA = 0.15m, σA = 0.2 × μA, and [ω1, ω2] = [0, 2] ×
2π rad/s.

Due to the randomness of A and ­, the tire displacements are now described by
the following random processes

ye1(t) = A sin (­ t) , and ye2(t) = A sin (­ t + ρ) . (11.12)

Therefore, the dynamics of themechanical systemevolves (almost sure) according
to the following system of stochastic differential equations

[M]

⎛
⎝
ÿ1
ffï1
ffï2

⎞
⎠ + [N]

⎛
⎝
ẏ21
ffi̇21
ffi̇22

⎞
⎠ + [C]

⎛
⎝
ẏ1
ffi̇1
ffi̇2

⎞
⎠ + [K]

⎛
⎝
y1
ffi1
ffi2

⎞
⎠ = g− h, a.s. (11.13)

where the real-valued random matrices/vectors [M], [N], [C], [K], g and h are sto-
chastic versions of the matrices/vectors [M], [N ], [C], [K ], g and h.

Monte Carlo (MC) method [4, 6] is employed to compute the propagation of
uncertainties of the random parameters through the nonlinear dynamics. In this
method, realizations of the random parameters are generated. Each one defines a
new deterministic nonlinear dynamical system, which is integrated using the proce-
dure described in Sect. 11.2. Then, statistics of the generated data is calculated to
access the stochastic nonlinear dynamics.

The map ns ∈ N �→ conv(ns) ∈ R, used to evaluate the convergence ofMC sim-
ulation, is defined by

conv(ns) =
(

1

ns

ns∑
n=1

∫ t f

t=t0

(
y1(t, θn)

2 + ffi1(t, θn)2 + ffi2(t, θn)2
)
dt

)1/2

, (11.14)

where ns is the number of MC realizations. See [9] for further details.
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Fig. 11.5 Illustration of MC
convergence metric as
function of the number of
realizations
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Fig. 11.6 Confidence
envelope and some
realizations for tower
horizontal displacement
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Fig. 11.7 Sample
mean/standard deviation for
tower horizontal
displacement
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As can be seen in Fig. 11.5, which shows the evolution of conv(ns) as a function
of ns , for ns = 1024 the metric value is stationary. So, all MC simulations reported
in this work use ns = 1024 to address the stochastic dynamics.

Realizations of tower horizontal (lateral) dynamics x2 time series can be seen in
Fig. 11.6, as well as the corresponding 95% of probability confidence band. A wide
variability in x2 can be observed (Fig. 11.6). This fact may also be noted in Fig. 11.7,
which shows the evolution of the sample mean and standard deviation of x2. Note
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Fig. 11.8 Probability density function of tower horizontal dynamics (at different instants)

that, in all the interval of analysis, the standard deviation is bigger than the mean
value, which indicates a significant spreading of the realizations with respect to the
mean.

In Fig. 11.8 are presented estimations of the (normalized1) probability density
function (PDF) of the tower horizontal vibration, for different instants of time. In
all cases it is possible to observe asymmetries with respect to mean and multimodal
behavior. In Fig. 11.9 the reader finds the time average of the tower horizontal dynam-
ics PDF, which reflects the multimodal characteristic observed in the instants of time
analyzed in Fig. 11.8.

By way of reference, a lateral vibration with an amplitude level greater than 10%
of the B1 value will be considered high, i.e.,

large vibration = {x2(t) > 10% of B1} . (11.15)

1In this context, the meaning of normalized is zero mean and unity standard deviation.



212 A. Cunha Jr et al.

Fig. 11.9 Time average of
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probability density function

−5 0 5
0

0.2

0.4

0.6

0.8

1

 time average of (normalized) displacement

 p
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n
Fig. 11.10 Evolution of the
probability of large
horizontal vibrations

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

 time (s)

 p
ro

ba
bi

lit
y

For any instant t , it is of interest to determine the value of

P {x2(t) > 10% of B1} = 1 − P {x2(t) ≤ 10% of B1} , (11.16)

where

P {x2(t) ≤ 10% of B1} =
∫ B1/10

−∞
dFx2(t)(x2). (11.17)

In Fig. 11.10 the reader can see the value of P {x2(t) > 10% of B1} as function
of time. Note that, for almost all the instants, the probability of an unwanted level
of vibration may be significative values, being this value almost always greater than
40%.

11.4 Final Remarks

This work presented the study of the nonlinear dynamics of an orchard tower sprayer
subjected to random excitations due to soil irregularities. Random loadings were
taken into account through a parametric probabilistic approach, where the external
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loading was modeled as a harmonic random process, with random parameters dis-
tributions specified by maximum entropy principle. Monte Carlo simulations of the
stochastic dynamics reveal a wide range of possible responses for the mechanical
system, and show the possibility of large lateral vibrations being developed during
the sprayer operation.

Preliminary results of this work were presented in [3], and deeper analysis of this
problem, including a more complex stochastic loading, can be found in [2].
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Chapter 12
Linearization of Nonlinear Resonances
Through the Addition of Intentional
Nonlinearities

Giuseppe Habib and Gaetan Kerschen

Abstract Important properties of linear systems, such as force-displacement pro-
portionality and invariance of the resonant frequency, are not satisfied by nonlinear
systems. The objective of this paper is to demonstrate that the intentional addition
of properly tuned nonlinearities to a nonlinear system allows to retrieve those lin-
ear properties, enlarging the range over which a nonlinear system behaves linearly.
Analytical findings are validated by numerical simulations.

12.1 Introduction

Devices used for sensing, imaging and detection are usually required to exhibit linear
behavior in their dynamic range. However, nonlinearity is a frequent occurrence in
engineering applications. Nano- and microresonators experience nonlinear behav-
ior already at low amplitudes compared to noise floor [1, 8], strongly limiting the
dynamic range of devises used, for instance, for ultrasensitive force andmass sensing
[4], radio-frequency signal processing [13], narrow band filtering [14], time keeping
[15] and nanoscale imaging [2].

Feedback linearization [3, 12] is a well-established approach for enforcing linear
behavior, which uses feedback control to cancel the undesired nonlinearities. How-
ever, it requires an accurate and rapid monitoring of the system’s states, an actuator
and an external source of energy, which complicates its practical realization.

Several passive techniques, for enforcing linear properties in nonlinear systems,
have been proposed in the literature. Kozinsky et al. [10] experimentally showed
that an electrostatic mechanism can be implemented to tune the nonlinearity of a
nanomechanical resonator: the softening effect provided by the electrostatic force
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can compensate the hardening due to the geometry of a doubly-clamped beam.Mayet
and Ulbrich [11] developed an isochronic bifilar pendulum, where isochronicity is
obtained through a specific pendulum displacement path, for vibration absorption
purposes. Kovacic and Rand [9] identified a class of conservative nonlinear systems
having amplitude-independent frequency, i.e. isochronicity of the resonant frequency.
Dou et al. [5] exploited a topology optimization technique to retrieve hardening,
softening or isochronous behavior in nonlinear structures.

Recently, Habib et al. [6] proposed a linearization approach based on the inten-
tional addition of nonlinearities into a system, in order to compensate the existing
ones. Unlike previous attempts concerned with passive linearization, their approach
relied on a principle of similarity [7], which states that the added nonlinearity should
possess the samemathematical form as that of the original nonlinear system, allowing
to extend the linear regime of motion. In [6], besides the invariance of the resonant
frequency, attention is paid to the enforcement of force-displacement proportionality,
typical characteristic of linear systems, not satisfied in nonlinear ones. The approach
proposed in [6] exploits nonlinear normal modes (NNMs) and the energy balance
criterion to identify the resonant peaks. Although this approach proved to be effective
both numerically and experimentally, it might fail if two modes are too close to each
other or if damping is large, due to the significant deviation of a resonant peak form
the NNM.

The present paper proposes an approach similar to the one presented in [6], with
the difference that resonant peaks are directly identified from the frequency response
function, without exploitation of the NNMs. Properly-tuned nonlinearities are intro-
duced in the nonlinear system to increase the range over which a specific resonance
responds linearly. Specifically, we seek to enforce two important properties of lin-
ear systems, namely the force-displacement proportionality and the invariance of
resonance frequencies. The developed analytical procedure is validated numerically
through two different mathematical models.

12.2 Mathematical Model and Analytical Procedure

We consider a general n-degree-of-freedom (DoF) nonlinear mechanical system,
harmonically excited, described by the system of differential equations

Mẍ + Cẋ + Kx + α̃3bnl = f0 cos(ωt)f, (12.1)

where M, C and K are the mass, damping and stiffness matrices, respectively, bnl
includes the nonlinear terms, assumed purely cubic for simplicity, f0 is the forcing
amplitude, ω is the excitation frequency, t is time, f is a constant vector that locates
the applied force and α̃3 is a real number.

A nonlinear spring, having the same order as the nonlinearity of the primary
system is then added to the mechanical structure. The complete system can therefore
be formulated as
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Mẍ + Cẋ + Kx + α̃3bnl + β3bβ3 = f0 cos(ωt)f, (12.2)

where β3 = b3α̃3. Normalizing the system according to y = x/ f0, it becomes

Mÿ + Cẏ + Ky + α3
(
bnl + b3bβ3

) = cos(ωt)f, (12.3)

where the forcing amplitude and the nonlinearity are expressed by the unique parame-
ter α3 = α̃3 f 20 . The forcing amplitude appears only in the expression of the nonlinear
coefficients, whichmeans that it is equivalent to consider a strongly nonlinear system
or a system with a large forcing amplitude.

We then apply the harmonic balance procedure, i.e. we approximate the solu-
tion of the system to its first harmonic content. Imposing y(1) = q(1) cos (ωt) +
q(2) sin (ωt) and so on for the other system coordinates, we obtain

Wq + α3 (d10(q) + b3d13(q)) = c, (12.4)

whereW includes linear terms, d10(q) and d13(q) contains third order terms (which
are proportional to α3) and c refers to the excitation and it is directly obtained from
f . The advantage of this formulation is that the solution of the system of nonlinear
differential equations is reduced to a system of nonlinear algebraic equations.

In order to find an explicit (but approximate) solution of (12.4), we expand q in
series with respect to α3, such that q ≈ q0 + α3q1 + α2

3q2 + O
(
α3
3

)
. Inserting the

approximate solution into (12.4) and collecting terms with different order of α3 we
have

(
α0
3

)
Wq0 = c

(
α1
3

)
Wq1 + d10(q0) + b3d13(q0), (12.5)

whose solution in explicit form is

q0 = W−1c

q1 = −W−1d10(q0) + b3
(−W−1d13(q0)

) = q10 + b3q13. (12.6)

We look for the frequency response of a specific DoF. Without loss of generality
we focus on the first one, whose square is given by

H = q(1)2 + q(2)2 ≈ q0(1)2 + q0(2)2 + α3 (2q0(1)q10(1) + 2q0(2)q10(2))

+ α3b3 (2q0(1)q13(1) + 2q0(2)q13(2)) = H0 + α3 (H10 + b3H13) . (12.7)

Summarizing, the procedure developed so far consists in a simple harmonic balance
reduction and to a straightforward expansion, such that an approximate form of the
frequency response function can be expressed explicitly, keeping the contribution of
the linear part of the system and that due to the nonlinear terms separated.
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12.2.1 Identification of the Nonlinear Resonant Peak

The resonant frequencies ω1...n of the nonlinear system (understood as the local
maxima of the resonant frequency) are given by the solution of the equation ∂ωH = 0,
where ∂ω indicates the partial derivative with respect to ω. However, since α3 is
assumed small, they can be considered as small variations of their linear counterparts
ω̂1...n . Linear resonant frequencies ω̂1...n can be easily identified with basic numerical
tools and are invariant with respect to the forcing amplitude.

We linearize ∂ωH around the target linear resonant frequency ω̂i , we thus have

∂ωH ≈ ∂ωH |ω=ω̂i + ∂2
ωH |ω=ω̂i

(
ω − ω̂i

)
, (12.8)

where

∂ωH |ω=ω̂i = ∂ωH0|ω=ω̂i + α3
(
∂ωH10|ω=ω̂i + b3∂ωH13|ω=ω̂i

)
(12.9)

and
∂2
ωH |ω=ω̂i = ∂2

ωH0|ω=ω̂i + α3
(
∂2
ωH10|ω=ω̂i + b3∂

2
ωH13|ω=ω̂i

)
. (12.10)

Imposing ∂ωH = 0, we have that the variation of the resonant frequency due to the
nonlinear contribution, in first approximation is

δi = ωi − ω̂i ≈ −∂ωH

∂2
ωH

∣∣
∣∣
ω=ω̂i

. (12.11)

Linearizing δi with respect to α3 (and recalling that ∂ωH0|ω=ω̂i = 0) we have

δi ≈ −∂ωH10 + b3∂ωH13

∂2
ωH0

∣∣∣∣
ω=ω̂i

α3 (12.12)

which can be obtained explicitly.

12.2.2 Objective Functions

Two different properties typical of linear systems are considered, namely the force-
displacement proportionality of the resonant peaks and the invariance of the resonant
frequency. In the first case, the objective of the procedure is to identify b3 such that
the amplitude of the target resonant peak is invariant with respect to variations of the
forcing amplitude, i.e. α3. This is expressed by the objective function

F1 = −H0|ω=ω̂i + H |ω=ωi = 0. (12.13)
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In order to solve (12.13) with respect to b3, we expand H in Taylor series around ω̂i .
F1 thus becomes

F1 = − H0|ω=ω̂i + H |ω=ω̂i + ∂ωH |ω=ω̂i δi + O(α2
3) ≈

α3
(
H10|ω=ω̂i + b3H13|ω=ω̂i

)
, (12.14)

if higher order of α3 are neglected. Imposing F1 = 0, we obtain the condition

b3 = −H10

H13

∣
∣∣∣
ω=ω̂i

. (12.15)

If we aim at enforcing invariance of the resonant frequency, the objective function
to be satisfied is

F2 = δi = ωi − ω̂i = 0. (12.16)

F2 = 0 is approximately satisfied for

b3 = −∂ωH10

∂ωH13

∣∣∣∣
ω=ω̂i

. (12.17)

If more than one free parameter is available, it is also possible to satisfy more
than one objective function at the same time. For example, it is possible to impose
force displacement proportionality to two different resonant peaks, or either impose
force displacement proportionality and invariant of the resonant frequency to the
same resonant peak.

We consider the case of two added cubic springs to the system, having coefficients
b3aα̃3 and b3bα̃3, respectively, such that we have

H ≈ H0 + α3 (H10 + b3aH13a + b3bH13b) . (12.18)

With the objective of imposing both force-displacement proportionality and invari-
ance of the resonant frequency to a single resonant peak, the two objective functions
F1 and F2 are reduced to

F1 ≈ α3 (H10 + b3aH13a + b3bH13b) |ω=ω̂i = 0

F2 ≈ α3 (∂ωH10 + b3a∂ωH13a + b3b∂ωH13b) |ω=ω̂i = 0 (12.19)

and are both satisfied for

b3a = ∂H10H13b − ∂H13bH10

∂H13bH13a − ∂H13aH13b

∣∣∣∣
ω=ω̂i

and b3b = ∂H10H13a − ∂H13aH10

∂H13aH13b − ∂H13bH13a

∣∣∣∣
ω=ω̂i

.

(12.20)

Instead, aiming at simultaneously imposing force displacement proportionality to
two different resonant peaks, ωi and ω j , we have
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F1i ≈ α3 (H10 + b3aH13a + b3bH13b) |ω=ω̂i = 0

F1 j ≈ α3 (H10 + b3aH13a + b3bH13b) |ω=ω̂ j = 0, (12.21)

which are both satisfied for

b3a = H10|ω=ω̂i H13b|ω=ω̂ j − H10|ω=ω̂ j H13b|ω=ω̂i

H13a|ω=ω̂ j H13b|ω=ω̂i − H13a|ω=ω̂i H13b|ω=ω̂ j

(12.22)

and

b3b = H10|ω=ω̂ j H13a|ω=ω̂i − H10|ω=ω̂i H13a|ω=ω̂ j

H13a|ω=ω̂ j H13b|ω=ω̂i − H13a|ω=ω̂i H13b|ω=ω̂ j

. (12.23)

During the developed procedure, several approximation have been performed,
limiting the effect of the nonlinear terms to their first order, which might appear a
relatively tight limitation. However, since we considered only one free parameter,
such an approximation is sufficient to identify the optimal b3 for moderate α3 values
(either small forcing amplitude or small nonlinearity). Furthermore, according to the
adopted principle of similarity [7], in order to compensate a nonlinearity of order n,
themost effective nonlinearity to compensate its effect is the onewith the same order.
Nevertheless, if we consider an additional nonlinear component encompassing also
higher order terms, the presented procedure should be extended to higher order, as
well, which can improve the attempted linearization, as illustrated in the following
section.

12.3 Numerical Validation

12.3.1 Force-Displacement Proportionality

We consider a simple 2-DoF system, whose dynamics is governed by the following
system of differential equations

m1 ẍ1 + c1 ẋ1 + c12 (ẋ1 − ẋ2) + k1x1 + k12 (x1 − x2) + x31 + k3a (x1 − x2)
3 = f0 cosωt

m2 ẍ2 + c2 ẋ2 + c12 (ẋ2 − ẋ1) + k2x2 + k12 (x2 − x1) + k3bx
3
2 + k3a (x2 − x1)

3 = 0,
(12.24)

wherem1 = 1,m2 = 0.1, c1 = c2 = c12 = 0.01, k1 = 1, k2 = 0.015 and k12 = 0.08.
The coefficients k3a and k3b are related to nonlinear terms not presented in the original
system, but included in order to retrieve the target linear property.

Figure12.1a, illustrates the frequency response of the original system (k3a =
k3b = 0). For increasing values of the forcing amplitude, the normalized amplitude
of the first resonant peak decreases, while the second peak undergoes a large growth
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Fig. 12.1 Normalized frequency response function of the system in (12.24) for f0 = 0, 0.05,
0.07 and 0.1. a k3a = k3b = 0 (original system), b k3a = 0.02197, k3b = 0 (force-displacement
proportionality first peak), c k3a = 0.008023, k3b = 0 (force-displacement proportionality second
peak) and d k3a = 0.004108, k3b = 0.009501 (force-displacement proportionality both peaks)

in its amplitude and an increase of its resonant frequency. Adopting the analyti-
cal procedure outlined in the previous section and with the objective of imposing
force-displacement proportionality to the first resonant peak, we tune one of the
additional nonlinearity, such that (12.14) is satisfied, obtaining k3a = 0.02197. The
relative frequency response is depicted in Fig. 12.1b. It is noted that the first peak
amplitude is invariant with respect to the forcing amplitude, which means that the
force-displacement proportionality is now verified. The same procedure is repeated
for the second resonant peak, resulting in k3a = 0.008023; the relative frequency
response is illustrated inFig. 12.1c. Finally, if two additional cubic terms are included,
it is possible to satisfy force-displacement proportionality for both resonant peaks
simultaneously. This is shown in Fig. 12.1d for k3a = 0.004108 and k3b = 0.009501.

The effectiveness of the procedure can be better understood from the envelopes of
the resonant peaks for the four cases, depicted in Fig. 12.2. The dashed lines refer to
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Fig. 12.2 Envelopes of the resonant peaks illustrated in Fig. 12.1. a First peak, b second peak

the original system, for which the oscillation amplitude does not depend linearly on
the forcing amplitude. Solid lines refer to the systemwith force-displacement propor-
tionality enforced on one of the resonant peaks; in this case the line is practically hor-
izontal for both peaks. Dash-dotted lines refer to the system with force-displacement
proportionality enforced on both resonant peaks at the same time. While the pro-
cedure works perfectly for the first peak, for the second peak it is valid only for
f0 < 0.08; for f0 > 0.08 the second peak starts growing not linearly with respect to
the forcing amplitude.

12.3.2 Invariance of the Resonant Frequency

Considering the same primary system,with different parameter values,we nowaim at
enforcing invariance of the second resonant frequency. The parameter values adopted
arem1 = m2 = 1, c1 = c2 = c12 = 0.01, k1 = 1 and k2 = k12 = 0.333. Figure12.3a
depicts the frequency resoponse (not normalized) of the original system, i.e. without
additional nonlinearities, around the second resonant peak. The system undergoes a
strong hardening which bends the resonant peak to the right.

Adopting the outlined analytical procedure, we add a nonlinear term with coef-
ficient k3a = −0.2434 to the system. The resultant frequency response, illustrated
in Fig. 12.3b, presents a backbone less banded than the one of the original sys-
tem, however, for relatively large values of the forcing amplitude, the system still
undergoes hardening. In order to improve the invariance of the resonant frequency,
we extend the analytical procedure to higher order terms, including in the system
a fifth order nonlinear term (working in parallel to ka3). The coefficient of the
additional fifth order term is ka5 = −0.5084 and the relative frequency response
is depicted in Fig. 12.3c. A comparison between Fig. 12.3b, c discloses the effec-
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Fig. 12.3 Frequency response function (not normalized) of the system in (12.24) for f0 ranging
from 0 to 0.025, around its second resonant peak. a k3a = k3b = 0 (original system), b k3a =
−0.2434, k3b = 0 (enforced isochronicity), c k3a = −0.2434, k3b = 0, k5a = −0.5084 (enforced
isochronicity with additional fifth order term). d Frequency backbones of resonances in (a–c)

tiveness of introducing a higher order nonlinearity, to correct the frequency back-
bone at large amplitude. However, it should be noticed that an excessively soft-
ening restoring force might generate instabilities (see the dashed line around the
highest peak in Fig. 12.3c). The effectiveness of the procedure can be better under-
stood from Fig. 12.3d, where the frequency backbone of the three cases are plotted.
The dashed line, referring to the original system, is the most bended one, while the
dash-dotted one, referring to the system with additional third and fifth order terms,
is the straightest.
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Fig. 12.4 Normalized frequency response function of the system in (12.24) for f0 ranging from 0
to 0.05, around its first resonant peak. a k3a = k3b = 0 (original system), b k3a = 0.3680, k3b =
−0.07449 (enforced force-displacement proportionality and isochronicity)

12.3.3 Force Displacement Proportionality and Invariance
of the Resonant Frequency

Considering the same system as in Sect. 12.3.2, we now aim at enforcing simulta-
neously force-displacement proportionality and invariance of the first resonant fre-
quency. The first resonant peak of the original system undergoes a slight hardening
and a reduction of the normalized oscillation amplitude at the peak for increasing
forcing amplitude (Fig. 12.4a). Including in the system two additional nonlinearities,
(12.19) is satisfied for k3a = 0.3680 and k3b = −0.07449, which should guaran-
tee isochronicity and force-displacement proportionality. The resultant frequency
response is illustrated in Fig. 12.4b, for f0 ranging from 0 to 0.05. Similarly to a
linear system, the frequency response is almost invariant with respect to the forc-
ing amplitude and all the curves are almost perfectly overlapping each other, which
proves the efficacy of the procedure.

12.4 Conclusions

In this paper, we demonstrated that it is possible to linearize a specific resonance of
a nonlinear system through the addition of intentional nonlinearities. The proposed
methodology relays on a principle of similarity between the original nonlinearity of
the system and the additional one. The adopted algorithm is based on a harmonic bal-
ance procedure, combined with a straightforward expansion for the estimation of the
frequency response function. Its implementation is relatively easy, since it is almost
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fully explicit. The effectiveness of the procedure was successfully demonstrated on
two different numerical systems, for the enforcement of force-displacement propor-
tionality, isochronicity and both of them simultaneously.
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Chapter 13
Tailoring of Hysteresis Across Different
Material Scales

Walter Lacarbonara, Michela Talò, Biagio Carboni and Giulia Lanzara

Abstract Hysteresis is discussed as a multi-scale material feature that can strongly
affect the dynamic performance of a structure. It is shown that the hysteresis exhibited
by assemblies of short wire ropes can be tailored via a synergistic use of different dis-
sipation mechanisms (inter-wire frictional sliding, phase transformations) combined
with geometric nonlinearities. The blend of material and geometric nonlinearities
is a powerful and promising way to design new advantageous types of hysteretic
responses in macro- or micro-scale devices and structures. Indeed, moving from
macro-scale structures towards much smaller material scales, carbon nanotubes in
nanocomposites are shown to dissipate energy through stick-slip with the polymer
chains. The hysteresis of these materials can be largely modified and optimized by
adjusting the micro-structural constitutive features. Recent experimental and mod-
eling efforts are discussed in the context of new directions in material design and
dynamic behavior of nanocomposites.

13.1 Introduction

A large variety of natural or engineered materials and systems exhibit hysteresis
through the looping behavior of the input-output response functions [1]. The macro-
scopically observed hysteresis is often the result of a combination of complex multi-
scale interactions between parts of structural dynamic systems, or it may arise in the
material itself. Hysteresis can be caused by local plastic deformations due to inter-
nal slippage within the crystalline lattice microstructure of metals, alloys, reticular
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polymers or due to phase transformations in shape memory alloys such as NiTiNOL
(Nickel-Titanium Naval Ordnance Laboratory). Often hysteresis is due to friction
damping as observed in gears, joints, wire ropes or granular materials. Hysteresis
can also result frommicro-nano slippage between two or more phases of a composite
material or a multifunctional, multi-phase material. Thus, we can define hysteresis
as a macroscopically observed phenomenon featured at different material scales.

This fascinating phenomenon is here discussed extensively ranging from the
macroscale to the nanoscale to show how the distinct properties of hysteresis can
be tailored and engineered towards innovative designs and applications dealing with
wire ropes and carbon nanotube nanocomposites.

Wire ropes are load-bearing members which are largely employed in applications
requiring the lift of huge masses or the support of long-span decks such as in suspen-
sion bridges [2]. Short wire ropes subject to bending or coupled tension-bending can
dissipate large amounts of energy through the inter-wire friction developing through
the wire-to-wire and rope-to-rope contact areas which, in turn, depend on the shear,
longitudinal, and radial stress components. This property makes wire ropes per-
fect rheological elements in applications requiring restoring forces which provide
at the same time stiffness and damping. Recent patents addressed nonlinear hys-
teretic devices mainly conceived for vibration control purposes [3, 4]. The device of
Lacarbonara and Carboni [4] exploits the stiffness and energy dissipation provided
by an assembly of hybrid wire ropes made of AISI steel wires and NiTiNOL wires.
The energy dissipation is due to the concurrency of inter-wire friction and NiTiNOL
phase transformations [5]. The combination of these dissipation mechanisms with
the stretching-induced geometric nonlinearity gives rise to the possibility of tailoring
the restoring force and the associated hysteresis shape for different applications. In
the present chapter, the role of dissipation mechanisms and geometric nonlinearities
in the design of an optimized hysteretic response is elucidated. Moreover, the proper
modeling tools adopted for the mathematical description of the physical nonlinearity
are also discussed. In particular, the results of a finite element computation are dis-
cussed to justify the adoption of phenomenological approaches towards wire ropes
mechanics and related design problems.

Another interesting class of lightweight materials exhibiting hysteresis shapes is
the class of nanostructured polymer composites featuring different kinds of filler in
the form of 0D nanoparticles (e.g., silica, nano-oxides and other inorganic particles),
1D nanofibers (e.g., carbon nanotubes, collagen nanofibers, and other nanofibers),
and 2D nanolayers (e.g., nanoclay, graphite, graphene, layered silicate). Nanocom-
posite materials offer the potential for unprecedented improvements in stiffness,
toughness, strength, damping and more general multifunctional aspects, without
incurring weight penalty [6–12]. The integration of a strong filler into a polymeric
hosting matrix is usually dictated by reinforcement purposes. On the other hand, in
the last decades, experimental results have shown the potential of several micro- to
nano-scale fillers to enhance not only the mechanical properties but also the damp-
ing capacity. In nanocmposites, damping mainly arises from the interfacial slippage
between the filler and the surrounding matrix [13].
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Such interfacial slippage primarily depends on the interfacial shear strength (i.e.,
the shear stress limit at which the sliding motion is activated at the interfaces). The
resulting hysteresis in the stress-strain cycles becomes increasingly larger with an
increasing interfacial contact area between the two constituents as is also the case
at the macro scale with wire ropes where the amount of dissipation depends on the
amount of inter-wire contact area.When the size of the filler approaches the nanome-
ter scale as is the case with carbon nanotubes, for a given volume fraction of the filler,
the composite macroscopic hysteretic response becomesmore important. Indeed, the
nanometer size of the filler is capable of providing a huge specific interfacial surface
area through which shear slippage may occur, thus, giving rise to a higher energy
absorption capability. Nanofillers have the virtue of modifying and enhancing the
hysteresis and strength of the hosting matrices. The main factors affecting the damp-
ing capacity of the nanocomposites include the nanofiller aspect ratio, the volume
fraction and dispersion, the nature of the interaction forces between the nanofiller
and the matrix, as well as the employed manufacturing process [9].

Among all existing nanofillers, carbon nanotubes (CNT) offer the highest ratio
between interfacial area and volume fraction. Indeed CNTs exhibit a hollow cylin-
drical structure with a diameter of a few nanometers and a length ranging from 1µm
to 1mm thus giving rise to high aspect ratios (L/D). The literature confirmed that
CNTs are the most promising candidate fillers to improve the damping capability
of polymers even with very low CNT weight fractions [10, 11]. CNTs are known
for their excellent elastic properties since the Young modulus can be as high as 1
TPa and the predicted tensile strength can be as high as 100 GPa [12]. However, to
exploit their mechanical properties several manufacturing challenges must still be
overcome. The interaction forces between CNTs and the surrounding polymer chains
are mostly represented by weak van der Waals forces, which can be overcome even
when the material is subject to low strains in the elastic region of the hosting matrix.
A weak adhesion between the nanotubes and the matrix is the key for the activation
of the frictional sliding motion called stick-slip [13, 14], which has the advantage of
being reversible in a given range of strain amplitudes. Provided that the fabrication
challenges are overcome, compared to other nanofillers, carbon nanotubes can enable
a wider tuning of the mechanical and hysteretic properties of the nanocomposites
response opening up a wide range of opportunities for the use of strong and highly
damped composites [15–20].

Understanding the relationships between the nanocomposites microstructural
properties and the macroscopic hysteretic response will pave the way towards
unprecedented optimization of the nonlinear material behavior of new composite
materials. This chapter will first discuss the hysteresis of wire rope assemblies and
its application in the field of vibration absorption and proceed with discussing hys-
teresis observed in various carbon nanotube nanocomposites under the prevailing
loading conditions.
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13.2 Hysteresis in Wire Ropes

Wire ropes can be classified according to their cross-sectional geometry resulting
from the formation process. There are spiroidal and stranded wire ropes. The first
are characterized by an individual strandwith a central corewire and a certain number
of layers ofwireswrapped around. The second type is represented bymultiple strands
which are wrapped around a central core strand. In principle, an infinite variety of
wire ropes can be obtained varying the number, diameter, laying direction of the
wires or strands. According to these features the contact area between the wires can
be augmented or reduced implying different levels of energy dissipation when the
resulting wire ropes are subject to cyclic loads.

The materials constituting the wires play an important role. The material can be
elastic, elasto-plastic, pseudo-elastic, etc. For example, the introduction of shape
memory alloy wires in combination with classical steel wires entails significant
changes in the dissipative features of the ensuing wire ropes [5]. A shape memory
alloy, according to its chemical composition, can exhibit material behaviors known
as shape recovery effect and pseudo-elasticity.

These properties can be activated varying the thermal state or the stress state of
the material. Herein, we will focus on the pseudo-elastic effect observed when the
material is subject to a cyclic loading program.

Experimentally observed hysteresis. Figure13.1 shows the tensile tests performed
on an individual NiTiNOL wire, a 7-wire NiTiNOL strand and a mixed NiTiNOL-
steel spiroidalwire rope. The force-strain curve for theNiTiNOLwire (see Fig. 13.1a)
shows the pseudo-elastic effect typically observed in shape memory alloys. When
the load is removed there are no residual strains thanks to the particular crystalline
structure of the material. However, at the end of the cycle, a certain amount of energy,
given by the area enclosed in the hysteresis loop, is dissipated. On the other hand, the
7-wire NiTiNOL strand in Fig. 13.1b exhibits a small residual strain after unloading.
This is due to the frictional sliding between the wires. For the hybrid spiroidal wire
rope, the large contact area between the wires provides a large frictional dissipation
that is reflected on the residual strain at zero tension. Moreover, the changes in slope
along the loading and unloading branches are due to the phase transformations of
the shape memory material.

As mentioned, the dissipation occurring in a wire rope is mainly due to inter-wire
sliding and its level depends on the normal contact forces between the wires. The
literature about wire rope mechanics classifies the contact modes between lateral and
radial contact [21]. The lateral or circumferential contact occurs between the wires of
the same layer. The associated contact surfaces have a continuous helical shape across
the rope length. This type of contact is strongly affected by themanufacturing process
and thewear level. Radial contact occurs between the different layers through contact
surfaces presenting discontinuous helical shapes across the rope length. These contact
modes refer to spiroidal wire ropes but are generally valid also for multiple stranded
wire ropes. The hysteresis provided by a wire rope can be selectively modified by
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Fig. 13.1 Experimental stress-strain curves obtained via uni-axial tensile tests for a an individual
NiTiNOL wire with D = 0.63 mm, b a 7-wire NiTiNOL strand with D = 1.8 mm and c a mixed
spiroidal NiTiNOL steel wire rope with D = 5.7 mm. The black (white) color indicates that the
wire is made of NiTiNOL (steel)

acting on the internal contact properties and regulating the geometrical wire rope
parameters.

Thehysteretic response depends also on the loading condition andon the activation
of the geometric nonlinear hardening effect. The shape of the hysteresis loops can
be regulated combining different types of wire ropes and stress states such as pure
bending or coupled tension-bending.

Figure13.2e, f show the testing setups employed to acquire the restoring forces
exhibited by different wire ropes subject to cyclic displacements. These setups are
custommade andmake use of a linear actuator. The testing setups shown inFig. 13.2e,
f are mounted on the Material Testing System (MTS) available in the Materials and
Structures Laboratory at Sapienza University of Rome. One end of the wire rope
is vertically displaced while the other end is connected to a load cell that measures
the restoring force. Different stress conditions can be implemented according to the
horizontal restraint applied to the wire ropes. When a vertical displacement is pre-
scribed, the deflected end of the wire ropes can be free or prevented to slide along
the horizontal direction. In the first case the wire rope is subject to pure bending
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Fig. 13.2 Experimental response curves (circles) together with the identified curves (solid lines):
a 8 steel multi-stranded wire ropes with D = 6 mm and L = 100 mm; b 4 mixed NiTiNOL-steel
spiral wire ropes with D = 5.7 mm and L = 75 mm; c 8 NiTiNOL 7-wire stranded ropes subject to
bending and tensionwith D = 1.8mmand L = 56mm;d 8 steelmulti-stranded ropeswith D = 1.8
mm and L = 100 mm subject to bending and tension with 2 additional horizontal NiTiNOL 7-wire
strands with D = 1.8 mm and L = 63 mm. Experimental setups for testing wire ropes assemblies
under e Bending or tension-bending and f With the additional horizontal stiffness provided by
secondary wire ropes

states while in the second case the rope is stretched exhibiting a nonlinear geo-
metric stiffness effect of the hardening type. An intermediate stress condition can
be implemented introducing an additional horizontal restoring force provided by
springs or secondary wire ropes. This testing condition is obtained with the setup
shown in Fig. 13.2f. A detailed description of this testing device is given in [5, 22].
The hysteresis loops obtained with different wire rope types and working conditions
are shown in Fig. 13.2a–d. Part (a) portrays the hysteresis cycle of steel wire ropes
subject to bending. Part (b) shows the hysteretic force of mixed NiTiNOL-steel wire
ropes subject to bending. The interaction between friction and phase transformations
is revealed by the pinched loop around the origin. When the shape memory material
is unloaded and it goes back to the austenitic phase, the return on the elastic branch
determines a pinching in the restoring force. Part (c) shows a strong pinching at
the origin of the force-displacement cycle and a distinct hardening behavior. This
behavior is due to the generated tensile forces in the ropes as a consequence of the
horizontal constraint. Part (d) shows a slightly pinched, hardening hysteresis due to
NiTiNOL strands subject to coupled bending-tensile loads. The force-displacement
cycle in part (d) is obtained introducing the additional horizontal restoring force due
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to axially stretched NiTiNOL wires that introduce an additional source of energy
dissipation.

Modeling and identification. A fine mechanical modeling of wire ropes is a chal-
lenging task mainly because of the large number of wires interacting through contact
surfaces with complex geometry. While 3D finite element discretizations can cer-
tainly incorporate fine details of the actual geometry and suitably describe inter-wire
frictional forces, such a computational approach is very demanding.

By employing Abaqus [23], a steel 19-wires (1 + 6 + 12) strand of diameter
D = 3 mm and length L = 65 mm was discretized into about 3 × 105 8-node tetra-
hedral elements with linear shape functions. Forward time integrations of the non-
linear equations of motion were performed and a penalty formulation was adopted
for the normal and tangential contact problem between the wires. Figure13.3a
shows the finite element model in the undeformed configuration. Each wire end
at the root cross section is clamped while the other ends are subject to a transverse
displacement time history described by v(t) = A1 sin 2π f1t where A1 = 10 mm,
f1 = 3.33 Hz and t ∈ [0, 0.3] s. The displaced ends are torsionally constrained and
kept at the same distance L from the root. In a first set of simulations, the wire
rope is initially stress-free while, in the second set, the rope is given an initial pre-
tension through a prescribed longitudinal displacement monotonically increasing up
to 0.8mm.Figure13.3b shows the contact stresses between thewireswhile Fig. 13.3c,
d depict the total reaction force at the clamp along the transverse direction and the
time change of inter-wire contact area for the initially stress-free rope. Figure13.3e,
f describe the force and contact area for the pre-stressed rope.

The hysteresis curve in Fig. 13.3c shows a very pronounced pinching at the origin
indicating a low dissipation rate when the strand is unloaded. It is due to the weak
contact stresses which are proportional to the axial force in the strand. When the
transverse deflection is increased, tension arises in the wires determining a global
hardening response together with an increment of the contact forces which in turn
gives rise to larger energy dissipation. The same behavior was observed experimen-
tally in Fig. 13.2c [5, 22, 24].When the wire rope is given a pre-tension, the pinching
is negligible and the hystersis loop becomes fatter indicating a greater dissipation
due to the larger contact area through which frictional sliding produces dissipation.

The computational time of the Abaqus finite element model exceeds 24h employ-
ing a desktop computer. The heavy computational burden does not allow to use this
approach for identification or optimisation purposes. This reason justifies the adop-
tion of much lighter phenomenological models or reduced order models. Indeed
phenomenological models can be effectively employed to fit the experimental force-
displacement curves by using parameters identification methods such as the Differ-
ential Evolution Algorithm [25] or other data-driven strategies [26]. The well-known
Bouc-Wen hysteretic model [27, 28] was modified in [5] to describe the pinching
at the origin of the force-displacement cycles. The restoring force f depends on the
displacement x according to
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Fig. 13.3 Finite element model of a 19-wire steel strand: a Reference configuration; b Contour
plot of the inter-wire normal contact forces; c and e Force-displacement cycles of (c) stress-free
rope and e Pre-stressed rope; d and f Variations with time of the contact area of (d) stress-free rope
and f Pre-stressed rope. The material parameters are: Young’s modulus E = 206 GPa, Poisson’s
coefficient ν = 0.3, frictional coefficient μ = 0.5

f = kex + k3x
3 + z, ż = [

kdh(x) − (γ + βsgn(ẋ z) |z|n] ẋ (13.1)

where ke and k3 represent the elastic linear and cubic stiffness coefficients, respec-
tively, and z is the hysteretic part of the force. The overdot denotes differentiationwith
respect to time t and (kd , γ,β, n) are the model parameters regulating the hysteresis
loops shape. When k3 = 0, the stiffness at the origin of the cycles is ke + kd while
past a threshold force the stiffness reaches the plateau value equal to ke. The pinching
function h(x) is given by h(x) = 1 − ξ exp(−x2/xc) with ξ ∈ [0, 1) regulating the
pinching severity and xc > 0 defining the extension of the pinching zone along the
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displacement axis. The hysteretic responses shown in Fig. 13.2a–d are accurately
identified using (13.1) as shown by the closeness of the solid lines to the experimen-
tal measurements. The cubic stiffness k3 was set to zero for identifying the cycles
in Fig. 13.2a, b. Moreover, the pinching function h(x) was set to 1 in Fig. 13.2a. A
clear interpretation of the role of each parameter is given in [5, 22].

A good compromise between expensive 3D FE models and phenomenological
models is the one-dimensional reduction of a wire rope to a nonlinear hysteretic geo-
metrically exact cylindrical beammodel [29]. The generalized hysteretic constitutive
relationship was established between the bending moment and the beam curvature
within the special Cosserat theory of shearable beams. This approach provides the
hysteretic response as well as the internal resultant stresses in the wire rope.

The shape of the restoring forces can be largely varied regulating the geometric
and mechanical features. For example, it is possible to change the cross section and
material properties of the wire ropes, their number, length, and diameter. Moreover,
the presented device [4] allows to tune the geometric nonlinearities and stiffness ratio
between the different wire rope components so as to vary the loop shapes.

Hysteretic damping capacity. The damping capacity associated with the obtained
constitutive behaviors can be measured by the so-called equivalent damping ratio
expressed as

ξ0 = WD

4πWE
(13.2)

whereWD denotes the energy dissipated in a loading-unloading cycle and is given by
the area enclosed by the force-displacement cycle. WE indicates the elastic energy
stored in an equivalent visco-elastic rope at the end of the loading branch. The
evaluation of the stored energy is not unique since it depends on the assumed elastic
stiffness of the system. The equivalent damping ratio is meaningful if an equivalent
visco-elastic rope (comparison system) is found with a stiffness leading to the same
oscillation frequency of the actual hysteretic rope at a given oscillation amplitude.
Such stiffness can be set to be the secant stiffness or some other average stiffness
over the considered displacement cycle. Figure13.4 shows the equivalent damping
associated with the different constitutive behaviors. All damping curves show a peak
at moderately low displacement amplitudes. Thereafter the curves roll off at different
rates due to the different evolutions of inter-wire friction and phase transformations
at high oscillation amplitudes.

13.2.1 Tailoring the Wire Ropes Damping in Hysteretic
Vibration Absorbers

The device proposed in [4] exploits the richness of hysteretic behaviors obtained
combining different wire rope assemblies. Such device can be employed as a Tuned
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Fig. 13.4 Equivalent damping versus displacement amplitude. The damping curves in parts a, b,
c and d are referred to the constitutive behaviors shown in Fig. 13.2, respectively

Mass Damper (TMD) for vibration mitigation of structures subject to base motions
or direct excitations.

A hysteretic TMD [4] was experimentally investigated in [24] for vibration con-
trol of a scaledmulti-story building subject to harmonic base excitation. The stiffness
and damping of the absorber were tailored to achieve optimal control of the funda-
mental sway mode of the building. The low-frequency sway modes of a building
usually exhibit a linear behavior. In the literature, it is commonly accepted that the
optimal stiffness and damping of a TMD designed for mitigating harmonic motions
of viscously damped structures must be independent of the displacement amplitude.
Many authors provided analytical or empirical expressions to estimate the optimal
TMD mechanical parameters [30–35].

The engineering forms according to which vibration absorbers have been realized
in the literature comprise reinforced rubber bearings, pistons containing viscous
liquids, metal springs in parallel with viscous dampers, devices based on the rolling
or sliding friction. The stiffness and damping of these devices exhibit very different
behaviors. Invariably, the fundamental drawback is represented by the difficulty of
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obtaining restoring forces which maintain a constant stiffness and constant damping
at large oscillation amplitudes typically attained by the TMD masses oscillating at
resonance.

The hysteretic cycle shown in Fig. 13.2b has the peculiarity of providing a large-
amplitude displacement range within which both stiffness and damping are nearly
constant. This particular feature, as discussed in [24], ensures a good performance of
the wire rope-based TMD for controlling the structure dynamics especially at large
oscillation amplitudes.

Figure13.5 shows the frequency-response curves of the different devices whose
restoring forces are labelled (a), (b) (c) (d). The devices (a) and (b) exhibit pro-
nounced softening while the devices (c) and (d) are characterized by strong harden-
ing. Of particular interest is the restoring force in Fig. 13.2b. The increment of energy
dissipation for increasing oscillation amplitudes due to the NiTiNOL phase trans-
formations makes the ratio between dissipated and elastic energy almost constant.
Moreover, the constant stiffness exhibited above a threshold displacement ensures
that the resonance frequency also achieves an asymptotic constant value. The other
important advantage of the proposed device consists in the fact that both stiffness
and damping are provided by the wire ropes without the need of combining multiple
rheological elements.

13.3 Hysteresis in Carbon Nanotube Nanocomposites

The hysteresis exhibited by short wire ropes results from a macroscopic frictional
sliding between the individual wires. In this section we will discuss the hystere-
sis observed in nanocomposite materials for which the internal frictional dissipation
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Fig. 13.6 a Schematic illustration of the stick-slip phenomenon; b CNT/PDMS nanocomposite
micropattern; c Higher magnification of the nanocomposite; d Patterned oriented CNTs before
absorption of the hosting matrix and a higher magnification of the same (see inset); e Schematic of
the test setup and a compressional stress-strain curve

takes place atmuch smaller scales, namely, at themicro- andnano-scales through slid-
ing between the hostingmatrix and theCNTswhen the interfacial shear stress reaches
the limit value called interfacial shear strength (see Fig. 13.6). A nanocomposite
micropillar made of PDMS and a high density array of oriented multi-walled carbon
nanotubes (MWNT) was tested under compressional strain cycles in [36]. Forests
of oriented MWNTs (35µm thick) were first grown and patterned in microscaled
square pillars (130µm side) following the procedure described in [36, 37] (see
Fig. 13.6d). A thin PDMS layer (Sylgard 182-Dow Corning) was absorbed within
the micropillar forming the nanocomposite microstructure (20% CNTs volume frac-
tion) [36, 38]. Figure13.6b shows the nanocomposite micropillar, while Fig. 13.6c
represents a higher magnification of the micropillar in which the good CNTs dis-
persion within the hosting PDMS matrix is highlighted. The embedded MWNTs
are vertically oriented and highly packed (intertube spacing ranging from few
nanometers to 250nm). This is shown in Fig. 13.6d representing the CNTs micropat-
tern before being impregnated with the matrix. Compression tests were performed
with a nanoindentation technique using a nanoscratch tester in indentation mode
(CSM Instruments). Micropillars were uniformly compressed by means of a flat tip



13 Tailoring of Hysteresis Across Different Material Scales 239

(2mm diameter) as shown in Fig. 13.6e. A linear load up to 20 mN at a loading
rate of 40 mN/min, reaching nearly 40% compressional strain, was applied to the
micropillar and, after a pause of 20s, the sample was fully unloaded at the same
speed. The material clearly showed a hysteretic response with a hardening effect
during loading. The elastic modulus in the loading cycle was found to be at least
one order of magnitude higher than those reported in the literature for pure PDMS
samples cured at room temperature [39], and over two orders of magnitude higher in
the unloading cycle that is considered to be purely elastic in nanoindentation tests.
However, these comparisons are very difficult due to the wide dependence of the
PDMS properties on the curing process [39], the ratio of the curing agent [40], the
type of elastomer (Sylgard 182 or 184) and the size of the sample [41]. None of
the cases reported in the literature corresponds to the presented sample type, size,
testing methodology as well as fabrication process (which also includes the addition
of solvents to thinner the layer during fabrication). Wide variations are also reported
in terms of loading/unloading cycles both in tensile and compression modes. Most
commonly a linear elastic response is highlighted up to strains of the order of 50%
and a hysteretic response for even larger strains (see, e.g., [39, 40]). It is here observed
that the integration of oriented CNTs in the matrix induces a hysteretic response at
all strain levels (well below 50%). These loops show an overall wider area especially
toward the end of the unloading cycle if compared with the trends reported for higher
strains [40, 42]. This effect is certainly related to the oriented CNTs which first affect
the PDMS chains distribution within the sample during fabrication, and then affect
the overall viscoelastic response. The CNTs in the forest are in fact highly packed
forming an array of nanochannels that absorb the polymer chains from the substrate
hosting the CNTs micropattern, in agreement with the fabrication procedure. The
polymer chains are forced to align along the nanochannels length. Thus, the material
becomes a hybrid aggregation of long and aligned fibers (the PDMS chains and the
CNTs) that can relatively slide when loaded.

A wider experimental campaign was carried out on macroscopic nanocomposite
samples with randomly oriented CNTs. The nancomposite samples were fabricated
according to the details given in [19]. A campaign of cyclic tensile and torsional
tests was conducted in different testing conditions to investigate hysteresis and the
associated damping capacity. Cyclic tensile tests were carried out at increasing strain
amplitudes using a Zwick/Roell Universal Testing Machine. Specimen shapes, test
speeds and methods were selected according to ISO 527-1 and -2. In particular, dog-
bone type-5B nanocomposite specimens were chosen according to ISO 527-2 with
an overall length equal to 50mm, gage length equal to 12mm, and cross section
equal to 2× 4 mm2.

The first investigated macroscale nanocomposite is made of polypropylene (PP),
a commodity viscoelastic, thermoplastic polymer with a Young modulus equal to
1.45 GPa. The employed MWNTs have a low aspect ratio (L/D = 155). Other inves-
tigated nanocomposites feature engineering polymers, namely, polycarbonate (PC)
and polybutylene terephthalate (PBT), with high mechanical properties (E = 3.7 GPa
for PBT) and good resistance to chemical agents and heat.
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polymer matrices on the ensuing hysteresis loops. The cyclic tests are compared with the tests of
Ogasawara et al. [43] carried out on PEEK nanocomposites

A first estimate of the nanocomposites damping capacity can be directly obtained
through the tensile loading/unloading cycles. The energy dissipated per cycle WD

is measured as the area enclosed by the loop cycle, while the elastic energy stored
in the material WE is given by the area below the loading branch. Thus, the ratio
WD/WE can be taken as a measure of the specific damping capacity of the material.

The role of the polymer matrix. Figure13.7 shows the tensile stress-strain curves
compared with the cyclic tests of a high-performance polyether ether ketone (PEEK)
nanocomposite, previously investigated by Ogasawara et al. [43]. The shape of the
hysteresis loops is controlled by the polymer matrix [44]. The cyclic curve of the PP
nanocomposite shows a large enclosed areawith a significant residual strain resulting
from the pronounced viscous damping properties of the PP viscoelastic polymer, as
confirmed by the residual viscous strain at the end of the cycle of the neat PP. On
the other hand, the Young moduli of the engineering polymers referred to as PC,
PBT and PEEK are higher than that of PP. The very narrow cycles obtained for
PC, PBT and PEEK indicate the prevalence of the elastic energy component, since
the cycles are mostly closed at the origin given the negligible residual strain at full
unloading. For these engineering polymer nanocomposites, the damping capacity
can be effectively associated with the internal hysteresis caused by the interfacial
slidingmotion betweenCNTs and polymer chains. Indeed, the interfacial shear stress
needed to activate the stick-slip phenomenon is lower than the yielding stress in the
high-performance polymers, as proved also for other PEEK nanocomposites [43,
45]. In addition, the damping capacity of the PP nanocomposite is not higher than
that exhibited by the engineering thermoplastic nanocomposites. Although the area
enclosed by the cycle in the CNT/PP nanocomposite appears to be larger compared
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Fig. 13.8 Cyclic tensile tests conducted on pure PBT and CNT/PBT nanocomposites showing the
influence of different aspect ratio nanofillers. The selected displacement rate was 2mm/min by
increasing the deformation of 0.5% at each loading process. The maximum reached deformation
was 1.5% after three loading/unloading cycles

to that of the engineering nanocomposites, the actual damping increment provided by
the addition of the CNTs is marginal with respect to the viscous damping component
of pure PP. Moreover, the increment of dissipated energy is mainly due to the
higher stiffness of the CNT/PP nanocomposite, as testified by the higher slope of
the loading branch. This trend indicates that hysteresis observed in thermoplastic
nanocomposites is considerably affected by the viscous behavior of the polymer,
which may be predominant with respect to the CNT/matrix stick-slip effect. An
interpretation of the phenomenon can be given by considering the PP polymer chains
mobility and deformability. In soft matrices the polymer chains sliding is triggered
by lower shear stresses compared to those needed to activate the stick-slip at the
CNT/matrix interfaces. This behavior results in an augmentation of the dissipated
energy per cycle, only because the elastic energy stored in the cycle is also increasing.
Therefore, the nature of the hosting matrix plays a key role in tailoring the hysteresis
of nanocomposite materials, mainly by dictating the shape of the loops.

CNT aspect ratio. The effects of the CNT aspect ratio were investigated in PC
and PBT nanocomposites incorporating high aspect ratio single-walled nanotubes
(SWNT) with L/D = 2778, in addition to the nanocomposites with low aspect ratio
MWNTs (L/D = 155). In all nanocomposites with 0.5 and 2% CNT weight fractions
(see Fig. 13.8) there is an increase of the specific damping capacity with respect
to the neat polymer. The specific damping capacity increment for the intermediate
cycle with 1% strain amplitude is found to be 47% with the addition of 0.5 wt%
of MWNTs, and 64% with the addition of 0.5 wt% SWNTs. As expected, the
nanocomposite dissipative and mechanical properties are strongly influenced by the
CNT aspect ratio. High aspect ratio CNTs provide a larger interfacial area during
the activation of the stick-slip phenomenon, thus, SWNT nanocomposites exhibit a
more pronounced hysteretic behavior than composites with the lower aspect ratio
MWNTs. The drawback of the employed long SWNTs is that good CNT dispersions



242 W. Lacarbonara et al.

in the matrix are harder to pursue. The formation of CNT agglomerates causes stress
concentrations. Thus nanocomposites with higher CNTs contents may undergo pre-
mature brittle failures, as observed for the 2 wt% SWNT/PBT nanocomposites.

CNT dispersion and functionalization. In addition to the considered thermoplastic
nanocomposites,MWNT/epoxy composite samples (i.e., thermosettingmatrix) were
also tested to understand the influence of the CNT macro- and nano-dispersion on
the material macroscopic response. Due to electrostatic and van der Waals attractive
interaction forces between the CNTs themselves, they have a tendency to aggregate
together. The aggregated CNTs are in the form of bundles or ropes usually with a
highly entangled network structure that is difficult to disperse. The homogeneous
dispersion of nanofillers within the polymer matrix is a prerequisite of any com-
posite, that may be achieved through mechanical treatments such as shear mixing
and ultrasonic dispersion techniques, sometimes combined with chemical treatments
[46]. Chemical treatments may consist of (i) non-covalent functionalizations, which
do not alter the CNT interface properties but require the use of chemical agents and
surfactants to facilitate the CNT dispersion in the surrounding polymer matrix, and
(ii) covalent functionalizations, which imply a modification of the chemical inter-
action forces between the CNTs and the polymer chains by exploiting functional
molecules which strengthen the chemical bonds between these two constituents.

Cyclic tensile tests were performed for three epoxy nanocomposites with
0.5 wt% MWNTs content of (see Fig. 13.9). As observed in the light microscopy
micrographs (see Fig. 13.9a), the CNT chemical treatment through
amino-functionalization turned out to be the most effective treatment to achieve a
good CNT dispersion and CNT/matrix adhesion, thus improving the nanocomposite
macroscopic elastic response. However, the amino-functional groups strengthened
the chemical bonds between theCNTs and epoxy, thus inhibitingor delaying the inter-
facial stick-slip activation. On the other hand, the effect of mechanical dispersion
treatments—(i.e., a milder and a stronger ultrasonication via the ultrasonic bath and
the ultrasonic horn, respectively—)led to a slightly improved mechanical response,
but preserving and even enhancing the damping capacity. Indeed, the onset of stick-
slip interfacial sliding in the non-functionalized nanocomposites occurs when the
interfacial van der Waals forces are overcome.

Although various drawbacks may be introduced by the CNT functionalization
processes (CNTs damage, shortening, etc.), the engineering of the CNT/matrix inter-
faces, as a whole, is regarded as a powerful technique to act on the local morphology
of the nanotubes and tailor the global nanocomposites material features [47, 48].
For example, the interfacial shear strength (ISS) can be increased by creating cova-
lent bonds between the CNTs and the polymers. This will cause an enhancement of
the strength and stiffness of the polymer compound through an improved interfacial
load transfer, however the persistence of stick-slip will be lost. On the other hand,
the onset of the nanocomposites hysteretic response may be facilitated by reducing
the strength of the CNT/matrix interface. Consequently, the resulting nanostructured
material will show enhanced damping capacity at relatively low strains, without
compromising the mechanical properties of the polymer.
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Fig. 13.9 a Micrographs of the three nanocomposites denoted by the blue, red and cyan colors;
b Cyclic tensile tests on CNT/epoxy nanocomposites obtained via different CNT dispersion treat-
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Strain amplitude-dependent behavior of CNT nanocomposites. After observing
the different hysteresis loops via cyclic tensile tests, experimental DynamicMechan-
ical Analysis (DMA) tests were carried out to investigate the strain amplitude effect
on the damping response of nanocomposites. DMA is a widely used technique by
which small deformations or stresses are applied to a sample in a cyclicmanner.DMA
gives information about the rheology of the material by measuring its viscoelastic
properties. The rheology provides a relationship between the inner structure and the
macroscopic properties of the nanocomposites, which is the key to the development
of new materials. The data collected from the tests may be expressed in terms of
storage modulus, loss modulus, or damping. For a given sinusoidal strain time his-
tory, the viscoelastic material stress will also vary sinusoidally in time at low strain
amplitudes. The stress response will have the same frequency as the input strain but
lagging by a phase angle denoted by δ. The phase lag is due to the excess time nec-
essary for molecular motions and relaxations to occur. Dynamic strain and stress are
expressed as ε = εo sin (ωt), and σ = σo sin (ωt + δ), respectively, where ω is the
angular frequency. The measured stress can be divided into an in-phase component
(σo cos δ) and an out-of-phase component (σo sin δ). Dividing the stress by the strain
amplitude, two moduli are derived and defined as E ′ and E ′′ for the in-phase and
out-of-phase parts, respectively,
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E ′ = σo

εo
cos δ, E ′′ = σo

εo
sin δ. (13.3)

E ′ and E ′′ correspond to the real and imaginary parts of the complex modulus:
E∗ = E ′ + i E ′′. The storage modulus E ′ describes the ability of the material to
store potential energy and release it upon deformation. The storage modulus it is
associated with the material “stiffness” and is related to the Young modulus. The
loss modulus E ′′ is associated with energy dissipation in the form of heat upon
deformation and it is related to “internal friction”. The loss modulus is sensitive to
different kinds of molecular motions, relaxation processes, transitions, morphology
and other structural heterogeneities. Thus, the dynamic properties provide useful
information at the molecular level to understand the nanofiller/polymer mechanical
behavior. The ratio between the loss modulus and the storage modulus is a measure
of the intrinsic damping called loss factor and denoted by η = tan δ = E ′′/E ′. Alter-
natively, energy concepts can be used. With respect to a steady-state oscillation, η
can be described as

η = WD

2πWE
= πE ′′x2o

2π( 12 E
′x2o )

= E ′′

E ′ , (13.4)

where xo is the amplitude of the steady-state response, WD stands for the energy
dissipated in a steady-state cycle while WE represents the stored energy. The loss
factor is undoubtedly the most general damping measurement index. The equivalent
damping ratio ξ is related to the other damping measures by simple laws: η = tan
δ = 2ξ when damping levels are within 0 <tanδ < 0.15.

DMA testswere carried out using a dynamic thermo-mechanical analyzer (ARES-
G2, TA Instruments) to evaluate the variation of (E ′, E ′′, η) within selected ranges
of the shear strain in torsional mode. The torsional tests provided information about
the damping capacity of the nanocomposites, also in terms of the shear stress state
that initiated the CNT/matrix stick-slip phenomenon with a significant localization
around the contour of the samples cross sections. The strain sweep tests were per-
formed in the strain range from 10−4 to 3.5 × 10−2 setting the frequency to 1Hz,
at room temperature. The PC and PBT nanocomposite specimens were rectangular
bars with a length of 40mm and a cross section of 1 × 9.5mm2.

Figure13.10 showsvariations of thedamping capacities ofCNT/PCandCNT/PBT
nanocomposites in a large shear strain range, and provides evidence about the onset
of the interfacial stick-slip. Past a critical shear strain value, significant increments
of damping ratios are reported for each nanocomposite compared to the neat poly-
mer. These threshold strains identify the onset of the stick-slip phenomenon. More
specifically, for low strains, below the threshold strains, the measured damping ratios
of nanocomposites are close to the values obtained in the pure matrices and, in some
cases, damping is even lower than that exhibited by the polymers. This is because the
CNT composites are stiffer that the neat matrices, in which the polymer chains show
some mobility and readjustments, even at low strains. However, when the threshold
dynamic strain is reached, the energy dissipation in CNT composites is markedly
enhanced and it rapidly increases with the dynamic strain [49]. By analyzing the
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Fig. 13.10 Damping capacity of the PC and PBT nanocomposites obtained via DMA tests in tor-
sional mode

trend of damping ratio versus shear strain amplitude a threshold strain of 5 × 10−4 is
found for MWNT/PC nanocomposite and a threshold strain of 10−3 for SWNT/PC
nanocomposites, whereas in the CNT/PBT nanocomposites the threshold strain is
2.5 × 10−3 and 3 × 10−3 for MWNT and SWNT nanocomposites, respectively. The
threshold strain values provide information about the nanofiller/polymer interactions
and suggest that interfaces in SWNT nanocomposites exhibit a better adhesion com-
pared to those of MWNT nanocomposites. The explanation of this behavior is to
be found in the nanofiller morphology. TEM analysis reported in [19] highlight the
straight and lenghten shape of the SWNTs versus the short and curly shape of the
MWNTs. As result, the MWNTs curviness hinders the nanofiller/polymer bonding
and make weaker the interfaces in the MWNT nanocomposites.

Besides the dissipation at the interface through stick-slip, additional sources of
energydissipation in nanocomposites at large strain amplitudes could stem fromother
dissipation phenomena within the matrix. Since it is assumed that the CNTs remain
elastic even at large strains, the polymer chains start to relatively slide, especially at
the CNTs ends. Furthermore, the way in which the low and high aspect ratio CNTs
affect the nanocomposites damping capacity is here highlighted. By adopting high
aspect ratio SWNTs, a larger interfacial area is obtained for the stick-slip activation
thus providing higher dissipation. When the same CNTs volume fraction is consid-
ered, the SWNT/matrix interfacial contact area is estimated to be 5.5 times larger
than that available in the MWNT nanocomposites, thus explaining the significantly
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higher damping enhancement in all SWNTs nanocomposites. Thus to summarize, at
low strain amplitudes, the damping capacity is nearly constant. Above the threshold
strain, damping increases with the strain level as a result of the CNT/polymer stick-
slip. Moreover, the experimental results show a significant damping improvement
by increasing the CNT weight fraction, although the CNT dispersion may become
worse. The highest damping enhancement was reported for the 2 wt% SWNT/PBT
nanocomposite with 200% increase compared to the neat PBT matrix.

Modeling of hysteresis in CNT nanocomposites. Several analytical/
computational models were proposed to describe the nanocomposites nonlinear con-
stitutive behavior. The first efforts aiming at modeling hysteresis in CNT nanocom-
posites were addressed by Zhou et al. [14], exploiting basic microstructural concepts
to describe the interfacial stick-slip in nanocompoites treated as four-phase mate-
rials. Li et al. [50] developed a continuum model to describe the interfacial shear
stress distribution using amolecular structuralmechanics approach andfinite element
analysis. Interesting friction models for the description of the hysteretic response in
CNT nanocomposites were also provided by Huang and Tangpong [51] and by Lin
and Lu [52] who modeled the energy dissipation of CNT composites under dynamic
loading by considering several crucial aspects, including CNT alignment to optimize
the damping response.

Recent advances in the context of smooth hysteresismodeling for nanocomposites
were reported in [53, 54] where a multi-scale finite element analysis was carried out
to investigate the hysteretic stress-strain behavior of the nanocomposites as well
as the influence of the interfacial strength, geometry, volume fraction and elastic
properties of the CNTs. In particular, the work of Formica et al. [18, 20] proposed
a meso-scale nonlinear incremental constitutive model based on the Eshelby-Mori-
Tanaka theory to describe the shear CNT/matrix stick-slip via an inelastic eigenstrain
field. The model provided predictions of the hysteretic response in close agreement
with experimental results, thus proving its validity.

In the last decade, a huge step forward in modeling the nonlinear response of
nanocomposites was taken, also thanks to the progress in nanocomposites manufac-
turing by which more experimental data were made available to validate the theories.
The current goal in analytical modeling is to provide efficient and effective tools able
not only to predict the nanocomposites mechanical response, but also to correlate the
shape andmagnitude of the nanocomposite hysteresis to macro- andmicro-structural
constitutive parameters. This will enable to design the nanocomposite mechanical
properties together with its damping capacity araising from micro-dissipative phe-
nomena, such as the interfacial stick-slip. [20].

13.4 Conclusions

Targeted levels of hysteresis can be achieved in innovative, high-performance struc-
tures by either introducing auxiliary point-wise, hysteretic dampers or by leveraging
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on the inherent damping capability of nanostructured materials such as carbon nan-
otube polymer nanocomposites.

Thiswork discussed recent advances in the design of nonlinear rheological devices
that make use of dedicated wire ropes which exhibit inter-wire hysteretic frictional
damping together with dissipation ensuing from phase transformations in NiTiNOL
wires. Moreover, geometric nonlinearities in these devices can be leveraged to con-
veniently modify the shape of the hysteresis loops thus enabling a wider frequency
tuning. The occurrence of friction together with austenitic-martensistic phase tran-
formations allows to attain energy dissipation over a large displacement range. The
possibility to regulate the dissipation level and the effective displacement range
makes the rheological device robust for several applications, especially in the field
of structural and mechanical vibrations control.

By moving towards a much smaller material scale, desirable hysteresis can be
achieved in CNT nanocomposites by taking advantage of the dissipative interfacial
stick-slip between the CNTs and the polymer chains. A tailored hysteretic response
can be designed through proper choice of the polymer matrix via optimization of the
interfacial properties. This can be obtained through an engineering of the interfaces
at the micro/nano-scale. Nanoparticle coatings, covalent and non-covalent function-
alizations, dispersion treatments and other kinds of surface modifications can be
envisioned to selectively modify the interfacial adhesion of the nanofiller with the
polymer, and bridge together a variety of structural and nonstructural properties in
the same material.

The conducted experimental campaign confirmed that the macroscopic hystere-
sis can be controlled to within a certain degree in the resulting CNT nanocom-
posites without compromising the effective stiffness and strength. An increase of
200% in damping capacity was found in randomly oriented 2 wt% SWNT/PBT
nanocomposites with a 25% improvement in Young modulus [19]. This opens new
perspectives in designing lightweight composites for applications in aerospace and
structural engineering as well as in automotive, electronics and biomedical engi-
neering, where also the outstanding electrical and thermal properties of the CNT
nanofillers may be conveniently exploited. To mention a few examples, multi-
functional nanocomposites—conceived as lightweight, strong, and highly damped
composites—can be designed for reconfigurable smart aerostructures or for minia-
turized devices, such as microbeam resonators, micropressure sensors and microab-
sorbers. On the other hand, by exploiting the electrical properties of nanotubes,
conductive networks of CNTs may be introduced in polymer based-composite mate-
rials to convey thermal gradients and induce a thermomechanical response of viscous
polymers via electrical signals. This would allow the design of materials with a ther-
mally activated hysteretic response, which takes advantage of relaxation phenomena
in polymer systems. The work here discussed shows that hysteresis can be conceived
as a multi-scale feature which can be engineered and delivered through a micro- and
nano-structural design of the materials and systems, depending upon the specific
needs dictated by new demanding applications.
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Chapter 14
Three Ways of Treating a Linear Delay
Differential Equation

Si Mohamed Sah and Richard H. Rand

Abstract This work concerns the occurrence of Hopf bifurcations in delay differ-
ential equations (DDE). Such bifurcations are associated with the occurrence of pure
imaginary characteristic roots in a linearized DDE. In this work we seek the exact
analytical conditions for pure imaginary roots, andwe compare themwith the approx-
imate conditions obtained by using the two variable expansion perturbation method.
This method characteristically gives rise to a “slow flow” which contains delayed
variables. In analyzing such approximate slow flows, we compare the exact treat-
ment of the slow flow with a further approximation based on replacing the delayed
variables in the slow flow with non-delayed variables, thereby reducing the DDE
slow flow to an ODE. By comparing these three approaches we are able to assess
the accuracy of making the various approximations. We apply this comparison to a
linear harmonic oscillator with delayed self-feedback.

Keywords Slow flow · Delay · Hopf bifurcation

14.1 Introduction

It is known that ordinary differential equations (ODEs) are used as models to better
understand phenomenon occurring in biology, physics and engineering. Although
these models present a good approximation of the observed phenomenon, in many
cases they fail to capture the rich dynamics observed in natural or technological sys-
tems. Another approach which has gained interest in modeling systems is the inclu-
sion of time delay terms in the differential equations resulting in delay-differential
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equations (DDEs). DDE’s have found application in many systems, including rotat-
ing machine tool vibrations [7], gene copying dynamics [14], laser dynamics [16]
and many other examples.

Despite their simple appearance, DDEs have several features that make their
analysis a challenging task. For example, when investigating a DDE by use of a
perturbation method, one is often confronted with a slow flow which contains delay
terms. It is often argued that since the parameter of perturbation, call it ε, is small,
ε << 1, the delay terms which appear in the slow flow may be replaced by the same
terms without delay, see e.g. [1, 5, 6, 8, 9, 13, 15, 16]. The purpose of the present
paper is to compare the exact Hopf bifurcation curves to the approximate curves
obtained by analyzing the slow flow. In particular, we compare the exact treatment
of the approximate slow flow with a treatment involving a further approximation
based on replacing the slow flow delay terms with terms without delay. We consider
the case of a linear delay differential equation and look for the smallest delay T
such that the following system has pure imaginary eigenvalues, a setup for a Hopf,
depending on the nonlinear terms (omitted here):

x ′′ + x = ε k xd , where xd = x(t − T ) (14.1)

To this aim we adopt three methods. The first method consists of solving for the
exact solution of the characteristic equation. In the second and third methods, we use
a perturbation method, the two variables expansion method, to produce a slow flow.
In the second method we keep the delayed variables in the slow flow, while in the
third method we replace the delayed variables by non-delayed variables.

14.2 First Method

For the first method we adopt an exact treatment of (14.1) without assuming ε is
small. To begin we assume a solution to (14.1) in the form

x = exp(r t) (14.2)

Substituting (14.2) into (14.1) yields

r2 + 1 − k ε exp(−rT ) = 0 (14.3)

It is known that for aHopf bifurcation to occur the real parts of a pair of eigenvalues
of the characteristic equation, i.e. r ’s of (14.3), must cross the imaginary axis leading
to a changing of sign of this pair of eigenvalues (Rand [10], Strogatz [12]). In other
words the origin, which is an equilibrium point for (14.1), changes stability from
source to sink or vice-versa. Therefore to find the critical delay Tcr causing a Hopf
bifurcation, we set r = iω giving
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1 − ω2 − k ε cosωt = 0, sinωt = 0 (14.4)

Solving the second equation in (14.4), we obtain ωTcr = nπ, n = 1, 2, 3, . . . .
However since we are only interested in the smallest delay T causing Hopf bifur-
cation, we only consider the two solutions ωTcr = π and 2π . Replacing these two
solutions in the first equation in (14.4) and solving for ω and T we obtain:

ω = √
1 + k ε (14.5)

Tcr = π

ω
= π√

1 + kε
(14.6)

and

ω = √
1 − k ε (14.7)

Tcr = 2π

ω
= 2π√

1 − kε
(14.8)

Note that (14.6) and (14.8) are exact values for the delay T for which a Hopf
bifurcation may occur. In the two next sections we consider the parameter ε in (14.1)
to be small, i.e. ε << 1, and we use a perturbation method to derive a slow flow.
We note that using the two variable expansion method gives the same slow flow as
would be obtained by using the averaging method [11].

14.3 Second Method

The two variable method posits that the solution depends on two time variables,
x(ξ, η), where ξ = t and η = εt . Then we have

xd = x(t − T ) = x(ξ − T, η − εT ) (14.9)

Dropping terms of O(ε2), (14.1) becomes

xξξ + 2εxξη + x = ε k x(ξ − T, η − εT ) (14.10)

Expanding x in a power series in ε, x = x0 + εx1 + O(ε2), and collecting terms,
we obtain

Lx0 ≡ x0ξξ + x0 = 0 (14.11)

Lx1 ≡ k x0(ξ − T, η − εT ) − 2x0ξη (14.12)

From (14.11) we have that
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x0(ξ, η) = A(η) cos ξ + B(η) sin ξ (14.13)

In (14.12) we will need x0(ξ − T, η − εT ):

x0(ξ − T, η − εT ) = Ad cos(ξ − T ) + Bd sin(ξ − T ) (14.14)

where Ad = A(η − εT ) and Bd = B(η − εT ).
Substituting (14.13) and (14.14) into (14.12) and eliminating resonant terms gives

the slow flow:

d A

dη
= −k

2
Ad sin T − k

2
Bd cos T (14.15)

dB

dη
= −k

2
Bd sin T + k

2
Ad cos T (14.16)

where Ad = A(η − εT ) and Bd = B(η − εT ). We set

A = a exp(λη), B = b exp(λη), Ad = a exp(λη − ελT ), Bd = b exp(λη − ελT )

(14.17)
where a and b are constants. This gives

[−λ − k
2 exp(−λεT ) sin T − k

2 exp(−λεT ) cos T
k
2 exp(−λεT ) cos T −λ − k

2 exp(−λεT ) sin T

] [
a
b

]
=

[
0
0

]
(14.18)

For a nontrivial solution (a, b) we require the determinant to vanish:

(
−λ − k

2
exp(−λεT ) sin T

)2

+ k2

4
exp(−2λεT ) cos2 T = 0 (14.19)

We set λ = iω for a Hopf bifurcation and use Euler’s formula exp(−iωεT ) =
cosωεT − i sinωεT . Separating real and imaginary parts we obtain

4k2 cos 2εωT + 16kω sin T sin εωT − 16ω2 = 0 (14.20)

−4k2 sin 2εωT + 16kω sin T cos εωT = 0 (14.21)

At this stage we adopt the technique used in [11] to analytically solve for the pair
(ω,T ). Following [11] we obtain the exact solutions of (14.20)–(14.21), giving the
delay for which Hopf bifurcation occurs



14 Three Ways of Treating a Linear Delay Differential Equation 255

Tcr1 = π

1 + ε k/2
(14.22)

|ε k/2| < 1

Tcr2 = 2π

1 − ε k/2
(14.23)

We note that the denominator of (14.22)–(14.23) are just the Taylor expansions to
the first order of the exact frequency given by (14.5)–(14.7). In the next section we
replace the delayed variables in (14.15)–(14.16), i.e. Ad and Bd , by the non-delayed
variables A and B.

14.4 Third Method

The slow flow given by (14.15)–(14.16) is replaced by a slow flow with no delayed
variables such that:

d A

dη
= −k

2
A sin T − k

2
B cos T (14.24)

dB

dη
= −k

2
B sin T + k

2
A cos T (14.25)

In order to find the critical delay we proceed as in the previous section. The
corresponding characteristic equation has the form:

λ2 + k λ sin T + k2

4
= 0 (14.26)

For a Hopf bifurcation, we require imaginary roots of the characteristic equation.
This gives

k sin T = 0 (14.27)

Solving the above equation for the critical delay T we obtain:

Tcr = π (14.28)

Tcr = 2π (14.29)

Figure14.1 shows a plot of the Hopfs in the k − T parameter plane. From the
figure we remark that the exact delay that is obtained from solving (14.4) agrees
with the numerical Hopf bifurcation curves (blue) that is obtained by using the
DDE-BIFTOOL continuation software [2–4]. The Hopf curves given by the second
method offer a good approximation to the numerical Hopf curves, in particular for
small values of the feedback magnitude k. However, the curves obtained from the
third method do not agree with the numerical Hopf curves.
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Fig. 14.1 Critical delay versus the feedback magnitude k. Top: blue (BIFTOOL), red (14.6), black
(14.22), magenta (14.28). Bottom: blue (BIFTOOL), red (14.8), black (14.23), magenta (14.29).
Parameter ε = 0.1
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14.5 Conclusion

When a DDE with delayed self-feedack is treated using a perturbation method (such
as the two variable expansion method, multiple scales, or averaging), the resulting
slowflow typically involves delayed variables. In thisworkwe compared the behavior
of the resulting DDE slow flow with a related ODE slow flow obtained by replacing
the delayed variables in the slow flow with non-delayed variables and comparing
the resulting approximate critical delays causing Hopf bifurcation with the exact
analytical Hopf curves.We studied a sample system based on the harmonic oscillator
with delayed self-feedback, (14.1). We found that replacing the delayed variables in
the slow flow by non-delayed variables fails to give a good approximation. However,
keeping the delayed variables in the slow flow gives better results.
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Chapter 15
Nonlinear Damping: From Viscous
to Hysteretic Dampers

Mikhail E. Semenov, Andrey M. Solovyov, Peter A. Meleshenko
and José M. Balthazar

Abstract This paper is dedicated to a brief discussion on the nonlinear damping.We
present the particular results for linear and nonlinear viscous dampers, for fractional
damper and for the hysteretic damper. As a main purpose we consider the mathemat-
ical model of damper with hysteretic properties on the basis of the Ishlinsky-Prandtl
model. The numerical results for the observable characteristics such as the force trans-
mission function and the “force-displacement” transmission function are obtained
and analyzed both for the cases of the periodic affection as well as for the impulse
affection (in the form of δ-function). The comparison of the efficiency of nonlinear
viscous damper and hysteretic damper is also presented and discussed.
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15.1 Introduction

The dampers and damping processes have a long history and especially relevant
(both from the fundamental and applied points of view) in the present days due to
development of the modern impact-vibrational systems (see, e.g., [1]). The damper
is a device used for damping the mechanical, electrical and other modes of vibration
arising in the machines and mechanical systems during its operation. Damping is
an important task that has a wide range of applications. In general the damping is a
process whereby the energy is taken from the vibrating system and is being absorbed
by the surroundings. The examples of damping include:

• internal forces of a spring;
• viscous force in a fluid;
• electromagnetic damping in galvanometers;
• shock absorber in a car;
• anti seismic damping devices in buildings etc.

In the same time it should be noted that the damping devices are widely used in
modern avionics (damper of aero-elastic vibrations, which is the electronic system
for automatic cancelation of short-aircraft vibrations that inevitably arise when the
flight modes change).

Let us also list the types (relative to the physical nature of damping process) of
damping devices, namely: Structural; Coulomb Friction; Elastomer; Active Drivers;
Passive Hydraulic; Semi-Active Hydraulic; Adaptive Hydraulic etc.

In the case of oscillations ofmechanical systems themodel of linear viscous damp-
ing (which is based on the energy dissipation due to viscous friction) is widely used.
However, this type of damping has a significant drawback, namely the low efficiency
outside the region of resonance of the system. One way to solve this problem is to use
a nonlinear viscous damper [3, 6, 11, 13, 14, 16] or a damper with hysteretic proper-
ties [7, 15] (here we should note the recent work [10] where the effects of nonlinear
hysteretic damping on the post-critical behavior of the viscoelastic Beck?s beam are
discussed). Here we should also note the interesting works dedicated to experiments
with the hysteretic damping systems (see, e.g., [15] and related references, as well
as the book [7]). The influence of nonlinear damping effects on the stability of oscil-
lating systems are considered in [9] (see, also the related references). It should also
be pointed out the exciting and interesting (generally, from the fundamental point
of view) model of viscous damping which is based on the technique of fractional
derivatives and can be called as a fractional damping [2, 8, 18, 21]. The interest to
the fractional damping is connected with the fact that the systems with such a type
of nonlinearity demonstrate the chaotic behavior [23]. Also the fractional damping
can be considered as an effective model for the so-called viscoelastic materials that
describe the properties of all the materials in the extremely natural way (because
there are no pure elastic materials as well as there are no pure viscous materials;
all the materials have both the viscous and elastic properties that can be observed at
various motion conditions).
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Main purpose of this work is to study the dynamics of a mechanical system under
various external affections (forced oscillations) in the case of presence of a damping
block. Especial interest in this case has a damper with the hysteretic properties.
As a mathematical model of such a hysteretic damper we consider the Ishlinsky-
Prandtl “converter” which is a type of continual hysterons and can be presented as
a system of parallel connected nonlinear links such as “stops” (or hysterons) [5].
Here we should note that the mathematical models of various hysteretic system was
considered in a number of works (see, e.g., [4, 12, 17, 22] and related references).
However, in these works authors use the phenomenological models of hysteresis
(Bouc-Wen model, Duhem model, etc.). In our paper we use the constructive model
of hysteresis, namely, the operator technique of Krasnosel’skii-Pokrovskii (see [19,
20]) which has an exact physical meaning in comparison with the phenomenological
models.

The paper is organized as follows. In Sect. 15.2 we consider some results for
various kinds of damping processes. Also in this section we describe the physical
model of the consideredmechanical system (car in the cylinderwith damping device).
Sect. 15.3 is dedicated to hysteretic damping. Namely, in this section we consider the
general model for description of hysteretic material based on the Ishlinsky-Prandtl
model (such a model is realized by using the operator technique for hysteretic non-
linearities). Also in this section we describe the observable characteristics that allow
to make a decision on the efficiency of the various kinds of dampers. In Sect. 15.4
we present the results of numerical simulations for the observable characteristics,
namely the force transmission function as well as the “force-displacement” trans-
mission function. Also we present the phase portraits of the considered system for
the various kinds of dampers and the response of the considered system on the single
pulse affection (in the form of δ-function). This results show the efficiency of the
hysteretic damper in comparison with the linear and nonlinear viscous dampers. In
the last Sect. 15.5 the main results are summarized.

15.2 Damping

In this section we describe the physical model of the considered mechanical system
with the damping device. Also in this section we present some results (namely the
equations of motion as well as some observable peculiarities) for various kinds of
damping, namely the linear and nonlinear damping, and fractional damping.

15.2.1 Physical System

Let us consider a mechanical system under external affection and in the presence of
the damping part fd(t) as is shown in Fig. 15.1. The system is presented as a cylinder
with mass M under external affection f (t) of harmonic nature. In the cylinder there
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Fig. 15.1 The considered
physical system

is a car of mass m (moving without friction in the horizontal plane) connected to
the border by a spring with stiffness k. For simplicity we assume that the system is
one-dimensional.

Suppose that the affection force f (t) is described by the following relation:

f (t) = Yω2 sin (ωt), (15.1)

where Yω2 is an amplitude and ω is a frequency of the affection force.
The equation of motion for considered system is

⎧
⎨

⎩

Mÿ + kz + fd(t) = f (t),
mẍ − kz − fd(t) = 0,

f (t) = Yω2 sin (ωt), z(t) = y(t) − x(t).
(15.2)

Here overdot determines the time derivative and z(t) is a relative displacement.

15.2.2 Linear and Nonlinear Viscous Damping

Let us consider the case of viscous damping. In general case the viscous friction can
be described as follows:

fd(t) = c(1 + z(t))n ż, n � 0, (15.3)

where c is a damping coefficient. In the case n = 0 we have a linear viscous friction.
For n > 0 the nonlinear viscous friction takes place [11, 13].

The equation of motion for relative displacement z(t) becomes

z̈(t) + M + m

Mm

{
c[1 + z(t)]n ż(t) + kz(t)

} = Y

M
ω2 sin (ωt). (15.4)
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It is more suitable to introduce the dimensionless variables

Ω = ω

ω0
, μ = mM

m + M
, A = Y

M
, τ = ω0t,

ω0 =
√

k

μ
, ζ = c

2ω0μ
, u = z.

After such notations the final equation of motion has the form:

d2u

dτ 2
+ 2ζ(1 + u)n

du

dτ
+ u = AΩ2 sin (Ωτ). (15.5)

15.2.3 Fractional Damping

Fractional stiffness and damping is appearing in different contexts in any systems
with memory and hysteretic properties (the so-called viscoelastic materials). Such
damping is defined by a fractional derivative in contrary to classical viscous damping
term with the first order derivative. As the memory of the dynamical system induces
extra degree of freedom for the phase space the standard methods of dynamical
response analysis and system identification, which relies on the knowledge of system
dimensionality cannot be used.

Let us be more specific. The most typical formulation of the problem is to use the
fractional derivative term in place of the viscous damper term in the usual damped
oscillation. Denoting the amount of the shrinkage of the body under compression
by x(t), the restoring force is proportional to x(t). In terms of Fourier transform,
the term corresponds to a real coefficient. On the other hand, the damping force due
to viscous damper is proportional to the velocity dx/dt , which corresponds to an
imaginary coefficient in the Fourier transform. The viscoelastic damping is assumed
to be proportional to its fractional derivative dνx/dtν , ν ∈ R, ν > 0. Its Fourier
transform is proportional to (iω)ν , which has both a real part and an imaginary part,
thereby accounting for elasticity and viscousity by a single term.

Let us recall some mathematical definitions. The Riemann–Liouville fractional
integral of χ(t)(t) is defined by

D−μχ(t) = 1

Γ (μ)

t∫

0

(t − τ)μ−1χ(τ)dτ, �μ > 0,
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where

Γ (z) =
∞∫

0

t z−1e−tdt

is the standard Euler gamma function.
The Riemann–Liouville fractional derivative of χ(t) is defined by

Dνχ(t) = DnD−n+νχ(t), n = �ν�, ν �= n,

where Dnχ(t) = dnχ(t)/dtn is the usual n-th derivative.
In this way the term du/dτ in (15.5) should be replaced by the term Dνu(τ ) ≡

dνu/dτ ν .
The solution of such a fractional differential equationswill describe the oscillation

with viscoelastic damping. This allows us to study the behavior of the solution
precisely using the properties of fractional derivatives. In particular, the asymptotic
power-law decay is determined by the lowest order derivative D1/nx(t). On the
other hand, the initial decrease in the velocity Dx(t) is determined by the therm
D2−1/nx(t).

The asymptotic power law decay indicates the lack of characteristic scale, imply-
ing fractal structure (this means that the system with fractional damping can be
considered as a system with chaotic behavior and has both the fundamental and
applied interests). In other words the model with fractional derivative term might
well be considered as an effective theory of oscillations with viscoelastic damping.

15.3 Hysteretic Damping

15.3.1 Hysteretic Material

The materials that are used for hysteretic dampers in general are polymers (synthetic
rubber). The composition of such materials is chosen appropriately to provide the
high damping properties in a specific range of frequencies and temperatures. When
the material is damped the energy dissipation occurs within the material itself. Such
an effect is caused by friction between the inner layers that are “flow” when the
damping occurs. In the case when such a structure is under damping vibrations the
hysteresis loop appears in the “stress-strain”. The area of the loop determines the
energy loss (per unit volume of the body) in one cycle due to damping.

Let us briefly consider a mathematical model of hysteresis (based on the operator
technique). The carrier of hysteretic nonlinearities is a converterW with scalar input
u(t) and outputs x(t). The state of this converter is a pair {u, x}, i.e., an input-output
pair. Let the set of possible states of the converter W is a strip Ω = Ω(W ) which is
placed between the two horizontal lines Φl and Φr , as is shown in Fig. 15.2.
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Fig. 15.2 Action of
hysteron-nonlinearity

If the inputu(t) (t � t0) is continuous andmonotone then the output can be defined
as:

x(t) = W [t0, x0]u(t) (t � t0) (15.6)

so that the variable state {u(t), x(t)} is a point in the broken line as is shown in
Fig. 15.2 by thick line; this broken line (passing through the initial state M0 =
{u(t0), x0} and the ends on the lines Φl and Φr ) consists of segment with slope
1 and two horizontal half-lines. In other words, when the input is monotonic the
output is determined by the equation:

x(t) =
{
min{h, u(t) − u(t0) + x(t0)}, u(t) nondecreasing,
max{−h, u(t) − u(t0) + x(t0)}, u(t) nonincreasing.

(15.7)

To determine the output (15.6) for piecewise monotonic continuous inputs we can
use the semigroup identity

W [t0, x0]u(t) = W [t1,W [t0, x0]u(t1)]u(t) (t0 � t1 � t). (15.8)

The described converter is called as a “stop” or a hysteron. With the special limit
construction such a converter can be defined on all the monotonic inputs [5].

In the most common models of elastic-plastic fibers their states are completely
determined by the variables of deformation u and stress x . The parameter h in this
case is called as the yield strength of the material. Such fibers can be considered as
converterswith an input in the formof deformation and an output in the formof strain.
In the Prandtlmodel the strain is determined by the deformation in the samemanner as
in hysteron-nonlinearity, but the trajectories of possible states between the boundary
horizontal lines have the slope E which differs from 1 (for small deformations the
fiber can be considered as an elastic material with the elastic modulus E).

Let us consider the inverterW which can be presented in the form of a simple flow
diagram (without feedback) based on the finite number of hysterons W 1, . . . ,WN

and elementary functional units (as is shown in Fig. 15.3). Usually such converters
W are nondeterministic. Their condition can be described (instead of the input-output
description) by the set {u, z1, . . . , zN } ∈ RN−1, where u is the converter’s input and
z j is an output of hysteron W j in the flow diagram.
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Fig. 15.3 Parallel
connection of hysterons

Let us suppose that the hysterons W 1, . . . ,WN with areas of permissible states
Ω(W 1), . . . ,Ω(WN ) are determined by the input-output relations

z j (t) = W j [t0, z j (t0)]u(t) ( j = 1, . . . , N ). (15.9)

Let
Ω(W ) = {{u, z1, . . . , zN } : {u, z j } ∈ Ω(W j ), u ∈ R1}. (15.10)

Parallel connection of hysterons W j with weights ξ j we call the converter W with
an area of permissible states (15.10) such that for every initial state

q(t0) = {u0, z0} = {u(t0), z1(t0), . . . , zN (t0)} ∈ Ω(W ) ⊂ RN+1 (15.11)

all the continuous scalar inputs u(t) (t � t0) that satisfy the condition u(t0) = u0 are
allowed. The output is determined by the relation

x(t) = W [t0, z0]u(t) =
N∑

j=1

ξ jW
j [t0, z j (t0)]u(t), (t � t0). (15.12)

The considered converter W is called as Ishlinsky-Prandtl material [6]. Of course
the “classical” Ishlinsky-Prandtl converter is determined as a continuos system (sum
should be replaced by an integral). However in our numerical simulations it is more
appropriate to use the discrete analog of the Ishlinsky-Prandtl converter (15.12).
In this way in the following consideration we will call the converter (15.12) as an
Ishlinsky-Prandtl converter.

As an example we consider the reaction of the Ishlinsky-Prandtl material on a
sinusoidal impact. We use the converter W with the following parameters: E = 1,
W j [t0, z j (t0)] = 0, ξ j = 1, W j : h = {− j, j}, j = 1, . . . , 10 and the input in the
form u(t) = 12 sin (t). “Stress-strain” diagram of such a converter is shown in
Fig. 15.4.
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Fig. 15.4 “Stress-strain”
diagram for
Ishlinsky-Prandtl material
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15.3.2 Hysteretic Damping

Now we consider the hysteretic damper. In this case (using the notations introduced
above) the damping force can be presented as:

fd(τ ) = W [τ, z j (τ )]u, j = 1, N , (15.13)

whereW is an Ishlinsky-Prandtl operator which is determined by the relation (15.12).
In this case the equation of motion for the considered system becomes:

d2u

dτ 2
+ αW [τ, z j (τ )]u + u = AΩ2 sin (Ωτ), j = 1, N , (15.14)

where α = S/k and S is an area of damping material’s section, k is a spring stiffness.

15.3.3 Main Characteristics

Let us consider the main characteristics reflecting the efficiency of the damper in the
resonance system and beyond. Such characteristics are force transmission function
and “force-displacement” transmission function.

The force transmission function is determined by the ratio of the force applied to
the cylinder M and the force applied to the car m (Fig. 15.1). This function reflects
the efficiency of suppression of the external affection by the force transmission from
an external source to the load. This characteristic is expressed as follows:
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T f f = 1

Yω2
max

∣
∣
∣
∣mω2

0
d2x

dτ 2

∣
∣
∣
∣ . (15.15)

In the case of viscous damper, using the (15.4) and (15.5) we can express the char-
acteristic T f f through the variable u, namely:

T f f = max

∣
∣
∣
∣

m

(m + M)AΩ2

[
AΩ2 sin (Ωτ) − ü

]
∣
∣
∣
∣ . (15.16)

The “force-displacement” transmission function is determined by the relation of
the motion of car m relative to the cylinder M and the force applied to the cylinder.
This quantity reflects the efficiency of vibration absorption by the ability of the
damper to reduce the relative motion of the car under influence of external forces.
This characteristic is expressed as

T f d = max |x(τ )|
Yω2

. (15.17)

As previously, in the case of viscous damping, using the (15.4) and (15.5) we can
express the T f d function in the following form:

T f d = max

∣
∣
∣
∣
A sin (Ωτ) + u

(m + M)AΩ2ω2
0

∣
∣
∣
∣ . (15.18)

During the following simulations we use these quantities for comparison of the
linear viscous, nonlinear viscous and hysteretic dampers.

15.4 Numerical Results

15.4.1 Difference Scheme

The dynamics of the considered system can be simulated using the explicit difference
scheme applied to (15.5) and (15.14). Finite-difference equations for viscous damper
is:

ui+2 − 2ui+1 + ui
h2τ

+ 2ζ(1 + ui+1)
n ui+1 − ui

hτ

+ ui+1 = AΩ2 sin (Ωihτ ),

(15.19)
and for hysteretic damper is:

ui+2 − 2ui+1 + ui
h2τ

+ αW [ihτ , z j (ihτ )]ϕ j (t)
∣
∣
∣
t=1

+ui+1 = AΩ2 sin (Ωihτ ),

(15.20)
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where
ϕ j (t) = (1 − t)ui + tui+1.

Here i = 0, T , j = 1, N , hτ is a step of a grid by τ axis, N is a number of the
Ishlinsky-Prandtl hysterons, T is a time period. Here it should be noted, that the
basic properties of the Ishlinsky-Prandtl converter are such that it is not sensitive to
behavior of the input state if the last one is monotonic.

The explicit solutions for the viscous damper and for hysteretic damper are:

ui+2 = AΩ2h2τ sin (Ωihτ ) − 2ζhτ (1 + ui+1)
n(ui+1 − ui ) − h2τui+1 + 2ui+1 − ui ,

(15.21)

ui+2 = AΩ2h2τ sin (Ωihτ ) − αh2τW [ihτ , z j (ihτ )]ϕ j (t)
∣
∣
∣
t=1

−h2τui+1 + 2ui+1 − ui ,

(15.22)
respectively.

15.4.2 Simulation Results

We make the numerical simulations using the explicit results (15.21) and (15.22). In
order to compare the viscous damper and hysteretic damper we present the numerical
results for two characteristics of the system, namely, the force transmission function
and “force-displacement” transmission function. For the nonlinear viscous damper
we use the following set n = {0, 2, 4}.

For the hysteretic damper we use the Ishlinsky-Prandtl material (which corre-
sponds to rubber) with the parameters E = 10000, W j [t0, z j (t0)] = 0, ξ j = 1, W j :
h = {− j, j}, j = 1, . . . , 50 (with a step 0.1), α = 0, 0001.

The characteristics of the mechanical system (per dimensionless units): M =
1, m = 1, ζ = 0.8, ω0 = 10; the external affection with parameters A = 1, ω =
0, . . . , 30 (with a step 0.2); parameters of the difference scheme: hτ = 0.0167, T =
10000.

The simulation results are shown in Figs. 15.5 and 15.6. As it can be seen from
these figures the linear viscous damper (dark blue curve n = 0) has a high efficiency
in the resonance region of the system, however outside the resonance region the
damping properties sharply decrease. At the same time the nonlinear viscous damper
(green n = 2 and red n = 4 curves) has a wide range of effective use, but loses in
efficiency to linear damper in the resonance region of the system.

The hysteretic damper (light blue curve) based on Ishlinsky-Prandtl material has
a high efficiency both in the resonance region and beyond. The disadvantage of the
hysteretic damper is in decreasing of the ability to reduce the relative movement of
car under external forces outside the resonance region of the system.
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Fig. 15.5 Force
transmission function
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Fig. 15.6 “Force-
displacement” transmission
function
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Let us consider also the phase portraits for the system both for the cases of viscous
damper and for hysteretic damper. As the origin of the phase plane we use the
instantaneous values of the car’s coordinate inside the cylinder x(τ ) and its relative
speed ẋ(τ ). For the case of viscous damper (for the hysteretic damper we can use
the numerical solutions only), using the (15.4) and (15.5) we can write (taking into
account the general system of (15.2) together with the corresponding notations):

x(τ ) = − [A sin (Ωτ) + u]
M

M + m
, (15.23)

ẋ(τ ) = − [AΩ cos (Ωτ) + u̇]
M

M + m
. (15.24)
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Fig. 15.7 Phase portraits of the system in the case of linear viscous damper (n = 0) at Ω = 3 (left
panel) and Ω = 30 (right panel)

Fig. 15.8 Phase portraits of the system in the case of nonlinear viscous damper (n = 2) at Ω = 3
(left panel) and Ω = 30 (right panel)

The phase portraits of the system under consideration (with various kinds of
dampers) are presented in the Figs. 15.7, 15.8, 15.9 and 15.10

Figures show the phase portraits of the system both in the case of viscous (linear
and nonlinear) damping and the hysteretic damping. The left panels show the phase
portraits in the resonance region, the right panels show the far frequency domain.
From the figures it is clear that the hysteretic damper has a greater efficiency (in
comparison with the linear and nonlinear viscous dampers) in the resonance region,
and beyond. Previously, based on the analysis of transmission functions T f f and T f d

we havemade some conclusions on the efficiency of hysteretic damper in comparison
with the viscous damper. In this way the presented phase portraits are proved our
conclusions.

In the final step let us study the dynamics of the system under influence of a pulse
affection (we consider the single pulse in the form of δ-function). In this case, the
(15.4) for the viscous damper can be rewritten in the following form:
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Fig. 15.9 Phase portraits of the system in the case of nonlinear viscous damper (n = 4) at Ω = 3
(left panel) and Ω = 30 (right panel)

Fig. 15.10 Phase portraits of the system in the case of hysteretic damper at Ω = 3 (left panel) and
Ω = 30 (right panel)

z̈(t) + 2ζω0[1 + z(t)]n ż(t) + ω2
0z(t) = δ(t). (15.25)

For the hysteretic damper we have:

z̈(t) + ω2
0

(
αW [t, z j (t)]z(t) + z(t)

) = δ(t). (15.26)

Figure15.11 shows the response of the systemwith viscous andhysteretic dampers
to a single pulse.

As it can be seen from the figure, the energy dissipation in the case of hysteretic
damper is faster than in the case of linear and nonlinear viscous damper. This fact
shows (one more time) the efficiency of hysteretic damper in comparison with the
viscous dampers.
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Fig. 15.11 The relative
motion of a car x(t) under
single pulse affection for
various kinds of damping

15.5 Conclusions

This work is considered the various kinds of damping processes that occur in the
oscillations of real mechanical systems with damping blocks. Namely we consider
the peculiarities of the linear and nonlinear viscous damping as well as the frac-
tional damping, which can be considered as an effective model for the viscoelastic
medium. Especial attention in this work we are paid to the hysteretic damper, which
constructive model is based on the Ishlinsky-Prandtl model (this model is based on
the operator technique for description of the hysteretic nonlinearities; in this way
such a model has a great physical meaning in comparison with the phenomenolog-
ical models based on the functional nonlinearities, such as Bouc-Wen model etc.).
We presented the numerical results for the observable characteristics of the system
under consideration such as force transmission function and “force-displacement”
transmission function both for the cases of hysteretic and viscous (linear and non-
linear) dampers. The phase portraits of the system with various kinds of damping
are plotted and analyzed. We have also considered the response of the system with
various kinds of damping on the single pulse affection. The obtained results allow to
compare the various types of viscous dampers (linear and nonlinear) and hysteretic
damper. Based on the obtained numerical results we can formulate the following
concluding notes:

• Linear viscous damper has a high efficiency in the resonance region of the system,
however, outside the resonance region the damping properties sharply decrease.

• Nonlinear viscous damping has a wide range of effective use, but loses in effi-
ciency to linear damper in the resonance region of the system.

• Hysteretic damper based on the Ishlinsky-Prandtl material has a high efficiency
both in the resonance region and beyond. The disadvantage of the hysteretic
damper is in decreasing of the ability to reduce the relative movement of the car
under external forces outside the resonance region of the system.
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