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58183 Linköping, Sweden
E-mail: bom@ifm.liu.se

Herbert Venghaus

Fraunhofer Institut für Nachrichtentechnik
Heinrich-Hertz-Institut
Einsteinufer 37
10587 Berlin, Germany
E-mail: venghaus@hhi.de

Horst Weber

Technische Universität Berlin
Optisches Institut
Straße des 17. Juni 135
10623 Berlin, Germany
E-mail: weber@physik.tu-berlin.de

Harald Weinfurter

Ludwig-Maximilians-Universität München
Sektion Physik
Schellingstraße 4/III
80799 München, Germany
E-mail: harald.weinfurter@physik.uni-muenchen.de



Myung K. Kim

Digital Holographic
Microscopy

Principles, Techniques, and Applications



Myung K. Kim
Department of Physics
University of South Florida
4202 E. Fowler Avenue
Tampa, FL 33620
USA
mkkim@usf.edu

Springer Series in Optical Sciences ISSN 0342-4111 e-ISSN 1556-1534
ISBN 978-1-4419-7792-2 e-ISBN 978-1-4419-7793-9
DOI 10.1007/978-1-4419-7793-9
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011931894

# Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



In memory of my father





Preface

Digital holography is an emergent new imaging technology that inherits many of

the unique capabilities of conventional holography but provides novel solutions to

some of the key problems that have been limiting its applications and further

development. By replacing the photochemical procedures with electronic imaging

and having a direct numerical access to the complex optical field, a wide range of

new imaging capabilities become available, many of them difficult or infeasible in

conventional holography. In recent years, research activities in digital holography

have seen exponential growth and application areas have been expanding especially

in microbiology and medical imaging. Increasing number of researchers in tradi-

tional physics and electrical engineering departments as well as all other areas

of engineering, biology, and medicine are interested in exploring the potential

capabilities of digital holography. This book is intended to provide a brief but

consistent introduction to the principles of digital holography as well as giving an

organized overview of the large number of techniques and applications being

developed. This will also shed some light on the range of possibilities for further

developments. As such, the intended audience is the students and new researchers

interested in developing new techniques and exploring new applications of digital

holography.

First chapters, 1–5, describe the basic principles of digital holography. A brief

history of holography, both conventional (or analog) and digital, is given in

Chap. 1, followed by a brief summary of scalar diffraction theory and Fourier

optics in Chap. 2 and a general description of the holography processes in Chap. 3.

Chapter 4 describes basic numerical methods of calculating optical diffraction.

Simulation examples are used to clarify the procedures as well as compare between

different methods as clearly as possible. Chapter 5 describes general behavior of the

digital holographic images as well as a small number of basic optical configurations

that are used in, or are the starting points of, most digital holography experiments.

Chapters 6–10 describe specific techniques of digital holography in some detail.

Chapter 6 highlights some of the theoretical developments that enhance the

capabilities of digital holography and applications. The zero-order (or dc) and
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twin-image terms are important issues in holography, and digital holography

provides novel approaches, as described in Chap. 7. In particular, the phase-shifting

techniques of Chap. 8 provide highly effective methods for removing the dc and

twin terms. The concept of phase shifting is also applied to a number of other

special techniques that lead to some quite remarkable capabilities, as will be seen in

later chapters. Chapters 9 and 10 collect a number of techniques developed for

special capabilities of digital holography imaging, grouped according to whether

they involve reconfiguration of hardware or involve numerical processing only.

Final two chapters survey the techniques and applications of microscopy and low-

coherence imaging. InChap. 11, the digital holographicmicroscopy, and especially its

applications in quantitative phase microscopy, are described. Special techniques of

digital holographic microscopy, as well as related techniques for quantitative phase

microscopy, are surveyed. Digital holographic imaging with low-coherence sources,

described in Chap. 12, may hold particularly significant potential for novel imaging

methods that have been very difficult or unfeasible in conventional holography.

It is to be noted that the biological microscopy applications of digital holography

is emphasized here. This is one of the many areas one can expect significant amount

of new development from. But it leaves some of the other major areas such as

interferometric metrology and optical information processing outside the main

scope of this book. Certainly the book has many deficiencies, both in content and

presentations, but it is hoped that this will provide helpful starting materials and

stimulus for entering the exciting and rapidly developing field of digital holography.

Feedback of comments and corrections from readers addressed to mkkim@usf.edu
would be most appreciated.

My sincere thanks go to all the students of our Digital Holography andMicroscopy

Laboratory at the University of South Florida, who haveworked hard to producemany

of the nice images that are touted here. Appreciation also goes to several colleagues

who have givenme insights and encouragements at important points of various phases

of research represented here, including especially Profs. C.M. Lo and D. Richards.

Special thanks toMs. J. Burke of Springer for her unlimited patience and helpwith this

book project. Financial support of theNational Science Foundation duringmuch of the

research presented here is gratefully acknowledged. Finally, gratitude and affection to

my family for putting up with my absurd work habit. Now I will go take the dogs out

for a walk. . .

Tampa, FL Myung K. Kim

March 2011
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Chapter 1

Introduction

Digital holography (DH) is an emerging technology of new paradigm in general

imaging applications. By replacing the photochemical procedures of conventional

holography with electronic imaging, a door opens to a wide range of new

capabilities. Although many of the remarkable properties of holography have

been known for decades, their practical applications have been constrained because

of the cumbersome procedures and stringent requirements on equipment. A real-

time process is not feasible except for special materials and effects, such as the

photorefractives. In digital holography, the holographic interference pattern is

optically generated by superposition of object and reference beams, which is

digitally sampled by a CCD camera and transferred to a computer as an array of

numbers. The propagation of optical field is completely and accurately described by

diffraction theory, which allows numerical reconstruction of the image as an array

of complex numbers representing the amplitude and phase of the optical field.

Digital holography offers a number of significant advantages such as the ability to

acquire holograms rapidly, availability of complete amplitude and phase informa-

tion of the optical field, and versatility of the interferometric and image processing

techniques. Indeed, digital holography by numerical diffraction of optical fields

allows imaging and image processing techniques that are difficult or not feasible in

real space holography. We begin by giving a brief overview of the historical

development of holography, both the conventional or analog holography and the

digital holography.

1.1 Conventional (Analog) Holography

Holography was invented in 1948 by Dennis Gabor (British Thomson-Houston,

UK), in an effort to improve the resolution of the electron microscope, where the

correction of the electron lens aberrations posed increasing technical difficulty.

Instead of attempting to perfect the electron imaging lens, Gabor dispensed it

altogether and realized that the diffraction pattern of the electron beam contained
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complete information regarding the amplitude and phase of the electron wave.

The record of the electron wave diffraction is then used to optically synthesize

the object field. This allowed the use of optics of visible light for image formation,

which is much easier and developed task compared to electron optics. He named

the new imaging principle as holography, for its ability to record the whole optical

field [1–3].

Gabor’s work was inspired by the X-ray microscope of W.L. Bragg (Cavendish

Laboratory, Cambridge, UK), who drilled numerous tiny holes at the positions of the

X-ray diffraction spots, the hole sizes being proportional to the diffraction intensity.

“When a parallel monochromatic beam passes through these holes, and then through

a lens, the Fraunhofer fringes build up an image of the crystal structure” [4]. In a

sense this was a precursor of binary-coded Fourier hologram. He later used photo-

graphic plates in place of the manually drilled hole patterns [5]. On the other hand,

the “diffraction diagrams” contain information on the intensities only, but not on the

phases. Gabor realized that “if a diffraction diagram of an object is taken with

coherent illumination, and a coherent background is added to the diffracted wave,

the photograph will contain the full information on the modifications which the

illuminating wave has suffered in traversing the object” [2]. In these papers, Gabor

laid down theoretical foundations and anticipated novel and important features of

the new imaging methods, such as aberration compensation by replicating the

aberrations of the recording optics in the reconstruction optics.

Although Gabor’s demonstration experiments (Fig. 1.1) were by optical means

both for recording and reconstruction, lack of light sources of sufficiently high

Fig. 1.1 One of the first

holograms of D. Gabor. Top:
the hologram; lower left: the
object; lower right:
reconstructed image.

(Reprinted from [2] by

permission of the Royal

Society, London)
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coherence and intensity prevented much progress in optical holography [6, 7].

During the 1950s, the holography principle was mostly applied to electron and

X-ray microscopy, under the name of diffraction microscopy [8]. Two critical

inventions provided the trigger for a truly explosive growth of optical holography

techniques and applications. One was the powerful coherent source of light in laser

to provide high quality interference contrast. The other, due to Emmett Leith and

Juris Upatnieks (University of Michigan, Ann Arbor) [9–12], was the off-axis

illumination with a separate reference wave, thus eliminating the problem of

the zero-order and twin images of the Gabor’s on-axis configuration. In [9], the

holography process is described from a communication theory viewpoint,

consisting of modulation, frequency dispersion, and square-law detection. They

note that “a complex signal of bandwidth W can be represented by a real signal of

bandwidth 2W, in which the real signal is derived from the complex one by placing

the signal on a carrier and using only the real part,” which immediately suggests the

off-axis configuration. They have demonstrated reconstruction of two types of

objects, which are not suitable for Gabor process: objects which do not transmit a

strong background wave (e.g., transparent lettering against a dark background) and

continuous-tone objects. In 1964, they demonstrated holographic reconstruction of

three-dimensional solid objects (Fig. 1.2), which resemble to a high degree the

original objects, for example, they are three dimensional and exhibit a parallax

between near and more distant objects [11].

Soon many new techniques and applications of holography began to develop.

The holography is now a mature field, and an excellent survey is given, for

example, in [13]. All different types of lasers have been used for generation and

viewing of holograms, from diode lasers to high power gas lasers, covering not only

the visible wavelengths but also the infrared, ultraviolet, and X-ray [14, 15]. The

white-light reflection holography developed by Yuri N. Denisyuk (USSR) [16, 17]

Fig. 1.2 One of the first holograms of a three-dimensional object by Leith & Upatnieks.

(Reprinted from [11] by permission of OSA)
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and by Stephen Benton (Polaroid Corp.) [18] made many practical display

applications possible and now are ubiquitous such as on credit cards. Many

different types of recording materials have been developed, including silver halide

photographic emulsion, dichromated gelatin, photoresists, and photopolymers.

In photorefractive crystals, such as LiNbO3, exposure of light causes reversible

changes in index of refraction, and can be used for creating holograms. Volume

holograms have distinct properties compared to the usual planar holograms, such as

the requirement of phase matching for Bragg diffraction. Similarly, a number of

nonlinear optical effects also give rise to reversible or real-time holographic

diffraction and phase conjugate image formation processes, including four-wave

mixing, spectral hole burning, and photon echoes [19]. In fact, the holography

provides a unifying principle for understanding a wide range of nonlinear optical

phenomena.

A most important engineering application of holography is in interferometry.

Because the phase as well as the intensity information is reconstructed, wavefronts

which were originally separated in time or space or even wavefronts of different

wavelengths can be compared by holographic interferometry [20]. Changes in the

shape of objects with rough surfaces can be studied with interferometric precision

and allows nondestructive testing of deformation, vibration, and surface contours,

as well as variations in refractive indices due to thermal, chemical, and biological

processes. A large number of holographic interferometry techniques have been

developed, including double exposure holography, time average holography,

heterodyne holography, phase-shifting interferometry, multiwavelength interfer-

ometry, and speckle interferometry. In fact, digital holography evolved naturally

from the effort to utilize electronic imaging in interferometry, such as in electronic

speckle pattern interferometry (ESPI) [21].

Holograms can store not only three-dimensional images of objects, but also any

types of properly encoded data. Holographic data storage provides a number of

advantages including high capacity and high speed parallel processing. Volume

hologram materials such as photorefractives, photopolymers, and nonlinear crystals

are potential candidates for such applications. Holographic data storage can also be

tightly integrated with various powerful techniques of holographic image

processing, such as encryption, pattern recognition, associative memory, and neural

network [22].

We also note two specific holographic imaging applications, namely holo-

graphic microscopy and particle analysis. In conventional microscopy, the depth

of field is very narrow and decreases as the square of the magnification. At a given

focal position of the microscope, the observed field consists of the focal plane

sharply in focus together with the blurred background of the out-of-focus planes of

the extended object. A photomicrograph or a single frame of video microscopy

records the single focal plane, and the information on the rest of the object volume

is lost. With holographic microscopy, the entire volume of an object can be

recorded on a single hologram [23, 24]. Although these are obvious advantages

for recording dynamic scenes of microbes and particles in a volume, holographic

microscopy has thus far found limited practical applications. The holographic
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image magnification can be achieved by using different wavelengths or curvatures

for recording and reconstruction of hologram, but the range of wavelengths of

available coherent sources is very limited and curvature mismatch leads to

aberrations. In a more successful approach, microscopically recorded holograms

are examined using a conventional microscope, which is very useful for phase and

interference microscopy [25].

1.2 Digital Holography

The propagation of optical field is completely and accurately described by

diffraction theory and therefore amenable to numerical computation. The first

demonstration of feasibility of numerical reconstruction of hologram was by

Joseph Goodman (Stanford University) et al. in 1967 [26]. Summarizing their

description, the pattern of interference between the reference and object waves is

directly detected on the photosensitive surface of the vidicon (lens assembly

removed). The output of the vidicon is sampled in a 256 � 256 array, and

quantized to eight gray levels. The PDP-6 computer is programmed to perform a

two-dimensional Fourier transform of the array, and to take the squared modulus

of the result. A Cooley–Tukey algorithm (i.e., fast Fourier transform, FFT) is

employed, allowing the image to be obtained with 5 min of computation time. The

computer output is presented optically on an oscilloscope display (Fig. 1.3).

Another precursor to digital holography was a Fourier-transform holographic

microscope by Haddad et al. (Los Alamos National Laboratory) in 1992 [27].

They used a tiny drop of glycerol as a lens to create the spherically diverging

reference illumination necessary for Fourier-transform holography. They have

used a customized CCD with a sensitive area of 2,048 � 2,048 square pixels

with 9 mm pixel pitch. FFT calculations on a PC produced microholographic

images of an ascaris section. Processing with a numerical lens demonstrated

numerical focusing to different focal distances.

Starting in 1994, Ulf Schnars and Werner Jueptner (University of Bremen,

Germany), published a number of experiments on CCD recording and numerical

reconstruction of holograms in Fresnel off-axis configurations (Fig. 1.4), and

demonstrated the feasibility of its use in metrology of macroscopic objects

[28–30]. By this time, the CCD cameras and computing technologies have devel-

oped to a sufficient level for practical implementation of digital holography, and

increasing number of researchers began developing new techniques and

applications, as will be described in the rest of this book. In 1999, Christian

Depeursinge’s group (École Polytechnique Fédérale de Lausanne, Switzerland)

demonstrated quantitative phase microscopy by digital holography, that directly

produces a surface profile with less than a few nanometer effective noise (Fig. 1.5)

[31, 32]. Conventional, that is, analog, holography also reconstructs the phase
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information, but in order to extract the phase information one has to perform

another interference experiment, whereas in digital holography, the phase informa-

tion is directly available as soon as the optical field is calculated as a set of complex

numbers. The quantitative phase microscopy is an important aspect of digital

Fig. 1.4 One of the first

digital holograms of

W. Jueptner and U. Schnars.

(Reprinted from [29] by

permission of OSA)

Fig. 1.3 Digitally computed

image from electronically

detected hologram, by

J. Goodman. (Reprinted from

[26] by permission of AIP)
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holography, allowing many imaging and processing capabilities that are difficult or

infeasible in real space holography [33].

Various useful and special techniques have been developed to enhance the

capabilities and to extend the range of applications. In digital holographic micros-

copy, a single hologram is used to numerically focus on the holographic image

at any distance [34, 35]. Direct access to the phase information leads to quantita-

tive phase microscopy with nanometer sensitivity of transparent or reflective

phase objects [31, 36, 37], and allows further manipulations such as aberration

correction [38]. Multiwavelength optical phase unwrapping is a fast and robust

method for removing 2p-discontinuities compared to software algorithm-based

methods [39]. A significant constraint of digital holography is the pixel count and

resolution of the imaging devices. Suppression of the zero-order and the twin

images by phase-shifting digital holography allows efficient use of the pixel

array [40]. Digital Gabor holography, without separate reference beam, is useful

for particle imaging applications by providing four-dimensional space–time

record of particle fields [41]. Having a close root in electronic speckle pattern

interferometry (ESPI) [21], metrology of deformations and vibrations is a

major application area of digital holography [42, 43]. Optical processing, such

as pattern recognition and encryption, by digital holography also offers new

capabilities [44].

The accelerating development of digital holography is in no small part due to the

advances in computational power. Using a modest personal computer, a 2D FFT of

1,024 � 1,024 array, for example, takes a fraction of a second, compared to many

minutes of photochemical processing in conventional holography. A typical sensi-

tivity of a photographic plate is ~105 photons per mm2, whereas a CCD sensitivity

can be ~100 photons per mm2without much effort. This translates to a large reduction

in the exposure time as well as substantially simpler requirements on the apparatus

stability against vibrations and other disturbances. With these parameters, it is easy

to foresee that the strength and versatility of digital holography techniques will only

continue to increase at a robust rate.

The term digital holography (DH) is used in a few different contexts. One is a

narrow meaning as used in this book, namely, the optical generation of a hologram

Fig. 1.5 Phase-contrast

image obtained with a

pure phase object, by C.

Depeursinge et al. (Reprinted

from [31] by permission

of OSA)
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followed by electronic acquisition and numerical reconstruction of the image.

Another is the opposite process of calculating the holographic interference numeri-

cally, followed by printing or other output to real space so that the reconstruction

can be carried out by optical means. This is now more commonly referred to as the

computer-generated hologram (CGH). The CGH has a somewhat longer history,

and earlier in its development, DH and CGH were basically synonymous [45–47].

In 1967, A.W. Lohmann and D.P. Paris (IBM) showed that “when a hologram is

desired from an object which does not exist physically but is known in mathemati-

cal terms, one can compute the hologram” [48]. A plotter was used to make a

drawing at a larger scale, which is then reduced photographically. In order to

represent the phase using a black-and-white plotter, they introduced a technique

called binary detour-phase hologram, where the position of a plotted pixel is shifted

according to the phase. The resulting optically reconstructed images were

completely analogous to ones produced with gray-scale holograms. CGH can be

used to produce holograms of fictitious objects with prescribed intensity and phase

structure. Many computation techniques have been developed as well as the means

of optical reconstruction.

The following is a short list of some of the recent books, feature issues and

review papers that may be of general interest.

• J. Goodman, Introduction to Fourier optics (Roberts & Co., 2005).

• P. Hariharan, Optical Holography: Principles, Techniques, and Applications,

2 ed. (Cambridge University Press, 1996).

• L. Yaroslavsky, Digital holography and digital image processing: principles,

methods, algorithms (Kluwer Academic, 2004).

• W. Jueptner, and U. Schnars, Digital Holography: Digital Hologram Recording,

Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin

Heidelberg, 2005).

• T. Kreis, Handbook of holographic interferometry: Optical and digital methods

(Wiley-VCH, 2005).

• T. Poon, ed. Digital holography and three-dimensional display: principles and

applications (Springer, 2006).

• T. C. Poon, T. Yatagai, and W. Juptner, “Digital holography – coherent optics of

the 21st century: introduction,” Applied Optics 45, 821–821 (2006).

• T. C. Poon, B. Lee, H. Yoshikawa, and W. Osten, “Digital holography and 3D

imaging: introduction to the feature issue,” Applied Optics 47, DH1-DH1

(2008).

• T. C. Poon, B. Lee, H. Yoshikawa, and J. Rosen, “Digital Holography and 3-D

Imaging: feature introduction,” Applied Optics 48, DH2-DH2 (2009).

• P. Banerjee, G. Barbastathis, M. K. Kim, and N. Kukhtarev, “Digital holography

and 3-D imaging,” Appl. Opt. 50, DH1-DH2 (2011).

• U. Schnars, and W. P. O. Juptner, “Digital recording and numerical reconstruc-

tion of holograms,” Measurement Science & Technology 13, R85-R101 (2002).

• M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE

Reviews 1, 1–50 (2010).
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Chapter 2

Diffraction and Fourier Optics

Diffraction and Fourier optics are at the foundation of the theory of holographic image

formation and therefore essential in the description of holographic processes and

techniques. In this chapter, we review the scalar diffraction theory, which is used to

describe the propagation of the optical field from an input plane to the output plane.

The propagation of light through a lens is an essential part of any imaging system, and

its mathematical description is relevant to holographic image formation as well.

2.1 Fourier Transform and Mathematical Background

We begin with a brief summary of basic results from Fourier analysis and related

mathematical background, mostly without proof, the main purpose being

establishing basic notations and collecting in one place useful expressions that

are frequently used in Fourier optics [1].

2.1.1 One-Dimensional Definition

In a one-dimensional (1D) system, according to the Fourier theorem, if f ðxÞ is a
reasonably well-behaved function, then it can be decomposed into a superposition of

sine and cosine functions, or imaginary exponentials, of various frequencies. (Note

that in this book, the term frequencywill usually refer to the spatial frequencies.) The

amplitudes of the decomposition are the Fourier transform of the function, thus

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
dkFðkÞ exp ikxð Þ ¼ F�1 FðkÞf g x½ �;

FðkÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
dxf ðxÞ exp �ikxð Þ ¼ F f ðxÞf g k½ �: (2.1)
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The particular notation with square brackets is used to explicitly display the

variable of transform. Examples of the Fourier transform pairs are listed in Table 2.1

and illustrated in Fig. 2.1. Thus, an even (odd) pair of delta functions transforms to

cosine (sine) function. A rectangle function transforms to a sinc function. The

transforms of Gaussian, chirp, or comb functions transform respectively to the

same type of functions.

2.1.2 Two-Dimensional Definition

For a two-dimensional (2D) system, the Fourier transform is written as

f x; yð Þ ¼ 1

2p

ZZ
dkxdkyF kx; ky

� �
exp i kxxþ kyy

� �� � ¼ F�1 F kx; ky
� �� �

x; y½ �;

F kx; ky
� � ¼ 1

2p

ZZ
dxdyf x; yð Þ exp �i kxxþ kyy

� �� � ¼ F f x; yð Þf g kx; ky
� �

: ð2:2Þ

Generalization to N-dimensional system is straightforward, noting that the factorffiffiffiffiffiffi
2p

p
in (2.1) becomes 2pð ÞN 2=

.

Table 2.1 Examples of Fourier transform pairs. See Fig. 2.1 for illustrations

f ðxÞ F ff g k½ �
f ðxÞ ¼ d x� x0ð Þ FðkÞ ¼ 1ffiffiffiffiffiffi

2p
p exp �ikx0ð Þ

f ðxÞ ¼ d x� x0ð Þ þ d xþ x0ð Þ FðkÞ ¼
ffiffiffi
2

p

r
cos kx0ð Þ Fig. 2.1a

f ðxÞ ¼ exp ik0xð Þ FðkÞ ¼ ffiffiffiffiffiffi
2p

p
d k � k0ð Þ

f ðxÞ ¼ cos k0xð Þ FðkÞ ¼
ffiffiffi
p
2

r
d k � k0ð Þ þ d k þ k0ð Þf g

f ðxÞ ¼ rect
x

a

	 


¼
1; x 2 �a; a½ �
0; otherwise

( FðkÞ ¼
ffiffiffi
2

p

r
asinc kað Þ

¼
ffiffiffi
2

p

r
a
sin kað Þ
ka

Fig. 2.1b

f ðxÞ ¼ exp � x2

a2

� �
FðkÞ ¼ affiffiffi

2
p exp � 1

4
a2k2

� �
Fig. 2.1c

f ðxÞ ¼ exp
i

2
ax2

� �
FðkÞ ¼ i

a
exp � i

2

k2

a

� �
Fig. 2.1d

f ðxÞ ¼ comb
x

a

	 


¼
X1
n¼�1

d x� nað Þ

FðkÞ ¼
ffiffiffiffiffiffi
2p

p

a
comb

k

2p=a

� �

¼
ffiffiffiffiffiffi
2p

p

a

X1
n¼�1

d k � n
2p
a

� �
Fig. 2.1e
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Fig. 2.1 Examples of Fourier transform pairs
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2.1.3 Cartesian Geometry

If the function is separable in Cartesian coordinates, f x; yð Þ ¼ fxðxÞ fyðyÞ, then so is
the transform:

F f x; yð Þf g ¼ F fxðxÞf gF fyðyÞ
� �

; (2.3)

that is,

F kx; ky
� � ¼ Fx kxð ÞFy ky

� �
: (2.4)

An important example is a rectangular aperture,

f x; yð Þ ¼ rect
x

ax

� �
rect

y

ay

� �
; (2.5)

whose transform is

F kx; ky
� � ¼ 2

p
ax aysinc kxaxð Þsinc kyay

� �
: (2.6)

The function F kx; ky
� �

 

2 is illustrated in Fig. 2.2a with f x; yð Þ displayed in the inset.

Note that the horizontal orientation of the long side of the rectangle results in the

vertical orientation of the central bright spot in the transform. This is an example of

the uncertainty principle that higher localization in the spatial dimension

corresponds to larger spread in the frequency dimension, and vice versa.

Fig. 2.2 (a) Rectangular aperture and its Fourier transform. (b) Circular aperture and its Fourier
transform
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2.1.4 Cylindrical Geometry

If the 2D function is given in cylindrical coordinates, with

x ¼ r cos’

y ¼ r sin’

(
and

kx ¼ k cos �

ky ¼ k sin �
;

(
(2.7)

then the Fourier transform is

F k; �ð Þ ¼ 1

2p

Z 1

0

rdr
Z 2p

0

d’f r; ’ð Þ exp �ikr cos ’� �ð Þ½ �: (2.8)

If the function has cylindrical symmetry, so that f ¼ f rð Þ, then

F k; �ð Þ ¼
Z 1

0

f rð ÞrJ0 krð Þdr ¼ B f rð Þf g k½ �; (2.9)

which is called the Fourier–Bessel transform. An important example is a circular

aperture of radius a:

f ðrÞ 1 rba
0 r>a

(
(2.10)

Its Fourier transform is the Airy disk, illustrated in Fig. 2.2b:

FðkÞ ¼
Z a

0

rJ0 krð Þdr ¼ a

k
J1 kað Þ: (2.11)

The first zero of the Bessel function J1ðxÞ is at x � 3:83, which defines the size of

the Airy disk. This is also to be compared with the first zero of sinc function sincðxÞ
at x ¼ p � 3:14.

2.1.5 Basic Properties of Fourier Transforms

We list several of the well-known properties of Fourier transform in Table 2.2. The

similarity property shows that if the function f is stretched in the x-direction, then its
transform is shrunk in corresponding direction kx. The shift theorem states that a

shift of the spatial position of a function amounts to an additional phase oscillation

in the frequency domain, which is the basis of the large field of interferometry. In

the uncertainty relation, the uncertainties are defined as the root-mean-square

deviation.
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2.1.6 Convolution and Correlation

Another important result is the convolution theorem,

F f � gf g ¼
ffiffiffiffiffiffi
2p

p
FG; (2.12)

where the convolution of two functions is defined as

f � gðxÞ ¼
Z

dx0f x0ð Þg x� x0ð Þ ¼ g� f ðxÞ: (2.13)

In particular, the convolution of a function gðxÞ with a delta function d x� x0ð Þ
located at x ¼ x0 copies the function to that location,

d x� x0ð Þ � gðxÞ ¼ g x� x0ð Þ: (2.14)

Considering that any function f ðxÞ is a superposition of many delta functions with

different amplitudes and positions, the convolution of f ðxÞ with a “spread function”
gðxÞ is simply a similar superposition of many copies of gðxÞ with corresponding

amplitudes and positions. This is illustrated in Fig. 2.3, where the function f ðxÞ
representing a pattern of point sources in the Big Dipper is convolved with the

spread function gðxÞ to yield the “image” that includes the effect of the spread

function.

Relatedly, the cross-correlation of two functions is defined as

f � gðxÞ ¼
Z

dx0f x0ð Þg� x0 � xð Þ ¼ f ðxÞ � g� �xð Þ (2.15)

Table 2.2 Basic theorems of Fourier transform

Linearity: F a f þ bgf g ¼ aFþ bG

Similarity: F f axð Þf g ¼ 1

aj jF
k

a

� �
F f �xð Þf g ¼ F �kð Þ

Shift Property F f x� x0ð Þf g ¼ FðkÞe�ikx0

Parseval’s Theorem:
R1
�1 f ðxÞj j2dx ¼ R1

�1 FðkÞj j2dk
Uncertainty principle: DxDk � 1

Repeated transforms: FF�1 f ðxÞf g ¼ F�1F f ðxÞf g ¼ f ðxÞ
FF f ðxÞf g ¼ f �xð Þ
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and one can also write

F f � gf g ¼
ffiffiffiffiffiffi
2p

p
FG� (2.16)

In particular, the correlation of a function with itself is called the auto-correlation,

f � f ðxÞ ¼
Z

dx0f x0ð Þ f � x0 � xð Þ: (2.17)

It is clear that if the function f ðxÞ is highly random, then f � f ð0Þ¼R
dx0 f x0ð Þj j2,

while for x 6¼ 0, f � f ðxÞ � 0. If gðxÞ is a shifted copy or partial copy of f ðxÞ, then
the cross-correlation has a large peak corresponding to the shift, which is the basis

of pattern recognition by cross-correlation. In Fig. 2.4, the cross-correlation of the

Fig. 2.3 Example of convolution. (a) Input image, (b) PSF, and (c) output image

Fig. 2.4 Example of correlation. (a) Input image, (b) search image, and (c) result
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map of the University of South Florida with a small area from it identifies the

location of the Physics building. Roughly speaking, the lateral size of the correla-

tion peak indicates the distance beyond which the randomness sets in.

2.1.7 Some Useful Formulas

Here we list some of the useful formulas that may come in handy throughout the

discussions of diffraction and Fourier optics. Delta functions have numerous

representations, including

d x� x0ð Þ ¼ lim
a!0

1

p
a

x2 þ a2
;

d x� x0ð Þ ¼ lim
a!0

1ffiffiffi
p

p
a
exp � x� x0ð Þ2

a2

" #
;

d x� x0ð Þ ¼ lim
a!0

1

pa
sinc

x� x0
a

	 

;

d x� x0ð Þ ¼ 1

2p

Z
dk exp ik x� x0ð Þ½ �;

d r� r0ð Þ ¼ 1

2pð Þ3
Z

d3k exp ik 	 r� r0ð Þ½ �: (2.18)

Note that the delta function in N-dimension has the dimensions of lengthð Þ�N
.

The Gaussian integrals are needed frequently:

Z 1

�1
exp �px2

� �
dx ¼

ffiffiffi
p
p

r
; (2.19)

Z 1

�1
exp �px2 þ qx

� �
dx ¼

ffiffiffi
p
p

r
exp

q2

4p

� �
; (2.20)

which are valid for any complex number p whose real part is nonnegative,

Re pf gr0. And finally,

Z 1

�1
sinc axð Þdx ¼ p

a
; (2.21)

Z 1

�1

1

x2 þ a2
dx ¼ p

a
: (2.22)
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2.2 Scalar Diffraction Theory

The theory of propagation and diffraction of electromagnetic fields has a long history

of development and hasmany subtleties that need to be considered carefully in order to

arrive at accurate and consistent results [2]. In-depth discussions can be found in a

number of authoritative textbooks such as [3, 4]. Herewe take a practical approach and

take the Fresnel–Kirchoff diffraction formula as the starting point, which is known to

yield highly accurate results for a wide range of configurations. Referring to Fig. 2.5, a

spherical wave from the point source at S illuminates the aperture S:

ES ¼ ES

exp i kr0 � otð Þ½ �
kr0

: (2.23)

The field at a point P behind the aperture is then given by

EP ¼ � i

4p
ESe

�iot
Z
S

dS
exp ik r þ r0ð Þ½ �

rr0
r̂� r̂0
� � 	 n̂; (2.24)

where the carets (^) represent unit vectors along the relevant directions. This

expression can be interpreted in terms of Huygens principle [2, 5], where the field

at a point in the aperture gives rise to a secondary spherical wavelet proportional to

� i
exp ikrð Þ
4pr

r̂� r̂0
� � 	 n̂: (2.25)

The obliquity factor 1
2
r̂� r̂0
� � 	 n̂ becomes r̂ 	 n̂ or � r̂0 	 n̂ in Rayleigh–

Sommerfeld theory, depending on the boundary conditions imposed on the screen

S. When the propagation is paraxial, the obliquity factor becomes close to unity in all

three cases, which we take to be the case. The field at the observation point P is then

EP ¼ � i

2p

Z
S

dSES
exp ikrð Þ

r
: (2.26)

Fig. 2.5 Geometry of

Fresnel–Kirchoff diffraction

formula. S Source point,

P observation point
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2.3 Diffraction from a 2D Aperture

To be more specific, we consider the geometry of Fig. 2.6, where the input field

E0 x0; y0ð Þ on the input plane S0 propagates along the general z-direction and results
in the output field E x; y; zð Þ on the output plane S. Then (2.26) is written as

E x; y; zð Þ ¼ � ik

2p

ZZ
S0

dx0dy0E0 x0; y0ð Þ exp ikrð Þ
r

;

¼ � ik

2pz

ZZ
S0

dx0dy0E0 x0; y0ð Þ exp ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2 þ z2

q� �
; (2.27)

where we made a further approximation of r � z in the denominator, but not in the

exponent. This integral is a convolution

E x; y; zð Þ ¼ E0 � SH (2.28)

with the kernel

SH x; y; zð Þ ¼ � ik

2pz
exp ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

ph i
; (2.29)

which is also referred to as the point spread function (PSF). (More precisely, this is

a coherent spread function.) We will refer to this as the Huygens PSF, as far as the

integral representing the Huygens spherical wavelet propagation.

Fig. 2.6 Geometry of diffraction from a 2D aperture
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2.3.1 Paraxial (Fresnel) Approximation

For theoretical developments and other purposes, it is often useful to make paraxial,

or Fresnel, approximation of the PSF

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2 þ z2

q
� zþ x� x0ð Þ2 þ y� y0ð Þ2

2z
; (2.30)

which is valid for z3 
 k
8

x� x0ð Þ2 þ y� y0ð Þ2
h i2

max
. Then the Fresnel PSF is

SF x; y; zð Þ ¼ � ik

2pz
exp ikzð Þ exp ik

2z
x2 þ y2
� �� �

; (2.31)

where the spherical wavefront is approximated with a parabolic wavefront, or a 2D

chirp function. The diffraction field is expressed with a single Fourier transform of

spatial frequencies

kx ¼ k
x

z
; ky ¼ k

y

z
: (2.32)

Thus

E x; y; zð Þ ¼ � ik

2pz
exp ikzð Þ

ZZ
S0

dx0dy0E0 x0; y0ð Þ exp ik

2z
x� x0ð Þ2 þ y� y0ð Þ2

h i� �
;

¼ � ik

2pz
exp ikzð Þ exp ik

2z
x2 þ y2
� �� �

�
ZZ
S0

dx0dy0E0 x0; y0ð Þ exp ik

2z
x20 þ y20
� �� �

exp � ik

z
xx0 þ yy0ð Þ

� �
;

¼ � ik

z
exp ikzð Þ exp ik

2z
x2 þ y2
� �� �

F E0 x0; y0ð Þ exp ik

2z
x20 þ y20
� �� �� �

kx; ky
� �
(2.33)

or

E x; y; zð Þ ¼ 2p exp
ik

2z
x2 þ y2
� �� �

F E0 x0; y0ð Þ SF x0; y0; zð Þf g kx; ky
� �

: (2.34)

This is also referred to as the Fresnel transform.
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2.3.2 Fraunhofer Diffraction

If we make further approximation and ignore terms of order
x20 þ y20

z2
� 1 to write

r � zþ x2 þ y2

2z
� xx0 þ yy0

z
; (2.35)

then the output field is proportional to the Fourier transform of the input field:

E x;y;zð Þ¼� ik

2pz
exp ikzð Þexp ik

2z
x2þ y2
� �� �ZZ

S0

dx0dy0E0 x0;y0ð Þexp � ik

z
xx0þ yy0ð Þ

� �
;

¼� ik

z
exp ikzð Þexp ik

2z
x2þ y2
� �� �

F E0 x0;y0ð Þf g kx;ky
� �

: ð2:36Þ

Therefore, for example, the Fraunhofer diffraction pattern of a rectangular aperture

is a sinc function and for a circular aperture it is an Airy disk pattern, as is well

known.

2.4 Propagation of Angular Spectrum

An alternative approach to describing the diffraction is given by the angular

spectrum or the plane-wave decomposition. Analytically, the angular spectrum

approach is shown to be equivalent to the Huygens convolution described above.

On the other hand, the angular spectrum picture has the advantage of being more

intuitive and free from some of the subtle difficulties of boundary conditions. It also

leads to a more robust and trouble-free numerical calculations of diffraction, as we

will see in later chapters.

Given an input field E0 x0; y0ð Þ, its Fourier transform

A0 kx; ky
� � ¼ F E0f g ¼ 1

2p

ZZ
S0

dx0dy0E0 x0; y0ð Þ exp �i kxx0 þ kyy0
� �� �

(2.37)

describes the amplitudes of various plane-wave components that comprise the input

pattern, according to the basic principle of Fourier transform, depicted in Fig. 2.7.

The input field E0 x0; y0ð Þ is of course the inverse Fourier transform of the angular

spectrum:

E0 x0; y0ð Þ ¼ F�1 A0f g ¼ 1

2p

ZZ
dkxdkyA0 kx; ky

� �
exp i kxx0 þ kyy0

� �� �
: (2.38)
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The complex exponential exp i kxx0 þ kyy0
� �� �

is the projection on the x0; y0ð Þ-
plane of a plane wave propagating along the wave vector k ¼ kx; ky; kz

� �
, where

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q
: (2.39)

Thus the input field E0 x0; y0ð Þ can be viewed as a projection of many plane-wave

components propagating in various directions k ¼ kx; ky; kz
� �

, with complex ampli-

tude of each component given by A0 kx; ky
� �

. After propagation over a distance z,
each plane-wave component acquires a phase factor exp ikzzð Þ, so that the output

field is given by

E x; y; zð Þ ¼ 1

2p

ZZ
S0

dkxdkyA0 kx; ky
� �

exp i kxxþ kyyþ kzz
� �� �

; (2.40)

which is an inverse Fourier transform of A0 kx; ky
� �

exp ikzzð Þ:

E x; y; zð Þ ¼ F�1 A0 kx; ky
� �

exp i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kx

2 � ky
2

q
z

� �� �
x; y½ �;

¼ F�1 F E0f g exp i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kx

2 � ky
2

q
z

� �� �
: (2.41)

One can make several observations here. First, the square root factor in the

exponent requires that

kx
2 þ ky

2bk2: (2.42)

That is, the diffraction imposes a low-pass filtering of the input spatial frequencies.

Input spatial structures finer than the wavelength do not propagate to far field.

Only near field probes can access such evanescent field. Second, note that the

Fig. 2.7 Propagation of a

plane-wave component

in the angular spectrum
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description is based only on the fundamental properties of Fourier transform,

without having to invoke particular boundary conditions. Third, the physical picture

of diffraction is constructed from a set of plane waves, which by definition is well-

behaved everywhere in space. On the other hand, the Huygens principle and

Rayleigh–Sommerfeld theory are all built up from the behavior of spherical

waves of point sources, which inherently involves singularities at the point sources.

Note the factor r � z in the denominator of (2.34), whereas the angular spectrum

result (2.41) does not have such factor. These observations have important

consequences when we discretize the integrals for numerical calculation of the

diffraction in Chap. 4.

Still, the angular spectrum result is equivalent to the convolution result, as

shown in [6]. First, expand the expressions for the Fourier and inverse transforms

in (2.41)

E x; y; zð Þ ¼ 1

2pð Þ2
ZZ
S0

dx0dy0E0 x0; y0ð Þ
ZZ
S0

dkxdky exp i kx x� x0ð Þ½ þky y� y0ð Þ�

exp i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kx

2 � ky
2

q
z

� �
;

¼ 1

2p

ZZ
S0

dx0dy0E0 x0; y0ð ÞF�1 exp i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kx

2 � ky
2

q
z

� �� �
x� x0; y� y0½ �:

(2.43)

Noting the following Fourier transform

F exp ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

ph in o
kx; ky
� � ¼ iz

k
exp i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kx

2 � ky
2

q
z

� �
; (2.44)

(2.41) is indeed seen to be the Huygens convolution,

E x; y; zð Þ ¼ E0 � SH: (2.45)

If we take the paraxial approximation

kz � k � kx
2 þ ky

2

2k
; (2.46)

then

E x; y; zð Þ ¼ exp ikzð ÞF�1 F E0f g exp �i
kx

2 þ ky
2

2k
z

� �� �
;

¼ E0 � SF: ð2:47Þ

Obviously, the angular spectrum method under paraxial approximation is equiva-

lent to the Fresnel transform as well.
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2.5 Propagation Through a Lens

We now describe the propagation of an optical field through a lens. We use the

paraxial approximation and Fresnel transform expression of diffraction, which

allow us to describe the process in closed analytical forms. For a thin lens of

focal length f, its effect is to introduce a quadratic phase in the transmitted optical

field (Fig. 2.8),

E0 x; yð Þ ¼ E x; yð Þ exp � ik

2f
x2 þ y2
� �� �

¼ E x; yð Þcf x; yð Þ: (2.48)

Refer to Fig. 2.9 and consider the propagation of light from the input plane, S0, to

the output plane, S1, through the lens at S0-plane. The three planes S0, S0, and S1

are positioned at z ¼ 0; z0; and z0 þ z1, respectively. The input field is E0 x0; y0ð Þ.
The field at the entrance pupil of the lens is the Fresnel transform of the input field

over a distance z0

E0 x0; y0ð Þ ¼ � ik

2pz0
exp ikz0ð Þ

ZZ
S0

dx0dy0E0 x0; y0ð Þ exp ik

2z0
x0 � x0ð Þ2 þ y0 � y0ð Þ2

h i� �
:

(2.49)

Fig. 2.8 Transmission

through a thin lens

Fig. 2.9 Geometry of imaging by a lens
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To save space, here and occasionally elsewhere, we will abbreviate all x; yð Þ terms

with ðxÞ expressions only – the missing ðyÞ terms should be clear from the context.

For example, (2.49) is abbreviated as

E0 x0; y0ð Þ ¼ � ik

2pz0
exp ikz0ð Þ

ZZ
S0

dx0E0 x0ð Þ exp ik

2z0
x0 � x0ð Þ2

� �
: (2.50)

The field at the exit pupil of the lens becomes

E00 x0; y0ð Þ ¼ � ik

2pz0
exp ikz0ð Þ exp � ik

2f
x02

� �ZZ
S0

dx0E0 x0ð Þ exp ik

2z0
x0 � x0ð Þ2

� �
: (2.51)

Further propagation over the distance z1 yields the output field

E1 x1;y1ð Þ¼� k2

4p2z0z1
exp ik z0þ z1ð Þ½ �

ZZ
S0

dx0E0 x0ð Þ

�
ZZ
S0

dx0 exp
ik

2z0
x0 � x0ð Þ2� ik

2f
x02þ ik

2z1
x1� x0ð Þ2

� �
;

¼� k2

4p2z0z1
exp ik z0þ z1ð Þ½ �exp ik

2z1
x21

� �ZZ
S0

dx0E0 x0ð Þexp ik

2z0
x20

� �

�
ZZ
S0

dx0 exp
ik

2q
x02� ik

x0
z0
þ x1
z1

� �
x0

� �
;

¼� ik

2pz0
exp ik z0þ z1ð Þ½ �exp ik

2z1
x21

� �ZZ
S0

dx0E0 x0ð Þexp ik

2z00
x20�

ikx1
z0

x0

� �
;

(2.52)

where

1

q
¼ 1

z0
� 1

f
þ 1

z1
;

z0 ¼ z0z1
q

¼ z0 þ z1 � z0z1
f

;

z00 ¼ z20
z0 � q

;

z01 ¼ z21
z1 � q

:

8>>>>>>>>>>><
>>>>>>>>>>>:

(2.53)

One may note some similarity and difference with the Fresnel diffraction (2.33).

We can use (2.52) to derive some of the familiar properties of the lens.
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2.5.1 Fourier Transform by a Lens

Let z1 ¼ f . Then q ¼ z0 and z00 ! 1, so that

E1 x1; y1ð Þ ¼ � ik

f
exp ik z0 þ fð Þ½ � exp ik

2z01
x21

� �
F E0 x0ð Þf g kx½ � (2.54)

with kx ¼ kx1
f

and ky ¼ ky1
f

. If, further, z0 ¼ z1 ¼ f , then

E1 x1; y1ð Þ ¼ � ik

f
exp 2ikfð ÞF E0 x0ð Þf g kx½ � (2.55)

and the fields at the two focal planes are Fourier transform of each other.

2.5.2 Imaging by a Lens

If 1=q ¼ ð1=z0Þ þ ð1=z1Þ � ð1=f Þ ¼ 0, then re-evaluate the integrals in the second

line of (2.51) as

E1 x1; y1ð Þ ¼ � k2

4p2z0z1
exp ik z0 þ z1ð Þ½ � exp ik

2z1
x21

� �ZZ
S0

dx0E0 x0ð Þ exp ik

2z0
x20

� �

�
ZZ
S0

dx0 exp �ik
x0
z0

þ x1
z1

� �
x0

� �
;

¼� z0
z1

exp ik z0 þ z1ð Þ½ � exp ik

2z1
x21

� �

�
ZZ
S0

dx0E0 x0ð Þ exp ik

2z0
x20

� �
d x0 þ z0

z1
x1

� �
;

¼� z0
z1

exp ik z0 þ z1ð Þ½ � exp ik

2f

z0
z1
x21

� �
E0 � z0

z1
x1

� �
: ð2:56Þ

This expression accounts for the amplitude scaling �z0=z1ð Þ and the image inver-

sion and magnification E0 �ðz0=z1Þx1ð Þ. The lateral magnification isMx 
 � z1
z0
. The

quadratic phase term is due to the fact that the object S0 and image S1 planes are not

spherical from the center of the lens.
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2.5.3 Lens of Finite Aperture

If the finite aperture of the lens or presence of aberrations is represented with an

aperture amplitude function A x0; y0ð Þ, so that cf is replaced with Acf in (2.48), then,

at the image position where 1
q ¼ 0,

E1 x1; y1ð Þ ¼ � k2

4p2z0z1
exp ik z0 þ z1ð Þ½ � exp ik

2z1
x1

2

� �� �

�
ZZ
S0

dx0E0 x0ð Þ exp ik

2z0
x0

2

� �ZZ
S0

dx0A x0ð Þ exp �ik
x0
z0

þ x1
z1

� �
x0

� �
;

¼� k2

2pz0z1
� � �f g

ZZ
S0

dx0 E0 x0ð Þ exp ik

2z0
x0

2

� �
F Af g k

z0
x0 � ~x1ð Þ

� �
;

¼ k2

2pz0z1
� � �f g E0 ~x1ð Þ exp ik

2z0
~x1

2

� �� �
� F Af g � k

z0
~x1

� �
;

¼ k2

2pz0z1
exp ik z0 þ z1ð Þ½ � exp ik

2z1
x1

2

� �

� E0 � z0
z1
x1

� �
exp

ik

2z1

z0
z1
x21

� �� �
� F Af g k

z1
x1

� �
; ð2:57Þ

where

~x0 
 � z1
z0
x0; ~x1 
 � z0

z1
x1: (2.58)

That is, the image is convolved (i.e., smoothed) with the Fourier transform of the

aperture function.
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Chapter 3

Principles of Holography

3.1 Introduction

The basic principle of holography consists of the recording of the hologram by

interference between the object wave and the reference wave followed by the

diffraction and propagation of another reference wave resulting in the formation

of the holographic image. This is illustrated with two elementary holograms:

holography of plane waves and holography of point sources. Holography can be

realized through a large range of materials and optical processes. A brief overview

of the holographic processes is given below.

3.2 Basic Concept

Figure 3.1 depicts general concepts of conventional and digital holography. Light

reflected from, or transmitted through an object arrives at the hologram plane while

another light wave, the reference, simultaneously illuminates the hologram plane.

The superposition and interference of the two light waves result in fringe or speckle

patterns, which are then recorded by an intensity-sensitive medium or device. The

system may include other optical elements such as lenses and mirrors to manipulate

magnifications and other parameters. The reference light may be a plane wave or

spherical wave. Or it may be of more complicated structure, but a requirement is

that it be of known or well-controlled structure, so that it may be replicated in

the read process. To reconstruct or read the hologram, another reference wave

illuminates the hologram, which then diffracts from the fringe or speckle patterns.

One of the diffracted waves forms an image which reproduces the original object

wave in both the amplitude and the phase. It is the reconstruction of the whole

optical field, including the phase, that gives rise to a multitude of unique properties

and applications of holography, in contrast to photography which can only repro-

duce the intensity.

M.K. Kim, Digital Holographic Microscopy: Principles, Techniques,
and Applications, Springer Series in Optical Sciences 162,

DOI 10.1007/978-1-4419-7793-9_3, # Springer Science+Business Media, LLC 2011

29



In the conventional real space holography (Fig. 3.1a), the hologram is recorded

on a photographic plate or any other media whose optical transmission or reflec-

tion property changes in response to the light intensity impinging on it. Recording

and reconstruction both take place in real space using real light and real optical

components. On the other hand, propagation and diffraction of light is completely

and accurately described by electromagnetic diffraction theory. Therefore, it is

possible to simulate part or all of the holography process by numerical computa-

tion. In computer-generated holography (CGH), the hologram is calculated

numerically inside a computer and the result is printed photographically or

projected on an electronic device such as a spatial light modulator (SLM).

Reconstruction then takes place in real space with real light. Conversely, in digital

holography (DH) (Fig. 3.1b) the recording process is in real space, but the

hologram is captured on an electronic camera, such as CCD or CMOS cameras,

and transferred to a computer in a digital form. The reconstruction is carried out

numerically inside the computer, whose result is displayed on the monitor or

stored or output electronically for further processing and manipulation. Numerical

processing of holograms in CGH and DH lead to a wide range of unique properties

and capabilities [1, 2].

• In CGH, holograms can be produced of fictitious objects that are unlikely or

impossible in real space, such as objects of unusual phase topology.

• Compared to photochemical recording, electronic recording by CCD or CMOS

sensors is much faster, more controllable, and closer to linear sensitivity. It is

also more economical in the long run by not requiring a dark room, chemical

supplies, and the photo-processing labor.

• In DH, holograms can be processed in ways that are difficult or infeasible in real

space, such as superposition of multiple holograms illuminated with different

wavelengths.

Fig. 3.1 Basic concept of (a) the conventional holography and (b) the digital holography
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• One of the most important distinctions of DH is the direct access to the phase

of the optical field. The real space holography does reproduce the phase of

the optical field, but it is not directly available to human observer or intensity-

sensitive detectors until another interferometric experiment is carried out. On the

other hand, in DH, the calculation of the optical field gives immediate access to

an array of complex numbers that includes the phase information.

• An important issue is the resolution. Current electronic camera resolution,

at several microns or more, is at least an order of magnitude lower than photo-

graphicmedia, and it will probably be some time before they become comparable.

This does place a limitation on certain kinds of applications, such as holographic

recording with parallax effect.

3.2.1 Holographic Terms

If the hologram plane is simultaneously illuminated with an object field EO and

reference field ER, the resulting intensity is

I ¼ ER þ EOj j2 ¼ ERj j2 þ EOj j2 þ ER
�EO þ EREO

�: (3.1)

The hologram is developed, photochemically or electronically, so that its amplitude

transmittance is proportional to the intensity. For reconstruction, another reference

field ER
0 illuminates the hologram, so that the transmitted light is

E ¼ ER
0I ¼ ER

0 ER þ EOj j2;
¼ ER

0 ERj j2 þ ER
0 EOj j2 þ ER

0ER
�EO þ ER

0ERER
�: ð3:2Þ

The first two terms are referred to as the zero-order terms and represent

the noninterfering intensity patterns of the reference and object fields, separately.

If the reference fields have no spatial structure, then the last two terms are

proportional to the complex object field and its conjugate, and they are called

the first-order twin-image terms. As shown in Fig. 3.2a, b, when the two reference

waves ER and ER
0 are from the same side of the hologram, one of the twin terms

forms virtual orthoscopic image on the same side as the object, while the other

forms real pseudoscopic image on the opposite side of the hologram. With the

pseudoscopic image, what would be the front surface of the object appears farther

away from the observer. If the two reference fields are opposite to each other

(Fig. 3.2a, c) the virtual image behaves as a specular reflection with respect to the

original object field, while the real image behaves as a phase conjugate reflection,

forming the image at the exact location of the original object.
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3.3 Holography of Plane Waves

Now we consider two elementary processes of holographic image formation, namely

holography of plane waves and of point sources. According to Fourier theory, an

arbitrary wavefront can be analyzed as a superposition of many plane waves. Equally

fundamental view of a wavefront is that it consists of many spherical wavefronts

from point sources. First, let us consider holography by plane waves (Fig. 3.3).

Suppose a plane wave E1 is normally incident on the hologram plane at z ¼ 0 and

another plane wave E2 is incident at an angle ’ from the z-axis:

E1 ¼ E1 exp ik1 � rð Þ ¼ E1 exp ikzð Þ; (3.3)

E2 ¼ E2 exp ik2 � rð Þ ¼ E2 exp ik x sin’þ z cos’ð Þ½ �: (3.4)

The intensity distribution is

I12 ¼ E1 þ E2j j2z¼0 ¼ E1j j2 þ E2j j2 þ 2E1E2 cos kx sin’ð Þ; (3.5)

which is a cosine grating pattern with a spatial frequency that depends on

the relative direction of the incident plane waves. Assuming, as before, that the

amplitude transmittance of the developed hologram is proportional to the intensity

I12, the hologram is illuminated with a third plane wave E3 at an angle ’0

E3 ¼ E3 exp ik3 � rð Þ ¼ E3 exp ik0 x sin’0 þ z cos’0ð Þ½ �; (3.6)

Fig. 3.2 Holographic terms for (a) hologram recording and (b) hologram reconstruction with the

reference in the same direction as the recording or (c) in the opposite direction
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where we include the possibility of the wavelength being different from the first

two waves. The lateral size of the hologram is a, and the Fraunhofer diffraction is

calculated as

E yð Þ /
Z a=2

�a=2

dxI12E3 z ¼ 0ð Þ exp �ikx sin yð Þ

¼
Z a=2

�a=2

dx E1j j2 þ E2j j2 þ 2E1E2 cos kx sin’½ �
n o

E3 exp ik0x sin’0 � sin yð Þ½ �;

¼ E1j j2 þ E2j j2
h i

E3 asinc
k0a
2

sin’0 � sin yð Þ
� �

þ E1E2E3 asinc
ka

2
sin’� k0a

2
sin’0 � sin yð Þ

� �

þ E1E2E3 asinc
ka

2
sin’þ k0a

2
sin’0 � sin yð Þ

� �
: ð3:7Þ

The characteristic sinc function behavior of finite aperture becomes delta function

as the aperture, that is, the hologram size becomes infinite.

E yð Þ a ! 1��! E1j j2 þ E2j j2
h i

E3d y� ’0ð Þ
þ E1E2E3 d yþ m’� ’0ð Þ þ d y� m’� ’0ð Þ½ �; (3.8)

where

m � k

k0
¼ l0

l
: (3.9)

The first term in these equations is the zero-order term, that represents the

undiffracted reference wave propagating along the y ¼ ’0 direction. The next two

Fig. 3.3 Holography of plane

waves. (a) Incident plane

waves, (b) sine grating

hologram, and (c) diffraction

from the sine grating hologram
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terms are the first-order “twin-image” terms that propagate along the directions

y ¼ �m’þ ’0. For the case of ’0 ¼ 0, the twin images in the directions y ¼ �m’
represent the real and virtual images on either side of the hologram. The wavelength

mismatch m leads to rescaling of the image position and size.

3.4 Holography of Point Sources

Another important model of holographic image formation is that of point sources

[3–6]. As depicted in Fig. 3.4, suppose two point sources E1d x� x1; y� y1; z� z1ð Þ
and E2d x� x2; y� y2; z� z2ð Þ emit spherical waves toward the hologram plane

E0 x0; y0ð Þ at z ¼ 0. Using Fresnel approximation, the fields at z ¼ 0 are

E1 x0; y0; z ¼ 0ð Þ ¼ E1 exp �ikz1 � ik

2z1
x0 � x1ð Þ2 þ y0 � y1ð Þ2

h i� �
; (3.10)

E2 x0; y0; z ¼ 0ð Þ ¼ E2 exp �ikz2 � ik

2z2
x0 � x2ð Þ2 þ y0 � y2ð Þ2

h i� �
: (3.11)

The intensity on the hologram plane is, abbreviating all (x, y)-terms with (x)-terms

only,

I12 x0;y0ð Þ¼ E1þE2j j2;

¼ E1j j2þ E2j j2þ2E1E2 cos k z1� z2ð Þþ k

2z1
x0� x1ð Þ2� k

2z2
x0� x2ð Þ2

� �
;

¼ E1j j2þ E2j j2þ2E1E2 cos kz12þ
k

2z12
x0� x12ð Þ2

� �
; ð3:12Þ

where

1

z12
� 1

z1
� 1

z2
;

x12 �
x1
z1

þ x2
z2

1

z1
þ 1

z2

;

z12 � z1 � z2ð Þ 1þ 1

2

x1 � x2ð Þ2
z1 þ z2ð Þ2

" #
:

8>>>>>>>>>>><
>>>>>>>>>>>:

(3.13)

This is a Newton’s ring or Fresnel zone pattern (FZP), which, as is well

known, behaves like a lens. Illumination of the pattern with another point source

E3d x� x3; y� y3; z� z3ð Þ, with a possibly different wavelength, then forms a
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focused image, as follows. The field from the third source arriving at the hologram

plane is

E3 x0; y0; z ¼ 0ð Þ ¼ E3 exp �ik0z3 � ik0

2z3
x0 � x3ð Þ2 þ y0 � y3ð Þ2

h i� �
: (3.14)

The optical field at another plane S x; yð Þ at an arbitrary distance z is calculated

using Fresnel diffraction formula. We calculate only the twin-image terms, that

arise from

I�12 x0; y0ð Þ ¼ E1E2 exp �ikz12 �
ik

2z12
x0 � x12ð Þ2

� �
; (3.15)

so that

E� x; y; zð Þ ¼ � ik0

2pz
exp ik0zð Þ

ZZ
S0

dx0I
�
12 x0ð ÞE3 exp

ik0

2z
x� x0ð Þ2

� �
;

¼� ik0

2pz
E1E2E3 exp �ikz12 � ik0z3 þ ik0zð Þ

	
ZZ
S0

dx0 exp � ik

2z12
x0� x12ð Þ2 � ik0

2z3
x0 � x3ð Þ2 þ ik0

2z
x0 � xð Þ2

� �
:

(3.16)

After some algebraic effort, we obtain

E� x;y;zð Þ¼ a�E1E2E3 exp �ik z1� z2ð Þ� ik0 z3� zð Þ½ �exp ik0

2

x�X�ð Þ2
z�Z� þ iF�

" #
;

(3.17)

Fig. 3.4 Geometry for holography of point sources
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where

Z� � 1

�m
1

z1
� 1

z2

� �
þ 1

z3

;

X� � �m
x1
z1

� x2
z2

� �
þ x3

z3

� �
Z�;

F� � k

2
�m

x1 � x2ð Þ2
z1z2

þ x2 � x3ð Þ2
z2z3

� x1 � x3ð Þ2
z1z3

" #
Z�;

a� ¼ 1

1� z

Z�
:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(3.18)

The results show that the fields E� x; y; zð Þ are spherical waves centered at

X�; Y�; Z�ð Þ.

3.4.1 Magnifications

Various magnifications can be easily calculated. The lateral magnification is

Mx
� ¼ @X�

@x1
¼ �m

Z�

z1
; (3.19)

the axial magnification is

Mz
� ¼ @Z�

@z1
¼ �m

Z�2

z21
¼ � 1

m
Mx

�2; (3.20)

and the angular magnification is

Mx=z
� ¼ @ X� Z�	
 �

@ x1 z1=ð Þ ¼ �m: (3.21)

3.4.2 Collimated References

For the special case of collimated references, we take z2; z3 ! 1, so that

Z� � � z1 m;=

X� � x1;

F� � 0;

8><
>: (3.22)
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and the magnifications are

Mx
� ¼ 1;

Mz
� ¼ �1 m=

Mx=z
� ¼ � m:

8><
>: ; (3.23)

As depicted in Fig. 3.5, the interference of a plane wave and a spherical wave results

in a Fresnel zone pattern, which is a two-dimensional chirp function. As one

moves out from the center, the local frequency of the fringes increases, so that the

plane wave reference diffracts through increasingly larger angles, just like a lens.

And the diffraction has components both toward and away from the center, as well as

an undiffracted transmission. This hologram in effect behaves like a superposition of

three “lenses” – a converging lens, a diverging lens, and a plane transmission.

3.5 Holographic Processes

There have been developed a wide range of processes and techniques developed for

holography[7]. Holography also turns out to be a unifying principle of many

different areas of nonlinear optics[8]. Here we list some of the main types and

processes of holography.

3.5.1 Amplitude and Phase Holograms

The complex hologram transmission function may have amplitude or phase

components, or both. Their behaviors may be illustrated with the Fraunhofer

Fig. 3.5 Holography of a

point source. (a) Incident

plane and spherical waves,

(b) Fresnel zone hologram,

and (c) diffraction from the

Fresnel zone hologram

3.5 Holographic Processes 37



diffraction from cosine amplitude or phase gratings. For a one-dimensional

grating with spatial frequency b and amplitude modulation a, the transmission

function is

TðxÞ ¼ 1þ a cos bx (3.24)

The Fraunhofer diffraction from the grating is

E kxð Þ 

Z

dxTðxÞ exp �ikxxð Þ 
 d kxð Þ þ 1

2
d kx � bð Þ þ 1

2
d kx þ bð Þ: (3.25)

That is, the grating produces the zero-order and the twin images, as we have seen

before. On the other hand, for a phase grating with the transmission function

TðxÞ ¼ exp i’0 þ i’1 cos bxð Þ½ � 
 exp i’0ð Þ
X
n

Jn ’1ð Þ exp inbxð Þ (3.26)

the Fraunhofer diffraction is

E kxð Þ 
 exp i’0ð Þ
X
n

Jn ’1ð Þd kx � nbð Þ (3.27)

and the phase grating produces many diffraction orders.

3.5.2 Transmission and Reflection Holograms

A hologram made of a photographic transparency is ordinarily a transmission

hologram. It is also possible to set up a reflection hologram by arranging the object

and reference waves to impinge from opposite sides of the film. The standing

wave fringes parallel to the plane of the film surface, after proper treatment, act

as reflecting surfaces. More general geometries of transmission and reflection

holograms are possible with volume (thick) holograms.

3.5.3 Thin and Thick Holograms

So far we have assumed that the transmission is a two-dimensional function. On the

other hand, the absorption, dispersion, and scattering properties may vary in a three-

dimensional volume of a material, whose thickness is not negligible. Transmission

of light through such a thick hologram, or a volume hologram, needs to take into
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consideration the build-up of diffracted field and depletion of the undiffracted

field. A main result of such a coupled wave theory is the requirement of wave-

vector matching for Bragg diffraction. Suppose the volume hologram

consists of a sinusoidal volume grating with a grating vector ~b, then an incident

plane wave with wave-vector kin diffracts into the direction kout ¼ kin þ~b, while
kinj j ¼ koutj j ¼ k, as depicted in Fig. 3.7a. Further suppose that the sinusoidal

volume grating results from the interference of two plane waves with wave-vectors

k1 and k2, so that ~b ¼ � k1 � k2ð Þ. Then relabeling kin and kout as k3 and k,

respectively, we have

k ¼ � k1 � k2ð Þ þ k3; (3.28)

with k1j j ¼ k2j j ¼ k3j j ¼ kj j ¼ k. Thus the four-wave-vectors form a rhombus,

as shown in Fig. 3.6b. In contrast, the wave-vector geometry of a thin hologram

in Fig. 3.6c, shows that the wave-vector matching condition applies only to the

component along the hologram plane.

3.5.4 Hologram Materials

A most commonly used material in conventional holography is the silver halide

photographic emulsions. Other photochemical materials include dichromated gela-

tin, photoresists, photopolymers, photochromics, and photothermoplastics, which

change absorption or refractive index as a function of local intensity of light.

Typical resolution of these materials is better than 1 mm and required exposure is

10�2J m2
	

, which corresponds to about 104 photons/mm2. Most of these materials

require chemical or other processing to reveal the latent images.

Fig. 3.6 Wave-vector matching. (a) Grating vector in volume hologram, and (b) diffraction from

grating, and (c) grating vector in thin hologram
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3.5.5 Phase Conjugation by Photorefractive Crystals

Real-time hologram formation without processing is possible with photorefractive

crystals, such as lithium niobate (LiNbO3) and BSO (Bi12SiO20), where local

intensity gradient causes charge migration and variation of local index of refraction,

thus forming phase gratings. In (3.28), if we take two plane wave reference fields

such that k1 þ k3 ¼ 0, then k ¼ �k2. This means that if k2 represents one of plane

wave components of an object field, then each and every such wave-vector compo-

nent is reversed, so that a real image forms at the exact position of the object.

Furthermore, if the intensity of the reference k3 is very high, then it is possible that

the image is higher in intensity than the object, which can have important and

interesting applications [8].

3.5.6 Four-Wave Mixing

The index grating formation can also arise from third-order susceptibility wð3Þ of a
material. From the definition of nonlinear susceptibility

P ¼ wð1ÞEþ wð2ÞE2 þ wð3ÞE3 þ � � � ¼ wE (3.29)

and dropping the second-order term for isotropic materials, the effective index of

refraction can be written as

n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4pw

p
� n 1þ 2pwð3Þ

n2
E2

� �
: (3.30)

Intensity variation leads to variation of local refractive index. Propagation of

the four-wave mixing signal follows the same wave-vector matching geometry

of the thick hologram in (3.28). Four-wave mixing is a nearly instantaneous process

for real-time holography [9].

3.5.7 Spectral Hole Burning

Inhomogeneous broadening of absorption spectrum such as in organic dye molecules

and use of narrowband tunable laser allows recording of multiple holograms, or

any optical information, at the same location. Saturation of a single channel with a

narrowband laser results in bleaching and reduced absorption of the channel, as

depicted in Fig. 3.7a. Each of such spectral hole represents a channel for storing
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information in the spectral domain. The volume of the spectral hole burning material

can also be utilized for storing spatial information, such as holographic interference

pattern. By repeating holographic image storage while stepping the laser wavelength,

some thousands of holograms can be recorded in a single sample volume [10].

3.5.8 Stimulated Photon Echo

If, instead of using a narrowband cw laser, one uses a short-pulse laser, then its

Fourier bandwidth may cover a substantial part of the absorption band. Further, if

two such pulses are incident with a time delay t, then it can be shown that the

absorption spectrum acquires the shape of a cosine spectral grating with a period

2p t= , as shown in Fig. 3.7b. The situation is analogous to the spatial cosine grating

by interference of two plane waves, or Fourier transform of two point sources.

In general, more complicated pulse shape results in the recording of its Fourier

transform on the absorption spectrum. For reconstruction, excitation with another

short pulse causes reemission of the original pulse shape, which is called the

stimulated photon echo, depicted in Fig. 3.8. The delay time t and the storage

time T are constrained by the phase relaxation time T2 and population relaxation

time T1, respectively. The spatial holography within the volume of the storage

Fig. 3.7 Spectral hole burning by (a) a cw monochromatic laser and (b) two short pulses with a

time delay, t
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material proceeds in the same manner as any other holography processes. This

completes the holographic processes for all four dimensions – space k � r and time

ot [11]. True four-dimensional holographic movies can be recorded [12].
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Chapter 4

Basic Methods of Numerical Diffraction

The basic methods of numerical diffraction are based on the Huygens convolution,

the Fresnel transform, and the angular spectrum description of diffraction given in

Chap. 2. Simulation examples are used to illustrate their general behaviors and to

make comparisons regarding the advantages and limitations of these methods. The

angular spectrum method is seen to have particular strength in that it yields

reasonable results without minimum or maximum distance limits.

4.1 Discrete Fourier Transform

Referring to Fig. 4.1a, the Fourier transform of a function f ðxÞ is defined as

FðkÞ ¼ F f ðxÞf g k½ � ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
dx f ðxÞ exp �ikxð Þ: (4.1)

The function is sampled by multiplying with a comb function of period dx,

f̂ ðxÞ ¼ f ðxÞcomb
x

dx

� �
¼ f ðxÞ

X1
m¼�1

d x� mdxð Þ: (4.2)

The Fourier transform of the sampled function is

~FðkÞ ¼ F f̂ ðxÞ� �
k½ � ¼ F f ðxÞcomb

x

dx

� �n o
k½ �;

¼ 1

dx
FðkÞ � comb

k

K

� �
;

¼ 1

dx

X1
n¼�1

F k � nKð Þ; ð4:3Þ
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where

K ¼ 2p
dx

: (4.4)

If f ðxÞ is band-limited, so that FðkÞ ¼ 0 for k =2 �ðK=2Þ; ðK=2Þ½ �, then ~FðkÞ ¼ FðkÞ
for k 2 �ðK=2Þ; ðK=2Þ½ �. That is, ~FðkÞ accurately represents FðkÞ in that interval, as
depicted in Fig. 4.1b.

Conversely, the spectrum FðkÞ is sampled by multiplying with a comb function

of period dk,

F̂ðkÞ ¼ FðkÞcomb
k

dk

� �
¼ FðkÞ

X1
n¼�1

d k � ndkð Þ: (4.5)

The inverse Fourier transform of the sampled spectrum is

~f ðxÞ ¼ F�1 F̂ðkÞ� �
x½ � ¼ F�1 FðkÞcomb

k

dk

� �	 

x½ �;

¼ 1

dk
f ðxÞ � comb

x

X

� �
;

¼ 1

dk

X1
m¼�1

f x� mXð Þ; ð4:6Þ

Fig. 4.1 (a) A spatial function and its Fourier transform, (b) a sampled spatial function and its

Fourier transform, and (c) a sampled frequency spectrum and its inverse Fourier transform
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where

X ¼ 2p
dk

: (4.7)

If f ðxÞ is space-limited, so that f ðxÞ ¼ 0 for x =2 �ðX=2Þ; ðX=2Þ½ �, then ~f ðxÞ ¼ f ðxÞ for
x 2 �ðX=2Þ; ðX=2Þ½ �. That is, ~f ðxÞ accurately represents f ðxÞ in that interval, as

depicted in Fig. 4.1c.

If the function f ðxÞ is both space-limited and band-limited, then one can write

the Fourier transform as a Fourier series, with fm � ~f xmð Þ and Fn � ~F knð Þ

~F knð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z X 2=

�X 2=

dx f ðxÞcomb
x

dx

� �
exp �iknxð Þ;

¼ dxffiffiffiffiffiffi
2p

p
XM 2=

m¼�M 2=

f xmð Þ exp �iknxmð Þ;

¼ Fn; ð4:8Þ

where

	
xm ¼ mdx m ¼ �M 2= ;�M 2= þ 1; . . . ;M 2= � 1ð Þ;
dx ¼ 2p K=

(4.9)

and

	
kn ¼ ndk n ¼ �N 2= ;�N 2= þ 1; . . . ;N 2= � 1ð Þ;
dk ¼ 2p X:=

(4.10)

Similarly, the inverse Fourier transform is written as

~f xmð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z K 2=

�K 2=

dkFðkÞcomb
k

dk

� �
exp ikxmð Þ;

¼ dkffiffiffiffiffiffi
2p

p
XN 2=

n¼�N 2=

F knð Þ exp iknxmð Þ;

¼ fm: ð4:11Þ

These Fourier series are usually calculated using one of the fast Fourier transform

(FFT) algorithms, which leads to M ¼ N.
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4.1.1 Programming Implementation of Fourier Transform

For the purpose of maintaining the theoretical development as symmetrical as

possible between the space and frequency domains, we have defined the discrete

Fourier and inverse Fourier transforms as

Fn ¼ dxffiffiffiffiffiffi
2p

p
XN 2=

m¼�N 2=

fm exp �iknxmð Þ;

fm ¼ dkffiffiffiffiffiffi
2p

p
XN 2=

n¼�N 2=

Fn exp iknxmð Þ:

8>>>>><
>>>>>:

(4.12)

One should note, on the other hand, that most prepackaged FFT routines, such as in

MatLab or LabVIEW, define them as

Fn ¼
XN�1

m¼0

fm exp �iknxmð Þ;

fm ¼ 1

N

XN�1

n¼0

Fn exp iknxmð Þ:

8>>>><
>>>>:

(4.13)

As a concrete example, consider fm ¼ cos 2p
l xm

� �
with xm 2 �ðX=2Þ :½

dx : ðX=2ÞÞ, l ¼ 10, X ¼ 100, and dx ¼ 1, depicted in Fig. 4.2a. Then K 2p= ¼ 1

and dk 2p= ¼ 0:01. The result of FFT on fm using MatLab is shown in Fig. 4.2b,

where the horizontal axis is the index n. As output by MatLab, the 0th element is the

zero-frequency component, the 1st element is the 1dk 2p= frequency component, . . .,
the mth element is the mdk 2p= frequency component, and so on up to the

last element N � 1ð Þdk 2p= . Especially for image processing, it is more conve-

nient to place the zero-frequency element in the center, and we take

kn 2 �ðK=2Þ : dk : ðK=2Þ½ Þ instead of 0 : dk : K½ Þ. By way of periodicity of ~F, this
is equivalent to taking the right half of Fn and swapping it with the left half. As

shown in Fig. 4.2c, this is accomplished by the FFTSHIFT operation of MatLab. To

maintain a correspondence with (4.12), we also multiply with the factor dx
ffiffiffiffiffiffi
2p

p

.

The result Fn vs. kn 2p= is plotted in Fig. 4.2c. A peak appears at the frequency

kn 2p= ¼ 0:1 as expected, while the other peak at 0.9 that exceeds the Nyquist

frequency K/2 is now aliased to a negative frequency �0.1. It is also verified that

XN�1

m¼0

dx fmj j2 ¼
XN�1

n¼0

dk Fnj j2; (4.14)

as required by the Parseval’s theorem. The Fourier transform is in general complex:

the real and imaginary parts of Fn are displayed in Fig. 4.2d, e. For the present
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example of fm, the imaginary part of the Fourier transform should be zero. The

calculated imaginary part is small but nonzero because of the finite step dx, which
should be made smaller for more accurate result.

4.2 Fresnel Transform Method

Under Fresnel approximation, the propagation of optical field from a plane S0 at

z ¼ 0 to another plane S along the z-axis is given by the Fresnel transform (2.34),

repeated here,

E x; y; zð Þ ¼ 2p exp
ik

2z
x2 þ y2
� �� �

F E0 x0; y0ð ÞSF x0; y0; zð Þf g kx; ky
� �

; (4.15)

where the Fresnel PSF is

SF x; y; zð Þ ¼ � ik

2pz
exp ikzð Þ exp ik

2z
x2 þ y2
� �� �

(4.16)

Fig. 4.2 An example of discretized Fourier transform. (a) A cosine function, (b) the amplitude of

FFT as output from Matlab, (c) after FFTSHIFT and scaling of the axes, (d) the real part, and (e)

the imaginary part

4.2 Fresnel Transform Method 47



and the spatial frequencies are

kx ¼ k
x

z
; ky ¼ k

y

z
: (4.17)

The Fresnel transform method (FTM) therefore involves a single Fourier transform,

and can be implemented by the use of FFT [1–7]. For numerical calculation, a X0 �
Y0 area of the input field E0 x0; y0ð Þ is sampled on a Nx � Ny array with the pixel size

of dx0 � dy0. The output field E x; yð Þ is then another Nx � Ny array of area X � Y
and pixel size dx� dy. An example of numerical diffraction by Fresnel transform

method is shown in Fig. 4.3, where the input pattern at z ¼ 0 is the letter “F” in an

opaque screen of 256� 256 mm2area with 256� 256 pixels and the wavelength is

assumed to be l ¼ 0:633 mm. (Most of the simulation examples here and in the

following chapters will use similar set of parameters, unless otherwise noted.) The

top row shows the amplitude of the diffracted field at distances of

z ¼ 0; 125; 250; 375; 500 mm. The bottom row shows the phase patterns at

corresponding distances, where the factor exp �ikzð Þ has been multiplied to remove

the rapid phase variation due to overall z-propagation.
One pixel in E x; y; zð Þ corresponds to dkx ¼ k

z dx, which in the S-plane
corresponds to

dx ¼ z

k
dkx ¼ 2pz

kX0

¼ l
X0

z: (4.18)

Fig. 4.3 An example of numerical diffraction by Fresnel transformmethod. (a) Amplitude images

and (b) phase images. The input object is 256 � 256 mm2 in size and the images are calculated at

distances z ¼ 0, 125, 250, 375, 500 mm

48 4 Basic Methods of Numerical Diffraction



That is, the pixel size, and the S-plane size, grows linearly with the distance,

as is evident in Fig. 4.3. In fact, the field of view at the five distances are

X ¼ 0; 79; 158; 236; 315 mm. There are methods to address the problem of

nonconstant pixel resolution, which will be discussed in Sect. 9.2. Also evident is

the presence of a minimum distance to obtain valid diffraction pattern. To avoid

aliasing [8], the output plane S needs to be at least as large as the input plane S0,

which leads to

zmin ¼ X0
2

Nl
: (4.19)

In Fig. 4.7a is shown a yz-cross section of the propagation over a range of

z ¼ 0–500 mm along the middle of the vertical line of the letter “F”. For the present

example, zmin ¼ 404 mm and the wrapping or aliasing is evident in Fig. 4.7a at

shorter distances. (The apparent zmin is somewhat shorter than 404 mm because the

letter “F” does not fill the whole screen.)

4.3 Huygens Convolution Method

The diffraction can be calculated from the Huygens convolution integral (2.27)

E x; y; zð Þ ¼ E0 � SH;

¼ F�1 F E0 x0; y0ð Þf g kx; ky
� �

F SH x0; y0ð Þf g kx; ky
� �� �

x; y½ �; ð4:20Þ

where the Huygens PSF is

SH x; y; zð Þ ¼ � ik

2pz
exp ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

ph i
: (4.21)

Thus, the Huygens convolution method (HCM) requires three Fourier transforms

[2, 6, 9–11]. An example of numerical diffraction by HCM, is shown in Fig. 4.4,

using the same set of parameters as in Fig. 4.3. Unlike FTM, the pixel resolution in

HCM does not depend on the propagation distance because of the combination of F
and F�1. Figure 4.7b shows the behavior of the HCM diffraction over the distance

z ¼ 0–500 mm. Although the short-distance behavior appears to be better than

FTM, the minimum distance zmin for HCM is similar to FTM, the improvement

being mainly due to the use of spherical PSF instead of parabolic one. Also note that

one can use the Fresnel PSF SF as an approximation to SH and obtain result with

similar quality, though such approximation is really not necessary.
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4.4 Angular Spectrum Method

The diffraction is calculated by angular spectrum method (ASM) according to

E x; y; zð Þ ¼ F�1 F E0 x0; y0ð Þf g kx; ky
� �

exp iz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kx

2 � ky
2

q� �8<
:
circ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx

2 þ ky
2

q
k

0
@

1
A
9=
; x; y½ �; ð4:22Þ

which requires two Fourier transforms [12–18]. In image plane holographic

microscopy, for example, where the input field E0 may be actually a magnified

image of a microscopic object, the effective pixel size may be smaller than

the wavelength and the argument of the square root in the imaginary exponent

in (4.22) may become negative in parts of the spectral domain, and the

circle function is then required. An example of numerical diffraction by ASM, is

shown in Fig. 4.5, using the same set of parameters as in Fig. 4.3, and Fig. 4.7c

shows the behavior of the ASM diffraction over the distance z ¼ 0–500 mm.

Evidently, the ASM yields valid diffraction image at short distances, including

zero. The difference between HCM and ASM in (4.20) and (4.22) is the replace-

ment of F � ik
2pz exp ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

ph in o
with exp iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

qh i
, which are

Fig. 4.4 An example of numerical diffraction by Huygens convolution method, using the same

parameters as in Fig. 4.3. (a) Amplitude images and (b) phase images

50 4 Basic Methods of Numerical Diffraction



analytically equivalent. But in numerical calculations, the 1 z= -factor in the former

creates problems while the latter is well-behaved at all distances. We can also apply

the Fresnel approximation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kx

2 � ky
2

q
¼ k � kx

2 þ ky
2

2k
(4.23)

in (4.22) for calculating ASM, which again usually results in insignificant

difference.

4.5 Comparison of Methods

These methods, sometimes referred to with ambiguous or inconsistent names, have

distinct advantages and disadvantages [2, 11, 19]. Referring to Fig. 4.6, the ASM is

based on propagation of plane waves. Sampling of the plane waves by the discrete

pixels of CCD does not vary with the distance, and therefore the ASM does not have

any distance limitations. On the other hand, the HCM is based on the propagation of

spherical wavefronts (or parabolic approximation for FTM). When the center of

curvature is too close to the CCD array, local fringe frequency on the CCD plane

may be higher than the Nyquist frequency. This occurs when the distance is smaller

than zmin ¼ X0
2 Nl= , which in our example is 404 mm. The behavior of diffraction field

calculated by the three methods over a range of z ¼ 0–500 mm is shown in Fig. 4.7.

Fig. 4.5 An example of numerical diffraction by angular spectrum method, using the same

parameters as in Fig. 4.3. (a) Amplitude images and (b) phase images
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Moreover, there also is a maximum distance that yields correct diffraction

pattern for HCM. For large enough distances the fringe period of spherical

wavefront becomes larger than the entire CCD array, failing to record any diffrac-

tion information. This occurs when the distance is larger than

zmax ¼ X0
2

2l
; (4.24)

Fig. 4.6 Conceptual comparison of (a) Huygens convolution method and (b) angular spectrum

method. The diagrams on the right depict how the wavefronts interact with the CCD array at

various distances

Fig. 4.7 Comparison of numerical diffraction by (a) FTM, (b) HCM, and (c) ASM. Amplitude

(upper row) and phase (lower row) profiles on an x–z plane, over the distance range of

z ¼ 0–500 mm
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which for our numerical example, is 51,800 mm. The ASM does not have this

limitation either. Behaviors of ASM and HCM diffraction at large distances are

illustrated in Fig. 4.8, where the distance range is z ¼ 0–20,000 mm and the input

pattern is an open square with slightly tilted wavefront – by two wavelengths over

the vertical size of the square opening, as may be noticed in the phase image of

Fig. 4.8a. In Fig. 4.8b, the ASM correctly depicts the propagation of the transmitted

beam of light at a slight angle. When the beam reaches the limit of x-frame size, it

wraps around to the other side and continues to propagate. Note that a beam of

initial width of 128 mm does not spread appreciably after propagation of 20 mm. On

the other hand, in Fig. 4.8c, the HCM starts out with a similar pattern as ASM but it

progressively loses high-frequency structures eventually becoming structureless as

it approaches zmax.
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Chapter 5

Digital Holography Configurations

Some of the general characteristics of digital holographic images are illustrated

using simulated examples. Holographic image location and magnification are

dependent on, and therefore can be controlled by, the choice of wavelengths and

reference directions and curvatures. Optical configurations frequently used in

digital holography experiments are described and compared.

5.1 General Behavior of Digital Holographic Images

We first study, through a few simulated examples, the general behavior of the

digital holographic images and compare with some of the results that we have

obtained in previous chapters. Numerical diffraction is calculated using the angular

spectrum method.

Ex. 1: Formation of Hologram and Reconstruction of Image

The top row of Fig. 5.1 simulates formation of a hologram. The object (Fig. 5.1a), is

a letter “F” in an opaque screen of area 256 � 256 mm2 with 256 � 256 pixels. The

object is illuminated with a plane wave, of wavelength l ¼ 0:633 mm, which

propagates to the hologram plane at a distance 500 mm, at normal incidence. The

object field EO arriving at the hologram plane is shown in Fig. 5.1b. The hologram

plane is of the same size and pixel count as the object plane. A plane-wave

reference, ER, of the same wavelength as the object, is also incident on the

hologram plane at an angle ’, such that it produces 50 fringes across the x-direction,
that is, kx 2p= ¼ 50 256=ð Þ mm�1 and ’ ¼ sin�1 kx k=ð Þ ¼ 0:124 rad. Intensity of the

interference between the object and the reference EO þ ERj j2 is the hologram

(Fig. 5.1c). Propagation of the object field from the object plane at z ¼ �500 mm
to the hologram plane at z ¼ 0 is shown in Fig. 5.1d, where, for clearer illustration

of the z-propagation, we use as the object a square opening of quarter the frame size,

instead of the letter “F”.

M.K. Kim, Digital Holographic Microscopy: Principles, Techniques,
and Applications, Springer Series in Optical Sciences 162,
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Figure 5.1e illustrates the holographic image reconstruction, for which the

hologram is illuminated with another plane-wave reference, ER
0. Recall from

Chap. 3 the holographic terms are

ERj j2 þ EOj j2
� �

ER
0 þ EOER

�ER
0 þ EO

�ERER
0: (5.1)

Fig. 5.1 Formation of hologram and reconstruction of image. (a–d) in the top row illustrate

formation of the hologram. (a) Input object at z ¼ �500 mm, 256 � 256 mm; (b) object field at

the hologram plane, z ¼ 0; (c) hologram after interference with tilted plane reference; (d) propaga-

tion of object field from z ¼ �500 to 0 mm. (e–h) Illustrate the image reconstruction by illumination

of the hologram with a tilted plane wave, conjugate to the first reference. (e) x–y images at

z ¼ �500, 0, and +500 mm, and x–z cross-section of the fields propagating along the z-direction
from z ¼ �500 to +500 mm. All the holographic terms – the zero-order and the twin-image terms –

are included in the computation. (f) Same as (e), but only the real-image term is included in

computation. (g) Only the virtual image term is included. (h) Only the zero-order term is included
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We take, in this example, ER
0 ¼ ER

�, that is, it is incident at the angle � ’.
In digital holography, we are free to calculate the propagation forward or backward

with equal ease. The diffraction of the field EO þ ERj j2ER
� is calculated over the

range z ¼ �500 to +500 mm, and the x–y images are shown at z ¼ �500, 0, and

+500 mm. Normally, z ¼ +500 mm is where the holographic image is expected. One

can indeed recognize a focused image in the center of the x–y image plane at

z ¼ +500 mm, but it is also superposed with the zero-order and twin images. In the

x–z panel of Fig. 5.1e, one can discern the three diffraction orders – 0 and � 1 –

diverging from the hologram plane.

There are many methods to separate out the zero-order and twin-image terms,

which will be discussed in this and later chapters. But it is illustrative to separate the

holographic terms artificially and observe how each term propagates. Thus in

Fig. 5.1f, we take the term EO
�ERER

� and propagate it over the same range as in

Fig. 5.1e. Because this term is proportional to EO
�, its forward propagation is

equivalent to the backward propagation of EO – i.e., it forms a focused image at

z ¼ +500 mm. In Fig. 5.1g, we take the twin term EOER
�ER

� and propagate over the
same range. Because this is proportional to EO, one has to propagate backward to

the original object position at z ¼ �500 mm to form a focused image. Furthermore,

because it also has ER
�2 factor, the image is shifted by an angle 2’. Also notice the

wrapping of the image around the boundaries. On the other hand, at z ¼ +500 mm,

the twin-image term is out of focus. Finally in Fig. 5.1h, we take the zero-order

term, or dc term, and propagate similarly. In this case, there is no focusing of the

image but straight propagation along the direction ’ of the reference wave.

Unless these terms are somehow separated, they all contribute to the field

pattern at the image plane, thus causing significant amount of interference, as in

Fig. 5.1e, and distorting the focused holographic image. In the following examples,

we take only the EO
�ERER

� term, and observe its behavior in terms of several

parameters.

Ex. 2: Wavelength Mismatch

In Fig. 5.2, the effect of using a different wavelength for reconstruction is shown. In

Fig. 5.2a, l ¼ l0 ¼ 0:633 mm and the image forms at z ¼ +500 mm, marked with

an arrow, as expected. Here we display both the amplitude (upper row) and phase

(lower row) of each image. If the wavelength of the second reference wave is

changed by m ¼ l0 l= ¼ 2 3= to l0 ¼ 0:422 mm, then, according to (3.21), the image

distance increases by 3/2 to z ¼ 750 mm, while the lateral magnification remains

the same, as seen in Fig. 5.2b. In addition, according to (3.7), because of the

mismatch of the wavelengths, the image propagates at an angle

m� 1ð Þ’ ¼ �’ 3= and the image is shifted.

Ex. 3: Spherical Reference Waves

Now we use spherical reference waves, with radius of curvature R ¼ 1,000 mm,

instead of plane waves. Then the complex hologram (i.e., without zero-order or

twin-image terms) has the phase curvature, but if we use the same spherical wave

R0 ¼ 1; 000 mm for reconstruction, then the effect of the curvature is compensated.

The image forms at z ¼ 500 mm with unit magnification, as shown in Fig. 5.3a.
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On the other hand, if the second curvature is different, then the image position is

given by

1

z
¼ 1

z0
� 1

R
þ 1

R0 (5.2)

and the lateral magnification is

Mx ¼ 1

1� z0 1=Rð Þ � 1=R0ð Þð Þ : (5.3)

Fig. 5.2 Effect of wavelength mismatch. (a) The same wavelength is used for recording and

reconstruction, l ¼ l0 ¼ 0:633 mm. (b) A shorter wavelength is used for reconstruction,

l0 ¼ 0:422 mm. For each part, both the amplitude (upper row) and phase (lower row) of the fields
are depicted. The arrows indicate the image locations
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Fig. 5.3 Effect of spherical reference waves. (a) The same radius of curvature is used for

recording and reconstruction, R ¼ R0 ¼ 1; 000 mm. (b) A larger curvature is used for reconstruc-

tion, R0 ¼ 2; 000 mm. (c) A shorter curvature is used for reconstruction, R0 ¼ 500 mm. The arrows
indicate the image locations

5.1 General Behavior of Digital Holographic Images 59



When R0 ¼ 2; 000 mm, Fig. 5.3b shows the incomplete compensation of the curva-

ture, and formation of the image at z ¼ 667 mm with magnification Mx ¼ 1:33, as
expected. Another example with R0 ¼ 500 mm in Fig. 5.3c results in z ¼ 333 mm
and Mx ¼ 0:67.

The above examples show that the holographic image location and magnification

are dependent on, and therefore can be controlled by, the choice of wavelengths and

reference directions and curvatures. We now give more specific descriptions of

configurations frequently used in digital holography experiments [1].

5.2 Digital Gabor Holography

In Gabor holography, the object is illuminated with a single beam of light and there

is no separate reference wave (Fig. 5.4). The part of the incident light that is

scattered by the object is the object wave and the remainder that does not undergo

scattering acts as the reference wave. The method is the more effective the smaller

the object is so that the reference is not excessively disturbed. In the simulation

example of Fig. 5.5a–c, the object is a thin opaque letter “F” in an otherwise

transparent screen (Fig. 5.5a). All the relevant parameters are otherwise the same

as in the previous section. A plane wave is transmitted through the screen and

propagates to the hologram plane. The intensity pattern on this plane is the

hologram (Fig. 5.5b). Illumination of the hologram with another plane wave

forms the focused image at the expected distance. But the focused image is also

superposed with the blurred twin image, whose focus position is on the opposite

side, negative z-distance, of the hologram. If we attempt DGH with an object that

consists of transparent letter in an otherwise opaque screen (Fig. 5.5d), then there is

not enough reference wave (Fig. 5.5e) and the holographic image does not form

(Fig. 5.5f).

Because of the above property and because of the simplicity of the optical setup,

Gabor holography is particularly useful for particle or thin fiber image analysis, and

the digital Gabor holography (DGH) can provide new capabilities and wider

Fig. 5.4 Gabor holography. (a) Recording by superposition of the reference wave and its scattered

component from a point object, and (b) reconstruction of a point image (�1 order) and its

defocused twin (+1 order)
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applications [2–6]. For microscopic particles the twin images are often negligible

because even at a relatively short distance the Fraunhofer condition is satisfied and

the twin image may be completely defocused.

5.3 Digital In-line Holography

For the in-line holography, a separate reference field is provided in a general

alignment with the object field, Fig. 5.6. (Some authors refer to Gabor holography

also as in-line holography, but here we will use the term in-line to be more specific

as having a separate reference beam.) This allows imaging of objects regardless of

its size relative to the field of view. In the example of Fig. 5.7, the object with

opaque letter in transparent background produces focused image in a manner

similar to the DGH, except that the image also includes the uniform reference as

well as the twin image. On the other hand, for the object with transparent letter in

opaque background, the in-line configuration is capable of producing a focused

image, whereas the DGH is not.

An advantage of in-line DH over DGH is, as seen above, that it does not have a

restriction of small object [7–9]. On the other hand, the focused image is super-

posed with the zero-order and twin-image terms. Therefore, it is usually necessary

to find ways to reduce or eliminate the spurious terms. These techniques, to be

Fig. 5.5 Digital Gabor holography. (a) A thin opaque letter in an otherwise opaque screen as the

object, (b) the diffraction pattern as the hologram, and (c) the reconstructed image. (d–f ) Illustrate

an attempt at DGH with a thin transparent letter in an otherwise opaque screen. (d) Object,

(e) hologram, and (f ) image
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described in Chap. 7, range from relatively simple subtraction of the average

intensity from the hologram to the multiexposure phase-shifting methods. Other-

wise, one can use one of the off-axis configurations described below. However,

most of the off-axis methods reduce the information content of the hologram to one

quarter of the pixel count. In a typical digital holography setup, the pixel count is at

a premium, and therefore such reduction can be a significant disadvantage. Then the

in-line configuration may be considered, though at the expense of multiple exposure

or other requirements.

Fig. 5.7 Digital in-line holography. (a) A thin opaque letter in an otherwise opaque screen as

the object, (b) the hologram recorded by the interference of the diffracted object field and the

reference, and (c) the reconstructed image. (d–f ) Illustrate digital in-line holography has no

trouble imaging a mostly opaque object. (d) Object, (e) hologram, and (f ) image

Fig. 5.6 In-line holography. (a) In-line superposition of object and reference beams, and

(b) reconstruction of superposed zero-order and twin images
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5.4 Digital Image Plane Holography

The object can be placed close to the hologram plane so that the reconstructed

image is also near the hologram. We refer to the hologram plane as the plane (or any

other plane optically conjugate to it) where the recording takes place. In real space

reflection holography applications, this is useful for creating holograms that can be

viewed with low coherence light, because the image distance is not very large

compared to the coherence length. But in microscopic holography, this would not

be useful because there is no magnification, unless one uses a microscope to view

the hologram. On the other hand, an objective lens can be used to form near the

hologram plane a magnified image of the object Fig. 5.8a. If a plane-wave reference

is used for recording and for reconstruction, then the reconstructed image will

coincide with the magnified image of the object in amplitude, although the phase

will contain the curvature due to the imaging lens.

Alternatively, holographic interference of the object and the plane-wave refer-

ence can be formed first and its magnified image projected near the hologram plane

(Fig. 5.8b). Equivalently, a separate lens can be used to focus a plane-wave

reference to a point conjugate to the back focus of the objective lens, as shown in

Fig. 5.8c. In real space holography, illumination of the magnified hologram with a

plane wave of the original wavelength will result in an image with unit lateral

magnification, relative to the original magnified image, but at a large distance so

that the angular size will be the same as if the original unmagnified object was

placed in front of the hologram plane. This will also most likely introduce signifi-

cant aberrations. In order to restore the angular magnification, one has to use a

correspondingly magnified wavelength, a mostly unfeasible task.

In digital holographic microscopy, on the other hand, this configuration is

particularly flexible because the acquired hologram can be numerically scaled

according to the physical dimensions of the object space regardless of the image

size on the CCD. In effect a demagnified CCD array is placed near the object

position. Once the magnified holographic interference is input to the computer, it is

only a matter of assigning the original microscopic frame size and the correct

wavelength that was used for creating the holographic interference. The numeri-

cally reconstructed image will then correctly represent the amplitude and phase of

the original microscopic object space. The curvature matching of the reference

wave also has the benefit of reducing fringe frequencies on the CCD, which can

reduce aberrations due to residual mismatch between the write and read references.

Image plane digital holography [10] has been useful in a number of different

application areas including biological microscopy [11, 12], where it is important to

be able to monitor the live specimen being imaged. It is also advantageous for

improving light collection efficiency in particle velocimetry [13]. For digital

holographic microscopy using low coherence light, one necessarily operates near

image plane configuration [14].

5.4 Digital Image Plane Holography 63



5.5 Digital Fourier Holography

As we saw earlier, the field at the back focal plane of a lens is the Fourier transform

of the object field at the front focal plane. In a typical configuration for Fourier

holography (Fig. 5.9a) the hologram plane is positioned at the back focal plane and

a plane-wave reference is produced by focusing the laser at a point on the object

plane. In real space holography reconstruction, illumination of the hologram with a

plane-reference wave and transmission through a lens produces the inverse Fourier

transform, which is the image (Fig. 5.9b). Both of the twin images are in focus at the

focal plane of the imaging lens and the zero-order is a small intense spot.

Alternatively, lensless Fourier holography is possible by placing a point source

reference on the object plane (Fig. 5.9c) in front of the hologram plane without a lens.

From the Fresnel expression of diffraction (2.34), the outer quadratic phase function is

canceled by the referencewith the same curvature, and theEOER
� term is proportional

to the Fourier transform of the object field multiplied by the inner quadratic phase

function. Reconstruction proceeds in the same manner as above [15]. The intensity

image is not affected by the quadratic phase function.

Both of these methods can be implemented in digital Fourier holography, and the

reconstruction is especially simple because it consists of a single Fourier transform of

the recorded hologram [16, 17]. Using a small transparent letter “F” as the object

(Fig. 5.10a) we illustrate the lensed digital Fourier holography in Fig. 5.10b, c and the

lensless digital Fourier holography in Fig. 5.10d, e. The focal length of the lens or the

object to hologramdistance is 1,000mminFig. 5.10b, d and it is 200mminFig. 5.10c, e.

Fig. 5.8 Recording of image

plane holograms by

projection of a magnified

image of the object on the

hologram plane, in

superposition with (a) plane

reference wave or (b) wave-

front curvature-matched

reference wave. (c) Another

method of producing

curvature-matched reference

wave
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All the other parameters are as before. The Fourier hologram with lens shows

the Fourier transform of the object with interference fringes of the plane-reference

wave. The holographic image has the focused twin images on either side of the

intense central spot, which is numerically truncated to make the images visible.

Fig. 5.9 Fourier and lensless

Fourier holography.

(a) Fourier hologram

recording using a lens;

(b) reconstruction by Fourier

transform, represented with

the Fourier lens; and

(c) lensless Fourier hologram

recording

Fig. 5.10 (a) The object. Each of the panels (b–e) displays the hologram and the reconstructed

image. (b, c) Illustrate digital Fourier holography using a lens with focal length (b) 1,000 mm and

(c) 200 mm. (d, e) Illustrate lensless digital Fourier holography with the object to hologram

distance (d) 1,000 mm and (e) 200 mm
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As with the Fresnel diffraction, the field size depends on the distance, that is, the focal

length or the object to hologram distance, according to

X ¼ Nxlz
X0

; (5.4)

which for this example is 633 mm in Fig. 5.10b, d or 127 mm in Fig. 5.10c, e.

Using the lensless method, the hologram has a more spread-out intensity distribu-

tion, but the holographic image amplitude is still identical with the first method. The

two methods yield images with opposite orientations. Also note that the distance

200 mm is less than the zmin ¼ 404 mm of aliasing in Fresnel diffraction and it

causes distortion of the images.

In the first digital Fourier microholography experiment of [17], a drop of

glycerol placed next to the specimen on a microscope slide acted as the focusing

lens to form the point source reference in front of the Fourier lens. There a

numerical lens was also introduced to be able to focus the image at varying

distances. High resolution microscopy is possible using a relatively simple setup

[18, 19] and detailed analysis of image formation in lensless digital Fourier

holography is given in [20]. Imaging and analysis of large objects is equally

convenient [21]. In lensless Fourier microholography, the object can be placed

close to the sensor, which increases the numerical aperture and improves resolution

[22]. But this introduces aberration in the reconstruction because of violation of

Nyquist frequency requirement. The hologram is expanded and interpolated,

followed by multiplication of a transfer function, before Fourier transform, to

obtain aberration-free high resolution image. Pedrini et al. [23] make comparison

of various interferometer configurations in the context of macroscopic metrology

applications.

5.6 Digital Fresnel Holography

The Fresnel holography refers to the configuration where the object is at a finite

distance from the hologram plane and is off-axis with respect to a plane-wave

reference [24] (Fig. 5.11a). In reconstruction, illumination of the hologram with

another plane-wave reference results in images forming at the object position and

its mirror position with respect to the hologram, with unit magnification, as shown

in Fig. 5.11b. The numerical reconstruction is usually carried out using the Fresnel

transform method, which is necessary in order to reconstruct all of the zero-order

and the twin images without aliasing. As evident in Fig. 5.11b, the reconstruction

area is larger than the hologram area and the Fresnel transform method allows

such reconstruction, provided that the image distance is properly chosen. In the

simulation example of Fig. 5.12, using mostly the same parameters as before, the

object distance is z0 ¼ 1; 000 mm and is offset from the reference with kx 2p= ¼
100 256=ð Þ mm�1. The frame size at z ¼ 1; 000 mm is Nxlz X0= ¼ 633 mm and the

66 5 Digital Holography Configurations



reconstruction with a normally incident reference in Fig. 5.12c results in the zero-

order at the center and the focused image on one side and the blurred twin on the

other. This is to be compared with Fig. 5.11b. If it is desired to have the focused

image at the center, then a read reference wave with the same inclination as the

write reference can be used. In Fig. 5.12d, the focused image is in the center and the

zero-order is moved to the side. Also note that the zero-order consists of the ERj j2
term as the bright square and the EOj j2 term as a blurred spot within the square.

In order to accommodate the zero-order and the twin-image terms without

aliasing, the object distance has to be large enough so that

X ¼ Nxlz
X0

� 3X0 (5.5)

Fig. 5.12 Digital Fresnel holography. (a) The object, (b) the hologram, (c) reconstructed image

using normally incident plane-wave reference, and (d) reconstructed image using tilted plane-wave

reference. Each of the panels (c, d) display both the amplitude (upper) and the phase (lower)
profiles

Fig. 5.11 Fresnel holography. (a) Recording by off-axis superposition of the object and reference

waves, and (b) reconstruction of separated zero-order and twin images
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assuming that the object fills the screen size X0. For our example, this requires

z � 1; 213 mm. An example with an object that fills the screen is shown in Fig. 5.13.

The object and the rec.onstruction distances vary as z ¼ 5; 00;1; 000; 1; 500;
2; 000 mm for Fig. 5.13b–e. Only in Fig. 5.13d, e are the images unhindered by

the zero-order or the twin terms.

The variation of the frame size with object distance can be used as an advantage

[25]. Placement at a large enough distance and the use of Fresnel transform allow

imaging of an object larger than the CCD array size, such as in macroscopic

metrology applications [23, 24, 26, 27]. Also an imaging lens can be used to form

a magnified [28] or demagnified image of the object, which then propagates to the

hologram plane. For example, in [24], a negative lens is used to form a demagnified

image of a large object, thus reducing the spatial frequency bandwidth.
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Chapter 6

Theoretical Studies of Digital Holography

The diffraction theory is at the basis of development of digital holography and

allows calculation of holographic images from the recorded holographic interfer-

ence patterns [1]. In this chapter, we highlight some of the theoretical tools

developed to enhance the capabilities of digital holography and applications.

6.1 Digital Sampling of Hologram

The finite size of and discrete sampling by the CCD array modify the holographic

imaging properties that we obtained in Sect. 3.3 [2–13]. As shown in Fig. 6.1,

suppose the size of the CCD array is X0 � Y0 with Nx � Ny pixels, so that the pixel

pitch is dx0 � dy0 ¼ X0 Nx=ð Þ � Y0 Ny

�� �
. Further suppose that the sensitive area of

a CCD pixel is gxdx0 � gydy0, where gx and gy are the fill factors. The CCD

sampling function is then written [5–8] as

P x0; y0ð Þ ¼ rect
x0
X0

� �
comb

x0
dx0

� �
� rect

x0
gdx0

� �� �
; (6.1)

where again we abbreviate the y-terms and also drop the subscript from g. The comb

function comb x dx=ð Þ is a series of delta functions with dx interval and the rectangle
function rect x a= ; y b=ð Þ has the value one within the rectangle of size a� b and zero
outside. We consider the holographic image formation by point sources as in Sect.

3.3, but in (3.16), we multiply the sampling function P x0; y0ð Þ inside the Fresnel

diffraction integral, so that
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E� x; y; zð Þ ¼ � ik0

2pz
E1E2E3 exp �ik z1 � z2ð Þ � ik0 z3 � zð Þ � ikz12½ �

�
ZZ
S0

dx0P x0ð Þ exp � ik0

2

1

Z� � 1

z

� �
x20 þ ik0

X�

Z� � x

z

� �
x0

�

þ ik

2
� x212
z12

� mx23
z3

þ mx2

z

� ��
: ð6:2Þ

The effect of the sampling function on the integral is, for a function f x0ð Þ
Z
S0

dx0P x0ð Þf x0ð Þ ¼
XX0 2dx0=

m¼�X0 2dx0=

Z mþg 2=ð Þdx0

m�g 2=ð Þdx0
dx0f x0ð Þ: (6.3)

Also note that at the position of the holographic image, z ¼ Z�, and the integral and
summation are easily carried out.

E� x; y; zð Þ ¼ � ik0

2pz
E1E2E3 exp �ik z1 � z2ð Þ � ik0 z3 � zð Þ � ikz12½ �

exp
ik

2
� x12

2

z12
� mx32

z3
þ mx2

z

� �� �

� gdx0 exp
ik0

Z� x� X�� � dx0
2

� � sin
k0

Z� x� X�� �X0

2

� �

sin
k0

Z� x� X�� � dx0
2

� � sinc k0

Z� x� X�� �
g
dx0
2

� �8>><
>>:

9>>=
>>;:

(6.4)

Fig. 6.1 Digital sampling of hologram
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The PSF of discretized hologram (6.4) is illustrated in Fig. 6.2. The quantity

inside the curly brackets of (6.4) shows the effect of the digital sampling [3]. The

sinc function has a width of 4pZ�=k0gdx0 between the first zeroes. For a small fill

factor g ! 0, the image is uniform in amplitude throughout the image plane. On the

other hand, integration over the pixel area with larger fill factor results in vignetting,

especially for shorter image distance Z�. The sine-over-sine factor of (6.4) gives the
lateral resolution of a point image to be 4pZ�=k0X0, which shows the expected

dependence on the numerical aperture of the camera array [14]. Also note that the

point image repeats over a period of 4pZ�=k0dx0. This period has to be larger than

the size of the camera array [4, 15], which leads to the minimum distance zmin ¼
X�2=2lN, as seen in Sect. 4.2. To estimate the axial resolution, suppose all three

source points are on the z-axis. Then the reconstructed field along the z-axis is

given by

E� 0; 0; zð Þ /
XX0 2dx0=

m¼�X0 2dx0=

Z mþg 2=ð Þdx0

m�g 2=ð Þdx0
dx0 exp � ik0

2

1

Z� � 1

z

� �
x0

2

� �
: (6.5)

The integral-sum is close to zero unless the phase of the exponential varies slowly

within the range X0, which leads to the axial resolution being 2l0Z�2=X0
2.

For a holographic microscopy setup with an objective lens, the source point

E1d x� x1; y� y1; z� z1ð Þ may in fact refer to an object point imaged and

magnified by the lens. In that case, E1 is a point within the PSF of the image, and

the description follows as above. Alternatively, and equivalently, E1 refers to an

actual object point and the CCD array refers to its image projected into the object

volume through the objective lens. In that case, the CCD array is demagnified by the

lens and an object point is spread by a demagnified PSF as well.

The quadratic phase function, also known as chirp function, represents paraxial

approximation of a spherical wavefront, and therefore has an important role in much

of the diffraction theory. Digital sampling of quadratic phase function and its effect

on digital holography image formation have been studied in detail [5, 6, 15, 16].

Fig. 6.2 PSF of discretized

hologram
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6.2 Wigner Distribution Function

The Wigner distribution function (WDF) is useful for intuitive visualization of the

spatial and spatial-frequency content of a (one-dimensional) image [17–22]. The

WDF of a one-dimensional function f ðxÞ is defined as

Wf x; kð Þ �
Z 1

�1
dx0f xþ 1

2
x0

� �
f � x� 1

2
x0

� �
exp �ikx0ð Þ: (6.6)

6.2.1 Basic Properties of WDF

The WDF has a number of interesting properties. The projections of WDF on the

x- or k-axis represent the intensity and the power spectrum, respectively:

Z
dkWf x; kð Þ ¼ f ðxÞj j2;Z
dxWf x; kð Þ ¼ ~f ðkÞ		 		2;

8>><
>>: (6.7)

where

~f ðkÞ ¼
Z

dxf ðxÞ exp �ikxð Þ (6.8)

is the Fourier transform of f ðxÞ. In the following discussion, we are mainly

interested in the support of the two-dimensional function Wf x; kð Þ and so ignore

overall constant factors from the expressions. The function f ðxÞ can be extracted

from Wf x; kð Þ through a Fourier transform

F�1 Wf
1

2
x; k

� �
 �
x½ � ¼

Z
dkWf

1

2
x; k

� �
exp ikxð Þ ¼ f ðxÞf �ð0Þ: (6.9)

The WDF of a point source is a one-dimensional delta function, a vertical line in the

x; kð Þ-phase space diagram (Fig. 6.3a) while the WDF of a plane wave is a

horizontal line (Fig. 6.3b)

f ðxÞ ¼ exp ikxxð Þ ) Wf x; kð Þ ¼ d k � kxð Þ: (6.10)

The WDF of a quadratic phase function is a sloped line (Fig. 6.3c)

f ðxÞ ¼ exp ia x� x0ð Þ2
� 


) Wf x; kð Þ ¼ d k � 2a x� x0ð Þð Þ: (6.11)
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The Fourier transform of a function corresponds to exchange of x- and k-axes

W~f k; xð Þ ¼ Wf x; kð Þ: (6.12)

The WDF of a product of two functions is the convolution of the WDF’s

hðxÞ ¼ f ðxÞgðxÞ ) Wh x; kð Þ ¼ Wf x; kð Þ�kWg x; kð Þ: (6.13)

Combining the last two results, one can see that the multiplication of a function with

a quadratic phase function causes shearing in the k-direction

f ðxÞ exp iax2
� � ) Wf x; k � 2axð Þ: (6.14)

The WDF of the intensity is an autocorrelation

W fj j2 x; kð Þ ¼ Wf�kWf � ¼ Wf x; kð Þ�kWf x;�kð Þ ¼ Wf	kWf
�: (6.15)

If the Fresnel diffraction is written in the form of (2.33), then its WDF corresponds

to a shearing in the x-direction

f ðxÞ ¼
Z

dx0 f0 x0ð Þ exp ia x� x0ð Þ2
� 


) Wf x; kð Þ ¼ Wf0 x� k

2a
; k

� �
: (6.16)

6.2.2 Fourier Transform by a Lens

We use these properties of WDF to describe various aspects of diffraction in the x–k
phase space. For example, consider the Fourier-transforming property of a lens in

Fig. 6.4. Suppose the input object has a spatial extent X0 in the x-direction and a

spectral bandwidth B0 along the k-direction, as shown in Fig. 6.4a. The object is

positioned at the front focal plane of the lens of focal length f and a screen is on the
back focal plane. The propagation of input field to the lens over a distance z ¼ f is

Fig. 6.3 WDF of (a) a point source, (b) a plane wave, and (c) a spherical wave
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described as a Fresnel diffraction, with a ¼ k=2z and k ¼ 2p=l, which corresponds
to a shearing of the WDF in the x-direction by ðf=kÞB0, as shown in Fig. 6.4b.

The quadratic phase of the lens, with af ¼ �ðk=2f Þ, corresponds to a k-shear
of � ðk=f ÞX0, shown in Fig. 6.4c. Another Fresnel propagation to the screen causes

an x-shear, so that the WDF acquires a rectangular shape with X ¼ ðf=kÞB0 and

B ¼ ðk=f ÞX0. The black dot and the hatch direction in each diagram provides a

guide for how the WDF shape changes through these operations. The WDF has

rotated by 90
, which indeed represents a Fourier transform.

6.2.3 Fourier Holography

Next consider the process of Fourier transform holography (Fig. 6.5). The rectan-

gular area in Fig. 6.5a represents the WDF of the object, while the thick vertical line

is a point source at x ¼ x0 on the object plane. Both the object and the reference

pass through the lens in a 2f-system, causing the WDF to rotate by 90
 (Fig. 6.5b).
Now the hologram records the intensity of the field, that is,

I ¼ ERj j2 þ EOj j2 þ EREO
� þ ER

�EO: (6.17)

The WDF of the intensity consists of the four terms

WI ¼ WR 	WR
� þWO 	WO

� þWR x; kð Þ �WO x;�kð Þ
þWR x;�kð Þ �WO x; kð Þ: (6.18)

In Fig. 6.5c, the thick horizontal line at k ¼ 0 is the autocorrelation of the reference

and the central vertical rectangle of height 2ðk=f ÞX0 is the autocorrelation of the

object. The pair of convolutions with the reference gives the upper and the lower

rectangles of size X0 ¼ ðf=kÞB0 and B0 ¼ ðk=f ÞX0. The reconstruction consists of

another Fourier transform that rotates the WDF by 90
 again (Fig. 6.5d). The final

image consists of the reference spot, the zero-order object, and the well-focused

twin images. The object WDF has size X ¼ X0 and B ¼ B0. It is clear that in order

to be able to separate the image from the zero-order, the reference point source has

to be positioned at x0j j>ð3=2ÞX0.

Fig. 6.4 Transformation ofWDFduringFourier transformbya lens. (a) Input object, (b) propagation

to the lens, (c) quadratic phase of the lens, and (d) propagation to the focal plane

76 6 Theoretical Studies of Digital Holography



6.2.4 Fresnel Holography

Another example is the Fresnel holography of Fig. 6.6. Here the reference is a plane

wave with spatial frequency k ¼ k0, shown as a thick horizontal line in Fig. 6.6a.

The object field propagates to the hologram plane over a distance z0, resulting in the
x-shearing by ðz0=kÞB0 (Fig. 6.6b). The autocorrelation of the reference is again a

thick horizontal line at k ¼ 0 of Fig. 6.6c. The autocorrelation of the object is now

a rhombus shape, while the two convolutions are the reflected pair of sheared

rectangles (parallelograms). For reconstruction, propagation over the same distance

z results in the shape of WDF in Fig. 6.6d. When z ¼ z0 exactly, the shearing of

the upper parallelogram restores the original rectangular WDF of the object.

Separation, in x-direction, of the image from the zero-order is complete if

k0j j>ð3=2ÞB0. Also note that the twin-image WDF is distorted corresponding to a

propagation of a distance 2z0.

6.2.5 Space–Bandwidth Product

The phase space diagram of Wigner distribution function is also useful for consid-

eration of the space–bandwidth product (SBP), which is proportional to the number

of pixels required to represent the image [21]. For a one-dimensional image, it is

equal to the area of the rectangle that encloses the WDF. Figure 6.7 shows the

WDF of three types of holograms – (a) Fourier, (b) Fresnel, and (c) image plane

holograms. For the Fourier hologram, the SBP is X0B0, the same as the object itself.

For the Fresnel hologram, it is X0B0 þ ðz0=kÞB0
2. The inverse of the “overhead”

SBP, divided by 2p, is called the Fresnel number NF ¼ lz0B0
2

� ��1
. The hologram

needs the same bandwidth as the object but a larger area. For the image plane

hologram, the image of the object is formed using a lens of focal length f with

a magnification M. The magnification results in the size of WDF MX0 � B0 M= .

But the image also contains a quadratic phase factor exp ðik=2fMÞx2ð Þ and theWDF

has a vertical shear, so that the SBP is X0B0 þ ðk=f ÞMX0
2. Referring to Figs. 6.5

and 6.6, these holograms require four times the bandwidth and SBP of the single

image terms, two for recording the intensity and two for separating the image from

the zero-order.

Fig. 6.5 Transformation of WDF during Fourier holography. (a) Input object and point source

reference, (b) Fourier transform by lens, (c) intensity of the hologram, and (d) Fourier transform
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6.3 Fractional-Order Fourier Transform

In recent years, the fractional-order Fourier transform (FRFT) has been attracting

significant attention in optical processing. In digital holography, in particular, FRFT

is seen to be useful for analyzing holographic reconstruction with astigmatic geom-

etry. It also has conceptual significance as a generalization of Fourier transform and

provides a connection between Fresnel and Fraunhofer diffraction regimes [18, 23].

Referring to Fig. 6.8, recall that the Fresnel diffraction field E x; y; zð Þ due to an

input field E0 x0; y0ð Þ at z ¼ 0 is given by, with the usual 1D abbreviation,

E x; y; zð Þ ¼ � ik

2pz
exp ikzð Þ exp ik

2z
x2

� �

�
ZZ
S0

dx0E0 x0; y0ð Þ exp ik

2z
x20

� �
exp � ik

z
xx0

� �
: (6.19)

The FRFT of order a 2 0; p 2=½ � of the function f ðxÞ is defined by

Fa f u0ð Þf g u½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp iað Þ
2pi sin a

r
exp

i

2

cos a
sin a

u2
� �

;

�
Z

du0 f u0ð Þ exp i

2

cos a
sin a

u2
� �

exp
�i

sin a
uu0

� �
; (6.20)

Fig. 6.6 Transformation of WDF during Fresnel holography. (a) Input object and plane-wave

reference, (b) propagation to the hologram plane, (c) intensity of the hologram, and (d) propaga-

tion to the image plane

Fig. 6.7 Space–bandwidth of WDF for (a) Fourier hologram, (b) Fresnel hologram, and (c) image

plane holograms
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which has some resemblance with (6.19) above for Fresnel diffraction. Making

the substitutions

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

z

sin a
cos a

r
x0; u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

z
sin a cos a

r
x;

F0 u0ð Þ ¼ E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z

k

cos a
sin a

r
u0

� �
; FðuÞ ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z

k sin a cos a

r
u

� �
; ð6:21Þ

we obtain

FðuÞ ¼ exp ikzð Þ cos að Þ exp �iað Þ exp i

2
tan að Þu2

� �
Fa F0 u0ð Þf g u½ �: (6.22)

Therefore, the Fresnel diffraction is a FRFT, except for the last exponential. But

exp
i

2
tan að Þu2

� �
¼ exp i

ksin2a
2z

x2
� �

; (6.23)

which is a paraxial approximation of a spherical surface centered at a distance of

Ra ¼ ðz=sin2 aÞ from x; yð Þ plane. This factor can be compensated for if the

diffraction field is observed on the spherical surface or by placing an appropriate

lens on the x; yð Þ plane. Then,

FðuÞ ¼ exp ikzð Þ cos að Þ exp �iað ÞFa F0 u0ð Þf g u½ �: (6.24)

Note that F0 ff g ¼ f , so that when z ! 0, then a ! 0 and FðuÞ ¼ F0 u0ð Þ.
Furthermore, Fp 2= ff g ¼ F ff g, that is, Fourier transform, so that when z ! 1,

Fig. 6.8 Geometry of fractional-order Fourier transform
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then a ! p 2= and FðuÞ / F F0 u0ð Þf g u½ �. Thus, as one moves from z ¼ 0 to finite

distances and then to larger distances, the diffraction field goes from being

identical to the input to Fresnel diffraction, and then to Fraunhofer diffraction

regimes, as a varies in the range 0 to p 2= .

Discretized form of FRFT has been developed [24, 25]. FRFT may be used in

reconstruction from in-line hologram [26], in analyzing tilt and translation of a

surface from a single hologram [27], and applied to digital holography of elliptical,

astigmatic Gaussian beams [28–30]. It has been used in an iterative feedback loop

to synthesize field patterns at multiple focal planes [31].

6.4 Wavelets

The wavelets are a family of functions, obtained from one single function uðxÞ,
indexed by two labels as

uabðxÞ ¼ 1

a
u

x� b

a

� �
; (6.25)

where a represents scaling or frequency and b represents shift. Wavelet transform

of a function f ðxÞ is the inner product of the function with the wavelet function:

fab ¼ f ðxÞ j uabðxÞh i ¼
Z

dxf �ðxÞuabðxÞ: (6.26)

As an illustration, we analyze holographic reconstruction using Gabor wavelets

[32]. The Gabor wavelets are generated from

uðxÞ ¼ exp �px2 þ ix
� �

; (6.27)

which is a sinusoidal oscillation with a Gaussian envelope, so that

uabðxÞ ¼ 1

a
exp �p

x� b

a

� �2

þ i
x� b

a

� �" #
: (6.28)

Their Fourier transforms are similarly Gaussian:

~uðxÞ ¼ 1ffiffiffiffiffi
2p

p exp � 1� kð Þ2
4p

" #
; (6.29)

~uabðkÞ ¼ 1ffiffiffiffiffi
2p

p exp � 1� akð Þ2
4p

" #
exp �ikbð Þ: (6.30)
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Lets take a simple case of a purely phase object in superposition with a plane

reference wave

EO x; yð Þ ¼ EO exp i’ x; yð Þ½ �;
ER x; yð Þ ¼ ER exp ibx½ �;

(
(6.31)

so that the total intensity is

I x; yð Þ ¼ EO2 þ ER2 þ EOER exp i ’� bxð Þ½ � þ EOER exp �i ’� bxð Þ½ �: (6.32)

Take a specific value of y, and consider the intensity a function of x, and further

suppose that the phase varies smooth enough that we can write

’ðxÞ � bx ¼ ’ðbÞ � bb½ � þ ’0ðbÞ � b½ � x� bð Þ þ � � � : (6.33)

Then the wavelet transform of the intensity is

Iab ¼ EO2 þ ER2
� � ffiffiffi

p
p

r
exp

�1

4p

� �

þ EOER exp þi ’ðbÞ � bb½ �f g
ffiffiffi
p
p

r
exp � 1

4p
1þ a ’0ðbÞ � bð Þ½ �2

� �

þ EOER exp �i ’ðbÞ � bb½ �f g
ffiffiffi
p
p

r
exp � 1

4p
1� a ’0ðbÞ � bð Þ½ �2

� �
: (6.34)

For positive a, Iabj j is maximum when

a ¼ 1

’0ðbÞ � b
; (6.35)

which is called the ridge of the wavelet. The wavelet coefficient at the ridge of

Gabor wavelet transform is

IðbÞ ¼ EO2 þ ER2
� � ffiffiffi

p
p

r
exp � 1

4p

� �

þ EOER exp þi ’ðbÞ � bb½ �f g
ffiffiffi
p
p

r
exp � 1

p

� �

þ EOER exp �i ’ðbÞ � bb½ �f g
ffiffiffi
p
p

r
: (6.36)

Choose a sufficiently small value of p, so that

IðbÞ � EOER exp �i ’ðbÞ � bb½ �f g
ffiffiffi
p
p

r
(6.37)
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and one can recover the object field by

EO exp �i’ðbÞ½ � ¼ IðbÞ
ER

ffiffiffi
p

p

r
exp �ibbð Þ: (6.38)

Wavelet transform has been a useful processing tool in short-coherence interfer-

ometry [33, 34], vibration analysis in digital speckle pattern interferometry [35],

and profilometry by fringe projection [36]. Diffraction and holography can be

looked at from a wavelet framework [37]. A specific type of wavelet called

Fresnelet has been devised for analysis of digital holography [38]. Fourier trans-

form is a global operation that is usually used for the analysis of stationary signal,

but it has a poor capacity for localizing the signal properties. The ridge of wavelet

transform can be used to automatically optimize holographic phase-contrast

microscopy, as described above [32, 39], whereas in the conventional methods

such as Huygens convolution or angular spectrum, one has to manually filter the

angular spectrum.
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Chapter 7

Suppression of DC and Twin-Image Terms

The intensity distribution on a hologram contains four terms

IH ¼ ER þ EOj j2 ¼ ERj j2 þ EOj j2 þ ER
�EO þ EREO

�

� IR þ IO þ EO þ E�
O: (7.1)

Of these, normally only one of the last two terms yields the desired holographic

image, while the other terms – the zero-order and twin-image terms – only contrib-

ute to blurring and interference of the image. This is especially true in in-line

configurations where all four terms are superposed on top of each other, but even in

off-axis configurations they can limit the number of usable pixels and cause

degradation of images. It is therefore a major consideration in any holography

system design and there have been developed a fairly large number of techniques

addressing the “dc and twin-image problem.” Some of these remove the DC term

only, while others can suppress the twin image as well.

7.1 Suppression of DC Terms

We illustrate the following methods by simulation examples using the test pattern

of Fig. 7.1a, with 256 �256 pixels of 1 mm pitch and assuming l ¼ 0:633 mm.

(Note that the group and element numbers of these simulated patterns do not

correspond to actual USAF resolution target.) The object and the reconstruction

distances are taken to be z ¼ 1; 000 mm. The in-line hologram of Fig. 7.1b contains

all of the four terms of (7.1). The reconstruction in Fig. 7.1c, therefore, shows an in-

focus image, EO, and the defocused twin image, EO
�. It also contains the zero-order

reference, IR, and object, IO, intensities as blurred background.

A simplest way to deal with the DC term is by subtraction of the average

intensity of the hologram �IH, as is done in Fig. 7.2a [1]. The reconstructed image

in Fig. 7.2b is similar to Fig. 7.1c. In this synthesized example, the reference is a

M.K. Kim, Digital Holographic Microscopy: Principles, Techniques,
and Applications, Springer Series in Optical Sciences 162,

DOI 10.1007/978-1-4419-7793-9_7, # Springer Science+Business Media, LLC 2011
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perfect plane wave, or a constant, and therefore the subtraction of the reference is

perfect. In real experiment, the reference may in fact contain nonuniformity. The

method may be improved by first taking the Fourier transform of the hologram and

zeroing out a central spot of several pixels in diameter, that is, a high pass filtering

[1]. Because it still leaves the object component IO, removal of the reference

component alone may not have satisfactory effect. On the other hand, if the

reference is much stronger than the object field, then the IO term may be negligible

compared to the other terms and the removal of IR alone may have a sufficient

effect.

The zero-order terms IR and IO can be completely removed by taking separate

exposures of the reference and object beams as well as the hologram exposure

(Fig. 7.3). The reconstructed image Fig. 7.3c is only disturbed by the out-of-focus

twin image. Use of the off-axis configuration can separate the twin image and

reduce its interference. This method can also reduce the effect of nonuniform

reference. The apparatus and the object need to be stable during the multiple

exposures, and the method has limitations for dynamic objects.

Fig. 7.1 (a) Object target pattern, with 256� 256 mm2, 256� 256 pixels; (b) hologram IH; and
(c) image reconstructed from IH

Fig. 7.2 (a) IH
0 ¼ IH � �IH and (b) image reconstructed from IH

0
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A more efficient method is provided by the example of Fig. 7.4 [2], noting that

IH � IRð Þ2 ¼ IO 2IH � IOð Þ þ ER
�EOð Þ2 þ EREO

�ð Þ2
� IO 2IH � IOð Þ þ 2IOIR: (7.2)

The last approximation may be justified if Im ER
�EOð Þ is small. Also assume that

IR � IO. Then

IO � IH � IRð Þ2
2 IH þ IRð Þ (7.3)

and

ER
�EO þ EREO

� ¼ IH � IR � IO

� IH � IR � IH � IRð Þ2
2 IH þ IRð Þ ¼ IH

0: (7.4)

Fig. 7.3 (a) IO, (b) IH
0 ¼ IH � IR � IO, and (c) image reconstructed from IH

0

Fig. 7.4 (a) IH
0 of (7.4) and (b) image reconstructed from IH

0
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This method requires two exposures IH and IR to remove the zero-order terms.

The reconstructed image in Fig. 7.4b has comparable quality as the

previous example.

7.2 Phase-Shifting Methods

Phase-shifting techniques play important roles especially in digital holography,

because addition, subtraction, and other manipulations of phase-shifted holograms

are easily carried out as simple arithmetic manipulations of numerical arrays. This

is in sharp contrast to analog holography. For example, subtraction of two

holograms was considered for removal of twin images even in the earliest years

of holography development [3]. The subtraction was accomplished by overlap of

two hologram prints, one positive and the other negative, in a cumbersome and not

very satisfactory process.

The first method requires exposure of two holograms, IHð0Þ and IH að Þ, while the
global phase of the object is shifted by a between the two exposures by, for

example, inserting a glass plate [4]. Two additional exposures of IR and IO are

also taken. Then

IHð0Þ � IR � IO ¼ EREO
� þ ER

�EO;

IH að Þ � IR � IO ¼ EREO
0�e�ia þ ER

�EOe
ia;:

(
(7.5)

so that

IH
0 ¼ IHð0Þ � IR � IO½ � � IH að Þ � IR � IO½ �eia;
¼ ER

�EO 1� ei2a
� �

:
(7.6)

This method requires four exposures plus the value of phase shift, its optimal

value being p 2= . For illustration, Fig. 7.5a shows the angular spectrum (Fourier

spectrum) of the hologram IHð0Þ, with off-axis configuration so that the spectral

terms appear separated. It shows the central zero-order and the pair of twin

images in the upper right and lower left corners. In contrast, the angular

spectrum of the modified hologram IH
0 in Fig. 7.5b contains only a single

spot. Figure 7.5c is the modified hologram IH
0, and Fig. 7.5d is its reconstructed

image.

Alternatively [4], three holograms, I0, I1, and I2, are taken while the object phase
is shifted by 0, a1, and a2, so that

Im ¼ IH amð Þ ¼ IR þ IO þ ER
�EOe

iam þ EREO
�e�iam m ¼ 0; 1; 2ð Þ: (7.7)
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Then it follows

IH
0 ¼ I0 � I1

1� e�ia1
� I0 � I2
1� e�ia2

¼ ER
�E0

1� eia1

1� e�ia1
� 1� eia2

1� e�ia2

� �
: (7.8)

The modified hologram and its angular spectrum are essentially the same as in

Fig. 7.5. This method needs three camera exposures and the two values of phase

shift.

Another method [5, 6] takes two phase-shifted holograms, IHð0Þ and IH að Þ, to
remove the zero-order but not the twin term (Fig. 7.6). For

IH
0 ¼ IHð0Þ � IH að Þ ¼ þE�

REO 1� eia
� �þ EREO

� 1� e�ia� �
(7.9)

the optimal value of a is p. This method is to be compared with one of the speckle

methods in the next section. Other methods of phase shifting in digital holography

will be described in detail in Chap. 8.

Fig. 7.6 (a) The modified hologram IH
0 of (7.9), (b) its angular spectrum, and (c) reconstructed

image

Fig. 7.5 (a) Angular spectrum of IH, (b) angular spectrum of IH
0 in (7.6), (c) IH

0, and

(d) reconstructed image from IH
0. (Angular spectra are plotted in logarithmic intensity scales)
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7.3 Speckle Methods

Instead of phase shifting, one can illuminate the object with speckled light by, for

example, sending the laser through a ground glass plate [6, 7]. Two holograms are

exposed while the speckle field illuminating the object is randomly changed. The

object field arriving at the hologram plane is described as

EOSm ¼ EOESm m ¼ 1; 2ð Þ; (7.10)

where ESm represents the complex speckle field (Fig. 7.7a) and the holograms

(Fig. 7.7b) are

IHm
¼ IR þ IOSm þ ER

�EOESm þ EREO
�ESm

�: (7.11)

Take separate exposures of the object fields, IOSm , and subtract from the holograms.

Take the difference of the two to obtain the final modified hologram (Fig. 7.7c)

IH
0 ¼ IH1

� IOS1ð Þ � IH2
� IOS2ð Þ

¼ ER
�EO ES1 � ES2ð Þ þ EREO

� ES1
� � ES2

�Þ;ð (7.12)

which can be compared with (7.9). The image Fig. 7.7d reconstructed from IH
0

shows clear image of the object. While the image does contain the twin image, it is

defocused and speckled into the background.

Speckled holograms can be averaged to obtain twinless image as follows [8]. Let

EOSð0Þ be the object pattern at z ¼ 0 illuminated by the speckle field. Diffraction

and propagation to the hologram plane over a distance z is denoted as

EOSðzÞ ¼ Dz EOSð0Þf g (7.13)

and the hologram acquired by the camera is

IH ¼ IR þ IOS þ ER
�EOSðzÞ þ EREOS

�ðzÞ: (7.14)

Note that EOS
�ðzÞ ¼ D�z EOSð0Þf g and numerically propagate IH by z

IH
0 ¼ Dz IHf gj j2 ¼ Dz IR þ IOS þ ER

�EOSðzÞ þ EREOS
�ðzÞf gj j2;

¼ Dz IR þ IOSf g þ ER
�D2z EOSð0Þf g þ EREOS

�ð0Þj2: ð7:15Þ��
Now if IH

0 is averaged by repeating the exposure many times, then most of the terms

disappear except for the square of the last term.

IH
0h i � EREOS

�ð0Þj2�� E
¼ IRIO:

D
(7.16)
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Convergence is faster if IR is removed in (7.14), by subtraction of hologram

average or angular spectrum filtering. Figure 7.8 shows IH
0h i for average of 1, 4,

16, and 64 frames.

7.4 Filtering of Angular Spectrum

A very effective and versatile method to suppress the dc and twin image terms is the

angular spectrum filtering, or spatial filtering [9]. The method can be used not only

to suppress the DC term, but also to select one of the twin first-order terms, as well

as to eliminate spurious spectral components due to parasitic reflections and

interference, thus improving the quality of the reconstructed image. The method

applies to the off-axis hologram, as shown in Fig. 7.9a, where a magnified view of a

small area of the hologram displays the interference fringes. Its angular spectrum

(Fig. 7.9b) then contains the central zero-order spot as well as a pair of spots for

the twin-image terms. Filtering is accomplished numerically by selecting an area – the

highlighted circular area inFig. 7.9b – and zeroing out the rest of the array. The filtered

spectrum is then inverse Fourier transformed that yields the modified hologram,

which is then used to reconstruct image in Fig. 7.9c by numerical diffraction.

The resolution and quality of the reconstructed image depends on the size

of the filter, as shown in Fig. 7.10a. If it is too small, the image resolution

Fig. 7.8 IH
0h i for Nave ¼ 1; 4; 16; and 64

Fig. 7.7 (a) Phase of EOS1 , (b) IH1
, (c) IH

0, and (d) image reconstructed from IH
0
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degrades, and if it is too large and encroaches on the zero-order area, then the image

suffers interference and distortion.

Similar effect may be achieved physically by placing an appropriate mask in the

Fourier plane of a confocal configuration of lenses [10], but the numerical method

affords significant flexibility and versatility. For example, setting the angular

Fig. 7.9 Illustration of angular spectrum filtering. (a) The hologram, with a magnified view of a

portion highlighting the interference fringes. (b) The angular spectrum, with one of the twin-image

peaks highlighted with a brighter circular area, which is used in the reconstruction of the

holographic image in (c)

Fig. 7.10 Angular spectrum filtering with varying filter size using (a) conventional and

(b) nonlinear angular spectrum methods. Each frame shows the reconstructed image using the

angular spectrum displayed in the inset
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spectrum filter boundary can be automated [11]. The numerical spectral mask can

be set up with smoothed, that is, apodized, window function, in order to reduce

fringing in the reconstructed image. Separate acquisition and subtraction of

reference and object intensities from the hologram can be useful [12], even with

the off-axis numerical filtering, by allowing larger bandwidth of the filter. Note that

the hologram thus filtered numerically is complex, a feature not feasible in a real

space hologram.

An interesting improvement is provided by the nonlinear spatial filtering, [13].

Starting from

IH ¼ IR þ IO þ ER
�EO þ EREO

� (7.17)

it follows

IH
IR

¼ 1þ EO

ER

� �
1þ EO

�

ER
�

� �
; (7.18)

so that

uH ¼ log
IH
IR

� �
¼ log 1þ EO

ER

� �
þ log 1þ EO

�

ER
�

� �
: (7.19)

The angular spectrum of this expression has only the two twin-image terms and no

zero-order term, as shown in Fig. 7.10b. Figure 7.10 compares the effect of varying

angular spectrum filter size on the resolution of the reconstructed image, using

(Fig. 7.10a) the conventional or (Fig. 7.10b) the nonlinear angular spectrum

methods. It shows that the nonlinear AS has no zero-order peak and this allows

use of larger AS filter for better resolution, until the filter finally encroaches into the

twin-image area.
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Chapter 8

Phase-Shifting Digital Holography

The in-line configuration of DH makes use of the full pixel count in forming the

holographic image, but the zero-order and the twin-image terms are superposed

on the image. Phase-shifting digital holography (PSDH) is a very effective

method of removing these terms, introduced by I. Yamaguchi, where the com-

plex field at the hologram is obtained by phase-shifting interferometry [1]. From

the complex field at the hologram plane, including the amplitude and phase

information, the optical field at any other plane can be obtained by numerical

diffraction.

8.1 Basic Principles of PSDH

For simplicity, assume that the reference is a plane wave normally incident on the

hologram plane ER x; yð Þ ¼ ER exp iað Þ, where a is a global phase. The object wave

has the amplitude EO x; yð Þ and phase ’ x; yð Þ distributions, so that

EO x; yð Þ ¼ EO x; yð Þ exp i’ x; yð Þ½ �: (8.1)

Then the interference intensity is

Ia x; yð Þ ¼ ER þ EOj j2;
¼ ER

2 þ EO
2 x; yð Þ þ EREO x; yð Þei ’�að Þ þ EREO x; yð Þe�i ’�að Þ;

¼ ER
2 þ EO

2 x; yð Þ þ 2EREO x; yð Þ cos ’ x; yð Þ � a½ �: (8.2)

M.K. Kim, Digital Holographic Microscopy: Principles, Techniques,
and Applications, Springer Series in Optical Sciences 162,
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In the original four-step PSDH [1, 2], four holograms with phase shifts a ¼ 0;
p 2= ; p; 3p 2= are acquired, for example, by using a piezo-mounted reference mirror

(Fig. 8.1):

I0 ¼ER
2 þ EO

2 þ 2EREO cos’;

Ip 2= ¼ER
2 þ EO

2 � 2EREO sin’;

Ip ¼ER
2 þ EO

2 � 2EREO cos’;

I3p 2= ¼ER
2 þ EO

2 þ 2EREO sin’;

8>>>><
>>>>:

(8.3)

which are then numerically combined to extract the phase profile

’ x; yð Þ ¼ tan�1 Ip 2= � I3p 2=

I0 � Ip

� �
(8.4)

and the object field amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EO

2 x; yð Þ
p

can be obtained by a separate exposure of

the object without the reference beam, thus requiring a total of five exposures. The

holographic image is then reconstructed from EO x; yð Þ ¼
ffiffiffiffiffiffiffiffi
EO

2
p

exp i’½ � (Fig. 8.2).
Alternatively, the complex field can be obtained by [3]

EO x; yð Þ ¼ 1

4ER

I0 � Ipð Þ þ i I3p 2= � Ip 2=

� �� �
: (8.5)

This completely defines the complex optical field EO x; y; 0ð Þ of the object at the

hologram plane, and the diffraction theory can be used to calculate the optical field

EO x; y; zð Þ at any distance z from the hologram. These procedures remove the

contributions from the zero-order and twin-image terms.
The phase-shifting interferometry (PSI), that is, without the numerical diffrac-

tion, has been extensively used in surface metrology and other applications [4].

Fig. 8.1 Phase-shifting

digital holography with

Michelson interferometer.

BX beam expander, BS beam

splitter, PZT piezo-mounted

reference mirror
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The phase-shifting principle applies equally to noninterferometric fringe projection

techniques for 3D surface profiling [5, 6]. Many techniques have been developed for

both PSI and PSDH and some of these will be described below [7]. The idea of

combining two holograms with a quadrature phase difference was already conceived

in the 1950s byGabor and Goss [8] but the complexity of the optomechanical system

was substantial, making its practical implementation very difficult. On the other

hand, with the digital implementation, much of the optical manipulations are

replaced with numerical operations in a highly efficient and versatile manner,

yielding powerful applications in many different areas.

8.2 Reduced Number of Steps

8.2.1 Three-Step Method

The number of required hologram exposures is reduced by one in the three-step

PSDH [2]. The interference intensities with three phase shifts 0, a, and b are

Ia ¼ER
2 þ EO

2 þ EREOe
i ’�að Þ þ EREOe

�i ’�að Þ;

Ib ¼ER
2 þ EO

2 þ EREOe
i ’�bð Þ þ EREOe

�i ’�bð Þ;

I0 ¼ER
2 þ EO

2 þ EREOe
i’ þ EREOe

�i’;

8>><
>>: (8.6)

Fig. 8.2 Simulation of PSDH. (a) I0, (b) Ip 2= , (c) Ip, (d) I3p 2= , (e) image reconstructed from I0,
(f )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EO

2 x; yð Þ
p

, (g) ’ x; yð Þ, and (h) image reconstructed from
ffiffiffiffiffiffiffiffi
EO

2
p

exp i’½ �
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which can be combined to get

EO ¼ EOe
i’ ¼ 1

ER

Ia � I0ð Þ eib � 1
� �� Ib � I0

� �
eia � 1ð Þ

e�ia � 1ð Þ eib � 1ð Þ � eia � 1ð Þ e�ib � 1ð Þ : (8.7)

For the case of a ¼ p 2= and b ¼ � p 2= , we have

EO x; yð Þ ¼ 1� i

4ER

I0 � Ip 2=

� �þ i I0 � I�p 2=

� �� �
;

’ x; yð Þ ¼ tan�1 I0 � I�p 2=

I0 � Ip 2=
� p

4

� �
: (8.8)

This requires three camera exposures and one intensity measurement.

8.2.2 Two-Step Methods

A two-step method is also possible, for any phase shift 0<a<p [9]

EO x; yð Þ ¼ I0 � EO
2 � ER

2
� �� exp �iað Þ Ia � EO

2 � ER
2

� �
ER 1� exp �2iað Þ½ � ; (8.9)

which requires three exposures plus one intensity measurement.

It is also possible to have only the two phase-shift exposures to reconstruct the

complete object field, as follows [10, 11]. Let u ¼ ER
2 þ EO

2 and write

I0 ¼uþ 2EREO cos’;

Ia ¼uþ 2EREO cos ’� að Þ ¼ uþ 2EREO cos’ cos aþ sin’ sin að Þ:

(
(8.10)

Then

EO cos’ ¼ I0 � u

2ER

;

EO sin’ ¼�I0 cos aþ Ia þ u 1� cos að Þ
2ER sin a

;

8>><
>>: (8.11)

which leads to

4ER
2 u� ER

2
� �

sin2a ¼ I0 � uð Þ2sin2aþ I0 cos a� Ia þ u 1� cos að Þ½ �2 (8.12)
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so that

au2 � 2buþ c ¼ 0; (8.13)

where

a ¼ 2 1� cos a½ �;
b ¼ I0 þ Iað Þ 1� cos að Þ þ 2ER

2usin2a
� �

;

c ¼ I20 þ I2a � 2I0Ia cos aþ 4ER
4sin2a

� �
:

8><
>: (8.14)

The solution

u ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ac

p

a
(8.15)

then allows one to write

EO x; yð Þ ¼ I0 � u

2ER

þ i
�I0 cos aþ Ia þ u 1� cos að Þ

2ER sin a
;

’ x; yð Þ ¼ tan�1 �I0 cos aþ Ia þ u 1� cos að Þ
I0 � uð Þ sin a

� �
: (8.16)

8.3 Unknown Phase Steps

The above methods allow in principle to extract the complex optical field of the

object by combining two or more holograms acquired with fixed phase steps. It may

be, however, difficult to precisely control and maintain the phase shift and small

errors in phase steps can cause substantial error in the extracted phase profile.

A number of methods have been proposed to allow determination of the phase shift

by analysis of the hologram images, such as by iterative procedures for estimating

the phase shift with improving statistics [12–14].

In a series of papers [15–21], L.Z. Cai et al. have developed methods to extract

the arbitrary phase shift and to calculate the complex object field at the hologram.

For example [20], suppose we take two holograms with unknown phase shift a:

I0 x; yð Þ ¼ ER
2 þ EO

2 x; yð Þ þ 2EREO x; yð Þ cos ’ x; yð Þ½ �;
Ia x; yð Þ ¼ ER

2 þ EO
2 x; yð Þ þ 2EREO x; yð Þ cos ’ x; yð Þ þ a½ �:

(
(8.17)

Take their sum and difference

I0 � Ia ¼ 4EREO sin ’þ a 2=ð Þ sin a 2=ð Þ
I0 þ Ia ¼ 2ER

2 þ 2EO
2 þ 4EREO cos ’þ a 2=ð Þ cos a 2=ð Þ

(
(8.18)
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and take the following averages over all pixels of the frame

I0 � Iað Þ2
D E

¼ 4ER
2 EO

2
	 


1� cos að Þ;
I0 þ Iah i ¼ 2ER

2 þ 2 EO
2

	 

:

8<
: (8.19)

This averaging assumes that the phase distribution is sufficiently random, that is, its

histogram is sufficiently uniform in the 0; 2p½ � interval, and that the amplitude and

phase are not statistically correlated. Then the phase shift a can be calculated from

the two holograms, I0 and Ia, plus the constant reference intensity ER
2 by

a ¼ cos�1 1�
I0 � Iað Þ2

D E
2ER

2 I0 þ Iah i � 2ER
2

� �
2
4

3
5: (8.20)

With the knowledge of a, one can also calculate the object intensity EO
2 x; yð Þ by

applying sin2 ’þ a 2=ð Þ þ cos2 ’þ a 2=ð Þ ¼ 1 to (8.18) to write

EO
4 � bEO

2 þ 1

4
c ¼ 0; (8.21)

where

b ¼ I0 � Ia þ 2ER
2 cos a;

c ¼ I0 þ Ia � 2ER
2

� �2 þ I0 � Iað Þ2
tan2 a 2=ð Þ ; (8.22)

so that

EO
2 ¼ 1

2
b�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � c

ph i
; (8.23)

which is valid for ER
2>EO

2. And finally the complex object field EO x; yð Þcan be

calculated from (8.16) above.

Alternatively [21], one can go back to (8.12) and write it as

acos2a� 2b cos aþ c ¼ 0; (8.24)

where

a ¼ 4ER
2 u� ER

2
� �

;

b ¼ u� I0ð Þ u� Iað Þ;
c ¼ I0 � uð Þ2 þ Ia � uð Þ2 � 4ER

2 u� ER
2

� �
:

8><
>: (8.25)
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Again, take average of (8.24) over all pixels, before solving it for cos a,

cos a ¼
bh i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bh i2 � ah i ch i

q
ah i : (8.26)

8.4 Techniques of PSDH

8.4.1 Phase-Shifting Methods

The phase-shift is most often achieved by using a reference mirror mounted on

a piezoelectric transducer (e.g., PZT) [1]. Phase-shifting can also be accomplished

by using liquid-crystal phase retarder [3, 9, 22], acousto-optic modulator [23],

or between polarization components transmitted through quarter-wave plates

[24, 25]. For multiwavelength holography, the phase-shifting by PZT is wave-

length-dependent, and can lead to errors and noise [26]. An achromatic phase

shifter, consisting of a half-wave plate sandwiched between a pair of quarter-

wave plates, was used to record tri-color digital hologram [27, 28]. In spectral or

wavelength phase-shifting [29–31], the phase shift is achieved by shift in wave-

length of a tunable light source, through D’ ¼ 2pzDl=l2. A spiral phase plate or a

SLM (spatial light modulator) with computer-generated spiral phase pattern can be

used where the phase shift is achieved by rotation of the phase plate [32]. Some of

the various phase-shifting methods are compared in [33].

Use of SLM, such as liquid crystal or micromirror array allows faster switching

time and stability against micromechanical vibrations. Furthermore, different parts

of an optical beam can acquire different phase shifts. This is especially useful in

several of common-path and low-coherence interferometer configurations and

techniques, as will be described in later chapters.

8.4.2 Heterodyne Digital Holography

Instead of phase-shifting in discrete steps, the phase can be varied in continuous

manner, integrating the time-dependent light intensity over finite intervals. For

example, the relative phase between the reference and object fields can be varied

linearly in time, which is equivalent to having a frequency offset between the two

[34]. If the reference and object fields are written as

ER x; y; tð Þ ¼ ER exp �ioRtð Þ;
EO x; yð Þ ¼ EO x; yð Þ exp i’ x; yð Þ � ioOt½ �;

(
(8.27)
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with oR � oO ¼ O, then the interference intensity is time-dependent

I x; y; tð Þ ¼ ER
2 þ EO

2 x; yð Þ þ 2EREO x; yð Þ cos ’ x; yð Þ � Ot½ �: (8.28)

Four exposures may be taken at t ¼ 2pn NO= N ¼ 4; n ¼ 0; 1; 2; 3ð Þ to obtain the

four quadrature interference images and proceed to derive the complex object field

EO x; yð Þ ¼ EO x; yð Þ exp i’ x; yð Þ½ �. (To be more precise, one needs to integrate (8.28)

over the exposure time of each camera frame, but the result is essentially the same.)

The camera frame rate is therefore fCCD ¼ NO 2p= , where in this case N ¼ 4. The

frequency offset is typically created by using a pair of acousto-optic modulators

(AOM), as depicted in Fig. 8.3. The heterodyne digital holography [34–36] solves a

major problem of PSDH of precisely controlling the phase shift. The RF

frequencies of the AOMs can be easily controlled with high precision and coher-

ence, compared to micromechanical control of PZTs. In [36], by combining hetero-

dyne DH and off-axis configuration with angular spectrum filtering, noise

associated with the dc and twin-image terms are effectively eliminated as well as

noise due to spurious interference, leading to quantum limit of single photo-electron

per pixel. Alternatively, digital holography was demonstrated at the photon-

counting level using a xy-scanned optical fiber tip connected to a photon-counting

detector [37]. Digital hologram with illumination as low as 43 counts per second

produced clear reconstruction image.

Instead of linear variation of phase (frequency shifting), the phase may be

modulated sinusoidally [38]. This is useful in PZT-based system, which obviously

cannot move linearly for indefinite period of time, though the analysis becomes

more involved. The interference intensity with sinusoidal phase modulation is

written as

I x; y; tð Þ ¼ �I x; yð Þ þ A x; yð Þ cos ’ x; yð Þ þ c sin Otþ yð Þ½ � (8.29)

where �I x; yð Þ is the dc term, A x; yð Þ is the fringe amplitude, c is the phase modula-

tion amplitude, O is the modulation frequency, and y is the phase angle of the phase
modulation. The average intensity of the nth integration bucket is

In x; yð Þ ¼ 1

t

Z nt

n�1ð Þt
I x; y; tð Þdt; (8.30)

Fig. 8.3 Heterodyne DH configuration. AOMs acousto-optic modulators
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which can be carried out using Bessel expansion, and the phase function ’ x; yð Þ
can be calculated [38]. Some of the characteristics and advantages of sinusoidal

phase modulation are similar to the linear phase modulation (i.e., frequency shifting

or heterodyne digital holography).

8.4.3 Asynchronous Digital Holography

In asynchronous digital holography of [39], the object and reference arms are

frequency shifted by 100 Hz using a pair of offset AOMs, causing a phase shift

between two exposures. The phase shift is measured by sinusoid-fitting and quanti-

tative phase profile is then obtained by Hilbert transform. In [40], instead of

consecutive exposures using AOMs, a Wollaston prism is used to generate two

interferograms spatially separated and phase shifted. Subnanometer fluctuations of

a MDA-MB-468 human breast cancer cell was measured on ms time scale. A phase

profile movie of a beating myocyte of rat heart is obtained.

8.4.4 Parallel Phase-Shifting

In the above PSDH methods, two or more holograms are acquired sequentially as

the phase of the reference beam is stepped. This is sometimes referred to as the

temporal phase shifting, and has inherent speed limitation because of the multiple

exposure. There have been various efforts to increase the speed of PSDH process so

that it can be used for dynamic systems. In [41], multiple cameras are used to record

interferograms with different phase shifts, which in this case is effected by different

diffraction orders of a Fourier plane grating. The multicamera system tends to be

cumbersome and costly, as well as being technically challenging to achieve

and maintain exact pixelwise registration. Awatsuji et al. has proposed the use of

phase mosaic patterns inserted into the reference, so that adjacent pixels with

different phase steps can be combined to obtain a final pixel value, depicted in

Fig. 8.4. Four-, three-, and two-step phase mosaics have been considered [42–45].

In the absence of commercially available phase shift arrays, demonstration

experiments had to synthesize such array from multiple phase-shifted holograms

generated in the conventional manner. It is worth noting that the idea of dividing a

hologram into strips or checkerboard patterns with quadrature phase shift has been

mentioned in Gabor’s original attempt at phase shift holography [8].

8.4.5 Fractional Talbot Effect

An interesting way to generate phase mosaic is provided by the fractional Talbot

effect [46]. When a two-dimensional binary amplitude grating is illuminated with a
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plane wave, replicas of the grating appear periodically at distances multiple of the

Talbot distance zT ¼ 2d2 l= , where d is the grating period. In addition, a superposi-

tion of laterally shifted replicas of the grating but weighted by different phase

factors, called Fresnel images, appear at fractions of the Talbot distance

zT
0 ¼ zT qþ n

m

� �
; (8.31)

where q and 0<n<m are integers. This provides a periodic three-step phase

distribution with uniform irradiance that can provide the reference illumination

for parallel phase shifting. When n m= ¼ 1 4= or 3 4= , a 2� 2 superpixel contains

phase shifts of 0, p 2= , p 2= , and p, as shown in Fig. 8.5. This pattern can be

projected on the CCD and used as the reference, and the three-step phase-shifting

algorithm can be applied.

8.4.6 Spatial Phase-Shifting

The method of extracting the phase profile from a single interferogram containing

spatial carrier frequency is sometimes referred to as spatial phase shifting, which

includes the usual off-axis holography configuration [33, 47]. In a method called

Fig. 8.4 Parallel phase shifting. The phase mosaic patterns (a) is imaged on the CCD array in (b)

Fig. 8.5 Fractional Talbot effect. The input pattern (a) and the diffraction pattern at Talbot

distance ZT (b). The diffraction pattern at 1:25ZT, showing the (c) amplitude and (d) phase

(white ¼ 0, light red ¼ p/2, light blue ¼ �p/2)
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spatial carrier phase shift method or sinusoid-fitting method [48, 49], a single

interferogram is used to fit sinusoids over the slowly varying interference envelope.

This requires a single interferogram exposure but at the expense of the spatial

resolution. It operates on the interference fringes at the image plane, does not

require Fourier transform, and is valid if the phase changes slowly over several

pixels, so that

’ x; yð Þ ¼ �tan�1 I xþ Dx; yð Þ � I x� Dx; yð Þ
I xþ Dx; yð Þ � 2I x; yð Þ þ I x� Dx; yð Þ tan

k0Dx
2

� �
; (8.32)

where I x; yð Þ is the interference pattern, k0 is the carrier fringe frequency and Dx is
the pixel pitch. A more general method that works for curved reference wave as

well as plane wave was introduced in [50].

8.5 Errors and Noise in PSDH

Error in phase shift in reconstruction relative to the phase shift in recording can lead

to incomplete cancellation of the dc and conjugate terms. The miscalibration may

be due to nonlinearity and nonrepeatability of the phase shifters. An extra interfer-

ometric arm may be adopted for in situ monitoring of phase shift, at the expense of

more complicated instrumentation [51]. Errors and noise also arise from digitiza-

tion, thermal noise, shot noise, mechanical vibrations, instability of light intensity,

and speckle interference [47]. There have been many studies for optimal minimi-

zation and compensation of errors and noise in both PSI [52, 53] and PSDH [3, 47,

54–58].

One way to estimate and correct the error is by minimizing the error in the

reconstructed amplitude image compared to the object [54]. A more general method

is given in [15, 18, 20], where the phase shift between two exposures is calculated

based on a statistical consideration of the interferogram, and its correction for

intensity instability is also given [59]. In heterodyne digital holography [35], a

difference frequency between the object and reference beams is set up using

acousto-optic modulators so that the phase shift between consecutive CCD frames

can be controlled with much higher precision. An analysis of noise and sensitivity

of PSDH has been made in [56].
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Chapter 9

Numerical Techniques of Digital Holography

Beyond the basic numerical diffraction methods, there are many DH techniques that

take full advantage of the ability to numerically manipulate the optical field

represented as an array of complex numbers. These techniques have unique

capabilities, and are distinct from and generally more versatile than the conven-

tional image processing methods that apply on intensity images.

9.1 Numerical Focusing

One of the most familiar characteristics of holography is the three-dimensional

content of the image information. So in digital holography, starting from a single

hologram acquired by the camera, and possibly preprocessed to suppress unwanted

dc or twin terms, one can reconstruct the image at various distances simply by

changing the distance value in the numerical diffraction, in a manner analogous to

turning of the focusing knob on a microscope or other imaging instruments [1].

Figure 9.1 gives an example of such numerical focusing.

Furthermore, in some applications such as in microscopy and particle analysis, it

is useful or required to be able to automatically determine the best focus of an

image. One may apply a sharpness metric, a well-developed current technology.

There are auto-focusing techniques that are unique to digital holography. In [2], it is

shown that the average pixel value

M ¼ 1

Npixels

X
all pixels

pij (9.1)

can be used as a focus metric because it goes through an extremum at the best focal

plane. For an amplitude object theM-value is a minimum and for a phase object it is a

maximum. Examples in Fig. 9.2 show that the extrema are fairly sharp, although the
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size of the peak is only a few percent. If the object is a mixture of amplitude and phase,

then the extremum may be modified or even disappear.

Another signature of the focal plane is provided by the phase behavior [3]. In

Fig. 9.3, the object is an opaque particle in a transparent background. The amplitude

Fig. 9.1 Numerical focusing with z ¼ �100; 0; þ100; þ200 mm relative to the expected image

distance

Fig. 9.2 Focus detection by average amplitude. (a) Reconstructed images of a gray-scale amplitude

object at z ¼ �50; 0; þ50; þ100mm relative to the expected image distance; (b) reconstructed

images of a phase-only object, i.e., the phase retardation is proportional to the gray scale of the

object in (a); (c) focus metric vs. distance for the amplitude object (a); (d) for the phase object (b)
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image goes through a minimum at the focus, as expected, while the phase image

changes sign across the focal plane. The phase reversal may also occur for a

phase object, for example, a transparent particle in a bright background, and for

these the amplitude may also change sign relative to the background. But the

behavior is dependent on the size of the phase discontinuity and may not be robust

enough for practical applications, compared to the amplitude object. On the other

hand, a spherical particle may behave much as an opaque particle because of the

large scattering and the phase reversal may be a useful method of focus detection.

A number of auto-focusing methods are analyzed in [4], including weighted

spectral analysis, variance of gray value distribution, cumulated edge detection by

gradient calculation, and cumulated edge detection by Laplace filtering. Variance

and Laplacian of Gaussian are analyzed as a focus measure in [5]. The focal plane

of particles can also be determined by maximizing the correlation coefficient [6].

9.1.1 Extended Focus

In [7], a sequence of digital holograms are recorded as a MEMS component

undergoes axial displacement. The focus displacement is tracked by monitoring

the phase image of DH and this information is in turn used to track the reconstruc-

tion distance. Using a similar logic in [8], an entire inclined surface of a MEMS

component is imaged in focus by using the phase image to determine the focal

distance of small areas of the surface and reconstructing the segments separately

Fig. 9.3 Phase reversal

across the focal plane of an

opaque particle of diameter

10 mm. The panels represent

propagation of z ¼ �250

to þ250 mm and lateral field

size of X ¼ 256 mm
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using the corresponding focus distances. In [9], a volume containing many particles

is imaged with all the particles in focus by determining the best focus for a region of

interest around each particle. Extended focus imaging of macroscopic objects is

demonstrated in a similar manner [10]. Extended focus imaging is shown to

improve the precision of quantitative phase microscopy by digital holography [11].

From the basic equations for formation of holographic image, it is clear that if

the hologram is stretched by a factor a, then the image magnification increases by a
and the image distance increases by a2. This effect can be utilized in DH by

numerical expansion of the hologram array in a very flexible manner [12, 13].

Through an adaptive deformation of digital hologram, it is possible to put different

objects at different distances simultaneously in focus. In particular, if the hologram

is stretched in quadratic proportion of a lateral direction, then the focus distance

varies linearly along that direction, bringing all parts of a tilted plane into focus.

9.2 Pixel Resolution Control

As we noted earlier, the Fresnel transform method (FTM) of numerical diffraction

has pixel resolution, dx, proportional to the propagation distance, z,

dx ¼ lz
Nxdx0

; (9.2)

where dx0 is the pixel size on the input frame. Together with the minimum

reconstruction distance, zmin ¼ X0
2=Nl, the FTM has a significant constraint on

the size and resolution of the reconstructed image. On the other hand, the Huygens

convolution method (HCM) and the angular spectrummethod (ASM) have constant

frame size, so that objects larger than the camera frame cannot be properly imaged

without using additional imaging optics.

9.2.1 Zero-Padding Method

For example, Fig. 9.4a is a simulated hologram of a resolution target with a field

size X0 ¼ 256 mm and Nx ¼ 256 pixels so that dx0 ¼ 1mm. The object distance is

z0 ¼ 1;200 mm. The hologram is preprocessed to remove the dc and twin terms.

The Fig. 9.4b is reconstructed from Fig. 9.4a by FTM. At the reconstruction

distance z ¼ 1;200 mm, the new resolution is dx ¼ ðlz=Nxdx0Þ ¼ 2:97 mm and

the field size X ¼ Nxdx ¼ 760 mm, and therefore the target pattern occupies a

small portion of the frame. A magnified detail of the dotted square in Fig. 9.4b is

shown in Fig. 9.4c, containing 53 pixels across.

In order to maintain the same resolution, the hologram is padded with enough

zeroes to make dx0 ¼ ðlz=Nx
0dx0Þ ¼ dx0, that is Nx

0 ¼ ðlz=dx02Þ ¼ 760.
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Figure 9.4d is the zero-padded hologram and Fig. 9.4e is the image reconstructed

from Fig. 9.4d. Figure 9.4f is a magnified detail of the dotted square of Fig. 9.4e, but

it now contains 157 pixels across. It maintains the resolution of dx ¼ 1 mm. For

reconstruction at various distances, different number of zeroes are padded and the

central Nx ¼ 256 pixels can be cropped to maintain the same field and resolution.

The method is straightforward but it does increase the computational load.

9.2.2 Two-Step Propagation Method

A two-step FTM method [14, 15] uses an intermediate plane to propagate over two

distances z1 and z2 so that z ¼ z1 þ z2. Then

dx1 ¼ lz1
Ndx0

(9.3)

Fig. 9.4 Zero-padding method. (a) Simulated hologram with 256 � 256 pixels; (b) reconstruc-

tion from (a) by FTM; (c) a detail of the dotted square in (b) with 53 � 53 pixels; (d) the hologram

with padded zeroes with total 760 � 760 pixels; (e) reconstruction from (e) by FTM; (f ) a detail of

the dotted square in (e) with 157 � 157 pixels
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and

dx2 ¼ lz2
Ndx1

¼ z2
z1
dx0: (9.4)

The ratio between z1 and z2 can be adjusted so that the final resolution dx2 matches

the desired resolution dx. In particular, to maintain the same pixel size in the input

and output planes, the propagation over z can be carried out in two half-steps of z 2= ,

as shown in Fig. 9.5a, b.

On the other hand, with the two-step FTM, the partial steps z1 and z2 must also

each satisfy the minimum distance requirement. A more flexible method [16] first

propagates to z1 by ASM, which does not have minimum distance requirement but

maintains the same pixel resolution, followed by another propagation of z2 ¼ z� z1
using FTM. The values of z1 and z2 are chosen so that

z2 ¼ X2
0

lNx
(9.5)

and z1 ¼ z� z2. The result shown in Fig. 9.5d has better quality than Fig. 9.5b.

9.3 Optical Phase Unwrapping

The phase images generated by digital holography, as well as most other phase

imaging techniques, suffer from modulo 2p ambiguities. An object whose optical

thickness variation exceeds the wavelength produces wrapped phase images, with

discontinuities at every 2p of the phase profile. Numerous phase unwrapping

algorithms have been developed [17, 18], but it remains challenging to find

solutions that can efficiently address all different types of phase topologies. This

is because most of the unwrapping procedures are based on different strategies to

Fig. 9.5 Two-step propagation methods. (a) FTM propagation of z1 ¼ 600 mm, where

X1 ¼ 380 mm; (b) another FTM of (a) for z2 ¼ 600 mm, to result in X2 ¼ 256 mm. (c) ASM

propagation of z1 ¼ 796 mm, where X1 ¼ 256 mm; (d) FTM of (c) for z2 ¼ 404 mm to obtain

X2 ¼ 256 mm
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find the phase discontinuities and to make judgments on how to stitch the

discontinuous regions. Most often the algorithms are computationally demanding

and have difficulty handling different types of phase topologies. Optical phase

unwrapping (OPU) based on multiwavelength digital holography offers a method

that is fast, efficient, and deterministic [19, 20].

For example, two holograms of the same object are acquired using two different

wavelengths, l1 and l2(l2>l1 for definiteness), and the phase images ’1 x; yð Þ and
’2 x; yð Þ are produced from them (Fig. 9.6). Each of these profiles range in phase

Fig. 9.6 Optical phase unwrapping. (a) Height profile z(x) of a slanted plane of maximum height

5 mm; (b, c) phase profiles ’1 x; yð Þ and ’2 x; yð Þ with l1 ¼ 0:532 mm and l2 ¼ 0:633 mm,

respectively; (d) D’ ¼ ’1 � ’2; (e) add 2p wherever D’<0; (f ) int F12
0L12 l1=½ �2p;

(g) F12 ¼ ’1 þ int F12
0L12 l1=½ �2p; (h) clean up glitches by adding or subtracting l1 if

Fe � Fg

�� ��rl1 2= [19]
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from 0 to 2p and the corresponding optical thickness profiles range up to l1 or l2.
Now subtracting the two, D’ ¼ ’1 � ’2, followed by adding 2p wherever D’<0,

results in a new phase image F12
0 that ranges from 0 to 2p, whose effective

wavelength, or the synthetic wavelength [21–23], is given by

L12 ¼ l2l1
l2 � l1

(9.6)

The new phase image handles optical thickness variations up to L12, which can be

made large enough to cover the object’s maximum thickness variation by choosing

small enough wavelength difference. If, however, the original phase images have

certain amount of noise, say e 2p, then the new phase image contains the same

amount of phase noise, which translates to noise in the optical thickness profile,

eL12 instead of el1, amplified by the same factor as the synthetic wavelength

magnification. The noise can be reduced back to the original level, by using the

new phase map as a guide to decide how to unwrap the ’1 phase map. That is, the

new phase map is given by

F12 ¼ ’1 þ int
F12

0L12

l1

� �
2p; (9.7)

where int stands for integer quotient. This scheme works unless the amplified noise

exceeds the original wavelength, eL12>l1, which sets the minimum difference

wavelength, and therefore the maximum synthetic wavelength:

l2 � l1>el2; L12<
l1
e

(9.8)

If the noise is more excessive, or a larger synthetic wavelength is needed, there

are hierarchical methods using three or more wavelengths [24, 25]. For example,

start from l1 and choose l2>l1 such that L12<
l1
e and

l2 ¼ L12l1
L12 � l1

: (9.9)

The noise associated with the new phase map of L12 is e12 ¼ el1=L12. Next choose

l3>l2 such that L23<ðL12=e12Þ and

l3 ¼ L23l2
L23 � l2

: (9.10)

Now use L12 and L13 as the two new phase maps to form a new combination

L23 ¼ L13L12

L13 � L12

: (9.11)
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The noise associated with L23 is e23 ¼ el1=L23. In general, the nth wavelength

ln>ln�1 is chosen such that Ln�1;n<ðLn�2;n�1=en�2;n�1Þ and

ln ¼ Ln�1;nln�1

Ln�1;n � ln�1

:

Then use Ln�2;n�1 and Ln�2;n as the two new phase maps to form a new

combination

Ln�1;n ¼ Ln�2;nLn�2;n�1

Ln�2;n � Ln�2;n�1

¼ lnln�1

ln � ln�1

: (9.12)

The noise associated withLn�1;n is en�1;n ¼ el1=Ln�1;n. The process continues until

Ln�1;n is large enough for the z-range of the object.
The optical phase unwrapping method was applied to quantitative phase micros-

copy in [20, 27]. Two-wavelength OPU can be achieved with single exposure

digital holography, by angular multiplexing [26, 28–30], as shown in Fig. 9.7.

The double interferometer consists of one common object arm and two separate

reference arms illuminated by two different wavelength lasers. The reference arms

are aligned so that the fringes of the two wavelengths are perpendicular to each

other. On the angular spectrum the peaks appear as two distinct pairs, so that the

holographic images can be processed separately by selecting the appropriate peak

for each wavelength. Figure 9.8 is an example of a DHM phase image of the surface

of a polished coal sample, unwrapped by OPU. Evidently, the software-based

method has difficulty handling isolated areas of phase profile, while the OPU

generates correct phase profile regardless of the topology. The OPU consists of

only several algebraic and Boolean operations, and therefore is very fast and

computational demand is low. The method is entirely deterministic, not depending

on any estimations of topology of a pixel’s neighborhood.

Fig. 9.7 (a) Two-wavelength holographic interferometer. (b) A detail of a hologram showing the

two sets of fringes in orthogonal directions. (c) Angular spectrum of (b) showing the two pairs of

peaks for the green and red lasers [26]
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For macroscopic measurements with thickness range of centimeters, the wave-

length difference needs to be � 10�5l or several GHz in frequency difference,

which can be produced by laser cavity modulation [31] or electrooptic modulation.

For microscopic imaging of <50 mm thick biological cells, say, the wavelength

difference needs to be Dl>5 nm, which would require separate lasers or a tunable

laser. For larger wavelength differences, the image formation may be affected by

chromatic aberration of the system. The optical elements or the object itself may

have chromatic aberration, or in the case of Fresnel transform method for numerical

diffraction, the reconstructed image size depends on the wavelength. In DH, it is a

simple matter to compensate for the aberration by adjustment of the reconstruction

distance [32] or by subtracting reference holograms without the object [33]. Three-

wavelength OPU has been demonstrated with three LED’s, three laser diodes, or a

tunable dye laser as light sources [34–36].

Simultaneous acquisition of multiwavelength holograms can be achieved by

using tri-color CCD sensors [37, 38]. A means to determine the precise wavelengths

Fig. 9.8 Two-wavelength optical phase unwrapping on images of a porous coal sample.

(a) Amplitude image. (b) Single-wavelength phase image reconstructed with l1 ¼ 532 nm.

(A second phase image with l2 ¼ 633 nm is not shown.) (c) Software unwrapped phase images

from (b). (d) 3D rendering of the dual-wavelength unwrapped phase image [26]
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during OPU experiment is available [39]. Instead of multiple wavelengths, one may

shift the illumination angle to achieve similar phase unwrapping effect [40]. Phase

unwrapping is also effected by varying reconstruction distances [41]. The OPU

method is fast enough for real-time vibration analysis [31, 42].

9.4 Diffraction Between Tilted Planes

Conventional diffraction theory usually describes propagation of optical field

between parallel planes perpendicular to the optical axis. The ability to directly

calculate the holographic image on an arbitrarily inclined plane would be useful in

many different applications, such as inspection of fiber segments, characterization

of integrated optics components, imaging of tissue surfaces, and particle field

imaging with seeded laminar flow patterns [43, 44]. Diffraction between tilted

planes have been studied by a number of authors [45–49] and fairly complete

descriptions are provided in [50–52]. It has been applied to holographic reconstruc-

tion with varying view angle [53, 54] and to reconstruction of tomographic

images of digital interference holography on variable planes of inclination

[44, 55]. Wavelet transform approach has also been applied to reconstruction on

tilted planes [43].

As depicted in Fig. 9.9a, we are in general interested in the propagation of

optical field from the input plane S0
0 x00; y00ð Þ to the output plane S0 x0; y0ð Þ, either or

both of which may be tilted with respect to the optical axis. A general strategy is to

use intermediate planes S0 x0; y0ð Þ and S x; yð Þ that are perpendicular to the optic

axis. One first calculates propagation from S0
0 to S0, which can be accomplished by

rotation in the Fourier domain, as described below. This is followed by propagation

between parallel planes S0 z ¼ �Zð Þ and S z ¼ 0ð Þ, using conventional methods

based on traditional diffraction theory. Finally, propagation from S to the tilted

output plane S0 is handled by another Fourier rotation.

The method of Fourier rotation is illustrated with the configuration of Fig. 9.9b,

where the output plane is tilted by an angle b around the y-axis while the input plane
is normal to the optical axis. Let the optical field at the input plane be

ES0
x0; y0ð Þ ¼ E0 x0; y0ð Þ: (9.13)

Then its angular spectrum

A0 kx; ky
� � ¼ F E0f g ¼ 1

2p

Z
S0

dx0dy0E0 x0; y0ð Þ exp �i kxx0 þ kyy0
� �� �

(9.14)

is the amplitude of a plane wave component

c x; y; zð Þ ¼ exp i kxxþ kyyþ kzz
� �� �

(9.15)
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that propagates along the direction k ¼ kx; ky; kz
� �

, where

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kx

2 � ky
2

q
: (9.16)

As we saw in Chap. 2, the optical field at any distance Z þ z from the S0-plane is

E x; y; zð Þ ¼ 1

2p

Z
X0

dkxdkyA0 kx; ky
� �

exp i kxxþ kyyþ kz Z þ zð Þ� �� �
: (9.17)

This can be rewritten in the coordinate system of x 0; y 0; z 0ð Þ by noting that

x
y
z

2
4

3
5 ¼

x 0 cos b� z 0 sinb
y 0

x 0 sin bþ z 0 cos b

2
4

3
5 (9.18)

and

kx
ky
kz

2
4

3
5 ¼

kx
0 cos b� kz

0 sin b
ky

0

kx
0 sin bþ kz

0 cos b

2
4

3
5 (9.19)

Fig. 9.9 Geometry of diffraction between tilted planes. (a) General rotation of input and output

planes. (b) Simpler case of only the output plane tilted around the y-axis by b
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and using the Jacobian determinant

dkxdky ¼ dkx
0dky0

@ kx; ky
� �

@ kx
0; ky0

� �
�����

�����;
¼ dkx

0dky0
@kx
@kx

0
@ky
@ky

0 �
@kx
@ky

0
@ky
@kx

0

����
����;

¼ dkx
0dky0 cos bþ kx

0

kz
0 sin b


 �
: ð9:20Þ

The field on the S0-plane with z0 ¼ 0 is then

ES0 x0; y0ð Þ ¼ 1

2p

Z
S0

dkx
0dky0 exp i kx

0x0 þ kyy
0� �� �

�
A0 kx

0 cos b� kz
0 sin b; ky0

� �
cos bþ kx

0

kz
0 sin b


 �

� exp i kx
0 sin bþ kz

0 cos bð ÞZ½ �

8><
>:

9>=
>; ð9:21Þ

with kz
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kx02 � ky02

q
. Analytically, this is an inverse Fourier transform of

the quantity in curly brackets.

Problem arises when this is discretized for numerical diffraction because of the

nonlinear transform of (9.18) and (9.19). In Fig. 9.10, the blue dots on the vertical

axis represent the uniformly sampled spatial frequencies kx, while the corresponding
wave vector k is on the circle (Ewald sphere) of radius k. When the k-vector is

projected on the kx
0-axis, it is clear that the sampling on this axis is nonuniform (red

dots). Possible solutions are to use an algorithm for nonuniformly sampled Fourier

transform [56, 57] or to interpolate the spectrum onto uniform sampling points.

Fig. 9.10 Mapping of

discrete frequency intervals

under rotation
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A third alternative, especially when the tilt is only around a single axis, is to

numerically integrate one axis (kx
0 in our example) without the benefit of FFT and

to apply FFT for the other axis (ky
0 in our example) (Fig. 9.11). Depending on the

application, this may be satisfactory in speed and accuracy. Another problem to note

is that although the kx range is centered at zero, the kx
0 is in general not centered

at zero, which imparts a carrier frequency on the output field. This needs to be

compensated by shifting the center of kx
0-axis.

9.5 Aberration Compensation

Aberration arises when the optical wavefront of an imaging system is deformed in

an unintended manner. Recall that Gabor’s original intention for lensless imaging

by holography was to avoid the aberration problems of electron lenses. Reconstruc-

tion of wavefront by holography also leads to the ability to control and manipulate

the wavefront in order to compensate for the aberration. Leith & Upatnieks

demonstrated recording of wavefront aberration by holography and use of the

hologram as a correction plate for the imaging system [58]. Digital holography

offers further flexibility and versatility in sensing and control of aberrations.

For example, suppose an imaging system conveys the optical field of an object as

EO but imperfections in the system adds aberration Ea to the object field, preventing

formation of a perfect image. Interference with a reference field ER results in a

hologram, one of its twin-image terms being of the form EO þ Eað ÞER
�. The

aberration term can be eliminated if one acquires another hologram without the

object in place, so that the corresponding term is EaER
�. Now if this hologram is

Fig. 9.11 Diffraction of resolution target pattern of 256� 256 mm2 tilted at 45�. The plane is at
focus at the center vertical line
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subtracted from the first, the resulting numerical hologram has the object field

without aberration, EOER
�. This is digital implementation of the concept of correc-

tion plate in [58]. At least in principle, this results in complete elimination of

aberration without the need to know any details of the aberration. The aberration

of the imaging system can be measured once and used for imaging of any objects, as

long as the imaging parameters do not change. A possible drawback is that it

requires at least two exposures of holograms.

There are techniques for achieving aberration compensation from a single

hologram. These usually presume that the object has flat or empty areas, such as

in MEMS devices [59] or substrate areas of cell culture, or if the sample is known to

be thin with flat background or substrate [60]. Lowest order aberration is the tilt of

wave front that may result from misalignment of object and reference or, equiva-

lently, misregistration of center of angular spectrum filter. This can be corrected by

use of correspondingly tilted reference plane wave. Note that because of the

discrete intervals of spatial frequencies, the tilt may not always be eliminated by

adjustment of the angular spectrum filter and use of tilted reference plane wave is

then necessary. Next order is the spherical aberration, which may arise from

defocus of the real space imaging system [61] or numerical focus of digital

holography. It also often arises when the object and reference waves have

mismatched curvatures. This can be compensated for by using quadratic curvature

of numerical reference wave [62–64]. Adjustment of aberration parameters can be

automated for efficiency and accuracy. Automatic compensation of higher order

terms of Zernike polynomials has been demonstrated [65]. Generalizing further, the

concept of numerical parametric lens has been introduced that can shift, magnify,

and compensate aberrations [66]. A partial compensation of aberration without

detailed knowledge of aberration parameters is possible by in effect high-pass

filtering a small central portion of a twin-image diffraction order in angular

spectrum. This assumes that aberration is mostly low-order and that the specimen

does not have interesting low-frequency features [67]. In [68], the parabolic phase

front is subtracted using a lateral shear approach. Compensation of astigmatism is

demonstrated that accompanies anamorphism of grating-reflected image [69] or

tilted plane [47]. Assuming the microscope objective is the critical place where

aberrations enter the system, insertion of reference beam before the objective lens

can reduce differential aberration between the object and reference fields [70],

although this may be difficult with the short working distance of most microscope

systems. Compensation of chromatic aberration has been demonstrated [33].
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Chapter 10

Special Techniques of Digital Holography

Here we highlight special techniques of DH that combine the numerical processing

capabilities with variations on the hardware configurations. In this and the follow-

ing chapters, we survey some of the large number of novel techniques and

capabilities that are made possible by digital processing of holograms. We will

also see that many of these techniques finally provide highly effective solutions to

problems that have been known in conventional holography.

10.1 Synthetic Aperture Methods

The resolution of DH image is determined by the numerical aperture of the optical

system including the CCD array, or equivalently by the range of spatial frequencies

captured by the system. The resolution can be improved, therefore, by increasing

the effective aperture of the system. Since in practice the CCD array size is limited,

an alternative is to translate the camera in the lateral (xy) directions and acquire

many holograms, which are then stitched together (Fig. 10.1a). Precision in

stitching can be achieved by overlapping parts of the holograms and maximizing

the correlation peak. The result is a higher resolution image equivalent to one

obtained by a large size hologram. This has been demonstrated in lensless Fourier

[1] or Gabor [2] configurations, or using a line scan camera [3] or a fixed pair of

cameras [4]. Instead of translating the camera, the object plane in Fresnel configu-

ration can be tilted to a range of angles [5] (Fig. 10.1b), as well as tilting the

illumination angle of the object [6] (Fig. 10.1c). The concept of aperture synthesis

has been utilized in many different systems, such as synthetic aperture radar (SAR),

radio and optical telescope arrays, and sonars. In airborne SAR, the length of the

flight path is the effective aperture size, greatly increasing the resolution in the
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direction of flight, while the resolution in range is provided by the frequency sweep

of the side-looking radar. A close analogue in optical implementation has been

demonstrated using a tunable laser and tilting the object plane [7].

A large hologram captures a larger portion of the diffraction field, resulting in

the increased resolution. Or, one can use the same size hologram but capture or

redirect higher-frequency components which tend to diffract out of the system

aperture faster than the lower frequency components. This gives an alternative

approach of coherent superposition of angular spectra in the Fourier domain. In [8],

the Fourier plane aperture, an imaging lens, and the CCD camera are translated

together across the Fourier plane (Fig. 10.1e). Similar effect can be achieved by

varying the object illumination angle [9] or by rotating the object in its plane while

holding the illumination at an oblique angle [10, 11] (Fig. 10.1d). Angular

multiplexing of three object-reference pairs derived from a single pulsed laser is

used in [12].

A grating can be used to redirect high-frequency diffraction components that

otherwise would leave the imaging system, and thus increase the resolution [13]

(Fig. 10.1f). A linear grating improves the resolution in one direction, while a

hexagonal grating allows super-resolution in both lateral directions [14]. In [15], a

2D VCSEL (vertical cavity surface emitting laser) array is used for illumination and

a number of laser elements are turned on in sequence to illuminate the optical

Fig. 10.1 Methods for aperture synthesis. (a) Translate the camera, (b) tilt the object plane,

(c) scan the illumination angle, (d) rotate the object, (e) scan across the Fourier plane, and (f ) use a

diffraction grating
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system with varying tilt angles. This scheme of super-resolution is also used in a

common-path interferometer [16] and a type of Fourier domain interferometer [17].

These interferometers will be described in some detail in Chap. 11. Synthetic

aperture effect is also demonstrated in a multiplane phase retrieval system [6]. In

[18], the camera scan and a double numerical propagation technique is used to

achieve free-viewpoint imaging of 3D scenes demonstrating full parallax and

occlusion effects of objects.

10.2 Multiplane Phase Retrieval

An intensity measurement, in general, does not yield phase information of the

optical field. In order to obtain both amplitude and phase information, measurement

of at least two quantities is required – two equations for two unknowns. This so-

called phase problem leads to the twin-image problem of holography, and also

arises in X-ray crystallography and various inverse scattering applications such as

optical diffraction tomography. A number of methods are available for phase

retrieval from intensity measurements and they can be grouped according to

being iterative or noniterative. Noniterative methods are deterministic and numeri-

cally efficient but tend to have instability against initial condition. Iterative methods

tend to be computationally intensive but can have better stability and be accommo-

dating. Examples are described below.

10.2.1 Noniterative Methods

Consider the intensity of the holographic interference field between a reference

ER x; y; zð Þ ¼ ER exp ikzð Þ and object EO x; y; zð Þ, assumed to be much weaker than

the reference, EO x; y; zð Þj j � ER,

IðzÞ ¼ ER
2 þ ER exp ikzð ÞEO

�ðzÞ þ ER exp �ikzð ÞEOðzÞ; (10.1)

where, for brevity, we omit x; yð Þ dependence of fields. The object field EOðzÞ is
related to the input field EOð0Þ through a convolution

EOðzÞ ¼ EOð0Þ � SðzÞ; (10.2)

where, in Fresnel approximation,

SðzÞ ¼ ik

2pz
exp ikzð Þ exp ik

2z
x2 þ y2
� �� �

: (10.3)
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Notations are a little simpler if we write

S0ðzÞ ¼ ik

2pz
exp

ik

2z
x2 þ y2
� �� �

(10.4)

so that

EOðzÞ ¼ exp ikzð ÞEOð0Þ � S0ðzÞ: (10.5)

Note that

S0 �zð Þ ¼ S0�ðzÞ;
S0 z1ð Þ � S0 z2ð Þ ¼ S0 z1 þ z2ð Þ;

(
(10.6)

and the transfer function is

~S0ðzÞ ¼ � 1

2p
exp � iz

2k
kx

2 þ ky
2

� �� �
; (10.7)

where the Fourier transform is denoted as ~f ¼ F ff g. The intensity function is

IðzÞ ¼ ER
2 þ EREO

�ð0Þ � S0�ðzÞ þ EREOð0Þ � S0ðzÞ: (10.8)

If the object is purely absorptive, then EOð0Þ is real and it can be obtained, in

principle, by deconvolution ��1ð Þ

EOð0Þ ¼ 1

ER

IðzÞ � ER
2

� ���1 S0�ðzÞ þ S0ðzÞ� �
: (10.9)

For the general case of the object having both absorptive and phase profiles, the

problem is under-specified. At least two measurements are required, for example,

at two distances [19] (Fig. 10.2):

Fig. 10.2 Acquisition of in-line holograms at two distances
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I1 ¼ I z1ð Þ ¼ ER
2 þ EREO

�ð0Þ � S0� z1ð Þ þ EREOð0Þ � S0 z1ð Þ;
I2 ¼ I z2ð Þ ¼ ER

2 þ EREO
�ð0Þ � S0� z2ð Þ þ EREOð0Þ � S0 z2ð Þ: (10.10)

We can eliminate EO
�ð0Þ by forming

D1 ¼ 1

ER

I1 � ER
2

� �� S0 z1ð Þ ¼ EO
�ð0Þ þ EOð0Þ � S0 2z1ð Þ;

D2 ¼ 1

ER

I2 � ER
2

� �� S0 z2ð Þ ¼ EO
�ð0Þ þ EOð0Þ � S0 2z2ð Þ; (10.11)

and subtracting

D1 � D2 ¼ EOð0Þ � S0 2z1ð Þ � S0 2z2ð Þ½ �: (10.12)

Solve for ~EOð0Þ in the Fourier domain

~EOð0Þ ¼
~D1 � ~D2

~S0 2z1ð Þ � ~S0 2z2ð Þ : (10.13)

The input field EOð0Þ can then be obtained by inverse Fourier transform. Equation

(10.13) is valid except where the denominator vanishes. Regularization of the

singularities is then necessary.

Another noniterative method is provided in [20, 21], which starts by writing the

holographic field, again assuming weak object field compared to reference, as

EðzÞ ¼ ERðzÞ þ EOðzÞ ¼ ERðzÞ 1þ uðzÞf g � ERðzÞ exp uðzÞ½ �; (10.14)

where

uðzÞ � EOðzÞ
ERðzÞ ¼

exp �ikzð Þ
ER

EOðzÞ ¼ uð0Þ � S0ðzÞ: (10.15)

The intensity function is

IðzÞ ¼ EðzÞj j2 ¼ E2
R exp uðzÞ þ u�ðzÞ½ �: (10.16)

Now take the logarithm

IðzÞ � log
IðzÞ
E2
R

¼ uðzÞ þ u�ðzÞ ¼ uð0Þ � S0ðzÞ þ u�ð0Þ � S0�ðzÞ (10.17)

and its Fourier transform

~IðzÞ ¼ ~uð0Þ~S0ðzÞ þ ~u�ð0Þ~S0�ðzÞ: (10.18)
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Repeat the measurement at another distance zþ Dz

~I zþ Dzð Þ ¼ ~uð0Þ~S0ðzÞ ~S0 Dzð Þ þ ~u�ð0Þ ~S0�ðzÞ ~S0� Dzð Þ (10.19)

and ~u�ð0Þ can be eliminated by forming

~I zþ Dzð Þ ~S0 Dzð Þ � ~IðzÞ ¼ ~uð0Þ ~S0ðzÞ ~S0 Dzð Þ � 1
� �

(10.20)

so that

~uð0Þ ¼
~I zþ Dzð Þ~S0 Dzð Þ � ~IðzÞ

~S0ðzÞ ~S0 Dzð Þ � 1
� � (10.21)

and the input field EOð0Þ can be calculated from here.

10.2.2 Iterative Methods

Iterative methods use intensity measurements at two or more distances from the

object (Fig. 10.3). A method based on the Gerchberg–Saxton–Fienup algorithm

uses holograms recorded at two different distances and a large number of iteration

cycles [22]. A many-plane method [22–24] starts from an intensity measurement I1
at z1 and a complex field E1 ¼

ffiffiffiffi
I1

p
exp i’1ð Þ is assumed, where the trial phase ’1

may be taken to be a constant. The field is then numerically propagated to another

distance z2 to obtain the complex field there as E2 ¼ E2 exp i’2ð Þ. Here the

amplitude is replaced with the measured value E2
0 ¼ ffiffiffiffi

I2
p

. The new field E2
0 ¼

E2
0exp i’2ð Þ is then propagated to another distance z3, and so on. At each step n the

intensity error is calculated between the measured value In and the calculated value

Enj j2 and the process terminates when the error is smaller than the set threshold, or

when the error ceases to decrease as the case may be. One can use a finite number of

measurements I1; I2; . . . ; IN and revert from IN to I1 before continuing. These

methods are based on intensity measurements of object field propagation requiring

no reference fields, and therefore have important applications in X-ray and electron

microscopy, where appropriate coherent sources and interferometer configurations

are not readily available [25].

Fig. 10.3 Acquisition of object intensity at multiple distances
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In another example of iterative method [26], from the interference intensity

function

I x; yð Þ ¼ ER
2 þ EO

2 x; yð Þ þ EREO cos ’ x; yð Þ � ’R½ � (10.22)

one can write

’ x; yð Þ � ’R ¼ cos�1 I x; yð Þ � ER
2 � EO

2 x; yð Þ
EREO

; (10.23)

where the reference field is ER x; yð Þ ¼ ER exp i’R½ � and the object field

EO x; yð Þ ¼ EO x; yð Þ exp i’ x; yð Þ½ �: (10.24)

The object amplitude EO x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
EOj j2

q
is available from object intensity mea-

surement, the only unknown being the sign of the phase function ’ x; yð Þ � ’R,

which is determined in an iterative loop, as detailed in [26].

10.2.3 Other Methods of Phase Retrieval

Retrieval of phase is possible by noninterferometric measurements of intensities at

multiple distances. In phase space tomography, the Wigner distribution function is

reconstructed from intensity measurements, by calculating Fractional-order Fourier

transforms that correspond to projections of the Wigner distribution along different

directions of the phase space [27, 28]. Differential focusing of intensity image is

used to solve the so-called transport of intensity equation to yield the quantitative

phase profile, that does not even require unwrapping [29–31]. Differential mea-

surement of intensity at two planes is used for enhanced edge detection [32].

10.3 Dynamic Systems

In order to image a dynamic system, one needs fast or short exposures of the

hologram. This can be achieved using a correspondingly fast camera, as was done

in [33] using a 4,000 frames-per-second camera to image the random motion of a

balloon. Often the limitation on the camera speed is stringent in terms of cost and

availability. A more common approach is to use pulsed lasers to shorten the

illumination instead of the exposure. A nanosecond pulsed laser is a convenient

source for capturing a hologram of fast moving macroscopic objects [34].

Consecutive exposures of two holograms can be used for imaging deformation

or displacement between the exposures. Special techniques have been developed

for exposures with time delays shorter than milliseconds. For time delay in the tens
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of microseconds, one can use the ability of a CCD camera to make charge transfer

to the shift registers in a few microseconds between the exposures [35, 36]. For

faster delays, one has to use a single exposure to capture the multiple time-delayed

events. This is achieved by optically setting up the multiple delays and inserting

them into the interferometer with different angular orientations, so that the angular

spectrum of the hologram contains several pairs of spectral peaks. These pairs are

incoherent with respect to each other because of the time delay and can be analyzed

separately to produce corresponding number of independent holograms. This tech-

nique was used with nanosecond [37] or femtosecond [38, 39] delays to image

laser-induced ionization of air. If the experiment is repeatable, a delay line can be

stepped while making multiple exposures, as in [40] where a femtosecond laser and

an optical delay line is used to image the formation and evolution of laser-induced

plasma filament in water (Fig. 10.4).

Fig. 10.4 Holography with optical time delay. (a) TSL femtosecond Ti:sapphire laser (800 nm,

130 fs), OPA optical parametric amplifier (550 nm, 30 fs), ODL optical delay line, S sample cell

containing water. (b) Laser-induced plasma filament formation, imaged with quantitative phase

microscopy by digital holography. (Reprinted from [40] by permission of OSA)
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A technique for complete characterization of spatial, temporal, and phase profiles

of a femtosecond pulse has been developed using a wavelength-multiplexed digital

holography [41, 42]. A slightly rotated two-dimensional diffractive optical element

and a variable-wavelength filter together generate multiple spectrally resolved digital

holograms that are simultaneously captured in a single frame.

10.4 Noise Reduction

The speckle is a well-known source of noise in coherent imaging such as digital

holography. Yet, systematic studies of speckle noise on digital holography appear

lacking especially for the phase image reconstruction. In [43], the speckle noise of

reconstructed intensity image is seen to be aggravated by the relatively small

aperture of digital holograms. For phase images, the behavior of speckle noise is

expected to be very different and usually significantly less aggravating, as one may

also glean from some of the simulation images of numerical diffraction in Chap. 4.

For intensity images, a common way to reduce the speckle noise is by averaging of

several holograms while some of the imaging parameters change, such as the

wavelength [44] or the object illumination angle [45]. Alternatively, digital

postprocessing of the hologram by various filtering operations can improve the

image quality [46]. Use of low coherence light can be an effective method for

reducing the noise, and will be described in Chap. 12.

Axial subnanometer high precision profiles of calibrated chromium step was

achieved by using reference calibrated hologram (RCH) reconstruction method, a

temporal averaging procedure and a specific dual-wavelength DHM arrangement

[47]. Influence of shot noise on phase measurement was studied in [48, 49], where

it was also found that at low photon flux, the phase accuracy is limited by the

readout noise of the CCD, while at higher intensities the phase accuracy is limited

by fluctuations in the optical setup.

10.5 Nonlinear Optics

10.5.1 Imaging of NLO Materials

There are two distinct areas that DHM has been used regarding nonlinear optics

(NLO), both of which can lead to significant expansions of applications. In one,

DHM is used to characterize NLO materials and processes. For example, DHM is

used to visualize light-induced refractive index changes in lithium niobate and other

photorefractive crystals [50]. DHM was used to measure the refractive index

change resulting from waveguide formation in Ti:sapphaire crystal or glass by

femtosecond laser writing [51, 52]. P. Ferraro’s group has made a series of studies
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of nonlinear crystals using digital holography. Topography of microstructures of

~60 nm thickness fabricated on bulk lithium niobate surface has been imaged [53].

Electrooptic phase retardation, domain reversal, and periodic poling in congruent

lithium niobate are monitored in situ by DH-QPM [54–56]. Light-induced refractive

index changes in the photorefractive phase grating is measured with a sensitivity of

better than 10�5 [57]. Defect dependence of the internal field in lithium niobate is

studied using DH-QPM and the value of the internal field is found to grow in

proximity of defects and to vanish far from them [58]. Formation of bright spatial

soliton (i.e., self-focusing) is characterized [59, 60].

10.5.2 Digital Holography by NLO Light

In the other area, DHM is made a part of the NLO process. For example, in

harmonic holography the second harmonic signal generated in the object, for

example, photorefractive nanocrystals, interferes with the reference of the har-

monic wavelength, as depicted in Fig. 10.5 [61]. Harmonic holography is used to

image the amplitude and phase profiles of second harmonic signal generated at the

glass–air interface of a microscope slide under focused femtosecond laser illumi-

nation [62]. SHG (second harmonic generation) nanoparticles are used in mamma-

lian cells as markers for harmonic holography in [63]. SHG from cellular and

subcellular structures of biological specimens, including starch granules, corn

seed, and muscle fibrils, are used for label-free imaging of these structures [64].

In [65], phase measurement technique of SHG in harmonic holography experiment

is described that gives ~10 nm precision of axial position of nanoparticles.

In another example, DHM is used to measure the complex optical profile of the

output from a propagation through a nonlinear medium [66] (Fig. 10.6). Ordinarily,

because of the intensity-dependent phase distortion in nonlinear media, it is not

possible to form an image through such material. Phase conjugation processes can

undo such distortion, but they require repropagation back through the nonlinear

medium to recover the original image. Instead, the complex optical field is obtained

by holographic interference, followed by numerical propagation through the

Fig. 10.5 Configuration for holography with SHG light. SHG second harmonic generator,

S sample object with SHG signal, F green filter
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nonlinear material using a theoretical model of the nonlinear propagation, obtaining

a numerical image of the input field. Alternatively, phase conjugation can be

implemented using an SLM. In [67, 68], SHG signals, after passing through a

turbid medium, is imaged by DHM. The resulting complex optical field is then

imposed on the SLM, from which a laser beam propagates back through the turbid

medium and focuses precisely on the original point source.

10.6 Optical Parameters of Digital Holography

10.6.1 Color Digital Holography

Ability to reconstruct holographic images in full color can be of interest in 3D

display applications, as well as in full-color imaging of microscopic and macro-

scopic objects. For example, in [69], the three lines at 636.0, 537.8, and 441.6 nm of

a HeCd laser are used to illuminate a PSDH system with a color CCD camera.

Holograms from the three color channels are separately processed using Fresnel

transform or convolution methods. For Fresnel method, the three holographic

images have different sizes according to the wavelengths and therefore resizing

of the holograms is necessary. The three holograms are then combined to produce a

full-color hologram. Disparity in laser power in the three lines is handled by

appropriate weighting factors before color composition. Wavelength mismatch in

PZT-based phase shift can be avoided by using achromatic phase shifter [70]. In

[71], three separate lasers at 633, 532, and 473 nm are used together with a

monochrome camera to acquire three holograms in sequence. Three-dimensional

color image fusion has been demonstrated [72].

In [73], chromatic aberration in color holography is compensated for by

adjusting the imaging distances of the three color channels until the phase

differences between the channels are minimized. Use of lensless Fourier configura-

tion in [71] assures precise transverse superposition of reconstructed images. Image

fusion technique with multiresolution wavelet decomposition is shown to increase

the details and contrast of 3D reconstructed images obtained by multiwavelength

digital holography [72].

Fig. 10.6 Optical configuration for imaging through a NLO material using digital holography.

S object to be imaged, NLO nonlinear optical material. (Adapted from [66])
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The three color channels may be acquired in sequence using a single mono-

chrome camera [74], but for applications involving dynamic scenes, simultaneous

acquisition of the channels is necessary. Figure 10.7 illustrates and compares

methods for simultaneous recording of color holograms [75]. In Fig. 10.7d, three

layers of photodiodes are stacked, the spectral selectivity being provided by the

penetration depth of photons in silicon: 0.2 mm for blue photons, 2 mm for green

photons and 3 mm for red photons. The structure can provide a limited spectral

selectivity but the spatial resolution is maximal [75]. A more readily available

approach (Fig. 10.7a) is to use the conventional Bayer mosaic of color sensors

[69, 70]. Thus the spectral cross-talk isminimized but the spatial resolution is reduced.

Because this type of color sensor is common, the approachmay be a good compromise

when the spatial resolution is not critical. One may use three separate monochrome

cameras with an appropriate set of color filters or dichroic beam splitters

(Fig. 10.7c). This maximizes both the spectral selectivity and spatial resolution,

but at significant cost increase and optomechanical complexity. In Fig. 10.7b, the

color channels are separated in the spatial frequency domain [76, 77]. The object

is illuminated by a collinear beams of the three color lasers, while the reference

beams impinge on the camera from three different directions, thus producing

three separate directions of interference fringes and three pairs of angular spectrum

peaks. (Alternatively, the reference beams may be collinear while the object is

illuminated from three angles, although this arrangement may be more prone to

errors due tomismatch of object illumination.) Themethod uses a singlemonochrome

camera. The spectral selectivity is good but the spatial resolution is reduced.

Fig. 10.7 Methods to acquire the three color channels simultaneously. (a) Bayer color mosaic on

CCD sensor array, (b) angular multiplexing, (c) use of dichroic beam splitters and separate

cameras, and (d) stacked photodiode sensors. (Adapted from [75])
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One notes that thesemethods are relevant not only for generating color holography but

also for some of the multiwavelength holographic interferometry, with two or three

wavelengths well-separated over the visible spectrum.

10.6.2 Polarization Digital Holography

Polarization has a number of useful applications in conventional holography, such

as polarization multiplexing, logical operations, and birefringence imaging [78].

Using DH, one can determine simultaneously the distributions of intensity, phase,

and polarization state at the surface of a specimen on the basis of a single image

acquisition [79, 80]. Two reference waves with orthogonal polarization states

interfere with the object wave to permit determination of all the components of

the Jones vector of the object wave front [81, 82]. The two reference waves can be

arranged in angular multiplexing similar to the multicolor configuration of

Fig. 10.7d. This was used to analyze the birefringence of stressed polymethyl

methacrylate (PMMA) [79] and optical fiber [83].

10.6.3 Other Wavelengths and Particles

Since early in the history of holography, the principle has been applied to many

other parts of electromagnetic spectrum as well as particle waves. Digital hologra-

phy has also been demonstrated and applied in nonvisible or nonoptical radiation.

Infrared radiation from CO2 laser has been used for digital holography using

pyroelectric or microbolometer sensor array as the camera [84–86]. A vidicon was

used for holography with 1.3 mm superluminescent source to overcome the low

quantum efficiency of CCD in the infrared [87].

Digital holography of millimeter wave with intensity detector and separate refer-

ence beam has been demonstrated and may be useful for imaging nonconducting

materials and objects [88]. Microwave holography with a geostationary satellite was

used for measurement and adjustment of a radio telescope [89]. In an optical-THz

hybrid system of [90], a THz beam profile is detected by optical holography. A two-

wavelength phase unwrapping has been demonstrated in THz interferometry [91].

It is difficult to produce mutually coherent object and reference beams of X-ray

to extract the phase information. Gabor type in-line digital holography has been

demonstrated using 32 nm soft X-ray generated by focusing Ti:sapphire laser into a

gas cell [92], with resultant resolution of 800 nm. Use of 193 nm deep UV from

excimer laser also yielded similar resolution [93]. The low resolution is due to the

difficulty of achieving NA of the imaging system higher than 0.01–0.02 in this

range. In [94], holograms using different X-ray energies 220–330 eV (5.6–3.8 nm)

near carbon absorption were combined to differentiate organic materials. Coherent

X-ray free electron laser source has been used in lensless Fourier holography

configuration by using an opaque mask with two apertures: one for placement of
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the specimen and the other as reference point source [95, 96] (Fig. 10.8). Random

magnetic domain structure in a Co/Pt multilayer film was obtained with 50 nm

spatial resolution. Off-axis Fresnel configuration digital holography has also been

demonstrated using a pair of X-ray waveguides, achieving 10 nm spatial resolution

at 10.4 keV photon energy [97]. X-ray holography can in principle yield atomic

resolution, provided one has sources or detectors of nanometer-scale pixel size. The

so-called “inside source” or “inside detector” concept uses the atoms or nuclei of

the sample as sources or detectors [98] (Fig. 10.9).
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Chapter 11

Digital Holographic Microscopy

Microscopy is one of the main research and application areas of digital holography.

Direct access to the phase as well as amplitude profiles makes quantitative phase

microscopy by digital holography (DH-QPM) particularly powerful and versatile.

A number of techniques of DH are developed especially for microscopy imaging

and these are made possible because of the particular imaging characteristics of

DH. Digital holographic and interferometric principles are the basis of many other

techniques of QPM with novel capabilities. A survey is given of the wide and very

active field of research in DHM techniques and applications. We begin with a brief

background on optical microscopy.

11.1 Optical Microscope Basics

11.1.1 Optical Configuration

A typical microscope optical train is depicted in Fig. 11.1. The collector lens

produces an image of the lamp at the condenser aperture, which is optically

conjugate with the objective back focal plane and the eyepoint of the eyepiece or

ocular. With the Koehler illumination, the sample specimen is illuminated with a

more or less collimated beam, and its images are formed at the focal plane of the

tube lens and at the camera plane. The specimen is also conjugate with the field

diaphragm. In the infinity configuration, the space between the objective lens and

the tube lens can accommodate various auxiliary components, such as beam splitter

for epi-illumination and phase plate for phase-contrast imaging, without

introducing aberrations. The field diaphragm defines the illuminated area of the

specimen and the condenser aperture controls the brightness of the illumination as
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well as the condenser numerical aperture. The illustration of Fig. 11.1 is for

transmission imaging. For reflection imaging with epi-illumination, the illumina-

tion light is introduced from above the objective lens, by inserting a beam splitter,

so that the objective lens functions also as condenser lens. With the inverted

microscope configuration, the illumination is at the top and all the imaging

components from objective to camera are below the specimen stage, the optical

path usually folded with mirrors for space consideration. Inverted configuration

provides better convenience and space for manipulation and control of live cells, for

example.

In the traditional finite optical system (RMS: Royal Microscopy Society standard),

the objective lens forms an intermediate image at the distance 160mm, called the tube

length, and the eyepiece magnifies this intermediate image. There is no tube lens.

Because of the proliferation of auxiliary components inserted into the tube, such as for

DIC or epifluorescence, the infinity configuration is more common in research-grade

microscopes.

Fig. 11.1 Compound

microscope optical train
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11.1.2 Magnification

If the lateral size of the specimen is xo. The size of the intermediate image xi is

xi ¼ xo
ft
fo
¼ xo Mo; (11.1)

where fo is the objective focal length and ft is the tube lens focal length. The

objective magnification Mo is specified with a standard tube focal length

ft ¼ 200mm, in infinity configuration. A combination of the eyepiece and the

camera lenses form the final image on the camera plane.

For magnification of the eyepiece, the eyepiece is considered to form a

virtual image at a standard distance of 250 mm with the intermediate image just

outside its front focus: for example, a 10� eyepiece has focal length 25 mm.

The total magnification is the product of the objective Mo and the eyepiece Me

magnifications.

M ¼ Mo �Me: (11.2)

11.1.3 Resolution

The lateral resolution is determined by the numerical aperture, NA, of the

objective lens:

NA ¼ n sin y; (11.3)

where n is the index of refraction between the specimen and the objective and

y is the half angular aperture of the objective. The lateral resolution of the specimen

plane is then

dxo ¼ 0:61
l
NA

(11.4)

As a rule of thumb, for NA slightly larger than one, the lateral resolution can be

expected to be about half of the wavelength. This assumes that the condenser NA

matches or exceeds the objective NA. If the NAs do not match, then a more accurate

expression is

dxo ¼ 1:22
l

NAo þ NAc

; (11.5)
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where NAo and NAc refer to the objective and condenser NAs, respectively.

For example, for collimated laser illumination, NAc ¼ 0 and the resolution is

twice larger, that is, poorer, than NA-matched incoherent illumination. The axial

resolution is also determined by the NA:

dzo ¼ nl
NA2

: (11.6)

11.1.4 Objective Lenses

The objective lens is obviously the most critical element of a microscope. Various

levels of three main types of aberration corrections determine the grades of a lens:

spherical aberration, chromatic aberration, and field curvature. An achromat

corrects for axial chromatic aberration at two wavelengths, red (656 nm) and blue

(486 nm), and for spherical aberration at green (546 nm). Plan achromats also

correct for the field curvature. Fluorite lenses correct for both chromatic and

spherical aberration at two or three wavelengths. Plan fluorite also corrects for

field curvature and plan apochromat has the highest degree of correction at four or

five wavelengths. Oil (1.515) or water (1.333) immersion lenses, when used with

appropriate liquid, yield higher NA and improved resolution. One should also use

standard cover slip (thickness 170 mm and index 1.515) with these objectives in

order to preserve the aberration correction. Special purpose objective lenses are

used for various microscopy techniques such as interference microscopy, phase-

contrast microscopy, and scanning confocal microscopy.

11.1.5 Eye

For visual observation, the eye becomes a part of the optical imaging system.

Ideally, the exit pupil (eyepoint) of the eyepiece coincides with the pupil of the

eye. Visual resolution or acuity is constrained physically by the retinal photorecep-

tor spacing of about 5 mm (or 0.7 arc minutes for 25 mm distance from cornea to

retina), although the vision process involves the complex processing by the visual

cortex and the actual acuity can vary significantly above or below the physical limit.

Then the visual resolution of an object at a distance 250 mm is nominally 50 mm.

This leads to the minimum resolvable distance on the specimen plane to be

50=M mm, which needs to be larger than the resolution of the objective. The

maximum useful magnification is then approximately Mmax � 200NA, beyond

which the magnification is said to be empty.
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11.1.6 Camera

For digital imaging, a CCD camera substitutes for the eye. Digital imaging has

mostly replaced traditional film-based imaging because of a number of important

advantages, including the immediacy of visual feedback, quantitative image

measurements, high sensitivity, and a large number of image-processing techniques

available, which are the same reasons for the growing development and

applications of digital holography. As a critical element in the imaging system,

one needs to consider a number of operational parameters of CCD camera, includ-

ing spatial pixel resolution, gray-scale resolution, frame rate, dynamic range,

and noise [1].

11.2 Optical Microscopy Techniques

Brief descriptions of some of the main types of modern optical microscopies are

given for the purpose of introducing typical problems encountered in microscopy

and possible approaches for solving those problems. Full technical descriptions are

found in many excellent sources, including [2, 3].

11.2.1 Bright Field Microscopy

This is the most common imaging mode of standard optical microscopy, where

the light is transmitted through or reflected from most of the field of view, and the

variation in transmittance or reflectance provides the contrast. The basic principle is

generally familiar and operations relatively simple. Often various dyes are used in

order to enhance the contrast of an otherwise transparent sample (Fig. 11.2).

Fig. 11.2 Bright field

microscopy image of stained

cheek cells. (From http://

washington.uwc.edu/about/

wayne.schaefer/TissuesPage.

htm, courtesy of Prof.

W. Schaefer, Univ.

Wisconsin)
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11.2.2 Dark-Field Microscopy

For microscopy of objects with little variations in the intensity transmittance or

reflectance, it is difficult to obtain visible contrast in bright field microscopy. With

oblique illumination, most of the direct light beam does not enter the pupil of the

optical system except for those scattered from particles, edges, and other irregularities

in the specimen, (Fig. 11.3). From Fourier optics point of view, the dark-field

microscopy performs high-pass filtering that attenuates low-frequency components.

11.2.3 Zernike Phase-Contrast Microscopy

The Zernike phase-contrast microscope (ZPC) makes transparent phase objects

visible by converting phase variations into intensity variations. This is achieved

by spatial filtering diffracted and undiffracted components of light transmitted

through the specimen and introducing a phase shift between the two components

(Fig. 11.4). It employs an annular aperture at the condenser aperture and a phase

plate of matching pattern at the objective back focal plane. Depending on the

relative magnitude of index of refraction of the ring pattern in the phase plate vs.

its background, one obtains positive or negative phase contrast, which results in

reversal of brightness of areas with larger or smaller indices of refraction in the

specimen. In order to improve interference contrast, the phase ring may be coated

with metal or dielectric film so that the undiffracted intensity is comparable to

diffracted component. A significant artifact is the so-called halo effect of diffuse

bright area surrounding the boundary of abrupt optical density change, which is due

to the finite width of the condenser annulus and the phase ring being slightly larger

Fig. 11.3 (a) Dark-field condenser. (b) Dark-field microscopy image of cheek cells. (Courtesy of

Prof. B.J. Cha, Univ. South Florida, Medicine)
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than the image of the annulus. Use of different index material for sample suspension

can reduce or even reverse the halo. Special apodized phase plate can also be

used to reduce the halo effect. The ZPC has widespread use in imaging live cells,

tissues, and microorganisms, as well as intracellular components such as the

membrane, nuclei, mitochondria, chromosomes, and cytoplasmic granules. Highly

refined modern ZPC, together with digital image processing, makes it even possible

to sense the variation in index due to the presence of a small number of protein

molecules.

11.2.4 Differential Interference Contrast

In Nomarski or differential interference contrast (DIC) microscopy, the e- and

o- polarization components are separated by use of a Wollaston prism near the

condenser aperture (Fig. 11.5). The lateral shear is typically a fraction of a micron.

The two components pass through, or reflect from, the specimen and are made

to converge and interfere with each other behind the objective back focal plane.

The amount of shear is controlled by translating the Wollaston prisms. There are

some variations such as use of Nomarski prism or de Senarmont compensator.

Fig. 11.4 (a) Optical system for Zernike phase-contrast microscopy. (b) ZPC image of cheek cells.

(Courtesy of Prof. B.J. Cha, Univ. South Florida, Medicine)
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The two components acquire phase difference when the optical thickness has a slope

in the direction of the shear. A DIC image is characterized by its appearance of three-

dimensional relief that emphasizes lines and edges across the shear direction. High

resolution, wide range of contrast control, seemingly straightforward interpretation of

images, absence of significant artifacts, and good optical sectioning properties

account for the popularity of DIC microscopy. In particular, DIC has excellent

sensitivity for imaging very small features together with those much larger, such as

bacterial flagella and intracellular microtubules and other organelles. Interpretation of

DIC images does need to consider the absence of contrast in the direction perpendic-

ular to the shear and it is more difficult to use in thick or birefringent materials.

11.2.5 Interference Microscopy

Both Watson and Linnik microscope configurations are based on Michelson

interferometer (Fig. 11.6a, b). In Watson, a single objective lens images the

interference of the specimen and the reference, whereas in Linnik, the two arms

are separately imaged with matching objectives before superposition and interfer-

ence. Linnik allows shorter working distance and higher magnification but matched

Fig. 11.5 (a) Optical system for DIC microscopy. (b) DIC image of cheek cells. (Courtesy of

Prof. B.J. Cha, Univ. South Florida, Medicine)
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objectives is costly and alignment with low-coherence light is more critical.

The Mirau objective uses half-silvered mirror and a reference mirror spot on the

objective front surface (Fig. 11.6c). The almost common-path configuration

provides mechanical stability and is used in optical profilometry applications.

11.2.6 Polarization Microscopy

Crossed polarizers reveal birefringence of the specimen placed in between. Many

biological tissues and cells exhibit birefringence and these can display bright

interference colors using polarization microscopy. Polarization microscopy used

in crystallography can yield quantitative information on the birefringence and

structures of the crystal.

11.2.7 Fluorescence Microscopy

The fluorescence microscopy is a highly versatile and essential tool in biomedical

andmaterials sciences andmany powerful techniques have been developed. The basic

principle is straightforward: excitation of molecules of a specimen with higher energy

(shorter wavelength) photons result in emission of lower energy (longer wavelength,

or Stokes) photons, under specific conditions. The power of fluorescence microscopy

stems from the specificity of the process: the molecules emit specific wavelengths

when excited by specific wavelengths under possibly additional conditions such as

temperature, pH, electric, or magnetic fields, etc. The fluorescence microscopy is

also a zero-background imaging technique, particularly when epi-illumination

is employed. Some biomolecules exhibit fluorescence (autofluorescence), but most

often fluorophores (or fluorochromes) are added that bind or migrate to specific

cellular and intracellular components and fluoresce with high efficiency.

Fig. 11.6 Interference microscopy configurations. (a) Watson, (b) Michelson (or Linnik), and

(c) Mirau
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The discovery of green fluorescence protein (GFP) and development of many other

fluorescent proteins covering all of the visible spectrum has been of tremendous

impact in genetic science aswell as other areas of biomedical science and engineering.

A large number of powerful techniques, some with interesting acronyms – such as

FRET, FLIM, FISH, FRAP, and FLIP – have been developed that exploit rich variety

of physical, chemical, and optical interactions that affect fluorescence.

11.2.8 Confocal Laser Scanning Microscopy

With conventional wide-field fluorescence microscopy, the fluorescence is emitted

from the entire illuminated volume of the specimen, which often obscures the

signals from the focal plane. In confocal scanning microscopy, pinholes are used

to illuminate a single focal point within the specimen volume and to collect

scattered or fluorescence photons emanating only from the focus, blocking photons

from the rest of the volume (Fig. 11.7). Two-dimensional optically sectioned image

is acquired, usually inside a computer, by raster scanning the focal point over

Fig. 11.7 (a) Optical system for confocal laser scanning microscopy. Mx and My scanning

mirrors, P pinhole, PMT photomultiplier tube. (b) Confocal microscopy image of Beta-tubulin

in tetrahymena cell, visualized using green fluorescent protein. (From http://en.wikipedia.org/

wiki/Confocal_microscopy, under GNU Free Documentation License)
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the field. Three-dimensional volume image can be built up by stacking the 2D

optical sections for a range of specimen planes. Confocal fluorescence microscopy

principle is extended to multiphoton and harmonic generation microscopy as well.

Scanning of the illumination focus and descanning, so that the signal photons

arrive at the stationary detection pinhole, are achieved in a number of different

ways. First, the sample stage can be scanned, which keeps the optical system

relatively simple but the mass of the stage limits the scan speed. Most confocal

microscopes for biomedical study scans the focal spot within stationary specimen

volume, using galvanometer-driven scan mirrors or acousto-optic deflectors, or

a combination thereof, typically at a rate of one 2D frame per second. Parallel

scanning of many pinholes can be achieved by a spinning Nipkow disk, one side

of which is illuminated with a broad laser beam, allowing video rate imaging.

Light throughput, and signal strength, can be improved by a microlens array on

the disk.

11.2.9 Multiphoton Excitation and Nonlinear Optical Microscopy

Use of multiphoton (two- or three-photon) excitation of fluorescence or harmonic

generation leads to nth power dependence of the generated signal as a function of

the excitation intensity, where n is the number of photons involved. This leads to

a number of unique advantages over single photon fluorescence. Because of the

nonlinear dependence, the excitation laser intensity is high enough only at the focus

and therefore the signal is emitted only from the focus region. Scanning microscopy

is possible without using pinholes. The excitation laser is usually in the infrared,

where the phototoxicity is significantly lower than in visible or UV. Most often

pulsed emission from mode-locked lasers are used so that laser intensity is

concentrated in picosecond or femtosecond pulses while average intensity is still

relatively low. The short wavelength fluorescence or NLO light is emitted only

from the focus. The phototoxicity and photobleaching is insignificant for the

remainder of the sample volume, a situation very different from single photon

confocal microscopy. The long wavelength excitation also leads to significantly

longer depth of penetration allowing optical section microscopy of thicker tissues.

11.3 Digital Holographic Microscopy

A basic digital holographic microscopy (DHM) setup consists of an illumination

source, an interferometer with microscopic imaging optics, a digitizing camera, and

a computer with necessary programs.
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11.3.1 Light Source

Most often a laser is used for illumination with the necessary coherence to produce

interference. All different types of lasers have been used, from the ubiquitous HeNe

laser and diode laser, to diode-pumped and doubled YAG laser (often referred

to simply as a solid-state laser), argon laser, as well as tunable dye laser and

Ti:sapphire laser. For multiwavelength techniques, two or more of different lasers

may be coupled into the interferometer, or a tunable laser may be employed.

There are also low-coherence techniques for the purpose of reducing speckle and

spurious interference noise or generating contour or tomographic images. A short-

pulse (picosecond or femtosecond) laser may be used or a tunable laser may be

turned into a broadband source by removing the tuning element. Even an LED

typically has 10 mm or so coherence length, which can be sufficient for the thickness

of microscopic specimen.

11.3.2 Interferometers

The two main types of interferometers are the Michelson and the Mach–Zehnder

type interferometers. The Michelson interferometer (Fig. 11.8a), is appropriate for

reflective object, though it is also possible to arrange for double-pass transmission,

by placing transparent specimen on a mirror. The Mach–Zehnder interferometer

(Fig. 11.8b) is more suitable for transmissive objects. It requires more components

but offers more flexibility in alignment, especially when the microscopic imaging

optics are used. One can also modify the Mach–Zehnder configuration for reflective

object by adding more beam splitters, as shown in Fig. 11.8c, where the short arm in

the upper right corner is useful especially for short coherence length source, where

the optical paths need precise balancing. In these diagrams, the shaded paths

represent the beams of undiffracted illumination and the red lines indicate the

image forming rays. In the illustrated examples, the object is illuminated by a

plane wave and the magnification is provided by the microscope objective lens and

imaging lens combination. The reference beam is focused at a point conjugate to the

back focal plane of the objective lens, so that it arrives at the CCD plane with the

same wavefront curvature as the object wave [4], except for an offset in the angle of

incidence for off-axis holography, and any residual mismatch of wavefront curva-

ture can be compensated for by numerical techniques as described earlier.

Each of these arrangements can have variations. One can omit lenses in

the object and reference arms altogether for Fresnel holography configuration.

If a lens in reference arm positions a focus at a conjugate point of the object

plane, then itbecomes a lensless Fourier configuration. One can place the objective

lens so that an intermediate image plane is conjugate with the reference focus,

for lensed Fourier holography. Formation of an intermediate image may add

some flexibility and easier access to a Fourier plane. The wavefront curvature
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matching between the object and reference arms is also optional but may be beneficial

for minimizing possible secondary aberrations due to excessive fringe frequencies at

the CCD plane. One can delete the reference arm altogether for Gabor holography.

The examples in Fig. 11.8 have theCCD focused near the object plane, for image plane

holography. This may have the advantage of being able to easily monitor the object

scene even when holography reconstruction is not turned on. The illustrations are also

Fig. 11.8 Interferometer configurations for digital holographic microscopy. (a) Michelson

(or Linnik), (b) Mach–Zehnder, and (c) modified Mach–Zehnder
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for infinity configuration, so that the insertion of beam splitters and other components

cause minimal aberration. We also note that, unlike conventional low-coherence

interferometry, the focusing lens in the reference arm does not need precise match

with the objective lens, its only function being approximatematching of the wavefront

curvatures. There are many versatile techniques in digital holography that

compensates for various types of aberrations and imperfections of the optical system,

and therefore, in comparison with conventional microscopy, the optical and mechani-

cal requirements can be significantly less stringent.

The interferometers may also include various apertures, attenuators, and polari-

zation optics to control the reference and object intensity ratio. The polarization

optics may also be used for the specific purpose of birefringence imaging. There

may also be various types of modulators such as piezo-mounted optics, liquid

crystal phase modulator, acousto-optic or electro-optic modulators to establish

modulated signals. As in conventional microscopy, immersion-type objective lens

has been shown to enhance the NA and resolution [5]. For quick optical setup and

experimentation, horizontal layout of optics may be easier but the vertical orienta-

tion of specimen is incompatible with most cellular microscopy. Vertical arrange-

ment of optics using vertical breadboard or a cage system is more appropriate

so that the specimen can be placed horizontally. Upright (illumination of object

from below) or inverted (illumination from above) microscope configurations are

possible [6]. Alternatively, the holographic interferometer may be built around a

laboratory optical microscope, by introducing the reference beam through one of

the access ports [7]. Complete digital holographic optical microscopes are now

available commercially as well (Fig. 11.9).

Fig. 11.9 Lyncée Tec DHM

T1000 digital holographic

microscope. (Courtesy of

Dr. Yves Emery, Lyncée

Tec SA)
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11.3.3 Camera

Typically a CCD or, more recently, CMOS cameras are used to capture and digitize

the holographic interference pattern. The pixel size of these devices is several

microns with pixel count of up to 1,000�1,000 or so. These parameters are the

main limiting factors in theDHM resolution and prescribes the range of applications,

but one would expect them to continue to improve in the coming years. The captured

hologram pattern is digitized by the camera, or a frame grabber, and input to

the computer as a 2D array of integers with 8-bit or higher gray-scale resolution.

Often in standard DH experiments, the sensitivity and noise of CCD is not a central

issue, at least not to the extent that it is in fluorescence microscopy, for example.

This is because DH is a two-step indirect imaging method, where the pattern

acquired by the camera is processed before numerically constructing the final

image. The relationship between these two is more convoluted. In particular, the

noise in the phase image fromDH behaves quite differently from the intensity image

[8]. The CCD sensitivity does become important in low-light DH techniques, such as

in dark-field DH of nanoparticles [9].

11.3.4 Computer

The main task of the computer is to carry out the numerical diffraction in order

to compute the holographic image as an array of 2D complex numbers. The

software package would include components for image acquisition and camera

interface control, holographic calculations, and image rendering and processing.

The acquisition component establishes communication with the camera and other

components of the microscope, setting the laser power, camera exposure levels,

timing modes and synchronizations. It performs image acquisition in the different

modes, as well as some preprocessing of images, for example, background sub-

traction. Holographic calculations may use angular spectrum or other methods and

provide for numerical focusing. Special numerical techniques may be included,

such as optical phase unwrapping, aberration compensation, differential hologra-

phy, and automatic focusing and tracking, as described in Chap. 9. At the current

stage of digital holography development, most researchers rely on in-house devel-

opment of software package. User-friendly interface is important for rendering

the image data in a consistent and flexible manner, as well as for calibration,

measurements and postprocessing of the images. An efficient and robust means of

storing, archiving, and retrieving image data and associated metadata is also

important. To reduce computation times for numerical diffraction, hardware

accelerations have been demonstrated using FPGA (field programmable gate

array) or GPU (graphic processing unit) [10, 11].
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Fig. 11.10 Digital holographic microscopy process, 269� 202 mm2, 1;024� 768 pixels

(a) Hologram; (b) a detail of the small white rectangle in (a); (c) angular spectrum including

zero-order terms; (d) angular spectrum after subtraction of object and reference intensities from
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11.3.5 Examples

An example of the DHM process is shown in Fig. 11.10, using a resolution target

with FOV (field of view) 269 � 202 mm2 and 1,024 � 768 pixels. The wavelength

used was 635 nm. Figure 11.10a is the hologram acquired by the CCD camera,

with a detail of a small area (small white rectangle) shown in Fig. 11.10b, where

the interference fringes are visible. Its angular spectrum (Fourier transform) in

Fig. 11.10c shows the zero-order and the twin-image peaks. One of the twin terms

may be selected, but the zero-order peak limits the size of the filter (highlighted

circular area). The zero-order peak can be suppressed if one takes separate

exposures of the object and reference without interference and subtracts from the

hologram, as shown in Fig. 11.10d. Now the numerical bandpass filter can be larger,

and the resolution of the reconstructed image improved. When the filtered spectrum

is then inverse Fourier transformed, one usually finds aberrations due to wavefront

curvature and slope mismatch, as in the phase profile Fig. 11.10e. First, the center of

the numerical filter is fine-adjusted to coincide the spectrum peak, resulting in the

new phase profile in Fig. 11.10f. The phase curvature is due to a slight mismatch in

the curvatures of the object and reference beams during hologram exposure. It is not

necessary to physically fine-adjust the position of the lenses. The same effect can be

achieved much more conveniently by multiplying a spherical wavefront to the

hologram, and setting the radius of curvature until the curvature of the phase profile

disappears, as in Fig. 11.10g. The corresponding amplitude image (Fig. 11.10h) is

the reconstructed image at the hologram plane. Finally, numerically propagate the

hologram an appropriate distance, z ¼ 100 mm, so that the image comes into focus.

The resulting in-focus phase and amplitude images are shown in Fig. 11.10i, j.

As we have seen in previous chapters, additional numerical techniques can be

applied to compensate for other types of aberrations, or to further process the

image in various ways. The phase images’ color scale ranges the �p; p½ � interval,
corresponding to one wavelength of optical path length. Although the resolution

target is a flat two-dimensional object, and thus without interesting topographic

variations, the phase image (Fig. 11.10i) shows that there are some smudges of

materials less than a wavelength thick at several spots on the surface. Also note

that the dark bar and square areas represent almost opaque metallic film, and

therefore the light intensity is low. The low signal causes larger noise in the

phase profile for these areas.

�

Fig. 11.10 (continued) the hologram, with the brighter circular area for bandpass filter;

(e) reconstructed phase profile at hologram plane, without any corrections; (f ) phase profile

after correct centering of the filtered angular spectrum; (g) phase profile after compensation

of the spherical wave curvature; (h) the amplitude image at the hologram plane corresponding

to the phase image (g); (i) phase image after numerical propagation to the object focus distance

z ¼ 100 mm; and ( j) the focused amplitude image
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A well-known distinctive feature of holography is the three-dimensional content

of the image information. In DHM, a single hologram is used to reconstruct the

optical field at any distance from the hologram, within the limitation of the

approximation method used. For example, Fig. 11.11a is a hologram of paramecium

and several euglenas in water, with FOV 80 � 80 mm2 and 464 � 464 pixels.

From the single hologram, the images are calculated at various distances,

showing the paramecium and a euglena coming into focus at depths approx.

100 mm apart. The numerical focusing emulates the turning of the focus knob on

a conventional microscope. A movie of holograms is acquired in real time,

several frames of which are shown in Fig. 11.12a, which is then postprocessed

to produce the amplitude (Fig. 11.12b) and phase movies (Fig. 11.12c). In the

scene, the paramecium and the euglenas swim not only in lateral directions but

also in varying depths. In conventional video microscopy, the focal plane would

be fixed and whatever happened to be in that plane would be recorded, but

information on objects not in the focal plane would be permanently lost. With

DHM, the holographic movie can be processed by calculating the images while

adjusting the reconstruction distances to track a particular specimen as it swims

up and down in the three-dimensional object volume. In effect, the holographic

movie is a complete four-dimensional space-time record of the object volume.

11.3.6 Comparisons of Analog and Digital Holographic
Microscopy

There are a number of significant distinctions between the analog (AH) and digital

(DH) holographies. Most obviously, DH does not involve photochemical

processing. Therefore, DH is orders of magnitude faster and can be performed at

video rate. Additional hardware required in DH is the CCD camera and a computer,

while eliminating the need for dark room facility and the supply of chemicals.

Furthermore, because of the high sensitivity of CCD compared to photographic

emulsion, the exposure time is reduced by orders of magnitude. For example,

a CCD pixel of 100 mm2 can detect as few as several photons, whereas a similar

Fig. 11.11 (a) A hologram of paramecium and euglenas (80 � 80 mm2). (b–d) Reconstructed

amplitude images at z ¼ 100, 150, 200 mm [12]
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area of a high-sensitivity photographic plate requires many millions of photons.

Even when comparing exposures of individual pixels or grains, CCD can be orders

of magnitude more sensitive. Short exposure time in turn implies much reduced

requirement on the mechanical stability of the apparatus. Heavy optical tables with

vibration isolation are often not as critical as in AH. On the other hand, the main

issue of DH is the low resolution. A typical CCD pixel is several microns across,

while the grains on a photographic emulsion may be two orders of magnitude finer.

This limits the spatial frequency of the fringes and therefore the angular size of

the object to about a few degrees for DH, while full 180� is possible for AH. The
familiar parallax effect of display holograms of AH is more difficult in DH [13].

The real strength of DH, however, is the whole range of powerful numerical

techniques that can be applied once the hologram is input to a computer. One

simple but significant example relates to the microscopic imaging, where a lens is

used to magnify the hologram FOV to match the CCD size. Once the computer

reads the hologram into an array, one only needs to specify the dimension of

the FOV and the wavelength, and proceed to compute the numerical diffraction.

In AH, however, in order to properly read out the magnified or demagnified

hologram, the wavelength also needs to be scaled proportionately, a task that is

Fig. 11.12 (a) Several frames of a holographic movie of paramecium and euglenas. (b) Amplitude

and (c) phase movies reconstructed from the holographic frames, while adjusting reconstruction

distance to maintain the paramecium in focus [12]

11.3 Digital Holographic Microscopy 167



highly cumbersome at the least and infeasible in most cases. Another example is the

holographic interferometry using multiple wavelengths. In AH interferometry,

multiple holograms are produced and repositioned exactly, and ideally each holo-

gram needs to be illuminated with a different wavelength, which can be physically

impossible. Most often the superposed holograms are illuminated with a single

wavelength and the resulting aberrations are unavoidable. In DH reconstruction,

however, use of various wavelengths only amounts to assigning numbers and the

superposition simply consists of addition of several numerical arrays. There is no

limitation on the number of arrays and, furthermore, there are ways to preprocess

the arrays to compensate for chromatic and other aberrations if present. More

examples of the power of numerical processing in DH have been described in

previous chapters.

11.4 Quantitative Phase Microscopy by DHM

The optical phase of the light transmitted through transparent objects can convey

quantitative information about the object, such as its physical thickness and index

of refraction [14], which in turn are functions of physical density or chemical

concentration properties. High-precision measurements of optical phase can thus

reveal subtle changes in these parameters that accompany cellular processes.

In order to obtain quantitative phase images, one can perform interferometric

measurement of a focused beam of light on an object and scan the beam over the

object in a raster fashion. Optical profilers based on scanning interferometer are

especially well suited for imaging applications in materials science, as in MEMS

and nanofabrication, because of the high precision obtainable and the static nature

of the objects being imaged. On the other hand, the speed constraint and mechanical

complexity of scanning interferometer can significantly restrict the range of

applications in biology, where one needs to make observations of dynamic pro-

cesses under widely varying environments.

Digital holography is a very effective process for achieving high-precision

quantitative phase microscopy. The phase image is immediately and directly

available as soon as the 2D complex array of the holographic image is calculated.

A single hologram exposure is required. It does not involve raster scanning. Most

importantly, the phase image is a quantitative representation of the object profile

with nanometer, and even subnanometer, precision [15–17]. An example of DHM

imaging of a SKOV3 ovarian cancer cells is shown in Fig. 11.13, where Fig. 11.13a

is the hologram and Fig. 11.13b is the reconstructed amplitude image, analogous to

what one would see through a conventional microscope. The phase image in

Fig. 11.13c indicates that the cells apparently have thickness of several microns,

and therefore the phase profile varies by several cycles of 2p radians. A public-

domain phase unwrapping algorithm is used to remove the 2p discontinuities

in Fig. 11.13d, and it is rendered in pseudo-color pseudo-3D perspective in

Fig. 11.13e. The apparent height profile is the profile of optical thickness that
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includes both physical thickness and index variation, and one needs to use caution

in interpreting such images. Figure 11.14 displays a fewmore examples of DH-QPM

images, including a layer of onion cells (Fig. 11.14a), a mouth epithelial cell

(Fig. 11.14b), several red blood cells (Fig. 11.14c), and a small quartz crystal in

common sand (Fig. 11.14d).

11.5 Cell Microscopy and Other Applications

The quantitative phase microscopy (QPM) is perhaps the most important aspect of

DHM because it allows optical thickness measurements with nanometric accuracy

in a single-shot wide-field acquisition and it yields such phase profiles without some

of the difficulties associated with other phase imaging methods. QPM is therefore a

very important and active area of research and applications in digital holography.

We survey some examples of applications in cell microscopy here.

C. Depeursinge et al. have pioneered the DH-QPMwith the original demonstration

of nanometric surface profiling [15] and have carried out quantitative cellular imaging

and characterization studies. Living mouse cortical neurons are imaged (Fig. 11.15)

and their reaction to hypotonic shock is quantitatively measured [19, 20].

Fig. 11.13 Digital holographic microscopy of SKOV3 ovarian cancer cells (60 � 60 mm2,

404 � 404 pixels): (a) hologram, (b) amplitude image, (c) phase image, (d) unwrapped phase

image, and (e) phase image in pseudo-color pseudo-3D view [18]
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In order to decouple the physical thickness and index of refraction, they have devised a

decoupling procedure, where two holograms are taken while the cells are immersed in

standard perfusion solution and a second solution with the same osmolarity (to avoid

cell volume variation) but with a different refractive index. Phase images’1 x; yð Þ and

Fig. 11.14 Examples of quantitative phase microscopy by digital holography. (a) Onion cells,

(b) mouth epithelial cell, (c) red blood cells, and (d) small quartz crystal in common sand

Fig. 11.15 Perspective image in false color of the phase distribution obtained with DHM of living

mouse cortical neuron in culture. (Reprinted from [19] by permission of OSA)

170 11 Digital Holographic Microscopy



’2 x; yð Þ from the two holograms are combined to yield separately the index nc x; yð Þ
and physical height hc x; yð Þ profiles:

nc x; yð Þ ¼ ’1

’1 � ’2

dnþ nm; (11.7)

hc x; yð Þ ¼ l
2p

’1 � ’2

dn
; (11.8)

where nm and nm þ dn are the indices of the two solutions. The technique is applied

to quantifying the morphological changes following hypotonic shock of cells,

where the cells are consecutively subjected to the standard perfusion solution and a

hypotonic solution reducing the extracellular osmolarity by 37%. The hypotonic

solution produces a decrease in the phase signalwhich reaches a plateau after 2min, as

displayed in Fig. 11.16. But when the decoupling technique is applied, the physical

Fig. 11.16 (Upper panels) Quantitative phase images of two neuronal cell bodies before

(a, “standard”) and 3 min after the onset of the hypotonic shock (b, “hypotonic”). (c) Color-

coded distribution of phase difference resulting from the subtraction of the “standard” image from

the “hypotonic” image. Neuronal cell body boundaries have been identified by a gradient-based

edge detection algorithm. (Lower panels) Morphometry of 2 cell bodies before (d) and 3 min after

the onset (e) of a hypotonic shock. Here the z-axis (cellular thickness) is expressed in micrometers.

These values were obtained using the results of the decoupling procedure. (f ) Color-coded

distribution of thickness variations resulting from the subtraction of the “standard” image to the

“hypotonic” image. (Reprinted from [20] by permission of OSA)
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thickness profile shows the expected swelling of the neurons. The decoupling

technique allows accurate measurement of index of refraction to obtain the indices

of red blood cells nRBC ¼ 1:394� 0:008 and neurons nneuron ¼ 1:380� 0:007 [21].
They have also found the fluctuation of red blood cell membranes to be 35.9 �
8.9 nm in normal state, while that of ethyl alcohol-fixed cells showed much

reduced fluctuations 4.7 � 0.5 nm (Fig. 11.17) [22]. Fission yeast cell cycle is

studied by monitoring dry mass production rate and dry mass surface density in

wild-type and mutant fission yeast cells [23]. Another method to decouple the

physical thickness is by using a single buffer containing absorptive dye

(sulforhodamine) and utilizing the sharp dispersion near an absorption peak for

two-wavelength measurement [24].

Bally et al. have studied human cancer cells by DHM [7, 25, 26]. For example,

Fig. 11.18 shows initial swelling or rounding of a pancreatic cancer cell in response

to anticancer drug taxol, followed by its collapse over a 4 h period. The morpho-

logical change is quantified in Fig. 11.18b. Similarly, osmotic volume changes

in tumorous hepatocytes have been imaged in response to NaCl solution [27].

The phase image from DHM accounts for the variation of the optical thickness,

which is a product of both the physical thickness and the index of refraction. The

two can be decoupled if one of the two parameters is known. Profiles of index of

refraction in pancreatic cancer cell can be obtained by confining the cell in a

chamber of known thickness [28].

Kim et al. have obtained high-quality image of fixed SKOV-3 (human ovarian

cancer cells) with approximately 0.5 mm lateral resolution and better than 10 nm

optical height noise [18]. Holographic time-lapse movies of mouse embryo fibro-

blast cell in mitosis as well as real-time movies of paramecium and euglena are

obtained in [12]. Optical phase unwrapping in single-shot dual-wavelength holo-

gram acquisition has significant advantages in imaging of dynamic cellular phe-

nomena [29]. They have developed a technique to image the phase profile of total

internal reflection for studying cell–substrate adhesion, detailed in the next section

[30]. Quantitative phase images recorded during the process of laser microsurgery

Fig. 11.17 Normal cell membrane fluctuations (CMF) displayed as color code over the shape of

the RBC for a representative normal and ethanol-fixed cells. Insets contain the mean � SD (nm) of

the CMF of the analyzed regions for each representative cell. (Reprinted from [22] by permission

of Elsevier Inc.)
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of PTK2 (rat kangaroo kidney epithelial) cells, goldfish retinal rod cells, and human

red blood cells allowed evaluation of dynamic changes in cell morphology in real

time [31] (Fig. 11.19).

In [32], three-dimensional trajectories ofmany living fibrosarcoma cells embedded

in a 3D collagen gel have been obtained, where the use of low-coherence light source

reduced spurious speckle noise. DH-QPM is used in [33] tomonitor themorphological

changes during trypsinization (a process which causes cell thickness change but

not its index of refraction), hypo-osmotic, and apoptosis processes. The activity of

TRPV1 (transient receptor potential vanilloid type-1) was measured by DH-QPM,

which detects cell surface topology perturbations that follow Ca2þ entry of plasma

membrane [34].

Fig. 11.18 (a) Monitoring of a living PaTu8988S cell after addition of an anticancer drug (taxol) to

the cell culture medium. Apoptosis induces morphological changes such as cell rounding and finally

cell collapse. Upper row: gray-level coded unwrapped phase distribution at t ¼ 0, t ¼ 78 min,

and t ¼ 262 min after taxol addition. Lower row: corresponding pseudo 3D representations of

the phase data. (b) Cross-sections through the measured optical path length changes

corresponding to the dashed white lines in the phase distributions of (a) (Reprinted from

[7] by permission of SPIE)

Fig. 11.19 (a) DH phase images of rat kangaroo kidney epithelial (PTK2) cells after laser

microsurgery. (b) Difference phase image relative to t ¼ 0.0 s. Scale bar: 10 mm, n ¼ 1.38 [31]
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11.6 Special Techniques of DHM

11.6.1 Total Internal Reflection Digital Holographic Microscopy

Many cells move by crawling over surfaces. Axons grow over long distances,

macrophages and neutrophils crawl to sites of infection, fibroblasts migrate through

connective tissues and cancer cells metastasize. The mechanics of cellular motion

involves an orchestrated set of activities that include the protrusion of pseudopodia,

the formation of new adhesions, the development of traction, and the release of

previous adhesions. Current primary tools for imaging and studying these surface

processes are the total internal reflection fluorescencemicroscopy (TIRFM) [35] and

interference reflection microscopy (IRM) [36–39]. In TIRFM, only the fluorophores

present within the distance of evanescent field emit the fluorescence signal, while the

rest of the cell body remains dark, thus dramatically enhancing the contrast of

cellular adhesion. While this technique provides excellent functional imaging,

information on the morphology of the cellular membrane surface is largely absent

[40]. In the interference reflection microscopy, light waves reflected from the two

surfaces of the cell–substrate interface produce interference fringes, thus allowing

estimation of the interface thickness profile. While this method allows qualitative

interpretation of the surface profile, the interference image of the interface is usually

complicated by the reflection image of the cell body and its contents.

The technique of total internal reflection holographic microscopy (TIRHM) was

introduced to apply the quantitative phase microscopy by digital holography in the

imaging of the phase profile of light in total internal reflection [30, 41]. While in

total internal reflection all of the incident light energy is reflected, the evanescent

field can interact with any materials present on the surface resulting in the modula-

tion of the phase of the reflected light. Digital holography detects and images this

phase profile with high sensitivity. Figure 11.20 depicts the geometry of TIRHM,

where the incident light enters the prism and is TIR-reflected from the top surface

Fig. 11.20 (a) TIR prism with object beam and aqueous cellular sample. A prism surface,

H hologram plane, y angle of incidence. (b) TIRHM system on a vertical plate. TIR prism at

apex. Inset: TIR prism close-up
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provided the incidence angle is larger than the critical angle between the prism glass

and the material in contact with the prism surface. The reflected light exiting the

prism then contains the phase modulation due to the interaction of the evanescent

field and the material on the prism. The camera is focused on a plane perpendicular

to the propagation direction, such as the plane H in Fig. 11.20. Numerical diffrac-

tion is calculated from the plane H to the object plane, which is the prism face A,

and therefore the calculation involves the technique of diffraction between tilted

planes, described in Chap. 9. The prism is incorporated into a Mach–Zehnder

interferometer to produce the hologram.

Consider the reflection of light, of vacuum wavelength l0, across a boundary

between two dielectric media with indices n1>n2. The reflection coefficients are

given by the familiar Fresnel equations. When the angle of incidence y1 is greater
than the critical angle yc ¼ sin�1 n2 n1=ð Þ, and the polarization is normal to the plane

of incidence (s-polarization), the reflection coefficient is complex with unit

magnitude

r? ¼ exp �2i’?ð Þ; (11.9)

where the reflection phase is given by

’? ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n12sin

2y1 � n22
p

n1 cos y1
; (11.10)

which depends on the index of the second medium. Any variation of the index n2
leads to corresponding variation in the reflection phase 2’?. Figure 11.21

demonstrates such phase shift imaged by TIRHM for water droplets or 50/50

mixture of water/ethylene glycol on the glass prism surface. The size of the phase

shift was found to be consistent with (11.10).

A more relevant configuration for the study of cellular adhesion involves

two interfaces, as depicted in Fig. 11.22. In order to obtain phase-only signature

Fig. 11.21 (a) General configuration of water droplets placed on prism. (b) Amplitude and

(c) phase images of light reflected from the prism. Field of view is approximately

300 � 900 mm2. (d) Graph of cross-section along a vertical line through a water drop in (c) [30]
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in the reflected field, the TIR condition must be met at least for n1/n3 interface.

The reflection coefficient for s-polarization is then

r? ¼ E0
1

E1

� �
?
¼ h1 � i�2ð Þ �2 þ �3ð Þ þ h1 þ i�2ð Þ �2 � �3ð Þ exp �2’0�2ð Þ

h1 þ i�2ð Þ �2 þ �3ð Þ þ h1 � i�2ð Þ �2 � �3ð Þ exp �2’0�2ð Þ ; (11.11)

where

hi ¼ ni cos yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni2 � n12sin

2y1
q

¼ i�i i ¼ 1; 2; 3ð Þ (11.12)

and

’0 ¼ 2pz0 l0= : (11.13)

This mode of TIRHM imaging is demonstrated in Fig. 11.23, where a fused quartz

lens of known curvature is placed on the prism surface. The resulting holographic

image shows little amplitude contrast but the phase image clearly displays the

presence of the lens. Filling the air gap with other materials such as ethylene glycol

Fig. 11.22 Geometry of

frustrated TIR (fTIR)

Fig. 11.23 (a) General configuration of quartz lens placed on prism. (b) Amplitude and (c) phase

images of light reflected from the prism. (d) Pseudo-color perspective rendering of (c). Field of

view is approximately 260 � 780 mm2 [30]
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and water is shown to vary the observed phase shift according to (11.11). Given the

115 mm curvature of the lens surface, the air gap varies up to 75 nm across the

horizontal FOV, and the phase shift is observed within the 50 nm or so evanescent

layer.

In Fig. 11.24, an amoeba proteus cell placed on the prism is imaged by TIRHM,

where pseudopod movement, captured at 7 min intervals, may be discerned by

thrust activity, designated at the arrow, between phase captures relative to the

overall relaxation, shift, and counterclockwise rotation for the feature in general.

The darker areas near the active pseudopod presumably indicate tighter adhesion to

the surface.

11.6.2 Multimode Microscopy from a Single Hologram

As we noted earlier, there are a number of techniques available in optical micros-

copy for generating intensity contrast images from transparent phase objects, such

as Zernike phase contrast and DIC. But these require delicate and expensive optical

elements and their precise alignment. Zernike requires matched apertures and phase

plate. DIC requires Wollaston prism pairs, etc. In DHM, on the other hand, it has

been shown that the direct access to the full complex optical field makes it possible

to manipulate the numerical representation of the optical field as if using real space

optics [42]. In Fig. 11.25 several images of red blood cells are displayed, generated

from a single hologram. The amplitude image in Fig. 11.25a is analogous to

conventional bright field. The quantitative phase image in Fig. 11.25b is generated

as described above. During the numerical reconstruction of the image, the angular

spectrum is available. In addition to suppressing the dc and twin-image terms, other

types of numerical filters can be applied to the angular spectrum to achieve different

contrast effects. For example, a numerical filter in the form of 1� d kx; ky
� �

suppresses dc background from the image, where kx and ky are spatial frequencies.
For thin specimen, the resulting intensity image is proportional to ’2 x; yð Þ, where ’
is the phase profile of the object, minus the overall average phase value.

This is equivalent to the image generated by conventional dark-field microscopy,

Fig. 11.24 TIRHM images of Amoeba proteus pseudopod activity at 7-min intervals [41]
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Fig. 11.25c. Since it cannot distinguish þ ’ x; yð Þ and � ’ x; yð Þ, some structural

information is lost. If we take instead 1� 1� ið Þd kx; ky
� �

as the filter function, then

its intensity image is proportional to 1þ ’ x; yð Þ½ �2, which is essentially the

image obtained by the positive Zernike phase-contrast microscopy (Fig. 11.25d).

The polarity can be reversed for negative ZPC by using 1� 1þ ið Þd kx; ky
� �

.

For the DIC effect, one takes exp 2pi kxDx þ kyDy

� �� �
as the filter, where Dx and

Dy are the lateral shears. Images reconstructed from the filtered and unfiltered

spectra are combined, and one can extract an image corresponding to

’ xþ Dx; yþ Dy

� � �’ x; yð Þ, as shown in Fig. 11.25e. This is equivalent to the

conventional DIC. Finally, use of the filter exp iyð Þ, where y is the polar angle in

the frequency domain, leads to an image which corresponds to the convolution of

the original image with r�2 exp iy0ð Þ, where r and y0 are the radius and polar angle

in real space. This yields the spiral DIC image, which is very sensitive to phase

jumps [43], such as at edges (Fig. 11.25f ).

These methods of numerical contrast generation are fast, taking only one or a

few extra steps of processing in the frequency domain. They preserve full resolution

and dynamic range of unfiltered images. If the phase variation is more than 2p, then
the contrast generation can produce artifacts, but this can be avoided if the multi-

wavelength OPU is used as described above. These methods are to be distinguished

with more commonly used image-processing methods that are used mostly on the

intensity images, such as edge enhancement, unsharp mask, etc., whereas the above

procedures apply only to holographic images represented with complex numbers.

Most significantly, all different types of contrast can be generated from a single

hologram without requiring different pieces of hardware or their delicate alignment.

Fig. 11.25 Multimode contrast generation from a single hologram of red blood cells. (a) Amplitude

contrast, (b) quantitative phase contrast, (c) dark field, (d) Zernike phase contrast, (e) DIC, and

(f) spiral DIC
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11.6.3 Dark-Field DHM

In Fig. 11.26a, dark-field microscopy is achieved by placing an optical stop at the

back focal plane of the objective lens [44]. Undiffracted light is blocked, transmit-

ting only diffracted light. The configuration is incorporated in Mach–Zehnder

interferometer for digital holography for improved detection of objects smaller

than the optical resolution with the refocusing capability yielded by digital holog-

raphy. Although emulated dark-field digital holography is possible by numerical

filtering of the dc component, as we have seen above, the physical stop removes the

dc component from the imaging system thus allowing full use of the camera

dynamic range for the detection of weak signals, for example, from nanoparticles.

Dark-field DH can also be achieved by using the evanescent field of total internal

reflection, which was combined with heterodyne DH for high-sensitivity nano-

particle imaging [45–47].

11.6.4 DH Interferometer with a Beam-Splitter Cube

An interesting interferometer configuration is introduced in [48, 49], using a single

beam-splitter (BS) cube, Fig. 11.27. A diverging spherical wave from a pinhole

illuminates two adjacent sides of the BS with the semireflecting layer oriented

along the general direction of the propagation. The two halves of the beam refract

Fig. 11.26 Dark-field

illumination for DHM. (a) An

optical stop (OS) placed at the

back focal plane of the

objective and (b) use of the

evanescent field of TIR
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from the BS surfaces and transmit through or reflect from opposite sides of the BS’s

semireflecting hypotenuse, which then combine and exit the BS forming the inter-

ference. The sample is placed in the path of one of the half beams. The single-cube

beam splitter thus carries out both the beam splitting and beam combining functions

simultaneously. The common-path configuration has advantages of simplicity,

minimal number of components, insensitivity to vibration, and self-compensation

of wave front curvature.

11.6.5 Lens-Free On-Chip Holographic Microscopy

In Fig. 11.28, an incoherent point source illuminates the entire area of a CMOS

sensor and the sample plane is placed a short distance (less than a millimeter) from

the sensor. The diffraction pattern on the sensor constitutes the in-line hologram

with a very large field of view, namely the size of the sensor array (a few

millimeters across), laterally separated objects creating uncorrelated subholograms

[50]. Polarizers and a thin plate of birefringent crystal is used to establish differen-

tial interference. The hologram with the differential interference is then numerically

reconstructed, yielding DIC holographic images. Because of the close proximity

of the object plane to the sensor plane, the illumination aperture can be large,

whereas in conventional lenless holography, the object is placed closer to the

aperture for magnification. But the increase in field of view comes at the expense

of resolution, which is limited by the pixel size (a few micrometers) of the sensor.

To overcome this limitation, super-resolution is obtained by multiple exposure

of subpixel shifted holograms [51]. But the hologram shift is achieved not

by shifting of the sensor or the object, which requires submicron mechanical

precision, but by shifting the illumination aperture. Because of the geometry,

shifting of the aperture by 100 mm results in the hologram shift of 0.5 mm.

The result is a 0.6 mm resolution over the entire 24 mm2 field of view.

Fig. 11.27 Beam-splitter cube interferometer. The blue half and red half split and combine to

form interference in the purple region. One of the halves (blue) contains the object and the cube

may be tilted slightly for off-axis holography. (Adapted from [49])

180 11 Digital Holographic Microscopy



11.7 Other Methods of Quantitative Phase Microscopy

11.7.1 Fourier Phase Microscopy

The Fourier phase microscope (FPM) has a configuration that somewhat resembles

the Zernike phase microscope but with the spatial phase filter replaced with a spatial

light modulator to allow phase-shift image acquisition in a common-path interferom-

eter [52, 53], as depicted in Fig. 11.29. The lens projects a Fourier transform of the

input field on the SLM. The undiffracted, zero-frequency component impinges on the

central spot on the SLM, and acts as the reference, while the rest of the SLM area

receives the higher frequency components containing the structural information of

the object. The center spot is phase shifted in four quadrature steps and the resulting

four interferograms are combined as in phase-shifting interferometry. Stability of the

common-path configuration leads to extremely low noise of 0.15 nm in optical path

and the use of low-coherence (but with good spatial coherence by passing through a

single mode fiber) illumination field, as opposed to laser radiation, contributes to the

sensitivity of the method. Similar concept is implemented with different names, such

as the point diffraction interferometer [54] and phase-shifting Gabor holography [55].

11.7.2 Hilbert Phase Microscopy

AMach–Zehnder interferometer is set up with the object imaged on the CCD at the

output plane and the reference tilted at large enough angle so that the interference

Fig. 11.28 DIC microscopy

by lensless holographic

imaging. L incoherent light

source, D large aperture

pinhole (50–100 mm),

P polarizer, S sample on

glass, B uniaxial birefringent

crystal, A analyzer, C CCD

array. z1 (5–10 cm) is much

larger than z2 (~1 mm). The

orientation of the first

polarizer is adjusted to

control the differential phase

contrast while the analyzer

is fixed at ~45� with respect

to the birefringent crystal

orientation. (Adapted

from [50])

11.7 Other Methods of Quantitative Phase Microscopy 181



pattern has a high spatial carrier frequency. The phase of the object optical field can

be extracted by using the Hilbert transform [56]. The Hilbert phase microscopy

(HPM) allows quantitative phase microscopy from single-shot interferograms, with

the acquisition rate only limited by the camera speed, but the resolution is limited

by the fringe frequency. In [57], the refractive index profile of a HeLa cell was

obtained by Hilbert phase microscopy and using a microfluidic chamber, where the

cell takes on the known height of the chamber. The technique is used for refrac-

tometry of mouse tissue slices of brain, spleen, and liver [58]. The spatial power

spectra of the phase images reveal power law behavior with different exponents for

each tissue type, which opens a possibility of stain-free characterization and

diagnostics of biological structures.

11.7.3 Diffraction Phase Microscopy

In diffraction phase microscopy (DPM) [59], a phase grating is placed at a plane

conjugate to the object plane, which generates various diffraction orders (Fig. 11.30).

Fig. 11.29 (a) Fourier phase microscope. L Fourier transform lens, SLM spatial light modulator.

(Adapted from [52].) (b) FPM image of a HeLa cell undergoingmitosis. (c)Whole blood smear. The

color bars represent optical path length in nanometers. (Reprinted from [52] by permission of OSA)
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A spatial filter with two apertures is used to select the zero-order and the first-order

diffraction. The smaller aperture passes the dc component of the object spectrum, and

is used as the reference field, while the larger aperture passes all of the object

spectrum. The two components are combined on the CCD plane, and the recorded

interference is Hilbert transformed to retrieve the phase profile of the object.

The single-shot common-path technique yielded subnanometer optical pathlength-

equivalent noise level, and was used to measure the membrane fluctuation of live red

blood cells. The technique was combined with epifluorescence microscopy in [60].

11.7.4 Quantitative DIC

An extension of DIC for quantitative phase microscopy uses phase shifting by precise

stepping of DIC bias to convert the DIC intensities to linear phase gradients in one

shear direction [61]. Orthogonal directions of shear and Fourier space integration

using a modified spiral phase transform leads to quantitative phase imaging.

A single-shot linear method uses no polarization optics but places a Ronchi grating

a short distance from an intermediate image plane of the object [62]. This generates a

zero-order and first-order copies of the image field, which are slightly offset laterally

from each other, Fig. 11.31: that is, the lateral shift of DIC is accomplished by the

clever arrangement of the grating and the image position, without Wollaston prism

or other polarization optics. The spatial filter passes the two diffraction orders, which

are combined on the CCD plane, which is focused on the grating plane. The hologram

is a superposition of two copies of the object field slightly out of focus and slightly

shifted laterally. Digital holography reconstruction yields a DIC-like image, that is,

a profile of phase gradient along the shear direction. In order to obtain full 2D

phase profile, a 2D Ronchi grating (i.e., a checkerboard pattern) is used to simulta-

neously record two orthogonal fringes, followed by spiral phase integration of

the two orthogonally sheared phase profiles. Increasing the illumination NA also

demonstrated optical sectioning property similar to conventional DIC.

Fig. 11.30 Optical system for diffraction phase microscopy. S sample, L1 imaging lens,G grating,

L2 Fourier transform lens, SF spatial filter, L3 inverse Fourier transform lens (Adapted from [59].)
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The above technique may be compared with the numerical shearing of digital

hologram [63], Fig. 11.32. A phase image from digital holography is numerically

sheared, that is, shifted by a small number of pixels, which is then subtracted from

the original. The resulting shearogram is integrated along the direction of the shear

which produces quantitative phase profile along that direction. Together with

another shearogram in the orthogonal direction, a complete 2D phase profile is

obtained. A distinct advantage of this and the preceding techniques is that the phase

profile does not require unwrapping, as long as the shear is not large enough to

introduce phase jump within the shear distance.

11.7.5 Spiral Phase-Contrast Microscopy

The p 2= phase step at the Fourier plane of conventional PCM is replaced with a spiral

(also referred to as vortex, or helical) phase profile of the form exp i’ð Þ, where ’ is

the polar angle [43]. This leads to convolution of the image with the Fourier

transform of the phase function, exp i’ð Þ r2
	

. The method uses no polarization optics,

is highly sensitive to phase gradients, and, unlike Nomarski DIC, the sensitivity is

isotropic and highlights all edges regardless of the direction of the gradient. It is

capable of detecting 1% or less of 2p phase jumps. Further manipulation of the

center of the phase profile can yield DIC-like images with directional relief effect, but

with improved resolution [64]. For phase objects of several wavelengths thickness,

Fig. 11.31 (a) Quantitative DIC optical setup. S sample, L1 objective lens, L2 relay lens,G Ronchi

grating, S1 and S2 intermediate image plane containing two (or more) laterally shifted images of

the sample, L3 and L4 Fourier transform lens pair. (Adapted from [62].) (b, c) A pair of DIC images

of a HeLa cell reconstructed from a single exposure hologram. (d) 2D unwrapped phase image

obtained by spiral integration. (Reprinted from [62] by permission of OSA)
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the spiral phase contrast can also produce spiral contours of the thickness profile [65]

(Fig. 11.33). Quantitative phase profile can be achieved by phase-shift spiral phase

microscopy by numerical postprocessing of a sequence of at least three shadow-effect

images, recorded with different phase offsets between the zero-order Fourier spot,

and the remaining, spiral filtered part of the image field [66].

11.7.6 Low-Coherence Interference Microscopy

Low-coherence interference microscopy can generate quantitative phase images

by using phase-shifting technique. For example, [67] describes full-field phase-

shifting interference microscopy with halogen lamp, where the interferometer also

includes a SLD beam detected by a photodiode for active stabilization, to obtain

phase noise corresponding to optical path length of 1.3 nm. In [68], a low-coherence

light source (halogen lamp with 2 mm coherence length) is used in a Linnik

interferometer configuration with phase shifting. For accurate phase shifting with

low-coherence light, seven phase steps are acquired and combined. Two phase

profiles are obtained, one with double-pass transmission through the specimen

(Fig. 11.34a) and one with reflection from within the specimen (Fig. 11.34b),

Fig. 11.32 Shearograms of a mouse cell along (a) x and (b) y directions. (c) 2D phase profile and

(d) its pseudo-3D rendering. (Reprinted from [63] by permission of OSA)
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Fig. 11.33 Interferogram of an oil drop smeared on a glass coverslip. (a) Normal contourlike

interference fringes. (b) Spiral interferogram after filtering with the modified spiral phase filter.

(Reprinted from [65] by permission of OSA)

Fig. 11.34 (a) Focal condition for measuring the transmission mode phase image, (b) focal

condition for measuring the reflection mode phase change, and (c) quantitative topography of a

MCF7 human breast cancer cell surface. (Reprinted from [68] by permission of OSA)
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the two modes being separated by virtue of the low coherence. This allowed

determination of the physical thickness and refractive index profiles of a MCF-7

human breast cancer cell (Fig. 11.34c).

Phase shifting by piezo-mounted mirror is highly dependent on the wavelength,

and therefore can be problematic for broadband source. Achromatic phase shifting

is possible by using geometric phase modulator (GPM). A conventional GPM

consists of a half-wave plate, sandwiched between two quarter wave plates and

two polarizers. Rotation of the half-wave plate determines the amount of phase

shift. Use of ferro-electric liquid crystal device in place of the half-wave plate

allows fast switching of the phase shift [69].

References

1. G. C. Holst, and T. S. Lomheim, CMOS/CCD sensors and camera systems (JCD Publishing,

2007).

2. D. B. Murphy, Fundamentals of light microscopy and electronic imaging (Wiley-Liss, 2001).

3. J. Mertz, Introduction to Optical Microscopy (Roberts & Co, 2009).

4. W. J. Qu, C. O. Choo, V. R. Singh, Y. J. Yu, and A. Asundi, “Quasi-physical phase

compensation in digital holographic microscopy,” Journal of the Optical Society of America

a-Optics Image Science and Vision 26, 2005–2011 (2009).

5. J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line

holographic microscopy,” Optics Letters 31, 1211–1213 (2006).

6. M. Kim, S. Hong, S. Shim, K. Soh, S. Shin, J. Y. Son, J. Lee, and J. Kim, “Plane wave

illumination for correct phase analysis and alternative phase unwrapping in dual-type, trans-

mission and reflection. three-dimensional digital holographic microscopy,” Optical Engineer-

ing 49, 055801 (2010).

7. B. Kemper, D. Carl, A. Hoink, G. Von Bally, I. Bredebusch, and J. Schnekenburger, “Modular

digital holographic microscopy system for marker free quantitative phase contrast imaging of

living cells,” SPIE 6191, 61910 T (2006).

8. F. Charriere, B. Rappaz, J. Kuhn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of

shot noise on phase measurement accuracy in digital holographic microscopy,” Optics Express

15, 8818–8831 (2007).

9. B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, “(1, N) spatial phase-shifting technique in

digital speckle pattern interferometry and digital shearography for nondestructive evaluation,”

Optical Engineering 46, 051009 (2007).

10. T. Lenart, M. Gustafsson, and V. Owall, “A hardware acceleration platform for digital

holographic imaging,” J. Signal Process. Syst. Signal Image Video Technol. 52, 297–311

(2008).

11. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic

microscopy using the graphic processing unit,” Optics Express 16, 11776–11781 (2008).

12. C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital

holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).

13. T. Nakatsuji, and K. Matsushima, “Free-viewpoint images captured using phase-shifting

synthetic aperture digital holography,” Applied Optics 47, D136-D143 (2008).

14. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Muller, “The spatial variation of the

refractive index in biological cells,” Physics in Medicine and Biology 41, 369–382 (1996).

15. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-

contrast imaging,” Optics Letters 24, 291–293 (1999).

References 187



16. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative

phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,”

Applied Optics 38, 6994–7001 (1999).

17. J. Kuhn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and

C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Mea-

surement Science & Technology 19, 074007 (2008).

18. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast

microscopy by digital holography,” Optics Express 13, 8693–8698 (2005).

19. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge,

“Digital holographic microscopy: a noninvasive contrast imaging technique allowing quanti-

tative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470

(2005).

20. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measure-

ment of the integral refractive index and dynamic cell morphometry of living cells with digital

holographic microscopy,” Optics Express 13, 9361–9373 (2005).

21. B. Rappaz, A. Barbul, F. Charriere, J. Kuhn, P. Marquet, R. Korenstein, C. Depeursinge, and

P. J. Magistretti, “Erythrocytes analysis with a digital holographic microscope,” SPIE 6631,

66310 H (2007).

22. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti,

and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic

microscopy,” Blood Cells Mol. Dis. 42, 228–232 (2009).

23. B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. Depeursinge, V. Simanis, P. J. Magistretti, and

P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry

mass with digital holographic microscopy,” J. Biomed. Opt. 14, 034049 (2009).

24. B. Rappaz, F. Charriere, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell

morphometry and refractive index measurement with dual-wavelength digital holographic

microscopy and dye-enhanced dispersion of perfusion medium,” Optics Letters 33, 744–746

(2008).

25. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von

Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,”

J. Biomed. Opt. 11, 034005 (2006).

26. B. Kemper, and G. von Bally, “Digital holographic microscopy for live cell applications and

technical inspection,” Applied Optics 47, A52-A61 (2008).

27. D. Carl, B. Kemper, G. Wernicke, and G. Bally, “Parameter-optimized digital holographic

microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536–6544 (2004).

28. B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and

J. Schnekenburger, “Integral refractive index determination of living suspension cells by

multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009

(2007).

29. A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-

wavelength reflection digital holography,” Optics Express 16, 10900–10911 (2008).

30. W. M. Ash, and M. K. Kim, “Digital holography of total internal reflection,” Optics Express

16, 9811–9820 (2008).

31. L. F. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. P. Chen, “Digital

holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,”

Optics Express 17, 12031–12038 (2009).

32. F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and

C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis

of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006).

33. M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive

time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12, 064002

(2007).

188 11 Digital Holographic Microscopy



34. A. Ligresti, L. De Petrocellis, D. H. P. de la Ossa, R. Aberturas, L. Cristino, A. S. Moriello,

A. Finizio, M. E. Gil, A. I. Torres, J. Molpeceres, and V. Di Marzo, “Exploiting

Nanotechnologies and TRPV1 Channels to Investigate the Putative Anandamide Membrane

Transporter,” PLoS One 5, 10239 (2010).

35. D. Axelrod, “Cell-Substrate Contacts Illuminated by Total Internal-Reflection Fluorescence,”

Journal of Cell Biology 89, 141–145 (1981).

36. A. S. G. Curtis, “Mechanism of Adhesion of Cells to Glass - Study by Interference Reflection

Microscopy,” Journal of Cell Biology 20, 199–215amp; (1964).

37. H. Verschueren, “Interference Reflection Microscopy in Cell Biology - Methodology and

Applications,” Journal of Cell Science 75, 279–301 (1985).

38. J. Schilling, K. Sengupta, S. Goennenwein, A. Bausch, and E. Sackmann, “Absolute interfa-

cial distance measurements by dual-wavelength reflection interference contrast microscopy,”

Phys. Rev. E 69, 021901 (2004).

39. L. Limozin, and K. Sengupta, “Quantitative Reflection Interference Contrast Microscopy

(RICM) in Soft Matter and Cell Adhesion,” Chemphyschem 10, 2752–2768 (2009).

40. P. S. Carney, and J. C. Schotland, "Three-dimensional total internal reflection microscopy,"

Opt. Lett. 26, 1072 (2001).

41. W. M. Ash, L. G. Krzewina, and M. K. Kim, “Quantitative imaging of cellular adhesion by

total internal reflection holographic microscopy,” Applied Optics 48, H144–H152 (2009).

42. C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-in-one multifunctional optical microscope

with a single holographic measurement,” Optical Engineering 47, 087001 (2008).

43. S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in

microscopy,” Opt. Express 13, 689–694 (2005).

44. F. Dubois, and P. Grosfils, “Dark-field digital holographic microscopy to investigate objects

that are nanosized or smaller than the optical resolution,” Optics Letters 33, 2605–2607 (2008).

45. M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, “Heterodyne

holographic microscopy of gold particles,” Optics Letters 33, 500–502 (2008).

46. E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan,

and D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Optics Express

18, 780–786 (2010).

47. N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan,

M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using

heterodyne digital holographic microscopy,” Optics Express 18, 3264–3273 (2010).

48. W. J. Qu, K. Bhattacharya, C. O. Choo, Y. J. Yu, and A. Asundi, “Transmission digital

holographic microscopy based on a beam-splitter cube interferometer,” Applied Optics 48,

2778–2783 (2009).

49. W. J. Qu, Y. J. Yu, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical

phase compensation,” Optics Letters 34, 1276–1278 (2009).

50. C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference

contrast microscopy using lensless digital holography,” Optics Express 18, 4717–4726 (2010).

51. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide

field-of-view using pixel super-resolution,” Optics Express 18, 11181–11191 (2010).

52. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, andM. S. Feld,

“Fourier phase microscopy for investigation of biological structures and dynamics,” Optics

Letters 29, 2503–2505 (2004).

53. N. Lue, W. S. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld,

“Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46,

1836–1842 (2007).

54. C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point diffraction interfer-

ometer,” Optics Express 13, 1885–1891 (2005).

55. V. Mico, J. Garcia, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Optics

Letters 34, 1492–1494 (2009).

References 189



56. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for

investigating fast dynamics in transparent systems,” Optics Letters 30, 1165–1167 (2005).

57. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell

refractometry using microfluidic devices,” Opt. Lett. 31, 2759–2761 (2006).

58. N. Lue, J. Bewersdorf, M. D. Lessard, K. Badizadegan, R. R. Dasari, M. S. Feld, and

G. Popescu, “Tissue refractometry using Hilbert phase microscopy,” Optics Letters 32,

3522–3524 (2007).

59. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for

quantifying cell structure and dynamics,” Optics Letters 31, 775–777 (2006).

60. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and

fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).

61. S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase

microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008).

62. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld,

“Quantitative DIC microscopy using an off-axis self-interference approach,” Optics Letters

35, 2370–2372 (2010).

63. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantita-

tive phase-contrast microscopy by a lateral shear approach to digital holographic image

reconstruction,” Optics Letters 31, 1405–1407 (2006).

64. A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase

contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).

65. S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Optics

Letters 30, 1953–1955 (2005).

66. S. Bernet, A. Jesacher, S. Furhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging

of complex samples by spiral phase contrast microscopy,” Optics Express 14, 3792–3805

(2006).

67. X. H. Li, T. Yamauchi, H. Iwai, Y. Yamashita, H. J. Zhang, and T. Hiruma, “Full-field

quantitative phase imaging by white-light interferometry with active phase stabilization and

its application to biological samples,” Optics Letters 31, 1830–1832 (2006).

68. T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase

microscope for nanometer-scale measurement of living cells morphology,” Optics Express

16, 12227–12238 (2008).

69. M. Roy, G. Cox, and P. Hariharan, “Low-coherence interference microscopy with an

improved switchable achromatic phase-shifter,” Opt. Express 13, 9125–9130 (2005).

190 11 Digital Holographic Microscopy



Chapter 12

Low-Coherence and Tomographic Techniques

Digital holography using low-coherence light source has distinct imaging

characteristics and applications. A number of special techniques have been devel-

oped to take advantage of such distinct characteristics of interference by low-

coherence light. Topographic and tomographic imaging follow naturally from the

well-established and still evolving field of low-coherence interferometry. A very

significant contribution by digital holography is the possibility of holographic

recording of white light or fluorescence. Although some of the principles have

been known in conventional holography, recording of extended objects under white

light illumination suffers from precipitous degradation of interference contrast due

to noninterfering background. DH-related techniques, such as phase shifting, allow

efficient removal of the background. Some of these may develop into powerful and

practical new imaging technologies.

12.1 Techniques of Low-Coherence Digital

Holographic Microscopy

Holography is a coherent process. The optical path of the object beam has to match

that of the reference beam, in order to obtain visible interference fringes. If a source

of short coherence length is used, then only the part of the object that matches the

reference path within the coherence length produces holographic interference. This

is both a problem and advantage. The optical alignment needs to be more precise

and the fringe visibility tends to be lower because of the noninterfering background.

On the other hand, this also leads to optical sectioning capability, where the

holographic reconstruction highlights a section of the object image, while

suppressing image of the other parts of the object. It also leads to significant
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reduction of the coherent noise due to spurious interference with various surfaces of

the optical system, thus improving the quality of the holographic image.

12.1.1 Low-Coherence Sources

Short coherence can arise from short pulse length of the laser light, or a broad

spectral width. Useful sources for low-coherence digital holography (LCDH)

include femtosecond or picosecond lasers, low-coherence laser diodes (LD),

superluminescent diodes (SLD), and high-brightness LEDs. Dubois et al. [1]

describe image formation of digital holographic microscopy using low-coherence

sources, by spatial filtering a LED. Digitally reconstructed images showed image

quality and focusing characteristics similar to white light microscopy, while also

providing low-noise quantitative phase images (Fig. 12.1). In [2], a laser diode is

used in a lensless holography configuration with temporal phase shifting, to record a

hologram at a distance of 45 mm from the object and reconstruct the image that

displays sectioning capability of depth close to the coherence length of 20 mm. It is

also demonstrated that LCDH can image through a few hundred micrometer depth

of scattering medium and produce tomographic images of biological specimen [3].

In [4], an 80-fs laser pulses are used to generate tomographic images of porcine

cornea and iris. Another lensless configuration – a Gabor configuration with a point

source illumination – with a spatial-filtered LED illumination is also demonstrated

to produce proper holographic image [5]. In [6], a red LED and a HeNe laser are

compared for digital holographic microscopy, finding that an LED represents a

quasi-monochromatic light source of coherence length 16.5 mm, which may be

increased by a decrease of the spatial filter pinhole. The dispersion increases

effective coherence length, but the contrast of the hologram decreases with imbal-

ance of dispersion between object and reference arms.

Low coherence can be emulated, that is the speckle noise can be reduced, by

averaging. For example, in [7], many holograms of the same scene are recorded

while a diffuser changes the speckle pattern on the object illumination. Summation

of the resulting holograms leads to reduction of speckles and improved resolution in

the reconstructed images.

Fig. 12.1 Example of refocusing capability with a digital holography microscope on a metric

scale (100 divisions/mm), illuminated with a LED. (a) Intensity of the defocus, (b) phase of the

defocus image, and (c) computer-refocused image. The refocus distance is 80 mm. (Reprinted from

[1] by permission of OSA)

192 12 Low-Coherence and Tomographic Techniques



12.1.2 Rotating Ground Glass

F. Dubois et al. have described a very effective and flexible method for generating

partial spatial coherence source by sending a laser beam through a rotating ground

glass [8], which was applied to imaging of biological cells as well as for particle

flow analysis [9]. If the ground glass rotates fast enough that the phase at any point

on it varies over the range [0, 2p] during the camera exposure, then these points can

be considered completely incoherent with respect to each other: that is, the mutual

coherence function over the illuminated area of the x0; y0ð Þ plane of Fig. 12.2 is a

delta function. Consider one such point source illuminating the object plane x0; y0ð Þ
through the condenser lens L, with both x0; y0ð Þ and x0; y0ð Þ planes positioned at the

focal planes of the lens of focal length f. The light arriving at the object plane is a

tilted plane wave exp �iðk=f Þ x0x0 þ y0y0ð Þ½ �. The object has complex transmission

coefficient A x0; y0ð Þ, so that the object wave leaving the x0; y0ð Þ plane is

E0 x0; y0ð Þ ¼ A x0; y0ð Þ exp �i
k

f
x0x0 þ y0y0ð Þ

� �
: (12.1)

This field propagates to the x; yð Þ plane over a distance z, where the camera is

focused. The field at the x; yð Þ plane is described with the Fresnel diffraction

expression

E x; y; zð Þ ¼ � ik

z
exp ikzð Þ exp ik

2z
x2

� �
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(12.2)

where we again abbreviate the ðyÞ-terms for brevity and also make use of the

convolution theorem. The first Fourier transform is the object spatial frequency

Fig. 12.2 Geometry of partial coherence illumination. RGG Rotating ground glass, L condenser

lens, S sample plane, P focus plane of the camera. (Adapted from [8])
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spectrum ~A kx; ky
� �

, with kx ¼ kx=z and ky ¼ ky=z, and the second Fourier transform

is easily calculated so that

E x;y;zð Þ¼� ik
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(12.3)

The reference field ER x; y; zð Þ, in a Mach–Zehnder interferometer, is equivalent to a

copy of this field (12.3) but without the modulation by the object A x0; y0ð Þ, so that

ER x; y; zð Þ ¼ 1

2p
exp ikzð Þ exp � izk

2f 2
x02 � ik

f
x0x

� �

� F�1 d kx
0ð Þ exp � iz
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z

f
x0 þ x

� �
: (12.4)

The fields interfere and the camera records the summation of all intensities

contributed by the incoherent source points on the x0; y0ð Þ plane with a distribution

P x0; y0ð Þ

I x; y; zð Þ ¼
ZZ

dx0P x0ð Þ Eþ ERj j2;

¼ 1

4p2
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(12.5)

Through the use of phase-shifting method, one of the holographic terms can be

extracted

Iþ x; y; zð Þ ¼ 1

4p2
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where

P0ðxÞ ¼ P � f

z
x

� 	
: (12.7)
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The spectrum of Iþ x; zð Þ is

~Iþ kx; ky; z
� � ¼ � 1

4p2
f

z
~P0 kxð Þ ~A kxð Þ exp � iz

2k
kx

2

� �� �
: (12.8)

The quantity in the curly bracket is the spectrum one obtains at the x; yð Þ plane if the
object is illuminated with a normally incident plane wave. This spectrum is

multiplied, that is, low-pass filtered, by the spectrum of the scaled illumination

profile P0 x; yð Þ. For example, take

PðxÞ ¼ exp � x2

a2

� �
(12.9)

so that

~P0 kxð Þ ¼ a2z2

2 f 2
exp � a2z2

4f 2
kx

2

� �
; (12.10)

which is a Gaussian of width Dkx ¼ 2f=az. The low-pass filter becomes narrower

as the refocus distance z increases. If we take the threshold of resolution loss to be

where the quadratic phase in (12.8) becomes p, then the effective coherence length
of the source is

zmax ¼ 2 f 2

pka2
: (12.11)

The effective coherence length can be adjusted by varying the laser spot size a on

the ground glass. Figure 12.3 shows reconstructed images at three distances and two

different spot sizes. Larger spot size reduces spurious interference as well reducing

the depth of focus, as expected of a low-coherence source.

12.1.3 Fresnel Incoherent Correlation Holography

In [10], a SLM under a computer control is used as a diffractive optical element

(DOE). The DOE is in effect a superposition of a plane mirror and a quadratic phase

function, by sharing 50/50 portions of all the pixels. For better clarity, Fig. 12.4

illustrates the principle of Fresnel incoherent correlation holography (FINCH)

assuming a transmissive SLM, which acts as if a superposition of a plane window

and a converging lens. An object is illuminated with a white light and a color filter

narrows the bandwidth enough for proper operation of the DOE. Upon transmission

through the SLM, the light from a point scatterer on the object results in two
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components, one a collimated beam without deflection and the other a converging

spherical wave. The two components are coaxial and therefore produces a Fresnel

zone interference pattern, which can be recorded by a camera and numerically

reconstructed to form a point image. For an extended object under spatially

incoherent illumination, the Fresnel zones superpose incoherently, rapidly reducing

the fringe contrast. This has been known to be a common problem in many of the

incoherent holography techniques. Again, numerical processing by digital hologra-

phy provides a powerful solution to an old problem. Phase shifting is applied by

introducing a relative phase between the plane and quadratic phase parts of the

Fig. 12.4 FINCH optical setup. WL white light source, S sample object, l color filter, L lens,

SLM spatial light modulator, CCD camera

Fig. 12.3 Refocusing property and spatial coherence. (a–c) Are with speckle size of 12 mm
(low coherence), while (d–f ) are with speckle size of 200 mm (high coherence). The refocus

distances for each row are d ¼ 50, 100, and 200 mm. (Reprinted from [8] by permission of OSA)
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DOE, and taking several exposures while stepping the phase shift. This eliminates

the dc and conjugate terms from the Fresnel zones, yielding a complex hologram

corresponding to a single conjugate term (Fig. 12.5). Image reconstruction proceeds

as in ordinary digital holography. Numerical focusing of objects at different

distances under arc lamp illumination have been clearly demonstrated. Holographic

recording and imaging of multicolor fluorescence has been demonstrated as well

(Fig. 12.6) [11, 12].

12.1.4 Achromatic Fringe System

We may note some of the low coherence techniques developed for conventional

holography. In the achromatic fringe system of Fig. 12.7, a collimated beam

illuminates a diffraction grating G at plane P1 [13]. The lens L2 focuses various

diffraction orders on the plane P2, where a pair of pinholes select two of the

diffraction orders. The hologram is recorded on the plane P4, which is the image

of the grating formed by the lens L2. The image is in fact a superposition of the two

Fig. 12.5 Holographic imaging of 3D objects under white light illumination by FINCH.

(a) Amplitude and (b) phase of the complex hologram. (c–e) Show reconstruction at different

distances. (Reprinted from [10] by permission of OSA)
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diffraction orders. The image formation does not depend on the wavelength.

A transparency or silhouette placed at P3 in front of one of the pinholes modifies

one of the grating images, thus recording the information as a modulated fringe on

P4, as in ordinary off-axis hologram. But the coherence requirement is only similar

to Gabor hologram, much less stringent than ordinary off-axis hologram.

12.1.5 Triangular Interferometer

A triangular interferometer is depicted in Fig. 12.8, which contains two lenses L1

and L2 of respective focal lengths f1 and f2 separated by a distance f1 þ f2.
If an object is placed at the front focal plane A of f1, then an image of magnification

� f2 f1= forms at the plane B, which is a focal plane of L2. But if A also happens

to be a focal plane of f2, then another image of magnification � f1 f2= forms on B.

If the field on A is a spherical wave from a point source, then the field on B is an

interference of two spherical waves of different curvatures, resulting in a Fresnel

zone pattern (FZP), which can be used to form a holographic image of the original

Fig. 12.7 Grating achromatic interferometer. (Adapted from [13])

Fig. 12.6 Holographic imaging of fluorescent color 3D objects by FINCH. (Reprinted from [11]

by permission of OSA)
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point source [14]. A serious drawback is that as more point sources are added, the

various FZP’s add incoherently, adding dc background and twin-image

contributions. A digital holography demonstration of the concept, with phase

shifting by using discrete polarization components and multiple cameras, has

been demonstrated to significantly reduce the dc and twin problems [15].

12.1.6 Conoscopic Holography

In conoscopic holography, a cone of light emitted from each object point passes

through a length of birefringent crystal. If the crystal axis is along its length,

the ordinary rays propagate with isotropic speed forming spherical waves. But

extraordinary rays have speed that depends on the direction of propagation, forming

elliptic wavefronts. The two polarization components emerge from the crystal as

two approximately spherical waves of different curvatures, thus forming Fresnel

zone pattern. Hologram of two pinholes illuminated by a sodium lamp has been

formed and reconstructed by HeNe laser [16]. But as the number of object points

increase, contrast of the incoherent hologram decreases rapidly, because of the dc

background. For an extended 2D object, the zone patterns from all the object points

add incoherently. By using additional polarization and amplitude masks, several

holograms are digitally combined to remove the dc and conjugate terms [17]. Two-

dimensional test pattern is correctly reconstructed by digital holography. This is

another example of digital holography making possible what is very difficult in

conventional holography.

Fig. 12.8 Triangular

interferometer. Each of A and

B is a focal plane of both L1

and L2, which are separated at

confocal distance through the

hypotenuse
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12.2 Optical Scanning Holography

12.2.1 Basic Principles of OSH

The optical scanning holography (OSH) is a unique method of hologram generation

[18–20]. In standard holography methods, the interference of the plane reference

wave and the spherical wavelets from each object point generates Fresnel zone

pattern, which is recorded by an image sensor. The OSH turns the process around: a

Fresnel zone pattern is projected on an object and the pattern is 2D scanned across

the object, while a single point detector collects the light scattered by the whole

object. The photo-current from the detector is filtered and processed to generate a

pattern equivalent to the ordinary hologram, as described below. At the cost of

some complexity of the system and the requirement of mechanical scanning, the

method has unique capabilities and imaging characteristics.

For a basic OSH system (Fig. 12.9) the illumination is provided by an interfer-

ence between a plane wave and a spherical wave, with a frequency offset between

them. The spherical wave on an xy-plane a distance z from the center of curvature at

x0; y0; 0ð Þ is in the form, with paraxial approximation,

E1 ¼ exp
ik

2z
x� x0ð Þ2 þ y� y0ð Þ2

h i
� iot

� �
: (12.12)

The plane wave is incident normally on the plane and so its phase is uniform but

oscillates in time

E2 ¼ exp �i oþ Oð Þtf g; (12.13)

Fig. 12.9 Basic OSH system optical setup. P1 and P2 pupil planes, L0, L1, and L2 lenses, BS beam
combiner, S sample object, D detector
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where O is the frequency offset between the two waves. For simplicity, we set the

amplitudes equal to one. The intensity distribution is then given by

I x; y; z; tð Þ ¼ E1 þ E2j j2 ¼ 2þ 2 cos
k

2z
x� x0ð Þ2 þ y� y0ð Þ2

h i
þ Ot

� �
; (12.14)

which is a Fresnel zone pattern (FZP) that appears to diverge from or converge

toward the center at x0; y0ð Þ because of the frequency offset O. Now suppose a point

object is located at x; y; zð Þ, and it reflects or scatters in proportion to the incident

field. A lens collects some portion of the reflected/scattered light and focuses on a

detector. The detector is a single point detector but collects light from an aperture of

finite area. The electrical signal from the detector is then proportional to I x; y; z; tð Þ,
which is processed through a lock-in detector. That is, the signal is multiplied with

sinOt and cosOt followed by low-pass filtering, to generate the two phase-

quadrature signals:

Sc ¼ IðtÞ cosOth i ¼ cos
k

2z
x� x0

2
� �þ y� y0

2
� �
 �� �

;

Ss ¼ IðtÞ sinOth i ¼ � sin
k

2z
x� x0

2
� �þ y� y0

2
� �
 �� �

: (12.15)

These signals can now be digitized and combined as

S ¼ Sc � iSs ¼ exp
ik

2z
x� x0

2
� �þ y� y0

2
� �
 �� �

: (12.16)

The process is repeated as the center x0; y0ð Þ of the projected FZP is scanned in

2D, and the resulting 2D array of complex numbers S x0; y0ð Þ is equivalent to the

spherical wavefront centered at x; y; zð Þ. Once this complex hologram, which

contains no zero-order or twin-image terms [21], is acquired, the numerical

diffraction can be applied to reconstruct the image of the object point at any

distance. Extension of the description to an extended object consisting of a set of

object points is straightforward, because all the relevant terms are linear with

respect to E1.

12.2.2 Imaging Characteristics of OSH

With the OSH, it is possible to control the degree of spatial coherence of the

image. As described above, when a detector with a narrow aperture is used at the

focal plane of the collection lens L0, it only collects plane waves propagating

from the object along the optical axis. The imaging characteristics is similar to
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illumination of the object with a collimated laser in a conventional microscope.

For example, the phase modulation of the plane wavefront by the presence of a

phase object, such as a cell, allows quantitative phase microscopy, as in the

conventional digital holography [22] (Fig. 12.10). On the other hand, if the

detector aperture is enlarged, then it collects a large range of spatial modes,

analogous to the illumination of the object with a broad source in a conventional

microscope. In conventional microscopy, the spatial coherence of the image is

controlled by the aperture of the illumination, whereas in OSH it is controlled by

the aperture of the detector. The ability of OSH to record in an incoherent mode is

one of its most significant attributes. The incoherent imaging mode has the

characteristics of the low-coherence DH described in the previous section, such

as the reduction of speckle noise and reduction of spurious interference noise from

out-of-focus planes. Furthermore, the incoherent mode OSH allows holographic

imaging of fluorescence [23, 24].

The frequency offset may be set up using a pair of AOMs as in heterodyne

DH. It is simplest but least efficient to 2D-scan the FZP by translation of the

object. Scanning by galvo-mounted mirrors and telecentric optics, as in confo-

cal microscopy, would provide much improved scanning. In the basic OSH

description above, the illumination is provided by the interference between a

plane wave and a spherical wave. Other combinations are also possible. For

example, by placing an annular aperture at the pupil plane P1, an edge detection

effect may be obtained [25]. It has been shown that if the plane wave is

replaced with another spherical wave but with opposite curvature from the

other, then the resulting PSF has improved lateral resolution by a factor of

2 and the depth of focus increases by an order of magnitude for extended focus

imaging [26, 27].

Fig. 12.10 Reconstruction of a hologram recorded in coherent mode. The object is a siliceous

three-pronged spongilla spicule. (a) Absolute value of the reconstruction amplitude and

(b) wrapped phase map of the optical thickness of the object relative to the mounting medium.

(Reprinted from [22], under OpenAccess)
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12.2.3 Related Techniques and Applications

The concept of two-pupil optical processing is found in a few different techniques,

as well as in OSH. For example, in the system referred to as spatio-temporal digital

holography (STDH) [28, 29], the optical field from the object is split into two parts.

One is used to form an image of the object, while the other is spatial-filtered to

transmit the zero-order component (Fig. 12.11). The two parts combine and inter-

fere, while the reference is scanned axially at a constant speed to introduce a

Doppler frequency. From the series of interferograms recorded by the camera, the

time series of each pixel is demodulated to generate complex holograms. Both

amplitude and phase-contrast images of an object behind diffusing medium are

obtained (Fig. 12.12).

Similar strategy of interfering two copies of the same field is found in a number

of low-coherence and common-path techniques. For example, the FINCH

Fig. 12.11 Spatio-temporal

holography. The object and

the camera are at focal

distance from the respective

lenses, as well as the object

and reference mirrors. The

object mirror forms an image

of the object at the camera,

whereas the pinhole aperture

on the reference mirror

performs a spatial filtering.

The reference mirror is

z-scanned at a constant speed.

(Adapted from [28])

Fig. 12.12 Reconstructed wave front of a fly wing recorded behind a diffuser. (a) amplitude and

(b) phase. (Reprinted from [29] by permission of OSA)
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technique that we described in the previous section has similarity with STDH, and

some differences. The STDH involves spatial filtering and pixelwise heterodyne

detection, while the FINCH uses pixelwise Fresnel zone pattern formation and

temporal phase shifting. The Fourier phase microscopy and diffraction phase

microscopy of Sect. 11.7 also have the similar concept of interference of the object

field with the reference field, the latter obtained by spatial filtering of the former.

12.3 Optical Coherence Tomography

Optical coherence tomography (OCT), a scanning low-coherence interferometry

technique, was introduced around 1990 by J. Fujimoto [30, 31] and A.F. Fercher

[32]. Since then it has developed into a robust, mature biomedical imaging tool.

We highlight some of the main techniques and newer developments of OCT. There

are a number of books and review articles [33] one can consult.

12.3.1 Time-Domain OCT

For a Michelson interferometer illuminated with a monochromatic source, the

detected signal SðzÞ is proportional to

SðzÞ ¼ S0 þ S1 cos 2k z� zRð Þ (12.17)

where S0 and S1 are constants, z and zR are the object point and reference mirror

distances, respectively, and k ¼ 2p l= . If the source has short coherence, either

because it is a short pulse or because it has broad spectrum, the interference signal is

modulated by an envelope of a width equal to the coherence length, with the center

of the envelope at z ¼ zR. Therefore, the low coherence interferometry can be used

to measure the axial distance of the object point. In the original time-domain OCT

(TDOCT) (Fig. 12.13), the reference mirror is scanned at a constant speed zR ¼ vRt,
so that the interference signal is time-dependent

SðtÞ ¼ S0 þ S1 cos 2k z� vRtð Þ ¼ S0 þ S1 cos 2 kz� Otð Þ: (12.18)

That is, the object field is heterodyned at the Doppler frequency O ¼ ovR c= , where

o is the frequency of the light. Low-pass filtering of the heterodyne signal then

yields the envelope function. Thus, the z-scan of the reference mirror provides the

Doppler shift for heterodyne signal generation, as well as the scan across the depth

of the object for tomographic imaging. In analogy with ultrasound imaging system,

the z-scan is also referred to as the A-scan. In a typical OCT system, the object beam

is also scanned in a lateral direction, for example, x-direction, to produce x–z
tomographic section image – this is called the B-scan.
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The interferometric and heterodyne signals from OCT are compatible with

efficient electronic processing and lead to high dynamic range and sensitivity,

exceeding 100 dB. Imaging of weakly scattering structures even in a scattering

environment is possible, enabling noninvasive, in situ, and in vivo optical biopsy.

Another advantage of OCT is the decoupling of the lateral and axial resolutions, the

former determined by the NA of the imaging system, while the latter is determined

by the coherence length of the light source. In practice, the NA is kept relatively

low, in order to maintain uniform focus along the depth of the object. A main

limitation of TDOCT is the mechanical z-scan of the reference mirror.

12.3.2 Fourier-Domain OCT

The interference term in (12.17) is sinusoidal with respect to the distance z� zRð Þ
with a period equal to the wavelength 2p k= . But it is also sinusoidal with respect to

k with a period 2p z� zRð Þ= . If one uses a broadband source and a spectrometer is

placed in the detection arm while the reference mirror is kept stationary, then the

detected spectrum as a function of k is the Fourier transform of the object reflec-

tance as a function of the axial distance. A 1D CCD array can be used to image the

spectrum, and computation of its Fourier transform yields the A-scan. There is no

mechanical motion for the A-scan, while the lateral scan can proceed as in TDOCT,

thus providing much faster overall scan speed. This is called spectral domain OCT

(SDOCT) (Fig. 12.14a). Instead of the broadband source and the spectrometer, a

similar effect can also be achieved by using a wavelength-tunable light source and a

single detector. The system is then referred to as the wavelength-scanning or swept-

source OCT (SSOCT) [34] (Fig. 12.14b). For wavelength scanning, a tunable laser

can be used, or an acousto-optical tunable filter is used on a white light source.

Fig. 12.13 Time-domain

OCT
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The SDOCT and SSOCT together are sometimes referred to as Fourier-Domain

(or frequency-domain) OCT (FDOCT).

The imaging characteristics of SDOCT are similar to TDOCT, but there are

some differences. The axial scan range and the axial resolution in TDOCT are given

by the mechanical scan range of the reference mirror and the coherence length of

the light, respectively. In SDOCT, on the other hand, the axial range is proportional

to l2 dl= , where dl is the wavelength resolution of the spectrometer. Similarly, the

axial resolution is l2 Dl= , where Dl is the full wavelength range of the spectrome-

ter, assuming that the spectrum of the light source covers that range. More signifi-

cantly, it is shown that the SNR of SDOCT is better than TDOCT by a factor
ffiffiffiffi
N

p
,

where N ¼ Dl dl= is the number of detector elements on the spectrometer [35].

12.3.3 Doppler OCT

If a scatterer within the object volume is in motion, then its reflection generates

Doppler shift in addition to that of the moving reference mirror [36]. This shows up

as a phase change between two consecutive A-scans, and can be the basis of high-

speed, high-sensitivity velocity measurement. Blood flow in human skin has been

imaged with sensitivity of 10 mm/s [37].

12.3.4 Optical Coherence Microscopy

In order to improve the lateral resolution, one may use a large NA objective and the

object 2D-scanned laterally, called the C-scan. The system is then referred to as

optical coherence microscopy (OCM). For example, the lateral resolution of OCT

in retinal imaging is typically 10–30 mm, which is insufficient to resolve the retinal

cone mosaic. Retinal cone mosaic imaging was demonstrated by using a larger NA

beam, performing C-scans, and imaging the periphery of the fovea, where the

Fig. 12.14 (a) Spectral domain OCT (SDOCT) and (b) Swept source OCT (SSOCT)
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retinal cell spacing is somewhat larger [38] (Fig. 12.15). In ophthalmic imaging,

however, higher-NA illumination for tighter focusing can aggravate the ocular

aberration. Application of adaptive optics in ophthalmic OCT imaging has been

demonstrated to reduce the aberration and improve the lateral resolution [39]

(Fig. 12.16).

Fig. 12.15 Transverse images of human retina centered at ~4� nasal. (a) SLO (scanning laser

ophthalmoscope) and (b) OCM images. The image size is 200 � 225 mm. (Reprinted from [38]

by permission of OSA)

Fig. 12.16 High-resolution B-scan of retinal structures acquired with adaptive optics OCT

instrument scanning 6 mm lateral range (4,000 A-scans). The following retinal layers are

identified: Nerve fiber layer (NFL), Ganglion cell layer (GCL), Inner plexiform layer (IPL),

Inner nuclear layer (INL), Outer plexiform layer (OPL), Fibers of henle with outer nuclear layer

(ONL), Inner segment layer (ISL), Outer segment layer (OSL), Retinal pigment epithelium (RPE),

Choriocapillaris and Choroid. The Outer Limiting Membrane (sometimes called External Limiting

Membrane), Connecting Cilia and Verhoeff’s Membrane may also be seen. (Reprinted from [39]

by permission of OSA)
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12.3.5 Phase-Sensitive OCT

In addition to the interference envelope, one can interrogate the phase of the

interference signal for phase-sensitive OCT. This may be accomplished by phase-

shifting techniques [40] or by Hilbert transform [41]. Then it is possible to probe

subwavelength optical path-length variations within the coherence thickness of the

object volume. Interpretation of the phase variation, however, may not be straight-

forward, except for simpler cases, for example, due to surface profile behind

uniform index material.

12.3.6 Differential Phase-Contrast OCT

Differential phase-contrast (DPC) OCT uses two transversally separated beams of

orthogonal polarizations [42]. Alternatively, two overlapping object beams with

orthogonal polarizations are used with slightly different focal spot sizes [43]. The

two interference signals are detected and processed separately to obtain phase

signals, difference of which constitutes the DPC signal. Phase differences between

the two sample beam components can be caused by transverse refractive-index

variations within the medium in front of the back-reflecting interface. Also, depth

variations of the back-reflecting interface or variations of the phase change on

back-reflection, for example, at different metallic surfaces, can give rise to phase

differences. The sample beam with the larger focal spot can be regarded as a

reference for the other beam and provides the path length of the light that traverses

the surrounding area of the small spot. Hence the path-length difference between

the small spot beam and its surrounding is measured and imaged. DPC image of

human microvascular endothelial cells showed clear DIC-like phase contrast

(Fig. 12.17). Phase steps below scattering medium was also detected by DPC-OCT.

12.3.7 Phase-Dispersion Microscopy

Phase-dispersion microscopy (PDM) is a scanning microscopy technique, based on

measuring the phase dispersion between the fundamental and the second-harmonic

light [44]. The Michelson interferometer is illuminated with overlapping funda-

mental and second-harmonic output from a low-coherence Ti:sapphire laser.

A constant motion of the reference mirror creates heterodyne signals for both

wavelengths, which are detected separately. Bandpass filtering and Hilbert trans-

form then yields the phase difference between the object and reference arms for

each of the wavelengths. Because of the exact double frequency of the second

harmonic, the two phase values can be combined to eliminate all noise that is due

to optical path-length fluctuations. PDM was used to measure the refractive-index

dispersion (10�4) of very dilute DNA-water solutions (1%) and to generate clear

contrast between the white matter and graymatter of a brain tissuemicrotome section.
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In phase-dispersion optical tomography (PDOT), the principle of PDM is applied to

OCT configuration with axial scan of the object [45]. PDOT is capable of detecting

phase shift that is due to reflection at an interface or dispersion of a bulk material,

even when the target is below the surface.

12.3.8 Phase-Referenced Interferometry

Detection of submicron motion is important for the study of subcellular dynamics,

such as actin-based transport of organelles, ruffling of cell membranes, and motility

of metastatic cells. In phase-referenced interferometry (PRI) in [46], an OCT

interferometer is simultaneously illuminated with a laser of 775 nm and a SLD of

1,550 nm. The laser sets up interference of reference and the top surface of a cover

glass, while, by way of the short coherence, the SLD has interference only with the

sample specimen below the cover slip. The reference mirror is dithered and the

heterodyne signals for the two wavelengths are detected separately. If the SLD

wavelength is exactly twice the laser wavelength, the two signals can be combined

so that any interferometer drift or fluctuations of the relative distance between the

object and reference arms exactly cancel, as long as the specimen-to-cover slip

distance remain constant. The system allowed measurement of axial motion with

~1 nm/s sensitivity, stable over many minutes.

12.4 Full-Field Optical Coherence Tomography

12.4.1 Principles of FFOCT

In full-field (or wide-field) optical coherence tomography (FFOCT), the process of

coherence detection is carried out in parallel of all the pixels. A basic configuration

in Fig. 12.18 is a Michelson interferometer using a low-coherence light source and

Fig. 12.17 Differential phase contrast by two orthogonal polarization components (a) with lateral

shift or (b) with different focus. (c) DPC-OCT image of human microvascular endothelial cells.

(Reprinted from [43] by permission of OSA)
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phase-shifting interference technique. The interference signal is generated from

points within the volume of the object that lie within the coherence length of the

light source relative to the reference mirror surface. The interference signal can be

extracted and the background suppressed by using the phase-shifting method,

which allows tomographic imaging within scattering media. Microscope objective

is added to the object arm for magnification and a matching objective is required in

the reference arm for precise matching of the optical path lengths, so that one

obtains the Linnik interferometer configuration. The phase shifting can be achieved

by dithering of the reference mirror. In the original FFOCT experiment by Boccara

et al., use of Michelson objective precluded piezo dithering; instead they used

polarization modulation using photoelastic modulator [47].

Compared to the pointwise detection OCT, the camera-based FFOCT cannot

acquire signals fast enough for conventional lock-in detection. Instead of synchro-

nous detection of conventional lock-in amplifier, a technique of synchronous

illumination is developed that collects and integrates time-varying parts of the

image into phase-quadrature components. The synchronous illumination can be

achieved by piezo-modulation of reference mirror while the light source is pulsed

during appropriate quarter period of the modulation [48, 49] (Fig. 12.19).

Using a thermal light source (a tungsten halogen lamp) in [50], 3D tomographic

images of a tadpole eye is obtained, with 3 mm lateral and 1 mm axial resolution

(Fig. 12.20). A camera running at 200 fps and four frame captures per phase-

shifting cycle results in 50 tomographic image acquisition per second. Averaging

over 1 s for each section resulted in close to 80 dB SNR. Use of polarization

components also allows tomography of birefringence in muscle tissues [51].

Fig. 12.18 Full-field OCT

optical setup
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Fig. 12.19 Synchronous illumination detection. The shaded areas represent the periods when the
illumination is on and the graphs plot the intensity variation of a pixel as the reference mirror

dithers sinusoidally. The intensity of the shaded areas is accumulated during a camera exposure

and stored as one of the four phase-quadrature images. (Adapted from [49])

Fig. 12.20 3D reconstruction

of a Xenopus laevis tadpole

eye by means of 300

tomographic images. The

volume is 360 � 360 � 200

mm3. E exterior of the eye,

C cornea, CR crystalline lens.

(Reprinted from [50] by

permission of OSA)
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12.4.2 Techniques and Applications of FFOCT

Various light sources have been used for FFOCT, including LEDs [47, 52],

femtosecond lasers [53], tungsten lamp [50, 54], and SLDs [55]. The technique of

rotating ground glass has been used along with heterodyne generation of phase shift

using two AOMs in [56].

Salathe et al. constructed a smart pixel array for 58 � 58 pixel parallel hetero-

dyne detection [57]. Three-dimensional images are obtained at a sensitivity of

258 dB and a rate of 6 Hz. The method is effective for imaging through a turbid

medium (intralipid solution) as well [58]. In [59], they have achieved 25 Hz video

rate imaging of 210 � 210 � 80 mm3 volume with 58 � 58 � 58 voxels. The

resolution was 9 mm lateral and 3 mm axial and the sensitivity 76 dB.

Phase shifting is also achieved by a two camera system with liquid crystal

shutters and a dithering reference mirror [55]. In [52], four phase-quadrature images

are generated using quarter-wave plates, which are imaged on the four quadrants

of a single camera, allowing video rate acquisition of the complete phase-shift

image sets, but at the expense of resolution. An achromatic phase modulator

operating on the geometric phase uses a pair of ferro-electric liquid crystal

devices in [60].

In [61], a set of three FFOCT images of a colored object is generated using red,

green, and blue LEDs, which are numerically combined and rendered to produce

natural color 3D tomography (Fig. 12.21). That is, three sets – red, green, and blue – of

image volumes are obtained by FFOCT, as displayed in the first three columns.

These are then numerically combined into RGB images as shown in the fourth

column. The first two rows show example cross-sections and the bottom row shows

flat view, that is, accumulation of all the cross-sections. On the lower right corner is

the picture of the painted surface of a coin being imaged.

A swept-source version of FFOCT has been demonstrated in [62] using a

common-path interferometer, where the first air–glass interface serves as the

reference reflection, and the specimen mounted on the other side of the coverslip

provides the object reflection. A SLD transmitted through a tunable fiber

Fabry–Perot filter provides the swept source. As the wave number k sweeps over

a range, the axial distance of each object point is coded as the interference signal as

a function of k. The Fourier transform over k then produces the signal strength as a

function of distance. The phase profile of a coherence-sectioned plane then yields

the optical thickness variations at the plane, such as due to presence of cells and

other materials (Fig. 12.22).

In [63], the object is line-illuminated along x-direction with a cylindrical lens

and the reference arm has a grating in Littrow configuration for retro-reflection

with a time delay across y-direction (Fig. 12.23). In a manner analogous to light-in-

flight holography, the high-speed CMOS then has x vs. time delay interference

signal on its face, which, together with phase shifting by a dither of the grating,

produces a B-scan tomographic image. Scan of the line-illumination across the

object surface then yields a 3D volumetric tomogram. The system is used to image
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a human finger pad in vivo at six volume images per second with 76 dB sensitivity

(Fig. 12.24).

High-resolution subcellular-level imaging of human donor corneas is obtained

using thermal light source and piezo-driven phase-shift method in a Linnik inter-

ferometer [64]. A lateral resolution of 2.4 mm and axial resolution of 2.0 mm were

achieved. In [65], a method for automatic synchronization of the pulsed illumina-

tion and the Doppler frequency of the z-scanning reference mirror is proposed,

which allowed ~800 mm/s scan speed. The synchronization was achieved by an

auxiliary interferometer whose reference moves in tandem with the OCT interfer-

ometer and is illuminated with a cw LD of a similar wavelength.

Fig. 12.22 Swept-source

FFOCT of red blood cells.

(Reprinted from [62] by

permission of OSA)

Fig. 12.21 Full-color full-field OCT of a painted coin surface [61]
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Fig. 12.23 3D axial-lateral, parallel time-domain OCT. SLD superluminescent diode,

L0 collimating lens, G Littrow grating mounted on PZT, CL cylindrical lens. The solid lines are
the imaging rays. (Adapted from [63])

Fig. 12.24 3D OCT images of a human finger pad in vivo: (a, b) longitudinal OCT images in the

X–Z plane, (c, d) transverse OCT images. The white arrows indicate the cross-sectional positions.
(e) Volume-rendered image. The volume size was 5.8 � 2.8 � 2.0 mm3. (Reprinted from [63] by

permission of OSA)
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12.4.3 Light-in-Flight Digital Holography

Light-in-flight holography (LIF) [66, 67] uses short coherence light and oblique

incidence reference beam. Various parts of the reference beam arrives on the

hologram plane at different times, and interferes with the various parts of the object

beam arriving at the hologram that happen to be coincident within the coherence

length. In Fig. 12.25, the delay between the object and reference is such that when

the reference arrives at the positions 1 or 2 on the hologram, the object field from

the slice 1 or 2, respectively, also arrives at the hologram. The entire 3D object

volume is holographically stored to form varying contour or cross-sectional images

of an object on various parts of a single hologram. When the strip at position 1 or

2 is used to reconstruct, holographic image of the slice 1 or 2 is formed, respec-

tively. A DH analog of LIF was demonstrated in [68]. Because of the low resolution

of CCD array, it is not possible to use an oblique reference. Instead, a blazed grating

for Littrow reflection can be used for the reference, so as to achieve linearly varying

time delay across the reference beam diameter [69] (Fig. 12.26). Various contours

of a lightbulb reconstructed from different parts of a single CCD-acquired

hologram is shown in Fig. 12.27 [70].

12.5 Digital Interference Holography

12.5.1 Principles of DIH

Figure 12.28 illustrates the general principle of digital interference holography

(DIH) [71]. Suppose an object is illuminated by a laser beam of wavelength l.
A point P (at rP) on the object scatters the illumination beam into a Huygens

Fig. 12.25 Light-in-flight holography. (a) When the reference arrives at the positions 1 or 2 on

the hologram, the object field from the slice 1 or 2, respectively, also arrives at the hologram.

(b) Reconstruction using the strip 1 or 2 of the hologram results in the image of slice 1 or 2,

respectively, of the object
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wavelet, A rPð Þ exp ik r� rPj jð Þ, where A rPð Þis proportional to the amplitude and

phase of the scattered wavelet. For an extended object, the field at r is

E rð Þ �
Z

A rPð Þ exp ik r� rPj jð Þd3rP; (12.19)

where the integral is over the object volume. The amplitude and phase of this field

at the hologram plane z ¼ 0 is recorded by the hologram. If the holographic process

Fig. 12.26 Optical

configuration for DH LIF

using Littrow grating

Fig. 12.27 (a) Digital LIF recording of a lightbulb, showing object contours reconstructed from

different parts of the CCD, representing different depths. In the lower right corner, a gray-scale-
coded depth map is shown. (b) Evaluated 3D shape of a lightbulb. (Reprinted from [70] by

permission of SPIE)
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is repeated using N different wavelengths, and the reconstructed fields are all

superposed together, then the resultant field is

E rð Þ �
X
k

Z
A rPð Þ exp ik r� rPj jð Þd3rP �

Z
A rPð Þd r� rPð Þd3rP

� AðrÞ: (12.20)

That is, for a large enough number of wavelengths, the resultant field is proportional

to the field at the object and is nonzero only at the object points. In practice, if one

uses a finite number N of wavelengths at regular intervals of D 1 l=ð Þ, then the object
image A rð Þ repeats itself (other than the diffraction/defocusing effect of propaga-

tion) at a beat wavelength L ¼ D 1=lð Þ½ ��1
, with axial resolution d ¼ L N= . By use

of appropriate values of D 1 l=ð Þ and N, the beat wavelengthL can be matched to the

axial extent of the object, and d to the desired level of axial resolution.

In a DIH experiment, the wavelength of a dye laser is scanned in the range of

575.0–605.0 nm in 20 steps, taking the exposure of a hologram at each step [72].

The optical field of a volume around the image location is calculated by numerical

diffraction from each hologram. At this point, the field patterns in the individual 3D

arrays show little variation along a few millimeters of z-direction. Now the 20 3D

arrays are numerically superposed together, by adding the arrays elementwise,

resulting in the accumulated field array of the same size. This new array then has

Fig. 12.28 (a) Geometry and (b) process of DIH. H hologram, E optical field in the object

volume, A object function. See text for details
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field distribution that represents the three-dimensional object structure, with axial

range of L ¼ 220 mm and axial resolution of d ¼ 11 mm, as described above.

Figure 12.29a illustrates the building up of axial resolution as a series of holo-

graphic images are superposed using a range of wavelengths. The five frames

shown are with 1, 2, 4, 8, and 20 wavelengths superposed, and one notices the

narrowing of the contour widths as the synthesized coherence length shortens.

Figure 12.29b shows a few contour images at 60 mm axial distance intervals.

We may note that the angular spectrum method is particularly advantageous in

DIH calculation, because the field size depends neither on the distance nor the

wavelength [72]. We have also demonstrated variable tomographic imaging of DIH

by reconstruction on a plane with arbitrary tilt angle with respect to the optical axis,

using an algorithm based on angular spectrum method [73]. This allows focusing on

a tissue structure that may be oriented at an arbitrary angle within a 3D image

volume.

Figure 12.30a shows the flat and stereoscopic views of the numeral 2 on the 2000

mintage mark of a penny [74]. A standard technique for viewing a stereo pair is to

start with your eyes very close to the page. As you pull away, you would see two

pairs of images: try to merge these into three images and try to focus on the

center image. At a certain comfortable distance, the 3D perception will occur.

Figure 12.30b shows the flat and stereoscopic views of the compound eye of a

fire ant. The size of the individual lenses in the compound eye is measured to be

about 25 mm, which is very well resolved by these images.

The DIH technique is applied to 3D ophthalmic imaging [75, 76]. The index of

refraction of the retinal layer in an excised tissue is measured from the change in the

apparent depth of the choroidal surface due to the presence of the retinal layer.

Excised human eye tissue optic nerve disk region is reconstructed in Fig. 12.31.

One can quantify the cup depth h being 355.11 mm, and the cup slope s of about 47�.
DIH is also applied to 3D biometry of finger prints [77]. For example in

Fig. 12.32, an en face cross-sectional view (C-scan) of a plastic print is shown.

The cross-sectional views in Fig. 12.32b, c clearly depict the crests and valleys of

Fig. 12.29 (a) Buildup of axial resolution by superposition of holographic images with 1, 2, 4, 8,

and 20 wavelengths. (b) Several contour images of the coin at 60 mm axial distance intervals [72]
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the friction ridges, with about 750 mm ridge periodicity and about 50 mm depth of

grooves. These are plastic prints of clay material, so the subsurface structure is of no

real interest, but there are clear evidence of signals from subsurface scattering

points. This indicates feasibility of tomography of subsurface tissue and vein

structures in live fingers, which can also be a basis of biometry.

Fig. 12.30 (a) Flat and stereoscopic images of a numeral 2 in the 2000 mintage mark of a

penny. (b) Flat and stereoscopic images of a fire ant’s compound eye. The area of each image is

1� 1 mm2 [74]

Fig. 12.31 The reconstructed volume of an excised human optic nerve disk sample. The image

volume is 1,100� 1,100� 280 mm3. (a) x–y flat view, (b) y–z cross-sections at various x values,
and (c) x–z cross-sections at various y values [76]
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12.5.2 Related Techniques and Applications of DIH

Use of a large number of wavelengths or frequencies for determination of axial

distance has been known in interferometry. The laser radar, described by Marron

et al. acquires many-wavelength holograms, and a 3D Fourier transform of the

accumulated holograms results in topographic profile of the object [78–80], such as

automotive parts [81]. Leith et al. described a spectral holography system, also

based on similar multiwavelength holography concept, and demonstrated it for a

one-dimensional object, but its implementation in 3D imaging may be difficult [82].

Instead of direct summation of the multiwavelength holograms, a digital spectral

shaping technique is shown to be effective in reducing the sidelobes of the ampli-

tude modulation function, at the expense of some resolution [83]. Instead of a

tunable laser, a combination of a superluminescent diode as a broadband source and

an acousto-optic tunable filter is used to sweep the frequency, obtaining 200 mm
range and 6.5 mm axial resolution [84].

In [85], a SDOCT system is used to acquire a 2D x–y scan of I x; y; kð Þ data,

Fourier transform of which from k to z domain produces the ordinary OCT A-scan.

However, the lateral resolution is not uniform along the entire axial depth due to the

finite focal depth. Instead, take the 2D data I x; y; kð Þ for each value of k as a

hologram for the corresponding wavelength, and proceed to compute the 3D

volumes of optical field followed by superposition of all the computed volumes,

as in the basic DIH. The technique can be very fast compared to the standard DIH,

because it does not involve wavelength scanning.

Using 20 wavelengths covering the 480–700 nm range, Depeursinge et al. has

demonstrated topographic imaging of calibratedmicrostructures with submicrometer

axial resolution [86]. They have also successfully imaged the membrane profile of

a single red blood cell [87] (Fig. 12.33).

Holographic contour generation is possible not only with multiwavelength inter-

ference, but also by changing the illumination angle. An illumination angle-scanning

DIH system is introduced by Hong et al. [88, 89]. For example, by laterally shifting

Fig. 12.32 Tomographic images of a plastic fingerprint by DIH. (a) A z-section of the three-

dimensional volume image, (b) x-sections along three vertical lines indicated by the ticks in (a),

and (c) y-sections along three horizontal lines indicated by ticks in (a). The image volume is

5.02 � 5.02 � 0.211 mm3 [77]
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the illumination lens of the Michelson interferometer, the incident angle is scanned

over a range of 14� at 0.26� steps, to obtain optical sectioned images of

microstructures with axial resolution of 10 mm (Fig. 12.34).

12.6 Tomography

12.6.1 Optical Projection Tomography

Algorithms such as used in X-ray CAT can be applied to tomographic reconstruc-

tion from optical projections, and has been applied to imaging of foams [90]

and fluorescent and nonfluorescent biological tissues [91]. Compared to other

Fig. 12.33 (a) 3D

representation of the

tomography of a red blood

cell and (b) lateral view of (a).

(Reprinted from [87] by

permission of OSA)

Fig. 12.34 Three-

dimensional rendering of a

step height standard imaged

by angle-scanning DIH.

(Reprinted from [89] by

permission of OSA)
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3D microscopy techniques, the optical projection tomography (OPT) can image

larger volumes, tens of millimeters, but is still limited by the requirement of high

transparency and homogeneity of refractive index, as well as higher computa-

tional load.

12.6.2 Optical Diffraction Tomography

In the optical diffraction tomography (ODT), or other similarly named methods, a

multitude of projections are acquired from many directions, but unlike the simple

shadow projection of OPT, one accounts for the diffraction effect and obtains phase

information of the object. Phase-shifting interferometry can be used but digital

holographic method has the advantage of single exposure from each direction.

In [92, 93], quantitative phase profiles obtained by DHM from a regularly spaced

angular positions over a 180� range are combined by inverse Radon transform

(Fig. 12.35). A tomographic volume image of the refractive-index distribution of a

cell is obtained, with accuracy of index 0.01 and spatial resolution 1 mm in all three

directions. For coverage of the illumination angles, a rotating sample chamber or a

patch clamp micropipette were used. Instead of rotating the sample, the illumina-

tion beam can be scanned using a galvo-mounted mirror, [94–96]. As well as

tomography of biological cells, ODT has been applied to holographic particle

image velocimetry [97] and imaging of optical fiber profiles [98–100]. In [101],

phase profile is calculated by using the noninterferometric phase retrieval method

of Sect. 10.2, to obtain 3D tomographic profile of optical fiber splice. Fukutake

and Milster [102] propose 3D phase-contrast microscopy by acquiring many

Fig. 12.35 Cuts in the tomographic reconstructions of two different Hyalosphenia papilio.
Discrete values of the measured refractive index n are coded in false colors, the color-coding

scales being displayed on the right part of each corresponding cut. (Reprinted from [93] by

permission of OSA)
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holograms while scanning the illumination angle and utilizing 4p configuration

of a pair of objectives. A tutorial review of tomographic diffractive microscopy

is given in [103].

12.6.3 Holographic Optical Coherence Imaging

The holographic optical coherence imaging (HOCI) is a low-coherence digital

holography technique, where a tomographic image stack is obtained by using a

femtosecond laser and varying the delay of reference light. In [104], the CCD

placed at the Fourier plane of the system is used for Fourier-domain DH, and

coherence-gated section image is obtained by Fourier transform of the hologram.

Sensitivity of 86 dB was achieved and tomographic images of tumor spheroid and

mouse eye are obtained (Fig. 12.36). In [105], a series of holograms are acquired at

1–2 fps and the speckle intensity variance of each pixel defines a motility metric

that becomes a novel imaging contrast agent. Viable tumor cells within a tissue

display large motility signals, whereas a cancer-drug-treated tissue has much

reduced motility signals (Fig. 12.37). The method combines the nanometer sensi-

tivity of interferometry with the large field of view of imaging.

12.6.4 Turbid Imaging

The ability of holography to image through a scattering medium has long been

recognized. One typically uses time gating with short-pulse lasers or coherence

gating with cw broadband source to suppress unwanted scattered light. The Fourier

synthesis holography [106] collects a series of 1D holograms using a range of

discrete wavelengths, to form a 2D array of space-wavelength dimensions. Its

Fourier transform yields a 2D array of spatial frequency-time delay dimensions.

This is used to image the first arriving light through a scattering medium.

Fig. 12.36 Mouse eye

in vitro mosaic section of the

anterior segment extracted

from ten flythroughs.

(Reprinted from [104] by

permission of OSA)
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Advantages of this method compared to short-pulse interference technique [107]

are the high fringe contrast of individual holograms and the flexibility of gating, at

the cost of substantial computational load. Equivalence of short pulse and broad

spectrum in holographic coherence gating was also demonstrated in [108].

In [109], transmission of a ~450 fs laser pulse through 1.3 cm of chicken meat

hiding 1.25 mm crossed wires leads to stretching of the pulse to ~100 ps due to

multiple scattering. The first arriving light is gated by the reference pulse, but the

holographic interference is overwhelmed by the background. Difference of two

hologram exposures substantially reduces fixed noise, and allowed imaging of the

silhouette of the wires.

In [110], thousands of holograms are acquired of an object behind scattering

surfaces illuminated by a laser. Phase images are unwrapped, which display severe

corruption by speckle noise. But averaging the phase profiles over many holograms

produced usable complex valued hologram, which, when numerically back-

propagated, produced image of the object with resolution substantially improved

compared to average of magnitude alone. The simulation and experiments were

with 1D holograms.

Phase-shifting digital holography using a SLD with coherence length of 23 mm
demonstrated the capability of LCDH to produce accurate amplitude and

phase images of a structured surface hidden in up to OD 3.0 of scattering

Fig. 12.37 Motility maps showing the response of an 820-mm-diameter tumor (at a fixed depth

of 350 mm from the tumor top) to 10 mg/ml nocodazole as a function of time (from healthy

to 120 min later). Motility in the viable shell decreases with time, showing how nocodazole

suppresses the activity of viable tumor cells. Bar, 100 mm. (Reprinted from [105] by permission

of OSA)
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medium – diluted milk [111]. On the other hand, when a LD, of unspecified but

presumed much longer coherence length, is used in the same setup, multiply

scattered light is also reconstructed, obliterating image of the hidden structure

(Fig. 12.38).
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