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Preface

Digital holography is an emergent new imaging technology that inherits many of
the unique capabilities of conventional holography but provides novel solutions to
some of the key problems that have been limiting its applications and further
development. By replacing the photochemical procedures with electronic imaging
and having a direct numerical access to the complex optical field, a wide range of
new imaging capabilities become available, many of them difficult or infeasible in
conventional holography. In recent years, research activities in digital holography
have seen exponential growth and application areas have been expanding especially
in microbiology and medical imaging. Increasing number of researchers in tradi-
tional physics and electrical engineering departments as well as all other areas
of engineering, biology, and medicine are interested in exploring the potential
capabilities of digital holography. This book is intended to provide a brief but
consistent introduction to the principles of digital holography as well as giving an
organized overview of the large number of techniques and applications being
developed. This will also shed some light on the range of possibilities for further
developments. As such, the intended audience is the students and new researchers
interested in developing new techniques and exploring new applications of digital
holography.

First chapters, 1-5, describe the basic principles of digital holography. A brief
history of holography, both conventional (or analog) and digital, is given in
Chap. 1, followed by a brief summary of scalar diffraction theory and Fourier
optics in Chap. 2 and a general description of the holography processes in Chap. 3.
Chapter 4 describes basic numerical methods of calculating optical diffraction.
Simulation examples are used to clarify the procedures as well as compare between
different methods as clearly as possible. Chapter 5 describes general behavior of the
digital holographic images as well as a small number of basic optical configurations
that are used in, or are the starting points of, most digital holography experiments.

Chapters 6—10 describe specific techniques of digital holography in some detail.
Chapter 6 highlights some of the theoretical developments that enhance the
capabilities of digital holography and applications. The zero-order (or dc) and

vii



viii Preface

twin-image terms are important issues in holography, and digital holography
provides novel approaches, as described in Chap. 7. In particular, the phase-shifting
techniques of Chap. 8 provide highly effective methods for removing the dc and
twin terms. The concept of phase shifting is also applied to a number of other
special techniques that lead to some quite remarkable capabilities, as will be seen in
later chapters. Chapters 9 and 10 collect a number of techniques developed for
special capabilities of digital holography imaging, grouped according to whether
they involve reconfiguration of hardware or involve numerical processing only.

Final two chapters survey the techniques and applications of microscopy and low-
coherence imaging. In Chap. 11, the digital holographic microscopy, and especially its
applications in quantitative phase microscopy, are described. Special techniques of
digital holographic microscopy, as well as related techniques for quantitative phase
microscopy, are surveyed. Digital holographic imaging with low-coherence sources,
described in Chap. 12, may hold particularly significant potential for novel imaging
methods that have been very difficult or unfeasible in conventional holography.

It is to be noted that the biological microscopy applications of digital holography
is emphasized here. This is one of the many areas one can expect significant amount
of new development from. But it leaves some of the other major areas such as
interferometric metrology and optical information processing outside the main
scope of this book. Certainly the book has many deficiencies, both in content and
presentations, but it is hoped that this will provide helpful starting materials and
stimulus for entering the exciting and rapidly developing field of digital holography.
Feedback of comments and corrections from readers addressed to mkkim@usf.edu
would be most appreciated.

My sincere thanks go to all the students of our Digital Holography and Microscopy
Laboratory at the University of South Florida, who have worked hard to produce many
of the nice images that are touted here. Appreciation also goes to several colleagues
who have given me insights and encouragements at important points of various phases
of research represented here, including especially Profs. C.M. Lo and D. Richards.
Special thanks to Ms. J. Burke of Springer for her unlimited patience and help with this
book project. Financial support of the National Science Foundation during much of the
research presented here is gratefully acknowledged. Finally, gratitude and affection to
my family for putting up with my absurd work habit. Now I will go take the dogs out
for a walk. . .

Tampa, FL Myung K. Kim
March 2011
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Chapter 1
Introduction

Digital holography (DH) is an emerging technology of new paradigm in general
imaging applications. By replacing the photochemical procedures of conventional
holography with electronic imaging, a door opens to a wide range of new
capabilities. Although many of the remarkable properties of holography have
been known for decades, their practical applications have been constrained because
of the cumbersome procedures and stringent requirements on equipment. A real-
time process is not feasible except for special materials and effects, such as the
photorefractives. In digital holography, the holographic interference pattern is
optically generated by superposition of object and reference beams, which is
digitally sampled by a CCD camera and transferred to a computer as an array of
numbers. The propagation of optical field is completely and accurately described by
diffraction theory, which allows numerical reconstruction of the image as an array
of complex numbers representing the amplitude and phase of the optical field.
Digital holography offers a number of significant advantages such as the ability to
acquire holograms rapidly, availability of complete amplitude and phase informa-
tion of the optical field, and versatility of the interferometric and image processing
techniques. Indeed, digital holography by numerical diffraction of optical fields
allows imaging and image processing techniques that are difficult or not feasible in
real space holography. We begin by giving a brief overview of the historical
development of holography, both the conventional or analog holography and the
digital holography.

1.1 Conventional (Analog) Holography

Holography was invented in 1948 by Dennis Gabor (British Thomson-Houston,
UK), in an effort to improve the resolution of the electron microscope, where the
correction of the electron lens aberrations posed increasing technical difficulty.
Instead of attempting to perfect the electron imaging lens, Gabor dispensed it
altogether and realized that the diffraction pattern of the electron beam contained

M.K. Kim, Digital Holographic Microscopy: Principles, Techniques, 1
and Applications, Springer Series in Optical Sciences 162,
DOI 10.1007/978-1-4419-7793-9_1, © Springer Science+Business Media, LLC 2011



2 1 Introduction

Fig. 1.1 One of the first
holograms of D. Gabor. Top:
the hologram; lower left: the
object; lower right:
reconstructed image.
(Reprinted from [2] by
permission of the Royal
Society, London)

complete information regarding the amplitude and phase of the electron wave.
The record of the electron wave diffraction is then used to optically synthesize
the object field. This allowed the use of optics of visible light for image formation,
which is much easier and developed task compared to electron optics. He named
the new imaging principle as holography, for its ability to record the whole optical
field [1-3].

Gabor’s work was inspired by the X-ray microscope of W.L. Bragg (Cavendish
Laboratory, Cambridge, UK), who drilled numerous tiny holes at the positions of the
X-ray diffraction spots, the hole sizes being proportional to the diffraction intensity.
“When a parallel monochromatic beam passes through these holes, and then through
a lens, the Fraunhofer fringes build up an image of the crystal structure” [4]. In a
sense this was a precursor of binary-coded Fourier hologram. He later used photo-
graphic plates in place of the manually drilled hole patterns [5]. On the other hand,
the “diffraction diagrams” contain information on the intensities only, but not on the
phases. Gabor realized that “if a diffraction diagram of an object is taken with
coherent illumination, and a coherent background is added to the diffracted wave,
the photograph will contain the full information on the modifications which the
illuminating wave has suffered in traversing the object” [2]. In these papers, Gabor
laid down theoretical foundations and anticipated novel and important features of
the new imaging methods, such as aberration compensation by replicating the
aberrations of the recording optics in the reconstruction optics.

Although Gabor’s demonstration experiments (Fig. 1.1) were by optical means
both for recording and reconstruction, lack of light sources of sufficiently high



1.1 Conventional (Analog) Holography 3

Fig. 1.2 One of the first holograms of a three-dimensional object by Leith & Upatnieks.
(Reprinted from [11] by permission of OSA)

coherence and intensity prevented much progress in optical holography [6, 7].
During the 1950s, the holography principle was mostly applied to electron and
X-ray microscopy, under the name of diffraction microscopy [8]. Two critical
inventions provided the trigger for a truly explosive growth of optical holography
techniques and applications. One was the powerful coherent source of light in laser
to provide high quality interference contrast. The other, due to Emmett Leith and
Juris Upatnieks (University of Michigan, Ann Arbor) [9—-12], was the off-axis
illumination with a separate reference wave, thus eliminating the problem of
the zero-order and twin images of the Gabor’s on-axis configuration. In [9], the
holography process is described from a communication theory viewpoint,
consisting of modulation, frequency dispersion, and square-law detection. They
note that “a complex signal of bandwidth W can be represented by a real signal of
bandwidth 2W, in which the real signal is derived from the complex one by placing
the signal on a carrier and using only the real part,” which immediately suggests the
off-axis configuration. They have demonstrated reconstruction of two types of
objects, which are not suitable for Gabor process: objects which do not transmit a
strong background wave (e.g., transparent lettering against a dark background) and
continuous-tone objects. In 1964, they demonstrated holographic reconstruction of
three-dimensional solid objects (Fig. 1.2), which resemble to a high degree the
original objects, for example, they are three dimensional and exhibit a parallax
between near and more distant objects [11].

Soon many new techniques and applications of holography began to develop.
The holography is now a mature field, and an excellent survey is given, for
example, in [13]. All different types of lasers have been used for generation and
viewing of holograms, from diode lasers to high power gas lasers, covering not only
the visible wavelengths but also the infrared, ultraviolet, and X-ray [14, 15]. The
white-light reflection holography developed by Yuri N. Denisyuk (USSR) [16, 17]
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and by Stephen Benton (Polaroid Corp.) [18] made many practical display
applications possible and now are ubiquitous such as on credit cards. Many
different types of recording materials have been developed, including silver halide
photographic emulsion, dichromated gelatin, photoresists, and photopolymers.
In photorefractive crystals, such as LiNbOj, exposure of light causes reversible
changes in index of refraction, and can be used for creating holograms. Volume
holograms have distinct properties compared to the usual planar holograms, such as
the requirement of phase matching for Bragg diffraction. Similarly, a number of
nonlinear optical effects also give rise to reversible or real-time holographic
diffraction and phase conjugate image formation processes, including four-wave
mixing, spectral hole burning, and photon echoes [19]. In fact, the holography
provides a unifying principle for understanding a wide range of nonlinear optical
phenomena.

A most important engineering application of holography is in interferometry.
Because the phase as well as the intensity information is reconstructed, wavefronts
which were originally separated in time or space or even wavefronts of different
wavelengths can be compared by holographic interferometry [20]. Changes in the
shape of objects with rough surfaces can be studied with interferometric precision
and allows nondestructive testing of deformation, vibration, and surface contours,
as well as variations in refractive indices due to thermal, chemical, and biological
processes. A large number of holographic interferometry techniques have been
developed, including double exposure holography, time average holography,
heterodyne holography, phase-shifting interferometry, multiwavelength interfer-
ometry, and speckle interferometry. In fact, digital holography evolved naturally
from the effort to utilize electronic imaging in interferometry, such as in electronic
speckle pattern interferometry (ESPI) [21].

Holograms can store not only three-dimensional images of objects, but also any
types of properly encoded data. Holographic data storage provides a number of
advantages including high capacity and high speed parallel processing. Volume
hologram materials such as photorefractives, photopolymers, and nonlinear crystals
are potential candidates for such applications. Holographic data storage can also be
tightly integrated with various powerful techniques of holographic image
processing, such as encryption, pattern recognition, associative memory, and neural
network [22].

We also note two specific holographic imaging applications, namely holo-
graphic microscopy and particle analysis. In conventional microscopy, the depth
of field is very narrow and decreases as the square of the magnification. At a given
focal position of the microscope, the observed field consists of the focal plane
sharply in focus together with the blurred background of the out-of-focus planes of
the extended object. A photomicrograph or a single frame of video microscopy
records the single focal plane, and the information on the rest of the object volume
is lost. With holographic microscopy, the entire volume of an object can be
recorded on a single hologram [23, 24]. Although these are obvious advantages
for recording dynamic scenes of microbes and particles in a volume, holographic
microscopy has thus far found limited practical applications. The holographic
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image magnification can be achieved by using different wavelengths or curvatures
for recording and reconstruction of hologram, but the range of wavelengths of
available coherent sources is very limited and curvature mismatch leads to
aberrations. In a more successful approach, microscopically recorded holograms
are examined using a conventional microscope, which is very useful for phase and
interference microscopy [25].

1.2 Digital Holography

The propagation of optical field is completely and accurately described by
diffraction theory and therefore amenable to numerical computation. The first
demonstration of feasibility of numerical reconstruction of hologram was by
Joseph Goodman (Stanford University) et al. in 1967 [26]. Summarizing their
description, the pattern of interference between the reference and object waves is
directly detected on the photosensitive surface of the vidicon (lens assembly
removed). The output of the vidicon is sampled in a 256 x 256 array, and
quantized to eight gray levels. The PDP-6 computer is programmed to perform a
two-dimensional Fourier transform of the array, and to take the squared modulus
of the result. A Cooley-Tukey algorithm (i.e., fast Fourier transform, FFT) is
employed, allowing the image to be obtained with 5 min of computation time. The
computer output is presented optically on an oscilloscope display (Fig. 1.3).
Another precursor to digital holography was a Fourier-transform holographic
microscope by Haddad et al. (Los Alamos National Laboratory) in 1992 [27].
They used a tiny drop of glycerol as a lens to create the spherically diverging
reference illumination necessary for Fourier-transform holography. They have
used a customized CCD with a sensitive area of 2,048 x 2,048 square pixels
with 9 pm pixel pitch. FFT calculations on a PC produced microholographic
images of an ascaris section. Processing with a numerical lens demonstrated
numerical focusing to different focal distances.

Starting in 1994, UIf Schnars and Werner Jueptner (University of Bremen,
Germany), published a number of experiments on CCD recording and numerical
reconstruction of holograms in Fresnel off-axis configurations (Fig. 1.4), and
demonstrated the feasibility of its use in metrology of macroscopic objects
[28-30]. By this time, the CCD cameras and computing technologies have devel-
oped to a sufficient level for practical implementation of digital holography, and
increasing number of researchers began developing new techniques and
applications, as will be described in the rest of this book. In 1999, Christian
Depeursinge’s group (Ecole Polytechnique Fédérale de Lausanne, Switzerland)
demonstrated quantitative phase microscopy by digital holography, that directly
produces a surface profile with less than a few nanometer effective noise (Fig. 1.5)
[31, 32]. Conventional, that is, analog, holography also reconstructs the phase
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Fig. 1.3 Digitally computed
image from electronically
detected hologram, by

J. Goodman. (Reprinted from
[26] by permission of AIP)

Fig. 1.4 One of the first
digital holograms of

W. Jueptner and U. Schnars.
(Reprinted from [29] by
permission of OSA)

information, but in order to extract the phase information one has to perform
another interference experiment, whereas in digital holography, the phase informa-
tion is directly available as soon as the optical field is calculated as a set of complex
numbers. The quantitative phase microscopy is an important aspect of digital
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Fig. 1.5 Phase-contrast
image obtained with a

pure phase object, by C.
Depeursinge et al. (Reprinted
from [31] by permission

of OSA)

holography, allowing many imaging and processing capabilities that are difficult or
infeasible in real space holography [33].

Various useful and special techniques have been developed to enhance the
capabilities and to extend the range of applications. In digital holographic micros-
copy, a single hologram is used to numerically focus on the holographic image
at any distance [34, 35]. Direct access to the phase information leads to quantita-
tive phase microscopy with nanometer sensitivity of transparent or reflective
phase objects [31, 36, 37], and allows further manipulations such as aberration
correction [38]. Multiwavelength optical phase unwrapping is a fast and robust
method for removing 2n-discontinuities compared to software algorithm-based
methods [39]. A significant constraint of digital holography is the pixel count and
resolution of the imaging devices. Suppression of the zero-order and the twin
images by phase-shifting digital holography allows efficient use of the pixel
array [40]. Digital Gabor holography, without separate reference beam, is useful
for particle imaging applications by providing four-dimensional space—time
record of particle fields [41]. Having a close root in electronic speckle pattern
interferometry (ESPI) [21], metrology of deformations and vibrations is a
major application area of digital holography [42, 43]. Optical processing, such
as pattern recognition and encryption, by digital holography also offers new
capabilities [44].

The accelerating development of digital holography is in no small part due to the
advances in computational power. Using a modest personal computer, a 2D FFT of
1,024 x 1,024 array, for example, takes a fraction of a second, compared to many
minutes of photochemical processing in conventional holography. A typical sensi-
tivity of a photographic plate is ~10° photons per um?, whereas a CCD sensitivity
can be ~10° photons per pm? without much effort. This translates to a large reduction
in the exposure time as well as substantially simpler requirements on the apparatus
stability against vibrations and other disturbances. With these parameters, it is easy
to foresee that the strength and versatility of digital holography techniques will only
continue to increase at a robust rate.

The term digital holography (DH) is used in a few different contexts. One is a
narrow meaning as used in this book, namely, the optical generation of a hologram
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followed by electronic acquisition and numerical reconstruction of the image.
Another is the opposite process of calculating the holographic interference numeri-
cally, followed by printing or other output to real space so that the reconstruction
can be carried out by optical means. This is now more commonly referred to as the
computer-generated hologram (CGH). The CGH has a somewhat longer history,
and earlier in its development, DH and CGH were basically synonymous [45-47].
In 1967, A.W. Lohmann and D.P. Paris (IBM) showed that “when a hologram is
desired from an object which does not exist physically but is known in mathemati-
cal terms, one can compute the hologram” [48]. A plotter was used to make a
drawing at a larger scale, which is then reduced photographically. In order to
represent the phase using a black-and-white plotter, they introduced a technique
called binary detour-phase hologram, where the position of a plotted pixel is shifted
according to the phase. The resulting optically reconstructed images were
completely analogous to ones produced with gray-scale holograms. CGH can be
used to produce holograms of fictitious objects with prescribed intensity and phase
structure. Many computation techniques have been developed as well as the means
of optical reconstruction.

The following is a short list of some of the recent books, feature issues and
review papers that may be of general interest.

e J. Goodman, Introduction to Fourier optics (Roberts & Co., 2005).

e P. Hariharan, Optical Holography: Principles, Techniques, and Applications,
2 ed. (Cambridge University Press, 1996).

e L. Yaroslavsky, Digital holography and digital image processing: principles,
methods, algorithms (Kluwer Academic, 2004).

e W. Jueptner, and U. Schnars, Digital Holography: Digital Hologram Recording,
Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin
Heidelberg, 2005).

e T. Kreis, Handbook of holographic interferometry: Optical and digital methods
(Wiley-VCH, 2005).

» T. Poon, ed. Digital holography and three-dimensional display: principles and
applications (Springer, 2006).

e T.C.Poon, T. Yatagai, and W. Juptner, “Digital holography — coherent optics of
the 21st century: introduction,” Applied Optics 45, 821-821 (2006).

» T. C. Poon, B. Lee, H. Yoshikawa, and W. Osten, “Digital holography and 3D
imaging: introduction to the feature issue,” Applied Optics 47, DH1-DH1
(2008).

e T.C. Poon, B. Lee, H. Yoshikawa, and J. Rosen, “Digital Holography and 3-D
Imaging: feature introduction,” Applied Optics 48, DH2-DH2 (2009).

« P. Banerjee, G. Barbastathis, M. K. Kim, and N. Kukhtarev, “Digital holography
and 3-D imaging,” Appl. Opt. 50, DH1-DH2 (2011).

e U. Schnars, and W. P. O. Juptner, “Digital recording and numerical reconstruc-
tion of holograms,” Measurement Science & Technology 13, R85-R101 (2002).

¢ M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE
Reviews 1, 1-50 (2010).
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Chapter 2
Diffraction and Fourier Optics

Diffraction and Fourier optics are at the foundation of the theory of holographic image
formation and therefore essential in the description of holographic processes and
techniques. In this chapter, we review the scalar diffraction theory, which is used to
describe the propagation of the optical field from an input plane to the output plane.
The propagation of light through a lens is an essential part of any imaging system, and
its mathematical description is relevant to holographic image formation as well.

2.1 Fourier Transform and Mathematical Background

We begin with a brief summary of basic results from Fourier analysis and related
mathematical background, mostly without proof, the main purpose being
establishing basic notations and collecting in one place useful expressions that
are frequently used in Fourier optics [1].

2.1.1 One-Dimensional Definition

In a one-dimensional (1D) system, according to the Fourier theorem, if f(x) is a
reasonably well-behaved function, then it can be decomposed into a superposition of
sine and cosine functions, or imaginary exponentials, of various frequencies. (Note
that in this book, the term frequency will usually refer to the spatial frequencies.) The
amplitudes of the decomposition are the Fourier transform of the function, thus

f) = % / Z AKF (k) exp(ike) = 5~ {F ()} [,

1 o0
Fk:—/ dxf (x) exp(—ikx) = §{f(x) } k] (2.1)
(k) ol f (x) exp(—ikx) = §{f(x)} k]
M.K. Kim, Digital Holographic Microscopy: Principles, Techniques, 11

and Applications, Springer Series in Optical Sciences 162,
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Table 2.1 Examples of Fourier transform pairs. See Fig. 2.1 for illustrations

[ F{Sf K]
F) = 5(x — xo0) F(k) = \/% exp(—ikxo)
fx) = 0(x = x0) + &(x + x0) F(k) = \/zcos(kxo) Fig. 2.1a
f(x) = exp(ikox) F(k) = V2r(k — ko)
f(x) = cos(kox) F(k) \/7{5 (k — ko) + 0(k + ko) }
() = rect (2) F(k) = \/:asmc(ka) Fig. 2.1b
B l;x € [—a,a] 7; sin(k
B {0; otherwise = \/%a k(aa)
x? a ig. 2.1c
f(x) =exp (— ?) F(k) = 7 exp <f%a2k2> Fig. 2.1
f(x) =exp (%axz) F(k) = é exp (,é g) Fig. 2.1d
fx) = co:bG) F(k) = @comb (2 k/g) Fig. 2.1e
:n;ooé(x—na) z%: 5(1(7 7)

The particular notation with square brackets is used to explicitly display the
variable of transform. Examples of the Fourier transform pairs are listed in Table 2.1
and illustrated in Fig. 2.1. Thus, an even (odd) pair of delta functions transforms to
cosine (sine) function. A rectangle function transforms to a sinc function. The
transforms of Gaussian, chirp, or comb functions transform respectively to the
same type of functions.

2.1.2 Two-Dimensional Definition
For a two-dimensional (2D) system, the Fourier transform is written as
f(x,y) //dk dkyF (ky, ky) expli(kux + kyy) | = & {F (ke ky) }x, 3],
F(ky, ky) = / dxdyf (x,y) exp[—i(kwx + kyy) | = S{f(x, )} [k, &y ] (2.2)

Generalization to N-dimensional system is straightforward, noting that the factor
V27 in (2.1) becomes (21)"/?.
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Fig. 2.1 Examples of Fourier transform pairs



14 2 Diffraction and Fourier Optics

Fig. 2.2 (a) Rectangular aperture and its Fourier transform. (b) Circular aperture and its Fourier
transform

2.1.3 Cartesian Geometry

If the function is separable in Cartesian coordinates, f(x,y) = f:(x) f,(y), then so is
the transform:

§{f(x,3)} = {0} {H0) ], (2.3)
that is,
F(ke, ky) = Fy(ke)Fy (ky). (2.4)

An important example is a rectangular aperture,

fx,y) =rect (£> rect <1> , (2.5)
ay ay

whose transform is
2 . .
F(ky, ky) = —ay aysinc (kay)sinc (kyay). (2.6)

The function ‘F (kx, ky) ‘2 is illustrated in Fig. 2.2a with f (x, y) displayed in the inset.
Note that the horizontal orientation of the long side of the rectangle results in the
vertical orientation of the central bright spot in the transform. This is an example of
the uncertainty principle that higher localization in the spatial dimension
corresponds to larger spread in the frequency dimension, and vice versa.



2.1 Fourier Transform and Mathematical Background 15
2.1.4 Cylindrical Geometry

If the 2D function is given in cylindrical coordinates, with

= kv( = k
TTPESY and TR 2.7)
y=psing ky = ksinnp

then the Fourier transform is

1 o0 27
F(k,m) =7 /O pdp /0 deef (p, ) exp[—ikp cos(p — n)]. 2.8)

If the function has cylindrical symmetry, so that f = f(p), then

F(k,n) = /0 oof(p)pJo(kp)dp = B{f(p)}K], (2.9)

which is called the Fourier—Bessel transform. An important example is a circular
aperture of radius a:

1 p<a
f(P){O p>a (2.10)

Its Fourier transform is the Airy disk, illustrated in Fig. 2.2b:

F) = [ plko)dp = ko) @.11)

The first zero of the Bessel function J; (x) is at x & 3.83, which defines the size of
the Airy disk. This is also to be compared with the first zero of sinc function sinc(x)
atx =mn ~3.14.

2.1.5 Basic Properties of Fourier Transforms

We list several of the well-known properties of Fourier transform in Table 2.2. The
similarity property shows that if the function fis stretched in the x-direction, then its
transform is shrunk in corresponding direction k,. The shift theorem states that a
shift of the spatial position of a function amounts to an additional phase oscillation
in the frequency domain, which is the basis of the large field of interferometry. In
the uncertainty relation, the uncertainties are defined as the root-mean-square
deviation.
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Table 2.2 Basic theorems of Fourier transform

Linearity: 8{of + pg} = oF + G
—— 1k
Similarity: F{f(ax)} = |a|F<a>
F{f(=x)} = F(=k)
Shift Property §{f(x —x0)} = (k)e—ilam
Parseval’s Theorem: o f)dx = e k)|Pdk
Uncertainty principle: AxAk > 1
Repeated transforms: §§{f(0)} = '5{f(0)} =f(x)
F5{f ()} =f(=x)
2.1.6 Convolution and Correlation
Another important result is the convolution theorem,
§{f © g} = V2nF G, (2.12)
where the convolution of two functions is defined as
fogx /dx' Ng(x —xX') =g O f(x). (2.13)

In particular, the convolution of a function g(x) with a delta function é(x — xp)
located at x = xj copies the function to that location,

O(x — x0) © g(x) = g(x — xp). (2.14)

Considering that any function f(x) is a superposition of many delta functions with
different amplitudes and positions, the convolution of f(x) with a “spread function”
g(x) is simply a similar superposition of many copies of g(x) with corresponding
amplitudes and positions. This is illustrated in Fig. 2.3, where the function f(x)
representing a pattern of point sources in the Big Dipper is convolved with the
spread function g(x) to yield the “image” that includes the effect of the spread
function.
Relatedly, the cross-correlation of two functions is defined as

f gl /dxf (W — x) = £(x) © g"(—x) 2.15)
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Fig. 2.4 Example of correlation. (a) Input image, (b) search image, and (c) result

and one can also write

§{f®g}=V2rFG" (2.16)

In particular, the correlation of a function with itself is called the auto-correlation,
FEft) = [ar@r e - @.17)

It is clear that if the function f(x) is highly random, then f ® £(0)= [ d¥'|f(x')[,
while for x # 0, f ® f(x) =~ 0. If g(x) is a shifted copy or partial copy of f(x), then
the cross-correlation has a large peak corresponding to the shift, which is the basis
of pattern recognition by cross-correlation. In Fig. 2.4, the cross-correlation of the
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map of the University of South Florida with a small area from it identifies the
location of the Physics building. Roughly speaking, the lateral size of the correla-
tion peak indicates the distance beyond which the randomness sets in.

2.1.7 Some Useful Formulas

Here we list some of the useful formulas that may come in handy throughout the
discussions of diffraction and Fourier optics. Delta functions have numerous
representations, including

1 a
d(x —x) = lim = ——
(x = xo) 0Tt
L 1 (x — xo)*
5(x—x0)(lllir(1)\/ﬁaexp[—a2 ,

1 _
ox —xp) = Ll]l_{% %sim:(x axo)’

o(x —xp) = % /dk exp[ik(x — xp)],

o(r—rp) =

(271I)3 / d’kexplik o (r o)) (2.18)

Note that the delta function in N-dimension has the dimensions of (length) -,

The Gaussian integrals are needed frequently:

/ N exp(—px*)dx = \/g, (2.19)
00 5 T qZ
/ exp(—px* + gx)dx = \/];exp <%> , (2.20)

which are valid for any complex number p whose real part is nonnegative,
Re{p}=0. And finally,

/ h sine(ax)dx = g 2.21)

o0

©< 1 T
——dx=—. 2.22
/_oox2+a2 a 2.22)
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2.2 Scalar Diffraction Theory

The theory of propagation and diffraction of electromagnetic fields has a long history
of development and has many subtleties that need to be considered carefully in order to
arrive at accurate and consistent results [2]. In-depth discussions can be found in a
number of authoritative textbooks such as [3, 4]. Here we take a practical approach and
take the Fresnel-Kirchoff diffraction formula as the starting point, which is known to
yield highly accurate results for a wide range of configurations. Referring to Fig. 2.5, a
spherical wave from the point source at S illuminates the aperture X:

expli(kr’ — wt)] ‘

Es =FE 223
x =Es o (2.23)
The field at a point P behind the aperture is then given by
. . "
&:—l£¢“”<m§@ﬂﬂiﬂ@—ﬁyﬁ, (2.24)
4n rr!

z

where the carets () represent unit vectors along the relevant directions. This
expression can be interpreted in terms of Huygens principle [2, 5], where the field
at a point in the aperture gives rise to a secondary spherical wavelet proportional to

exp(ikr) .. - o
= (f—r') on. (2.25)

The obliquity factor 1(F — l:/) ef becomes Fen or —r'en in Rayleigh—

Sommerfeld theory, depending on the boundary conditions imposed on the screen
2. When the propagation is paraxial, the obliquity factor becomes close to unity in all
three cases, which we take to be the case. The field at the observation point P is then

. .
@:—i/@&§Wﬁ. (2.26)
2n 7

z

4

, | 4
L P
Fig. 2.5 Geometry of S

Fresnel-Kirchoff diffraction
formula. S Source point,
P observation point
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2.3 Diffraction from a 2D Aperture

To be more specific, we consider the geometry of Fig. 2.6, where the input field
E(x0, o) on the input plane X, propagates along the general z-direction and results
in the output field E(x, y; z) on the output plane X. Then (2.26) is written as

kr
E(x,y;z) = ——// dxodyoEo(x0, yo) p( )

P

//dxodyoEo (x0,0) exp {lk\/()c—xo =y’ +22|, 227

where we made a further approximation of r ~ z in the denominator, but not in the
exponent. This integral is a convolution

E(x,y;z) =Ey ® Su (2.28)

with the kernel
Su(x,y;z) = — ik exp [ik X24+yr+ 22} (2.29)
) ) 27TZ )

which is also referred to as the point spread function (PSF). (More precisely, this is
a coherent spread function.) We will refer to this as the Huygens PSF, as far as the
integral representing the Huygens spherical wavelet propagation.

\

(x.y)

Fig. 2.6 Geometry of diffraction from a 2D aperture
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2.3.1 Paraxial (Fresnel) Approximation

For theoretical developments and other purposes, it is often useful to make paraxial,
or Fresnel, approximation of the PSF

(x — Xo)z + (y — )’0)2
2z ’

r= \/(x —x0) + (—yo) + 2zt (2.30)

2
which is valid for 22 > £ [(x —x0)+ (- yo)z} . Then the Fresnel PSF is

Sp(x,y;2) = — 21—71; exp(ikz) exp {IZ—IZ (P + yz)} ’ (2.31)

where the spherical wavefront is approximated with a parabolic wavefront, or a 2D
chirp function. The diffraction field is expressed with a single Fourier transform of
spatial frequencies

ke =k ky=k2. (2.32)
Z Z
Thus
ik . ik 2 2
E(x,y;z) = o P (zkz) dxodyoEo(X07YO) eXp\ 52 {(x —X0)” 4 (y = Yo) } )
_ ik 2
=5, P (ikz) exp 5 ( +y%)

ik ik
X / dxodyoEo(xo,y0) exp {22 (X(Z) ‘H%)] exp [— < (xx0 + )’YO)} ;

ik ik ik
— —l; exp(ikz) exp [& (x2 +y2)] g{Eo(xo,yo) exp [2 (xo +yo)} } [kx,ky]
(2.33)

or

ik
E(x,y;z) = Znexp[z (@ +y )} F{Eo(x0,Y0) Se(x0,y0;2)} [k by ] (2.34)

This is also referred to as the Fresnel transform.
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2.3.2 Fraunhofer Diffraction

2 4 \2
L . Xp + .
If we make further approximation and ignore terms of order 0—2)10 < 1 to write

X2+ y? _ XXo + Yo

r~z+4
2z z

(2.35)

then the output field is proportional to the Fourier transform of the input field:

ik . ik ik
E(x,y;z) = g exp(ikz) CXP{Z (+* +y2)} //dxodyoEo(xo,yo)exp {—?(xxo +y)’o)} ,
p}
= —%exp(ikz) exp {;—]Z (¥ +y2)] F{Eo(x0,Y0)} [k, ky ] (2.36)

Therefore, for example, the Fraunhofer diffraction pattern of a rectangular aperture
is a sinc function and for a circular aperture it is an Airy disk pattern, as is well
known.

2.4 Propagation of Angular Spectrum

An alternative approach to describing the diffraction is given by the angular
spectrum or the plane-wave decomposition. Analytically, the angular spectrum
approach is shown to be equivalent to the Huygens convolution described above.
On the other hand, the angular spectrum picture has the advantage of being more
intuitive and free from some of the subtle difficulties of boundary conditions. It also
leads to a more robust and trouble-free numerical calculations of diffraction, as we
will see in later chapters.
Given an input field Eq(xo, yo), its Fourier transform

1
Ao (ke ky) = §{Eo} = o / dxodyoEo (X0, yo) exp[—i(kexo + kyyo)]  (2.37)
%y

describes the amplitudes of various plane-wave components that comprise the input
pattern, according to the basic principle of Fourier transform, depicted in Fig. 2.7.
The input field Eo(xo, yo) is of course the inverse Fourier transform of the angular
spectrum:

1
Eo(x0,v0) = § YAy} = > // dk.dk,Ag (ky, ky) exp i (koo + kyyo) ] (2.38)
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Fig. 2.7 Propagation of a
plane-wave component
in the angular spectrum K

E
L 0(X0:Yo) " E(xy)

The complex exponential exp [i (kxxo + kyyg)} is the projection on the (xo,yo)-
plane of a plane wave propagating along the wave vector k = (ky, ky, k.), where

k. = \Jk* — k2 — k% (2.39)

Thus the input field Eo(xo, o) can be viewed as a projection of many plane-wave
components propagating in various directions k = (kx, ky, kz) , with complex ampli-
tude of each component given by Ag (kx, ky). After propagation over a distance z,
each plane-wave component acquires a phase factor exp(ik.z), so that the output
field is given by

E(x,y;z) = % // dk dkyAg (k. ky) expli(kex + kyy + koz) ], (2.40)
2o

which is an inverse Fourier transform of A (k, ky) exp(ik.z):

E(x,y;z) = 8! {Ao (kx,ky) exp [i K —k?— kyzz} }[x, yl,

=g! {é}{Eo} exp {i K — k2 — kyzz] } (2.41)

One can make several observations here. First, the square root factor in the
exponent requires that

ke + k2 <k (2.42)
That is, the diffraction imposes a low-pass filtering of the input spatial frequencies.

Input spatial structures finer than the wavelength do not propagate to far field.
Only near field probes can access such evanescent field. Second, note that the
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description is based only on the fundamental properties of Fourier transform,
without having to invoke particular boundary conditions. Third, the physical picture
of diffraction is constructed from a set of plane waves, which by definition is well-
behaved everywhere in space. On the other hand, the Huygens principle and
Rayleigh—Sommerfeld theory are all built up from the behavior of spherical
waves of point sources, which inherently involves singularities at the point sources.
Note the factor r ~ z in the denominator of (2.34), whereas the angular spectrum
result (2.41) does not have such factor. These observations have important
consequences when we discretize the integrals for numerical calculation of the
diffraction in Chap. 4.

Still, the angular spectrum result is equivalent to the convolution result, as
shown in [6]. First, expand the expressions for the Fourier and inverse transforms
in (2.41)

1 .
By = // dxodyoo (xo, o) // dkydky exp ifk (x — o)y (y — y0)]
) o

exp (i k2 — k2 — kyzz) ,
1
=5 //dxod)’oEo(Xo;)’0)5_1 {exp [i k2 — k- kyzz} }[x — X0, — Yol-
TT

Z(i
(2.43)

Noting the following Fourier transform

5{exp [ik\/x2 +y2+ 22} } [kX7 ky} = % exp {i K2 — k2 — kyzz] , (2.44)

(2.41) is indeed seen to be the Huygens convolution,
E(x,y;z) = Eo © Su. (2.45)

If we take the paraxial approximation

ke + ky?
k.~ k — ¥’ 2 46
2k (2.46)
then
k2 + k2
E(x,y;z) = exp(ikz)éfl{éf{EO} exp [—i%z} }7
= Eo© 5. (2.47)

Obviously, the angular spectrum method under paraxial approximation is equiva-
lent to the Fresnel transform as well.
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2.5 Propagation Through a Lens

We now describe the propagation of an optical field through a lens. We use the
paraxial approximation and Fresnel transform expression of diffraction, which
allow us to describe the process in closed analytical forms. For a thin lens of
focal length f, its effect is to introduce a quadratic phase in the transmitted optical
field (Fig. 2.8),

E'(x,y) = E(x,y) exp [—% (x2 + yz)] = E(x,y)¥s(x,y). (2.48)

Refer to Fig. 2.9 and consider the propagation of light from the input plane, Xy, to
the output plane, X, through the lens at ¥'-plane. The three planes X, X', and X;
are positioned at z = 0, zo, and zg + z;, respectively. The input field is E(xo, yo)-
The field at the entrance pupil of the lens is the Fresnel transform of the input field
over a distance z,

ik . ik
E'(X,y') = —5—— exp(ikz) / dxodyoEo(x0,Y0) €Xpq 75— [(xl —x0)’ + (O — yo)z} .
277,’2() 220
2y
(2.49)
Fig. 2.8 Transmission E(xy) X E'(x,y)
through a thin lens \\ /

L}

m/".
lWH z

f

E'(X.y)

Fig. 2.9 Geometry of imaging by a lens
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To save space, here and occasionally elsewhere, we will abbreviate all (x,y) terms
with (x) expressions only — the missing (y) terms should be clear from the context.
For example, (2.49) is abbreviated as

E'(X,y) = exp(ikzo) / dxoEo(x0) exp [zk (' — xo)z}. (2.50)

P}

27t
The field at the exit pupil of the lens becomes

ik . ik ik
E'(X,y) = - 2nz0 exp(ikzo) eXP(— 2_fx/2> / dxoEo(xo) exp [2_20 (- Xo)z} < (2.51)
o

Further propagation over the distance z; yields the output field

2

El(xl,yl)z—mexp[ik(zo—ﬁ—zl)]/ dxoEo(xp)
ik ik
/dx’exp[ X0) —2—fx'2+2—21(x1—x’)2},
k? ik
o exp[zk(zo+zl)]exp dxoEo(x0) exp 2—x0
/ ; {ik 2 .<Xo Xl) /]
x [ dX'exp|—x"—ik| —+— x|,
2q Z0 23
zk ik ikx
= s [lk(zo+zl)]exp<x1>/ dX()E() X(])exp<2 2 Z/1X()>,
(2.52)
where
I 1 1 1
qg z20 f =z’
) Z0%1 2021
=—=z0+2z1 ——F,
q f
2 (2.53)
Z/O _ 0
Z0— 4
2/1 = Z% .
z1—4q

One may note some similarity and difference with the Fresnel diffraction (2.33).
We can use (2.52) to derive some of the familiar properties of the lens.
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2.5.1 Fourier Transform by a Lens

Let z; = f. Then g = z and z, — o0, so that

Ei(x1,y) = —;—k explik(zo +f)] exp [%x%] F{Eo(x0) }[kx] (2.54)

Jx k
with k, = —' and k, = L If, further, z = z; = £, then

f o f
El(xl,yl) = —;—k CXp(Zlkf)g{E()(X())}[kx] (255)

and the fields at the two focal planes are Fourier transform of each other.

2.5.2 Imaging by a Lens

If 1/g = (1/z0) + (1/z1) — (1/f) = 0, then re-evaluate the integrals in the second
line of (2.51) as

k? ik
E\(x1,y1) = e explik(zo + z1)] exp (Z—X ) / dxoEo(x0) exp (2 x0>

x/ dx’exp{—ik(—oJr—l)x'],
Z0 1
2/

ik
__x explik(zo + z1)] exp( : 2)
Z 2z Z1

ik Z0
dxoE, —x2 )0 =
></ 0 o(xo)eXP<ZZOXo) <xo+zlxl>,
%

= — 20 explik(zo + z1)] exp (2f )EO (——x1>. (2.56)

Z1

This expression accounts for the amplitude scaling (—zo/z;) and the image inver-
sion and magnification Eo(—(zo/z1 )x;). The lateral magnification is M, = —Z. The
quadratic phase term is due to the fact that the object 2 and image X planes are not
spherical from the center of the lens.
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2.5.3 Lens of Finite Aperture

If the finite aperture of the lens or presence of aberrations is represented with an
aperture amplitude function A(x’, "), so that /, is replaced with Ay, in (2.48), then,
at the image position where é =0,

% , ik
E\(x1,y1) = e {exp[zk(zo +z1)]exp <2x1 > }

//deEO Xo exp(—xo ) //dx’A exp [—lk<x0 xl) /},
_— WOZI {1 Zﬂ/dxo Eo(xo) exp (Z’ZOX(E) §{A} {5 (xo — fl):| )

_ 275)21 (. -}{EO()EI) exp (z’;i)xlz) } © §{A) {%xl]

k? ik
= Smeem explik(zo + z1)] exp (21—1)(12)
ik z
X {EO (—Zox1> exp( = 2> } ©) S{A}[ } (2.57)
A 221 A
where

So=—lxy; F=-2x (2.58)

0 7

That is, the image is convolved (i.e., smoothed) with the Fourier transform of the
aperture function.
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Chapter 3
Principles of Holography

3.1 Introduction

The basic principle of holography consists of the recording of the hologram by
interference between the object wave and the reference wave followed by the
diffraction and propagation of another reference wave resulting in the formation
of the holographic image. This is illustrated with two elementary holograms:
holography of plane waves and holography of point sources. Holography can be
realized through a large range of materials and optical processes. A brief overview
of the holographic processes is given below.

3.2 Basic Concept

Figure 3.1 depicts general concepts of conventional and digital holography. Light
reflected from, or transmitted through an object arrives at the hologram plane while
another light wave, the reference, simultaneously illuminates the hologram plane.
The superposition and interference of the two light waves result in fringe or speckle
patterns, which are then recorded by an intensity-sensitive medium or device. The
system may include other optical elements such as lenses and mirrors to manipulate
magnifications and other parameters. The reference light may be a plane wave or
spherical wave. Or it may be of more complicated structure, but a requirement is
that it be of known or well-controlled structure, so that it may be replicated in
the read process. To reconstruct or read the hologram, another reference wave
illuminates the hologram, which then diffracts from the fringe or speckle patterns.
One of the diffracted waves forms an image which reproduces the original object
wave in both the amplitude and the phase. It is the reconstruction of the whole
optical field, including the phase, that gives rise to a multitude of unique properties
and applications of holography, in contrast to photography which can only repro-
duce the intensity.

M.K. Kim, Digital Holographic Microscopy: Principles, Techniques, 29
and Applications, Springer Series in Optical Sciences 162,
DOI 10.1007/978-1-4419-7793-9_3, © Springer Science+Business Media, LLC 2011
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Fig. 3.1 Basic concept of (a) the conventional holography and (b) the digital holography

In the conventional real space holography (Fig. 3.1a), the hologram is recorded
on a photographic plate or any other media whose optical transmission or reflec-
tion property changes in response to the light intensity impinging on it. Recording
and reconstruction both take place in real space using real light and real optical
components. On the other hand, propagation and diffraction of light is completely
and accurately described by electromagnetic diffraction theory. Therefore, it is
possible to simulate part or all of the holography process by numerical computa-
tion. In computer-generated holography (CGH), the hologram is calculated
numerically inside a computer and the result is printed photographically or
projected on an electronic device such as a spatial light modulator (SLM).
Reconstruction then takes place in real space with real light. Conversely, in digital
holography (DH) (Fig. 3.1b) the recording process is in real space, but the
hologram is captured on an electronic camera, such as CCD or CMOS cameras,
and transferred to a computer in a digital form. The reconstruction is carried out
numerically inside the computer, whose result is displayed on the monitor or
stored or output electronically for further processing and manipulation. Numerical
processing of holograms in CGH and DH lead to a wide range of unique properties
and capabilities [1, 2].

¢ In CGH, holograms can be produced of fictitious objects that are unlikely or
impossible in real space, such as objects of unusual phase topology.

¢ Compared to photochemical recording, electronic recording by CCD or CMOS
sensors is much faster, more controllable, and closer to linear sensitivity. It is
also more economical in the long run by not requiring a dark room, chemical
supplies, and the photo-processing labor.

« In DH, holograms can be processed in ways that are difficult or infeasible in real
space, such as superposition of multiple holograms illuminated with different
wavelengths.
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* One of the most important distinctions of DH is the direct access to the phase
of the optical field. The real space holography does reproduce the phase of
the optical field, but it is not directly available to human observer or intensity-
sensitive detectors until another interferometric experiment is carried out. On the
other hand, in DH, the calculation of the optical field gives immediate access to
an array of complex numbers that includes the phase information.

e An important issue is the resolution. Current electronic camera resolution,
at several microns or more, is at least an order of magnitude lower than photo-
graphic media, and it will probably be some time before they become comparable.
This does place a limitation on certain kinds of applications, such as holographic
recording with parallax effect.

3.2.1 Holographic Terms

If the hologram plane is simultaneously illuminated with an object field Eg and
reference field Eg, the resulting intensity is

I = |Er +E0|2 = |ER|2 + |E0|2 + ER'Eo + EREo". 3.1

The hologram is developed, photochemically or electronically, so that its amplitude
transmittance is proportional to the intensity. For reconstruction, another reference
field ER’ illuminates the hologram, so that the transmitted light is

E = E{'I = E{|Eg + Eo*,
= ER/|ER|2 + ERI|E()|2 + ER/ER*EO + ER/ERER*. (32)

The first two terms are referred to as the zero-order terms and represent
the noninterfering intensity patterns of the reference and object fields, separately.
If the reference fields have no spatial structure, then the last two terms are
proportional to the complex object field and its conjugate, and they are called
the first-order twin-image terms. As shown in Fig. 3.2a, b, when the two reference
waves Er and E’ are from the same side of the hologram, one of the twin terms
forms virtual orthoscopic image on the same side as the object, while the other
forms real pseudoscopic image on the opposite side of the hologram. With the
pseudoscopic image, what would be the front surface of the object appears farther
away from the observer. If the two reference fields are opposite to each other
(Fig. 3.2a, c¢) the virtual image behaves as a specular reflection with respect to the
original object field, while the real image behaves as a phase conjugate reflection,
forming the image at the exact location of the original object.
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" |

Fig. 3.2 Holographic terms for (a) hologram recording and (b) hologram reconstruction with the
reference in the same direction as the recording or (¢) in the opposite direction

3.3 Holography of Plane Waves

Now we consider two elementary processes of holographic image formation, namely
holography of plane waves and of point sources. According to Fourier theory, an
arbitrary wavefront can be analyzed as a superposition of many plane waves. Equally
fundamental view of a wavefront is that it consists of many spherical wavefronts
from point sources. First, let us consider holography by plane waves (Fig. 3.3).
Suppose a plane wave E; is normally incident on the hologram plane at z = 0 and
another plane wave E, is incident at an angle ¢ from the z-axis:

E, = & exp(ik; o 1) = & exp(ikz), (3.3)
E; = Eyexp(iky o 1) = & explik(xsin g + zcos ¢)]. 3.4)

The intensity distribution is
Ly = |Ei + Ea_y = |E1]° + |&2)? + 2€1&; cos(kxsin ), (3.5)
which is a cosine grating pattern with a spatial frequency that depends on
the relative direction of the incident plane waves. Assuming, as before, that the
amplitude transmittance of the developed hologram is proportional to the intensity

I1,, the hologram is illuminated with a third plane wave F5 at an angle ¢’

E; = Eyexp(ik; or) = Es explik’ (xsin ' + zcos ¢')], (3.6)
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Fig. 3.3 Holography of plane a b
waves. (a) Incident plane
waves, (b) sine grating E
hologram, and (c) diffraction I 1l I - 1
from the sine grating hologram Ul ¢
LY
A\l E,
c
EZ A
TG ¢ 11T
I @ 1
. /
E2 ]

where we include the possibility of the wavelength being different from the first
two waves. The lateral size of the hologram is a, and the Fraunhofer diffraction is
calculated as

al2
= / dx{|c5'1|2 + & + 2£,&; cos|kx sin @]}53 expik'x(sin ¢’ — sin 6)],
~a/2

/
= [|81|2 + |82|2} &5 asinc [kTa (sing¢’ — sin 9)}

ki kK
+ &1£,&3 asine [Za sinp — 761 (sin ¢’ — sin 0)}
k K
+ &1E2,85 asine [7‘1 sing + Ta (sing’ — sin 9)] . (3.7)

The characteristic sinc function behavior of finite aperture becomes delta function
as the aperture, that is, the hologram size becomes infinite.

E0) 7= (|6 + & €000 - &)
+EEE[6(0 + pp — ) +0(0 — pwp — )], (3.8)

where

sy

3.9)

j./
n i

The first term in these equations is the zero-order term, that represents the
undiffracted reference wave propagating along the 6 = ' direction. The next two
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terms are the first-order “twin-image” terms that propagate along the directions
0 = Fup + . For the case of ¢ = 0, the twin images in the directions 0 = Fuyp
represent the real and virtual images on either side of the hologram. The wavelength
mismatch p leads to rescaling of the image position and size.

3.4 Holography of Point Sources

Another important model of holographic image formation is that of point sources
[3-6]. As depicted in Fig. 3.4, suppose two point sources £,5(x — X1,y — y1,Z — z1)
and &£,0(x — X,y — ¥,z — z3) emit spherical waves toward the hologram plane
Eo(xo0,yo) at z = 0. Using Fresnel approximation, the fields at z = 0 are

ik
Ei(x0,y0;z=0) =& exp{—ikzl . {(xo —x1)"+ (vo — )’1)2} }7 (3.10)

. ik
Ey(x0,y0;2=0) =& exp{—lkzz S [(xo — )(2)2 + (vo —yz)z} } (3.11)

The intensity on the hologram plane is, abbreviating all (x, y)-terms with (x)-terms
only,

L2(x0,¥0) = |Eq +E2|2,

k k
= |81 |2+ |(‘:2|2+28152008 |:k(21 —22) —|—2—()C0 —Xl)z —Z()CO —XZ)2:| y
2

Z1
2 2 k 2
:|€1| +|<€2| +2€152cos[kC12+7(x0—x12) R (3.12)
12
where
I 1 1
I 1 o
X1 X2
_Z1 I3
X112 =
1 17 3.13
11 (3.13)
VAR
= (1= 2 14 =22
12 =121 — -3
2 (Zl +22)2

This is a Newton’s ring or Fresnel zone pattern (FZP), which, as is well
known, behaves like a lens. Illumination of the pattern with another point source
E36(x — x3,y —y3,z — z3), with a possibly different wavelength, then forms a
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Fig. 3.4 Geometry for holography of point sources

focused image, as follows. The field from the third source arriving at the hologram
plane is

7./

. ik
E3(x0,y0;2=0) = &; exp{—zk’23 2 (x0 —x3)> + (o — y3)2} } (3.14)

The optical field at another plane Z(x,y) at an arbitrary distance z is calculated

using Fresnel diffraction formula. We calculate only the twin-image terms, that
arise from

. ik
I;5(x0,y0) = E1&2 exp |::tlkCIZ + E(xo —x12)2:| ; (3.15)

so that

ik’ ) ik’
E*(x,y;z) = — - exp(ik'z) //dxolﬁ(xo)E3 exp [Z (x— xo)z} ,
o

"
=— 1—515283 exp(Fikl, — ik'zz + ik'z)
2nz

ik ik ik’
X //dxo exp{j:— (xo— X12)2 G (xo — x3)2 + Z(XO - x)z} )
p}

2215
(3.16)
After some algebraic effort, we obtain
W (x— Xt
E*(x,y;2) = 0 &,E,Eexp[£ik(z; —z2) — ik (z3 — z)]exp [l?%—k idt|,
z—

(3.17)
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where

The results show that the fields E=(x,y;z) are spherical waves centered at
(X*, Y%, Z%).

3.4.1 Magnifications

Various magnifications can be easily calculated. The lateral magnification is

Mifaxifi z

= = , 3.19
o 2 (3.19)
the axial magnification is
oz* 72 1
M*=——=+p"=+-M7>, (3.20)
0z ] I
and the angular magnification is
o(X*/z*)
M, t="21"1L— 4y (3.21)
GV
3.4.2 Collimated References
For the special case of collimated references, we take z,,z3 — o0, so that
75 =+12/p,
X* =x, (3.22)

ot =0,
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and the magnifications are

Mxi = 17
M*=+1/u, (3.23)
M, " =%p

As depicted in Fig. 3.5, the interference of a plane wave and a spherical wave results
in a Fresnel zone pattern, which is a two-dimensional chirp function. As one
moves out from the center, the local frequency of the fringes increases, so that the
plane wave reference diffracts through increasingly larger angles, just like a lens.
And the diffraction has components both toward and away from the center, as well as
an undiffracted transmission. This hologram in effect behaves like a superposition of
three “lenses” — a converging lens, a diverging lens, and a plane transmission.

3.5 Holographic Processes

There have been developed a wide range of processes and techniques developed for
holography[7]. Holography also turns out to be a unifying principle of many
different areas of nonlinear optics[8]. Here we list some of the main types and
processes of holography.

3.5.1 Amplitude and Phase Holograms

The complex hologram transmission function may have amplitude or phase
components, or both. Their behaviors may be illustrated with the Fraunhofer
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diffraction from cosine amplitude or phase gratings. For a one-dimensional
grating with spatial frequency f and amplitude modulation a, the transmission
function is

T(x) =1+ acos fix (3.24)

The Fraunhofer diffraction from the grating is
1 1
E(ky) ~ /de(x) exp(—ikyx) ~ 0(ky) + Eé(kx -pB)+ 55(/@- +p). (3.25)

That is, the grating produces the zero-order and the twin images, as we have seen
before. On the other hand, for a phase grating with the transmission function

T(x) = explivy + itpy cos(Bx)] ~ explipg) D Julipy) explinfx) — (3.26)

n

the Fraunhofer diffraction is

E(ke) ~ expligy) Y Ju(01)8 (ke — np) (327)

and the phase grating produces many diffraction orders.

3.5.2 Transmission and Reflection Holograms

A hologram made of a photographic transparency is ordinarily a transmission
hologram. It is also possible to set up a reflection hologram by arranging the object
and reference waves to impinge from opposite sides of the film. The standing
wave fringes parallel to the plane of the film surface, after proper treatment, act
as reflecting surfaces. More general geometries of transmission and reflection
holograms are possible with volume (thick) holograms.

3.5.3 Thin and Thick Holograms

So far we have assumed that the transmission is a two-dimensional function. On the
other hand, the absorption, dispersion, and scattering properties may vary in a three-
dimensional volume of a material, whose thickness is not negligible. Transmission
of light through such a thick hologram, or a volume hologram, needs to take into
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b

:

Fig. 3.6 Wave-vector matching. (a) Grating vector in volume hologram, and (b) diffraction from
grating, and (c) grating vector in thin hologram

consideration the build-up of diffracted field and depletion of the undiffracted
field. A main result of such a coupled wave theory is the requirement of wave-
vector matching for Bragg diffraction. Suppose the volume hologram
consists of a sinusoidal volume grating with a grating vector ﬁ, then an incident
plane wave with wave-vector ki, diffracts into the direction Ky = ki, + E, while
|Kin| = |Kout| = &, as depicted in Fig. 3.7a. Further suppose that the sinusoidal
volume grating results from the interference of two plane waves with wave-vectors

k; and k,, so that ﬁ = +(k; — k;). Then relabeling kj, and ko, as k; and k,
respectively, we have

k = (k| — kp) +Ks, (3.28)

with |k;| = |kz| = |k3| = |k| = k. Thus the four-wave-vectors form a rhombus,
as shown in Fig. 3.6b. In contrast, the wave-vector geometry of a thin hologram
in Fig. 3.6¢c, shows that the wave-vector matching condition applies only to the
component along the hologram plane.

3.5.4 Hologram Materials

A most commonly used material in conventional holography is the silver halide
photographic emulsions. Other photochemical materials include dichromated gela-
tin, photoresists, photopolymers, photochromics, and photothermoplastics, which
change absorption or refractive index as a function of local intensity of light.
Typical resolution of these materials is better than 1 um and required exposure is
10721 / m?, which corresponds to about 10* photons/um?. Most of these materials
require chemical or other processing to reveal the latent images.



40 3 Principles of Holography
3.5.5 Phase Conjugation by Photorefractive Crystals

Real-time hologram formation without processing is possible with photorefractive
crystals, such as lithium niobate (LiNbOj3) and BSO (Bi;,SiO,), where local
intensity gradient causes charge migration and variation of local index of refraction,
thus forming phase gratings. In (3.28), if we take two plane wave reference fields
such that k; + ks = 0, then k = —k;. This means that if k;, represents one of plane
wave components of an object field, then each and every such wave-vector compo-
nent is reversed, so that a real image forms at the exact position of the object.
Furthermore, if the intensity of the reference kj is very high, then it is possible that
the image is higher in intensity than the object, which can have important and
interesting applications [8].

3.5.6 Four-Wave Mixing

The index grating formation can also arise from third-order susceptibility 7 of a
material. From the definition of nonlinear susceptibility

P=yWE+ P 4,0 +...=yE (3.29)

and dropping the second-order term for isotropic materials, the effective index of
refraction can be written as

2
n’:\/1+4nxﬁzn[1+

/0
az EZ] . (3.30)
n

Intensity variation leads to variation of local refractive index. Propagation of
the four-wave mixing signal follows the same wave-vector matching geometry
of the thick hologram in (3.28). Four-wave mixing is a nearly instantaneous process
for real-time holography [9].

3.5.7 Spectral Hole Burning

Inhomogeneous broadening of absorption spectrum such as in organic dye molecules
and use of narrowband tunable laser allows recording of multiple holograms, or
any optical information, at the same location. Saturation of a single channel with a
narrowband laser results in bleaching and reduced absorption of the channel, as
depicted in Fig. 3.7a. Each of such spectral hole represents a channel for storing
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Fig. 3.7 Spectral hole burning by (a) a cw monochromatic laser and (b) two short pulses with a
time delay, ©

information in the spectral domain. The volume of the spectral hole burning material
can also be utilized for storing spatial information, such as holographic interference
pattern. By repeating holographic image storage while stepping the laser wavelength,
some thousands of holograms can be recorded in a single sample volume [10].

3.5.8 Stimulated Photon Echo

If, instead of using a narrowband cw laser, one uses a short-pulse laser, then its
Fourier bandwidth may cover a substantial part of the absorption band. Further, if
two such pulses are incident with a time delay 7, then it can be shown that the
absorption spectrum acquires the shape of a cosine spectral grating with a period
27 /7, as shown in Fig. 3.7b. The situation is analogous to the spatial cosine grating
by interference of two plane waves, or Fourier transform of two point sources.
In general, more complicated pulse shape results in the recording of its Fourier
transform on the absorption spectrum. For reconstruction, excitation with another
short pulse causes reemission of the original pulse shape, which is called the
stimulated photon echo, depicted in Fig. 3.8. The delay time 7 and the storage
time T are constrained by the phase relaxation time 7, and population relaxation
time T, respectively. The spatial holography within the volume of the storage
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Fig. 3.8 Stimulated photon echo as a time-domain holography process

material proceeds in the same manner as any other holography processes. This
completes the holographic processes for all four dimensions — space k e r and time
ot [11]. True four-dimensional holographic movies can be recorded [12].
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Chapter 4
Basic Methods of Numerical Diffraction

The basic methods of numerical diffraction are based on the Huygens convolution,
the Fresnel transform, and the angular spectrum description of diffraction given in
Chap. 2. Simulation examples are used to illustrate their general behaviors and to
make comparisons regarding the advantages and limitations of these methods. The
angular spectrum method is seen to have particular strength in that it yields
reasonable results without minimum or maximum distance limits.

4.1 Discrete Fourier Transform
Referring to Fig. 4.1a, the Fourier transform of a function f(x) is defined as
1 oo
F(k) =8{f(x)} k| =—= dx f(x) exp(—ikx). 4.1
) = SN == [ derexn(-ity @
The function is sampled by multiplying with a comb function of period dx,
Fx) = f(x)comb(éx—x) = f(x) _Z 3(x — mdx). 4.2)
The Fourier transform of the sampled function is
. . X
F(K) = 54/} k] = 5{f(x)eomb () } K]

1 k
= aF(k) ©® comb (E) ,

1 o0

=5 Z F(k — nK), (4.3)
n=-—0oQ
M.K. Kim, Digital Holographic Microscopy: Principles, Techniques, 43

and Applications, Springer Series in Optical Sciences 162,
DOI 10.1007/978-1-4419-7793-9_4, © Springer Science+Business Media, LLC 2011
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Fig. 4.1 (a) A spatial function and its Fourier transform, (b) a sampled spatial function and its
Fourier transform, and (c) a sampled frequency spectrum and its inverse Fourier transform

where

K_Zn

=< (4.4)

If £ (x) is band-limited, so that F(k) = O for k¢ [—(K/2), (K/2)], then F (k) = F(k)
for k € [~(K/2), (K/2)]. That is, F(k) accurately represents F (k) in that interval, as
depicted in Fig. 4.1b.

Conversely, the spectrum F(k) is sampled by multiplying with a comb function
of period ok,

F(k) = F(k)comb (%) = F(k) i d(k — nok). (4.5)

The inverse Fourier transform of the sampled spectrum is

o) =57 (P Yl = 5 Pekycom (1,

= ;—kf(x) ® comb (;{),
| &=

=< > flx—mX), (4.6)

m=—o0
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where

2n

X="".
Sk

4.7)

If £ (x) is space-limited, so that f (x) = 0 forx¢ [—(X/2), (X/2)], then f(x) = f(x) for
x € [-(X/2),(X/2)]. That is, f(x) accurately represents f(x) in that interval, as
depicted in Fig. 4.1c.

If the function f(x) is both space-limited and band-limited, then one can write
the Fourier transform as a Fourier series, with f,, = (xp) and F,, = F (kn)

~ 1 X/2

X
Fk,) = — dx f(x)comb | — ) exp(—ik,x),
(k) == | dfCopcomb () exp(—ik)
sy b
=— Z f () exp(—ikyXm),
Vo ST
=F,, (4.8)
where
Xp=mox (m=-M/2,-M/2+1,... M/2—1), 19
{5x2n/K 4.9)
and
k,=nék (n=-N/2,—-N/2+1,...,N/2—1),
" ( / / /2-1) “4.10)
ok =2m/X.
Similarly, the inverse Fourier transform is written as
f Lo dkF (k)comb [ £ (ikx
Xp) = —— F(k)comb| — | exp(ikx,,),
- s &)
sk N2
=—— Y F(ka) exp(ikpxn),
2n n=-—N/2
:fm- (4.11)

These Fourier series are usually calculated using one of the fast Fourier transform
(FFT) algorithms, which leads to M = N.
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4.1.1 Programming Implementation of Fourier Transform

For the purpose of maintaining the theoretical development as symmetrical as
possible between the space and frequency domains, we have defined the discrete
Fourier and inverse Fourier transforms as

se N
F, = ' €XP(—1ky X
r m;mf p( ),
(4.12)
ok N2
F,exp(ik,x
fm \/% niz}\:}/2 p( n m)

One should note, on the other hand, that most prepackaged FFT routines, such as in
MatLab or LabVIEW, define them as

N—1

F, = me CXP(*ianm);
m=0

N—1

=N ZF” exp(ikyxp)-

n=0

4.13)

As a concrete example, consider f, = cos (zfxm) with x, € [-(X/2):
x: (X/2)), =10, X = 100, and ox = 1, depicted in Fig. 4.2a. Then K /27 =1
and 0k/2m = 0.01. The result of FFT on f,, using MatLab is shown in Fig. 4.2b,
where the horizontal axis is the index n. As output by MatLab, the Oth element is the
zero-frequency component, the 1st element is the 10k /27 frequency component, . . .,
the mth element is the mdk/2n frequency component, and so on up to the
last element (N — 1)dk/2n. Especially for image processing, it is more conve-
nient to place the zero-frequency element in the center, and we take
ky € [—(K/2) : 0k : (K/2)) instead of [0 : 6k : K). By way of periodicity of F, this
is equivalent to taking the right half of F, and swapping it with the left half. As
shown in Fig. 4.2c, this is accomplished by the FFTSHIFT operation of MatLab. To
maintain a correspondence with (4.12), we also multiply with the factor dx / V2.
The result F, vs. k,/2n is plotted in Fig. 4.2c. A peak appears at the frequency
k,/2m = 0.1 as expected, while the other peak at 0.9 that exceeds the Nyquist
frequency K/2 is now aliased to a negative frequency —0.1. It is also verified that

N—1 N—1
> oxdful’ =Y SkIFP, (4.14)
m=0 n=0

as required by the Parseval’s theorem. The Fourier transform is in general complex:
the real and imaginary parts of F, are displayed in Fig. 4.2d, e. For the present
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Fig. 4.2 An example of discretized Fourier transform. (a) A cosine function, (b) the amplitude of
FFT as output from Matlab, (c) after FFTSHIFT and scaling of the axes, (d) the real part, and (e)
the imaginary part

example of f,, the imaginary part of the Fourier transform should be zero. The
calculated imaginary part is small but nonzero because of the finite step dx, which
should be made smaller for more accurate result.

4.2 Fresnel Transform Method

Under Fresnel approximation, the propagation of optical field from a plane X, at
z = 0 to another plane X along the z-axis is given by the Fresnel transform (2.34),
repeated here,

ik
E(x,y;z) = 2mexp [22 (e + yﬂ {Eo(x0,y0)S¢(X0,y0;2)} [k K], (4.15)
where the Fresnel PSF is

ik . ik
Sg(x,y;2) = — I exp(ikz) exp {Z (¥ + yz)] (4.16)
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Fig. 4.3 An example of numerical diffraction by Fresnel transform method. (a) Amplitude images
and (b) phase images. The input object is 256 x 256 pum? in size and the images are calculated at
distances z = 0, 125, 250, 375, 500 um

and the spatial frequencies are

he=kT k=L 4.17)
VA VA

The Fresnel transform method (FTM) therefore involves a single Fourier transform,
and can be implemented by the use of FFT [1-7]. For numerical calculation, a Xy X
Y, area of the input field Ey(xo, yo) is sampled on a N, x N, array with the pixel size
of 6xp x dyo. The output field E(x,y) is then another N, x N, array of area X x ¥
and pixel size ox X dy. An example of numerical diffraction by Fresnel transform
method is shown in Fig. 4.3, where the input pattern at z = 0 is the letter “F” in an
opaque screen of 256 x 256 pmZarea with 256 x 256 pixels and the wavelength is
assumed to be 4 = 0.633 um. (Most of the simulation examples here and in the
following chapters will use similar set of parameters, unless otherwise noted.) The
top row shows the amplitude of the diffracted field at distances of
z =0, 125, 250, 375, 500 pm. The bottom row shows the phase patterns at
corresponding distances, where the factor exp(—ikz) has been multiplied to remove
the rapid phase variation due to overall z-propagation.

One pixel in E(x,y;z) corresponds to Ok, = ’;‘(Sx, which in the X-plane
corresponds to

z 2nz A
ox =0k, = —=—12. 4.18
Tk Xo  Xo- (4.18)
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That is, the pixel size, and the 2-plane size, grows linearly with the distance,
as is evident in Fig. 4.3. In fact, the field of view at the five distances are
X =0,79, 158, 236, 315 um. There are methods to address the problem of
nonconstant pixel resolution, which will be discussed in Sect. 9.2. Also evident is
the presence of a minimum distance to obtain valid diffraction pattern. To avoid
aliasing [8], the output plane X needs to be at least as large as the input plane X,
which leads to

2
Zimin = %. (4.19)
In Fig. 4.7a is shown a yz-cross section of the propagation over a range of
z = 0-500 pm along the middle of the vertical line of the letter “F”. For the present
example, zyni, = 404 pm and the wrapping or aliasing is evident in Fig. 4.7a at
shorter distances. (The apparent z,;, is somewhat shorter than 404 pm because the
letter “F”” does not fill the whole screen.)

4.3 Huygens Convolution Method

The diffraction can be calculated from the Huygens convolution integral (2.27)

E(x,y;z) = Eo © S,
= & {F{Eo(x0,0)} [ke: ky |5 {Sui(x0, y0) } [ke hy] [, 3], (4.20)

where the Huygens PSF is

ik
Su(x,y;z) = — ﬁ exp {ik\/xz +y2 + zz} . 4.21)

Thus, the Huygens convolution method (HCM) requires three Fourier transforms
[2, 6, 9—11]. An example of numerical diffraction by HCM, is shown in Fig. 4.4,
using the same set of parameters as in Fig. 4.3. Unlike FTM, the pixel resolution in
HCM does not depend on the propagation distance because of the combination of &
and §~!. Figure 4.7b shows the behavior of the HCM diffraction over the distance
z = 0-500 pm. Although the short-distance behavior appears to be better than
FTM, the minimum distance zp;, for HCM is similar to FTM, the improvement
being mainly due to the use of spherical PSF instead of parabolic one. Also note that
one can use the Fresnel PSF Sy as an approximation to Sy and obtain result with
similar quality, though such approximation is really not necessary.



50 4 Basic Methods of Numerical Diffraction

Fig. 4.4 An example of numerical diffraction by Huygens convolution method, using the same
parameters as in Fig. 4.3. (a) Amplitude images and (b) phase images

4.4 Angular Spectrum Method

The diffraction is calculated by angular spectrum method (ASM) according to

E(x,y;z) = ' §{Eo(x0,y0)} [ke, ky] exp [iz k2 — k> — kyz}

/kxz 4 ky2

circ
k

[x, ], (4.22)

which requires two Fourier transforms [12-18]. In image plane holographic
microscopy, for example, where the input field £y may be actually a magnified
image of a microscopic object, the effective pixel size may be smaller than
the wavelength and the argument of the square root in the imaginary exponent
in (4.22) may become negative in parts of the spectral domain, and the
circle function is then required. An example of numerical diffraction by ASM, is
shown in Fig. 4.5, using the same set of parameters as in Fig. 4.3, and Fig. 4.7c
shows the behavior of the ASM diffraction over the distance z = 0-500 pm.
Evidently, the ASM yields valid diffraction image at short distances, including
zero. The difference between HCM and ASM in (4.20) and (4.22) is the replace-

ment of 3{—2’—7’; exp {ik X2 +y2+ 22} } with exp [iz k* — k2 — k2|, which are
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a

Fig. 4.5 An example of numerical diffraction by angular spectrum method, using the same
parameters as in Fig. 4.3. (a) Amplitude images and (b) phase images

analytically equivalent. But in numerical calculations, the 1/z-factor in the former
creates problems while the latter is well-behaved at all distances. We can also apply
the Fresnel approximation

k2 + k?
VR =k — k2 :k—% (4.23)

in (4.22) for calculating ASM, which again usually results in insignificant
difference.

4.5 Comparison of Methods

These methods, sometimes referred to with ambiguous or inconsistent names, have
distinct advantages and disadvantages [2, 11, 19]. Referring to Fig. 4.6, the ASM is
based on propagation of plane waves. Sampling of the plane waves by the discrete
pixels of CCD does not vary with the distance, and therefore the ASM does not have
any distance limitations. On the other hand, the HCM is based on the propagation of
spherical wavefronts (or parabolic approximation for FTM). When the center of
curvature is too close to the CCD array, local fringe frequency on the CCD plane
may be higher than the Nyquist frequency. This occurs when the distance is smaller
than zpmi, = Xo? /N, which in our example is 404 um. The behavior of diffraction field
calculated by the three methods over a range of z = 0-500 pm is shown in Fig. 4.7.
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-

Fig. 4.6 Conceptual comparison of (a) Huygens convolution method and (b) angular spectrum
method. The diagrams on the right depict how the wavefronts interact with the CCD array at
various distances
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Fig. 4.7 Comparison of numerical diffraction by (a) FTM, (b) HCM, and (c) ASM. Amplitude
(upper row) and phase (lower row) profiles on an x—z plane, over the distance range of
z = 0-500 pm

Moreover, there also is a maximum distance that yields correct diffraction
pattern for HCM. For large enough distances the fringe period of spherical
wavefront becomes larger than the entire CCD array, failing to record any diffrac-
tion information. This occurs when the distance is larger than

Xo?

et 4.24
z 2 (4.24)
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Fig. 4.8 Comparison of numerical diffraction by (b) ASM and (¢) HCM. Amplitude (upper row)
and phase (lower row) profiles on an x—z plane, over the distance range of z = 0-20,000 um. The
input, shown in (a), is a square opening illuminated with a slightly tilted plane wave

which for our numerical example, is 51,800 pm. The ASM does not have this
limitation either. Behaviors of ASM and HCM diffraction at large distances are
illustrated in Fig. 4.8, where the distance range is z = 0-20,000 pm and the input
pattern is an open square with slightly tilted wavefront — by two wavelengths over
the vertical size of the square opening, as may be noticed in the phase image of
Fig. 4.8a. In Fig. 4.8b, the ASM correctly depicts the propagation of the transmitted
beam of light at a slight angle. When the beam reaches the limit of x-frame size, it
wraps around to the other side and continues to propagate. Note that a beam of
initial width of 128 pm does not spread appreciably after propagation of 20 mm. On
the other hand, in Fig. 4.8c, the HCM starts out with a similar pattern as ASM but it
progressively loses high-frequency structures eventually becoming structureless as
it approaches zpx.
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Chapter 5
Digital Holography Configurations

Some of the general characteristics of digital holographic images are illustrated
using simulated examples. Holographic image location and magnification are
dependent on, and therefore can be controlled by, the choice of wavelengths and
reference directions and curvatures. Optical configurations frequently used in
digital holography experiments are described and compared.

5.1 General Behavior of Digital Holographic Images

We first study, through a few simulated examples, the general behavior of the
digital holographic images and compare with some of the results that we have
obtained in previous chapters. Numerical diffraction is calculated using the angular
spectrum method.

Ex. 1: Formation of Hologram and Reconstruction of Image

The top row of Fig. 5.1 simulates formation of a hologram. The object (Fig. 5.1a), is
a letter “F” in an opaque screen of area 256 x 256 pm? with 256 x 256 pixels. The
object is illuminated with a plane wave, of wavelength 4 = 0.633 um, which
propagates to the hologram plane at a distance 500 pm, at normal incidence. The
object field Eq arriving at the hologram plane is shown in Fig. 5.1b. The hologram
plane is of the same size and pixel count as the object plane. A plane-wave
reference, Eg, of the same wavelength as the object, is also incident on the
hologram plane at an angle ¢, such that it produces 50 fringes across the x-direction,
that is, k, /21 = (50/256) um~" and ¢ = sin~!(k,/k) = 0.124 rad. Intensity of the
interference between the object and the reference |Eg —|—ER|2 is the hologram
(Fig. 5.1c). Propagation of the object field from the object plane at z = —500 pum
to the hologram plane at z = 0 is shown in Fig. 5.1d, where, for clearer illustration
of the z-propagation, we use as the object a square opening of quarter the frame size,
instead of the letter “F”.

M.K. Kim, Digital Holographic Microscopy: Principles, Techniques, 55
and Applications, Springer Series in Optical Sciences 162,
DOI 10.1007/978-1-4419-7793-9_5, © Springer Science+Business Media, LLC 2011
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z=-500 z=0 z= +500 -500 0 500
Fig. 5.1 Formation of hologram and reconstruction of image. (a—d) in the fop row illustrate
formation of the hologram. (a) Input object at z = —500 um, 256 x 256 pm; (b) object field at
the hologram plane, z = 0; (c) hologram after interference with tilted plane reference; (d) propaga-
tion of object field fromz = —500 to O pm. (e~h) [llustrate the image reconstruction by illumination
of the hologram with a tilted plane wave, conjugate to the first reference. (e) x—y images at
z = =500, 0, and +500 pm, and x—z cross-section of the fields propagating along the z-direction
from z = —500 to +500 pm. All the holographic terms — the zero-order and the twin-image terms —
are included in the computation. (f) Same as (e), but only the real-image term is included in

computation. (g) Only the virtual image term is included. (h) Only the zero-order term is included

Figure 5.1e illustrates the holographic image reconstruction, for which the
hologram is illuminated with another plane-wave reference, Er’. Recall from
Chap. 3 the holographic terms are

<|ER|2 + |EO\2)ER' + EoER*ER' + Eo"ERER'. 5.1
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We take, in this example, Ex’ = ER*, that is, it is incident at the angle — .
In digital holography, we are free to calculate the propagation forward or backward
with equal ease. The diffraction of the field |Eg + ER|2ER* is calculated over the
range z = —500 to +500 pm, and the x—y images are shown at z = —500, 0, and
+500 pm. Normally, z = +500 pm is where the holographic image is expected. One
can indeed recognize a focused image in the center of the x—y image plane at
z = +500 pm, but it is also superposed with the zero-order and twin images. In the
x—z panel of Fig. 5.1e, one can discern the three diffraction orders — 0 and 4+ 1 —
diverging from the hologram plane.

There are many methods to separate out the zero-order and twin-image terms,
which will be discussed in this and later chapters. But it is illustrative to separate the
holographic terms artificially and observe how each term propagates. Thus in
Fig. 5.1f, we take the term Eo*ErER* and propagate it over the same range as in
Fig. 5.1e. Because this term is proportional to Ep*, its forward propagation is
equivalent to the backward propagation of Eg — i.e., it forms a focused image at
z = +500 um. In Fig. 5.1g, we take the twin term EgER*ER* and propagate over the
same range. Because this is proportional to Eg, one has to propagate backward to
the original object position at z = —500 pum to form a focused image. Furthermore,
because it also has Eg*? factor, the image is shifted by an angle 2¢. Also notice the
wrapping of the image around the boundaries. On the other hand, at z = +500 pm,
the twin-image term is out of focus. Finally in Fig. 5.1h, we take the zero-order
term, or dc term, and propagate similarly. In this case, there is no focusing of the
image but straight propagation along the direction ¢ of the reference wave.

Unless these terms are somehow separated, they all contribute to the field
pattern at the image plane, thus causing significant amount of interference, as in
Fig. 5.1e, and distorting the focused holographic image. In the following examples,
we take only the Eo*ERER" term, and observe its behavior in terms of several
parameters.

Ex. 2: Wavelength Mismatch

In Fig. 5.2, the effect of using a different wavelength for reconstruction is shown. In
Fig. 5.2a, 1 = /! =0.633 um and the image forms at z = +500 um, marked with
an arrow, as expected. Here we display both the amplitude (upper row) and phase
(lower row) of each image. If the wavelength of the second reference wave is
changed by p = A'/4 = 2/3 to /' = 0.422 pum, then, according to (3.21), the image
distance increases by 3/2 to z = 750 um, while the lateral magnification remains
the same, as seen in Fig. 5.2b. In addition, according to (3.7), because of the
mismatch of the wavelengths, the image propagates at an angle
(h— 1) = —p/3 and the image is shifted.

Ex. 3: Spherical Reference Waves

Now we use spherical reference waves, with radius of curvature R = 1,000 pm,
instead of plane waves. Then the complex hologram (i.e., without zero-order or
twin-image terms) has the phase curvature, but if we use the same spherical wave
R’ = 1,000 pum for reconstruction, then the effect of the curvature is compensated.
The image forms at z = 500 pm with unit magnification, as shown in Fig. 5.3a.
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Fig. 5.2 Effect of wavelength mismatch. (a) The same wavelength is used for recording and
reconstruction, 4 = A" =0.633 um. (b) A shorter wavelength is used for reconstruction,
A’ =0.422 um. For each part, both the amplitude (upper row) and phase (lower row) of the fields
are depicted. The arrows indicate the image locations

On the other hand, if the second curvature is different, then the image position is
given by

= 4 5.2)

and the lateral magnification is

M,

=T 2((1/R) — (I/R)) -3
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z=0 2= 667 0 i 1 1000

Fig. 5.3 Effect of spherical reference waves. (a) The same radius of curvature is used for
recording and reconstruction, R = R’ = 1,000 pm. (b) A larger curvature is used for reconstruc-
tion, " = 2,000 pm. (c) A shorter curvature is used for reconstruction, R’ = 500 pm. The arrows
indicate the image locations
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When R’ = 2,000 pum, Fig. 5.3b shows the incomplete compensation of the curva-
ture, and formation of the image at z = 667 um with magnification M, = 1.33, as
expected. Another example with R" = 500 um in Fig. 5.3¢ results in z = 333 um
and M, = 0.67.

The above examples show that the holographic image location and magnification
are dependent on, and therefore can be controlled by, the choice of wavelengths and
reference directions and curvatures. We now give more specific descriptions of
configurations frequently used in digital holography experiments [1].

5.2 Digital Gabor Holography

In Gabor holography, the object is illuminated with a single beam of light and there
is no separate reference wave (Fig. 5.4). The part of the incident light that is
scattered by the object is the object wave and the remainder that does not undergo
scattering acts as the reference wave. The method is the more effective the smaller
the object is so that the reference is not excessively disturbed. In the simulation
example of Fig. 5.5a—c, the object is a thin opaque letter “F” in an otherwise
transparent screen (Fig. 5.5a). All the relevant parameters are otherwise the same
as in the previous section. A plane wave is transmitted through the screen and
propagates to the hologram plane. The intensity pattern on this plane is the
hologram (Fig. 5.5b). Illumination of the hologram with another plane wave
forms the focused image at the expected distance. But the focused image is also
superposed with the blurred twin image, whose focus position is on the opposite
side, negative z-distance, of the hologram. If we attempt DGH with an object that
consists of transparent letter in an otherwise opaque screen (Fig. 5.5d), then there is
not enough reference wave (Fig. 5.5¢) and the holographic image does not form
(Fig. 5.5%).

Because of the above property and because of the simplicity of the optical setup,
Gabor holography is particularly useful for particle or thin fiber image analysis, and
the digital Gabor holography (DGH) can provide new capabilities and wider

ref < obj < -1 Y

Fig.5.4 Gabor holography. (a) Recording by superposition of the reference wave and its scattered
component from a point object, and (b) reconstruction of a point image (—1 order) and its
defocused twin (+1 order)



5.3 Digital In-line Holography 61

LTIt ¥

Fig. 5.5 Digital Gabor holography. (a) A thin opaque letter in an otherwise opaque screen as the
object, (b) the diffraction pattern as the hologram, and (c) the reconstructed image. (d—f) Illustrate
an attempt at DGH with a thin transparent letter in an otherwise opaque screen. (d) Object,
(e) hologram, and (f) image

applications [2—6]. For microscopic particles the twin images are often negligible
because even at a relatively short distance the Fraunhofer condition is satisfied and
the twin image may be completely defocused.

5.3 Digital In-line Holography

For the in-line holography, a separate reference field is provided in a general
alignment with the object field, Fig. 5.6. (Some authors refer to Gabor holography
also as in-line holography, but here we will use the term in-line to be more specific
as having a separate reference beam.) This allows imaging of objects regardless of
its size relative to the field of view. In the example of Fig. 5.7, the object with
opaque letter in transparent background produces focused image in a manner
similar to the DGH, except that the image also includes the uniform reference as
well as the twin image. On the other hand, for the object with transparent letter in
opaque background, the in-line configuration is capable of producing a focused
image, whereas the DGH is not.

An advantage of in-line DH over DGH is, as seen above, that it does not have a
restriction of small object [7-9]. On the other hand, the focused image is super-
posed with the zero-order and twin-image terms. Therefore, it is usually necessary
to find ways to reduce or eliminate the spurious terms. These techniques, to be
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Fig. 5.6 In-line holography. (a) In-line superposition of object and reference beams, and
(b) reconstruction of superposed zero-order and twin images

Fig. 5.7 Digital in-line holography. (a) A thin opaque letter in an otherwise opaque screen as
the object, (b) the hologram recorded by the interference of the diffracted object field and the
reference, and (c) the reconstructed image. (d—f) Illustrate digital in-line holography has no
trouble imaging a mostly opaque object. (d) Object, (e) hologram, and (f) image

described in Chap. 7, range from relatively simple subtraction of the average
intensity from the hologram to the multiexposure phase-shifting methods. Other-
wise, one can use one of the off-axis configurations described below. However,
most of the off-axis methods reduce the information content of the hologram to one
quarter of the pixel count. In a typical digital holography setup, the pixel count is at
a premium, and therefore such reduction can be a significant disadvantage. Then the
in-line configuration may be considered, though at the expense of multiple exposure
or other requirements.
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5.4 Digital Image Plane Holography

The object can be placed close to the hologram plane so that the reconstructed
image is also near the hologram. We refer to the hologram plane as the plane (or any
other plane optically conjugate to it) where the recording takes place. In real space
reflection holography applications, this is useful for creating holograms that can be
viewed with low coherence light, because the image distance is not very large
compared to the coherence length. But in microscopic holography, this would not
be useful because there is no magnification, unless one uses a microscope to view
the hologram. On the other hand, an objective lens can be used to form near the
hologram plane a magnified image of the object Fig. 5.8a. If a plane-wave reference
is used for recording and for reconstruction, then the reconstructed image will
coincide with the magnified image of the object in amplitude, although the phase
will contain the curvature due to the imaging lens.

Alternatively, holographic interference of the object and the plane-wave refer-
ence can be formed first and its magnified image projected near the hologram plane
(Fig. 5.8b). Equivalently, a separate lens can be used to focus a plane-wave
reference to a point conjugate to the back focus of the objective lens, as shown in
Fig. 5.8c. In real space holography, illumination of the magnified hologram with a
plane wave of the original wavelength will result in an image with unit lateral
magnification, relative to the original magnified image, but at a large distance so
that the angular size will be the same as if the original unmagnified object was
placed in front of the hologram plane. This will also most likely introduce signifi-
cant aberrations. In order to restore the angular magnification, one has to use a
correspondingly magnified wavelength, a mostly unfeasible task.

In digital holographic microscopy, on the other hand, this configuration is
particularly flexible because the acquired hologram can be numerically scaled
according to the physical dimensions of the object space regardless of the image
size on the CCD. In effect a demagnified CCD array is placed near the object
position. Once the magnified holographic interference is input to the computer, it is
only a matter of assigning the original microscopic frame size and the correct
wavelength that was used for creating the holographic interference. The numeri-
cally reconstructed image will then correctly represent the amplitude and phase of
the original microscopic object space. The curvature matching of the reference
wave also has the benefit of reducing fringe frequencies on the CCD, which can
reduce aberrations due to residual mismatch between the write and read references.

Image plane digital holography [10] has been useful in a number of different
application areas including biological microscopy [11, 12], where it is important to
be able to monitor the live specimen being imaged. It is also advantageous for
improving light collection efficiency in particle velocimetry [13]. For digital
holographic microscopy using low coherence light, one necessarily operates near
image plane configuration [14].
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5.5 Digital Fourier Holography

As we saw earlier, the field at the back focal plane of a lens is the Fourier transform
of the object field at the front focal plane. In a typical configuration for Fourier
holography (Fig. 5.9a) the hologram plane is positioned at the back focal plane and
a plane-wave reference is produced by focusing the laser at a point on the object
plane. In real space holography reconstruction, illumination of the hologram with a
plane-reference wave and transmission through a lens produces the inverse Fourier
transform, which is the image (Fig. 5.9b). Both of the twin images are in focus at the
focal plane of the imaging lens and the zero-order is a small intense spot.

Alternatively, lensless Fourier holography is possible by placing a point source
reference on the object plane (Fig. 5.9¢) in front of the hologram plane without a lens.
From the Fresnel expression of diffraction (2.34), the outer quadratic phase function is
canceled by the reference with the same curvature, and the EoER " term is proportional
to the Fourier transform of the object field multiplied by the inner quadratic phase
function. Reconstruction proceeds in the same manner as above [15]. The intensity
image is not affected by the quadratic phase function.

Both of these methods can be implemented in digital Fourier holography, and the
reconstruction is especially simple because it consists of a single Fourier transform of
the recorded hologram [16, 17]. Using a small transparent letter “F” as the object
(Fig. 5.10a) we illustrate the lensed digital Fourier holography in Fig. 5.10b, ¢ and the
lensless digital Fourier holography in Fig. 5.10d, e. The focal length of the lens or the
object to hologram distance is 1,000 um in Fig. 5.10b, d and it is 200 pm in Fig. 5.10c, e.
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Fig. 5.9 Fourier and lensless a b |
Fourier holography. A

(a) Fourier hologram :

recording using a lens; :

(b) reconstruction by Fourier

transform, represented with < = -
the Fourier lens; and B oncaal +1 \R

(c) lensless Fourier hologram
recording

Fig. 5.10 (a) The object. Each of the panels (b—e) displays the hologram and the reconstructed
image. (b, c¢) Illustrate digital Fourier holography using a lens with focal length (b) 1,000 pm and
(¢) 200 pum. (d, e) Illustrate lensless digital Fourier holography with the object to hologram
distance (d) 1,000 pm and (e) 200 pm

All the other parameters are as before. The Fourier hologram with lens shows
the Fourier transform of the object with interference fringes of the plane-reference
wave. The holographic image has the focused twin images on either side of the
intense central spot, which is numerically truncated to make the images visible.
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As with the Fresnel diffraction, the field size depends on the distance, that is, the focal
length or the object to hologram distance, according to

N Az

X
Xo ’

(5.4)

which for this example is 633 um in Fig. 5.10b, d or 127 um in Fig. 5.10c, e.
Using the lensless method, the hologram has a more spread-out intensity distribu-
tion, but the holographic image amplitude is still identical with the first method. The
two methods yield images with opposite orientations. Also note that the distance
200 pm is less than the zp;, = 404 um of aliasing in Fresnel diffraction and it
causes distortion of the images.

In the first digital Fourier microholography experiment of [17], a drop of
glycerol placed next to the specimen on a microscope slide acted as the focusing
lens to form the point source reference in front of the Fourier lens. There a
numerical lens was also introduced to be able to focus the image at varying
distances. High resolution microscopy is possible using a relatively simple setup
[18, 19] and detailed analysis of image formation in lensless digital Fourier
holography is given in [20]. Imaging and analysis of large objects is equally
convenient [21]. In lensless Fourier microholography, the object can be placed
close to the sensor, which increases the numerical aperture and improves resolution
[22]. But this introduces aberration in the reconstruction because of violation of
Nyquist frequency requirement. The hologram is expanded and interpolated,
followed by multiplication of a transfer function, before Fourier transform, to
obtain aberration-free high resolution image. Pedrini et al. [23] make comparison
of various interferometer configurations in the context of macroscopic metrology
applications.

5.6 Digital Fresnel Holography

The Fresnel holography refers to the configuration where the object is at a finite
distance from the hologram plane and is off-axis with respect to a plane-wave
reference [24] (Fig. 5.11a). In reconstruction, illumination of the hologram with
another plane-wave reference results in images forming at the object position and
its mirror position with respect to the hologram, with unit magnification, as shown
in Fig. 5.11b. The numerical reconstruction is usually carried out using the Fresnel
transform method, which is necessary in order to reconstruct all of the zero-order
and the twin images without aliasing. As evident in Fig. 5.11b, the reconstruction
area is larger than the hologram area and the Fresnel transform method allows
such reconstruction, provided that the image distance is properly chosen. In the
simulation example of Fig. 5.12, using mostly the same parameters as before, the
object distance is zo = 1,000 um and is offset from the reference with k,/2n =
(100/256) um~". The frame size at z = 1,000 um is N Az/Xo = 633 um and the
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Fig. 5.11 Fresnel holography. (a) Recording by off-axis superposition of the object and reference
waves, and (b) reconstruction of separated zero-order and twin images

Fig. 5.12 Digital Fresnel holography. (a) The object, (b) the hologram, (c¢) reconstructed image
using normally incident plane-wave reference, and (d) reconstructed image using tilted plane-wave
reference. Each of the panels (c, d) display both the amplitude (upper) and the phase (lower)
profiles

reconstruction with a normally incident reference in Fig. 5.12c results in the zero-
order at the center and the focused image on one side and the blurred twin on the
other. This is to be compared with Fig. 5.11b. If it is desired to have the focused
image at the center, then a read reference wave with the same inclination as the
write reference can be used. In Fig. 5.12d, the focused image is in the center and the
zero-order is moved to the side. Also note that the zero-order consists of the |Eg|*
term as the bright square and the |E0|2 term as a blurred spot within the square.

In order to accommodate the zero-order and the twin-image terms without
aliasing, the object distance has to be large enough so that

Nz
0

X

> 3X) (5.5)
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Fig. 5.13 Digital Fresnel hologram image vs. the reconstruction distance (the same as the object
distance). (a) The object, 256 x 256 umz. Images at distances (b) 500, (c¢) 1,000, (d) 1,500, and
(e) 2,000 pm

assuming that the object fills the screen size Xy. For our example, this requires
z > 1,213 pm. An example with an object that fills the screen is shown in Fig. 5.13.
The object and the rec.onstruction distances vary as z = 5,00,1,000, 1,500,
2,000 pm for Fig. 5.13b—e. Only in Fig. 5.13d, e are the images unhindered by
the zero-order or the twin terms.

The variation of the frame size with object distance can be used as an advantage
[25]. Placement at a large enough distance and the use of Fresnel transform allow
imaging of an object larger than the CCD array size, such as in macroscopic
metrology applications [23, 24, 26, 27]. Also an imaging lens can be used to form
a magnified [28] or demagnified image of the object, which then propagates to the
hologram plane. For example, in [24], a negative lens is used to form a demagnified
image of a large object, thus reducing the spatial frequency bandwidth.
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Chapter 6
Theoretical Studies of Digital Holography

The diffraction theory is at the basis of development of digital holography and
allows calculation of holographic images from the recorded holographic interfer-
ence patterns [1]. In this chapter, we highlight some of the theoretical tools
developed to enhance the capabilities of digital holography and applications.

6.1 Digital Sampling of Hologram

The finite size of and discrete sampling by the CCD array modify the holographic
imaging properties that we obtained in Sect. 3.3 [2—-13]. As shown in Fig. 6.1,
suppose the size of the CCD array is Xy x Yo with N, x N, pixels, so that the pixel
pitch is dxg X dyg = (Xo/Ny) X (Y 0 / Ny). Further suppose that the sensitive area of
a CCD pixel is y,0x9 x y,0y0, where 7, and y, are the fill factors. The CCD
sampling function is then written [5—8] as

_ o Xo Yo
P(x0,y0) = rect (X()) {comb (5)(0) @ rect (yéx(,)} , (6.1)

where again we abbreviate the y-terms and also drop the subscript from y. The comb
function comb(x/dx) is a series of delta functions with dx interval and the rectangle
function rect(x/a, y/b) has the value one within the rectangle of size ¢ x b and zero
outside. We consider the holographic image formation by point sources as in Sect.
3.3, but in (3.16), we multiply the sampling function P(xo,yo) inside the Fresnel
diffraction integral, so that
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Fig. 6.1 Digital sampling of hologram
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The effect of the sampling function on the integral is, for a function f(xo)

(m+y/2)dxo
/( dxof (x0). 63)

m—y/2)oxo

X0/2(3X0

/ dxP(x0)f (x0) =
%

m= 7X0 /25/{0

Also note that at the position of the holographic image, z = Z*, and the integral and
summation are easily carried out.

ik’ . . .
E*(x,y;z2) = _E518283 explFik(zi — z2) — ik'(z3 — z) £ ik{y,]

ik 2 2 2
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Fig. 6.2 PSF of discretized
hologram

— 202/X,

20Z/5x
20Z1ydx

The PSF of discretized hologram (6.4) is illustrated in Fig. 6.2. The quantity
inside the curly brackets of (6.4) shows the effect of the digital sampling [3]. The
sinc function has a width of 47Z* /k'ydx, between the first zeroes. For a small fill
factor y — 0, the image is uniform in amplitude throughout the image plane. On the
other hand, integration over the pixel area with larger fill factor results in vignetting,
especially for shorter image distance Z*. The sine-over-sine factor of (6.4) gives the
lateral resolution of a point image to be 4nZ*/k'Xy, which shows the expected
dependence on the numerical aperture of the camera array [14]. Also note that the
point image repeats over a period of 4nZ* /k'6xo. This period has to be larger than
the size of the camera array [4, 15], which leads to the minimum distance z,;, =
X*2 /22N, as seen in Sect. 4.2. To estimate the axial resolution, suppose all three
source points are on the z-axis. Then the reconstructed field along the z-axis is
given by

Xo/20x0 (m+y/2)dxo " 1 1
T S e s L A
m=—Xo/2dxo (m—y/2)dxo 2 \Z z

The integral-sum is close to zero unless the phase of the exponential varies slowly
within the range Xy, which leads to the axial resolution being 21'Z*? /on.

For a holographic microscopy setup with an objective lens, the source point
&10(x —x1,y —y1,z—z) may in fact refer to an object point imaged and
magnified by the lens. In that case, &; is a point within the PSF of the image, and
the description follows as above. Alternatively, and equivalently, &; refers to an
actual object point and the CCD array refers to its image projected into the object
volume through the objective lens. In that case, the CCD array is demagnified by the
lens and an object point is spread by a demagnified PSF as well.

The quadratic phase function, also known as chirp function, represents paraxial
approximation of a spherical wavefront, and therefore has an important role in much
of the diffraction theory. Digital sampling of quadratic phase function and its effect
on digital holography image formation have been studied in detail [5, 6, 15, 16].
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6.2 Wigner Distribution Function

The Wigner distribution function (WDF) is useful for intuitive visualization of the
spatial and spatial-frequency content of a (one-dimensional) image [17-22]. The
WDF of a one-dimensional function f(x) is defined as

Wy (x, k) = /_oo dX'f (x + %x’)f* (x - %x’) exp(—ikx). (6.6)

o]

6.2.1 Basic Properties of WDF

The WDF has a number of interesting properties. The projections of WDF on the
Xx- or k-axis represent the intensity and the power spectrum, respectively:

[yt = P

o (6.7)
[awien = liwr.

where

flk) = / duf (x) exp(—ikx) (6.8)

is the Fourier transform of f(x). In the following discussion, we are mainly
interested in the support of the two-dimensional function Wy (x, k) and so ignore
overall constant factors from the expressions. The function f(x) can be extracted
from W (x, k) through a Fourier transform

g-‘{wf Gx k)} [x] = / dkW; Gx k) exp(ikx) = f(x)f*(0).  (6.9)

The WDF of a point source is a one-dimensional delta function, a vertical line in the
(x, k)-phase space diagram (Fig. 6.3a) while the WDF of a plane wave is a
horizontal line (Fig. 6.3b)

fx) =exp(ikwx) = Wr(x, k) =k — k). (6.10)

The WDF of a quadratic phase function is a sloped line (Fig. 6.3¢c)

f(x) =exp (ioc(x — xo)z) = Wi(x, k) = 6(k — 20(x — x9)). (6.11)
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a k b k c k

Fig. 6.3 WDF of (a) a point source, (b) a plane wave, and (c) a spherical wave

The Fourier transform of a function corresponds to exchange of x- and k-axes
Wik, x) = Wy(x, k). (6.12)
The WDF of a product of two functions is the convolution of the WDF’s
h(x) =f(x)g(x) = Walx,k) = Wr(x, k) OxWy(x, k). (6.13)

Combining the last two results, one can see that the multiplication of a function with
a quadratic phase function causes shearing in the k-direction

fx)exp(ion®) = Wp(x,k — 20). (6.14)
The WDF of the intensity is an autocorrelation

Wlﬂz (x, k) = Wf@ka* = Wf(x, k)@ka(x, —k) = Wf@ka*. (6.15)

If the Fresnel diffraction is written in the form of (2.33), then its WDF corresponds
to a shearing in the x-direction

flx) = /dxofo(xo)exp(ioz(x —Xo)z) = Wi(x, k) =Wy, <x - %,k). (6.16)

6.2.2 Fourier Transform by a Lens

We use these properties of WDF to describe various aspects of diffraction in the x—k
phase space. For example, consider the Fourier-transforming property of a lens in
Fig. 6.4. Suppose the input object has a spatial extent X, in the x-direction and a
spectral bandwidth B along the k-direction, as shown in Fig. 6.4a. The object is
positioned at the front focal plane of the lens of focal length f and a screen is on the
back focal plane. The propagation of input field to the lens over a distance z = f is
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Fig. 6.4 Transformation of WDF during Fourier transform by a lens. (a) Input object, (b) propagation
to the lens, (¢) quadratic phase of the lens, and (d) propagation to the focal plane

described as a Fresnel diffraction, with o = x/2z and k = 27/, which corresponds
to a shearing of the WDF in the x-direction by (f/x)By, as shown in Fig. 6.4b.
The quadratic phase of the lens, with oy = —(x/2f), corresponds to a k-shear
of — (x/f)Xo, shown in Fig. 6.4c. Another Fresnel propagation to the screen causes
an x-shear, so that the WDF acquires a rectangular shape with X = (f/x)B, and
B = (k/f)Xo. The black dot and the hatch direction in each diagram provides a
guide for how the WDF shape changes through these operations. The WDF has
rotated by 90°, which indeed represents a Fourier transform.

6.2.3 Fourier Holography

Next consider the process of Fourier transform holography (Fig. 6.5). The rectan-
gular area in Fig. 6.5a represents the WDF of the object, while the thick vertical line
is a point source at x = xo on the object plane. Both the object and the reference
pass through the lens in a 2f-system, causing the WDF to rotate by 90° (Fig. 6.5b).
Now the hologram records the intensity of the field, that is,

I = |Ex|* + |Eo|* + ErEo" + Ex*Eo. (6.17)
The WDF of the intensity consists of the four terms

Wi=Wr @ WR* +Wo @ Wo™ + WR(X7 k) O} Wo(x, _k)
F Wa(x, —k) © Wolx, k). 6.18)

In Fig. 6.5c, the thick horizontal line at k = 0 is the autocorrelation of the reference
and the central vertical rectangle of height 2(x/f)X, is the autocorrelation of the
object. The pair of convolutions with the reference gives the upper and the lower
rectangles of size X' = (f /x)By and B’ = (k/f)Xo. The reconstruction consists of
another Fourier transform that rotates the WDF by 90° again (Fig. 6.5d). The final
image consists of the reference spot, the zero-order object, and the well-focused
twin images. The object WDF has size X = X and B = By. It is clear that in order
to be able to separate the image from the zero-order, the reference point source has
to be positioned at |xo|>(3/2)Xp.
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Fig. 6.5 Transformation of WDF during Fourier holography. (a) Input object and point source
reference, (b) Fourier transform by lens, (¢) intensity of the hologram, and (d) Fourier transform

6.2.4 Fresnel Holography

Another example is the Fresnel holography of Fig. 6.6. Here the reference is a plane
wave with spatial frequency k = ko, shown as a thick horizontal line in Fig. 6.6a.
The object field propagates to the hologram plane over a distance z, resulting in the
x-shearing by (zo/x)Bg (Fig. 6.6b). The autocorrelation of the reference is again a
thick horizontal line at £ = 0 of Fig. 6.6¢c. The autocorrelation of the object is now
a thombus shape, while the two convolutions are the reflected pair of sheared
rectangles (parallelograms). For reconstruction, propagation over the same distance
z results in the shape of WDF in Fig. 6.6d. When z = z; exactly, the shearing of
the upper parallelogram restores the original rectangular WDF of the object.
Separation, in x-direction, of the image from the zero-order is complete if
|ko|>(3/2)By. Also note that the twin-image WDF is distorted corresponding to a
propagation of a distance 2z.

6.2.5 Space-Bandwidth Product

The phase space diagram of Wigner distribution function is also useful for consid-
eration of the space—bandwidth product (SBP), which is proportional to the number
of pixels required to represent the image [21]. For a one-dimensional image, it is
equal to the area of the rectangle that encloses the WDF. Figure 6.7 shows the
WDF of three types of holograms — (a) Fourier, (b) Fresnel, and (c) image plane
holograms. For the Fourier hologram, the SBP is X(Bj, the same as the object itself.
For the Fresnel hologram, it is XoBo -+ (zo/Kx)Bo>. The inverse of the “overhead”
SBP, divided by 27, is called the Fresnel number Ng = [/z9Bo?] ! The hologram
needs the same bandwidth as the object but a larger area. For the image plane
hologram, the image of the object is formed using a lens of focal length f with
a magnification M. The magnification results in the size of WDF MX, x By/M.
But the image also contains a quadratic phase factor exp((ix/2fM)x?) and the WDF
has a vertical shear, so that the SBP is XoBy + (x/f)MX,>. Referring to Figs. 6.5
and 6.6, these holograms require four times the bandwidth and SBP of the single
image terms, two for recording the intensity and two for separating the image from
the zero-order.
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Fig. 6.6 Transformation of WDF during Fresnel holography. (a) Input object and plane-wave
reference, (b) propagation to the hologram plane, (c) intensity of the hologram, and (d) propaga-
tion to the image plane
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Fig. 6.7 Space-bandwidth of WDF for (a) Fourier hologram, (b) Fresnel hologram, and (c) image
plane holograms

6.3 Fractional-Order Fourier Transform

In recent years, the fractional-order Fourier transform (FRFT) has been attracting
significant attention in optical processing. In digital holography, in particular, FRFT
is seen to be useful for analyzing holographic reconstruction with astigmatic geom-
etry. It also has conceptual significance as a generalization of Fourier transform and
provides a connection between Fresnel and Fraunhofer diffraction regimes [18, 23].

Referring to Fig. 6.8, recall that the Fresnel diffraction field E(x, y; z) due to an
input field Eo(xo, yo) at z = 0 is given by, with the usual 1D abbreviation,

ik ik
E(x,y;z) = —ﬁ exp(ikz) exp (;—sz)
ik ik
X dxoEo(x0,y0) exp Zx% exp( ——axxp ). (6.19)
2y

The FRFT of order o € [0, n/2] of the function f(x) is defined by

Faf o) Hi] = | 22U o (i —)

2misin o 2 sina

i coso —i
X / dug f (o) exp (5 na u2> exp <E uu0> , (6.20)
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Fig. 6.8 Geometry of fractional-order Fourier transform

which has some resemblance with (6.19) above for Fresnel diffraction. Making
the substitutions

k sino k .
uy =4/~ X0, u = /- sinocosox,
z cos z
7z cosa z
o(to) 0( k sinocuo)’ (1) (\/ k sin o cos ocu>’ (621)
we obtain
F(u) = exp(ikz)(cos o) exp(—ia) exp {; (tan oc)uz] Fu{Fo(uo) Hul. (6.22)

Therefore, the Fresnel diffraction is a FRFT, except for the last exponential. But

ksin®
;o “xz], (6.23)

exp [; (tan ot)uz} = exp |:l

which is a paraxial approximation of a spherical surface centered at a distance of
R, = (z/sin*a) from (x,y) plane. This factor can be compensated for if the
diffraction field is observed on the spherical surface or by placing an appropriate
lens on the (x,y) plane. Then,

F(u) = exp(ikz)(cos a) exp(—iot) &, {Fo(uo) }u]. (6.24)

Note that Fo{f} =f, so that when z — 0, then o — 0 and F(u) = Fo(u)-
Furthermore, §,/,{f} = §{f}, that is, Fourier transform, so that when z — oo,
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then o — n/2 and F(u) < §{Fo(up)}[u]. Thus, as one moves from z = 0 to finite
distances and then to larger distances, the diffraction field goes from being
identical to the input to Fresnel diffraction, and then to Fraunhofer diffraction
regimes, as o varies in the range 0 to 7/2.

Discretized form of FRFT has been developed [24, 25]. FRFT may be used in
reconstruction from in-line hologram [26], in analyzing tilt and translation of a
surface from a single hologram [27], and applied to digital holography of elliptical,
astigmatic Gaussian beams [28—30]. It has been used in an iterative feedback loop
to synthesize field patterns at multiple focal planes [31].

6.4 Wavelets

The wavelets are a family of functions, obtained from one single function u(x),
indexed by two labels as

tap () :1u( _b), (6.25)

a a

where a represents scaling or frequency and b represents shift. Wavelet transform
of a function f(x) is the inner product of the function with the wavelet function:

Fur = (£ | tap () / Of* ()it 6.26)

As an illustration, we analyze holographic reconstruction using Gabor wavelets
[32]. The Gabor wavelets are generated from

u(x) = exp(—px* + ix), (6.27)

which is a sinusoidal oscillation with a Gaussian envelope, so that

g (x) = é exp l—p C%b)z + i( ; b )] . (6.28)

Their Fourier transforms are similarly Gaussian:

1 (1—k)?
i(x) = 7 exp [— 1 , (6.29)

2
(k) = —= exp [ 4;]{)1 exp(—ikb). (6.30)
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Lets take a simple case of a purely phase object in superposition with a plane
reference wave

{Eo(xa)’) :8Oexp[i¢(xay)]7 (631)

Eg(x,y) = &rexplifx],
so that the total intensity is
I(x,y) = 60> + 6r> + 606g expli(p — px)] + 606r exp[—i(p — px)].  (6.32)

Take a specific value of y, and consider the intensity a function of x, and further
suppose that the phase varies smooth enough that we can write

p(x) = px = [p(b) — BB + [ (b) = Bl(x = b) +---. (6.33)

Then the wavelet transform of the intensity is
Iy =(80° + &r”) \/Eexp (_—1)
p 4p
. i 1
otk exp{ilp(t) = o1} [rexp(~ 11 +ati ) = B
. T 1
+oswexp(-ilp(b) ~ i}y [Fexp (- 11— ate ) ~ B ). (639
For positive a, |I,| is maximum when
(6.35)

which is called the ridge of the wavelet. The wavelet coefficient at the ridge of
Gabor wavelet transform is

1
1(b) =(60% + 6x> \/Eexp(——)
(6) =(60* + ), [Sexp( -
. T 1
+ofeexp(+ileld) - )y [Fexn( 1)
p p
. T
1 Gor exp{—ilp(b) - ﬂb]}\/p- (636)
Choose a sufficiently small value of p, so that

1(b) =~ 606 exp{—i[p(b) — ﬁb]}\/li7 (6.37)
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and one can recover the object field by

&o exp[—ip(b)] = Ié—? \/gexp(—i/ib). (6.38)

Wavelet transform has been a useful processing tool in short-coherence interfer-
ometry [33, 34], vibration analysis in digital speckle pattern interferometry [35],
and profilometry by fringe projection [36]. Diffraction and holography can be
looked at from a wavelet framework [37]. A specific type of wavelet called
Fresnelet has been devised for analysis of digital holography [38]. Fourier trans-
form is a global operation that is usually used for the analysis of stationary signal,
but it has a poor capacity for localizing the signal properties. The ridge of wavelet
transform can be used to automatically optimize holographic phase-contrast
microscopy, as described above [32, 39], whereas in the conventional methods
such as Huygens convolution or angular spectrum, one has to manually filter the
angular spectrum.
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Chapter 7
Suppression of DC and Twin-Image Terms

The intensity distribution on a hologram contains four terms

Iy = |Er + Eo|* = |Er|* + |Eo|* + Ex'Eo + ERE,’
=1k +Io+€o+86. (7.1)

Of these, normally only one of the last two terms yields the desired holographic
image, while the other terms — the zero-order and twin-image terms — only contrib-
ute to blurring and interference of the image. This is especially true in in-line
configurations where all four terms are superposed on top of each other, but even in
off-axis configurations they can limit the number of usable pixels and cause
degradation of images. It is therefore a major consideration in any holography
system design and there have been developed a fairly large number of techniques
addressing the “dc and twin-image problem.” Some of these remove the DC term
only, while others can suppress the twin image as well.

7.1 Suppression of DC Terms

We illustrate the following methods by simulation examples using the test pattern
of Fig. 7.1a, with 256 x256 pixels of 1 um pitch and assuming 2 = 0.633 pm.
(Note that the group and element numbers of these simulated patterns do not
correspond to actual USAF resolution target.) The object and the reconstruction
distances are taken to be z = 1,000 pm. The in-line hologram of Fig. 7.1b contains
all of the four terms of (7.1). The reconstruction in Fig. 7.1c, therefore, shows an in-
focus image, £o, and the defocused twin image, £o™. It also contains the zero-order
reference, Ir, and object, I, intensities as blurred background.

A simplest way to deal with the DC term is by subtraction of the average
intensity of the hologram Iy, as is done in Fig. 7.2a [1]. The reconstructed image
in Fig. 7.2b is similar to Fig. 7.1c. In this synthesized example, the reference is a
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Fig. 7.1 (a) Object target pattern, with 256 x 256 um?, 256 x 256 pixels; (b) hologram Iy;; and
(c) image reconstructed from Iy

Fig. 7.2 (a) Iy’ = Iy — Iy and (b) image reconstructed from Iy’

perfect plane wave, or a constant, and therefore the subtraction of the reference is
perfect. In real experiment, the reference may in fact contain nonuniformity. The
method may be improved by first taking the Fourier transform of the hologram and
zeroing out a central spot of several pixels in diameter, that is, a high pass filtering
[1]. Because it still leaves the object component /p, removal of the reference
component alone may not have satisfactory effect. On the other hand, if the
reference is much stronger than the object field, then the /o term may be negligible
compared to the other terms and the removal of Ir alone may have a sufficient
effect.

The zero-order terms Ig and Ip can be completely removed by taking separate
exposures of the reference and object beams as well as the hologram exposure
(Fig. 7.3). The reconstructed image Fig. 7.3c is only disturbed by the out-of-focus
twin image. Use of the off-axis configuration can separate the twin image and
reduce its interference. This method can also reduce the effect of nonuniform
reference. The apparatus and the object need to be stable during the multiple
exposures, and the method has limitations for dynamic objects.
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Fig. 7.4 (a) Iy’ of (7.4) and (b) image reconstructed from Iy’
A more efficient method is provided by the example of Fig. 7.4 [2], noting that

(In — IR)” = lo(2ly — Io) + (ER'Eo)” + (ErEo")’
~ Io(2ly — Io) + 2Iolg. (7.2)

The last approximation may be justified if Im(Er*Ep) is small. Also assume that
Igr > Io. Then

2
and
ER'Eo + EREo" =1y —Ir — Io
~Igp—Ir — M =1y (7.4)

2(Iy + Ir)
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This method requires two exposures /gy and Ig to remove the zero-order terms.
The reconstructed image in Fig. 7.4b has comparable quality as the
previous example.

7.2 Phase-Shifting Methods

Phase-shifting techniques play important roles especially in digital holography,
because addition, subtraction, and other manipulations of phase-shifted holograms
are easily carried out as simple arithmetic manipulations of numerical arrays. This
is in sharp contrast to analog holography. For example, subtraction of two
holograms was considered for removal of twin images even in the earliest years
of holography development [3]. The subtraction was accomplished by overlap of
two hologram prints, one positive and the other negative, in a cumbersome and not
very satisfactory process.

The first method requires exposure of two holograms, 7 (0) and 7y (o), while the
global phase of the object is shifted by o between the two exposures by, for
example, inserting a glass plate [4]. Two additional exposures of /g and Iy are
also taken. Then

Iy(0) —Ig —Io = EREo™ + ER'Eo, 75)
]H(O() — ]R — ]O = EREO/*G_W + ER*Eoei“,. '
so that
Iy’ = [In(0) — I — Io] — [Iu(o) — Ix — Iole™,
W = [In(0) — Ir — Io] — [In() — Ir — Io] 7.6

= ER*Eo(1 — ™).

This method requires four exposures plus the value of phase shift, its optimal
value being 7/2. For illustration, Fig. 7.5a shows the angular spectrum (Fourier
spectrum) of the hologram /(0), with off-axis configuration so that the spectral
terms appear separated. It shows the central zero-order and the pair of twin
images in the upper right and lower left corners. In contrast, the angular
spectrum of the modified hologram Iy’ in Fig. 7.5b contains only a single
spot. Figure 7.5¢ is the modified hologram Iy’, and Fig. 7.5d is its reconstructed
image.

Alternatively [4], three holograms, Iy, I, and /5, are taken while the object phase
is shifted by 0, o, and «;, so that

I, = ]H(O(m) =IrR+1po+ ER*Eoemm + EREO*eiia'” (m =0,1, 2) 7.7
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2 <

Fig. 7.5 (a) Angular spectrum of Iy, (b) angular spectrum of Iy’ in (7.6), (¢) Iy’, and
(d) reconstructed image from Iyy’. (Angular spectra are plotted in logarithmic intensity scales)

Fig. 7.6 (a) The modified hologram Iy’ of (7.9), (b) its angular spectrum, and (c) reconstructed
image

Then it follows

Io—1, Io—1I l—en  ]—en
I __ _ — * _
W= o T —em BB T T sem|

(7.8)

The modified hologram and its angular spectrum are essentially the same as in
Fig. 7.5. This method needs three camera exposures and the two values of phase
shift.

Another method [5, 6] takes two phase-shifted holograms, /y(0) and Iy(2), to
remove the zero-order but not the twin term (Fig. 7.6). For

Iy = Iy(0) — Iy(x) = +EgEo (1 — ) + EREo™* (1 — ™) (7.9)

the optimal value of « is 7. This method is to be compared with one of the speckle
methods in the next section. Other methods of phase shifting in digital holography
will be described in detail in Chap. 8.



90 7 Suppression of DC and Twin-Image Terms
7.3 Speckle Methods

Instead of phase shifting, one can illuminate the object with speckled light by, for
example, sending the laser through a ground glass plate [6, 7]. Two holograms are
exposed while the speckle field illuminating the object is randomly changed. The
object field arriving at the hologram plane is described as
EOS,,, = EoEsm (m = 1, 2), (710)
where Eg, represents the complex speckle field (Fig. 7.7a) and the holograms
(Fig. 7.7b) are
Iy, =1Ir +1os

m m

+ ER*EOES,,, + EREQ*Es *. (7.11)

m

Take separate exposures of the object fields, /ps,,, and subtract from the holograms.
Take the difference of the two to obtain the final modified hologram (Fig. 7.7¢c)

Iy’ = (In, — los,) — (In, — los,)
— Ex*Eo(Es, — Es,) + ErEo*(Es,* — Es,"), (7.12)

which can be compared with (7.9). The image Fig. 7.7d reconstructed from Iy’
shows clear image of the object. While the image does contain the twin image, it is
defocused and speckled into the background.

Speckled holograms can be averaged to obtain twinless image as follows [8]. Let
Eos(0) be the object pattern at z = 0 illuminated by the speckle field. Diffraction
and propagation to the hologram plane over a distance z is denoted as

Eos(Z) = DZ{Eos(O)} (713)
and the hologram acquired by the camera is
IH ZIR +IOS +ER*E05(Z) +EREOS*(Z). (714)

Note that Eos*(z) = D—_.{Eos(0)} and numerically propagate Iy by z

Iy’ = [DA{Iu}|* = |D{Ir + los + Er “Eos(z) + ErEos* (2)} |,
= |DA{Ir + los} + Er"D2:{E0s(0)} + ErEos™ (0)[*. (7.15)

Now if I is averaged by repeating the exposure many times, then most of the terms
disappear except for the square of the last term.

(') ~ <|EREOS*(0)|2> = Irlo. (7.16)
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Fig. 7.8 (Iy’) for Ny = 1,4,16, and 64

Convergence is faster if Ix is removed in (7.14), by subtraction of hologram
average or angular spectrum filtering. Figure 7.8 shows (Iy’) for average of 1, 4,
16, and 64 frames.

7.4 Filtering of Angular Spectrum

A very effective and versatile method to suppress the dc and twin image terms is the
angular spectrum filtering, or spatial filtering [9]. The method can be used not only
to suppress the DC term, but also to select one of the twin first-order terms, as well
as to eliminate spurious spectral components due to parasitic reflections and
interference, thus improving the quality of the reconstructed image. The method
applies to the off-axis hologram, as shown in Fig. 7.9a, where a magnified view of a
small area of the hologram displays the interference fringes. Its angular spectrum
(Fig. 7.9b) then contains the central zero-order spot as well as a pair of spots for
the twin-image terms. Filtering is accomplished numerically by selecting an area — the
highlighted circular area in Fig. 7.9b — and zeroing out the rest of the array. The filtered
spectrum is then inverse Fourier transformed that yields the modified hologram,
which is then used to reconstruct image in Fig. 7.9c by numerical diffraction.
The resolution and quality of the reconstructed image depends on the size
of the filter, as shown in Fig. 7.10a. If it is too small, the image resolution
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Fig. 7.9 Tllustration of angular spectrum filtering. (a) The hologram, with a magnified view of a
portion highlighting the interference fringes. (b) The angular spectrum, with one of the twin-image
peaks highlighted with a brighter circular area, which is used in the reconstruction of the
holographic image in (c)

Fig. 7.10 Angular spectrum filtering with varying filter size using (a) conventional and
(b) nonlinear angular spectrum methods. Each frame shows the reconstructed image using the
angular spectrum displayed in the inset

degrades, and if it is too large and encroaches on the zero-order area, then the image
suffers interference and distortion.

Similar effect may be achieved physically by placing an appropriate mask in the
Fourier plane of a confocal configuration of lenses [10], but the numerical method
affords significant flexibility and versatility. For example, setting the angular
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spectrum filter boundary can be automated [11]. The numerical spectral mask can
be set up with smoothed, that is, apodized, window function, in order to reduce
fringing in the reconstructed image. Separate acquisition and subtraction of
reference and object intensities from the hologram can be useful [12], even with
the off-axis numerical filtering, by allowing larger bandwidth of the filter. Note that
the hologram thus filtered numerically is complex, a feature not feasible in a real
space hologram.

An interesting improvement is provided by the nonlinear spatial filtering, [13].
Starting from

In = Ir +Io + Ex*Eo + ExEo* (7.17)
it follows
Iy Eo Eo”
—=(14+—= 1 7.18
Ir ( +ER)( +ER*>7 719
so that
IH EO EO*
=1 — | =1 14+ — 1 1+—). 7.19
() w1 ) (1 55).

The angular spectrum of this expression has only the two twin-image terms and no
zero-order term, as shown in Fig. 7.10b. Figure 7.10 compares the effect of varying
angular spectrum filter size on the resolution of the reconstructed image, using
(Fig. 7.10a) the conventional or (Fig. 7.10b) the nonlinear angular spectrum
methods. It shows that the nonlinear AS has no zero-order peak and this allows
use of larger AS filter for better resolution, until the filter finally encroaches into the
twin-image area.
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Chapter 8
Phase-Shifting Digital Holography

The in-line configuration of DH makes use of the full pixel count in forming the
holographic image, but the zero-order and the twin-image terms are superposed
on the image. Phase-shifting digital holography (PSDH) is a very effective
method of removing these terms, introduced by I. Yamaguchi, where the com-
plex field at the hologram is obtained by phase-shifting interferometry [1]. From
the complex field at the hologram plane, including the amplitude and phase
information, the optical field at any other plane can be obtained by numerical
diffraction.

8.1 Basic Principles of PSDH

For simplicity, assume that the reference is a plane wave normally incident on the
hologram plane ER (x,y) = Eg exp(ia), where o is a global phase. The object wave
has the amplitude Eo(x,y) and phase ¢(x,y) distributions, so that

EO(x7y) :gO(x7y)eXp[l@(x7y)] (81)
Then the interference intensity is

Io«.(xvy) = |ER + Eo‘zv
= &%+ E0(x,y) + ErEo(x,y)e' P + ExEo(x,y)e ¥,
=&+ E0°(x,y) + 2ErEo(x,y) cos[p(x, y) — a]. (8.2)
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Fig. 8.1 Phase-shifting PZT
digital holography with &
Michelson interferometer. ref
BX beam expander, BS beam

splitter, PZT piezo-mounted

reference mirror

laser BX BS

In the original four-step PSDH [1, 2], four holograms with phase shifts o = 0,
n/2, m, 3n/2 are acquired, for example, by using a piezo-mounted reference mirror
(Fig. 8.1):

Iy = SRZ + 502 + 2ERrEp cos @,
In/g :ng + 502 — 2Er&Ep sin ©,

(8.3)
I, = ER% + Eo% — 2EREo cos ®,
Ly =ER* + E0” + 2ErEo sin ¢,
which are then numerically combined to extract the phase profile
In =1 b
o(x,y) = tan~! | 22202 (8.4)
Iy — I

and the object field amplitude \/Eo?(x,y) can be obtained by a separate exposure of
the object without the reference beam, thus requiring a total of five exposures. The

holographic image is then reconstructed from Eq(x,y) = /Eo* expliy] (Fig. 8.2).
Alternatively, the complex field can be obtained by [3]

Eo(x,y) = [(lo — Ix) + i(l3e2 — Lnp2) - (8.5)

1
4&R
This completely defines the complex optical field Eq(x,y;0) of the object at the
hologram plane, and the diffraction theory can be used to calculate the optical field
Eo(x,y;z) at any distance z from the hologram. These procedures remove the
contributions from the zero-order and twin-image terms.

The phase-shifting interferometry (PSI), that is, without the numerical diffrac-
tion, has been extensively used in surface metrology and other applications [4].
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Fig. 8.2 Simulation of PSDH. (a) Iy, (b) I3, (¢) I, (d) I3,/>, (€) image reconstructed from I,
() VEo*(x,y), (g) ©(x,y), and (h) image reconstructed from \/Eo? explig]

The phase-shifting principle applies equally to noninterferometric fringe projection
techniques for 3D surface profiling [5, 6]. Many techniques have been developed for
both PSI and PSDH and some of these will be described below [7]. The idea of
combining two holograms with a quadrature phase difference was already conceived
in the 1950s by Gabor and Goss [8] but the complexity of the optomechanical system
was substantial, making its practical implementation very difficult. On the other
hand, with the digital implementation, much of the optical manipulations are
replaced with numerical operations in a highly efficient and versatile manner,
yielding powerful applications in many different areas.

8.2 Reduced Number of Steps

8.2.1 Three-Step Method

The number of required hologram exposures is reduced by one in the three-step
PSDH [2]. The interference intensities with three phase shifts 0, «, and f§ are

[a = ERZ + 502 + EREOei(“’_“) + ERSOe_i(“"_“),
Iy = 5R2 + 802 + gRgoei(ga—/f) + ERgoe_i(W_ﬁ), (8.6)
Iy = ng + 502 + SREOCW + gRgoeiiw,
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which can be combined to get

1 (L, —1)(e? —1) — (Ig — Ip) (e™ — 1)

fo= bt =g e - - -ner-n &7
For the case of « = /2 and § = — /2, we have
Eo(x,y) = % [(Io —Lp) +i(lo —1_zp)],
R
qMo—1zp =
o(x,y) = tan”" [ﬁ - Z} . (8.8)
This requires three camera exposures and one intensity measurement.
8.2.2 Two-Step Methods
A two-step method is also possible, for any phase shift O<a<w [9]
Bolx,y) = o= Eo" &) —exp(in){la — £0” &) (8.9)

Er[1 — exp(—2ia)] ’

which requires three exposures plus one intensity measurement.
It is also possible to have only the two phase-shift exposures to reconstruct the
complete object field, as follows [10, 11]. Let u = &%+ 502 and write

Iy =u+2ErEp cos p, (8.10)
I, =u+2ErEopcos(p — a) = u + 2ErEp(cos p cos o + sin p sina). '
Then
I —
Eocosp = 0 u’
2ER
(8.11)
) —Iycosa + I, + u(l — cosa)
Eosinp = ,

2&R sina

which leads to

4&x* (u— ERz)sinzoc = (Io — u)*sin®o + [lycos o — I, + u(1 — cos )] (8.12)
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so that
au®* — 2bu + ¢ =0, (8.13)
where
= 2[1 — cosa,
= [(lo + L) (1 — cos o) + 2Ex*usin’a, (8.14)

= [+ — 2Ly, cos o + 4&x*sina].

The solution

b— Vb~
y=2_Y7 "4 (8.15)
a
then allows one to write
In—u . —Iycosa+1,+ u(l —cosa)
E =
o(*y) 2ER ! 2&R sino ’
—1 I 1-—

o(x,y) = tan~! pcosa + I, +u(l — cosa) . 8.16)

(Ip — u) sina

8.3 Unknown Phase Steps

The above methods allow in principle to extract the complex optical field of the
object by combining two or more holograms acquired with fixed phase steps. It may
be, however, difficult to precisely control and maintain the phase shift and small
errors in phase steps can cause substantial error in the extracted phase profile.
A number of methods have been proposed to allow determination of the phase shift
by analysis of the hologram images, such as by iterative procedures for estimating
the phase shift with improving statistics [12—14].

In a series of papers [15-21], L.Z. Cai et al. have developed methods to extract
the arbitrary phase shift and to calculate the complex object field at the hologram.
For example [20], suppose we take two holograms with unknown phase shift o:

]O(x7y) = ng + 502()(7.)}) + zgRgO('X’y) COS[SO(XL)})L (8 17)
I(x,y) = &% + £0°(x,Y) + 2ErEo (x,y) cos[p(x, ) + a]. '
Take their sum and difference
Iy — I, = 4ErEo sin(ip + a/2) sin(a/2) 8.18)
I+ 1, = 2ER* + 2E0% + 4ErEo cos(p + 2/2) cos(x/2) '
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and take the following averages over all pixels of the frame

<(10 - 11)2> = 462(£0°)(1 — cos ),
(Io + 1) = 2Er” + 2(E0%).

(8.19)

This averaging assumes that the phase distribution is sufficiently random, that is, its
histogram is sufficiently uniform in the [0, 2] interval, and that the amplitude and
phase are not statistically correlated. Then the phase shift « can be calculated from
the two holograms, I and I,, plus the constant reference intensity Eg° by

I — 1,)°
- 2<(0 )> E (8.20)
2ER <<Io +Ia> — 28R )

o = COS

With the knowledge of o, one can also calculate the object intensity £o° (x,y) by
applying sin?(¢ + a/2) + cos?(p + /2) = 1 to (8.18) to write

1

Eot — bES? + 2¢=0 (8.21)
where
b=1Iy—1,+2ER*cosa,
c= (o +1, — 2&:2)° + % (8.22)
so that
£o2 = % [b _ \/575?} , (8.23)

which is valid for Eg?>E0”. And finally the complex object field Eo(x,y)can be
calculated from (8.16) above.
Alternatively [21], one can go back to (8.12) and write it as

acos®a — 2bcoso + ¢ = 0, (8.24)
where

a = 48R2 (Li — gRZ),
b= (Lt—[())(u—la)v (825)
c=(Io—u)*+ (I, — u)* — 45> (u — Er?).
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Again, take average of (8.24) over all pixels, before solving it for cosa,

cos o = 2 : (8.26)

8.4 Techniques of PSDH

8.4.1 Phase-Shifting Methods

The phase-shift is most often achieved by using a reference mirror mounted on
a piezoelectric transducer (e.g., PZT) [1]. Phase-shifting can also be accomplished
by using liquid-crystal phase retarder [3, 9, 22], acousto-optic modulator [23],
or between polarization components transmitted through quarter-wave plates
[24, 25]. For multiwavelength holography, the phase-shifting by PZT is wave-
length-dependent, and can lead to errors and noise [26]. An achromatic phase
shifter, consisting of a half-wave plate sandwiched between a pair of quarter-
wave plates, was used to record tri-color digital hologram [27, 28]. In spectral or
wavelength phase-shifting [29-31], the phase shift is achieved by shift in wave-
length of a tunable light source, through A@ = 2mzA//*. A spiral phase plate or a
SLM (spatial light modulator) with computer-generated spiral phase pattern can be
used where the phase shift is achieved by rotation of the phase plate [32]. Some of
the various phase-shifting methods are compared in [33].

Use of SLM, such as liquid crystal or micromitror array allows faster switching
time and stability against micromechanical vibrations. Furthermore, different parts
of an optical beam can acquire different phase shifts. This is especially useful in
several of common-path and low-coherence interferometer configurations and
techniques, as will be described in later chapters.

8.4.2 Heterodyne Digital Holography

Instead of phase-shifting in discrete steps, the phase can be varied in continuous
manner, integrating the time-dependent light intensity over finite intervals. For
example, the relative phase between the reference and object fields can be varied
linearly in time, which is equivalent to having a frequency offset between the two
[34]. If the reference and object fields are written as

(8.27)

ER(xmy; t) = ER eXP(_i(URl);
Eo(.X,y) = So(x,y) eXp[lQO(X,y) - iwol]7
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Fig. 8.3 Heterodyne DH configuration. AOMs acousto-optic modulators

with wg — wo = Q, then the interference intensity is time-dependent
I(x,y;1) = E-* + £0° (x,¥) + 2ErEo(x, y) cos[p(x, y) — Q). (8.28)

Four exposures may be taken at ¢t = 2nn/NQ (N =4, n =0, 1,2,3) to obtain the
four quadrature interference images and proceed to derive the complex object field
Eo(x,y) = Eo(x,y) expliv(x,y)]. (To be more precise, one needs to integrate (8.28)
over the exposure time of each camera frame, but the result is essentially the same.)
The camera frame rate is therefore fccp = NQ/27, where in this case N = 4. The
frequency offset is typically created by using a pair of acousto-optic modulators
(AOM), as depicted in Fig. 8.3. The heterodyne digital holography [34-36] solves a
major problem of PSDH of precisely controlling the phase shift. The RF
frequencies of the AOMs can be easily controlled with high precision and coher-
ence, compared to micromechanical control of PZTs. In [36], by combining hetero-
dyne DH and off-axis configuration with angular spectrum filtering, noise
associated with the dc and twin-image terms are effectively eliminated as well as
noise due to spurious interference, leading to quantum limit of single photo-electron
per pixel. Alternatively, digital holography was demonstrated at the photon-
counting level using a xy-scanned optical fiber tip connected to a photon-counting
detector [37]. Digital hologram with illumination as low as 43 counts per second
produced clear reconstruction image.

Instead of linear variation of phase (frequency shifting), the phase may be
modulated sinusoidally [38]. This is useful in PZT-based system, which obviously
cannot move linearly for indefinite period of time, though the analysis becomes
more involved. The interference intensity with sinusoidal phase modulation is
written as

I(x,y;t) = I(x,y) + A(x,y) cos[p(x,y) + ¥ sin(Qz + 0)] (8.29)

where I(x,y) is the dc term, A(x,y) is the fringe amplitude, ¥ is the phase modula-
tion amplitude, Q is the modulation frequency, and 0 is the phase angle of the phase
modulation. The average intensity of the nth integration bucket is

1 nt
Ixy) = - /( 1, y: )db, (8.30)

T Jin-1)
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which can be carried out using Bessel expansion, and the phase function ¢(x,y)
can be calculated [38]. Some of the characteristics and advantages of sinusoidal
phase modulation are similar to the linear phase modulation (i.e., frequency shifting
or heterodyne digital holography).

8.4.3 Asynchronous Digital Holography

In asynchronous digital holography of [39], the object and reference arms are
frequency shifted by 100 Hz using a pair of offset AOMs, causing a phase shift
between two exposures. The phase shift is measured by sinusoid-fitting and quanti-
tative phase profile is then obtained by Hilbert transform. In [40], instead of
consecutive exposures using AOMs, a Wollaston prism is used to generate two
interferograms spatially separated and phase shifted. Subnanometer fluctuations of
a MDA-MB-468 human breast cancer cell was measured on ms time scale. A phase
profile movie of a beating myocyte of rat heart is obtained.

8.4.4 Parallel Phase-Shifting

In the above PSDH methods, two or more holograms are acquired sequentially as
the phase of the reference beam is stepped. This is sometimes referred to as the
temporal phase shifting, and has inherent speed limitation because of the multiple
exposure. There have been various efforts to increase the speed of PSDH process so
that it can be used for dynamic systems. In [41], multiple cameras are used to record
interferograms with different phase shifts, which in this case is effected by different
diffraction orders of a Fourier plane grating. The multicamera system tends to be
cumbersome and costly, as well as being technically challenging to achieve
and maintain exact pixelwise registration. Awatsuji et al. has proposed the use of
phase mosaic patterns inserted into the reference, so that adjacent pixels with
different phase steps can be combined to obtain a final pixel value, depicted in
Fig. 8.4. Four-, three-, and two-step phase mosaics have been considered [42—-45].
In the absence of commercially available phase shift arrays, demonstration
experiments had to synthesize such array from multiple phase-shifted holograms
generated in the conventional manner. It is worth noting that the idea of dividing a
hologram into strips or checkerboard patterns with quadrature phase shift has been
mentioned in Gabor’s original attempt at phase shift holography [8].

8.4.5 Fractional Talbot Effect

An interesting way to generate phase mosaic is provided by the fractional Talbot
effect [46]. When a two-dimensional binary amplitude grating is illuminated with a
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Fig. 8.4 Parallel phase shifting. The phase mosaic patterns (a) is imaged on the CCD array in (b)
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Fig. 8.5 Fractional Talbot effect. The input pattern (a) and the diffraction pattern at Talbot
distance Zy (b). The diffraction pattern at 1.25Zy, showing the (¢) amplitude and (d) phase
(white = 0, light red = m/2, light blue = —mn/2)

plane wave, replicas of the grating appear periodically at distances multiple of the
Talbot distance zp = 2d?/J, where d is the grating period. In addition, a superposi-
tion of laterally shifted replicas of the grating but weighted by different phase
factors, called Fresnel images, appear at fractions of the Talbot distance

71 = ZT<Q+%), (8.31)

where ¢ and O<n<m are integers. This provides a periodic three-step phase
distribution with uniform irradiance that can provide the reference illumination
for parallel phase shifting. When n/m = 1/4 or 3/4, a 2 x 2 superpixel contains
phase shifts of 0, /2, /2, and =, as shown in Fig. 8.5. This pattern can be
projected on the CCD and used as the reference, and the three-step phase-shifting
algorithm can be applied.

8.4.6 Spatial Phase-Shifting

The method of extracting the phase profile from a single interferogram containing
spatial carrier frequency is sometimes referred to as spatial phase shifting, which
includes the usual off-axis holography configuration [33, 47]. In a method called
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spatial carrier phase shift method or sinusoid-fitting method [48, 49], a single
interferogram is used to fit sinusoids over the slowly varying interference envelope.
This requires a single interferogram exposure but at the expense of the spatial
resolution. It operates on the interference fringes at the image plane, does not
require Fourier transform, and is valid if the phase changes slowly over several
pixels, so that

-1 I(x+Ax,y)—1(X—Ax,y) tankOAx
I(x+ Ax,y) = 2I(x,y) + I(x — Ax,y) 2 )

p(x,y) = —tan (8.32)

where I(x, y) is the interference pattern, ko is the carrier fringe frequency and Ax is
the pixel pitch. A more general method that works for curved reference wave as
well as plane wave was introduced in [50].

8.5 Errors and Noise in PSDH

Error in phase shift in reconstruction relative to the phase shift in recording can lead
to incomplete cancellation of the dc and conjugate terms. The miscalibration may
be due to nonlinearity and nonrepeatability of the phase shifters. An extra interfer-
ometric arm may be adopted for in situ monitoring of phase shift, at the expense of
more complicated instrumentation [51]. Errors and noise also arise from digitiza-
tion, thermal noise, shot noise, mechanical vibrations, instability of light intensity,
and speckle interference [47]. There have been many studies for optimal minimi-
zation and compensation of errors and noise in both PSI [52, 53] and PSDH [3, 47,
54-58].

One way to estimate and correct the error is by minimizing the error in the
reconstructed amplitude image compared to the object [54]. A more general method
is given in [15, 18, 20], where the phase shift between two exposures is calculated
based on a statistical consideration of the interferogram, and its correction for
intensity instability is also given [59]. In heterodyne digital holography [35], a
difference frequency between the object and reference beams is set up using
acousto-optic modulators so that the phase shift between consecutive CCD frames
can be controlled with much higher precision. An analysis of noise and sensitivity
of PSDH has been made in [56].
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Chapter 9
Numerical Techniques of Digital Holography

Beyond the basic numerical diffraction methods, there are many DH techniques that
take full advantage of the ability to numerically manipulate the optical field
represented as an array of complex numbers. These techniques have unique
capabilities, and are distinct from and generally more versatile than the conven-
tional image processing methods that apply on intensity images.

9.1 Numerical Focusing

One of the most familiar characteristics of holography is the three-dimensional
content of the image information. So in digital holography, starting from a single
hologram acquired by the camera, and possibly preprocessed to suppress unwanted
dc or twin terms, one can reconstruct the image at various distances simply by
changing the distance value in the numerical diffraction, in a manner analogous to
turning of the focusing knob on a microscope or other imaging instruments [1].
Figure 9.1 gives an example of such numerical focusing.

Furthermore, in some applications such as in microscopy and particle analysis, it
is useful or required to be able to automatically determine the best focus of an
image. One may apply a sharpness metric, a well-developed current technology.
There are auto-focusing techniques that are unique to digital holography. In [2], it is
shown that the average pixel value

1

N pixels

M =

> i ©.1)

all pixels

can be used as a focus metric because it goes through an extremum at the best focal
plane. For an amplitude object the M-value is a minimum and for a phase object it is a
maximum. Examples in Fig. 9.2 show that the extrema are fairly sharp, although the
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a b c d

Fig. 9.1 Numerical focusing with z = —100, 0, +100, +200 pm relative to the expected image
distance
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Fig. 9.2 Focus detection by average amplitude. (a) Reconstructed images of a gray-scale amplitude
object at z = —50, 0, +50, +100 um relative to the expected image distance; (b) reconstructed
images of a phase-only object, i.e., the phase retardation is proportional to the gray scale of the
object in (a); (c) focus metric vs. distance for the amplitude object (a); (d) for the phase object (b)

size of the peak is only a few percent. If the object is a mixture of amplitude and phase,
then the extremum may be modified or even disappear.

Another signature of the focal plane is provided by the phase behavior [3]. In
Fig. 9.3, the object is an opaque particle in a transparent background. The amplitude
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Fig. 9.3 Phase reversal
across the focal plane of an
opaque particle of diameter
10 pm. The panels represent
propagation of z = —250

to +250 pm and lateral field e
size of X = 256 um =

image goes through a minimum at the focus, as expected, while the phase image
changes sign across the focal plane. The phase reversal may also occur for a
phase object, for example, a transparent particle in a bright background, and for
these the amplitude may also change sign relative to the background. But the
behavior is dependent on the size of the phase discontinuity and may not be robust
enough for practical applications, compared to the amplitude object. On the other
hand, a spherical particle may behave much as an opaque particle because of the
large scattering and the phase reversal may be a useful method of focus detection.
A number of auto-focusing methods are analyzed in [4], including weighted
spectral analysis, variance of gray value distribution, cumulated edge detection by
gradient calculation, and cumulated edge detection by Laplace filtering. Variance
and Laplacian of Gaussian are analyzed as a focus measure in [5]. The focal plane
of particles can also be determined by maximizing the correlation coefficient [6].

9.1.1 Extended Focus

In [7], a sequence of digital holograms are recorded as a MEMS component
undergoes axial displacement. The focus displacement is tracked by monitoring
the phase image of DH and this information is in turn used to track the reconstruc-
tion distance. Using a similar logic in [8], an entire inclined surface of a MEMS
component is imaged in focus by using the phase image to determine the focal
distance of small areas of the surface and reconstructing the segments separately
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using the corresponding focus distances. In [9], a volume containing many particles
is imaged with all the particles in focus by determining the best focus for a region of
interest around each particle. Extended focus imaging of macroscopic objects is
demonstrated in a similar manner [10]. Extended focus imaging is shown to
improve the precision of quantitative phase microscopy by digital holography [11].
From the basic equations for formation of holographic image, it is clear that if
the hologram is stretched by a factor o, then the image magnification increases by «
and the image distance increases by o”. This effect can be utilized in DH by
numerical expansion of the hologram array in a very flexible manner [12, 13].
Through an adaptive deformation of digital hologram, it is possible to put different
objects at different distances simultaneously in focus. In particular, if the hologram
is stretched in quadratic proportion of a lateral direction, then the focus distance
varies linearly along that direction, bringing all parts of a tilted plane into focus.

9.2 Pixel Resolution Control

As we noted earlier, the Fresnel transform method (FTM) of numerical diffraction
has pixel resolution, dx, proportional to the propagation distance, z,

N
AZ

ox ==
* N\‘(SXO ’

9.2)

where Jxg is the pixel size on the input frame. Together with the minimum
reconstruction distance, zmin = Xo° /N, the FTM has a significant constraint on
the size and resolution of the reconstructed image. On the other hand, the Huygens
convolution method (HCM) and the angular spectrum method (ASM) have constant
frame size, so that objects larger than the camera frame cannot be properly imaged
without using additional imaging optics.

9.2.1 Zero-Padding Method

For example, Fig. 9.4a is a simulated hologram of a resolution target with a field
size Xo = 256 um and N, = 256 pixels so that dxo = 1um. The object distance is
zo = 1,200 um. The hologram is preprocessed to remove the dc and twin terms.
The Fig. 9.4b is reconstructed from Fig. 9.4a by FTM. At the reconstruction
distance z = 1,200 um, the new resolution is ox = (Az/N,0xp) = 2.97 um and
the field size X = N,0x = 760 um, and therefore the target pattern occupies a
small portion of the frame. A magnified detail of the dotted square in Fig. 9.4b is
shown in Fig. 9.4c, containing 53 pixels across.

In order to maintain the same resolution, the hologram is padded with enough
zeroes to make X = (Az/N,'0xo) = dxp, that is N,/ = (1z/dxp?) = 760.
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Fig. 9.4 Zero-padding method. (a) Simulated hologram with 256 x 256 pixels; (b) reconstruc-
tion from (a) by FTM; (c¢) a detail of the dotted square in (b) with 53 x 53 pixels; (d) the hologram
with padded zeroes with total 760 x 760 pixels; (e) reconstruction from (e) by FTM; (f) a detail of
the dotted square in (e) with 157 x 157 pixels

Figure 9.4d is the zero-padded hologram and Fig. 9.4e is the image reconstructed
from Fig. 9.4d. Figure 9.4f is a magnified detail of the dotted square of Fig. 9.4e, but
it now contains 157 pixels across. It maintains the resolution of dx = 1 um. For
reconstruction at various distances, different number of zeroes are padded and the
central N, = 256 pixels can be cropped to maintain the same field and resolution.
The method is straightforward but it does increase the computational load.

9.2.2 Two-Step Propagation Method

A two-step FTM method [14, 15] uses an intermediate plane to propagate over two
distances z; and z, so that z = z; + z,. Then

)LZI
ox) = 3
Y 0x ©-3)
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Fig. 9.5 Two-step propagation methods. (a) FTM propagation of z; = 600 um, where
X1 =380 pum; (b) another FTM of (a) for z; = 600 pm, to result in X, = 256 pm. (¢) ASM
propagation of z; = 796 pm, where X; = 256 pm; (d) FTM of (c) for z; = 404 pm to obtain
X, =256 pum

and
Az 2 zZ

= 2 5x. 9.4)

Sxy = 2
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The ratio between z; and z, can be adjusted so that the final resolution dx, matches
the desired resolution dx. In particular, to maintain the same pixel size in the input
and output planes, the propagation over z can be carried out in two half-steps of z/2,
as shown in Fig. 9.5a, b.

On the other hand, with the two-step FTM, the partial steps z; and z, must also
each satisfy the minimum distance requirement. A more flexible method [16] first
propagates to z; by ASM, which does not have minimum distance requirement but
maintains the same pixel resolution, followed by another propagation of z; = z — z;
using FTM. The values of z; and z, are chosen so that

_ X3
)N,

9.5)

%)

and z; = z — 2. The result shown in Fig. 9.5d has better quality than Fig. 9.5b.

9.3 Optical Phase Unwrapping

The phase images generated by digital holography, as well as most other phase
imaging techniques, suffer from modulo 27 ambiguities. An object whose optical
thickness variation exceeds the wavelength produces wrapped phase images, with
discontinuities at every 2rm of the phase profile. Numerous phase unwrapping
algorithms have been developed [17, 18], but it remains challenging to find
solutions that can efficiently address all different types of phase topologies. This
is because most of the unwrapping procedures are based on different strategies to
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Fig. 9.6 Optical phase unwrapping. (a) Height profile z(x) of a slanted plane of maximum height
5 pm; (b, ¢) phase profiles ¢;(x,y) and @,(x,y) with 4y =0.532 pm and 4, = 0.633 um,
respectively; (d) Ap =@, —p,; (e) add 2m wherever Ap<0; (f) int[®'Aa/A]2m;
(g @ = ¢ +int[®2'A2/A]2%; (h) clean up glitches by adding or subtracting Z; if
|@e — @[22, /2 [19]

find the phase discontinuities and to make judgments on how to stitch the
discontinuous regions. Most often the algorithms are computationally demanding
and have difficulty handling different types of phase topologies. Optical phase
unwrapping (OPU) based on multiwavelength digital holography offers a method
that is fast, efficient, and deterministic [19, 20].

For example, two holograms of the same object are acquired using two different
wavelengths, A, and 1,(1,>4, for definiteness), and the phase images ¢, (x,y) and
©,(x,y) are produced from them (Fig. 9.6). Each of these profiles range in phase
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from O to 27 and the corresponding optical thickness profiles range up to 4; or ;.
Now subtracting the two, Ay = ¢, — ¢,, followed by adding 27 wherever Ap<O0,
results in a new phase image @;,’ that ranges from O to 27z, whose effective
wavelength, or the synthetic wavelength [21-23], is given by

;Lz)ul
Ap = .6
p=g 9.6)

The new phase image handles optical thickness variations up to A, which can be
made large enough to cover the object’s maximum thickness variation by choosing
small enough wavelength difference. If, however, the original phase images have
certain amount of noise, say ¢2n, then the new phase image contains the same
amount of phase noise, which translates to noise in the optical thickness profile,
¢A, instead of &4, amplified by the same factor as the synthetic wavelength
magnification. The noise can be reduced back to the original level, by using the
new phase map as a guide to decide how to unwrap the ¢, phase map. That is, the
new phase map is given by

N
%z%mm[ 13 12}275, 9.7)
1

where int stands for integer quotient. This scheme works unless the amplified noise
exceeds the original wavelength, ¢Aj;>4;, which sets the minimum difference
wavelength, and therefore the maximum synthetic wavelength:

A
Ay — )v]>8/12; A12<?l (9.8)

If the noise is more excessive, or a larger synthetic wavelength is needed, there
are hierarchical methods using three or more wavelengths [24, 25]. For example,
start from 4; and choose 4>, such that A;p<% and

Al
=—" 9.9
G v e

The noise associated with the new phase map of Ay is €13 = €11 /A12. Next choose
A3>7, such that A23<(A12/812) and

Axls
= 9.10
A3 Ao — /o (9.10)

Now use Aj; and A3 as the two new phase maps to form a new combination

AizAn

Ay = ——————,
2T A —An

©.11)
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a ’q =532 nm

Fig. 9.7 (a) Two-wavelength holographic interferometer. (b) A detail of a hologram showing the
two sets of fringes in orthogonal directions. (¢) Angular spectrum of (b) showing the two pairs of
peaks for the green and red lasers [26]

The noise associated with Ay is &3 = e¢4;/Az;. In general, the nth wavelength
Jn>An—1 is chosen such that A,_; ,<(Ay—2.,—1/€n—2,—1) and

)= An—l,n/ln—l
" An—l,n - in—l
Then use A, 2,1 and A, ,, as the two new phase maps to form a new
combination

An—2,nAn—2,n—l jvnin—l

ANp1n= = . 9.12
b An72,n - An72,nfl ln - ;\'nfl ( )

The noise associated with A,,_; , is &,—1,, = €41/A,—1,,. The process continues until
A,—1,, is large enough for the z-range of the object.

The optical phase unwrapping method was applied to quantitative phase micros-
copy in [20, 27]. Two-wavelength OPU can be achieved with single exposure
digital holography, by angular multiplexing [26, 28-30], as shown in Fig. 9.7.
The double interferometer consists of one common object arm and two separate
reference arms illuminated by two different wavelength lasers. The reference arms
are aligned so that the fringes of the two wavelengths are perpendicular to each
other. On the angular spectrum the peaks appear as two distinct pairs, so that the
holographic images can be processed separately by selecting the appropriate peak
for each wavelength. Figure 9.8 is an example of a DHM phase image of the surface
of a polished coal sample, unwrapped by OPU. Evidently, the software-based
method has difficulty handling isolated areas of phase profile, while the OPU
generates correct phase profile regardless of the topology. The OPU consists of
only several algebraic and Boolean operations, and therefore is very fast and
computational demand is low. The method is entirely deterministic, not depending
on any estimations of topology of a pixel’s neighborhood.
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Fig. 9.8 Two-wavelength optical phase unwrapping on images of a porous coal sample.
(a) Amplitude image. (b) Single-wavelength phase image reconstructed with A; = 532 nm.
(A second phase image with 1, = 633 nm is not shown.) (c¢) Software unwrapped phase images
from (b). (d) 3D rendering of the dual-wavelength unwrapped phase image [26]

For macroscopic measurements with thickness range of centimeters, the wave-
length difference needs to be ~ 1073/ or several GHz in frequency difference,
which can be produced by laser cavity modulation [31] or electrooptic modulation.
For microscopic imaging of <50 um thick biological cells, say, the wavelength
difference needs to be AA>5nm, which would require separate lasers or a tunable
laser. For larger wavelength differences, the image formation may be affected by
chromatic aberration of the system. The optical elements or the object itself may
have chromatic aberration, or in the case of Fresnel transform method for numerical
diffraction, the reconstructed image size depends on the wavelength. In DH, it is a
simple matter to compensate for the aberration by adjustment of the reconstruction
distance [32] or by subtracting reference holograms without the object [33]. Three-
wavelength OPU has been demonstrated with three LED’s, three laser diodes, or a
tunable dye laser as light sources [34-36].

Simultaneous acquisition of multiwavelength holograms can be achieved by
using tri-color CCD sensors [37, 38]. A means to determine the precise wavelengths
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during OPU experiment is available [39]. Instead of multiple wavelengths, one may
shift the illumination angle to achieve similar phase unwrapping effect [40]. Phase
unwrapping is also effected by varying reconstruction distances [41]. The OPU
method is fast enough for real-time vibration analysis [31, 42].

9.4 Diffraction Between Tilted Planes

Conventional diffraction theory usually describes propagation of optical field
between parallel planes perpendicular to the optical axis. The ability to directly
calculate the holographic image on an arbitrarily inclined plane would be useful in
many different applications, such as inspection of fiber segments, characterization
of integrated optics components, imaging of tissue surfaces, and particle field
imaging with seeded laminar flow patterns [43, 44]. Diffraction between tilted
planes have been studied by a number of authors [45-49] and fairly complete
descriptions are provided in [S0-52]. It has been applied to holographic reconstruc-
tion with varying view angle [53, 54] and to reconstruction of tomographic
images of digital interference holography on variable planes of inclination
[44, 55]. Wavelet transform approach has also been applied to reconstruction on
tilted planes [43].

As depicted in Fig. 9.9a, we are in general interested in the propagation of
optical field from the input plane o' (xo’, yo') to the output plane X'(x’, y'), either or
both of which may be tilted with respect to the optical axis. A general strategy is to
use intermediate planes X¢(xo,yo) and X(x,y) that are perpendicular to the optic
axis. One first calculates propagation from Xy’ to X, which can be accomplished by
rotation in the Fourier domain, as described below. This is followed by propagation
between parallel planes Xo(z = —Z) and X(z = 0), using conventional methods
based on traditional diffraction theory. Finally, propagation from X to the tilted
output plane X' is handled by another Fourier rotation.

The method of Fourier rotation is illustrated with the configuration of Fig. 9.9b,
where the output plane is tilted by an angle f§ around the y-axis while the input plane
is normal to the optical axis. Let the optical field at the input plane be

Es,(x0,0) = Eo(x0,Y0)- (9.13)

Then its angular spectrum
1 .
AQ (kxa ky) = f{Eo} = ﬂ /dX()dyoEO ()Co,y()) eXp [71 (kXXO + kyy())] (914)
o

is the amplitude of a plane wave component

Y(x,y,2) = expli(kex + kyy + k.2) | (9.15)
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Fig. 9.9 Geometry of diffraction between tilted planes. (a) General rotation of input and output
planes. (b) Simpler case of only the output plane tilted around the y-axis by 8

that propagates along the direction k = (ky, k, .), where

ke = \/k* — k2 — k2 (9.16)

As we saw in Chap. 2, the optical field at any distance Z + z from the Zy-plane is
1
E(x,y,2) =5 / dkedkyA (kv, ky) expli(kex + kyy + k:(Z +2))]. (9.17)
T =

This can be rewritten in the coordinate system of (x’,y’,z’) by noting that

X x'cosff—z'sinf
y| = y' (9.18)
z x'sinf +z'cos B

and
k' cosf —k,/sinp

ky
k| = I 9.19)
k, k. sin B + k.’ cos 8
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Fig. 9.10 Mapping of
discrete frequency intervals
under rotation

and using the Jacobian determinant

Ok ky)
Ak, k")

diydi, = dk,'dk,’

)
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k/
= dk,/dk,’( cos B+ sin B . 9.20
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The field on the X'-plane with z/ = 0 is then

Es(X',y) :% / dk,/dk, exp i (k(/x" + kyy')]
P

k'
Ao (k)" cos p — k. sin B, k') (cos B+ - sin ﬁ>
k: (9.21)

z

X
x expli(k, sin f + k." cos B)Z]

with k' = \/k? — k,/* — ky’z. Analytically, this is an inverse Fourier transform of
the quantity in curly brackets.

Problem arises when this is discretized for numerical diffraction because of the
nonlinear transform of (9.18) and (9.19). In Fig. 9.10, the blue dots on the vertical
axis represent the uniformly sampled spatial frequencies k,, while the corresponding
wave vector k is on the circle (Ewald sphere) of radius k. When the k-vector is
projected on the k,/-axis, it is clear that the sampling on this axis is nonuniform (red
dots). Possible solutions are to use an algorithm for nonuniformly sampled Fourier
transform [56, 57] or to interpolate the spectrum onto uniform sampling points.
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Fig. 9.11 Diffraction of resolution target pattern of 256 x 256 um? tilted at 45°. The plane is at
focus at the center vertical line

A third alternative, especially when the tilt is only around a single axis, is to
numerically integrate one axis (k" in our example) without the benefit of FFT and
to apply FFT for the other axis (k," in our example) (Fig. 9.11). Depending on the
application, this may be satisfactory in speed and accuracy. Another problem to note
is that although the k, range is centered at zero, the k,’ is in general not centered
at zero, which imparts a carrier frequency on the output field. This needs to be
compensated by shifting the center of k,’-axis.

9.5 Aberration Compensation

Aberration arises when the optical wavefront of an imaging system is deformed in
an unintended manner. Recall that Gabor’s original intention for lensless imaging
by holography was to avoid the aberration problems of electron lenses. Reconstruc-
tion of wavefront by holography also leads to the ability to control and manipulate
the wavefront in order to compensate for the aberration. Leith & Upatnieks
demonstrated recording of wavefront aberration by holography and use of the
hologram as a correction plate for the imaging system [58]. Digital holography
offers further flexibility and versatility in sensing and control of aberrations.

For example, suppose an imaging system conveys the optical field of an object as
Eo but imperfections in the system adds aberration E, to the object field, preventing
formation of a perfect image. Interference with a reference field Er results in a
hologram, one of its twin-image terms being of the form (Eo + E,)Er*. The
aberration term can be eliminated if one acquires another hologram without the
object in place, so that the corresponding term is E,Fr*. Now if this hologram is



References 123

subtracted from the first, the resulting numerical hologram has the object field
without aberration, EqER*. This is digital implementation of the concept of correc-
tion plate in [58]. At least in principle, this results in complete elimination of
aberration without the need to know any details of the aberration. The aberration
of the imaging system can be measured once and used for imaging of any objects, as
long as the imaging parameters do not change. A possible drawback is that it
requires at least two exposures of holograms.

There are techniques for achieving aberration compensation from a single
hologram. These usually presume that the object has flat or empty areas, such as
in MEMS devices [59] or substrate areas of cell culture, or if the sample is known to
be thin with flat background or substrate [60]. Lowest order aberration is the tilt of
wave front that may result from misalignment of object and reference or, equiva-
lently, misregistration of center of angular spectrum filter. This can be corrected by
use of correspondingly tilted reference plane wave. Note that because of the
discrete intervals of spatial frequencies, the tilt may not always be eliminated by
adjustment of the angular spectrum filter and use of tilted reference plane wave is
then necessary. Next order is the spherical aberration, which may arise from
defocus of the real space imaging system [61] or numerical focus of digital
holography. It also often arises when the object and reference waves have
mismatched curvatures. This can be compensated for by using quadratic curvature
of numerical reference wave [62-64]. Adjustment of aberration parameters can be
automated for efficiency and accuracy. Automatic compensation of higher order
terms of Zernike polynomials has been demonstrated [65]. Generalizing further, the
concept of numerical parametric lens has been introduced that can shift, magnify,
and compensate aberrations [66]. A partial compensation of aberration without
detailed knowledge of aberration parameters is possible by in effect high-pass
filtering a small central portion of a twin-image diffraction order in angular
spectrum. This assumes that aberration is mostly low-order and that the specimen
does not have interesting low-frequency features [67]. In [68], the parabolic phase
front is subtracted using a lateral shear approach. Compensation of astigmatism is
demonstrated that accompanies anamorphism of grating-reflected image [69] or
tilted plane [47]. Assuming the microscope objective is the critical place where
aberrations enter the system, insertion of reference beam before the objective lens
can reduce differential aberration between the object and reference fields [70],
although this may be difficult with the short working distance of most microscope
systems. Compensation of chromatic aberration has been demonstrated [33].
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Chapter 10
Special Techniques of Digital Holography

Here we highlight special techniques of DH that combine the numerical processing
capabilities with variations on the hardware configurations. In this and the follow-
ing chapters, we survey some of the large number of novel techniques and
capabilities that are made possible by digital processing of holograms. We will
also see that many of these techniques finally provide highly effective solutions to
problems that have been known in conventional holography.

10.1 Synthetic Aperture Methods

The resolution of DH image is determined by the numerical aperture of the optical
system including the CCD array, or equivalently by the range of spatial frequencies
captured by the system. The resolution can be improved, therefore, by increasing
the effective aperture of the system. Since in practice the CCD array size is limited,
an alternative is to translate the camera in the lateral (xy) directions and acquire
many holograms, which are then stitched together (Fig. 10.1a). Precision in
stitching can be achieved by overlapping parts of the holograms and maximizing
the correlation peak. The result is a higher resolution image equivalent to one
obtained by a large size hologram. This has been demonstrated in lensless Fourier
[1] or Gabor [2] configurations, or using a line scan camera [3] or a fixed pair of
cameras [4]. Instead of translating the camera, the object plane in Fresnel configu-
ration can be tilted to a range of angles [5] (Fig. 10.1b), as well as tilting the
illumination angle of the object [6] (Fig. 10.1c). The concept of aperture synthesis
has been utilized in many different systems, such as synthetic aperture radar (SAR),
radio and optical telescope arrays, and sonars. In airborne SAR, the length of the
flight path is the effective aperture size, greatly increasing the resolution in the
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Fig. 10.1 Methods for aperture synthesis. (a) Translate the camera, (b) tilt the object plane,
(c) scan the illumination angle, (d) rotate the object, (e) scan across the Fourier plane, and (f) use a
diffraction grating

direction of flight, while the resolution in range is provided by the frequency sweep
of the side-looking radar. A close analogue in optical implementation has been
demonstrated using a tunable laser and tilting the object plane [7].

A large hologram captures a larger portion of the diffraction field, resulting in
the increased resolution. Or, one can use the same size hologram but capture or
redirect higher-frequency components which tend to diffract out of the system
aperture faster than the lower frequency components. This gives an alternative
approach of coherent superposition of angular spectra in the Fourier domain. In [8],
the Fourier plane aperture, an imaging lens, and the CCD camera are translated
together across the Fourier plane (Fig. 10.1e). Similar effect can be achieved by
varying the object illumination angle [9] or by rotating the object in its plane while
holding the illumination at an oblique angle [10, 11] (Fig. 10.1d). Angular
multiplexing of three object-reference pairs derived from a single pulsed laser is
used in [12].

A grating can be used to redirect high-frequency diffraction components that
otherwise would leave the imaging system, and thus increase the resolution [13]
(Fig. 10.1f). A linear grating improves the resolution in one direction, while a
hexagonal grating allows super-resolution in both lateral directions [14]. In [15], a
2D VCSEL (vertical cavity surface emitting laser) array is used for illumination and
a number of laser elements are turned on in sequence to illuminate the optical
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system with varying tilt angles. This scheme of super-resolution is also used in a
common-path interferometer [16] and a type of Fourier domain interferometer [17].
These interferometers will be described in some detail in Chap. 11. Synthetic
aperture effect is also demonstrated in a multiplane phase retrieval system [6]. In
[18], the camera scan and a double numerical propagation technique is used to
achieve free-viewpoint imaging of 3D scenes demonstrating full parallax and
occlusion effects of objects.

10.2 Multiplane Phase Retrieval

An intensity measurement, in general, does not yield phase information of the
optical field. In order to obtain both amplitude and phase information, measurement
of at least two quantities is required — two equations for two unknowns. This so-
called phase problem leads to the twin-image problem of holography, and also
arises in X-ray crystallography and various inverse scattering applications such as
optical diffraction tomography. A number of methods are available for phase
retrieval from intensity measurements and they can be grouped according to
being iterative or noniterative. Noniterative methods are deterministic and numeri-
cally efficient but tend to have instability against initial condition. Iterative methods
tend to be computationally intensive but can have better stability and be accommo-
dating. Examples are described below.

10.2.1 Noniterative Methods

Consider the intensity of the holographic interference field between a reference
ERr(x,y;z) = Er exp(ikz) and object Eo(x,y;z), assumed to be much weaker than
the reference, |Eo(x,y;z)| < &R,

1(z) = Er* + Erexp(ikz)Eo™ (z) + Er exp(—ikz)Eo(z), (10.1)

where, for brevity, we omit (x,y) dependence of fields. The object field Eo(z) is
related to the input field Eo(0) through a convolution

Eo(2) = Eo(0) ® S(2), (102)

where, in Fresnel approximation,

ik ik
S(z) = i exp(ikz) exp [i (x2 + yz)} . (10.3)
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Fig. 10.2 Acquisition of in-line holograms at two distances
Notations are a little simpler if we write
oy K o[ 22
S'(z) = 5es EXP {Zz (¥ +y%) (10.4)
so that
Eo(z) = exp(ikz)Eo(0) ® §'(z). (10.5)
Note that
S'(—z) = §"(z),
() =5"6). 106)
S (Zl) @S (22) = S (Zl +Z2),
and the transfer function is
if(z)z—iexp —i—Z(k2+k2) (10.7)
2 2k P ‘

where the Fourier transform is denoted as f = F {f}. The intensity function is
1(z) = Er* + ERE0™(0) © 8% (2) + ErE0(0) © §'(2). (10.8)

If the object is purely absorptive, then Eo(0) is real and it can be obtained, in
principle, by deconvolution (®~!)

Eo(0) = % 1) — &3]0 [$"(2) + S'(2)]- (10.9)

For the general case of the object having both absorptive and phase profiles, the
problem is under-specified. At least two measurements are required, for example,
at two distances [19] (Fig. 10.2):
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I =1(z;) = Er* + ErE0* (0) © 8" (z1) + ErE0(0) ® §'(z1),
I, = I(Zz) = SRZ + EREO*(O) ® S,*(Zz) + 8REO(0) ® S/(Zz).

We can eliminate Eq*(0) by forming

1 , . '

Di =% (I — &%) © S'(z1) = Eo™(0) + Eo(0) ® S'(221),
1 . : '

D =5 (l2 = &) © 8 (z2) = Eo’(0) + Eo(0) © 5'(222),

and subtracting
D1 - D2 = Eo(O) O] [S/(ZZI) - S/(zzz)].
Solve for E¢(0) in the Fourier domain

. B -b,
Eol0) = §(221) - §'(222)
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(10.10)

(10.11)

(10.12)

(10.13)

The input field Eo(0) can then be obtained by inverse Fourier transform. Equation
(10.13) is valid except where the denominator vanishes. Regularization of the

singularities is then necessary.

Another noniterative method is provided in [20, 21], which starts by writing the
holographic field, again assuming weak object field compared to reference, as

E(z) = Er(z) + Eo(z) = Er(2){1 + u(z)} = Er(z) explu(z)],
where

Eo(2) _ exp(—ikz)

u(z) = (o) e

Eo(z) = u(0) ® §'(z).

The intensity function is

1(z) = |E(2)|* = Eg explu(z) + u” (2)):

Now take the logarithm
I(z)= logl(—z) =u(z) + u*(z) = u(0) ® '(z) + u*(0) ® $™(2)

and its Fourier transform

Z(z) = #(0)S'(z) + it (0)S""(z).

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)
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Fig. 10.3 Acquisition of object intensity at multiple distances
Repeat the measurement at another distance z + Az
Z(z + Az) = ii(0)S'(z) §'(Az) + *(0) §*(z) S (Az) (10.19)

and " (0) can be eliminated by forming
I(z+ Az) S'(Az) — I(z) = #(0) §'(z) [S'(Az) — 1] (10.20)

so that

7(0) = Z(z 4 A2)S'(Az) — Z(2)
§'(z)[S'(Az) — 1]

(10.21)

and the input field Eo(0) can be calculated from here.

10.2.2 Iterative Methods

Iterative methods use intensity measurements at two or more distances from the
object (Fig. 10.3). A method based on the Gerchberg—Saxton—Fienup algorithm
uses holograms recorded at two different distances and a large number of iteration
cycles [22]. A many-plane method [22—-24] starts from an intensity measurement /;
at z; and a complex field E; = /I; exp(iy, ) is assumed, where the trial phase ¢,
may be taken to be a constant. The field is then numerically propagated to another
distance z to obtain the complex field there as E, = & exp (ip,). Here the
amplitude is replaced with the measured value &' = v/I,. The new field E,' =
&>'exp(ip,) is then propagated to another distance z3, and so on. At each step n the
intensity error is calculated between the measured value 7, and the calculated value

|E, \2 and the process terminates when the error is smaller than the set threshold, or
when the error ceases to decrease as the case may be. One can use a finite number of
measurements /1,/,...,Iy and revert from Iy to I; before continuing. These
methods are based on intensity measurements of object field propagation requiring
no reference fields, and therefore have important applications in X-ray and electron
microscopy, where appropriate coherent sources and interferometer configurations
are not readily available [25].
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In another example of iterative method [26], from the interference intensity
function

I(x,y) = &% + £0*(x,) + ErEo cos[p(x, y) — ¢y (10.22)
one can write

(x,y) — &R — E0°(x,y)

X,y) — = cos~ , (10.23)
p(x.y) = ¢r £eto
where the reference field is Eg (x,y) = Er expli¢g] and the object field

Eo(x,y) = Eo(x,y) explip(x, y)]. (10.24)

The object amplitude Eo(x,y) = 1/|Eo|* is available from object intensity mea-
surement, the only unknown being the sign of the phase function ¢(x,y) — @,
which is determined in an iterative loop, as detailed in [26].

10.2.3 Other Methods of Phase Retrieval

Retrieval of phase is possible by noninterferometric measurements of intensities at
multiple distances. In phase space tomography, the Wigner distribution function is
reconstructed from intensity measurements, by calculating Fractional-order Fourier
transforms that correspond to projections of the Wigner distribution along different
directions of the phase space [27, 28]. Differential focusing of intensity image is
used to solve the so-called transport of intensity equation to yield the quantitative
phase profile, that does not even require unwrapping [29-31]. Differential mea-
surement of intensity at two planes is used for enhanced edge detection [32].

10.3 Dynamic Systems

In order to image a dynamic system, one needs fast or short exposures of the
hologram. This can be achieved using a correspondingly fast camera, as was done
in [33] using a 4,000 frames-per-second camera to image the random motion of a
balloon. Often the limitation on the camera speed is stringent in terms of cost and
availability. A more common approach is to use pulsed lasers to shorten the
illumination instead of the exposure. A nanosecond pulsed laser is a convenient
source for capturing a hologram of fast moving macroscopic objects [34].
Consecutive exposures of two holograms can be used for imaging deformation
or displacement between the exposures. Special techniques have been developed
for exposures with time delays shorter than milliseconds. For time delay in the tens



136 10  Special Techniques of Digital Holography

a o
{A g TSL
D mmp | N
oDL S
b
| 100 pm 4 0.4
¢ 0.3
4 =
Q 10.2 g
@ 01 ©
L
° 5
013
(=W
N 0.2
é‘ | [ -0.3
oL v . I 1

Fig. 10.4 Holography with optical time delay. (a) TSL femtosecond Ti:sapphire laser (800 nm,
130 fs), OPA optical parametric amplifier (550 nm, 30 fs), ODL optical delay line, S sample cell
containing water. (b) Laser-induced plasma filament formation, imaged with quantitative phase
microscopy by digital holography. (Reprinted from [40] by permission of OSA)

of microseconds, one can use the ability of a CCD camera to make charge transfer
to the shift registers in a few microseconds between the exposures [35, 36]. For
faster delays, one has to use a single exposure to capture the multiple time-delayed
events. This is achieved by optically setting up the multiple delays and inserting
them into the interferometer with different angular orientations, so that the angular
spectrum of the hologram contains several pairs of spectral peaks. These pairs are
incoherent with respect to each other because of the time delay and can be analyzed
separately to produce corresponding number of independent holograms. This tech-
nique was used with nanosecond [37] or femtosecond [38, 39] delays to image
laser-induced ionization of air. If the experiment is repeatable, a delay line can be
stepped while making multiple exposures, as in [40] where a femtosecond laser and
an optical delay line is used to image the formation and evolution of laser-induced
plasma filament in water (Fig. 10.4).
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A technique for complete characterization of spatial, temporal, and phase profiles
of a femtosecond pulse has been developed using a wavelength-multiplexed digital
holography [41, 42]. A slightly rotated two-dimensional diffractive optical element
and a variable-wavelength filter together generate multiple spectrally resolved digital
holograms that are simultaneously captured in a single frame.

10.4 Noise Reduction

The speckle is a well-known source of noise in coherent imaging such as digital
holography. Yet, systematic studies of speckle noise on digital holography appear
lacking especially for the phase image reconstruction. In [43], the speckle noise of
reconstructed intensity image is seen to be aggravated by the relatively small
aperture of digital holograms. For phase images, the behavior of speckle noise is
expected to be very different and usually significantly less aggravating, as one may
also glean from some of the simulation images of numerical diffraction in Chap. 4.
For intensity images, a common way to reduce the speckle noise is by averaging of
several holograms while some of the imaging parameters change, such as the
wavelength [44] or the object illumination angle [45]. Alternatively, digital
postprocessing of the hologram by various filtering operations can improve the
image quality [46]. Use of low coherence light can be an effective method for
reducing the noise, and will be described in Chap. 12.

Axial subnanometer high precision profiles of calibrated chromium step was
achieved by using reference calibrated hologram (RCH) reconstruction method, a
temporal averaging procedure and a specific dual-wavelength DHM arrangement
[47]. Influence of shot noise on phase measurement was studied in [48, 49], where
it was also found that at low photon flux, the phase accuracy is limited by the
readout noise of the CCD, while at higher intensities the phase accuracy is limited
by fluctuations in the optical setup.

10.5 Nonlinear Optics

10.5.1 Imaging of NLO Materials

There are two distinct areas that DHM has been used regarding nonlinear optics
(NLO), both of which can lead to significant expansions of applications. In one,
DHM is used to characterize NLO materials and processes. For example, DHM is
used to visualize light-induced refractive index changes in lithium niobate and other
photorefractive crystals [50]. DHM was used to measure the refractive index
change resulting from waveguide formation in Ti:sapphaire crystal or glass by
femtosecond laser writing [51, 52]. P. Ferraro’s group has made a series of studies
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Fig. 10.5 Configuration for holography with SHG light. SHG second harmonic generator,
S sample object with SHG signal, F' green filter

of nonlinear crystals using digital holography. Topography of microstructures of
~60 nm thickness fabricated on bulk lithium niobate surface has been imaged [53].
Electrooptic phase retardation, domain reversal, and periodic poling in congruent
lithium niobate are monitored in situ by DH-QPM [54-56]. Light-induced refractive
index changes in the photorefractive phase grating is measured with a sensitivity of
better than 107> [57]. Defect dependence of the internal field in lithium niobate is
studied using DH-QPM and the value of the internal field is found to grow in
proximity of defects and to vanish far from them [58]. Formation of bright spatial
soliton (i.e., self-focusing) is characterized [59, 60].

10.5.2 Digital Holography by NLO Light

In the other area, DHM is made a part of the NLO process. For example, in
harmonic holography the second harmonic signal generated in the object, for
example, photorefractive nanocrystals, interferes with the reference of the har-
monic wavelength, as depicted in Fig. 10.5 [61]. Harmonic holography is used to
image the amplitude and phase profiles of second harmonic signal generated at the
glass—air interface of a microscope slide under focused femtosecond laser illumi-
nation [62]. SHG (second harmonic generation) nanoparticles are used in mamma-
lian cells as markers for harmonic holography in [63]. SHG from cellular and
subcellular structures of biological specimens, including starch granules, corn
seed, and muscle fibrils, are used for label-free imaging of these structures [64].
In [65], phase measurement technique of SHG in harmonic holography experiment
is described that gives ~10 nm precision of axial position of nanoparticles.

In another example, DHM is used to measure the complex optical profile of the
output from a propagation through a nonlinear medium [66] (Fig. 10.6). Ordinarily,
because of the intensity-dependent phase distortion in nonlinear media, it is not
possible to form an image through such material. Phase conjugation processes can
undo such distortion, but they require repropagation back through the nonlinear
medium to recover the original image. Instead, the complex optical field is obtained
by holographic interference, followed by numerical propagation through the
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Fig. 10.6 Optical configuration for imaging through a NLO material using digital holography.
S object to be imaged, NLO nonlinear optical material. (Adapted from [66])

nonlinear material using a theoretical model of the nonlinear propagation, obtaining
a numerical image of the input field. Alternatively, phase conjugation can be
implemented using an SLM. In [67, 68], SHG signals, after passing through a
turbid medium, is imaged by DHM. The resulting complex optical field is then
imposed on the SLM, from which a laser beam propagates back through the turbid
medium and focuses precisely on the original point source.

10.6 Optical Parameters of Digital Holography

10.6.1 Color Digital Holography

Ability to reconstruct holographic images in full color can be of interest in 3D
display applications, as well as in full-color imaging of microscopic and macro-
scopic objects. For example, in [69], the three lines at 636.0, 537.8, and 441.6 nm of
a HeCd laser are used to illuminate a PSDH system with a color CCD camera.
Holograms from the three color channels are separately processed using Fresnel
transform or convolution methods. For Fresnel method, the three holographic
images have different sizes according to the wavelengths and therefore resizing
of the holograms is necessary. The three holograms are then combined to produce a
full-color hologram. Disparity in laser power in the three lines is handled by
appropriate weighting factors before color composition. Wavelength mismatch in
PZT-based phase shift can be avoided by using achromatic phase shifter [70]. In
[71], three separate lasers at 633, 532, and 473 nm are used together with a
monochrome camera to acquire three holograms in sequence. Three-dimensional
color image fusion has been demonstrated [72].

In [73], chromatic aberration in color holography is compensated for by
adjusting the imaging distances of the three color channels until the phase
differences between the channels are minimized. Use of lensless Fourier configura-
tion in [71] assures precise transverse superposition of reconstructed images. Image
fusion technique with multiresolution wavelet decomposition is shown to increase
the details and contrast of 3D reconstructed images obtained by multiwavelength
digital holography [72].
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Fig. 10.7 Methods to acquire the three color channels simultaneously. (a) Bayer color mosaic on
CCD sensor array, (b) angular multiplexing, (¢) use of dichroic beam splitters and separate
cameras, and (d) stacked photodiode sensors. (Adapted from [75])

The three color channels may be acquired in sequence using a single mono-
chrome camera [74], but for applications involving dynamic scenes, simultaneous
acquisition of the channels is necessary. Figure 10.7 illustrates and compares
methods for simultaneous recording of color holograms [75]. In Fig. 10.7d, three
layers of photodiodes are stacked, the spectral selectivity being provided by the
penetration depth of photons in silicon: 0.2 pm for blue photons, 2 pm for green
photons and 3 pm for red photons. The structure can provide a limited spectral
selectivity but the spatial resolution is maximal [75]. A more readily available
approach (Fig. 10.7a) is to use the conventional Bayer mosaic of color sensors
[69, 70]. Thus the spectral cross-talk is minimized but the spatial resolution is reduced.
Because this type of color sensor is common, the approach may be a good compromise
when the spatial resolution is not critical. One may use three separate monochrome
cameras with an appropriate set of color filters or dichroic beam splitters
(Fig. 10.7c). This maximizes both the spectral selectivity and spatial resolution,
but at significant cost increase and optomechanical complexity. In Fig. 10.7b, the
color channels are separated in the spatial frequency domain [76, 77]. The object
is illuminated by a collinear beams of the three color lasers, while the reference
beams impinge on the camera from three different directions, thus producing
three separate directions of interference fringes and three pairs of angular spectrum
peaks. (Alternatively, the reference beams may be collinear while the object is
illuminated from three angles, although this arrangement may be more prone to
errors due to mismatch of object illumination.) The method uses a single monochrome
camera. The spectral selectivity is good but the spatial resolution is reduced.
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One notes that these methods are relevant not only for generating color holography but
also for some of the multiwavelength holographic interferometry, with two or three
wavelengths well-separated over the visible spectrum.

10.6.2 Polarization Digital Holography

Polarization has a number of useful applications in conventional holography, such
as polarization multiplexing, logical operations, and birefringence imaging [78].
Using DH, one can determine simultaneously the distributions of intensity, phase,
and polarization state at the surface of a specimen on the basis of a single image
acquisition [79, 80]. Two reference waves with orthogonal polarization states
interfere with the object wave to permit determination of all the components of
the Jones vector of the object wave front [81, 82]. The two reference waves can be
arranged in angular multiplexing similar to the multicolor configuration of
Fig. 10.7d. This was used to analyze the birefringence of stressed polymethyl
methacrylate (PMMA) [79] and optical fiber [83].

10.6.3 Other Wavelengths and Particles

Since early in the history of holography, the principle has been applied to many
other parts of electromagnetic spectrum as well as particle waves. Digital hologra-
phy has also been demonstrated and applied in nonvisible or nonoptical radiation.

Infrared radiation from CO; laser has been used for digital holography using
pyroelectric or microbolometer sensor array as the camera [84—86]. A vidicon was
used for holography with 1.3 um superluminescent source to overcome the low
quantum efficiency of CCD in the infrared [87].

Digital holography of millimeter wave with intensity detector and separate refer-
ence beam has been demonstrated and may be useful for imaging nonconducting
materials and objects [88]. Microwave holography with a geostationary satellite was
used for measurement and adjustment of a radio telescope [89]. In an optical-THz
hybrid system of [90], a THz beam profile is detected by optical holography. A two-
wavelength phase unwrapping has been demonstrated in THz interferometry [91].

It is difficult to produce mutually coherent object and reference beams of X-ray
to extract the phase information. Gabor type in-line digital holography has been
demonstrated using 32 nm soft X-ray generated by focusing Ti:sapphire laser into a
gas cell [92], with resultant resolution of 800 nm. Use of 193 nm deep UV from
excimer laser also yielded similar resolution [93]. The low resolution is due to the
difficulty of achieving NA of the imaging system higher than 0.01-0.02 in this
range. In [94], holograms using different X-ray energies 220-330 eV (5.6-3.8 nm)
near carbon absorption were combined to differentiate organic materials. Coherent
X-ray free electron laser source has been used in lensless Fourier holography
configuration by using an opaque mask with two apertures: one for placement of
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1.5 pm

Fig. 10.8 Digital Fourier holography of 1.59 nm X-ray. Lithographically manufactured mask
contains 1.5 um sample aperture and 0.1 pm reference aperture. (Adapted from [96])

R (>>R)

Fig. 10.9 The inside source principle. Ao is the source atom, whose radiation scatters off a
neighbor Aj. The scattered and unscattered components interfere to form the hologram. (Adapted
from [98])

the specimen and the other as reference point source [95, 96] (Fig. 10.8). Random
magnetic domain structure in a Co/Pt multilayer film was obtained with 50 nm
spatial resolution. Off-axis Fresnel configuration digital holography has also been
demonstrated using a pair of X-ray waveguides, achieving 10 nm spatial resolution
at 10.4 keV photon energy [97]. X-ray holography can in principle yield atomic
resolution, provided one has sources or detectors of nanometer-scale pixel size. The
so-called “inside source” or “inside detector” concept uses the atoms or nuclei of
the sample as sources or detectors [98] (Fig. 10.9).
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Chapter 11
Digital Holographic Microscopy

Microscopy is one of the main research and application areas of digital holography.
Direct access to the phase as well as amplitude profiles makes quantitative phase
microscopy by digital holography (DH-QPM) particularly powerful and versatile.
A number of techniques of DH are developed especially for microscopy imaging
and these are made possible because of the particular imaging characteristics of
DH. Digital holographic and interferometric principles are the basis of many other
techniques of QPM with novel capabilities. A survey is given of the wide and very
active field of research in DHM techniques and applications. We begin with a brief
background on optical microscopy.

11.1 Optical Microscope Basics

11.1.1 Optical Configuration

A typical microscope optical train is depicted in Fig. 11.1. The collector lens
produces an image of the lamp at the condenser aperture, which is optically
conjugate with the objective back focal plane and the eyepoint of the eyepiece or
ocular. With the Koehler illumination, the sample specimen is illuminated with a
more or less collimated beam, and its images are formed at the focal plane of the
tube lens and at the camera plane. The specimen is also conjugate with the field
diaphragm. In the infinity configuration, the space between the objective lens and
the tube lens can accommodate various auxiliary components, such as beam splitter
for epi-illumination and phase plate for phase-contrast imaging, without
introducing aberrations. The field diaphragm defines the illuminated area of the
specimen and the condenser aperture controls the brightness of the illumination as
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Fig. 11.1 Compound
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well as the condenser numerical aperture. The illustration of Fig. 11.1 is for
transmission imaging. For reflection imaging with epi-illumination, the illumina-
tion light is introduced from above the objective lens, by inserting a beam splitter,
so that the objective lens functions also as condenser lens. With the inverted
microscope configuration, the illumination is at the top and all the imaging
components from objective to camera are below the specimen stage, the optical
path usually folded with mirrors for space consideration. Inverted configuration
provides better convenience and space for manipulation and control of live cells, for
example.

In the traditional finite optical system (RMS: Royal Microscopy Society standard),
the objective lens forms an intermediate image at the distance 160 mm, called the tube
length, and the eyepiece magnifies this intermediate image. There is no tube lens.
Because of the proliferation of auxiliary components inserted into the tube, such as for
DIC or epifluorescence, the infinity configuration is more common in research-grade
microscopes.
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11.1.2 Magnification

If the lateral size of the specimen is x,. The size of the intermediate image x; is

xizxoézxo M,, (11.1)

fo

where f, is the objective focal length and f; is the tube lens focal length. The
objective magnification M, is specified with a standard tube focal length
ft =200 mm, in infinity configuration. A combination of the eyepiece and the
camera lenses form the final image on the camera plane.

For magnification of the eyepiece, the eyepiece is considered to form a
virtual image at a standard distance of 250 mm with the intermediate image just
outside its front focus: for example, a 10x eyepiece has focal length 25 mm.
The total magnification is the product of the objective M, and the eyepiece M,
magnifications.

M=M,x M.. (11.2)

11.1.3 Resolution

The lateral resolution is determined by the numerical aperture, NA, of the
objective lens:

NA = nsin6, (11.3)

where n is the index of refraction between the specimen and the objective and
0 is the half angular aperture of the objective. The lateral resolution of the specimen
plane is then

y
0xy = 061 (11.4)

As a rule of thumb, for NA slightly larger than one, the lateral resolution can be
expected to be about half of the wavelength. This assumes that the condenser NA
matches or exceeds the objective NA. If the NAs do not match, then a more accurate
expression is

A

oxg=122— "
o NA, + NA,’

(11.5)
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where NA, and NA, refer to the objective and condenser NAs, respectively.
For example, for collimated laser illumination, NA. = 0 and the resolution is
twice larger, that is, poorer, than NA-matched incoherent illumination. The axial
resolution is also determined by the NA:

620 = (11.6)

NAZ'

11.1.4 Objective Lenses

The objective lens is obviously the most critical element of a microscope. Various
levels of three main types of aberration corrections determine the grades of a lens:
spherical aberration, chromatic aberration, and field curvature. An achromat
corrects for axial chromatic aberration at two wavelengths, red (656 nm) and blue
(486 nm), and for spherical aberration at green (546 nm). Plan achromats also
correct for the field curvature. Fluorite lenses correct for both chromatic and
spherical aberration at two or three wavelengths. Plan fluorite also corrects for
field curvature and plan apochromat has the highest degree of correction at four or
five wavelengths. Oil (1.515) or water (1.333) immersion lenses, when used with
appropriate liquid, yield higher NA and improved resolution. One should also use
standard cover slip (thickness 170 um and index 1.515) with these objectives in
order to preserve the aberration correction. Special purpose objective lenses are
used for various microscopy techniques such as interference microscopy, phase-
contrast microscopy, and scanning confocal microscopy.

11.1.5 Eye

For visual observation, the eye becomes a part of the optical imaging system.
Ideally, the exit pupil (eyepoint) of the eyepiece coincides with the pupil of the
eye. Visual resolution or acuity is constrained physically by the retinal photorecep-
tor spacing of about 5 um (or 0.7 arc minutes for 25 mm distance from cornea to
retina), although the vision process involves the complex processing by the visual
cortex and the actual acuity can vary significantly above or below the physical limit.
Then the visual resolution of an object at a distance 250 mm is nominally 50 pm.
This leads to the minimum resolvable distance on the specimen plane to be
50/M pm, which needs to be larger than the resolution of the objective. The
maximum useful magnification is then approximately Mp,.x ~ 200 NA, beyond
which the magnification is said to be empty.
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11.1.6 Camera

For digital imaging, a CCD camera substitutes for the eye. Digital imaging has
mostly replaced traditional film-based imaging because of a number of important
advantages, including the immediacy of visual feedback, quantitative image
measurements, high sensitivity, and a large number of image-processing techniques
available, which are the same reasons for the growing development and
applications of digital holography. As a critical element in the imaging system,
one needs to consider a number of operational parameters of CCD camera, includ-
ing spatial pixel resolution, gray-scale resolution, frame rate, dynamic range,
and noise [1].

11.2 Optical Microscopy Techniques

Brief descriptions of some of the main types of modern optical microscopies are
given for the purpose of introducing typical problems encountered in microscopy
and possible approaches for solving those problems. Full technical descriptions are
found in many excellent sources, including [2, 3].

11.2.1 Bright Field Microscopy

This is the most common imaging mode of standard optical microscopy, where
the light is transmitted through or reflected from most of the field of view, and the
variation in transmittance or reflectance provides the contrast. The basic principle is
generally familiar and operations relatively simple. Often various dyes are used in
order to enhance the contrast of an otherwise transparent sample (Fig. 11.2).

Fig. 11.2 Bright field
microscopy image of stained
cheek cells. (From http://
washington.uwc.edu/about/
wayne.schaefer/TissuesPage.
htm, courtesy of Prof.

W. Schaefer, Univ.
Wisconsin)
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Fig. 11.3 (a) Dark-field condenser. (b) Dark-field microscopy image of cheek cells. (Courtesy of
Prof. B.J. Cha, Univ. South Florida, Medicine)

11.2.2 Dark-Field Microscopy

For microscopy of objects with little variations in the intensity transmittance or
reflectance, it is difficult to obtain visible contrast in bright field microscopy. With
oblique illumination, most of the direct light beam does not enter the pupil of the
optical system except for those scattered from particles, edges, and other irregularities
in the specimen, (Fig. 11.3). From Fourier optics point of view, the dark-field
microscopy performs high-pass filtering that attenuates low-frequency components.

11.2.3 Zernike Phase-Contrast Microscopy

The Zernike phase-contrast microscope (ZPC) makes transparent phase objects
visible by converting phase variations into intensity variations. This is achieved
by spatial filtering diffracted and undiffracted components of light transmitted
through the specimen and introducing a phase shift between the two components
(Fig. 11.4). It employs an annular aperture at the condenser aperture and a phase
plate of matching pattern at the objective back focal plane. Depending on the
relative magnitude of index of refraction of the ring pattern in the phase plate vs.
its background, one obtains positive or negative phase contrast, which results in
reversal of brightness of areas with larger or smaller indices of refraction in the
specimen. In order to improve interference contrast, the phase ring may be coated
with metal or dielectric film so that the undiffracted intensity is comparable to
diffracted component. A significant artifact is the so-called halo effect of diffuse
bright area surrounding the boundary of abrupt optical density change, which is due
to the finite width of the condenser annulus and the phase ring being slightly larger
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Fig.11.4 (a) Optical system for Zernike phase-contrast microscopy. (b) ZPC image of cheek cells.
(Courtesy of Prof. B.J. Cha, Univ. South Florida, Medicine)

than the image of the annulus. Use of different index material for sample suspension
can reduce or even reverse the halo. Special apodized phase plate can also be
used to reduce the halo effect. The ZPC has widespread use in imaging live cells,
tissues, and microorganisms, as well as intracellular components such as the
membrane, nuclei, mitochondria, chromosomes, and cytoplasmic granules. Highly
refined modern ZPC, together with digital image processing, makes it even possible
to sense the variation in index due to the presence of a small number of protein
molecules.

11.2.4 Differential Interference Contrast

In Nomarski or differential interference contrast (DIC) microscopy, the e- and
0- polarization components are separated by use of a Wollaston prism near the
condenser aperture (Fig. 11.5). The lateral shear is typically a fraction of a micron.
The two components pass through, or reflect from, the specimen and are made
to converge and interfere with each other behind the objective back focal plane.
The amount of shear is controlled by translating the Wollaston prisms. There are
some variations such as use of Nomarski prism or de Senarmont compensator.
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Fig. 11.5 (a) Optical system for DIC microscopy. (b) DIC image of cheek cells. (Courtesy of
Prof. B.J. Cha, Univ. South Florida, Medicine)

The two components acquire phase difference when the optical thickness has a slope
in the direction of the shear. A DIC image is characterized by its appearance of three-
dimensional relief that emphasizes lines and edges across the shear direction. High
resolution, wide range of contrast control, seemingly straightforward interpretation of
images, absence of significant artifacts, and good optical sectioning properties
account for the popularity of DIC microscopy. In particular, DIC has excellent
sensitivity for imaging very small features together with those much larger, such as
bacterial flagella and intracellular microtubules and other organelles. Interpretation of
DIC images does need to consider the absence of contrast in the direction perpendic-
ular to the shear and it is more difficult to use in thick or birefringent materials.

11.2.5 Interference Microscopy

Both Watson and Linnik microscope configurations are based on Michelson
interferometer (Fig. 11.6a, b). In Watson, a single objective lens images the
interference of the specimen and the reference, whereas in Linnik, the two arms
are separately imaged with matching objectives before superposition and interfer-
ence. Linnik allows shorter working distance and higher magnification but matched
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Fig. 11.6 Interference microscopy configurations. (a) Watson, (b) Michelson (or Linnik), and
(¢) Mirau

objectives is costly and alignment with low-coherence light is more critical.
The Mirau objective uses half-silvered mirror and a reference mirror spot on the
objective front surface (Fig. 11.6c). The almost common-path configuration
provides mechanical stability and is used in optical profilometry applications.

11.2.6 Polarization Microscopy

Crossed polarizers reveal birefringence of the specimen placed in between. Many
biological tissues and cells exhibit birefringence and these can display bright
interference colors using polarization microscopy. Polarization microscopy used
in crystallography can yield quantitative information on the birefringence and
structures of the crystal.

11.2.7 Fluorescence Microscopy

The fluorescence microscopy is a highly versatile and essential tool in biomedical
and materials sciences and many powerful techniques have been developed. The basic
principle is straightforward: excitation of molecules of a specimen with higher energy
(shorter wavelength) photons result in emission of lower energy (longer wavelength,
or Stokes) photons, under specific conditions. The power of fluorescence microscopy
stems from the specificity of the process: the molecules emit specific wavelengths
when excited by specific wavelengths under possibly additional conditions such as
temperature, pH, electric, or magnetic fields, etc. The fluorescence microscopy is
also a zero-background imaging technique, particularly when epi-illumination
is employed. Some biomolecules exhibit fluorescence (autofluorescence), but most
often fluorophores (or fluorochromes) are added that bind or migrate to specific
cellular and intracellular components and fluoresce with high efficiency.
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Fig. 11.7 (a) Optical system for confocal laser scanning microscopy. M, and M, scanning
mirrors, P pinhole, PMT photomultiplier tube. (b) Confocal microscopy image of Beta-tubulin
in tetrahymena cell, visualized using green fluorescent protein. (From http://en.wikipedia.org/
wiki/Confocal_microscopy, under GNU Free Documentation License)
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The discovery of green fluorescence protein (GFP) and development of many other
fluorescent proteins covering all of the visible spectrum has been of tremendous
impact in genetic science as well as other areas of biomedical science and engineering.
A large number of powerful techniques, some with interesting acronyms — such as
FRET, FLIM, FISH, FRAP, and FLIP — have been developed that exploit rich variety
of physical, chemical, and optical interactions that affect fluorescence.

11.2.8 Confocal Laser Scanning Microscopy

With conventional wide-field fluorescence microscopy, the fluorescence is emitted
from the entire illuminated volume of the specimen, which often obscures the
signals from the focal plane. In confocal scanning microscopy, pinholes are used
to illuminate a single focal point within the specimen volume and to collect
scattered or fluorescence photons emanating only from the focus, blocking photons
from the rest of the volume (Fig. 11.7). Two-dimensional optically sectioned image
is acquired, usually inside a computer, by raster scanning the focal point over
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the field. Three-dimensional volume image can be built up by stacking the 2D
optical sections for a range of specimen planes. Confocal fluorescence microscopy
principle is extended to multiphoton and harmonic generation microscopy as well.

Scanning of the illumination focus and descanning, so that the signal photons
arrive at the stationary detection pinhole, are achieved in a number of different
ways. First, the sample stage can be scanned, which keeps the optical system
relatively simple but the mass of the stage limits the scan speed. Most confocal
microscopes for biomedical study scans the focal spot within stationary specimen
volume, using galvanometer-driven scan mirrors or acousto-optic deflectors, or
a combination thereof, typically at a rate of one 2D frame per second. Parallel
scanning of many pinholes can be achieved by a spinning Nipkow disk, one side
of which is illuminated with a broad laser beam, allowing video rate imaging.
Light throughput, and signal strength, can be improved by a microlens array on
the disk.

11.2.9 Multiphoton Excitation and Nonlinear Optical Microscopy

Use of multiphoton (two- or three-photon) excitation of fluorescence or harmonic
generation leads to nth power dependence of the generated signal as a function of
the excitation intensity, where 7 is the number of photons involved. This leads to
a number of unique advantages over single photon fluorescence. Because of the
nonlinear dependence, the excitation laser intensity is high enough only at the focus
and therefore the signal is emitted only from the focus region. Scanning microscopy
is possible without using pinholes. The excitation laser is usually in the infrared,
where the phototoxicity is significantly lower than in visible or UV. Most often
pulsed emission from mode-locked lasers are used so that laser intensity is
concentrated in picosecond or femtosecond pulses while average intensity is still
relatively low. The short wavelength fluorescence or NLO light is emitted only
from the focus. The phototoxicity and photobleaching is insignificant for the
remainder of the sample volume, a situation very different from single photon
confocal microscopy. The long wavelength excitation also leads to significantly
longer depth of penetration allowing optical section microscopy of thicker tissues.

11.3 Digital Holographic Microscopy

A basic digital holographic microscopy (DHM) setup consists of an illumination
source, an interferometer with microscopic imaging optics, a digitizing camera, and
a computer with necessary programs.
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11.3.1 Light Source

Most often a laser is used for illumination with the necessary coherence to produce
interference. All different types of lasers have been used, from the ubiquitous HeNe
laser and diode laser, to diode-pumped and doubled YAG laser (often referred
to simply as a solid-state laser), argon laser, as well as tunable dye laser and
Ti:sapphire laser. For multiwavelength techniques, two or more of different lasers
may be coupled into the interferometer, or a tunable laser may be employed.
There are also low-coherence techniques for the purpose of reducing speckle and
spurious interference noise or generating contour or tomographic images. A short-
pulse (picosecond or femtosecond) laser may be used or a tunable laser may be
turned into a broadband source by removing the tuning element. Even an LED
typically has 10 pm or so coherence length, which can be sufficient for the thickness
of microscopic specimen.

11.3.2 Interferometers

The two main types of interferometers are the Michelson and the Mach—Zehnder
type interferometers. The Michelson interferometer (Fig. 11.8a), is appropriate for
reflective object, though it is also possible to arrange for double-pass transmission,
by placing transparent specimen on a mirror. The Mach—Zehnder interferometer
(Fig. 11.8b) is more suitable for transmissive objects. It requires more components
but offers more flexibility in alignment, especially when the microscopic imaging
optics are used. One can also modify the Mach—Zehnder configuration for reflective
object by adding more beam splitters, as shown in Fig. 11.8c, where the short arm in
the upper right corner is useful especially for short coherence length source, where
the optical paths need precise balancing. In these diagrams, the shaded paths
represent the beams of undiffracted illumination and the red lines indicate the
image forming rays. In the illustrated examples, the object is illuminated by a
plane wave and the magnification is provided by the microscope objective lens and
imaging lens combination. The reference beam is focused at a point conjugate to the
back focal plane of the objective lens, so that it arrives at the CCD plane with the
same wavefront curvature as the object wave [4], except for an offset in the angle of
incidence for off-axis holography, and any residual mismatch of wavefront curva-
ture can be compensated for by numerical techniques as described earlier.

Each of these arrangements can have variations. One can omit lenses in
the object and reference arms altogether for Fresnel holography configuration.
If a lens in reference arm positions a focus at a conjugate point of the object
plane, then itbecomes a lensless Fourier configuration. One can place the objective
lens so that an intermediate image plane is conjugate with the reference focus,
for lensed Fourier holography. Formation of an intermediate image may add
some flexibility and easier access to a Fourier plane. The wavefront curvature
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Fig. 11.8 Interferometer configurations for digital holographic microscopy. (a) Michelson
(or Linnik), (b) Mach—Zehnder, and (¢) modified Mach—Zehnder

matching between the object and reference arms is also optional but may be beneficial
for minimizing possible secondary aberrations due to excessive fringe frequencies at
the CCD plane. One can delete the reference arm altogether for Gabor holography.
The examples in Fig. 11.8 have the CCD focused near the object plane, for image plane
holography. This may have the advantage of being able to easily monitor the object
scene even when holography reconstruction is not turned on. The illustrations are also
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Fig. 11.9 Lyncée Tec DHM
T1000 digital holographic
microscope. (Courtesy of
Dr. Yves Emery, Lyncée
Tec SA)
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for infinity configuration, so that the insertion of beam splitters and other components
cause minimal aberration. We also note that, unlike conventional low-coherence
interferometry, the focusing lens in the reference arm does not need precise match
with the objective lens, its only function being approximate matching of the wavefront
curvatures. There are many versatile techniques in digital holography that
compensates for various types of aberrations and imperfections of the optical system,
and therefore, in comparison with conventional microscopy, the optical and mechani-
cal requirements can be significantly less stringent.

The interferometers may also include various apertures, attenuators, and polari-
zation optics to control the reference and object intensity ratio. The polarization
optics may also be used for the specific purpose of birefringence imaging. There
may also be various types of modulators such as piezo-mounted optics, liquid
crystal phase modulator, acousto-optic or electro-optic modulators to establish
modulated signals. As in conventional microscopy, immersion-type objective lens
has been shown to enhance the NA and resolution [5]. For quick optical setup and
experimentation, horizontal layout of optics may be easier but the vertical orienta-
tion of specimen is incompatible with most cellular microscopy. Vertical arrange-
ment of optics using vertical breadboard or a cage system is more appropriate
so that the specimen can be placed horizontally. Upright (illumination of object
from below) or inverted (illumination from above) microscope configurations are
possible [6]. Alternatively, the holographic interferometer may be built around a
laboratory optical microscope, by introducing the reference beam through one of
the access ports [7]. Complete digital holographic optical microscopes are now
available commercially as well (Fig. 11.9).
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11.3.3 Camera

Typically a CCD or, more recently, CMOS cameras are used to capture and digitize
the holographic interference pattern. The pixel size of these devices is several
microns with pixel count of up to 1,000x 1,000 or so. These parameters are the
main limiting factors in the DHM resolution and prescribes the range of applications,
but one would expect them to continue to improve in the coming years. The captured
hologram pattern is digitized by the camera, or a frame grabber, and input to
the computer as a 2D array of integers with 8-bit or higher gray-scale resolution.
Often in standard DH experiments, the sensitivity and noise of CCD is not a central
issue, at least not to the extent that it is in fluorescence microscopy, for example.
This is because DH is a two-step indirect imaging method, where the pattern
acquired by the camera is processed before numerically constructing the final
image. The relationship between these two is more convoluted. In particular, the
noise in the phase image from DH behaves quite differently from the intensity image
[8]. The CCD sensitivity does become important in low-light DH techniques, such as
in dark-field DH of nanoparticles [9].

11.3.4 Computer

The main task of the computer is to carry out the numerical diffraction in order
to compute the holographic image as an array of 2D complex numbers. The
software package would include components for image acquisition and camera
interface control, holographic calculations, and image rendering and processing.
The acquisition component establishes communication with the camera and other
components of the microscope, setting the laser power, camera exposure levels,
timing modes and synchronizations. It performs image acquisition in the different
modes, as well as some preprocessing of images, for example, background sub-
traction. Holographic calculations may use angular spectrum or other methods and
provide for numerical focusing. Special numerical techniques may be included,
such as optical phase unwrapping, aberration compensation, differential hologra-
phy, and automatic focusing and tracking, as described in Chap. 9. At the current
stage of digital holography development, most researchers rely on in-house devel-
opment of software package. User-friendly interface is important for rendering
the image data in a consistent and flexible manner, as well as for calibration,
measurements and postprocessing of the images. An efficient and robust means of
storing, archiving, and retrieving image data and associated metadata is also
important. To reduce computation times for numerical diffraction, hardware
accelerations have been demonstrated using FPGA (field programmable gate
array) or GPU (graphic processing unit) [10, 11].
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Fig. 11.10 Digital holographic microscopy process, 269 x 202pum?, 1,024 x 768 pixels
(a) Hologram; (b) a detail of the small white rectangle in (a); (c) angular spectrum including
zero-order terms; (d) angular spectrum after subtraction of object and reference intensities from
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11.3.5 Examples

An example of the DHM process is shown in Fig. 11.10, using a resolution target
with FOV (field of view) 269 x 202 um?” and 1,024 x 768 pixels. The wavelength
used was 635 nm. Figure 11.10a is the hologram acquired by the CCD camera,
with a detail of a small area (small white rectangle) shown in Fig. 11.10b, where
the interference fringes are visible. Its angular spectrum (Fourier transform) in
Fig. 11.10c shows the zero-order and the twin-image peaks. One of the twin terms
may be selected, but the zero-order peak limits the size of the filter (highlighted
circular area). The zero-order peak can be suppressed if one takes separate
exposures of the object and reference without interference and subtracts from the
hologram, as shown in Fig. 11.10d. Now the numerical bandpass filter can be larger,
and the resolution of the reconstructed image improved. When the filtered spectrum
is then inverse Fourier transformed, one usually finds aberrations due to wavefront
curvature and slope mismatch, as in the phase profile Fig. 11.10e. First, the center of
the numerical filter is fine-adjusted to coincide the spectrum peak, resulting in the
new phase profile in Fig. 11.10f. The phase curvature is due to a slight mismatch in
the curvatures of the object and reference beams during hologram exposure. It is not
necessary to physically fine-adjust the position of the lenses. The same effect can be
achieved much more conveniently by multiplying a spherical wavefront to the
hologram, and setting the radius of curvature until the curvature of the phase profile
disappears, as in Fig. 11.10g. The corresponding amplitude image (Fig. 11.10h) is
the reconstructed image at the hologram plane. Finally, numerically propagate the
hologram an appropriate distance, z = 100 pm, so that the image comes into focus.
The resulting in-focus phase and amplitude images are shown in Fig. 11.10i, j.
As we have seen in previous chapters, additional numerical techniques can be
applied to compensate for other types of aberrations, or to further process the
image in various ways. The phase images’ color scale ranges the [—m, 7] interval,
corresponding to one wavelength of optical path length. Although the resolution
target is a flat two-dimensional object, and thus without interesting topographic
variations, the phase image (Fig. 11.10i) shows that there are some smudges of
materials less than a wavelength thick at several spots on the surface. Also note
that the dark bar and square areas represent almost opaque metallic film, and
therefore the light intensity is low. The low signal causes larger noise in the
phase profile for these areas.

<

Fig. 11.10 (continued) the hologram, with the brighter circular area for bandpass filter;
(e) reconstructed phase profile at hologram plane, without any corrections; (f) phase profile
after correct centering of the filtered angular spectrum; (g) phase profile after compensation
of the spherical wave curvature; (h) the amplitude image at the hologram plane corresponding
to the phase image (g); (i) phase image after numerical propagation to the object focus distance
z = 100 pm; and (j) the focused amplitude image
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Fig. 11.11 (a) A hologram of paramecium and euglenas (80 x 80 umz). (b—d) Reconstructed
amplitude images at z = 100, 150, 200 pm [12]

A well-known distinctive feature of holography is the three-dimensional content
of the image information. In DHM, a single hologram is used to reconstruct the
optical field at any distance from the hologram, within the limitation of the
approximation method used. For example, Fig. 11.11ais a hologram of paramecium
and several euglenas in water, with FOV 80 x 80 pum? and 464 x 464 pixels.
From the single hologram, the images are calculated at various distances,
showing the paramecium and a euglena coming into focus at depths approx.
100 pm apart. The numerical focusing emulates the turning of the focus knob on
a conventional microscope. A movie of holograms is acquired in real time,
several frames of which are shown in Fig. 11.12a, which is then postprocessed
to produce the amplitude (Fig. 11.12b) and phase movies (Fig. 11.12c). In the
scene, the paramecium and the euglenas swim not only in lateral directions but
also in varying depths. In conventional video microscopy, the focal plane would
be fixed and whatever happened to be in that plane would be recorded, but
information on objects not in the focal plane would be permanently lost. With
DHM, the holographic movie can be processed by calculating the images while
adjusting the reconstruction distances to track a particular specimen as it swims
up and down in the three-dimensional object volume. In effect, the holographic
movie is a complete four-dimensional space-time record of the object volume.

11.3.6 Comparisons of Analog and Digital Holographic
Microscopy

There are a number of significant distinctions between the analog (AH) and digital
(DH) holographies. Most obviously, DH does not involve photochemical
processing. Therefore, DH is orders of magnitude faster and can be performed at
video rate. Additional hardware required in DH is the CCD camera and a computer,
while eliminating the need for dark room facility and the supply of chemicals.
Furthermore, because of the high sensitivity of CCD compared to photographic
emulsion, the exposure time is reduced by orders of magnitude. For example,
a CCD pixel of 100 um? can detect as few as several photons, whereas a similar
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Fig. 11.12 (a) Several frames of a holographic movie of paramecium and euglenas. (b) Amplitude
and (c) phase movies reconstructed from the holographic frames, while adjusting reconstruction
distance to maintain the paramecium in focus [12]

area of a high-sensitivity photographic plate requires many millions of photons.
Even when comparing exposures of individual pixels or grains, CCD can be orders
of magnitude more sensitive. Short exposure time in turn implies much reduced
requirement on the mechanical stability of the apparatus. Heavy optical tables with
vibration isolation are often not as critical as in AH. On the other hand, the main
issue of DH is the low resolution. A typical CCD pixel is several microns across,
while the grains on a photographic emulsion may be two orders of magnitude finer.
This limits the spatial frequency of the fringes and therefore the angular size of
the object to about a few degrees for DH, while full 180° is possible for AH. The
familiar parallax effect of display holograms of AH is more difficult in DH [13].
The real strength of DH, however, is the whole range of powerful numerical
techniques that can be applied once the hologram is input to a computer. One
simple but significant example relates to the microscopic imaging, where a lens is
used to magnify the hologram FOV to match the CCD size. Once the computer
reads the hologram into an array, one only needs to specify the dimension of
the FOV and the wavelength, and proceed to compute the numerical diffraction.
In AH, however, in order to properly read out the magnified or demagnified
hologram, the wavelength also needs to be scaled proportionately, a task that is
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highly cumbersome at the least and infeasible in most cases. Another example is the
holographic interferometry using multiple wavelengths. In AH interferometry,
multiple holograms are produced and repositioned exactly, and ideally each holo-
gram needs to be illuminated with a different wavelength, which can be physically
impossible. Most often the superposed holograms are illuminated with a single
wavelength and the resulting aberrations are unavoidable. In DH reconstruction,
however, use of various wavelengths only amounts to assigning numbers and the
superposition simply consists of addition of several numerical arrays. There is no
limitation on the number of arrays and, furthermore, there are ways to preprocess
the arrays to compensate for chromatic and other aberrations if present. More
examples of the power of numerical processing in DH have been described in
previous chapters.

11.4 Quantitative Phase Microscopy by DHM

The optical phase of the light transmitted through transparent objects can convey
quantitative information about the object, such as its physical thickness and index
of refraction [14], which in turn are functions of physical density or chemical
concentration properties. High-precision measurements of optical phase can thus
reveal subtle changes in these parameters that accompany cellular processes.
In order to obtain quantitative phase images, one can perform interferometric
measurement of a focused beam of light on an object and scan the beam over the
object in a raster fashion. Optical profilers based on scanning interferometer are
especially well suited for imaging applications in materials science, as in MEMS
and nanofabrication, because of the high precision obtainable and the static nature
of the objects being imaged. On the other hand, the speed constraint and mechanical
complexity of scanning interferometer can significantly restrict the range of
applications in biology, where one needs to make observations of dynamic pro-
cesses under widely varying environments.

Digital holography is a very effective process for achieving high-precision
quantitative phase microscopy. The phase image is immediately and directly
available as soon as the 2D complex array of the holographic image is calculated.
A single hologram exposure is required. It does not involve raster scanning. Most
importantly, the phase image is a quantitative representation of the object profile
with nanometer, and even subnanometer, precision [15-17]. An example of DHM
imaging of a SKOV3 ovarian cancer cells is shown in Fig. 11.13, where Fig. 11.13a
is the hologram and Fig. 11.13b is the reconstructed amplitude image, analogous to
what one would see through a conventional microscope. The phase image in
Fig. 11.13c indicates that the cells apparently have thickness of several microns,
and therefore the phase profile varies by several cycles of 2x radians. A public-
domain phase unwrapping algorithm is used to remove the 2m discontinuities
in Fig. 11.13d, and it is rendered in pseudo-color pseudo-3D perspective in
Fig. 11.13e. The apparent height profile is the profile of optical thickness that
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Fig. 11.13 Digital holographic microscopy of SKOV3 ovarian cancer cells (60 x 60 pm?,
404 x 404 pixels): (a) hologram, (b) amplitude image, (c) phase image, (d) unwrapped phase
image, and (e) phase image in pseudo-color pseudo-3D view [18]

includes both physical thickness and index variation, and one needs to use caution
in interpreting such images. Figure 11.14 displays a few more examples of DH-QPM
images, including a layer of onion cells (Fig. 11.14a), a mouth epithelial cell
(Fig. 11.14b), several red blood cells (Fig. 11.14c), and a small quartz crystal in
common sand (Fig. 11.14d).

11.5 Cell Microscopy and Other Applications

The quantitative phase microscopy (QPM) is perhaps the most important aspect of
DHM because it allows optical thickness measurements with nanometric accuracy
in a single-shot wide-field acquisition and it yields such phase profiles without some
of the difficulties associated with other phase imaging methods. QPM is therefore a
very important and active area of research and applications in digital holography.
We survey some examples of applications in cell microscopy here.

C. Depeursinge et al. have pioneered the DH-QPM with the original demonstration
of nanometric surface profiling [15] and have carried out quantitative cellular imaging
and characterization studies. Living mouse cortical neurons are imaged (Fig. 11.15)
and their reaction to hypotonic shock is quantitatively measured [19, 20].



170 11 Digital Holographic Microscopy

Fig. 11.14 Examples of quantitative phase microscopy by digital holography. (a) Onion cells,
(b) mouth epithelial cell, (c) red blood cells, and (d) small quartz crystal in common sand
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Fig. 11.15 Perspective image in false color of the phase distribution obtained with DHM of living
mouse cortical neuron in culture. (Reprinted from [19] by permission of OSA)

In order to decouple the physical thickness and index of refraction, they have devised a
decoupling procedure, where two holograms are taken while the cells are immersed in
standard perfusion solution and a second solution with the same osmolarity (to avoid
cell volume variation) but with a different refractive index. Phase images ¢ (x, y) and
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Fig. 11.16 (Upper panels) Quantitative phase images of two neuronal cell bodies before
(a, “standard”) and 3 min after the onset of the hypotonic shock (b, “hypotonic”). (c¢) Color-
coded distribution of phase difference resulting from the subtraction of the “standard” image from
the “hypotonic” image. Neuronal cell body boundaries have been identified by a gradient-based
edge detection algorithm. (Lower panels) Morphometry of 2 cell bodies before (d) and 3 min after
the onset (e) of a hypotonic shock. Here the z-axis (cellular thickness) is expressed in micrometers.
These values were obtained using the results of the decoupling procedure. (f) Color-coded
distribution of thickness variations resulting from the subtraction of the “standard” image to the
“hypotonic” image. (Reprinted from [20] by permission of OSA)

©,(x,y) from the two holograms are combined to yield separately the index n.(x, y)
and physical height /. (x, y) profiles:

ne(x,y) :ﬁén—l—nm, (11.7)
) _
he(ry) = - E=2, (11.8)

where ny, and ny, + on are the indices of the two solutions. The technique is applied
to quantifying the morphological changes following hypotonic shock of cells,
where the cells are consecutively subjected to the standard perfusion solution and a
hypotonic solution reducing the extracellular osmolarity by 37%. The hypotonic
solution produces a decrease in the phase signal which reaches a plateau after 2 min, as
displayed in Fig. 11.16. But when the decoupling technique is applied, the physical
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Fig. 11.17 Normal cell membrane fluctuations (CMF) displayed as color code over the shape of
the RBC for a representative normal and ethanol-fixed cells. Insets contain the mean + SD (nm) of
the CMF of the analyzed regions for each representative cell. (Reprinted from [22] by permission
of Elsevier Inc.)

thickness profile shows the expected swelling of the neurons. The decoupling
technique allows accurate measurement of index of refraction to obtain the indices
of red blood cells nggc = 1.394 £ 0.008 and neurons 7peyron = 1.380 £ 0.007 [21].
They have also found the fluctuation of red blood cell membranes to be 35.9 +
8.9 nm in normal state, while that of ethyl alcohol-fixed cells showed much
reduced fluctuations 4.7 & 0.5 nm (Fig. 11.17) [22]. Fission yeast cell cycle is
studied by monitoring dry mass production rate and dry mass surface density in
wild-type and mutant fission yeast cells [23]. Another method to decouple the
physical thickness is by using a single buffer containing absorptive dye
(sulforhodamine) and utilizing the sharp dispersion near an absorption peak for
two-wavelength measurement [24].

Bally et al. have studied human cancer cells by DHM [7, 25, 26]. For example,
Fig. 11.18 shows initial swelling or rounding of a pancreatic cancer cell in response
to anticancer drug taxol, followed by its collapse over a 4 h period. The morpho-
logical change is quantified in Fig. 11.18b. Similarly, osmotic volume changes
in tumorous hepatocytes have been imaged in response to NaCl solution [27].
The phase image from DHM accounts for the variation of the optical thickness,
which is a product of both the physical thickness and the index of refraction. The
two can be decoupled if one of the two parameters is known. Profiles of index of
refraction in pancreatic cancer cell can be obtained by confining the cell in a
chamber of known thickness [28].

Kim et al. have obtained high-quality image of fixed SKOV-3 (human ovarian
cancer cells) with approximately 0.5 pm lateral resolution and better than 10 nm
optical height noise [18]. Holographic time-lapse movies of mouse embryo fibro-
blast cell in mitosis as well as real-time movies of paramecium and euglena are
obtained in [12]. Optical phase unwrapping in single-shot dual-wavelength holo-
gram acquisition has significant advantages in imaging of dynamic cellular phe-
nomena [29]. They have developed a technique to image the phase profile of total
internal reflection for studying cell-substrate adhesion, detailed in the next section
[30]. Quantitative phase images recorded during the process of laser microsurgery
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Fig. 11.18 (a) Monitoring of a living PaTu8988S cell after addition of an anticancer drug (taxol) to
the cell culture medium. Apoptosis induces morphological changes such as cell rounding and finally
cell collapse. Upper row: gray-level coded unwrapped phase distribution at ¢t = 0, + = 78 min,
and ¢t = 262 min after taxol addition. Lower row: corresponding pseudo 3D representations of
the phase data. (b) Cross-sections through the measured optical path length changes
corresponding to the dashed white lines in the phase distributions of (a) (Reprinted from
[7] by permission of SPIE)
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Fig. 11.19 (a) DH phase images of rat kangaroo kidney epithelial (PTK2) cells after laser
microsurgery. (b) Difference phase image relative to ¢+ = 0.0 s. Scale bar: 10 pum, n = 1.38 [31]

of PTK2 (rat kangaroo kidney epithelial) cells, goldfish retinal rod cells, and human
red blood cells allowed evaluation of dynamic changes in cell morphology in real
time [31] (Fig. 11.19).

In [32], three-dimensional trajectories of many living fibrosarcoma cells embedded
in a 3D collagen gel have been obtained, where the use of low-coherence light source
reduced spurious speckle noise. DH-QPM is used in [33] to monitor the morphological
changes during trypsinization (a process which causes cell thickness change but
not its index of refraction), hypo-osmotic, and apoptosis processes. The activity of
TRPV1 (transient receptor potential vanilloid type-1) was measured by DH-QPM,
which detects cell surface topology perturbations that follow Ca’* entry of plasma
membrane [34].
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11.6 Special Techniques of DHM

11.6.1 Total Internal Reflection Digital Holographic Microscopy

Many cells move by crawling over surfaces. Axons grow over long distances,
macrophages and neutrophils crawl to sites of infection, fibroblasts migrate through
connective tissues and cancer cells metastasize. The mechanics of cellular motion
involves an orchestrated set of activities that include the protrusion of pseudopodia,
the formation of new adhesions, the development of traction, and the release of
previous adhesions. Current primary tools for imaging and studying these surface
processes are the total internal reflection fluorescence microscopy (TIRFM) [35] and
interference reflection microscopy (IRM) [36—-39]. In TIRFM, only the fluorophores
present within the distance of evanescent field emit the fluorescence signal, while the
rest of the cell body remains dark, thus dramatically enhancing the contrast of
cellular adhesion. While this technique provides excellent functional imaging,
information on the morphology of the cellular membrane surface is largely absent
[40]. In the interference reflection microscopy, light waves reflected from the two
surfaces of the cell-substrate interface produce interference fringes, thus allowing
estimation of the interface thickness profile. While this method allows qualitative
interpretation of the surface profile, the interference image of the interface is usually
complicated by the reflection image of the cell body and its contents.

The technique of total internal reflection holographic microscopy (TIRHM) was
introduced to apply the quantitative phase microscopy by digital holography in the
imaging of the phase profile of light in total internal reflection [30, 41]. While in
total internal reflection all of the incident light energy is reflected, the evanescent
field can interact with any materials present on the surface resulting in the modula-
tion of the phase of the reflected light. Digital holography detects and images this
phase profile with high sensitivity. Figure 11.20 depicts the geometry of TIRHM,
where the incident light enters the prism and is TIR-reflected from the top surface

Fig. 11.20 (a) TIR prism with object beam and aqueous cellular sample. A prism surface,
H hologram plane, 0 angle of incidence. (b) TIRHM system on a vertical plate. TIR prism at
apex. Inset: TIR prism close-up
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Fig. 11.21 (a) General configuration of water droplets placed on prism. (b) Amplitude and
(c) phase images of light reflected from the prism. Field of view is approximately
300 x 900 pmz. (d) Graph of cross-section along a vertical line through a water drop in (c) [30]

provided the incidence angle is larger than the critical angle between the prism glass
and the material in contact with the prism surface. The reflected light exiting the
prism then contains the phase modulation due to the interaction of the evanescent
field and the material on the prism. The camera is focused on a plane perpendicular
to the propagation direction, such as the plane H in Fig. 11.20. Numerical diffrac-
tion is calculated from the plane H to the object plane, which is the prism face A,
and therefore the calculation involves the technique of diffraction between tilted
planes, described in Chap. 9. The prism is incorporated into a Mach—Zehnder
interferometer to produce the hologram.

Consider the reflection of light, of vacuum wavelength Ay, across a boundary
between two dielectric media with indices n;>n,. The reflection coefficients are
given by the familiar Fresnel equations. When the angle of incidence 0, is greater
than the critical angle 6. = sin~! (ny/ny), and the polarization is normal to the plane
of incidence (s-polarization), the reflection coefficient is complex with unit
magnitude

r. = exp(—2ip,), (11.9)

where the reflection phase is given by

RY ny2sin0; — ny?
b

n cos 04

@, =tan” (11.10)

which depends on the index of the second medium. Any variation of the index n;
leads to corresponding variation in the reflection phase 2¢ . Figure 11.21
demonstrates such phase shift imaged by TIRHM for water droplets or 50/50
mixture of water/ethylene glycol on the glass prism surface. The size of the phase
shift was found to be consistent with (11.10).

A more relevant configuration for the study of cellular adhesion involves
two interfaces, as depicted in Fig. 11.22. In order to obtain phase-only signature
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Fig. 11.23 (a) General configuration of quartz lens placed on prism. (b) Amplitude and (c) phase
images of light reflected from the prism. (d) Pseudo-color perspective rendering of (c). Field of
view is approximately 260 x 780 pm? [30]

in the reflected field, the TIR condition must be met at least for n,/n3 interface.
The reflection coefficient for s-polarization is then

_(ENY\ (i —inp)(ny +m3) + (A1 + iny) (1, — n3) exp(—2¢g1,)
ro= — : : , (11.11)
E ), (m+in)(my+mn3) + (b —iny)(ny — m3) exp(—20n,)
where
hi = nicos 0; = \/n> — ny2%sin’0, = in; (i=1,2,3) (11.12)
and
©o = 2mz0/ 0. (11.13)

This mode of TIRHM imaging is demonstrated in Fig. 11.23, where a fused quartz
lens of known curvature is placed on the prism surface. The resulting holographic
image shows little amplitude contrast but the phase image clearly displays the
presence of the lens. Filling the air gap with other materials such as ethylene glycol
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Fig. 11.24 TIRHM images of Amoeba proteus pseudopod activity at 7-min intervals [41]

and water is shown to vary the observed phase shift according to (11.11). Given the
115 mm curvature of the lens surface, the air gap varies up to 75 nm across the
horizontal FOV, and the phase shift is observed within the 50 nm or so evanescent
layer.

In Fig. 11.24, an amoeba proteus cell placed on the prism is imaged by TIRHM,
where pseudopod movement, captured at 7 min intervals, may be discerned by
thrust activity, designated at the arrow, between phase captures relative to the
overall relaxation, shift, and counterclockwise rotation for the feature in general.
The darker areas near the active pseudopod presumably indicate tighter adhesion to
the surface.

11.6.2 Multimode Microscopy from a Single Hologram

As we noted earlier, there are a number of techniques available in optical micros-
copy for generating intensity contrast images from transparent phase objects, such
as Zernike phase contrast and DIC. But these require delicate and expensive optical
elements and their precise alignment. Zernike requires matched apertures and phase
plate. DIC requires Wollaston prism pairs, etc. In DHM, on the other hand, it has
been shown that the direct access to the full complex optical field makes it possible
to manipulate the numerical representation of the optical field as if using real space
optics [42]. In Fig. 11.25 several images of red blood cells are displayed, generated
from a single hologram. The amplitude image in Fig. 11.25a is analogous to
conventional bright field. The quantitative phase image in Fig. 11.25b is generated
as described above. During the numerical reconstruction of the image, the angular
spectrum is available. In addition to suppressing the dc and twin-image terms, other
types of numerical filters can be applied to the angular spectrum to achieve different
contrast effects. For example, a numerical filter in the form of 1 — ¢ (kx, ky)
suppresses dc background from the image, where k. and k, are spatial frequencies.
For thin specimen, the resulting intensity image is proportional to ¢?(x, y), where ¢
is the phase profile of the object, minus the overall average phase value.
This is equivalent to the image generated by conventional dark-field microscopy,
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Fig. 11.25 Multimode contrast generation from a single hologram of red blood cells. (a) Amplitude
contrast, (b) quantitative phase contrast, (c¢) dark field, (d) Zernike phase contrast, (e) DIC, and
(f) spiral DIC

Fig. 11.25c¢. Since it cannot distinguish + ¢(x,y) and — (x,y), some structural
information is lost. If we take instead 1 — (1 — i)o (kx, ky) as the filter function, then
its intensity image is proportional to [I + ¢(x,y)]?, which is essentially the
image obtained by the positive Zernike phase-contrast microscopy (Fig. 11.25d).
The polarity can be reversed for negative ZPC by using 1 — (1 + i)é(kx, ky).
For the DIC effect, one takes exp[2mi (kA + kyA,)] as the filter, where A, and
A, are the lateral shears. Images reconstructed from the filtered and unfiltered
spectra are combined, and one can extract an image corresponding to
gp(x—i—Ax,y—l— Ay) —p(x,y), as shown in Fig. 11.25e. This is equivalent to the
conventional DIC. Finally, use of the filter exp(if)), where 0 is the polar angle in
the frequency domain, leads to an image which corresponds to the convolution of
the original image with r~2exp(i/), where r and ' are the radius and polar angle
in real space. This yields the spiral DIC image, which is very sensitive to phase
jumps [43], such as at edges (Fig. 11.25f).

These methods of numerical contrast generation are fast, taking only one or a
few extra steps of processing in the frequency domain. They preserve full resolution
and dynamic range of unfiltered images. If the phase variation is more than 2x, then
the contrast generation can produce artifacts, but this can be avoided if the multi-
wavelength OPU is used as described above. These methods are to be distinguished
with more commonly used image-processing methods that are used mostly on the
intensity images, such as edge enhancement, unsharp mask, etc., whereas the above
procedures apply only to holographic images represented with complex numbers.
Most significantly, all different types of contrast can be generated from a single
hologram without requiring different pieces of hardware or their delicate alignment.



11.6  Special Techniques of DHM 179
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11.6.3 Dark-Field DHM

In Fig. 11.26a, dark-field microscopy is achieved by placing an optical stop at the
back focal plane of the objective lens [44]. Undiffracted light is blocked, transmit-
ting only diffracted light. The configuration is incorporated in Mach—Zehnder
interferometer for digital holography for improved detection of objects smaller
than the optical resolution with the refocusing capability yielded by digital holog-
raphy. Although emulated dark-field digital holography is possible by numerical
filtering of the dc component, as we have seen above, the physical stop removes the
dc component from the imaging system thus allowing full use of the camera
dynamic range for the detection of weak signals, for example, from nanoparticles.
Dark-field DH can also be achieved by using the evanescent field of total internal
reflection, which was combined with heterodyne DH for high-sensitivity nano-
particle imaging [45—47].

11.6.4 DH Interferometer with a Beam-Splitter Cube

An interesting interferometer configuration is introduced in [48, 49], using a single
beam-splitter (BS) cube, Fig. 11.27. A diverging spherical wave from a pinhole
illuminates two adjacent sides of the BS with the semireflecting layer oriented
along the general direction of the propagation. The two halves of the beam refract
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Fig. 11.27 Beam-splitter cube interferometer. The blue half and red half split and combine to
form interference in the purple region. One of the halves (blue) contains the object and the cube
may be tilted slightly for off-axis holography. (Adapted from [49])

from the BS surfaces and transmit through or reflect from opposite sides of the BS’s
semireflecting hypotenuse, which then combine and exit the BS forming the inter-
ference. The sample is placed in the path of one of the half beams. The single-cube
beam splitter thus carries out both the beam splitting and beam combining functions
simultaneously. The common-path configuration has advantages of simplicity,
minimal number of components, insensitivity to vibration, and self-compensation
of wave front curvature.

11.6.5 Lens-Free On-Chip Holographic Microscopy

In Fig. 11.28, an incoherent point source illuminates the entire area of a CMOS
sensor and the sample plane is placed a short distance (less than a millimeter) from
the sensor. The diffraction pattern on the sensor constitutes the in-line hologram
with a very large field of view, namely the size of the sensor array (a few
millimeters across), laterally separated objects creating uncorrelated subholograms
[50]. Polarizers and a thin plate of birefringent crystal is used to establish differen-
tial interference. The hologram with the differential interference is then numerically
reconstructed, yielding DIC holographic images. Because of the close proximity
of the object plane to the sensor plane, the illumination aperture can be large,
whereas in conventional lenless holography, the object is placed closer to the
aperture for magnification. But the increase in field of view comes at the expense
of resolution, which is limited by the pixel size (a few micrometers) of the sensor.
To overcome this limitation, super-resolution is obtained by multiple exposure
of subpixel shifted holograms [51]. But the hologram shift is achieved not
by shifting of the sensor or the object, which requires submicron mechanical
precision, but by shifting the illumination aperture. Because of the geometry,
shifting of the aperture by 100 pm results in the hologram shift of 0.5 pm.
The result is a 0.6 um resolution over the entire 24 mm? field of view.
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11.7 Other Methods of Quantitative Phase Microscopy

11.7.1 Fourier Phase Microscopy

The Fourier phase microscope (FPM) has a configuration that somewhat resembles
the Zernike phase microscope but with the spatial phase filter replaced with a spatial
light modulator to allow phase-shift image acquisition in a common-path interferom-
eter [52, 53], as depicted in Fig. 11.29. The lens projects a Fourier transform of the
input field on the SLM. The undiffracted, zero-frequency component impinges on the
central spot on the SLM, and acts as the reference, while the rest of the SLM area
receives the higher frequency components containing the structural information of
the object. The center spot is phase shifted in four quadrature steps and the resulting
four interferograms are combined as in phase-shifting interferometry. Stability of the
common-path configuration leads to extremely low noise of 0.15 nm in optical path
and the use of low-coherence (but with good spatial coherence by passing through a
single mode fiber) illumination field, as opposed to laser radiation, contributes to the
sensitivity of the method. Similar concept is implemented with different names, such
as the point diffraction interferometer [54] and phase-shifting Gabor holography [55].

11.7.2 Hilbert Phase Microscopy

A Mach—Zehnder interferometer is set up with the object imaged on the CCD at the
output plane and the reference tilted at large enough angle so that the interference



182 11 Digital Holographic Microscopy

Fig. 11.29 (a) Fourier phase microscope. L Fourier transform lens, SLM spatial light modulator.
(Adapted from [52].) (b) FPM image of a HeLa cell undergoing mitosis. (¢) Whole blood smear. The
color bars represent optical path length in nanometers. (Reprinted from [52] by permission of OSA)

pattern has a high spatial carrier frequency. The phase of the object optical field can
be extracted by using the Hilbert transform [56]. The Hilbert phase microscopy
(HPM) allows quantitative phase microscopy from single-shot interferograms, with
the acquisition rate only limited by the camera speed, but the resolution is limited
by the fringe frequency. In [57], the refractive index profile of a HeLa cell was
obtained by Hilbert phase microscopy and using a microfluidic chamber, where the
cell takes on the known height of the chamber. The technique is used for refrac-
tometry of mouse tissue slices of brain, spleen, and liver [58]. The spatial power
spectra of the phase images reveal power law behavior with different exponents for
each tissue type, which opens a possibility of stain-free characterization and
diagnostics of biological structures.

11.7.3 Diffraction Phase Microscopy

In diffraction phase microscopy (DPM) [59], a phase grating is placed at a plane
conjugate to the object plane, which generates various diffraction orders (Fig. 11.30).
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Fig.11.30 Optical system for diffraction phase microscopy. S sample, L, imaging lens, G grating,
L, Fourier transform lens, SF spatial filter, L; inverse Fourier transform lens (Adapted from [59].)

A spatial filter with two apertures is used to select the zero-order and the first-order
diffraction. The smaller aperture passes the dc component of the object spectrum, and
is used as the reference field, while the larger aperture passes all of the object
spectrum. The two components are combined on the CCD plane, and the recorded
interference is Hilbert transformed to retrieve the phase profile of the object.
The single-shot common-path technique yielded subnanometer optical pathlength-
equivalent noise level, and was used to measure the membrane fluctuation of live red
blood cells. The technique was combined with epifluorescence microscopy in [60].

11.7.4 Quantitative DIC

An extension of DIC for quantitative phase microscopy uses phase shifting by precise
stepping of DIC bias to convert the DIC intensities to linear phase gradients in one
shear direction [61]. Orthogonal directions of shear and Fourier space integration
using a modified spiral phase transform leads to quantitative phase imaging.

A single-shot linear method uses no polarization optics but places a Ronchi grating
a short distance from an intermediate image plane of the object [62]. This generates a
zero-order and first-order copies of the image field, which are slightly offset laterally
from each other, Fig. 11.31: that is, the lateral shift of DIC is accomplished by the
clever arrangement of the grating and the image position, without Wollaston prism
or other polarization optics. The spatial filter passes the two diffraction orders, which
are combined on the CCD plane, which is focused on the grating plane. The hologram
is a superposition of two copies of the object field slightly out of focus and slightly
shifted laterally. Digital holography reconstruction yields a DIC-like image, that is,
a profile of phase gradient along the shear direction. In order to obtain full 2D
phase profile, a 2D Ronchi grating (i.e., a checkerboard pattern) is used to simulta-
neously record two orthogonal fringes, followed by spiral phase integration of
the two orthogonally sheared phase profiles. Increasing the illumination NA also
demonstrated optical sectioning property similar to conventional DIC.
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Fig. 11.31 (a) Quantitative DIC optical setup. S sample, L; objective lens, L, relay lens, G Ronchi
grating, S; and S, intermediate image plane containing two (or more) laterally shifted images of
the sample, L; and L, Fourier transform lens pair. (Adapted from [62].) (b, ¢) A pair of DIC images
of a HeLa cell reconstructed from a single exposure hologram. (d) 2D unwrapped phase image
obtained by spiral integration. (Reprinted from [62] by permission of OSA)

The above technique may be compared with the numerical shearing of digital
hologram [63], Fig. 11.32. A phase image from digital holography is numerically
sheared, that is, shifted by a small number of pixels, which is then subtracted from
the original. The resulting shearogram is integrated along the direction of the shear
which produces quantitative phase profile along that direction. Together with
another shearogram in the orthogonal direction, a complete 2D phase profile is
obtained. A distinct advantage of this and the preceding techniques is that the phase
profile does not require unwrapping, as long as the shear is not large enough to
introduce phase jump within the shear distance.

11.7.5 Spiral Phase-Contrast Microscopy

The 72/2 phase step at the Fourier plane of conventional PCM is replaced with a spiral
(also referred to as vortex, or helical) phase profile of the form exp(iy), where ¢ is
the polar angle [43]. This leads to convolution of the image with the Fourier
transform of the phase function, exp(ip) / r2. The method uses no polarization optics,
is highly sensitive to phase gradients, and, unlike Nomarski DIC, the sensitivity is
isotropic and highlights all edges regardless of the direction of the gradient. It is
capable of detecting 1% or less of 2n phase jumps. Further manipulation of the
center of the phase profile can yield DIC-like images with directional relief effect, but
with improved resolution [64]. For phase objects of several wavelengths thickness,
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Fig. 11.32 Shearograms of a mouse cell along (a) x and (b) y directions. (¢) 2D phase profile and
(d) its pseudo-3D rendering. (Reprinted from [63] by permission of OSA)

the spiral phase contrast can also produce spiral contours of the thickness profile [65]
(Fig. 11.33). Quantitative phase profile can be achieved by phase-shift spiral phase
microscopy by numerical postprocessing of a sequence of at least three shadow-effect
images, recorded with different phase offsets between the zero-order Fourier spot,
and the remaining, spiral filtered part of the image field [66].

11.7.6 Low-Coherence Interference Microscopy

Low-coherence interference microscopy can generate quantitative phase images
by using phase-shifting technique. For example, [67] describes full-field phase-
shifting interference microscopy with halogen lamp, where the interferometer also
includes a SLD beam detected by a photodiode for active stabilization, to obtain
phase noise corresponding to optical path length of 1.3 nm. In [68], a low-coherence
light source (halogen lamp with 2 um coherence length) is used in a Linnik
interferometer configuration with phase shifting. For accurate phase shifting with
low-coherence light, seven phase steps are acquired and combined. Two phase
profiles are obtained, one with double-pass transmission through the specimen
(Fig. 11.34a) and one with reflection from within the specimen (Fig. 11.34b),
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Fig. 11.33 Interferogram of an oil drop smeared on a glass coverslip. (a) Normal contourlike
interference fringes. (b) Spiral interferogram after filtering with the modified spiral phase filter.
(Reprinted from [65] by permission of OSA)
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Fig. 11.34 (a) Focal condition for measuring the transmission mode phase image, (b) focal
condition for measuring the reflection mode phase change, and (c¢) quantitative topography of a
MCF7 human breast cancer cell surface. (Reprinted from [68] by permission of OSA)
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the two modes being separated by virtue of the low coherence. This allowed
determination of the physical thickness and refractive index profiles of a MCF-7
human breast cancer cell (Fig. 11.34c).

Phase shifting by piezo-mounted mirror is highly dependent on the wavelength,
and therefore can be problematic for broadband source. Achromatic phase shifting
is possible by using geometric phase modulator (GPM). A conventional GPM
consists of a half-wave plate, sandwiched between two quarter wave plates and
two polarizers. Rotation of the half-wave plate determines the amount of phase
shift. Use of ferro-electric liquid crystal device in place of the half-wave plate
allows fast switching of the phase shift [69].
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Chapter 12
Low-Coherence and Tomographic Techniques

Digital holography using low-coherence light source has distinct imaging
characteristics and applications. A number of special techniques have been devel-
oped to take advantage of such distinct characteristics of interference by low-
coherence light. Topographic and tomographic imaging follow naturally from the
well-established and still evolving field of low-coherence interferometry. A very
significant contribution by digital holography is the possibility of holographic
recording of white light or fluorescence. Although some of the principles have
been known in conventional holography, recording of extended objects under white
light illumination suffers from precipitous degradation of interference contrast due
to noninterfering background. DH-related techniques, such as phase shifting, allow
efficient removal of the background. Some of these may develop into powerful and
practical new imaging technologies.

12.1 Techniques of Low-Coherence Digital
Holographic Microscopy

Holography is a coherent process. The optical path of the object beam has to match
that of the reference beam, in order to obtain visible interference fringes. If a source
of short coherence length is used, then only the part of the object that matches the
reference path within the coherence length produces holographic interference. This
is both a problem and advantage. The optical alignment needs to be more precise
and the fringe visibility tends to be lower because of the noninterfering background.
On the other hand, this also leads to optical sectioning capability, where the
holographic reconstruction highlights a section of the object image, while
suppressing image of the other parts of the object. It also leads to significant
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Fig. 12.1 Example of refocusing capability with a digital holography microscope on a metric
scale (100 divisions/mm), illuminated with a LED. (a) Intensity of the defocus, (b) phase of the
defocus image, and (c¢) computer-refocused image. The refocus distance is 80 um. (Reprinted from
[1] by permission of OSA)

reduction of the coherent noise due to spurious interference with various surfaces of
the optical system, thus improving the quality of the holographic image.

12.1.1 Low-Coherence Sources

Short coherence can arise from short pulse length of the laser light, or a broad
spectral width. Useful sources for low-coherence digital holography (LCDH)
include femtosecond or picosecond lasers, low-coherence laser diodes (LD),
superluminescent diodes (SLD), and high-brightness LEDs. Dubois et al. [1]
describe image formation of digital holographic microscopy using low-coherence
sources, by spatial filtering a LED. Digitally reconstructed images showed image
quality and focusing characteristics similar to white light microscopy, while also
providing low-noise quantitative phase images (Fig. 12.1). In [2], a laser diode is
used in a lensless holography configuration with temporal phase shifting, to record a
hologram at a distance of 45 mm from the object and reconstruct the image that
displays sectioning capability of depth close to the coherence length of 20 pm. It is
also demonstrated that LCDH can image through a few hundred micrometer depth
of scattering medium and produce tomographic images of biological specimen [3].
In [4], an 80-fs laser pulses are used to generate tomographic images of porcine
cornea and iris. Another lensless configuration — a Gabor configuration with a point
source illumination — with a spatial-filtered LED illumination is also demonstrated
to produce proper holographic image [5]. In [6], a red LED and a HeNe laser are
compared for digital holographic microscopy, finding that an LED represents a
quasi-monochromatic light source of coherence length 16.5 um, which may be
increased by a decrease of the spatial filter pinhole. The dispersion increases
effective coherence length, but the contrast of the hologram decreases with imbal-
ance of dispersion between object and reference arms.

Low coherence can be emulated, that is the speckle noise can be reduced, by
averaging. For example, in [7], many holograms of the same scene are recorded
while a diffuser changes the speckle pattern on the object illumination. Summation
of the resulting holograms leads to reduction of speckles and improved resolution in
the reconstructed images.
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Fig. 12.2 Geometry of partial coherence illumination. RGG Rotating ground glass, L condenser
lens, S sample plane, P focus plane of the camera. (Adapted from [8])

12.1.2 Rotating Ground Glass

F. Dubois et al. have described a very effective and flexible method for generating
partial spatial coherence source by sending a laser beam through a rotating ground
glass [8], which was applied to imaging of biological cells as well as for particle
flow analysis [9]. If the ground glass rotates fast enough that the phase at any point
on it varies over the range [0, 2] during the camera exposure, then these points can
be considered completely incoherent with respect to each other: that is, the mutual
coherence function over the illuminated area of the (x';y’) plane of Fig. 12.2 is a
delta function. Consider one such point source illuminating the object plane (xg, yo)
through the condenser lens L, with both (', y’) and (x¢, yo) planes positioned at the
focal planes of the lens of focal length f. The light arriving at the object plane is a
tilted plane wave exp[—i(k/f)(x'xo + ¥'yo)]. The object has complex transmission
coefficient A(xo, yo), so that the object wave leaving the (xo,yo) plane is

k
—iz

Eo(x0,Y0) ZA(XOJO)CXP[ f(x’xo +y'y0)]. (12.1)

This field propagates to the (x,y) plane over a distance z, where the camera is
focused. The field at the (x,y) plane is described with the Fresnel diffraction
expression

ik : ik k ik
E(x,y;z) = — - exp(ikz) exp {sz] f{A(xo) exp [—zfx’xo] exp [ZXOZ] } [k,
ik . ik
=3 exp(ikz) exp [2—

2| Faeaning o #{e| ] exp| i b
(12.2)

V4

where we again abbreviate the (y)-terms for brevity and also make use of the
convolution theorem. The first Fourier transform is the object spatial frequency
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spectrum A (kx, ky) , with k, = kx/z and ky = ky /z, and the second Fourier transform
is easily calculated so that

)

. o o
E(x,3;2) = — 5 —exp(ikz)exp [;—Zxﬂ Ak) o Zexp l—f (j n kx>

_ 1 . ik I iz (k, / g
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1 k ik
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(12.3)

The reference field Eg (x, y; z), in a Mach—Zehnder interferometer, is equivalent to a
copy of this field (12.3) but without the modulation by the object A(xo, yo), so that

1 k ik
Er(x,y;z) = 7 exp(ikz) exp {— Zc—zxﬂ — lfx’x}

x F~ {5( )exp{—y{k’z}}[;xurx} (12.4)

The fields interfere and the camera records the summation of all intensities
contributed by the incoherent source points on the (x’,y") plane with a distribution

P(,y)

I(x,y;z / dx'P(X)|E + Er [,
:W / WPE)|F

Through the use of phase-shifting method, one of the holographic terms can be
extracted

1+(x7y;z):4i2 / AP F~ {A(k )exp[—zkk\’z]}[;x'—ﬁ—x],

o Ly, iz p
=-—q3 Por { (k, )exp[—ﬂkx ]}(x), (12.6)

2

{ (k) + 6(k.)] exp [— ﬁ/ﬂ] } [fx +x]

(12.5)

where

Pa) = P(_fo) (12.7)
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The spectrum of 11 (x; z) is

It (ke kyyz) = — 41f}5’(kx){f§(kx) exp {— 2y 2} } (12.8)

2 z 2%k

The quantity in the curly bracket is the spectrum one obtains at the (x, y) plane if the
object is illuminated with a normally incident plane wave. This spectrum is
multiplied, that is, low-pass filtered, by the spectrum of the scaled illumination
profile P'(x,y). For example, take

2
P(x) = exp {— E] (12.9)
so that
- a*z? a*z? 2
P,(kx) :Wexp |:—ka :|, (1210)

which is a Gaussian of width Ak, = 2f/az. The low-pass filter becomes narrower
as the refocus distance z increases. If we take the threshold of resolution loss to be
where the quadratic phase in (12.8) becomes r, then the effective coherence length
of the source is

212
=—. 12.11
Zmax ka2 ( )
The effective coherence length can be adjusted by varying the laser spot size a on
the ground glass. Figure 12.3 shows reconstructed images at three distances and two
different spot sizes. Larger spot size reduces spurious interference as well reducing
the depth of focus, as expected of a low-coherence source.

12.1.3 Fresnel Incoherent Correlation Holography

In [10], a SLM under a computer control is used as a diffractive optical element
(DOE). The DOE is in effect a superposition of a plane mirror and a quadratic phase
function, by sharing 50/50 portions of all the pixels. For better clarity, Fig. 12.4
illustrates the principle of Fresnel incoherent correlation holography (FINCH)
assuming a transmissive SLM, which acts as if a superposition of a plane window
and a converging lens. An object is illuminated with a white light and a color filter
narrows the bandwidth enough for proper operation of the DOE. Upon transmission
through the SLM, the light from a point scatterer on the object results in two
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Fig. 12.3 Refocusing property and spatial coherence. (a—c) Are with speckle size of 12 pm
(low coherence), while (d—f) are with speckle size of 200 um (high coherence). The refocus
distances for each row are d = 50, 100, and 200 pm. (Reprinted from [8] by permission of OSA)

S PR # SLM CCD

Fig. 12.4 FINCH optical setup. WL white light source, S sample object, 4 color filter, L lens,
SLM spatial light modulator, CCD camera

components, one a collimated beam without deflection and the other a converging
spherical wave. The two components are coaxial and therefore produces a Fresnel
zone interference pattern, which can be recorded by a camera and numerically
reconstructed to form a point image. For an extended object under spatially
incoherent illumination, the Fresnel zones superpose incoherently, rapidly reducing
the fringe contrast. This has been known to be a common problem in many of the
incoherent holography techniques. Again, numerical processing by digital hologra-
phy provides a powerful solution to an old problem. Phase shifting is applied by
introducing a relative phase between the plane and quadratic phase parts of the
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Fig. 12.5 Holographic imaging of 3D objects under white light illumination by FINCH.
(a) Amplitude and (b) phase of the complex hologram. (c—e) Show reconstruction at different
distances. (Reprinted from [10] by permission of OSA)

DOE, and taking several exposures while stepping the phase shift. This eliminates
the dc and conjugate terms from the Fresnel zones, yielding a complex hologram
corresponding to a single conjugate term (Fig. 12.5). Image reconstruction proceeds
as in ordinary digital holography. Numerical focusing of objects at different
distances under arc lamp illumination have been clearly demonstrated. Holographic
recording and imaging of multicolor fluorescence has been demonstrated as well
(Fig. 12.6) [11, 12].

12.1.4 Achromatic Fringe System

We may note some of the low coherence techniques developed for conventional
holography. In the achromatic fringe system of Fig. 12.7, a collimated beam
illuminates a diffraction grating G at plane P; [13]. The lens L, focuses various
diffraction orders on the plane P,, where a pair of pinholes select two of the
diffraction orders. The hologram is recorded on the plane P4, which is the image
of the grating formed by the lens L,. The image is in fact a superposition of the two
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Fig. 12.6 Holographic imaging of fluorescent color 3D objects by FINCH. (Reprinted from [11]
by permission of OSA)
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Fig. 12.7 Grating achromatic interferometer. (Adapted from [13])

diffraction orders. The image formation does not depend on the wavelength.
A transparency or silhouette placed at P; in front of one of the pinholes modifies
one of the grating images, thus recording the information as a modulated fringe on
P,, as in ordinary off-axis hologram. But the coherence requirement is only similar
to Gabor hologram, much less stringent than ordinary off-axis hologram.

12.1.5 Triangular Interferometer

A triangular interferometer is depicted in Fig. 12.8, which contains two lenses L;
and L, of respective focal lengths f; and f, separated by a distance fi + f>.
If an object is placed at the front focal plane A of f;, then an image of magnification
— f2/f1 forms at the plane B, which is a focal plane of L. But if A also happens
to be a focal plane of f>, then another image of magnification — f; /f> forms on B.
If the field on A is a spherical wave from a point source, then the field on B is an
interference of two spherical waves of different curvatures, resulting in a Fresnel
zone pattern (FZP), which can be used to form a holographic image of the original
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Fig. 12.8 Triangular

interferometer. Each of A and /
B is a focal plane of both L;

and L, which are separated at
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point source [14]. A serious drawback is that as more point sources are added, the
various FZP’s add incoherently, adding dc background and twin-image
contributions. A digital holography demonstration of the concept, with phase
shifting by using discrete polarization components and multiple cameras, has
been demonstrated to significantly reduce the dc and twin problems [15].

12.1.6 Conoscopic Holography

In conoscopic holography, a cone of light emitted from each object point passes
through a length of birefringent crystal. If the crystal axis is along its length,
the ordinary rays propagate with isotropic speed forming spherical waves. But
extraordinary rays have speed that depends on the direction of propagation, forming
elliptic wavefronts. The two polarization components emerge from the crystal as
two approximately spherical waves of different curvatures, thus forming Fresnel
zone pattern. Hologram of two pinholes illuminated by a sodium lamp has been
formed and reconstructed by HeNe laser [16]. But as the number of object points
increase, contrast of the incoherent hologram decreases rapidly, because of the dc
background. For an extended 2D object, the zone patterns from all the object points
add incoherently. By using additional polarization and amplitude masks, several
holograms are digitally combined to remove the dc and conjugate terms [17]. Two-
dimensional test pattern is correctly reconstructed by digital holography. This is
another example of digital holography making possible what is very difficult in
conventional holography.
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12.2 Optical Scanning Holography

12.2.1 Basic Principles of OSH

The optical scanning holography (OSH) is a unique method of hologram generation
[18-20]. In standard holography methods, the interference of the plane reference
wave and the spherical wavelets from each object point generates Fresnel zone
pattern, which is recorded by an image sensor. The OSH turns the process around: a
Fresnel zone pattern is projected on an object and the pattern is 2D scanned across
the object, while a single point detector collects the light scattered by the whole
object. The photo-current from the detector is filtered and processed to generate a
pattern equivalent to the ordinary hologram, as described below. At the cost of
some complexity of the system and the requirement of mechanical scanning, the
method has unique capabilities and imaging characteristics.

For a basic OSH system (Fig. 12.9) the illumination is provided by an interfer-
ence between a plane wave and a spherical wave, with a frequency offset between
them. The spherical wave on an xy-plane a distance z from the center of curvature at
(x0, y0, 0) is in the form, with paraxial approximation,

E, = exp{% [(x —x0) + (v — yo)z} — iwt}. (12.12)

The plane wave is incident normally on the plane and so its phase is uniform but
oscillates in time

E; = exp{—i(w + Q)t}, (12.13)

C) L2 (xy2)
!

Nt

D
L1 (g0 S LO

3 o R —

P

Fig. 12.9 Basic OSH system optical setup. P; and P, pupil planes, Ly, L;, and L, lenses, BS beam
combiner, S sample object, D detector
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where Q is the frequency offset between the two waves. For simplicity, we set the
amplitudes equal to one. The intensity distribution is then given by

k
1(x,y,7;1) = |[Ey + Eo) =2 + 2005{22 {(x —x0) + (y fyo)z} + Qt}, (12.14)

which is a Fresnel zone pattern (FZP) that appears to diverge from or converge
toward the center at (xg, yo) because of the frequency offset Q. Now suppose a point
object is located at (x,y,z), and it reflects or scatters in proportion to the incident
field. A lens collects some portion of the reflected/scattered light and focuses on a
detector. The detector is a single point detector but collects light from an aperture of
finite area. The electrical signal from the detector is then proportional to I(x, y, z; 1),
which is processed through a lock-in detector. That is, the signal is multiplied with
sin Q¢ and cos Q¢ followed by low-pass filtering, to generate the two phase-
quadrature signals:

Se = (I(t) cos Q1) = cos{zkz [(x=x0) + (y — y0%)] };

Ss = {I(¢) sinQf) = — sin{zﬁ [(x —x02) + (y _yOZ)] } (12.15)

v4

These signals can now be digitized and combined as
: ik 2 2
S =S8 —iSs = exp Z[(x—x0)+(y—yo )] ¢ (12.16)

The process is repeated as the center (xg,yo) of the projected FZP is scanned in
2D, and the resulting 2D array of complex numbers S(xo, yo) is equivalent to the
spherical wavefront centered at (x,y,z). Once this complex hologram, which
contains no zero-order or twin-image terms [21], is acquired, the numerical
diffraction can be applied to reconstruct the image of the object point at any
distance. Extension of the description to an extended object consisting of a set of
object points is straightforward, because all the relevant terms are linear with
respect to Ej.

12.2.2 Imaging Characteristics of OSH

With the OSH, it is possible to control the degree of spatial coherence of the
image. As described above, when a detector with a narrow aperture is used at the
focal plane of the collection lens Ly, it only collects plane waves propagating
from the object along the optical axis. The imaging characteristics is similar to
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Fig. 12.10 Reconstruction of a hologram recorded in coherent mode. The object is a siliceous
three-pronged spongilla spicule. (a) Absolute value of the reconstruction amplitude and
(b) wrapped phase map of the optical thickness of the object relative to the mounting medium.
(Reprinted from [22], under OpenAccess)

illumination of the object with a collimated laser in a conventional microscope.
For example, the phase modulation of the plane wavefront by the presence of a
phase object, such as a cell, allows quantitative phase microscopy, as in the
conventional digital holography [22] (Fig. 12.10). On the other hand, if the
detector aperture is enlarged, then it collects a large range of spatial modes,
analogous to the illumination of the object with a broad source in a conventional
microscope. In conventional microscopy, the spatial coherence of the image is
controlled by the aperture of the illumination, whereas in OSH it is controlled by
the aperture of the detector. The ability of OSH to record in an incoherent mode is
one of its most significant attributes. The incoherent imaging mode has the
characteristics of the low-coherence DH described in the previous section, such
as the reduction of speckle noise and reduction of spurious interference noise from
out-of-focus planes. Furthermore, the incoherent mode OSH allows holographic
imaging of fluorescence [23, 24].

The frequency offset may be set up using a pair of AOMs as in heterodyne
DH. It is simplest but least efficient to 2D-scan the FZP by translation of the
object. Scanning by galvo-mounted mirrors and telecentric optics, as in confo-
cal microscopy, would provide much improved scanning. In the basic OSH
description above, the illumination is provided by the interference between a
plane wave and a spherical wave. Other combinations are also possible. For
example, by placing an annular aperture at the pupil plane Py, an edge detection
effect may be obtained [25]. It has been shown that if the plane wave is
replaced with another spherical wave but with opposite curvature from the
other, then the resulting PSF has improved lateral resolution by a factor of
2 and the depth of focus increases by an order of magnitude for extended focus
imaging [26, 27].
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Fig. 12.11 Spatio-temporal Vi
holography. The object and
the camera are at focal ref l

distance from the respective

lenses, as well as the object o o
and reference mirrors. The obj
object mirror forms an image

of the object at the camera, f
whereas the pinhole aperture
on the reference mirror
performs a spatial filtering.
The reference mirror is
z-scanned at a constant speed.
(Adapted from [28])

Fig. 12.12 Reconstructed wave front of a fly wing recorded behind a diffuser. (a) amplitude and
(b) phase. (Reprinted from [29] by permission of OSA)

12.2.3 Related Techniques and Applications

The concept of two-pupil optical processing is found in a few different techniques,
as well as in OSH. For example, in the system referred to as spatio-temporal digital
holography (STDH) [28, 29], the optical field from the object is split into two parts.
One is used to form an image of the object, while the other is spatial-filtered to
transmit the zero-order component (Fig. 12.11). The two parts combine and inter-
fere, while the reference is scanned axially at a constant speed to introduce a
Doppler frequency. From the series of interferograms recorded by the camera, the
time series of each pixel is demodulated to generate complex holograms. Both
amplitude and phase-contrast images of an object behind diffusing medium are
obtained (Fig. 12.12).

Similar strategy of interfering two copies of the same field is found in a number
of low-coherence and common-path techniques. For example, the FINCH
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technique that we described in the previous section has similarity with STDH, and
some differences. The STDH involves spatial filtering and pixelwise heterodyne
detection, while the FINCH uses pixelwise Fresnel zone pattern formation and
temporal phase shifting. The Fourier phase microscopy and diffraction phase
microscopy of Sect. 11.7 also have the similar concept of interference of the object
field with the reference field, the latter obtained by spatial filtering of the former.

12.3 Optical Coherence Tomography

Optical coherence tomography (OCT), a scanning low-coherence interferometry
technique, was introduced around 1990 by J. Fujimoto [30, 31] and A.F. Fercher
[32]. Since then it has developed into a robust, mature biomedical imaging tool.
We highlight some of the main techniques and newer developments of OCT. There
are a number of books and review articles [33] one can consult.

12.3.1 Time-Domain OCT

For a Michelson interferometer illuminated with a monochromatic source, the
detected signal S(z) is proportional to

S(z) = So + S cos 2k(z — zg) (12.17)

where Sy and S, are constants, z and zg are the object point and reference mirror
distances, respectively, and k = 2z/A. If the source has short coherence, either
because it is a short pulse or because it has broad spectrum, the interference signal is
modulated by an envelope of a width equal to the coherence length, with the center
of the envelope at z = zg. Therefore, the low coherence interferometry can be used
to measure the axial distance of the object point. In the original time-domain OCT
(TDOCT) (Fig. 12.13), the reference mirror is scanned at a constant speed zg = VR,
so that the interference signal is time-dependent

S(t) = So + Sy cos2k(z — vrt) = So + S; cos 2(kz — Q). (12.18)

That is, the object field is heterodyned at the Doppler frequency Q = wvg /c, where
o is the frequency of the light. Low-pass filtering of the heterodyne signal then
yields the envelope function. Thus, the z-scan of the reference mirror provides the
Doppler shift for heterodyne signal generation, as well as the scan across the depth
of the object for tomographic imaging. In analogy with ultrasound imaging system,
the z-scan is also referred to as the A-scan. In a typical OCT system, the object beam
is also scanned in a lateral direction, for example, x-direction, to produce x—z
tomographic section image — this is called the B-scan.
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The interferometric and heterodyne signals from OCT are compatible with
efficient electronic processing and lead to high dynamic range and sensitivity,
exceeding 100 dB. Imaging of weakly scattering structures even in a scattering
environment is possible, enabling noninvasive, in situ, and in vivo optical biopsy.
Another advantage of OCT is the decoupling of the lateral and axial resolutions, the
former determined by the NA of the imaging system, while the latter is determined
by the coherence length of the light source. In practice, the NA is kept relatively
low, in order to maintain uniform focus along the depth of the object. A main
limitation of TDOCT is the mechanical z-scan of the reference mirror.

12.3.2 Fourier-Domain OCT

The interference term in (12.17) is sinusoidal with respect to the distance (z — zgr)
with a period equal to the wavelength 27 /k. But it is also sinusoidal with respect to
k with a period 27/(z — zg). If one uses a broadband source and a spectrometer is
placed in the detection arm while the reference mirror is kept stationary, then the
detected spectrum as a function of k£ is the Fourier transform of the object reflec-
tance as a function of the axial distance. A 1D CCD array can be used to image the
spectrum, and computation of its Fourier transform yields the A-scan. There is no
mechanical motion for the A-scan, while the lateral scan can proceed as in TDOCT,
thus providing much faster overall scan speed. This is called spectral domain OCT
(SDOCT) (Fig. 12.14a). Instead of the broadband source and the spectrometer, a
similar effect can also be achieved by using a wavelength-tunable light source and a
single detector. The system is then referred to as the wavelength-scanning or swept-
source OCT (SSOCT) [34] (Fig. 12.14b). For wavelength scanning, a tunable laser
can be used, or an acousto-optical tunable filter is used on a white light source.
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Fig. 12.14 (a) Spectral domain OCT (SDOCT) and (b) Swept source OCT (SSOCT)

The SDOCT and SSOCT together are sometimes referred to as Fourier-Domain
(or frequency-domain) OCT (FDOCT).

The imaging characteristics of SDOCT are similar to TDOCT, but there are
some differences. The axial scan range and the axial resolution in TDOCT are given
by the mechanical scan range of the reference mirror and the coherence length of
the light, respectively. In SDOCT, on the other hand, the axial range is proportional
to /297, where 62 is the wavelength resolution of the spectrometer. Similarly, the
axial resolution is 4> /AZ, where A/ is the full wavelength range of the spectrome-
ter, assuming that the spectrum of the light source covers that range. More signifi-
cantly, it is shown that the SNR of SDOCT is better than TDOCT by a factor v/N,
where N = A4/d1 is the number of detector elements on the spectrometer [35].

12.3.3 Doppler OCT

If a scatterer within the object volume is in motion, then its reflection generates
Doppler shift in addition to that of the moving reference mirror [36]. This shows up
as a phase change between two consecutive A-scans, and can be the basis of high-
speed, high-sensitivity velocity measurement. Blood flow in human skin has been
imaged with sensitivity of 10 pum/s [37].

12.3.4 Optical Coherence Microscopy

In order to improve the lateral resolution, one may use a large NA objective and the
object 2D-scanned laterally, called the C-scan. The system is then referred to as
optical coherence microscopy (OCM). For example, the lateral resolution of OCT
in retinal imaging is typically 10-30 um, which is insufficient to resolve the retinal
cone mosaic. Retinal cone mosaic imaging was demonstrated by using a larger NA
beam, performing C-scans, and imaging the periphery of the fovea, where the
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Fig. 12.15 Transverse images of human retina centered at ~4° nasal. (a) SLO (scanning laser
ophthalmoscope) and (b) OCM images. The image size is 200 x 225 pm. (Reprinted from [38]
by permission of OSA)

200um

Fig. 12.16 High-resolution B-scan of retinal structures acquired with adaptive optics OCT
instrument scanning 6 mm lateral range (4,000 A-scans). The following retinal layers are
identified: Nerve fiber layer (NFL), Ganglion cell layer (GCL), Inner plexiform layer (IPL),
Inner nuclear layer (INL), Outer plexiform layer (OPL), Fibers of henle with outer nuclear layer
(ONL), Inner segment layer (ISL), Outer segment layer (OSL), Retinal pigment epithelium (RPE),
Choriocapillaris and Choroid. The Outer Limiting Membrane (sometimes called External Limiting
Membrane), Connecting Cilia and Verhoeff’s Membrane may also be seen. (Reprinted from [39]
by permission of OSA)

retinal cell spacing is somewhat larger [38] (Fig. 12.15). In ophthalmic imaging,
however, higher-NA illumination for tighter focusing can aggravate the ocular
aberration. Application of adaptive optics in ophthalmic OCT imaging has been
demonstrated to reduce the aberration and improve the lateral resolution [39]
(Fig. 12.16).
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12.3.5 Phase-Sensitive OCT

In addition to the interference envelope, one can interrogate the phase of the
interference signal for phase-sensitive OCT. This may be accomplished by phase-
shifting techniques [40] or by Hilbert transform [41]. Then it is possible to probe
subwavelength optical path-length variations within the coherence thickness of the
object volume. Interpretation of the phase variation, however, may not be straight-
forward, except for simpler cases, for example, due to surface profile behind
uniform index material.

12.3.6 Differential Phase-Contrast OCT

Differential phase-contrast (DPC) OCT uses two transversally separated beams of
orthogonal polarizations [42]. Alternatively, two overlapping object beams with
orthogonal polarizations are used with slightly different focal spot sizes [43]. The
two interference signals are detected and processed separately to obtain phase
signals, difference of which constitutes the DPC signal. Phase differences between
the two sample beam components can be caused by transverse refractive-index
variations within the medium in front of the back-reflecting interface. Also, depth
variations of the back-reflecting interface or variations of the phase change on
back-reflection, for example, at different metallic surfaces, can give rise to phase
differences. The sample beam with the larger focal spot can be regarded as a
reference for the other beam and provides the path length of the light that traverses
the surrounding area of the small spot. Hence the path-length difference between
the small spot beam and its surrounding is measured and imaged. DPC image of
human microvascular endothelial cells showed clear DIC-like phase contrast
(Fig. 12.17). Phase steps below scattering medium was also detected by DPC-OCT.

12.3.7 Phase-Dispersion Microscopy

Phase-dispersion microscopy (PDM) is a scanning microscopy technique, based on
measuring the phase dispersion between the fundamental and the second-harmonic
light [44]. The Michelson interferometer is illuminated with overlapping funda-
mental and second-harmonic output from a low-coherence Ti:sapphire laser.
A constant motion of the reference mirror creates heterodyne signals for both
wavelengths, which are detected separately. Bandpass filtering and Hilbert trans-
form then yields the phase difference between the object and reference arms for
each of the wavelengths. Because of the exact double frequency of the second
harmonic, the two phase values can be combined to eliminate all noise that is due
to optical path-length fluctuations. PDM was used to measure the refractive-index
dispersion (10~%) of very dilute DNA-water solutions (1%) and to generate clear
contrast between the white matter and gray matter of a brain tissue microtome section.
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Fig.12.17 Differential phase contrast by two orthogonal polarization components (a) with lateral
shift or (b) with different focus. (¢) DPC-OCT image of human microvascular endothelial cells.
(Reprinted from [43] by permission of OSA)

In phase-dispersion optical tomography (PDOT), the principle of PDM is applied to
OCT configuration with axial scan of the object [45]. PDOT is capable of detecting
phase shift that is due to reflection at an interface or dispersion of a bulk material,
even when the target is below the surface.

12.3.8 Phase-Referenced Interferometry

Detection of submicron motion is important for the study of subcellular dynamics,
such as actin-based transport of organelles, ruffling of cell membranes, and motility
of metastatic cells. In phase-referenced interferometry (PRI) in [46], an OCT
interferometer is simultaneously illuminated with a laser of 775 nm and a SLD of
1,550 nm. The laser sets up interference of reference and the top surface of a cover
glass, while, by way of the short coherence, the SLD has interference only with the
sample specimen below the cover slip. The reference mirror is dithered and the
heterodyne signals for the two wavelengths are detected separately. If the SLD
wavelength is exactly twice the laser wavelength, the two signals can be combined
so that any interferometer drift or fluctuations of the relative distance between the
object and reference arms exactly cancel, as long as the specimen-to-cover slip
distance remain constant. The system allowed measurement of axial motion with
~1 nm/s sensitivity, stable over many minutes.

12.4 Full-Field Optical Coherence Tomography

12.4.1 Principles of FFOCT

In full-field (or wide-field) optical coherence tomography (FFOCT), the process of
coherence detection is carried out in parallel of all the pixels. A basic configuration
in Fig. 12.18 is a Michelson interferometer using a low-coherence light source and
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phase-shifting interference technique. The interference signal is generated from
points within the volume of the object that lie within the coherence length of the
light source relative to the reference mirror surface. The interference signal can be
extracted and the background suppressed by using the phase-shifting method,
which allows tomographic imaging within scattering media. Microscope objective
is added to the object arm for magnification and a matching objective is required in
the reference arm for precise matching of the optical path lengths, so that one
obtains the Linnik interferometer configuration. The phase shifting can be achieved
by dithering of the reference mirror. In the original FFOCT experiment by Boccara
et al., use of Michelson objective precluded piezo dithering; instead they used
polarization modulation using photoelastic modulator [47].

Compared to the pointwise detection OCT, the camera-based FFOCT cannot
acquire signals fast enough for conventional lock-in detection. Instead of synchro-
nous detection of conventional lock-in amplifier, a technique of synchronous
illumination is developed that collects and integrates time-varying parts of the
image into phase-quadrature components. The synchronous illumination can be
achieved by piezo-modulation of reference mirror while the light source is pulsed
during appropriate quarter period of the modulation [48, 49] (Fig. 12.19).

Using a thermal light source (a tungsten halogen lamp) in [50], 3D tomographic
images of a tadpole eye is obtained, with 3 pm lateral and 1 pm axial resolution
(Fig. 12.20). A camera running at 200 fps and four frame captures per phase-
shifting cycle results in 50 tomographic image acquisition per second. Averaging
over 1 s for each section resulted in close to 80 dB SNR. Use of polarization
components also allows tomography of birefringence in muscle tissues [51].
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Fig. 12.19 Synchronous illumination detection. The shaded areas represent the periods when the
illumination is on and the graphs plot the intensity variation of a pixel as the reference mirror
dithers sinusoidally. The intensity of the shaded areas is accumulated during a camera exposure
and stored as one of the four phase-quadrature images. (Adapted from [49])

Fig.12.20 3D reconstruction
of a Xenopus laevis tadpole
eye by means of 300
tomographic images. The
volume is 360 x 360 x 200
um3. E exterior of the eye,

C cornea, CR crystalline lens.
(Reprinted from [50] by
permission of OSA)




212 12 Low-Coherence and Tomographic Techniques

12.4.2 Techniques and Applications of FFOCT

Various light sources have been used for FFOCT, including LEDs [47, 52],
femtosecond lasers [53], tungsten lamp [50, 54], and SLDs [55]. The technique of
rotating ground glass has been used along with heterodyne generation of phase shift
using two AOMs in [56].

Salathe et al. constructed a smart pixel array for 58 x 58 pixel parallel hetero-
dyne detection [57]. Three-dimensional images are obtained at a sensitivity of
258 dB and a rate of 6 Hz. The method is effective for imaging through a turbid
medium (intralipid solution) as well [58]. In [59], they have achieved 25 Hz video
rate imaging of 210 x 210 x 80 pm® volume with 58 x 58 x 58 voxels. The
resolution was 9 um lateral and 3 pm axial and the sensitivity 76 dB.

Phase shifting is also achieved by a two camera system with liquid crystal
shutters and a dithering reference mirror [55]. In [52], four phase-quadrature images
are generated using quarter-wave plates, which are imaged on the four quadrants
of a single camera, allowing video rate acquisition of the complete phase-shift
image sets, but at the expense of resolution. An achromatic phase modulator
operating on the geometric phase uses a pair of ferro-electric liquid crystal
devices in [60].

In [61], a set of three FFOCT images of a colored object is generated using red,
green, and blue LEDs, which are numerically combined and rendered to produce
natural color 3D tomography (Fig. 12.21). That is, three sets — red, green, and blue — of
image volumes are obtained by FFOCT, as displayed in the first three columns.
These are then numerically combined into RGB images as shown in the fourth
column. The first two rows show example cross-sections and the bottom row shows
flat view, that is, accumulation of all the cross-sections. On the lower right corner is
the picture of the painted surface of a coin being imaged.

A swept-source version of FFOCT has been demonstrated in [62] using a
common-path interferometer, where the first air—glass interface serves as the
reference reflection, and the specimen mounted on the other side of the coverslip
provides the object reflection. A SLD transmitted through a tunable fiber
Fabry—Perot filter provides the swept source. As the wave number k sweeps over
a range, the axial distance of each object point is coded as the interference signal as
a function of k. The Fourier transform over & then produces the signal strength as a
function of distance. The phase profile of a coherence-sectioned plane then yields
the optical thickness variations at the plane, such as due to presence of cells and
other materials (Fig. 12.22).

In [63], the object is line-illuminated along x-direction with a cylindrical lens
and the reference arm has a grating in Littrow configuration for retro-reflection
with a time delay across y-direction (Fig. 12.23). In a manner analogous to light-in-
flight holography, the high-speed CMOS then has x vs. time delay interference
signal on its face, which, together with phase shifting by a dither of the grating,
produces a B-scan tomographic image. Scan of the line-illumination across the
object surface then yields a 3D volumetric tomogram. The system is used to image
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Fig. 12.21 Full-color full-field OCT of a painted coin surface [61]

Fig. 12.22 Swept-source
FFOCT of red blood cells.
(Reprinted from [62] by
permission of OSA)

a human finger pad in vivo at six volume images per second with 76 dB sensitivity
(Fig. 12.24).

High-resolution subcellular-level imaging of human donor corneas is obtained
using thermal light source and piezo-driven phase-shift method in a Linnik inter-
ferometer [64]. A lateral resolution of 2.4 um and axial resolution of 2.0 pm were
achieved. In [65], a method for automatic synchronization of the pulsed illumina-
tion and the Doppler frequency of the z-scanning reference mirror is proposed,
which allowed ~800 pm/s scan speed. The synchronization was achieved by an
auxiliary interferometer whose reference moves in tandem with the OCT interfer-
ometer and is illuminated with a cw LD of a similar wavelength.
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PZT G

y-scan \. '

Fig. 12.23 3D axial-lateral, parallel time-domain OCT. SLD superluminescent diode,
Ly collimating lens, G Littrow grating mounted on PZT, CL cylindrical lens. The solid lines are
the imaging rays. (Adapted from [63])

2.0mm

Tmm

Fig. 12.24 3D OCT images of a human finger pad in vivo: (a, b) longitudinal OCT images in the
X—Z plane, (c, d) transverse OCT images. The white arrows indicate the cross-sectional positions.
(e) Volume-rendered image. The volume size was 5.8 x 2.8 x 2.0 mm°. (Reprinted from [63] by
permission of OSA)
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Fig. 12.25 Light-in-flight holography. (a) When the reference arrives at the positions 1 or 2 on
the hologram, the object field from the slice 1 or 2, respectively, also arrives at the hologram.
(b) Reconstruction using the strip 1 or 2 of the hologram results in the image of slice 1 or 2,
respectively, of the object

12.4.3 Light-in-Flight Digital Holography

Light-in-flight holography (LIF) [66, 67] uses short coherence light and oblique
incidence reference beam. Various parts of the reference beam arrives on the
hologram plane at different times, and interferes with the various parts of the object
beam arriving at the hologram that happen to be coincident within the coherence
length. In Fig. 12.25, the delay between the object and reference is such that when
the reference arrives at the positions 1 or 2 on the hologram, the object field from
the slice 1 or 2, respectively, also arrives at the hologram. The entire 3D object
volume is holographically stored to form varying contour or cross-sectional images
of an object on various parts of a single hologram. When the strip at position 1 or
2 is used to reconstruct, holographic image of the slice 1 or 2 is formed, respec-
tively. A DH analog of LIF was demonstrated in [68]. Because of the low resolution
of CCD array, it is not possible to use an oblique reference. Instead, a blazed grating
for Littrow reflection can be used for the reference, so as to achieve linearly varying
time delay across the reference beam diameter [69] (Fig. 12.26). Various contours
of a lightbulb reconstructed from different parts of a single CCD-acquired
hologram is shown in Fig. 12.27 [70].

12.5 Digital Interference Holography

12.5.1 Principles of DIH

Figure 12.28 illustrates the general principle of digital interference holography
(DIH) [71]. Suppose an object is illuminated by a laser beam of wavelength /.
A point P (at rp) on the object scatters the illumination beam into a Huygens
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Fig. 12.26 Optical
configuration for DH LIF
using Littrow grating

SLD
- .

II. b

Fig. 12.27 (a) Digital LIF recording of a lightbulb, showing object contours reconstructed from
different parts of the CCD, representing different depths. In the lower right corner, a gray-scale-
coded depth map is shown. (b) Evaluated 3D shape of a lightbulb. (Reprinted from [70] by
permission of SPIE)

wavelet, A(rp) exp(ik|r — rp|), where A(rp)is proportional to the amplitude and
phase of the scattered wavelet. For an extended object, the field at r is

E(r) ~ /A(rp) exp(ik|r — rp|)d’rp, (12.19)

where the integral is over the object volume. The amplitude and phase of this field
at the hologram plane z = 0 is recorded by the hologram. If the holographic process
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Fig. 12.28 (a) Geometry and (b) process of DIH. H hologram, E optical field in the object
volume, A object function. See text for details

is repeated using N different wavelengths, and the reconstructed fields are all
superposed together, then the resultant field is

E(r) ~ A(rp) exp(iklr — rp))drp ~ | A(rp)d(r — rp)d°r
(r) ;/<P>ep<| o) rp /<p>< p)drp
~ A(r). (12.20)

That is, for a large enough number of wavelengths, the resultant field is proportional
to the field at the object and is nonzero only at the object points. In practice, if one
uses a finite number N of wavelengths at regular intervals of A(1/4), then the object
image A(r) repeats itself (other than the diffraction/defocusing effect of propaga-
tion) at a beat wavelength A = [A(1/4)]"", with axial resolution = A/N. By use
of appropriate values of A(1/1) and N, the beat wavelength A can be matched to the
axial extent of the object, and 0 to the desired level of axial resolution.

In a DIH experiment, the wavelength of a dye laser is scanned in the range of
575.0-605.0 nm in 20 steps, taking the exposure of a hologram at each step [72].
The optical field of a volume around the image location is calculated by numerical
diffraction from each hologram. At this point, the field patterns in the individual 3D
arrays show little variation along a few millimeters of z-direction. Now the 20 3D
arrays are numerically superposed together, by adding the arrays elementwise,
resulting in the accumulated field array of the same size. This new array then has
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Fig. 12.29 (a) Buildup of axial resolution by superposition of holographic images with 1, 2, 4, 8,
and 20 wavelengths. (b) Several contour images of the coin at 60 pm axial distance intervals [72]

field distribution that represents the three-dimensional object structure, with axial
range of A = 220 pm and axial resolution of 4 = 11 pm, as described above.
Figure 12.29a illustrates the building up of axial resolution as a series of holo-
graphic images are superposed using a range of wavelengths. The five frames
shown are with 1, 2, 4, §, and 20 wavelengths superposed, and one notices the
narrowing of the contour widths as the synthesized coherence length shortens.
Figure 12.29b shows a few contour images at 60 um axial distance intervals.

We may note that the angular spectrum method is particularly advantageous in
DIH calculation, because the field size depends neither on the distance nor the
wavelength [72]. We have also demonstrated variable tomographic imaging of DIH
by reconstruction on a plane with arbitrary tilt angle with respect to the optical axis,
using an algorithm based on angular spectrum method [73]. This allows focusing on
a tissue structure that may be oriented at an arbitrary angle within a 3D image
volume.

Figure 12.30a shows the flat and stereoscopic views of the numeral 2 on the 2000
mintage mark of a penny [74]. A standard technique for viewing a stereo pair is to
start with your eyes very close to the page. As you pull away, you would see two
pairs of images: try to merge these into three images and try to focus on the
center image. At a certain comfortable distance, the 3D perception will occur.
Figure 12.30b shows the flat and stereoscopic views of the compound eye of a
fire ant. The size of the individual lenses in the compound eye is measured to be
about 25 pm, which is very well resolved by these images.

The DIH technique is applied to 3D ophthalmic imaging [75, 76]. The index of
refraction of the retinal layer in an excised tissue is measured from the change in the
apparent depth of the choroidal surface due to the presence of the retinal layer.
Excised human eye tissue optic nerve disk region is reconstructed in Fig. 12.31.
One can quantify the cup depth 4 being 355.11 pm, and the cup slope s of about 47°.

DIH is also applied to 3D biometry of finger prints [77]. For example in
Fig. 12.32, an en face cross-sectional view (C-scan) of a plastic print is shown.
The cross-sectional views in Fig. 12.32b, c clearly depict the crests and valleys of
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Fig. 12.30 (a) Flat and stereoscopic images of a numeral 2 in the 2000 mintage mark of a
penny. (b) Flat and stereoscopic images of a fire ant’s compound eye. The area of each image is
1 x 1 mm? [74]

yi a 1Y x2¥ x3Y

Fig. 12.31 The reconstructed volume of an excised human optic nerve disk sample. The image
volume is 1,100 x 1,100 x 280 ums. (a) x—y flat view, (b) y—z cross-sections at various x values,
and (c) x—z cross-sections at various y values [76]

the friction ridges, with about 750 pm ridge periodicity and about 50 um depth of
grooves. These are plastic prints of clay material, so the subsurface structure is of no
real interest, but there are clear evidence of signals from subsurface scattering
points. This indicates feasibility of tomography of subsurface tissue and vein
structures in live fingers, which can also be a basis of biometry.
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Fig. 12.32 Tomographic images of a plastic fingerprint by DIH. (a) A z-section of the three-
dimensional volume image, (b) x-sections along three vertical lines indicated by the ticks in (a),
and (c¢) y-sections along three horizontal lines indicated by ticks in (a). The image volume is
5.02 x 5.02 x 0.211 mm? [77]

12.5.2 Related Techniques and Applications of DIH

Use of a large number of wavelengths or frequencies for determination of axial
distance has been known in interferometry. The laser radar, described by Marron
et al. acquires many-wavelength holograms, and a 3D Fourier transform of the
accumulated holograms results in topographic profile of the object [78—80], such as
automotive parts [81]. Leith et al. described a spectral holography system, also
based on similar multiwavelength holography concept, and demonstrated it for a
one-dimensional object, but its implementation in 3D imaging may be difficult [82].
Instead of direct summation of the multiwavelength holograms, a digital spectral
shaping technique is shown to be effective in reducing the sidelobes of the ampli-
tude modulation function, at the expense of some resolution [83]. Instead of a
tunable laser, a combination of a superluminescent diode as a broadband source and
an acousto-optic tunable filter is used to sweep the frequency, obtaining 200 pm
range and 6.5 um axial resolution [84].

In [85], a SDOCT system is used to acquire a 2D x—y scan of I(x,y; k) data,
Fourier transform of which from & to z domain produces the ordinary OCT A-scan.
However, the lateral resolution is not uniform along the entire axial depth due to the
finite focal depth. Instead, take the 2D data I(x,y;k) for each value of k as a
hologram for the corresponding wavelength, and proceed to compute the 3D
volumes of optical field followed by superposition of all the computed volumes,
as in the basic DIH. The technique can be very fast compared to the standard DIH,
because it does not involve wavelength scanning.

Using 20 wavelengths covering the 480-700 nm range, Depeursinge et al. has
demonstrated topographic imaging of calibrated microstructures with submicrometer
axial resolution [86]. They have also successfully imaged the membrane profile of
a single red blood cell [87] (Fig. 12.33).

Holographic contour generation is possible not only with multiwavelength inter-
ference, but also by changing the illumination angle. An illumination angle-scanning
DIH system is introduced by Hong et al. [88, 89]. For example, by laterally shifting
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Fig. 12.33 (a) 3D a
representation of the
tomography of a red blood
cell and (b) lateral view of (a).
(Reprinted from [87] by
permission of OSA)
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Fig. 12.34 Three-

dimensional rendering of a z|4m])
step height standard imaged 4
by angle-scanning DIH. 2
(Reprinted from [89] by
permission of OSA) 0%
200
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the illumination lens of the Michelson interferometer, the incident angle is scanned
over a range of 14° at 0.26° steps, to obtain optical sectioned images of
microstructures with axial resolution of 10 pum (Fig. 12.34).

12.6 Tomography

12.6.1 Optical Projection Tomography

Algorithms such as used in X-ray CAT can be applied to tomographic reconstruc-
tion from optical projections, and has been applied to imaging of foams [90]
and fluorescent and nonfluorescent biological tissues [91]. Compared to other
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3D microscopy techniques, the optical projection tomography (OPT) can image
larger volumes, tens of millimeters, but is still limited by the requirement of high
transparency and homogeneity of refractive index, as well as higher computa-
tional load.

12.6.2 Optical Diffraction Tomography

In the optical diffraction tomography (ODT), or other similarly named methods, a
multitude of projections are acquired from many directions, but unlike the simple
shadow projection of OPT, one accounts for the diffraction effect and obtains phase
information of the object. Phase-shifting interferometry can be used but digital
holographic method has the advantage of single exposure from each direction.
In [92, 93], quantitative phase profiles obtained by DHM from a regularly spaced
angular positions over a 180° range are combined by inverse Radon transform
(Fig. 12.35). A tomographic volume image of the refractive-index distribution of a
cell is obtained, with accuracy of index 0.01 and spatial resolution 1 pm in all three
directions. For coverage of the illumination angles, a rotating sample chamber or a
patch clamp micropipette were used. Instead of rotating the sample, the illumina-
tion beam can be scanned using a galvo-mounted mirror, [94-96]. As well as
tomography of biological cells, ODT has been applied to holographic particle
image velocimetry [97] and imaging of optical fiber profiles [98—100]. In [101],
phase profile is calculated by using the noninterferometric phase retrieval method
of Sect. 10.2, to obtain 3D tomographic profile of optical fiber splice. Fukutake
and Milster [102] propose 3D phase-contrast microscopy by acquiring many
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Fig. 12.35 Cuts in the tomographic reconstructions of two different Hyalosphenia papilio.
Discrete values of the measured refractive index n are coded in false colors, the color-coding
scales being displayed on the right part of each corresponding cut. (Reprinted from [93] by
permission of OSA)
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Fig. 12.36  Mouse eye

in vitro mosaic section of the
anterior segment extracted
from ten flythroughs.
(Reprinted from [104] by
permission of OSA)

3 mm
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holograms while scanning the illumination angle and utilizing 47 configuration
of a pair of objectives. A tutorial review of tomographic diffractive microscopy
is given in [103].

12.6.3 Holographic Optical Coherence Imaging

The holographic optical coherence imaging (HOCI) is a low-coherence digital
holography technique, where a tomographic image stack is obtained by using a
femtosecond laser and varying the delay of reference light. In [104], the CCD
placed at the Fourier plane of the system is used for Fourier-domain DH, and
coherence-gated section image is obtained by Fourier transform of the hologram.
Sensitivity of 86 dB was achieved and tomographic images of tumor spheroid and
mouse eye are obtained (Fig. 12.36). In [105], a series of holograms are acquired at
1-2 fps and the speckle intensity variance of each pixel defines a motility metric
that becomes a novel imaging contrast agent. Viable tumor cells within a tissue
display large motility signals, whereas a cancer-drug-treated tissue has much
reduced motility signals (Fig. 12.37). The method combines the nanometer sensi-
tivity of interferometry with the large field of view of imaging.

12.6.4 Turbid Imaging

The ability of holography to image through a scattering medium has long been
recognized. One typically uses time gating with short-pulse lasers or coherence
gating with cw broadband source to suppress unwanted scattered light. The Fourier
synthesis holography [106] collects a series of 1D holograms using a range of
discrete wavelengths, to form a 2D array of space-wavelength dimensions. Its
Fourier transform yields a 2D array of spatial frequency-time delay dimensions.
This is used to image the first arriving light through a scattering medium.
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Fig. 12.37 Motility maps showing the response of an 820-um-diameter tumor (at a fixed depth
of 350 um from the tumor top) to 10 pg/ml nocodazole as a function of time (from healthy
to 120 min later). Motility in the viable shell decreases with time, showing how nocodazole
suppresses the activity of viable tumor cells. Bar, 100 pum. (Reprinted from [105] by permission
of OSA)

Advantages of this method compared to short-pulse interference technique [107]
are the high fringe contrast of individual holograms and the flexibility of gating, at
the cost of substantial computational load. Equivalence of short pulse and broad
spectrum in holographic coherence gating was also demonstrated in [108].

In [109], transmission of a ~450 fs laser pulse through 1.3 cm of chicken meat
hiding 1.25 mm crossed wires leads to stretching of the pulse to ~100 ps due to
multiple scattering. The first arriving light is gated by the reference pulse, but the
holographic interference is overwhelmed by the background. Difference of two
hologram exposures substantially reduces fixed noise, and allowed imaging of the
silhouette of the wires.

In [110], thousands of holograms are acquired of an object behind scattering
surfaces illuminated by a laser. Phase images are unwrapped, which display severe
corruption by speckle noise. But averaging the phase profiles over many holograms
produced usable complex valued hologram, which, when numerically back-
propagated, produced image of the object with resolution substantially improved
compared to average of magnitude alone. The simulation and experiments were
with 1D holograms.

Phase-shifting digital holography using a SLD with coherence length of 23 pm
demonstrated the capability of LCDH to produce accurate amplitude and
phase images of a structured surface hidden in up to OD 3.0 of scattering
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Fig. 12.38 (a) Amplitude and (b) phase distributions of the reconstructed image from a hologram
recorded with the LD. (¢) Amplitude and (d) phase distributions of the reconstructed image from a
hologram recorded with the SLD. (Reprinted from [111] by permission of OSA)

medium — diluted milk [111]. On the other hand, when a LD, of unspecified but
presumed much longer coherence length, is used in the same setup, multiply
scattered light is also reconstructed, obliterating image of the hidden structure
(Fig. 12.38).
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