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Supervisors’ Foreword

The industrial progress of humanity has been driven by learning to control and use
energy, sometimes for good aims, sometimes not. Most of our bills—from elec-
tricity and heating to travel and communications—are ultimately about energy.
A kettle converts energy from electric current into heat to make tea. The same
principle enables irradiated metal nanoparticles to generate heat in a targeted way,
enabling novel thermal cancer therapies. Current drives electric motors in the
household. In atomic wires, it can also drive a nanomotor.

We live in an age of learning to harness energy at the molecular scale. To
achieve this we need an understanding of the underlying dynamics, via
state-of-the-art experiments and computer simulation. This requires a paradigm
shift in simulation that transcends atomic motion. We need to simulate the coupled
dynamics of the constituent electrons and nuclei, at the most difficult middle
ground between the macroscopic and atomic limits—the mesoscale.

This regime brings together emerging theoretical, computational and experi-
mental breakthroughs, requiring the simulation of electron-nuclear dynamics in the
middle, where experiment and theory are converging across molecular electronics
and thermoelectric phenomena, radiation damage in materials and biological sys-
tems, hot electrons in photovoltaic devices, photo-electrochemistry and
nanoplasmonics.

The fundamental process controlling energy conversion at the molecular scale is
the electron–phonon interaction. This is how electrons and atomic motion
exchange energy and momentum. This maintains thermal equilibrium, enabling
stable interatomic bonds to form. It drives thermalization when electrons and
vibrations are driven out of equilibrium, and the larger the initial excitations the
more violent the electron–phonon response. We can see and feel, and even hear and
smell, the effects of current flow in a lightbulb. In atomic wires, the current density
exceeds that in a lightbulb by 5–7 orders of magnitude.

This vast variation occurs also in the timescales for electron–phonon processes.
In a lightbulb, the initial transient lasts a fraction of a second. In a photo-excited
molecule, violent electron–phonon processes take place on the femtosecond scale.
The variation occurs also in system sizes. Electron–phonon scattering generates a
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signal in transmission, paving the way for inelastic current–voltage spectroscopy,
and this has been done for a diatomic molecule between two electrodes. Even a
single dynamical atom in a nanowire can operate as a mini-inelastic resistor.

This huge variation in physical conditions is one reason why there is no single
framework for electron–phonon problems. The other is that electron–phonon
interactions are a tough many-body quantum problem, even without the added
difficulty of electron–electron interactions. This is what sets aside the mid-range. At
the atomic scale, many-body methods, notably Non-equilibrium Green’s Functions,
are feasible and have been used with much success. The other end—macroscopic
systems—allows key simplifications: departures from equilibrium are weak, while
coherent scattering can often be neglected; this makes the linearized semi-classical
Boltzmann equation a robust framework. In the middle, neither the highly accurate
but expensive, nor the tractable but simplified work well. In addition, extra com-
plexity arises, especially the need for simultaneous coupled electron–phonon
dynamics, under violent departures from steady-state conditions.

This Ph.D. thesis tackles precisely that problem. It formulates a methodology for
real-time coupled quantum dynamics of electrons and phonons in nanostructures,
both isolated and open to an environment, including a system of external reservoirs
to generate and maintain current flow. It then applies this technique to both fun-
damental and practical problems, of relevance, in particular, to nanodevice physics,
laser–matter interaction and radiation damage in living tissue.

It is a pleasure to wish the reader an enjoyable and fruitful journey through these
difficult but important and exciting developments.

Belfast, UK Tchavdar N. Todorov
July 2018 Jorge J. Kohanoff
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Abstract

Today the relevance of non-adiabatic phenomena at the atomic scale is ever more
significant, as experiments can probe into the microscopic world at ultrafast time-
scales. In radiation damage, there is a clear need for new radiation sturdy materials
and for innovative ways to selectively damage cancerous cells. An improved
understanding of the microscopic dynamics of electrons and atoms can offer critical
insights, but the existing simulation methods are either too simplified to describe the
full quantum problem or too complex to be able to simulate the large systems
required.

The novel quantum method that is presented here can describe explicitly an
electronic system in real time together with the phonons. It can model
out-of-equilibrium systems that mutually exchange energy. Examples of applica-
tions include Joule heating, inelastic electron tunneling and equilibration of hot
electrons in irradiated materials. A scalable parallel code has been developed which
can simulate multi-electron and multi-phonon systems in a wide range of time-
scales: from the electronic attosecond to the atomic picosecond.

Relevant results include the thermalization of out-of-equilibrium electrons and
phonons in real time without the need for an empirical thermostat, even in a
situation of full electronic population inversion. A water chain system is simulated
and phonon-assisted electron injection processes are investigated, highlighting
energy ranges where the inelastic exchanges lead to a dramatic cooling or heating.

It is hoped that this method and its applications will serve as a stepping stone for
future simulations on more complex systems and provide inspiration for fulfilling
ever more daring and wide-reaching goals.
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Chapter 1
Introduction

Imagine an everyday situation such as preparing a tray of lasagne, placing it in an
oven and turning the switch on. This simple action triggers an electric current to flow
into a resistor and heats it up, making it glow red hot and emit infrared radiation.
The radiation increases the temperature of the air in the oven and, finally, cooks the
lasagne. The heat generated by an electric oven relies upon a fundamental process
in solid state physics: electron–phonon interaction.

The same physical phenomenon takes place in the smallest conductor in nature,
a molecular nanowire, where the effect of current-induced heating can be extremely
intense [1, 2]. This process is called Joule heating and can be visualized by imagining
electrons as point particles speeding past the surrounding heavy nuclei [3]. Some
electrons collide and bounce off the nuclei, depositing energy into atomic vibrations,
the phonons. Electron–phonon scattering is the mechanism that makes an electric
current convert electrical energy into heat, which is characterised in terms of atomic
vibrations.

The coupled dynamics of electrons and nuclei [4, 5] is central tomany problems in
physics, chemistry and materials science: nanoscale electronics, photochemistry and
photocatalysis, matter in laser fields. Radiation damage is one of the most relevant
and complex fields of study because of the wide range of size and time-scales that
it involves. During a typical radiation event, an energetic particle clashes against a
material and, while slowing down, releases heat causing damage [6–8].

Throughout the process, electrons are heated to high temperatures and can transfer
energy back into the atomic motion via electron–phonon interaction. Phonon emis-
sion is a key element in the coupled electron–nuclear dynamics. Electrons are the
main heat carrier in a metal, so their dynamics strongly determines the cooling down
of the material and the subsequent formation of damage. Radiation damage assess-
ment and its prevention are topics of central interest for industries. Understanding
the extent of heat removal and determining the area where energy is deposited would
provide significant advancements in the field.

At a biological level, when living cells sustain a radiation event, water may be
ionised and emit secondary electrons. These electrons diffuse, while interacting with
vibrations in nearby molecules and can ultimately reach DNA. Depending on their
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2 1 Introduction

energy spectrum and the position of impact, the electrons can damage DNA, causing
strand breaks and possibly leading to cellular death [9–11]. The inelastic propagation
of electrons in water is a significant phase in biological radiation damage [12] and is
not yet completely understood. It is generally modelled as a classical random walk.

An electron–atom collision picture helps to understand the problem in a classical
framework, but atoms and electrons are not classical objects. As distances and times
shrink, the quantum properties of matter become more and more relevant until, at the
nanoscale, they become essential to describe electron–nuclear correlated processes.
To probe matter experimentally on such small scales is no easy task. The techni-
cal advances in lasers allow to delve into nanomaterials with a remarkable level
of detail [13]. Photoelectron spectroscopy experiments and especially the upcoming
free electron lasers can supply an unprecedented amount of information about the dis-
tribution of out-of-equilibrium electrons and their dynamics on ultrafast timescales.
The coherent photon pulses of a free electron laser can have wavelengths of less
than 1 Å with time durations of about 1 fs, and will allow to gather state-of-the-art
information about the atomic world and its dynamics [14].

Experiments, however, lack the opportunity of controlling and fine tuning all the
properties of the probed systems. A tool that can work hand in hand with exper-
iments, offering predictive power while providing total control on the systems, is
computer simulation. The possibility of following the journey of an electron, from
emission to thermalization, is an exciting prospect for computer simulations, albeit
extremely complex. Today, the ever increasing computer power allows the study
of larger and more complex systems and makes the development of new ambitious
methods meaningful.

Exact simulations of many-body problems soon run into an exponential scaling
wall: the storage of the fully correlated information about systems evenwith very few
degrees of freedom would require an enormous amount of computer memory. Most
simulations inevitably rely on assumptions that lead to models that can explain or
predict only some aspects of a problem.The aimof this thesis is to tackle the quantum-
mechanical problem of the propagation of excited electrons in real time through
materials and their gradual de-excitation by inelastic electron–phonon scattering.

One of the first studies of the problem of the propagation of out-of-equilibrium
electrons in the presence of phonons dates back 50years [15] and dealt with devia-
tions from Ohm’s law in metals. The authors claimed that, in the presence of strong
currents, the temperature of the electron subsystem would be significantly higher
than that of the lattice and devised heat transfer equations in various limits of tem-
perature differences. Such a programme would be carried out in different forms and
with various improvements over the decades [16] and is now known as the two tem-
perature model. This model is still successfully used today [17], but is inadequate to
describe the problem at a microscopic level.

Molecular dynamics simulations [18] describe atomic motion microscopically
and have to rely upon approximations to include the role of the electrons. A standard
approach uses the Born-Oppenheimer approximation which exploits the large mass
difference between nuclei and electrons. As the electrons are much lighter than the
nuclei, their dynamics occurs on a faster timescale. Therefore, as the nuclei move, it
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is assumed that the electronic subsystem equilibrates instantaneously to its ground
state. For any set of nuclear positions, the electrons produce an effective potential
that controls the ensuing nuclear dynamics. Nevertheless, methods based on the
Born-Oppenheimer approximation are inadequate for simulating problems where
the mutual interaction between nuclei and electrons play a significant role.

One of the earliest attempts to include inelastic energy losses in radiation cascade
simulations portrayed the effect of electronic excitations as a drag force proportional
to the velocity of the projectile [7]. This friction force was implemented as a random
force representing the excited electrons hitting the nuclei.Methodswith a higher level
of sophistication were developed over the years with the inclusion of an electronic
temperature field [19], however such approaches are intrinsically limited by their
implicit treatment of electrons.

Methods for describing mutually interacting electrons and nuclei are referred to
as non-adiabatic dynamics [20, 21]. The simplest and one of the most widely used is
based on the Ehrenfest approximation [22], where the quantumdynamics of electrons
is coupled with Newtonian equations of motion for the nuclei. The method employs
a mean-field approach to describe the force exerted by the electrons on the nuclei
and this causes an imbalance in the description of energy flow. Ehrenfest dynamics
manages to capture the flow of energy from excited nuclei to the electrons, but it
fails to describe the reverse process where excited electrons lose energy to the nuclei
through spontaneous phonon emission [23].

To visualize an analogous asymmetric behavior in an everyday situation, one can
imagine an object immersed in a fluid. The fluid would slow down a fast moving
object and this effect can be described by considering the fluid as a continuous entity.
On the other hand, the warming up of a cold object surrounded by a hot fluid cannot
be understood through a mean field approach. It a has to be modelled by considering
the molecular collisions of the fluid components on the cold object. The weakness of
Ehrenfestmethods lies in not being able to capture the individual electronic collisions
that lead to nuclear heating.

To go beyond the Ehrenfest approximation, a number of methods have been
created, such as Correlated Electron-Ion dynamics (CEID) [24, 25] or the Bonca-
Trugmanmethod [26], but none is ideal for the type of problems thatwewish to tackle
in this work and their scale. The challenge in capturing quantum electron–phonon
dynamics is twofold: enough physicsmust be included for a correct description of the
mutual energy exchanges, but substantial approximations must be made for achiev-
ing efficiency in simulations of extended systems. Problems such as the dynamics of
electronic thermalization during a radiation event or the inelastic diffusion of excited
electrons hinge upon both aspects. While Ehrenfest dynamics is too simplified and
cannot capture the crucial phenomenon of spontaneous phonon emission, CEID and
more advanced methods don’t scale well with an increasing system size.

In this thesis, we address this need for a new method and present an efficient and
scalablemethod that treats simultaneously coupled systems of electrons and phonons
at the mesoscale. The method describes the non-adiabatic dynamics of electrons and
oscillators in a number of out-of-equilibrium situations and can display phonon
assisted electron transfer in real time. We developed a parallel code to efficiently



4 1 Introduction

simulate electron–phonon systems over a wide range of timescales that spans from
the electronic attosecond to the picosecond typical of atoms.

The potential impact of the method involves both the experimental and theoreti-
cal communities. Experimentally it can provide insights into the electron dynamics,
leading to a better understanding of key inelastic processes in systems under irradia-
tion. From the theoretical point of view, it can pave the way to a class of new efficient
codes to model non-adiabatic physical situations.

Here follows an outline of this work.

Thesis outline

Physical motivation We provide a context and a motivation for this thesis by
describing physical problems where the interaction between out-of-equilibrium
electrons and phonons is relevant.Wefirst describe themultiscale field of radiation
damage. After showing the phases of a radiation cascade in ametal, we investigate
the role of electrons, both as an energy loss mechanism and a factor to take
into account for the final material damage. Then we review radiation damage
in biological systems, focusing on how secondary electrons can damage DNA
according to their energy distribution and highlighting the necessity of inelatic
simulations that can track the electronic dynamics in a biological environment.
Next, we examine the field of ultrashort excitations of metals where the use of
femtosecond lasers and the advancements in pump and probe techniques have
allowed to explore highly excited electronic states and to track their dynamics.

Simulating electrons and phonons: effective temperature methods Here we
discuss methods that treat electrons implicitly in the study of coupled electron–
phonon problems. The assumption underlying these methods is that electrons
equilibrate much faster than the atomic system. Thus, at atomic timescales, their
explicit fast-varying dynamics can be replaced by a slowly-varying effective elec-
tronic temperature. We offer an overview of the works that devised this approach,
called the two-temperature model, and applied it to radiation damage problems
and laser excited matter. Then we examine the field of molecular dynamics cou-
pled to the two temperature model, starting from the Caro-Victoria model, where
electrons are implicitly represented as Langevin thermostats, and ending with
inhomogeneous models that discretize space for describing areas of different
electronic temperature.

Simulating electrons and phonons: atomistic methods We examine methods
that take into account the electrons explicitly. Among the non-adiabatic meth-
ods that go beyond the limitations of the Born-Oppenheimer approximation, we
consider Ehrenfest dynamics, its application in Time-Dependent Density Func-
tional Theory and its limitations. Then we introduce a method that goes beyond
Ehrenfest dynamics by perturbatively expanding the motion of atoms around
their mean position, Correlated Electron-Ion dynamics (CEID) in its different
versions. At last, we describe the Bonca-Trugman method, an essentially exact
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method applicable to electron–phonon model systems with a small number of
degrees of freedom.

The ECEID method In this chapter we describe the method that was developed
in this thesis: effective correlated electron-ion dynamics (ECEID). After introduc-
ing the model Hamiltonian, we go through the derivation, providing first an exact
form of important quantities and then introducing approximations, until a system
of equations of motion is reached. After a comparison with Ehrenfest dynamics,
we write down the equations of motion in one-electron form and show that they
conserve the total energy of the system. We proceed by applying open bound-
aries to ECEID: an electron injection and extraction mechanism. We outline the
implementation of the method in a FORTRAN code.

ECEID validation The capabilities of ECEID are explored by comparing it to an
exact simulation on small systems made of a few electronic levels and one or two
phonons. These systems provide a controlled environment for checking the extent
of the ECEID approximations. We study different regions of parameter space and
try to provide explanations for the agreement (or the lack of it) between methods.
Thenwe test the open boundaries on one dimensionalmetal chains by reproducing
results from previous work and by recovering the Landauer conduction picture in
a well defined limit. A microscopic Ohm’s law is tested, where the resistivity of
metal chains of a varying length is measured and compared with a perturbative
result. Then the role of onsite disorder is explored. At last, we perform code
performance tests, focusing on the scaling with the number of electronic sites and
oscillators.

Thermalization with ECEID We apply ECEID to the problem of thermalization,
following our recent paper [27]. We introduce a definition of a temperature-like
parameter for out-of-equilibrium electrons and compare its time evolution with
the vibrational one. We show the ability of ECEID to thermalize electrons and
phonons starting at different temperatures.We simulate a complete electronic pop-
ulation inversion and track its equilibration with a phonon bath, while measuring
the heat exchange between subsystems. A kinetic model based on rate equations
is employed to rationalize the levels’ dynamics.

Electronic transport in water Transport properties ofwatermolecules and chains
are studied, with a focus on phonon assisted processes. Part of this chapter has
recently been published [28]. First, a simple tight-binding model is employed to
describe a single water molecule with two modes corresponding to a symmetric
and an antisymmetric stretching of the hydrogen bonds. Themolecule is connected
to metal leads and its elastic transport features from frozen phonon Green’s func-
tion calculations are compared with ECEID results, that include inelastic effects.
In the phonon’s highmass and low frequency limit, ECEID converges to the elastic
case. Then a water chain is built from DFT calculations that determine the equi-
librium geometry and the collective modes. We include a high energy phonon and
inject Gaussian electron pulses in the system, investigating their dynamics. We
observe phonon assisted heating or cooling depending on the pulse energy. The
charge deposited into the water generates a polaron with a lifetime that depends
on the water energy levels involved.
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A new development: ECEID xp We derive a more general version of the method
that includes a time-dependent parameter that can be associated with the motion
of the oscillators centroids. We call this new development ECEID xp and observe
that, in the limit of frozen centroids, it reduces to ECEID, with the advantage of a
more concise set of equation of motion and a more straightforward derivation. A
condition is proposed to infer an equation of motion for the centroids and a test
case is shown.

Appendix: Electronic operators in ECEID: from Many-body to Single body
This appendix contains a schematic derivation of the projection procedure of the
general many-body ECEID equations of motion into the single-body ones, that
are used in the simulations.

Appendix: Open Boundaries in ECEID The formulation of the Open Bound-
aries method is shown. The method allows electron injection and extraction in a
system by coupling to external reservoirs. The additional terms needed in ECEID
to allow injection and extraction are presented.

Appendix: An alternative water chain A water chain model with simpler inter-
molecular hoppings than the ones in Chap. 8 is used to inject electrons both as a
time dependent pulse and a constant stream. Long lived excitations form because
of the chain band structure.

Appendix: Beyond the double (de)excitation approximation Amethodological
improvement is proposed where one of the ECEID approximations is not invoked.
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Chapter 2
Physical Motivation

In this chapter we present a selection of physical problems where the method in
this thesis with its real time treatment of the electron–phonon dynamics can offer
significant insights. The problems put this work in a physical frame and, above all,
provide a motivation for its findings. First, we cover the general problem of radiation
damage, picking results in the damage to biological systems and metals. Second, we
explore the ultrashort heating of metals with a laser and the subsequent warm dense
matter dynamics.

2.1 Radiation Damage

Radiation damage is a topic of the utmost importance. Its range of applications is
broad and spans many fields of study: from nuclear reactors design to shielding
cosmic rays and improving medical treatment and imaging. For instance, the need
for economically efficient energy sources with a low carbon footprint has brought
nuclear power back to the world’s attention. Materials in nuclear power applica-
tions are irradiated by high energy products of fission or fusion. This irradiation has
two effects: it generates heat to power the nuclear plant and it damages materials,
degrading their mechanical properties [1].

The damage can be due to the formation of defects in their lattices, such as vacan-
cies and interstitials. These defects lead to macroscopic phenomena like swelling
(Fig. 2.1), where gas fills the voids and makes the material expand. In general, radia-
tion causes amorphisation of the target. The resulting change inmechanical properties
can be significant and can lead to dramatic failures. Therefore it is important to dis-
cover materials that can sustain intense fluxes of radiation for extended periods of
time. Ideally new materials should be able to dissipate heat quickly over a large area
or to heal themselves. A better understanding of the mechanisms driving radiation
damage would offer directions to this search.

© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 2.1 Stainless rods
before (left) and after (right)
irradiation [2]. The irradiated
sample shows swelling
caused by an accumulation
of gas in the lattice
interstitials

New materials are strongly needed by the nuclear industry, as more resistant
containment vessels for nuclear reactorswould reduce upkeep andmaintenance costs.
Even when the actual generation of fission power plants will be phased out, such
materials will be relevant for long term storage of existing nuclear waste. If nuclear
fusion power plants will ever become a viable energy source, the requirement for
radiation sturdy materials will be even more pressing: neutrons emerging from a
deuterium-tritium reaction have an energy of 14MeV, at least an order of magnitude
more than the products of nuclear fission [3].

The need for radiation resistant materials applies to the space industry as well.
The intensity of cosmic radiation in space is much higher than on the Earth’s surface
where the atmosphere and the planet’s magnetic field deflect a large part of the
radiation. Besides, one of the main factors hampering the human dream of outer
space exploration is the large radiation dose that would affect the astronauts during
years-long journeys.

Another crucial application for radiation damage studies is medical. The details
of how radiation therapy kills cells and the role of radiation induced electrons are
not yet entirely understood [4–6]. Grasping the microscopic details of the effect of
radiation on biological objects, like DNA, would prove to be an invaluable source of
information for cancer therapy.
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2.1.1 Radiation Damage in Metals

A typical radiation event in a metal forms a radiation cascade. A cascade begins
with a high energy particle approaching and hitting a target material (Fig. 2.2a). The
series of events that follow can be split up in stages and is known as a collision
cascade: a chain of displacement events in the target material with energy spread and
dissipation. The first target atom that is struck (Fig. 2.2b) is called primary knock-on
atom (PKA) and its energy spectrum depends both on the colliding particle and the
target material. For example, in fusion reactors a 14 MeV neutron produces iron
PKAs up to 1 MeV energy,1 half of them with an energy over 10 keV.

The critical factor for the next phases is the cross section between the PKA and
the surrounding target atoms. The cross section strongly depends on the energy of
the PKA: when the PKA has a high energy (i.e. above 100 keV), its interaction cross
section with the nuclei of the target will be low, so it will travel long distances before
new collisions. This channelling phase (Fig. 2.2c) will determine the penetration
depth of the PKA and the extent of the damage to the material. The electrons of
the target atoms play an important role to the PKA losing energy (Fig. 2.2d). An
amorphous solid will have a shallower penetration depth than a crystal [7].

With the channelling PKA slowing down, its impact cross-section with the sur-
rounding atoms increases until the PKA impacts another atom (Fig. 2.2e). The two
particles will either keep channelling through the target (a sub-cascade branching,
Fig. 2.2f) if their energy is relatively high (�10 keV [7]),2 or they will trigger a new
stage of the cascade, the displacement phase.

This new phase is characterized by strong interactions between the projectiles and
the target atoms and it features a large number of collisions. In picoseconds, most
atoms in a region of 10–100 nm are displaced, giving rise to a displacement spike
(Fig. 2.2g). Replacement collision sequences (Fig. 2.2h) are common and consist of
atoms being displaced sequentially along crystal axes directions, as in colliding lined
up billiard balls.

After a relaxation phase, when the energy is spread throughout the displacement
region and defects appear (Fig. 2.2i), there is a cooling phasewhich can be hundreds
of picoseconds long. Heat is dissipated, while interstitials and vacancies tend to
recombine (Fig. 2.2j) until a final equilibrium configuration of the system is reached
(Fig. 2.2k).

1One could wonder if it is appropriate to take special relativity into account at this scale of energies.
The rest energy for an iron atom is ≈50GeV, several orders of magnitude above the energies
considered in the collisions, so special relativity can be safely ignored in this case. By contrast,
for cosmic-ray cascades, relativity plays a crucial role since the projectiles are usually light and
extremely fast.
2It is intuitive that the higher the initial energy of the PKA, the larger the number of sub-cascades
expected. A recent article [8] studies high energy iron cascades (up to 0.5 MeV). Contrary to
intuition and common belief, the authors reported a reduced cascade branching compared to lower
energy cascades and a rather continuous distribution of damage.
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Fig. 2.2 Image that shows the stages of a radiation cascade from [7]
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2.1.1.1 Accounting for the Energy Loss, the Role of Electrons

The schematic in last section describes a radiation event from the point of view
of target atoms. In some stages of the cascade, electrons play a significant part in
determining the final extent of radiation damage.

In the channelling phase, the interaction between the high speed PKA and the
atoms of the target is small. Experiments reveal tracks of damage on the target around
the path of channelling atoms. Here electrons play the key role of moving energy
from the fast projectile to the surrounding environment. Models that try to predict
the rate of energy loss can be found in Chap.3. Several schemes have been proposed
to explain this dissipation mechanism [7]. One is called Coulomb explosion model
and suggests that excited electrons are ballistically ejected from the track region.
The depletion of charge along the track forms a positively charged region that may
lead to a shock wave. Another model describes the transfer of heat from the excited
electrons in the track region to the surrounding ions through the electron–phonon
interaction, the thermal spike model.

The incoming energy is initially concentrated in the PKA. During the channelling
phase and the subsequent displacement phase, most of the energy is in the projectile
and in the atomic system. The role of the electrons along the atomic tracks is to
influence the atomic motion, by dampening or heating atoms and causing a net flow
of energy from or into the atoms. Recent ab-initio simulations based on Ehrenfest
dynamics have been employed to estimate this energy exchange between atoms and
electrons [3, 9–11]. Electronic excitations were found to alter inter-atomic forces as
electrons lose their ability to provide chemical bonding as they become excited (Fig.
2.3).

In the cooling phase, the excited electrons work as a heat bath for the atoms.
Becauseof their high thermal conductivity, electrons can increase the speedof cooling
in a metal providing a channel for enhanced energy transport away from the hot ionic
areas. They can also influence the production and healing of defects since they play
an active role in the potential felt by the atoms. To go beyondmodels where either the
electrons or the atoms are a heat bath for the other subsystem is a very challenging
problem. The non-adiabatic dynamics of secondary electrons is not yet completely
understood. They can lose energy to vibrations via spontaneous phonon emission,
but this process is not captured by Ehrenfest dynamics. The possibility to study in
real time the mutual energy exchange of electrons and atoms could offer precious
insights on the microscopic detail of radiation damage.

2.1.2 Radiation Damage in Biological Systems

X-rays or high-energy particles hitting cells can ionise molecules on their path,
mainly water, the most common molecule in a biological system. The secondary
electrons emitted interact with other electrons and phonons and lose energy to them,
until they reach the DNA. Depending on their energy spectrum, they can cause



14 2 Physical Motivation

Fig. 2.3 Illustration of the electronic wake (blue surfaces) generated by an energetic proton (red
sphere) traveling in an aluminum crystal (yellow spheres). The resulting change in electronic density
is responsible for modification of chemical bonds between the atoms and consequently for a change
in their interactions [9]

damage to the cell, possibly leading to its death. While the initial conditions at the
start of a radiation event and the damage afterwards are generally well understood,
today there is no clear microscopic understanding of the sequence of processes that
leads to cell death [6]. The study of these processes is tied to the dynamics of
electrons, from their excitation by the external radiation to their eventual effect on
DNA. The electron–phonon interaction plays a crucial role in how the electrons’
propagation unfolds. About ≈50× 103 secondary electrons are emitted for every
MeV of incoming energy [12, 13] andmost of them are low energy electrons (LEEs),
with an energy distribution peaking below 10 eV [14] (Fig. 2.4).

The phase with the largest impact on the evolution of an irradiated cell is the fast
and ultrafast one that follows the radiation event [6] on a femtosecond to picosecond
scale and about two thirds of the cellular damage is caused by secondary species
[15]. The processes triggered at these timescales can, at later times, induce fractures
in the structure of DNA: either reparable single strand breaks or lethal double strand
breaks [16].

One could imagine that DNA damage increases with the incoming electronic
energy and that there is a threshold energy below which the electrons cannot ionize
DNA or trigger any harmful process. This belief was questioned by [4, 15], where it
was discovered that LEEs with energies between 3 and 20eV can damage DNA con-
siderably and their damaging power does not constantly increase with their energy.
These studies triggered an intense effort into understanding the interaction mecha-
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Fig. 2.4 A possible mechanism of radiation damage in DNA [12]. Irradiated water ionizes and the
short lived pre-hydrated secondary electrons can react with DNA bases, forming transient anions
and leading to bond breaking and DNA damage.

nisms of LEEs with DNA [6, 13, 17–19]. The capability of LEEs of causing single
and double strand breaks to DNA is now widely accepted [6, 13], but the mechanism
that leads to the DNA damage is not yet completely understood. The study of LEEs’
dynamics and the interactions with the surrounding cellular environment can offer a
better understanding of their interplay with DNA and, ultimately, lead to improve-
ments in radiotherapy. For example, secondary electrons can cause different levels
of heating to the water in cells depending on their energy spectrum. The assessment
of electron-water energy transfers can improve the understanding of the subsequent
damage.

There has been an intense experimental effort on the damage of LEEs on DNA,
mostly in a gas or condensed phase, but such experiments do not show how electrons
can damage DNA indirectly, through the environment [13]. Experiments involving
LEEs in water are quite challenging. A recent study [20] revealed that the presence
of an enviroment of water and oxygen leads to a significant increase in the formation
of double strand breaks in DNA, almost seven times higher than in vacuum. It was
theorized that dissociative states of a water-DNA complex can contribute to the DNA
damage significalntly [21] and that a key role is played by slow electrons scattering
inelastically and exciting shape resonances. The double strand breaks that would
form in connection with the presence of water are difficult to repair because of the
close proximity of the damage [13].
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Fig. 2.5 Schematics of the
equilibration process of
electrons in a metal after a
laser excitation [27]. Before
and well after the excitation,
the electronic system shows
FD distributions with
different temperatures, while
just after excitation it
presents a strongly non
thermal distribution

First principles molecular dynamics studies of DNA bases immersed in water
show that an initially delocalized excess electron localizes around the nucleobase in
a few femtoseconds [5]. Further simulations [22, 23] emphasize the role played by the
water in this context and showadifferent behaviour depending on the nucleobase. The
starting point of these adiabatic simulations is a LEE in the vicinity of a nucleobase.
They do not include the earlier non-adiabatic electronic dynamics that could reveal
the dependence of the damage on electronic energy.

A key mechanism leading to nucleobase damage is dissociative electron attach-
ment (DEA) [24]. The impact of DEA on two different nuclebases in the presence
of water was investigated in [25], where it was found that the presence of the water
strongly enhances the DEA cross section. Amino acids were found to have a protec-
tive role for nucleobases in the presence of excess electrons [26].

At the heart of these studies lies the need to unravel the actions of a single track of
radiation on a cell [15]. The history of an electron with all its interactions can reveal
the microscopic details of where the radiation impact is most severe. For example,
at environmental levels of exposure, the cells in a human body only experience
electron tracks every few months [15]. A knowledge of how individual electron
tracks inelastically interact with the aqueous biological environment and DNA can
lead to more refined models for calculating human risk at standard exposure levels.

2.2 Ultrashort Laser Heating of Metals

The irradiation of a metal with an ultrashort laser pulse leads to the energy being
absorbed by the electron system, which gets driven out-of-equilibrium (OOE) on a
femtosecond time scale. The electronic heat capacity in metals is typically orders
of magnitude smaller than the one of the lattice, thus a sub-picosecond laser pulse
can selectively excite electrons to temperatures in the range of thousands of K, while
keeping the underlying lattice cold [28, 29] (Fig. 2.5).

The relaxation of these OOE electrons to a thermal Fermi-Dirac (FD) distribution
involves electron–electron (e–e) scattering or the usually slower electron–phonon
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Fig. 2.6 In a, photoelectron energy distributions (solid line) and Fermi-Dirac fit (dashed line) for
various times delay [28]. The FD fits correspond to electron temperatures of 380, 483, 625, 582,
508, and 490K for time delays of−0.8,−0.4, 0.0, +0.4, +0.8, and +1.2 ps respectively. On the right,
a 10x blow up of the curves. In b, electron energy distributions after laser excitation at different
times [35]. The dashed line is the best FD fit at the temperature indicated in the figure

(e–p) interaction. Anyhow, relaxation times are strongly dependent on the energy of
the OOE electrons and on the temperature of the phonon [30]. After a new thermody-
namical equilibrium state is reached in the electronic system, energy can flow from
the hot electrons to the phonons. This is the basis of the well known two-temperature
model [31] (see Chap. 3), where it is assumed that electrons immediately thermalize,
before they start to interact with the phonons [32, 33].

This equilibration is a complicated many-body problem and the assumption of
an instantaneous electronic excitation ignores important aspects of the process. An
OOE gas couples differently to the phononic system compared to a thermalized one.
Moreover, the thermalization time and the e–p coupling strength are both strongly
dependent on material properties and excitation type [34].

Time-resolved photoemission spectroscopy experiments can track electronic
dynamics by measuring electron energy distributions at different times. Early pho-
toemission experiments were performed in 1992 on a gold film [28, 35], where the
energy distribution was compared to a FD fit. In Fig. 2.6a we can see that the elec-
tronic population displays large and systematic deviations from a FD distribution,
notably for time delays at about 0 ps in the energy range 0–0.5 eV. The laser beam
excites electrons away from a thermal distribution and their equilibration occurs over
a finite time. The hot tail in the energy distributions at intermediate times after the
excitation is a sign of non-thermalized excited electrons and is the reason why a FD
fit would not be physically appropriate.

In Fig. 2.6b an analogous experiment is performed with an improved time res-
olution. Without any energy relaxation mechanism, a laser would cause a constant
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excitation in the energy range from 0 to the pump photon energy 1.84eV. Fermi
liquid theory provides a scaling of (E − EF )−2 for the relaxation time of an electron
with energy E under e–e interaction, so the highest excited electrons take the shortest
time to relax. At 130 fs the excited electron population is almost flat, while at 400 fs
most of the highly excited electrons are thermalized and the best-fit FD temperature
reaches its maximum at 710 K. By 670 fs the electrons are nearly at equilibrium at a
temperature of 550 K. Evidently the electrons do lose energy to the lattice subsystem
before they reach thermalization. The authors assume an average electron–phonon
collision time of 30 fs, so in a ps time window several collisions can occur, producing
a substantial energy exchange between electrons and phonons. This shows that the
electron distribution can be nonthermal on the e–p timescale.

Several studies have been conducted on this topic over the years. A work on
Ru(001) [36] shows clear deviations from a thermal FD distribution within the first
500 fs of the dynamics. In Fig. 2.7a, the photoelectron energy distributions before
and after excitation are compared and fitted with FD distributions. The spectrum
before irradiation is thermalized at 100 K, whereas, after irradiation, only 80% of the
electrons can be accounted by a FDdistribution corresponding to 225K.A significant
portion of the electrons are non-thermal and populates states up to 1.2 eV above the
Fermi energy. The dynamics of the photoelectron distributions between 0 and 500
fs is displayed in Fig. 2.7b for three different laser fluences. For higher fluences, the
relative number of non-thermal electrons increases as well as the temperature of the
thermal distributions. The maximum population of non-thermal electrons is reached
at a delay of 100 fs, while at 500 fs the electrons are essentially thermalized. The
dynamics of the energy exchanges can be rationalized by a competition between
energy transfer from electrons to phonons and ballistic transport. While the thermal
electrons tend to localize energy on the surface of the material through e–p coupling,
the non-thermal ones tend to carry heat away in the bulk through ballistic transport.
The authors propose an extended heat-bath model that goes beyond the usual two-
temperature model (2TM) and treats separately thermal and non-thermal electrons.

A photoemission experiment on the lanthanide ferromagnetic metal Gd(001) [27,
37] obtains similar results, albeit with a less pronounced effect. In Fig. 2.7c, the
spectrum at time delay zero displays a kink that signals the presence of non-thermal
electrons. For delays larger than 300 fs, the kink disappears and the spectra reasonably
agree with a FD distribution.

In [38], the authors perform time resolved electron spectroscopy on cuprate super-
conductors and measure energy-resolved population lifetimes τp(ε). In Fig. 2.8c–e,
the population dynamics at T = 20 K shows a clear change in behaviour near 60
meV. Below that energy, the excited population grows until 0.5 ps and then slowly
decays over a few ps. Above that energy, the population reaches its maximum at
time 0 and decays fast over a few hundreds of fs. For T = 120 K in Fig. 2.8g–i, the
energy dependence of the dynamics is less evident. The comparison of the popula-
tion decay rates with the single-particle lifetimes shows discrepancies of 1–2 orders
of magnitude, making clear that the two lifetimes are distinct. To rationalize the
dynamics, the authors propose a population model based on collision integrals that
include different electron scattering channels. Although offering a better qualitative
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Fig. 2.7 In a–b, photoelectron energy distributions for Ru(001) [36], obtained from time-resolved
two-photon photo-electron (2PPE) spectroscopy experiments. In a, there is a comparison of the
unpumped and pumped (after 100 fs) spectra with the dashed line a FD distribution at temperature
225K and the thick solid line an approximation of the non thermal part of the spectrum. In b,
different time delays and different fluences are shown. In c, photoemission intensity in Gd(001) as
a function of energy and time delay (left) and energy spectra for different time delays (right) [27]

understanding of the physics at play, the kinetic model is not enough to capture the
nontrivial population decay. They wish for a more complete model to interpret and
compare their injected electrons energy dependent dynamics.

Today the dynamical interplay of phonons with optically excited electrons has
sparkled interest in a wide range of materials: from warm dense matter [39, 40] to
high temperature superconductors [38, 41, 42]. It is understood that, at early times
after photoexcitation, non-thermal electrons are very relevant in the dynamics and
a 2TM description is valid only after complete electron thermalization. There is a
need to go beyond simple models to describe OOE electronic dynamics interacting
with phonons. Knowledge about the time dependent non-equilibrium electron dis-
tribution and its thermalization dynamics can provide vital information for surface
femtochemistry [36].
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Fig. 2.8 Energy-resolved population decay in a photoemission experiment on a cuprate supercon-
ductor [38]. In a, a sketch of the pump-probe experiment. In b, nodal cut from a 6 eV photoemission
at T = 20 K. In c–e, population dynamics for different photoemission fluences at T = 20 K and in
g–i the same at T = 120 K. In f and j, fits of the population decay rates at different temperatures
and fluences
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Chapter 3
Simulating Electrons and Phonons:
Effective Temperature Methods

Heat transport can be seen microscopically as a sequence of collisions between
energy carriers. The concepts of mean free path and mean free time play a key role in
heat transport problems, the former being the average distance that a carrier covers
between two collisions and the latter the average time, taken over a large number of
collision events.

Macroscopic models require very large length and time-scales, so that many thou-
sands of collisions occur before making an observation on the heat transport process.
In solid state physics, electrons and phonons play a key role in thermalization. The
mean free time between collisions is a quantity that depends on the electronic energy
and on the phonon temperature [1]. Typically in a metal electron-electron scatter-
ing happens at a much faster timescale than electron-phonon and phonon-phonon
processes.

If for macroscopic systems an average description over many collisions would
be enough to capture the underlying physics of heating, in microscopic devices the
averaging process would wash out essential details. The need for an in-depth char-
acterization of out-of-equilibrium systems has led to the development of a number
of heat transfer models.

In this chapter we present a selection of electron-phonon methods that follow
the dynamics of the electronic and phononic subsystems introducing an effective
temperature description.

© Springer International Publishing AG, part of Springer Nature 2018
V. Rizzi, Real-Time Quantum Dynamics of Electron-Phonon Systems,
Springer Theses, https://doi.org/10.1007/978-3-319-96280-1_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96280-1_3&domain=pdf


24 3 Simulating Electrons and Phonons: Effective Temperature Methods

3.1 An Effective Temperature Model for Radiation
Cascades

An early attempt of including the electronic contribution in the dynamics of a radia-
tion event in a metal was made in 1988 [2]. Until that seminal paper, the contribution
of metal valence electrons during a radiation cascade had been neglected or demoted
to an energy sink for slowing down fast incoming particles. That article introduced
the Flynn-Averback model and paved the way for the successive creation of more
advanced methods that included the electronic contribution in models for radiation
cascades.

An energetic atom that collides with a lattice deposits its energy in a region of
radius r that heats up rapidly to a high temperature. The dimension of the thermal
spike region increases as temperature decreases and heat is dissipated into the lattice.
Roughly speaking, a 10 keV collision leaving 1 eV per atom in a thermal spike
region of radius r ≈ 30Å would reach a uniform temperature of ≈104 K. Early MD
simulations show that, for the temperature to decrease significantly below themelting
point of thematerial, the required cooling timewould have to be several ps [3]. Those
calculations ignore the electronic contribution to thermalization, while the role of
the electrons has in fact proven to be pivotal [2].

Suppose that in a metal the electronic mean free path (EMFP) λ can be written as

λ = rs
T0
Tl

(3.1)

where rs is theWigner-Seitz (WS) radius of the material, Tl is the lattice temperature
and T0 is the temperature at which λ = rs . T0 effectively measures the strength of the
electron-phonon coupling: a low T0 implies a strong coupling and a correspondingly
large energy exchange. Tl is restricted to the range θD < Tl < T0 where θD is the
Debye temperature.1 Energy conservation among the r3/r3s involved atoms imposes
a radius for the spike region

r = rs

(
E

3kBTl

) 1
3

(3.2)

where E is the energy in the system.
For small enough Tl (that are ultimately reached at the end of the cooling down

period), it is clear that λ > r , so, for long enough times, the electronic system would
always be out of equilibrium with the lattice. Whether the electrons can equilibrate
with the lattice for shorter times depends strongly on the electron-phonon coupling

1For Tl > T0, λ would be smaller than the WS radius and the details of the specific system would
come into play significantly, while this method wants to be general and not system-specific. The
choice of Tl > θD is dictated by the exchange of energy between electrons and phonons. In this
method it is assumed that a collision between an electron and a hot ion would always transfer an
energy of kBθD , the maximum amount possible. This approximation is not restrictive since typical
Debye temperatures are close to room temperatures, much cooler than the Tl of heat spikes.
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T0. If initially λ � r , initially cold electrons would have time to heat up by scattering
often with the lattice before they eventually dissipated the heat out of the hot region,
while for a starting λ ≈ r the electron-lattice interaction and its heat dissipation
would be less effective.

To determine the conditions for this change of behaviour, the authors of [2]
employed a random walk model. The number of free paths (and thus of collisions)
that an electron needs for escaping the hot region would be r2/λ2. With an energy
transfer per collision kBθD , the escaping electrons would reach an effective temper-
ature of

Teff = θD
r2

λ2
. (3.3)

Setting Tl = Teff and imposing it in the previous equations, the bounding parameters
for different thermalization behaviours are a critical radius

rc = rsθDQ

3kBT 2
0

(3.4)

and a critical thermal spike temperature

Tc = 9T 6
0 k

2
B

θ3
DQ

2
, (3.5)

where Q is the total energy of the spike in the lattice region. For initial r ≤ rc or
Tl ≥ Tc, the electrons would be able to reach equilibrium with the lattice system
before escaping the spike region. In other words, a high T0 makes the emfp λ too
long for an efficient heat exchange with the lattice to take place.

For example, similar materials such as Cu and Ni present respective T0 of 45000
K and 15000 K. Because of the 6th power dependency of Eq. (3.5) on T0, small
differences in T0 lead to considerably different equilibration dynamics. The Tc of Cu
and Ni are in fact vastly different, 200000 and 300 K, so that the hot spike electronic
dissipation in Ni should be much more efficient than in Cu [2]. In Ni, electrons
would moderate the effect of a thermal spike by absorbing heat from the hot spike
region and then bringing it away, making the dissipation of the spike faster and colder
dissipation.

3.2 The Two-Temperature Model (2TM)

A drawback of the Flynn-Averback model is that it doesn’t consider the electronic
temperature as an independent dynamic variable. Another method that can track the
dynamics of both the electronic and lattice temperatures was developed as early as
1957 [4, 5], but the limited computing capabilities of the time made it impractical for
numerical computation until the 1990s [6, 7]. It is called the two-temperature model
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(2TM) and it has now become standard in describing electron-phonon thermalization
processes in a range of system sizes. It has been used macroscopically to describe
heat diffusion [8, 9] and microscopically to portray heat transfer at the atomistic
level. Here we focus on the latter.

The 2TM uses the fact that the heat capacity of electrons Ce is typically 1 to
2 orders of magnitude smaller than the lattice one Cl. This makes the respective
time-scales widely different so that a heating process can be split into a fast electron
excitation and a slower lattice excitation. This is the model’s crucial assumption.
The model considers both subsystems to be in local equilibrium at all times and their
rate of heat exchange to be proportional to their temperature difference. The time
dependence of the respective temperatures Te and Tl is described by [10]

Ce
∂Te
∂t

= ∇ · (K∇Te) − G(Te − Tl) + P(t) (3.6)

Cl
∂Tl
∂t

= G(Te − Tl) (3.7)

for the dynamics of an electron gas. K is the temperature dependent thermal con-
ductivity of the electrons, G the electron phonon-coupling and P an external time-
dependent heat source. Equation (3.6) describes the energy balance of the electrons,
whereas Eq. (3.7) expresses the heating of the lattice.

G was determined [4] by summing over all one-phonon emission and absorption

processes G = π2

6
menev2s
τeTe

where me is the electron mass, ne the electron density, vs
the speed of sound and τe the electron mean free time. This form is valid in the
limit Te � Tl, i.e. in the early stages of the heating process, in the region of a few
picoseconds from the start of the radiation cascade. G is a very difficult quantity to
determine. In Table3.1 in [11], a comparison of theoretical and experimental values
of G for several metals shows that there is little to no agreement among a number of
sources and different methods.

The difficulty in solving Eqs. (3.6) and (3.7) lies in the non trivial dependency
of the parameters on the temperature. G presents a strong temperature dependence
at Te close to the Fermi temperature TF = kBEF [10] with kB being Boltzmann’s
constant and EF the Fermi energy. AlsoCe and Cl can present a relevant temperature
dependence.

Finnis’s 2TM [6] recovers the critical temperature concept (3.5) and was used to
test Flynn and Averback’s hypothesis of different cooling rates in Cu and Ni [2]. To
get an estimate of the electronic rate of energy acquisition from the ions, the authors
consider electrons with an electronic mean free path λ (see Eq. (3.1)), colliding with
the lattice at a Fermi velocity vF and receiving an energy kBθD per collision. With
these assumptions, the scattering rate is vF/λ and the number of electrons involved
in the scattering is ≈kBTeD(EF ) where D(EF ) is the electronic density of states at
the Fermi energy. The energy rate transfer is the product of the energy per collision,
the scattering rate and the number of electrons
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dEe

dt
= k2BθDD(EF )vFTe(Te − Tl)

rsT0
. (3.8)

where Tl is replaced by Te − Tl to stop the energy transfer when the electronic and the
atomic systems present the same temperature. This expression can be inserted into

Eq. (3.6), the electron-phonon coupling being G = k2BθDD(EF )vF Te
rs T0

and the electronic

heat capacity Ce = π2

3 k
2
BD(EF )Te. Another similar expression can be derived for

the phonons. By ignoring the relatively slow phononic diffusion and considering Te
constant, the ionic dynamics can be approximated by

∂Tl
∂t

= −α(Te − Tl) (3.9)

where α = 3θDCevF
π2rs T0Cl

controls the cooling rate of the lattice due to the electrons When
multiplied by 3kB , Eq. (3.9) gives the rate of energy transfer from a single atom to
the electrons. In the simulations in [6], the authors confirm that Ni (that has a higher
electron-phonon couling) quenches at a faster rate than Cu, as displayed in Fig. 3.1,
highlighting that the electron-phonon coupling plays a crucial role in the cooling rate
of thermal spikes.

The 2TM was applied to interpret the dynamics of a gold film that was heated by
a laser in [7] (see also Sect. 2.2). For different fluences, no single value of G could
fit the data, while a single value of G could be picked for long enough times when
the subsystems were close to equilibration. The authors comment that the validity
of the 2TM is restricted to a regime of a much faster electron-electron equilibration
than the electron-phonon one. In their example, the electrons require a finite time to
equilibrate and during this time there is a possibility of an increased heat transfer to
the phonons due to non-thermal electrons.

Fig. 3.1 Temperature at the center of a 2 keV radiation cascade [6]. a shows that Ni quenches faster
than Cu because of its stronger electron-phonon interaction. b shows the different cooling rates of
Cu with and without the electronic contribution to cooling
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Groeneveld et al. and Lisowski et al. [12, 13] proposed an improvement of the
2TMwhere the electron subsystem is split into a thermalized electron part and a non-
thermalized one. The relative density of the former is described by (1 − r), while
the latter one is r . Thermalized electrons must be distributed according to a FD
distribution, but there is no clear choice about the distribution of non-thermal ones.
The authors discovered that another FD distribution with an auxiliary temperature
Tnt can effectively describe these electrons, so that the full electron population is
described by

N (E) = ( (1 − r) f (Te, E) + r f (Tnt, E) )DOS(E). (3.10)

The laser energy is directly injected into the non-thermal electrons and, as shown in
Fig. 2.7a, at the experimental maximum laser fluence, the non-thermal part of the
spectrumpeaks at 18%of the total electron population.A comparison of this extended
modelwith the standard 2TMand a timedependent FDfit of the experimental electron
population is displayed in Fig. 3.2a. The 2TM predicts a maximum Te = 1300 K and
an equilibrium Te = 250 K, while the experiment gives a peak of Te = 225 K and an
equilibrium Te = 135 K. The extended model reproduces the temperature dynamics
fairly well compared to the experiment. The authors concluded that the dynamics
of energy flow must differ from the one in the 2TM. They believe that non-thermal
electrons give rise to ballistic transport into the bulk, which cannot be described
by diffusive models like the 2TM. The high energy non-thermal carriers are very
efficient in ballistic and diffusive transport out of the excited spatial region [13].

The coupling of excited electrons to phonons is different from the coupling of
thermalized ones [15]. Therefore a temperature dependent coupling strength can
lead to a better agreement with experimental data. In [14] the authors apply the 2TM
to warm dense copper created by the absorption of an ultrafast optical pulse. They
use both a constant G and a temperature dependent one from [16] and compare them
with experimental data in Fig. 3.2b. Both temperatures from the 2TM peak at the end
of the laser pulse and decrease in time, but the case with G(Te) cools down faster
and agrees better with the experiment. This implies that in that specific temperature
regime, the electron-phonon coupling is enhanced.

3.3 The 2TM in MD Simulations

To simulate atomically a projectile hitting matter, molecular dynamics simulations
are usually employed. Adiabaticmolecular dynamics simulations include atom-atom
collisions that are very different compared to electron-atom ones where the energy
andmomentumexchange ismuch smaller than the typical atomic energy andmomen-
tum. SimpleMD simulations lack amechanism of atomic energy loss due to inelastic
scattering with electrons. A possible way to include this electronic contribution is
applying a continuous damping force to each ion j [6]
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Fig. 3.2 In a, the dynamics of temperatures for optically excited Ru(001) [13]. In the standard
2TM, the electron temperature is a thick dashed line and the lattice temperature a thin dashed line,
in the extended model the thermal electron temperature is a thick line and the lattice temperature
a dotted line. The circles correspond to temperatures determined from FD fits of the thermal part
of the electron spectra. In the inset, there are electron spectra at different delays and the relative
spectra from the extended 2TM as lines. In b, the time evolution of the electron temperature [14] in
excited warm dense copper. The upper line comes from the 2TM with a constant G, while for the
lower line G depends on the electronic temperature. The squares are from the experimental data
and the shaded regions include the experimental accuracy into the 2TM results

Fj = −β jv j . (3.11)

so that its Newtonian equation of motion becomes

m j
d2R j

dt2
= Fj − β j

dR j

dt
. (3.12)

The choice of the drag coefficient βJ is essential to characterize the effect of the
electrons on the atomic dynamics.

The projection of the force onto v j is the rate of energy loss and results from the
interplay between friction and noise. By using Eq. (3.9), we have

− β j |v j |2 = −3kBα(Te − Tl). (3.13)

Setting the thermal energy of ion j equal to its kinetic energy 3kBTl = m jv
2
j , the

drag coefficient becomes

β j = 3θDCevFm j

π2rsT0Cl

(
Tl − Te

Tl

)
. (3.14)

Other forms of β j have been derived in [17, 18].
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Fig. 3.3 In A, the radius dynamics of the target molten region for two different couplings [22].
In B, the radius of the molten region of Cu as a function of time [23]. a and b represent a 5 keV
cascade, with a a simulation with electronic coupling and bwithout. c and d a 2.5 keV cascade with
c including the coupling and d excluding it

In [19–21], the authors usedMD simulations with a constant β to assess the effect
of radiation cascades on semiconductors andmetals and the influence of the electronic
stopping power on it. In [22], the authors run a 2TMmolecular dynamics simulation
to estimate the cooling rate and the defect production for different couplings. They
find that the cooling rate for strong couplings is much faster, as can be seen in
Fig. 3.3a. For two identical radiation spikes, the case of strong coupling shows a
complete disappearance of the molten region after 1 ps, whereas with low coupling
the molten area is still present for times longer than 2 ps.

3.3.1 Augmented MD Models, the Langevin Equation

Compared to elastic atom-atom collisions, the relative importance of inelastic
electron-atom scattering strongly depends on the energy of the projectile. In a study
of Cu with Lindhard theory [24], it was estimated that, for projectile energies ≈106

eV, the most important projectile energy loss mechanism was the electronic one
(electronic stopping power (ESP) regime). At energies ≈104 eV the electronic con-
tribution decreased to 20–30%, while at ≈25 eV it was only 8% of the total energy
loss. The latter case corresponds to an electron-phonon interaction (EPI) regime.

Ideally, the electron-phonon coupling term in an MD simulation would be able to
capture both regimes, but the wide range of energies from a few eV to MeV makes
it a daunting challenge. One of the first ideas aimed at describing both regimes at
the same time was the introduction of Langevin dynamics to model the electrons
as a Langevin heat bath [25]. Electrons supply the atoms with both a kinetic loss
mechanism and a random kick.
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The atoms obey the equation of motion

m j
d2R j

dt2
= Fj + η j (t) − β j

dR j

dt
(3.15)

where β j measures the coupling to the electron bath and η j (t) is a stochastic force
with the following average and time correlation properties2

〈η(t)〉 = 0 (3.16)

〈
η(t) · η(t ′)

〉 = 2βkBTeδ(t − t ′) (3.17)

and this Gaussian probability distribution

P(η) = (
2π

〈
η2〉)−1/2

e
− η2

2〈η2〉 . (3.18)

To use this equation in a full radiation event, one must assume that the physics in
both the ESP and the EPI regime is the same: the distinction between regimes would
be determined by the different electron density explored by the projectile, as, in this
picture, β j is a function of the local electronic density.

It is intuitive that an atom speeding across the lattice feels more drag contribution
from the surrounding electronic clouds than a slow projectile that, after having lost
most of its energy, bounces back and forth around a potential minimum. In [25], the
authors picked a β following linear response theory at high electronic densities and
matching density functional theory at low densities.

An application of the Caro-Victoria model [25] is presented in [23], where the
authors compare radiation heat spikes for different incoming energies in copper.
In Fig. 3.3b they observe an increased cooling rate due to the presence of electronic
coupling.Asheat is transferred from theprojectile to the electrons,Te should increase,
changing in turn the random force η. In the Caro-Victoria model, the electronic
heating is neglected as Te is a constant. To justify this with a rationale akin to the
2TM, for weak electron-phonon couplings, the electrons mean free path can be
hundreds of Å. Because of their large thermal conductivity in metals, electrons can
propagate heat very fast and in a large area of the target. Therefore, electronic heating
can be neglected as a first approximation, because electrons act as a perfect heat sink.

Inhomogeneous models allow a transfer of heat from the electrons back into the
lattice by introducing a space and time dependent Te.

2From now on, we are going to drop the atomic index j for notation clarity in this section. It will
be reintroduced when needed.
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3.3.2 Inhomogeneous Models

In [26], the authors Duffy and Rutherford deal with the energy feedback problem by
coupling an MD simulation to an inhomogeneous electronic heat diffusion model.
The main difference with the Caro-Victoria model is the use of an inhomogeneous
Langevin thermostat that depends on space and time: the electronic temperature Te
is local and is derived by integrating at each time step a thermal diffusion equation.
Locality allows an energy feedback from the hot electrons back into the lattice,
whereas homogeneous electron distributions are featureless and can only act as an
energy sink where the heat from a thermal spike can dissipate.

The evolution of the atoms obeys an equation such as (3.15), where the stochastic
force η is defined as Eq. (3.17) and it depends on space through the locality of
Te. For choosing the damping coefficient β, the authors considered two limiting
energy loss mechanisms. At high projectile energies, dissipation is dominated by a
global stopping term βs that makes the energy loss proportional to the kinetic energy
of the projectile. At low velocities, the electron-phonon loss βp is proportional to
the temperature difference between the ionic and electronic system. Thus, with the
introduction of a velocity cutoff vc to distinguish between regimes, the total drag
coefficient on atom j is

β j = βp + βs v j ≥ vc

= βp v j < vc.
(3.19)

The temporal and spatial evolution of Te is governed by a diffusion equation

ce
∂Te
∂t

= ∇(ke∇Te) − gp(Te − Tl) + gsT
′
l (3.20)

whose second term is the standard source from the 2TM (3.6). The authors partition
space in several cells comprising a few hundred atoms N and solve the heat diffusion
equation using a finite difference method. In each cell J , the electronic temperature
Te is a constant.

The lattice temperature Tl is defined by averaging the kinetic energies of all atoms
in a cell

3

2
kBTl = 1

N

∑
j∈J

1

2
mv2

j , (3.21)

while T ′
l is averaged only over the atoms with a v j ≥ vc that belong to J ′

3

2
kBT

′
l = 1

N

∑
j∈J ′

1

2
mv2

j (3.22)

The couplings gp and gs are related to the electron-phonon coupling and the stopping
power respectively. They are determined by energy balance equations
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gp = 3NkBβp

�Vm
(3.23)

gs = 3N ′kBβs

�Vm
(3.24)

where �V is the volume of the cell and N ′ the number of atoms with a velocity
higher than the cutoff.

All the parameters ce, ke, βp and βs depend clearly on the material under inves-
tigation and could strongly depend on the lattice and electronic temperature, but
in [26] they are chosen to be constant. The authors study the time evolution of
the electronic and the atomic temperature for a low energy 10 keV cascade in Fe.
In Fig. 3.4, they show the results testing a range of stopping and electron-phonon
relaxation times τs/p = m/βs/p. Decreasing relaxation times correspond to increas-
ing couplings. While the electronic temperature vary with the stopping parameter
and increases with high βs , the atomic temperature does not change significantly.
For varying βp, the lattice shows different cooling rates. Their preliminary analysis
about defect production reveals that the number of defects decreases with higher

Fig. 3.4 Simulation of a 10 keV cascade in Fe [26]. In a and b, time evolution of Te and Tl for
different τs and τp = 1 ps; in c and d, a scan in τp and τs = 1 ps
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Fig. 3.5 10 keV radiation cascades on Fe from [27]. In a, the time evolution of the maximum
temperature for two different electron-phonon couplings χ (a strong one at 10 ps−1 and a weak
one at 0.05 ps−1) and different thermostats. The homo and inhomo plots refer to the maximum
Tl for respectively an homogeneous thermostat (Caro-Victoria) and an inhomogeneous one. The
electrons plot is related to the maximum Te in the inhomogeneous case. In b, the maximum Te for
different χ

electron-phonon couplings, confirming Flynn’s model [2] where high couplings cor-
responded to fast electronic heat transport away from the thermal spike region. Even
for low energy radiation cascades, the electrons do influence the dynamics of heat
transport, especially when the electron-phonon interaction is large.

In a following paper [27], Rutherford and Duffy perform a comparison of their
inhomogeneous method with the homogeneous Caro-Victoria one. For representing
the strength of the couplings, they use the inverse of the electron-phonon relaxation
time χ = 1/τp. Figure3.5a shows that the cooling rate changes significantly for
different χ : the system cools down much faster for strong couplings. The evolution
of the electronic temperature can be split in three phases: a first one lasting a few
tens of fs where the electrons heat up, one that lasts hundreds of fs when there is a
fast cooling down due to electronic diffusion and a last one with a slow temperature
decay related to exchanges of energy between electrons and ions.

Comparing the two thermostats, for weak couplings the atoms would move rela-
tively fast, so the electronic stopping introduced in the inhomogeneous case would be
effective. In fact, the atomic temperature for weak couplings is lower in the inhomo-
geneous case. On the other hand, for strong couplings the inhomogeneous simulation
presents a higher Tl than the homogeneous case. In the former, the presence of a high
electronic temperature and its feedback into the lattice compensates for the increased
loss of energy due to the stopping power and causes a lower cooling rate. In Fig. 3.5b it
is shown that the maximum electronic temperature increases significantly for strong
couplings. So a high Te can be found even in low energy cascades if the coupling is
intense enough.
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Fig. 3.6 In a, time evolution of the number of defects for three increasingly strong couplings 0.05
ps−1, 1 ps−1, 10 ps−1 and both the homogeneous and inhomogeneous thermostat. The number
in brackets in the legend is the number of stable defects at the end of the simulation. In b, the
average number of stable defects pair caused by different couplings for the homogeneous and
inhomogeneous thermostat [27]

Regarding the formation of defects, it is clear from Fig. 3.6a that a strong coupling
leads in general to a smaller number of defects compared to a weak coupling. This is
due to the fast energy dissipation mechanism provided by the electrons which cause
a quick quenching of the thermal spike. A comparison of the thermostats shows
that for all couplings the peak number of defects is lower for the inhomogeneous
thermostat because of the additional dissipation of the stopping electronic term. The
high electronic temperature plays an important role contributing to disorder and
enlarging the molten region.

The residual defects number, from Fig. 3.6b, is lower for the inhomogeneous
thermostat compared to the homogeneous case. The slowed down cooling of the
thermal spike of the inhomogeneous simulations is caused by the energy feedback
from the hot electrons which has an enhanced annealing effect. This fact suggests
that materials with strong electron-ion coupling could display an enhanced radiation
damage resistance. A recent article [28] confirms these findings for cubic silicon
carbide.

A recent publication [29] studies a radiation cascade in Fe with very high PKA
energies (0.2–0.5 MeV) for a very large system of 100–500 million atoms. The
authors discover that most of the damage made in the first ps is repaired through
diffusion and recombination processes in a few tens of ps. They do not observe any
branching of the collision cascade with the formation of areas of damage well sepa-
rated from each other except for the very first moments of the collision. Subcascades
tend to recover well in materials resistant to amorphization like metals. The authors
give a qualitative explanation for the absence of branching and the presence of a
continuous damage region: a significant displacement of an atom from its equilib-
rium position requires a lot of energy and, neglecting inelastic energy losses, the
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transferred energy in a collision is T ≈ 1/E2 where E is the incoming atom energy.
Large E correspond to small T and a more localized damage region. They note that
for a decreasing E , T increases and sub cascade branches develop.

Even though inhomogeneous models are generally more realistic than adiabatic
MDmodels because they include energy feedback from electrons to atoms, they still
treat the electronic subsystem in an implicit semi-classical way. Electrons appear as
a medium where the atoms are immersed. The distinction between electron stop-
ping and electron-phonon regime is a semi-empirical approach to describe what is
effectively single phenomenon. A way to improve on this would require a significant
leap both from the theoretical and from the computational point of view: treating the
electrons explicitly and individually.
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Chapter 4
Simulating Electrons and Phonons:
Atomistic Methods

In this chapter we discuss explicit methods that tackle electron-phonon problems at
the microscopic level. To capture the exact dynamics of coupled systems of interact-
ing electrons and phonon modes is an insurmountable task for computer simulations.
The tremendous memory footprint of the full problem makes simulations unfeasible
even for systems including just a few electrons. Approximations must be employed
and some information has to be discarded. Depending on the problem under study,
it is common to focus only on certain aspects of the full time-dependent coupled
problem.

Time independent methods can be employed to study static quantities, as electron-
phonon scattering rates. One of the simplest approaches is based on the FermiGolden
Rule, where the electron-phonon interaction is included as a first order perturbative
correction. This qualitative approach can provide preliminary insights, but it cannot
describe strong couplings where multiple scattering events are relevant. A standard
generalization that allows the description of higher order processes is based on Non-
EquilibriumGreen’s Functions (NEGF) [1], inwhich theDyson equation is expanded
in a Born series and where some low energy Feynman diagrams are included in the
self-energy expression. However the applicability of NEGF is limited by the large
amount of computer power required to simulate even very small systems. Another
method based onGreen’s functions is the Self-Consistent BornApproximationwhich
has been widely used for modelling inelastic transport [2, 3], also in time dependent
problems [4].

The study of non-adiabatic phenomena with possible connections with MD
requires time-dependent methods. Ehrenfest dynamics and its extension Correlated
Electron-Ion Dynamics (CEID) are dynamical methods that discard a part of the
electron-phonon correlation to make non-adiabatic problems less computationally
demanding. They can estimate physical quantities as atomic trajectories that can
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be connected to MD simulations. A reworking of the CEID method that converges
systematically even for strong couplings is described in [5, 6].

In this chapter we focus on a selection of methods that are especially relevant for
their connections with our work.

4.1 A Simple Classical Model and the Born-Oppenheimer
Approximation

A simple classical model from [7] is a stimulating starting point for the discussion.
Even though qualitative and unrealistic, it can offer important insights on the phys-
ical features of electron-phonon phenomena. In this model both the atoms and the
electrons are treated classically and they evolve according to Newton’s equation of
motion. A single atom A with mass M is immersed in a lattice and interacts with its
neighbours through harmonic oscillators with a spring constant K . The electrons do
not interact with each other but are coupled to atom A. The full Hamiltonian of the
system is

H = He + HA + HeA (4.1)

=
∑

i

(
p2i
2m

+ v(ri )

)

︸ ︷︷ ︸
He

+
(

P2

2M
+ 1

2
K X2

)

︸ ︷︷ ︸
HA

−
∑

i

X · ∇iv(ri )

︸ ︷︷ ︸
HeA

(4.2)

where m is the electron’s mass, ri and pi are the position the momentum of electron
i , P and X are the momentum and the displacement of the moving atom. For small
X , the electronic potential can be approximated by using v(ri − X) = v(ri ) − X ·
∇iv(ri ). By using Hamilton’s equations1 on Eq. (4.1), we obtain a set of EOM for
the electrons and the atom.

In the trivial case where the coupling HeA is switched off, the EOM are decoupled
and have this simple form

Ẍ k = − K

M
Xk (4.3)

r̈ ki = − 1

m

∂v(ri )

∂rki
. (4.4)

The resulting atomic motion is harmonic Xk(t) = Ak sin(
√
K/Mt + φk), while the

dynamics of the electrons unfolds on a constant energy surface. The full EOM with
HeA are

1For the atom they read Ẋ k = ∂H
∂Pk , Ṗ

k = − ∂H
∂Xk while for the i th electron ṙ k = ∂H

∂pk
, ṗk = − ∂H

∂rk
.

Index k refers to the x , y, z atomic components.
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Ẍ k = − K

M
Xk + 1

M

∑

i

∂v(ri )

∂rki
(4.5)

r̈ ki = − 1

m

∂v(ri )

∂rki
+ 1

m

∑

j

X j ∂2v(ri )

∂rki ∂r j
i

(4.6)

and do not allow an explicit solution any more because the atomic motion depends
on the dynamics of all the electrons. Moreover, the electrons are implicitly coupled
to each other by X , that depends on all the electrons. The last term in Eq. (4.6) acts
as an external time-dependent force on the electrons and makes their energy change.

In [8], the authors solved the EOM in 1D in the limit m � M where the atom
behaves as a hard wall for the light electrons. The power w delivered to the atom by
a current j is

w ∼ 4 j
( m

M

)
(Ke − 2KA) (4.7)

where Ke and KA are the average electronic and atomic kinetic energies. The opposite
signs of the terms allow both cooling and heating effects, depending on themagnitude
of the kinetic energies. For very small biases, the electrons would be slow and cold,
so Ke would be very small and there would be a cooling of the atom. On the other
hand, for high biases the electrons would cause a heating up of the atom.

The model allows to observe the microscopic correlated electron nuclear fluctu-
ations caused by inelastic exchanges of energy between the electrons and the atom.
Following the approximations in [7] and in the limit of a characteristic electronic
frequency much larger than the atomic one, the average kinetic energy of the atom
would be KA = 3

2
m
M Ke. The heavy atom would be moving because of the correlated

oscillations induced by the much lighter electron.
The significant mass difference between electrons and atoms determines a large

timescale difference between them which has been exploited widely and is the
basis for one of the most common approximations in solid state physics: the Born-
Oppenheimer approximation (BOA). By the time an atom moves, the fast moving
electrons have undergone sufficiently many collisions to minimize the system’s free
energy. Because of this, it is natural to assume that for any nuclear position, the
electrons occupy instantaneously their ground state. This means that the atomic sys-
tem is effectively decoupled from the electronic dynamics: the electrons rearrange
depending on the instantaneous atomic position, while the atoms move in a potential
determined by the electronic ground state. This approximation greatly simplifies the
complexity of the problem that lies in the electron-atom coupled motion.

The BOA is often used to determine transition rates � in conjunction with the
Fermi Golden Rule

�i→ f = 2π

�

∣∣∣〈 f |ĤI |i〉
∣∣∣
2
δ(E f − Ei ) (4.8)
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where the final state energy is E f = 〈 f |Ĥ0| f 〉, the initial state energy is Ei =
〈i |Ĥ0|i〉, Ĥ0 is the unperturbed Hamiltonian and ĤI is the perturbation that causes
the transition from an initial state |i〉 to final state | f 〉,.

For example, in [7], the system’s Hamiltonian is treated perturbatively around
small atomic displacements to derive atomic power

w = 2π

�

∑

n′N ′

∣∣∣〈�n′N ′ |ĤeN |�nN 〉
∣∣∣
2
(WN ′ − WN )δ(Un′N ′ −UnN ) (4.9)

where WN represents the energy of the nuclei in state N , state �nN = |i〉, �n′N ′ =
| f 〉, UnN = Ei and Un′N ′ = E f . This perturbative model has been applied to a vast
number of different systems. In [8], the authors prove that in the high bias limit,
the perturbative approach gives results in approximate agreement with those of the
classical model above.

4.2 Ehrenfest Dynamics

An intrinsic drawback of the BOA is its inability to describe non-adiabatic phe-
nomena where the mutual interaction between electrons and atoms plays a crucial
role on each other’s dynamics. For example, during the first phase of a radiation
cascade, for sufficiently energetic incoming particles, the electrons along the track
would be excited out of their ground state. At successive times, both the electronic
and the atomic configuration would be changing, violating the adiabatic assumption
of the BOA. A common approach that includes non-adiabatic features is Ehren-
fest dynamics (ED) [9, 10]. Its main assumptions are a mean field approach to the
electron-nuclear interaction and a classical treatment of the atoms.

ED starts fromHamiltonian Ĥ(R̂) = K̂A + Ĥe(R̂)where the kinetic contribution
of the nuclei K̂A has been separated from Ĥe(R̂) that contains the kinetic energy of the
electrons, the electron-electron, electron-nucleus and nucleus-nucleus interaction.
Taking the expectation value of the nuclear position and momentum operators of the
ν-th nucleus2 over full system’s wavefunction R̄ν = 〈�|R̂ν |�〉, P̄ν = 〈�|P̂ν |�〉 and
evolving them with the time-dependent Schrödinger equation, we get a set of exact
equations, the Ehrenfest equations

d R̄ν

dt
= P̄ν

Mν

(4.10)

d P̄ν

dt
= F̄ν (4.11)

2These operators satisfy the usual commutation rule [R̂ν , P̂ν′ ] = i�δνν′ . Quantities such as R̂ or R̄
mean the collection of {R̂ν} and {R̄ν} for every ν, that runs over the nuclei and the coordinate set.
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whereMν is the nuclearmass and the force is F̄ν = 〈�| − ∂ Ĥ(R̂)

∂ R̂ν

|�〉. These equations
look classical, but enclose the quantum complexity in the expectation value over the
full system’s wavefunction |�〉.

ED can be generalized to a density matrix (DM) formalism. The expectation
values above are replaced by traces, as R̄ν = Tr(ρ̂ R̂ν), where ρ̂ is the DM of the
whole system and the electronic DM is ρ̂e = TrA

(
ρ̂
)
. The system’s dynamics is then

described by the quantum Liouville equation

i�
dρ̂

dt
= [Ĥ , ρ̂]. (4.12)

The first assumption of the Ehrenfest approximation is decoupling the system into
a product of its nuclear and electronic components ρ̂ = ρ̂A ⊗ ρ̂e. This decoupling
causes a loss of correlation between the electronic and nuclear system. The second
assumption is a classical treatment of the nuclei, which occupy classical point-like
positions without any quantum width. Therefore, the nuclear part of the density
matrix is centredover a single classical trajectory 〈R|ρ̂|R〉 = ρ̂eδ(R − R̄).With these
approximations, the evolution of the electronic DM follows a Liouville equation

i�
dρ̂e

dt
= [Ĥe(R̄), ρ̂e] (4.13)

where Ĥe(R̄) = TrA
(
Ĥe(R̂) δ(R̂ − R̄)

)
is a mean field Hamiltonian that crucially

depends on the expectation value of the nuclear positions R̄. The evolution of the
classical nuclear coordinates is still determined by Eqs. (4.10 and 4.11), while the

expression for F̄ν simplifies into F̄ν � −Tre
(
ρ̂e

∂ Ĥe(R̄)

∂ R̄ν

)
. Here, electrons respond to

individual classical nuclear potentials, while nuclei interact with an average density
of electrons, as in the BOA.

In [11], the authors test the effectiveness of classical models with a damping coef-
ficient independent of the velocity of the nucleus by simulating radiation cascades
with both implicit classical methods and a semi-classical time dependent tight bind-
ing (TDTB)method based on Ehrenfest approximation. They compare non-adiabatic
energy transfers from atomic motion to electrons, as shown in Fig. 4.1. Their results
show that a velocity independent damping coefficient is already a good first approx-
imation for the nonadiabatic force, especially in high energy cascades. The model
with a simple kinetic energy cutoff doesn’t look to be in agreement with the Ehrenfest
result, while the density dependent damping gives the closest results to the Ehrenfest
calculation.

Ehrenfest dynamics can be combined with Time-dependent Density Functional
Theory (TDDFT) and it has been used to study a projectile dynamics in the regime
when it is losing energy to the electrons along its path [15]. This approach describes
in a single simulation the projectile energy loss mechanism due to the electrons
and the nuclear dynamics in the presence of the electrons excited by the projectile.
Simulations are used to extract the non-adiabatic forces that act on the projectile
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Fig. 4.1 Plots of irreversible energy losses for a 100 eV cascade (left) and 1 keV (right) [11].
Three classic models on the y axis are compared with the Ehrenfest method on the x axis. A
straight line would mean that classical and Ehrenfest losses coincide. The three classical methods
are: a homogeneous damping as in [12] (top), a model with a kinetic cutoff like [13] (middle), an
inhomogeneous electron density dependent damping as in [14] (bottom)

and depend in general on its velocity. In the case of a proton tunnelling through
aluminium, the authors find that at high projectile velocities there is a strong radial
momentum transfer to the surrounding nuclei, several times larger than the momen-
tum transfer predicted by the adiabatic approximation. This non-adiabatic effect is
caused by the electrons in the lattice that are not able to provide chemical bonding
after being excited by the incoming radiation.

The same method has been used to determine the stopping power of hydrogen
and helium through a gold lattice [16], comparing it with experimental results, as
in Fig. 4.2. This work has helped to understand experimental features that could
not be explained with established theories such as the nonlinear behaviour of the
stopping power versus projectile velocity and the low projectile velocity regime.
The deep lying states in the d-band of gold play a crucial role in determining the
stopping power, even at lowvelocities, either by being excited directly or by providing
extra screening. A recent study used Ehrenfest TDDFT to investigate the electronic
stopping of hydrogen in germanium, a small band-gap semi-conductor [17].

If ED is effective in describing the electronic stopping phase of a radiation event,
it cannot capture the electronic transport of energy away from the projectile and their
subsequent thermalization with the nuclei via electron-phonon interaction [15]. Its
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Fig. 4.2 Electronic stopping power of hydrogen and helium projectiles versus projectile velocity.
Ehrenfest TDDFT simulations [16] are compared to experiments

main limitation is the mean field description of the electrons that breaks the mutual
heat exchange between electrons and nuclei, as we will discuss it in the next section.

4.2.1 A One-Sided Electron-Atom Heat Exchange

In [8], the authors use tight binding with ED to simulate a single atom moving in an
infinite wire. They apply a bias to the wire’s ends so that an electric current flows
through the system and they find out that, for low biases, the oscillating atom cools
down. This can be physically understood because, in this case, the injected electrons
occupy low energy states in the wire and don’t have enough energy to excite the
atom. If we call ω the frequency of the lowest vibrational mode of the atom, the bias
has to exceed �ω to allow the electrons to start exchanging energy with the atom. The
higher the bias, the more vibrational excitations get accessible with the possibility
of activating multiple phonon processes. Therefore, for larger biases and electronic
currents, the electrons are expected to heat up the atom, but ED is found to cool the
atom down even at large biases.

This unphysical phenomenon is caused by an intrinsic limitation of the Ehren-
fest approximation: it describes the electrons via an average charge density like a
fluid, suppressing the fluctuations induced on the atoms by the moving electrons.
The electronic heating caused by the atoms is captured correctly because the atoms
appear explicitly in the electron dynamics. Atomic fluctuations can be related to an
atomic temperature to which the electrons respond. The converse transfer of energy
is missing because the atoms interact with a mean field electronic density which
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lacks microscopic details. The average electronic density cannot produce neither a
mean force nor a force noise on the atomic motion. The electronic microscopic noise
that is neglected by ED is the key for vibrational heating.

Atoms are not unmovable objects when the light electrons buzz around them: in a
classical context, after each collision, an atom recoils and exchange a small amount
of energy with the colliding electron, as the simple model from [7] highlighted in
Sect. 4.1. Capturing these correlated electron-ion fluctuations is beyond the scope of
the BOA and the Ehrenfest approximation.

Taking a classical electronic density ρe, with the electrons possessing a number
of classical positions x and momenta p, the atomic Ehrenfest force would be

F̄ν = −
∫

dr dp ρe(r, p)
∂He(R̄; r, p)

∂ R̄ν

. (4.14)

Picking a single trajectory r̄ for the electrons wouldmake ρe localized in phase space.

Thus the atomic force would become F̄ν = − ∂ Ĥe(R̄;r̄ , p̄)
∂ R̄ν

. The integral in Eq. (4.14)
can be seen as the average force produced by all the electronic trajectories, each
with a weight dr dp ρe(r, p). The averaging procedure hides away the microscopic
correlations of the interaction and inhibits the flow of energy from the electrons to
the atoms.

The simple model from [7] helps to understand the physical importance of these
correlated fluctuations. Consider a system made of a single nucleus immersed in an
electron cloud. Suppose that the nucleus experiences twokinds of forces: an harmonic
one −kX and a small non-adiabatic time-dependent one f (t). The instantaneous
power given to the nucleus is U̇ (t) = Ẋ · f (t). Averaging this power over a period
of time τ , we get

〈U̇ 〉τ = 1

τ

∫ t0+τ

t0

dt Ẋ · f (t). (4.15)

For a pure harmonicmotion, the time average of Ẋ would be null. For an f (t) varying
slowly in time, the motion of the atom would be mainly harmonic and the power
would be very small. If f (t) fluctuated quickly in time without being correlated
with Ẋ , the time integral in Eq. (4.15) would again average to zero. On the other
hand, if f (t) depended on Ẋ or if Ẋ was allowed to be perturbed by f , then the
correlated fluctuations would not average to zero in the integral and only then they
would produce a non-zero power. These correlationswould disappear in theEhrenfest
approximation because of the average electronic trajectory acting on the nuclei.

In some problems, these correlations do not play an important role and can be
safely ignored. In other problems, they are essential to capture physically important
phenomena, for example Joule heating. A striking case of the ED failure is amolecule
in an electronically excited state, with atoms relaxed on that Born-Oppenheimer
surface. ED would produce no evolution at all, whereas in reality non radiative de-
excitation can take place. The desire to be able to simulate a wide range of non
adiabatic processes motivates the development of more general methods that can
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capture some electron-phonon correlation, while retaining the good qualities of the
Ehrenfest method (i.e. the classical description of the nuclei and the possibility to
treat the electrons via a single particle density).

4.3 Correlated Electron-Ion Dynamics (CEID)

In ED atoms are treated as classical particles, but they possess a quantum nature,
therefore individual trajectories cannot fully describe atomic dynamics. Atoms can
be modelled by wavepackets, as shown in Fig. 4.3, where the atom has an average
position R̄ν and a packet spreadW that represents the uncertainty on its position. The
quantumuncertainty of a particle is inversely proportional to itsmass. Atomicmasses
are usually large, therefore W is small compared to typical interatomic distances.

In light of this observation, the exact Ehrenfest equations

d R̄ν

dt
= P̄ν

Mν

,
d P̄ν

dt
= F̄ν , F̄ν = −Tr

(
ρ̂

∂ Ĥe

∂ R̂ν

)
(4.16)

can be interpreted classically, by considering the atomic wavepacket to be localized
on R = R̄ν and P = P̄ν . Because of the small wavepacket width, it is reasonable to
expand the atomic coordinates perturbatively, with the atomic position being R̂ν =
R̄ν + �R̂ν and the momentum P̂ν = P̄ν + �P̂ν . This assumption is the foundation
of the Correlated Electron-Ion Dynamics (CEID) method [9, 10].

With the perturbative expansion in the atomic position, the electronic Hamiltonian
becomes

Fig. 4.3 Atomic wavepacket
that shows the CEID
approach to nuclear position
[7]. In ED the postion of an
atom is described by a delta
function centred in R = R̄,
in CEID it is represented by
a wavepacket with a finite
width W
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Ĥe(R̂) = Ĥe(R̄) +
∑

ν

∂ Ĥe(R̄)

∂ R̄ν

�R̂ν + 1

2!
∑

νν′

∂2 Ĥe(R̄)

∂ R̄ν∂ R̄′
ν

�R̂ν�R̂ν′

+ 1

3!
∑

νν′ν′′

∂3 Ĥe(R̄)

∂ R̄ν∂ R̄ν′∂ R̄ν′′
�R̂ν�R̂ν′�R̂ν′′ + . . . (4.17)

= Ĥe(R̄) −
∑

ν

F̂ν �R̂ν + 1

2

∑

νν′
K̂2,νν′ �R̂ν�R̂ν′ + 1

3!
∑

νν′ν′′
K̂3,νν′ν′′ �R̂ν�R̂ν′�R̂ν′′ + · · ·

(4.18)

where the force operator is defined as F̂ν = − ∂ Ĥe(R̄)

∂ R̄ν
, the spring operator

as K̂2,νν ′ = ∂2 Ĥe(R̄)

∂ R̄ν∂ R̄′
ν

= ∂ F̂ν

∂ R̄′
ν

and the anharmonic spring operator as K̂3,νν ′ν ′′

= ∂3 Ĥe(R̄)

∂ R̄ν∂ R̄ν′ ∂ R̄ν′′ = ∂ K̂2,νν′
∂ R̄ν′′ . With this expansion, the Ehrenfest mean force becomes

F̄ν = −Tr

(
ρ̂

∂ Ĥe(R̂)

∂ R̂ν

)
(4.19)

= −Tr

(
ρ̂

∂

∂ R̄ν

(
Ĥe(R̄) −

∑

ν ′
F̂ν ′ �R̂ν ′ + 1

2

∑

ν ′ν ′′
K̂2,ν ′ν ′′ �R̂ν ′�R̂ν ′′ + · · ·

))

(4.20)

= Tr
(
ρ̂ F̂ν

)
−

∑

ν ′
Tr

(
ρ̂ K̂2,νν ′�R̂ν ′

)
− 1

2

∑

ν ′ν ′′
Tr

(
ρ̂ K̂3,νν ′ν ′′�R̂ν ′�R̂ν ′′

)
+ · · ·
(4.21)

= Tre
(
ρ̂e F̂ν

)
−

∑

ν ′
Tre

(
K̂2,νν ′μ̂1,ν ′

)
− 1

2

∑

ν ′ν ′′
Tre

(
K̂3,νν ′ν ′′μ̂2,ν ′ν ′′

)
+ · · ·

(4.22)

where the moment operators are μ̂1,ν ′ = TrI (�R̂ν ′ ρ̂) and μ̂2,ν ′ν ′′

= TrI (�R̂ν ′�R̂ν ′′ ρ̂). Likewise, othermoment operators canbedefined for the expan-
sion in momentum λ̂1,ν ′ ≡ TrI (�P̂ν ′ ρ̂) and λ̂2,ν ′ν ′′ ≡ TrI (�P̂ν ′�P̂ν ′′ ρ̂).

No assumption needs to be made on the form of the ionic potential in Ĥe(R̄):
CEID’s expansion is completely general. The first term in Eq. (4.22) is the force in
the Ehrenfest approximation, while the other terms represent perturbative corrections
depending on the width of the atomic wavepacket. In CEID, the mean atomic force
does not depend on one single ionic trajectory as in Ehrenfest, but on the multiple
trajectories allowed by the spread of the wavepacket. The moments have a physical
interpretation:μ1,ν,αα = 〈α|μ̂1,ν |α〉/〈α|ρ̂e|α〉 is the conditional of the ionic displace-
ment from the mean position if the electrons are in state |α〉, whileμ2,νν ′,αα measures
the mean width of the atomic wavepacket.
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4.3.1 CEID Simulations

To use this scheme in simulations and obtain a closed set of EOM, the expansion
must be truncated. The authors of [9, 10] use the order of themoments as a truncation
parameter: the sum of the powers of operators �R̂ν and �P̂ν defines the order. The
zerothmoment approximation completely ignores ionic fluctuations and is equivalent
to the Ehrenfest approximation. The first moment approximation gives the EOM [9]

F̄ν = Tre
(
ρ̂e F̂ν

)
−

∑

ν′
Tre

(
μ̂1,ν′ K̂2,νν′

)
(4.23)

dρ̂e

dt
= 1

i�
[Ĥe(R̄), ρ̂e] − 1

i�

∑

ν

[F̂ν, μ̂1,ν ] (4.24)

dμ̂1,ν

dt
= 1

i�
[Ĥe(R̄), μ̂1,ν ] + λ̂1,ν

Mν
(4.25)

dλ̂1,ν

dt
= 1

i�
[Ĥe(R̄), λ̂1,ν ] + 1

2
(�F̂ν ρ̂e + ρ̂e�F̂ν) − 1

2

∑

ν′
(K̂2,νν′ μ̂1,ν′ + μ̂1,ν′ K̂2,νν′ )

(4.26)

where �F̂ν = F̂ν − F̄ν , �P̂ν = P̂ν − P̄ν and λ̂1,ν = TrI (�P̂ν ρ̂). The crucial inno-
vation brought forward by CEID is the dispersion in ionic trajectories that causes
a spread of forces on the electrons and a spread of electronic trajectories. These
electronic trajectories, in turn, generate a spread in ionic forces and trajectories. The

term Tre
(
μ̂1,ν ′ K̂2,νν ′

)
in Eq. (4.23) describes electronic fluctuations that influence

the atomic force F̄ν . Likewise, in Eq. (4.24), atomic fluctuations − 1
i�

∑
ν[F̂ν, μ̂1,ν]

produce noise in the electronic density ρ̂e. We can see the emergence of correlated
fluctuations between individual atoms and individual electrons. The microscopic
noise created by an electron-ion collision propagates in the dynamics of both. These
fluctuations are simultaneously carried to both subsystems by the same correlation
function μ̂1,ν . This microscopic noise is the source of mutual heat exchange missing
in the Ehrenfest approximation.

The authors in [9] simulate an atomic wire with one atom in the center allowed to
move. They aim to let an electronic current flow and observe the effect of the current
on the central atom. They employ CEID with a truncation at the first moment. Their
attempt is successful in observing a significant increase in energy of the moving
ion for increasing biases, but fails to observe a corresponding reduction in current.
A high ionic energy would cause an increased ionic scattering that is expected to
increase the resistance and lower the current.

In [18], the authors observe that there is no difference in the current time evolution
for simulations based on the Ehrenfest approximation and on first moment CEID, as
shown in Fig. 4.4. First moment CEID improves on the Ehrenfest approximation by
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Fig. 4.4 Current dynamics in a nanowire where a central atom is allowed to oscillate with the first
moment CEID (top curve) and the Ehrenfest approximation (bottom curve), [18]

capturing the current induced ionic heating, but it is still not able to capture the ionic
feedback on the current.

The key quantity for capturing this missing effect is the atomicwidth μ̂2,νν ′ , which
affects the electron dynamics and acts as a current dampening mechanism. The first
moment truncation ignores it. To reintroduce it, CEID must be truncated at least at
the second order and this implementation is described in [10]. As shown in Fig. 4.5,
the authors attempt a new set of simulations and do observe the expected inelastic
decrease in the current. They also see a clear signature of the inelastic excitations of
phonons in the derivative of the differential conductance by noting a shoulder at the
voltage where the inelastic process is activated.

The electronic current in the finite nanowires above is determined by a transient
phase of charge imbalance. The current flow is temporary and systems can only
reach temporary steady states. In [19], the authors developed a time dependent open
boundary (OB) formalism for electron injection and extraction, which guarantees
a steady flow of electrons. Because of the relevance of the OB mechanism to this
present work, a schematic derivation of it can be found inAppendixB.An application
of the OB scheme to second moment CEID [19] shows the expected current induced
ionic heating together with the insurgence of a steady state current, as can be seen
in Fig. 4.6. The characteristic frequency of the phonon �ω represent a threshold for
inelastic excitations. At low voltages, below the threshold, vibrational excitations are
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Fig. 4.5 Comparison of the time evolution of the current in an atomic wire with a moving atom for
simulations using the Ehrenfest approximation and the second moment CEID [10]. The Ehrenfest
approximation lacks the feedback of atomic fluctuations on the electron dynamics, thus it cannot
capture the ionic induced reduction in current

Fig. 4.6 Vibrational energy of a single vibrating atom in a nanowire with a current induced by OB
and the corresponding current at several voltages, [19]
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Fig. 4.7 Second moment CEID simulations of nanowires under current. A trimer (panel (a)) dis-
plays negative differential resistance at high voltages (panel (b)) [20]. An atom is weakly coupled
to a perfect chain (panel (c)) and cools down with a current passing along the wire (panel (d)) [21]

forbidden and no heating is observed, as the inelastic current is suppressed. As the
voltage is increased the steady state current increases and the ion heats up.

CEID has been applied to a number of systems and it allowed the observation of a
number of non-adiabatic effects at the nanoscale. In [20], the authors consider a trimer
weakly coupled to the electrodes and with only the central atom free to oscillate, as in
Fig. 4.7a. The system is resonant and shows peculiar features when compared with an
equivalent ballistic atomic chain: a significantly higher phonon occupancy for high
voltages and an increase in the time taken to equilibrate. Two cases are explored: the
fully damped one, where the phonon mode is forced to stay in its ground state and
the maximal heating case, where the atom is free to be excited. In Fig. 4.7c we see
that, at high voltages, undamped CEID displays a negative differential resistance.

An adatom system made of an infinite chain with a single light atom attached and
free to move is examined in [21] and shown in Fig. 4.7b. This system is antiresonant
and displays a current-assisted cooling, as in Fig. 4.7d. The oscillator starts from an
excited state, and an electronic current helps to stabilize the system by cooling down
the atom. For increasingly high biases, the initial rate of cooling of the oscillator
increases, identifying the current as the cooling down mechanism.

Despite its successes in describing non-adiabatic phenomena, the CEID method
presents some significant shortcomings. One is the choice of a truncation strategy, i.e.
how to cut the Taylor expansion in the moments and derive a closed set of equations.
The freedom of choice for the atomic potential makes CEID very general, but at the
same time, makes a general physical truncation very hard to figure out. A truncation
strategy is proposed in [10] and the subject is reported as under ongoing work.

Probably, CEID’s main limitation is its scaling with the number of moving atoms.
In second moment CEID, the numerical scaling of the integration of the equations
of motion is quadratic with the number of moving atoms. This makes simulations of
anything but a few atomic degrees of freedom an insurmountable task. The ECEID
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method that we introduce in Chap. 5 and is the subject of this thesis goes beyond
CEID’s limitation by focusing on the case of harmonic potentials and proposing a
clear truncation strategy.

4.4 The Bonca-Trugman Method

Another method that solves the electron-phonon problem on a model system was
developed in [22]. It is based on mapping the full electron-phonon many-body prob-
lem into a one-body problem by providing a cutoff in phonon space. The size of the
variational space can be tuned so that the solution converges to the exact one.

The authors consider a single electron in the presence of a phonon and use this
second-quantization model Hamiltonian

Ĥ = Ĥel + Ĥph + Ĥel−ph (4.27)

Ĥel =
∑

j

ε j ĉ
†
j ĉ j −

∑

j,k

t j,k ĉ
†
j ĉk (4.28)

Ĥph =
∑

m

ωmâ
†
mâm (4.29)

Ĥel−ph = −
∑

j,k,m

γ j,k,m ĉ†j ĉk(â
†
m + âm) (4.30)

where the electronic one, Ĥel, has an onsite energy ε j for site j and hopping t j,k
between sites j and k and the phonon one, Ĥph, includes m modes with frequencies
ωm . The electron-phonon coupling Ĥel−ph can include both diagonal and off-diagonal
contributions on the electronic basis.

To illustrate the method, the authors choose one phonon mode coupled to elec-
tronic site zero and amaximumphonon occupancy of 2.An electron enters the system
as a planewave on the left lead. The electron can be transmitted or backscattered elas-
tically or inelastically. Their method consists of pruning any site that only contains
an outgoing wave. This procedure eliminates some states from the problem while
changing the onsite energy of some states to complex, as is schematically depicted
in Fig. 4.8a. In in [22], the authors proceed solving the problem for a number of
different parameters and analyze processess of inelastic resonant tunnelling.

Among several applications, the Bonca-Trugman method was used to investigate
polaron formation in a one-dimesional chainwith an impurity allowed to vibrate [23],
a problem that was studied earlier in [24]. There, the system is made of 5 electronic
sites and 1 phonon coupled to the central site. A master equation approach is used
to couple this system to a bath of vibrations kept at a constant temperature. The
authors simulate an electron localized on the leftmost site and a phonon at its ground
state and compare the quantum method with Ehrennfest dynamics. The population
dynamics in real time of the electronic sites population shows very fast oscillations



54 4 Simulating Electrons and Phonons: Atomistic Methods

(A) (B)

Fig. 4.8 In panel (A), graphical representation of how theBonca-Trugmanmethodworks [22]. Each
dot represents a state in the coupled electron-phonon system, where the horizontal axis represents
electronic sites and the vertical axis the phonon occupation. Lines represent nonzero coupling
between states. In a, a system where electronic site zero is coupled to a phonon mode, which
is restricted to occupations 0, 1 and 2. b contains the system after the pruning procedure in the
text, where the light grey dots present complex onsite energies. c the same pruned system, now
containing 2 phonons. d a system where the phonon is coupled also to electronic sites −1 and 1.
In panel (B) average population of the 5 sites in a chain coupled to an oscillator on the central site
and comparison of the Bonca-Trugman method with Ehrenfest dynamics [23]. The details about
the model are reported in the article

due to coherent reflections within such a small system. To see a long time trend, a
coarse-grained time evolution of the population is needed and is shown in Fig. 4.8b.

Both methods show a qualitatively similar behavior, with the electron localizing
on the central site, with the quantum method doing so about one order of magnitude
faster. The use of a mean field approximation in Ehrenfest dynamics makes the
potential surface less binding than in the quantum case, slowing down localization.
An increasing hopping in the chain makes the electron more delocalized and the
central site population smaller, while a strong electron-phonon coupling forms a
polaron with a larger population on the central site.

In a recent article [25], the authors take a similar model Hamiltonian and apply a
Lanczos-based diagonalization that selects states with different phonon occupations
around the electron to analyze thermalization. They show that non-equilibrium sys-
tems evolve towards thermal states by tracking the occupations of fermionicmomenta
starting at different conditions. The sheer size of the space of the fully coupled sys-
tem is a limit for their simulations that include a single electron on 16 sites and 1
phonon.

The aim of this thesis is to simulate systems with a number of electrons and
phonons on femtosecond to picosecond timescales and to keep track of their simul-
taneous evolution in out of equilibrium situations. The methods based on the 2TM
from Chap. 3 are overly simplified to fulfill our aim because they don’t consider
electrons as quantum particles, while the non-adiabatic methods described in this
chapter either cannot capture the correct heat exchange or are too computationally
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expensive. Despite the relevant successes that these methods had in the fields that
they were designed for, none is perfectly suitable for the objectives in this thesis. The
desire to achieve our aim is the motivation for our development of a new method that
we present in the next chapter.
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Chapter 5
The ECEID Method

In this chapter we present the derivation of the method that we developed and used in
our simulations: EffectiveCorrelatedElectron-IonDynamics (ECEID).We start from
the model Hamiltonian and, after some approximations, we obtain a set of equations
of motion (EOM) for electronic and vibrational quantities. We also discuss total
energy conservation, the Open-Boundaries implementation and the Many-Body to
One-Body projection of the EOM.We then outline the implementation of themethod
in a code and perform scaling testswith a varying number of oscillators and electronic
sites. In Chap.9 will present a recent and more general reformulation of the method.

5.1 The Model

We start from model Hamiltonian

Ĥ = Ĥe +
No∑

ν=1

( P̂2
ν

2Mν

+ 1

2
Kν X̂

2
ν

)

︸ ︷︷ ︸
Ĥ0

−
No∑

ν=1

F̂ν X̂ν (5.1)

where Ĥe is a general many-electron Hamiltonian without vibrations. X̂ν and P̂ν are
displacement and canonical momentum operators for oscillator ν, with mass Mν and
spring constant Kν , coupled linearly to the electrons via the electronic operator F̂ν .
No is the number of harmonic vibrational degrees of freedom (DOF). Any harmonic
Hamiltonian in the vibrational DOF can be written in this form through a change
of generalized coordinates. The unperturbed Hamiltonian Ĥ0 merges Ĥe with the
harmonic oscillator Hamiltonian, excluding the mixed electron-oscillator coupling
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terms. In the following derivation we will use the fact that oscillator operators, such
as X̂ν and P̂ν , trivially commute with electronic ones such as Ĥe and F̂ν .

The full system density matrix (DM) evolves according to the Liouville equation

˙̂ρ(t) = 1

i�
[Ĥ , ρ̂(t)]. (5.2)

By taking the following time derivative

d

dt
(e

i
�
Ĥ0t ρ̂(t)e− i

�
Ĥ0t ) = 1

i�
e

i
�
Ĥ0t

No∑

ν=1

[−F̂ν X̂ν, ρ̂(t)]e− i
�
Ĥ0t (5.3)

and integrating it in time, the full DM can be written exactly as

ρ̂(t) = e− i
�
Ĥ0t ρ̂(0)e

i
�
Ĥ0t − 1

i�

No∑

ν=1

∫ t

0
e

i
�
Ĥ0(τ−t)[F̂ν X̂ν, ρ̂(τ )] e− i

�
Ĥ0(τ−t)dτ.

(5.4)
The electronic DM ρ̂e(t) = Tro(ρ̂(t)) obeys the effective Liouville equation [1]

˙̂ρe(t) = 1

i�
[Ĥe, ρ̂e(t)] − 1

i�

No∑

ν=1

[F̂ν, μ̂ν(t)] (5.5)

that we obtain by tracing Eq. (5.2) over the oscillator DOF. We define the electronic
operator

μ̂ν(t) = Tro(X̂ν ρ̂(t)) (5.6)

that keeps track of the correlation between electrons and phonons and feeds it back
to ρ̂e(t).

While we describe the electronic dynamics with the electronic DM, the dynam-
ical quantity that we employ to follow the time evolution of the phonons is the
mean oscillator occupation Nν(t) = Tr(N̂ν ρ̂(t)). It enters the oscillator Hamiltonian

as (N̂ν + 1
2 )�ων = P̂2

ν

2Mν
+ 1

2Kν X̂2
ν , with the characteristic oscillator frequency ων =√

Kν/Mν . In second quantization N̂ν = â†ν âν , where â†ν (âν) are the creation (anni-
hilation) operators for oscillator ν satisfying the canonical relation [âν, â

†
ν ′ ] = δνν ′ .

The canonical displacement is

X̂ν = √
�/(2Mνων)(âν + â†ν ) (5.7)

and the momentum
P̂ν = i

√
�Mνων/2(â

†
ν − âν). (5.8)

The time derivative of Nν(t) can be written as
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Ṅν(t) = Tr
(
N̂ν

˙̂ρ(t)
)

= − 1

i�
Tr

(
[N̂ν, F̂ν X̂ν]ρ̂(t)

)
(5.9)

where we used Eq. (5.5) and rearranged the operators in the trace, keeping in mind
that [N̂ν, Ĥ0] = 0.1 By using the canonical commutation relation and the second
quantization form of the oscillator operators,2 we can write Eq. (5.9) in a more
compact way as

Ṅν(t) = 1

�Mνων

Tr
(
F̂ν P̂ν ρ̂(t)

)
= 1

�Mνων

Tre
(
F̂ν λ̂ν(t)

)
, (5.10)

where we defined
λ̂ν(t) = Tro(P̂ν ρ̂(t)). (5.11)

The dynamics of ρ̂e(t) and Nν(t) is controlled by electronic operators μ̂ν(t) and
λ̂ν(t) that are the crucial correlation operators linking electrons and oscillators. In
the next section, we provide exact expressions for these quantities, paving the way
for the approximations that follow.

5.2 An Exact Form of μ̂ν(t) and λ̂ν(t)

We introduce the notation
Q̂t = e

i
�
Ĥ0t Q̂e− i

�
Ĥ0t (5.12)

for a generic operator Q̂. This short notation is convenient in the following derivations
where the implicit timedependencyofmanyoperators canbewritten in such a concise
way.

We start by inserting Eq. (5.4) into the definition of μ̂ν(t)

μ̂ν(t) = − 1

i�
Tro

(
X̂ν

No∑

ν ′=1

∫ t

0
[F̂ τ−t

ν ′ X̂ τ−t
ν ′ , ρ̂τ−t (τ )] dτ

)
. (5.13)

Here we assume for simplicity that the unperturbed motion described by ρ̂−t (0) in
(5.4) does not contribute to the motion of the oscillator centroids and to the dynamics
of μ̂ν(t).

We expand the commutator and permute the operators within the oscillator trace
in Eq. (5.13) to obtain

1Notice that this commutator would not be zero if there was an anharmonic contribution in Ĥ0 for
example.
2It is easy to see that [N̂ν , X̂ν ] = √

�/(2Mνων)[â†ν âν , âν + â†ν ] = −(i/(Mνων))P̂ν .
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μ̂ν(t) = − 1

i�
Tro

No∑

ν ′=1

( ∫ t

0
F̂ τ−t

ν ′ X̂ν X̂
τ−t
ν ′ ρ̂τ−t (τ )dτ −

∫ t

0
ρ̂τ−t (τ )X̂ τ−t

ν ′ X̂ν F̂
τ−t
ν ′ dτ

)
.

(5.14)
By applying the decomposition

Â B̂ = 1

2
{ Â, B̂} + 1

2
[ Â, B̂] (5.15)

to both X̂ν X̂
τ−t
ν ′ and X̂ τ−t

ν ′ X̂ν , Eq. (5.14) can be written as

μ̂ν(t) = − 1

2i�
Tro

No∑

ν ′=1

( ∫ t

0
[F̂ τ−t

ν ′ , ρ̂τ−t (τ )]{X̂ν, X̂
τ−t
ν ′ } dτ

)

− 1

2i�
Tro

No∑

ν ′=1

( ∫ t

0
{F̂ τ−t

ν , ρ̂τ−t (τ )}[X̂ν, X̂
τ−t
ν ′ ] dτ

)
. (5.16)

The second derivative with respect to time of X̂ τ−t
ν satisfies the usual harmonic

oscillator differential equation3

¨̂X τ−t
ν = −ω2

ν X̂
τ−t
ν , (5.17)

as can be verified by using the canonical position-momentum commutation relation

[X̂ν, P̂ν ′ ] = i�δνν ′ . The solution of (5.17), with initial conditions X̂0
ν = X̂ν and

˙̂X0
ν =

P̂ν/Mν , is

X̂ τ−t
ν = X̂ν cosων(τ − t) + P̂ν

Mνων

sinων(τ − t), (5.18)

which can be rewritten in second quantization as

X̂ τ−t
ν =

√
�

2Mνων

(â†νe
iων(τ−t) + âνe

−iων(τ−t)), (5.19)

where the canonical position and momentum operators are (5.7) and (5.8).
Now, we can insert

No∑

ν ′=1

[X̂ν, X̂
τ−t
ν ′ ] = i�

Mνων

sinων(τ − t). (5.20)

3To prove it, we write down this time derivative ˙̂X τ−t
ν = e

i
�
Ĥ0(τ−t) [X̂ν ,Ĥ0]

i� e− i
�
Ĥ0(τ−t). By solving

the commutator and rearranging terms, we obtain ˙̂X τ−t
ν = P̂τ−t

ν

Mν
. Analogously, after taking another

time derivative, we have Eq. (5.17).
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into the second term of Eq. (5.16) and obtain

μ̂ν(t) = − 1

2i�
Tro

No∑

ν ′=1

( ∫ t

0
[F̂ τ−t

ν ′ , ρ̂τ−t (τ )]{X̂ν, X̂
τ−t
ν ′ } dτ

)

− 1

2Mνων

Tro
( ∫ t

0
{F̂ τ−t

ν , ρ̂τ−t (τ )} sinων(τ − t) dτ
)
, (5.21)

which is exact.
We can apply a similar strategy to λ̂ν(t), and insert the full DM (5.4) into its

definition to get

λ̂ν(t) = − 1

i�
Tro

(
P̂ν

∫ t

0

No∑

ν ′=1

[F̂ τ−t
ν ′ X̂ τ−t

ν ′ , ρ̂τ−t (τ )] dτ
)

(5.22)

With analogous steps as above, we have

λ̂ν(t) = − 1

2i�
Tro

No∑

ν ′=1

( ∫ t

0
[F̂ τ−t

ν ′ , ρ̂τ−t (τ )]{P̂ν, X̂
τ−t
ν ′ } dτ

)

− 1

2i�
Tro

No∑

ν ′=1

( ∫ t

0
{F̂ τ−t

ν ′ , ρ̂τ−t (τ )}[P̂ν, X̂
τ−t
ν ′ ] dτ

)
(5.23)

that, with the use of Eq. (5.15) and

No∑

ν ′=1

[P̂ν, X̂
τ−t
ν ′ ] = −i� cosων(τ − t)δνν ′ (5.24)

acquires this exact form

λ̂ν(t) = − 1

2i�
Tro

No∑

ν ′=1

( ∫ t

0
[F̂ τ−t

ν ′ , ρ̂τ−t (τ )]{P̂ν, X̂
τ−t
ν ′ } dτ

)

+ 1

2
Tro

( ∫ t

0
{F̂ τ−t

ν , ρ̂τ−t (τ )} cosων(τ − t) dτ
)
. (5.25)

These exact forms for μ̂ν(t) and λ̂ν(t) could already be plugged into the EOM of
ρ̂e and Nν . The resulting set of equations would be formally exact but it could not
be time evolved in simulations yet, due to the presence of expensive time integrals
and the unknown anticommutator factors that they contain. The terms involving
{X̂ν, X̂

τ−t
ν ′ } and {P̂ν, X̂

τ−t
ν ′ } are challenging as they have no exact closed form. They

require approximations.
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5.3 The Approximations

Tomake the set of equations tractable, we devise an approximate scheme to make the
time evolution of the equations suitable for simulation. This scheme has the difficult
task to make the equations lose enough complexity for the problem to be manageable
and, at the same time, to keep enough information for the relevant physics of the
electron–phonon processes to be preserved.

We make three approximations. First, in Eqs. (5.21) and (5.25) (but not earlier),
we decompose the full system DM into ρ̂(τ ) � ρ̂e(τ )ρ̂o(τ ). This retains electron–
phonon correlation exactly to lowest order in the coupling F̂ν , and approximately
to higher order, in analogy to the self-consistent Born approximation [2]. If this
decomposition were applied before (e.g. in the definition of μ̂ν , before the insertion
of (5.4)), the resulting loss of correlation would be much more significant and it
would make the method equivalent to Ehrenfest dynamics.

Second, after taking oscillator traces, we retain only terms diagonal in ν, sup-
pressing phonon-phonon correlation.4 Indirect interactions between phonons can
still take place, with the mediation of the electronic subsystem.5 Third and last,
we neglect terms of the form6 Tro(âν âν ρ̂

τ−t
o (τ )), Tro(â†ν â

†
ν ρ̂

τ−t
o (τ )), retaining only

single-phonon processes and excluding anharmonicity. This approximation can be
understood as a restriction to a low electron–phonon coupling regime, where high
order processes such as double (de)excitations are less relevant.

We single out part of the first term of Eq. (5.21) and apply the above approxima-
tions, getting

Tro

No∑

ν ′=1

(
{X̂ν, X̂

τ−t
ν ′ }ρ̂τ−t (τ )

)
� Tro

No∑

ν ′=1

(
{X̂ν, X̂

τ−t
ν ′ }ρ̂τ−t

o (τ )
)
ρ̂τ−t
e (τ )

� �

2Mνων

Tro
({

â†ν + âν, â
†
νe

iων(τ−t) + âνe
−iων(τ−t)

}
ρ̂τ−t
o (τ )

)
ρ̂τ−t
e (τ )

� �

Mνων

(2Nν(τ ) + 1) cosων(τ − t) ρ̂τ−t
e (τ ) (5.26)

where in the first line we have used the decomposition of the DM, in the second line
Eqs. (5.19) and (5.7) and the suppression of correlation between different oscillators
and in the third line we ignored double (de)excitations.7 With this approximated

4Even if there is no explicit phonon-phonon interaction in the model Hamiltonian (5.1), phonon
interaction appears in the dynamics of electronic operators μ̂ν(t) and λ̂ν (t).
5For example, the dynamics of phonon 1 can influence the dynamics of the electrons, that, in turn,
determine the time evolution of phonon 2.
6In Appendix D, we show that it is possible not to invoke this approximation, within the framework
of ECEID xp from Chap.9.
7It can be seen that the expression Tro(â†ν âν ρ̂

τ−t
o (τ )) is equal to Nν(τ ) = Tr(N̂ν ρ̂(τ )) by using

Eq. (5.12), permuting factors in the trace and noting that [Ĥ0, N̂ν ] = 0. It is also trivial to verify
that Nν(τ ) = Tro(N̂ν ρ̂o(τ )). After splitting the full trace in the definition N (τ ) = Tr(N̂ν ρ̂(τ )), we
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expression, Eq. (5.21) becomes

μ̂ν(t) = i

Mνων

∫ t

0

(
Nν(τ ) + 1

2

)
[F̂ τ−t

ν , ρ̂τ−t
e ] cosων(τ − t) dτ

− 1

2Mνων

∫ t

0
{F̂ τ−t

ν , ρ̂τ−t
e } sinων(τ − t) dτ (5.27)

Correspondingly, part of the first term of λ̂ν(t) from Eq. (5.25) can be approxi-
mated to

Tro

No∑

ν ′=1

(
{P̂ν, X̂

τ−t
ν ′ }ρ̂τ−t (τ )

)
� Tro

(
{P̂ν, X̂

τ−t
ν }ρ̂τ−t

o (τ )
)
ρ̂τ−t
e (τ )

� � (2Nν(τ ) + 1) sinων(τ − t) ρ̂τ−t
e (τ ) (5.28)

with the use of Eqs. (5.19) and (5.8). After some rearrangements, Eq. (5.25) is
approximated to

λ̂ν(t) = −1

i

∫ t

0

(
Nν(τ ) + 1

2

)
[F̂ τ−t

ν , ρ̂τ−t
e (τ )] sinων(τ − t) dτ

+ 1

2

∫ t

0
{F̂ τ−t

ν , ρ̂τ−t
e (τ )} cosων(τ − t) dτ. (5.29)

With these approximations we are one step closer to a system of equations of
motion that can be simulated in real time. There is one last obstacle to overcome
before we can include μ̂ν(t) and λ̂ν(t) in ρ̂e(t) and Nν(t): how to simulate the time
integrals. The integrals appearing in Eqs. (5.27) and (5.29) present strong similarities.
They contain commutators and anticommutators of the same quantities and some
oscillator-dependent phases. Their evolution can be coupled and controlled by a new
set of operators, as we see in next section.

5.4 ECEID’s Equations of Motion

Weintroduce four auxiliary electronic operators (Ĉc
ν , Â

c
ν, Ĉ

s
ν, Â

s
ν) for everyoscillator,

defined8 as

apply the electronic trace to the full systemDM Nν(τ ) = Tro
(
N̂νTre(ρ̂(τ ))

)
, hence the proposition

is verified.
8The logic behind the naming of these operators takes into account that the operators Ĉc,s

ν contain
a commutator, whereas Âc,s

ν have an anticommutator; Ĉc
ν , Â

c
ν present a cosine and Ĉs

ν , Â
s
ν a sine.
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Ĉc
ν(t) =

∫ t

0
(Nν(τ ) + 1

2 ) [F̂ τ−t
ν , ρ̂τ−t

e (τ )] cosων(τ − t) dτ (5.30)

Âc
ν(t) = 1

2

∫ t

0
{F̂ τ−t

ν , ρ̂τ−t
e (τ )} cosων(τ − t) dτ (5.31)

Ĉ s
ν(t) =

∫ t

0
(Nν(τ ) + 1

2 ) [F̂ τ−t
ν , ρ̂τ−t

e (τ )] sinων(τ − t) dτ (5.32)

Âs
ν(t) = 1

2

∫ t

0
{F̂ τ−t

ν , ρ̂τ−t
e (τ )} sinων(τ − t) dτ. (5.33)

In terms of these operators, Eqs. (5.27) and (5.29) can be written in a very compact
way as

μ̂ν(t) = 1

Mνων

(i Ĉc
ν(t) − Âs

ν(t)) (5.34)

λ̂ν(t) = iĈ s
ν(t) + Âc

ν(t). (5.35)

Their time dependency is entirely described by the auxiliary operators.
The evolution of the auxiliary operators can be obtained simply by taking the time

derivative of their definition. The resulting EOM

˙̂Cc
ν(t) = − i

�
[Ĥe, Ĉ

c
ν(t)] + ωνĈ

s
ν(t) + (Nν(t) + 1

2 )[F̂ν, ρ̂e(t)] (5.36)

˙̂C s
ν(t) = − i

�
[Ĥe, Ĉ

s
ν(t)] − ωνĈ

c
ν(t) (5.37)

˙̂Ac
ν(t) = − i

�
[Ĥe, Â

c
ν(t)] + ων Â

s
ν(t) + 1

2
{F̂ν, ρ̂e(t)} (5.38)

˙̂As
ν(t) = − i

�
[Ĥe, Â

s
ν(t)] − ων Â

c
ν(t) (5.39)

are coupled and can be solved numerically. They all contain a Liouville-like com-
mutator term and an harmonic term. The EOM of operators Ĉc

ν and Âc
ν also present

driving terms that depend on the electron–phonon coupling and the electronic DM.
We discuss the physical meaning of these terms in Sect. 7.3.

If the dynamics of μ̂ν(t) and λ̂ν(t) is entirely determined by the auxiliary opera-
tors, the dynamics of ρ̂e(t) and Nν(t) depends on μ̂ν(t) and λ̂ν(t). We rewrite their
EOM here for completeness

˙̂ρe(t) = 1

i�
[Ĥe, ρ̂e(t)] − 1

i�

No∑

ν=1

[F̂ν, μ̂ν(t)] (5.40)

Ṅν(t) = 1

�Mνων

Tre
(
F̂ν λ̂ν(t)

)
. (5.41)
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Fig. 5.1 Schematic representation of the EOM and their mutual dependency

The set of Eqs. (5.34)–(5.41) represents the required closed system of equations
which, given an initial condition, can be integrated in time to simulate the evolution
of the whole system. In Fig. 5.1 we sketch the linked time evolution of the quantities
in ECEID, to give an idea of how ECEID dynamics unfolds. These EOM conserve
total energy, as we prove in Sect. (5.6).

5.5 From Many-Electron to One-Electron Equations
of Motion

Throughout the derivation above we did not make any assumption about the form of
the electronic operators that can be as general as one requires and can, in principle,
involve many-body operators.

To be able to apply the method to systems with large numbers of DOF and sim-
ulate them, we must express the EOM in one-electron form. We do this by tracing
out all but one electron, with the application of NeTre,2,...,Ne , where Ne is the total
number of electrons in the system. We choose Ĥe and F̂ν to be one-body operators,
neglecting electron-electron interaction. Because of this, all other electronic opera-
tors in the EOM can be replaced by their one-electron counterparts, except for the
anticommutator term in Eq. (5.38) {F̂ν, ρ̂e}.

Following [1], that term transforms into

{F̂ (1)
ν (1), ρ̂(1)

e (1)} + 2Tre,2
(
F̂ (1)

ν (2)ρ̂(2)
e (1, 2)

)
(5.42)

where superscripts (1) and (2) denote respectively one- and two-electron operators.
The simplest decoupling for the two-particle DM is

ρ̂(2)
e (12, 1′2′) = ρ̂(1)

e (11′)ρ̂(1)
e (22′) − ρ̂(1)

e (12′)ρ̂(1)
e (21′), (5.43)
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which is valid for independent electrons. Using this decomposition in Eq. (5.42), we
obtain the one-electron expression

{F̂ν, ρ̂e(t)} − 2ρ̂e(t)F̂ν ρ̂e(t), (5.44)

where now ρ̂e(t) is the one-electron DM. In Appendix A the derivation of the many-
electron to one-electron projection is discussed in more detail.

In the derivation of Eq. (5.44), we ignored the additional term ρ̂e(t)Tre(F̂ν ρ̂e(t))
that corresponds to the so-called “Hartree” diagram in NEGF treatments of electron–
phonon interactions [3], and is related to the motion of the oscillator centroid, a
mean-field property. The accuracy of (5.43) reduceswith increasing electron–phonon
coupling; further corrections to this approximation are discussed in [4]. Screening
can be included in a one-electron mean-field picture within a Hartree-Fock scheme
following [4], or in a time-dependent density-functional framework [5].

5.6 Total Energy Conservation

We introduce the total energy E = Ee + Eo + Ec, where Ee = Tre(Ĥeρ̂e(t)), Eo =∑
ν �ων(Nν(t) + 1/2) and Ec = −∑

ν Tre(F̂νμ̂ν(t)), and we show that it is identi-
cally conserved by ECEID’s EOM.

The time-derivative of the total energy of the system is

Ė = Tre(Ĥe
˙̂ρe(t)) +

No∑

ν=1

(
�ων Ṅν(t) − Tre(F̂ν

˙̂μν(t))
)

. (5.45)

Plugging Eq. (5.5) into the first term of Eq. (5.45) and using Eq. (5.34), we get

− 1

Mν�ων

Tre
(
[F̂ν, Ĉ

c
ν]Ĥe + i[F̂ν, Â

s
ν]Ĥe

)
. (5.46)

With Eq. (5.41), the second term of Eq. (5.45) becomes

1

Mν

Tre
(
iF̂νĈ

s
ν + F̂ν Â

c
ν

)
. (5.47)

Using the time derivative of Eq. (5.34) together with Eqs. (5.36) and (5.39), the third
term of Eq. (5.45) can be written as

− 1

Mν�ων

Tre
(
F̂ν

[
Ĥe, Ĉ

c
ν

]
+ iF̂ν

[
Ĥe, Â

s
ν

])
− 1

Mν

Tre
(
iF̂νĈ

s
ν + F̂ν Â

c
ν

)
.

(5.48)
Summing (5.46), (5.47) and (5.48) we obtain total energy conservation Ė = 0.
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Fig. 5.2 A typical system where the OB method is applied [6]: a central region of a nanowire is
coupled to its left and its right to leads that, in turn, are connected to probes with a set chemical
potentials μL/R and population distributions fL/R

5.7 Open Boundaries in ECEID

In the derivation above, the number of electrons is fixed. The ECEID’s EOMdescribe
the evolution of a closed system. It is possible to allow electron injection and extrac-
tion by coupling the system to external reservoirs.We implement anOpenBoundaries
(OB) setup by following the multiple probes OBmethod derived in [6]. More details
about its derivation and its implementation can be found in Appendix B.

Weconsider a nanowire,whose central region is connected to a left and a right lead,
as shown in Fig. 5.2. The central region contains the vibrational DOF and is the area
where the dynamical scattering and the electron–phonon energy exchanges occur.
The leads are usuallymetallic and someof their sites are connected to external probes,
acting as particle baths. This setup effectively screens the finite size of the leads by
broadening their discrete levels into a continuous spectrum. In thewide band limit for
the external baths [6], the system’s embedding self energy is �̂± = ∓(i	/2)( ÎL + ÎR)

where 	 sets the coupling to the baths and ÎL/R are the identity operators over the
left/right regions coupled to the baths. We are using an orthonormal real space basis
throughout.

The introduction of the OB transforms Eq. (5.5) into [6]

i� ˙̂ρe(t) = [Ĥe, ρ̂e(t)] −
No∑

ν=1

[F̂ν, μ̂ν(t)] + �̂+ρ̂e(t) − ρ̂e(t)�̂
−

︸ ︷︷ ︸
extraction

+
∫ ∞

−∞

(
�̂<(E)Ĝ−

S (E) − Ĝ+
S (E)�̂<(E)

)
dE

︸ ︷︷ ︸
injection

(5.49)
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where �̂+ρ̂e(t) − ρ̂e(t)�̂− represents electron extraction and the last term portrays
electron injection. The injection integral involves the retarded (advanced) Green’s
function for the lead-sample-lead system Ĝ+(−)

S (E) in the presence of the baths
and the quantity �̂<(E) = 	

2π ( fL(E) ÎL + fR(E) ÎR), where fL(R)(E) are the desired
incoming electronic distributions. These could describe a conventional applied elec-
trochemical bias or also electron beams targeted at specific energies.

In Appendix B, we show an explicit form of the injection integral for zero temper-
ature electronic distributions. In the examples in the following chapters we choose
fL(R)(E) to be fixed at zero temperature, but it would be possible to choose them at
a finite temperature. If fL(E) and fR(E) had different temperatures, ECEID could
be used to simulate electron injection due to a thermal imbalance between the reser-
voirs. At a later stage, in Sect. 6.2, we will introduce a damping mechanism of the
auxiliary operators based on 	, to mimick extended systems without the extra cost.

5.8 Implementing ECEID in a Computer Simulation

The ECEID method has been implemented in a Fortran 90 code called ElPh that
is available in the repository https://bitbucket.org/gilgalad/eceid. It integrates the
ECEID EOM using a leapfrog algorithm, which, for stability purposes, is alternated
with a single Euler integration step (typically every 100 timesteps). The timestep
is imposed by the very fast electronic dynamics and typically is of the order �1
attosecond, whereas our simulations intend to probe the time evolution of phonons,
which can require times exceeding 1 picosecond.

The need to simulate millions of timesteps makes the code’s efficiency a priority,
therefore, optimizing the expensive operations within each timestep is an essential
requirement. The most time consuming operation in ECEID is matrix-matrix multi-
plication, which normally has a O(n3) cost for dense n × n matrices. The electron–
phonon coupling operator F̂ appears often in the EOM and, in our calculations,
it usually features only a few non-zero elements, in the real-space basis. To speed
up matrix-matrix multiplications, we developed ad hoc routines that involve sparse
matrices, such as F̂ or Ĥe. We store the non-zero elements of the sparse matrices and
their coordinates and we compute multiplications by determining only the non-zero
components of the final matrix. These routines tend to scale as O(n2) and greatly
reduce the code’s computational time. The speeding up effect when compared to
standard multiplication routines is substantial, especially for large matrices.

One of the motivations that has driven the development of ECEID is to have a
method that scales well with the number of oscillators. Therefore it is paramount for
ElPh to deal with many oscillators in an efficient way. Each oscillator is defined in
a structure, a feature of Fortran analogous to an object in C++. Thanks to the form
of ECEID’s EOM, OpenMP could be employed to make the code parallel. During
every timestep, the dynamics of each oscillator-specific variable is computed inde-
pendently in a thread.When all the oscillator variables are determined, the electronic

https://bitbucket.org/gilgalad/eceid
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DM is evolved and the program goes one timestep forward. The linear scaling with
the number of oscillators is an intrinsic feature of the method. This procedure can
produce some overhead if an oscillator’s variables take more time than the other ones
to compute. We investigate the impact of overhead and the code’s performance in
Sect. 6.5.

The shared memory design of the OpenMP instructions makes the code usable
only on single machines. A thread has access to a global memory area where the
global variables are stored, such as constants or the electronic DM ρ̂e(t), and a local
memory where there are oscillator ν specific quantities. The threads have different
read and write restrictions on the memory, but in OpenMP both the global and the
local memory lie in partitions of the memory of the same machine. This shared
memory design is efficient when there is a frequent data transfer between threads,
such as at the end of every timestep, when the evolution of ρ̂e(t) is determined by
the dynamics of all the oscillator-specific μ̂ν(t).

Another widely employed solution to parallelism is a private memory design such
as MPI. Codes with MPI can be run by different processes on different machines and
every process has a private amount ofmemory to its exclusive use. Processes commu-
nicate with each other through data transfer that is achieved by specific instructions.
In principle, ElPh can be implemented in MPI, but it would be very challenging.
The frequent data exchange at the end of every short timestep could easily become
a bottleneck and would require a very careful optimization of the communication
between processes. A further exciting possibility to implement parallelism efficiently
is the use of coarrays in Fortran 2003.

A performance analysis of the code is provided in Sect. 6.5, with a focus on the
scaling with a varying number of electronic sites and oscillators.

5.8.1 Code Breakdown

Here follows a schematic breakdown of the program components and their func-
tionality. A typical simulation consists of compiling the program with make, execut-
ing the geometry setup with ./diagH and running the program with ./elph. I invite
those who are interested in the method and its implementation to contact me at
vrizzi01@qub.ac.uk.

modvar.f90 contains the system’s parameters that determine its geometry and
details of the observables that can bemeasured during the simulation. For example,
there is the number of electronic sites and oscillators, and the sites where the
current is evaluated. It also stores physical constants and structure definitions.
Changing this file requires the program to be recompiled with make.

input.dat keeps data involving different oscillators on different lines. The 4
columns of line ν in the file correspond respectively to oscillator ν’s electron–
phonon coupling modulus Fν (in eV/Å), initial oscillator occupation Nν(0), fre-
quency �ων (in eV) and mass Mν (in a.m.u.). This data is read at the start of every
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execution of the program. A change in this file does not require a recompilation
of the program.

diagH.f90 this program, when executed, sets up the geometry of the system and
stores it in files that will be read by the main program elph.f90. It creates matrices
with Ĥe, F̂ν and ρ̂e(0). It must be always executed before elph.f90.

elph.f90 is the main program where the ECEID EOM are evolved in time and
the observables are evaluated. For example, in a thermalization simulation the
electronic and oscillator temperatures are measured, while in an electron injection
simulation the observables typically are the current, themeanoscillator occupation
and the electronic levels occupation.

steady.f90 here some accessory quantities are evaluated such as the system’s elas-
tic transmission, the elastic current, and the local density of states.

constx3l.f90 contains theparameters for the exact calculations proposed inChap.6.
There ECEID is applied to problems containing a few degrees of freedom and
compared to exact solutions.

x3l.f90 is the programwhere the exact dynamics of small electron–phonon systems
is solved in the presence of 1 oscillator, with a truncation in N space.

x3l2o.f90 solves the electron–phonon problem exactly for geometries with 2 oscil-
lators.

toydiffusion.f90 contains a simulation of the kinetic model presented in Chap.7.
It is used to rationalize the dynamics of the electronic levels during thermalization.

makefile compiles the set of programs.
Releasenotes.txt keeps track of the changes in the different releases of the code

and briefly explains how to use the new features.
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Chapter 6
ECEID Validation

In this chapter we validate ECEID by examining a number of applications to test
it. First, we employ an exact simulation and compare results with ECEID on small
closed systems to check the range of validity of the approximations in the method
and to find limits where ECEID approaches the exact solution. Then we validate the
open boundaries setup by recovering the Landauer two terminal limit for a perfect
nanowire and by testing Joule heating. By varying the wire length and keeping a
constant density of oscillators, we recover a Ohm’s lawmicroscopically and compare
it to perturbative results. We add elastic scattering to the picture with the inclusion
of onsite disorder. At last, we test ECEID’s scaling with performance tests.

6.1 Comparison with an Exact Simulation

The size of the one-electron full quantum problems described by the model Hamil-
tonian (5.1) is determined by the number of electronic states Ne and the number
of oscillators No. After setting a cutoff NC in phonon space,1 the finite size of the
system operators is s = Ne · NNo

C . For systems with a few degrees of freedom, s is
not too large and exact simulations can be employed to evaluate the dynamics of the
system. Obviously, such problems can also be simulated with ECEID. The possibil-
ity of comparing exact simulations with ECEID allows one to explore the ECEID
approximations and the range of their validity.

The exact evolution of the initial full DM ρ̂(0) is determined by

ρ̂ex(t) = e− i
�
Ĥ t ρ̂(0)e

i
�
Ĥ t (6.1)

1NC is the truncation of the oscillator’s basis and represents the maximum allowed Nν(t), for any ν.
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Fig. 6.1 Sketches of the systems used in the comparison tests between ECEID and an exact simu-
lation. In a, a 2-level system coupled to a single oscillator. In b, a 3-level systemwith two oscillators
coupling level 1 to level 2 and level 2 to level 3. In c, a multi-level system that takes the system in
panel (b) and transforms its level 2 into a chain of 5 coupled levels. In all cases, the initial condition
on the electron is on level 1

for all times t . The numerical simulation of (6.1) requires the diagonalization of Ĥ
and the projection of the initial ρ̂(0) on the Hamiltonian’s eigenstates. The quality
of the solution depends on the truncation in phonon space, therefore convergence
tests in NC are necessary to reach the desired level of precision. For large systems,
the computational cost of this approach soon becomes unmanageable as the compu-
tational size scales exponentially with the number of oscillators. As a rule of thumb,
a tractable choice is s � 1000. In Fig. 6.1, we show a sketch of the systems that we
employ in the examples below.2 They include at most 2 oscillators.

The limitation in system size is not a problem for the purpose of validating ECEID.
Small quantum systems present high levels of coherence that are very challenging
to reproduce for approximate methods. ECEID’s validation focuses on the ability
of the method to capture the dynamics of inelastic electronic transitions. The small

2The initial condition mentioned in Fig. 6.1 limits the initial response to just one process, phonon
absorption, and was chosen for consistency among the different systems tested. Starting from an
upper level would allow an initial phonon emission.
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systems in Fig. 6.1 represent an ideal test bed. In the examples, the oscillators always
have M = 0.5 amu and �ω = 0.2 eV.

6.1.1 An Exact Limit on a 2-Level System with 1 Oscillator

The simplest system in the test is shown in Fig. 6.1a and is a 2-level system. Two
electronic levels |1〉 and |2〉 with respective onsite energies E1 = 0 and E2 = E
are coupled to an oscillator by F̂ = F

(|1〉〈2| + |2〉〈1|). The initial phonon mode
occupation is N (0) = N .

When the levels and the oscillator are in resonance E = �ω = 0.2 eV and in the
limit F −→ 0, the eigenspectrum of the full system consists of degenerate couples
of states |a〉 = |1, N 〉 and |b〉 = |2, N − 1〉. When F is finite, the electron phonon
coupling V̂ = −F̂ X̂ generates a coupling between the levels

Vab = 〈a|V̂ |b〉 = −F

√
�N

2Mω
(6.2)

that breaks the degeneracy. Provided that F is small, the electron phonon coupling
acts as a small perturbation Vab � E and the most relevant states in the dynamics of
the system still consist of states |a〉 and |b〉. Such systems can be solved analytically
and their solution oscillates harmonically between the 2 states with a Rabi frequency
ωR = |Vab|/�.

We performed simulation starting from state |a〉 for a number of F and N . For
example, in Fig. 6.2a is shown a resonant case with F = 0.05 eV/Å and N = 1.
The exact simulation displays complete oscillations of population at a frequency ωR ,
while ECEID shows long lived oscillations with a slightly faster frequency and less
complete population oscillations, when compared to the exact case.

It is natural towonder if there is a limit inwhich ECEID tends to the exact solution.
Assuming that |Vab| � E , the system’s dynamics can be described by the following
time-dependent linear combination a(t)|a〉 + b(t)|b〉. Checking the exact form of
μ̂(t) in Eq. (5.21), it is possible to see that, if the full DM contains only oscillator
states |N 〉 and |N − 1〉 (as is the case for |a〉 and |b〉), the operators ââ and â†â† that
arise from {X̂ , X̂ τ−t } give zero contribution.

Therefore, after the application of the oscillator trace, the first term of Eq. (5.21)
can be written exactly as

i

Mω

∫ t

0
e

i
�
Ĥe(τ−t)

[
F̂,

(
N (τ ) + 1

2

)∣∣a(τ )
∣∣2|1〉〈1| +

(
N (τ ) − 1

2

)∣∣b(τ )
∣∣2|2〉〈2|

]

e− i
�
Ĥe(τ−t) cos(ω(τ − t)) dτ. (6.3)

By comparing Eq. (6.3) with its ECEID equivalent (the first term of Eq. (5.27)), we
see that the two are identical in the limit of large N . A similar reasoning can be
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Fig. 6.2 Panel (a)–(b) show the dynamics of electronic level |1〉 in the 2-level system for ECEID
(dotted blue) and the exact solution (solid green). In panel (a) the phonon starts from N = 1, while
in panel (b) from N = 10. Panel (c) displays the population oscillation main frequency for a range
of F and N in ECEID (dotted) and in exact simulations (solid) of a resonant system. They are
compared with the relative Rabi frequencies (dashed). Panel (d) is the same as (c), for simulations
of an off-resonant system with E = 0.150 eV

applied to the EOM for Ṅ . The limit of small Vab and large N is a clear strategy for
systematic convergence to the solution case on a 2-level system. In Fig. 6.2b we test
the same system as in (a), with N = 10 and we see that ECEID dynamics is indeed
converged and superimposable to the exact case.

Next, we test several combinations of F and N , derive the main oscillation fre-
quency with a Fourier transform of the level dynamics, and in Fig. 6.2c show a
comparison between ECEID, exact simulations and Rabi frequencies. The level cou-
pling is proportional to F and

√
N , so, for the limit to be satisfied, a balance must be

reached between F and N . For each F , there is a best N that strikes a compromise
between a low enough Vab and a high enough N .

For low F (F = 0.01 eV/Åand F = 0.02 eV/Å) the frequency agreement is good
throughout the N range. For F = 0.05 eV/Å, the optimal N is about N = 10, as
Fig. 6.2b indicated. For higher F (F = 0.10 eV/Å and F = 0.20 eV/Å) the optimal
N decreases, becoming respectively about N = 5 and N = 3.We notice that in most
cases the Rabi frequency matches the exact frequency, except for the case of high
F and N . In that case Vab is so large that the two-level assumption breaks down
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Fig. 6.3 ECEID (dotted) and exact (solid) simulations of a 3-level system with 2 oscillators as
sketched in Fig. 6.1b. F1,2 = 0.05 eV/Å and N1,2 = 10. The dynamics of electronic level |1〉 is in
the top panel, level |2〉 in the central one and level |3〉 in bottom one

and more levels become relevant to the dynamics. The system dynamics cannot be
described by 2-level Rabi oscillations any more.

We perform the same set of simulations for an off-resonance case with E = 0.150
eV and in Fig. 6.2d show the main oscillation frequencies from ECEID and the exact
simulations. For low F the dominant transition mechanism has a frequency close to
the off-resonance offset �ω − E = 0.05 eV for all considered N . For a higher F ,
the frequencies increase and there is a shift between the main frequency in ECEID
and the exact simulations, with the frequency in ECEID being higher. For F =
0.20 eV/Å the electron-phonon coupling becomes again the dominant mechanism
and the frequencies from both simulations show a behaviour comparable to the
resonant case.

6.1.2 Extension to a 3/Many-Level System with 2 Oscillators

The 2-level system offered the possibility to test two of the three ECEID approxi-
mations: the decoupling of the DM and the omission of double (de)excitations. To
include the remaining approximation in the picture, i.e. the omission of explicit inter-
action between different oscillators (the second approximation in Sect. 5.3), we need
to introduce at least one other oscillator in the system.

The simplest realization is a 3-level system with energies E1 = −E = −0.2 eV,
E2 = 0, E3 = E = 0.2 eV and two oscillators coupling level 1 to level 2 and level
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2 to level 3, as drawn in Fig. 6.1b. The oscillators are identical and have electron-
phonon coupling operators F̂1 = F1

(|1〉〈2| + |2〉〈1|) and F̂2 = F2
(|2〉〈3| + |3〉〈2|),

in analogy with the previous case.
We simulate a scenario equivalent to the onewhere therewas the best agreement in

the previous case: F1,2 = 0.05 eV/Å and initial occupations N1,2 = 10. In Fig. 6.3
we show the dynamics of the electronic levels. States |1〉 and |3〉 display a good
agreement between ECEID and the exact simulation in terms of oscillation frequency
and, to a lesser degree, of population occupation. The agreement for state |2〉 is not
as close.

Similarly to the 2-level case, it is possible to solve the system analytically
to determine a limit where ECEID converges to the exact case. Assuming again
that the electron-phonon coupling energy scale is smaller than the level spacing

F1,2

√
�N1,2

2Mω
� E , the system eigenstates condense into groupsmade of 3 levels |a〉 =

|1, N1, N2〉, |b〉 = |2, N1 − 1, N2〉, |c〉 = |3, N1 − 1, N2 − 1〉. An analytic solution
for such a system is a linear combination of these states a(t)|a〉 + b(t)|b〉 + c(t)|c〉.
Checking the exact Eq. (5.21), it is evident that mixed operators â1â2 and â

†
1 â

†
2 appear

and have a non-zero contribution.
Proceeding with the derivation and comparing the ECEID form of μ̂1/2 with the

exact one, we notice that the previous term (6.3) appears again in the exact case,
together with other terms3 proportional to a∗(t)c(t) or a(t)c∗(t) that are not present
in ECEID. To make ECEID converge to the exact case, all extra terms must go to
zero. The previous condition of low F and high N is still valid, but it is not enough
to have exact convergence here, as the results in Fig. 6.3 highlighted.

The easiest way to reduce the influence of the extra terms, is to devise system
geometries where the simultaneous occupation of state |a〉 and |c〉 is minimal. Start-
ing from the 3-level system under investigation here, a possibility is to transform
electronic level 2 into an N-level chain with hopping 1 eV. The chain starts on level
21 and ends on site 2C . An electron on level 1 would inelastically hop on 21 and prop-
agate along the chain. If the chain is long enough, by the time the electron reaches the
end and inelastically hops on level 3, the population of 1 would be largely depleted.

3The extra terms for μ̂1 are

i

2Mω
F1

∫ t

0
dτ(N (τ ) + 1) cos(ω(τ − t))

(
c∗(τ )a(τ )eiω(τ−t)|2〉〈1| − c(τ )a∗(τ )e−iω(τ−t)|1〉〈2|

)

+ 1

2Mω
F1

∫ t

0
dτ(N (τ ) + 1) sin(ω(τ − t))

(
c∗(τ )a(τ )eiω(τ−t)|2〉〈1| + c(τ )a∗(τ )e−iω(τ−t)|1〉〈2|

)

and for μ̂2

i

2Mω
F2

∫ t

0
dτ(N (τ ) + 1) cos(ω(τ − t))

(
− c∗(τ )a(τ )eiω(τ−t)|3〉〈2| + c(τ )a∗(τ )e−iω(τ−t)|2〉〈3|

)

− 1

2Mω
F2

∫ t

0
dτ(N (τ ) + 1) sin(ω(τ − t))

(
c∗(τ )a(τ )eiω(τ−t)|3〉〈2| + c(τ )a∗(τ )e−iω(τ−t)|2〉〈3|

)
.
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dynamics of level 1 is in the top panel, followed by the first level of the chain 21, the last one 25
and level 3 in the bottom panel
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Fig. 6.5 The same simulations as in Fig. 6.4, with C = 70 levels

We test this idea on a chain with C = 5, as sketched in Fig. 6.1, and show the
resulting level dynamics in Fig. 6.4. The improvement is not very large when com-
pared to the 3-level system in Fig. 6.3: the chain is too short. We then try a longer
chain with C = 70 and plot the level occupations in Fig. 6.5.
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In this simulation the level dynamics behaves as expected. The electron slowly
leaks away from level 1. After about 250 fs, it reaches the far end of the chain
and slowly populates level 3, while level 1’s population is close to zero. After that,
the electron is reflected back and at about 500 fs returns to level 1. The agreement
between ECEID and the exact simulation is evident and very remarkable: the curves
representing the level dynamics are at times so close that they cannot be distinguished.
Moreover, the agreement is not limited to initial times but it carries over for long
times, aftermany reflections and inelastic events. These simulations validate the limit
derived above and provide a starting point for further simulations.

6.2 Mimicking an Extended System and Energy
Conservation

The small systems that we described in the previous section are ideal for compari-
son with exact quantum solutions and could be replicated experimentally within well
controlled and isolated setups, such as quantum dots [1]. The coherence of those sys-
tems is extremely sensitive to the environment: even a small external perturbation can
drastically change their dynamics. ECEID has been developed to simulate extended
systems that are not thought to be isolated from the environment, but interact with
it. Small and controlled systems are an invaluable test bed for the inner workings of
ECEID, but do not represent a typical system upon which ECEID is applied.

A typical setup where we apply ECEID is a nanowire, such as the one in Fig. 6.9
or Fig. 7.1, where a central region with phonons is coupled to leads. The leads act
as an environment where the central region is immersed. In principle they should be
semi-infinite, but, for computational reasons, they must be finite. The longer they
are, the finer their energy level spacing and the better they resemble semi-infinite
systems. To help mimic an extended (infinitely large) system, without the extra cost
from extremely long leads, we introduce a quantity that takes care of the decoherence
introduced by the environment in the leads and provides the needed level-broadening.

We replace [Ĥe, Q̂] in Eqs. (5.36–5.39) by Ĥ� Q̂ − Q̂ Ĥ †
� where Q̂ = (Ĉc

ν, Â
c
ν,

Ĉ s
ν, Â

s
ν), Ĥ� = Ĥe − i(�/2) Î ′

leads, Î ′
leads is the identity operator acting on (part of)

the leads and� a small real positive quantity. The factor� is analogous to the coupling
to the baths introduced in Sect. 5.7 in the OB. Both factors physically describe the
same embedding of a finite system into an environment, therefore, for simplicity and
physical consistency, we tend to use the same � in both places. We will include �

in the evolution of the auxiliary operators in the examples in this Chapter and the
following ones, unless otherwise stated. In the thermalization simulations in Chap.7,
we verify that once � exceeds the energy-level spacing in the system, the transition
rates resulting from ECEID dynamics become independent of �.
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Fig. 6.6 The test system used in [2], a resonant dimer in an atomic chain. The parameters are in
the text

One could wonder if the introduction of � affects the total energy conservation
proved in Sect. 5.6. The total energy is in fact conserved, provided the damping
self-energy and the electron-phonon coupling F̂ lie in different subspaces. The only
change in Ė = 0 from (5.45) is the third term that,with the introduction of�, becomes

− 1

Mν�ων

Tre
(
F̂ν(Ĥ�Ĉ

c
ν − Ĉc

ν Ĥ
†
�) + iF̂ν(Ĥ� Â

s
ν − Âs

ν Ĥ
†
�)

)
− 1

Mν

Tre
(
iF̂νĈ

s
ν + F̂ν Â

c
ν

)
.

(6.4)
As long as Î ′

leads F̂ν = 0, Ĥ� in Eq. (6.4) can be replaced with Ĥe, hence total energy
conservation is verified.

6.3 Validating the Open Boundaries

To validate the implementation of the OB setup in ECEID, we aim to reproduce
results from the original paper where the OB formalism was developed [2] and to
compare with the exact two-terminal Landauer solution. Such tests are purely elastic
and consider a nanowire with a resonant dimer and no phonons, as in Fig. 6.6. The
inelastic effects that ECEID was developed to describe are often superimposed to
purely elastic effects, therefore the verification of a clear elastic limit is an essential
step in the development of ECEID.

The systemunder analysis has leadswith NL sites coupled to a central regionmade
of ND = 20 sites and a dimer on sites 10 and 11. All hoppings are tchain = −3.88 eV,
except for weak hoppings tc−d = −0.5 eV between sites 9 − −10 and 11 − −12,
which partially isolate the dimer from the rest of the atomic chain. The in-dimer
10 − −11 hopping is tdimer = −3.88 eV. All the leads’ sites are coupled to the probes
by �. A variable bias is applied to the probes, so that an IV curve can be produced
as in Fig. 6.7 [2]. In the limit of long leads and small �, the OB curves get closer and
closer to the exact Landauer case.

In analogywith Fig. 6.7, ECEID is coupled to external baths through theOB setup,
to simulate Eq. (5.49) on the resonant dimer geometry. ECEID is a time-dependent
simulation, so its EOM are propagated until a steady state is reached. Here, the full
system’s Green’s Function is

Ĝ±
S (E) =

(
E ÎS − ĤS − �̂±(E) ± i ÎS�

)−1
. (6.5)
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Fig. 6.7 IV curve of the resonant dimer system from [2]. Different combinations of NL and �

(coloured dots) are compared to the exact Landauer result for semi-infinite leads (solid black line)
and finite leads (dotted black line). In the inset, a typical current time evolution is shown with a
steady state forming after about 10 fs

that, when compared to Eq. (B3) from the OB derivation, includes an extra dephasing
factor � = �/2 on all the system, in agreement with the original derivation of [2].
The resulting IV curve is shown in Fig. 6.8a and is in good agreement with [2].

The inclusion of a further decoherence mechanism through � is, in fact, not
necessary in ECEID. By setting � = 0, we see in Fig. 6.8b that all simulations
converge well to the Landauer limit, even the case with the shortest leads NL = 40
sites and � = 0.75 eV. � will not be included in any calculation in the rest of this
work.

6.4 Joule Heating

We now apply the ECEID method to the conduction problem in a perfect nanowire,
where phonons are inserted as Einstein oscillators in the central region, as shown in
Fig. 6.9.

We simulate a perfect chain with leads made of 40 sites and a central region with
22 sites. All nearest-neighbour hoppings are 1 eV, onsite energies zero and � = 0.75
eV. A variable number of phonons is included in the central region, from none to 10,
with a regular spacing. The electron-phonon coupling has the form
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Fig. 6.8 IV curves of the resonant dimer produced with ECEID. In a a one-to-one comparison with
Fig. 6.7 (a finite � is included). In b, the same calculations as in (a) with � = 0. The two-terminal
Landauer result is shown as a solid black line

F̂ν = Fν

(
|nν + 1〉〈nν | + |nν〉〈nν + 1| − |nν − 1〉〈nν | − |nν〉〈nν − 1|

)
. (6.6)

where nν is the site where phonon ν is located.4 Every oscillator has M = 0.5 amu,
�ω = 0.2eV, F = 1 eV/Å and N (t) = 0. The oscillators are kept frozen at their

4To understand this form of F̂ν , let us consider a perfect chain made of 3 electronic sites, described
by Hamiltonian
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Fig. 6.9 Schematic of a nanowire setup used to test Joule heating. The central region includes
phonons treated as Einstein oscillators. Probes kept at chemical potentials μL/R are attached to the
left/right leads to drive a current through the system
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Fig. 6.10 Dynamics of the current in ECEID simulations on a nanowire with an increasing number
of harmonic oscillators, from none (elastic) up to 10. In these simulations, the phonons start at
N (0) = 0 and are frozen with Ṅ (t) = 0. The two-terminal Landauer limit is indicated with a
dashed black line

initial condition (the ground state) by setting Ṅ (t) = 0 for all times. As a result,

Ĥ =
⎡

⎣
0 t 0
t 0 t
0 t 0

⎤

⎦ .

The presence of an oscillator on site 2 would intuitively change the hoppings t as a function
of the oscillator displacement δx . A displacement towards one site corresponds to an equal and
opposite in sign displacement towards the other site, so that the variation in the Hamiltonian caused
by the oscillator can be written as

δ Ĥ =
⎡

⎣
0 δt

δx 0
δt
δx 0 − δt

δx
0 − δt

δx 0

⎤

⎦ δx .

Defining F̂ = − δ Ĥ
δx , F = δt

δx must be true, hence it is easy to recover the general case in Eq.
(6.6).
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they act as a perfectly efficient heat bath for the electrons. The electrons start at
their ground state with a half-filled band. The current dynamics with the application
of a bias V = 1 V is shown in Fig. 6.10 for a varying number of oscillators. It is
remarkable to notice that the in this case the electrons are scattered by the zero point
motion of the oscillators.

After a short transient of about 10 fs, the current in all ECEID simulations reaches
a steady state. The case with no oscillators does not present any inelastic mechanism
and reaches a steady state current value very close to the upper limit of the Landauer
two-terminal case.5 The introduction of the phonons introduces inelastic scattering
for the electrons flowing in the nanowire, with the effect of reducing the steady state
current. As intuitively expected, an increasing number of oscillators progressively
decreases the final current value.

We now let N (t) evolve in time, repeat the same set of simulations and show the
current in Fig. 6.11a and the average phonon occupation NA(t) = ∑NO

ν Nν(t)/No in
(b). The time required for the current to reach a steady state increases because of
the presence of the phonons that take a finite time to equilibrate during the process.
When a current flows in the nanowire, the initially cold phonons heat up and, in turn,
increase the scattering rate that the electrons perceive. This lowers the current that
tends to reach a lower steady state value than the case with frozen phonons. This is
an example of Joule heating and ECEID captures it.

To investigate the reduction in current in a more quantitative way, a slightly dif-
ferent setup needs to be devised.

6.4.1 A Microscopic Ohm’s Law

We can picture an electron moving in a conductor as a particle that moves semi-
classically between scattering events. In a perfect nanowire the electron does not
encounter any scatterer and its motion is ballistic. When the density of scatterers is
low, the system is in the diffusive regime and the resistance of a nanowire is given
by Ohm’s law [3]

R = r0

(
1 + L

l0

)
, (6.7)

where r0 = �π/e2 = 0.0129Vμ A is the resistance quantum,6 l0 the electron mean
free path (EMFP) and L the length of the wire, in units of electronic sites.

The EMFP caused by a scattering potential V̂ can be estimated perturbatively by
Fermi’s golden rule (FGR)

1

l0
= 2π

�
|〈i|V̂ |f〉|2 df

v
(6.8)

5The values do not coincide because of finite size effects. In the simulations, the leads are finite and
the two-terminal limit is approached by infinitely long leads.
6All the resistance results here will be given in terms of r0.
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Fig. 6.11 The same simulations from Fig. 6.10, with N (t) allowed to change. In a, we show the
current dynamics and in b the time evolution of NA(t)

where |i〉 and |f〉 are the initial and final electronic state,7 df is the final density of
states and v is the electron’s velocity. In the case of inelastic scattering due to a
phonon ν from ECEID’s model Hamiltonian (5.1), the scattering potential is F̂ν X̂ν .

We consider a perfect nanowire whose central region features a variable length
with a constant oscillator density n. The phonons are identical Einstein oscillators and
are localized periodically in the chain on sites nν , with a F̂ν analogous to the one inEq.
(6.6). They all havemassM , characteristic frequencyω and are kept frozen by setting
Ṅν(t) = 0. Their occupation Nν(0) = N (0) determines a collective temperature of

7In a wire with a left to right bias, as in our case, they are left and right propagating plane waves.
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T = (
�ω/kB

)(
N (0) + 1/2

)
. The inelastic EMFP in such a system is

1

linel
= 4F2

a2
n
kBT

Mω2
(6.9)

where a is the hopping in the chain.8 A variable N (t) would change the scattering
rate in time and the inelastic EMFP. Higher occupations N (t) correspond to higher
temperatures and shorter EMFP linel. This supports the observation from last section
where the presence of hot phonons increased the scattering in the nanowire.

We simulate a perfect chain with NL = NR = 50 sites, onsite energies zero, hop-
pings 1 eV,� = 0.5 eV and a fixed bias V = 1V. The initial electronic densitymatrix
corresponds to a half filled band at zero electronic temperature. The central region
has a variable length NC with a constant density of oscillators of 1 oscillator every
3 electronic sites. The simulations include up to 60 oscillators. The oscillators have
F = 0.5 eV/Å, M = 0.5 amu, �ω = 0.2 eV and a constant T = 5159 K (which
corresponds to N (0) = 1.723). The inelastic EMFP from Eq. (6.9) is 32.3 sites. We
run simulations with different central region lengths, obtain a steady state current
and plot the resistance curve in Fig. 6.12.

The resistance as a function of central region length is remarkably linear9 and can
be fitted with Ohm’s law (6.7) to derive the system’s resistivity. By using the per-
turbative EMFP (6.9), it is possible to estimate the resistivity as r0/ linel = 0.0310r0.
This perturbative value is about 2% larger than the result from ECEID. Therefore, in
these simulations, ECEID not only verifies Ohm’s law at amicroscopic level, but also
agrees closely with the expected perturbative resistivity. This non-trivial agreement
is a compelling validation of the physical accuracy of the ECEID method and the
OB implementation.

8To prove this, we start from the energy band in a nearest-neighbour perfect chain E = −2t cosφ,
where φ is a dimensionless momentum. The group velocity is

v = 1

�

dE

dφ
= 2a

�
sin φ . (6.10)

and the density of states is

df = Ne

2π

dφ

dE
= Ne

2π

1

2a sin φ
(6.11)

where Ne is the number of electronic sites. By inserting these quantities in Eq. (6.8), we have

1

l0
= Ne

4a2 sin2 φ
|〈i|V̂ |f〉|2. (6.12)

To evaluate the backscattering of the potential in the main text, we use initial state |φ〉 =
1/

√
Ne

∑Ne
s eiφs|s〉 andfinal state | − φ〉,where s spans the atomic basis.Hence, |〈i|V̂ |f〉|2 becomes

|〈−φ|F̂ |φ〉|2No〈X2〉 = 16F2

N 2
e

No
kBT

Mω2 (6.13)

where No is the number of oscillators. Using these quantities on Eq. (6.12), we obtain Eq. (6.9).
9The R2 that measures the goodness of fit is indeed very close to 1, as indicated in the figure.
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Fig. 6.12 Wire resistance as a function of the length of the wire central region NC. The density
of oscillators n is 1 oscillator every 3 electronic sites. The linear fit of the curve has a slope that
corresponds to the nanowire resistivity. In the limit of a null central region, the ballistic Landauer
result is recovered

6.4.2 Onsite Disorder

We introduce disorder in the central region of the chain to perform a test that includes
both elastic and inelastic scattering. A disorder due to random onsite energies in the
central region of a wire with an half-filled energy band produces the elastic EMFP10

1

lel
= A2

12a2
(6.15)

where A is the amplitude of the disorder, with the onsite energies being sampled
uniformly in the interval [−A , A]. When phonons and onsite disorder are present
at the same time, the total EMFP is determined by both the elastic and inelastic
scattering contributions:

1

ltot
= 1

linel
+ 1

lel
. (6.16)

10To derive Eq. (6.15), one has to go back to Eq. (6.12) and use

|〈−φ|V̂ |φ〉|2 = |
Ne∑

m

Em〈−φ|m〉〈m|φ〉|2 = 1

N 2
e

Ne∑

m

E2
m = 1

Ne
〈�E2〉 (6.14)

where 〈�E2〉 is the variance of the onsite energies, |m〉 is the eigenstate basis of the chain and
|φ〉 = 1/

√
Ne

∑Ne
s eiφs|s〉 is a plane wave on the atomic basis |s〉. By using 〈�E2〉 = A2/3 and

imposing an half-filled band φ = π/2, we obtain Eq. (6.15).
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Fig. 6.13 Panel (a): resistance (in logarithmic scale) as a function of NC in a nanowire such as the
one from Sect. 6.4.1, where an onsite energy disorder is included. Panel (b): linear regression of
the resistance for simulations with a disorder A ≤ 0.7 eV. The fit slopes (resistivity) are shown in
Table6.1

We expect that, when linel < lel, the dominant scatteringmechanism is the inelastic
one. In that case, the electrons are predominantly in the diffusive regime where the
resistance is linear with the length of the central region. On the other hand, when
lel < linel, we expect the electrons dynamics to be mainly affected by the disorder.
The electrons become localized and the resistance in the system grows exponentially
with the length of the disordered region NC.
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Table 6.1 Resistivity for disordered systems with an inelastic EMFP of linel = 32.3. The expected
resistivity from the EMFP ltot is compared with the linear fit results from Fig. 6.13b

A (eV) lel (sites) ltot (sites) EMFP
resistivity
(r0/site)

Fit resistivity
(r0/site)

Relative
difference (%)

0.0 ∞ 32.3 0.0310 0.0304 1.9

0.3 120.2 25.4 0.0393 0.0371 5.7

0.5 48 19.3 0.0519 0.0512 1.2

0.7 24.5 13.7 0.0719 0.0835 13.9

1.0 12 8.7 / / /

1.5 5.3 4.6 / / /

We simulate the same configuration as the one in Sect. 6.4.1 and add a central
region disorder up to A = 1.5 eV. The constant density of oscillators at a fixed
temperature in the central region sets linel = 32.3. The interplay of the inelastic EMFP
with the lel introduced by the onsite disorder determines the conduction regime of
the system.

Figure6.13a shows, as expected, a progressively increasing resistance with an
growing disorder. The simulations with a low disorder A = 0.3 eV have a large
lel = 120.2 which makes ltot = 25 quite close to the inelastic EMFP. The linear fit of
the resistance curve in Fig. 6.13b gives a resistivity value that is in line with the one
expected from the total EMFP. It is just 6% smaller than the EMFP resistivity, as we
can see in Table6.1. Simulations with a medium level of disorder A = 0.5 eV and
A = 0.7 eV present an elastic EMFP that is comparable with the inelastic one and
their total EMFP is, respectively, ltot = 19 and ltot = 14. Here the resistance regime
is still linear and the resistivity from the fits is again in a good agreement with the
expected one.

The cases with a higher disorder A = 1.0 eV and especially A = 1.5 eV start
to deviate significantly from the linear regime, as is visible in Fig. 6.13a. There,
the elastic scattering is the dominant mechanism and the resistance tends to grow
exponentially with NC. Transmission through highly disordered systems strongly
depends on the configuration, therefore quantitative investigations of this regime
require averaging over different configurations. Such a study could display the insur-
gency of Anderson localization [4].

6.5 Code Performance

We present performance tests to verify the efficiency and the scaling of the code with
a varying number of electronic sites and oscillators.

To achieve a good scaling for large systems is a very difficult endeavour. Small
details are enough to break parallelism in unexpected and difficult ways to fix. For



6.5 Code Performance 89

example, during the code development, there was a puzzling situation where the code
parallelism was broken. A pronounced slowdown would appear when the number of
oscillators was close or equal to the number of cores of a machine’s processor. The
code ran on a server with 2 physical processors and 8 cores each. When executing
the code with a few oscillators (up to about 6), the computational time was roughly
independent of the oscillators number, as expected. When using 8 oscillators, the
code would unexpectedly become several times slower. For 9–14 oscillators, the
code would scale quite well, while for 16 oscillators it would get significantly slower
again.

The problem lay in the update process between timesteps. The variable update
involved fast data rewriting that mainly took place in the processor’s cache. When
the number of oscillators matched the number of cores in a physical processor, the
size of the cache would become a bottleneck, as it was not enough to accommodate
and process all the data at the same time. This turned the program into serial during
the variable update stage, making the total computational time considerably longer.
This issue was solved by redesigning the variable update process with pointers,
a feature of modern Fortran. In ElPh’s current version the variable update does not
involve overwriting data anymore, it involves switching labels of variables at different
timesteps.

The code was executed on a computer with 20 cores, 10 each from 2 Intel Xeon
E5-2680v2 CPUs, and 64 GB RAM. A number of simulations was performed on
a nanowire with a geometry similar to the one used in the Joule heating tests in
Sect. 6.4, with a number of electronic sites ranging from 50 to 500 and a number of
oscillators from 1 to 40. The computational time of simulations with 106 timesteps is
shown in Table6.2. The table also shows the scaling when compared to single oscil-
lator simulations (oscillator scaling) and 50 electronic sites simulations (electronic
scaling).

In the case of 50 electronic sites, the computational time is almost constant when
going from 1 to 2 and 5 oscillators, a sign of a linear computational cost with the
number of oscillators and of efficient parallelism. For 10–20 oscillators, the compu-
tational time tends to increase up to about twice the single oscillator performance.
This can be explained by the overhead introduced by the large number of oscillators.
The scaling in those cases is acceptable while, in the case of 40 oscillators, it is quite
poor.

The parallelism is most efficient when the number of oscillators is less than the
number of cores, nevertheless the code can still work with more oscillators than
cores. In the case of the number of oscillators being twice the number cores, the
scheduler of the operating system assigns on average the evolution of 2 oscillators to
every core, making the code in principle twice as slowwhen compared to a code with
half the number of oscillators. This procedure can be quite inefficient, especially for
small systems such as the one with 50 electronic sites. In small systems, the load for
every timestep is small and any overhead can have a large negative impact on the
final computational time, hampering the code’s efficiency and parallelism.

When increasing the number of electronic sites up to 500, the oscillator scaling
from 1 to 5 oscillators remains remarkably quite linear. The overhead in the case for
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Table 6.2 Efficiency test of the code ElPh with dynamical simulations of systems with a variable
number of electronic sites and oscillators including 106 timesteps (which correspond to 1 pswhen the
timestep is 1 as, for example). The total computational times are shown, together with the oscillator
scaling when compared to the single oscillator case and the electronic scaling when compared to
the case with 50 electronic sites. Colours give a visual indication of the quality of the scaling: green
stands for ideal (or close to), yellow for acceptable and red for poor scaling. In the oscillator scaling,
performances less than two times the single core (2×) are considered good, less than 4× acceptable
and beyond that poor. Because of the sparse matrix routines, the ideal electronic scaling would be
quadratic with the number of electronic sites, i.e. 4× for 100 sites, 9× for 150 sites, 16× for 200
sites and 100× for 500 sites, when compared to the 50 sites case. There is a good scaling when the
computational time is less than 1.5 times the ideal quadratic scaling, an acceptable scaling for less
than 2.5 times and a poor scaling beyond that

Number of
electronic sites

Number of
oscillators

Computational
time

Oscillator scaling Electronic scaling

50 1 3m 11s

2 3m 26s 1.1×
5 3m 58s 1.2×

10 5m 2s 1.6×
15 5m 46s 1.8×
20 7m 12s 2.3×
40 33m 49s 10.6×

100 1 13m 8s 4.1×
2 14m 0s 1.1× 4.1×
5 16m 10s 1.2× 4.1×

10 20m 40s 1.6× 4.1×
15 28m 30s 2.2× 4.9×
20 45m 40s 3.5× 6.3×
40 2h 4m 15s 9.5× 3.7×

150 1 31m 9s 9.8×
2 32m 33s 1.0× 9.5×
5 40m 40s 1.3× 10.3×

10 1h 13m 10s 2.3× 14.5×
15 1h 56m 41s 3.7× 20.2×
20 2h 25m 20s 4.7× 20.2×
40 4h 44m 2s 9.1× 8.4×

200 1 1h 0m 20s 19.0×
2 1h 5m 28s 1.1× 19.1×
5 1h 37m 39s 1.6× 24.6×

10 2h 38m 20s 2.6× 31.5×
15 3h 40m 3s 3.6× 38.2×
20 5h 11m 30s 5.2× 43.3×
40 9h 37m 9s 9.6× 17.1×

(continued)
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Table 6.1 (continued)

Number of
electronic sites

Number of
oscillators

Computational
time

Oscillator scaling Electronic scaling

500 1 9h 55m 59s 187.2

2 10h 37m 40s 1.1 185.7

5 15h 24m 30s 1.6 233.1

10 20h 16m 50s 2.0× 241.8×
15 1d 12h 35m 0s 3.7× 380.7×
20 2d 0h 37m 0s 4.9× 405.1×
40 3d 16h 46m 0s 8.9× 157.5×

20 oscillators becomes more and more time consuming, making the code about 4
times slower than the single core performance, whereas the 40 oscillators case tends
to take twice the time of the 20 oscillator case.

Focusing now on the electronic scaling, we effectively test the optimization in the
code. A code without optimizations would scale about cubically with the number
of electronic sites, while ideally it should scale quadratically. We cannot expect
such a quadratic scaling though, especially for large systems, because there is at
least one matrix operation that cannot be optimized to quadratic scaling: the term11

ρ̂e(t)F̂ν ρ̂e(t) introduced in Sect. 5.5.
Going from 50 to 100 electronic sites, the code scales impeccably: in almost all

the oscillator simulations the computational time scales quadratically and is 4 times
higher. Considering the 150 electronic sites case, the electronic scaling is quadratic
for up to5oscillators and it slightly increases up to twice that scaling for 20 oscillators.
Themost computationally demanding case is the onewith 500 electronic sites. There,
the electronic scaling is not quadratic any more, but it is not as poor as cubic either.
In that case, the large size of the matrices makes the few operations that don’t scale
quadratically considerably more expensive and dominant on the final computational
time.

The code can be furthermore optimized to improve performance and reduce over-
head. Anyhow, the central aim of achieving a good oscillator scaling is fulfilled by
the current version of the code. In Chap.9 a more general version of the method is
proposed, ECEID xp. In a well defined particular case, that method is equivalent to
ECEID. Its implementation in the code is about 40% more efficient to simulate, as
shown in Table9.1, where the same tests as the ones presented here are performed.

11The whole operation ρ̂e(t)F̂ν ρ̂e(t) can be split in a sparse matrix multiplication first F̂ν ρ̂e(t) =
Ĝν(t) followed by a non-sparse multiplication ρ̂e(t)Ĝν(t). The last operation can still be optimized,
as, if F̂ν is ultra sparse (e.g. Eq. (6.6)), Ĝν(t) is still quite sparse. For a more general F̂ν (e.g.
Sect. (8.2.1)), the overall cost of the operation rises considerably. Anyhow, this multiplication is the
slowest single operation in the code.
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Chapter 7
Thermalization with ECEID

Thermalization between electronic and vibrational degrees of freedom arises in a
range of physical situations spanning widely different time and length scales. Exam-
ples were given in Chap.2: they include Joule heating and dissipation in solid state
and molecular physics [1, 2], equilibration of warm dense matter generated by laser
pulses [3–5] and radiation cascades [6]. The interest in coupled dynamics of out-of-
equilibrium electrons with vibrations occurs in several fields, including transport in
molecular junctions [7, 8] and photoelectron spectroscopy [9], and has triggered the
development of new experimental techniques [10].

Meanwhile, real-time atomistic simulations venture more and more often into
non-equilibrium problems where accounting for electron-phonon thermalization is
crucial [11]. A choice of methods can capture the interaction between electrons and
vibrations, from the phenomenological Boltzmann equation in extended systems [12]
to its counter-part at the nanoscale, non-equilibrium Green’s functions (NEGF) [13].

Nevertheless, the problem of thermal equilibration between interacting degrees
of freedom (DOF) is particularly difficult to tackle from the simulation point of view.
For purely classical systems simulated via Molecular Dynamics, anharmonicities in
the potential can lead to thermalization and energy equipartition [14]. In harmonic or
weakly anharmonic systems, equilibration does not happen spontaneously: it requires
the introduction of external thermostats.

The situation is even more complicated for quantum interacting systems and it
becomes especially critical in mixed quantum-classical approaches. A widely used
approach is the macroscopic two-temperature model that we described in Chap. 3. In
that model, the nuclear and the electronic motion are represented in terms of temper-
ature fields coupled via appropriate diffusion equations [15, 16]. This together with
the introduction of Langevin thermostats [17] has proved successful in interpreting
measured quantities [18, 19]. This approach remains of active interest and, in recent
years, it has evolved into more elaborate methodologies where the nuclear motion is
taken into account via classical molecular dynamics simulations while electrons are
treated at increasing levels of sophistication [20–25].

© Springer International Publishing AG, part of Springer Nature 2018
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Wedescribednon-adiabatic electron-nuclear atomistic simulations inChap.4. The
simplest non-adiabatic approach is Ehrenfest dynamics (ED) [1] in which classical
nuclei interact with the mean electron density. ED is tractable and simple but it fails
to describe the spontaneous decay of electronic excitations into phonons because of
the lack of microscopic detail in the electronic density and resultant loss of electron-
nuclear correlation [26]. Vibrational DOF spontaneously cool down at the expense
of increasing the electronic energy, violating the second law of thermodynamics.
What is missing in ED are the collisions that drive the probability distribution func-
tion towards equilibrium. The approach to equilibrium can be reinstated via Boltz-
mann’s kinetic theory, i.e. through phenomenological relaxation dynamics. However
to recover this in microscopic dynamics for a closed system requires thermostating
techniques; for quantum DOF this introduces an additional layer of complexity.

Correlated electron-ion dynamics (CEID) [26, 27] is a method that was developed
to go beyond ED. It starts from the bare electron-nuclear Hamiltonian and solves it
approximately by a perturbative expansion in powers of nuclear fluctuations about
the mean trajectory. However it scales between quadratically and cubically with
the number of nuclear DOF, becoming prohibitive beyond a few DOF, along with
difficulties in the choice of closure strategy for the hierarchy of perturbative equations
of motion. The computational bottleneck persists in alternative expansion strategies
for the electron-nuclear problem [28].

Today there is a new impetus in the study of mesoscale systems, as their tech-
nological applications and simulation capability meet [29]. These systems mark a
difficult middle ground between bulk and the atomic scale. There is a serious need
for a methodology that includes the mechanisms of thermal equilibration between
electron and phonon DOF, and at the same time is amenable to computer simulation
with present day resources [30]. This need for an efficient approach to the dynamics
of thermalization at the mesoscale has motivated the development of a microscopic
method for coupled real-time quantum electron-phonon dynamics, ECEID, that is
described in Chap.5.

ECEIDadvances beyondCEID in termsof conceptual and computational tractabil-
ity by exploiting a different starting point: a system of electrons and harmonic vibra-
tions, coupled by an interaction linear in the generalized displacements. This more
specialized scenariomaintains applicability to the large family of problems involving
harmonic nuclear motion, while offering important advantages. This Hamiltonian
starts from the Born-Oppenheimer level of description, with the role of the cou-
pling being to generate the non-adiabatic corrections. By contrast, the old CEID
method above had the dual challenge of first generating the Born-Oppenheimer
behaviour (starting from the bare full Hamiltonian), and then also going beyond.
Furthermore ECEID employs a non-perturbative closure strategy, which enables the
coupled electron-phonon dynamics to be formulated in terms of a set of variables
and equations of motion that scale linearly with the number of vibrational DOF. This
opens the possibility of tackling problems previously out of reach: as we showed in
Sect. 6.5, in test runs we have been able to simulate up to 500 electrons interacting
with 40 vibrational DOF on the picosecond time-scale, on an ordinary workstation.

The contents in this chapter have been presented in [31].
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Fig. 7.1 Schematic of our model system: a nearest-neighbour one-dimensional lattice model of
an atomic wire divided into a central region between two leads. This embeds the sample in an
environment. Each of the 3 regions has 32 sites, with 15 equispaced harmonic oscillators coupled

to the central region. Oscillator ν couples to site nν through F̂ν = Fν

(
ĉ†nν+1ĉnν + ĉ†nν

ĉnν+1 −
ĉ†nν

ĉnν−1 − ĉ†nν−1ĉnν

)
which corresponds to independent atomic motion in a lattice description.

The extension from Einstein oscillators to normal modes is straightforward. The onsite energies
are uniform, the hoppings α = −1 eV and � = 0.08 eV. For all the oscillators M = 0.5 a.m.u.,
�ω = 0.2 eV and F = 0.3 eV/Å [31]

7.1 The System

Here we have implemented the ECEID method for the discretized electron-phonon
Hamiltonian (7.1)

Ĥe−ph =
Ĥe︷ ︸︸ ︷∑

i j

αi j ĉ
†
i ĉ j −

∑
νi j

F̂ν X̂ν︷ ︸︸ ︷
Fνi j ĉ

†
i ĉ j

â†ν + âν√
2Mνων/�

+
∑

ν

�ων

(
â†ν âν + 1

2

)
(7.1)

where ĉ†(ĉ) are the fermion creation (annihilation) operators. αi j are onsite energies
and hoppings with {i, j} running over the atomic sites. The electronic DM evolves
according to Eq. (5.5). μ̂ν(t) is calculated using Eq. (5.34), which is obtained from
the time evolution of the auxiliary operators (5.36–5.39). The Hamiltonian driving
those auxiliary operators includes of a small �, following Sect. (6.2), to mimic an
extended system without the extra cost. These quantities enter also in the EOM for
the mean oscillator occupation (5.41). The number of EOM scales linearly with No

and so does the computational cost.
We use these equations to simulate non-equilibrium electron-phonon dynamics

in the model in Fig. 7.1: a wire with an electronic half-filled band with 96 spin-
degenerate non-interacting electrons coupled to 15 harmonic oscillators.

7.2 An Entropic Definition of Temperature

To track the evolution of the two subsystems, we use two temperature-like parame-
ters: T quant

o for the oscillators and Te for electrons. If N (t) = ∑No
ν=1 Nν(t)/No, then

the oscillator temperature is defined through N (t) = (e�ω/kBT
quant
o (t) − 1)−1. In the
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Ehrenfest case, this definition breaks down when the energy of the classical oscilla-
tors goes down to zero and N (t) → −1/2. For that case, we employed an alterna-
tive semiclassical definition of oscillator temperature kBT class

o = (N (t) + 1
2 )�ω. The

electronic temperature is taken from Te = �Ee/�Se where�Ee is the variation over
5 timesteps in electronic energy and �Se is the corresponding variation in electronic
von Neumann entropy Se = −kB

∑
n

(
fn log fn + (1 − fn) log(1 − fn)

)
, where fn

are the diagonal elements of ρ̂e in the basis of Ĥe eigenstates, the occupations of the
unperturbed electronic energy levels. Te is then inferred from a running average of
its reciprocal. We note that these temperatures are only observables, not an input into
the simulation.

As the system evolves, no macroscopic work is done, but energy (heat) is
exchanged between the electronic and the oscillators subsystems. Having a micro-
scopic definition of the entropy also allows us to give a time-local quantification of
the rate of heat exchange JQ = dStotal

dt /(1/To − 1/Te), where dStotal = dSo + dSe. In
the weak-coupling limit, where the correlation energy Ec is small, the heat current
reduces to JQ = dEo/dt , and on average dEo/dt = −dEe/dt .

7.3 Comparison with Ehrenfest Dynamics

The terms involving [F̂ν, ρ̂e(t)] in Eq. (5.36) are related to the electronic friction (an
effective dissipative force due to electron-hole excitations by the oscillator), while
thosewith {F̂ν, ρ̂e(t)} in Eq. (5.38) describe electronic noise and spontaneous phonon
emission [32, 33].

To see this, consider the above problem within Ehrenfest dynamics: electrons
interacting with a classical oscillator, with phase φ, slowly varying amplitude A,
displacement X (t) = A sin(ωt − φ), and velocity V (t) = Ẋ(t). Next, average over
φ, to sample different initial conditions. The counterpart of the earlier approxima-
tions reads 〈X (t)X (τ )ρ̂e(τ, φ)〉φ ≈ 〈X (t)X (τ )〉φρ̂e(τ ), together with suppression of
oscillator position-momentum correlations. This produces (5.34) without the second
term, and with N given by (N + 1/2)�ω = Mω2A2/2.

The phase-averaged power into the Ehrenfest oscillator, 〈V (t)F(t)〉φ with F(t) =
Tre(F̂ ρ̂e(t, φ)), becomes (5.41)

Ṅ (t) = 1

M�ω

(
i Tre(F̂Ĉ

s(t)) + Tre(F̂ Âc(t))
)
, (7.2)

without the second term. Finally, the remaining first term in (7.2) is the same as the
mean rate of work by the electronic friction force due to the symmetric part of the
velocity-dependent force kernel in Eq. (16) in [33]. Thus the ECEID EOM with the
anticommutator in (5.38) suppressed describe ED (with oscillator phase averaged
out), physically dominated by electron-hole excitations and electronic friction.

The second term in (7.2) corresponds instead to the power delivered to the oscilla-
tors by the effective electronic-noise force described by line 1 of Eq. (56) in [33]: the
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key correction beyond the mean-field ED. The competition between the two terms in
(7.2) enables thermodynamic electron-phonon equilibration [33], which is thus built
into the ECEID method.

7.4 Results

7.4.1 Thermalization

Our first example starts with Te = 10000 K and T class
o = 1400 K. This mimics a

common situation in laser or irradiation experiments in which electrons initially
absorb energy faster than ions [34]. In Fig. 7.2 we compare the time evolution of the
temperature for ED and ECEID. After a short transient which depends on the details
of the initial state, a long-lived steady state develops with a net energy flow from
one subsystem to the other. In ED, the absence of electronic noise (second term in
Eq.7.2) results in a heat flow going in the wrong direction: from the cold oscillators
into the hot electrons, until the oscillators reach zero temperature. In ECEID, the
inclusion of the electronic noise makes the exchange of heat physical and the final
thermalization possible (Fig. 7.2a). The heat flow scales linearly with the temperature
difference (Fourier’s law) (Fig. 7.2c). In the equilibrium state reached in ECEID, the
two final temperatures agree within 1%.

7.4.2 Population Inversion

Next, we test an extremely out-of-equilibrium phenomenon: a complete population
inversion. Initially, the electrons occupy the upper half of the energy states in the
wire, corresponding to an infinitesimal negative electronic temperature. The oscilla-
tors are held at N = 0.5, or T quant

o = 2112 K throughout. This simulates coupling to
an infinitely efficient external thermostat, thus isolating just the electron dynamics.
Figure7.3 shows snaphots of the electronic population dynamics and the temperature.
The electrons de-excite in both ECEID and ED. In ED this happens through negative
friction [35]. Comparing Fig. 7.3a and b at 0.5 ps, we see that the de-excitation is
faster in ECEID; this is because ECEID includes also the contribution from sponta-
neous phonon emission. But the crucial difference is the final state: ECEID correctly
takes the electrons all the way down to a Fermi-Dirac distribution corresponding to
the oscillator temperature; ED by contrast gets stuck at a distribution with roughly
uniform occupancies [36]. These two ED features have a common origin. If elec-
tronic occupancies f (E) depend only on energy E , then a rearrangement of the
result for the electronic friction in [8] gives an integral containing f ′(E) as a fac-
tor in the integrand. Hence the opposite signs for the friction, at small negative and
small positive temperatures. Hence also the unphysical “equilibration” of the elec-
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Fig. 7.2 Coupled dynamics of a closed system of electrons and oscillators with the parameters
given in the text. a Time evolution of the electronic and oscillators temperature for ECEID and
the phase-averaged ED discussed above. b Rate of change of electronic and oscillators energies.
After a transient of 10 fs, the systems evolve until eventually an equillibrium state (ECEID) or
an unphysical state (ED) is reached. c For ECEID a clear linear scaling (Fourier law behavior) is
observed for heat flow versus temperature difference (up to a time of 2.5 ps). The noise for high
temperature differences is related to the initial transient [31]

trons at f ′(E) = 0 in ED, when the friction vanishes and the main electron-phonon
interaction mechanism present in ED goes to zero.

The role of � in these simulations is crucial for thermalization because it provides
a controlledway to embed a finite system, that would not equilibrate, into an extended
one that does. In Fig. 7.4 we study the time evolution of a sample of electronic states
in ECEID for � = 0.08 eV and � = 0.8 eV for the same initial population inversion
as above. The results are almost superimposable: for � larger than the average level
spacing∼0.04 eV,ECEID is largely independent of�.Weobserved that the dynamics
of any level j is exactly symmetric with that of level 96 − j + 1 for all times.

7.4.3 Kinetic Model

The rich pattern of population evolutions shown in Fig. 7.4 can be understood with a
kinetic model of the transitions between electronic levels due to phonon absorption
and emission. The rate equation for the population f j of level j is
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Fig. 7.3 Population inversion simulationwith the oscillators held at constant temperature.We show
snapshots of the population of the electronic states in a ED at 0 ps, 0.5 ps, 10 ps, 50 ps, 160 ps and
b ECEID at 0 ps, 0.5 ps, 4 ps, 8 ps, 20 ps. (The arrows highlight the overall initial-to-final transition
in each case.) c Temperature evolution during the simulation for ED and ECEID compared with the
fixed oscillator temperature [31]

ḟ j (t) =
∑
k

1

τ jk
(−N f j (1 − fk) + (N + 1) fk(1 − f j ))

+ 1

τk j
(N fk(1 − f j ) − (N + 1) f j (1 − fk)). (7.3)

The scattering rates 1/τ jk = (π/Mω)No|Fjk |2G jk are given by the Fermi Golden
Rule (FGR). |Fjk |2 can be calculated analytically by using plane wave states
with energies E j = 2α cosφ j , (dimensionless) crystal momentum φ j = jπ/97,
j = 1, . . . , 96 and by averaging over the two opposite signs of momentum for the

final state.G jk = e−((Ek−E j−�ω)/�)
2

/(
√

π�) is a Gaussian envelope with a width�.
It mimics the δ-function that appears in the FGR electron-phonon transition rates.
We plug the parameters of the population inversion simulation from Fig. 7.3 into
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Fig. 7.4 Comparison of the dynamics of electronic states for ECEID with � = 0.08 eV, ECEID
with � = 0.8 eV and the kinetic model starting from an inverted population. In a we track state 1,
state 20 and state 40; in b state 90, state 70 and state 50 [31]

the kinetic model with � = 0.08 eV and in Fig. 7.4 we compare it with ECEID
simulations, showing close agreement.

The comparison with the kinetic model illustrates that ECEID, owing to its
scalability, can access time- and size-domains where macroscopic thermodynamic
behaviour is beginning to emerge. In addition, the direct comparison between inher-
ently different descriptions provides a bottom-up path to a validation, at the atomistic
level, of kinetic models of electron-phonon dynamics, without having to resort to the
relaxation-time approximation.

The response is fastest for the states in the middle of the band, i.e. the states close
to the step in the initial population. The time that these states take to settle into a long-
lived half-occupied steady state—about 0.5 ps—is comparable to the time needed for
the initial temperature response—the small initial step-like feature in the blue results
in Fig. 7.3c. (This transient response in the electron-phonon dynamical simulation is
absent in FGR, because FGR by construction describes mean transition rates in the
long-time limit.) The results of the kinetic model show little variation over the range
0.04 < � < 0.15 eV or for different shapes of G jk . For this choice of parameters,
the kinetic model captures the main physics of the problem. The combination of the
kinetic model and ECEID provides a direct way to construct rate equations that allow
thermodynamic electron-phonon equilibration on the basis of a real-time quantum
mechanical simulation. The low computational cost of the kinetic model opens up
the possibility to simulate large scale systems. Its application to irradiated metallic
systems is currently under development.
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Chapter 8
Inelastic Electron Injection in Water

When high-energy radiation penetrates living cells, it ionizesmolecules along its path
and can cause cell death by damaging DNA. Radiation events involve a sequence of
processes that ultimately require a clear microscopic understanding [1]. Only about
one third of the cellular damage is produced by direct interaction of the ionizing
radiation with DNA, while the rest is due to secondary species, produced in the
first hundreds to thousands of femtoseconds following the primary irradiation of the
system [2].

Secondary electrons are a key irradiation by-product, as about�50 · 103 electrons
are emitted for every MeV of incoming energy [3]. The majority of secondary elec-
trons are low energy electrons (LEEs), with an energy distribution peaking below
10 eV [4]. It may seem intuitive that the higher the electronic energy, the more
significant the damage, and that electrons with energies below the DNA ionization
threshold ≈15 eV cannot cause strand breaks and destroy DNA, but this perception
was challenged in 2000 [2, 5]. It was discovered that LEEs with energies between
3 and 20 eV can damage DNA considerably and their damaging power does not
constantly increase with their energy. These studies triggered an intense effort into
understanding the interaction mechanisms of LEEs with DNA [1, 3, 6–8].

The study of LEEs dynamics and their interaction with the cellular environ-
ment hinges on the non-adiabatic evolution of molecular systems over picosecond
timescales. The mesoscale nature of this problemmakes it especially challenging for
non-adiabatic quantum electron-nuclear simulations. The ECEIDmethod developed
in Chap.5 is designed for such simulations. Here we combine it with electronic Open
Boundaries (OB), as in Sect. 5.7, to simulate in real time the injection of LEEs and
their dynamical interaction with phonons. Part of the content in this chapter was
published in Scientific Reports [9].

Water is the main component of cells: most LEEs are generated from it and, in
turn, interact with it, while its presence plays an enhancing role in DNA radiation
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damage [10]. Electron tunneling through static water configurations has been studied
[11–13], focusing on resonance lifetimes and the relevance of inelastic effects at a
perturbative level. We adopt a simple model of water and, at first, we test a water
molecule with its two stretching modes. We compare ECEID with elastic results,
investigate the high mass limit and apply a bias to the molecule letting a current flow
through it.

Then we implement a water chain with one phononmode to mimic a minimal bio-
logical environment and inject LEEs into it at different energies. Phonon absorption
and emission play an essential role for enabling electrons to enter the water chain.
Phonon-assisted injection shows a great sensitivity to vibrational temperature, with
the possibility of dramatically reducing or enhancing the electron flow. Phonons are
therefore a crucial control factor for the injection of LEEs into water. The excited
states display an energy dependent lifetime that we compare with self-energy results
and offer a possible electron trapping mechanism. In Appendix C, we include results
about a simplified water chain system and the formation of a peculiar state with a
much longer lifetime than the other states.

It is hoped that these results will provide a framework for further dynamical
simulations of radiation damage in more complex biological systems [14, 15].

8.1 Water Molecule

We begin by applying ECEID to the elastic and inelastic transmission properties of
a single water molecule.

8.1.1 A Simple Water Model

We require a simple model that is easy to implement and makes the inclusion
of phonons intuitive. We choose a planar 4-orbital tight-binding model, which is
sketched in Fig. 8.1.

Fig. 8.1 Sketch of a water
molecule in the xz plane.
The oxygen atom has a 2px
and a 2pz orbital, the
hydrogen atoms H1 and H2
have a 1s orbital
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We consider awatermolecule lying in the xz plane and include a 1s orbital on each
hydrogen atom H1,2 and 2px,z orbitals on the oxygen atom O , with onsite energies
EH1,2 = −13.61 eV and EOpx,z

= −14.13 eV [16]. We place the Fermi energy EF

halfway between the hydrogen and oxygen onsite energies and from now on we will
use it as the zero of energy. The molecular Hamiltonian reads

ĤH2O =

⎡
⎢⎢⎣
EH1 − EF −W1 cos θ W1 sin θ 0
−W1 cos θ EOpx

− EF 0 W2 cos θ

W1 sin θ 0 EOpz
− EF W2 sin θ

0 W2 cos θ W2 sin θ EH2 − EF

⎤
⎥⎥⎦

whereW1,2 = 1.84 �
2

4meR2
OH1,2

[16] andme is the electron restmass.β = 104.45◦ [17] is

the H-O-H equilibrium angle and θ = 180◦−β

2 . ROH1,2 = 0.9584 Å, therefore W1,2 =
3.82 eV. The resulting molecular orbitals have energies

(
−4.27 −3.32 3.32 4.27

)
eV.

A water molecule presents three normal modes [17]: a low frequency bending
mode where β oscillates and two higher frequency stretching modes, where the OH1

and OH2 bonds vibrate symmetrically (ν = s) and antisymmetrically (ν = a), as in
Fig. 8.2. We include in the simulations only the stretching modes, with frequencies
�ωs = 0.4534 eV and �ωa = 0.4657 eV and reduced mass is Ms,a = 0.948 amu
[18].

The electron-phonon coupling matrices are

F̂s,a =

⎡
⎢⎢⎢⎣

0 ∓ F cos θ√
2

± F sin θ√
2

0

∓ F cos θ√
2

0 0 F cos θ√
2

± F sin θ√
2

0 0 F sin θ√
2

0 F cos θ√
2

F sin θ√
2

0

⎤
⎥⎥⎥⎦

in which the upper and lower signs indicate respectively the s and the a mode and
F = 1.84 �

2

2meR3
OH1,2

= 7.96 eV/Å.

To get a semiclassical impression of the effect of a phonon on the eigenvalue
spectrum, we add −F̂s,a Xs,a to the water molecule Hamiltonian ĤH2O , where Xs,a

is a classical coordinate representing the static phonon displacement. A scan in Xs,a

samples the elastic effect of a frozen phonon, as shown in Fig. 8.3. In the s mode,

Fig. 8.2 The water molecule phonon modes included in the simulations, with the arrows point-
ing towards positive bond displacements Xs/a . In (s) there is the symmetric mode and in (a) the
antisymmetric one
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Fig. 8.3 Water molecule eigenvalues and their elastic variation with the oscillator displacement
Xs,a in the frozen phonon regime for the s (on the left) and a mode (on the right)

positive displacements bring the hydrogen orbitals further away from the oxygen,
reducing the band gap, while the opposite happens for negative Xs . In the a mode the
bands are symmetric with positive and negative Xa . For small |Xa|, the eigenvalues
are stationary. For increasing |Xa|, the badgap reduces while level 1 and 4 get further
away.

We can deduce a mean square displacement X̃ν,N = √〈X2〉N , for a given N . The
potential energy for the oscillators in ECEID is always half of the total oscillator
energy, therefore Eν

2 = 1
2k〈X2

ν〉N = (Nν + 1
2 )

�ων

2 s. Picking a few values of N , in the
s mode we have

• E(Ns = 0) = 0.2267 eV −→ X̃s,0 = 0.070Å
• E(Ns = 2) = 1.133 eV −→ X̃s,2 = 0.156Å
• E(Ns = 5) = 2.494 eV −→ X̃s,5 = 0.231Å,

while in the a mode

• E(Na = 0) = 0.233 eV −→ X̃a,0 = 0.069Å
• E(Na = 2) = 1.164 eV −→ X̃a,2 = 0.154Å
• E(Na = 5) = 2.561 eV −→ X̃a,5 = 0.228Å.

8.1.2 Embedding Setup

We apply ECEIDwith OB to a water molecule with the geometry sketched in Fig. 8.4
where we attach H1 to the left lead and H2 to the right lead by w = 1.0 eV.

The metallic leads are made of 80 sites with zero onsite energies and hopping
t = −4 eV, to give an energy bandwidth of 16 eV. The 40 leftmost sites in the
left lead and the 40 rightmost ones in the right lead are coupled by � = 1.25 eV to
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Fig. 8.4 Schematic of the model system, with a water molecule connected to the left and to the
right to metallic leads made of 6 atoms, 3 of which are attached to external probes by �

external probes, following the implementation described in Sect. 5.7. The same�was
introduced in the Hamiltonian driving the auxiliary operators, following Sect. 6.2.

Here we perform ECEID steady state OB calculations, where the leads are pop-
ulated with zero temperature equilibrium distributions and coupled to probes with
ground state distributions fL,R and chemical potentials μL,R. This setup will be used
to generate a bias V = μL − μR across the water molecule, or inject electrons at a
specific energy range.

8.1.3 Elastic Transmission

We consider the transmission Tν(E, Xν) from Eq. (B.12) to investigate the purely
elastic effect of a phonon frozen at classical displacement Xν . Here Tν(E, Xν) rep-
resents the probability for an incoming electron with energy E to cross the region
with the molecule. It provides an elastic picture, a background on which the inelastic
effects can then be overlaid. For Tν(E, Xν) = 0, only inelastic effects allow trans-
mission for an electron.

We perform calculations for the s and the a mode with a maximum displacement
|Xmax

ν | = 0.5 Å, average the transmission over positive and negative displacements
T̄ν(E, Xν) = (Tν(E, Xν) + Tν(E,−Xν))/2 and show the results in Fig. 8.5.

For Xν = 0, there are 4 transmission channels corresponding to thewatermolecule
energy levels. The introduction of the phononmodes alters the position of these chan-
nels in energy with a marked difference between the two modes. At small Xν , the
transmission peaks of the s mode branch out reducing the bandgap, while in the
a mode they don’t exhibit a significant change. At large Xν , the transmission in
the s mode presents an increasingly small bandgap with a substantially unchanged
transmission peak intensity, whereas the peaks in the a mode decay in intensity with
Xν . Symmetry plays an important role in resonant systems such as this. Symme-
try breaking, as in the a mode case, can lead to strong reductions in transmission
probability.

Another quantity that offers insights about the elastic properties of the modes is
the current, which can be found from integrating the transmission [19]
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Fig. 8.5 Frozen phonon calculation of the transmission T̄ν(E, Xν) as a function of energy, averaged
over positive and negative displacement, for the s mode (s) and the a mode (a). Lighter colours
correspond to regions of high transmission, whereas darker colours are related to a low transmission

Fig. 8.6 Elastic current in (μA) for the s mode (s) and a mode (a)

I elν (V, Xν) = e

h

∫ EF+ eV
2

EF− eV
2

dE
T̄ν(E/2 − EF , Xν) + T̄ν(−E/2 − EF , Xν)

2
(8.1)

and is plotted in Fig. 8.6. In the s mode a non-zero current develops at lower and
lower V for increasing Xs , due to the bandgap getting smaller. The high voltage
current presents a slow decreasing plateau with Xs , related to the slow decay of the
transmission peak. The a mode doesn’t show a clear reduction in the minimum V
necessary to allow a current and, for high Xa , presents a rapidly decaying current.
This was expectable after seeing the rapidly decaying transmission peaks in Fig. 8.5a.
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It is natural to wonder to what extent the inelastic effects alter the transmission
scenario. We introduce inelasticity in the next section and compare elastic IV curves
with ECEID ones.

8.1.4 ECEID Comparison with Elastic Averages

For comparing the elastic current Iν(V, Xν) in Eq. (8.1) with its inelastic equivalent
from ECEID Iν(V ), first we need to eliminate the Xν dependency in the elastic result
by averaging it away. The easiest procedure considers an average over two current
values: the positive and the negative value of the mean square displacement X̃ν,N

I 2Pν,N (V ) = Iν(V, X̃ν,N ) + Iν(V,−X̃ν,N )

2
. (8.2)

We call it 2-Point (2P) average. Another possibility is a top hat (TH) distribution
function with standard deviation X̃ν,N , so that the resulting arithmetic average of the
current is

I T H
ν,N (V ) = 1

2
√
3X̃ν,N

∫ √
3X̃ν,N

−√
3X̃ν,N

Iν(V, Xν)dXν . (8.3)

An averaging that takes into account the spatial probability distribution of a phonon
with Nν uses the quantum harmonic oscillator wavefunction (HOWF)

�Nν
(Xν) = 1√

2Nν Nν !
(Mνων

π�

)1/4
e−Mνων X2

ν /(2�)HNν

(√
Mνων

�
Xν

)
(8.4)

where HNν
is an Hermite polynomial. It weighs the elastic current as

I HOWF
ν,N (V ) =

∫ Xmax
ν

−Xmax
ν

dXν |�Nν
(Xν)|2 I elν (V, Xν)∫ Xmax

ν

−Xmax
ν

dXν |�Nν
(Xν)|2

. (8.5)

where the cutoff Xmax
ν is large enough to have |�Nν

(Xmax
ν )|2 ≈ 0. This average is

the most physical of the three as it takes into account the oscillator wavefunction
explicitly. In Fig. 8.7 we show the average curves for the a mode and N = 0, 2, 5.

ECEIDOB simulations with a bias V establish a steady state current at long times.
Scanning over V , it is possible to determine I for different phonon configurations
with Ṅ = 0 and fixed N = 0, 2, 5. We compare them with elastic averages results in
Fig. 8.8. In ECEID, I (V, N ) is determined both by the elastic background and by the
inelastic interaction of the phonon with the incoming stream of electrons. When the
elastic results agree with ECEID, the elastic contribution must be dominant. When
they differ, ECEID could display relevant inelastic effects but there’s no guarantee
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Fig. 8.7 Curves to average the Xν dependency in Iν(V, Xν) for the a mode at N = 0, 2, 5. In
orange the 2PA, in red the TH and in green the HOWF
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Fig. 8.8 ECEID IV curves (blue) compared to elastic averages 2P (orange), TH (red) and HOWF
(green). It is remarkable that in some cases the ECEID current exceeds the elastic one. This inelastic
effect on transmission will be analysed in Sect 8.2
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that inelasticity is the main cause for divergence. To rule out any ECEID wrong
calibration, Sect. 8.1.5 offers a comparison of ECEID with two known limits.

The s mode at N = 0 displays a remarkable agreement between ECEID and both
HOWF and TH averages. The 2P case has a few different features that can be due
to its sampling of only two different Xs . In the a mode at N = 0, even if the current
curves show similarities in shape, the ECEID current is consistently larger than
the elastic ones. This hints to the a mode featuring a strong inelastic contribution.
From the transmission results we noticed that the elastic contribution in the a mode
disappears quickly for increasing Xa . Results for higher N sample higher Xa and
help in further isolating the inelastic effects.

At N = 2, in the s mode the ECEID curve is still very close to the elastic averages,
whereas it shows large differences in theamode. In the latter case both theECEIDand
the elastic averages display a clear drop in current, consistent with the transmission
result, with the ECEID current being still larger than the elastic cases.

For N = 5, the s mode starts to show a slight disagreement between ECEID and
the elastic curves, with the HOWF case displaying the best agreement. The a mode
exhibits again a large decrease in current, with the ECEID result featuring details that
are not present in the elastic curves, including the presence of a negative differential
resistance region (an increasing V leads to a decreasing I ).

To summarize these results, in Fig. 8.9 we join the HOWF and the ECEID IV
curves for different N . There we get a visual confirmation of howwell do the ECEID
simulations reproduce the elastic results in the s mode and how different they are in
the a mode.

To extract the inelastic contribution from the data, we analyze the percentage
change in current from the HOWF average to ECEID in Fig. 8.10. In the s mode,
excluding data at low V where the very low currents create large percentage changes,
the inelastic difference between ECEID and HOWF is low and mostly within a 10%
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the a mode (right). Solid lines indicate elastic calculations, dots (and connecting dashed lines)
correspond to ECEID. The case without a phonon is in blue, N = 0 in red, N = 2 in green and
N = 5 in yellow
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range. The a mode shows a much more intense inelastic contribution, often close to
a 100% increase.

The two modes belong to two different conduction regimes. The s mode presents
a quite high transmission for all oscillator displacements, so the effect of the phonon
tends to lower the current, especially at high N where the inelastic scattering
increases. On the other hand, the a mode presents a lower elastic transmission in the
presence of elastic phonon displacements, therefore the inelastic effect of a phonon
tends to enhance the current. In the two regimes the physics is different and the
introduction of inelastic scattering affects the conductance in opposite ways, a well
known result that was observed, for example, in a gold nanowire [20, 21]. In the low
transmission limit an inelastic channel increases the conductance, while in the high
transmission limit it enhances backscattering and reduces the conductance.

8.1.5 The Landauer and the High Mass Limit

In general, ECEID has no guarantee of agreement with the elastic results. ECEID is
expected to agree with the elastic case only when the inelastic contribution goes to
zero. Here we test two limits where agreement is expected.

First, in the case without phonons, we expect ECEID with OB to recover the
Landauer result for a water molecule.1 In Fig. 8.9 the blue dots represents the ECEID
currentwithout a phonon at differentV and the solid blue curve is theLandauer elastic
current. The curves are indeed superimposable. This comparison provides a physical
validation for the setup and confirms that the length of the leads and � are a good

1Here, by Landauer result we mean the elastic current as an integral of the transmission from
Eq. (8.1) without any phonon.
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choice. This limit can be seen as a starting point over which inelastic effects are
juxtaposed.

The other limit that we probe is the High Mass Limit (HML). By increasing the
phonon’s mass and decreasing its frequency, while keeping the phonon’s energy and
its mean square displacement constant, we expect the phonon to become more and
more static, until it converges to the behaviour of an immovable object that scatters
incoming electrons elastically. We set X̃s = 0.156 Å and X̃a = 0.154 Å and probe
different masses starting from the unchanged one Ms,a = 0.948 (M = 1x case) up to
one thousand times heavier (M = 1000x case) and show the IV curves in Fig. 8.11.
The smode converges very fast: theM= 10x case looks to be alreadywell converged.
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Fig. 8.11 ECEID High Mass Limit IV plots for the s mode and the a mode. The usual mass M =
1x is in blue, the M = 10x case in red, the M = 100x in green and the M = 1000x in purple
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The a has a slower convergence and a bigger result variation for an increasing mass;
its M = 100x case looks to be at convergence.

To link these results to the elastic average curves, we notice that in [22] it was
analytically found that, in the HML, CEID converged to the elastic 2P average. We
check that ECEID does the same by going through a similar derivation.

In theHML, theDM still obeys its Liouville EOM (5.5) which remains unchanged
and Ṅν followsEq. (5.10). The limitMν → 0 andων → ∞withMνω

2
ν〈Xν〉2 constant

makesMνων → ∞ so that Ṅν → 0. Therefore Nν(t) = N̄ν is a constant in time,with
N̄ν = Mνων〈Xν〉2/� → ∞. The remaining quantity that has to be tracked in this limit
is μ̂ν from Eq. (5.34). Âs

ν(t) is finite and, as it appears in μ̂ν with a 1/(Mνων) → 0
prefactor, it does not contribute in the HML. In this limit the we then have

μ̂ν(t) ≈ i

Mνων

Ĉc
ν(t) ≈ iN̄ν

Mνων

f (t) = i〈Xν〉2
�

f (t) (8.6)

where f (t) = ∫ t
0 [F̂ τ−t

ν , ρ̂τ−t
e ] dτ .

In the semiclassical problem with phonon displacement Xν , we have

μ̂ν(t) =
∫

Xν ρ̂(Xν, t)χ(Xν)dXν (8.7)

where ρ̂(Xν, t) is the full DM and χ(Xν) is the distribution of phonon displace-
ments. We pick χ(Xν) = 1

2 (δ(Xν + 〈Xν〉) + δ(Xν − 〈Xν〉)), which corresponds to
the 2P average. By plugging the exact form of the DM from Eqs. (5.4) into (8.7) and
integrating over Xν , we obtain

μ̂ν(t) = i〈Xν〉2
�

∫ t

0
[F̂ τ−t

ν , ρ̂τ−t
e ] dτ (8.8)

which agrees with the expression (8.6). In the HML, ECEID converges to the semi-
classical case with a 2P average for the phonon.

In Fig. 8.12, we compare 2P average IV curves with ECEID in the HML. The
a mode converges with the elastic result at about M = 100x. The s mode at M =
1000x is close to the elastic case, but still not superimposable. In the HMLwe expect
exact convergence, and, to check if the discrepancy could be due to the OB setup,
we increase the length of the leads to 250. The longer leads curve gets much closer
to the elastic case, indicating that, in the infinite lead limit, there is convergence.
Therefore, ECEID simulations verify the HML.

The fact that ECEID recovers the elastic limit is a strong verification of themethod.
This convergence to an exact result is not obvious given the approximate nature of
ECEID and the extent of its approximations. The limits in this section provide a solid
stepping stone for the following inelastic calculations.
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Fig. 8.12 Comparison of ECEID in the HML with elastic 2P average IV curves for the s mode and
the a mode. The curve in green is the elastic one, the blue one is the M = 1x case, the yellow one
the M = 100x, the purple one the M = 1000x and the red one the M = 1000x with longer left and
right leads of 250 atoms

8.1.6 Current Assisted Phonon Heating

We apply a bias to the molecule in the undamped limit by not freezing Ṅ at zero
and starting from N (0) = 0. The phonon modes can now interact with the injected
electrons, until the system reaches a steady state.

In Fig. 8.13a, we compare the steady state current for the two modes with the
elastic Landauer result without phonons. At low voltages, both ECEID simulations
show a slight current increase over the elastic case, indicating an inelastic mechanism
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Fig. 8.13 ECEID water molecule simulations with a bias V , the vibrational modes starting from
N (0) = 0 and Ṅ free to vary. In blue the s mode, in red the a mode and in yellow the elastic
Landauer case (without phonons). In a we show the steady state current and in b the steady state N

that helps the electrons flow. At about V = 7 V, the current in the a mode starts to
decrease for increasing biases. This phenomenon is known as negative differential
resistance [22, 23].

For high biases, the steady state current in both modes either decreases or reaches
a plateau that is less than the elastic value. The presence of the phonons enhances
dissipation. By looking at the corresponding steady state value of N in Fig. 8.13b, we
see that, for high biases, N increases greatly, especially for the a mode. Moreover,
the equilibration time for high biases increases too.

This dramatic heating accompanied by enhanced relaxation times was also
observed in CEID simulations on a resonant system [22] and led the authors to
conclude that at high enough biases a strong local heating in the system can occur.
In realistic systems such a heating is instrumental in the formation of structural dam-
age. For example, in the field of radiation damage to biological systems, the heating
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of the environment caused by secondary electrons can cause cellular damage. This
motivates us in investigating larger systems including more than one water molecule,
such as a water chain.

8.2 Water Chain

We used DFT simulations to determine the geometry of a water chain and, at first, we
implemented the same tight-binding model as the one for the water molecule. The
results with this model are in Appendix C. The tight-binding electronic structure
did not show a good agreement with the corresponding band structure from DFT
simulations, sowe decided to improve themodel. In the following section,we employ
a more advanced O-H hopping and obtain a tight-binding band structure in better
agreement with DFT. We proceed by injecting electrons in the chain studying their
elastic and inelastic interaction with the water chain.

8.2.1 The Model

Weconnect watermolecules to form a planar chain, whose equilibrium geometrywas
determinedwith DFT simulations2 and is shown in Fig. 8.14. The resulting electronic
structure fromDFT features a HOMO-LUMOgap of 6 eV followed by a 1.6 eV-wide
group of unoccupied states. These are separated from the continuum by a 3 eV gap,
which probably originates from the 1-dimensional geometry of the chain. We set
as our aim to reproduce the presence of the isolated lowest unoccupied band in our
tight-binding model and to use it for the electron injection in the examples.

The orbital onsite energies and the EF are exactly as in the water molecule case,
while the hoppings employ a more advanced model. The geometry parameters such
as the bond lengths and the H-O-H angle here come from the DFT simulations. The
Hamiltonian for the j th water molecule in the chain reads

Ĥ j =

⎡
⎢⎢⎣
EH1 − EF ∓U1 cos θ U1 sin θ 0
∓U1 cos θ EOpx

− EF 0 ±U2 cos θ

U1 sin θ 0 EOpz
− EF U2 sin θ

0 ±U2 cos θ U2 sin θ EH2 − EF

⎤
⎥⎥⎦

where upper signs match an odd j and lower signs an even j , U1,2 are the hoppings
between the oxygen and the hydrogen atoms H1,2, β = 105.8◦ is the H-O-H angle
and θ = (π − β)/2. H1 points out of the chain with a bond length ROH1 = 0.97 Å
and H2 forms the chain’s backbone with ROH2 = 1.00 Å. We choose a O-H hopping

2We used the software CP2K [24] with PBE functional and a 6311G** basis.
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Fig. 8.14 Reduced schematic of our model system, with a water chain of 3 molecules connected
to its left and its right to metallic leads made of 6 atoms, 3 of which attached to external probes.
See text for the dimensions of the system in the actual simulations. Each oxygen atom has a 2px
and a 2pz orbital, while the hydrogen atoms H1 (pointing out of the chain) and H2 (pointing in the
chain) have a 1s orbital. The red arrows depict the phonon mode included in the calculations, with
the ROH1 bonds vibrating in phase [9]

U (R) = V

(
R0

R

)2

exp

(
2

(
−

(
R

RC

)4

+
(
R0

RC

)4
))

(8.9)

where V = 1.84 �
2/(2meR2

0),me is the electron mass, R0 = ROH1 is the equilibrium
bond length and the critical length is set to RC = 1.8 ROH1 [16, 25]. This makes
U1 = U (ROH1) = 7.45 eV and U2 = U (ROH2) = 6.84 eV.

The distance between the oxygen atoms is ROO = 2.67 Å, so the inter-molecular
hopping between O2pz and H2 is U (ROO − ROH2) = 0.57 eV, while the inter-
molecular hopping between the O2px orbital and H2 is zero by construction. This
form of hopping has the advantage of recovering the result fromHarrison’s solid state
table [26] U (R0) = V for equilibrium bond lengths, while decaying exponentially
with large distances, suppressing intermolecular O-H interactions.

A DFT vibrational structure calculation for a 10 molecule water chain with peri-
odic boundary conditions produces a set of phonon bands. One of them consists of
phonon modes that predominantly involve out of chain hydrogens H1 moving in and
out of the chain. The modes in that band present closely clustered frequencies lying
within a fraction of a percent of each other. For our present calculations, we are going
to consider a fictitious mode (since the actual modes and their phases will of course
depend on the specific boundary conditions) in which all H1 are vibrating in phase
with each other, as indicated in Fig. 8.14. We considered different choices of relative
phases for the vibrating H atoms, but these did not produce a qualitative change in
the results. We take a representative value for the frequency �ω = 0.473 eV and for
the vibrational reduced mass M = 1 amu, for that band of modes. A block of F̂ for
the j th water molecule in the chain reads

F̂j = F

⎡
⎢⎢⎣

0 ∓ cos θ sin θ 0
∓ cos θ 0 0 0
sin θ 0 0 0
0 0 0 0

⎤
⎥⎥⎦
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Fig. 8.15 The high frequency phononic mode for a 3-molecule water chain with the ROH1 bonds
vibrating in phase

where F = C ∂U (R)

∂R

∣∣∣
R=ROH1

= 6.60 eV/Å, the upper signs correspond to an odd j , the

lower ones to an even j and the factorC = 1/
√
10 arises because our phonon involves

the motion of all the 10 water molecules in the chain. The zero point amplitude of the
phonon is

√〈X2〉N=0 = 0.064Å, while its root mean square displacement at N = 2
is

√〈X2〉N=2 = 0.144Å.
With the above value of F , in some simulations we observed violent oscillations

in the current that prevented the formation of a steady state in the system.We believe
that these oscillations are due to a limitation of themethod approximations in treating
coherences for large F .We can determine a critical F by using a qualitative condition
that compares a typical electron-phonon transition rate with the inverse oscillator
period 2π

�
F2
c X

2D � ω
2π . Ifwe pick as a typical phonon displacement X � √〈X2〉N=0

and a density of states D � 1
B with B � 16 eV the total bandwidth of the water

chain, we obtain Fc � 7 eV/Å. System dynamics with values about and above Fc

would involve higher-order processes and coherences that ECEID cannot handle.
The value above is indeed close to Fc. As a cure, consistent with the approximations
in the method, we halve F to 3.30 eV/Å. The electron-phonon transition rates scale,
to lowest order, quadratically with F ; therefore, the above change would reduce the
inelastic transition rates by a factor of 4. Nevertheless, the underlying physics of
the phenomenon that we are interested in, namely the inelastic electron injection in
elastically forbidden energy ranges, remains unchanged.
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8.2.2 Simulation Details

We work with a chain made of 10 water molecules. Its electronic eigenvalues form 4
bands that are symmetric with respect to EF . The 2 upper bands, the first conduction
band (FCB) and the second conduction band (SCB), are shown in Fig. 8.16. Thewater
chain eigenstates are initially populated at their ground state with a half filled band.
DFT calculations of the excited states of a corresponding system show the formation
of a band analogous to the FCB and, above it, a continuum of states which is not
captured in our simple TB model because of the reduced number of basis functions
for water empty states.

Our TB model of the chain can reproduce the feature of the FCB and is in qual-
itative agreement with the band structure from DFT. The band gap in the TB chain
is about 11 eV, which compares well with the accepted experimental value of 7 eV
for liquid water and 9 eV for ice [27]. In our DFT simulations the band gap is 6 eV.
The FCB bandwidth is 0.8 eV in TB, against a value of 1.6 eV from DFT. The gap
above the FCB is 1.6 eV in the TB model and 3 eV in DFT.

At higher energies the band structure of TB differs significantly from the DFT
one, because of the minimal basis set used that comprises only s orbitals for the H
and px and pz for the O. The continuum in DFT arises from additional s and p as
well as d orbitals in the basis set. This section focuses on injecting electrons in the
FCB and evaluating the inelastic contribution of the phonon. Effects involving the
artificial SCB will be commented on later.
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Fig. 8.16 Water chain eigenvalues of the levels above EF and their elastic variationwith the phonon
mode generalized coordinate X , with the FCB shown at the bottom of the figure and the SCB on
top. The dashed vertical lines indicate the phononic zero point motion
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ones
√〈X2〉N=2. The horizontal dotted lines indicate the energies E = 5.3 eV and E = 6.7 eV that

will be used in the electron-gun injection section [9]
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To examine the effect of a classical phonon on the eigenspectrum, we add −F̂ X
to the water chain Hamiltonian, where X is a classical generalized coordinate. A scan
in X samples the elastic effect of a frozen phonon. In Fig. 8.16 we show the variation
with X of the eigenvalues in the FCB. A positive X makes ROH1 extend, reducing the
FCB bandwidth and narrowing the gap with the valence band. A negative X makes
the FCB shift slightly upwards in energy.

Next, we connect the water chain to metal leads, as sketched in Fig. 8.14, so that
H1 on the left and H2 on the right of the chain are linked to the neighbouring metal
site by w = −2 eV. The metallic leads serve as a tool for injection and, initially,
they are not populated. They are made of 80 sites each, with a single state per site
and a nearest neighbour hopping t = −4 eV. Their onsite energy is 10 eV, so that
the metallic energy band ranges from 2 to 18 eV, overlapping only with the water’s
conduction bands. The 40 leftmost sites in the left lead and the 40 rightmost ones in
the right lead are coupled by � = 1.25 eV to external probes for the OB.

8.2.3 Electron-Pulse Injection

We begin with probably the most intuitive picture of electron injection, namely
firing actual electronic wavepackets from the left lead towards the water chain and
propagating the ECEID EOM. Initially, we introduce in the empty leads an electron
pulse in the form of a spin-degenerate wavepacket moving from the left lead towards
the water chain. The pulse has the following form

|�0〉 = c
∑
n

e−(n−n0)2/2σ 2
eikn|n〉 (8.10)

where n spans the left lead atomic basis, n0 = 55 is the pulse’s central site, σ = 12
sites, k ∈ [0, π ] is a dimensionless crystal momentum and c is the normalization
factor. By scanning over k, we can vary the energy of the incident wavepacket which
has an initial full width at half maximum in energy of about 1 eV. We keep only the
extraction term in the OB in Eq. (5.49), so that the backscattered or transmitted parts
of the wavepacket reaching the ends of the leads can get absorbed and not reflected
back into the water.

To measure electron absorption into the water, we sum over the occupations of the
FCB. We call this quantity excess electron population (EEP) and show it at different
times in Fig. 8.17a. We perform a phonon-free elastic simulation (dotted line) and
inelastic simulations where the phonon is initialized at N (0) = 0 (dashed line) or
N (0) = 2 (solid line). At t = 5 fs the EEP displays a peak for an incident energy in
the middle of the FCB. It also displays electron absorption for incident energies well
outside the FCB. The inelastic contribution to injection in this elastically forbidden
range is intertwined with elastic effects due to the energy width of the pulse. In fact,
the elastic curves are not significantly different from the inelastic ones at this level of
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Fig. 8.17 Electron-pulse simulationswhereGaussianwavepackets are injected into thewater chain.
The vertical dotted lines mark the edges of FCB for X = 0; the dashed vertical lines mark the range
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√〈X2〉N=0; the solid vertical linesmark this range for |X | <
√〈X2〉N=2.

Panel (a): FCB excess electron population for wavepackets with an average energy 〈E〉 at a range
of times. Solid lines correspond to the phonon starting at N (0) = 2, dashed lines to N (0) = 0 and
dotted lines to the elastic case. Panel (b): phonon occupancy variation �N at t = 200 fs for initial
N (0) = 0 (dashed) and N (0) = 2 (solid). Panel (c): difference between the inelastic excess electron
population with N (0) = 0 and the elastic one at different times, normalized by the elastic case at
t = 5 fs. Panel(d): same as panel (c), with the inelastic case of N (0) = 2 [9]

analysis. With time progressing, the EEP decreases in magnitude as electrons leak
back out into the leads, until, at t = 200 fs, the EEP drops close to zero in all cases.

Nevertheless, the electron pulse leaves a long lasting inelastic mark on the phonon
occupancy variation �N (t) = N (t) − N (0), shown at t = 200 fs in Fig. 8.17b.
�N (t) displays a radically different behaviour depending on the initial condition
N (0) and on the pulse average energy 〈E〉. Electron injection in the elastically for-
bidden range, outside the FCB, hinges on the phonon, as the electron-phonon inter-
action enables electrons to access the water states via phonon emission or absorption.
This inelastically-assisted electron injection furthermore is controlled by the effec-
tive vibrational temperature, as the value of N (0) determines which phonon-assisted
processes are allowed.

For pulses below the water FCB edge, 〈E〉 < 5.6 eV, an electron must absorb
phonons to enter the water; therefore the inelastic hopping can only be acti-
vated if N (0) > 0. Indeed, we see that the dashed curve representing N (0) = 0 in
Fig. 8.17b remains close to zero at low energies and starts increasing for pulses with
〈E〉 � 5 eV. At that energy range, the high energy components of the pulse can enter
the FCB elastically and trigger further inelastic processes. On the other hand, the
solid curve, for N (0) = 2, shows a clear dip in �N at incident energies about �ω

below FCB, highlighting electron injection assisted by phonon absorption.
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For incident pulses above the upper band edge, 〈E〉 > 6.5 eV, electrons have to
emit a phonon to enter the water FCB, so one expects a�N > 0. However, the higher
energy SCB (see Fig. 8.16) obscures the phonon emission process in this range by
mixing it with phonon absorption, leading to injection into SCB.

To isolate the inelastic contribution in the EEP, we introduce δEEP: the difference
between the inelastic EEP and the elastic EEP, normalized by the elastic EEP at
t = 5 fs. This quantity measures the effective inelastic contribution to injection. In
Fig. 8.17c–d, we show δEEP for N (0) = 0 and N (0) = 2 respectively. The latter
shows an intense peak at 〈E〉 � 4.5 eV, corresponding to phonon absorption by the
high-energy components of the incident wavepacket. This signature peak is much
weaker in the N (0) = 0 case. Thus N , and the effective phonon temperature, is a
key controlling factor for the intensity of phonon-assisted injection. Above the FCB,
we see another increase in δEEP marking inelastic injection in the FCB, but mixed
with the concomitant injection in the SCB.

The decay time of the injected electrons shows a dependency on 〈E〉, with δEEP
for pulse energies outside the FCB decaying slower than for energies inside the FCB.
This behaviour suggests an energy dependent lifetime of the FCB states, which we
will explore more thoroughly later.

In the electron-pulse simulations, the energy spread of the wavepackets obscures
the inelastic effects on the FCB by mixing them with elastic contributions and the
injection in the SCB. To overcome these limitations, and probe the inelastic injection
mechanism further, we now exploit the OB to send in a steady incident electron beam
with a sharp energy spectrum.

8.2.4 Electron-Gun Injection

We make use of the electronic OB Eq. (5.49) to inject a steady electron beam, as
opposed to the single wavepacket above. Here the leads are coupled to baths kept
at zero electronic temperature and zero electrochemical potential. Thus fL/R(E) are
the corresponding equilibrium electronic distributions. However, in addition, fL(E)

contains a top-hat spike between E = ε − δε and E = ε + δε. This setup provides
a steady electron flux hitting the water chain. We concentrate on the interesting
scenario found earlier when the incoming electron energies are just above or below
the water FCB, so that phonon-activated electron injection is the dominant process.
We aim the electron gun at ε = 5.3 eV with δε = 0.1 eV, just below the chain FCB
5.6 < E < 6.5 eV and just above it at ε = 6.7 eV, as can be seen from the horizontal
dotted lines in Fig. 8.16.

In Fig. 8.18a–b we show the current measured on the right and on the left of the
water chain in ECEID simulations, with the initial phonon occupancies N (0) = 0,
N (0) = 2 considered earlier, together with a purely elastic, phonon-free simulation.
In all cases, the injection energy is out of the chain’s elastic transmission range, so
the elastic current remains very close to zero as expected. At the lower injection
energy ε = 5.3 eV, if N (0) > 0, electrons can hop into the water FCB through
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Fig. 8.18 Electron-gun simulations where electrons are injected within a narrow energy window,
just above or below thewater FCB. Panels (a) and (b): current measured in the secondmetal bond on
the right (solid) and on the left (dashed) of the chain with the electron gun aimed at E = 5.3 ± 0.1
eV and E = 6.7 ± 0.1 eV, respectively. Elastic ECEID simulations are in blue, N (0) = 0 in red and
N (0) = 2 in green. Panels (c) and (d): dynamics of N corresponding to (a) and (b), with N (0) = 0
(dashed) and N (0) = 2 (solid) [9]

phonon absorption. Indeed, at N (0) = 2, the current decreases in time, with the
phonon cooling down, as shown in Fig. 8.18c. This current-assisted cooling may
look counterintuitive if one imagines a current to always heat its surroundings, but
in fact current-assisted cooling in molecular systems is not unfamiliar [28]. Here the
phonon cooling and the nonzero current are a signature of the phonon absorption
injection mechanism.

At N (0) = 0 and ε = 5.3 eV, even if no injection is expected, there is a small
increase in current accompanied by an increase in N , until both the current and N
eventually reach a steady state matching the one for N (0) = 2. This is caused by the
broadening of the FCB due to the presence of the leads, together with the fact that
the electron-gun window of populated states in the leads effectively constitutes an
electronic excitation above the ground state of the system. Therefore, thermodynam-
ically, a tendency of the phonon to equilibrate at a raised energy above the vibrational
ground state is to be expected. The broadening of the FCB density of states—and the
small heating effect starting from N (0) = 0—decrease with decreasing water-metal
coupling (w).

In the ε = 5.3 eV results, the currents evaluated on the left and on the right of the
chain are superimposable: the system dynamics can be approximated by a series of
steady states. This does not happen for ε = 6.7 eV, where left and right currents tend
to slightly differ at all times, indicating that the system dynamics does not manage to
remain in an electronic steady state during the heating of the phonon. Themechanism
at play now is electron injection into water through phonon emission, with a positive
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feedback mechanism. The incoming electron flux causes phonon heating through
emission, and a resultant current due to the electrons inelastically injected in the
water. The increase in N , in turn, increases the electron-phonon scattering rate (from
the Golden Rule), further increasing the inelastic electron current. In the present
model, the water is not coupled to a vibrational thermal bath and this leads to the
dramatic phonon heating see in Fig. 8.18d.

Of course, the vibrational energy cannot increase indefinitely, but the principle
remains: a potentially powerful injectionmechanism from elastically forbidden ener-
gies, with the vibrational effective temperature as a key controlling factor. From a
simulation point of view, the absence of a vibrational thermostat (sometimes referred
as the completely undamped limit in the context of inelastic nanoscale transport [29])
offers the advantage that a single real-time ECEID simulation, with N allowed to
respond and scan a range of values, probes a range of different temperature-dependent
regimes.

In reality, there are two limiting mechanisms at play. On the one hand, the phonon
mode will be coupled to the environment, typically through hydrogen-bonding to
other water molecules. Therefore, part of this energy will be used in heating the
aqueous environment. This energy transfer will correspond to a specific time scale
related to the thermal conductivity of water, which is relatively low. If energy is
pumped into this phonon mode at a faster rate, then it will accumulate in the bond.
Here the harmonic approximation breaks down, and the inclusion of anharmonic
potentials that incorporate the possibility of bond dissociation becomes essential.
Such a resonant damage mechanism is reminiscent of dissociative electron attach-
ment in DNA-related systems [30, 31], where electrons trapped in a resonant state
transfer sufficient energy to a vibrational mode to break the corresponding bond.
Incoming electrons with a well defined energy could trigger inelastic effects such
as the ones described in the present chapter and be a prominent cause for dramatic
heating and bond breaking.

8.2.5 Eigenstate Lifetime and Band Edge Trapping

In Fig. 8.17c,d we noticed that the δEEP decays slower for pulses above and below
the FCB. This observation provides an indirect measure for the lifetime of the inelas-
tically injected electrons in the water as a function of the initial injection energy. We
know that electrons entering the water from these elastically forbidden energies do so
by phonon emission and absorption, landing in the highest and lowest energy states
in the FCB. If these states were long lived, they would act as an effective electron
trap.

To understand this phenomenon, we evaluate the lifetimes of all eigenstates, j ,
in the water FCB, calculated in two different ways. The first is the purely elastic
lifetime against tunnelling out into the leads given by τ−1

�, j = − 2
�
Im〈 j |�̂+

c (E j )| j〉
where �̂+

c is the water chain’s self-energy which incorporates the embedding in the



8.2 Water Chain 129

environment through the end sites of the water chain that are coupled to the leads.
The variations in τ−1

�, j , over the given narrow energy range, come mainly from the
amplitudes of the water states | j〉 on the end sites of the chain. The second is directly
from dynamical simulations, in which we release an excess electron from a chosen
water eigenstate, propagate the system in time and fit an exponential decay to the
decreasing EEP. We perform ECEID calculations for the purely elastic case and for
the two earlier phonon occupancies N (0) = 0 and N (0) = 2. We include only the
OB extraction term and, to concentrate on the lifetime, we keep N frozen at its initial
value. In the real-time simulations we further calculate and compare the lifetime
associated with the population of the chosen initial state itself τs, j and the sum of
populations of all FCB states τa, j .

The characteristic horseshoe shape that all the decay times display in Fig. 8.19
fundamentally originates from the dominant elastic mechanism. It can be understood
from the form of the self-energy and the chain eigenstates. More generally, of course,
the lifetime against escaping into the environment will depend on the details of the
system-environment coupling. However, as our specific example illustrates, one may
in general expect different system excited states to have significantly different life-
times against the environment. The self-energy lifetime τ�, j tends to agree with τs, j ,
especially in the low energy range, while τa, j is longer throughout the energy range.
Any difference between τs, j and τa, j signals higher-order scattering processes, not
captured by the perturbative τ�, j . Elastic ECEID calculations agree closely with the
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Fig. 8.19 Lifetime comparison of the water FCB eigenstates for: static self energy calculations
(τ�, j ) (solid dots), exponential fits of the decaying population of a single initially populated level
(τs, j ) (green curves), exponential fits of the total population of all excited states within the FCB,
starting from a single initial populated FCB level (τa, j ) (red curves). Dotted curves correspond to
elastic ECEID real-time calculations, dashed and solid lines to N (0) = 0 and N (0) = 2 ECEID
simulations, both with Ṅ kept equal to 0 [9]
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inelastic ones, indicating that the leading electron escape mechanism from the FCB
is the elastic one to the leads, similarly to what was observed in earlier, perturbative
inelastic tunnelling simulations [12]. The lifetimes computed here are comparable
to the resonance lifetimes reported for tunnelling through 3d water structures in
[11, 13].

The states at the band edge have a lifetime about one order of magnitude longer
than the rest. They are the states most involved in the electron-phonon injection dis-
cussed earlier. A focused phonon-assisted electron injection in combination with the
energy-dependent lifetimes of the FCB states, can thus provide an effective trapping
mechanism for incident carriers, dependent on their incoming energy.

In Appendix C, we offer an alternative and simpler water chainmodel that reached
similar results with some additional interesting features.
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Chapter 9
A New Development: ECEID xp

This chapter presents a newmethodological development that represents an improve-
ment over ECEID. Through the use of a canonical transformation on the ECEID
Hamiltonian, it is possible to include the dynamics of an extra classical degree of
freedom in themodel, a semiclassical oscillator position. Physically,we can think of it
as a representation of the oscillator centroid, but it enters the derivation just as a time-
dependent reference position. After deriving an exact set of equations, we compare it
with an exact expansion from [1] and notice that, for a frozen centroid motion, exact
ECEID from Sect. 5.2 is recovered. By applying approximations akin to ECEID, we
reach a set of equations that contains the motion of the semiclassical oscillator posi-
tion as a time-dependent parameter which still lacks an explicit equation of motion.
We propose a condition that generates an Ehrenfest-like dynamics for the centroid
motion and test it on a nanowire system. We then show a performance compari-
son between ECEID xp and ECEID. At last, we explore possible expansions of the
method and further work. The work in this chapter was developed in collaboration
with Alfredo Correa during a stay at Lawrence Livermore National Laboratory.

9.1 A Canonical Transformation

The derivation starts the same model Hamiltonian (5.1) used in ECEID

Ĥ = Ĥe +
No∑

ν

(
P̂2

ν

2M
+ K X̂2

ν

2
− F̂ν X̂ν

)
(9.1)

with No harmonic oscillators coupled to electrons described by a general many-
body electronic Hamiltonian Ĥe. X̂ν and P̂ν are canonically conjugate operators,
[X̂ν, P̂ν ′ ] = i�δνν ′ and the electron-phonon coupling F̂ν is an electron-only operator.
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134 9 A New Development: ECEID xp

For simplicity, in this derivation, we pick identical spring constants K and masses
M for all the oscillators. The final result can be trivially adjusted by employing
oscillator-specific Kν and Mν .

The final aim of the ECEID derivation was to develop a set of equations for the
electronic DM ρ̂e(t) and the mean oscillator occupations Nν(t), connected by corre-
lation operators μ̂ν(t), λ̂ν(t) and the motion of auxiliary operators Ĉc

ν, Â
c
ν, Ĉ

s
ν, Â

s
ν .

The dynamics of ECEID explicitly evolves ρ̂e(t) and Nν(t), but it does not take into
account the semiclassical motion of the oscillator in its harmonic potential. There
is no quantity that describes the time-dependent position of each oscillator in its
potential.

The description of such a quantity is essential for linking ECEID to simulations
where the real-space position of the atoms is relevant, such as Ehrenfest-TDDFT
or MD. Connecting ECEID to those methods is no easy task and presents several
difficulties, but would be a very rewarding achievement, as it would open a wide
range of applications for ECEID. A crucial step forward is the introduction of an
explicit oscillator position in ECEID. Does it make sense to speak of an oscillator
classical position in ECEID’s formalism or does ECEID imply that the oscillators
are localized and do not move? To answer this question, we introduce additional
time-dependent parameters by proposing the change of variables

X̂ν = xν(t) + ξ̂ν (9.2)

P̂ν = Mẋν(t) + π̂ν, (9.3)

where we include the new canonically conjugate operators [ξ̂ν, π̂ν ′ ] = i�δνν ′ and
classical oscillator positions xν(t). The idea behind this is that ξ̂ν and π̂ν represent
quantum fluctuations around a hypothetical semiclassical trajectory described by
xν(t), whose equation of motion is yet unspecified.

This transformation of phase-space variables is canonical and time-dependent,
with a generating function of second-type [2]

G2(X,π, t) =
No∑

ν=1

(
Mẋν(t)Xν + πνXν − xν(t)πν

)
(9.4)

which links theHamiltonian in the old set of variables Ĥ (X̂ , P̂)with theHamiltonian
in the transformed ones ĥ(ξ̂, π̂). The following equalities hold

P̂ν = ∂G2

∂Xν
(9.5)

ξ̂ν = ∂G2

∂πν
(9.6)

ĥ = Ĥ + ∂G2

∂t
. (9.7)
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where the first two are simply the canonical transformation in Eqs. (9.2) and (9.3)
and the last one defines an auxiliary equivalent Hamiltonian in the new variables

ĥ(t) = Ĥe +
No∑

ν=1

(
π̂2

ν

2M
+ K ξ̂2ν

2
+ Mẋν(t)2

2
+ Kxν(t)2

2
+ Mẍν(t)xν(t)

+ (Kxν(t) + Mẍν(t)) ξ̂ν − F̂ν

(
xν(t) + ξ̂ν

) )
. (9.8)

Comparing Eq. (9.8)with (9.1), we see that operators ξ̂ν and π̂ν effectively replace X̂ν

and P̂ν as the canonical displacement and momentum operators. Besides some scalar
extra terms that depend on xν(t), ẋν(t) and ẍν(t), a new term appears,

(
Kxν(t) +

Mẍν(t)
)
ξ̂ν , which is linear in the quantum displacement. So far, the xν(t) trajectories

are free parameters.

9.2 Exact Dynamics

In analogy with Chap.5, the dynamics of the full DM follows the Liouville equation

i� ˙̂ρ(t) = [ĥ(t), ρ̂(t)] (9.9)

and the electronic DM is determined by

i� ˙̂ρe(t) = [Ĥe, ρ̂e(t)] −
No∑

ν=1

(
[F̂ν, μ̂ν(t)] + xν(t)[F̂ν, ρ̂e(t)]

)
. (9.10)

The derivation of the time-evolution for the mean oscillator occupation1 Nν(t) =
Tr

(
â†ν âν ρ̂(t)

)
starts from the analogue of Eq. (5.9)

Ṅν(t) = Tr
(
N̂ν

˙̂ρ(t)
)

= 1

i�
Tr

(
[N̂ν, ĥ(t)] ρ̂(t)

)
. (9.11)

The commutator above is

[
N̂ν, ĥ(t)

]
= − i

Mω
π̂ν

(
Kxν(t) + Mẍν(t) − F̂ν

)
, (9.12)

which makes the EOM for Ṅν(t)

1Where now â(†)
ν is the creation (annihilation) operator associated with the canonical displacement

ξ̂ν and momentum π̂ν of oscillator ν.
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Ṅν(t) = 1

�Mω

(
Tre

(
F̂νλ̂ν(t)

)
−

(
Kxν(t) + Mẍν(t)

)
π̄ν(t)

)
. (9.13)

In Eqs. (9.10) and (9.13) we introduced electronic correlation operators

μ̂ν(t) = Tro
(
ξ̂ν ρ̂(t)

)
(9.14)

λ̂ν(t) = Tro
(
π̂ν ρ̂(t)

)
, (9.15)

akin to the operators from (5.6) and (5.11). These operators store the correlated
information between the electronic subsystem and oscillator and play an essential
role in driving the EOM for ρ̂e(t) and Nν(t). The electronic traces of these operators

ξ̄ν(t) = Tre
(
μ̂ν(t)

)
= Tr

(
ξ̂ν ρ̂(t)

)
(9.16)

π̄ν(t) = Tre
(
λ̂ν(t)

)
= Tr

(
π̂ν ρ̂(t)

)
(9.17)

correspond to the expectation value of ξ̂ν and π̂ν .
In Chap.5, the derivation proceeded to determine a time-local form of μ̂ν(t) and

λ̂ν(t) by inserting in their definition an exact integral form of ρ̂e(t) (5.4). Here we
follow a different path and explicitly evaluate the time derivative of the correlation
operators.2 Using Eq. (9.9) in the time derivative of the correlation operators, we
have

i� ˙̂μν(t) = Tro
(
ξ̂ν[ĥ, ρ̂(t)]

)
(9.18)

i� ˙̂
λν(t) = Tro

(
π̂ν[ĥ, ρ̂(t)]

)
. (9.19)

Employing permutations under the trace and the canonical commutation relations,
the equations above can be written as3

2This alternative approach is also applicable to ECEID in Chap.5. There, the formalism with the
auxiliary operators was chosen for consistency with the method as it was originally developed
and presented in [3, 4]. Here, the derivation follows a sleeker approach that does not involve the
definition of any auxiliary operators. The dynamics resulting from the two approaches is equivalent.
3For example, the contribution of the electron-phonon coupling term −F̂ν ξ̂ν in Eq. (9.19) is

−
No∑

ν ′=1

Tro

(
π̂ν F̂ν ′ξν ′ ρ̂(t) − π̂ν ρ̂(t)F̂ν ′ξν ′

)
= −

No∑

ν ′=1

Tro

(
π̂νξν ′ F̂ν ′ ρ̂(t) − ξν ′ π̂ν ρ̂(t)F̂ν ′

)
=

−
No∑

ν ′=1

(
Tro

(
π̂νξν ′

[
F̂ν ′ , ρ̂(t)

])
− i�δνν′Tro

(
ρ̂(t)F̂ν ′

))
.

(9.20)
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i� ˙̂μν(t) =
[
Ĥe, μ̂ν(t)

]
+ i�

M
λ̂ν(t) −

No∑

ν ′=1

([
F̂ν ′ ,Tro

(
ξ̂ν ξ̂ν ′ ρ̂(t)

)] +
(
xν ′(t)

[
F̂ν ′ , μ̂ν(t)

]))

(9.21)

i� ˙̂
λν(t) =

[
Ĥe, λ̂ν(t)

]
− i�K μ̂ν(t) −

No∑

ν ′=1

([
F̂ν ′ ,Tro

(
π̂ν ξ̂ν ′ ρ̂(t)

)] − i�ρ̂e(t)F̂ν

+ xν ′(t)
[
F̂ν ′ , λ̂ν(t)

]) − i�
(
Mẍν(t) + Kxν(t)

)
ρ̂e(t) (9.22)

which are exact.
Equations (9.21) and (9.22) contain second order correlation terms Tro

(
ξ̂ν ξ̂ν ′ ρ̂(t)

)

and Tro
(
π̂ν ξ̂ν ′ ρ̂(t)

)
. These terms can be either approximated, as we did in ECEID

and we do here in Sect. 9.3, or their time evolution has to be evaluated explicitly.
They would have to be defined as second order correlation operators and require
approximations on the third order correlations. The procedure would escalate the
EOM to the next order, carrying truncation difficulties and significantly reducing the
computational efficiency.

The second order operators depend on two indices νν ′ and their number scales
as N 2

o . The computational cost of a method that includes them would clearly not
scale linearly with the number of oscillators. Moreover, the ECEID approximations
on the second order terms determine a truncation that is physically meaningful. A
physically consistent truncation strategy on the third order terms is trickier to figure
out.

This expansion strategy is very reminiscent of the one used in CEID [1, 5]. There,
the atomic potential is general and the method is derived by expanding quantities
around an average atomic position for small displacements. By plugging an harmonic
potential into CEID and evaluating the exact expansion from Eq. (8) in [1], it is
possible to derive exact equations for the correlation operators that here we call
μ̂ν(t) and λ̂ν(t). It can be verified that the resulting expressions correspond term by
term with the ECEID xp exact results from Eqs. (9.21) and (9.22). The fact that the
two strategies reach the same conclusion is reassuring and supports the canonical
transformation strategy employed here.

9.3 The Approximations and ECEID xp

The second order terms in Eqs. (9.21) and (9.22) can be written as

Tro
(
ξ̂ν ξ̂ν ′ ρ̂(t)

)
= �

2Mω
Tro

((
âν âν ′ + âν â

†
ν ′ + â†ν âν ′ + â†ν â

†
ν ′
)
ρ̂(t)

)
(9.23)

Tro
(
π̂ν ξ̂ν ′ ρ̂(t)

)
= i�

2
Tro

((
â†ν âν ′ − âν âν ′ − âν â

†
ν ′ + â†ν â

†
ν ′
)
ρ̂(t)

)
(9.24)
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by using the second quantization form of ξ̂ν and π̂ν .
Just as in ECEID, the approximations consists of ignoring all cross terms

that involve different oscillators Tro
(
â(†)

ν â(†)
ν ′ ρ̂(t)

)
� Tro

(
â(†)

ν â(†)
ν ′ ρ̂(t)

)
δνν ′ and

terms with double (de)excitations4 Tro
(
âν âν ρ̂(t)

) = Tro
(
â†ν â

†
ν ρ̂(t)

) � 0.With these
approximations and [âν, â†ν ] = 1, Eqs. (9.23)–(9.24) become

Tro
(
ξ̂ν ξ̂ν ρ̂(t)

)
� �

Mω
Tro

((
â†ν âν + 1

2

)
ρ̂(t)

)
(9.25)

Tro
(
π̂ν ξ̂ν ρ̂(t)

)
� − i�

2
ρ̂e(t) (9.26)

Equation (9.26) is ready to be inserted back in Eq. (9.22). Its form is reminiscent of
an uncertainty principle on the the displacement and momentum operators. Equation
(9.25) cannot yet be used because Tro

(
â†ν âν ρ̂(t)

)
is an unknown electronic operator

that, in principle, needs its own EOM. In (9.25) (but not earlier) we split the DM into
ρ̂(t) � ρ̂e(t)ρ̂o(t) so that Eq. (9.25) can be written as

Tro
(
ξ̂ν ξ̂ν ρ̂(t)

)
� �

Mω

(
Nν(t) + 1

2

)
ρ̂e(t), (9.27)

that now can be included in Eq. (9.21).
The final approximated EOM for the correlation operators are

˙̂μν(t) = 1

i�

[
Ĥe, μ̂ν(t)

]
+ 1

M
λ̂ν(t) + i

Mω

(
Nν(t) + 1

2

)[
F̂ν , ρ̂e(t)

]
− 1

i�

No∑

ν ′=1

(
xν ′ (t)

[
F̂ν ′ , μ̂ν(t)

])

(9.28)

˙̂
λν(t) = 1

i�

[
Ĥe, λ̂ν(t)

]
− K μ̂ν(t) + 1

2

{
F̂ν, ρ̂e(t)

}
−

(
Mẍν(t) + Kxν(t)

)
ρ̂e(t)

− 1

i�

No∑

ν ′=1

(
xν ′(t)

[
F̂ν ′ , λ̂ν(t)

])
, (9.29)

where the new terms are indicated in blue. Equations (9.28) and (9.29), together with
(9.10) and (9.13), represent the EOM of the methodological development called
ECEID xp.5

4In Appendix D, a recent development is shown where the double (de)excitations approximation is
not invoked.
5μ̂ν(t) and λ̂ν(t) in Eqs. (9.28) and (9.29) contain terms summed over ν ′. Therefore, in ECEID xp,
the correlation operators depend on all the oscillators. The parallelism of the method hinges on the
fact that every operator associated with oscillator ν depends only on purely electronic quantities
and on oscillator-ν-specific quantities. The implementation of the new formalism would reduce the
effectiveness of the parallelism in the presence of many oscillators. A possible solution, consistent



9.3 The Approximations and ECEID xp 139

It is important to notice that, in the limit of xν(t) = 0 for all times, ECEID’s EOM
from Chap.5 are recovered. To prove this, it suffices to take the time derivative of
Eqs. (5.34) and (5.35) and use Eqs. (5.36) and (5.39). This limit is a crucial feature of
the new formulation because it allows to connect ECEID to ECEID xp by switching
a parameter on and off.

One key element is missing before the ECEID xp set of equations can be used in
simulations: an EOM for xν(t). Up to this point, ECEID xp is general and xν(t) is
an as yet unspecified time-dependent parameter. Ideally its EOM would be derived
from a minimization condition such as the principle of least action. We explore a
possible condition in Sect. 9.4 and test it on a nanowire.

9.4 An Ehrenfest-Like Condition for xν(t)

The introduction of xν(t) in themethod had the aim to describe the oscillator position
semiclassically and no initial assumption was made on its dynamics. Now, in ECEID
xp, xν(t) appears in the EOM, but it still needs an EOM itself so that the full set
of equations can be finally simulated. A possibility to determine its dynamics is to
impose a condition on the ECEID xp approximated terms. For example, in Eq. (9.26),
one can impose that the total trace is

Tr
(
ξ̂ν π̂ν ρ̂(t)

)
� i�

2
(9.30)

at all times, or equivalently
dTr

(
ξ̂ν π̂ν ρ̂(t)

)

dt
� 0. (9.31)

This condition can be interpreted as keeping the ECEID approximation valid all
along the time evolution of xν(t).

By using the Liouville equation (9.9) and the canonical commutation relations,
the condition (9.31) can be written as

1

i�
Tr

([
ξ̂ν π̂ν , ĥ(t)

]
ρ̂(t)

)
= − KTr

(
ξ̂2ν ρ̂(t)

)
+ 1

M
Tr

(
π̂2ν ρ̂(t)

)
(9.32)

−
(
Mẍν(t) + Kxν(t)

)
Tr

(
ξ̂ν ρ̂(t)

)
+ Tr

(
F̂ν ξ̂ν ρ̂(t)

)
� 0.

(9.33)

With the use of Eq. (9.25), of

Tr
(
π̂2

ν ρ̂(t)
) � �Mω

(
Nν(t) + 1

2

)
(9.34)

with the spirit of ECEID’s approximations is to insert a δνν′ in Eqs. (9.28) and (9.29) and consider
only operators depending on ν.
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and the DM decoupling ρ̂(t) � ρ̂e(t)ρ̂o(t), the condition (9.31) gives

(
Mẍν(t) + Kxν(t) − Tre(F̂ν ρ̂e(t))

)
ξ̄ν(t) = 0. (9.35)

In general, ξ̄ν(t) is not zero, therefore it is necessary that

Mẍν(t) = −Kxν(t) + Tre
(
F̂ν ρ̂e(t)

)
(9.36)

is valid.
Equation (9.36) is an EOM for xν(t) and is reminiscent of Ehrenfest dynamics,

however its derivation did not invoke the Ehrefenst theorem. The similarity with
Ehrenfest dynamics allows us to identify xν(t)with a semiclassical trajectory, mainly
in the regimes where the Nν(t) is small. For large Nν(t), the position of the oscillator
would be dominated by the quantumuncertainty and xν(t)would represent an average
trajectory over quantum and ensemble states.

By including the Ehrenfest-like condition from Eq. (9.36) in the ECEID xp EOM,
the following closed set of equations is determined

i� ˙̂ρe(t) = [Ĥe, ρ̂e(t)] −
No∑

ν=1

([
F̂ν, μ̂ν(t)

]+xν(t)
[
F̂ν, ρ̂e(t)

])
(9.37a)

�Mω Ṅν(t) = Tre
(
F̂νλ̂ν(t)

)−Tre
(
F̂ν ρ̂e(t)

)
π̄ν(t) (9.37b)

i� ˙̂μν(t) = [Ĥe, μ̂ν(t)] + i�

M
λ̂ν(t) − �

Mω

(
Nν(t) + 1

2

) [
F̂ν, ρ̂e(t)

]

−
No∑

ν ′=1

(
xν ′(t)

[
F̂ν ′ , μ̂ν(t)

])
(9.37c)

i� ˙̂
λν(t) = [Ĥe, λ̂ν(t)] − i�K μ̂ν(t) + i�

2

{
F̂ν, ρ̂e(t)

}
−i�Tre

(
F̂ν ρ̂e(t)

)
ρ̂e(t)

−
No∑

ν ′=1

(
xν ′(t)

[
F̂ν ′ , λ̂ν(t)

])
(9.37d)

Mẍν(t)= −Kxν(t) + Tre
(
F̂ν ρ̂e(t)

)
(9.37e)

where all the electronic operators are many-body operators and the new terms that
characterize ECEID xp are indicated in blue.

The Eq. (9.37a) can be integrated in time, after initial conditions are chosen by
usual methods. In practice, another approximation is needed to make the problem
numerically tractable: making the electronic problem one-body. The one-body pro-
jection procedure is analogous to the one for ECEID in Sect. 5.5 and it acts on the
anticommutator term in Eq. (9.37d).
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The many-body anticommutator transforms into

{
F̂ν, ρ̂e(t)

}
− 2ρ̂e(t)F̂ν ρ̂e(t) + 2ρ̂e(t)Tre

(
F̂ν ρ̂e(t)

)
(9.38)

with one-body operators, including the extra term that was ignored in Eq. (5.44)
because it was related to the centroid motion. Here the centroid motion is essential
and that term cannot be ignored. In fact, using Eq. (5.44) and writing the one-body

form of ˙̂
λν(t), we see that the extra term exactly cancels with another term in (9.37d),

giving

i� ˙̂
λν(t) = [Ĥe, λ̂ν(t)] − i�K μ̂ν(t) + i�

2

{
F̂ν, ρ̂e(t)

}
− i�ρ̂e(t)F̂ν ρ̂e(t)

−
No∑

ν ′=1

(
xν ′(t)

[
F̂ν ′, λ̂ν(t)

])
(9.39)

where all terms are one-body. Moreover, the definitions of ξ̄ν(t) and π̄ν(t) in Eqs.
(9.16) and (9.17) in the one-body picture have to be adjusted by including a prefactor
of 1/Ne.

By replacing the variables (9.2) in the original Hamiltonian (9.1) and taking the
total trace, we obtain the following quantity, that we identify with the total energy
of the system

E = Tre
(
Ĥeρ̂e

)
+

No∑

ν=1

(
�ω

(
Nν(t) + 1

2

)
+Mẋν(t)2

2
+ Kxν(t)2

2
(9.40)

+Kxν(t)ξ̄ν(t) + Mẋν(t)π̄ν(t) − xν(t)Tre
(
F̂ν ρ̂e(t)

)
− Tre

(
F̂νμ̂ν(t)

))

Tests confirmed that the total energy is conserved.

9.5 A Test Case

There are a few trivial limiting cases that can be verified by inspection. For instance,
if F̂ν = 0, the EOM of xν(t) and ρ̂e(t) are decoupled and Nν(t) becomes a constant
of the motion. For small xν(t), the equations would effectively reduce to the ECEID
ones. By setting the correlation operators μ̂ν and λ̂ν to zero at all times, the EOM of
ρ̂e and xν reduce to those of Ehrenfest dynamics, eliminating important physics. In
the following test, we call this latter limit classical Ehrenfest.
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Initial conditions Nν(0) = 0 and xν(0) �= 0 (or ẋν(0) �= 0) represent non-trivial
semiclassical states of the oscillator. These states have the minimum achievable
quantum uncertainty in position andmomentum and they are the closest to a classical
initial condition. During the ensuing dynamics, the classical description stays valid
as long as the position uncertainty determined by Nν(t) is small compared with the
amplitude of motion of xν(t). To measure the quantum spread associated with Nν(t),
we can define

�ξν(t) ≡
√〈

ξ̂2ν(t)
〉
=

√(
Nν(t) + 1

2

)
�

Mω
(9.41)

which is a characteristic quantum spatial amplitude around xν(t) that is associated
with the ensemble uncertainty. As Nν(t) grows, the classical position andmomentum
of the oscillator becomemore andmore uncertain. Since xν(t) follows Ehrenfest-like
equations here, we expect that in closed systems it would eventually decay to small
values (see Sect. 4.2).

The oscillator centroid is defined as the expectation value of the position operator
X̂ν and after the canonical transformation can be written as

x̄ν(t) = Tr
(
X̂ν ρ̂(t)

)
= xν(t) + ξ̄ν(t). (9.42)

For small ξ̄ν(t), we can identify the semiclassical position xν(t) with the oscillator
centroid x̄ν(t). The oscillator position in time can then be tracked by its centroid
motion, with the uncertainty given by the quantum spread x̄ν(t) ± �ξν(t).

As a test of the method, we choose a system similar to the ones used in the
Joule heating Sect. 6.4 and simulate it starting from the above semiclassical initial
condition. A single oscillator is embedded in the middle of a perfect wire with zero
onsite energies and 1 eV hoppings. The central region of the wire is made of 11 sites.
The leads have 32 sites and present a� = 0.8 eVwhich appears in theHamiltonian of
Eqs. (9.37c) and (9.37d), as described in Sect. 6.2 for CEID’s auxiliary operators. �
is applied to the 12 leftmost and rightmost sites in the left and right lead respectively.
The oscillator has mass M = 0.5 a.m.u., �ω = 0.2 eV, F = 1 eV/Å, N (0) = 0 and
xν(0) = 0.4 Å. The initial electronic temperature is 10000 K.

In Fig. 9.1, we follow both the time-evolution of x1(t) and the quantum spread
�ξ1(t) around it. The dynamics of x1(t) displays quasiclassical oscillations at the
beginning. During the dynamics, ξ̄1 and π̄1 remain negligibly small, confirming the
assumption that x1(t) mimics the motion of the centroid. As the oscillator interacts
with the electrons, the oscillations in x1(t) are damped. However, simultaneously
with the damping, the spread increases, approaching a point of equilibrium for long
times, as shown in Fig. 9.2a. At long times, the variable x1(t) is almost completely
damped and effectively loses its meaning as a representative of the centre of mass
motion, as the dominant oscillation mechanism lies in the quantum spread.
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Fig. 9.1 In blue, it is shown the dynamics of x1(t) during an ECEID xp simulation of a single
oscillator in a perfect nanowire with NL = 32 starting from N (0) = 0 and x1(0) = 0.4 Å. The
quantumspread ξ1(t) is displayed as greyvertical bars at fixed time intervals around the semiclassical
position x1(t). The trajectory of x1(t) for an analogous classical Ehrenfest simulation is shown in
red

(a)

(b)

Fig. 9.2 The same set of simulations shown in Fig. 9.1, for a longer time of 2 ps. In a � = 0.8 eV,
in b � = 0
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The ECEID xp results are compared to a classical Ehrenfest simulation, where
both μ̂ν and λ̂ν are turned off. The semiclassical oscillator motion displays damped
oscillations just as in ECEID xp, with a slightly lower frequency and a less pro-
nounced damping. At long times, the classical Ehrenfest simulation stops damping
and settles, oscillating between about −0.3Å < x1(t) < 0.3Å.

To understand the cause of the finite oscillations survival, we perform the same
ECEID xp simulation with � = 0 and show the results in Fig. 9.2b. Without a � to
smear out the energy levels and favour the electron-oscillator energy transfer, ECEID
xp displays a very similar dynamics when compared to classical Ehrenfest. In small
systems, the absence of � inhibits inelastic transitions in ECEID xp.

For larger systems, the requirement of a level broadening mechanism to trigger
inelastic transitions becomes less rigid as the systems energy level spacing gets
smaller. We test the same configuration as above with much longer leads NL = 200
sites and show the results in Fig. 9.3. In (a), ECEID xp features � = 0.12 eV applied
to the 180 leftmost and rightmost sites in the leads, while in (b) there is no �.
The centroid dynamics x1(t) here is comparable between ECEID xp and classical
Ehrenfest. In both cases, with and without �, it tends to dampen for long times,

(a)

(b)

Fig. 9.3 The same set of simulations as in Fig. 9.2 for a longer chain with NL = 200 sites. In a
� = 0.12 eV, in b � = 0
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indicating an energy transfer away from the semiclassical degree of freedom, with a
key difference that distinguishes ECEID xp fromEhrenfest. In the classical Ehrenfest
simulation, the transfer of energy goes directly into the electrons, while in ECEID
xp energy can go to the quantum spread ξ1(t).

The presence of electron-phonon correlation through μ̂ν and λ̂ν allows the excess
energy in x1(t) to be deposited into the oscillator spread. This mechanism is absent
in classical Ehrenfest, where the energy can only go to the electrons. The possibility
to capture the correlated energy exchange between x1(t) and ξ1(t) is a fundamental
feature of ECEID xp.

9.6 Code Performance

The ECEID xp EOM with xν(t) = 0 are mathematically equivalent to ECEID and
they are more lightweight to simulate, as they present the explicit time evolution of
only 2 operators for every oscillator against the 4 auxiliary operators in ECEID. To
measure the performance improvements, the new formalism is implemented in the
ElPh code and the same set of tests as the one in Sect. 6.5 is executed.

Table9.1 shows the computational times, the oscillator and electron scaling and
the percentage improvement against the previous implementation. The scalings are
largely unaffected by the new development: they follow a similar pattern as the
ECEID one in Sect. 6.5. The similarity is due to the fact that the basic algorithm and
its optimizations are essentially unchanged.

The main change is the number of operators that explicitly evolve and, there-
fore, the number of matrix operations that are computed in every timestep. The new
set of EOM is smaller in size and therefore faster to simulate. The computational
times display remarkable improvements compared to before: the average decrease
in computational time is 40%, with best-case scenario improvements of over 100%
and worst-case scenario of about 20%. The better performance of the new imple-
mentation of the code is a welcome additional feature that makes the ECEID xp
formulation with xν(t) = 0 the method of choice for ECEID simulation and a valid
stepping stone for future developments.

9.7 Final Remarks

The ECEID xp method presented in this chapter is a promising expansion of ECEID.
Its limit xν(t) = 0 where an equivalent and faster version of ECEID is recovered
represents both avalidationof the approach and agood startingpoint onwhich to build
improvements. A recent developmentwhere the double (de)excitation approximation
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Table 9.1 Performance test of the ElPh code with the ECEID xp set of EOM and xν(t) = 0. Just as
in Table6.2, the computational time for simulations of 106 timesteps is compared among systems
with a varying number of oscillators and electronic sites. Oscillator and electronic scalings are
shown following the colour convention introduced in Table6.2 with green for good results, yellow
for acceptable, red for poor. A percentage improvement over the previous implementation of the
code is presented to measure the improvement

Number
of e. sites

Number of
oscillators

Computational
time

Oscillator
scaling

Electronic
scaling

Improvement
versus ECEID
(%)

50 1 2m 13s

2 2m 32s 1.1× 44

5 3m 7s 1.4× 36

10 4m 6s 1.8× 27

15 4m 54s 2.2× 18

20 6m 0s 2.7× 20

40 14m 53s 6.7× 127

100 1 9m 16s 4.2× 42

2 10m 11s 1.1× 4.0× 37

5 12m 20s 1.3× 4.0× 31

10 16m 10s 1.7× 3.9× 28

15 20m 10s 2.2× 4.1× 41

20 25m 1s 2.7× 4.2× 83

40 1h 21m 35s 8.8× 5.5× 52

150 1 21m 57s 9.9× 42

2 23m 37s 1.1× 9.3× 38

5 29m 0s 1.3× 9.3× 40

10 43m 28s 2.0× 10.6× 68

15 1h 10m 30s 3.2× 14.4× 66

20 1h 44m 0s 4.7× 17.3× 40

40 3h 41m 48s 10.1× 14.9× 28

200 1 42m 49s 19.3× 41

2 46m 38s 1.1× 18.4× 40

5 1h 0m 50s 1.4× 19.5× 61

10 1h 42m 0s 2.4× 24.9× 55

15 2h 42m 10s 3.8× 33.1× 36

20 4h 9m 20s 5.8× 41.6× 25

40 7h 15m 40s 10.2× 29.3× 32

500 1 7h 10m 8s 194.0 39

2 7h 23m 27s 1.0 175.0 44

5 10h 53m 0s 1.5 209.5 42

10 16h 35m 20s 2.3× 242.8× 22

15 1d 0h 19m 30s 3.4× 297.9× 50

20 1d 10h 46m 0s 4.8× 347.7× 40

40 2d 12h 37m 0s 8.5× 244.4× 46
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is not applied is presented in AppendixD. The Ehrenfest-like condition proposed and
tested here is a possibility, but it is not necessarily the best choice. The search for a
suitable dynamics of xν(t) is ongoing and is a fundamental future progress.
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Chapter 10
Conclusions and Perspectives

This thesis presented the development of a method that can describe the dynamics
of quantum problems with interacting electrons and phonons. The method, called
Effective Correlated Electron-Ion Dynamics (ECEID), aims to describe in real-time
the mutual evolution of electrons and phonons in mesoscale systems and capture the
energy exchanges between them.

The method was derived in Chap. 5, where, at first, a set of exact equations was
retrieved from the model Hamiltonian. Through the application of approximations,
a set of equations of motion was determined and implemented in a code. Such a
real-time quantum approach is among the more computationally challenging meth-
ods for this class of problems, but it is essential for understanding the microscopic
processes involved. A key aspect of the method is the linear scaling with the number
of vibrational degrees of freedom. This makes it possible to access the typical large
size- and time-domains that characterize mesoscale problems. The set of equations
conserves total energy on a closed system and can also be used to simulate open
systems with the application of open boundaries.

In Chap.6, ECEID was compared to exact simulations on systems comprising a
few degrees of freedom. Under a set of conditions, it was found that the effect of the
approximations could be minimized and ECEID converged to the exact case. The
application of a bias on a nanowire, with the use of the open boundaries, lets a current
flow through the system.Without oscillators, the elastic Landauer two-terminal result
was recovered on a perfect nanowire. When oscillators were included in the system,
they heated up in the presence of a current, demonstrating the phenomenon of Joule
heating. A microscopic Ohm’s law could be verified, as the resistance in a nanowire
was found to be proportional to the length of the region. The resulting resistivity was
validated by comparison with a perturbative result.

Then, in Chap.7, ECEID was applied to nanowires featuring out-of-equilibrium
distributions of electrons and oscillators, to demonstrate its ability to describe ther-
malization. An entropic definition of temperature, combined with the microscopic
ECEID dynamics, produces a thermodynamically meaningful description of the
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energy exchange between the two subsystems, and their equilibration. Thermaliza-
tion was shown to occur in a range of situations where the commonly used Ehrenfest
dynamics is known to display unphysical results, including a full electronic popula-
tion inversion. The results were rationalized through a simple model based on rate
equations. The contents of this chapter were published in [1].

In Chap.8, ECEIDwas used to perform non-adiabatic quantum simulations of the
inelastic injection and subsequent dynamics of excited electrons in a model water
system. ECEID was applied, at first, to a water molecule between metal leads and
then to a water chain, representing a minimal model of a biological environment.
The inclusion of phonon modes in the water allowed to study elastic and inelastic
effects with the injection of electrons, both as a time dependent pulse and a constant
flow. Part of this chapter has recently been accepted for publication [2].

It was found that the electron-phonon interaction is a key mechanism for the
injection of electrons in water. Inelastic electron-phonon injection is a critical pro-
cess in granting incoming electrons access to the water excited states. In addition, the
vibrational temperature is a crucial controlling factor in the presence of an incom-
ing electron flux. Depending on the incoming electron energy, the electron-phonon
interaction can activate a current-assisted cooling or an exponential heating, where
the dynamics of the system can further deviate from a steady-state description. By
exploiting the energy-dependent lifetime of the water chain states, the injection of
electrons in specific energy ranges can result in partial electron trapping in the water.
It is hoped that these insights into the dynamical interaction of low energy elec-
trons and water will lead to further more realistic simulations probing DNA damage
mechanisms and to the development of improved models of radiation exposure.

InChap.9, amethodological advancewas proposed,where themotion of the oscil-
lator centroids was introduced as a time-dependent parameter. The exact dynamics of
the system was derived and, after the application of approximations akin to ECEID,
a set of equations was retrieved, whose limit of zero centroid motion exactly corre-
sponds to ECEID. The new formulation is more efficient to simulate than before and
its performance was tested and compared to the old one. An Ehrenfest-like condition
for the centroid dynamics was proposed and tested.

The new derivation inspires the development of new features in the method. The
directions for improvement of ECEID are numerous and promising. For instance,
the opportunity to go beyond the double (de)excitation approximation was explored
in Appendix D. Following a similar line of reasoning, it would be possible to include
other correlation terms in theEOM, such as correlations between different oscillators.
The full density matrix decoupling looks, for now, the only fundamental approxima-
tion that cannot be eliminated at a modest cost.

An essential further development, is the inclusion of anharmonic terms in the
model Hamiltonian, as it would grant a much wider range of applications for the
method, but is far from trivial to implement. Even the simplest anharmonicity, i.e.
a cubic potential, would introduce correlation operators with triplets of creation
and annihilation operators. To devise a consistent set of approximations on such
combinations of operators is no easy task and would require careful thinking.
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It is hoped that, in the future, ECEID can be employed on a number of applications
and physical problems. One of the most logical extensions is the simulation of 2D
or 3D structures. For simplicity, this work is focused on 1D systems such as metallic
nanowires or water chains, but the extension to more complex multi-dimensional
geometries is natural. In fact, the water simulations already present a 2D structure in
the multi-orbital model of water. The idea to use ECEID on large scale simulations of
irradiated metallic systems during the electron-phonon equilibration phase is being
developed now, in combination with the kinetic model from Sect. 7.4.3.

Recent simulations of radiation damage on metals used Ehrenfest TDDFT [3, 4],
but they were intrinsically limited by the Ehrenfest description of the atoms that
cannot capture spontaneous phonon emission. Replacing Ehrenfest with ECEID in
such simulations would be a significant advancement, but it would not be without
serious technical difficulties. A critical dilemma is how to link the atomic motion to
the harmonic oscillator formalism of ECEID. The development of ECEID xp is a step
forward in the direction of a usable method in combination with TDDFT. The search
for a condition to determine the semiclassical dynamics of the oscillator centroids is
ongoing and is crucial in providing a link to methods based on classical trajectories.

ECEID can be used to study the interplay between elastic disorder and inelastic
scattering on systems where an electronic current flows, as was done in Sect. 6.4.2.
A thorough exploration of the parameter space and configurational averaging are
required to observe phenomena such as Anderson localization. The appearance of
trapped states and their interaction with phonons could also be examined.

ECEID can not only be used to simulate systems with a voltage bias, but also
with a temperature bias. The open boundary setup can be modified to include a
temperature difference in the probes, so that a thermal injection of electrons and a
heat flow can occur. This would allow ECEID to be used for atomistic simulations of
thermal transport and thermoelectric effects. This implementation is currently under
progress.

The ECEID model Hamiltonian includes phonons as harmonic oscillators. An
exciting perspective is to make it include photons too. This would open the opportu-
nity to use ECEID to simulate optical excitations in real time. According to a recent
theory [5, 6], another of the five senses involves vibrations: olfaction. Olfaction is
seen as a phonon-assisted mechanism based on inelastic electron tunneling. ECEID
is already suitable to describe such a model and could represent a useful tool for
testing that theory.

We hope that the method derived in this thesis and its applications will give rise
to an improved set of methodologies and will inspire their uses in a diverse group of
problems.
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Appendix A
Electronic Operators in ECEID:
From Many-Body to Single Body

ECEID’s dynamics is determined by a set of EOM (5.34)–(5.41) of scalar quantities
and electronic operators. In the general derivation of the method, no assumption is
made on the form of the electronic operators that can be in principle as general as one
requires. A numerical application of ECEID, though, requires that the operators can
be represented by finite size matrices and can be stored in the memory of a computer.
The full many-body operators would be overwhelmingly large in any real world
application, therefore it is necessary to reduce their size for computational reasons.
In this appendix we describe the projection process of the Many-Body electronic
operators into Single-Body operators from [1] and apply its results to ECEID.

A.1 Tracing Over the Electrons

In a system with Ne electrons, we take a generic Ne-body operator â(Ne) and define
its n-body projection by tracing it over Ne − n electrons

â(n) = Ne!
(Ne − n)!Tre,n+1,...,Ne

(
â(Ne)

)
. (A.1)

In [1], the authors take the product of two generic Ne-body operators and provide an
expression for the one-body form of the product operator.

We consider the special case of the product between an Ne-body operator â(Ne)

and a one-body operator b̂(1)(i) that depends only on electron i

ĉ(1)(1) = NeTre,2,...,Ne

(
â(Ne) b̂(1)(i)

)
. (A.2)

We point out that the previous and the following expressions do not violate the
indistinguishability of electrons. The electron 1 appearing in the left hand side of Eq.
(A.2) is not by itself any different from the other electrons. Because of the trace on
the right hand side, it effectively represents all other Ne − 1 electrons.
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If i = 1, the trace applies only to â(Ne) and Eq. (A.2) trivially reduces to

ĉ(1)(1) = â(1)(1) b̂(1)(1), (A.3)

while, if i �= 1

ĉ(1)(1) = 1

Ne − 1
Tre,2

(
â(2)(1, 2) b̂(1)(2)

)
(A.4)

where we introduce a 2-body operator â(2)(1, 2).
The following commutator expression

Ne

Ne∑
i

Tre,2,...,Ne

([
â(Ne) , b̂(1)(i)

])
=

[
â(1)(1) , b̂(1)(1)

]
(A.5)

is valid. For i = 1 it is obvious, whereas for i �= 1 the permutation under the trace
makes terms such as the one from Eq. (A.4) disappear. On the other hand, the anti-
commutator expression

Ne

Ne∑
i

Tre,2,...,Ne

({
â(Ne) , b̂(1)(i)

})
=

{
â(1)(1) , b̂(1)(1)

}
+ 2Tre,2

(
â(2)(1, 2)b̂(1)(2)

)
.

(A.6)
presents a two-body term besides the trivial one-body one.

A.2 Tracing the ECEID Many-Body EOM

The key object that describes the electronic dynamics in ECEID is the electronic
DM, which is in general an Ne-body operator ρ̂(Ne)

e . From Eq. (A.1), the one-body
DM is defined as

ρ̂(1)
e (1) = NeTre,2,...,Ne

(
ρ̂(Ne)
e

)
(A.7)

and the two-body DM is

ρ̂(2)
e (1, 2) = Ne(Ne − 1)Tre,3,...,Ne

(
ρ̂(Ne)
e

)
. (A.8)

In ECEID, we write both the electronic Hamiltonian as a sum of one-body terms
Ĥe = ∑Ne

i=1 Ĥ
(1)
e (i) and the electron–phonon coupling operator F̂ν = ∑Ne

i=1 F̂ν(i),
neglecting electron-electron interaction.

We first apply NeTre,2,...,Ne to the EOM (5.40) and obtain



Appendix A: Electronic Operators in ECEID: From Many-Body to Single Body 155

˙̂ρ(1)
e (t) = 1

i�
[Ĥ (1)

e , ρ̂(1)
e (t)] − 1

i�

No∑
ν=1

[F̂ (1)
ν , μ̂(1)

ν (t)] (A.9)

Ṅν(t) = 1

�Mνων
Tre

(
F̂ (1)

ν λ̂(1)
ν (t)

)
(A.10)

where now all electronic operators depend on one electron only (conventionally
electron 1), whose dependency we omit. We used property (A.5) to prove Eqs. (A.9)

Ne

Ne∑
i

Tre,2,...,Ne

([
Ĥ (1)

e (i) , ρ̂(Ne)
e (t)

])
=

[
Ĥ (1)

e (1) , ρ̂(1)
e (1, t)

]
, (A.11)

and (A.10)

Ne∑
i

Tre,1,...,Ne

(
F̂ (1)

ν (i) λ̂ν(t)
)

= Tre
(
F̂ (1)

ν (1) λ̂(1)
ν (1, t)

)
. (A.12)

Equations (A.9) and (A.10) are the natural one-body version of their many-body
counterpart. The same happens for Eq. (5.34) and (5.35)

μ̂(1)
ν (t) = 1

Mνων
(i Ĉc (1)

ν (t) − Âs (1)
ν (t)) (A.13)

λ̂(1)
ν (t) = iĈ s (1)

ν (t) + Âc (1)
ν (t). (A.14)

For Eq. (5.36)–(5.39)

˙̂Cc (1)
ν (t) = − i

�
[Ĥ (1)

e , Ĉc (1)
ν (t)] + ων Ĉ

s (1)
ν (t) + (Nν(t) + 1

2 )[F̂ (1)
ν , ρ̂(1)

e (t)] (A.15)

˙̂Cs (1)
ν (t) = − i

�
[Ĥ (1)

e , Ĉs (1)
ν (t)] − ων Ĉ

c (1)
ν (t) (A.16)

˙̂Ac (1)
ν (t) = − i

�
[Ĥ (1)

e , Âc (1)
ν (t)] + ων Â

s (1)
ν (t) + 1

2
{F̂ν , ρ̂e(t)}(1) (A.17)

˙̂As (1)
ν (t) = − i

�
[Ĥ (1)

e , Âs (1)
ν (t)] − ων Â

c (1)
ν (t), (A.18)

we employed property (A.5) in the commutator term of Eq. (A.15), while the anti-
commutator term in Eq. (A.17) requires further work.

By using property (A.6), it can be written as

1

2
{F̂ν, ρ̂e(t)}(1) = 1

2
{F̂ (1)

ν (1), ρ̂(1)
e (1, t)} + Tre,2

(
F̂ (1)

ν (2)ρ̂(2)
e (1, 2, t)

)
, (A.19)

where the first term is intuitive and the second one is more complicated and involves
the two-body electronic DM. We do not evaluate the two-body density matrix in
ECEID, therefore we need to make an assumption and write it in terms of the quati-
ties that we have. The simplest choice is to write it as a Slater determinant, an
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antisymmetric linear combination of one-body DM

ρ̂(2)
e (12, 1′2′) = ρ̂(1)

e (11′)ρ̂(1)
e (22′) − ρ̂(1)

e (12′)ρ̂(1)
e (21′). (A.20)

Applying Eq. (A.20) in the second term of Eq. (A.19), we obtain

Tre,2
(
F̂ (1)

ν (2) ρ̂(2)
e (1, 2, t)

)
� ρ̂(1)

e (1, t)Tre
(
F̂ (1)

ν (1) ρ̂(1)
e (1, t)

)

−ρ̂(1)
e (1, t) F̂ (1)

ν (1) ρ̂(1)
e (1, t). (A.21)

With this assumption, Eq. (A.17) becomes

˙̂Ac (1)
ν (t) = − i

�
[Ĥ (1)

e , Âc (1)
ν (t)] + ων Â

s (1)
ν (t) + 1

2
{F̂ (1)

ν , ρ̂(1)
e (t)}

+ ρ̂(1)
e (t)Tre

(
F̂ (1)

ν ρ̂(1)
e (t)

)
− ρ̂(1)

e (t) F̂ (1)
ν ρ̂(1)

e (t). (A.22)

The one-bodyEOM involve only one-electron operators, so it is natural and unam-
biguous to drop the one-body notation as we do in the main text of this thesis.

As explained in Sect. 5.5, in the applications we ignore the term in Eq. (A.22)
ρ̂e(t)Tre(F̂ν ρ̂e(t)) that is related to the motion of the oscillator centroid. We recover
that term in Chap.9, in the more general derivation of ECEID xp where the motion of
the oscillator centroids is reintroduced. In fact, that term is crucial when comparing
term by term ECEIDxp with and exact expansion from CEID [1]. A more complex
version of the approximation described here is presented in [2] under the name of
the extended Hartree-Fock approximation.

In this work we always consider spin-degenerate systems. To take it into account,
every quantity that results from a total trace over the electrons, gains an extra factor
of 2.



Appendix B
Open Boundaries in ECEID

We introduce an Open Boundaries (OB) mechanism that allows electron injection
and extraction into the system and can be implemented in ECEID to simulate the
dynamics of open systems. The general form of the OBmethod is described in detail
in [3].

B.1 General Formalism

As shown in Fig. 5.2, we take a system (S) and split it into three regions: left (L)
and right (R), which can be metal leads, and a central region (C), that is the device
region. The device is the item that one wants to investigate and can be, for example,
a molecule. It can include phonons. The full Hamiltonian of such a system is

ĤS = ĤL + ĤC + ĤR︸ ︷︷ ︸
ĤS0

+V̂ (B.1)

where ĤL, ĤR and ĤC denote the isolated Hamiltonian of each of the system’s
subregions, ĤS0 their sum,which corresponds to a systemwith the leads disconnected
from the central region, and V̂ the coupling between the central region C and the
leads L , R. We use a one-electron orthonormal atomic basis |i〉 throughout and
call ÎN = ∑

i∈N |i〉〈i | the identity operator over regions N = C, L or R. We define
ÂN N ′ = ÎN Â ÎN′ for a generic operator Â and ÂN = ÎN Â ÎN. Index M here identifies
the sum over the left and right leads basis ÎM = ∑

i∈L |i〉〈i | + ∑
i∈R |i〉〈i |.

A number of sites in the leads are connected to external probes Pi by a con-
stant weak coupling γi . The probes in isolation feature a retarded (advanced)
surface Green’s function (GF) g

+(−)
Pi

(E) and a local density of states dPi (E) =
−Im(ĝ+

Pi
(E))/π. The probes in the left and the right lead have electronic distri-

butions fL ,R(E).
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The system’s self energy due to the external probes is

�̂± = �̂±
L + �̂±

R =
∑
i∈L

γ2
i g±

Pi
(E))|i〉〈i | +

∑
i∈R

γ2
i g±

Pi
(E))|i〉〈i | (B.2)

and the full system’s advanced (retarded) GF can be written as

Ĝ±
S (E) =

(
E ÎS − ĤS − �̂±(E)

)−1
. (B.3)

By solving theLippman-Schwinger equation for electronsflowing from the probes
to the system, the steady state one-body DM is [3]

ρ̂S =
∫ ∞

−∞
Ĝ+

S (E)�̂<(E)Ĝ−
S (E)dE (B.4)

where

�̂<(E) = fL(E)
∑
i∈L

γ2dPi (E)|i〉〈i | + fR(E)
∑
i∈R

γ2dPi (E)|i〉〈i |. (B.5)

Tomake thepicture simpler,we choose towork in thewideband limitwhereγi = γ
does not depend on atomic sites and the probes local density of states is a constant
dPi (E) = d. These assumptions make the probes’ GF a constant g+

Pi
(E) = −idπ and

Eqs. (B.2), (B.5) become

�̂± = ∓i
�

2

(
ÎL + ÎR

)
(B.6)

�̂<(E) = �

2π

(
fL(E) ÎL + fR(E) ÎR

)
(B.7)

where � = 2πγ2d.
The OB setup is a controlled approximation of the conventional two terminal

setup. The metallic leads allow electron injection and extraction into the central
region and are instrumental for driving the system away from the initial state. Ideally
the details of the leads should not have an influence on the final state that the system
reaches at long times. The final state should be determined by the external probes
characteristics, such as their population distributions and their chemical potential.

The multiple probe setup allows to hide the finite size of the leads and their
discrete level spacing by mimicking the continuous band of an extended system.
In the limit of long leads and small �, the leads converge to the semi-infinite case,
where the conventional Landauer conduction picture is valid [3]. For this limit to
be valid, � must be larger than the average energy spacing in the leads so that it
can effectively hide the finiteness of the leads and their discrete energy spacing.
Furthermore, it cannot be too large and has to be smaller than the energy scale at
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which the electronic structure of a wire changes significantly. A possible upper limit
for � in our simulations is the hopping between sites in the metallic nanowire.

There is freedom in choosing the form of fL,R. A typical choice is picking Fermi-
Dirac distributionswith temperature TL ,R and chemical potentialμL,R. For example, a
bias V = μL − μR makes an electric current run through the system, possibly driving
it to a steady state. Without any inelastic scatterer in the central region, the Landauer
two-terminal picture is recovered in the double limit of long leads and small � but
not smaller than the leads level spacing. In a perfect one-dimensional wire with a 1
V bias, the steady state current tends to 77.48 µA, corresponding to the conductance
quantum.

B.2 Elastic Transmission

A useful quantity that we employ in our simulations is the elastic transmission. To
derive a form of it, we consider the GF of the system with the leads disconnected
from region C

ĝ±(E) = (E − ĤS0 − �̂±)−1. (B.8)

By using the Dyson equation, we derive the full system’s GF projected on the central
region

Ĝ±
C (E) = ĝ±

C (E) + ĝ±
C (E)V̂CM Ĝ±

MC(E) (B.9)

= ĝ±
C (E) + ĝ±

C (E)σ̂±
C (E)Ĝ±

C (E) (B.10)

where we defined the leads self-energy σ̂±
C (E) = V̂CM ĝ±

M(E)V̂MC . Ĝ
±
C (E) can also

be written as
Ĝ±

C (E) = (E − ĤC − σ̂±
C )−1. (B.11)

The elastic transmission of the system can be written as [4]

T (E) = 4π2Tr(t̂†(E)d̂L(E)t̂(E)d̂R(E)) (B.12)

where
t̂(E) = V̂MC Ĝ

+
C (E)V̂CM (B.13)

and the density of states operator in the leads (isolated from the central region) is

d̂L ,R(E) = 1

2πi
(ĝ−

L ,R(E) − ĝ+
L ,R(E)). (B.14)

Equation (B.12) is a purely elastic static quantity and does not include any inelastic
contribution from the phonons. It measures the effect of the system’s electronic
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structure and geometry on the electronic transmission. Its energy dependence can
offer insights to the ECEID inelastic calculations, as we see in Chap. 8.

A semiclassical way to include the elastic scattering of a phonon ν is to add an
electron-phonon term F̂νXν to ĤS, where Xν is a classical coordinate that acts as
a parameter. The resulting T (E, Xν) represents the probability of an electron with
energy E to cross the central region where phonon ν is statically displaced by Xν . It
is analogous to altering the geometry of the system by using the phonon as a static
impurity.

B.3 Including the OB in ECEID

Consider the Hamiltonian

Ĥ = ĤS + ĤP + ĤSP + ĤPS (B.15)

describing a system S coupled to external probes P, where ĤS is a time-independent
one-body Hamiltonian for the isolated system, ĤP represents the probes, ĤSP is the
probes-system coupling and ĤSP = Ĥ †

PS. The dynamics of the full system DM is
described by the Liouville equation [3, 5]

i� ˙̂ρS(t) = [ĤS, ρ̂S(t)] + ĤSPρ̂PS(t) − ρ̂SP(t)ĤPS. (B.16)

where ĤSPρ̂PS(t) − ρ̂SP(t)ĤPS represent the OB driving terms.
Following the derivation in [3], with the imposition of the wideband limit in the

external probes, Eq. (B.16) becomes

i� ˙̂ρS(t) = [ĤS, ρ̂S(t)] + �̂+ρ̂S(t) − ρ̂S(t)�̂− +
∫ ∞
−∞

(
�̂<(E)Ĝ−

S (E) − Ĝ+
S (E)�̂<(E)

)
dE

(B.17)
where �̂+ρ̂e(t) − ρ̂e(t)�̂− describes electron extraction and the energy integral por-
trays electron injection. Ĝ±

S (E) = (E ÎS − ĤS ± i ÎM�/2)−1 is the system’s GF.
ECEID’s dynamics of a closed system involves the time evolution of ρ̂e(t) (5.5),

N (t) (5.41) and (Ĉc
ν, Â

c
ν, Ĉ

s
ν, Â

s
ν) (5.36)–(5.39). After connecting the system to the

external probes, we assume that the resulting OB driving terms affect only in the
EOM of ρ̂e(t), that turns into

i� ˙̂ρe(t) = [Ĥe, ρ̂e(t)] −
No∑

ν=1

[F̂ν, μ̂ν(t)] + �̂+ρ̂e(t) − ρ̂e(t)�̂
−

+
∫ ∞

−∞

(
�̂<(E)Ĝ−

S (E) − Ĝ+
S (E)�̂<(E)

)
dE . (B.18)
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In next section, we show the procedure that we use to solve the injection integral in
a special case.

B.4 Imposing a Constant Bias in the Leads

The electron injection energy integral

∫ ∞

−∞

(
�̂<(E)Ĝ−

S (E) − Ĝ+
S (E)�̂<(E)

)
dE (B.19)

from Eq. (B.18) can be solved analytically in some special cases. For example, if we
impose that the probes have zero temperature Fermi-Dirac distributions

fL,R(E) =
{
1 if E ≤ μL,R

0 otherwise.
(B.20)

We apply a constant bias between the left and right chemical potentials V =
μL − μR. Inserting �̂± (B.7) in the energy integral (B.19), we have

�

2π

∫ μL

−∞
dE

(
ÎLĜ

−
S (E) − Ĝ+

S (E) ÎL
)

+ �

2π

∫ μR

−∞
dE

(
ÎRĜ

−
S (E) − Ĝ+

S (E) ÎR
)

(B.21)
To solve the integrals, we write the full system’s retarded GF (B.3) in terms of its
eigenstates

Ĝ−
S (E) =

∑
i

1

E − λi
|iR〉〈iL| (B.22)

where λi is the eigenvalue corresponding to eigenstate i . We point out that Ĝ−
S (E)

is a non-hermitian operator, so it has a left |iL〉 and right |iR〉 eigenvector basis.
Analogously, the advanced GF is

Ĝ+
S (E) =

∑
i

1

E − λ∗
i

|iL〉〈iR|, (B.23)

where λ∗
i is the complex conjugate of λi .

We now focus on the integral on the left lead (the first term in Eq. (B.21)) and
solve it on the system’s atomic basis.1 It can be written as

�

2π

∫ μL

−∞
dE

∑
i,L

(
1

E − λi
|L〉〈L|iR〉〈iL| − 1

E − λ∗
i

|iL〉〈iR|L〉〈L|
)

. (B.24)

1The right lead term can be recovered with a similar derivation.
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After projecting it on the full system’s atomic basis, it becomes

∑
S,S′

�

2π
|S〉〈S′|

∑
i

∫ μL

−∞
dE

( c′
S,S′,i

E − λi
− cS,S′,i

E − λ∗
i

)
(B.25)

where we defined the coefficients

c′
S,S′,i =

∑
L

〈S|L〉〈L|iR〉〈iL|S′〉 (B.26)

cS,S′,i =
∑
L

〈S|iL〉〈iR|L〉〈L|S′〉. (B.27)

The solution of the first term in Eq. (B.25) is

∑
S,S′

�

2π
|S〉〈S′|

∑
i

c′
S,S′,i

(
1

2
log

(
(μL − �(λi ))

2 + 
(λi )
2

(B − �(λi ))2 + 
(λi )2

)
+ i

(
arctan

μL − �(λi )


(λi )
+ π

2

))

(B.28)
where �(λi ) is the real part of λi and 
(λi ) is its imaginary part. For computational
purposes, when necessary we replaced the lower limit of the integral −∞ with an
arbitrarily negative energy cutoff B. The convergence in B was verified.

It is now straightforward to solve the full injection integral (B.21). Its solution on
the atomic basis is

∑
S,S′

�

2π
|S〉〈S′|

∑
i

((
c′
S,S′,i − cS,S′,i

)
1

2
log

(
(μL − �(λi ))

2 + 
(λi )
2

(B − �(λi ))2 + 
(λi )2

)

+ i

(
c′
S,S′,i + cS,S′,i

)(
arctan

μL − �(λi )


(λi )
+ π

2

)

+
(
d ′
S,S′,i − dS,S′,i

)
1

2
log

(
(μR − �(λi ))

2 + 
(λi )
2

(B − �(λi ))2 + 
(λi )2

)

+ i

(
d ′
S,S′,i + dS,S′,i

)(
arctan

μR − �(λi )


(λi )
+ π

2

) )
(B.29)

where, in an analogous way for the right lead, we defined

d ′
S,S′,i =

∑
R

〈S|R〉〈R|iR〉〈iL|S′〉 (B.30)

dS,S′,i =
∑
R

〈S|iL〉〈iR|R〉〈R|S′〉. (B.31)

Equation (B.29) can be inserted in the EOM for ρ̂e(t) (B.18) to allow electron
injection. The inclusion of injection does not have a negative impact on the simulation
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performance because it is a time-independent quantity that can be calculated before
the start of the ECEID dynamics and stored.

B.5 Other Injection Setups

Other than the zero temperature bias setup presented in the previous section, it is
possible to vary the probes’ electronic distributions fL,R(E) to allow other injection
setups.

In Chap.8, we introduce the electron-gun in which we inject streams of electrons
in the system within a narrow energy window. We start from equilibrium OB where
the probes are kept at zero electronic temperature and their bias is set to zero. On top
of that, fL(E) contains a top-hat spike between ED = ε − δε and EU = ε + δε, to
allow electrons in that energy interval to be injected in the system. In this case, the
injection integral (B.29) gains these additional terms

∑
S,S′

�

2π
|S〉〈S′|

∑
i

((
c′
S,S′,i − cS,S′,i

)
1

2
log

(
(EU − �(λi ))

2 + 
(λi )
2

(ED − �(λi ))2 + 
(λi )2

)

+ i

(
c′
S,S′,i + cS,S′,i

)(
arctan

EU − �(λi )


(λi )
− arctan

ED − �(λi )


(λi )

))
. (B.32)

Another electron injection setup that we can implemented is the inclusion of a
temperature difference between the left and right probes. This allows simulations
of thermoelectric phenomena. For finite temperatures in the probes, the injection
integral cannot be determined analytically and has to be solved numerically.

A recent generalization of the OB method in the static limit is presented in [6].
The authors also introduce an innovative mechanism that allows to reduce the length
of the leads by using a local coupling to the probes �i .



Appendix C
An Alternative Water Chain

In this appendix, we use a different water chain model that represents an intermediate
step between thewatermolecule inSect. 8.1 and thewater chain in 8.2. This simplified
model employs hoppings akin to the ones of the water molecule. The simulations
display a curious localization effect that we did not observe in the more complex
water chain model and is determined by the peculiar band structure.

The water chain equilibrium geometry shown in Fig. 8.14 is unchanged and the
bond lengths ROH1 , ROH2 , ROO and β are the same as in Sect. 8.2. The Hamiltonian
for the j th water molecule has again a form

Ĥ j =

⎡
⎢⎢⎣
EH1 − EF ∓W1 cos θ W1 sin θ 0
∓W1 cos θ EOpx

− EF 0 ±W2 cos θ
W1 sin θ 0 EOpz

− EF W2 sin θ
0 ±W2 cos θ W2 sin θ EH2 − EF

⎤
⎥⎥⎦

where now the O-H hopping have this form W (R) = 1.84 �
2

4meR2 , just as in the water
molecule section. The inter-orbital hoppings are W1 = W (ROH1) = 3.72 eV and
W2 = W (ROH2) = 3.51 eV and the inter-molecular hopping isW (ROO − ROH2) =
1.26 eV, much higher than in Sect. 8.2, mainly because of the absence of a cutoff
distance.

The phonon mode geometry is the same as in the previous section, with the
vibrating O − H1 bonds, as shown in Fig. 8.14, with the same frequency, mass and
form of F̂ . The electron-phonon coupling is different (the hoppings changed) and is

F = C ∂W (R)

∂R

∣∣∣
R=ROH1

= 2.43 eV/Å, with C = 1/
√
10.

C.1 Simulation Details

The eigenvalues of a water chain of 10 molecules form 4 bands, where the bandgap
between the lower and the upper ones (the FCB and the SCB) is 4.27 eV.

© Springer International Publishing AG, part of Springer Nature 2018
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Fig. C.1 Water chain eigenvalues and their elastic variation with the vibrational displacement X
in the frozen phonon regime. The zero point motion of the phonon is indicated by the solid vertical
lines, while the root mean square displacement for N = 2 is shown with dashed vertical lines

By scanning in X , we explore the elastic variation of the eigenvalues and show it
in Fig.C.1. In this case, the gap between the FCB and the SCB is much narrower than
before. The FCB has a shape resembling the one in Fig. 8.16, with a larger width due
to the larger inter-molecular hopping. The SCB presents a degenerate point where
all eigenvalues but one converge in energy. Eigenstate 31 is the only one behaving
differently. To understand better what makes that state differ from the other ones, we
project it on the atomic orbital basis and compare it with other eigenstates in Fig.C.2.

The square modulus projection of eigenstate 21 reaches its maximum for the
molecules in the middle of the chain and smoothly decreases moving towards the
borders of the chain. Eigenstate 22 has a node in the middle of the chain and two
maxima to its left and its right. These projections mainly involve the H2 and the
O 2pz orbitals. They are analogous to the wavefunctions of a particle in a box, as
they present an increasing number of nodes as their energy increases.

The next eigenstates show a similar behaviour, except for the states close to the
upper edge of the band. For example, eigenstate 30 follows a different pattern: it lies
mainly in the first half of the chain. It does not present any sizeable projection on
water molecule number 10 and lies mainly on H1. On the other hand, eigenstate 31
has a complementary form, with its projection being almost exclusively localized on
molecule 10. With eigenstate 32, the trend of projections resembling wavefunctions
of a particle in a box reappears and carries on until eigenstate 40, with the dominant
orbitals for eigenstate 32 being H1 and O 2px , while for eigenstate 40 being H2.

The elastic transmission of this system, shown in Fig.C.3, presents peaks cor-
responding to the eigenvalues of the FCB and SCB, reproducing the eigenvalue
scenario from Fig.C.1. The introduction of metal leads is analogous to the procedure
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Fig. C.2 Square modulus of the projection of a number of eigenstates on the atomic orbital basis.
Dark blue peaks correspond to the hydrogen orbital sticking out of the chain H1 (the vibrating one),
light blue to the oxygen 2px , aquamarine to the oxygen 2py and yellow to the hydrogen pointing
in the chain H2. The peaks form 10 groups that correspond to the 10 water molecules in the chain,
in order from left to right. From top to bottom, water chain eigenstates 21, 22, 30, 31, 32, 40 are
shown
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Fig. C.3 Elastic
transmission of the FCB and
SCB of a 10 molecule water
chain, with a phonon
displacement range
−0.5Å < X < 0.5Å

in Sect. 8.2, with 80 metallic sites attached to the left and to the right of the chain,
a metal-chain hopping of w = 1.0 eV. The metal has a nearest neighbour hopping
t = −4 eV and metallic onsite energies of 8 eV. The 40 leftmost and rightmost lead
atoms are connected to external probes by � = 1.25 eV.

C.2 Electron-Pulse Injection

As in Sect. 8.2.3, the left lead contains a wavepacket (whose form is in Eq.8.10) that
propagates to the right until it collides with the water chain. Here the central site
of the pulse is n0 = 50 and its width is σ = 10 sites. The phonon is initialized at
N (0) = 0 or 2.

We inject electrons in both the FCB and SCB by scanning over the wavepacket
momentum k, which corresponds to a scan in average energy of the injected
wavepacket 〈E〉. Here we call EEP the sum over the occupation of the all the water
states in both the FCB and the SCB. It is shown at different times in Fig.C.4a. 5
fs after the simulation start, the EEP displays a peak in the energy bands and is
remarkably nonzero for pulses both below and above the water band edges, as we
observed in the previous water chain simulations in Sect. 8.2. A feature that did not
appear previously is the energy shift of the peak for long times. As time progresses,
the EEP peak decreases in magnitude and gradually drifts towards the upper edge of
the SCB. This band edge effect will be analysed later in more detail. The EEP does
not present marked differences between N (0) = 0 and N (0) = 2.
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Fig. C.4 Electron-pulse
simulations where Gaussian
wavepackets collide with the
water chain. In a, EEP in the
water chain for wavepackets
with average energy 〈E〉 at 5
fs (blue), 50 fs (red), 100 fs
(green), 200 fs (yellow), 500
fs (purple) after the start of
the simulation. The phonon
starts at N (0) = 0 for dashed
lines, at N (0) = 2 for solid
lines. The vertical black lines
mark the energy range of the
water chain empty
eigenstates (the lower FCB
and the upper SCB edges). In
b, the phonon variation �N
in electron-pulse simulations
after 500 fs for a starting
N (0) = 0 (dashed line) and
N (0) = 2 (solid line)
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The nonzero EEP in the forbidden regions is determined by the energy spread of
the gaussian pulse and by the inelastic hopping of the electrons, that, thanks to the
presence of the phonon, can gain access to the water band. By checking the phonon
variation �N (t) at t = 500 fs in Fig.C.4b, we observe a clearly different behaviour
between different initial N (0), in analogy with the observation from Fig. 8.17.

For pulses below the water band edge 〈E〉 < 2.15 eV, an electron can only absorb
phonons to hop on the band, therefore this inelastic process can be activated only
for N (0) �= 0. In fact, we observe that �N < 0 for N (0) = 2, while �N = 0 for
N (0) = 0. Electrons from pulses above the band edge 〈E〉 > 4.4 eV have to emit
phonons while entering the band. In the simulations, both N (0) = 0 and N (0) = 2
show�N > 0 for 〈E〉 > 5.5 eV,with a larger�N for N (0) = 2, as the total emission
rate (spontaneous plus stimulated) is larger. The EEP in this case is intense and must
be caused by the inelastic hopping. In contrast with Sect. 8.2, here we have injected
electrons all over the energy range of the unoccupied bands. The inelastic effect when
injecting above the SCB is clearer because of the absence of energy levels above it.
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Fig. C.5 Electron-gun simulations where we inject electrons within a narrow energy window
slightly above the SCB and below the FCB. In a and b, current measured on the left (dashed) and
on the right (solid) of the water chain with an injection at ε = 1.9 ± 0.1 eV and ε = 5.0 ± 0.1 eV.
In c and d, dynamics of N during the electron-gun simulations (a) and (b) respectively

C.3 Electron-Gun Injection

WeperformElectron-gun simulations, just aswedid inSect. 8.2.4.We shoot electrons
at ε = 1.9 eV, just below the FCB, and at ε = 5.0 eV, above the SCB, with a�ε = 0.1
eV.

We observe very similar results when comparing to the previous case. The current,
that we show in Fig.C.5a and b, is zero in the elastic case, for ε = 5.0 eV it increases
and shows disagreement between the left and the right of the chain and for ε = 1.9
eV it settles down at a small value. In Fig.C.5c and d, we track the dynamics of
N (t) that cools down for ε = 1.9 eV and heats up for ε = 5.0 eV. The same physical
phenomena of current assisted cooling and heating occur and the observations from
Sect. 8.2.4 are reaffirmed.

C.4 Eigenstate Lifetime and Bandedge Trapping

Wego back to the electron-pulse simulations in Fig.C.4a, where we observed that the
absorption peaks gradually moved towards the chain upper bandedge for increasing
times. To understand this effect better,we introduce�EEPas the percentage variation
of the EEP at a given time over its value at t = 5 fs and show it in Fig.C.6a. This
quantity measures how much of the initial excess electron population remains in the
chain as a function of the pulse average energy 〈E〉 and time.
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Fig. C.6 In a, electron-pulse�EEP, the percentage variation of EEP in the water chain with respect
to the value at t = 5 fs for N (0) = 0 (dashed line) and N (0) = 2 (solid line). t = 50 fs are in red,
t = 100 fs in green, t = 200 fs in yellow, t = 500 fs in purple. In b, lifetime comparison of the
water chain FCB and SCB eigenstates versus their energy. The solid dots are obtained from static
self energy calculations. The solid lines are exponential fits of the decaying population of the single
populated level, while the dashed lines are exponential fits of the population of all levels in the FCB
and the SCB. Blue curves correspond to elastic real time calculations, red ones to N (0) = 0 and
green ones to N (0) = 2, both with Ṅ = 0

The highest percentage of captured electron occurs for pulses centred about 1
eV above the water SCB. Such pulses also present the longest lived effect on the
system. The water highest energy states act as an electron trap. This trapping effect
is analogous to the bandedge trapping observed in Sect. 8.2.5. Here it is more evident,
as it appears directly in �EEP, while previously it appeared only after extracting the
inelastic contribution from the EEP.

Just as we did previously, we compute the lifetimes of each water eigenstate j in
the FCB and the SCB. We employ self energy calculations τ�, j and fits of initially
populated eigenstates, on the single initially populated level τs, j and on all levels
τa, j . These lifetimes are shown as a function of eigenstate energy in Fig.C.6b. The
eigenstates belonging to the SCB are all very close in energy and displaymuch longer
lifetimes than the states in the FCB. Therefore, it is intuitive that pulses centred at
and above the SCB edge give rise to electrons that are very long lived, as the states
that would be mostly populated by them belong to the SCB.
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Fig. C.7 Lifetimes of the
FCB and SCB eigenstates as
in Fig.C.6b, with the
eigenstate number on the x
axis
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To compare the lifetimes in a clearer way, we plot the data from Fig.C.6b in
Fig.C.7 as a function of the eigenstate number. The characteristic horseshoe shape
that we observed in Sect. 8.2.5 becomes apparent for both the FCB and the SCB, and
the lifetime remarks from there are valid here.

In the FCB (states with 21 ≤ j ≤ 30), τa, j and τs, j closely resemble τ�, j , indi-
cating that their leading electron escape mechanism is the elastic one to the leads.
Level 31 uniquely presents a much shorter lifetime and is the only eigenstate that
does not fit in the horseshoe shape. As noticed earlier in Fig.C.2, it is the only level
whose projection on the atomic base lies almost exclusively on water molecule 10,
the closest molecule to the right lead. An electron occupying that level has a fast
elastic escape route from the chain to the lead. Levels 32 ≤ j ≤ 40 in the SCB show
much longer lifetimes than the ones on the FCB. This difference can be qualitatively
understood by considering the eigenstate wavefunction projection on the chain ends.
In Fig.C.2, for example, the projection on the left end of the chain of eigenstate 30,
belonging to the FCB, is much larger than the one of the SCB states shown there.

As τa, j differs more from τs, j in the SCB states than for the FCB states, diffusion
to neighbouring levels in the water chain is more relevant in the SCB. The inelastic
cases N = 0, 2 decay faster because, thanks to inelastic processes, electrons can
change their energy, eventually gaining access to rapidly decaying states.



Appendix D
Beyond the Double (De)excitation
Approximation

The new formalism from Chap.9 is a source of inspiration for ways to go beyond
some ECEID approximations. Presented below is a version of ECEID xp that can do
without the double (de)excitation approximation.

The derivation starts with the definition2 of the scalar quantities

Cν(t) = Tr
(
â†ν â

†
ν ρ̂(t)

)
(D.1)

Dν(t) = Tr
(
âν âν ρ̂(t)

)
, (D.2)

that were previously ignored by approximation.
The exact expressions (9.23) and (9.24) are the only place where the approxima-

tions are applied in ECEID xp. By employing the newly defined quantities (D.1 and
D.2) and applying the DM decoupling ρ̂(t) � ρ̂e(t)ρ̂o(t) and the single oscillator

Tro
(
â(†)

ν â(†)
ν ′ ρ̂(t)

)
= Tro

(
â(†)

ν â(†)
ν ′ ρ̂(t)

)
δνν ′ approximations, the expressions from

(9.25) and (9.26) become

Tro
(
ξ̂2ν ρ̂(t)

)
≈ �

2Mω

(
2Nν(t) + 1+Cν(t) + Dν(t)

)
ρ̂e(t) (D.3)

Tro
(
π̂ν ξ̂ν ρ̂(t)

)
≈ i�

2

(
Cν(t) − Dν(t) − 1

)
ρ̂e(t), (D.4)

where the new terms are indicated in green.
These quantities appeared in the EOM for the auxiliary operators (9.28) and (9.29)

that now can be written as

2Or, equivalently, Cν(t) = Tro
(
â†ν â

†
ν ρ̂o(t)

)
and Dν(t) = Tro

(
âν âν ρ̂o(t)

)
.
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i� ˙̂μν(t) = [Ĥe, μ̂ν(t)] + i�

M
λ̂ν(t) − �

Mω

(
N (t) + 1

2

) [
F̂ν, ρ̂e(t)

]

−
No∑

ν ′=1

(
xν ′(t)

[
F̂ν ′ , μ̂ν(t)

])− �

2Mω

(
Cν(t) + Dν(t)

)[
F̂ν, ρ̂e(t)

]
(D.5)

i� ˙̂
λν(t) = [Ĥe, λ̂ν(t)] − i�K μ̂ν(t) + i�

2

{
F̂ν, ρ̂e(t)

} − i�Tre
(
F̂ν ρ̂e(t)

)
ρ̂e(t)

−
No∑

ν ′=1

(
xν ′(t)

[
F̂ν ′ , λ̂ν(t)

])+ i�

2

(
Dν(t) − Cν(t)

)[
F̂ν, ρ̂e(t)

]
. (D.6)

The above expressions, together with the unchanged Eqs. (9.10) and (9.13), represent
the set of ECEIDxpEOMwithout the use of the double (de)excitation approximation.
The novelty lies in the presence of Cν(t) and Dν(t), that need an EOM themselves
to close the set of equations.

Just as in the derivation of Ṅν(t) in (9.11), the following time derivatives are valid

Ċν(t) = Tr
(
â†ν â

†
ν
˙̂ρ(t)

)
= 1

i�
Tr

([
â†ν â

†
ν , ĥ(t)

]
ρ̂(t)

)
(D.7)

Ḋν(t) = Tr
(
âν âν

˙̂ρ(t)
)

= 1

i�
Tr

([
âν âν, ĥ(t)

]
ρ̂(t)

)
(D.8)

where themodel Hamiltonian ĥ(t) is (9.8). By using the canonical commutation rela-
tions and the DM decoupling approximation, the EOM for the new scalar quantities
can be written as

Ċν(t) = 2ωiCν(t) − 1

i�

(
Mẍν(t) + Kxν(t)

)(
ξ̄ν(t) − i

Mω
π̄ν(t)

)

+ 1

i�

(
Tre

(
F̂νμ̂ν(t)

) − i

Mω
Tre

(
F̂νλ̂ν(t)

))
(D.9)

Ḋν(t) = −2ωiDν(t) + 1

i�

(
Mẍν(t) + Kxν(t)

)(
ξ̄ν(t) + i

Mω
π̄ν(t)

)

− 1

i�

(
Tre

(
F̂νμ̂ν(t)

) + i

Mω
Tre

(
F̂νλ̂ν(t)

))
, (D.10)

where ξ̄ν(t) and π̄ν(t) are defined in (9.16 and 9.17).
The new set of equations still requires a condition for xν(t). That condition can

be the Ehrenfest-like (9.36) from ECEID xp, xν(t) = 0 that generates ECEID or
another one yet to be found.
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