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For more information, see back pages of the book and
http://math.univ-bpclermont.fr/stflour/

Jean Picard
Summer School Chairman
Laboratoire de Mathématiques
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Preface

These notes are a revised version of the ones that I have prepared and used for my
course at the 40th Saint-Flour Probability Summer School. I was extremely happy
to receive the invitation and giving the course has been a real pleasure. This marks
my my third time participating in the school and this preface is the occasion to
compliment Jean Picard for his discrete, smooth and efficient way of running it.

This invitation gave me the opportunity to rethink my research activities in the
last 5 or 6 years, trying to take a somewhat different standpoint: in the end I realized
that I was just trying to go back to the original motivations. In this period in fact I
have been working mostly on localization phenomena in certain disordered systems
and a class of models – the pinning models – took a leading position. But the
question driving my interest was and is: what is the effect of disorder on phase
transitions and on critical phenomena? So the result is that, if we look at these
lectures from a technical viewpoint, they are about the specific class of statistical
mechanics models that I call disordered pinning models. For this class we do have
fairly satisfactory answers: essentially all the physical predictions on which there
was a general consensus have now been established on firm mathematical grounds
and there are now also rigorous result about some controversial physical statements.
But, beyond the purely technical aspects, these notes are also an invitation to look
beyond pinning models, that is, to more general statistical mechanics models.

It suffices to browse through these pages to realize that “more general statistical
mechanics models” essentially reduces to the Ising model (and this is still, definitely,
too much for these notes). The Ising model is going to accompany us along the
various steps, but (hopefully!) in a way that it is not too invasive: the reader who
is only interested in pinning phenomena should be able to follow leaving aside the
sections on the Ising model, in which the presentation is rather informal. The choice
of keeping disordered Ising models issues at an informal level is also due to the lack
of rigorous results, in spite of some absolutely impressive achievements, and these
portions of the notes present a number of open problems, which are most probably
really challenging.
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vi Preface

I would like to stress that since (polymer, interface, Markov process, etc.) pinning
models are the means and not the aim, the modeling aspects and the very many
variations or closely related classes of models are reduced to remarks or are even
neglected entirely unless directly related to the main line of the notes. In this sense
these notes do not review, for example, the vast literature on polymer models, not
even that on general pinning or localization phenomena.

Moreover, these notes do not include hierarchical models on diamond lattices.
Choices had to be made and this was the most painful one for at least two reasons:
on one hand, part of the results and of the phenomena that I present have been
obtained or have been understood first in the hierarchical set-up and, on the other,
these somewhat exotic models definitely have a particular inner beauty.

I am presenting the combined work of several persons, to whom I am deeply
grateful and indebted. I want to especially thank my closest collaborators and the
people with whom I have discussed the subject of these notes most: Francesco
Caravenna, Hubert Lacoin and Fabio Toninelli. Moreover special thanks are due to
Bernard Derrida, who shaped my vision of the Harris criterion and who helped me
in going through the physics literature (needless to say, I take full responsibility for
what I have written on physics issues and I am absolutely aware that Bernard would
have put things differently). I certainly cannot forget that my interest in disordered
models and in localization phenomena dates back to my valued interaction, which
persisted through the years, with Erwin Bolthausen.

Finally, I would like to give a big “thank you” to Lydia, Micol and Raika for their
presence, in Saint-Flour, before and after.

Paris Giambattista Giacomin
March 2011
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Frequently Used Notations

N {1,2,3, . . .}
a∧b, a∨b min(a,b), max(a,b)
|E|, P(E), 1E Cardinality, set of all subsets, indicator function of E
{an}n,{bn}n, . . . Sequences of real numbers
an ∼ bn limn an/bn = 1
an ≈ bn Used when one does not want, or cannot, be precise
τ = {τ j} j=0,1,... Renewal sequence, often seen as subset of N∪{0}
S = {S j} j=0,1,... Random walk
P Law of τ or law of S, according to the context
K(n) P(τ1 = n), n = 1,2, . . . ,∞ (Chap. 2, Sect. 2.2)
K(n) ∑ j>n K(n) ≤ 1 (n = 0,1, . . ., sum does not include ∞)
˜Kh(n) (2.10) and Chap. 2, Sect. 2.2
˜τ(h) Renewal with inter-arrival law ˜Kh(n)
θ Left shift operator: (θa)n = an+1

h Pinning potential
δn 1n∈τ (abuse of notation for 1τ(n), here τ ⊂ N∪{0})
ZN,h, Zf

N,h Partition function of homogeneous system (constrained, free)
PN,h, Pf

N,h Probability law of homogeneous system (constrained, free)
F(h) Free energy of model with homogeneous pinning potential h
κ correlation length
ω , P disorder or charge sequence, law of ω : Definition 3.1
M(β ) Eexp(β ω1): Definition 3.1
β disorder strength parameter
ZN,ω = ZN,ω,β ,h Partition function of disordered system (constrained)
Zf

N,ω = Zf
N,ω,β ,h Partition function of disordered system (free)

PN,ω = PN,ω,β ,h Disordered system probability (constrained)
Pf

N,ω = Pf
N,ω,β ,h Disordered system probability (free)

F(β ,h) Free energy of the disordered pinning model (F(0,h) = F(h))
IID Independent and Identically Distributed
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Chapter 1
Introduction

Disorder enters modeling in a very natural way: interacting “units” (spins, particles,
circuits, cells, individuals,...) are not identical, media (solvents, lattices, environ-
ments,...) are not homogeneous or regular, and so on. In many instances it is of
course very reasonable to assume that heterogeneities, irregularities, impurities,...
can be neglected, and even more for toy models. But it is at least as reasonable to
wonder about the stability of the results one obtains for homogeneous systems if
disorder is introduced. This concern is omnipresent in the scientific literature and
several instances in which small impurities have a drastic effect have been exposed.
Four examples for all:

1. Anderson localization in one-dimensional systems, where an arbitrary amount
of disorder transforms a conductor into an insulator, see [12] and references
therein, and one can find a vast physical literature on the analogous phenomenon
in dimension two.

2. Sinai’s random walk in random environment, where strongly sub-diffusive
behavior sets in for arbitrarily weak randomness in the environment ([13] and
references therein).

3. Directed polymers in random environments in dimension one and two, where
once again arbitrarily small amounts of disorder lead to drastic phenomena, like,
at least in dimension one, super-diffusivity and non Gaussian fluctuations (see
[1, 3, 5] and references therein also for the link to other classes of models in the
same “universality class”).

4. The phase transition in the Ising model can be strongly affected by arbitrarily
weak disorder: it may even disappear.

These notes are very close in spirit to all these four remarkable examples – for
example, they share with the first three the central keyword “localization” – but the
reader will hardly find traces of examples one to three in the sequel. The situation
is radically different for the fourth example: these notes contain several discussions
and references on disordered Ising models (that is why we have put no reference
here!), even if the Ising model is not their main subject. Rather, pinning models are:
let us explain why (and what pinning is).

G. Giacomin, Disorder and Critical Phenomena Through Basic Probability Models,
Lecture Notes in Mathematics 2025, DOI 10.1007/978-3-642-21156-0 1,
© Springer-Verlag Berlin Heidelberg 2011

1



2 1 Introduction

The main purpose of these notes is to explore the effect of disorder in the frame-
work of equilibrium statistical mechanics of lattice models, that is for Gibbs mea-
sures with random interactions or random external fields. These issues have been
first developed for the reference statistical mechanics model – the Ising model –
and soon after Onsager’s celebrated exact solution of the two dimensional case
researchers started wondering about the stability of Onsager’s result when impurities
are introduced. We want to give an overview of the remarkable ideas developed
in this context, but trying to follow in detail the Ising model literature would be
rather pretentious (and beyond the possibilities of the author): we invite the reader
to have a look at the references at the end of Chap. 5 to get a first idea of the body
of literature available and we refer to [2] for a comprehensive recent reference on
disordered models. The reason why a full account of the Ising literature would be a
daunting enterprise is not only due to the amount and depth of the results available,
but also to the fact that a consistent part of the physical predictions for the moment
are not on firm mathematical grounds. This is the case in particular for the work
of Harris [10] on the diluted Ising model and of the various works on disorder
relevance/irrelevance that followed. In fact, Harris’ idea – that yields the so called
Harris criterion – is that one should be able to predict whether a small amount of
disorder – “impurities” in Harris’ terminology – changes or not the critical behavior
of a system, that is the behavior of a system near the phase transition, by simply
looking at the critical behavior of the “pure” system. This is very much in the spirit
of perturbation theory, but it is a delicate issue because one is dealing with infinite
systems and even if locally one adds a small amount of impurities, one always does
it in a statistically translation invariant fashion, so in the end the amount of disorder
is infinite anyway.

However, if for Ising the full mathematical picture is still escaping, there is a class
of models – the pinning models – in which Harris’ ideas have been fully understood.
Moreover, homogeneous pinning models display phase transitions of “all orders”:
in fact, by playing on a parameter of the model, one can observe any type of critical
behavior of the order parameter at the transition, while for the Ising model one has
a discrete spectrum of possible behaviors (the parameter is the dimension), not to
speak of the fact that the precise Ising critical behavior is still an open problem in
some dimensions. So the basic scheme of the lectures can be summed up to

• Developing in detail the analysis of pinning models
• Discussing, in a less technical fashion, what happens, or what is expected to

happen, for the Ising model

But what are pinning models? Just think of an arbitrary, say discrete time,
Markov process that visits with positive probability a state (call it 0): for example
a random walk on Z

d , with symmetric or asymmetric IID increments, that jumps
to nearest neighbor sites. It is well know that an asymmetric walk is transient, so
any site, 0 in particular, is visited only a finite number of time if any: moreover, it
has a definite drift in a direction. A symmetric walk instead is transient or recurrent
according to whether d ≥ 3 or d ≤ 2, and in any case there is no drift direction: the
walk diffuses. What happens if we reward visits to 0? More precisely, what happens
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if we modify the law of the walk (up to time N) by weighing the probability of
each configuration with the exponential of a constant h times the time spent in 0
up to time N? And we are interested in the limit N → ∞. The answer in general
is that there is a delocalization/localization transition, that is for h above a certain
hc the walk localizes at 0 (it becomes positive recurrent), while below hc the walk
visits 0 no more than a finite number of times (transient behavior). The transition
can be characterized in terms of the contact fraction, that is the number of returns
to 0 in a long stretch of time, divided by the length of the stretch: zero contact
density is delocalization and positive contact density is localization. In this case the
critical behavior is the way the contact fraction approaches 0 as h ↘ hc (when it
does, because we will see that in some cases it jumps to zero: this is the case of the
so-called “first order transitions”).

The pinning model we have informally introduced is homogeneous: the reward
(or penalty) h is constant (h > 0 is a reward, h < 0 is a penalty). In the disordered
version h is not constant, in fact h is replaced by h + β ωn with β > 0 and
ω := {ωn}n∈N is a realization of a sequence of random variables (for example,
independent and identically distributed: in these notes we will only consider this
case, and we will consider ω1 centered and of variance one). We insist on the fact
that we choose a typical realization of ω and we keep it fixed: a walk touching 0
at time n will receive a reward (or penalty) h + β ωn. And here is the main question
of these notes: how different are the β = 0 and the β > 0 case? We will see that
for pinning models the issue is not so much the one of persistence of the phase
transition, because the answer is going to be positive in all cases, but the one of
whether the disorder has an effect on the critical behavior or not.

Here is an overview of what will follow:

• In Chap. 2 we introduce and solve a general class of homogeneous pinning
models. The emphasis is on the renewal process viewpoint because we are mostly
interested in (in these notes!) when the process comes back to 0 and not so much
on what it does outside of 0. And the return times to 0 form a random sequence
that is a renewal sequence. In this chapter the reader will find also a quick review
of the modeling aspects: this is definitely not doing justice to the importance of
pinning phenomena and pinning modeling, but this is really not the purpose of
the notes, so we just refer to [6] and to the monographs [8, 11].

• In Chap. 3 we introduce the disordered pinning models and a number of basic
techniques. Notably we introduce the notion of disordered (quenched) free
energy.

• In Chap. 4 there is the first contact with the Harris criterion and with the seminal
contributions [4, 7], of which we will present the basic ideas. We then give a
mathematical proof of disorder irrelevance in agreement with the Harris criterion
prediction.

• In Chap. 5 we show that disorder is relevant when predicted by the Harris
criterion. We do this by establishing a bound on the quenched free energy that
shows that it always possesses a certain minimal amount of smoothness: it is at
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least C1 with Lipschitz derivative. We then present an overview of what is known
or is expected to hold for the Ising model.

• In Chap. 6 we study the shift of the critical point. This includes the analysis of
the case of marginal disorder, i.e. neither relevant nor irrelevant, a debated issue
in the physical literature, solved in [9].

• In Chap. 7 we prove the coarse graining estimates used in Chap. 6.
• In Chap. 8 we talk about path properties and show that they are tightly linked to

the free energy.
• The appendix is about discrete renewal processes and it is split into two parts: in

the first part we review some basic tools and results of the theory and the second
part is about some issues that are more specific to pinning models.
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Chapter 2
Homogeneous Pinning Systems:
A Class of Exactly Solved Models

Abstract We introduce a class of statistical mechanics non-disordered models –
the homogeneous pinning models – starting with the particular case of random walk
pinning. We solve the model in the sense that we compute the precise asymptotic
behavior of the partition function of the model. In particular, we obtain a formula
for the free energy and show that the model exhibits a phase transition, in fact a
localization/delocalization transition. We focus in particular on the critical behavior,
that is on the behavior of the system close to the phase transition. The approach is
then generalized to a general class of Markov chain pinning, which is more naturally
introduced in terms of (discrete) renewal processes. We complete the chapter by
introducing the crucial notion of correlation length and by giving an overview of
the applications of pinning models. Ising models are presented at this stage because
pinning systems appear naturally as limits of two dimensional Ising models with
suitably chosen interaction potentials. In spite of the fact that these lecture notes
may be read focusing exclusively on pinning, the physical literature on disordered
systems and Ising models cannot be easily disentangled. So a full appreciation of
some physical arguments/discussions in these notes does require being acquainted
with Ising models.

2.1 What Happens if We Reward a Random Walk
When it Touches the Origin?

2.1.1 The Random Walk Pinning Model

We start rather abruptly by making more precise the question in the title and by
answering it. So let us give ourselves a random walk S = {S0,S1, . . .} with S0 = 0
and such that the increment variables {Sn − Sn−1}n∈N, that form an IID sequence,
take values −1, 0 and +1. More precisely we consider a symmetric walk and set

G. Giacomin, Disorder and Critical Phenomena Through Basic Probability Models,
Lecture Notes in Mathematics 2025, DOI 10.1007/978-3-642-21156-0 2,
© Springer-Verlag Berlin Heidelberg 2011
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P(S1 = +1) = P(S1 = −1) =: p/2 and P(S1 = 0) = q. Of course p + q = 1: we
exclude the trivial case q = 1 and the simple random walk q = 0 for its somewhat
unpleasant periodic character. For every N ∈ N we introduce the local time LN(S) =
∑N

n=1 1Sn=0 and the probability measure PN,h (h ∈ R) such that

dPN,h

dP
(S) =

1
ZN,h

exp(hLN(S)) 1SN=0 , (2.1)

where ZN,h is typically called partition function and it is just the normalization that
makes PN,h a probability. Of course

ZN,h = E [exp(hLN(S)) ; SN = 0] . (2.2)

A word about an abuse of notation that, in different forms, will be ubiquitous in
these notes: in (2.1) S is a trajectory of the random walk, rather than the sequence
of random variables. Note moreover that we have introduced PN,h as a measure
on the full trajectory and not just for the part of the trajectory that we have really
modified. This has plenty of almost irrelevant advantages that, added up, largely
overcome (in the eyes of the author, of course) the disadvantage of a rather abstract
formulation in terms of the relative density of measures. Note in fact that for every
s1,s2, . . . ,sN

PN,h (S1 = s1,S2 = s2, . . . ,SN = sN)

=
1sN=0

ZN,h
exp

(

h
N

∑
n=1

1sn=0

)

P(S1 = s1,S2 = s2, . . . ,SN = sN) , (2.3)

and we could have used the right-hand side of this expression to define the process,
at the expense of having a family of processes living on different spaces and of a
less compact notation. A last observation on notation is that 1SN=0 is used in place
of the more precise, but less expressive, 1{0}(SN).

Remark 2.1. Why constraining to SN = 0? SN = 0 is a boundary condition and a
priori it is more natural to introduce the free, or unconstrained, model

dPf
N,h

dP
(S) =

1
Zf

N,h
exp(hLN(S)) , (2.4)

but the constrained model often turns out to be more manageable. We anticipate
that, even if for most of the main results there will be little or no difference between
the two models, the interplay between them plays a role in several proofs.
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2.1.2 Visits to the Origin and the Computation
of the Partition Function

The epochs τ = {τ0,τ1, . . .} of successive visits to the origin

τ0 := 0 and τn
n∈N= { j > τn−1 : S j = 0} , (2.5)

is a natural random walk (another one! With positive increments this time)
associated to the problem, in the sense that {τn−τn−1}n∈N is an IID sequence: this is
a direct consequence of the strong Markov property and of the recurrent character of
S that guarantees that P(τ j < ∞ for every j) = 1. In a more customary terminology,
τ is a renewal process with inter-arrival law K(n) := P(τ1 = n). Two basic facts on
this inter-arrival law are

∞

∑
n=1

K(n) = 1 and lim
n→∞

n3/2K(n) =: cK > 0 , (2.6)

where the first fact is just a restatement of P(τ1 < ∞) = 1, but the second requires
a bit more work (see e.g. [22, Appendix A.6] where the value of cK is computed:
√

p/2π).

Remark 2.2. We will soon encounter other renewal processes (i.e. random walks
with positive increments: Appendix A offers an introduction to these processes).
So we introduce some (more or less) standard terminology: a renewal τ with
inter-arrival law K(·) will be called K(·)-renewal. If ∑n K(n) = 1 then a.s. |{ j :
τ j < ∞}| = ∞ and the renewal is said persistent. It is positive persistent if also
E[τ1] = ∑n nK(n) < ∞. If instead ∑n K(n) < 1, K(·) can be extended to a probability
distribution by setting K(∞) := 1−∑n∈N K(n) and each realization of τ , still defined
as the sequence of partial sums of the IID sequence of variables with distribution
K(·) on N∪{∞}, contains only a finite number of finite numbers (points, epochs,....).
In this case we say that the renewal is terminating: after a finite number of bounded
jumps, the process jumps to infinity and stays there (in a sense, it leaves the space
once for all). In general, it is very practical to look at τ as a subset of N, rather
than a sequence (in the terminating case we neglect the repeated ∞ and a typical
realization of τ is therefore just a finite subset of N, while in the persistent case it
is an infinite subset). This convention leads to particularly compact notations: for
example n ∈ τ means that there exists j ∈ N∪{0} such that τ j = n. It is customary
to call n 
→ P(n ∈ τ) renewal function.

By repeated use of the total probability formula we obtain

ZN,h =
N

∑
n=1

E [exp(hLN(S)) ; SN = 0, LN(S) = n]

=
N

∑
n=1

exp(hn)P(SN = 0, LN(S) = n)
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=
N

∑
n=1

exp(hn) ∑
�∈Nn: |�|=N

P(τ1 = �1, τ2 − τ1 = �2, . . . ,τn − τn−1 = �n)

=
N

∑
n=1

exp(hn) ∑
�∈Nn: |�|=N

n

∏
j=1

K(� j) ,
(2.7)

where |�| = ∑n
i=1 �i. The net outcome is:

ZN,h =
N

∑
n=1

∑
�∈Nn: |�|=N

n

∏
j=1

exp(h)K(� j) . (2.8)

Of course ZN,0 = P(N ∈ τ), that is the partition function is just the renewal function
of τ (see Appendix A), and the right-hand side of (2.8), still for h = 0, is a more
explicit version of such a function: the point is to apply this observation also
when h �= 0. The obstacle is of course that exp(h)K(·) is no longer a probability
distribution if h �= 0: this is not really a serious problem if h < 0 since we have seen
that it suffices to work on N∪{∞}, but for h > 0 we have to do something different.
The idea is to introduce the function F : R → [0,∞) defined by

∑
n∈N

exp(−nF(h)+ h)K(n) = 1 , (2.9)

when such a solution exists, that is for h ≥ 0 (the solution is of course unique by the
monotonicity of x 
→ ∑n exp(−xn)K(n) ). When we cannot solve such a problem,
that is for h < 0, we set F(h) = 0. Now, for every h we set for n ∈ N

˜Kh(n) := exp(−F(h)n + h)K(n) , (2.10)

and, adding {∞} if needed, ˜Kh(·) is a probability distribution.

Remark 2.3. The function F(·) is called free energy and it plays a central role
in these notes. A number of properties of F(·) can be obtained with moderate
effort. First of all F(·) is real analytic except at the origin. The analyticity on the
positive semi-axis follows by the Implicit Function Theorem (e.g. [13, Chap. 3,
Proposition 2.20]), since z 
→ ∑n K(n)exp(−zn) is analytic on {z ∈ C : ℜ(z) > 0}
and its derivative does not vanish on (0,∞). One verifies directly also that F(·) is
convex and that it is increasing on the positive semi-axis: by taking a derivative of
the expression in (2.9) and by using the notation ˜τ(h) for the ˜Kh(·)-renewal, we see
that for h > 0

F′(h) =
1

∑n n˜Kh(n)
=

1

E˜τ(h)
1

> 0 , (2.11)

and that F′′(h) = F′(h)3var(˜τ(h)
1 ) > 0.
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We can therefore write

ZN,h = exp(F(h)N)
N

∑
n=1

∑
�∈Nn: |�|=N

n

∏
j=1

˜Kh(� j) , (2.12)

a formula that can be made much more compact by using the ˜Kh(·)-renewal ˜τ(h):

ZN,h = exp(F(h)N)P
(

N ∈ ˜τ(h)
)

, (2.13)

and from such a formula one extracts.

Proposition 2.4. For the partition functions ZN,h and Zf
N,h defined in (2.2) and (2.4)

we have

lim
N→∞

1
N

logZN,h = lim
N→∞

1
N

logZf
N,h = F(h) . (2.14)

Moreover

ZN,h
N→∞∼ ch,K(·) exp(F(h)N)×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N0 if h > 0 ,

N−1/2 if h = 0 ,

N−3/2 if h < 0 ,

(2.15)

with

ch,K(·) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
∑n n ˜Kh(n)

if h > 0 ,

1√
2π p

if h = 0 ,
cK exp(h)

(1−exp(h))2 if h < 0 .

(2.16)

Proof. The proof of (2.14) in the constrained case is just a matter of showing that
logP(N ∈ ˜τ(h)) = o(N). But this is obvious since for h < 0 we have exp(h)K(n) ≤
P(N ∈ ˜τ(h)) ≤ 1 and if h > 0 (see Fig. 2.1) by the Renewal Theorem (Theorem A.1)

N

lo
g 

Z N
;0
:0

6

0 1000800600400200

1.0

0.5

0.0

−0.5

−1.0

−1.5

Fig. 2.1 The plot of the logarithm of the partition function for a homogeneous random walk based
model with p = 1/2 and q = 1/2. We have F(0.06) ≈ 3.4×10−3
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P(N ∈ ˜τ(h)) tends, as N → ∞, to the positive constant 1/E˜τ(h)
1 : note that this

establishes (2.15) for h > 0. The sharp estimate (2.15) for h = 0 is just the Local
Central Limit Theorem for S (which can be established via Stirling’s approximation
of the factorial), while the case h < 0 requires a more delicate analysis, that is
however a rather standard result in renewal theory that can be summed up by
saying that the leading asymptotic behavior of the renewal function of a terminating
renewal differs from the leading asymptotic behavior of the inter-arrival distribution
only by a multiplicative constant (see Theorem A.2).

We are left with proving (2.14) in the free case, but this is a direct consequence
of the constrained result and of the formula

Zf
N,h =

N

∑
n=0

Zf
N,h(τ ∩ [n,N] = {n}) =

N

∑
n=0

Zn,hK(N −n) , (2.17)

where we have introduced the notation Zf
N,h(A) (A an event) for E[exp(hLN(S));A]

and K(n) = ∑ j>n K( j) (n = 0,1, . . .). From (2.17), and (2.15), one can also establish
without much effort the analog of (2.15) for Zf

N,h, but this is left to the motivated
readers. ��

2.1.3 From Partition Function Estimates to Properties
of the System

Proposition 2.4 contains very detailed information on the system: let us spell it out.
First of all we have seen in Remark 2.3 that F(·) is real analytic except at the origin:
convexity assures that at least for h �= 0

F′(h) = lim
N→∞

1
N

d
dh

logZN,h = lim
N→∞

1
N

EN,h [LN(S)] . (2.18)

Monotonicity and convexity properties can also be inferred directly form the fact
that h 
→ logZN,h is increasing and convex (just take derivatives). Here we are
interested in the fact that formula (2.18) is already showing that passing from h < 0
to h > 0 something very drastic is happening in the system: F′(h) is actually the
density of visits to the origin by the random walk path (the contact density) and
it passes from zero to a positive value (see Fig. 2.3, upper-right inset). This is
clearly a transition from what we may call a delocalized to a localized behavior.
The transition actually happens in a continuous way – there is no jump in the contact
density when h changes sign – and F(·) is C1 in zero, even if it is not C2: this requires
an argument that we develop now. By Riemann sum approximation we see that
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1−∑
n

K(n)exp(−xn) = ∑
n

K(n)(1− exp(−xn))

x↘0∼ cKx1/2
∫ ∞

0

1− exp(−t)
t3/2

dt = 2
√

πcKx1/2 , (2.19)

and since we already know that limh↘0 F(h) = 0 we can apply this formula to (2.9)
obtaining 2

√
πcK F(h)1/2 ∼ h, that is

F(h)
h↘0∼ 1

4πc2
K

h2 . (2.20)

Such an estimate is directly telling us that F(·) is not C2 at the origin and, together
with convexity, is telling us also that F(·) is C1. In a standard statistical mechanics
terminology this means that the system undergoes a second order phase transition,
in the sense that the non-analiticity of the free energy comes from a singularity (in
this case a jump discontinuity) in the second derivative of the free energy.

This description of the system in terms of contact density is only partially
satisfactory, for example because we already know that the unperturbed random
walk S (h = 0) has zero contact density, but we know much more, namely that the
number of contacts in a stretch N is of order

√
N (a much sharper information). Can

we get such a precise estimate also for the h �= 0 case? The answer is yes and it is
summed up in the next statement.

Proposition 2.5. If h < 0 then for every n ∈ N

lim
N→∞

PN,h(LN(S) = n) = (1− exp(h))2 nexp(h(n−1)) , (2.21)

(note that the right-hand side is the discrete density of X +Y + 1, with X and Y
independent geometric variables of parameter exp(h)) while if h > 0 we have that
for every ε > 0

lim
N→∞

PN,h

(∣

∣

∣

∣

LN(S)
N

− F′(h)
∣

∣

∣

∣

≥ ε
)

= 0. (2.22)

Moreover for every h, every n, every t�∈N and every t∈N
n such that 0< t1 < t2

< .. . < tn ≤ t� we have

lim
N→∞

PN,h (τ ∩ (0,t�] = {t1, . . . ,tn}) = P
(

˜τ(h)∩ (0,t�] = {t1, . . . ,tn}
)

, (2.23)

that is the sequence {PN,hτ−1}N of measures on P0 (cf. Sect. A.1.4 of Appendix A)
converges weakly to P(˜τ(h))−1.

Note that this statement includes global estimates, that is (2.21) and (2.22), and a
local one, that is (2.23). Note that (2.22) holds also for h ≤ 0, but of course for h ≤ 0
one has much sharper estimates (like (2.21) for h < 0!). These estimates are just
instances of what one can obtain once the sharp asymptotic behavior of the partition
function is known (see Fig. 2.2).
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−20

40

20

0

N

S
N

h=−0:5

h=0:25

500 20000 15001000

Fig. 2.2 Three trajectories for h =−0.5 and N = 2,000 (the underlying walk has p = q = 1/2) and
one for h = 0.25. While the image clearly suggests that the first three trajectories are delocalized,
i.e. they keep away from 0, and have a Brownian scaling, the maximum of the other trajectory is
+6 and the minimum is −7, so the path is essentially localized at 0

Proof. The result follows from Proposition 2.4 by routine arguments. We go quickly
through them, leaving some of the details to the reader. Let us point out that, in a
sense, Proposition 2.4 is a detour and everything in the end boils down to renewal
function estimates, but developing in arguments using the partition function has
several advantages, like making connection with more general cases.

For what concerns (2.21) the result for n = 1 is immediate, since the probability
we want to compute is exp(h)K(N)/ZN,h ∼ (1 − p)2. For n = 2 instead one
observes that for any choice of a sequence of natural numbers {a(N)}N such that
1�a(N)�N we have

PN,h(LN(S) = 2) = ∑N
n=1 K(n)K(N − n)exp(2h)

ZN,h

=
∑a(N)−1

n=1 . . .+ ∑N−a(N)−1
n=a(N) . . .+ ∑N

n=N−a(N) . . .

ZN,h

= 2exp(h)(1− exp(h))2(1 + o(1)) (2.24)

+c−1
h,K(·)e

2h(1 + o(1))N3/2
N−a(N)−1

∑
n=a(N)

n−3/2(N −n)−3/2

= 2exp(h)(1− exp(h))2(1 + o(1))+ O(a(N)−1/2) ,
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which is the result we were looking for. The general case is just a straightforward
generalization which is best done by first observing that the configurations that
contain points far from both 0 and N are negligible:

PN,h (τ ∩ [L,N −L] �= /0) ≤ ∑N−L
n=L Zn,hZN−n,h

ZN,h

≤ c1
∑N−L

n=L K(n)K(N −n)
K(N)

≤ c2K(L) , (2.25)

where c1 and c2 are suitable (h and K(·) dependent) positive constants. In words, the
result is simply saying that in the limit the process comes back a finite number of
times close to 0 (each time it attempts to come back it has a probability 1− exp(h)
of not making it) and the behavior near N is just mirror symmetric (in law).

A proof of (2.22) is an immediate consequence of the fact that for h > 0 we
have F′′(h) = limN N−1varPN,h(LN(S)), but this requires some work. So we take the

cheaper path of observing that PN,h actually coincides with the law of the ˜Kh(·)-
renewal conditioned to visit N: for every n and every s ∈N

n such that 0 < s1 < .. . <
sn = N we have

PN,h (τ ∩ (0,N] = {s1, . . . ,sn}) =
enhK(s1)K(s2 − s1) . . .K(N − sn−1)

eNF(h) P
(

N ∈ ˜τ(h)
)

=
˜Kh(s1)˜Kh(s2 − s1) . . . ˜Kh(N − sn−1)

P
(

N ∈ ˜τ(h)
)

= P
(

˜τ(h)∩ (0,N] = {s1, . . . ,sn}
∣

∣

∣N ∈ ˜τ(h)
)

.

(2.26)

But since, by the law of large numbers, ˜τ(h)
j / j tends as j → ∞ to E[˜τ(h)

1 ] almost

surely, one directly obtains that N−1|˜τ(h)∩(0,N]| −→ 1/E[˜τ(h)
1 ] almost surely. Since

the event N ∈ ˜τ(h) has a probability bounded away from zero, for any sequence of
events AN such that P(AN) −→ 0, we have also P(AN |N ∈ ˜τ(h)) −→ 0. Therefore,

by using AN = {|N−1|˜τ(h)∩ (0,N]|−1/E[˜τ(h)
1 ]| > ε}, we get (2.22).

For what concerns (2.23) consider first the case tn = t� and write much like for
(2.26) (with t0 := 0 and assuming N larger than t�)

PN,h (τ ∩ (0,tn] = {t1,t2, . . . ,tn}) =

exp(hn)

(

n

∏
j=1

K(t j − t j−1)

)

ZN−tn,h

ZN,h
=

n

∏
j=1

˜Kh(t j − t j−1)
ZN−tn ,h exp(F(h)tn)

ZN,h

= P
(

˜τ(h)∩ (0,tn] = {t1,t2, . . . ,tn}
)

⎡

⎣

P
(

N − tn ∈ ˜τ(h)
)

P
(

N ∈ ˜τ(h)
)

⎤

⎦ , (2.27)
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where we have applied the renewal property and (2.13). But the term between the
square brackets tends to 1 as N tends to infinity (because of the Renewal Theorem if
h > 0, and because, if h < 0, partition functions coincide with renewal functions to
which (2.15) applies). The case t� > tn of (2.23) can be dealt with by decomposing
the probability according to the values of the first contact site t larger than t� and by
applying (2.27), that is by writing

PN,h (τ ∩ (0,t�] = {t1, . . . ,tn}) =
N

∑
t=t�+1

PN,h (τ ∩ (0,t] = {t1, . . . ,tn,t}) . (2.28)

Actually at this stage one can for example use the argument used in (2.25) to restrict
the summation only to values of t that are either close to t� or close to N and then
apply (2.15) and (2.27). By performing the summation we recover (2.23). ��

2.2 The General Homogeneous Pinning Model

The asymptotic arguments that we have developed up to here essentially rely only on
the fact that the tail distribution of the first return to the origin of the random walk
S has a power law decay with exponent 3/2. The first generalization that comes
to mind is, possibly, considering higher dimensional random walks. These cases
can be treated precisely along the same line, in fact one can show (see e.g. [22,
Appendix A.6]) that if the increment of the random walk is a (Zd-valued) centered
random variable with finite variance σ2 (and P(S1 = 0) ∈ (0,1) to avoid periodicity
and triviality) then

K(n) n→∞∼ cd(σ2)×
{

1/
(

n(logn)2
)

if d = 2

1/n1+|(d/2)−1| if d = 1,3,4 . . .
(2.29)

with cd(σ2) > 0. Another important fact is that ∑n K(n) = 1 if d = 1 and 2, but
∑n K(n) < 1 for d = 3,4, . . . But since our model in the end depends only on the
inter-arrival law it is very natural to look at the renewal process τ as the basic
underlying process (the free process) and put conditions on it: much of the literature
has been in fact developed for K(·) regularly varying and it is possibly also natural to
look at the case is which K(·) (K(n) = ∑ j>n K( j), n = 0,1, . . .) is regularly varying.
In order to make our arguments lighter we will consider a subclass of regularly
varying inter-arrival laws supported on N, that is we will assume that there exists
α > 0 such that

K(n) n→∞∼ cK

n1+α and K(n) > 0 for n ∈ N. (2.30)

The positivity condition can be relaxed at the expense of a series of tedious remarks
that we spare to the reader (of course K(n) ∼ cK/n1+α implies K(n) > 0 for n
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sufficiently large). The choice of restricting to trivial regularly varying behavior
(pure power law) is instead more substantial, above all because it excludes from
our analysis the d = 2 case (2.29) and, more generally, the α = 0 case, in which
an interesting phenomenon does happen. But the gain in simplicity of exposition is
considerable.

Note that we have not assumed ∑n K(n) = 1: in general we set (again) K(∞) :=
1 − ∑∞

n=1 K(n) and we stress that ∑∞
n=1 . . . means ∑n∈N . . .. Let us write down

explicitly the model:

dPN,h

dP
(τ) =

1
ZN,h

exp(h |τ ∩ (0,N]|) 1N∈τ . (2.31)

As we have already stressed, τ can be terminating or persistent and the following
remark, that is going to be repeated in the most general context later, turns out to be
quite helpful.

Remark 2.6. If τ is terminating, then the model is equivalent on events that depend
on τ ∩ (0,N] to the model based on the persistent ˜τ renewal with inter-arrival law
n 
→ ˜K(n) := K(n)/(1 − K(∞)) and h replaced by h + log(1 − K(∞)). This can
be easily verified by writing explicitly the probability of the event τ ∩ (0,N] =
{t1,t2, . . . ,tn}, n ∈ {1, . . . ,N} and 0 < t1 < t2 < .. . < tn = N. In particular, the two
partition functions coincide (we are talking of ZN,h not of Zf

N,h!). This allows us to
restrict in most of the cases our attention to the case in which the underlying renewal
is persistent.

The generalization of Proposition 2.4 is in a sense straightforward, but it does
present some novelties both from the viewpoint of mathematical tools (in fact:
renewal theory estimates) and for the novel behaviors arising (see Fig 2.3).

Theorem 2.7. For the partition function ZN,h = E[exp(h |τ ∩ (0,N]|) ; N ∈ τ] and
the companion free partition function Zf

N,h = E[exp(h |τ ∩ (0,N]|)], both based on
the K(·)-renewal, with K(·) as in (2.30), we have that

lim
N→∞

1
N

logZN,h = lim
N→∞

1
N

logZf
N,h = F(h) , (2.32)

where F(h) – the free energy – is the unique solution of (2.9) if such a solution exists
(that is if h ≥ hc := − log(1−K(∞))) and F(h) := 0 otherwise. Moreover

ZN,h
N→∞∼ ch,K(·) exp(F(h)N)×

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

N0 if h > hc ,

Nmin(α−1,0) if h = hc and α �= 1 ,

1/ logN if h = hc and α = 1 ,

N−(1+α) if h < hc ,

(2.33)

with the explicit value of the constant ch,K(·) > 0 given below.
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Fig. 2.3 Free energy (F(·), solid line) and contact fraction (F′(·), dashed line) for four values of
α . The particular models we have chosen have K(n) = αΓ (n−α)/(Γ (1−α)n!) n→∞∼ (α/Γ (1−
α))n−1−α for α ∈ (0,1) and K(n) = Γ (n−1/2)/(

√
π(n+1)!) n→∞∼ (1/

√
π)n−5/2 for the α = 3/2

case. Such peculiar choices of K(·) are made because ∑n K(n)exp(−Fn) can be made explicit
by using By using the identity ∑∞

n=0 Γ (β + n)xn/n! = Γ (β )(1 − x)−β , that holds for β ∈ R \
{0,−1,−2, . . .}: for example when α ∈ (0,1) we have ∑n K(n)exp(−Fn) = 1− (1− exp(−F))α .
In the first three cases ∑n K(n) = 1 so that hc = 0, but for α = 3/2 we have ∑n K(n) = 2/3 (nothing
sacred about 2/3, it is just an arbitrary choice!), so that hc = log(3/2) = 0.405 . . .. For the α = 1/2
we have K(n) = P(τ1 = 2n), where τ the renewal set associated to the one dimensional symmetric
simple random walk

Proof. All is of course in (2.13) [recall also (2.10)] and all we need are (sharp)
renewal function estimates. These estimates are discussed at length in Appendix A,
here we just recall the main results that can be summed up to: if ˜K(·) is an inter-
arrival distribution (with ˜K(∞) := 1−∑n

˜K(n) ∈ (0,1)) and ˜τ the corresponding
renewal

1. If ˜K(∞) = 0 and ∑n n ˜K(n) < ∞ we have limN→∞ P(N ∈ ˜τ) = 1/∑n n ˜K(n) (this
is just the Renewal Theorem).

2. If ˜K(∞) = 0 and ˜K(n) ∼ cn−1−α (with c > 0 and α ∈ (0,1)) we have

P(n ∈ ˜τ) n→∞∼ α sin(πα)
cπ

nα−1 . (2.34)

3. If ˜K(∞) = 0 and ˜K(n) ∼ c/n2 (c > 0) then

P(n ∈ ˜τ) n→∞∼ 1
c logn

. (2.35)
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4. If ˜K(∞) > 0 and ˜K(n) ∼ cn−1−α (with c > 0 and α > 0) then

P(n ∈ ˜τ) n→∞∼
˜K(n)
˜K(∞)2

. (2.36)

Very little of the sharpness of these estimates is needed to establish (2.32) (see the
proof of Proposition 2.4). Extracting (2.33) is instead a rather tedious book-keeping
exercise with ˜K(·) = ˜Kh(·) [cf. (2.10)]: let us go through it so that we determine
ch,K(·).

If h > hc we can apply point (1) and ∑n n˜Kh(n) = 1/F′(h) (use for example that
the derivative of ∑n

˜Kh(n) with respect to h is zero), so that ch,K(·) = F′(h).
If h < hc we have ˜Kh(∞) > 0 and we can apply point (4). The net result is that

ch,K(·) = exp(h)/(1− exp(h))2.

When h = hc instead notice first of all that ˜Kh(∞) = 0, so ˜τh is persistent
(regardless of the persistence properties of the reference renewal τ!). We distinguish
the three cases α > 1, α = 1 and α < 1. If α > 1 we apply (1) and ch,K(·)
= ∑n K(n)/∑n nK(n) (notice that we have used our convention that ∑n . . . does
not include n = ∞, so that ∑n nK(n) < ∞). If α = 1 we apply (3) and ch,K(·) =
∑n K(n)/cK . If α ∈ (0,1) then (2) yields ch,K(·) = (α sin(πα)∑n K(n))/(cK π). ��
Remark 2.8. Extracting from (2.33) the sharp asymptotic behavior of Zf

N,h is an
even more tedious exercise. The result is however definitely instructive and not void
of interest, both for the sequel and for the intuition. We do not want to make the
exposition too heavy and we refer to [22, Chap. 2], but we point out that the fact that
the constrained partition function ZN,h is invariant under the transformation (τ,h) 
→
(˜τ,h+ log∑n K(n)) of Remark 2.6, does not imply that also Zf

N,h is invariant (in fact
this is false and, in some cases, even the large N behavior is different).

Extracting path properties from Theorem 2.7 is an exercise: result and proof are
absolutely parallel to Proposition 2.5.

Proposition 2.9. If h < hc = − log∑n K(n) then for every n ∈ N

lim
N→∞

PN,h(LN(S) = n) = (1− exp(h−hc))2 nexp((h−hc)(n−1)) , (2.37)

while if h > hc we have that for every ε > 0

lim
N→∞

PN,h

(∣

∣

∣

∣

|τ ∩ (0,N]|
N

− F′(h)
∣

∣

∣

∣

≥ ε
)

= 0. (2.38)

Moreover for every h, every n, every t� and every t ∈ N
n such that 0 < t1 < t2 < .. .

< tn ≤ t� we have

lim
N→∞

PN,h (τ ∩ (0,t�] = {t1, . . . ,tn}) = P
(

τ(h)∩ (0,t�] = {t1, . . . ,tn}
)

, (2.39)
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that is the sequence {PN,hτ−1}N of measures on P0 (cf. Sect. A.1.4 of Appendix A)
converges weakly to P(˜τ(h))−1.

2.3 Phase Transition and Critical Behavior

This section focuses of the behavior of F(h) close to hc. In view of (2.32) and of
Remark 2.6, we can develop the arguments in the persistent set-up, that is when
hc = 0. The crucial estimate, like in Sect. 2.1.3, is understanding the asymptotic
behavior of ∑n K(n)exp(nx) for x ↘ 0. So let us set:

Ψ (x)
x>0
:= 1−

∞

∑
n=1

K(n)exp(−nx) , (2.40)

and let us compute:

1−
∞

∑
n=1

K(n)exp(−nx) = 1−
∞

∑
n=1

(

K(n−1)−K(n)
)

exp(−nx)

= (1− exp(−x))
∞

∑
n=0

exp(−nx)K(n) .

(2.41)

Therefore, when α > 1, one directly sees that Ψ(x) ∼ xE[τ1] as x ↘ 0. If instead
α ∈ (0,1), by Riemann sum approximation, one obtains

Ψ(x)
x↘0∼ x∑

n

cK exp(−xn)
αnα ∼ xαcK

α

∫ ∞

0
t−α exp(−t)dt ∼ cK

Γ (1−α)
α

xα .

(2.42)
For α = 1 we set �(n) := ∑n

j=1 1/ j for n ∈ N and �(0) := 0 so that

Ψ(x)
cK

x↘0∼ x
∞

∑
n=1

exp(−xn)
n

= x(1− exp(−x))
∞

∑
n=1

�(n)exp(−xn) , (2.43)

Now note that ∑∞
n=1 �(n)exp(−xn) ∼ ∑n log(n)exp(−xn) and since we have that

∑n log(xn)exp(−xn) is O(1/x), we see that ∑∞
n=1 �(n)exp(−xn) is asymptotically

equivalent to log(1/x)∑∞
n=1 exp(−xn) ∼ x−1 log(1/x). Therefore if α = 1

Ψ (x)
x↘0∼ cKx log(1/x) . (2.44)

By recalling that Ψ(F(h)) = 1− exp(h), by inverting the asymptotic relations we
obtain the behavior of F(h) for h ↘ 0: we sum up the result in the following
statement.
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Theorem 2.10. For K(·) as in (2.30), F(·) as in Theorem 2.7 and hc equal to
− log∑n K(n), we have that

F(h)
h↘hc∼ C(K(·))

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h−hc if α > 1 ,

(h− hc)/ log(1/(h− hc)) if α = 1 ,

(h− hc)1/α if α ∈ (0,1) ,

(2.45)

where

C(K(·)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑n K(n)/∑n nK(n) if α > 1 ,

1/cK if α = 1 ,

((α ∑n K(n))/(cKΓ (1−α)))1/α if α ∈ (0,1) .

(2.46)

If F(·) is Ck (of course the issue is at hc), then F(h) = o((h− hc)k) for h ↘ hc.
Therefore Theorem 2.10 directly implies that, for k = 2,3, . . ., F(·) is not Ck for
α ≥ 1/k. Moreover, it is not C1 for α > 1 (but of course it is C0). By using the
convexity of F(·) one directly extracts also that, for α ≤ 1, F(·) is C1: since F′(·) is
non-decreasing (and well-defined except possible at hc), a discontinuity at hc of F′(·)
implies F(h) ≥ c(h− hc) for h > hc, with c = limh↘hc F′(h) > 0, which contradicts
the estimate in Theorem 2.10. In general one has instead to resort to a direct estimate
(that can be found Appendix A, Theorem A.8). The net result is summed up in the
next statement in which we use the standard terminology: a phase transition is a
point of non-analiticity of the free energy, this point is called critical, and the phase
transition is said of kth order (k ∈ N) if the free energy is, at the critical point, Ck−1,
but not Ck.

Proposition 2.11. The homogeneous pinning model (2.31) has a phase transition
of kth order, k = 2,3, . . ., at h = hc if α ∈ [1/k,1/(k−1)). The transition is of second
order also if α = 1, while it is of first order for α > 1.

2.4 A First Look at a Crucial Notion: The Correlation Length

The notion of correlation length plays a central role in the study of statistical
mechanics systems. In general, even for a given system there are plenty of
reasonable definitions of correlation length. Let us see for the homogeneous pinning
system: we have seen (Proposition 2.5) that the N → ∞ model is the renewal with
inter-arrival law ˜Kh(·). In this case the first notion of correlation length that comes
to mind is given by looking at the correlation

E
[

˜δm
˜δm+n

]

−E
[

˜δm

]

E
[

˜δm+n

]

= E
[

˜δm

](

E
[

˜δn

]

−E
[

˜δm+n

])

, (2.47)
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where ˜δn = 1n∈˜τ(h) . If h ≤ hc (delocalized regime) then, thanks to Theorem A.2 and
to Theorem A.4, one directly sees that for every m the correlation decays, as n → ∞,
with a power law: since the correlation length is naturally defined as the reciprocal of
the exponential decay rate of the correlations, we see that in this case the correlation
length is ∞. If instead h > hc one can, for the sake of simplicity, take the limit m→∞,
so that one is effectively talking about the covariance of the stationary renewal: by
the Renewal Theorem, applied to (2.47), the correlation length this time is read off

E
[

˜δn

]

− 1
˜μ(h)

, with ˜μ(h) := E˜τ(h)
1 . (2.48)

The correlation length is therefore given by the reciprocal of the rate of convergence
of the renewal function to its asymptotic value. The renewal equation comes to our
help in order to compute it, but things are not as easy as one might think at first.
It is a standard result [28] that if the inter-arrival law decays exponentially (more
precisely: in the case of a recurrent ˜K(·)-renewal such that supn exp(cn)˜K(n) < ∞
for some c > 0), then the renewal function converges to its limit exponentially fast.
As it is well known since a long time (see for example [26]) however, the relation
between the rate of decay of ˜K(·) and the one of the renewal function are in general
rather unrelated (see [23] for examples and several references). But what is going to
be important for our discussion is that, in the context we consider, one can establish
a general result. Namely that

Proposition 2.12. [23] Choose an inter-arrival law K(·) that satisfies (2.30). Then
there exists h0 ∈ (hc,∞] such that for h ∈ (hc,h0) we have

P
(

n ∈ ˜τ(h)
)

− 1
˜μ(h)

n→∞∼ c(h)K(n)exp(−F(h)n) , (2.49)

with c(h) a positive (explicit) constant. So, in particular, we have

lim
n→∞

−1
n

log

(

P
(

n ∈ ˜τ(h)
)

− 1
˜μ(h)

)

= F(h) . (2.50)

This result can be read as saying that the correlation length κ = κ(h) is equal to
1/F(h), at least when the system is close to criticality. The fact that (in general)
we can link the correlation length to the free energy only close to criticality is
not a problem because the correlation length becomes important precisely close to
criticality, that is when it diverges.

The role of κ(h) emerges clearly also from (2.13): the exponential growth of
the partition function sets in when N is about κ(h) (look at Fig. 2.1). Figure 2.1
definitely suggests another correlation length: ˜κ(h) := inf{N : ZN,h > 1}, where the
value 1 is a bit arbitrary (at this stage), but it is a natural reference point. Why this is
not such a bad definition will be clear later on: for the moment we register the fact
that logκ(h) ∼ log ˜κ(h) as h ↘ hc.
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2.5 Why Do People Look at Pinning Models?
A Modeling Intermezzo

The main purpose of these notes is to investigate the effect of disorder on statistical
mechanics models, notably on phase transitions and critical phenomena. Pinning
models turn out to be a particularly favorable context to attack this daunting issue.

But pinning models have received widespread attention, notably in physics,
chemistry and biology. Let us have a quick look at this direction by considering
three different instances: this will serve also to motivate the introduction of
disorder.

2.5.1 Polymer Pinning by a Defect

Polymers are chains of repetitive units (monomers) that may or may not be identical.
Polymer modeling is tightly related to random walks in the sense that the most
basic model of a polymer is the random walk. Less simplistic models include a self-
avoiding constraint and/or increment correlation. In addition, polymers are often in
interaction with an environment: the presence in the environment of an attractive
(or repulsive) region may have a substantial effect on the polymer trajectory. When
such a region is a point or a line (but it could also be a plane or a hyperplane) then
a natural basic model, in which we either disregard self-avoidance or we implement
it by looking at the so-called directed polymers, is precisely the pinning model. For
more on this, see [22, Chap. 1] and references therein.

2.5.2 Interfaces in Two Dimensions

There is very deep link between interfaces in two dimensional (discrete spin) models
and random walks (e.g. [1]). It is sketched in Fig. 2.4, both in the case in which
the arising walk is free and when there is a pinning effect. The figure is based
on the Ising model that we introduce also because it comes up later on in these
notes. An Ising model in the rectangular box Λ = ∏d

i=1(−Li,Li)∩Z
d (Li ∈ N) is a

measure on ΩΛ := {−1,+1}Λ∪∂Λ , where ∂Λ is the external boundary of Λ , that is
∂Λ = {x ∈ Z

d \Λ : |x− y| = 1 for a y ∈ Λ}. The measure is determined once we
fix a value β ≥ 0 (the inverse temperature) and an element η ∈ {−1,+1}∂Λ , the
boundary condition, and then we say that the probability μΛ ,η (σ) of observing the
configuration σ ∈ ΩΛ is

μΛ ,η (σ) =

{

exp(−β HΛ (σ))/ZΛ ,β ,η if σ(x) = η(x) for x ∈ ∂Λ ,

0 otherwise ,
(2.51)
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–L1 +L1

Fig. 2.4 We are drawing a configuration of the two-dimensional Ising model in the finite box with
L1 = 9, L2 = 6 and boundary conditions that are +1 on {x : x2 = −L2, x1 = −L1 +1, . . . ,L1 −1}
and −1 on the rest of ∂ +Λ . The up spins (+) are identified by a gray or a dark gray square, while
the down spins (−) are light gray. The spins on which a boundary magnetic field acts are marked
by large black dots. In the text, to which we refer for details, it is sketched the explanation of
the reduction of the spin configuration to an interface: the interface is reproduced below the spin
configuration with an equivalent but more natural representation if we look at it as a random walk
path

where ZΛ ,β ,η is the normalization constant and HΛ (σ) is the energy of the model
that we choose to be

HΛ (σ) = −1
2 ∑

x,y
J(x,y)σ(x)σ(y)−∑

x
h(x)σ(x) , (2.52)

where the sums are over Λ ∪ ∂Λ and J(x,y) = 0 unless |x− y| = 1. Of course the
most basic Ising model is the one in which J(x,y) = 1 for every |x−y|= 1 and h(x)
does not depend on x, but the general case here serves two purposes:

1. Later on we will discuss the generalization of what we develop for pinning
models to more general cases and the disordered Ising model, that is the case
in which {J(x,y)}x,y and/or {h(x)}x are realizations of families of IID random
variables, is at the heart of the progress in the statistical mechanics of disordered
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systems, much as the non-disordered Ising model is at the heart of the progress
in statistical mechanics.

2. The interface line, or phase separation line, reduces to a random walk in the
strongly anisotropic limit and a suitable choice of h(·) has the effect of a pinning
potential: this is what we are going to explain next.

In (the upper part of) Fig. 2.4 we draw a configuration of the two dimensional
Ising model in a finite box Λ : spins are drawn in small boxes that are either light
gray, gray or dark gray. We are thinking of the case in which J(x,y) = 0 unless
|x− y| = 1 and J(x,y) = J1 ≥ 0 (respectively J(x,y) = J2 ≥ 0) if x− y = (±1,0)
(respectively x − y = (0,±1)). We also restrict our attention to h(·) ≡ 0 for the
moment, that is, we think of an Ising model without external (magnetic) field and
with nearest neighbor interactions that can be different along the horizontal and
vertical directions (the infinite volume limit of this model has been solved by Lars
Onsager [4], a result that has deeply marked statistical mechanics).

As we are trying to convince the reader with the figure, such a spin configuration
can be mapped to a set of contours (this is a very classical construction, see e.g. [18,
Chap. 2]). All the contours are closed lines, except one that goes from the lower left
corner to the lower right corner: we call such an open contour interface and we stress
that the existence of an open contour is directly related to the boundary conditions
(for example: all spins +1 on the boundary entails all contours are closed). Note that
in the limit J1 → ∞ the configuration we have drawn has probability zero: a positive
probability configuration is rather the one in which we switch to −1 all spins in
the gray squares and in this case only one contour survives: the interface. More is
true: in this limit the interface is a trajectory of a random walk with increments in
Z, starting in the lower left corner and ending on the lower right corner. As a matter
of fact, it is an easy exercise to show that the law of such an Ising interface is just
the law of the walk we have just mentioned (to be precise, the probability that the
increment is equal to n is const.exp(−β J2|n|)) conditioned not to exit the box Λ .
If now we consider a very tall box (L2 → ∞) we are just dealing with a random
walk bridge constrained not to go below the height of its starting (and arrival) point.
The lower part of the figure draws the interface with a slightly different convention
that has the advantage to be closer to the customary way of drawing random walk
trajectories.

If now we allow what is usually called a boundary magnetic field, that is if we set
for example h((i,−L2 +2)) =−h < 0 for i =−L1 +1, . . . ,L1 −1, spins of value −1
are favored in the sites on which we have put the field (the sites on which we put the
boundary field are marked by large black dots). What is the effect of the boundary
field on the random walk trajectory? The answer is simply that there is a reward of
h > 0 for the walk to stick to the bottom line: we are therefore just dealing with a
homogeneous pinning model.

Two remarks to close this issue are in order.

1. Of course all that we have discussed becomes more delicate and definitely not as
straightforward if J1 < ∞, nonetheless the simplified J1 = ∞ case to a certain
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extent turns out not to be an oversimplification (see e.g. [37] and references
therein).

2. It is of course natural to choose h(i,−L2 + 2) with a non-trivial dependence on
i (for example, we could choose them by coin tossing (±h)): the arising random
walk model is a inhomogeneous pinning model that fits (and motivates!) the
definition of inhomogeneous models of the next chapters.

2.5.3 DNA Denaturation: The Poland–Scheraga Model

Understanding the very complex geometrical structure in which two complementary
DNA strands (two polymers) are found in cell nuclei is a long standing issue on
which a lot of effort is invested. There are of course plenty of issues: we focus just
on the fact that two complementary strands are not tightly bind all the times (as a
matter of fact, unbinding is necessary in particular for copying the genetic code to
another polymer, the RNA) and unbinding, above all local unbinding, happens all
the time as a standard consequence of thermal fluctuations. Biologists and physicists
have developed models for such a phenomenon and a basic, but apparently rather
effective model, even on a quantitative level, is just based on pinning models [20].
Starting off in the most naive way we can model two-stranded DNA by two directed
walks interacting via pinning potentials, see e.g. [30] and references therein. Since
the difference of two independent random walks is still a random walk, we are
dealing with a standard pinning model. However directed walk models lead to values
of α that are in contrast with observations. In fact the three dimensional model, that
corresponds to the walk in two dimensions plus the fixed direction, yields α = 0,
a case not treated in this notes that however leads to a C∞ behavior of the free
energy [22, Chap. 2], while there is a tendency to believe that the transition is first
order, even if such a statement has to be taken with caution because real DNA
experiments are not about infinitely long strands, see for example [6, 27]. To make
a long story short, the bio-physical community seems to have settled that renewal
pinning models with α ≈ 1.15 is a reasonably good model for DNA denaturation
[6, 15]: however what is most important is that inhomogeneous interactions need
to be taken into account, unless one is dealing with synthetic DNA made up by
one strand containing only Adenine (respectively Cytosine) bases and the the other
strand containing only Thymine (respectively Guanine) bases. A few more details
can be found in Fig. 2.5 and its caption.

2.6 A Look at the Literature

Much of this chapter is devoted to the homogeneous pinning model. This model,
at least in some random walk cases, has been the object of several works in the
physical literature at the beginning of the 1980s proposing different exact solutions
(e.g. [7, 29]), but the generalized model and a comprehensive view identifying the
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Fig. 2.5 A schematic, standard, view of DNA denaturation. The two thick lines are the DNA
strands. They may be paired, gaining thus energetic contributions that depend on whether the
base pair is A–T or G–C (the model is therefore inhomogeneous: A–T bonds are weaker than
G–C bonds). The sections of unpaired bases are called loops. The DNA portion in the drawing
corresponds to the renewal model trajectory with τ j − τ j−1 = 1 except for three inter-arrivals (so
loops correspond to inter-arrivals of length 2 or more)

general mechanism behind the various exact solutions are due to Fisher [19]. The
approach given here, however, is not the one in [19], that goes by computing
the series ∑N zNZN,h. We aim directly at ZN,h and at its interpretation in term of
renewal function: this approach has been developed in [25, Appendix A] and [10].
It has been proven useful also beyond the renewal set-up, notably for Markov
renewal processes that cover a very wide class of models: pinning and copolymers in
periodic environments [11], pinning of directed semi-flexible polymers [9], pinning
on layered interfaces [12] and pinning of random walks with continuous increments
[33] (the Brownian motion case has been treated for example in [14,31] by different
techniques and we refer to [22] for further references on the vast literature on
homogeneous pinning).

While of course the modeling aspects must not be neglected, the approach given
here shows that the physical solution of the homogeneous pinning model (notably,
free energy estimates) are just a subset of classical renewal theory developed in the
1950s and 1960s (e.g. [16, 17, 21], see [3] for further references).

Further considerations and references on path properties of the limit (N → ∞)
process can be found in [22, Chap. 2], notably the scaling limits at criticality that
makes a link with the theory of regenerative sets and subordinators [5].

Dynamical issues have been left completely out and that will not change in the
next chapters: these notes are about the equilibrium measure, but the dynamical
issues are of great interest (see for example [8]).

In [2] the author provides a class of random walks with increments taking values
±1 that have regularly varying return time distribution: therefore this work exhibits
walks for which (2.30) holds, for arbitrary α .

Section 2.4 introduces the notion of correlation length: it is difficult to stress
enough the role of such a concept in statistical mechanics. But it is also difficult
to treat it in a satisfactory way without mentioning the disordered case: for here
we content ourselves with adding the references [24, 34–36], that deal in part with
the homogeneous case (and are very relevant for the disordered case), and [32]
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that develops a mathematical viewpoint on the finite size scaling properties of the
homogeneous models, that is on the behavior of the system of correlation length
size, close to criticality (when the correlation length diverges).
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Chapter 3
Introduction to Disordered Pinning Models

Abstract We introduce the disorder disordered version of the pinning models, both
in their quenched and annealed version. We define the free energy of the model and
show that also in this case a localization/delocalization transition takes place. Most
of the results presented in this chapter may be considered as soft, but they are the
result of a subtle, albeit possibly standard in statistical mechanics, way of combining
convexity and super-additivity properties. These techniques are repeatedly used in
the sequel of these notes.

3.1 The Disordered Pinning Model

We are going now to focus on the inhomogeneous model

dPN,ω

dP
(τ) =

1
ZN,ω

exp

(

N

∑
n=1

(β ωn + h)δn

)

δN , (3.1)

where δn := 1n∈τ , β ≥ 0, h ∈ R and ω = {ω1,ω2, . . .} is a sequence of real num-
bers, that we call charges. The partition function ZN,ω should rather be written as
ZN,ω,β ,h but we will go for the lighter notation, unless (strictly) necessary (we also
set Z0,ω :=1). Of course (3.1) directly generalizes (2.31) of Sect. 2.2, when β > 0
and the sequence ω is not trivial.

We will be interested in the case in which ω is the realization of an IID sequence
of random variables (but, once again, we will switch from random variables
to realization and back without changing notation). There are therefore random
interactions, in fact random one-body potentials, that we call quenched disorder: the
term quenched refers to the fact that we define the system for a typical realization
of the charges (or disorder) ω .

G. Giacomin, Disorder and Critical Phenomena Through Basic Probability Models,
Lecture Notes in Mathematics 2025, DOI 10.1007/978-3-642-21156-0 3,
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Definition 3.1. (General charge distribution.) The basic assumptions that we make
on the IID sequence {ωn}n∈N (or {ωn}n∈Z) of the charges are that

M(t) := E [exp(tω1)] < ∞ , (3.2)

for every t ∈ R. We also assume, without loss of generality, that E[ω1] = 0 and that
E[ω2

1 ] = 1.

We will tackle this model by focusing first on the properties of the partition
function

ZN,ω = E

[

exp

(

N

∑
n=1

(β ωn + h)δn

)

δN

]

, (3.3)

that, this time, is a random variable. To be more precise we will focus on the free
energy of the system

F(β ,h) := lim
N→∞

FN(β ,h) with FN(β ,h) :=
1
N

E logZN,ω , (3.4)

where the existence of the limit follows from the super-additive property of the
sequence {E logZN,ω}N∈N: for M = 1, . . . ,N − 1 in fact we have (with (θω)n :=
ωn+1)

logZN,ω ≥ logE

[

exp

(

N

∑
n=1

(β ωn + h)δn

)

δNδM

]

= logE

[

exp

(

M

∑
n=1

(β ωn + h)δn

)

δM

]

+ logE

[

exp

(

N

∑
n=M+1

(β ωn + h)δn

)

δN

∣

∣

∣

∣

δM = 1

]

= logZM,ω + logZN−M,θ M ω ,

(3.5)

((3.5) becomes trivial for M = 0 and M = N, since we set Z0,ω = 1) so that for
M = 0,1, . . . ,N

E logZN,ω ≥ E logZM,ω +E logZN−M,ω . (3.6)

Let us also remark that E logZN,ω ≤ E∑N
n=1(β |ωn|+ |h|) = O(N), so that the limit

in (3.4) exists, it is finite and it coincides with the supremum of the sequence (see
for example [6, Appendix A.7]

F(β ,h) = sup
N

FN(β ,h) , (3.7)

but the reader may want to take it as a useful exercise).
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The free energy will play a crucial role for what follows and we are going to
disregard for a while the path properties of the process. Before doing that we just
want to make an elementary observation that may help in understanding why PN,ω
is (in general) non trivial. Let us place ourselves in the random walk set-up of the
beginning of Chap. 2 (see Fig. 3.1) and let us consider the free case (analogous
observations hold in the general set-up):

dPf
N,ω

dP
(S) =

1
Zf

N,ω
exp

(

N

∑
n=1

(β ωn + h)δn

)

, (3.8)

where δn = 1Sn=0. One easily works out that S, under PN,ω , is still a Markov chain,
but a inhomogeneous one, and for n < N and we have the following formula:

Pf
N,ω

(

Sn+1 = m+ a
∣

∣Sn = m
)

= e(β ωn+1+h)1m+a=0P(S1 = a)
Zn+1,N,ω(m+ a)

Zn,N,ω (m)
,

(3.9)
where

Zn,N,ω (m) := E

[

exp

(

N

∑
j=n+1

(β ω j + h)δ j

) ∣

∣

∣

∣

∣

Sn = m

]

, (3.10)

and we recall that P(S1 = a) = (p/2)1|a|=1 + q1a=0. Therefore the transition
probabilities of this Markov process depend on (all, when N → ∞) the future
charges.
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Fig. 3.1 This figure is meant to give an idea of the pinning effect that even typically repulsive
charges may have. For the three trajectories we have chosen β = 4, h = −5 and N = 2,000 (the
underlying walk has p = q = 1/2 and the charges are standard Gaussian). There are about 200 sites
n with β ωn +h > 0 and nine sites, marked by vertical dashed lines, in which β ωn +h > 5



32 3 Introduction to Disordered Pinning Models

3.2 Super-Additivity, Free Energy, and Localization

Let us take a closer look at the free energy and let us point out from the start the
self-averaging property.

Proposition 3.2. P(dω)-a.s. and in L1 we have that

lim
N→∞

1
N

logZN,ω,β ,h = F(β ,h) for every β and h . (3.11)

The proof is postponed to the next section. Here we rather point out a number of
rather straightforward properties of the free energy:

1. (β ,h) 
→ F(β ,h) is a convex function (since it is the limit of a sequence of convex
functions).

2. h 
→ F(β ,h) is non-decreasing for every β , since h 
→ FN(β ,h) clearly is.
3. Also β 
→ F(β ,h) is non-decreasing in β (≥ 0): in fact ∂β FN(β ,h) is equal to

(1/N)EEN,ω [∑N
n=1 ωnδn], so that ∂β FN(0,h)= 0 because the charges are centered

and EN,ω does not depend on ω if β = 0. Therefore, by convexity, β 
→ FN(β ,h)
is non decreasing on the positive semi-axis and the claim follows.

4. (The annealed bound). By Jensen inequality, the Fubini–Tonelli Theorem and by
the IID character of ω we see that

FN(β ,h) ≤ 1
N

logEE

[

exp

(

N

∑
n=1

(β ωn + h)δn

)

δN

]

=
1
N

logE

[

exp

(

N

∑
n=1

(log M(β )+ h)δn

)

δN

]

= FN(0,h + logM(β )) ,

(3.12)

that, combined with the monotonicity of point (3) sandwiches the quenched free
energy between two explicit quantities

F(0,h) ≤ F(β ,h) ≤ F(0,h + logM(β )) . (3.13)

The last formula is telling us in particular that F(β ,h) = 0 if h < hc(0)− logM(β )
(hc(0) is of course well known: it is just the critical value for the homogeneous
system, that is − logP(τ1 < ∞)) and that F(β ,h) > 0 if h > hc(0). Therefore the
transition between localized and delocalized regime, defined in strict analogy with
the non disordered case (see Remark 3.3 and Fig. 3.2 below), lies in [hc(0) −
log M(β ),hc(0)]: the monotonicity of F(β , ·) directly shows that there exists a
critical (quenched) value hc(β )

hc(β ) := inf{h : F(β ,h) > 0} = max{h : F(β ,h) = 0} , (3.14)

and we define



3.2 Super-Additivity, Free Energy, and Localization 33
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Fig. 3.2 The critical curve β 
→ hc(β ) that separates D and L is concave decreasing. This follows
from the fact that D is a convex set and from the explicit bounds we have on the critical curve.
We are not going to give an explicit expression for h(·), we content ourselves with the fact that
h(β ) > hc(0) for every β > 0, that is disorder may induce localization and it never suppresses it.
The lower bound comes from the standard annealing procedure. Note that the annealed partition
function EZN,ω is just the homogeneous partition function with pinning potential h+ log M(β ), so
that we call ha

c(β ) annealed critical point

L := {(β ,h) : h > hc(β )} and D := {(β ,h) : h ≤ hc(β )} . (3.15)

Note that (3.13) directly yields

ha
c(β ) := hc(0)− logM(β ) ≤ hc(β ) ≤ hc(0) . (3.16)

Moreover property (1) guarantees that {(β ,h) : F(β ,h)≤ 0} is a convex set and this,
coupled with (3.16), tells us that hc(·) is concave.

Remark 3.3. We passed rather quickly over the fundamental fact that F(β ,h) ≥ 0
and that strictly positive (resp. vanishing) free energy means localization (resp.
delocalization). A first justification comes by taking derivatives of the free energy
with respect to h and by using convexity, like in (2.18). An analysis of the properties
of the process is going to be taken up in some detail in Chap. 8. Here we want to
add a more direct proof of F(β ,h) ≥ 0, with an explicit bound: note that

ZN,ω ≥ ZN,ω (τ1 = N) = exp(β ωN + h)P(τ1 = N) , (3.17)

immediately yields

FN(β ,h) ≥ 1
N

logP(τ1 = N)+
h
N

, (3.18)

which tells us that there exists c = c(h,K(·)) > 0 such that for every N ∈ N we have

FN(β ,h) ≥ −c
log(N + 1)

N
, (3.19)

which is sensibly stronger than F(β ,h) ≥ 0.
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The inequalities in (3.13) and (3.16) call for the questions: can they be made
strict? Let us point out that the upper (respectively lower) bound in (3.13) corre-
spond to the lower (respectively upper) bound in (3.16). So, in a sense, the problem
splits:

• It has been shown in great generality that hc(β ) < hc(0) as soon as β > 0 [1] (see
[6, Chap. 5, Sect. 2] for a more direct approach that yields the quantitative bound
hc(0)− hc(β ) ≥ cβ 2 for β ∈ (0,1] and c = c(K(·),P) > 0 for a class of models
that is less general than the one in [1], but it strictly includes all the cases that
we treat in these notes). Since showing such a result requires showing that for
every β > 0 there exists h < hc(0) such that F(β ,h) > 0, we see that the left-most
inequality in (3.13) can be made strict in full generality, as soon as β > 0.

• In general the lower bound in (3.16) cannot be replaced by a strict inequality and
this is at the heart of the topics of these notes. We will see in fact that for α < 1/2
we have hc(β ) = hc(0)− log M(β ), at least if β is not too large. Otherwise stated,
quenched and annealed critical points coincide. We will also show that this is not
the case for α ≥ 1/2, and this directly implies that the upper bound in (3.13) is
strict for α ≥ 1/2. Such an upper bound happens to be strict also for α < 1/2,
even if, in this case, annealed and quenched critical points coincide: we will come
back to this in the next chapters.

Instead of summing up all the previous arguments, results and anticipations with a
statement, we draw a figure (Fig. 3.2).

3.2.1 Two Important Remarks

3.2.1.1 A Crucial Corollary to Super-Additivity

There is still a very important observation, that is a direct corollary of the super-
additivity property of {E logZN,ω}N and therefore that F(β ,h) = supN

1
N E logZN,ω ,

that is (3.7):

Proposition 3.4. We have (β ,h) ∈ L if and only if there exists N ∈ N such that
E logZN,ω > 0.

We can restate this proposition in a way that should make its relevance clear: if
the systems is localized, this can be read off in finite volume.

3.2.1.2 Why Disorder Localizes?

We have just seen that disorder favors localization: F(0,h) ≤ F(β ,h) by convexity
and then we have referred to the literature for the strict inequality. It is however
useful, in order to get a better grasp of the matter, to explain for example why no
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matter how negative h is and no matter how close to one K(∞) is, the system is
localized if β is sufficiently large.

For this we can argue by introducing the important idea of strategy and of
entropy-energy competition. Let us choose the strategy of selecting only the
trajectories that visit only and all the non-negative charges: this cuts down the
entropy of the system, but the energy gain can be made arbitrarily large by playing
on β and overcome the entropy loss. Let us see it in detail: we can associate to every
charge sequence ω the IID sequence of (translated) geometric random variables
{Xj} j∈N with success event ωn > 0, that is X1 = inf{n : ωn > 0} and so on. Let
us set ιN := sup{n : ∑n

j=1 Xj ≤ N}, with sup /0 = 0. We choose to deal with the free
partition function because the proof turns out to be more compact (the fact, already
announced, that free and constrained systems have the same free energy is proven
in the next section):

Zf
N,ω ≥ exp

(

N

∑
n=1

(β ωn + h)1ωn≥0

)(

ιN

∏
i=1

K(Xi)

)

K

(

N −
ιN

∑
i=1

Xi

)

, (3.20)

where ∏ιN
i=1 . . . = 1 if ιN = 0. Therefore when ιN > 0

1
N

logZf
N,ω ≥ 1

N

N

∑
n=1

(β ωn + h)1ωn>0 +
ιN

N
1
ιN

ιN

∑
i=1

logK(Xi)− c
logN

N
, (3.21)

with c > 0. By the Law of Large Numbers limN ιN/N = P(ω1 > 0) =: p almost
surely and, again by the Law of Large Numbers, one easily goes from (3.21) to

F(β ,h) ≥ β E [ω1; ω1 > 0]+ p

(

h + ∑
n∈N

pn−1(1− p) logK(n)

)

, (3.22)

and we see that for every choice of the charge distribution, every K(·) and every h
we find an explicit β0 guaranteeing that F(β ,h) > 0 as soon as β > β0.

3.3 Self-Averaging Property, Effect of Boundary Condition

This section is devoted to the proof of Proposition 3.2 and to showing that the pinned
down boundary condition does not affect the value of the free energy.

3.3.1 Proof of Proposition 3.2

Proposition 3.2 is a direct consequence of (3.5) and the Sub-additive (or Super-
additive) Ergodic Theorem (see e.g. [8]). Actually, ergodic super-additivity yields
the result well beyond IID charges. Another way to dispose quickly with such
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a proof would be to use concentration inequalities (at the expense however of
imposing some conditions on the law of the charges and with the advantage of
obtaining explicit bounds, see Chap. 8).

We take instead a very basic hand-on approach and we will just rely on
Kolmogorov Law of Large Numbers. Note in fact that, by (3.5), for every L ∈ N

and for N/L ∈ N we have

1
N

logZN,ω ≥ L
N

(N/L)−1

∑
j=0

1
L

logZL,θ jLω , (3.23)

and the right-hand side converges to FL(β ,h) P(dω)-a.s. and in L1. Therefore it
suffices to establish a sub-additive analog to the super-additive ergodic inequality
(3.5). The argument argument goes as follows: for M ∈ {1,2, . . . ,N − 1} we can
write

ZN,ω = ZM,ω ZN−M,θ M ω +
M−1

∑
j=0

N

∑
k=M+1

Zj,ωK(k− j)exp(β ωk + h)ZN−k,θ kω , (3.24)

and then we observe that there exists C = C(K(·)) > 0 such that for every j, k, and
M as in (3.24)

K(k− j)
K(M− j)K(k−M)

≤ C ((k−M)∧ (M− j))1+α ≤ C ((N −M)∧M)1+α . (3.25)

By inserting this bound into (3.24) and by performing some elementary estimates
we obtain

ZN,ω ≤ ZM,ω ZN−M,θ M ω +Ceβ |ωM|+|h| ((N −M)∧M)1+α

×
M−1

∑
j=0

N

∑
k=M+1

Zj,ω K(M− j)eβ ωM+hK(k−M)eβ ωN−k+hZN−k,θ kω

≤ ZM,ω ZN−M,θ M ω +Ceβ |ωM|+|h| ((N −M)∧M)1+α ZM,ω ZN−M,θ M ω ,

(3.26)

so that we have proven that for every β , every h and every K(·) there exists a constant
c > 0 such that

logZN,ω ≤ logZM,ω + logZN−M,θ M ω + c + β |ωM|+(1 + α) log((N −M)∧M) .
(3.27)

Now we choose again L ∈ N and for N/L ∈ N we have

1
N

logZN,ω ≤ L
N

(N/L)−1

∑
j=0

(

1
L

logZL,θ jLω +
1
L

(c + β |ω jL|+(1 + α) logL)
)

.

(3.28)
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The Law of Large Numbers tells us that the right-hand side converges almost surely
and in L1 as N → ∞ to FL(β ,h)+ (c + βE|ω1|+(1 + α) logL)/L.

Let us sum-up what we have done: for every chosen L we have sandwiched
(1/N) logZN,ω between two random variables that converge (a.s. and in L1) to non
random limits whose difference is o(1) for L large: this would suffice, except that,
to be precise, we haven’t proven this for every N, but only for N/L ∈ N. To extend
the result to every N we proceed by a rough cut and paste procedure in the spirit
of the one we have just performed to obtain that there exists c1 = c1(K(·)) ∈ (0,1)
such that

c1

L1+α exp

(

− ∑
n∈Ij

(β |ωn|+ |h|)
)

≤ ZjL+m,ω

ZjL,ω
≤ L1+α

c1
exp

(

∑
n∈Ij

(β |ωn|+ |h|)
)

,

(3.29)
where I j := { jL + 1, . . . ,( j + 1)L} and (3.29) holds for every j ∈ N∪ {0}, m ∈
{0,1, . . . ,L− 1} and every ω . By applying once again the Law of Large Numbers
(or, rather, the equivalent statement that for L1 IID variables we have limn→∞ Xn/n =
0 a.s. and, of course, in L1) one easily sees that

limsup
N→∞

∣

∣

∣

∣

1
N

log
ZN,ω

ZL�N/L�,ω

∣

∣

∣

∣

≤ 1
L

(

log(L1+α/c1)+ βE|ω1|+ |h|) , (3.30)

almost surely and of course the same inequality holds also if we replace limsup | . . . |
by limsupE| . . . |. The proof of Proposition 3.2 is therefore complete. ��

3.3.2 Free and Constrained Models

The following model

dPf
N,ω

dP
(τ) =

1
Zf

N,ω
exp

(

N

∑
n=1

(β ωn + h)δn

)

, (3.31)

is obviously a close companion of (3.1). Let us quantify the difference between these
two models by looking at the Laplace asymptotic behavior of the partition function,
that in the free case is

Zf
N,ω = E

[

exp

(

N

∑
n=1

(β ωn + h)δn

)]

, (3.32)

with Zf
0,ω to be read as 1. A direct consequence of Proposition 3.2 and of Lemma 3.5

below is that

lim
N→∞

1
N

logZf
N,ω = F(β ,h) . (3.33)
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Lemma 3.5. For every K(·) as in (2.30) there exists C =C(K(·)) such that for every
N = 0,1,2, . . .

ZN,ω ≤ Zf
N,ω ≤ ZN,ω (1 +CNq exp(−β ωN −h)) , (3.34)

where q = 1 if ∑n K(n) = 1 and q = 1 + α if ∑n K(n) < 1.

Proof. For N = 0 the three terms are equal to one. Let us therefore assume N ≥ 1.
We write

Zf
N,ω = ZN,ω +

N−1

∑
n=0

Zn,ω
(

K(N −n)+ K(∞)
)

, (3.35)

from which we see that the lower bound holds, but also that

Zf
N,ω ≤ ZN,ω + max

j=1,...,N

(

K( j)+ K(∞)
K( j)

) N−1

∑
n=0

Zn,ωK(N −n)

= ZN,ω + max
j=1,...,N

(

K( j)+ K(∞)
K( j)

)

ZN,ω exp(−β ωN −h) .

(3.36)

Since if K(∞) = 0 we have
K( j)
K( j)

j→∞∼ j
α

, (3.37)

and if K(∞) > 0
K( j)+ K(∞)

K( j)

j∈N

≤ 1
K( j)

j→∞∼ j1+α

cK
, (3.38)

we are done. ��

3.4 A Look at the Literature and, Once Again, Correlation
Length Issues

There is an extended physical literature on disordered pinning models: here we
content ourselves with citing [5] and [4] that have been very influential.

The mathematical techniques used in this chapter are rather standard in equi-
librium statistical mechanics of disordered systems (see e.g. [2, 3]), but, at the
same time, rather model dependent, with plenty of renewal process estimates that
are specific to pinning models [6, 7]. Super/sub-additive arguments are absolutely
crucial and, even if no direct use of Kingman Ergodic Sub-additive Theorem [8] has
been made, we fully acknowledge the pivotal role of Kingman’s ideas.

In Sect. 2.4 we have introduced and discussed the notion of correlation length for
the homogeneous model and we have set forth the fact that the natural correlation
length is simply 1/F(h) (with the disordered model notation we would write
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1/F(0,h)). This settles the issue for the correlation length of the annealed model,
since it is simply a homogeneous model. But what about the quenched model? This
is an important point an will be taken up fully only in Chap. 8. For now we signal
the detailed presentation in [9] and observe that

• 1/F(β ,h) is one of the natural correlation lengths of disordered models, but not
the only one: there are in fact subtle and very interesting issues connected to
choosing to look at quenched quantities or to quenched quantities averaged over
the disorder (this is at first surprising, because the free energy is self-averaging,
see however Chap. 8).

• In the mathematical arguments that we present in the sequel the correlation length
of the annealed system plays a more central role than its quenched companions,
ultimately because our main results are establishing that the quenched system is
either close or not close to the annealed one.

Figure 3.3 proposes a quantitative view on self-averaging and correlation length.
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Fig. 3.3 The first two figures (on top) represent the graph of logZN,ω , for N up to 1,000, with
two different realizations of the charge sequence ω . In both cases, and in the following two as
well, β = 1, h = −0.3 and ω1 takes only the values ±1, with equal probability. The underlying
process is the renewal associated to a random walk that stays at zero with probability 1/2 or
jumps of ±1, with probability 1/4 each. The profile of N 
→ E logZN,ω starts appearing when
one averages over several (independent) realizations (ω(i), i = 1,2, . . ., are the realizations). As
a matter of fact 100 realizations give a result that is rather satisfactory and 10,000 realization
give a very satisfactory result (according to the fourth graph E logZN,ω > 0 starting from N =
454). Note that a rough estimate of the slope suggests F(1,−0.3) ≈ 6 × 10−3, which yields a
correlation length (1/F(β ,h), in analogy with Sect. 2.4) close to 200, which is compatible with
the other correlation length 454. Precise quantitative estimates on this averaging procedure can be
obtained by concentration inequalities (see Chap. 8)
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Chapter 4
Irrelevant Disorder Estimates

Abstract We introduce the Harris criterion and we provide two heuristic arguments
in favor of this criterion. In particular we introduce the notion of relevant and
irrelevant disorder. We then prove that disorder is irrelevant when the inter-arrival
exponent α is smaller than 1/2 and β is not too large.

4.1 Disorder and Critical Behavior: What to Expect?

The questions we want to address are:

1. Can one compute hc(β ) for β > 0?
2. Can one determine the critical behavior of the free energy at criticality, namely

the way F(β ,h) vanishes as h ↘ hc(β )?

Such questions find partial answers in the physical literature and in spite of the
lack of mathematical rigor and of the, possibly more serious, problem that at times
one finds multiple (non-coinciding) answers to a given question, this is definitely
a starting point. Particularly interesting for us is a claim, going under the name of
Harris criterion, that can be resumed by the rather suggestive statement that whether
or not introducing a small (or moderate) amount of disorder changes the critical
behavior of a system should be read off the critical behavior of the pure, i.e. non-
disordered, system. This criterion has been proposed by Harris in the context of
diluted Ising model [8] and can be resumed by saying that a small amount of disorder
does not change the critical behavior of the model if the specific heat exponent is
negative, while it is expected to change it if it is positive. We will go into the detail of
such a statement for the models we consider (and then for more general models too),
but let us keep vague still for a while and say that the idea behind Harris’ approach is
renormalization. The renormalization procedure is not something uniquely defined
and for our discussion it is just a coarse graining transformation meant to map a
given model to a rougher one. Successive applications of this transformation are
supposed to drive the system to a fixed point (in the space of models) and such a

G. Giacomin, Disorder and Critical Phenomena Through Basic Probability Models,
Lecture Notes in Mathematics 2025, DOI 10.1007/978-3-642-21156-0 4,
© Springer-Verlag Berlin Heidelberg 2011
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fixed point is trivial unless one sits at the critical point. In the disordered case one
introduces also the further idea that the disorder may, or may not, be suppressed
by the successive renormalization transformations. This brings into the game the
notion of irrelevant (respectively, relevant) disorder, that in the end boils down to a
critical behavior which is not affected (respectively, is affected) by the presence of
disorder. In general, it is very difficult to make concrete such a scheme and physicists
often resort to ingenious arguments to capture the flavor of what the renormalization
flow leads. For pinning models this procedure has been taken up by several authors,
following the two seminal works by Forgacs, Luck, Nieuwenhuizen and Orland [6]
and by Derrida, Hakim and Vannimenus [5]. What I will do next is to present two
arguments, that correspond or that are inspired by the two papers I just mentioned.
Let us anticipate what these two arguments suggest in the end:

1. Disorder is irrelevant if α < 1/2 and β ≤ β0, for some β0 > 0, in the sense not
only that the critical behavior is not modified by the disorder, but also that hc(β )
coincides with the critical point of the annealed system ha

c(β )= hc(0)− log M(β )
(recall that the free energy of the annealed system is F(0,h + logM(β ))). Since
the critical behavior of the non-disordered model coincides with the critical
behavior of the annealed model, in the sequel we will use pure model as a
synonym of annealed model.

2. In a somewhat weaker way they suggest also that disorder is relevant if α > 1/2,
in the sense that quenched and annealed critical points differ and that one does
not really see a reason why the critical behavior should coincide (however, these
procedures give no hint as to what the new critical behavior should be).

3. The α = 1/2 is somewhat undecidable at the level of Harris’ approach and it is
dubbed marginal. Still, the question of whether or not the disorder changes the
critical behavior is there and the two approaches in this case suggest a different
answer (while they yield the same prediction for α �= 1/2).

Without loss of generality we assume ∑n K(n) = 1, hence hc(0) = 0 and ha
c(β ) =

− log M(β ).

4.1.1 First Approach: An Expansion in Powers of β 2

We fix a value of β > 0 and choose h−ha
c(β ) = Δ ≥ 0 and we observe that

E

[

Zf
N,ω,β ,h

]

= E [exp(Δ |τ ∩ (0,N]|)] = Zf
N,Δ . (4.1)

We introduce the centered random variables ζn = exp(β ωn − log M(β ))− 1 and
observe that
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E log
Zf

N,ω
EZf

N,ω

= E logEf
N,Δ

[

exp

(

N

∑
n=1

(β ωn − logM(β ))δn

)]

= E logEf
N,Δ

[

N

∏
n=1

(1 + ζnδn)

]

= E log

(

1 +∑
n

ζnPf
N,Δ (n ∈ τ)+ ∑

n1<n2

ζn1ζn2Pf
N,Δ ({n1,n2} ⊂ τ)+ . . .

)

. (4.2)

Let us now expand the logarithm and use the fact that the ζn’s are IID, centered
and of variance σ2(β ) := M(2β )/M(β )2 − 1 (may be useful to note that σ2(·) is
increasing and that σ2(β ) ∼ β 2 as β ↘ 0) to see that

E log
Zf

N,ω
EZf

N,ω
= −1

2
σ2(β )

N

∑
n=1

Pf
N,ω (n ∈ τ)2 + . . . (4.3)

Of course for Δ > 0 and as long as n and N − n are large, Pf
N,Δ (n ∈ τ) is close

to ∂Δ F(0,Δ) (this can be proven by using Renewal Theorem and by applying the
arguments in the proof of Proposition 2.5) so that from (4.2) we extract

F(β ,ha
c(β )+ Δ) = F(0,Δ)− 1

2
σ2(β )(∂Δ F(0,Δ))2 + . . . (4.4)

This is just a formal expansion (which can be continued) and we do not want
to try to justify it. Rather we remark that this computation is compatible with
hc(β ) = ha

c(β ) if (∂Δ F(0,Δ))2 is of the order (or possibly much smaller) than
F(0,Δ), when Δ ↘ 0. Since for α ∈ (0,1) we have F(0,Δ) ∼ (const.)Δ 1/α and
∂Δ F(0,Δ) ∼ (const.)Δ−1+1/α , this argument suggests that hc(β ) = ha

c(β ) and that
the quenched critical exponent coincides with the annealed one if Δ 2(−1+1/α) is
much smaller than (or, possibly, of the same order of) Δ 1/α , that is if α < 1/2 (or
α ≤ 1/2).

In Harris’ language, this argument therefore suggests that disorder is irrelevant
for α < 1/2 (the situation for α = 1/2 is delicate and even at a heuristic level one
should be careful: in [6] one can find an expansion in powers of σ2(β ) to all orders
and the claim that disorder is irrelevant also at α = 1/2).

If α > 1/2 the second term in the expansion is much larger than the first and if
this is the trend (it is!) then something is going wrong. In this case we may argue
that this is just due to the fact that hc(β ) > ha

c(β ) and we are expanding around the
wrong value of h. Pushing the argument farther we can observe that we do know
that F(β ,hc(β )) = 0 and therefore (4.4) suggests that for β small the shift of the
quenched critical point Δc(β ) := hc(β )− ha

c(β ) can be found by equating the two
terms in the rightmost side of (4.4): so Δc(β ) ≈ β 2α/(2α−1) for β small. This last
argument might give the impression that we have pushed our luck too far: it turns
out that it is not the case! See Chap. 6.
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4.1.2 Second Approach: A 2-Replica Argument

Since we aim at deciding whether the annealed system is close to the quenched
system we choose to sit at the annealed critical point [h = − log M(β ), i.e. Δ =0
with the convention set forth just before (4.1)] and study the variance of Zf

N,ω .
Divergence of the variance, as N → ∞, would suggest that the disorder drives the
quenched system away from the annealed one. On the other hand, if the variance is
bounded in N we have a clear signal of the proximity of the quenched and annealed
systems. Since at the annealed critical point we have EZf

N,ω = 1 and

varP
(

Zf
N,ω

)

= E

[

(

Zf
N,ω

)2 −1
]

= EE⊗2
[

exp

(

∑
n

(β ωn − logM(β ))(1n∈τ + 1n∈τ ′)
)

−1

]

,
(4.5)

with τ and τ ′ independent copies of the same renewal process (the two replica).
Integrating out the ω variables we obtain

varP
(

Zf
N,ω

)

= E⊗2

[

exp

(

λ (β )
N

∑
n=1

1n∈τ∩τ ′

)

−1

]

, with λ (β ) := log
M(2β )
M(β )2 .

(4.6)
Note that λ (β ) = log(1 + σ2(β )) is increasing and λ (β ) ∼ β 2 for β ↘ 0. The
expression in (4.6) can be evaluated in a sharp way because the random set τ ∩ τ ′
is still a renewal process and therefore the variance that we are evaluating is the
partition function of a homogeneous pinning model (minus one). What do we know
of the τ ∩τ ′ renewal? In principle everything, in practice it is not straightforward to
write the most basic quantity, that is P⊗2((τ ∩τ ′)1 = n). But what is easy to write is
the renewal function: independence guarantees that

P⊗2 (n ∈ τ ∩ τ ′
)

= P(n ∈ τ)2 , (4.7)

and this is largely sufficient for our purposes. In fact

E⊗2 [|τ ∩ τ ′|−1
]

= ∑
n∈N

P(n ∈ τ)2 =: γ2 ∈ (0,∞] , (4.8)

Note that by Theorem A.4

γ2 < ∞ ⇔ ∑
n

1

n2(1−α) < ∞ ⇔ α <
1
2
, (4.9)

so that, for α < 1/2, (4.8) tells us that τ ∩ τ ′ is terminating and, therefore, |τ ∩ τ ′|
is a geometric random variable of mean 1 + γ2 or, equivalently, of parameter (i.e.
success probability) p2 = 1/(1 + γ2). So for α < 1/2 we have
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lim
N→∞

varP
(

Zf
N,ω

)

= E⊗2 [exp
(

λ (β )|τ ∩ τ ′|)]−1

=
p2

1− (1− p2)exp(λ (β ))
−1

β↘0∼ γ2β 2 .
(4.10)

Note that the second equality in (4.10) holds only if the denominator is positive,
otherwise the expression in (4.10) is equal to ∞. And the denominator is positive if

β < β0 := λ−1(log((1 + γ2)/γ2)) , (4.11)

where λ−1(log((1 + γ2)/γ2)) should be read as ∞ if the image of λ (·) does not
contain log((1+γ2)/γ2). Note that it is not difficult to exhibit cases in which β0 = ∞.

Remark 4.1. By (4.8) and (4.9), α ≥ 1/2 is necessary and sufficient for persistence.
In this case one can easily compute [use (A.3) and (2.9)] the value of

lim
N→∞

1
N

logE⊗2

[

exp

(

λ (β )
N

∑
n=1

1n∈τ∩τ ′

)]

> 0 . (4.12)

Exponential growth is there also if α < 1/2 but β > β0. If α < 1/2 and β = β0 the
variance tends to infinity when N → ∞, but not exponentially.

In a nutshell: the variance of Zf
N,ω , at the critical annealed point, stays bounded if

and only if α < 1/2 and if β is smaller than the threshold β0 that we have computed.
While we are in the middle of a heuristic argument, the computation we have just
performed is rigorous and will be needed later, so let us write a statement.

Lemma 4.2. Choose K(·) such that ∑n K(n) = 1. We have that

sup
N

E

[

(

Zf
N,ω,β ,ha

c(β )

)2
]

< ∞ , (4.13)

if and only if β is chosen as in (4.11) [λ (·) the increasing function given in (4.6)].

The way we are going to use Lemma 4.2 is via the observation:

sup
N

E

[

Zf
N,ω,β ,ha

c(β ); Zf
N,ω,β ,ha

c (β ) > K
]

≤ 1
K

sup
N

E

[

(

Zf
N,ω,β ,ha

c(β )

)2
]

K→∞−→ 0 .

(4.14)

Remark 4.3. While we have presented the second approach in a different way, it
may be viewed also as an expansion around the annealed system. Observe in fact
that

E logZN,ω − logEZN,ω

= E

[

log

(

1 +
(

ZN,ω

EZN,ω
−1

))]

= −1
2

varP

(

ZN,ω

EZN,ω

)

+ . . . , (4.15)

where we have of course used log(1 + x) = x− x2/2 + . . ..
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Remark 4.4. An attentive scrutiny of the two approaches we have presented reveals
that they do not reach the same conclusion if α = 1/2. This can be better appreciated
in a larger class of models, namely if we consider for example K(n)∼ (logn)a/n3/2,
a ∈ R. In fact a > 0 does not imply that τ ∩ τ ′ is terminating (one needs a > 1/2),
while it is sufficient to conclude that F(0,δ ) is much larger that (∂δ F(0,δ ))2 for δ
small. As a matter of fact, as already pointed out we are dealing with the marginal
case in the renormalization group sense and this is a subtle, and model dependent,
issue. We should stress that the steps that we have just presented here are just a part
of the arguments in [6] and [5], in particular [6] aims at an expansion to all orders
and [5] contains an argument to capture the renormalization group flow for Δ close
to 0. Both [6] and [5] consider only the case of a = 0 and their predictions differ:
[6] stands for marginal irrelevance and [5] stands for marginal relevance.

4.2 Disorder is Irrelevant if α < 1/2
(and if β is Not Too Large): A Proof

We take an approach due to Lacoin [9] that yields results that are weaker (see
however Remark 4.8) than the ones of the original approaches [1, 10], but it is
substantially simpler and it works for general disorder distribution. Our presentation
differs from the one in [9] in the sense that we avoid using martingales and 0–1 law
(see Remark 4.8).

Theorem 4.5. If α ∈ (0,1/2) we can exhibit β0 ∈ (0,∞] [see (4.11)] such that
hc(β ) = ha

c(β ) for every β ∈ (0,β0) and, for the same values of β , we have also

lim
h↘hc(β )

log F(β ,h)
log(h− hc(β ))

=
1
α

. (4.16)

Let us start by proving two technical lemmas: the first is a basic probability result.

Lemma 4.6. If {Xn}n is a sequence of random variables which is uniformly
integrable (i.e. supn E[|Xn|; |Xn| > K] vanishes as K tends to ∞) and such that
EXn = 1 for every n, then for every a ∈ (0,1) there exists δ > 0 such that

inf
n

P(Xn > a) > δ . (4.17)

Proof. Let us set g(K) := supn E[Xn; Xn > K]. Uniform integrability directly implies
that limK→∞ g(K) = 0. For K ≥ 1 we have

1−g(K) ≤ E [Xn; Xn ≤ a]+ E [Xn; Xn ∈ (a,K]]

≤ aP(Xn ≤ a)+ K(1−P(Xn ≤ a)) ,
(4.18)
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for every n, that is

sup
n

P(Xn ≤ a) ≤ K −1 + g(K)
K −a

. (4.19)

The result is then achieved by choosing K large enough to have, for example
1−g(K)≥ (1 + a)/2. ��

Lemma 4.6 implies a second result, which we now state for a general sequence
of measurable events AN ∈ G∞ (that is an event that depends on all τ , cf. Sect. A.1.4
of Appendix A), but it will be applied to the case AN ∈ GN (that is an event that
depends on τ ∩ (0,N]).

Lemma 4.7. Let us fix h = ha
c(β ), that is the subscript “N,ω” should be read as

“N,ω ,β ,ha
c(β )” in the statement and in the proof. Let {AN}N be a sequence such

that AN ∈ G∞ and such that limn P(AN) = 0. If
{

Zf
N,ω

}

N
is uniformly integrable,

then
lim

N→∞
Pf

N,ω (AN)1Zf
N,ω>1/2 = 0 in P-probability, (4.20)

and there exists δ > 0 such that

inf
N

P
(

Zf
N,ω > 1/2

)

> δ . (4.21)

The value of δ depends on the uniform integrability properties of {Zf
N,ω}N , that

is, on the function g(·) used in the proof of Lemma 4.6: so, in the end, δ = δ (β ,P).

Proof. Since EZf
N,ω = 1, cf. (4.1), and since we are assuming uniform integrability,

(4.21) follows from Lemma 4.6. For what concerns (4.20) we use

E
[

Zf
N,ω Pf

N,ω (AN)
]

= EE

[

exp

(

N

∑
n=1

(β ωn − logM(β ))δn

)

1AN (τ)

]

= P(AN) ,

(4.22)
so that Zf

N,ω Pf
N,ω (AN) tends to zero, as N tends to infinity, in probability. By

restricting the attention to the event Zf
N,ω > 1/2 we obtain the claim. ��

Proof of Theorem 4.5. Let us start by observing (rather, recalling) that both hc(β ) ≥
ha

c(β ) and that (4.16) with “=” replaced by “≥” and the limit by the inferior limit are
immediate consequences of the annealed (upper) bound F(β ,h) ≤ F(0,h− ha

c(β )).
So it suffices to deal with the lower bound. And it is worthwhile to stress by now that
super-additivity properties, recall (3.7) and Proposition 3.4, reduce lower bounds on
the free energy, obtained in the limit N → ∞, to estimates for one (suitably chosen)
value of N.

And let us start by observing that the uniform integrability of the sequence
{Zf

N,ω,β ,ha
c(β )}N is a direct consequence of Lemma 4.2. Now the point is to select the

sequence of events AN to which to apply Lemma 4.7. For this choose ε ∈ (0,1/2)
and introduce

AN = AN(ε) :=
{

|τ ∩ (0,N]| ≤ Nα(1−ε)
}

, (4.23)
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From Proposition A.6 we directly extract limN P(AN) = 0. Moreover

Zf
N,ω,β ,ha

c(β )+h = Zf
N,ω,β ,ha

c (β )E
f
N,ω,β ,ha

c(β ) [exp(h|τ ∩ (0,N]|)]

≥ Zf
N,ω,β ,ha

c (β )P
f
N,ω,β ,ha

c(β )

(

A�
N

)

exp
(

hNα(1−ε)
)

.
(4.24)

We now observe that hNα(1−ε) ≥ Nαε is equivalent to h−1/((1−2ε)α) ≤ N so that we
make the choice

N :=
⌈

h−1/((1−2ε)α)
⌉

, (4.25)

and on the event {ω : Zf
N,ω,β ,ha

c(β ) > 1/2}∩{ω : Pf
N,ω,β ,ha

c(β )(AN(ε)) ≤ 1/2} – note
that, by Lemma 4.7, the probability of such an event is at least δ in the limit N → ∞,
so it is at least δ/2 for h small – we have

Zf
N,ω,β ,ha

c (β )+h ≥ 1
2

(

1−Pf
N,ω,β ,ha

c(β ) (AN(ε))
)

exp(Nαε) ≥ 1
4

exp(Nαε ) , (4.26)

where in the second inequality we have applied again Lemma 4.7 with N sufficiently
large (that is h sufficiently small) to guarantee that Pf

N,ω,β ,ha
c(β )(AN(ε)) ≤ 1/2. We

therefore see that

P

(

Zf
N,ω,β ,ha

c(β )+h ≥ 1
4

exp(Nαε)
)

≥ δ
2

. (4.27)

We are almost there, but we need to pass to pinned boundary conditions, in order to
take advantage of super-additivity. For this we apply Lemma 3.5 that tells us

Zf
N,ω,β ,ha

c(β )+h ≤ ZN,ω,β ,ha
c(β )+h (1 + NC(K(·)) exp(−β ωN + logM(β )−h)) .

(4.28)

We can of course find a value η(δ ) such that

P(exp(−β ωN + logM(β )−h) ≥ η(δ )) ≤ δ
4

, (4.29)

and (4.27)–(4.29) imply

δ
4

≤ P

(

ZN,ω,β ,ha
c(β )+h ≥ exp(Nαε )

4(1 +(ηCN))

)

≤ P
(

ZN,ω,β ,ha
c(β )+h ≥ exp(Nαε/2)

)

,

(4.30)

where the last inequality holds for h sufficiently small (i.e. N sufficiently large).
From this and by using the basic bound ZN,ω,β ,ha

c(β ) ≥ K(N)exp(β ωN − logM(β )),
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cf. (3.17), we extract [call ̂AN(ε) the event in the right-most term in (4.30)]:

E logZN,ω,β ,ha
c(β )+h

≥ E

[

logZN,ω,β ,ha
c(β )+h; ̂AN(ε)

]

+ logK(N)+ βE[ω1; ω1 < 0]− logM(β )

≥ δ
4

Nαε

2
− c logN , (4.31)

for some c > 0. Therefore for h sufficiently small we have

E logZN,ω,β ,ha
c(β )+h > 0 , (4.32)

which tells us, by super-additivity, that the model is localized for every h > 0, that is
hc(β )≤ ha

c(β ), which implies hc(β ) = ha
c(β ) [as repeatedly stressed: hc(β )≥ ha

c(β )
by annealing, cf. (3.16)].

But one can go beyond: for h as above (that is smaller than a constant that
depends on ε) we can also make E logZN,ω,β ,hc(β )+h larger than a fixed constant
(say, one) so that (super-additivity, again!)

F(β ,hc(β )+ h) ≥ 1
N

E logZN,ω,β ,hc(β )+h ≥ 1
N

≥ 1
2

h
1

α(1−2ε) . (4.33)

Since ε can be chosen arbitrarily small, we are done. ��
Remark 4.8. In [9] Lemma 4.6 is circumvented by using the fact that at the annealed
critical point {Zf

N,ω}N=0,1,... is a martingale with respect to the natural filtration of
the sequence ω . Since it is non-negative, it converges to Zf

∞,ω := limsupN Zf
N,ω .

Therefore, if {Zf
N,ω}N=0,1,... is uniformly integrable we have also convergence in L1

and (4.21) easily follows. It is also interesting to note that Zf
∞,ω > 0 is a tail event and

therefore it has probability zero or one: when the sequence is uniformly integrable
we therefore have Zf

∞,ω > 0 P(dω)-a.s.. Last, but not least, if the results we presented
in this chapter yield a weaker disorder irrelevance than what in proven in [1,10], the
method works as soon as uniform integrability (of the partition function at annealed
criticality) is established, while [1, 10] are based on L2 estimates.

4.3 A Look at the Literature

The references for the physics part of this chapter are already in the text and they
will be taken up again in the next chapters.

The first proof of disorder irrelevance for α < 1/2 and β < β0 is due to Alexander
[1], who has actually proven that for every ε > 0 there exists β0(ε) > 0 such that
for β ≤ β0(ε) we have liminfΔ↘0 F(β ,ha

c(β )+ Δ)/F(0,Δ) ≥ 1− ε . Such a sharp
estimate on the closeness between quenched and annealed free energies has been
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established for Gaussian charges. A different proof, based on spin glass techniques,
of this result has been given by Toninelli [10]. A further sharpening of these results,
providing in particular a rigorous version of (4.4), can be found in [7]. All these
results have been proven in the extended framework of regularly varying K(·). Such
an extended framework allows dealing with α = 0 too: this case has the interesting
feature that disorder is irrelevant for all β [2], regardless of details of K(·) and of
the law of ω1 (this phenomenon, that is β0 = ∞, may come up also for α > 0, but
for suitable choices of K(·) and ω1).

We point out also that recently another approach to showing hc(β ) = ha
c(β ) for

α < 1/2 has been set forth in [4]. This approach is based on the quenched large
deviation principle proven in [3].
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Chapter 5
Relevant Disorder Estimates: The Smoothing
Phenomenon

Abstract We show that, for α > 1/2 and as soon as β > 0, disorder is relevant, in
the sense that the critical behavior of the disordered system differs from the one
of the pure, i.e. homogeneous, system. We do this by establishing a smoothing
inequality for the free energy. We then review the literature on the effect of the
disorder on phase transitions. In doing so we will present a number of physical
predictions on disordered Ising models that are challenges for mathematicians.

5.1 Smoothing for Gaussian Charges:
The Rare Stretch Strategy

We are going to prove the following.

Theorem 5.1. If ω1 ∼ N (0,1) then

F(β ,hc(β )+ Δ) ≤ c
(1 + α)

β 2 Δ 2 , (5.1)

with c = (e− (1/2))/(e− 1), for every β and Δ .

Of course this result is trivial if β = 0 or if Δ ≤ 0. But it does say something
relevant if β > 0 and if Δ > 0 and to make this more clear let us rewrite (5.1) as

0 ≤ F(β ,hc(β )+ Δ)− F(β ,hc(β )) ≤ c
(1 + α)

β 2 Δ 2 , (5.2)

so that it becomes evident that it is an estimate on the modulus of continuity of the
free energy in the h variable. This bound is therefore telling us that, at criticality,
the free energy of the quenched system is smoother than the free energy of the pure
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system for α > 1/2 (recall Theorem 2.10). In terms of critical exponents, what we
retain of (5.2) is

liminf
Δ↘0

log F(β ,hc(β )+ Δ)
logΔ

≥ 2 . (5.3)

Proof. Let us fix a value of β > 0. In what follows h ≥ hc(β ), but in fact in the end
we will set h = hc(β ). Moreover � is a large positive integer and we assume N/� ∈
N. We introduce the sequence of IID Bernoulli random variables X = {Xj} j=1,2,...

defined as the indicator functions of the sets

{

ω : logZ�−1,θ j�+1ω ≥ (1− ε)�F(β ,h + Δ) and ω j�+1 ≥ 0
}

, (5.4)

where Δ > 0, so that F(β ,h + Δ) > 0, and ε ∈ (0,1) (in the end we will send ε to
zero). Therefore the parameter of the Bernoulli variables is

p(�) := P
(

logZ�−1,ω ≥ (1− ε)�F(β ,h + Δ), ω0 ≥ 0
)

. (5.5)

By the self-averaging property of the free energy (Proposition 3.2) we have that
p(�) = o�(1) and it isn’t too difficult to see that it is even exponentially small. But
we claim that

liminf
�→∞

1
�

log p(�) ≥ − Δ 2

2β 2 . (5.6)

A proof of this bound can be found below, but we want to point out that such a
result should not come as a surprise: we give now a heuristic argument for it in
which at times we use � instead of �− 1, but this is of course inessential in the
limit: the choice of reducing the partition function to size � − 1 is to have full
independence between what happens in the blocks, but there are plenty of ways
to get around this minor point. The heuristics goes as follows: ∑�

j=1 ω j ≈ �Δ/β is a
large deviation event of probability about exp(−�Δ 2/(2β 2)) for � large. On such an
event the first � variables of the sequence look like ω1 +Δ/β , . . . ,ω� +Δ/β so that,
when such an event occurs, the system in the block {1, . . . , �} looks like the original
system with h replaced by h + Δ : (5.6) is therefore plausible, since almost surely
�−1 logZ�,ω,β ,h+Δ −→ F(β ,h + Δ).

We now introduce the good set of charges by setting

ιN(ω) := inf
{

j ∈ N∪{0} : Xj(ω) = 1
}

and GN,� :=
{

ω : ιN(ω) <
N
�
−1

}

,

(5.7)
where we have insisted on ιN(ω) < (N/�)−1 instead of ιN(ω) < N/� to have GN,�

independent of ωN . For ω ∈ GN,�, we make a lower bound on the partition function
by selecting the renewal trajectories that visit only the ιN(ω)th block, more precisely

ZN,ω ≥ ZN,ω
(

τ1 = ιN(ω)�+ 1, τ ∩ [(ιN(ω)+ 1)�,N) = (ιN(ω)+ 1)�
)

. (5.8)
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0 N2 3 6

6 +1

7

Fig. 5.1 One of the trajectories selected to obtain a lower bound on the partition function: in this
case N = 11� and ιN(ω) = 6. In the proof N is chosen as a function of � in such a way to guarantee
that at least one of the events (5.4) is realized with probability bounded away from 0 for all �

In Fig. 5.1 we have drawn a case in which N = 11� and ιN(ω) = 6. The point is
that the right-hand side of (5.8) can be expressed explicitly by using the renewal
property, but there is still an important point to take care of: we want P(GN,�)
bounded away from zero and this requires N sufficiently large, because P(GN,�) =
1− (1− p(�))−1+(N/�). So we choose

N = N(�) := �

⌈

1
p(�)

+ 1

⌉

, (5.9)

so that N is bounded below by �/p(�) (but it is also arbitrarily close to it when � is
sufficiently large!) and P(GN,�) ≥ 1− e−1.

The computation is now rather straightforward: the right-hand side of (5.8) is
equal to

K(ιN(ω)�+ 1)exp(β ωιN (ω)�+1 + h)

×Z
�−1,θ ιN(ω)�+1ωK(N − (ιN(ω)+ 1)�)exp(β ωN + h) , (5.10)

and by using XιN(ω) = 1 and (2.30) we obtain that (C1(K(·) > 0)

ZN,ω ≥ C1(K(·))
N2(1+α) eh exp

(

(1− ε)�F(β ,h + Δ)
)

exp(β ωN + h) . (5.11)

Therefore [use the independence of ωN and GN,� and recall (5.9)]

E
[

logZN,ω ; GN,�

]

≥ (log(C1)+ 2h−2(1 + α) logN +(1− ε)�F(β ,h + Δ))P(GN,�)

≥
(

−2
1 + α
1− ε

log

(

�

p(�)

)

+(1− ε)�F(β ,h + Δ)
)

P(GN,�) , (5.12)

where the factor (1− ε) in the denominator of the first term in the right-hand side
takes care, for � sufficiently large, of replacing the correct value of N by �/p(�) and
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of the O(1) terms. On the other hand by using the bound in Remark 3.3 we directly
get (C2(K(·) > 0)

E

[

logZN,ω ; G�
N,�

]

≥
(

log
C2(K(·))

N1+α + h

)

(

1−P(GN,�)
)

≥
(

−1 + α
1− ε

log

(

�

p(�)

))

(

1−P(GN,�)
)

.

(5.13)

Let us now put (5.12) and (5.13) together keeping into account that (5.6) guarantees
that

log

(

�

p(�)

)

≤ �
Δ 2

2β 2(1− ε)
, (5.14)

for � sufficiently large. We therefore get to

E logZN,ω ≥ −(1+P(GN,�))
(1 + α)
(1− ε)2 �

Δ 2

2β 2 +P(GN,�)(1−ε)�F(β ,h+Δ) . (5.15)

It is now the moment to recall that {E logZN,ω}N is super-additive, cf. (3.6), and to
use (or set) h = hc(β ) so that for every N

0 = F(β ,hc(β )) ≥ 1
N

E logZN,ω , (5.16)

that entails the non-positivity of the right-hand side of (5.15) and therefore

F(β ,hc(β )+ Δ) ≤ 1 +P(GN,�)
2P(GN,�)

(1 + α)Δ 2

(1− ε)3β 2 , (5.17)

and by using P(GN,�) ≥ 1− e−1 and by taking ε arbitrarily small we are done. ��
Proof of (5.6). Without loss of generality we set j = 0 in (5.4) and we point out that,
since ω0 is independent of Z�−1,ω , requiring ω0 ≥ 0 (an event of probability 1/2)
has no effect on the estimate we are after, so we neglect it. Moreover we prove the
statement for Z�,ω instead of Z�−1,ω for ease of notation. For a ∈ R call P�,a the law
of (ω1 +a,ω2 +a, . . . ,ω� +a). Call E� the event in σ(ω1, . . . ,ω�) of which we want
to estimate the probability and note that lim� P�,Δ/β (E�) = 1 by Proposition 3.2, that
is E� becomes typical under the new measure for � large. It is not difficult to compute
the relative entropy of P�,0 with respect to P�,Δ/β :

H
(

P�,Δ/β
∣

∣P�,0
)

:= E�,Δ/β

[

log
dP�,Δ/β

dP�,0

]

= �
Δ 2

2β 2 . (5.18)

But (we use P = P�,0 and ˜P = P�,Δ/β for readability)
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log
P(E�)
˜P(E�)

= log˜E

[

dP

d˜P

∣

∣

∣

∣

E�

]

≥ ˜E

[

log
dP

d˜P

∣

∣

∣

∣

E�

]

= − 1
˜P(E�)

E

[

d˜P
dP

log
d˜P
dP

; E�

]

≥ − 1
˜P(E�)

E

[

d˜P
dP

log
d˜P
dP

+
1
e

]

= − 1
˜P(E�)

(

H
(

˜P
∣

∣P

)

+
1
e

)

, (5.19)

where we have used Jensen inequality and the fact that x logx + 1/e ≥ 0 for every
x > 0. Plug (5.18) into the last estimate and use the observation we made just before
(5.18) to complete the proof. ��

5.2 More General Charge Distributions

One can upgrade Theorem 5.1 to more general charge distributions.

Theorem 5.2. If in addition to Hypothesis 3.1 we assume that ω1 is such that there
exists c > 0 such that relative entropy of the law of ω1 + x with respect to the law
of ω1 is bounded by cx2 for every x ∈ R, then for every β > 0 there exists C(β ) > 0
(depending of course also on the law of ω1) such that

F(β ,hc(β )+ Δ) ≤ C(β )(1 + α)Δ 2 , (5.20)

for every β > 0 and every Δ . One can choose C(β ) such that β 2C(β ) stays bounded
as β ↘ 0.

It is easily verified that the second condition holds for example when ω1 has a
density and such a density can be written as exp(−V(·)) with V (·) a polynomial
which is bounded below.

Proof. The proof is just an exercise in modifying (5.18). ��
Remark 5.3. Theorem 5.2 generalizes to the case of bounded charges, that is
P(|ω1| > c) = 0 for some c > 0. In this case the proof goes through via tilting,
rather than shifting, the charge distribution, see [23].

5.3 Back to and Beyond Harris Criterion:
Disorder and Smoothing

The Harris criterion or, more generally, Harris type arguments are not of much help
in saying what happens if disorder is relevant. But this is the occasion to reconsider
Harris’ strategy from the start and the natural framework is the original [26] one:
diluted Ising model.
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5.3.1 Disorder and Phase Transitions

Early approaches to quenched disorder were dominated by the idea that disorder
destroys critical points (see for example [18, 29] and references therein) and the
general rationale behind this was that a disordered system should break up into
differently behaved systems, in particular every one with its own critical point which
overall results in a general smoothing of singularities. But later on it became clear
that some transitions survive to switching disorder on and Harris’ approach [26]
took a leading stand that was and still is analyzed, generalized and criticized by
several authors, e.g. [20, 29]. Recently moreover, these ideas have been taken up
and applied also to quantum mechanical models and to non-equilibrium transitions
with the discovery of very rich behaviors that are only partially understood, but
we will not develop this point beyond referring to [22, 25, 29] as starting point for
references.

Central to the Harris approach is the notion of weak disorder. It is somewhat
customary not to talk about weak disorder when dealing with frustration or with
external fields. What is left contains systems with spatial variations of the coupling
potentials and this is notably the case of the Ising model, see Sect. 2.5 of Chap. 2,
with h(·) = const. (but in fact we have above all in mind h(·) = 0, that is no external
field) and random J(x,y) (say IID: the sequence is indexed by the unordered couple
{x,y}): the diluted Ising model just corresponds to J(x,y) ∈ {0,1}, that is the
coupling potentials are just B(1− p) variables with p ∈ [0,1]: p = 0, no defects,
is the homogeneous (or pure) model and p = 1 is just the trivial (uncorrelated)
spin model. Harris’ disorder irrelevance criterion in this framework boils down to
ν > 2/d (or to ν ≥ 2/d, we’ll come back to this below), where ν is the critical
exponent of the correlation length for the pure system and d is the dimension. Two
observations are now in order:

1. In the original work Harris does consider mostly the diluted Ising model, but he
treats also, in a more expedite way, what he calls magnetic glass, which is an Ising
model with J(·, ·) IID, of mean J > 0 and small variance (the small parameter is
precisely the variance).

2. It is customary to say that Harris criterion says that the disorder is irrelevant if
the critical exponent ˜α of the specific heat, that is the second derivative of the
free energy with respect to β for the Ising model (that should then behave like
|β −βc|−˜α ), is negative: it is not customary to put a tilde over the exponent, but
α in this work is reserved for the inter-arrival law. The hyperscaling relation [21]

dν = 2− ˜α , (5.21)

reconciles this alternative viewpoint on the Harris criterion with the previous
one (ν > 2/d), but it should be noticed that, for the time being, in a reasonable
generality it has been shown only that dν ≥ 2−˜α and the equality is not expected
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to hold (and in some cases we can say that it does not hold) for d ≥ dc, with dc

the upper critical dimension, i.e. the dimension starting from which the critical
exponents become the mean field ones (dc = 4 for the Ising model [21]).

5.3.2 Harris’ Heuristic Argument

Harris’ original work [26] is at times reduced to a heuristic argument on critical
exponents that we are going to reproduce below, but in reality it is mostly dedicated
to a perturbative expansions of the free energy and to arguing that certain terms
are the leading contribution to each order: both the dependence of the critical
temperature on the disorder intensity (p) and the identification of the critical
exponent are addressed. Harris then justifies his approach in more intuitive/heuristic
way and this goes (more or less) as follows. First of all we apply the rather
convincing idea (though not always easy to be translated into a rigorous argument)
that an infinite system may be seen as a collection of approximately independent
systems of correlation length size κp = κp(β ) (β is the inverse temperature). We
assume that κp ≈ |β − βc(p)|−ν(p), so the exponent ν used above is ν(0): Harris
assumes that ν(p) behaves smoothly at least for small p. Now, the typical number
of defects in a volume of correlation length size is κd

p p and the variance of this
quantity is κd

p p(1− p), so that the standard deviation of the density of defects is

κ−d/2
p

√

p(1− p). So the question is: what is the critical temperature for a system
with such a density of defects? Harris argues that the difference βc(p)− βc(0)
between disordered and pure critical points is, to leading order, linear in p (this,
regularity apart, amounts to saying that β ′

c(0) �= 0), so that the critical point in
the box we are considering deviates from the typical one βc(p) of a quantity that

is proportional to κ−d/2
p

√

p(1− p). If now we write the scaling behavior of the
correlation length near criticality as

|β −βc| ≈ κp(β )−1/ν(p) , (5.22)

we see that the disorder fluctuations are negligible only if

κ−d/2(β )
√

p(1− p) � κp(β )−1/ν(p) , (5.23)

that is if ν(p) > 2/d. If ν(p) = ν(0) then to the inequality we have obtained
becomes the Harris criterion for disorder irrelevance, which is therefore a necessary
condition for disorder irrelevance, that is for ν(p) = ν(0). We could also go a bit
beyond and say that, being p(1− p) small, there is room for (5.22) to hold also
for ν(p) ≥ 2/d, and ν ≥ 2/d is at times considered to be the Harris criterion,
however Harris himself was aware from the start of the delicate character of such an
enlarged statement). Note that however the argument we gave just above suggests
that ν(p) > 2/d or at least that ν(p) ≥ 2/d should hold in general and this is in fact
the bound that one can find in [13, 14].
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5.3.3 Relevance and Irrelevance

Now two scenarios are in front of us:

• Either disorder is irrelevant, that is, coarse graining the system suppresses the
disorder and the system on large scale is essentially homogeneous (and the
critical exponents coincide with the ones of the pure system): this is expected
if ν > 2/d and for moderate values of p

• Or disorder is relevant, that is, it grows under coarse graining and the system
remains inhomogeneous on all length scales. Still, in this case at least two
different scenarios have been put in evidence, in the sense that

– Either the system inhomogeneities grow in a nice way and the system
can be (re)normalized to obtain a limit model that is disordered, but the
disorder is finite and one should observe conventional power law scaling
approaching criticality. This is possibly the behavior expected for pinning
models in the relevant disorder regime [16]. It is interesting to observe
that in the physical literature it is conjectured that at and near criticality
suitably rescaled macroscopic observables are not self-averaging [1, 31] (to
the author’s knowledge there is no model for which such a behavior has been
established rigorously and even no example in which the new critical exponent
has been identified).

– Or the coarse grained system is still so strongly inhomogeneous that the fixed
points of such a renormalization procedure have infinite disorder. This type of
behavior has been established, thanks to the celebrated solution of McCoy
and Wu [27], in the two dimensional Ising model with disorder which is
completely correlated in the direction of one of the axes. But infinite disorder
renormalization fixed points, i.e limit models, appear to be rather ubiquitous
in quantum transitions (e.g. [22, 28]).

5.3.4 The Diluted Ising Model

But, in the end, what really happens to the diluted Ising model without external field
when disorder is introduced? Of course rigorous results can be expected only in
dimension two, for which an exact solution is available due to Onsager in 1944 (see
e.g. [4]), and in sufficiently large dimension for which we know rigorously that the
critical exponents coincide with the mean field ones [21], but the critical exponents
of the pure Ising model are considered to be known with a good precision in the
physical literature, so that we can discuss the issue in all dimensions. And it turns
out that:

• In d = 2 the second derivative of the free energy of the pure Ising model diverges
like log(1/|β − βc|) at criticality, that is ˜α = 0: but this means that ν = 2
(hyperscaling) and we are precisely in the so called marginal case in which
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the Harris criterion for irrelevance is inconclusive (as a matter of fact Harris
dwells at length on this in his original paper [26]). In a subsequent work [17] it
is claimed that in the diluted two dimensional Ising model the second derivative
of the free energy near criticality behaves like loglog(1/|β −βc|) and therefore
the critical exponent is not changed: it is therefore natural to call such a case
marginally irrelevant. It should be however remarked that in spite of the result
we just stated, the same authors claim [18] also that the correlations at β = βc

and for p small decay like exp(−cp−1 loglogr), where c is a positive constant
and r is the distance of the two spins of which we are considering the correlation.
This means that the exponent is zero, while the same quantity for the pure system
decays with exponent 1/4, that is like 1/r1/4.

• In d = 3 one expects the critical exponent ν of the free energy of the pure system
to be 0.627 . . . < 2/d, so one expects disorder to be relevant and it is claimed that
the new critical exponent is 0.684 . . . > 2/d (plenty of literature on this point,
with what seems to be a fairly good agreement, at least on the general picture:
the numerical data are taken from [29]).

• It is substantially harder to find literature for d above or at the upper critical
dimension dc = 4. But the exponent ν for the mean field case is 1/2, so that
ν >2/d for d > 4 (irrelevance!) and one has equality at the upper critical
dimension d = 4 (a delicate case also for the pure model! [21]). What we have
just stated is in agreement with [30] where the Harris criterion is generalized to
correlated disorder. Note on the way that ˜α in the mean field case is zero [21].

5.3.5 Random External Fields

At least a word is absolutely due to the case of random external fields and, for
conciseness, let us restrict to the Ising model with J(x,y) = J > 0 for every x and
y and {h(x)}x IID (say, standard Gaussian). For a model in a box of linear size
N we can argue, in a very rough way but essentially following Imry and Ma, that
the boundary spins (say, all up) directly affect (a constant times) Nd−1 spins, while
the external field acts on Nd spins, but in the case of centered variables it accounts
only for a net effect of the order of

√
Nd/2. So the two effects are really competing

in dimension two, while starting from dimension three one tends to say that the
boundary effect takes over and a phase transition is still observed (this is in fact
the case, but the issue was debated for a long time in physics, before and even
after a rigorous proof was established [10]). But let us focus on the d = 2 case
because in this case pushing farther the Imry–Ma argument one tends to argue that
even a very small amount of IID disorder does destroy the phase transition: this is
essentially due to the fact that while boundary conditions are fixed, in the bulk the
disorder can become occasionally very large, in the sense that the net effect that we
were mentioning above of

√
Nd/2 = N should be rather seen as N times a Gaussian

random variable, that can take arbitrarily large values. This has been made rigorous
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by Aizenman and Wehr [2] who showed that in this case the disorder completely
smears off the transition: the disordered model (in two dimensions) does not have a
phase transition. We remark here that in the pinning case the boundary plays no role
and there appears not to be an analog of the Imry–Ma/Aizenman–Wehr arguments.
And in fact the argument that we have developed in this chapter is substantially
different from the one in [2].

5.4 A Further Look at the Literature

The smoothing technique detailed in this chapter has been introduced in [23,24] and
it has been taken up in other contexts, notably for pinning of directed semi-flexible
polymers [11] and, in [5], for the pinning on a walk model introduced in [6]. One of
the ingredients of the proof is identifying rare regions in the environment in which
the process can obtain an atypically large energetic contribution: with respect to this,
the original proof was going through the argument set forth in [7] for the copolymer
in selective solvents model, while here we present an argument that exploits the
super-additive property of the model, like in [5], at the very cheap expense of
a poorer multiplicative constant c in (5.1) (c = 1/2 in the original approach). It
should be noted however that such a loss in the constant is not minor for copolymer
models [7, 8] and a more involved argument, but based on super-additivity and
close in spirit to what we present here, without loss in the constant can be found in
[12]. Smoothing has been shown to be absent in some models with K(n) decaying
exponentially fast [3, 15].

For the second part of this chapter, dealing with Harris’ approach, we would only
like to stress again the lack of convincing heuristics, not to speak of rigorous results,
on the critical behavior of disordered pinning models (and not only!) when disorder
is relevant.

References

1. A. Aharony, A.B. Harris, Absence of self-averaging and universal fluctuations in random
systems near critical points. Phys. Rev. Lett. 77, 3700–3703 (1996)

2. M. Aizenman, J. Wehr, Rounding effects of quenched randomness on first-order phase
transitions. Commun. Math. Phys. 130, 489–528 (1990)

3. K.S. Alexander, Ivy on the ceiling: first-order polymer depinning transitions with quenched
disorder. Markov Process. Relat. Fields 13, 663–680 (2007)

4. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982)
5. Q. Berger, H. Lacoin, The effect of disorder on the free-energy for the random walk pinning

model: smoothing of the phase transition and low temperature asymptotics. J. Statist. Phys.
42, 322–341 (2011)

6. M. Birkner, R. Sun, Annealed vs quenched critical points for a random walk pinning model.
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Chapter 6
Critical Point Shift: The Fractional Moment
Method

Abstract This chapter is devoted to showing that, when α ≥ 1/2, quenched and
annealed critical points are different for every β > 0, with explicit estimates on
the difference. Such a result follows from upper bounds on the free energy that are
obtained by estimating fractional moments (of order less than one) of the partition
function. Estimates for every β > 0, notably for arbitrarily small values of β , are
obtained by using a change of measure argument on the law of the disorder and by
coarse graining techniques. Proving such estimates becomes harder and harder as
α approaches 1/2, i.e. the marginal disorder case in the Harris’ sense: for α = 1/2
the Harris criterion yields no prediction and whether quenched and annealed critical
points differed or not has been a debated issue in the physical literature.

6.1 Main Result and Overview

As mentioned in the last section of the previous chapter, Harris himself in [23] has
been first interested in the shift of the critical point when disorder is introduced. We
have seen in Chap. 4 that for pinning models with α < 1/2 and disorder not too
large quenched and annealed critical points coincide: this means that introducing
the disorder does change the critical point, but precisely to match the annealed
critical point. In this chapter we are going to show that if α ∈ [1/2,1] the quenched
and annealed critical points do coincide to leading order as β → 0, but they do
not coincide and, if α > 1, the quenched and annealed critical points are not even
asymptotically equivalent. We will show also that, under some conditions on the law
of the disorder, that for β sufficiently large quenched and annealed critical points
differ, regardless of the value of α .

Let us recall that ha
c(β ) is the critical point of the annealed system, that is ha

c(β )=
− logP(τ1 < ∞)+ logM(β ). Without loss of generality we will assume in most of
the proofs that τ is recurrent, but let us state the main result of this chapter in full
generality.

G. Giacomin, Disorder and Critical Phenomena Through Basic Probability Models,
Lecture Notes in Mathematics 2025, DOI 10.1007/978-3-642-21156-0 6,
© Springer-Verlag Berlin Heidelberg 2011
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Theorem 6.1. Consider a model based on a K(·)-renewal with K(·) as in (2.30)
and with disorder distribution P that satisfies Hypothesis 3.1. For any β∗ > 0 there
exists c = c(K(·),β∗,P) such that for every β ∈ (0,β∗] we have

hc(β )−ha
c(β ) ≥

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

cβ 2 if α > 1 ,

cβ 2/(log(1 + 1/β ))2 if α = 1 ,

cβ 2α/(2α−1) if α ∈ (1/2,1) ,

exp
(−1/(cβ 4)

)

if α = 1/2 .

(6.1)

The proof of such a result is of growing complexity as α decreases. In a sense,
such a complexity is piecewise constant, with discontinuities marked by the four
regimes in (6.1). All the same, the arguments have a common denominator that can
be explained in the following way:

1. Fractional moment estimates on the partition function. One can easily see that if
supN E[Zγ

N,ω ] < ∞ for a γ > 0 then F(β ,h) = 0, and therefore hc(β ) ≥ h. This is
what we have already used repeatedly if γ = 1, because E[ZN,ω ] is fully under
control: there is of course no reason to try to bound E[Zγ

N,ω ] for γ > 1 because,
for the purpose of establishing F(β ,h) = 0, is less efficient than the annealed
bound (γ = 1). We are left with γ ∈ (0,1): E[Zγ

N,ω ] may be uniformly bounded
also if the annealed bound is not (and we will find cases in which this is true).
The trouble is that a direct evaluation of E[Zγ

N,ω ] with γ ∈ (0,1) is not evident: we

will actually bound E[Zγ
N,ω ] from above rather than compute it. And such bounds

will be obtained in two steps [points (2) and (3) below].
2. Estimates up to systems of correlation length sizes: change of measure estimates.

We will present a method to bound E[Zγ
N,ω ] for N ≤ k, where k is the correlation

length of the annealed system. It is based on a change of measure argument
and involves guessing a new law of the charges for which the annealed partition
function is bounded: the annealed partition function (γ = 1: but with respect to
the new law of the disorder!) is re-obtained from the fractional moment via a
Hölder inequality argument that makes appear also the price we have to pay for
such a change of measure. This price is too large beyond the correlation length
size and the change of measure argument becomes of little use. We point out that
the spirit of such a change of measure is profoundly different from the change of
measure argument for Large Deviations lower bounds, like the one we have used
in Chap. 5 [cf. (5.19)]: as a matter of fact, our change of measure yields upper
bounds.

3. From correlation length to full system length: coarse graining estimates. In order
to go beyond annealed correlation length sizes we will look at the system as
if it was made up of blocks of size k. We aim at showing that a visit to a
block of size k essentially gives negative energetic reward, so that the k-blocks
coarse grained system is delocalized. The passage to the coarse grained system
is not straightforward: as a matter of fact we will just find upper bounds on the
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partition function of the coarse grained system. It is also rather technical and we
have preferred to move the main coarse grained estimates to the next chapter,
i.e. Chap. 7.

6.2 The Basic Fractional Moment Estimates

The elementary, but crucial, observations that are at the basis of what we call
fractional moment method are:

1. For every γ ∈ (0,1], by Jensen inequality we have

FN(β ,h) =
1

γN
E

[

logZγ
N,ω

]

≤ 1
γN

logE

[

Zγ
N,ω

]

(6.2)

so that, in particular, supN EZγ
N,ω < ∞ implies F(β ,h) = 0. Note that for γ = 1

this is the annealed bound.
2. For every γ ∈ (0,1] and every ai ≥ 0

(

∑
i

ai

)γ

≤ ∑
i

aγ
i , (6.3)

which is a simple consequence of (1 + x)γ ≤ 1 + xγ for x ≥ 0.

Remark 6.2. In view of what we have to show it is useful to replace h by
h− logM(β ), which coincides with h + ha

c(β ) since ∑n K(n) = 1, for all the rest
of the chapter, so that

ZN,ω = ZN,ω,β ,h−log M(β ) , (6.4)

till the end of the chapter.

A quick, but already profitable [31], way to exploit (6.2) and (6.3) is to apply it
to the decomposition

ZN,ω =
N

∑
n=1

∑
�∈Z

n+1:
0=�0<�1<...<�n=N

n

∏
i=1

K(�i − �i−1)exp
(

β ω�i − log M(β )+ h
)

, (6.5)

so that

E

[

Zγ
N,ω

]

≤
N

∑
n=1

∑
�∈Z

n+1:
0=�0<�1<...<�n=N

n

∏
i=1

(K(�i − �i−1))γ
Eexp(γβ ω1 − γ log M(β )+ γh)

=
N

∑
n=1

exp
(

gβ ,γn
)

∑
�∈Z

n+1:
0=�0<�1<...<�n=N

n

∏
i=1

Kγ(�i − �i−1),

(6.6)



66 6 Critical Point Shift: The Fractional Moment Method

where we have assumed (1 + α)γ > 1, we have set Kγ(n) := K(n)γ/Σγ , with

Σγ :=
∞

∑
n=1

(K(n))γ < ∞ , (6.7)

and
gβ ,γ := log M(β γ)− γ log M(β )+ γh + logΣγ . (6.8)

Therefore if we introduce the (recurrent) Kγ (·)-renewal ˜τ we have

E

[

Zγ
N,ω

]

≤ E
[

exp
(

gβ ,γ |˜τ ∩ (0,N]|) ; N ∈ ˜τ] , (6.9)

so that gβ ,γ ≤ 0 is a sufficient condition for F(β ,h+ log M(β )) = 0. We sum up this
with the following statement.

Proposition 6.3. With Σγ as in (6.7) we have hc(β ) ≥ h−c (β ) for every β , with

h−c (β ) := max
γ∈(1/(1+α),1]

1
γ

log

(

M(β )γ

M(β γ)Σγ

)

+ ha
c(β ) . (6.10)

The strength of this statement lies of course in the fact that there are important
cases in which the maximum of the expression in the right-hand side of (6.10) is
achieved for a value of γ < 1 (if it is achieved for γ = 1, (6.10) reduces to the
annealed bound). Notably, if

lim
β→∞

M(β )γ

M(β γ)
= +∞ , (6.11)

a condition that is for example implied by log M(β )
β→∞∼ cβ b (c and b > 0: c = 1/2

and b = 2 in the Gaussian case), then we have that

1. hc(β ) > ha
c(β ) = 0 for β sufficiently large.

2. limβ→∞ hc(β ) = +∞. In fact by choosing γ close to 1/(1 + α) one easily
sees that, for every ε > 0, hc(β ) is larger than (1− ε)cβ b(α/(1 + α)) for β
sufficiently large.

In words, if ω1 is an unbounded random variable (with some weak condition on the
tail decay) then for β sufficiently large, that is if there is enough disorder, quenched
and annealed critical points differ (and they differ more and more when β gets
larger) (Table 6.1).

Remark 6.4. One can of course extract more from (6.9). Notably that if gβ ,γ < 0
then the right-hand side is just the partition function of a homogeneous model in the
delocalized regime and therefore (cf. Theorem 2.7) there exists c = c(gβ ,γ ,γ,K(·))
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Table 6.1 A quantitative application of Proposition 6.3 with ω1 ∼ N (0,1), K(n) = cK/n3/2 and
∑n K(n) = 1. The quantity γmax is the value of γ that achieves the maximum in the right-hand side
of (6.10): γmax approaches 2/3 as β becomes large and γmax is 1, and therefore h−c (β )−ha

c(β ) = 0,
for β < 2.5369 . . .

β h−c (β )−ha
c(β ) γmax

2.7 0.0056 0.9741
3.0 0.0461 0.9333
4.0 0.4651 0.8405
6.0 2.5944 0.7530
10.0 11.6414 0.6985
20.0 59.4619 0.6744

such that
E

[

Zγ
N,ω

]

≤ c

Nγ(1+α) , (6.12)

for every N.

6.3 The α > 1 Case

6.3.1 A Different Look on Proposition 6.3

In order to go beyond the estimates in the previous section we are going to introduce
suitable coarse graining procedures. We start by presenting a first, rather elementary,
coarse graining that turns out to be performing well when α ≥ 1. In order to have an
intuitive approach to it, let us quickly review the argument in the previous section
by taking a slightly different viewpoint.

Let us apply (6.2) to the renewal identity

ZN,ω =
N−1

∑
n=0

Zn,ωK(N −n)zN , with zN := exp(β ωN − logM(β )+ h), (6.13)

and, by taking the expectation, with the notation

An(γ,β ,h) = An := EZγ
n,ω,β ,h+log M(β ) , (6.14)

one gets to the renewal inequality

AN ≤ E
[

zγ
1

]

N−1

∑
n=0

An K(N −n)γ =
N

∑
n=1

AN−nQ(n), (6.15)

where Q(n) := E[zγ
1]K(n)γ . Now the point is that (6.15) implies

AN ≤
(

∞

∑
n=1

Q(n)

)

max
n=0,1,...,N−1

An, (6.16)
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so that, if ∑n Q(n) ≤ 1 we have AN ≤ A0 = 1 for every N. Summing everything up

E[zγ
1]

∞

∑
n=1

K(n)γ = exp(γh)
M(γβ )
M(β )γ

∞

∑
n=1

K(n)γ ≤ 1 =⇒ sup
N

AN ≤ 1 (6.17)

and therefore once again to the result in Proposition 6.3.
By looking at (6.13) and (6.15) one gets a hint about the limits of the procedure:

we are looking at one charge at a time. We are now going to present a method that
looks at blocks of k charges.

6.3.2 A First Coarse Graining Procedure: Iterated Fractional
Moment Estimates

Let us fix k ∈ N: for every N > k we can write the following renewal identity

ZN,ω =
N

∑
n=k+1

ZN−n,ω
k

∑
j=0

K(n− j)zN− jZ j,θ N− jω , (6.18)

which is simply obtained by decomposing the partition function according to the
value N − n of the last point of τ before N − k (0 ≤ N − n < N − k in the sum),
and to the value N − j of the first point of τ to the right of, or sitting on, N − k
(so that N − k ≤ N − j ≤ N). Of course Zj,θ N− jω has the same law as Zj,ω and the
three random variables ZN−n,ω , zN− j and Zj,θ N− jω are independent for n and j in the
whole range of summation (Fig. 6.1).

We now fix a γ ∈ (0,1), apply (6.3) to (6.18) and take the expectation with respect
to the charges to get for N > k

AN ≤ E[zγ
1]

N

∑
n=k+1

AN−n

k

∑
j=0

K(n− j)γA j. (6.19)

N

N−k N− jN−n

ZN−n;ω K(n− j)zN− j Zj,θN−jω30 21

Fig. 6.1 The renewal identity (6.18) is obtained by fixing a value of k and summing over the values
of the last contact (a cross) before N − k (a site that is marked by a large dot) and the first contact
(the second cross) after, and including, N − k. The two contacts are respectively N −n and N − j



6.3 The α > 1 Case 69

This is still a renewal inequality since it can be rewritten as

AN ≤
N

∑
n=1

AN−nQk(n), (6.20)

with Qk(n) := E[zγ
1]∑

k
j=0 K(n− j)γ A j if n > k and Qk(n) := 0 for n≤ k. In particular

if for given β and h one can find k ∈ N and γ ∈ (0,1) such that

ρ := ∑
n

Qk(n) = E[zγ
1]

∞

∑
n=k+1

k

∑
j=0

K(n− j)γA j ≤ 1, (6.21)

then one directly extracts from (6.20) that

AN ≤ ρ max{A0, . . . ,AN−k−1}, (6.22)

for N > k, which implies that AN ≤ max{A0, . . . ,Ak} and hence F(β ,h) = 0.
We have therefore proven.

Proposition 6.5. If, for given β and h, we can find γ ∈ (0,1) and k ∈ N such that
ρ , given in (6.21), does not exceed one, then F(β ,h + logM(β )) = 0.

Remark 6.6. Like in Remark 6.4 one can be sharper by exploiting the renewal
structure in (6.20). The difference with Remark 6.4 is that in this case N > k. In
order to put (6.20) into a more customary renewal form we set ˜AN := AN1N>k, so
that

˜AN ≤
N−k−1

∑
n=1

˜AN−nQk(n)+ Pk(N), with Pk(N) =
k

∑
n=0

A(n)Qk(N −n), (6.23)

and we observe that there exists c > 0 (depending on k, K(·) and γ , besides of
course β and h) such that Pk(N)≤ cQk(N). Let us now consider the standard renewal
equation for the Qk(n)-renewal: u0 = 1 (but of course one can choose an arbitrary
u0 > 0) and

uN =
N

∑
n=1

uN−nQk(n) N>k=
N−k−1

∑
n=1

uN−nQk(n)+ u0Qk(N), (6.24)

where the first equality holds for N = 1,2, . . . and for the second one we have used
that, since Qk(n) = 0 up to n = k, we have u1 = u2 = . . . = uk = 0. Once again
if ∑n Qk(n) < 1, that is if ρ < 1, we are dealing with a renewal equation of a
terminating process and therefore uN behaves asymptotically like (a constant times)
Qk(N) (by Theorem A.2). Comparing (6.23) and (6.24) one obtains that there exists
a constant C = C(K(·),k,γ,h,β ) such that

AN ≤ C

N(1+α)γ . (6.25)
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6.3.3 Finite Volume Estimates: The Proof of Theorem 6.1
for α > 1

Let assume ∑n K(n) = 1. Let us start off by fixing γ:

γ :=
3 + α

2 + 2α
so that (1 + α)γ > 2. (6.26)

It is clearly sufficient to show that F(β , log M(β )+cβ 2) = 0 for β ∈ (0,β∗] (so ZN,ω
stands for ZN,ω,β ,log M(β )+cβ 2 from now till the end of the proof) and we are going
to show this via Proposition 6.5, that has reduced the problem to a finite volume
estimate. Notice in fact that estimating ρ , cf. (6.21), amounts to estimating only
(a fractional moment of) Zj,ω , for j ≤ k. For this we need a new ingredient, but let
us start with the preliminary observations:

• For j = 0, . . . ,k we have ∑∞
n=k+1 K(n− j)γ ≤ c1(k− j+1)1−(1+α)γ, where c1 > 0

depends only on K(·) (γ is a function of α , which is determined once K(·) is
chosen).

• Ezγ
1 ≤ c2 for every β ∈ (0,β∗], with c2 dependent only on β∗, γ and the law P of

the charges (in view of the result we want to prove we can a priori assume c is
smaller than a fixed constant, for example c≤ 1, so that h ∈ (0,β 2∗ ]).

Therefore ρ ≤ 1 if

k

∑
j=0

A j

(k− j + 1)(1+α)γ−1
≤ 1

c1c2
=: ε, (6.27)

and therefore ε = ε(K(·),β∗,P). We will now show that the expression in the left-
hand side of (6.27) can be made small choosing k suitably (large).

To this purpose let us observe that we know of course (Jensen inequality) that

A j ≤ (EZj,ω )γ =

(

E

[

exp

(

cβ 2
j

∑
n=1

δn

)

; j ∈ τ

])γ

= exp
(

γF(0,cβ 2) j
)

P
(

j ∈ ˜τ(cβ 2)
)γ

,

(6.28)

where we have use the notation of Remark 2.3 for the renewal pinned down by
the homogeneous potential cβ 2. Since cβ 2 > 0, by the Renewal Theorem the
probability that j ∈ ˜τ(cβ 2) is bounded below by a positive constant (even if cβ 2

were zero!), so this term cannot be of much help and we simply bound it above by
one. On the other hand the exponentially growing term stays bounded for j up to
the correlation length of the annealed system (cf. Sect. 2.4 of Chap. 2): we therefore
choose
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k = k(β ,c) :=
⌊

1
F(0,cβ 2)

⌋

. (6.29)

Note that, because of this choice of k and (6.28) we have that A j ≤ exp(γ) for every
j ≤ k. Therefore, because of (6.26), the expression in the left-hand side of (6.27)
is bounded even for k large: since we want to get estimates that hold for every
β ∈ (0,β∗], by k large we mean, here and below, c small and how small depends
only on K(·), β∗ and P. This is not yet what we want (the leftmost side of (6.27) has
to be made smaller than a suitable small constant and for now we just know that it
is bounded), but a more attentive analysis shows that one has

k−R

∑
j=0

A j

(k− j + 1)(1+α)γ−1
≤ exp(γ) ∑

j>R
j−(1+α)γ+1 ≤ ε

2
, (6.30)

for any k > R and R chosen sufficiently large (how large depends only on only on α
and ε , that is only on K(·) and β∗). This has been achieved by using (6.28). We are
therefore left with showing that

k

∑
j=k−R

A j

(k− j + 1)(1+α)γ−1
≤ ε

2
. (6.31)

For this we set [recall (6.14)]

̂A := limsup
c↘0

sup
β∈(0,β∗]

max
j=k−R+1,...,k

A j(γ,β ,cβ 2) . (6.32)

If we are able to show that

̂A
R

∑
i=1

i−((1+α)γ−1) ≤ ε
3

, (6.33)

then (6.27) would be established for c small. Of course in the upper limit for i in
(6.33) one can replace R with ∞ obtaining thus a more stringent condition (but, in
the end, equivalent, since we are not tracking the constants). We stress that R has
been chosen at this stage of the proof and will be kept fixed.

In order to go beyond (6.28), and prove (6.33), the new idea is a tilting procedure,
that reduces to a shift when the charges are Gaussian variables. The idea is based on
the following consequence of Hölder inequality

A j = ˜E

[

(Zj,ω )γ dP

d˜P
(ω)

]

≤ ˜E

[

(

dP

d˜P
(ω)

)1/(1−γ)
]1−γ

˜E [Zj,ω ]γ , (6.34)

where ˜P is a probability equivalent to P (i.e. P and ˜P are mutually absolutely
continuous).
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The case of Gaussian charges. For Gaussian charges we choose ˜P to be the law of
the sequence

ω1 −
√

cβ 2,ω2 −
√

cβ 2, . . . ,ωk −
√

cβ 2,ωk+1,ωk+2, . . . (6.35)

which is a sequence of independent (non identically distributed) variables. By using
cβ 2k ≤ cβ 2/F(0,cβ 2) and the fact that limδ↘0 δ/F(0,δ ) =: cF(K(·)) > 0 since
α > 1, cf. Theorem 2.10, one then readily obtains

˜E

[

(

dP

d˜P
(ω)

)1/(1−γ)
]1−γ

=

exp

(

γ
2(1− γ)

cβ 2k

)

≤ exp

(

cFγ
1− γ

)

= exp

(

cF
3 + α
α −1

)

, (6.36)

where the inequality holds for c small.
Let us now turn our attention to ˜EZj,ω which, for j ≤ k, is simply EZ

j,ω−
√

cβ 2 .

But this is just the partition function of a homogeneous model with negative pinning
potential if we choose c small, namely

˜EZj,ω = E
[

exp
(−β 2(

√
c−c) |τ ∩ (0, j]|) ; j ∈ τ

]

= E
[

exp

(

−
(

1√
c
−1

)

(

cβ 2k
)

(

j
k

) |τ ∩ (0, j]|
j

)

; j ∈ τ
]

.
(6.37)

But lim j→∞ |τ ∩ (0, j]|/ j = 1/E[τ1] P-a.s. and this readily implies that, uniformly
in β ∈ (0,β∗], sup j=k−R,...,k

˜EZj,ω is bounded by a constant that can be chosen

arbitrarily small, provided one chooses c sufficiently small (so c−1/2 − 1 is large).
In detail: by choosing c sufficiently small, we can make sure that

inf
β∈(0,β∗]

k(β ,c) ≥ 2R and inf
β∈(0,β∗]

cβ 2k ≥ 2
3

lim
a↘0

a
F(0,a)

=
2
3

cF(K(·)) > 0 ,

(6.38)

so that by (6.34), (6.36) and (6.37) we see that

̂A ≤ exp

(

cF

3 + α
α −1

)

limsup
c↘0

max
j=k−R,...,k

E
[

exp

(

−cF

3

(

1√
c
−1

) |τ ∩ (0, j]
j

)]γ
.

(6.39)
Therefore we are done if we can show that the right-hand side is smaller than
ε/(3∑i i1−(1+α)γ). For this it suffices to choose a value c0 sufficiently small to
guarantee
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exp

(

cF
3 + α
α −1

)

exp

(

−cFγ
4

(

1√
c0

−1

)

1
E[τ1]

)

≤ ε
6∑i i1−(1+α)γ . (6.40)

If we now replace 1/
√
c with 1/

√
c0 in the right-hand side of (6.39) we obtain an

upper bound and the result follows by the Renewal Theorem. This completes the
proof of Theorem 6.1, for α > 1, in the case of Gaussian charges.

The case of general charges. The proof in the general case, i.e. for charges that are
not necessarily Gaussian, is very similar. Shifting the charges, cf. (6.35), carries over
to other continuous random variables with positive density, but in general we need
to resort to tilting. The new measure is therefore chosen, for n ∈ N and λ ∈ R, to be

d˜Pn,λ

dP
(ω) =

1
M(−λ )n exp

(

−λ
n

∑
i=1

ωi

)

. (6.41)

Like before we choose n = k, k is still the one in (6.29), and λ =
√

cβ 2: let us
assume like before that c ≤ 1 so that λ ≤ β . We set ˜P := ˜P

k,
√

cβ 2 and we go back

to (6.34): we have to estimate two terms. For the first we observe that

˜E

[

(

dP

d˜P

)1/(1−γ)
]1−γ

=
(

M
(

−
√

cβ 2
)γ

M
(

√

cβ 2γ/(1− γ)
)1−γ

)k

≤ exp

(

CMγ
1− γ

)

(6.42)

where 2CM := max|t|≤1(log M(t))′′ and we have assumed c smaller than β∗γ/(1−γ)
(so that the arguments of M(·) in the middle term in (6.42) are in [−1,1]).

For what concerns the second term:

˜E [Zj,ω ] = E

[

(

exp
((

c−√
c
)

β 2) M (β −β
√

c)
M(β )M(−β

√
c)

)|τ∩{1,..., j}|
; j ∈ τ

]

. (6.43)

This formula can be made more exploitable by observing that, if we set CM,β∗ equal
to min|t|≤β∗(log M(t))′′(> 0), we have for 0 < λ ≤ β ≤ β∗ and

M(β −λ )
M(β )M(−λ )

= exp

(

−
∫ β

0
dx
∫ 0

−λ
dy

d2

dt2 log M(t)
∣

∣

∣

∣

t=x+y

)

≤ e−CM,β∗β λ .

(6.44)

The proof is then completed precisely like in the Gaussian case. ��
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6.4 The α = 1 Case

In the α > 1 case we have used that (1 + α)γ > 2. This is no longer possible if
α = 1 and one needs to be a bit more careful in estimating ρ [cf. (6.21)]. Essentially
three extra ingredients are going to be used in showing that ρ can be made small by
choosing c small for α = 1:

• A suitable choice of γ = γ(k), with γ(k) ↗ 1 as k → ∞
• Exploiting the pinning term that is present in the partition function: this time

limN P(N ∈ τ) = 0
• Compared to (6.30) and (6.31), a different splitting of the summation defining ρ

(and the rough bounds obtained by replacing finite sums by the series in this new
case would lead to divergences!)

Proof of Theorem 6.1, α = 1. The α = 1 case presents all the troubles related to
the fact that it makes appear slowly varying functions (as a matter of fact, only
logarithms, but that is annoying enough). So things get somewhat lengthy and
involved. Not to make the presentation too heavy and not to detour the reader from
the main issues we will give only the essential ingredients of the proof, but we will
be rather sketchy with the intermediate steps. In any case the reader should take what
follows as the guided solution to a difficult, or, at least, lengthy, exercise: the advise
for the interested reader is to come back to α = 1 after having looked at the detailed
treatment of α ∈ (1/2,1). We point out also that, were one shooting for the weaker
statement that for any ε > 0 there exists cε > 0 such that hc(β )− ha

c(β ) ≥ cε β 2−ε

for every β ≤ β∗, the proof would be definitely quicker.
It is of course sufficient to establish delocalization for h = cβ 2/(log(1 + 1/β ))2

(as before, we are looking at the system with partition function ZN,ω,β ,− log M(β )+h).
In accord with Theorem 2.10, we choose k = k(β ,c) equal to (the integer part of)
(log(1 + 1/β ))3/(cβ 2). Moreover we set γ = γ(k) = 1− (1/ logk). We bound ρ
from above by bounding (6.27): we split the sum in two terms, T1 and T2, according
to whether j is smaller (T1) or larger (T2) than y(c)k, with limc↘0 y(c)k(β ,c) = 0,
but limc↘0 y(c) = 0 (a definite choice is made below).

For T1 it suffices bound A j by Jensen inequality, like we did for (6.30), and to
observe that that (k− j + 1)−2γ+1 = (k− j + 1)−1(k− j + 1)2/ logk so that, for j is
smaller than yk, the factor (k − j + 1)2/ logk is bounded by a constant. This yields
T1 = O(y), that is T1 can be made small by choosing c small.

For T2 we have to be more careful:

• We apply a change of measure argument, like for (6.31), by shifting like in (6.35)
(or tilting, if non Gaussian), but by

√
cβ/(log(1 + 1/β ))2 and not by

√
cβ . We

still use (6.34) and a computation shows that the first factor in the right-hand side
of (6.34) is bounded by a constant with the choice of parameters we have made.
We turn then to the second factor that is an annealed partition function to the
power γ .
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• In order to bound this annealed partition we first exploit the fact that j ∈ τ and we
recall that [cf. (A.10)] P( j ∈ τ) ∼ 1/(cK log j) for j large, and, with our choice
of γ = γ(k), we have also P( j ∈ τ)γ(k) ∼ 1/(cK log j) for j large (of course j ∈
(yk,k]). In order to take advantage of this term we need to condition with respect
to j ∈ τ (like, for example in (6.51) below). This conditioning is unpleasant to
deal with directly, but it can be removed by using Lemma A.5.

• What one is left with is evaluating for j large (rather, one should say k large) an
expression of the type

E
[

exp

(

c1y(c)
(c−√

c)
c

|τ ∩ (0, j]
j/ log j

)]

, (6.45)

with c1 a positive constant that can be explicitly evaluated. At this point we
require y(c) not to go to zero too fast when c goes to zero: we need in fact
y(c)(c−√

c)/c to be large (and negative!) for c small (so, for example, choose
y(c) = c1/4).

• Finally we observe that the random variable |τ ∩ (0, j]|/( j/ log j) converges in
probability as j →∞ to a positive constant: this can be proven by hand by arguing
like in the proof of Proposition A.6. The argument is actually easier that for the
case α ∈ (0,1) because τ1 for α = 1 is not in the domain of attraction of a stable
law, but we have rather the phenomenon of relative stability (see [7, Sect. 8 of
Chap. 8]), in the sense that τn, suitably normalized converges in law, but to a
degenerate non zero variable. For what interests us one verifies (either directly or
by applying [7, Theorem 8.8.1] that τn/(cKn logn) converges to 1. Therefore the
expression in (6.45) can be made small by choosing c small.

The ensemble of the elements we have provided leads to the fact ρ can be made
arbitrarily small by choosing c small. We just need to make it smaller than one, so
we are done. ��

6.5 The α ∈ (1/2,1) Case

The starting point is, like for the previous section, that in the α > 1 case we have
used in an important way that (1+α)γ > 2, see for example (6.33). Like for α = 1,
if α < 1 the very same strategy is no longer possible, but when α > 1 we have not
gained anything from the last site pinning that is present in Zn,ω : see for example
(6.28). Now we want (and we need, if we want to get precise estimates, see Sect. 6.7)
to keep track of this extra gain.

In this new context the iterated fractional estimates of the previous sections still
work, but they yield a result that is a bit weaker than what is claimed in Theorem 6.1.
Moreover the iterated fractional estimates are useless for the α = 1/2 case and
therefore we resort to a more involved coarse graining procedure.
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The strategy of the proof is the one outlined in Sect. 6.1, but let us precise it a bit
before going into the details (since we are giving for granted the use of fractional
moments the steps now shrink to two). What we are going to do is:

1. Estimate EZγ
j,ω for j up to the correlation length k of the pure system: such an

estimate is obtained by a change of measure argument, at least for j of the order
of k (in the α > 1 case it was sufficient to use such an argument only for j’s that
differ from k only of a constant). Smaller values of j can be treated in a rougher
way;

2. Upgrade the estimates up to the correlation length to estimates for arbitrary sizes
via a coarse graining procedure.

The second step – the coarse graining – is treated in Chap. 7: Proposition 7.1
is giving us two sufficient conditions for F(β ,h) = 0, and these conditions are
precisely conditions up to size k. Proposition 7.1 has a rather technical appearance,
also because it mixes a bit the steps (1) and (2) above, even if it is essentially about
step (2). We will therefore start by proving a result that we will not use, but that
contains the essence and all the technical difficulties of what we need, while being
much more intuitive to grasp than the hypotheses of Proposition 7.1 (which we will
verify right after).

Throughout this section we set

γ :=
2

2 + α
∈ (0,1) , (6.46)

so that (1 + α)γ > 1, and

k = k(β ,c) := 2

⎢

⎢

⎢

⎣

1

F

(

0,cβ
2α

2α−1

)

⎥

⎥

⎥

⎦

c↘0∼ c1

c
1
α β

2
2α−1

, (6.47)

with c1 = c1(K(·)) a positive constant (given in Theorem 2.10). The definition of
k is consistent with the fact that we want to prove delocalization for h up to about
β 2α/(2α−1) and the pure correlation length diverges like the reciprocal of the (pure)
free energy, that is, like h−1/α .

6.5.1 Bounds for Correlation Length Size Systems

Here is what we want to prove.

Proposition 6.7. Choose a K(·) that satisfies (2.30) with α ∈ (1/2,1), P as in
Hypothesis 3.1 and fix β∗ > 0. For every η > 0 we can find c > 0 such that

EZγ
k,ω ≤ η P(k ∈ τ)γ , (6.48)

for every h ≤ cβ 2α/(2α−1) and every β ∈ (0,β∗].
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Proof. We apply the change of measure procedure, that is (6.34), and like in the
preceding section the new measure that we are going to choose is just a tilted version
of the previous one. Once again, tilting reduces to shifting in the Gaussian context,
and we present that first. We fix h = cβ 2α/(2α−1) since this directly implies the full
result.

The case of Gaussian charges. We set ˜P to be the law of

ω1 − 1

2
√

k
,ω2 − 1

2
√

k
, . . . ,ωk − 1

2
√

k
,ωk+1,ωk+2, . . . . (6.49)

This is absolutely analogous to (6.35), even quantitatively, because 1/
√

k is about
c1/(2α) β 1/(2α−1), which for α = 1 matches with (6.35) (of course the choice of the
constant pre-factors are just to get more compact expressions later on). We have:

˜E

[

(

dP

d˜P
(ω)

)1/(1−γ)
]1−γ

= exp

(

γ
2(1− γ)

(

1

2
√

k

)2

k

)

= exp

(

1
4α

)

≤ 2 .

(6.50)
On the other hand

˜EZk,ω = E
[

exp

(

−
(

β
2
√

k
−h

)

|τ ∩ (0,k]|
) ∣

∣

∣

∣

k ∈ τ
]

P(k ∈ τ) , (6.51)

and notice that

β
2
√

k
−h =

β
2
√

k
−cβ 2α/(2α−1) ≥ c2

(

k
2

)−α
c−

2α−1
2α , (6.52)

where the inequality is a consequence of (6.47) and holds for c sufficiently small
(and c2 = c2(K(·)) > 0). Let us go back to (6.51) and let us apply Lemma A.5 after
having used |τ ∩ (0,k]| ≤ |τ ∩ (0,k/2]|:

E
[

exp

(

−
(

β
2
√

k
−h

)

|τ ∩ (0,k]|
) ∣

∣

∣

∣

k ∈ τ
]

≤

Cbc E
[

exp

(

−c2c
− 2α−1

2α
|τ ∩ (0,k/2]|

(k/2)α

)]

. (6.53)

But |τ ∩ (0,n]|/nα converges in law to the random variable Yα (Proposition A.6:
note that P(Yα > 0) = 1), so that if c is sufficiently small (depending on K(·), as
usual, but this time also on η , that is chosen in the statement) we have

E
[

exp
(

−c2c
− 2α−1

2α Yα

)]

≤ (η/2)1/γ

2Cbc
. (6.54)
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But this implies, going back to (6.51), that for c sufficienly small

˜EZk,ω ≤
(η

2

)1/γ
P(k ∈ τ) . (6.55)

By injecting this estimate, together with (6.50), into (6.34) we obtain (6.48) and the
proof of Proposition 6.7 is complete in the case of Gaussian charges.

The case of general charges. The tools to generalize the proof are (6.41) and (6.44).
Once these formulas are applied one is back to expressions that differ from the
Gaussian ones only for constants that depend on the law of ω1. ��

6.5.2 Proof of Theorem 6.1, Case α ∈ (1/2,1)

We are going to verify the three conditions of Proposition 7.1. The correlation length
is chosen like in the proof of Proposition 6.7, cf. (6.47), as well as h (still equal to
cβ 2α/(2α−1)). We choose ˜Pk in Proposition 7.1 to be equal to ˜P given either in
(6.49) (for the Gaussian case) or in (6.41) for the general case. Hypothesis (1) of
Proposition 7.1 is therefore just (6.50). For what concerns Hypotheses (2) and (3)
we observe that for d, f ∈ {1,2, . . .k} and d ≤ f we have

˜EkE

[

exp

(

f

∑
n=d

(β ωn − logM(β )+ h)δn

)

δ f

∣

∣

∣

∣

d ∈ τ

]

=

E
[

exp(−a(β ,c)|τ ∩ [d, f ]|) ∣∣d, f ∈ τ
]

P( f −d ∈ τ) , (6.56)

where a(β ,c) can be written out explicitly without much effort, for example in the
Gaussian case a(β ,c) = −h+β/(2

√
k) [see (6.51)] and what is important for us is

that, for c sufficiently small we have a(β ,c) ≥ c2c
1/(2α)β 2α/(2α−1) for a suitable

constant c2 = c2(β∗,K(·),P). The fact that a ≥ 0 (for c sufficiently small) suffices to
verify Hypothesis (3) and the 2 in the right-hand side of (7.7) can even be replaced
by one. For Hypothesis (2) let us instead observe that, by (6.56), it suffices to verify
that

E
[

exp(−a(β ,c)|τ ∩ (0, f −d + 1]|)∣∣ f −d + 1 ∈ τ
] ≤ η , (6.57)

holds for c sufficiently small and f −d > εk. But this is obtained by proceeding like
in (6.53):

E
[

exp(−a(β ,c)|τ ∩ (0, f −d + 1]|)∣∣ f − d + 1 ∈ τ
]

≤ Cbc E [exp(−a(β ,c) |τ ∩ (0,( f −d + 1)/2]|)]

≤ Cbc E
[

exp

(

−c3εαc(1−2α)/2α |τ ∩ (0,εk/2]|
(εk/2)α

)]

,

(6.58)
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where, in the last step, we have used the asymptotic behavior of k, cf. (6.29), so
that, uniformly in β ∈ (0,β∗], a(β ,c)(εk/2) behaves like c2εα cα

1 2−αc(1−2α)/(2α)

for c small (therefore we can take for example c3 = c2cα
1 /3). We are therefore in

the very same situation as for the right-hand side of (6.53): the only change is in the
presence of ε in the prefactor and in the length of the interval, but the argument that
follows (6.53) still applies with the straightforward change that now c will have to
be taken smaller than a constant that depends on K(·), P (when the charges are not
Gaussian), η and ε . ��

6.6 The α = 1/2 Case

Like the previous one, also this section is split into two parts: first we prove a result
that we will not use in the proof of Theorem 6.1 (α = 1/2), but it contains the
essence of the argument that, in the second part, will lead to the proof. And like
in the previous section we fix a value of γ once for all the section: γ = 4/5, which
is precisely the choice in (6.46), so that (1 + α)γ = 6/5 > 1. Moreover the natural

correlation length of the pure model is, as usual, 1/F(0,h)
h↘0∼ const.h−2 as h ↘ 0.

In partial disagreement with this we are going to set

k = k(β ,c) := 2

⌊

1
2h

⌋

h↘0∼ 1
h

, (6.59)

but we will still think of k as a correlation length for the system. We are allowed to do
that because we are aiming at showing that when h = exp(−1/(cβ 4)) (this gives the
explicit expression that we are going to use for k(β ,c) in the proof) the free energy
is zero: the more natural 1/h2 choice for the correlation length amounts to replacing
c with 2c, so the two choices are equivalent because we are not tracking precisely
the value of c. On the other hand the choice (6.59) allows getting rid immediately
of h in the partition function for systems of size O(k), at the little expense of a
multiplicative factor.

6.6.1 Estimates up to the (Annealed) Correlation Length:
Gaussian Case

Here is the result that is analogous to Proposition 6.7 (we just give it for Gaussian
charges: the case of general charges is treated when proving Theorem 6.1).

Proposition 6.8. Choose ω1 ∼ N (0,1). Fix K(·) satisfying (2.30) and α = 1/2,
and set h = exp(−cβ−4) and k as in (6.59). Then for every η > 0 there exists c> 0
such that

E

[

Zγ
k,ω

]

≤ η (P(k ∈ τ))γ (6.60)

for every β ∈ (0,β∗].



80 6 Critical Point Shift: The Fractional Moment Method

Proof. As before, the first (and key) step for our estimates is to observe that if we
introduce a probability ˜P which is equivalent to P we have

E

[

Zγ
k,ω

]

≤ ˜E

[

(

dP

d˜P
(ω)

) 1
1−γ
]1−γ

˜E
[

Zk,ω
]γ

, (6.61)

where we have used the Hölder inequality, with p = 1/γ . The quantity (dP/d˜P)(ω)
is the density of the old measure with respect to the new one and, of course, we can
restrict our attention to ω1, . . . ,ωk since the values of the charges ωk+1,ωk+2, . . .

do not contribute to Zk,ω . We choose ˜P to be a centered Gaussian measure too, but
unlike P under which ω1, . . . ,ωk are IID, under ˜P the variables are correlated:

˜E [ωiω j] =

{

1 if i = j,

−Hi, j if i �= j.
(6.62)

H is of course a symmetric matrix: we choose it to be traceless with Hi, j ≥ 0. We
actually make the definite choice (for i �= j)

Hi, j =
1− γ

3
√|i− j|k logk

. (6.63)

Since I −H is a covariance matrix (and since we want to work with probability
densities), it has to be positive definite: this is the case, at least if k is not too small.
To see this it is convenient to introduce the Hilbert–Schmidt norm ‖ · ‖

‖H‖2 := ∑
i, j

H2
i, j =

k

∑
j=1

λ j(H)2 (6.64)

where λ1(H), . . . ,λk(H) are the eigenvalues of H, so that in particular max j |λ j(H)|
is bounded above by ‖H‖. We have

∑
i, j

H2
i, j =

2(1− γ)2

9k logk

k−1

∑
i=1

k−i

∑
j=1

1
j

k→∞∼ 2(1− γ)2

9
, (6.65)

so that for k sufficiently large

‖H‖ ≤ 1− γ
2

, (6.66)

which implies that the spectrum of I −H is bounded below by (1 + γ)/2 = 9/10,
so I −H is positive definite. We now make the first factor in the right-hand side of
(6.61) explicit:

˜E

[

(

dP

d˜P
(ω)

) 1
1−γ
]1−γ

=

(

det(I−H)

(det(I− (1− γ)−1H))1−γ

)1/2

, (6.67)
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and we point out that such a computation requires also I− (1− γ)−1H to be positive
definite, which is a direct consequence of (6.66) which guarantees that the spectrum
of I − (1− γ)−1H is bounded below by 1/2. The right-hand side of (6.67) can be
estimated by observing that

1. Since 1− x ≤ exp(−x), det(I −H) = ∏ j(1−λ j(H)) ≤ exp(−∑ j λ j(H)) = 1
2. Since log(1 + x) ≥ x− x2 for x ≥−1/2, by using (6.66) and, once again, that H

is traceless we see that det(I − (1− γ)−1H) ≥ exp(−(1− γ)−2‖H‖2) ≥ 1/e

so that

˜E

[

(

dP

d˜P
(ω)

) 1
1−γ
]1−γ

≤ e1−γ = e1/5 < 2 . (6.68)

This term is therefore under control: let us turn to the second factor in the right-hand
side of (6.61). We start by observing

˜E
[

Zk,ω
]

= E˜E

[

exp

(

k

∑
n=1

(

β ωn − β 2

2
+ h

)

δn

)

δk

]

= E

[

exp

(

−β 2 ∑
1≤i< j≤k

Hi, jδiδ j + h
k

∑
i=1

δi

)

δk

]

≤ eE

[

exp

(

−β 2 ∑
1≤i< j≤k

Hi, jδiδ j

)

∣

∣

∣

∣

δk = 1

]

P(δk = 1) ,

(6.69)

where the inequality in the last step comes from bounding ∑k
j=1 δ j with k and by

using kh ≤ 1. In view of this we are done if we can show that for every η > 0 we
can find c > 0 such that for every β ∈ (0,β∗] we have

˜E
[

Zk,ω
] ≤ η1/γ

e
P(δk = 1) . (6.70)

This of course follows if we can show that the expectation in the last line of (6.69)
can be made small by choosing c large. This estimate is somewhat technical: let us
start with a more straightforward observation that is not conclusive, but it goes in
the right direction. Let us show that what is at the exponent in the expectation that
we have to estimate is large: by using (A.11) one sees that

E

[

β 2 ∑
1≤i< j≤k

Hi, jδiδ j

∣

∣

∣

∣

δk = 1

]

= β 2 ∑
1≤i< j≤k

Hi, jE [δiδ j |δk = 1]

≥ cβ 2 ∑
1≤i< j≤k

Hi, j
√

i( j− i)
≥ cβ 2(1− γ)

3
√

k logk

k/2

∑
i=1

1√
i

k/2

∑
j=1

1
j

k→∞∼ cβ 2(1− γ)
√

2logk
3

,

(6.71)
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where c is a positive constant that depends only on K(·). Overall we see that the
term that we are estimating in (6.71) is bounded below by (a positive constant times)
β 2√logk for k sufficiently large large (recall that k large for us means c small), that
is by 1/

√
c. Therefore the expectation of the random variable in the exponent of the

expectation we need to control is negative and large: this suggests the result but it
does not allow to conclude. In order to conclude we need to show that the random
variable itself is always large: this is in fact the case and we explain it by resorting
to a crucial probability estimate that we prove in the appendix (Proposition A.7) on
which we are going to comment here. If we set

Xn :=
1√

n logn ∑
1≤i< j≤n

δiδ j√
j− i

, (6.72)

then Proposition A.7 implies that for every λ > 0

lim
n→∞

E [exp(−λ Xn)] = E
[

exp
(

−λ (2π)−3/2c−2
K |Z|

)]

, (6.73)

where Z is a standard Gaussian random variable. Two key points have to be
remarked in the last formula: the normalization logn (and not

√
logn) in Xn, so

that we obtain the case that interests us by choosing “λ =
√

logn”, and the fact
that |Z| > 0 with probability one, so that the right-hand side can be made arbitrarily
small for λ large.

Let us see how this result is applied: first of all we use Proposition A.5 to obtain

E

[

exp

(

−β 2 ∑
1≤i< j≤k

Hi, jδiδ j

)

∣

∣

∣

∣

k ∈ τ

]

≤ Cbc E

[

exp

(

−β 2 ∑
1≤i< j≤k/2

Hi, jδiδ j

)]

,

(6.74)
and in turn

E

[

exp

(

−β 2 ∑
1≤i< j≤k/2

Hi, jδiδ j

)]

= E
[

exp

(

−1− γ
3

(

β 2
√

logk
)

Xk/2

)]

.

(6.75)
Going back to (6.69) and to (6.70) we see that we want to make the quantity in
(6.75) smaller that η/(eCbc). Therefore choose λ = λ0 such that the right-hand side
of (6.73) is equal to η/(2eCbc). Then choose c sufficiently small so that (1− γ)
β 2√logk/3 ≥ λ0: this is possible because β 2√logk ∼ √

1/c for c small. With
these choices we have

E

[

exp

(

−β 2 ∑
1≤i< j≤k/2

Hi, jδiδ j

)]

≤ E
[

exp
(−λ0Xk/2

)] ≤ η1/γ

eCbc
, (6.76)

where in the last step we have chosen k sufficiently large (i.e. c small) and we have
used (6.73). This concludes the proof of (6.70). ��
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6.6.2 Beyond the Correlation Length: The Proof
of Theorem 6.1 (α = 1/2)

We treat separately the case of Gaussian charges and the general case.

The case of Gaussian charges. Verifying the three hypotheses of Proposition 7.1 is
just a revisitation of the proof of Proposition 6.8. In particular we keep the very same
definitions of k and h and ˜Pk of Proposition 7.1 is the centered Gaussian measure
with covariance I −H given in (6.63), that is ˜Pk = ˜P. Therefore Hypothesis (1) of
Proposition 7.1 is just (6.68).

For Hypotheses (2) and (3) we compute [like in (6.69)] for d, f ∈ {1, . . . ,k} with
d ≤ f

˜EkE

[

exp

(

f

∑
n=d

(β ωn − log M(β )+ h)δn

)

δ f

∣

∣

∣d ∈ τ

]

=

E

⎡

⎢

⎢

⎣

exp

⎛

⎜

⎜

⎝

−β 2 ∑
i, j∈{d,..., f}

i< j

Hi, jδiδ j + h
f

∑
i=d

δi

⎞

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

d, f ∈ τ

⎤

⎥

⎥

⎦

P( f −d ∈ τ) . (6.77)

Hypothesis (3) therefore holds, say for ε ≤ 1/2, because in this case h∑ f
i=d δi ≤

εhk ≤ ε and Hi, j > 0. For Hypothesis (2) we use, like in (6.69), h∑ f
i=d δi ≤ hk ≤ 1,

paying thus a factor e and one is left with estimating (note that Hi, j is just a function
of i− j)

E

[

exp

(

−β 2 ∑
1≤i< j≤ f−d+1

Hi, jδiδ j

)∣

∣

∣

∣

∣

f −d + 1 ∈ τ

]

. (6.78)

If we now repeat steps (6.74) and (6.75) we see that the expression in (6.78) is
bounded by Cbc times

E

[

exp

(

−β 2 ∑
1≤i< j≤( f−d+1)/2

Hi, jδiδ j

)]

≤ E
[

exp

(

−1− γ
3

β 2

√

ε
2

(

log(εk/2)√
logk

)

X�εk/2�

)]

≤ E
[

exp

(

−
√

ε
30

(

β 2
√

logk
)

X�εk/2�

)]

(6.79)

for c sufficiently small. The last term we have obtained differs from the right-hand
term in (6.75) only for the presence of ε: the argument therefore runs precisely like
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for (6.75) and this time c will have to be chosen suitably small in dependence of
K(·), β∗, η and ε . ��
The case of general charges. The generalization in this case is not straightforward
because only in the Gaussian case one has directly the hands on correlations. The
approach we choose here is the one in [20] and [25]. We point out that we do not
aim at showing the full result proven in in [20], see Sect. 6.7. In any case, as for
the α = 1/2 Gaussian we set γ = 4/5 and k(β ,c) si still given by (6.59), with
h = exp(−1/(cβ 4)).

We introduce the random variable

Y = Y (ω ;k) := ∑
0<i< j≤k

Vk( j− i)ωiω j , (6.80)

with Vk(n) = (nk logk)−1/2. Note that

EY = 0 and E
[

Y 2]= ∑
0<i< j≤k

(Vk( j− i))2 k→∞∼ 1 , (6.81)

so that we can assume that the variance of Y is bounded by (say) two. Note also the
closeness with (6.63). We now introduce

gk(ω) := exp
(

−γK1Y (ω;k)≥exp(K2)

)

, (6.82)

where K > 0 is going to be chosen below. We now re-edit the step (6.61) as

E

[

Zγ
k,ω

]

≤ E

[

g−1/(1−γ)
k (ω)

]1−γ
E

[

g1/γ
k Zk,ω

]γ
. (6.83)

One of the differences with (6.61) is that gk(·) is not a probability density, but in
reality we could make it a probability density with no effort: in fact, because of
(6.81), P(Y (ω ;k) ≥ exp(K2)) can be made arbitrarily small by choosing K large, so
that

E [gk(ω)] = 1− (1− exp(−γK))P(Y (ω ;k) ≥ exp(K2)) , (6.84)

which can be made larger than 1/2 for K sufficiently large, so that we can normalize
gk(·) by paying an irrelevant multiplicative constant.

The first of the two factors on the right-hand side of (6.83) is quickly controlled:

E

[

g−1/(1−γ)
k (ω)

]

= 1 +(exp(γK/(1− γ))−1)P(Y(ω ;k) ≥ exp(K2))

≤ 1 +(exp(γK/(1− γ))−1)exp(−2K2)E
[

Y 2(ω ;k)
]

,

(6.85)

and the last term tends to 1 for K → ∞ by (6.81).
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We therefore turn to controlling the second factor on the right-hand side of (6.83)
and for this we introduce, given a realization of the renewal τ , the probability ̂Pτ
such that

d̂Pτ
dP

(ω) = exp

(

k

∑
n=1

(β ωn − logM(β ))δn

)

. (6.86)

We recall that by our choice of h (kh ≤ 1), exactly like in (6.69), we have
Zk,ω,β ,ha

c+h ≤ eZk,ω,β ,ha
c

and it suffices to consider the h = 0 case (h = 0 in the
partition function, not in the definition of k), that is to show that for every ζ > 0
we have that for h = 0

E

[

g1/γ
k Zk,ω

]

P(k ∈ τ)
≤ ζ , (6.87)

by choosing c small, and this uniformly in β ∈ (0,β∗], for some β∗. The technical
instrument at this point is the following lemma.

Lemma 6.9. We have that

1. There exists c0 > 0 such that for c≤ c0 we have

E
[

̂Eτ

[

(

Y (ω ;k)− ̂Eτ [Y (ω ;k)]
)2
]∣

∣

∣

∣

k ∈ τ
]

≤ 1

c1/2
. (6.88)

2. For every ζ2 > 0 there exist a > 0 and c0 > 0 such that for c≤ c0 we have

P

(

̂Eτ [Y (ω ;k)] > ac−1/2
∣

∣

∣k ∈ τ
)

≥ 1− ζ2 . (6.89)

We postpone the proof and meanwhile we observe that

E

[

g1/γ
k Zk,ω

]

P(k ∈ τ)
= E

[

exp
(

−K1Y≥exp(K2)

)∣

∣

∣k ∈ τ
]

≤ exp(−K)+ E
[

̂Pτ
(

Y (ω ;k) < exp(K2)
)

∣

∣

∣k ∈ τ
]

,

(6.90)

and we make the choice of K = K(a,c):

2exp(K2) = ac−1/2 , (6.91)

which guarantees that K can be made large by choosing c small and, cf. Lemma 6.9,
that

P

(

̂Eτ [Y (ω ;k)] ≤ 2exp(K2)
∣

∣

∣k ∈ τ
)

≥ ζ2 . (6.92)
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Let us both set the value of ζ2 equal to ζ/3 and let us choose c sufficiently small
to guarantee that exp(−K) ≤ ζ/3. We therefore restart from (6.90) and continue the
chain of inequalities

E

[

g1/γ
k Zk,ω

]

P(k ∈ τ)
≤ 2

3
ζ + E

[

̂Pτ

(

Y (ω ;k)− ̂Eτ [Y (ω ;k)] < −exp(K2)
)∣

∣

∣k ∈ τ
]

≤ 2
3

ζ +
4c
a2 E

[

̂Eτ

[

(

Y (ω ;k)− ̂Eτ [Y (ω ;k)]
)2
]∣

∣

∣

∣

k ∈ τ
]

≤ 2
3

ζ +
4c1/2

a2 ≤ ζ ,

(6.93)

where in the last steps we have applied Lemma 6.9(1) and we have chosen c ≤
ζ 2a4/144. This completes the argument, but of course the proof of Lemma 6.9 is
still due.

Proof of Lemma 6.9. First of all we remark that the charges are still independent
under the measure ̂Pτ , but they are no longer identically distributed. In fact if we set
mβ := E[ω1 exp(β ω1)]/E[exp(β ω1)] we have mβ ∼ β when β ↘ 0 and

̂Eτ [ωn] = mβ δn , (6.94)

along with the fact that ̂Eτ [ω2
n ] is bounded for every β ≤ β∗ by a constant that

depends only on β∗ and the law of ω1 (we call it c(β∗)).
Let us look then at part (1). We set ̂ωn := ωn − δnmβ and compute

̂Eτ

[

(

Y (ω;k)− ̂Eτ [Y (ω;k)]
)2
]

= ̂Eτ

⎡

⎣

(

∑
i< j≤k

Vk( j− i)
(

̂ωi ̂ω j +mβ δi ̂ω j +mβ δ j ̂ωi
)

)2
⎤

⎦

≤ 3c(β∗)2 ∑
i< j≤k

(Vk( j− i))2 +3m2
β c(β∗)∑

j

(

∑
i,i′< j

+ ∑
i,i′> j

)

Vk(| j− i|)Vk(| j− i′|)δiδi′ ,

(6.95)

where in the last step we have used the Cauchy–Schwarz inequality, independence
and the bound on the variance of ̂ωn. The first term of the last line is bounded by
a constant uniformly in τ , cf. (6.81), while for the second we take the expectation
with respect to P(·|k ∈ τ), use (A.11) and we perform the summation.
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For what concerns part (2) we observe that

̂Eτ [Y (ω ;k)] =
m2

β√
k logk ∑

i< j≤k

δiδ j√
j− i

. (6.96)

But if one recalls that mβ ∼ β and that Vk( j − i) coincides (up to innocuous
multiplicative constants) with Hi, j one realizes that the estimate we are asking is
precisely what we have developed in the case of Gaussian charges [cf. (6.71)–
(6.76)]. ��

6.7 A Look at the Literature

Before going into the history of Theorem 6.1 let us point out that it is sharp (at least
for α �= 1: both these notes and the literature are quite lazy about the technically
heavy and not so rewarding case α = 1), in the sense that upper bounds that, up to
multiplicative constants, match the lower bounds in (6.1) are proved in [1, 30].

The argument of proofs in this chapter are all revolving around fractional moment
estimates on the partition function. Fractional moments bounds have been exploited
in statistical mechanics, notably in the analysis of random Schrödinger operators [3],
but their relevance for disordered pinning models has been pointed out by Toninelli
in [31] and his argument is explained in Sect. 6.2. Let us point out that the method of
constrained annealing [27] that is often very useful in improving on annealed bounds
is of no use to show that hc(β )−ha

c(β ) > 0 [12]. The proof of Theorem 6.1 is based
on substantial refinements of the basic fractional moment approach. A result close to
Theorem 6.1, at least for α > 1/2, has been proven in [14], using precisely the line
that we followed here for the case α ≥ 1. The results in [14] have been improved
in [2], without using fractional moments, but still only for α > 1/2 [in the sense of
(2.30)]. However, in order to fully appreciate the results in [2, 14] one should take
into account that they have been obtained for regularly varying functions K(·), in
particular allowing K(n)∼ (log(n))ζ /n1+α . So, both [14] and [2] deal with the case
α = 1/2, but they demand ζ < 0 ([14] even ζ < −1/2).

The case α = 1/2 has been solved in [19] and then the result has been improved
in [20]. The proof we present here for the case α ∈ [1/2,1) is a simplification of
the technique in [19, 20]. It is a simplification not only because there is no slowly
varying function in K(·), that is ζ = 0, but also because in [20] it is proven a result
that is sensibly stronger than (6.1), α = 1/2, namely that exp(−1/(cβ 4)) can be
replaced by exp(−1/(cβ 2+a)), with a > 0. This

1. Arrives close to what is claimed in [15], where the critical point shift is
quantified, to leading order, to C1 exp(−C2/(cβ 2)), with C1 and C2 explicit
positive constants.

2. Requires upgrading the 2-body potential argument we have presented to q-body
potentials, q > 2: the 2-body refers to the fact that Y (ω ;k) [cf. (6.80)] is a second
degree polynomial.
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Moreover in [20] it is shown that hc(β ) > ha
c(β ), with an explicit bound, for

α = 1/2 and ζ < 1/2. This is close to being the optimal result that one expects:
disorder irrelevance has been in fact established in [1,30] (see also Chap. 4) as soon
as ∑n P(n ∈ τ)2 < ∞, that is, for α = 1/2, as soon as ∑n 1/(n(logn)2ζ ) < ∞. The
only case left out is ζ = 1/2 (and, of course, all the other slowly varying functions
thereabout...)!

The work [19] has actually settled the controversy on whether disorder is relevant
or irrelevant at marginality, at least from the view point of critical point shift. After
the appearance of [16, 21, 22] stood in favor of disorder irrelevance and hc(β ) =
ha

c(β ) for α = 1/2 [in the sense of (2.30)] and β not too large, but once [15] was
published with the claim hc(β ) > ha

c(β ), the physical literature seemed to settle on
the new line [6, 28, 29]. More recently however the claim [16] that hc(β ) = ha

c(β )
has reappeared in [17].

The method adopted in this chapter (fractional moments, measure change, coarse
graining) has been successfully used in other contexts. Here we mention

1. Copolymers at selective interfaces [11, 32]
2. The pinning on a walk model [5, 8, 9]
3. The directed polymer in random environment [25, 26], in particular with a proof

[25] of the fact that quenched and annealed free energies differ as soon as β > 0
in dimension one and, notably, two

4. Random walks in random environments [33]
5. Semi-directed polymers in random environment [34]

Recently another approach, based on the quenched large deviation principle
proven in [10], to decide whether or not hc(β ) > ha

c(β ) has been set forth in
[13]. While for now this approach does not yield hc(β ) > ha

c(β ) for α > 1/2, it
provides such a result for β sufficiently large, and arbitrary α , under a condition
on the disorder that is weaker than what one can extract form Proposition 6.3. The
condition is easily stated if we call w the supremum of the support of the law of ω1:
it is simply

P(ω1 = w) = 0 , (6.97)

and this includes all the cases in which w = ∞. For w < ∞ this fact is better
appreciated in relation to Theorem 4.5 and (4.11).

We cannot close this chapter without recalling that much of the developments
and ideas presented in this chapter were born while dealing with the hierarchical
version of disordered pinning (a model proposed in [15]). Hierarchical models did
not find their place in these notes, but we do want to mention [18, 19, 24].
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Ann. Inst. H. Poincaré (B) Probab. Stat. 47, 259–293 (2011)

10. M. Birkner, A. Greven, F. den Hollander, Quenched large deviation principle for words in a
letter sequence. Probab. Theory Relat. Fields 148, 403–456 (2010)

11. T. Bodineau, G. Giacomin, H. Lacoin, F.L. Toninelli, Copolymers at selective interfaces: new
bounds on the phase diagram. J. Stat. Phys. 132, 603–626 (2008)

12. F. Caravenna, G. Giacomin, On constrained annealed bounds for pinning and wetting models.
Electron. Commun. Probab. 10, 179–189 (2005)

13. D. Cheliotis, F. den Hollander, Variational characterization of the critical curve for pinning of
random polymers. arXiv:1005.3661

14. B. Derrida, G. Giacomin, H. Lacoin, F.L. Toninelli, Fractional moment bounds and disorder
relevance for pinning models. Commun. Math. Phys. 287, 867–887 (2009)

15. B. Derrida, V. Hakim, J. Vannimenus, Effect of disorder on two-dimensional wetting. J. Stat.
Phys. 66, 1189–1213 (1992)

16. G. Forgacs, J.M. Luck, Th. M. Nieuwenhuizen, H. Orland, Wetting of a disordered substrate:
exact critical behavior in two dimensions. Phys. Rev. Lett. 57, 2184–2187 (1986)

17. D.M. Gangardt, S.K. Nechaev, Wetting transition on a one-dimensional disorder. J. Stat. Phys.
130, 483–502 (2008)

18. G. Giacomin, H. Lacoin, F.L. Toninelli, Hierarchical pinning models, quadratic maps and
quenched disorder. Probab. Theory Relat. Fields 147, 185–216 (2010)

19. G. Giacomin, H. Lacoin, F.L. Toninelli, Marginal relevance of disorder for pinning models.
Commun. Pure Appl. Math. 63, 233–265 (2010)

20. G. Giacomin, H. Lacoin, F.L. Toninelli, Disorder relevance at marginality and critical point
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Chapter 7
The Coarse Graining Procedure

Abstract This chapter develops in detail the most advanced of the two coarse
graining techniques employed in the previous chapter. Roughly, it consists in
looking at the system in blocks of finite size k, which essentially is the annealed
correlation length: if we can get suitable estimates for systems up to that size k, we
can bound the fractional moment of the partition function of the (arbitrarily large)
system in terms of the partition function of a homogeneous model with pinning
parameter that depend on the estimates up to size k.

7.1 Coarse Graining Estimates

This is a technical chapter that details how suitable upper bounds on the finite
volume system can be upgraded to an upper bound on arbitrarily large volumes.
As the title says, it details a suitable coarse graining technique (it is adapted from
[2], that proposes an improved version of the coarse graining in [1], that in turns
was adapted from the coarse graining in [3] that deals with the copolymer model).
We will use (only in this chapter) the compact notation

ωβ ,n := β βn − log M(β ) , (7.1)

and for 0 ≤ M < N we set

ZM,N = ZM,N,ω := E

[

exp

(

N

∑
n=M+1

(

ωβ ,n + h
)

δn

)

δN

∣

∣

∣

∣

∣

δM = 1

]

, (7.2)

and ZM,M := 1. Moreover ZN := Z0,N .
In the statement that follows k = k(β ,c) ∈ N is a correlation length that is

function of β (β ∈ (0,β∗], where β∗ is an arbitrary value that we keep fixed) and
of a positive constant c. What we are assuming is that

lim
c↘0

inf
β∈(0,β∗]

k(β ,c) = ∞. (7.3)
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As a matter of fact, in all the cases we consider the correlation length is completely
explicit, it is either (the integer part of) c−c1β−c2∗ with c1,c2 > 0 or exp(1/cβ 4∗ ), and
infβ∈(0,β∗] k(β ,c) = k(β∗,c). We also need to choose a dependence of h on c and β .
For the intuition it is more convenient to think and write h as a (positive) function
the correlation length: h = h(k) > 0, and in the applications h(k) is just k to some
negative power. To be precise, in the applications we will not keep the integer part
restrictions on k when dealing with h, so we will use rather h(c,β ) rather than h(k),
but this is really inessential.

The value of α > 0 is arbitrary, but the cases in which we are interested in is
α ∈ [1/2,1): we assume α ∈ (0,1) because on one hands some constants do depend
on α so that one has to work with α smaller than a constant and because the renewal
function estimates change at α = 1 and working in the general set-up would be
unnecessarily heavy. Moreover we set

γ :=
2

2 + α
∈ (0,1) , (7.4)

so that (1 + α)γ > 1.

Proposition 7.1. Let us choose k(·, ·), h(·), α and γ as above and let us assume that

for every η ,ε ∈ (0,1) one can find c0 > 0 and
{

˜Pn

}

n∈N

, with ˜Pn a probability on

R
n equivalent (i.e. mutually absolutely continuous) to the restriction Pn of P to R

n,
such that for every c≤ c0 and every β ∈ (0,β∗] we have

1.

˜Ek

[

(

dPk

d˜Pk

)1/(1−γ)
]

≤ 2 , (7.5)

2.

sup
f ,d∈{1,2,...k}

f−d>εk

˜EkE
[

exp
(

∑ f
n=d

(

ωβ ,n + h(k)
)

δn

)

δ f

∣

∣

∣d ∈ τ
]

P( f −d ∈ τ)
≤ η , (7.6)

3.

sup
f ,d∈{1,2,...k}

f−d≤εk

˜EkE
[

exp
(

∑ f
n=d

(

ωβ ,n + h(k)
)

δn

)

δ f

∣

∣

∣d ∈ τ
]

P( f −d ∈ τ)
≤ 2 . (7.7)

Then there exists c1 > 0 such that for every c ∈ (0,c1], every β ∈ (0,β∗] and for
h ≤ h(k) we have

sup
N

E
[

Zγ
N

]

< ∞. (7.8)

Proof. Without loss of generality k is chosen even and N = km (m ∈ N is therefore
the size of the coarse grained system). A coarse grained configuration is a subset I
of {1,2, . . . ,m} and the coarse graining blocks, or k-blocks, are

Bi := (i−1)k + {1,2, . . .,k} , (7.9)
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for i = 1,2, . . .. We introduce

̂ZI = ̂ZI ,ω := E

[

exp

(

N

∑
n=1

(

ωβ ,n + h
)

δn

)

1τ∩(0,N]⊂∪i∈I Bi,τ∩Bi �= /0 for i∈I δN

]

,

(7.10)
so that

ZN = ∑
I

̂ZI , (7.11)

where ∑I stands for the summation over I ⊂{1, . . . ,m} and we can as well restrict
the summation to the I ’s that contain m, since ̂ZI = 0 otherwise. By writing I =
{i1, . . . , i�}, with 1 ≤ i1 < i2 < .. . < i� = m, and by setting zn = exp(ωβ ,n + h) we
have the formula

̂ZI = ∑
d1, f1∈Bi1

d1≤ f1

∑
d2, f2∈Bi2

d2≤ f2

. . . ∑
d�−1, f�−1∈Bi�−1

d�−1≤ f�−1

∑
d�∈B�

K(d1)zd1Zd1, f1K(d2 − f1)zd2Zd2, f2 · · · zd�−1Zd�−1, f�−1K(d�− f�−1)zd�
Zd�,N . (7.12)

For γ ∈ (0,1) we have

E
[

Zγ
N

] ≤ ∑
I

E

[

̂Zγ
I

]

. (7.13)

Given a coarse grained configuration I we now consider the new measure of the
environment ˜PI with the following properties:

(P1) The law of {ωn}n/∈∪i∈I Bi
is the same under P or under ˜PI , in particular they

are still IID random variables.
(P2) The random variables {ωn}n∈Bi are independent of {ωn}n∈Bi′ for i �= i′.
(P3) The law of {ω j} j∈Bi coincides with the law of {ω j} j∈Bi′ if i, i′ ∈ I .

(P3) The law of {ω j} j∈Bi for i ∈ I , a probability on R
k, is given by ˜Pk [the

probability measure in the assumptions (7.5) and (7.6)].

The new environment is therefore changed only in the k-blocks that are visited in the
coarse grained configuration (that is Bi such that i ∈ I ). We now apply the Hölder
inequality with p = 1/γ to get

E

[

̂Zγ
I

]

≤ ˜EI

[

(

dP

d˜PI

)1/(1−γ)
]1−γ

E

[

̂ZI

]γ
. (7.14)

By the properties (P1) to (P4) above and by (7.5) we directly see that

˜EI

[

(

dP

d˜PI

)1/(1−γ)
]

= ˜Ek

[

(

dPk

d˜Pk

)1/(1−γ)
]|I |

≤ 2|I |. (7.15)
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For the other term observe that by (7.12) and by property (P2) we have

˜EI

[

̂ZI

]

= ∑
d1, f1∈Bi1

d1≤ f1

∑
d2, f2∈Bi2

d2≤ f2

. . . ∑
d�−1, f�−1∈Bi�−1

d�−1≤ f�−1

∑
d�∈B�

K(d1)˜EI

[

zd1Zd1, f1

]

K(d2 − f1)˜EI

[

zd2Zd2, f2

] · · · K(d�− f�−1)˜EI

[

zd�
Zd�,N

]

,
(7.16)

and properties (P3) and (P4), together with (7.6) and (7.7), tell us that

˜EI

[

zd j Zd j , f j

]

= ˜Ek

[

zd j−(i j−1)kZd j−(i j−1)k, f j−(i j−1)k

]

≤ ˜G( f j −d j) , (7.17)

with
˜G(n) := (η + 21n≤εk)P(n ∈ τ) , (7.18)

so that

˜EI

[

̂ZI

]

≤ ∑
d1, f1∈Bi1

d1≤ f1

∑
d2, f2∈Bi2

d2≤ f2

. . . ∑
d�−1, f�−1∈Bi�−1

d�−1≤ f�−1

∑
d�∈B�

K(d1) ˜G( f1 −d1)K(d2 − f1) ˜G( f2 −d2) · · · K(d�− f�−1) ˜G(N −d�) . (7.19)

We now aim at simplifying this expression by showing that if ε is chosen suitably
(as a function of η) then we can replace ˜G(n) in (7.19) with 2ηP(n ∈ τ) and obtain
an upper bound. It is rather intuitive why this is true: consider the jth visited block
and think of the case in which d j is not too close to the right-end of the block (say,

it is in the first half of the block). Then in ∑
d j+εk
f=d j

P( f − d j ∈ τ)K(d j+1 − f ) the

term K(d j+1 − f ) depends little on f , since d j+1 − f is larger than (say) k/3 (if ε
is sufficiently small, say smaller than 1/10). But ∑

d j+εk
f=d j

P( f − d j ∈ τ) for k large

behaves like (εk)α [by (A.8)] while the analogous term if we remove the constraint
of summing only over up to a distance εk we get

√
k: but this is what we are doing

with the term in ˜G(·) that contains the factor η . So by choosing
√

ε of the order of
η we see that these two terms are comparable. Of course d j is not always in the first
half of the block, but if it is not, f j is in the second half and a specular argument
applies.

In detail, the argument goes as follows: let us consider one of the jth visited
block and let us partition it into the left and the right part:

B−
i j

:= (i j −1)k +{1, . . . ,k/2} ,

B+
i j

:= (i j −1)k +{k/2, . . . ,k} .
(7.20)
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If d j ∈ B−
i j

then for ε < 1/12 we have that for k sufficiently large (k ≥ k0(K(·),ε))

d j+εk

∑
f=d j

P( f −d j ∈ τ)K(d j+1 − f ) ≤ 6

(

kε

∑
n=1

P(n ∈ τ)

)

K
((

i j+1 − i j
)

k
)

. (7.21)

This comes from the fact that when i j+1 = i j + 1 then d j+1 − f ≥ (1/2− 1/12)k
and, since K(5n/12) n→∞∼ (12/5)1+αK(n) and (5/12)2 > 1/6, we have that, for k
large, K(d j+1 − f ) ≤ 6K(k). If i j+1 − i j > 1 the same argument can be repeated
(with better constants). We compare this expression with the one in which we sum
till the end of the block: for k sufficiently large (k ≥ k0(K(·))) we have

ki j

∑
f=d j

P( f −d j ∈ τ)K(d j+1 − f ) ≥ 1
4

(

k/4

∑
n=1

P(n ∈ τ)

)

K
((

i j+1 − i j
)

k
)

. (7.22)

Since ∑N
n=1 P(n ∈ τ) ∼ const.Nα for N large we therefore see that by choosing for

example ε = η3 (of course η2 times a small constant would suffice) we have that
for η sufficiently small and for k sufficiently large (k ≥ k0(K(·),η))

d j+εk

∑
f=d j

P( f −d j ∈ τ)K(d j+1 − f ) ≤ η
2

ki j

∑
f=d j

P( f −d j ∈ τ)K(d j+1 − f ). (7.23)

If d j /∈ B−
i j

then f j ∈ B+
i j

and one repeats the argument on the left to get

f j

∑
d= f j−εk

K(d− f j−1)P( f j −d ∈ τ) ≤ η
2

f j

∑
d=k(i j−1)

K(d− f j−1)P( f j −d ∈ τ) . (7.24)

Therefore by (7.23) and (7.24) we see that

∑
d j , f j∈Bi j

d j≤ f j

1{ f j−d j≤kε}K(d j − f j−1)P( f j −d j ∈ τ)K(d j+1 − f j)

≤ η
2 ∑

d j , f j∈Bik
d j≤ f j

K(d j − f j−1)P( f j −d j ∈ τ)K(d j+1 − f j). (7.25)

The last summation in (7.19) is slightly different, since one is summing only over
d�. But in this case d� is necessarily very close to the right-end point of the block,
and therefore far from f j−1 and the estimate requires only half of the argument that
we have developed.
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We sum up what we have obtained:

˜EI

[

̂ZI

]

≤ (2η)� ∑
d1, f1∈Bi1

d1≤ f1

∑
d2, f2∈Bi2

d2≤ f2

. . . ∑
d�−1, f�−1∈Bi�−1

d�−1≤ f�−1

∑
d�∈B�

K(d1)P( f1 −d1 ∈ τ)K(d2 − f1)P( f2 −d2 ∈ τ) · · · K(d�− f�−1)P(N −d� ∈ τ)

= (2η)|I |P(E(I )) , (7.26)

where E(I ) is the event that the coarse grained version of τ coincides with I ,
namely:

E(I ) := {τ : τ ∩ (0,N] = τ ∩ (∪i∈I Bi) , τ ∩Bi �= /0 for i ∈ I } . (7.27)

We postpone the proof of following probability estimate.

Lemma 7.2. There exist C1 = C1(K(·),k), C2 = C2(K(·)) and k0 = k0(K(·)) such
that for k ≥ k0

P(E(I )) ≤ C1C|I |
2

|I |
∏
j=1

1
(i j − i j−1)1+α , (7.28)

where i0 := 0.

Now we apply Lemma 7.2 to (7.26): in view of (7.13)–(7.15) we have

E
[

Zγ
N

] ≤ C1 ∑
I

2(1−γ)|I |(2ηC2)γ|I |
|I |
∏
j=1

1

(i j − i j−1)(1+α)γ

= C1 ∑
I

(21/γηC2A)γ|I |
|I |
∏
j=1

˜K(i j − i j−1), (7.29)

where A := ∑n∈N n−(1+α)γ (recall that (1+α)γ > 1) and ˜K(n) := n−(1+α)γ/A. With
a different notation:

E
[

Zγ
mk

] ≤ C1 E [exp(q |˜τ ∩ (0,m]|) ; m ∈ ˜τ] , (7.30)

where ˜τ is the renewal with inter-arrival law ˜K(·) and q := γ log(21/γηC2A). By
choosing η < 2−1/γ/(C2A) (that is η smaller than a quantity that depends only
on K(·)) we have in the right-hand side of (7.30) the partition function of a
homogeneous pinning model in the delocalized regime. This tells us, in particular,
that supm E

[

Zγ
mk

]

< ∞ from which we directly [cf. (3.29)] infer supN E
[

Zγ
N

]

< ∞
and we are done. ��
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Proof of Lemma 7.2. We start by observing that, by choosing C2 ≥ 1, we see that
in the product on the right-hand side of (7.28) we can ignore the j’s for which
i j − i j−1 = 1. We therefore prefer to reparametrize I in terms of two sequences of
increasing integer numbers {a j} j=1,...,p, {b j} j=1,...,p with bp = m, a j ≥ b j−1 +2 (for
j > 1) and b j ≥ a j such that

I =
p
⋃

j=1

[a j,b j]∩N. (7.31)

Of course p ≤ |I |.
With this definition, it is sufficient to show

P(E(I )) ≤ C1Cl
2

1

a1+α
1

p−1

∏
j=1

1
(a j+1 −b j)1+α . (7.32)

We start then by observing that P(E(I )) is bounded above by

∑
d1∈Ba1
f1∈Bb1

. . . ∑
dp−1∈Bap−1

fp∈Bbp−1

∑
dp∈Bap

K(d1)P( f1 −d1 ∈ τ) . . .K(dp − fp−1)P(N −dp ∈ τ) ,

(7.33)
where the inequality comes from neglecting the fact that, when b j ≥ a j + 2, a
configuration τ ∈ E(I ) is required to have a non-empty intersection with Bi for
every i ∈ {a j + 1, . . . ,b j − 1}. Note that the meaning of the d and f indexes is
somewhat different with respect to (7.12) and that in the above sum we always have

(a j −b j−1−1)k ≤ d j − f j−1 ≤ (a j −b j−1 + 1)k ,

(b j −a j −1)k∨0 ≤ f j −d j ≤ (b j −a j + 1)k .
(7.34)

Notice also that, in (7.33), f j ≥ d j is granted, since P( f j −d j ∈ τ) = 0 if f j < d j.
By using K(n) ≤C0n−1−α (C0 = C0(K(·)) > 0) we directly get

∑
n∈Ba1

K(n) ≤
{

1 if a1 = 1,

C0k−α(a1 −1)−1−α if a1 = 2,3, . . . ,
≤ c1(k)

kα a1+α
1

, (7.35)

where c1(k) := max(kα ,C021+α). Moreover for j > 1, since a j ≥ b j−1 +2, we have

(a j−b j−1+1)k

∑
n=(a j−b j−1−1)k

K(n) ≤ 2kC0

k1+α(a j −b j−1−1)1+α

≤ 22−αC0

kα (a j −b j−1)1+α =:
c2

kα(a j −b j−1)1+α , (7.36)
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0

0

1 11 127 8 9 1065432

a1= b1
a2 b2 a4 = b4

a3 b3

Nk 2k

d1 f1 d2 f2 d3 f3 d4

f4
d5 f5 d6 f6 d7

f7
d8

12k
B6

Full configuration:

Coarse grained configuration:

Fig. 7.1 The coarse graining procedure. At the top level a full configuration is given (a continuous
path is drawn because it helps in identifying the contact points) and the k-blocks are marked. The
indexes d j and f j of the decomposition (7.12) indicate respectively the first and the last renewal
point in the jth visited block. The coarse grained configuration I ⊂ {1,2, . . .,N/k = 12}, below,
is the one that keeps into account only the visited blocks. For the trajectory in the figure we have
I = {2,4,5,7,8,9,10,12}. In the last line one finds the parametrization of I used in Lemma 7.2,
that consists in looking at the coarse grained configuration by joining the blocks, now big dots, that
are neighbors

where c2 depends only on K(·). On the other hand, since P(n ∈ τ) ≤ Cnα−1 for a
suitable constant C = C(K(·)) [cf. (A.11)] we have, for b j −a j = 0 or 1

(b j−a j+1)k

∑
n=(b j−a j−1)k∨0

P(n ∈ τ) ≤ C
(b j−a j+1)k

∑
n=(b j−a j−1)k∨0

nα−1 ≤ 2Cα−1 kα

(b j −a j + 1)1−α ,

(7.37)
where the last inequality holds for k larger than a suitable constant. For b j − a j =
2,3, . . . we have instead

(b j−a j+1)k

∑
n=(b j−a j−1)k∨0

P(n ∈ τ)

≤ C
(b j−a j+1)k

∑
n=(b j−a j−1)k

nα−1 ≤ 2Ckα

(b j −a j −1)1−α ≤ 2C31−αkα

(b j −a j + 1)1−α . (7.38)

We now put (7.37) and (7.38) together to see that

(b j−a j+1)k

∑
n=(b j−a j−1)k∨0

P(n ∈ τ) ≤ c3
kα

(b j −a j + 1)1−α , (7.39)

with c3 = c3(K(·)).
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Now we go back to (7.33): by neglecting the last term which is smaller than one
and by using (7.35), (7.36) and (7.39) we obtain

P(E(I )) ≤ c1(k)(c2c3)p 1

kα a1+α
1

p−1

∏
j=1

1
(a j+1 −b j)1+α(b j −a j + 1)1−α

≤ C1Cp
2

1)
kα a1+α

1

p−1

∏
j=1

1
(a j+1 −b j)1+α , (7.40)

with C1 = C1(k) = c1(k)/kα and C2 = c2c3. Therefore the proof of Lemma 7.2 is
complete(Fig. 7.1). ��
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Chapter 8
Path Properties

Abstract We present a few selected results that show that localization, respectively
delocalization, in the free energy sense does correspond to localized, respectively
delocalized, path behavior. We provide also an overview of the literature on path
behavior for disorder pinning models, with a particular attention to the main theme
of these notes, that is disorder (ir)relevance, and therefore with a particular eye to
trying to quantify the differences in path behavior between pure and disordered
systems. While certain questions have found satisfactory answers, important (and
intriguing) issues remain open.

8.1 Overview

This chapter is less comprehensive than the other ones, in the sense that we aim at
giving the state of the art in the field, but we detail just a few selected results.

We are going to split the presentation according to whether F(β ,h) > 0 or not
and, in both cases, we start by stating and proving the selected results and then we
move to the review-like part of the text. We are essentially going to assume β > 0
because for β = 0 one can get much more detailed results. However the case β = 0,
cf. Theorem 2.5, plays a central role in this section because it is the reference case:
the precision of the results available for the β = 0 case is of course difficult to
achieve, but the important point is that it is precisely in trying to match these results
that substantial differences between β = 0 and β > 0 appear and this is of course
the most intriguing, still only (very) partially understood, aspect of this chapter.

The starting elementary observation is of course that for h < hc(β ) we have
∂hF(β ,h) = 0 and this is also the case for hc(β ) if the free energy F(β , ·) is C1

(and this is the case for example when we can apply the smoothing inequality,
cf. Chap. 5). As already pointed out before, in itself this is a rather satisfactory
statement because it tells us that the path behavior differs for (β ,h) in the localized

G. Giacomin, Disorder and Critical Phenomena Through Basic Probability Models,
Lecture Notes in Mathematics 2025, DOI 10.1007/978-3-642-21156-0 8,
© Springer-Verlag Berlin Heidelberg 2011
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102 8 Path Properties

region and in (the interior of) the delocalized one. But the limits of such a statement
are rather evident (possibly more in the delocalized case than in the localized one):

1. In the localized regime one observes a positive contact density and, hence,
something like a recurrent renewal (possibly even with exponential inter-arrival
law). This vague statement contains (at least) two issues: the existence of the
infinite volume limit and its closeness to a renewal with exponential inter-arrival
law (is the exponential rate still read off the free energy itself?).

2. In the delocalized regime the zero contact density is a rather poor statement in
itself if we think of the case α < 1 or the case in which the free renewal is
transient. And it gets even poorer if one thinks again to the fact that if β = 0 the
contact set is a finite set if h < hc = hc(0). So the basic issue is to go beyond the
o(N) result.

We deal with the localized regime before, but even before we take a brief
excursus through measure concentration inequalities.

8.2 A Quick Look at Concentration Inequalities

The theory of concentration of measures has grown to be a central tool in the
statistical mechanics of disordered systems, e.g. [6]. The inequality that we are
going to use applies to Lipschitz functions: more precisely it applies to G : R

N → R

which is such that for every x and y ∈ R
N

|G(x)−G(y)| ≤ CLip|x− y| , (8.1)

for CLip a positive constant (and |x− y| is the Euclidean norm). We always work
under the Hypothesis 3.1 but we have to add further conditions:

1. Either ω1 is a bounded variable.
2. Or the law of ω1 satisfies a log-Sobolev inequality, that is if for every non-

negative C1 function f : R → R such that E[ f (ω1)] = 1 there exists ρ ∈ (0,∞)
such that

E [ f (ω1) log f (ω1)] ≤ 1
2ρ

E

[

( f ′(ω1))
2

f (ω1)

]

. (8.2)

Such a condition is satisfied in particular if ω1 is Gaussian (and much more, see
e.g. [3, Chap. 6] and [9, Appendix A.3]).

The concentration inequality we are going to use says that for ω as above there
exist two positive constants c1 and c2 such that for every G(·) convex that satisfies
(8.1) we have that E|G(ω1,ω2, . . . ,ωN)| < ∞ and for every t ≥ 0

P(|G(ω1,ω2, . . . ,ωN)−EG(ω1,ω2, . . . ,ωN)| ≥ t) ≤ c1 exp
(−c2t2/C2

Lip

)

. (8.3)
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For a proof see for example [15, Corollary 4.10 and Proposition 1.8] for the case of
bounded variables and [15, Chap. 5] for the log-Sobolev case. There are many other
important references on concentration, we signal here [20] and [23].

A by now standard application of concentration inequality to statistical mechan-
ics is the quantitative self-averaging estimate that relies on the observation that
logZN,ω is a (convex) Lipschitz function with CLip = β

√
N: if, for ω and ω ′ ∈ R

N ,
we set ω(s) := sω +(1− s)ω ′

∣

∣logZN,ω − logZN,ω ′
∣

∣ =
∣

∣

∣

∣

∫ 1

0

d
ds

logZN,ω(s) ds

∣

∣

∣

∣

= β

∣

∣

∣

∣

∣

∫ 1

0

N

∑
n=1

(ωn −ω ′
n)EN,ω(s) [δn] ds

∣

∣

∣

∣

∣

≤ β

√

N

∑
n=1

(ωn −ω ′
n)2

√

N

∑
n=1

sup
s

EN,ω(s) [δn]
2 ≤ β

√
N|ω −ω ′|,

(8.4)

where, in the third step, we have used the Cauchy–Schwarz inequality.
Therefore, by (8.3), we have

P

(∣

∣

∣

∣

1
N

logZN,ω − 1
N

E logZN,ω

∣

∣

∣

∣

≥ t√
N

)

≤ c1 exp
(−c2t2/β 2) , (8.5)

which is telling in particular that the fluctuations of the random variable logZN,ω
are O(

√
N) (this is actually sharp in the localized phase where one can prove a

Central Limit Theorem with non-degenerate variance, see [12]). Note also that such
an inequality reduces the existence of the quenched free energy to the existence of
the quenched averaged free energy, that is to the existence of limN(1/N)E logZN,ω
(proven in the beginning of Chap. 3).

In order to get some interesting results in the delocalized phase we need to go
beyond (8.4): we are in fact going to apply the steps in (8.4) to a restricted partition
function. For m ∈ N we introduce the event Em := {|τ ∩ (0,N]| = m} by proceeding
like in (8.4) we obtain that for m ∈ {1,2, . . . ,N}
∣

∣logZN,ω (Em)− logZN,ω ′(Em)
∣

∣

≤ β

√

N

∑
n=1

(ωn −ω ′
n)2

√

sup
s

N

∑
n=1

EN,ω(s)
[

δn
∣

∣Em
]2 ≤ β

√
m |ω −ω ′| , (8.6)

where in the last step we have used EN,ω(s)
[

δn
∣

∣Em
]≤ 1 and that ∑n EN,ω(s)[δn|Em]

is m. Therefore a direct application of (8.3) yields

P(|logZN,ω (Em)−E logZN,ω (Em)| ≥ t) ≤ c1 exp

(

−c2
t2

β 2m

)

, (8.7)
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which is telling us that logZN,ω (Em) has fluctuations of the order of
√

m and this
will be crucial in Sect. 8.4.

8.3 The Localized Regime

8.3.1 A Basic Observation (and its Consequences)

Here is an argument developed in a slightly different context [19] that translates into
mathematics the intuitive idea that if F(β ,h) > 0 then the paths we observe keep
close to to zero because those are the paths that contribute to the partition function
(rather: if they don’t keep close to zero, they do not contribute). This argument
makes naturally appear a companion, that we call μ(β ,h), to the free energy F(β ,h)
(a role for this new quantity has been first pointed out in [2]).

In order to develop the argument in the simplest context let us consider a system
that extends from −N to N, that is the system with partition function

Z−N,N,ω,β ,h = Z−N,N,ω = E−N

[

exp

(

N

∑
n=−N+1

(β ωn + h)δn

)

δN

]

, (8.8)

where P−N is the law of the delayed renewal with delay τ0 = −N. Our aim is to
show that the probability that the origin is in a (large) region that does not contain
contact points is small in the localized regime. For this let us introduce the random
variable gap(τ) := max{l + r : l,r ≥ 0, [−l,r]∩ τ = {−l,r}}, so that gap(τ) = 0 if
0 ∈ τ and otherwise gap(τ) > 1. For g = 2,3, . . . by the renewal property of τ we
see that we can write

P−N,N,ω (gap(τ) ≥ g) = ∑
l,r

Z−N,−l,ω K(l + r)exp(β ωr + h)Zr,N,ω

Z−N,N,ω
, (8.9)

where l and r are in {1, . . . ,N} and satisfy l + r ≥ g. But, for every choice of l and
r in the range of summation, we have also

Z−N,N,ω ≥ Z−N,N,ω ({−l,r} ⊂ τ) = Z−N,−l,ω Z−l,r,ωZr,N,ω , (8.10)

so that

P−N,N,ω (gap(τ) ≥ g) ≤ ∑
l,r

K(l + r)exp(β ωr + h)
Z−l,r,ω

, (8.11)

so that the term in the sum is really confined to {−l, . . . ,r} (N is forgotten!). Since

lim
g→∞

max
l,r: l+r≥g

∣

∣

∣

∣

1
l + r

logZ−l,r,ω − F(β ,h)
∣

∣

∣

∣

= 0 P(dω)-a.s., (8.12)
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is an easy corollary to Theorem 3.2, we see, by recalling also that the law of large
number implies that if ω1 ∈ L1 then limN→∞ supn=1,...,N ωn/N = 0 P(dω)-a.s., that
for every ε > 0 and every ω we can find Cε (ω), with P(Cε(ω) ∈ (0,∞)) = 1, such
that

Z−l,r,ω exp(−β ωr −h) ≥ 1
Cε(ω)

exp((l + r)(F(β ,h)− ε)) , (8.13)

for every l and r in N. Such a statement is of course of interest only if F(β ,h) > 0,
which we assume henceforth, along with ε ≤ F(β ,h)/2. Going back to (8.11) we
therefore see that

P−N,N,ω (gap(τ) ≥ g) ≤ Cε(ω) ∑
l,r:

l+r≥g

K(l + r)exp(−(l + r)(F(β ,h)− ε))

≤ Cε(ω)
∞

∑
j=g

jK( j)exp (− j (F(β ,h)− ε))

≤ C′
ε(ω)exp(−g(F(β ,h)− ε))

(8.14)

where C′
ε (ω) is just Cε(ω) times a constant, easily computed, that depends only

only on K(·) and on F(β ,h)− ε(> 0).
The bound (8.14) is quite strong and we will discuss it in Sect. 8.5. Here we

want to address the following issue: what happens if one considers the quenched-
averaged measure EP−N,N,ω rather than the quenched measure P−N,N,ω . Up to now
we did not feel the need to make a difference between quenched and quenched-
averaged because at the level of the free energy there is no difference. Let us see
what happens to the argument we have developed: from (8.11) we have

EP−N,N,ω (gap(τ) ≥ g) ≤ ∑
l,r

K(l + r)E
[

exp(β ωr + h)
Z−l,r,ω

]

=
exp(h)
M(−β ) ∑

l,r

K(l + r)E
[

1
Z−l,r,ω

]

,

(8.15)

where we recall that the summation is over l + r ≥ g. In a sense now the estimate
is easier than before, because we are now dealing with a non-random quantity
and it would be essentially the same as before if logE

[

1/Z−l,r,ω
]

were close
to −F(β ,h)(l + r) for l + r large: we will see that it is not so. It is however
an elementary exercise [absolutely analogous to the proof of (3.6)] to see that
{logE [1/Zr,ω ]}r is sub-additive, so that

lim
r→∞

1
r

logE

[

1
Zr,ω

]

= inf
r

1
r

logE

[

1
Zr,ω

]

=: −μ(β ,h) . (8.16)

We sum up what we have proven.
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Proposition 8.1. For every ε > 0

1. And P(dω)-a.s. there exists Cε(ω) ∈ (0,∞) such that

P−N,N,ω (gap(τ) ≥ g) ≤ Cε(ω)exp(−g(F(β ,h)− ε)) , (8.17)

for every N and every g.
2. There exists Cε ∈ (0,∞) such that

EP−N,N,ω (gap(τ) ≥ g) ≤ Cε exp(−g(μ(β ,h)− ε)) , (8.18)

for every N and every g.

This statement is of course empty if (β ,h) /∈ L : this is clear for the quenched
statement, but it is clear also for the quenched averaged case since Jensen inequality
directly implies

μ(β ,h) ≤ F(β ,h) . (8.19)

We will see in a moment that, for rather general charge distributions, F(β ,h) > 0
implies μ(β ,h) > 0, so that also Proposition 8.1(2) is really a statement for
(β ,h)∈L .

Still, what we have proven up to here is still a weak argument in favor of a
substantial role for μ(β ,h), but the point is that Proposition 8.1 can be upgraded
with moderate effort to a version with lower bounds matching the upper bounds,
notably for (β ,h) ∈ L and every ε > 0 one can find cε > 0 such that

EP−N,N,ω (gap(τ) ≥ g) ≥ cε exp(−g(μ(β ,h)+ ε)) , (8.20)

for every N and every g≤N (see [12] and [9, Theorem 7.5]). But in Sect. 8.5 we will
come back with an even more stringent reason in favor of the importance of μ(β ,h).

8.3.2 On μ(β ,h) and F(β ,h)

We have already seen that μ(β ,h)≤ F(β ,h). Another quick result is that μ(β ,h)≥ 0
for every β and h: this is just obtained by using ZN,ω ≥ exp(β ωN + h)K(N). The
following results are however less immediate.

Proposition 8.2. The following two statements hold.

1. If ω1 ∼ N (0,1) (see however Remark 8.3 for generalizations), for β > 0 and
(β ,h) ∈ L we have μ(β ,h) < F(β ,h).

2. If ω is such that the concentration inequality (8.3) holds, then there exists c>0
such that μ(β ,h) ≥ cmin

(

F(β ,h),F2(β ,h)/β 2
)

, so that F(β ,h) > 0 implies
μ(β ,h) > 0.
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Proof. For every fixed N ∈ N and ε > 0 we call ˜PN the law of the sequence ω1 −
ε/β , . . . ,ωN − ε/β ,ωN+1,ωN+2, . . .. It is immediate to verify that

1
N

H
(

˜PN
∣

∣P

)

=
ε2

2β 2 , (8.21)

and therefore, by Jensen inequality and change of variable, we get

1
N

logE

[

1
ZN,ω,β ,h

]

=
1
N

log˜EN

[

1
ZN,ω,β ,h

exp

(

log
dP

d˜PN
(ω)

)]

≥− 1
N
˜EN
[

logZN,ω,β ,h
]− 1

N
H
(

˜PN
∣

∣P

)

= − 1
N

E
[

logZN,ω,β ,h−ε
]− ε2

2β 2 .

(8.22)

In the N → ∞ limit we obtain

μ(β ,h) ≤ F(β ,h− ε)+
ε2

2β 2 . (8.23)

But convexity and the fact that F(β ,h) > 0 ensure that there exists c > 0 such
that F(β ,h − ε) ≤ F(β ,h) − cε for ε sufficiently small (choose for example
2c= limε↘0(F(β ,h)− F(β ,h− ε))/ε). By coupling this observation and (8.23) we
are done with the first statement.

For the second statement we introduce the event

ΩN :=
{

ω :
1
N

logZN,ω ≥ 1
2

F(β ,h)
}

. (8.24)

For (β ,h) ∈ L we can find N0 such that

1
N

E logZN,ω ≥ 3
4

F(β ,h) , (8.25)

for every N ≥ N0. So if we make such an assumption on N the concentration bound
(8.5) tells us that

P

(

Ω �
N

)

≤ c1 exp

(

− c2

32β 2 N F(β ,h)2
)

, (8.26)

that we employ as follows:

E

[

1
ZN,ω,β ,h

]

≤ E

[

1
ZN,ω,β ,h

; ΩN

]

+
E

[

exp(−β ωN −h); Ω �
N

]

K(N)

≤ exp

(

−1
2

N F(β ,h)
)

+ cN1+α exp

(

− c2

32β 2 N F(β ,h)2
)

,

(8.27)
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with c = c1 supN N1+α/K(N). Since log(a + b)≤ log2 + logmax(a,b) for a,b ≥ 0,
the proof is complete. ��
Remark 8.3. The Gaussian charge assumption in Theorem 8.2(1) is directly gener-
alized to the cases in which one can exhibit a bound on the relative entropy in (8.21)
that goes like εa for some a > 1. This of course requires that the support of ω1 is
the whole real line. But one can deal also with bounded charges, by proceeding like
in [11].

8.4 The Delocalized Regime

Here is the result we want to establish.

Theorem 8.4. Besides the basic assumption (Hypothesis 3.1) on the law of the
charges we require also that the charges have been chosen so that (8.3) holds (this
includes the case of bounded and Gaussian charges). For every h < hc(β ) there
exists a constant C > 0 such that

EPN,ω (|τ ∩ (0,N]| ≥ M) ≤ CN1+α exp(−M/C) , (8.28)

for every N and M ∈ N.

The main application of this result is by choosing M = q logN, with q >C(1+α),
so that this result shows that, for the quenched averaged measure EPN,ω , there are
O(logN) pinned sites in the delocalized regime. See Sect. 8.5 for more.

Proof. As we have pointed out in Chap. 3

(β ,h) ∈ D ⇐⇒ E
[

logZN,ω,β ,h
] ≤ 0 for every N ∈ N , (8.29)

which is just a restatement of Proposition 3.4. Recall now that Em, introduced just
before (8.6), is the event on which there are precisely m contacts and below ZN,ω (E)

is the partition function restricted to renewal trajectories in E . Since if (β ,h) ∈
◦
D

then (β ,h + ε) ∈ D for some ε > 0, we can couple the observation that

logZN,ω,β ,h(Em) ≥ −1
2

εm ⇐⇒ logZN,ω,β ,h+ε(Em) ≥ 1
2

εm , (8.30)

with the fact that E logZN,ω,β ,h+ε(Em) ≤ 0, which follows from ZN,ω,β ,h+ε(Em) ≤
ZN,ω,β ,h+ε , to see that
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P

(

logZN,ω,β ,h(Em) ≥ −1
2

εm

)

= P

(

logZN,ω,β ,h+ε(Em) ≥ 1
2

εm

)

≤ P

(

logZN,ω,β ,h+ε(Em)−E logZN,ω,β ,h+ε(Em) ≥ 1
2

εm

)

≤ c1 exp

(

−c2ε2

4β 2 m

)

, (8.31)

and in the last step we have applied (8.7). Such an estimate directly entails that if
we set

ΩM :=
{

ω : there exists m ≥ M such that logZN,ω,β ,h(Em) ≥ −1
2

εm

}

, (8.32)

we have

P(ΩM) ≤ ∑
m≥M

c1 exp

(

−c2ε2

4β 2 m

)

≤ 1
C1

exp(−C1 M) , (8.33)

for a suitable choice of C1 > 0 (easily made explicit).
We are now ready to estimate the expectation that appears in (8.28). If ω ∈ Ω �

M
we have

PN,ω,β ,h (|τ ∩ (0,N]| ≥ M) =
1

ZN,ω,β ,h
∑

m≥M

ZN,ω,β ,h(Em)

≤ C2 exp(−β ωN −h)N1+α ∑
m≥M

exp(−εm/2)

≤ C3 exp(−β ωN)N1+α exp(−εM/2) .

(8.34)

Therefore

EPN,ω,β ,h (|τ ∩ (0,N]| ≥ M) ≤ C4N1+α exp(−εM/2)+
1

C1
exp(−C1 M) , (8.35)

and we are done. ��

8.5 Path Behavior: Overview of What is Known
and What is Not

A proper outline of the research on pinning models cannot be given without
mentioning the companion class of models called copolymers and selective solvents
or copolymer near a selective interface [5, 19]. And in fact copolymers have
already appeared in these notes, but when coming to path properties copolymer
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and pinning literatures become substantially more entangled. This is due to the
fact that it has been in the context of copolymer models, precisely in [5], that the
physical approach of looking at the free energy, leaving (temporarily) aside the path
properties, has been first taken up by mathematicians. For a simultaneous treatment
of copolymer and pinning models see [9], notably Chaps. 7 and 8 for what concerns
path properties. Here we review the literature with a particular attention to the issues
closest to the subject of these notes (pinning, disorder relevance). Let us also point
out that it is not clear whether a suitable scaling limit of the disordered pinning
model leads to a non-trivial (i.e. disordered) limit model: the (non-trivial!) weak
coupling limit [5, 7] of copolymer models becomes trivial for pinning models [18].

8.5.1 On the Localized (and Critical) Regime

Copolymer (localized) path behavior has been studied in [2, 19], before the free
energy definition of localization had been given. Properties of copolymer trajecto-
ries that are localized in the free energy sense have been first studied in [4] and
then, both for copolymers and pinning, in [12]. In particular one can find in [4, 12]
statements about the existence and uniqueness of P∞,ω , its Gibbs characterization
and decay of spatial correlations.

In a sense the results that have been established show that when the free energy
is positive a strong form of localization holds: one cannot prove a statement as
precise as Proposition 2.9, but, as we have seen in this chapter, in the localized phase
large gaps between pinned sites are exponentially penalized and a large localized
disordered system roughly looks like a large localized homogeneous system. The
reader may therefore have the impression that the difference is simply that in the
disordered case one cannot write explicitly the limit model. This is actually not
the case and subtle, but important, differences arise when one looks carefully:
notably, the new free energy μ(β ,h), cf. (8.16), pops up naturally as soon as
β > 0. Proposition 8.1 (and the observation that the upper bounds it provides can
be matched by analogous lower bounds, see [12] and [9, Chap. 7]) tells us that for
large N the measures EPN,ω and PN,ω are substantially (or, at least, quantitatively)
different. Therefore disorder does play an active role on paths. We sum this up here
by saying that 1/F(β ,h) is the correlation length of the quenched model, while
1/μ(β ,h) is the correlation length of the quenched averaged model [13, 22]: as we
have seen, they are different, but are they substantially different? Namely, do their
behavior approaching criticality differs? The analogous question for Ising models
has been taken up in [8]. The appearance of more than one natural correlation length
in disordered systems is a very intriguing issue that would lead us far, but we want to
point out that in [13] it is shown that the critical exponent of μ(β ,h), for h↘ hc(β ),
coincides with the one of F(β ,h) when disorder is irrelevant, so the two correlation
lengths are essentially one! In [13] one can find stronger results on this issue. The
open and very interesting question is: can one show that μ(β ,h) and F(β ,h) have
different critical behaviors when disorder is relevant? This of course hits the major
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open question of understanding the criticality of disordered (pinning) models when
disorder is relevant (see [1, 16, 24] for some intriguing conjectures).

We signal also the estimates on the number of pinned sites at criticality given in
[14, 21] and the proof, in [14], that at the critical point annealed and critical models
are very close to each other in a a.s. pathwise sense in the irrelevant disorder regime.

In [12] and [9, Chap. 7] (but also in [2] for copolymers) one can find a proof
(and a precise statement) of the fact that the largest gap between pinned points in a
disordered system of size N (gap(τ) of Sect. 8.3 is just the gap containing the origin)
is, to leading order, of size μ(β ,h) logN, both for PN,ω and EPN,ω (this quantity is
self averaging!). This is one more signature of the disorder: in the homogeneous
case the largest gap goes like F(0,h) logN and it is directly tight to the decay of the
probability that gap(τ) is large. For more on this see [13].

8.5.2 On the Delocalized Regime

The O(logN) results in Theorem 8.4 (proven in [10]) can be improved to O(1)
results when (β ,h) are in the delocalized regime of the annealed model, essentially
because one can exploit directly the homogeneous system estimates (see [10] and [9,
Chap. 8]). Here we point out that, thanks to Remarks 6.4 and 6.6, one can directly
extend these results to the whole regime in which the fractional moment method
applies (does this regime coincide with the full delocalized non-critical regime?).

The common characteristics (and drawback) of all the results we have mentioned
about the delocalized regime (recall however [14] for the critical case) is that they
are all results about the measure EPN,ω , and not about the quenched model itself
(see [10] for some considerations on the fact that certain statements that one would
guess at first for the delocalized behavior of PN,ω cannot hold). But very recently
a proof of the fact that Theorem 8.4 can be upgraded to a P(dω)-a.s. statement on
PN,ω has been found [17].
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Appendix A
Discrete Renewal Theory:
Basic (and a Few Less Basic) Facts
and Estimates

A.1 A Crash Course on Renewal Theory

A.1.1 Renewal and Markov Chains

We start by working in a general (discrete) framework, that is we choose a discrete
probability density K(·) on N∪{∞} (K(∞)< 1 to avoid trivialities) and we introduce
τ := {τ j} j=0,1,... as the sequence of partial sums of an IID sequence of K(·)
distributed variables, that we call inter-arrival variables. We call τ K(·)-renewal and
we stress that τ0 = 0 unless explicitly stated. We also freely switch from looking
at τ as a sequence of random variables and as a (random) subset of N∪{0} (point
process): note that we do not include infinity in this case, because it is always the
case that either τ is a finite set (when τn = ∞ for some n) or τ contains infinitely
many points (but not ∞). The point process notational convention is rather practical
and compact: for example {there exists j such that τ j = n} shrinks down to {n∈ τ}.
We say that τ is persistent when |τ|= ∞ (|τ| is the number of points in τ); otherwise
we say that it is terminating. Of course τ is persistent if and only if K(∞) = 0.

Renewal processes enjoy the renewal property, i.e. if A ⊂ P({0,1, . . . ,n}) and
B ⊂ P({n + 1,n + 2 . . .,}) we have

P(τ ∩ [0,n] ∈ A, n ∈ τ, τ ∩ [n + 1,∞)∈ B) =

P(τ ∩ [0,n] ∈ A, n ∈ τ)P(τ + n ∈ B) . (A.1)

There is natural link between renewal processes and Markov chains (see [1,
Chap. I] for a quick self-contained review on Markov chains and for all basic
notions). In fact, by the strong Markov property the sequence of successive returns
of a Markov chain to a fixed (recurrent or transient) state is a renewal process.
But this works also in the opposite direction: any renewal process is the return
time sequence of a suitable Markov chain. In fact if we define An := An(τ) :=
n− sup{τk : τk ≤ n}, then the sequence A := {An}n=0,1,... is a Markov chain called

G. Giacomin, Disorder and Critical Phenomena Through Basic Probability Models,
Lecture Notes in Mathematics 2025, DOI 10.1007/978-3-642-21156-0,
© Springer-Verlag Berlin Heidelberg 2011

113
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An
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1
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3

nt1 t2 t3 t4

Fig. A.1 The A process (large gray dots) associated to the renewal τ . In this case τ1 = 2, τ2 = 3,
τ3 = 7, τ4 = 12 and τ5 > 13

backward recurrence time. Note that An ∈ N∪{0} is the time elapsed since the last
renewal when looking from n, see Fig. A.1. The probability transition from An = i
to An+1 = j is non-zero only if j = i+1 or j = 0 and the probability that the process
moves up is (K(i+ 1)+ K(∞))/(K(i)+ K(∞)), independently of A0,A1, . . . ,An−1

(we have used K(i) := ∑n>i K(n) and in this sum K(∞) is not included).
We say that K(·) has period p ∈ N if {n : K(n) > 0} is contained in {pn :

n ∈ N} and if p is the largest number with this property. If p = 1 we say that K(·) is
aperiodic. The aperiodicity of K(·) implies the aperiodicity of the Markov chain A.
Note that when K(∞) = 0, the state space of A is {0,1, . . . ,sup{n : K(n) > 0}}\{∞}
and that A is irreducible (that is all states communicate in a finite number of steps,
with positive probability).

For ease of notation set mK := ∑n∈N∪{∞}nK(n) ∈ [1,∞]. Of course mK = ∞ may
arise also when K(∞) = 0: in this case A is a recurrent Markov chain, but it is
immediate to see that it is a null recurrent chain, since τ1 coincides with inf{n>0 :
An = 0}. On the other hand, A is clearly positive recurrent if mK < ∞. We will
therefore say that τ is positive (respectively null) persistent if A is.

A.1.2 The Renewal Theorem

We state now the Theorem.

Theorem A.1. If K(·) is aperiodic then limn→∞ P(n ∈ τ) = 1/mK, with 1/∞ = 0.

We direct the reader to [1, Chap. I, Theorem 2.2] for a proof, which is based on
the fundamental formula (direct consequence of the renewal property), often called
renewal equation (and n 
→ P(n ∈ τ) is the renewal function), that says

P(n ∈ τ) = 1n=0 +
n

∑
k=0

P(k ∈ τ)K(n− k). (A.2)
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One way to extract information from (A.2) is to pass to Laplace transform: for s > 0

∞

∑
n=0

exp(−sn)P(n ∈ τ) =

(

1−
∞

∑
n=1

exp(−sn)K(n)

)−1

. (A.3)

It helps the intuition to note that Theorem A.1 can be proven also by looking at
the ergodic properties of the backward recurrence time process A [1, Sect. VII.2].
In particular one sees that the condition mK < ∞ is precisely the condition for A
to be positive recurrent. This implies directly the existence of a unique invariant
probability measure which we can write explicitly:

pA(n) =
1

mK
∑

j≥n+1
K( j), n = 0,1, . . . . (A.4)

By the Ergodic Theorem for irreducible aperiodic Markov chains one also has that

lim
N→∞

P(AN = n) = pA(n). (A.5)

If A = {An}n is redefined so that A0 is distributed according to pA(·), so that A is
stationary, then {n : An = 0} is a renewal process translated by a random quantity
(independent of the renewal). In other terms, τ0 is no longer degenerate, but it has
its own distribution (on N∪ {0}). We call such a process a delayed renewal and
when τ0 has distribution pA(·) [cf. (A.4)] we call stationary renewal such a delayed
renewal (note that also a delayed renewal enjoys the renewal property).

We will often need information on the number of renewal points up to a certain
time n, that is on |τ ∩ (0,n]|. The fact that

lim
n→∞

1
n
|τ ∩ (0,n]| =

1
mK

, (A.6)

both in the almost sure and in the L1 sense (as a matter of fact, in Lp for any p ≥ 1),
is a direct consequence of Kolmogorov law of large numbers.

A.1.3 Beyond the Renewal Theorem

Theorem A.1 does apply when mK = ∞, but in this case it calls for refinements. We
state here results in this direction in the framework in which we typically work: that
is, we assume (2.30).

First of all, the transient case is covered by the following result.

Theorem A.2. If K(∞) > 0 then

P(N ∈ τ) N→∞∼ K(N)
(K(∞))2 . (A.7)

A proof can be found in [7, A.5.2].
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For the null recurrent case we have of course α ∈ (0,1]. The following results
can be found in [2, Theorem 8.7.3 and Theorem 8.7.5].

Theorem A.3. For α ∈ (0,1) and K(∞) = 0 we have that

E [|τ ∩ (0,N]|] =
N

∑
n=1

P(n ∈ τ) N→∞∼ sin(πα)
cKπ

Nα . (A.8)

For α = 1 and K(∞) = 0 we have that ∑N
n=1 P(n ∈ τ) ∼ N/(cK logN).

Theorem A.3 gives integral bounds and it can be obtained by standard Tauberian
arguments [2] applied to (A.3). Getting local estimates is substantially harder: sharp
local estimates however have been obtained and this is the content of the next
theorem.

Theorem A.4. For α ∈ (0,1) and K(∞) = 0 we have

P(N ∈ τ) N→∞∼ α sin(πα)
cKπ

1
N1−α . (A.9)

For α = 1 instead

P(N ∈ τ) N→∞∼ 1
cK logN

. (A.10)

Formula (A.9) is due to Doney [4, Theorem B], that completed a partial result of
[6]. The second result instead, that is (A.10), can be found in [2, Theorem 8.7.5].

Of course, from (A.9) one directly extracts the existence for α ∈ (0,1) of
C=C(K(·)) > 0 such that for every N ∈ N

1
C

≤ N1−αP(N ∈ τ) ≤ C . (A.11)

A.1.4 Convergence of Renewal and Point Processes

A renewal or, more generally, a discrete point process can be seen as a random
variable τ : Ω → P(N ∪ {0}) = 2N∪{0}, with(Ω ,F ,P) a generic probability
space and P(N∪{0}) is equipped with the σ -algebra G := σ(∪n∈NGn)), where
{Gn}n=0,1,... is the natural filtration of the process A = A(τ) defined in Sect. A.1.
It is convenient to introduce a metric space for which G is the Borel σ -algebra.
For this we introduce the semi-metric dn on P(N∪ {0}) by setting dn(B1,B2) =
1B1∩[0,n]�=B2∩[0,n]. Then one directly verifies that G is the Borel σ -algebra for the
metric d(B1,B2) := ∑n 2−ndn(B1,B2). We introduce the notation

P0 := (P(N∪{0}),d) , (A.12)
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for the metric space. In general we do not deal only with renewal processes: the
typical case we consider is the one of a sequence of measures {PN}N on P0

converging to a limit (that happens to be a renewal process). In any case the
convergence in law of {PN}N to a limit P∞ means simply if B ∈ Gn for some n
then limN PN(B) = P∞(B).

A.2 Some Pinning Oriented Renewal Issues

A.2.1 On Boundary Effects

Next is a bound on boundary effects: we just state the inequality that we use, but
also the reciprocal bound can be proven (with a different constant) along the same
line.

Lemma A.5. Assume (2.30). For every K(·)-renewal τ there exists Cbc > 0 such
that

E
[

Fn(τ)
∣

∣2n ∈ τ
] ≤ Cbc E [Fn(τ)] , (A.13)

for every n ∈ N and every Fn : P(N) −→ [0,∞) (P(N) is the set of subsets of
N) which is measurable with respect to the σ -algebra generated by {{A ∈ P(N) :
j ∈ A} : j = 1,2, . . . ,n} (that is Fn(A) = Fn(A∩ (0,n]) for every A ⊂ N).

Proof. The various constants c1, c2,... appearing below depend only on K(·). Set
Xn = Xn(τ) := max{ j = 0,1, . . . ,n : j ∈ τ}. By the measurability properties of Fn(·)
we see that Fn(τ) = Fn(τ ∩ (0, j]) if Xn(τ) = j (read (0,0] as /0) and therefore

E
[

Fn(τ)
∣

∣2n ∈ τ
]

=
n

∑
j=0

E
[

Fn(τ ∩ (0, j])
∣

∣Xn = j
]

P
(

Xn = j
∣

∣2n ∈ τ
)

, (A.14)

and therefore it is sufficient to show that

P
(

Xn = j
∣

∣2n ∈ τ
) ≤ Cbc P(Xn = j) . (A.15)

For this we write

P(Xn = j, 2n ∈ τ) = P( j ∈ τ)
2n

∑
m=n+1

K(m− j)P(2n−m ∈ τ)

= P( j ∈ τ)

( �3n/2�
∑

m=n+1

. . .+
2n

∑
m=�3n/2�+1

. . .

)

=: T1 + T2 . (A.16)
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For what concerns T1 we use the fact that 2n−m ≥ n/2 so that P(2n−m ∈ τ) ≤
c1P(2n ∈ τ) and

T1 ≤ c1 P(2n ∈ τ)P( j ∈ τ)
�3n/2�
∑

m=n+1
K(m− j) . (A.17)

For T2 we use that P( j ∈ τ) ≤ c2( j + 1)α−1 for every j and that m− j ≥ �n/2�,
which implies K(m− j) ≤ c3/n1+α , so that

T2 ≤ c2c3 P( j ∈ τ)n−1−α
2n

∑
m=�3n/2�+1

(2n−m+ 1)α−1 ≤ c4 P( j ∈ τ)n−1 , (A.18)

for every n ∈ N. Since we have P(2n ∈ τ) ≥ c5nα−1 and ∑∞
m=�3n/2�+1 K(m− j) ≥

c6n−α (for j ≤ n), from (A.18) we get that

T2 ≤ c4

c5c6
P(2n ∈ τ)P( j ∈ τ)

∞

∑
m=�3n/2�+1

K(m− j) . (A.19)

By putting (A.17) and (A.19) together we have that

P(Xn = j, 2n ∈ τ)

≤ c7 P(2n ∈ τ)P( j ∈ τ)
∞

∑
m=n+1

K(m− j) = c7 P(2n ∈ τ)P(Xn = j) , (A.20)

which completes the proof with Cbc = c7. ��

A.2.2 Two Scaling Results for Renewal Processes

The first result is applied in Chap. 6 when α ∈ (1/2,1), but it plays a central role
also for the case α = 1/2, since it is used in Proposition A.7 below, that, in turn, is
used in Chap. 6.

Proposition A.6. For every K(·)-renewal τ with K(·) as in (2.30) and α ∈ (0,1)
we have

L -lim
n→∞

1
nα |τ ∩ (0,n]| =

Yα
cK

, (A.21)

where Yα is a random variable that depends only on α with the property
P(Yα > 0) = 1. In particular Y1/2 = |Z|/√2π , with Z ∼ N (0,1).

Proof. This is treated for example in [5]. The point is simply that |τ ∩ (0,n]| < m is
equivalent to τm > n and τm is a sum of m IID variables and the question is therefore
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an issue of domain of stability of stable laws. In [5, XI.5, p. 373] it is proven that
for every x > 0

lim
n→∞

P
(

K(n) |τ ∩ (0,n]| ≥ 2−α
α

1
xα

)

= Gα(x) , (A.22)

where Gα(·) is the distribution function of the one sided stable distribution satisfy-
ing limx→∞ xα(1−Gα(x)) = (2−α)/α , characterized by the Laplace transform

∫ ∞

0
exp(−λ x)dGα(x) = exp(−cα λ α) with cα :=

(2−α)Γ (1−α)
α

, (A.23)

for λ > 0. Such stable laws are treated in detail for example in [5, XIII.6,
Theorem 1], where (A.23) is proven along with the fact that limx↘0 Gα(x) = 0, so
that (0,∞) is of full measure under this distribution (for completeness: in this limit
Gα(x) = o(exp(−cx−α)), with c = α/((2−α)Γ (1−α))). By a change of variable
and by using K(n) ∼ (cK/α)n−α in (A.22) we see that

lim
n→∞

P
( |τ ∩ (0,n]|

nα ≥ y

)

= Gα

(

(

2−α
cK

) 1
α

y−
1
α

)

=: 1−Fα(y) , (A.24)

and the asymptotic properties of Gα(x) mentioned just above directly yield that
Fα(y) tends to 0 as y ↘ 0 (more precisely: Fα(y) ∼ cKy/α) and that limy→∞ Fα(y)
= 1 (more precisely, 1 − Fα(y) = o(exp(−cy)) for a c > 0). These facts suf-
fice to conclude the converge in law that we claim in the statement and that
the limit variable Yα is a.s. positive. A number of further properties of Yα
can be derived by exploiting the properties of the stable distribution Gα(·),
for example that Gα(t) =

∫ t
0 gα(s)ds for a suitable probability density gα(·)

(this follows immediately from the fact that the characteristic function ψα(t) =
∫ ∞

0 exp(itx)dGα(x) = exp(−cαtα(cos(πα/2) + isin(πα/2)) for t ≥ 0, so that
|ψα(t)| = exp(−cα |t|α(cos(πα/2)) and therefore

∫

R
|ψ(t)|dt < ∞). However, it

seems impossible to express stable densities in a closed form [5, p. 581], with the
notable exception of α = 1/2 for which we can use that if the random variable X
has density fX (x) = x−3/2(2

√
π)−1 exp(−1/(4x))1x>0 we have

E [exp(−λ X)] = exp
(

−
√

λ
)

, for λ > 0. (A.25)

A straightforward, but rather painful, constant tracking exercise [via (A.23) and
(A.24)] leads to Y1/2 = |Z|/√2π . ��
Proposition A.7. For every K(·)-renewal τ with K(·) as in (2.30) and α = 1/2 we
have

L -lim
n→∞

1√
n logn ∑

1≤i< j≤n

δiδ j√
j− i

=
|Z|

(2π)3/2 c2
K

, (A.26)

where Z ∼ N (0,1).
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Proof. We introduce the notation

Y (i)
n :=

n

∑
j=i+1

δ j√
j− i

, (A.27)

that allows writing

1√
n logn ∑

1≤i< j≤n

δiδ j√
j− i

=
1√

n logn

n−1

∑
i=1

δiY
(i)
n =: Xn . (A.28)

Note that, by the renewal property of τ , Y (i)
n (under P(· |δi = 1)) is distributed like

Yn−i := Y (0)
n−i (under P). The first step in the proof is observing that, by (A.11), we

have

E

[

1√
n logn

n−1

∑
i=(1−ε)n

δiY
(i)
n

]

=
1

logn
√

n

n−1

∑
i=(1−ε)n

n

∑
j=i+1

P(i ∈ τ)P( j− i ∈ τ)√
j− i

= O(ε),

(A.29)
uniformly in n: we have introduced the short-cut convention (that we will keep
throughout this proof) that summing from (1− ε)n means summing from �(1−
ε)n�+ 1 and, just below, summing up to (1− ε)n means up to �(1− ε)n�. What
(A.29) is telling us is that we can focus on studying Xn,ε , defined as Xn, but stopping
the sum over i at (1− ε)n:

Xn,ε :=
1√

n logn

(1−ε)n

∑
i=1

δiY
(i)
n . (A.30)

At this point we use that

lim
n→∞

Yn

logn
=

1
2πcK

=: ĉK , (A.31)

in L2(P) (and hence in L1(P)). We postpone the proof of (A.31) and observe that,
since the normalization is the logarithm of n, it implies that for every ε ∈ (0,1)

lim
n→∞

sup
q∈[ε,1]

E

[∣

∣

∣

∣

∣

1
logn

�qn�
∑
j=1

δ j√
j
− ĉK

∣

∣

∣

∣

∣

]

= 0. (A.32)

Let us write

Rn := Xn,ε − ĉK√
n

(1−ε)n

∑
i=1

δi (A.33)
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and note that n−1/2 ∑(1−ε)n
i=1 δi converges in law toward

√

(1− ε)/(2πc2
K) |Z| by

Proposition A.6. It suffices therefore to show that for every ε ∈ (0,1) we have
limn→∞ E[|Rn|] = 0. And in fact

E [|Rn|] ≤ 1√
n

(1−ε)n

∑
i=1

E[δi]E

[

∣

∣

∣

∣

Y (i)
n

logn
− ĉK

∣

∣

∣

∣

∣

∣

∣

∣

∣

δi = 1

]

=
1√
n

(1−ε)n

∑
i=1

E[δi]E
[∣

∣

∣

∣

Yn−i

logn
− ĉK

∣

∣

∣

∣

]

n→∞−→ 0 , (A.34)

where in the last step we have used (A.32) and (A.11).
We are therefore left with proving (A.31). This result has been established in

[3, Theorem 6] in the case in which τ is given by the successive returns to zero of
a centered, aperiodic and irreducible random walk on Z with bounded increment
variance. Note that, by well established local limit theorems, for such a class of
random walks we have (A.9). In [3] it is proven more, namely that (A.31) holds also
almost surely and this is extracted from the estimate varP(Yn) = O(logn). What we
are going to do is simply to re-obtain such a bound, by repeating the steps in [3] and
using (A.9)–(A.11), for the general renewal processes that we consider (and one can
verify that almost sure convergence comes as a bonus, but we will not use it).

The proof goes as follows: by (A.9) one directly sees that limn→∞ E[Yn/ logn] =
ĉK , therefore we are done if we show that limn→∞ varP(Yn/ logn) = 0. So we start
by observing that

varP(Yn) = ∑
i, j

E[δiδ j]−E[δi]E[δ j]√
i j

= 2
n−1

∑
i=1

n

∑
j=i+1

E[δiδ j]−E[δi]E[δ j]√
i j

+ O(1),

(A.35)
by (A.11). Now we compute

n−1

∑
i=1

n

∑
j=i+1

E[δiδ j]−E[δi]E[δ j]√
i j

=
n−1

∑
i=1

E[δi]√
i

[

n−i

∑
j=1

E[δ j]√
j + i

−
n

∑
j=i+1

E[δ j]√
j

]

≤
n−1

∑
i=1

E[δi]√
i

[

n−i

∑
j=1

E[δ j]√
j + i

−
n

∑
j=i+1

E[δ j]√
j + i

]

≤
n−1

∑
i=1

E[δi]√
i

i

∑
j=1

E[δ j]√
j + i

≤
n−1

∑
i=1

E[δi]
i

i

∑
j=1

E[δ j]

≤ C2
n−1

∑
i=1

1

i3/2

i

∑
j=1

1

j1/2
= O(logn),

(A.36)
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where, in the last line, we have used (A.11). In view of (A.35), we have obtained
varP(Yn) = O(logn) so that the proof (A.31) is complete and, with it, the proof of
Lemma A.7. ��

A.2.3 On the Derivatives of the Free Energy Near Criticality

We have seen that, assuming (2.30) and ∑n K(n) = 1, for α ∈ (0,1) we have

F(h)
h↘0∼ ch1/α =: Fcr(h) , (A.37)

where c = (α/(cKΓ (1−α)))1/α > 0 (cf. Theorem 2.10). The subscript cr is used
to indicate that the function captures the leading critical behavior. Recall that F(·) is
real analytic except at the origin. Here we prove that:

Proposition A.8. For α ∈ (0,1) and 1/α �∈ N we have that for every j ∈ N

(

d
dh

) j

F(h)
h↘0∼

(

d
dh

) j

Fcr(h) = ch− j+1/α
j

∏
i=1

(

1
α
− i+ 1

)

. (A.38)

If 1/α ∈ N then (A.38) holds for j ≤ 1/α .

This result largely suffices for our purposes, but let us point out that generalizing
the statement to j > 1/α when 1/α ∈ N requires more on K(·) than (2.30).

Proof. Let us start by setting up some notation:

Ψ(x) x>0= 1−
∞

∑
n=1

K(n)exp(−nx)
x↘0∼ cK

Γ (1−α)
α

xα =: Ψcr(x). (A.39)

Let us recall that the relation defining F(h) for h > 0 is

Ψ(F(h)) = 1− exp(−h)
h↘0∼ h . (A.40)

This formula has the important companion:

Ψcr(Fcr(h)) = h . (A.41)

In the sequel we use the notation f ( j)(h) := (d/dh) j f (h) and we point out that a
standard Riemann sum approximation yields for j ∈ N:

Ψ ( j)(x) = (−1) j+1 ∑
n

n jK(n)exp(−nx)
x↘0∼ (−1) j+1Γ ( j−α)cK xα− j

=

(

j−1

∏
i=1

(α − i)

)

Γ (1−α)cKxα− j = Ψ ( j)
cr (x) , (A.42)

with the convention ∏0
i=1(α − i) = 1.
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Let us now compute the asymptotic behavior of F′(h) and of F′′(h): this will
serve the double purpose of getting acquainted with the general case and of serving
to verify the first step in the induction argument for the general case. First of all
from the relation (A.40) defining F(h) we have

d
dh

Ψ(F(h)) = Ψ ′(F(h))F′(h) = exp(−h)
h↘0∼ 1 , (A.43)

so that

F′(h)
h↘0∼ 1

Ψ ′(F(h))
∼ 1

Ψ ′
cr(Fcr(h))

= F′cr(h) , (A.44)

where the last equality follows by using (A.37) and (A.42) or (more easily!) by
taking the derivative of (A.41). For what concerns F′′(h) we compute and use once
again the relation (A.40) to get

(

d
dh

)2

Ψ (F(h)) = Ψ ′′(F(h))
(

F′(h)
)2 +Ψ ′(F(h))F′′(h)

h↘0∼ −1. (A.45)

By (A.42) and (A.44) we see that

Ψ ′′(F(h))
(

F′(h)
)2 h↘0∼ c

h
, (A.46)

with c �= 0, so that

Ψ ′′(F(h))
(

F′(h)
)2 h↘0∼ −Ψ ′(F(h))F′′(h) , (A.47)

from which we extract the asymptotic relation of F′′(h) ∼ F′′cr(h) by using again
(A.42) and (A.44), that is by using the asymptotic behavior of F, F′, Ψ ′ and Ψ ′′.
Note however that, once again, there is a much cheaper way to go from (A.47)
to F′′(h) ∼ F′′cr(h): by taking two derivatives of (A.41) one obtains (A.47) with the
subscripts cr added (six subscripts in total) and with ∼ replaced by =, but we already
know that we can add the subscripts in (A.47) without altering the validity of the
statement to all the functions except a priori F′′, and this implies F′′(h) ∼ F′′cr(h).

We have therefore established the claim for j = 1 and 2, but explicit expressions
for the jth derivative of the composition of two functions are rather involved for
arbitrary j. To get the result we want we will go around this point (much in the
spirit of the alternative approach used twice above) by observing that

(

d
dh

) j

Ψ(F(h)) = Ψ (1)(F(h))F( j)(h)

+Pj

(

F(1)(h), . . . ,F( j−1)(h),Ψ (1)(F(h)), . . . ,Ψ ( j)(F(h))
)

,

(A.48)
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where Pj is a polynomial: actually P1(x) is just zero [cf. (A.43)] and P2(x,y,z) = zx2

[cf. (A.45)], and that (A.48) has the companion

(

d
dh

) j

Ψcr(Fcr(h)) = Ψ (1)
cr (Fcr(h))F

( j)
cr (h)

+Pj

(

F
(1)
cr (h), . . . ,F

( j−1)
cr (h),Ψ (1)

cr (Fcr(h)), . . . ,Ψ ( j)
cr (F(h))

)

.

(A.49)

But the expression in (A.49) is equal to one if j = 1 and it is equal to zero if
j ≥ 2, while the analogous expression without the cr subscripts takes the value one,
or minus one, as h ↘ 0. Therefore in this limit

Ψ (1)(F(h))−Ψ (1)
cr (Fcr(h)) = O(1). (A.50)

For simplicity below we write Pj(F(1), . . .) and Pj(F
(1)
cr , . . .) for the more cumbersome

complete expressions.
We start now the induction procedure that consists in obtaining that F( j)(h) ∼

F
( j)
cr (h) for all j < n̂, with n̂ = 1 + 1/α if 1/α ∈ N and n̂ = ∞ otherwise, knowing

that F(k)(h) ∼ F
(k)
cr (h) for k = 0,1, . . . , j − 1. Note that this follows if we can show

that

Pj(F(1)(h), . . .)
h↘0∼ Pj(F

(1)
cr (h), . . .) , (A.51)

and that these expressions diverge in this limit. This is because by using (A.50) and
the fact that the asymptotic behaviors of the functions in the right-hand sides of
(A.48) and (A.49) are all known, except for F( j)(h) that is then necessarily the same

as the one of F
( j)
cr (h) and we are done.

Let us therefore establish (A.51) and the fact that the quantities in it diverge. That
they diverge can be established by observing that for 2 ≤ j < n̂

Pj(F
(1)
cr (h), . . .) = −Ψ (1)

cr (Fcr(h))F
( j)
cr (h) = ch1− j , (A.52)

where c �= 0 is an explicit constant (note that if 1/α ∈ N then F
( j)
cr (h) = 0

for j > 1/α). For what concerns (A.51) we start by observing that the leading
behavior of each of the term constituting Pj(F(1), . . .) (Pj is of course a sum of

monomials) is the same of the corresponding term in Pj(F
(1)
cr (h), . . .). All these

monomial terms are of the same order (in a strong sense: any ratio converge to
a non-zero value): this can be either verified on the expression with or without the
subscript cr (in a rather illogical way we verify it for the quantities without subscript:
the prof is slightly more involved, since we need to use the induction assumption, but
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formulas are lighter without subscripts). In fact in taking the derivative that builds
Pj(. . .) we repeat two types of operations:

1. Taking a derivative of Ψ k(F(h)) for k ≤ j and for this we have

d
dh

Ψ k(F(h)) = Ψ k+1(F(h))F′(h)
h↘0∼ −( j + 1−α)Ψk(F(h))

F′(h)
F(h)

h↘0∼ −
(

j−1 + α
α

)

Ψ k(F(h))
h

,

(A.53)

that is such a derivative makes the term more singular (by a factor 1/h).
2. Taking derivatives of F(k)(h) for k = 1, . . . , j − 2 (by definition of Pj, the

derivative of F( j−1)(h) does not enter Pj): but the asymptotic behaviors of F(k)(h)
and F(k+1)(h) are in the induction assumption and one directly verifies that
hF(k+1)(h)/F(k)(h) tends to a non-zero constant (recall that k < j < n̂). Once
again, such a derivative asymptotically just introduces a multiplicative 1/h factor
(times a non-zero constant).

If we now recall that in the starting step ( j = 2) of the induction we had just two
terms, cf. (A.45), and each of order 1/h [cf. (A.45)] we see that Pj(F(1)(h), . . .) (and

Pj(F
(1)
cr (h), . . .)) is a sum of terms of order h1− j, so that (A.52) is telling us that the

asymptotic behavior of Pj(F
(1)
cr (h), . . .) is of the same order of each of the monomial

terms that constitute it (and it is not the result of the cancellation between the leading
orders of larger terms). Therefore (A.51) holds for j < n̂ and the proof is complete.

��

References

1. S. Asmussen, Applied Probability and Queues, 2nd edn. (Springer, New York, 2003)
2. N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation (Cambridge University Press,

Cambridge, 1987)
3. K.L. Chung, P. Erdös, Probability limit theorems assuming only the first moment I. Mem. Am.

Math. Soc. 6, 1–19 (1951), paper 3
4. R.A. Doney, One-sided local large deviation and renewal theorems in the case of infinite mean.

Probab. Theory Relat. Fields 107, 451–465 (1997)
5. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. (Wiley,

New York, 1971)
6. A. Garsia, J. Lamperti, A discrete renewal theorem with infinite mean. Comment. Math. Helv.

37, 221–234 (1963)
7. G. Giacomin, Random Polymer Models (Imperial College Press, London, 2007)



Index

annealed bound, 32
annealed model, 33, 42, 63

backward recurrence time, 114
boundary condition, 6, 35, 117

change of measure estimates, 63, 64, 74, 88
charge, 29
charge distribution, 30
coarse graining, 41, 64, 68, 76, 91, 98
concentration properties, 36, 39, 102, 106, 108
contact density, 10
copolymer, 60, 109
correlation length, 19, 38, 56, 64, 76, 110
critical behavior, 18, 41, 42, 56, 111, 122
critical curve, 33
critical exponent, 43, 56
critical point, 19, 32, 34, 42, 56, 63

defect, 21
delocalization, 10, 32, 101
diluted Ising model, 41, 55, 58
directed polymer, 21
disordered pinning model, 29

entropy-energy competition, 35

fractional moment estimates, 64, 65, 87
free energy, 8, 11, 15, 19, 30, 32, 122
free pinning model, 6

Harris criterion, 41, 55
homogeneous pinning model, 14

inter-arrival law, 7, 14, 113
interface, 21
irrelevant disorder, 41, 46, 58, 110
Ising model, 21, 41, 55

localization, 10, 32, 101

marginal disorder, 42, 58
Markov chain, 113

null persistent renewal, 114

order of phase transition, 19

partition function, 6, 15, 29
path properties, 11, 17, 101
persistent renewal, 7, 45, 113
phase transition, 11, 18, 19, 56
pinning model, 5, 14, 29
Poland-Scheraga model, 24
polymer pinning, 21
positive persistent renewal, 7, 114
pure model, 41

quenched disorder, 29

random walk pinning model, 5
rare stretch strategy, 51
relative entropy, 54, 108
relevant disorder, 42, 58, 111

, 127
G. Giacomin, Disorder and Critical Phenomena Through Basic Probability Models,
Lecture Notes in Mathematics 2025, DOI 10.1007/978-3-642-21156-0,
© Springer-Verlag Berlin Heidelberg 2011



128 Index

renewal function, 7
renewal process, 7, 113
renewal property, 113
renewal theorem, 114
renormalization, 41
replica, 44

self-averaging property, 32
smoothing inequality, 51, 60
super-additive property, 30, 34, 35, 48, 54

terminating renewal, 7, 44, 113



List of participants

40th Probability Summer School, Saint-Flour, France
July 4–17, 2010

Lecturers
Franco FLANDOLI Università di Pisa, Italy
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