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Preface

Theoretical modelling of transient electroanalytical experiments is commonly
accomplished by formulating and solving initial or initial-boundary value problems
that describe transport of reactants, homogeneous and heterogeneous reactions, and
other phenomena taking place in electrochemical systems. The conversion of these
problems into integral equations, subsequently solved analytically or numerically, is
a classical modelling method which has contributed significantly to the development
of electroanalytical techniques. Although this method has limitations (compared
to direct solutions of differential equations by finite difference, finite element, or
similar methods), it can be more rewarding (in cases when it is applicable) owing
to additional theoretical insights that it offers. It can also bring a reduction of
the costs of numerical simulations, albeit at the expense of extra human effort
needed for the derivation of the integral equations. The method is therefore worthy
of application and development. Unfortunately for anybody willing to learn and
use the method, its theoretical principles and example applications are scattered
in the electrochemical literature, and none of the existing textbooks provides its
comprehensive description. Even the last edition of the monograph by Dieter
Britz, “Digital Simulation in Electrochemistry” (Springer, Berlin, 2005), which is
currently the most thorough compendium of numerical methods used for simulating
transient experiments, devotes only two pages to the integral equation method.

At the same time, integral equations arising in electroanalytical chemistry remain
almost unknown to mathematicians or computational scientists engaged in studies of
integral equations, and are rarely used as examples, or as an inspiration for research.

The present book is intended to help electrochemists, mathematicians, and
computational scientists, to get acquainted with the integral equation method in
electroanalytical chemistry, by providing a (hopefully) comprehensive state-of-the-
art overview of the method and its applications. It is hoped that the book will
stimulate interdisciplinary research, resulting in new developments of the method,
and enlargement of its application scope.

Cracow, Poland Lesław K. Bieniasz
July 2014
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Chapter 1
Introduction

This book is devoted to the theoretical modelling of transient experiments in elec-
troanalytical chemistry, by means of a specific mathematical approach known under
the name of the method of integral equations (IEs). Electroanalytical chemistry is
a scientific discipline that studies physico-chemical processes occurring at (and in
the neighbourhood of) the interfaces between electronic conductors (metals, semi-
conductors, conducting polymers, etc.) and/or ionic conductors (liquid electrolytic
solutions, solid electrolytes, electrolytic gels, etc.). Liquid j liquid interfaces are also
studied. Of particular interest are processes of electric charge transfer through the
interfaces. The electric charge can be transferred either by electrons or ions. This
gives rise to the flow of electric current, if a sequence of phases is constructed
that forms a closed circuit. Electroanalytical studies are of considerable scientific
and practical interest, since electrified interfaces and processes of the type studied
in electroanalytical chemistry occur almost everywhere in nature, including both
inorganic matter and living organisms. There are also many technical devices that
make use of the electrochemical phenomena. Examples include galvanic cells,
accumulators, electronic elements such as capacitors or certain kinds of electronic
displays, electrochemical sensors, electro-filtration devices used e.g. in artificial
kidneys or for the desalination of water, reactors serving for the galvanisation of
metals, or for the electrochemical syntheses of various substances, and many other.

Figure 1.1 shows schematically experimental laboratory systems corresponding
to the two most commonly studied interfaces. One of them (the situation depicted in
Fig. 1.1a) is the interface between an electronic conductor and an ionic conductor.
In this case the electroanalytical experiments are usually performed by means of
the so-called three-electrode arrangement. One studies the interface between the
working electrode (WE) and the electrolyte solution (ES). The counter electrode
(CE), also called auxiliary electrode, is necessary to create a closed electric circuit,
in which the electric current I.t/ may flow. The current generally depends on time
t . An additional electrode, called reference electrode (RE) serves for measuring
the electrode potential E.t/ of the WE under conditions of zero current flow. The
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2 1 Introduction

Fig. 1.1 Schematic views of
the typical three-electrode
(a) and four-electrode
(b) experimental systems.
The interfaces studied are
marked by dashed lines.
Symbol P/G denotes the
potentiostat or galvanostat.
Other symbols are explained
in the text

a

b

second most frequently studied interface (depicted in Fig. 1.1b) is the interface
between two ionic conductors (electrolytic solutions ES1 and ES2). In this case
the electroanalytical experiments may require a four-electrode arrangement. Two
counter electrodes (CE1 and CE2) ensure a closed circuit with the current I.t/.
Two reference electrodes (RE1 and RE2) serve for measuring the Galvani potential
difference �˚.t/ across the interface, under conditions of zero current flowing
through these electrodes.

Transient electroanalytical experiments can be divided into two essential cate-
gories: controlled potential experiments, and controlled current experiments. In the
first case a specific known potential-time function E.t/ or �˚.t/ is applied, and
the current-time response I.t/ of the system to this perturbation is measured. In
the second case a known I.t/ function is applied, and the E.t/ or �˚.t/ response
is measured. Suitable electronic devices for performing such experiments (known
as potentiostats and galvanostats) are commercially available and widely used.
There are also less frequently used methods in which other kinds of perturbations
are employed, such as: temperature perturbation, light perturbation, concentration
perturbation, etc.

The very schematic Fig. 1.1 should be perceived with a substantial dose of imag-
ination. A large multiplicity of variations of the experimental laboratory systems
may occur in reality. Electrodes may be of different shapes, and their sizes may
vary between macroscopic dimensions (millimetre or centimetre sizes), microscopic
(micrometre sizes), and even nanoscopic (nanometre sizes). Their dimensions
may also vary in time. The electrodes can be embedded in insulators in various
ways. There can be several working electrodes, each one polarised differently.
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The electrolyte phases may be extensive enough to be considered as infinite or
semi-infinite media, but they can also form thin layers or layers of large but finite
thicknesses. Additional interfaces or membranes may separate the electrolyte phases
into subdomains, possibly having different compositions. The electrolytes may be
subject to flow or stirring, according to various methods and hydrodynamic regimes.
Flowing electrodes (e.g. liquid mercury streaming electrodes) are also encountered.
The discussion of all these nuances is outside the scope of the present book, since the
IE method has only been applied thus far to a selection of experimental situations
of interest to electroanalytical chemistry. However, Readers should be aware that
the number of possible experimental situations is considerable. We direct interested
Readers to standard textbooks about electroanalytical methods, such as, in particular
[1, 3, 5, 7], and to the literature published in scientific electrochemical journals
such as, in particular: the Journal of Electroanalytical Chemistry, Electrochimica
Acta, the Journal of the Electrochemical Society, Electroanalysis, Electrochemistry
Communications, and (especially older volumes of) Analytical Chemistry.

Just how the transient responses of the systems shown in Fig. 1.1 look further
depends on the specific physico-chemical phenomena that occur in the systems.
At the WE jES and ES1 jES2 interfaces we encounter electron and ion transfer
reactions, and possibly also other heterogeneous reactions such as adsorption
reactions. The charging of the electric double layer that is always present at the
interfaces between any bulk phases is another phenomenon to deal with. In the
electrolyte phases we encounter various kinds of transport processes. Most often the
transport is by diffusion, but other kinds of transport, such as convection, electro-
diffusion (electric migration), or combinations of these, are also conceivable. The
transport can sometimes occur also in the working electrode phases, as is the case
with amalgam electrodes (typically liquid mercury electrodes), some solid metal
electrodes for gas electrode reactions (hydrogen diffusion in palladium electrodes),
or electrodes made of conducting polymers. Apart from the transport processes,
the electrolyte phase is the place where homogeneous chemical reactions may
occur, between the neutral and/or ionic species present there. Another bulk phase
phenomenon that may be necessary to be considered (both in the electrolyte and
electrode phases) is the Ohmic drop, i.e. the electric potential drop due to a finite
resistivity of the phase under flowing current conditions.

Theoretical description of the electroanalytical experiments involving the above
phenomena is predominantly accomplished by means of continuum mathematical
models, consisting of differential equations with appropriate initial and boundary
conditions. The unknowns to be determined from these equations are usually
concentrations of chemical species present in the electrochemical systems, and
(in cases when the electric migration is considered) electric potential field within
the systems. Due to the presence of the transport, apart from the time variable
the models often depend on at least one spatial coordinate, so that the model
equations are partial differential equations (PDEs). Probably the most numerous
are models dependent on one spatial coordinate. The second, smaller, but growing
group of models involves models dependent on two spatial coordinates, and the
smallest (but also growing) group involves models dependent on three spatial
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coordinates. In cases when transport can be neglected or omitted, the models
become independent of spatial coordinates, and the model equations turn into
time-dependent ordinary differential equations (ODEs) or differential-algebraic
equations (DAEs). The solution of the initial value problems (IVPs) or initial-
boundary value problems (IBVPs) for the above differential equations allows one
to calculate theoretical current-time I.t/ responses of the systems studied in the
case of controlled potential experiments, or potential-timeE.t/ or�˚.t/ responses
in the case of controlled current experiments.

In order to solve the IVPs or IBVPs, at least three distinct major approaches can
be taken. The first approach is analytical. Although from the theoretical point of
view this is the most desirable approach, analytical solutions are rarely possible.
The second approach consists in a direct numerical simulation. The differential
equations are discretised by means of finite-difference, finite element or other
similar methods, and resulting algebraic equations (AEs) are solved numerically.
The book “Digital Simulation in Electrochemistry” by Britz [2] provides an ample
overview of the contemporary techniques used for such purposes. The IE method,
discussed in the present book, represents the third approach. The IE method can
be classified as semi-analytical, since it is, in some sense, intermediate between
the first two approaches. In this method one attempts to solve the model equations
partially in an analytical way. For example, in the case of models dependent on one
spatial coordinate, the Laplace transform can be applied to the PDEs, and spatial
dependencies are solved analytically. As a result, one obtains IEs that depend only
on time. The IEs may be solved analytically (in rare cases), or numerically.

Owing to the partial or complete elimination of the spatial dependencies, the
numerical solution of the IEs can be computationally less expensive than the direct
numerical solution of the PDEs, which is a useful property, although the conversion
of the PDEs into IEs usually means an additional cost of the human work. An
appreciable feature of the IE method is the increased mathematical insight into
the models, resulting from the need to perform the partial analytical solutions. For
example, the analysis of the IEs may reveal some interesting regularities regarding
the joint effect of various model parameters on the solution, that would be more
difficult to recognise by employing the direct numerical PDE solution approach.
The IEs may also facilitate obtaining analytical formulae for some limiting cases
of the models (for example, steady state solutions). The extra intellectual effort
associated with the use of the IE method may be perceived as a remedy against
misinterpretations or mistakes accompanying blind uses of the modern black-box
software for the direct numerical solution of the PDEs, indicated and criticised by
Oldham [19].

Unfortunately, the contemporary IE method has also limitations. The main of
them is the limitation to linear PDEs. This is a serious limitation, since many
electroanalytical experiments involve second- (and higher-) order homogeneous
reactions, or enzymatic homogeneous reactions subject to Michaelis–Menten kinet-
ics, which give rise to nonlinear terms in the PDEs. Therefore, the contemporary
IE method cannot be, in principle, applied to model such experiments, although
we shall see that it is sometimes possible to consider second-order homogeneous
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reactions by the IE method, under additional assumptions. The limitation to the
linear PDEs results from the involvement of the Laplace transformation in the
derivation of the IEs. Other limitations of the IE method have been identified
for complex networks of homogeneous reactions, for which the derivation of
the IEs may become rather cumbersome, if not impossible. It should be noted,
however, that some of these limitations may possibly be overcome in the future, if
appropriate mathematical approaches are developed. Certainly, the electroanalytical
IEs offer many interesting and challenging tasks for theoretical electrochemists,
mathematicians, and computational scientists!

The IE method often makes use of the concentration-flux relationships, that
result directly from analytical solutions of the PDEs. The relationships express
interfacial concentrations as integrals of the interfacial fluxes, or of the related
Faradaic current I.t/. This is probably the reason why the IE method has been
used mostly for solving models of controlled potential experiments. In such models
the fluxes are unknowns to be determined from the IEs. In models of controlled
current experiments, for simple reaction schemes involving only one charge transfer
reaction, the fluxes are entirely determined by the (known) Faradaic current.
Therefore, the issue of solving the IEs does not arise. However, in models involving
more than one charge transfer reaction or other complications, the fluxes are not
easily expressed through the current. The use of the IE method in such cases is
justified. Nevertheless, there have been only a few IE-based models published, of
the controlled current experiments.

Apart from the aforementioned chapter in the last edition of the book by Britz [2],
there have been very few reviews of the IE method and related developments. The
seminal paper by Nicholson and Shain [15] (probably one of the most frequently
cited papers in electrochemistry) provided a collection of IEs representing standard
cyclic voltammetric experiments. It is often cited as a basic reference on the IE
method. Nicholson and Olmstead [14] presented a frequently cited, but rather
limited in scope review of some early numerical approaches to the IEs resulting from
spatially one-dimensional electroanalytical models. Oldham and Mahon [10, 18]
and Mahon et al. [9] presented selective reviews of the aforementioned interfacial
concentration-flux relationships for spatially one-dimensional models, which play
an essential role in the derivation of the IEs. Honeychurch [6] briefly described the
method, in his book devoted to electroanalytical simulations using MATHEMAT-
ICA [13]. Fan et al. [4] reviewed fundamentals of the boundary integral method
(BIM) with applications to electroanalysis. The BIM is one of the possible IE
approaches to spatially two- and three-dimensional models.

The IE method for spatially one-dimensional models occurs in a few mutations,
which in the opinion of the present author differ mostly by terminology, but not
by principles. In the older literature it was usual to talk explicitly about the IEs
and methods for solving them. However, authors of some of the recent approaches
avoid using these terms. They prefer names like “convolutive modelling” [9,11,12],
or “modelling without digital simulation” [20], and they emphasise connections of
their approaches with the fractional calculus [21], rather than with the IEs.
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Finally, it should be noted that the IE-based modelling route is closely related
to the experimental data analysis technique developed for controlled potential
electroanalytical experiments, and known under the broad name of “convolutive
data analysis” (or less broadly “semi-integral data analysis”). The technique relies
on the fact (mentioned above) that in the interfacial concentration-flux relationships
the concentrations are often expressed as convolution integrals of the fluxes, or of the
flux-dependent Faradaic current. This fact suggests that by analysing an appropriate
convolution integral of the experimental Faradaic current, instead of the current
itself, one may be able to extract an electrochemically relevant information from
the experimental data in a more straightforward way. In particular, by convolving
the current, interfacial concentrations may be considered as direct observables. A
brief overview of the basic ideas of the convolutive data analysis can be found in the
articles by Oldham [16, 17] and Mahon [8].
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Chapter 2
Basic Assumptions and Equations
of Electroanalytical Models

In this chapter we provide a summary of basic assumptions and equations repre-
senting physico-chemical laws, that are used in the modelling of electroanalytical
experiments. This is not a comprehensive overview, but a selection dictated by
the needs and up-to-date applications of the IE method, that will be discussed in
subsequent chapters. Physico-chemical aspects, interpretations, and applicability
issues regarding the equations listed here are not addressed. Readers are referred
to specialised electrochemical literature for such information.

2.1 General Assumptions

Electrochemical systems are generally multiphase and multicomponent systems.
The modelling of electroanalytical experiments in such systems is usually accom-
plished in terms of the continuum theory, which neglects the discrete nature of
matter. It is assumed that the full description of such experiments is obtained
by specifying the spatio-temporal evolution of the concentrations of chemical
species present in the systems, and other relevant state variables, such as the
electric potential, temperature distribution, magnetic field, etc. The chemical species
occurring in the electrochemical systems can be neutral molecules, ions, radicals,
ion radicals, complexes, as well as various interfacial structures or bound states.
Electrons exchanged between reactants and products of electrochemical reactions
can sometimes also be formally regarded as chemical species. The same refers
to free states available for adsorption at interfaces. Yet another kind of formally
chemical species can be solvated electrons. The chemical species (other than
exchanged electrons) can be divided into distributed species, present in the spatially
extended phases (such as, for example, the electrolyte solution phases ES, ES1,
or ES2 in Fig. 1.1), and localised species (for example, adsorbed or deposited
species), present only at the interfaces between the spatially extended phases. The
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concentrations of the distributed species are usually expressed in moles per unit
volume, and they will be denoted here by the letter c. Concentrations of the localised
species are often expressed in moles per unit area, and they will be denoted here by
the letter � . Alternatively, they can also be expressed as fractions of the interfacial
area covered by the species, or fractions of the maximum possible concentration
of the species at a given interface. For the purpose of the further discussions, it
is also convenient to divide the chemical species (either distributed or localised)
into dynamic and static (we partially adopt here the terminology from Bieniasz
[12, 13]). Concentrations of the dynamic species are assumed to vary, whereas
concentrations of the static species are assumed to be practically constant during the
electroanalytical experiments. Static species are usually species occurring in excess.

The dynamic distributed species are subject to transport phenomena in the spa-
tially extended phases. Basic equations for electrochemical and non-electrochemical
transport are described in Sects. 2.2 and 2.3. The transport equations most generally
take the mathematical form of partial differential equations (PDEs). The PDEs are
defined over spatial domains coinciding with spatially extended phases. A basic
classification of these domains is provided in Sect. 2.4. A surface transport of the
dynamic localised species, along the interfaces, is also possible (see, for example,
[63, 112, 117, 118]) but it is rather rarely taken into account in electroanalytical
modelling, so that it will not be considered in this book.

Apart from the transport phenomena, an important role is played by chemical
and electrochemical reactions. The reactions are transformations that occur at a
molecular level between various species. Basic equations of the formal chemical
and electrochemical kinetics are overviewed in Sect. 2.7. The reactions can be
divided into homogeneous and heterogeneous. Homogeneous reactions take place in
spatially extended phases, among distributed species. Usually these are electrolytic
solution phases (such as phases ES, ES1, and ES2 in Fig. 1.1), or non-electrolytic
solution phases. Homogeneous reactions between species distributed in the elec-
trode phases (such as liquid mercury WEs) are hardly possible so that one cannot
find electroanalytical models involving such reactions. Heterogeneous reactions
occur only at interfaces, but they can involve both distributed and localised species.
They can be divided into heterogeneous electrochemical reactions, characterised
by a transfer of an electric charge across the interface, and heterogeneous non-
electrochemical reactions, in which the transfer of the electric charge does not occur.
Some homogeneous reactions may also involve a charge transfer, but in the models
discussed in the present book this fact does not have to be taken into account, so that
we shall not consider a separate class of such reactions. Homogeneous reactions
have an effect on the transport equations. This issue is addressed in Sect. 2.8.
Heterogeneous reactions, in turn, determine the boundary conditions (necessary for
solving the transport equations), and possible additional equations governing the
evolution of the concentrations of dynamic localised species at the interfaces. This
issue is discussed in Sect. 2.9. All reactions may determine initial conditions for
the concentrations of dynamic species. This aspect of the modelling is addressed in
Sect. 2.10.
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In Sect. 2.11 we provide a brief overview of the various electroanalytical
techniques used to perturb the systems under study.

Anomalous diffusion phenomena, encountered in some systems, are briefly
addressed in Sect. 2.12.

Some other physico-chemical phenomena that have to be taken into account in
electroanalytical models are listed in Sect. 2.13.

2.2 Equations of Transport in Electrolytes

Consider an electrolyte solution phase such as phases ES, ES1 or ES2 in Fig. 1.1.
Such phases typically contain a solvent and a supporting electrolyte (which are
usually assumed not to participate in the processes occurring at an interface studied),
and a number N distr

s of distributed chemical species that take part in the processes
studied, and therefore have to be accounted for in theoretical models. Let Xj be the
j th of such distributed species. Assuming that the species is one of N dd

s dynamic
distributed species present in the phase, its movement in accordance with relevant
transport laws has to be considered (the concentrations of the remaining N sd

s D
N distr

s � N dd
s static distributed species are assumed constant). The movement can

be described quantitatively by using the vector variable Jj called flux. The vector
indicates the direction in which the species is moving. The flux value, expressed
in moles m�2s�1, gives the amount of the species passing per unit of time through
a plane of unit area oriented perpendicularly to the vector of the average velocity
of the species. The laws of electrochemical ionic transport have been discussed
in numerous books and review papers (see, in particular, [3, 57, 82, 120]). For the
purposes of the present book, we shall be concerned exclusively with the widely
adopted theoretical transport model, known as the dilute solution model [3, 57, 82],
according to which the flux consists of additive terms representing [in the order of
their appearance in Eq. (2.1)]: electric migration, diffusion, and convection:

Jj D �zj uj F cj grad˚ �Dj grad cj C v cj : (2.1)

In Eq. (2.1) zj is the number of proton charges carried by the species (zj ¤ 0

for ions, zj D 0 for neutral species). The migration term vanishes for uncharged
species. Symbol uj denotes the mobility of the species (the average velocity of the
species resulting from a force of 1N per mole), cj is the species concentration, ˚
is the inner electric potential within the electrolyte phase (Galvani potential), Dj

is the diffusion coefficient, and v is the convection velocity. Symbol F denotes
the Faraday constant. The mobility and the diffusion coefficient are related by the
Nernst–Einstein equation:

Dj D RT uj ; (2.2)

where R is the gas constant, and T is the absolute temperature.
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By summing up contributions from the fluxes of all ions in an electrolytic
solution, the vector iF of the Faradaic current density flowing through the electrolyte
can be expressed as

iF D F
X

j

zjJj : (2.3)

Equations (2.1) and (2.2) originate from the early theories of Nernst and Planck
[80, 81, 95, 96], and they are usually regarded valid for dilute electrolytic solutions.
They ignore possible cross-effects, such as multicomponent diffusion (for which
the flux Jj would also depend on concentration gradients of species other than
Xj ) and/or other complications specific for concentrated electrolytic solutions
[3, 57, 82]. Variables Jj , cj , ˚ , and v may, in general, depend on time t and on
spatial coordinates (some possible choices for the spatial coordinates are indicated
below). The presence of migration requires an additional equation, allowing one
to determine the electric potential ˚ . Most often this can be the electroneutrality
equation or the Poisson equation.

In the case when the electrolytic solution contains an excess of the supporting
electrolyte, it can be shown [82] that the migration component of the flux Jj
becomes negligible in comparison with the diffusion term, because the conductivity
of the solution is then increased, so that the electric field gradient is suppressed. In
such a case Eq. (2.1) reduces to

Jj D �Dj grad cj C v cj : (2.4)

Looking from the perspective of the IE method, this is a convenient situation,
because Eq. (2.1) is intrinsically nonlinear, owing to the product of cj and grad˚
(both variables are normally unknown and have to be determined simultaneously).
The contemporary IE method cannot be applied (with the exception of a few
special or simplified cases) to electroanalytical models involving this kind of
nonlinearity. In contrast, there have been numerous applications of the method to
models involving linear Eq. (2.4). Of course, Eq. (2.4) is linear if we assume that
Dj does not depend on cj , which is a typical assumption (although counterexamples
are known, see, for example, Hernández et al. [53] and the references therein). In
this book we further assume that Dj does not depend on spatial coordinates or
time. Opposite situations are known (see, for example, Cattey et al. [22, 23]), but
they are very rare. In the absence of convection, Eq. (2.4) further simplifies to the
equation:

Jj D �Dj grad cj ; (2.5)

known as the Fick first law of diffusion.
Equations (2.4) or (2.5) are usually not sufficient for the mathematical modelling,

and have to be combined with other laws, especially the conservation laws.
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In particular, the principle of the conservation of matter can be written in the
differential form as

@cj

@t
D �div Jj C phom

j ; (2.6)

where phom
j is the production rate (in moles per unit time and unit volume)

of the species Xj , due to homogeneous reactions in the electrolyte, if there
are any such reactions. Relevant equations for phom

j are given in Sect. 2.8. The
production rate phom

j depends on concentrations cj , and hence indirectly on time and
spatial coordinates. Under the assumptions accepted, the combination of Eqs. (2.4)
and (2.6) gives

@cj

@t
D div

�
Dj grad cj

� � div
�
v cj

�C phom
j

D Dj 4 cj � cj div v � v � grad cj C phom
j : (2.7)

Assuming a low compressibility of the electrolyte solution phase, we have div v �
0, so that

@cj

@t
D Dj 4 cj � v � grad cj C phom

j : (2.8)

Equation (2.8) is a typical reaction-convection-diffusion PDE used in electroana-
lytical modelling. This equation, and its special subcases (diffusion, convection-
diffusion, reaction-diffusion, etc.) will form a basis for a majority of the modelling
considerations in the present book. Due to the aforementioned nonlinearity of
Eq. (2.1), migration will not be considered, except for a few special cases or
simplified models of it, mentioned in Sect. 10.2.

Most frequently N dd
s > 1, and the species considered may participate in more

than one reaction. It is therefore convenient to write the model equations by using
a vector–matrix notation, where the vector elements are associated with the various
species or reactions. To avoid confusion, these vectors (and related matrices) have
to be distinguished from the vectors already present in Eqs. (2.1)–(2.8), such as Jj ,
v, or grad, which are vectors in the ordinary space. For this reason, in this book the
vectors in the spaces of variables associated with the various species or reactions
are indicated by arrows over a vector symbol, and related matrices are indicated by
bars over a matrix symbol. The vectors (and related matrices) in ordinary space are
indicated by boldface characters. In particular, the vector of the concentrations of
the dynamic distributed species is defined as �!c D �

c1; : : : ; cN dd
s

�T
, the vector of

the production rates of these species, due to homogeneous reactions, is defined as
�!p hom D

h
phom
1 ; : : : ; phom

N dd
s

iT
, and the matrix of the (positive) diffusion coefficients

is defined as a diagonal matrix D D diag.D1; : : : ; DN dd
s
/ (superscript T means

a transposed vector). The vector of flux vectors can also be defined as
�!
J D
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�
J1; : : : ; JN dd

s

�T
. This allows us to re-write systems of Eqs. (2.4) and (2.8) for

j D 1; : : : ; N dd
s compactly as

�!
J D �D grad�!c C v

�!c ; (2.9)

@�!c
@t
D D 4 �!c � v � grad�!c C�!p hom : (2.10)

2.3 Equations of Transport in Non-electrolytes

The transport of chemical species can also occur in non-electrolytic spatially
extended phases, for example in the working electrode phase WE in Fig. 1.1a, in
the case of a liquid mercury electrode. The transport in non-electrolytes is usually
modelled by reaction-convection-diffusion PDEs, expressed by Eqs. (2.8) or (2.10).

Further characterisation of the Eqs. (2.8) or (2.10) requires a specification of the
spatial domains and related coordinate systems, a specification of the convection
field v, and a specification of the species production rates �!p hom in homogeneous
reactions. These aspects of the transport equations are discussed in the following
Sects. 2.4, 2.6, and 2.8.

2.4 Spatial Domains, Their Dimensionality, and Coordinate
Systems

All real spatially extended phases are three-dimensional. Therefore, the spatial
domains, on which the transport equations discussed in Sects. 2.2 and 2.3 are
defined, are generally subdomains in the three-dimensional space. However, it often
happens that, owing to a particular symmetry of the electrochemical system, the
number of spatial coordinates necessary for the mathematical description is smaller
than three. Our ability to consider a particular spatial domain as one- or two-
dimensional depends on whether a suitable coordinate system exists that correctly
reflects the above symmetry.

Electrochemical interfaces often have a planar, spherical, or cylindrical symme-
try, and for this reason Cartesian, spherical, or cylindrical coordinate systems are
in frequent use, often enabling the reduction of the dimensionality of the spatial
domains. The spatial differential operators: grad (gradient), div (divergence), and
4 (Laplacian) in Eqs. (2.1) and (2.4)–(2.10) take different forms depending on
the spatial coordinate system used. For the convenience of the Reader, Table 2.1
provides the formulae for these differential operators in the above three coordinate
systems.

The spatial domains occurring in electroanalytical models can often be divided
into finite and semi-infinite. Semi-infinite spatial (sub)domains represent a theoreti-
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Table 2.1 Representation of differential operators grad (gradient), div (divergence), and 4
(Laplacian) in Cartesian, spherical, and cylindrical coordinates

Coordinate system Operatora Formula

Cartesian grad f ex
@f

@x
C ey

@f

@y
C ez

@f

@z

div v
@vx
@x

C @vy

@y
C @vz

@z

4 f
@2f

@x2
C @2f

@y2
C @2f

@z2

Spherical grad f er
@f

@r
C e'

1
r sin �

@f

@'
C e�

1
r

@f

@�

div v 1
r2
@.r2 vr /

@r
C 1

r sin �
@v'

@'
C 1

r sin �
@.sin � v� /

@�

4 f
@2f

@r2
C 2

r

@f

@r
C 1

r2 sin2 �
@2f

@'2
C 1

r2
@2f

@�2
C cot �

r2
@f

@�

Cylindrical grad f er
@f

@r
C e'

1
r

@f

@'
C ez

@f

@z

div v 1
r

@.r vr /

@r
C 1

r

@v'

@'
C @vz

@z

4 f
@2f

@r2
C 1

r

@f

@r
C 1

r2
@2f

@'2
C @2f

@z2

aOperators grad and 4 act on scalar functions f . Operator div acts on vectors v D �
vx; vy; vz

�T
,

v D �
vr ; v'; v�

�T
, or v D �

vr ; v'; vz

�T
. Symbols ex , ey and ez, or er , e' and e� , or er , e' and ez

denote unit vectors, correspondingly in the Cartesian, spherical, or cylindrical coordinate systems.
At a given point in space, the unit vectors indicate directions in which the related coordinates
increase

cal idealisation of situations when an interface studied is located at a large distance
from other interfaces (such as the boundaries of a laboratory vessel or cell) in the
electrochemical system. If the distance is sufficiently large so that a perturbation
imposed at the interface studied is not likely to propagate in the system up to
that distance during the experiment under consideration, the other interfaces can be
formally considered as located at infinity. Such situations are typical, in particular,
in the studies of solid macro- and microelectrodes [5, 7, 17, 21, 36, 37, 51, 99, 111],
dropping mercury electrodes [126], and also (in some cases) liquid j liquid interfaces
[42, 43, 103, 105]. In contrast, finite spatial domains must be assumed in situations
when a perturbation imposed at the interface studied causes variations of the
concentrations (or other state variables) within the entire volume of the adjacent
phase(s). Finite spatial domains occur, for example, in the studies of amalgam
electrodes [77, 121, 123], hydrogen dissolution in solid metals [97], thin layer
cells [55], membranes [114, 115], modified electrodes [38], biosensors [11], and
porous electrodes [50, 122]. Sometimes it is also convenient to artificially separate
a finite subdomain out of a semi-infinite one. This happens in the modelling
of hydrodynamic electrodes, when the region of a stationary diffusion layer is
considered separately from a stirred part of the solution (see, for example, Sect. 2.6.2
below).
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Fig. 2.1 One-dimensional
semi-infinite spatial domains
(grey areas) adjacent to a
planar interface (a), and
spherical or cylindrical
interfaces (b) subject to
electroanalytical studies.
Boundaries corresponding to
interfaces studied are
indicated by dashed lines

0-∞ +∞

+∞

x

r

0-∞ +∞ x

a b

0 r0

Fig. 2.2 One-dimensional
finite spatial domains (grey
areas) adjacent to a planar
interface (a), and spherical or
cylindrical interfaces (b)
subject to electroanalytical
studies. Boundaries
corresponding to interfaces
studied are indicated by
dashed lines, and the
remaining boundaries by
solid lines

0-∞ +∞ +∞x r

0-∞ +∞ x

a

0 r0

+∞ r0 r0

r0+l

r0-l

l

-l
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The IE method is particularly often applied to models defined over one-
dimensional spatial domains, in which the single coordinate axis is perpendicular
to the interface studied. Figures 2.1 and 2.2 present a collection of the typical
one-dimensional spatial domains corresponding to such models. Figure 2.1 depicts
schematically semi-infinite spatial domains that arise in the three often encountered
cases of interfaces possessing a planar, spherical, or cylindrical geometry. Here, and
later in this book we assume that a planar interface studied is located at x D 0,
and a spherical or cylindrical interface studied is located at the radius r D r0.
As can be seen from Fig. 2.1a, the planar interface splits the space into two semi-
infinite spatial subdomains adjacent to the interface: one for x 2 .�1; 0/, and the
second for x 2 .0;1/. As these two subdomains are essentially mirror images
of each other, it is sufficient to analyse only the second subdomain; any theory
for the first subdomain can be obtained by replacing x by �x. The situation is
different for spherical and cylindrical interfaces (cf. Fig. 2.1b). These interfaces
also split the space into two subdomains, but only one of the subdomains is semi-
infinite, namely the one for r 2 .r0;1/. The subdomains for r 2 .0; r0/ are
finite.
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By analogy with Fig. 2.1, Fig. 2.2 depicts schematically finite spatial domains
that arise in the three often encountered cases of interfaces possessing a planar,
spherical, or cylindrical geometry. The finite character of the spatial domains means
that in addition to the interface studied, we have to pay attention to the second
boundary located at a distance l from the interface studied. The second boundary
may correspond to a real physical interface, or can be artificial, i.e. existing only
in the mathematical model. As can be seen from Fig. 2.2a, the finite domains
pertinent to the case of planar interface are similar to the semi-infinite domains
from Fig. 2.1a, in that there can be two of them, symmetrical with respect to the
interface studied. Hence, it is sufficient to analyse only the domain for x 2 .0; l/,
since any theory for the domain for x 2 .�l; 0/ is obtained by replacing x by
�x. A new situation arises for spherical and cylindrical interfaces, where there
are now two different finite domains possible, one that we shall call “internal”
(with respect to the interface studied), which corresponds to r 2 .r0 � l; r0/
with r0 � l � 0, and one that we shall call “external”, which corresponds to
r 2 .r0; r0 C l/.

Two- and three-dimensional spatial domains, occurring in electroanalytical
models, are more difficult to systematise and visualise, and a large diversity of such
domains is conceivable.

2.5 Diffusion Fields

If diffusion is the sole mode of transport, and spatial domains can be regarded
as one-dimensional, one can distinguish planar diffusion, spherical diffusion, and
cylindrical diffusion, as diffusion fields rigorously described by one-dimensional
PDEs, respectively, in Cartesian, spherical, and cylindrical coordinate systems.
Planar diffusion is sometimes called linear diffusion in the literature. However, this
is not a preferred terminology, because the latter name is also used to denote the
independence of the diffusion coefficient on concentration(s).

If diffusion is the sole mode of transport, but spatial domains are two-
dimensional, more diversified diffusion fields are conceivable. Taking, as an
example, diffusion in phases adjacent to a planar interface consisting of an insulator
with embedded electrodes, the spatial coordinate system, and the dimensionality of
the spatial domain depend on the shape of the electrode(s). In particular, Figs. 2.3
and 2.4 present two popular examples of microelectrode arrangements, for which
the spatial domains are two-dimensional: an infinite band electrode (or an array of
parallel bands), and a disk electrode (or an array of concentric disk and/or rings).
In the first example the Cartesian coordinate system is adequate, and the spatial
domain is x 2 .�1;1/ and z 2 Œ0;1/, so that it is infinite for one coordinate,
and semi-infinite for the second coordinate. It is assumed that any band is infinite in
the direction of the omitted coordinate y, so that the diffusion field does not depend
on y. In other words, edge effects resulting from a finite length of a real band are
ignored. In the second example the cylindrical coordinate system is adequate, and



18 2 Basic Assumptions and Equations of Electroanalytical Models

Fig. 2.3 Schematic view of
an array of infinite parallel
electrode bands (WE, grey
areas) embedded in an
insulating plane (white
areas). Coordinate x is in the
direction parallel to the plane,
and perpendicular to the
bands (which are parallel to
the omitted coordinate y),
whereas z is the coordinate in
the direction perpendicular to
the plane, located at z D 0

x

z

0WE WE

Fig. 2.4 Schematic view of
an array of concentric
electrode disk and ring(s)
(WE, grey areas) embedded
in an insulating plane (white
areas). Coordinate r is in the
radial direction parallel to the
plane, whereas z is the
coordinate in the direction
perpendicular to the plane,
located at z D 0 r

z

0
WEWE WE

the spatial domain is r 2 Œ0;1/ and z 2 Œ0;1/, so that it is semi-infinite for both
coordinates.

2.6 Convection-Diffusion Fields

There is a number of standard hydrodynamic arrangements resulting in forced
convection-diffusion fields, used for electroanalytical experiments. Some of them
are described in this section.

2.6.1 Dropping Mercury Electrode

The dropping mercury electrode (DME) is historically one of the first types of work-
ing electrodes WE of Fig. 1.1, where convection transport played an important role.
This type of the electrode has been utilised in polarography for at least six decades.
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Fig. 2.5 Schematic view of
the dropping mercury
working electrode (WE, grey
area), flowing out of a
capillary (white areas) into an
electrolyte solution (ES).
Coordinate x is the distance
from the surface of the drop
(x D 0 corresponds to the
surface). Consequently, there
is convection of the
electrolyte towards the
electrode surface, indicated
by arrows

x

0

WE

Hg

ES

Polarography has influenced very significantly the development of electroanalytical
chemistry, and is indispensable for particular purposes, but currently electrodes of
this type are gradually replaced by solid micro and nano electrodes or other devices.

The DME is depicted schematically in Fig. 2.5. Liquid mercury flows at a
constant rate out of a capillary, and forms a drop. The size of the drop grows with
time, until the drop falls down and another one begins to be formed. As a result,
in a coordinate system associated with the surface of the drop, the electrolyte flows
towards the surface of the drop. This electrolyte flow is most often described by
the so-called expanding plane model, introduced by Ilkovič [58]. According to this
model, the radius of the drop is assumed to be sufficiently large, so that during the
experiment one can approximate the surface of the drop by a plane moving in the
electrolyte in the direction of the x axis in Fig. 2.5. The spatial domain associated
with this system is effectively one-dimensional and semi-infinite, with the distance
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x from the electrode surface playing the role of the spatial coordinate. Detailed
analysis [58] of the drop volume variations with time t (elapsed from the birth of
the drop) yields the convection rate

v.x; t/ D �2
3

x

t
: (2.11)

Consequently, the convection-diffusion PDE for a j th dynamic distributed species
is

@cj .x; t/

@t
D Dj

@2cj .x; t/

@x2
C 2x

3t

@cj .x; t/

@x
: (2.12)

The electrode area in the expanding plane model is a growing function of time:

A D a t2=3 ; (2.13)

where a is a suitable coefficient.

2.6.2 Rotating Disk Electrode

Another quite popular experimental arrangement employing forced convection is
the rotating disk electrode (RDE) system. Theoretical principles and experimental
aspects of the RDE have been summarised in a number of books and review papers
[68, 86, 101]. In this arrangement the working electrode WE of Fig. 1.1 is realised
as a disk of a solid electronic conductor (metal or graphite, etc.) embedded in an
insulator plate, and immersed in the electrolyte solution. The disk (together with
the insulator) rotates, most often with a constant frequency, along the symmetry
axis of the disk. As a result, a stationary field of the convection velocity is
established throughout the electrolyte. The RDE arrangement is shown schemati-
cally in Fig. 2.6. The electrode can operate either under laminar or turbulent flow
conditions, but we focus here on the laminar flow only. Close to the RDE surface
the electrolyte fluid flows parallel to the surface, in the direction outwards the
electrode symmetry axis. At a further distance from the electrode surface, the flow
lines are perpendicular to the surface, and the flow is directed towards the surface.
This perpendicular flow has the dominant effect on the results of electroanalytical
experiments at the RDE. Therefore, in the theoretical modelling of such experiments
the flow parallel to the surface is usually neglected. The spatial domain associated
with this system is then considered as one-dimensional, and semi-infinite. As the
single spatial coordinate one uses the Cartesian coordinate x along the symmetry
axis of the RDE (see Fig. 2.6). The electrode surface is located at x D 0.

The modelling of electroanalytical experiments at the RDE is usually based
on hydrodynamic calculations by Cochran [25]. By using the results of these
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Fig. 2.6 Schematic view of
the rotating disk working
electrode (WE, grey area),
embedded in an insulator
(white area) and immersed
into an electrolyte solution
(ES). Coordinate x is the
distance from the surface of
the electrode (x D 0

corresponds to the surface).
The insulated electrode
rotates along the symmetry
axis x. Consequently, there is
convection of the electrolyte,
indicated by lines with arrows

x

0 WE

ES

calculations it has been established (see, for example, [47, 119]) that under laminar
flow conditions the convection velocity along the x axis equals

v.x/ D .!�/1=2
�
�0:51023

�!
�

�
x2 C 0:33333

�!
�

�3=2
x3 � 0:10267

�!
�

�2
x4

C0:0127
�!
�

�5=2
x5 C 0:00283

�!
�

�3
x6 C : : :

	
; (2.14)

where ! is the rotation frequency of the electrode (in rad s-1), and � is the
kinematic viscosity of the solution (in m2 s-1). Often only the first term of Eq. (2.14)
(corresponding to x2) is taken into account for theoretical modelling purposes, so
that the convection-diffusion PDE for a j th dynamic distributed species takes the
form

@cj .x; t/

@t
D Dj

@2cj .x; t/

@x2
C 0:51023 !3=2��1=2 x2

@cj .x; t/

@x
: (2.15)

The fact that the convection velocity vanishes at x D 0, and increases rapidly
with increasing x, implies that one may consider the spatial domain as composed
of two subdomains. One of them is a thin layer close to the electrode, where the



22 2 Basic Assumptions and Equations of Electroanalytical Models

transport is practically by diffusion only. In the second, external, and semi-infinite
subdomain, the concentration can be assumed practically constant and equal to the
bulk concentration, owing to intensive mixing. The thickness l of the thin layer can
be expressed [119] by the formula:

l � 1:6117D1=3
j !�1=2�1=6

"
1C 0:298



Dj

�

�1=3
C 0:14514



Dj

�

�2=3#
:

(2.16)

In view of this possibility, the applications of the IE method to Eq. (2.15) have
followed two distinct routes. In one route (to be discussed in Sect. 5.3) Eq. (2.15)
is replaced by a pure diffusion equation, and solved in a thin layer of thickness
l . In the second route (to be discussed in Sect. 6.2.3) Eq. (2.15) is considered as
defined over a semi-infinite spatial interval, and one attempts to take into account
both convection and diffusion.

The hydrodynamic calculations of Cochran [25] have been recently questioned
by Alexiadis et al. [2], who showed that they are inadequate except in the very
vicinity of the electrode, if the finite size of the experimental vessel is taken into
account. Therefore, it may be that the higher-order terms in Eqs. (2.14) and (2.16)
are not very realistic.

2.6.3 Channel and Tubular Electrodes

Further examples of working electrodes, operating under conditions of forced
convection, are channel and tubular electrodes. The simplest arrangements of
such electrodes are schematically depicted in Fig. 2.7. In these arrangements an
electrolytic solution moves past a conductive electrode plate embedded in a wall of a
rectangular duct or tube. There is an abundant literature devoted to such electrodes.
We refer the Reader to several available reviews [26, 27, 72, 79, 101].

Theoretical models of electroanalytical experiments involving channel and
tubular electrodes are usually based on the assumption that the flow is laminar,
and that an adequate lead-in length exists upstream of the electrode. It is further
assumed that the flow velocity is significantly large, so that diffusion in the axial
direction can be neglected, in comparison with axial convection. Under these
assumptions, the convection-diffusion PDE (consistent with the coordinates and
notation used in Fig. 2.7) for the concentration cj of a j th dynamic distributed
species is:

@cj .y; z; t/

@t
D Dj

@2cj .y; z; t/

@y2
� vz.y/

@cj .y; z; t/

@z
(2.17)
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Fig. 2.7 Rectangular channel (a) and tubular (b) working electrode (WE) arrangements. In both
arrangements an electrolyte solution (ES) flows past the WE (grey areas) embedded in an insulator
(white areas). The channel has a width d and height 2h. Normally h � d . The WE width w must
be sufficiently smaller than d , to make edge effects negligible. Cartesian coordinates y and z are
then sufficient for the description. The tube has a radius r0, and the WE has a cylindrical symmetry.
Therefore, cylindrical coordinates r and z are sufficient for the description

with

vz.y/ D v0
h
1 � .y=h/2

i
(2.18)

for channel electrodes, and

@cj .r; z; t/

@t
D Dj

�
@2cj .r; z; t/

@r2
C 1

r

@cj .r; z; t/

@r

	
� vz.r/

@cj .r; z; t/

@z
(2.19)

with

vz.r/ D v0
h
1 � .r=r0/2

i
(2.20)

for tubular electrodes. Parameter v0 is the convection velocity in the middle of the
channel or tube (along the symmetry axis z). We note that the PDEs (2.17) and (2.19)
depend on two spatial coordinates (so that the spatial domain associated with
this system is two-dimensional), and that the convection velocity variations (2.18)
and (2.20) are parabolic in the directions perpendicular to the surface of the
electrodes.

When the electrode length l is sufficiently small and/or the axial convection
velocity v0 large, then the concentration changes due to heterogeneous reactions
at the electrode do not extend much into the solution, i.e. the thickness of the
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diffusion layer is much smaller than h or r0 (that is h or r0 can be formally
regarded as infinitely large). Under such conditions it is usual to invoke the so-
called Lévêque approximation [67], meaning a linearisation of the velocity profile
within the diffusion layer at the electrode:

vz.y/ � 2v0 .1 � y=h/ (2.21)

for channel electrodes, and

vz.r/ � 2v0 .1 � r=r0/ (2.22)

for tubular electrodes. In accord with this approximation one simultaneously
assumes that the concentrations outside the diffusion layer remain practically equal
to the (initial) concentrations at the inlet to the channel or tube.

2.7 Equations for Reaction Kinetics

There exists an ample literature devoted to formal chemical kinetics. For a general
introduction, the classical book by Boudart [18] may be particularly helpful.

For a given set X1, X2; : : : ;XNs of Ns species, any i th, out of Nr reactions, can
be written as a pair of unidirectional processes that proceed in opposite directions:

NsX

jD1
�f
j;i Xj �

NsX

jD1
�b
j;i Xj ; (2.23)

where �f
j;i and �b

j;i are the so-called stoichiometric coefficients of the reactants and
products, respectively. One should write the reactions in such a way that �f

j;i and
�b
j;i are mutually prime non-negative integers [8]. The unidirectional transformation

of the reactants into products is called forward reaction. The reverse transformation
is called backward reaction. Basically all reactions are reversible, in the sense that
if a forward (or backward) reaction is possible, then a reverse reaction must be
possible as well. However, it sometimes happens that the rate of the reverse reaction
is negligible, so that formally we can consider a given reaction as irreversible,
proceeding only in one direction.

Electroanalytical models can involve elementary or non-elementary reactions. A
reaction is elementary (represents an elementary step) if it takes place in a single
irreducible act at the molecular level, just the way it is written in the stoichiometric
equation (2.23) [18]. Non-elementary reactions occur in more than one elementary
step. If such reactions are considered in a kinetic model, it is usually assumed that
under the particular experimental conditions it is not possible to distinguish their
elementary steps, and observe or identify possible intermediate species. Elementary
reactions are usually unimolecular or bimolecular, which means that there is
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only one species with a stoichiometric coefficient 1 or 2, or two species with
stoichiometric coefficients 1, at both sides of Eq. (2.23). Non-elementary reactions
may involve more species, or have higher stoichiometric coefficients at one or both
sides of Eq. (2.23).

The (specific) rate of a reaction (2.23) is defined as

ri D r f
i � rb

i ; (2.24)

where r f
i and rb

i are (specific) rates of the forward and backward reactions. The
latter can be most convincingly understood as average numbers of the (forward or
backward) reaction acts (usually counted in moles) per unit time and unit volume of
the solution (in the case of homogeneous reactions) or unit surface of an interface (in
the case of heterogeneous reactions). An alternative definition involves the notion
of the reaction extent [18]. A reaction is in equilibrium, when r f

i D rb
i . It is

convenient to distinguish positive equilibria in which r f
i > 0 and rb

i > 0, and
zero equilibria, in which r f

i D rb
i D 0, which implies that the reaction does not

proceed at all, possibly owing to the absence of a particular reactant, or (in the
case of electrochemical reactions) as a result of a particular electrode polarisation.
There are reactions so fast that they are practically in a positive equilibrium all the
time, even under conditions of transient experiments. In this book such reactions are
termed equilibrium reactions. In contrast, reactions characterised by finite nonzero
rates are termed non-equilibrium reactions. Such a terminology was postulated in
Bieniasz [12].

The reaction rates may be subject to various rate laws defining how r f
i and rb

i

depend on concentrations and other variables. In the case of homogeneous reactions
in liquids, the most commonly followed rate law is the power rate law, according to
which (see, for example, Boudart [18] or Ritchie [104]):

r f
i D kf

i
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jD1
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��f

j;i ; (2.25)

rb
i D kb

i
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jD1
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��b
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where N distr
s is the number of distributed species in a given phase, cj is a local

value of the concentration of a j th distributed species at some point in a spatially
extended phase, kf

i and kb
i are coefficients known as the (forward and backward)

rate constants, and �f
j;i and �b

j;i are called reaction orders. A nonzero reaction
order means that the rate of the i th reaction depends on the concentration of the
j th species. To be consistent with thermodynamics, the reaction orders generally
have to obey the relationship ([16], [18, p. 91]):

�f
j;i � �b

j;i D
�
�f
j;i � �b

j;i

�
=�i ; (2.27)
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where �i is a positive constant. In the case of elementary reactions normally
�f
j;i D �f

j;i , �
b
j;i D �b

j;i , and �i D 1. For non-elementary reactions composed
of several elementary steps, if a reaction possesses a single rate determining
step, then �i is the stoichiometric number of this step. This number is the
number of times that the rate determining step must be repeated, in a closed
sequence, in order to obtain by summation of all steps the overall stoichiometric
equation for the reaction. In electroanalytical models non-elementary homogeneous
reactions are rarely considered, hence the orders are usually equal to the stoi-
chiometric coefficients, and orders greater than 2 are rare (examples of models
involving third-order homogeneous reactions are in [28, 110]). We emphasise
that second- or higher-order homogeneous reactions imply nonlinear dependencies
of the reaction rates on concentrations, which presents a difficulty for the IE
method, because the reaction-transport PDEs are then nonlinear (cf. Sect. 2.2).
The rate constants kf

i and kb
i of homogeneous reactions in liquids depend on

the temperature. Therefore, they can usually be regarded as constant parameters,
since a majority of electroanalytical experiments are performed under isothermal
conditions. Exceptions to this are temperature perturbation experiments (see, for
example, Wildgoose et al. [124] and Gründler et al. [48]), but these are rarely
modelled.

At a positive equilibrium, a homogeneous reaction subject to the power rate
law (2.25) and (2.26) satisfies the equilibrium condition:

N distr
sY

jD1

�
cj
��b
j;i��f

j;i D Ki ; (2.28)

where Ki is the classical equilibrium constant which should be distinguished from
the thermodynamic equilibrium constant (see, for example, Everett [35, p. 112]).
The equilibrium constantKi is related to the rate constants by the equation:

kf
i =k

b
i D .Ki /

1=�i : (2.29)

Some non-elementary homogeneous reactions occurring in electroanalytical
models may be subject to other rate laws, for example to Michaelis–Menten kinetics
[62] characteristic of enzymatic reactions (see, for example, Leskovac [66] or
Marangoni [73]). The rates of enzymatic reactions are rational functions of the
concentrations. Due to the nonlinearity of such functions, they have not been thus
far handled by the IE method. Therefore, we do not write more about such rate laws
here.

In the case of heterogeneous reactions a greater diversity of expressions for
the reaction rates is encountered. References [1, 9, 31, 33, 40, 41] may serve as
a source of basic information about such expressions, but some of the formulae
used in the modelling may not be available in these references, and have to be
searched in the literature. It is difficult to provide a complete list of possibilities.
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In many modelling studies the power rate law analogous to Eqs. (2.25) and (2.26) is
assumed:

r f
i D kf

i
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jD1; j¤e

�
	j
��f

j;i ; (2.30)
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jD1; j¤e
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��b

j;i ; (2.31)

where N distr
s is the number of distributed species in phases adjacent to a given

interface, N loc
s is the number of localised species at the interface (including free

sites, if relevant), 	j denotes either the concentration of a distributed species at

the interface, further denoted by c
j , or the concentration �j of a localised species,
and �f

j;i and �b
j;i are reaction orders. The orders satisfy the condition analogous to

Eq. (2.27). Index j D e refers to exchanged electrons, if they are included in the
list of reactants. Rate constants kf

i and kb
i of heterogeneous non-electrochemical

reactions are often assumed to depend only on the temperature, whereas those
for electrochemical reactions depend not only on the temperature but also on the
electrode potential E (in the case of electron transfers at electrode j electrolyte
interfaces) or on the Galvani potential difference �˚ across the interface (in the
case of electron or ion transfers at liquid j liquid interfaces). According to the most
popular Butler–Volmer kinetic model, for electron transfer reactions at electrodes
the potential dependences are:

kf
i D kf

i ."/ D k0i exp
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with

" D F

RT

�
E � E0

i

�
; (2.34)

where k0i is the conditional rate constant of the reaction, �e;i is the stoichiometric
coefficient of the electron exchanged in the reaction, ˛f

i and ˛b
i D 1 � ˛f

i are
charge transfer coefficients, most often assumed to be constant, and E0

i is the
conditional (formal) potential of the reaction. For elementary reactions ˛f

i and ˛b
i

are called symmetry factors. Equations (2.32)–(2.34) are presented after IUPAC
recommendations [92, 93], and we direct the Reader to those papers for further
details. It must be noted, however, that alternative assumptions regarding the
magnitude of the charge transfer coefficients are also encountered.
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At a positive equilibrium, a heterogeneous non-electrochemical reaction subject
to the power rate law satisfies the equilibrium condition analogous to Eq. (2.28):

N distr
s CN loc

s C1Y

jD1; j¤e

�
	j
��b
j;i��f

j;i D Ki ; (2.35)

whereKi is a suitable equilibrium constant, whereas an electron transfer reaction at
the electrode satisfies the Nernst equation:
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In electrochemistry, electron transfer reactions being in a permanent equilibrium
are often called Nernstian or reversible, whereas those not in equilibrium, but
having finite rates in both directions, are called quasi-reversible. This terminol-
ogy is inconsistent with the previously mentioned general meaning of reversible
reactions in chemistry. The inconsistency complicates theoretical discussions of
the reaction kinetics in electrochemical systems, where electrochemical and non-
electrochemical reactions simultaneously occur, because one has to use different
names to denote analogous reaction properties, depending on the reaction type. This
is a reason why it is more convenient to use the terminology adopted here after
Bieniasz [12], according to which one simply distinguishes equilibrium reactions
and non-equilibrium reactions, irrespective of whether electrochemical or non-
electrochemical reactions are in mind. Any equilibrium reaction must be reversible,
in a general sense. Any irreversible reaction must be a non-equilibrium reaction, and
any non-equilibrium reversible reaction has finite rates in both directions.

The rate constants (2.32) and (2.33) are linked with the electrode potential by the
equation

kf
i =k

b
i D exp

�
�e;i

�i
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i

�	
: (2.37)

In cases when free sites available for adsorption are considered as dynamic
species, Eqs. (2.35) or (2.36) can be interpreted as Langmuir-type adsorption (or
electrosorption) isotherms.

Among the various complications or alternative assumptions regarding the
heterogeneous reaction rates, one can distinguish the following. Equations (2.30)
and (2.31) may involve additional multiplicative factors exponentially dependent on
the concentrations of localised species, and expressing the effect of the interactions
between these species on the reaction rates. At a positive equilibrium, one then
obtains Frumkin-type isotherms, instead of the Langmuir isotherms [40, 41]. Yet
different dependences on concentrations may be needed to reproduce still other
kinds of adsorption isotherms known in electrochemistry [31]. Rate constants of
heterogeneous non-electrochemical adsorption reactions can sometimes be assumed
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exponentially dependent on the electrode potential (see, for example, the theory of
Parsons [91], the IE-based model of cyclic voltammetry, reported by Wopschall and
Shain [125], or the IE-based model of normal pulse polarography, reported by Puy
et al. [98]). Charge transfer coefficients ˛f

i and ˛b
i of electrochemical reactions can

sometimes be assumed potential-dependent (see, for example, the review by Sanecki
and Skitał [107]). In recent years there is also an increasing interest in considering
alternative models of the potential-dependent rate constants of the electrochemical
reactions, originating from the Marcus [74, 75] and Hush [56] theory of electron
transfer. In the Marcus–Hush theory the potential dependencies are more sophisti-
cated, compared to Eqs. (2.32) and (2.33). The classical, “symmetric” variant of this
theory, often identified by an additional reference to Chidsey [24], is usually termed
the Marcus–Hush–Chidsey theory in the literature. According to this variant, for an
elementary one-electron transfer X1 C e� � X2 the rate constants are given by

kf
i D kf

i ."/ D
(
k0i exp
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2
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In Eq. (2.38),
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and� D �.RT/�1, with � denoting the so-called reorganisation energy (in J mol-1).
Equations (2.38)–(2.40) are more difficult to handle than Eqs. (2.32) and (2.33), in
mathematical models. Their use can be facilitated by the specially developed pro-
cedures for accurate and efficient computation of the above Marcus–Hush–Chidsey
rate constants [15, 76, 85]. However, the physical adequacy of Eqs. (2.38)–(2.40)
and also of other variants of the Marcus theory, for electroanalytical modelling, is
still under debate (see, for example, the review by Henstridge et al. [52], and the
references cited therein). The question seems to be open whether these equations
ensure a better agreement between theoretical and experimental electrochemical
responses, than the classical Butler–Volmer equations (2.32) and (2.33) do.

Other kinetic complications arise in the case of reactions involving solvated
electrons (see, for example, Alpatova et al. [4]), but such reactions will not be of
particular interest in this book.

It should be stressed that in contrast to homogeneous reactions, the nonlinearities
of Eqs. (2.30) and (2.31) present no difficulty for the IE method, which will become
clear in further chapters.

The above presentation is focused on single reactions. In practice, the numberNr

of reactions is often greater than one. A set of reactions, presumably occurring in an
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electrochemical system studied (or a part of it), is usually called a reaction scheme.
Alternatively (and sometimes interchangeably) the name reaction mechanism is
also used. Strictly speaking, the latter name should be restricted to cases when a
particular set of reactions represents elementary steps of a certain non-elementary
reaction, or serves to explain how to obtain a certain product from particular
substrates. The name reaction network, popular outside electrochemistry, is also
sporadically used. There exist a number of standard reaction schemes, often
encountered in electrochemical studies, for which a more or less widely adopted
notation has been devised [6]. Elements of this notation are used in the present
book. Thus, electron transfer reactions are noted by the letter E, other reactions
by the letter C. For example, ECE denotes any reaction scheme comprising two
electron transfer reactions separated by a homogeneous (or heterogeneous) non-
electrochemical reaction, such as:

X1 C e� � X2 ; (2.41)

X2 � X3 ; (2.42)

X3 C e� � X4 : (2.43)

An important characteristic of the reaction schemes is the stoichiometric matrix

N , defined as N D
n
�b
j;i � �f

j;i

o

Ns�Nr

. Matrix N is usually non-square, as the

number of the reactions is generally different from the number of species. Of
particular interest is the submatrix N dyn of N , corresponding to dynamic species
(and electrons exchanged, if taken into account). A detailed analysis of the matrices
N andN dyn allows one to derive many of the mathematical equations necessary for
the description of electroanalytical experiments. Among other things, one can deter-
mine a set of linearly independent reactions, that might be called base reactions.
The linear independence of the reactions is equivalent to the linear independence of
the columns of the stoichiometrix matrix. A set of base reactions determines a set
of independent model parameters, since in the case of linearly dependent reactions
some of their parameters like equilibrium constants or conditional potentials are not
arbitrary but depend on the relevant parameters of the base reactions (see Luo et al.
[70] and Bieniasz [12]). The analysis of the stoichiometric matrix, and the derivation
process of the mathematical equations can be automated and computerised, as was
shown in [12–14, 69]. Given a vector �!r D Œr1; : : : ; rNr �

T of all reaction rates, the
corresponding vector �!p of the production rates of all dynamic species involved in
these reactions can be calculated as

�!p D N dyn�!r : (2.44)

The elements of the vector �!p are:

pj D @cj

@t
; (2.45)
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in the case of dynamic distributed species subject to homogeneous reactions;

pj D ˙J?
j ; (2.46)

in the case of dynamic distributed species subject to heterogeneous reactions;

pj D d�j
dt

; (2.47)

in the case of dynamic localised species subject to heterogeneous reactions; and

pj D i?

F
; (2.48)

(with j D e) in the case of electrons exchanged in electron transfer reactions at
electrodes. Symbol J?

j in Eq. (2.46) denotes the component perpendicular to the
interface, of the flux of a given species. The plus or minus sign in Eq. (2.46) is
chosen based on the following reasoning. Assume that  is a spatial coordinate along
an axis perpendicular to the interface, with  D 0 corresponding to the location of
the interface. Let J?

j be expressed in this coordinate system. Then plus is chosen for
species present in the phase for which  > 0, and minus is chosen for species present
in the phase for which  < 0. Symbol i? in Eq. (2.48) denotes the Faradaic current
density at the electrode surface, in the direction perpendicular to the electrode. In
cases when the current density i? is uniform along the electrode surface, Eq. (2.48)
can be replaced by

pj D I

FA
; (2.49)

where I is the total Faradaic current flowing through the electrode surface, and A is
the electrode area.

In Eqs. (2.44)–(2.49), and in other related equations of this chapter, we omit lists
of arguments of �!p , �!r , i? and I . However, one should keep in mind that under
transient conditions these variables are functions of time. For some models they can
also be functions of spatial coordinates.

2.8 The Effect of Homogeneous Reactions on Transport
PDEs

Equation (2.44) implies, among other things, that the rates of the homogeneous
reaction(s) are related to the production rates of the dynamic distributed species.
Consider a spatially extended phase with N hom

r homogeneous reactions and N dd
s
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dynamic distributed species having concentrations �!c . By rewriting Eq. (2.45) in
the vector notation, we obtain:

�!p hom D @�!c
@t

; (2.50)

where �!p hom D
h
phom
1 ; : : : ; phom

N dd
s

iT
is the vector of the production rates of the

dynamic distributed species, and the concentration changes are due solely to the

homogeneous reactions. By introducing the vector �!r hom D
h
rhom
1 ; : : : ; rhom

N hom
r

iT

of the homogeneous reaction rates, the relationship between �!p hom and �!r hom,
resulting from Eq. (2.44) is

�!p hom D N dd;hom �!r hom ; (2.51)

where N dd;hom is the submatrix of the stoichiometric matrix N dyn, that takes into
account only the above species and reactions. Expression (2.51) has to be included
into Eq. (2.10) to obtain a complete reaction-convection-diffusion PDE system. Of
special interest to this book is the situation when all homogeneous reactions are
either of first order, or of pseudo first order. Pseudo first order means that each
of the reaction rate expressions (2.25) and (2.26) may involve concentrations of at
most one dynamic species with the reaction order equal 1. All remaining species
participating in the reaction must be static species. In such a case it is possible to
write Eq. (2.51) in the linear form

�!p hom D �K �!c +�!� ; (2.52)

where K is a real N dd
s �N dd

s matrix of coefficients dependent on the rate constants
of the homogeneous reactions, and (in the case of pseudo first-order reactions) on
the constant concentrations of the static distributed species; and �!� is a constant
source vector. Vector �!� represents the homogeneous reaction rate terms dependent
exclusively on the concentrations of the static distributed species.

2.9 The Effect of Heterogeneous Reactions on Boundary
Conditions and Governing Equations for Localised
Species

Consider an interface at which N het
r heterogeneous reactions take place. Let N dd

s
be the number of dynamic distributed species in adjacent spatially extended phases,
and N dl

s be the number of dynamic localised species at this interface. By N dyn;het

let us denote the submatrix of the stoichiometric matrix N dyn in Eq. (2.44), which
corresponds to these species and reactions. If one of the adjacent spatially extended
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phases is an electrode, and electron transfer reactions are involved, electrons
exchanged are considered as additional dynamic species, and are taken into account
in the matrix N dyn;het. Hence, there are altogetherN dyn

s D N dd
s CN dl

s C 1 dynamic
species to be considered at the interface. If the interface is a liquid j liquid interface,
electrons exchanged are not taken into account in the matrix N dyn;het, even if there
are electron transfer reactions, so that there areN dyn

s D N dd
s CN dl

s dynamic species

to be considered. According to Eq. (2.44), the vector �!p het D
h
phet
1 ; : : : ; p

het
N

dyn
s

iT

of the production rates of the dynamic species is linked with the vector �!r het Dh
rhet
1 ; : : : ; r

het
N het

r

iT
of the heterogeneous reaction rates by the equation:

�!p het D N dyn;het�!r het : (2.53)

In cases when all heterogeneous reactions are non-equilibrium reactions, Eq. (2.53)
can sometimes be used directly as a coupled set of equations containing boundary
conditions for dynamic distributed species, and equations governing the evolution
of the concentrations of dynamic localised species. If electrons exchanged are
taken into account in the stoichiometric matrix N dyn;het, Eq. (2.53) contains one
more equation that can be used for calculating the Faradaic current (in the case of
controlled potential experiments) or electrode potential (in the case of controlled
current experiments). If electrons exchanged are not taken into account in N dyn;het,
an additional equation defining the current is needed, based on the balance of electric
charge in the charge transfer reactions involved.

In practice, however, Eq. (2.53) is rarely used in the direct form. Analysis
of many electroanalytical models published in the literature reveals that usually
Eq. (2.53) is presented in a modified form that can be obtained by partially inverting
Eq. (2.53), so that some of the reaction rates are expressed as linear combinations
of the other reaction rates, and/or species production rates. Such a modification of
Eq. (2.53) is necessary in cases when the reaction scheme involves heterogeneous
equilibrium reactions. The detailed procedure for performing the inversion is
described in Bieniasz [13]. The procedure transforms Eq. (2.53) into the equation:

V �!r het D Z �!p het ; (2.54)

where V
N

dyn
s �N het

r
andZ

N
dyn
s �N dyn

s
are matrices of rational coefficients. Matrix V has

in the general case the following block structure:

V D

C1 C2 C3 C42

4
11 0 M1 M2

0 12 0 M3

0 0 0 0

3

5
R1

R2

R3

; (2.55)
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where 11 and 12 are unit submatrices (not necessarily of the same size), M1, M2,
and M3 are some generally non-square submatrices, the elements of which can be
different from zero, and 0 denotes null submatrices. Sets C1 and C3 of columns
of V correspond to equilibrium reactions, sets C2 and C4 to non-equilibrium
reactions. The procedure of Bieniasz [13] ensures that all columns within sets C1
and C2 are linearly independent, columns C3 are dependent on columns C1, and
columns C4 are dependent on columns C1 and C2. Each equation corresponding
to set R1 of rows in matrix V allows one to express the rate of some equilibrium
reaction from set C1 as a linear combination of the following variables: rates of
equilibrium reactions from set C3, rates of non-equilibrium reactions from set C4,
and species production rates. One can then neglect all finite reaction rates from
set C4, and (finite) species production rates in equations from the rows R1. Terms
resulting from dependent equilibrium reactions in set C3 can also be removed from
equations corresponding to R1, because dependent reactions do not alter equilibria
of independent reactions. In this way, all equations from the set R1 are replaced
by equilibrium equations for reactions from set C1. Each equation corresponding
to set R2 of rows allows one to express a finite rate of one of the independent
non-equilibrium reactions from set C2, as a linear combination of the rates of
dependent non-equilibrium reactions from set C4, and species production rates.
Finally, equations corresponding to set R3 of rows do not involve reaction rates.
They only express relationships between species production rates.

In addition to replacing Eq. (2.53) by Eq. (2.54), one can also apply steady state
conditions to some of the intermediates, by zeroing some of the elements of Z,
thereby neglecting respective species production rates.

The above transformation of Eq. (2.53) into Eq. (2.54) is similar to the process of
looking for the so-called first linear invariants of a dynamical system, performed in
kinetic studies of complex non-electrochemical reaction networks (see, for example,
Reder [100], Corio [29], and Sauro and Ingalls [108]). By following this analogy,
equations belonging to the group R3 should be called structural conservation
relationships [100], because they express invariants resulting from the structure of
the reaction network, independently of the rate laws.

If a particular dynamic species does not take part in any of the heterogeneous
reactions at the interface, then Eq. (2.53) implies that the production rate of this
species is simply zero. In view of Eqs. (2.46) and (2.47), for a distributed species this
implies a zero flux boundary condition at the interface, and for a localised species
this implies a time-invariant concentration.

For models not including dynamic distributed species, Eq. (2.53) yields generally
an ordinary differential equation (ODE) system, and Eq. (2.54) yields generally
a differential-algebraic equation (DAE) system, for the temporal evolution of
the concentrations of the dynamic localised species (plus one more equation for
calculating the Faradaic current or electrode potential, if electrons exchanged are
taken into account in the stoichiometric matrix N dyn;het). In the case of models
not involving localised species Eqs. (2.53) or (2.54) yield boundary conditions for
the transport PDEs or steady state ODEs (plus optionally one more equation, as
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above). If both dynamic distributed and dynamic localised species occur, all these
equations may be coupled in the way which makes it impossible to distinguish
among them boundary conditions for transport PDEs, and ODEs or DAEs for the
localised species; all equations must be considered and solved jointly.

In the case of controlled current experiments it is not always possible to obtain
an explicit formula for the electrode potential (or interfacial potential difference).
Implicit expressions, requiring numerical potential determinations, may occur.

There is also a special situation when dynamic distributed species can be formally
considered as localised species, with all consequences regarding their mathematical
representation in Eqs. (2.53) or (2.54). This is the situation of dynamic distributed
species confined to a very thin spatially extended phase (for example, a thin
electrolyte layer) adjacent to the interface studied. The distributed species must
not be allowed to leave such a thin layer through the other interfaces. In such
a case it can be shown (see Sect. 5.3) that despite diffusion, there is almost no
concentration gradient inside the layer, in the direction perpendicular to the interface
studied. Consequently, we can treat a distributed species as a localised one, having
concentration �j D cj l , where cj is the uniform concentration of the distributed
species in the layer, and l is the layer thickness. The production rate of such a
quasi-localised species must be expressed as phet

j D d�j =dt , not as phet
j D ˙J?

j .
Examples of electroanalytical models involving such quasi-localised species can be
found in [54, 65], and in the references cited therein.

2.10 The Effect of Reactions on Initial Conditions

In order for the transport Eq. (2.10), and equations governing the evolution of the
concentrations of localised species, contained in Eqs. (2.53) or (2.54), to be solvable,
electroanalytical models have to provide initial conditions. Most often it is assumed
that the system studied is initially in equilibrium, so that all reactions in the reaction
scheme considered are in equilibrium, and there are also no concentration gradients
in spatially extended phases. Consequently, all initial concentrations are assumed
to be time-invariant prior to the electroanalytical experiment, and in the case of
distributed species they are also spatially uniform. Alternative initial conditions are
conceivable, but they occur rarely. For example, when flash photolysis is used to
produce an electroactive species to be studied in an electroanalytical experiment,
the initial concentration of this species is not in equilibrium, and it decays in time,
prior to the experiment [20, 102, 116]. Such situations will not be considered in this
book. Another example, of non-equilibrium initial conditions, is encountered in the
studies of adsorption at DMEs, where it is often assumed that every newly created
drop is initially free of the adsorbates, even if the adsorbates are present in the
electrolyte. Such situations will be addressed in Chap. 9. The initial concentrations
will be denoted by c?j in the case of dynamic distributed species, and by � ?

j in the
case of dynamic localised species.
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In the initial equilibrium the various reactions can be either at positive or
zero equilibria. Depending on how many electrochemical reactions are initially
at positive equilibria, the following three situations are conceivable: (A) All
electrochemical reactions are at zero equilibria, so that the rest potential Erest

(in the case when the interface studied is an electrode j electrolyte interface) or
the rest value of the Galvani potential difference �˚rest (in the case when the
interface studied is a liquid j liquid interface) is not governed by the given reaction
scheme. (B) There is only one linearly independent electrochemical reaction at
positive equilibrium, and Erest or �˚rest correspond to this equilibrium (Erest is an
equilibrium potential or �˚rest is an equilibrium Galvani potential difference). The
reaction can be accompanied by any number of other electrochemical reactions that
are also in positive equilibrium, but only if they are linearly dependent on the first
reaction. (C) There is more than one linearly independent electrochemical reaction
initially at positive equilibrium, but such a case is acceptable only for a special
combination of kinetic parameters and initial concentrations, which may not always
be possible to precisely achieve or maintain experimentally. In general, if there is
more than one linearly independent electrochemical reaction not at zero equilibrium,
a non-equilibrium, mixed-potential situation is expected (see, for example, Kortüm
[64, p. 510]), so that equilibrium initial conditions cannot be assumed in such a case.

In the case of the power rate law (2.25) and (2.26) or (2.30) and (2.31), any
relationships between nonzero initial concentrations of the dynamic species and
concentrations of static species can always be expressed in a closed, explicit form.
A procedure for deriving these relationships was described in Bieniasz [12]. It relies
on solving analytically equilibrium equations (2.28), (2.35), and (2.36), transformed
into linear AEs by a logarithmic transformation.

2.11 Electroanalytical Methods

Boundary conditions depend not only on the kinetics of heterogeneous reactions but
also on the electroanalytical method used in an experiment of interest. Experimental
electroanalytical methods can be divided into two major categories: controlled
potential methods, and controlled current methods. In the controlled potential
methods a specific potential-time perturbation is applied to the WE(s), and the
current-time response is measured. In the controlled current methods a current-time
perturbation is applied and the potential-time response is measured. The various
methods differ mostly by the perturbation functions. Instead of providing detailed
equations of the various perturbation functions used, Figs. 2.8 and 2.9 compare
the most common perturbations visually. It is assumed in the figures that the
WE is polarised to study anodic processes. Replacing E.t/ by �E.t/, or I.t/
by �I.t/ would give the functions for studying cathodic processes. Apart from
the perturbation functions, the various methods may also differ by the ways in
which the responses are sampled and analysed. The figures are based on IUPAC
recommendations [59] and on the Bard and Faulkner book [10], to which the Reader
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t

potential step chronoamperometry

double potential step chronoamperometry

linear potential sweep voltammetry

cyclic voltammetry

staircase voltammetry

square wave polarography/voltammetry

differential pulse polarography/voltammetry

AC polarography/voltammetry

normal pulse polarography/voltammetry

Fig. 2.8 Comparison of common potential-time perturbation functions used in controlled potential
electroanalytical methods

I(
t)

t

current step chronopotentiometry

programmed current chronopotentiometry

Fig. 2.9 Comparison of common current-time perturbation functions used in controlled current
electroanalytical methods. The programmed current chronopotentiometry may involve any sort of
current-time functions, often defined by power or exponential functions [61]
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is referred for the details of the methods. Further information can be found in other
similar books [32, 39, 71], and in reviews or monographs dedicated to particular
methods, such as [34, 46, 49, 61, 78, 113, 126].

2.12 Anomalous Diffusion

There exist electrochemical systems, in which electrochemical observables exhibit
specific deviations from the predictions of the Fick law (2.5), even if diffusion is
the sole mode of transport. Such unusual transport is known under the name of
anomalous diffusion. We refer the Reader to the reviews by Pajkossy et al. [87, 90],
Go and Pyun [45], and Gmucová [44], and the references cited therein, for a detailed
discussion of the anomalous diffusion phenomena in electrochemistry. Below we
present a few basic equations.

Ordinary diffusion is generally interpreted [45], at a molecular level, as a random
walk process, in which the mean squared displacement < r2.t/ > of a molecule is
proportional to the time t :

< r2.t/ >� t : (2.56)

As a consequence, the various electrochemical variables and observables, recorded
in the presence of ordinary diffusion, often depend on t1=2 rather than on t explicitly.
In particular, the thickness of the diffusion layer, arising under transient conditions
at electrochemical interfaces, is often proportional to t1=2, the Faradaic current often
decays as t�1=2, etc. In the case of anomalous diffusion, the same variables or
observables evolve differently in time. They behave as if Eq. (2.56) was replaced
by

< r2.t/ >� t˛ ; (2.57)

where ˛ ¤ 1 [45]. Symbol ˛ in Eq. (2.57) should not be confused with the charge
transfer coefficients in Eqs. (2.32) and (2.33).

In electrochemistry, anomalous diffusion is observed at irregular (rough, porous,
or partially active) electrode surfaces. Theoretical description of the anomalous
diffusion at such interfaces appears to be far from complete, but there are models
that explain the basic experimental findings. The models interpret the anomalous
diffusion as an effect of the fractal nature of the surface irregularities. For the
purpose of the present book it is sufficient to limit the presentation to the semi-
empirical continuum model of Pajkossy and Nyikos [83, 84, 88, 89]. The model
assumes that the structure of the surface has a fractal character at distances within
the interval .�inn; �out/, where �inn is the size of the smallest structural feature
(termed inner cut-off ), and �out is the size of the largest feature (termed outer
cut-off ). For any j th dynamic distributed species possessing a diffusion coefficient
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Dj one can define characteristic times tj;inn and tj;out, corresponding to �inn and
�out:

tj;inn D � D�1
j �2inn ; (2.58)

tj;out D � D�1
j �2out ; (2.59)

where � is a dimensionless empirical geometrical factor dependent on the shape of
the surface irregularities (� D ��1 is an orientational value suggested based on
the solution of a one-dimensional planar diffusion equation). In a transient exper-
iment, electrochemical responses consistent with ordinary diffusion are observed
at t � tj;inn and t 	 tj;out, whereas anomalous diffusion effects are seen
at t 2 �

tj;inn; tj;out
�
. In particular, if one performs a cathodic potential step

chronoamperometric experiment for the electron transfer reaction Xj C ne� �
XjC1 taking place at a (macroscopically) planar electrode in a semi-infinite spatial
domain under conditions of one-dimensional planar diffusion, then the limiting
Faradaic current obeys the classical Cottrell equation [30]:

I.t/ D �nFAmicr c
?
j D

1=2
j ��1=2 t�1=2 (2.60)

for t � tj;inn, and

I.t/ D �nFA c?j D
1=2
j ��1=2 t�1=2 (2.61)

for t 	 tj;out (The Reader may find one possible derivation of the Cottrell equation
in Sect. 11.1.1). In Eqs. (2.60) and (2.61) c?j is the initial/bulk concentration of
species Xj , A is the macroscopic area of the electrode, and Amicr is the microscopic
area. The two areas are related by the equation:

A

Amicr
D


�inn

�out

�dF�2
; (2.62)

where dF is the fractal dimension of the irregular interface. In the case of rough
surfaces dF > 2 was assumed, whereas in the case of partially active ones dF <

2 [83, 84, 88, 89]. For t 2 �
tj;inn; tj;out

�
the anomalous current response occurs,

satisfying

I.t/ D ��j;F t�˛ ; (2.63)

with

˛ D dF � 1
2

: (2.64)
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Coefficient �j;F results from the assumed continuity of the formulae (2.60), (2.61),
and (2.63) at t D tj;inn and t D tj;out, which gives

�j;F D nFAmicr c
?
j D

1=2
j ��1=2 �� D�1

j �2inn

�˛�1=2
(2.65)

and

�j;F D nFA c?j D
1=2
j ��1=2

�
� D�1

j �2out

�˛�1=2
: (2.66)

Equations (2.65) and (2.66) are equivalent, in view of the relationship (2.62). Similar
derivations can be performed for other types of transient experiments [83,84,88,89].

2.13 Uncompensated Ohmic Drop and Double Layer
Charging

In considering the kinetics of the electrochemical reactions in Sects. 2.7, 2.9,
and 2.10 it was tacitly assumed that the controlled or measured quantity E.t/
represents the true electrode potential of the WE in Fig. 1.1a, or that �˚.t/
represents the true Galvani potential difference across the liquid j liquid interface
in Fig. 1.1b. It was also assumed that the entire current I.t/ is associated with
electrochemical reactions taking place at the interfaces studied. In practice, none
of these assumptions is obeyed strictly, even though the modern experimental
equipment is designed to approach them as closely as possible. The two basic
departures from the above assumptions are: the uncompensated Ohmic potential
drop, and the double layer charging. The role played by these two phenomena is best
illustrated by standard electric circuits corresponding to the experimental systems
from Fig. 1.1. These equivalent circuits are depicted in Fig. 2.10. The review by Britz
[19] provides a comprehensive discussion of the problem of the uncompensated
Ohmic potential drop. The reviews by Parsons [94] and Schmickler [109] provide
an introduction to the subject of the double layer.

The uncompensated Ohmic potential drop is the potential drop across the
uncompensated resistanceRU in Fig. 2.10a, or across the uncompensated resistances
RU1 and RU2 in Fig. 2.10b, which result from the finite conductivity of the elec-
trolyte, and the technical difficulty in placing the reference electrodes at the outer
Helmholtz planes of the electric double layers of interfaces studied. For a particular
experimental setup, the parameters RU, RU1, and RU2 are usually considered to be
constant resistances. However, in view of Eqs. (2.1)–(2.3), for the ionic conductivity
this is only an approximation valid in the absence of concentration gradients. As
a consequence of the Ohmic drop, the controlled, or measured potential E.t/ in
Fig. 2.10a is related with the true electrode potential E 0.t/ by the formula:

E.t/ D E 0.t/C I.t/ RU : (2.67)
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REWE CEE(t)

I(t)

RE1CE1 CE2ΔΦ(t) RE2

a

b

ZF

RU RES

CDL

IF(t)

IC(t)

ZF

RU2 RES2

I(t)

CDL

RU1RES1

ΔΦ'(t)

IC(t)

IF(t)

E'(t)

Fig. 2.10 Simplified equivalent circuits corresponding to the typical three-electrode (a) and
four-electrode (b) experimental systems from Fig. 1.1. Notation: ZF—Faradaic impedance; CDL—
differential double layer capacitance; RU, RU1, RU2—uncompensated resistances; RES, RES1,
RES2—solution resistances; IF.t /—Faradaic current; IC.t /—double layer charging (i.e. capacitive)
current; I.t/—total current; E.t/—controlled or measured potential of the WE; �˚.t/—
controlled or measured Galvani potential difference between RE1 and RE2; E 0.t /—true potential
of the WE; �˚ 0.t /—true Galvani potential difference across the liquid j liquid interface. The
circuit a results from the well-known Randles equivalent circuit [10]. The circuit b results from the
equivalent circuit presented by Samec et al. [106]

Analogous relationship for the ES1 jES2 interface, referring to the controlled or
measured Galvani potential difference �˚.t/, and the true potential difference
�˚ 0.t/ in Fig. 2.10b is:

�˚.t/ D �˚ 0.t/C I.t/.RU1 CRU2/ : (2.68)

In Eqs. (2.67) and (2.68) I.t/ denotes the total current, composed of the Faradaic
and capacitive components:

I.t/ D IF.t/C IC.t/ : (2.69)

These currents obey the IUPAC convention [60], according to which anodic currents
are regarded positive, and cathodic negative.
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The double layer charging is caused by the presence of the electric double layer
at all kinds of electrochemical interfaces. The double layer can be thought of as
a capacitor, having differential capacitance CDL, and charged with charge QDL.t/.
The non-direct current flowing through the double layer is given by the formula

IC.t/ D dQDL.t/

d t
D CDL

dE 0.t/
d t

(2.70)

in the case of Fig. 2.10a, or

IC.t/ D dQDL.t/

d t
D CDL

d�˚ 0.t/
d t

(2.71)

in the case of Fig. 2.10b. The differential capacitance CDL is generally not constant,
although in the modelling of electroanalytical experiments it is often assumed
constant. It depends among other things on E 0.t/ or �˚ 0.t/, and on the history
of the processes at the interface (for example on the coverages by localised species).

It should be stressed that only E.t/ or �˚.t/, and I.t/ can be controlled or
measured. There is no way to access directlyE 0.t/ or�˚ 0.t/, or control or measure
separately the components IF.t/ or IC.t/ of I.t/. If the uncompensated Ohmic drop
and double layer charging are taken into account, all occurrences of I.t/, E.t/ and
�˚.t/ in Sects. 2.7, 2.9, and 2.10 must be replaced by IF.t/, E 0.t/, and �˚ 0.t/,
respectively.
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Chapter 3
Mathematical Preliminaries

In this chapter we briefly summarise mathematical definitions and theorems neces-
sary for the understanding of the IE method. The summary is not intended to be a
comprehensive outline of the mathematics of the IEs and related subjects. Similarly
to Chap. 2, it is limited to the issues most important for the practice of the IE method
in electroanalytical chemistry.

3.1 Integral Equations: Basic Concepts and Definitions

There is an extensive mathematical literature devoted to the subject of the IEs.
For the practitioners of the IE method in electrochemistry, basic textbooks, and
textbooks combining the elementary mathematics of the IEs, with the discussion
of analytical and numerical solution techniques, are probably the most useful.
References [2–5, 10, 13, 15, 17, 19, 20, 33, 34, 38, 39, 41] represent a selection of
such books.

Even a superficial look at the mathematical literature reveals that the terminology
used by various authors is not always consistent and universally accepted. It is
therefore important to define the terms to be used in the present book, so that
possible misinterpretations are avoided. The definitions listed below have been
compiled with the help of the book by Hackbusch [15], the Springer on-line
Encyclopedia of Mathematics [12], and a few other references.

There seems to be a fairly general agreement that by an integral equation (IE) one
should generally understand a functional equation, in which the unknown function
occurs under the sign of some integral. By functional equations we understand here
equations in which the unknowns are elements of some functional space. Hence,
the solution of a functional equation (and hence of an IE as well) is a certain
function � (but see the critique of such a definition of the functional equations
in the Encyclopedia of Mathematics [12]). The above definition of the IE clearly
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implies a diversity of the IEs, since various kinds of integrals are conceivable (e.g.
“ordinary” integrals over intervals in R

1, n-dimensional integrals in R
n, contour and

surface integrals in R
n, etc.). The authors of many textbooks often narrow down the

definition of the IE to a particular type of the integrals, according to their area of
interests. Such narrow definitions are not sufficient for the purpose of the present
book, since in electrochemistry various types of integrals may be encountered in the
IEs.

The integrals occurring in the IEs can be viewed as results of applying certain
integral operators to the (unknown) function� . By an integral operator (or integral
transformation) we understand a mapping � ! A� , in which the law of the
correspondence A is given by an integral. If � is a function of a scalar or vector
variable t , the result of applying A to � can be quite generally expressed in the
form

A�.t/ D
ˆ

D

P.t; �; �.�// d� ; (3.1)

whereD is a given measurable set of finite Lebesgue measure in a finite-dimensional
space, and P.t; �; �.�// (for t; � 2 D and C1 < � < 1) is a given measurable
function. Symbol t does not have to denote time, although in electrochemistry it is
often so. It is assumed that � and P satisfy conditions that ensure the existence of
the integral (3.1) in the sense of Lebesgue. If the function P is linear with respect
to � , so that

P.t; �; �.�// DK .t; �/ �.�/ (3.2)

and

A�.t/ D
ˆ

D

K .t; �/ �.�/ d� ; (3.3)

then the integral operator A is called linear, and the function K .t; �/ is called a
kernel of the operator A. Otherwise, the operator is called nonlinear. Some authors
(see, for example, [5, 19, 33]) use the term kernel also to denote the function P of
the nonlinear integral operator (3.1). Operators with function P given in the form

P.t; �; �.�// DK .t; �/R.�.�// ; (3.4)

where R is a nonlinear function of � , are special cases of the nonlinear oper-
ator (3.1), and are also termed nonlinear integral operators in the mathematical
literature. In the present book we deal almost exclusively with the IEs involving
integrals corresponding to linear integral operators (3.3) with kernels K .t; �/ (but
see exclusions in Sect. 9.1).
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Some of the integral operators may have associated inverse integral operators,
allowing one to determine a function �.t/ from its image A�.t/. Kernels of such
inverse operators are called inverse kernels.

In the electrochemical context the kernels may depend on certain additional
variables or parameters (apart from variables t and �/. In such cases we shall
write the additional variables or parameters in the formulae for the kernels, but
for simplicity we shall not include them into the list of the variables of the kernel
functions.

When an integral such as (3.3) occurs in an IE, function K .t; �/ is often called
a kernel of the IE. In the opinion of the present author, such a terminology is not
very satisfactory, because it makes sense only if there is exclusively one integral
in the given IE. Although many of the mathematical textbooks indeed discuss only
such IEs, there is a priori no reason why an IE should not contain several integrals
with different kernels. In fact, we shall see that IEs with several different integrals
and kernels are typical in the electroanalytical modelling. The actual number of
integrals in an IE may sometimes depend on how we write the IE. For example, if a
complicated kernel function K .t; �/ can be expressed as a combination of simpler
kernel functions K1.t; �/ and K2.t; �/:

K .t; �/ D f1.t/K1.t; �/C f2.t/K2.t; �/ ; (3.5)

then the (one) integral involving K .t; �/ is equivalent to an expression involving
two integrals with kernels K1.t; �/ and K2.t; �/:

ˆ

D

K .t; �/ �.�/ d� D f1.t/
ˆ

D

K1.t; �/ �.�/ d� C f2.t/
ˆ

D

K2.t; �/ �.�/ d� :

(3.6)

However, there are also cases when two different integrals in an IE cannot be easily
replaced by a single integral.

Among various types of integral transforms, the so-called convolution transform
represents an important category. According to the Encyclopedia of Mathematics
[12], the convolution transform is defined by the following integral taken over R1:

A�.t/ D
1̂

�1
K .t; �/ �.�/ d� ; (3.7)

where the kernel takes the form

K .t; �/ D '.t � �/ ; (3.8)

with ' denoting a function of one variable. This means that the kernel is a function of
the difference t � � only. Such a kernel is called a convolution kernel or a difference
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kernel [33]. In the present book this definition of the convolution kernel is adopted,
but the above definition of the convolution transform needs to be modified, because
in electrochemistry somewhat different convolution integrals are in use:

A�.t/ D
tˆ

0

K .t; �/ �.�/ d� ; (3.9)

where K .t; �/ is a convolution kernel.
In a particular IE, the unknown function � may appear exclusively under

the integral sign (of the integrals involved in the IE). In such a case, following
Hackbusch [15] we can say that the IE is of the first kind. If the unknown function
appears also outside the integral(s), we can say the IE is of the second kind. It should
be noted that these definitions are usually expressed exclusively for IEs with the
unknown function dependent on a single independent variable t 2 R

1, which opens
a way to distinguishing also IEs of the third kind [17], that are some mutations of
the second kind IEs according to the present definition. However, the more general
definition given by Hackbusch [15] seems logical and most useful.

Of crucial importance is the concept of the linearity/nonlinearity of the IEs. We
adopt here the general definition from Hackbusch [15], also seemingly shared by
Baker [3] and a few other authors, but apparently not shared by the Encyclopedia
of Mathematics [12] and quite many mathematicians. By a linear/nonlinear IE we
shall understand an IE that is linear/nonlinear with respect to the unknown function
� . This means that a linear IE must be linear with respect to all occurrences of �
outside the integral(s), it must be linear with respect to all the integral(s), and that
all integral operators involved must be linear. Such a definition may seem natural
and obvious, but it should be stressed that the mathematical literature regarding
the nonlinear IEs is almost exclusively restricted to the IEs which are linear with
respect to the occurrences of � outside the integral(s), and linear with respect to
the integral(s); the only presence of the nonlinearities is through nonlinear integral
operators. In other words, nonlinear expressions involving � occur only in the
integrands. Such a narrow view of the nonlinear IEs is represented both in the
classical old papers [16, 36] and in the most recent textbooks [41]. As we shall see,
that narrow concept of the nonlinear IEs is inadequate for electrochemical IEs. Most
of the nonlinear IEs in electrochemistry exhibit nonlinearities with respect to the
occurrences of � outside the integral(s), and with respect to the integral(s), but the
integral operators are linear. It may be that, as a consequence of the neglect of this
matter, the existing body of the mathematical theory concerning the solvability and
various properties of the nonlinear IEs is insufficient for the type of nonlinearities
present in the electrochemical IEs. Mathematical studies aimed at the clarification
of this issue are desirable, and should be of interest to mathematicians.

If the integral in an IE is taken over a domain D that is a fixed interval in R
1,

or a more general fixed subset of R
n, including curves and surfaces, etc., then

the IE is called the Fredholm IE. If, in turn, D is not fixed, but varies with the
variable t , then the IE is called the Volterra IE. These fairly general definitions
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are taken from Hackbusch [15], but one should be aware that in many textbooks
the notions of the Fredholm and Volterra IEs are limited to D being an interval in
R
1, possibly for historical reasons. But even the present definition is not entirely

satisfactory, because it tacitly assumes that the IE involves only one integral, or, if
there are more integrals in the IE, all of them share the domain D of integration.
In general, mixed (Fredholm–Volterra) IEs should be conceivable, if the different
integrals in the IE are taken over different domains. Luckily, in electrochemical IEs
such mixed situations do not occur, and we shall see that most of the IEs relevant to
the electrochemical modelling fall into the category of the Volterra IEs.

Depending on the dimension n of the integration domain D, the corresponding
IEs are sometimes called one-dimensional, two-dimensional, multidimensional,
etc. [33]. In electroanalytical chemistry, the dimensionality of the IEs should be
clearly distinguished from the dimensionality of the spatial domains over which
the differential equations representing electroanalytical models (see Sect. 2.4) are
defined.

The IEs can be regular, if the integral(s) exist as proper integrals. They can be
weakly singular, if the integral(s) exist as improper integrals, or strongly singular,
if the integral(s) must be defined by special regularisation (such as the Cauchy
principal value). According to some sources [15, 20, 41], weakly singular IEs
together with strongly singular IEs form the class of singular IEs. However, some
other sources (like the Encyclopedia of Mathematics [12]) apparently restrict the
name singular IEs to the strongly singular IEs. These definitions again seem to be
limited to IEs involving one integral, because in the case of several integrals, mixed
cases (regular–singular, etc.) might occur. It seems more reasonable to talk about
regular, weakly singular, and strongly singular kernels of integral operators, and
such a terminology is also in use. In the case of integrals taken over D 
 R

n, a
typical example of a weakly singular kernel is [12]:

K .t; �/ D M .t; �/

jt � � j˛ ; (3.10)

where M .t; �/ is bounded for .t; �/ 2 D � D, and 0 < ˛ < n. Kernel (3.10)
occurs in the so-called Abel IE [13], in which D 
 R

1, ˛ D 1=2 and f .t/ is a given
function:

tˆ

0

.t � �/�1=2 �.�/ d� D f .t/ ; (3.11)

and in generalisations of this equation onto ˛ ¤ 1=2. In electroanalytical chemistry
the most typical are weakly singular kernels of the type (3.10), although regular ones
occur as well. Strongly singular kernels are rare (see Chap. 7 and Appendix D).

If in a functional equation the unknown function occurs not only inside and
(possibly) outside some integral(s), but also in a derivative form, then the equation
is called integro-differential equation (IDE). IEs and differential equations (ODEs
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or PDEs) are special cases of the IDEs. Examples of IDEs, pertinent to electrochem-
istry, will be indicated in further Chaps. 8, 9, and 10. Such examples are relatively
rare, and many of them can be replaced by equivalent IEs.

In the above list of definitions we had in mind single IEs. However, systems
of the IEs, from which several unknown functions are to be determined, are also
considered in the mathematical literature, albeit less frequently than single IEs. The
above concepts and definitions can be extended to such IE systems, possibly giving
rise to an even wider spectrum of mixed cases. Both single IEs and IE systems occur
in electrochemistry.

3.2 The Laplace Transformation

The Laplace transformation is one of the basic and most powerful mathematical
tools utilised in the derivation and discussion of the IEs of electroanalytical
chemistry. There are numerous textbooks and book chapters devoted to the Laplace
transformation. References [6,7,11,18,24,32,37] may be particularly lucid or useful
from the point of view of an electrochemist, but there are other choices possible.
Hence, there is no need to repeat the contents of the books here, and we list only the
basic definitions and theorems, to facilitate further discussion.

Consider a real function f .t/ of a real variable t . Most often t denotes time
or a variable derived from time, but it does not have to be so. The direct Laplace
transformation of this function is defined by the integral:

Of .s/ D L ff .t/ g D
1̂

0

exp.�st/ f .t/ dt ; (3.12)

where s is a complex variable called Laplace variable. Symbol L f�g denotes the
transformation. The transformed function is often called the image function, or just
the transform. In this book we also adopt the usual notation according to which
the transformed function is denoted by adding a hat over the function name, and
replacing t by s. Hence, Of .s/ is the transformed function f .t/. This notation will be
used whenever it is necessary to distinguish the original function from its transform.
Not every function f .t/ possesses a Laplace transform. The function must be such
that the integral (3.12) converges. It must be defined for all t 2 Œ0;1/. It may be
singular at t D 0, provided that lim

t!0C

t f .t/ D 0. The Laplace transformation (3.12)

can be applied to functions dependent on more than one variable, but the integration
is then restricted to one variable only. For example, for a function f .x; t/ of two
variables x and t we can have

Of .x; s/ D L ff .x; t/ g D
1̂

0

exp.�st/ f .x; t/ dt ; (3.13)
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where the t variable is chosen for integration. It is always desirable (if not necessary)
to specify which variable is to be used as the integration variable, unless there is no
doubt about it.

The inverse Laplace transformation allows one to obtain the original function
f .t/, given its transform Of .s/. The inverse transformation L �1 f�g is defined by
the Bromwich integral:

f .t/ D L �1 n Of .s/
o
D 1

2�i

aCi1ˆ

a�i1
exp.ts/ Of .s/ ds (3.14)

in the complex plane of variable s, where i is the imaginary unit, and a is a real
constant such that all possible singularities of Of .s/ are located in the subdomain
<f s g < a. It is rarely realised that apart from this requirement a can actually
be arbitrary. This property is important for the electrochemical IEs, since there are
situations when a right choice of a can facilitate obtaining the inverse transform. Not
every function of the complex variable s possesses an inverse Laplace transform.
One obvious requirement for a function Of .s/ to be invertible is that lim

s!1
Of .s/ D 0,

otherwise the integral (3.14) would not be convergent.
Using Eq. (3.14) directly is usually a difficult task. Therefore, in practice one

often looks for the original functions in tables providing numerous functions
and their transforms. Many such tables have been published; tables contained
in [1, 7, 11, 35] may be particularly useful for electrochemists. Contemporary
programs for symbolic computing, such as MATHEMATICA [22], MAPLE [21]
(and other, including the freely available MAXIMA [23]) have capabilities for
deriving the formulae for the direct and inverse Laplace transforms of user-
defined functions. In particularly complicated cases, when the tables or sym-
bolic software fail, the integral (3.14) has to be calculated analytically by spe-
cial mathematical techniques. One such technique is the method of residues
[24].

If any analytical methods fail, the last resort may be to compute the inverse
transform numerically, and if the need arises, to interpolate or approximate the
obtained data by some simple formulae (e.g. by polynomials) to have analytically
manageable formulae for particular applications. There is a number of methods
available for the numerical inversion of the Laplace transforms (see, for example,
Davies and Martin [9] or Cohen [8], and the literature therein). Some of the methods
have been tested, in the electrochemical context, by Montella and co-workers [25–
31]. Out of these techniques, the Gaver–Wynn–rho method of Valkó and Abate
[40] has been found by the present author convenient and useful. Their GWR
procedure [14] is available freely for MATHEMATICA [22], and it seems to work
infallibly.

The Laplace transformation is a linear transformation, implying that the
direct/inverse transform of a linear combination of given functions is a linear
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combination of their transforms. There are also theorems referring to the inverse
transforms of functions with linearly transformed variable s:

L �1
n Of .a s/

o
D 1

a
f



t

a

�
; (3.15)

where a is any positive real constant, and

L �1 n Of .s � a/
o
D exp.at/ f .t/ ; (3.16)

where a is any real constant. Both theorems are often utilised in the derivations
of the electrochemical IEs. But the most important theorem, of fundamental
consequences for the electrochemical IEs, is the so-called convolution theorem (also
referred to as the Duhamel theorem), which states that the inverse Laplace transform
of the product of two Laplace transforms is a convolution integral of the original
functions:

L �1
n Of .s/ Og.s/

o
D

tˆ

0

f .t � �/ g.�/ d� D
tˆ

0

f .�/ g.t � �/ d� : (3.17)

Further useful theorems refer to the transforms of function derivative(s) for
n D 1; 2; : : : :

L

�
dnf .t/

dtn


D sn Of .s/ � sn�1f .0C/ � sn�2 df .t/

dt

ˇ̌
ˇ̌
tD0C

� : : : � dn�1f .t/
dtn�1

ˇ̌
ˇ̌
tD0C

(3.18)

[where f .0C/ D lim
t!0C

f .t/, . . . , dn�1f .t/=dtn�1ˇ̌
tD0C

D lim
t!0C

dn�1f .t/=dtn�1 ],

and to the transforms of the integral(s):

L

8
<

:

tˆ

0

f .�/ d�

9
=

; D
Of .s/
s

: (3.19)

3.3 The Fourier Transformation

Another integral transformation that has found some application in the derivation of
electrochemical IEs is the Fourier transformation. According to one definition [24],
given a function f .x/ of a real variable x defined over the interval x 2 .�1;1/;
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the direct Fourier transform of f .x/ is given by the integral:

Mf .k/ D F ff .x/ g D
1̂

�1
f .x/ exp .�ikx/ dx ; (3.20)

where i is the imaginary unit. Symbol F f�g denotes the transformation. We also
adopt a notation according to which the transformed function is denoted by adding
the symbol ` over the function name, and by replacing the variable x by the Fourier
variable k. Similarly to the Laplace transformation, the Fourier transformation can
be applied to functions of several variables, but the integration is restricted to a
single variable. For example,

Mf .k; t/ D F ff .x; t/ g D
1̂

�1
f .x; t/ exp .�ikx/ dx : (3.21)

The inverse Fourier transformation F�1 f�g is defined by the integral:

f .x/ D F�1
n Mf .k/

o
D 1

2�

1̂

�1
Mf .k/ exp .ikx/ dk : (3.22)

The Fourier transformation satisfies the convolution theorem, which for the trans-
form defined by Eq. (3.20) takes the form:

F�1
n Mf .k/ Mg.k/

o
D

1̂

�1
f ./ g.x � / d D

1̂

�1
f .x � / g./ d : (3.23)

Important for the present book is the formula for the transform of the nth derivative
of a function f .x/:

F

�
dnf .x/

dxn


D .ik/n Mf .k/ ; (3.24)

which holds provided that f .x/ and its first n � 1 derivatives vanish at x !˙1.

3.4 The Hankel Transformation

A yet another integral transformation, employed in the derivations of the IEs
of electroanalytical chemistry, is the Hankel transformation. The direct Hankel
transform of order � (such that � � �1=2/ of a function f .r/ of a real variable
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r , defined over the interval r 2 Œ0;1/, is given by the integral [24]:

Lf .p/ DH� ff .r/ g D
1̂

0

f .r/ J� .pr/ r dr ; (3.25)

where J� .�/ is the Bessel function of the first kind and order �. Symbol H� f�g
denotes the transformation, and p denotes the Hankel variable. In this book we
also denote the transformed function by adding the symbol _ over the function
name. Similarly to the Laplace and Fourier transformations, the effect of applying
the Hankel transformation to functions of two variables is:

Lf .p; t/ DH� ff .r; t/ g D
1̂

0

f .r; t/ J� .pr/ r dr : (3.26)

The inverse Hankel transformation H �1
� f�g is defined by the integral:

f .r/ DH �1
�

n Lf .p/
o
D

1̂

0

Lf .p/ J� .pr/ p dp : (3.27)

A property of the Hankel transformation, important for this book, is the formula for
the Hankel transform of the Bessel operator applied to a function f .r/:

H�

�
d2f .r/

d r2
C 1

r

df .r/

d r
�
��
r

�2
f .r/


D �p2 Lf .p/ : (3.28)

Equation (3.28) holds provided that lim
r!1f .r/ D 0.
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Chapter 4
Models Independent of Spatial Coordinates

Electroanalytical models independent of spatial coordinates arise in situations when
transport phenomena, and related spatial nonuniformities in an electrochemical
system considered, can be neglected or omitted. Most often these are models
describing heterogeneous reactions taking place uniformly along the interface stud-
ied; homogeneous reaction systems without transport are almost never considered in
electroanalytical chemistry. Models independent of spatial coordinates are typically
represented by IVPs for systems of ODEs or DAEs, for the concentrations of species
localised at the interface studied. The presence of species distributed in adjacent
spatially extended phases is not forbidden in such models, but only if they are
static species, having practically constant concentrations, or when they are dynamic
species confined to a very thin extended phase and can be formally treated as quasi-
localised species (see Sect. 2.9).

Although actually every ODE or DAE system can be rewritten in the form of an
IE system [21], such representations have been rarely practiced in electrochemistry.
Most often the ODEs or DAEs are solved numerically by direct discretisations, such
as finite-difference techniques. The conversion to IEs was used only sporadically in
the past (see, for example, [11, 22–24]), and this fact was not much emphasised by
the authors. Hence, it is not entirely clear whether the IEs seen in [11, 22–24] were
used as final model representations, or only as intermediate ones. It is also not clear
how they were solved.

However, in recent years there have been several publications [1–10, 12–20, 25]
describing in much detail the IE representations and solutions of such models. We
therefore provide a relevant presentation for completeness. In Sect. 4.1 we describe
systematic procedures of obtaining the IEs representing models independent of
spatial coordinates. The procedures are a generalisation of the approaches taken
for particular models in [1–10, 12–20]. A brief review of the models considered in
those references is given in Sect. 4.2. Finally, in Sect. 4.3 we address the issue of the
pros and cons of the IE formulation of models independent of spatial coordinates.

© Springer-Verlag Berlin Heidelberg 2015
L.K. Bieniasz, Modelling Electroanalytical Experiments by the Integral Equation
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4.1 Derivation of the IEs

Consider an electroanalytical experiment, in which a set of N het
r heterogeneous

reactions takes place among N dl
s dynamic localised species X1;ad; : : : ; XN dl

s ;ad at
an interface studied. We restrict the discussion to the case of the controlled potential
experiment, further assuming that all reactions are non-equilibrium reactions, so
that the experiment is described by an ODE system rather than by a more general
DAE system. We also assume that the interface studied is between an electrolytic
phase and an electronic conductor (or semi-conductor), so that electrons exchanged
are formally considered as reactants, and taken into account in the stoichiometric
matrixN dyn;het for the dynamic species at the interface (to simplify the presentation
we assume that the last row of matrixN dyn;het corresponds to electrons exchanged).
Hence, in view of Eq. (2.53) the experiment is completely described by the equation:

�!p het.t/ D N dyn;het�!r het.t/ ; (4.1)

where �!p het.t/ D �
d�1.t/=dt; : : : ; d�N dl

s
.t/=dt; I.t/.FA/�1

�T
is the vector of

production rates of the dynamic localised species and electrons exchanged, and

vector �!r het.t/ D
h
rhet
1 .t/; : : : ; r

het
N het

r
.t/
iT

contains relevant expressions for the

rates of heterogeneous reactions. In general, the expressions may be nonlinear

with respect to the concentrations
�!
� .t/ D �

�1.t/; : : : ; �N dl
s
.t/
�T

of the localised

species. In the case of models independent of spatial coordinates, variables�!p het.t/,
�!r het.t/, and

�!
� .t/ may depend on time t only, but not on any spatial coordinate,

which we explicitly indicate in every occurrence of the symbols of these variables.
Let N dl;het be the submatrix of N dyn;het, corresponding to the dynamic localised
species (that is the matrix resulting from the omission of the last row of N dyn;het,
corresponding to electrons exchanged). By using this submatrix, the ODE system
for the surface concentrations can be written as

d
�!
� .t/

dt
D N dl;het�!r het.t/ : (4.2)

For solving Eq. (4.2) an initial condition is required. This condition can be written
as

�!
� .0/ D �!� ? ; (4.3)

where
�!
� ? D

h
� ?
1 ; : : : ; �

?
N dl

s

iT
is the vector of initial concentrations. We adopt

the usual assumption (see Sect. 2.10) that the initial concentrations correspond to
the equilibrium state of the reactions considered. Once the IVP (4.2) and (4.3) is
solved, the last equation in the system (4.1) allows one to calculate the unknown
Faradaic current as an appropriate linear combination of the reaction rates.
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The conversion of the IVP (4.2) and (4.3) into an IE system can be performed
according to at least three alternative procedures described below.

Procedure 1 This procedure is always applicable. It gives IEs in which the reaction
rates �!r het.t/ play the role of the unknowns. By integrating both sides of Eq. (4.2)
over the interval Œ0; t �, one obtains:

tˆ

0

d
�!
� .�/

d�
d� D �!� .t/ � �!� ? D N dl;het

tˆ

0

�!r het.�/ d� : (4.4)

This gives

�!
� .t/ D �!� ? CN dl;het�!Y .t/ ; (4.5)

where
�!
Y .t/ D �Y1.t/; : : : ; YN het

r
.t/
�T

with

Yi .t/ D
tˆ

0

rhet
i .�/ d� D

tˆ

0

Ki .t; �/ r
het
i .�/ d� (4.6)

and

Ki .t; �/ D 1 ; (4.7)

for i D 1; : : : ; N het
r . Equation (4.5) allows one to express the unknown surface

concentrations as linear combinations of integrals of the reaction rates. But the
model must also provide expressions for the reaction rates as functions of the
concentrations. Therefore, after setting the concentrations (4.5) into these reaction
rate expressions, we obtain a set of N het

r second kind Volterra IEs for the unknown
reaction rates. From Eq. (4.6) we see that all integrals in the IEs are characterised
by simple integral transformation kernels (4.7). Once we solve the IEs for the
reaction rates �!r het.t/, the last equation in the system (4.1) yields the Faradaic
current.

Procedure 2 The second procedure is less general. Similarly to Procedure 1, it gives
IEs in which (some of) the reaction rates �!r het.t/ play the role of the unknowns. It
requires that some of the reaction rates be linear expressions of the concentrations,
with coefficients (rate constants) independent of time. Assume thatN het;lin

r reactions
obey this condition, and the remaining N het;ess

r D N het
r � N het;lin

r reactions do not
obey it. Let us call the latter reactions essential reactions. The essential reactions
should not be confused with base reactions (see Sect. 2.7). In contrast to the latter
reactions, the essential reactions need not be linearly independent. Electrochemical
reactions have rate constants dependent on the electrode potential, and the potential
often depends on time, but even if this is not the case, it is preferable to always
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include the electrochemical reactions into the set of essential reactions. One applies
the Laplace transformation (3.12) to Eq. (4.2). This gives

L

(
d
�!
� .t/

dt

)
D L

n
N dl;het�!r het.t/

o
; (4.8)

so that in view of Eqs. (3.18) and (4.3):

s
O�!
� .s/ ��!� ? D N dl;het O�!r het.s/ ; (4.9)

where N het;lin
r elements of O�!r het.s/ are now linear combinations of some of the

elements of
O�!
� .s/. We solve Eq. (4.9) for

O�!
� .s/. As this is a linear system of

equations, the solutions are linear combinations of the Laplace transforms of the
rates of the essential reactions, with linear coefficients that are simple fractions
involving the Laplace variable s. The simplest simple fractions are all in the form
.s C ki /�1, where ki are constants dependent on the rate constants of the reactions,
the rates of which were assumed linear with respect to the concentrations (that is
reactions other than the essential reactions). In view of Eq. (3.16), this implies that
after inversion of the transforms by means of the convolution theorem (3.17) we

obtain concentrations
�!
� .t/ as linear combinations of the integrals

Yi .t/ D
tˆ

0

Ki .t; �/ r
het
i .�/ d� ; (4.10)

with the convolution-type kernels given by exponential functions:

Ki .t; �/ D exp Œ�ki .t � �/� : (4.11)

If more complicated simple fractions occur, different kernels are expected, but in all
models considered thus far [1–6, 8, 9, 12–16, 18, 19] only exponential kernels (4.11)

were observed. Substitution of the concentrations
�!
� .t/ into the expressions for

the rates of essential reactions gives a system of N het;ess
r second kind Volterra IEs

for these rates. As the electrochemical reactions were assumed to be among the
essential reactions, the solution of the IEs obtained gives immediately the rates of
the electrochemical reactions, and permits the calculation of the Faradaic current
from the last equation in the system (4.1).

Procedure 3 This procedure is generally applicable. It yields IEs in which the

species production rates d
�!
� .t/=dt play the role of the unknowns. Integration of

d
�!
� .t/=dt gives

�!
� .t/ D �!� ? C

tˆ

0

d
�!
� .�/

d�
d� : (4.12)
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Substitution of the elements of
�!
� .t/, expressed by Eq. (4.12), into the formulae

for the reaction rates in Eq. (4.1), gives a system of N dl
s IEs for the elements of

d
�!
� .t/=dt . All integrals in this system have simple kernels (4.7). The last equation

in the system (4.1) then gives the Faradaic current, most generally as an expression

involving elements of the integrals of d
�!
� .t/=dt , rather than the elements of the

solution vector d
�!
� .t/=dt . This might seem to be a complication, but numerical

methods for solving IEs usually calculate the integrals together with the solutions
(see Chap. 12). It often happens that the number of IEs obtainable by this procedure
can be reduced by taking into account structural conservation relationships resulting
from the system (4.1), which express connections between the various elements of

d
�!
� .t/=dt . Such relationships may also allow one to express the current directly by

using the elements of d
�!
� .t/=dt .

We illustrate the above procedures by two examples. As a first example, let
us consider a controlled potential experiment for the surface EC catalytic reaction
scheme:

X1;ad C n1 e� � X2;ad ; (4.13)

X2;ad

kf

�
kb

X1;ad ; (4.14)

with the electrochemical reaction (4.13) subject to Butler–Volmer kinetics with the
rate rhet

1 .t/, and the heterogeneous non-electrochemical reaction (4.14) subject to
first-order kinetics with the rate rhet

2 .t/. When kf D kb D 0 the reaction scheme
reduces to the electron transfer reaction (4.13), so that the model equations apply
also to this case. For this reaction scheme we have:

N dyn;het D
2

4
�1 1

1 �1
�n1 0

3

5 ; (4.15)

N dl;het D
��1 1

1 �1
	
; (4.16)

rhet
1 .t/ D k01 Œf1;f.t/�1.t/ � f1;b.t/�2.t/� ; (4.17)

rhet
2 .t/ D kf�2.t/ � kb�1.t/ ; (4.18)

with

f1;f.t/ D exp

�
�˛f

1

n1F

RT

�
E.t/� E0

1

�
(4.19)

and

f1;b.t/ D exp

�
˛b
1

n1F

RT

�
E.t/ � E0

1

�
: (4.20)
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In Eqs. (4.17), (4.19), and (4.20), k01 , ˛f
1, ˛

b
1 andE0

1 denote the conditional rate con-
stant, charge transfer coefficients, and the conditional potential of reaction (4.13),
respectively. By applying Procedure 1, from Eq. (4.5) with matrix (4.16) we
obtain

�1.t/ D � ?
1 �

tˆ

0

rhet
1 .�/ d� C

tˆ

0

rhet
2 .�/ d� ; (4.21)

�2.t/ D � ?
2 C

tˆ

0

rhet
1 .�/ d� �

tˆ

0

rhet
2 .�/ d� ; (4.22)

where � ?
2 D .kb=kf/ �

?
1 . Substitution of Eqs. (4.21) and (4.22) into Eqs. (4.17)

and (4.18) gives the IE system:

�1.t/ � k01

8
<

:f1;f.t/

2

4� ?
1 �

tˆ

0

�1.�/ d� C
tˆ

0

�2.�/ d�

3

5

�f1;b.t/
2

4� ?
2 C

tˆ

0

�1.�/ d� �
tˆ

0

�2.�/ d�

3

5

9
=

; D 0 ; (4.23)

�2.t/ � kf

2

4� ?
2 C

tˆ

0

�1.�/ d� �
tˆ

0

�2.�/ d�

3

5

Ckb

2

4� ?
1 �

tˆ

0

�1.�/ d� C
tˆ

0

�2.�/ d�

3

5 D 0 : (4.24)

In Eqs. (4.23) and (4.24) the vector of unknowns is equivalent to the vector of

reaction rates, i.e.
�!
� .t/ D �!r het.t/. After solving this system for �1.t/ and �2.t/,

the last equation in the system (4.1) with matrix (4.15) gives

I.t/

FA
D �n1 rhet

1 .t/ D �n1 �1.t/ : (4.25)

Alternatively, by applying Procedure 2, Eq. (4.9) gives:

s O�1.s/� � ?
1 D �Orhet

1 .s/C kf O�2.s/ � kb O�1.s/ ; (4.26)

s O�2.s/� � ?
2 D Orhet

1 .s/ � kf O�2.s/C kb O�1.s/ ; (4.27)
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with reaction (4.13) taken as an essential reaction. Solving Eqs. (4.26) and (4.27)
for O�1.s/ and O�2.s/ gives

O�1.s/ D � ?
1

s
� Orhet

1 .s/

s C .kf C kb/
; (4.28)

O�2.s/ D � ?
2

s
C Orhet

1 .s/

s C .kf C kb/
; (4.29)

so that the convolution theorem (3.17) applied to Eqs. (4.28) and (4.29) yields

�1.t/ D � ?
1 �

tˆ

0

exp Œ�.kf C kb/.t � �/� rhet
1 .�/ d� ; (4.30)

�2.t/ D � ?
2 C

tˆ

0

exp Œ�.kf C kb/.t � �/� rhet
1 .�/ d� : (4.31)

Substitution of Eqs. (4.30) and (4.31) into Eq. (4.17) gives the single IE:

�.t/ � k01
*
f1;f.t/

8
<

:�
?
1 �

tˆ

0

exp Œ�.kf C kb/.t � �/� �.�/ d�

9
=

;

�f1;b.t/
8
<

:�
?
2 C

tˆ

0

exp Œ�.kf C kb/.t � �/� �.�/ d�

9
=

;

+
D 0 ; (4.32)

where the unknown function �.t/ is the reaction rate rhet
1 .t/. Solving Eq. (4.32)

gives �.t/, and subsequently I.t/:

I.t/

FA
D �n1rhet

1 .t/ D �n1�.t/ : (4.33)

Finally, by applying Procedure 3, we write the two ODEs of Eq. (4.2) with
matrix (4.16) in the form:

d�1.t/

dt
D �kf � k01 f1;f.t/

�
2

4� ?
1 C

tˆ

0

d�1.�/

d�
d�

3

5

� �kb � k01 f1;b.t/
�
2

4� ?
2 C

tˆ

0

d�2.�/

d�
d�

3

5 ; (4.34)
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d�2.t/

dt
D � �kf � k01 f1;f.t/

�
2

4� ?
1 C

tˆ

0

d�1.�/

d�
d�

3

5

C �kb � k01 f1;b.t/
�
2

4� ?
2 C

tˆ

0

d�2.�/

d�
d�

3

5 : (4.35)

One of the unknowns can be eliminated, because of the structural conservation rela-
tionship d�1.t/=dt C d�2.t/=dt D 0, resulting from adding Eqs. (4.34) and (4.35).
We thus obtain the single IE:

�.t/ � �kf � k01 f1;f.t/
�
2

4� ?
1 C

tˆ

0

�.�/ d�

3

5

C �kb � k01 f1;b.t/
�
2

4� ?
2 �

tˆ

0

�.�/ d�

3

5 D 0 : (4.36)

where the unknown function is �.t/ D d�1.t/=dt . After determining �.t/ and
t́

0

�.�/ d� , the Faradaic current is calculated as

I.t/

FA
D �n1rhet

1 .t/

D �n1 k01

8
<

:f1;f.t/

2

4� ?
1 C

tˆ

0

�.�/ d�

3

5� f1;b.t/
2

4� ?
2 �

tˆ

0

�.�/ d�

3

5

9
=

; :

(4.37)

As a second example, we consider a controlled potential experiment for the
surface ECE reaction scheme:

X1;ad C n1 e� � X2;ad ; (4.38)

X2;ad

kf

�
kb

X3;ad ; (4.39)

X3;ad C n3 e� � X4;ad ; (4.40)

with the electrochemical reactions (4.38) and (4.40) subject to Butler–Volmer
kinetics with the rates rhet

1 .t/ and rhet
3 .t/, and the heterogeneous non-electrochemical
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reaction (4.39) subject to first-order kinetics with the rate rhet
2 .t/. Only species X1;ad

is assumed to be initially present. For this reaction scheme we have

N dyn;het D

2
666664

�1 0 0

1 �1 0

0 1 �1
0 0 1

�n1 0 �n3

3
777775
; (4.41)

N dl;het D

2

664

�1 0 0

1 �1 0

0 1 �1
0 0 1

3

775 ; (4.42)

rhet
1 .t/ D k01 Œf1;f.t/�1.t/ � f1;b.t/�2.t/� ; (4.43)

rhet
2 .t/ D kf�2.t/ � kb�3.t/ ; (4.44)

rhet
3 .t/ D k03 Œf3;f.t/�3.t/ � f3;b.t/�4.t/� ; (4.45)

with

fi;f.t/ D exp

�
�˛f

i

niF

RT

�
E.t/ �E0

i

�
(4.46)

and

fi;b.t/ D exp

�
˛b
i

niF

RT

�
E.t/ �E0

i

�
(4.47)

for i D 1; 3. By applying Procedure 1, from Eq. (4.5) with matrix (4.42) we obtain

�1.t/ D � ?
1 �

tˆ

0

rhet
1 .�/ d� ; (4.48)

�2.t/ D
tˆ

0

rhet
1 .�/ d� �

tˆ

0

rhet
2 .�/ d� ; (4.49)

�3.t/ D
tˆ

0

rhet
2 .�/ d� �

tˆ

0

rhet
3 .�/ d� ; (4.50)

�4.t/ D
tˆ

0

rhet
3 .�/ d� : (4.51)
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Substitution of Eqs. (4.48)–(4.51) into the reaction rates (4.43)–(4.45) gives the
system of three IEs:

�1.t/ � k01

8
<

:f1;f.t/

2

4� ?
1 �

tˆ

0

�1.�/ d�

3

5

�f1;b.t/
2

4
tˆ

0

�1.�/ d� �
tˆ

0

�2.�/ d�

3

5

9
=

; D 0 ; (4.52)

�2.t/ � kf

2

4
tˆ

0

�1.�/d� �
tˆ

0

�2.�/d�

3

5C kb

2

4
tˆ

0

�2.�/d� �
tˆ

0

�3.�/d�

3

5 D 0 ;

(4.53)

�3.t/ � k03

8
<

:f3;f.t/

2

4
tˆ

0

�2.�/ d� �
tˆ

0

�3.�/ d�

3

5� f3;b.t/
tˆ

0

�3.�/ d�

9
=

; D 0 :

(4.54)

In Eqs. (4.52)–(4.54) the vector of unknowns is equivalent to the vector of reaction

rates:
�!
� .t/ D �!r het.t/. After solving this system, the last equation in the

system (4.1) with matrix (4.41) gives the Faradaic current:

I.t/

FA
D �n1rhet

1 .t/ � n3rhet
3 .t/ D �n1�1.t/ � n3�3.t/ : (4.55)

Alternatively, by applying Procedure 2, Eq. (4.9) becomes

s O�1.s/� � ?
1 D �Orhet

1 .s/ ; (4.56)

s O�2.s/�0 D Orhet
1 .s/�kf O�2.s/C kb O�3.s/ ; (4.57)

s O�3.s/ � 0 D �Orhet
3 .s/C kf O�2.s/� kb O�3.s/ ; (4.58)

s O�4.s/ � 0 D Orhet
3 .s/ ; (4.59)

with reactions (4.38) and (4.40) taken as essential reactions. Solving Eqs. (4.56)–
(4.59) for O�1.s/, O�2.s/, O�3.s/, and O�4.s/ gives

O�1.s/ D � ?
1

s
� Or

het
1 .s/

s
; (4.60)

O�2.s/ D kf

kf C kb

Orhet
1 .s/

s C .kf C kb/
C kb

kf C kb

� Orhet
1 .s/

s
� Or

het
3 .s/

s
C Orhet

3 .s/

s C .kf C kb/

	
;

(4.61)
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O�3.s/ D kf

kf C kb

� Orhet
1 .s/

s
� Orhet

1 .s/

s C .kf C kb/
� Or

het
3 .s/

s

	
� kb

kf C kb

Orhet
3 .s/

s C .kf C kb/
;

(4.62)

O�4.s/ D Or
het
3 .s/

s
: (4.63)

Consequently, the convolution theorem (3.17) applied to Eqs. (4.60)–(4.63) yields:

�1.t/ D � ?
1 �

tˆ

0

rhet
1 .�/ d� ; (4.64)

�2.t/ D kf

kf C kb

tˆ

0

exp Œ�.kf C kb/.t � �/� rhet
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kf C kb
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� kb
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0
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9
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; ; (4.65)
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rhet
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tˆ

0

exp Œ�.kf C kb/.t � �/� rhet
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9
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� kf

kf C kb

tˆ

0

rhet
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exp Œ�.kf C kb/.t � �/� rhet
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(4.66)

�4.t/ D
tˆ

0

rhet
3 .�/ d� : (4.67)

Substitution of Eqs. (4.64)–(4.67) into Eqs. (4.43) and (4.45) gives the system of two
IEs:

�1.t/ � k01
*
f1;f.t/

8
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1 �
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0

�1.�/ d�

9
=

;
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0

�1.�/ d� C kf

tˆ

0

exp Œ�.kf C kb/.t � �/� �1.�/ d�
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�kb
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0

�2.�/ d� C kb

tˆ

0

exp Œ�.kf C kb/.t � �/� �2.�/ d�

9
=
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+
D 0 ; (4.68)
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tˆ
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0
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�f3;b.t/
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0
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+
D 0 : (4.69)

In Eqs. (4.68) and (4.69)
�!
� .t/ D Œ�1.t/; �2.t/�

T D �
rhet
1 .t/; r

het
3 .t/

�T
denotes the

vector of unknown functions. After solving Eqs. (4.68) and (4.69) one calculates the
Faradaic current as

I.t/

FA
D �n1rhet

1 .t/ � n3rhet
3 .t/ D �n1�1.t/ � n3�2.t/ : (4.70)

Finally, application of Procedure 3 gives four equations:
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(4.71)
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0
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d� � f3;b.t/

tˆ

0

d�4.�/
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d�

9
=

; : (4.74)

System (4.71)–(4.74) can be reduced to three equations, by making use of the struc-
tural conservation relationship d�1.t/=dtCd�2.t/=dtCd�3.t/=dtCd�4.t/=dt D 0,
resulting from adding all Eqs. (4.71)–(4.74). By eliminating, e.g., the unknown
d�4.t/=dt , we thus obtain three IEs:
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In Eqs. (4.75)–(4.77)
�!
� .t/ D Œ�1.t/; �2.t/; �3.t/�

T D �
d�1.t/=dt; d�2.t/=dt;

d�3.t/=dt
�T

denotes the vector of unknown functions. In view of the equivalences
d�1.t/=dt D �rhet

1 .t/ and d�4.t/=dt D rhet
3 .t/, the Faradaic current is calculated

as

I.t/

FA
D �n1rhet

1 .t/�n3rhet
3 .t/ D n1�1.t/Cn3 Œ�1.t/C �2.t/C �3.t/� : (4.78)
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4.2 Literature Examples

All currently available literature examples of IEs refer to controlled potential
experiments. Most of them were obtained by means of Procedures 1 and 2. A
number of surface reaction schemes and transient methods were considered. In
particular, IEs for the single non-equilibrium reversible surface electron transfer
reaction

X1;ad C n1 e� � X2;ad (4.79)

subject to Butler–Volmer kinetics, were formulated and solved assuming AC
voltammetry [12], staircase cyclic voltammetry [9], and square wave voltammetry
[4, 5, 8, 18, 20]. The limiting case of an irreversible reaction (4.79) was also
considered by Gulaboski et al. [4]. An additional effect of interactions between
adsorbed reactants X1;ad and X2;ad was included into the IEs for cyclic staircase
and square wave voltammetry in [14, 19]. IEs for the surface EE reaction scheme
involving two consecutive non-equilibrium reversible electron transfer reactions:

X1;ad C n1 e� � X2;ad ; (4.80)

X2;ad C n2 e� � X3;ad ; (4.81)

subject to Butler–Volmer kinetics were formulated and solved in [15], assuming
square wave voltammetry, and in [6] assuming cyclic staircase voltammetry. IEs
for a non-equilibrium reversible surface electron transfer, subject to Butler–Volmer
kinetics, and preceded by a reversible heterogeneous chemical reaction (CE reaction
scheme):

X1;ad

kf

�
kb

X2;ad ; (4.82)

X2;ad C n e� � X3;ad ; (4.83)

were formulated and solved by Gulaboski et al. [3], assuming square wave voltam-
metry. Probably due to misspelling, the heterogeneous reaction (4.82) was termed
“homogeneous chemical reaction” in that reference, and the IEs provided therein
contain errors: exponential terms in the kernel functions should have differences
t � � in place of the variable � . IEs for the surface EC reaction scheme:

X1;ad C n e� � X2;ad ; (4.84)

X2;ad
kf! X3;ad ; (4.85)

involving a non-equilibrium reversible reaction (4.84) (subject to Butler–Volmer
kinetics), and irreversible reaction (4.85) were formulated and solved in [17],
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assuming square wave voltammetry. IEs for the surface catalytic EC reaction
scheme:

X1;ad C n e� � X2;ad ; (4.86)

X2;ad
kf! X1;ad ; (4.87)

involving a non-equilibrium reversible reaction (4.86) (subject to Butler–Volmer
kinetics), and an irreversible reaction (4.87) were formulated and solved in [13,
16], assuming cyclic staircase voltammetry and square wave voltammetry. A more
complicated surface EEC catalytic reaction scheme:

X1;ad C n e� � X2;ad ; (4.88)

X2;ad C n e� � X3;ad ; (4.89)

X3;ad
kf! X2;ad ; (4.90)

was also discussed in an analogous way in [2, 6]. Finally, IEs for the surface ECE
reaction scheme:

X1;ad C n e� � X2;ad ; (4.91)

X2;ad
kf! X3;ad ; (4.92)

X3;ad C n e� � X4;ad ; (4.93)

involving non-equilibrium reversible electron transfer reactions (4.91) and (4.93),
and an irreversible heterogeneous reaction (4.92) were given in [1, 6], assuming
cyclic staircase voltammetry and square wave voltammetry. A collection of the
numerical IE solutions for square wave voltammetry, corresponding to surface E,
CE, EC, EE, and ECE reaction schemes, was provided by Gulaboski et al. [7].

Vvedenskii et al. [25] presented a theory of linear potential sweep voltammetry,
for a few reaction schemes in which reactants, products (or both reactants and
products) of electron transfer reactions were adsorbed, and all remaining species
were static distributed species. Several adsorption isotherms (Langmuir, Temkin,
Frumkin) were considered. The IEs were obtained by a procedure different from
Procedures 1–3 of Sect. 4.1, by making use of the particular forms of the expressions
for reaction rates or reaction equilibria.

All the above literature examples of IEs refer to electrochemical systems
involving adsorbed species. But there is also one published example of IEs obtained
for a system where dynamic distributed species confined to thin solution layers were
involved. It is the model of cyclic voltammetry for an electrode reaction coupled
with ion transfer across the liquid j liquid interface, described by Komorsky–Lovrić
and Lovrić [10].
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4.3 The Relative Merits: ODEs vs. IEs

There are usually two main general arguments in favour of using the IE method.
One argument is theoretical: we expect to improve our understanding of the model
considered, by performing the necessary IE derivations. The second argument is
computational: we expect that the numerical solution of the IEs is computationally
less expensive than the numerical solution of the differential equations. It should
be noted that the both expectations are somewhat debatable in the case of models
independent of spatial coordinates. The mathematical and computational complex-
ity of the ODE and IE systems is rather comparable in this case. If all reactions
in the reaction scheme are linearly independent, then the conversion of the ODEs
into IEs by Procedure 1 of Sect. 4.1 reduces the number of equations to be solved at
least by 1, because the number of species is greater than the number of reactions at
least by 1 (each reaction involves at least two species). However, if the reactions are
linearly dependent, the reduction of the number of equations is not certain, as the
number of reactions may then be greater than the number of species. For example,
the following hypothetical reaction scheme:

X1;ad � X2;ad ; (4.94)

X2;ad � X3;ad ; (4.95)

X3;ad � X4;ad ; (4.96)

X1;ad � X3;ad ; (4.97)

X2;ad � X4;ad ; (4.98)

X1;ad � X4;ad ; (4.99)

involves 4 species, but 6 reactions, out of which only three are linearly independent.
A greater reduction of the number of the equations is achieved by Procedure 2 (if
the reactions are linearly independent), because the number of essential reactions is
smaller than the total number of the reactions. However, in the case of Procedure 2
one obtains IEs with convolution kernels (4.11), whereas Procedure 1 yields
constant kernels (4.7) only. The numerical solution of the IEs with kernels (4.7) can
be usually accomplished in a computational time that is proportional to the length
of the t interval, similarly to the numerical solution of ODEs. In the case of the
kernels (4.11) the computational time is usually proportional to the square of the t
interval (see Chap. 12). Therefore, in the case of the IEs obtained by Procedure 2,
any speedup resulting from the reduction of the number of equations is likely to be
lost by the increased computational effort. In the case of Procedure 3 the reduction of
the number of equations is possible if suitable structural conservation relationships
exist. The number of IEs cannot exceed the number of dynamic localised species.
The computational time increases linearly with t .

Perhaps the only benefit from using the IE formalism for models independent of
spatial coordinates occurs in situations when one considers a series of alternative
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models, some independent of spatial coordinates, and some involving a space-
dependent transport. Examples of such situations are found in [5,8,17]. If the models
of the space-dependent transport are solved by the IE method, it then becomes
natural and convenient to apply the analogous IE formalism and solution techniques
also to the remaining, space-independent models. This facilitates comparisons and
saves some intellectual effort.
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Chapter 5
Models Involving One-Dimensional Diffusion

In this chapter we consider electroanalytical models described by systems of
diffusion PDEs defined over spatial domains that can be regarded effectively as
one-dimensional. In such models, owing to a particular symmetry, just one spatial
coordinate is sufficient for the mathematical description (see Sect. 2.4). We assume
also that the diffusion is in the direction perpendicular to the interface studied, and
that the models do not involve homogeneous reactions, dynamic localised species,
nor other complications. We begin with the general description in Sect. 5.1, of how
the IEs can be obtained for this kind of models. The description reveals the need to
derive concentration–production rate relationships by analytically solving relevant
PDEs. The relationships arising in the simplest case of diffusion in semi-infinite
spatial domains, and a literature overview of the published IEs corresponding to
this case, are provided in Sect. 5.2. Then, in Sect. 5.3 we pass to the concentration–
production rate relationships and literature IEs for the somewhat more difficult to
handle diffusion in finite spatial domains. Anomalous diffusion is considered in
Sect. 5.4.2. Finally, Sect. 5.5 presents benefits resulting from using the IE method.

5.1 Derivation of the IEs

Consider an electroanalytical experiment, in which a set of N het
r heterogeneous

reactions takes place at an interface studied, among N distr
s distributed species

X1; : : : ; XN distr
s

present in spatially extended phase(s) adjacent to this interface. Let
N dd

s of the species be dynamic distributed species. The dynamic distributed species
are subject to one-dimensional diffusion PDEs, accompanied by appropriate initial
and boundary conditions. There are no dynamic localised species at the interface
studied.

For any j th dynamic distributed species, the one-dimensional diffusion equation
results from Eq. (2.8) written in a suitable system of coordinates. In particular,

© Springer-Verlag Berlin Heidelberg 2015
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taking an appropriate operator from Table 2.1, the one-dimensional PDE for planar
diffusion is:

@cj .x; t/

@t
D Dj

@2cj .x; t/

@x2
: (5.1)

For spherical diffusion:

@cj .r; t/

@t
D Dj

�
@2cj .r; t/

@r2
C 2

r

@cj .r; t/

@r

	
: (5.2)

For cylindrical diffusion:

@cj .r; t/

@t
D Dj

�
@2cj .r; t/

@r2
C 1

r

@cj .r; t/

@r

	
: (5.3)

Equations (5.1)–(5.3) are assumed to hold in every spatial subdomain adjacent
to an interface studied, but to avoid an overly complicated notation we do not
introduce here any additional index or symbol to distinguish the subdomains. Equa-
tions (5.1), (5.2), or (5.3) must be accompanied by initial conditions. The typical
initial conditions corresponding to the initial equilibrium state (see Sect. 2.10) take
the form:

cj .x; 0/ D c?j (5.4)

for planar diffusion, or

cj .r; 0/ D c?j ; (5.5)

for spherical or cylindrical diffusion, with the uniform initial concentration c?j that
can be positive or zero. The boundary conditions must also be provided at the
interface studied, as well as at other boundaries.

In the case of controlled potential experiments, the conversion of the above
IBVPs into IEs is usually performed according to the following procedure. At
the interface studied, the boundary conditions are usually given by equation sys-
tem (2.54), with matrices V andZ resulting from the partial inversion of Eq. (2.53).
Equation system (2.54) may contain one additional equation for the Faradaic
current, if electrons exchanged are formally considered as dynamic species. As
the reaction rates depend on the concentrations c
j of the dynamic distributed
species at the interface studied [see Eqs. (2.30) and (2.31)], the boundary conditions
in Eq. (2.54) contain, in general, 2N dd

s unknown variables: N dd
s concentrations

c


j , and N dd

s production rates of the same species at this interface. We have
to determine all these unknowns, because they are needed for calculating the
Faradaic current (according to the relevant one of the equations in Eq. (2.54), or
another relevant equation). However, there are only N dd

s boundary conditions in
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Eq. (2.54). Therefore, we need another independent set ofN dd
s relationships between

concentrations c
j and species production rates. Such a set can be obtained by
finding general solutions (integrals) of the diffusion PDEs, satisfying boundary
conditions at the remaining interfaces. We strive to obtain this set analytically,
and the work needed to accomplish this task represents the main theoretical effort
associated with the use of the IE method for spatially one-dimensional models.
Luckily, once derived relationships can often be re-used in a variety of different
models or electrochemical systems, provided that the models share the boundary
conditions at interface(s) other than the one we study. If this is not the case, one
has to make appropriate derivations and related analyses. Sections 5.2, 5.3, and
Appendix A can serve as a guide how to proceed in such yet unresolved cases.
Since in the case of the distributed species the production rates are related to the
fluxes by Eq. (2.46), the task amounts to determining analytical concentration–flux
relationships at the interface studied. The task is relatively easy under assumptions
accepted in this chapter, because when the transport of the distributed species is
governed solely by diffusion, without any interference of other modes of transport
or homogeneous reactions, the PDE for each distributed species is independent
of the concentrations of other distributed species, and can be analysed separately.
Consequently, a separate concentration–flux relationship can be obtained for every
dynamic species. As is discussed in Sects. 5.2 and 5.3 below, these relationships take
the general form:

c


j D c
j .t/ D c?j C

tˆ

0

Kj .t; �/ p
het
j .�/ d� ; (5.6)

where Kj .t; �/ is a suitable integral transformation kernel, consistent with the
definition (3.3) of linear integral transformations. The kernel depends on the
diffusion coefficient of the j th species, geometry of the spatial domains, the
system of coordinates used, and boundary conditions at other interfaces. For models
discussed in this chapter, c
j and phet

j are functions of time only, which is indicated
in Eq. (5.6). The occurrence of the integral in Eq. (5.6) is the reason why, after
combining the relationships (5.6) with the boundary conditions in Eq. (2.54) for the
interface studied, we obtain IEs. The IEs may result from the boundary conditions
belonging to groups R1 and R2 of equations in Eq. (2.54), where the unknown
concentrations c
j .t/ occur that are replaced by Eq. (5.6). Structural conservation
relationships belonging to the group R3 of equations in Eq. (2.54) do not involve
c


j .t/, but only species production rates (equal to fluxes). As the IEs obtained in the

above way have the species production rates as unknown functions, the structural
conservation relationships can be used to diminish the number of unknowns in the
IEs. As a result, the number of final IEs to be solved is usually smaller than N dd

s .
In Sects. 5.2 and 5.3 we shall see that there are also special situations or limiting

cases when Eq. (5.6) can be replaced by algebraic equations linking c
j .t/ and
phet
j .t/. In such special situations we obtain integro-algebraic equation systems or

even purely algebraic ones, for the unknown species production rates.
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Once the species production rates and interfacial concentrations are determined
by solving the IEs, the Faradaic current can be calculated from the relevant equation
in Eq. (2.53) or (2.54), or from another appropriate equation.

The above procedure is somewhat analogous to Procedure 3 applicable to models
independent of spatial coordinates (see Sect. 4.1), since in both procedures we obtain
IEs for the species production rates. It is difficult to formulate counterparts of
Procedures 1 and 2 from Sect. 4.1, applicable to models dependent on one spatial
coordinate.

Let us pass now to controlled current experiments. For such experiments,
equation system (2.54) containsN dd

s equations linking reaction rates and production
rates of dynamic distributed species. If electrons exchanged are considered as
dynamic species, then equation system (2.54) contains one more equation involving
Faradaic current. Otherwise, equation system (2.54) must be supplemented with an
additional equation defining the current. Consequently, one has N dd

s C 1 equations
which one tries to separate into N dd

s boundary conditions for the concentrations
of dynamic distributed species, and one equation for determining the unknown
electrode potential E.t/ or Galvani potential difference �˚.t/. This may be
impossible to achieve for sufficiently complicated reaction schemes, but we shall
not consider such complicated cases here. If the reaction scheme involves only one
charge transfer reaction, then the production rates of dynamic distributed species are
immediately obtained as functions of the (known) Faradaic current I.t/, and there
is no need to formulate and solve IEs. However, if there are more charge transfer
reactions, the production rates are not so easily predictable. In such cases, we can
make use of the integral concentration–production rate relationships (5.6), to derive
the IEs in much the same way as was shown above for the controlled potential
experiments. Solving the IEs yields the production rates, and Eq. (5.6) gives also
c


j .t/. Consequently,E.t/ or�˚.t/ can be calculated, as these quantities generally

depend on c
j .t/ and the species production rates.
We illustrate the above procedures by four examples. As a first example, let us

consider a controlled potential experiment for the electron transfer reaction:

X1 C n e� � X2 (5.7)

taking place between dynamic distributed species X1 and X2 at some electrode.
Hence, the electrons exchanged are regarded as one of the dynamic species. If we
take these electrons as the third dynamic species, after X1 and X2, then in accordance
with Eqs. (2.46) and (2.49) the vector of the species production rates is �!p het.t/ D�
phet
1 .t/; p

het
2 .t/; p

het
3 .t/

�T D �J?
1 .t/; J

?
2 .t/; I.t/.FA/�1

�T
, and the corresponding

stoichiometric matrix N dyn;het is:

N dyn;het D
2

4
�1
1

�n

3

5 : (5.8)
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Let us assume initially that reaction (5.7) is a non-equilibrium reversible reaction
subject to Butler–Volmer kinetics (see Sect. 2.7), so that its rate rhet.t/ is given by

rhet.t/ D k0
h
ff.t/ c



1.t/ � fb.t/ c



2.t/

i
; (5.9)

with

ff.t/ D exp

�
�˛f nF

RT

�
E.t/ � E0

�
(5.10)

and

fb.t/ D exp

�
˛b nF

RT

�
E.t/ � E0

�
: (5.11)

Partial inversion of Eq. (2.53) with matrix (5.8) gives Eq. (2.54) with the following
matrices V and Z:

V D
2

4
1

0

0

3

5 ; (5.12)

Z D
2

4
�1 0 0

�1 �1 0
�n 0 1

3

5 : (5.13)

Equation system (2.54) with matrices (5.12) and (5.13) involves one kinetic equation
relating the rate of reaction (5.7) with the production rate of species X1:

rhet.t/ D �phet
1 .t/ ; (5.14)

and two structural conservation relationships:

0 D �phet
1 .t/ � phet

2 .t/ ; (5.15)

0 D �nphet
1 .t/C

I.t/

FA
: (5.16)

Equations (5.14) and (5.15) serve as boundary conditions at the electrode, whereas
Eq. (5.16) can be used for calculating the Faradaic current:

I.t/

FA
D nphet

1 .t/ : (5.17)

Although there are two unknown production rates phet
1 .t/ and phet

2 .t/ in vector�!p het.t/, they are connected by the structural conservation relationship (5.15), so
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that in fact there is only one unknown to be determined. Let us denote this unknown
function by

�.t/ D �phet
1 .t/ D phet

2 .t/ : (5.18)

By replacing the boundary concentrations c
1.t/ and c
2.t/ in Eq. (5.9) by the relevant
integral concentration–production rate relationships (5.6), and setting the results
into Eq. (5.14), we therefore obtain the single second kind Volterra IE:

�.t/ � k0
8
<

:ff.t/

2

4c?1 �
tˆ

0

K1.t; �/ �.�/ d�

3

5

�fb.t/

2

4c?2 C
tˆ

0

K2.t; �/ �.�/ d�

3

5

9
=

; D 0 : (5.19)

If reaction (5.7) were irreversible, then instead of Eq. (5.9) we would have

rhet.t/ D k0 ff.t/ c


1.t/ ; (5.20)

and Eq. (5.19) would reduce to

�.t/ � k0 ff.t/

2

4c?1 �
tˆ

0

K1.t; �/ �.�/ d�

3

5 D 0 : (5.21)

Alternatively, if reaction (5.7) was an equilibrium (Nernstian) reaction, then the
boundary condition (5.9) would be replaced by the Nernst equation:

c


1.t/ � c
2.t/ exp

�
nF

RT

�
E.t/ � E0

� D 0 ; (5.22)

so that instead of Eq. (5.19) we would obtain the first kind Volterra IE:

2

4c?1 �
tˆ

0

K1.t; �/ �.�/ d�

3

5

�
2

4c?2 C
tˆ

0

K2.t; �/ �.�/ d�

3

5 exp

�
nF

RT

�
E.t/ � E0

� D 0 : (5.23)
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As a second example, let us consider a controlled potential experiment for the
EE reaction scheme:

X1 C n1 e� � X2 ; (5.24)

X2 C n2 e� � X3 ; (5.25)

taking place between dynamic distributed species X1, X2, and X3 at a WE.
If we take the electrons exchanged as the fourth dynamic species, after X1,
X2, and X3, then in accordance with Eqs. (2.46) and (2.49) the vector of the
species production rates is �!p het.t/ D �

phet
1 .t/; p

het
2 .t/; p

het
3 .t/; p

het
4 .t/

�T D
�
J?
1 .t/; J

?
2 .t/; J

?
3 .t/; I.t/.FA/�1

�T
, and the corresponding stoichiometric matrix

N dyn;het is:

N dyn;het D

2

664

�1 0

1 �1
0 1

�n1 �n2

3

775 : (5.26)

Assuming that the reactions (5.24) and (5.25) are non-equilibrium reversible and
subject to Butler–Volmer kinetics, their rates are:

rhet
1 .t/ D k01

h
f1;f.t/ c



1.t/ � f1;b.t/ c
2.t/

i
; (5.27)

rhet
2 .t/ D k02

h
f2;f.t/ c



2.t/ � f2;b.t/ c
3.t/

i
; (5.28)

with

fi;f.t/ D exp

�
�˛f

i

niF

RT

�
E.t/ �E0

i

�
(5.29)

and

fi;b.t/ D exp

�
˛b
i

niF

RT

�
E.t/ �E0

i

�
(5.30)

for i D 1; 2. Partial inversion of Eq. (2.53) with matrix (5.26) gives Eq. (2.54) with
the following matrices V and Z:

V D

2
664

1 0

0 1

0 0

0 0

3
775 ; (5.31)
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Z D

2

664

�1 0 0 0

�1 �1 0 0

�1 �1 �1 0
�.n1 C n2/ �n2 0 1

3

775 : (5.32)

Equation system (2.54) with matrices (5.31) and (5.32) involves two kinetic
equations relating the rates of reactions (5.24) and (5.25) with the species production
rates:

rhet
1 .t/ D �phet

1 .t/ ; (5.33)

rhet
2 .t/ D �phet

1 .t/ � phet
2 .t/ ; (5.34)

and two structural conservation relationships:

0 D �phet
1 .t/ � phet

2 .t/ � phet
3 .t/ ; (5.35)

0 D �.n1 C n2/ phet
1 .t/ � n2 phet

2 .t/C
I.t/

FA
: (5.36)

Equations (5.33)–(5.35) serve as boundary conditions at the electrode, whereas
Eq. (5.36) can be used for calculating the Faradaic current:

I.t/

FA
D .n1 C n2/ phet

1 .t/C n2 phet
2 .t/ : (5.37)

The structural conservation relationship (5.35) allows one to reduce the number of
unknown species production rates, so that for the unknown functions we can take,
for example:

�1.t/ D �phet
1 .t/ ; (5.38)

�2.t/ D �phet
2 .t/ ; (5.39)

resulting in

phet
3 .t/ D �1.t/C �2.t/ : (5.40)

By replacing the boundary concentrations c
1.t/, c


2.t/, and c
3.t/ in Eqs. (5.27)

and (5.28), by the relevant integral concentration–production rate relation-
ships (5.6), and setting the results into Eqs. (5.33) and (5.34), we therefore obtain
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the following system of two second kind Volterra IEs:

�1.t/ � k01

8
<

:f1;f.t/

2

4c?1 �
tˆ

0

K1.t; �/ �1.�/ d�

3

5

�f1;b.t/
2

4c?2 �
tˆ

0

K2.t; �/ �2.�/ d�

3

5

9
=

; D 0 ; (5.41)

�1.t/C �2.t/ � k02

8
<

:f2;f.t/

2

4c?2 �
tˆ

0

K2.t; �/ �2.�/ d�

3

5

�f2;b.t/
2

4c?3 C
tˆ

0

K3.t; �/ �1.�/ d� C
tˆ

0

K3.t; �/ �2.�/ d�

3

5

9
=

; D 0 : (5.42)

Similarly to the first example, if any of reactions (5.24) and (5.25) were an
irreversible or an equilibrium reaction, then a corresponding IE (5.41) or (5.42)
would have to be replaced by an alternative IE. For example, if reaction (5.25) were
an equilibrium reaction, then the boundary condition (5.34) would be replaced by
the Nernst equation, so that instead of Eq. (5.42) we would obtain the first kind
Volterra IE:

2

4c?2 �
tˆ

0

K2.t; �/ �2.�/ d�

3

5

�
2

4c?3 C
tˆ

0

K3.t; �/ �1.�/ d� C
tˆ

0

K3.t; �/ �2.�/ d�

3

5

� exp

�
n2F

RT

�
E.t/� E0

2

� D 0 : (5.43)

Most often c?2 D c?3 D 0 in Eqs. (5.41) and (5.42) or (5.43), which simplifies the
IEs.

As a third example, we consider a controlled current experiment for the single
electron transfer (5.7). Similarly to the first example, the experiment is described
by Eqs. (5.14)–(5.16), but the equations are used differently. Equations (5.15)
and (5.16) serve as boundary conditions at the electrode, and Eq. (5.14) is used for
calculating the electrode potential response E.t/. From Eqs. (5.15) and (5.16) we
see that both conceivable unknowns, phet

1 .t/ and phet
2 .t/, are uniquely determined

by the known I.t/:

phet
1 .t/ D �phet

2 .t/ D
I.t/

nFA
: (5.44)
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Therefore, the interfacial concentrations are obtainable immediately as

c


1.t/ D c?1 C

tˆ

0

K1.t; �/
I.�/

nFA
d� ; (5.45)

c


2.t/ D c?2 �

tˆ

0

K2.t; �/
I.�/

nFA
d� : (5.46)

The same can be said about the electrode potential. There is no closed-form
expression for E.t/ in the case of a non-equilibrium reversible reaction (5.7), but
for an irreversible reaction (5.7) Eq. (5.14) can be re-arranged into the formula

E.t/ D E0 C RT

nF˛f
ln

� I.�/nFA

k0
�
c?1 C

t́

0

K1.t; �/
I.�/

nFA d�

	 : (5.47)

Alternatively, assuming equilibrium reaction (5.7), Eq. (5.14) is replaced by the
Nernst equation:

E.t/ D E0 C RT

nF
ln

c?1 C
t́

0

K1.t; �/
I.�/

nFA d�

c?2 �
t́

0

K2.t; �/
I.�/

nFA d�

: (5.48)

As was expected, no IEs arise in this example. However, we shall see in Chap. 10
that this is no longer true in the presence of double layer charging.

As a fourth example, we consider a controlled current experiment for the EE
reaction scheme (5.24) and (5.25), assuming equilibrium reactions. One possible
re-arrangement of the Eqs. (5.33)–(5.36) gives the explicit formula for the unknown
electrode potential:

E.t/ D E0
1 C

RT

n1F
ln
c


1.t/

c


2.t/

; (5.49)

and three boundary conditions not involvingE.t/:

E0
1 C

RT

n1F
ln
c


1.t/

c


2.t/
D E0

2 C
RT

n2F
ln
c


2.t/

c


3.t/

; (5.50)

I.t/

FA
� .n1 C n2/ phet

1 .t/ � n2 phet
2 .t/ D 0 ; (5.51)

I.t/

FA
� n1 phet

1 .t/C n2 phet
3 .t/ D 0 : (5.52)
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A more convenient form of Eq. (5.50) is

c


3.t/ c



1.t/

n2=n1 �K c
2.t/.n1Cn2/=n1 D 0 ; (5.53)

where K D exp
�
n2F.RT/�1

�
E0
2 �E0

1

��
, and the interfacial concentrations are

expressed by the following formulae. By defining the unknown function as

�.t/ D �phet
1 .t/ ; (5.54)

and making use of Eq. (5.6), we obtain:

c


1.t/ D c?1 �

tˆ

0

K1.t; �/ �.�/ d� ; (5.55)

and [in view of Eqs. (5.51) and (5.52)]:

c


2.t/ D c?2 C

tˆ

0

K2.t; �/
I.�/

n2FA
d� C n1 C n2

n2

tˆ

0

K2.t; �/ �.�/ d� ; (5.56)

c


3.t/ D c?3 �

tˆ

0

K3.t; �/
I.�/

n2FA
d� � n1

n2

tˆ

0

K3.t; �/ �.�/ d� : (5.57)

Since I.t/ is known, the integrals of I.t/, occurring in Eqs. (5.56) and (5.57) are
determined functions of time. Setting Eqs. (5.55)–(5.57) into Eq. (5.53) then gives
a single first kind Volterra IE with the sole unknown �.t/. Having determined
�.t/ and all integrals, one can use Eq. (5.49) to calculate E.t/. Interestingly, the
IE arising for this example is nonlinear, even though the reaction scheme involves
only first-order reactions.

5.2 Diffusion in Semi-Infinite Spatial Domains

In this section we assume that diffusion takes place in one of the semi-infinite spatial
domains depicted in Fig. 2.1. The assumption of a semi-infinite spatial domain
simplifies the formulation of the boundary conditions at the second boundary, and
consequently results also in relatively uncomplicated integral transformation kernels
and IEs. This is because we can assume that the concentrations of the distributed
species at infinity (usually termed bulk concentrations) are simply equal to the
initial, equilibrium concentrations. Hence, the boundary conditions at x ! 1 (in
the case of planar diffusion) or at r ! 1 (in the case of spherical or cylindrical
diffusion) are:

cj .1; t/ D c?j : (5.58)
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5.2.1 Concentration–Production Rate Relationships

In order to derive the concentration–production rate relationship for a semi-infinite
domain, one needs to solve analytically the (incomplete) IBVP comprising one of
the Eqs. (5.1)–(5.3), with an appropriate one of the initial conditions (5.4) or (5.5),
and boundary condition (5.58).

Such concentration–flux relationships for planar diffusion were derived in
connection with the modelling of the linear potential sweep voltammetry by the IE
method. In particular, Ševčik [139] obtained such relationships, although his interest
was rather in deriving an integral expression for the flux (or Faradaic current).
Delahay [41], Matsuda and Ayabe [94], and Senda [135] derived and presented
the relationships in the explicit form. All these authors used the Laplace transform
method. Gokhshtein [62] obtained the same relationships in an alternative way, by
using fundamental solutions of the diffusion PDE, assuming additionally nonuni-
form initial concentrations. Fujioka [59] used a similar approach. The relationships
for spherical diffusion were derived by Hurwitz [71] in connection with the theory
of current step chronopotentiometry. The relationships for cylindrical diffusion were
also obtained by Hurwitz [71], but the integral transformation kernel was given
only in the form of a series expansion. A complete presentation of the kernel was
given by Aoki et al. [15] in connection with the theory of the linear potential sweep
voltammetry.

For the purpose of the kernel derivations, it is convenient to introduce an auxiliary
unknown variable uj (or several such variables), and consider the IBVP(s) for
the auxiliary variable(s), rather than for the concentrations cj . In the case of the
uncomplicated diffusion considered here, for the auxiliary variable we can take the
departure of the concentration from its initial value, i.e.

uj D cj � c?j : (5.59)

As uj is a linear function of cj , it obeys the diffusion equations analogous to
Eqs. (5.1), (5.2), or (5.3), but with simpler initial and boundary conditions. Thus,
we have to solve the following incomplete IBVPs. For planar diffusion:

@uj .x; t/

@t
D Dj

@2uj .x; t/

@x2
; (5.60)

uj .x; 0/ D 0 ; (5.61)

uj .1; t/ D 0 : (5.62)

For spherical diffusion:

@uj .r; t/

@t
D Dj

�
@2uj .r; t/

@r2
C 2

r

@uj .r; t/

@r

	
; (5.63)

uj .r; 0/ D 0 ; (5.64)
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uj .1; t/ D 0 : (5.65)

For cylindrical diffusion:

@uj .r; t/

@t
D Dj

�
@2uj .r; t/

@r2
C 1

r

@uj .r; t/

@r

	
; (5.66)

uj .r; 0/ D 0 ; (5.67)

uj .1; t/ D 0 : (5.68)

An important characteristic of pure diffusion transport, considered in this chapter,
is that the fluxes of variables cj and uj are identical, as long as the initial
concentrations c?j are uniform. From Eqs. (2.5) and (5.59) we obtain:

Jj .x; t/ D �Dj

@cj .x; t/

@x
D �Dj

@uj .x; t/

@x
(5.69)

for planar, and

Jj .r; t/ D �Dj

@cj .r; t/

@r
D �Dj

@uj .r; t/

@r
(5.70)

for spherical and cylindrical diffusion.
In Appendix A we follow [15,41,62,71,94,139], and present detailed analytical

solutions of the problems (5.60)–(5.68), by employing the Laplace transform
method. As a result, we obtain the following relationships between the solution
uj and its flux Jj at the interface studied [cf. Eqs. (A.24), (A.25), (A.85), (A.86),
(A.152), and (A.154)].

For planar diffusion:

uj .0; t/ D
tˆ

0

K
p
j .t; �/ Jj .0; �/ d� ; (5.71)

with

K p
j .t; �/ D D�1=2

j Œ�.t � �/��1=2 : (5.72)

For spherical diffusion:

uj .r0; t/ D
tˆ

0

K s
j .t; �/ Jj .r0; �/ d� ; (5.73)
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with

K s
j .t; �/ D D�1=2

j

˚
Œ�.t � �/��1=2 � %j erex

�
%j .t � �/1=2

��
; (5.74)

where

%j D D1=2
j =r0 ; (5.75)

and

erex.z/ D exp.z2/ erfc.z/ : (5.76)

In Eq. (5.76) erfc.�/ is the complementary error function:

erfc.z/ D 1 � erf.z/ ; (5.77)

and erf.�/ is the error function [1]:

erf.z/ D 2��1=2
zˆ

0

exp.��2/ d� : (5.78)

The issue how to compute erf.�/, erfc.�/, and erex.�/ numerically will be addressed
in Sect. 12.1.1.4.

For cylindrical diffusion we obtain

uj .r0; t/ D
tˆ

0

K c
j .t; �/ Jj .r0; �/ d� ; (5.79)

with

K c
j .t; �/ D D�1=2

j %j '
h
%2j .t � �/

i
; (5.80)

where the function '.#/ is defined as

'.#/ D L �1
�
s�1=2 K0.s

1=2/

K1.s1=2/


; (5.81)

the Laplace transformation is from the # domain to the s domain, and K0.�/ and
K1.�/ are modified Bessel functions of the second kind and orders 0 and 1 [1].
Function '.#/ can also be expressed as

'.#/ D 4 ��2 G.1; 0I#/ ; (5.82)
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where G.1; 0I#/ is one of the special integrals discussed by Carslaw and Jaeger [35]
in the theory of heat conduction in solids (we use here the notation introduced by
Phillips and Mahon [123], who analysed these integrals mathematically):

G.1; 0I#/ D
1̂

0

exp.�#2/�
J21./C Y2

1./
� d


: (5.83)

In Eq. (5.83) J1.�/ and Y1.�/ are Bessel functions of the first and second kind, and
order 1 [1].

The form (5.80) of the kernel was originally presented in the literature [15].
However, it is more convenient to introduce a special function defined by the
formula

kcylw.z/ D kcylw.#1=2/ D L �1
�

K1.s
1=2/� K0.s

1=2/

s1=2 K1.s1=2/


; (5.84)

where the Laplace transformation is from the domain of the variable # D z2 to the
s domain. By using this function, the kernel K c

j .t; �/ can be expressed in the form
analogous to Eq. (5.74) for spherical diffusion:

K c
j .t; �/ D D�1=2

j

˚
Œ�.t � �/��1=2 � %j kcylw

�
%j .t � �/1=2

��
: (5.85)

The name “kcylw” has been chosen by the present author [22] as an acronym for
“kernel for cylindrical wire”. The issue how to compute kcylw.�/ numerically will
be addressed in Sect. 12.1.1.4.

In view of Eq. (2.46) the fluxes Jj at the interface studied are equal to the produc-
tion rates phet

j .t/ of the j th species at the interface. Therefore, the concentration–
production rate relationships resulting from Eqs. (5.71), (5.73), and (5.79) are as
follows. For planar diffusion:

c


j .t/ D cj .0; t/ D c?j C

tˆ

0

K
p
j .t; �/ p

het
j .�/ d� : (5.86)

For spherical diffusion:

c


j .t/ D cj .r0; t/ D c?j C

tˆ

0

K s
j .t; �/ p

het
j .�/ d� : (5.87)

For cylindrical diffusion:

c


j .t/ D cj .r0; t/ D c?j C

tˆ

0

K c
j .t; �/ p

het
j .�/ d� : (5.88)
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Fig. 5.1 Comparison of
functions erex.z/ and
kcylw.z/, representing the
effect of the spherical and
cylindrical geometry,
respectively, on the kernels
arising for diffusion in
semi-infinite spatial domains
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We note that K p
j .t; �/, K

s
j .t; �/, and K c

j .t; �/ are all convolution kernels (see
Sect. 3.1). The kernels K s

j .t; �/ and K c
j .t; �/ are composed of two terms, the first

being identical to the kernel K p
j .t; �/ for the planar diffusion case. The second

term, proportional to %j , represents a “spherical” or “cylindrical” contribution,
which vanishes when r0 ! 1, that is when the interface studied becomes
effectively planar, because in this limit %j ! 0, whereas erex

�
%j .t � �/1=2

� ! 1

or kcylw
�
%j .t � �/1=2

� ! 1=2, which are finite values. The terms representing
“spherical” or “cylindrical” contributions look similar; in the cylindrical case
function kcylw.z/ replaces the function erex.z/ pertinent to the spherical case.
Figure 5.1 demonstrates the difference between the functions erex.z/ and kcylw.z/.

A special feature of semi-infinite spherical diffusion (not shared by planar and
cylindrical diffusion) is the possibility of the occurrence of a steady state, in which
there is a nonzero solution of Eq. (5.63) satisfying @uj .r; t/=@t � 0. In Appendix A,
Sect. A.2 the analytical solution of such a steady state diffusion equation is obtained,
and we conclude that at steady state Eq. (5.73) takes a special limiting form [cf.
Eq. (A.89)]:

uj .r0; t/ D D�1=2
j %�1

j Jj .r0; t/ ; (5.89)

so that in view of Eqs. (2.46) and (5.59)

c


j .t/ D cj .r0; t/ D c?j CD�1=2

j %�1
j p

het
j .t/ : (5.90)

Equation (5.90) is the concentration–production rate relationship at steady state.
We note that no convolution integral is involved in Eq. (5.90), because the steady
state assumption holds independently at every time moment, so that the connections
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between different time moments are lost. Although the dependences of the transport
PDEs on time t are formally removed under steady state conditions, uj or cj
may still generally depend on t , owing to the possibly time-dependent boundary
conditions at x D 0 (not explicitly written here). Therefore, throughout this book we
retain the t variable in the list of arguments of the PDE solutions under steady state
conditions. Relationship (5.90) can be obtained either by considering the steady
state diffusion equation, or it can be deduced from the general formula (5.73), as was
demonstrated in Appendix A in Bieniasz et al. [25]. Both approaches are described
in Sect. A.2 of Appendix A of the present book. The possibility to deduce the steady
state concentration–production rate relationship from the transient formula (5.73) is
one of the advantages of the IE method.

In the case of controlled potential experiments under spherical diffusion con-
ditions, as an alternative to using the integral relationship (5.87) one can use
approximate corrections to the current, accounting for sphericity. The corrections
were obtained by Goodisman [65], by means of a perturbative approach, in which
the inverse r�1

0 of the electrode radius played the role of the perturbation parameter.
Consequently, the corrections are applicable when r0 is large, so that the departures
from planar diffusion are small. It seems that the direct use of Eq. (5.87) should be
preferred as a more general and viable approach.

5.2.2 Literature Examples

The following list of examples is limited to IE-based models in which diffusion
uncomplicated by convection, homogeneous reactions or other phenomena was
assumed, together with one-dimensional semi-infinite spatial domains. Models
involving such complications are listed in further Chaps. 6, 8, 9, and 10.

5.2.2.1 Planar Diffusion

Theory of linear potential sweep and cyclic voltammetry for the single electron
transfer reaction

X1 C n e� � X2 (5.91)

involving dynamic distributed species X1 and X2 was considered by Ševčik
[139], Delahay [41], Matsuda and Ayabe [94], Gokhshtein [62], Gokhshtein and
Gokhshtein [61], Nicholson and Shain [112], Nicholson [111], and Mareček and
Honz [92]. Seelig and Blount [134] used related IE solutions in their approach
to data analysis based on the Kalman filter. Savéant [132] presented a theory of
cyclic voltammetry with asymmetrical potential sweeps. The effect of the nonzero
initial concentration of the reaction product, and/or of starting the scan from the
equilibrium potential was addressed by Farsang et al. [55], and Weidner and Fedkiw
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[158]. Bonciocat [28] analysed long-time behaviour of cyclic voltammograms. The
effect of reaction order higher than one, on linear potential sweep voltammetry
for irreversible reaction (5.91) was studied by Kohler et al. [76]. The resulting
theory involved a nonlinear IE. A somewhat similar nonlinear IE was obtained by
Mendelson and Tenno [98], while modelling the effect of concentration-dependent
activity coefficients on linear potential sweep voltammetry for irreversible reac-
tion (5.91). Bonciocat et al. [30] studied connections between the IE corresponding
to irreversible reaction (5.91), and some ODE. Seralathan et al. [138] discussed the
equivalence of linear potential sweep and staircase voltammetry. Theory of cyclic
staircase voltammetry was presented by Murphy et al. [106].

The above authors assumed equilibrium, non-equilibrium reversible, or irre-
versible reaction (5.91) subject to Butler–Volmer kinetics with constant charge
transfer coefficients. Andrieux et al. [6–8] solved IEs describing cyclic voltammetry
for irreversible reaction (5.91), subject to a Butler–Volmer kinetic model modified
to incorporate a quadratic activation-driving force relationship. Such a model
leads to potential-dependent charge transfer coefficients. Linear potential sweep
voltammetry for reaction (5.91) subject to Marcus–Hush–Chidsey kinetics was
considered by Henstridge et al. [68].

Delahay, Matsuda, and their co-workers [42, 95] used IEs for the modelling of
the Faradaic impedance for reaction (5.91). Smith [141] discussed the relationships
between Faradaic impedances obtained by four techniques, in which small ampli-
tude controlled potential or controlled current AC perturbations were combined with
controlled potential or controlled current DC perturbations. The theory of square
wave polarography/voltammetry for reaction (5.91) was presented by Tachi and
Kambara [146], Okamoto [116, 117], O’Dea et al. [115], Nuwer et al. [114], and
Fatouros and Krulic [56], who utilised the former results of Mauduit et al. [96] for
normal and differential pulse voltammetries. Senda and Tachi [137] considered AC
polarography with an arbitrary periodic electrode potential perturbation, assuming
non-equilibrium reversible and equilibrium reaction (5.91). They obtained IDEs
rather than IEs. The theory of large amplitude AC voltammetry and sinusoidal
voltammetry for equilibrium reaction (5.91) was presented by Bell et al. [19, 20].
The theory of differential pulse voltammetry was discussed by Aoki et al. [14]. A
high frequency AC technique for investigating fast non-Volmerian reaction (5.91)
was analysed by Garreau et al. [60]. Bonciocat and Cotârţă [29] presented a
derivation of the IE for reaction (5.91) and arbitrary potential perturbation, by
considering a non-stationary process as a continuous succession of stationary states.
De Vries [46] used IEs to describe potential step chronoamperometry followed by
linear potential sweep voltammetry, for reaction (5.91). Wein and Tovchigrechko
[159, 160] discussed voltage step transients in a two-electrode cell, assuming non-
equilibrium reaction (5.91). Camacho et al. [34] utilised IE solutions for verifying
their theory of reverse pulse voltammetry and polarography for reaction (5.91).
Chen et al. [36] discussed an electroanalytical technique, in which the electrode
potential was an exponential function of time, assuming equilibrium reaction (5.91).

Gueshi et al. [67] analysed the effect of partially covered electrodes on
linear potential sweep and cyclic voltammetry for non-equilibrium reversible
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reaction (5.91). Their theory leads to IEs with kernels analogous to those arising
in the presence of homogeneous reactions, that will be considered in Chap. 8 (see
Sects. 8.2 and 8.3). A similar theory, focused on microscopic inhomogeneities of
the electrode surface, was presented by Amatore et al. [3]. Kokhanovskii et al.
[77] considered the effect of a limited solubility of the product X2 of equilibrium
reaction (5.91), leading to the passivation of the electrode, on the peak potential in
linear potential sweep voltammetry.

IEs describing linear potential sweep and cyclic voltammetry for the equilibrium
or non-equilibrium reversible reaction of metal electrodeposition:

X1 C n e� � X2;s (5.92)

were reported by White and Lawson [161], and Pnev et al. [125]. In reaction (5.92)
X1 is a dynamic distributed species (metal ion), and X2;s is a static localised
species (solid metal). Affoune et al. [2] modelled cyclic voltammetry for the reverse
reaction (5.92). Both cases were also studied by Avaca et al. [17]. An IE formalism
similar to that arising for reaction (5.92) was utilised by Vogel et al. [156], and
Ross and Stonehart [131], in the modelling of cyclic voltammetry for the hydrogen
electrode reaction on platinum.

A rare example of controlled current oscillographic polarography for a reaction
scheme involving two independent electron transfer reactions of the type (5.91), and
one more independent electron transfer reaction of the type (5.92), was studied by
Matsuda [93].

Shuman [140] presented an IE describing cyclic voltammetry for the reaction:

mX1 C n e� � q X2 ; (5.93)

with non-unity stoichiometric coefficients m and q for dynamic distributed species
X1 and X2. His calculations have been redone by Ito et al. [72]. Whereas in [72,140]
the initial absence of X2 was assumed, Bieniasz [21] studied an alternative case, of
potential scan started from the equilibrium potential, assuming m D 1 and q D 2,
andm D q D 1.

Bieniasz and Suski [24] reported the theory of potential step chronoamperometry
and linear potential sweep voltammetry for the equilibrium reaction

X1 C X2;s � X3 C X4 C n e� ; (5.94)

where X1, X3, and X4 are dynamic distributed species, and X2;s is a static distributed
species. The theory of linear potential sweep voltammetry for the equilibrium
reaction (5.94) was also considered by Tkalenko et al. [148].

The EE reaction scheme:

X1 C n1 e� � X2 ; (5.95)

X2 C n2 e� � X3 ; (5.96)
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involving dynamic distributed species X1, X2, and X3, was a subject of several
studies. Gokhshtein and Gokhshtein [63,64], and Polcyn and Shain [127] presented
the theory of cyclic voltammetry under various assumptions concerning the rates of
reactions (5.95) and (5.96). Lovrić and Komorsky-Lovrić [78–80,87,88] elaborated
the theory of square wave voltammetry. Hung and Smith [69, 70] presented the
theory of AC polarography. Aoki [10] analysed linear potential sweep voltammetry
for an extension of the scheme (5.95) and (5.96), comprising several consecutive
electron transfers characterised by the same standard potential.

There are also examples of IEs describing charge transfers at liquid j liquid
interfaces. Stewart et al. [142] modelled cyclic voltammetry for an electron transfer
at such interfaces. Mirčeski and Scholz [101] considered square wave voltammetry
for reaction schemes involving electron and ion transfers. Senda [136] presented a
model of voltammetry for an electron transfer, taking into account the bimolecular
character of the transfer. The model resulted in a simplified IE with a kernel
characteristic of planar diffusion. Katano et al. [74] described a model of cyclic
voltammetry for an ion transfer reaction. Tatsumi et al. [147] discussed a theory
of normal pulse voltammetry for an electron transfer. In this kind of models one
usually assumes that the two adjacent liquid phases are semi-infinite in the direction
perpendicular to the liquid j liquid interface studied.

A similar situation arises at the interface between a liquid electrolyte and a
solid electrolyte, characteristic of the so-called insertion electrodes. An interesting
example model of cyclic voltammetry at such interfaces was presented by Lovrić
et al. [91], based on the former model in [89].

5.2.2.2 Spherical Diffusion

Spherical diffusion was assumed in models of transient experiments for the single
reaction

X1 C n e� � X2 (5.97)

involving dynamic distributed species X1 and X2, with only X1 being initially
present. Delmastro and Smith [43] presented a model of the first harmonic of
the current in AC and DC polarography, assuming equal diffusion coefficients
and non-equilibrium reversible reaction (5.97). The model was extended by Del-
mastro and Smith [44] to the first harmonic of the current in AC polarography,
corresponding to the case of different diffusion coefficients. McCord et al. [97]
discussed second and third harmonic of the AC polarographic current under the
same conditions. Bond et al. [31] analysed the second harmonic of the current in
AC cyclic voltammetry, assuming different diffusion coefficients, and equilibrium,
non-equilibrium reversible, or irreversible reaction (5.97). Komorsky-Lovrić et al.
[81] considered a theory of square wave voltammetry, and Lovrić [85] considered
a theory of differential staircase voltammetry, for a non-equilibrium reversible
reaction (5.97). Lovrić [86] has also used IE solutions to verify his theory of
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differential pulse polarography for equilibrium reaction (5.97). Diao and Zhang [50]
presented a theory of cyclic voltammetry at a (hemi)spherical electrode, assuming
non-equilibrium reversible reaction (5.97), different diffusion coefficients, and both
species X1 and X2 initially present at equilibrium of reaction (5.97).

Stewart et al. [143] presented a model of linear potential sweep voltammetry
for an equilibrium ion transfer reaction at a liquid j liquid interface supported at the
tip of a micropipette. The model approximated the transport of the ions for ingress
transfer by spherical diffusion, and for egress transfer by planar diffusion.

5.2.2.3 Cylindrical Diffusion

Cylindrical diffusion was assumed in models of linear potential sweep and cyclic
voltammetry [11, 15, 108], normal pulse voltammetry [16], and AC voltammetry
[154] for the single reaction:

X1 C n e� � X2 (5.98)

involving dynamic distributed species X1 and X2. Initial presence of X2 only was
assumed in [11, 15, 16]. Initial presence of X1 only was assumed by Neudeck and
Dittrich [108], and simultaneous initial presence of X1 and X2 was assumed by
Tokuda et al. [154]. All these authors assumed equal diffusion coefficients of X1

and X2. Equilibrium reaction (5.98) was considered in [15, 154], whereas non-
equilibrium reversible and irreversible reaction (5.98) was considered in [11, 16,
108].

5.3 Diffusion in Finite Spatial Domains

In this section we assume that diffusion takes place in one of the finite spatial
domains depicted in Fig. 2.2. The major complication for the IE method, resulting
from such finite spatial domains, is the need to take into account boundary con-
ditions at the second boundary, while deriving analytical concentration–production
rate relationships. Potentially, an unlimited number of different boundary conditions
at the second boundary (and different corresponding relationships) is conceivable,
which may seem discouraging. Fortunately, in the majority of known models solved
by the IE method, only two types of boundary conditions have been of interest.

The first type is analogous to the boundary condition (5.58) for semi-infinite
domains. For planar diffusion

cj .l; t/ D c?j ; (5.99)

and for spherical or cylindrical diffusion

cj .r0 ˙ l; t/ D c?j : (5.100)
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Typically, Eqs. (5.99) or (5.100) hold when the concentrations at the second
boundary are maintained constant owing to a physical or chemical equilibrium
with the phase (or artificially separated part of it) located outside the second
boundary. This means that the j th distributed species is allowed to cross the second
boundary. Therefore, the second boundary satisfying Eqs. (5.99) or (5.100) is called
“permeable” in this book.

In the second type of boundary conditions one assumes that the flux of the j th
distributed species is zero at the second boundary, or:

@cj .x; t/

@x

ˇ̌
ˇ̌
xDl
D 0 (5.101)

for planar diffusion, or

@cj .r; t/

@r

ˇ̌
ˇ̌
rDr0˙l

D 0 (5.102)

for spherical or cylindrical diffusion. Equations (5.101) or (5.102) mean that the
j th distributed species cannot cross the second boundary. Therefore, the second
boundary satisfying Eqs. (5.101) or (5.102) is called “impermeable” in this book. In
the special case when l D r0 and the second boundary is located at r D r0 � l D 0,
there is of course no physical interface associated with this boundary, but Eq. (5.102)
expresses the fact that there is no transfer of matter into the interval of (physically
nonsensical) negative r .

By combining the finite spatial domains of Fig. 2.2 with the boundary condi-
tions (5.99) and (5.101), or (5.100) and (5.102), we obtain two distinct situations
to be considered for planar diffusion, four distinct situations for spherical diffusion,
and analogously four situations for cylindrical diffusion. The four situations per-
tinent to spherical or cylindrical diffusion are: internal domain with a permeable
second boundary (I–P); internal domain with an impermeable second boundary
(I–I); external domain with a permeable second boundary (E–P); and external
domain with an impermeable second boundary (E–I). Concentration–production
rate relationships corresponding to all these situations are discussed below.

Alternative boundary conditions at the second boundary are possible, but they are
rarely modelled by the IE method. One such alternative was investigated by Diard
et al. [51], in connection with the modelling of linear potential sweep voltammetry
for rotating metal electrodes covered by polymer films. In [51] the spatial domain
was composed of a thin finite interval corresponding to the polymer film, and
an adjacent finite or semi-infinite interval corresponding to the diffusion layer in
the stirred electrolyte solution. The boundary condition at the polymer j electrolyte
interface assumed a linear relationship between the concentrations at both sides of
the interface. This particular situation will not be analysed further in the present
book.
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5.3.1 Concentration–Production Rate Relationships

In order to derive the concentration–production rate relationship for a finite domain,
one needs to solve analytically the (incomplete) IBVP comprising one of the
Eqs. (5.1)–(5.3), with one of the initial conditions (5.4) or (5.5) (whichever is
appropriate), and one of the boundary conditions (5.99)–(5.102).

For planar diffusion and a permeable second boundary relevant relationships
were obtained by Fried and Elving [58], in connection with the modelling of the
RDE. Several years later they were rediscovered by Tokuda and Matsuda [150].
Analogous relationships for an impermeable second boundary were obtained by
Rangarajan and Doss [129, 130], in connection with the modelling of Faradaic
admittance experiments. However, in the electrochemical literature this result is
often attributed to the later works of De Vries and Van Dalen [45,49], who modelled
stripping and linear potential sweep voltammetry at a plane mercury film electrode.
Birke [26] reconsidered the concentration–flux relationships for planar diffusion
(and both permeable and impermeable second boundaries), by using the formalism
of semi-integration. Laplace transforms of the concentration–flux relationships for
planar diffusion in a finite spatial domain with an impermeable second boundary
were also derived by Danielsson et al. [38], in connection with the theory of
differential pulse polarography.

For spherical diffusion some of the concentration–flux relationships were
obtained by Nigmatullin [113], who considered the case I–I with l < r0 and
l D r0. This was motivated by the modelling of electrolytic cells with stationary
spherical mercury electrodes and solid spherical electrodes covered by mercury
layers. However, the relationships were not given explicitly, but were embedded in
some final model equations, which might be the reason why the Nigmatullin work
[113] remained almost unnoticed by the IE method users. Keller and Reinmuth
[75] reported concentration–flux relationships applicable to all cases I–I, I–P, E–I,
and E–P, although not all of these cases were given equal attention. The study was
motivated by the modelling of linear potential sweep voltammetry. The relationships
for the I–I case with l D r0 were analysed in much detail by Tokuda et al. [153],
in connection with the modelling of cyclic voltammetry at hanging mercury drop
electrodes, for reversible amalgam formation and dissolution reactions. Further
discussion of this case was given by Myland et al. [107], with the aim to study
concentrations at the surface of a stationary mercury drop electrode with amalgam
formation. Laplace transforms of the concentration–flux relationships for spherical
diffusion in a finite spatial domain with an impermeable second boundary were also
derived by Danielsson et al. [38].

The concentration–flux relationships for cylindrical diffusion were obtained by
Keller and Reinmuth [75], who considered the cases I–I, I–P, E–I, and E–P. The case
I–I with l D r0 was elaborated by Weidner [157], in connection with the modelling
of linear potential sweep voltammetry of a soluble redox couple in a cylindrical pore
electrode. The kernel function corresponding to the case I–I with l D r0 was also
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published by Montella [105], in connection with his modelling approach based on
the numerical inversion of the Laplace transforms.

For the purpose of the derivations, as for the semi-infinite diffusion case it is
convenient to introduce an auxiliary unknown variable uj defined by Eq. (5.59),
which leads to the following incomplete IBVPs. For planar diffusion:

@uj .x; t/

@t
D Dj

@2uj .x; t/

@x2
; (5.103)

uj .x; 0/ D 0 ; (5.104)

and

uj .l; t/ D 0 (5.105)

or

@uj .x; t/

@x

ˇ̌
ˇ̌
xDl
D 0 : (5.106)

For spherical diffusion:

@uj .r; t/

@t
D Dj

�
@2uj .r; t/

@r2
C 2

r

@uj .r; t/

@r

	
; (5.107)

uj .r; 0/ D 0 ; (5.108)

and

uj .r0 ˙ l; t/ D 0 (5.109)

or

@uj .r; t/

@r

ˇ̌
ˇ̌
rDr0˙l

D 0 : (5.110)

For cylindrical diffusion:

@uj .r; t/

@t
D Dj

�
@2uj .r; t/

@r2
C 1

r

@uj .r; t/

@r

	
; (5.111)

uj .r; 0/ D 0 ; (5.112)

and

uj .r0 ˙ l; t/ D 0 (5.113)
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or

@uj .r; t/

@r

ˇ̌
ˇ̌
rDr0˙l

D 0 : (5.114)

The flux of cj (and uj ) is again given by Eqs. (5.69) or (5.70).
In Appendix A we follow [45, 49, 58, 75, 107, 113, 129, 130, 150, 153, 157], and

present detailed analytical solutions of the problems (5.103)–(5.114), by employing
the Laplace transform method. As a result, we obtain the following relationships
between the solution uj and its flux Jj at the interface studied.

For planar diffusion and a permeable second boundary we get [cf. Eqs. (A.35)
and (A.36)]:

uj .0; t/ D
tˆ

0

K
plp
j .t; �/ Jj .0; �/ d� ; (5.115)

with

K plp
j .t; �/ D l�1 ‚2

h
0
ˇ̌
ˇ�2j .t � �/

i
; (5.116)

and for planar diffusion and an impermeable second boundary we get [cf.
Eqs. (A.53) and (A.54)]:

uj .0; t/ D
tˆ

0

K
pli
j .t; �/ Jj .0; �/ d� ; (5.117)

with

K
pli
j .t; �/ D l�1 ‚3

h
0
ˇ̌
ˇ�2j .t � �/

i
: (5.118)

In Eqs. (5.116) and (5.118)

�j D D1=2
j = l ; (5.119)

and‚2.� j z/ and‚3.� j z/ are two of the so-called exponential theta functions (see,
for example, Oldham et al. [119, p. 261]) with parameter � D 0. These forms of
the kernels were originally adopted in the literature [45, 49, 129, 130, 150], but in
Sects. A.1.2 and A.1.3 of Appendix A we derive more convenient equivalent forms,
similar to the kernels previously discussed in Sect. 5.2:

K
plp
j .t; �/ D D�1=2

j

˚
Œ�.t � �/��1=2 � �j kplp

�
�j .t � �/1=2

��
; (5.120)

K
pli
j .t; �/ D D�1=2

j

˚
Œ�.t � �/� �1=2 C �j kpli

�
�j .t � �/1=2

��
: (5.121)
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In Eqs. (5.120) and (5.121) functions kplp.�/ and kpli.�/ are special functions defined
by the formulae:

kplp.z/ D kplp.#1=2/ D L �1 ˚s�1=2 �1 � tanh.s1=2/
��
; (5.122)

kpli.z/ D kpli.#1=2/ D L �1 ˚s�1=2 �coth.s1=2/� 1�� ; (5.123)

where the Laplace transformation is from the domain of the variable # D z2 to the s
domain. The names “kplp” and “kpli” have been chosen by the present author [23]
as acronyms for “kernel for a planar layer with a permeable boundary”, and “kernel
for a planar layer with an impermeable boundary”, respectively. The issue of how
to compute kplp.�/ and kpli.�/ numerically will be addressed in Sect. 12.1.1.4.

In view of Eq. (2.46) the fluxes Jj at the interface studied are equal to the
production rates phet

j .t/ of the j th species at the interface. Therefore, the concen-
tration–production rate relationships resulting from Eqs. (5.115) and (5.117) are as
follows. For a planar layer with a permeable second boundary

c


j .t/ D cj .0; t/ D c?j C

tˆ

0

K
plp
j .t; �/ phet

j .�/ d� : (5.124)

For a planar layer with an impermeable second boundary

c


j .t/ D cj .0; t/ D c?j C

tˆ

0

K
pli
j .t; �/ phet

j .�/ d� : (5.125)

We note that in view of Eqs. (5.120) and (5.121) the kernels K
plp
j .t; �/ and

K
pli
j .t; �/ are of the convolution type, and they are composed of two terms, the first

weakly singular term being identical to the kernel K p
j .t; �/ for planar diffusion in a

semi-infinite domain. The second, nonsingular term, proportional to �j , represents
a contribution resulting from the finite length of the spatial interval, dependent on
the boundary condition at the second boundary. The contribution vanishes when
l ! 1, that is when the spatial domain becomes semi-infinite, because in this
limit �j ! 0, whereas kplp

�
�j .t � �/1=2

�
and kpli

�
�j .t � �/1=2

�
are bounded.

Figure 5.2 demonstrates the difference between the functions kplp.z/ and kpli.z/.
At low z an approximate equality holds: kplp.z/ � kpli.z/, and both functions

tend to zero when z ! 0. When z ! 1, then kplp.z/ ! 0, whereas kpli.z/ ! 1.
Function kplp.z/ has a maximum of about 0:414 at z � 1:148, and kpli.z/ is an
increasing function of z.

A non-trivial steady state solution, satisfying @uj .x; t/=@t � 0 is possible for a
permeable second boundary. In Appendix A, Sect. A.1.2 the analytical solution of
such a steady state diffusion equation is obtained, and we show that at steady state
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Fig. 5.2 Comparison of
functions kplp.�/ and kpli.�/,
representing the effect of the
finite spatial domain for
planar diffusion with a
permeable or impermeable
second boundary, respectively
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Eq. (5.115) takes a special limiting form [cf. Eq. (A.43)]:

uj .0; t/ D D�1=2
j ��1

j Jj .0; t/ ; (5.126)

so that in view of Eq. (5.59)

c


j .t/ D cj .0; t/ D c?j CD�1=2

j ��1
j p

het
j .t/ : (5.127)

Equation (5.127) is the concentration–production rate relationship for the steady
state. The steady state will prevail when parameter�j is large, that is when the layer
is very thin. No such steady state is possible in the case of an impermeable second
boundary and large �j . However, in this limiting case we can neglect the integral
corresponding to the term Œ�.t � �/� �1=2 of the kernel (5.121) in Eq. (5.125), and
replace the function kpli

�
�j .t � �/1=2

�
by unity, which gives

c


j .t/ D cj .0; t/ � c?j CD�1=2

j �j

tˆ

0

phet
j .�/ d� : (5.128)

By multiplying Eq. (5.128) by l , defining �j .t/ D cj .0; t/ l and � ?
j D c?j l , and

taking into account Eq. (5.119), we obtain

�j .t/ � � ?
j C

tˆ

0

phet
j .�/ d� : (5.129)
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This relationship is equivalent to Eq. (4.12) characteristic of localised (adsorbed)
species, if we define phet

j .t/ D d�j .t/=dt . Therefore, distributed species present
in very thin planar layers with an impermeable second boundary can be formally
considered as quasi-localised species. This possibility was indicated in Sect. 2.9.

The transition between Eqs. (5.125) and (5.129) was discussed by Leddy [84],
with emphasis on its consequences for convolutive data analysis.

For spherical diffusion, when the second boundary is located at r D r0 ˙ l > 0,
the solution–flux relationships are as follows. In the case of a permeable second
boundary we get [cf. Eqs. (A.101) and (A.102)]:

uj .r0; t/ D
tˆ

0

K
exsp=insp
j .t; �/

�˙Jj .r0; �/
�

d� ; (5.130)

where

K
exsp=insp
j .t; �/ D 'exsp=insp

j .t � �/ (5.131)

with

'
exsp=insp
j .#/ D ˙D�1=2

j L �1
8
<

:
tanh

�
˙ s1=2

�j

�

s1=2 C %j tanh
�
˙ s1=2

�j

�

9
=

; ; (5.132)

and %j and �j are defined by Eqs. (5.75) and (5.119). In the case of an impermeable
second boundary we get [cf. Eqs. (A.117) and (A.118)]:

uj .r0; t/ D
tˆ

0

K
exsi=insi
j .t; �/

�˙Jj .r0; �/
�

d� ; (5.133)

where

K
exsi=insi
j .t; �/ D 'exsi=insi

j .t � �/ (5.134)

with

'
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j L �1
8
<

:
s1=2

�
1
%j
˙ 1

�j

�
� tanh

�
˙ s1=2

�j

�

s1=2
�
%j
�j

�
˙
h
s
�
1
%j
˙ 1
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�
˙ s1=2
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�

9
=

; :

(5.135)

In Eqs. (5.132) and (5.135) the Laplace transformation is between the # and s
domains, and the upper/lower signs and superscipts at the kernel symbol refer
to external/internal domains, respectively. It is difficult to find more transparent
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expressions for the kernels K exsp=insp
j .t; �/ and K exsi=insi

j .t; �/, as they generally
depend on the two parameters %j and �j in a complicated, nonlinear way, so that
no alternative expressions have been reported thus far.

Equations (5.131) and (5.134) are derived for the second boundary located at
r D r0 ˙ l > 0, but the case when this boundary is located at r D r0 � l D 0

is also of interest. Equation (5.131) cannot be extended to this limiting case, but
the kernel K exsi=insi

j .t; �/ possesses a limiting form, denoted here by K ins
j .t; �/ [cf.

Eq. (A.120)]:

K ins
j .t; �/ D ' ins

j .t � �/ ; (5.136)

where
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j .#/ D D�1=2
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8
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:
tanh

�
s1=2

%j

�

s1=2 � %j tanh
�
s1=2

%j

�

9
=

; : (5.137)

This form of the kernel describing internal spherical diffusion (within the entire
sphere) was originally adopted in the literature [107, 153], but by defining a
nonsingular special function

kins.z/ D kins.#1=2/ D L �1
�

tanh.s1=2/

s1=2 � tanh.s1=2/
� s�1=2


; (5.138)

where the Laplace transformation is from the domain of the variable # D z2 to
the s domain, it is more convenient to express the kernel K ins

j .t; �/ by the formula
analogous to the number of previously discussed kernels:

K ins
j .t; �/ D D�1=2

j

˚
Œ�.t � �/��1=2 C %j kins

�
%j .t � �/1=2

��
: (5.139)

The name “kins” is an acronym for “kernel for internal spherical” diffusion (or
domain). Function kins.�/ is a growing function of its argument. As can be seen in
Fig. 5.3, it increases from 1 (for z D 0) to 3 (for z! 1). This function is in some
sense complementary to the function erex.�/ that occurs in the kernel for external
spherical diffusion [cf. Eq. (5.74)].

In view of Eq. (5.59), the concentration–production rate relationships for spher-
ical diffusion, resulting from Eqs. (5.130) and (5.133), are as follows. For a
permeable second boundary:

c


j .t/ D cj .r0; t/ D c?j C

tˆ

0

K
exsp=insp
j .t; �/ phet

j .�/ d� : (5.140)
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Fig. 5.3 Comparison of
functions kpli.�/; kinc.�/, and
kins.�/, representing the
effect of finite spatial
domains on the kernels, in the
case of planar, cylindrical,
and spherical diffusion,
respectively
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For an impermeable second boundary:

c


j .t/ D cj .r0; t/ D c?j C

tˆ

0

K
exsi=insi
j .t; �/ phet

j .�/ d� ; (5.141)

and for its limiting case I–I with r0 � l ! 0:

c


j .t/ D cj .r0; t/ D c?j C

tˆ

0

K ins
j .t; �/ phet

j .�/ d� : (5.142)

A non-trivial steady state solution, satisfying @uj .r; t/=@t � 0 is possible for
a permeable second boundary located at r D r0 ˙ l > 0 (cases E–P and I–P).
In Appendix A, Sect. A.2.2 the analytical solution of such a steady state diffusion
equation is obtained, and we show that at steady state Eq. (5.130) takes a special
limiting form [cf. Eq. (A.108)]:

uj .r0; t/ D D�1=2
j

%�1
j ��1

j

%�1
j ˙ ��1

j

�˙Jj .r0; t/
�
; (5.143)

so that in view of Eqs. (2.46) and (5.59)

c


j .t/ D cj .r0; t/ D c?j CD�1=2
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%�1
j ��1

j

%�1
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j

phet
j .t/ : (5.144)
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No such steady state is possible for an impermeable second boundary, in the E–
I and I–I cases. However, in the I–I case with r0 D l and large %j we can
neglect the integral corresponding to the term Œ�.t � �/��1=2 of the kernel (5.139)
in Eq. (5.142), and replace the term kins

�
%j .t � �/1=2

�
by 3, which gives

c


j .t/ D cj .r0; t/ � c?j CD�1=2

j 3�j

tˆ

0

phet
j .�/ d� ; (5.145)

since now %j D �j .
For cylindrical diffusion, when the second boundary is located at r D r0˙ l > 0,

the solution–flux relationships are as follows. In the case of a permeable second
boundary we get [cf. Eqs. (A.163) and (A.164)]:
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with
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(5.148)

and %j and �j are defined by Eqs. (5.75) and (5.119). Symbols I0.�/ and I1.�/ denote
the modified Bessel functions of the first kind, and of orders zero and one. Symbols
K0.�/ and K1.�/ denote the modified Bessel functions of the second kind, and of
orders zero and one. In the case of an impermeable second boundary we get [cf.
Eqs. (A.181) and (A.182)]:
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tˆ

0

K
exci=inci
j .t; �/
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with

K
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j .t � �/ ; (5.150)
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where

'
exci=inci
j .#/ D ˙D�1=2

j L �1

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

K0

�
s1=2

%j

�
C

K1

�
s1=2



1
%j

˙ 1
�j

�	

I1

�
s1=2



1
%j

˙ 1
�j

�	 I0
�
s1=2

%j

�

s1=2

8
<

:K1

�
s1=2

%j

�
�

K1

�
s1=2



1
%j

˙ 1
�j

�	

I1

�
s1=2



1
%j

˙ 1
�j

�	 I1
�
s1=2

%j

�
9
=

;

9
>>>>>>=

>>>>>>;

:

(5.151)

In Eqs. (5.148) and (5.151) the Laplace transformation is between the # and s
domains, and the upper/lower signs and superscripts at the kernel symbol refer
to external/internal domains, respectively. It is difficult to find more transparent
expressions for the kernels K

excp=incp
j .t; �/ and K

exci=inci
j .t; �/, as they generally

depend on the two parameters %j and �j in a complicated, nonlinear way, so that
no alternative expressions have been reported thus far.

Equations (5.147) and (5.150) are derived for the second boundary located at
r D r0 ˙ l > 0, but the case when this boundary is located at r D r0 � l D 0

is also of interest. Equation (5.147) cannot be extended to this limiting case, but
the kernel K exci=inci

j .t; �/ possesses a limiting form, denoted here by K inc
j .t; �/ [cf.

Eq. (A.186)]:

K inc
j .t; �/ D ' inc
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This form of the kernel describing internal cylindrical diffusion (within the entire
cylinder) was originally adopted in the literature [157], but by defining a nonsingular
special function

kinc.z/ D kinc.#1=2/ D L �1
(

I0
�
s1=2

� � I1
�
s1=2

�

s1=2 I1
�
s1=2

�
)
; (5.154)

where the Laplace transformation is from the domain of the variable # D z2 to
the s domain, it is more convenient to express the kernel K inc

j .t; �/ by the formula
analogous to the number of previously discussed kernels:

K inc
j .t; �/ D D�1=2

j

˚
Œ�.t � �/� �1=2 C %j kinc

�
%j .t � �/1=2

��
: (5.155)
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The name “kinc” is an acronym for “kernel for internal cylindrical” diffusion (or
domain). Function kinc.z/ is a growing function of its argument z. As can be seen in
Fig. 5.3, it increases from 1/2 (for z D 0) to 2 (for z!1). This function is in some
sense complementary to the function kcylw.�/ that occurs in the kernel for external
cylindrical diffusion [cf. Eq. (5.85)].

In view of Eq. (5.59), the concentration–production rate relationships for cylin-
drical diffusion, resulting from Eqs. (5.146) and (5.149), are as follows. For a
permeable second boundary:

c
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0

K
excp=incp
j .t; �/ phet
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For an impermeable second boundary:
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j .t; �/ phet
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and for its limiting case I–I with r0 � l ! 0:
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j .t/ D cj .r0; t/ D c?j C
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0
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j .t; �/ phet

j .�/ d� : (5.158)

A non-trivial steady state solution, satisfying @uj .r; t/=@t � 0 is possible for
a permeable second boundary, located at r D r0 ˙ l > 0 (cases E–P and I–P).
In Appendix A, Sect. A.3.2 the analytical solution of such a steady state diffusion
equation is obtained, and we show that at steady state Eq. (5.146) takes a special
limiting form [cf. Eq. (A.172)]:
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so that in view of Eqs. (2.46) and (5.59)
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No such steady state is possible for an impermeable second boundary, in the E–
I and I–I cases. However, in the I–I case with r0 D l and large %j we can
neglect the integral corresponding to the term Œ�.t � �/��1=2 of the kernel (5.155)
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in Eq. (5.158), and replace the term kinc
�
%j .t � �/1=2

�
by 2, which gives

c


j .t/ D cj .r0; t/ � c?j CD�1=2

j 2�j

tˆ

0

phet
j .�/ d� ; (5.161)

since now %j D �j .
It is interesting to compare contributions to the kernels, resulting from finite

spatial domains with an impermeable second boundary in the planar, cylindrical, and
spherical geometry (assuming internal diffusion within the entire cylinder or sphere
in the latter two cases, which means %j D �j ). This can be done by comparing
functions kpli.z/; kinc.z/ and kins.z/. Figure 5.3 reveals that for a particular �j
the smallest effect of the finite domain occurs in the planar case, the largest in the
spherical case, and the cylindrical case is intermediate. At large �j the effect differs
only by the multiplicative factor in Eqs. (5.128), (5.145), and (5.161), which equals
1 for planar diffusion, 2 for cylindrical, and 3 for spherical.

5.3.2 Literature Examples

The following list of examples is limited to IE-based models in which diffusion
uncomplicated by convection, homogeneous reactions, or other phenomena was
assumed, together with one-dimensional finite spatial domains. Models involving
such complications are listed in further Chaps. 6, 8, 9, and 10.

5.3.2.1 Planar Diffusion

For the diffusion in a finite layer with a permeable second boundary there are several
examples of IEs, or closely related equations, motivated by the theory of transient
experiments at the RDE, in which a semi-infinite spatial domain is divided into
a thin diffusion layer and a stirred outer domain. Fried and Elving [58] derived a
general current–potential relationship at the RDE, for the reaction

X1 C n e� � X2 (5.162)

involving dynamic distributed species X1 and X2. The theory of AC voltammetry
was presented by Tokuda and Matsuda [150–152], assuming equilibrium, non-
equilibrium reversible, and irreversible reaction (5.162). The theory of linear
potential sweep voltammetry was provided by Andricacos and Cheh [4, 5] and
Quintana et al. [128], at analogous assumptions. Apart from the above studies
devoted to the RDE, Andrieux et al. [9] considered repetitive cyclic voltammetry
for irreversible reaction (5.162) in a finite layer resulting from arbitrary natural or
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forced convection. Miles and Compton [99] modelled square wave voltammetry for
equilibrium, non-equilibrium reversible, and irreversible reaction (5.162), assuming
similar transport conditions. Daruházi et al. [39] presented a model of cyclic voltam-
metry for equilibrium reaction (5.162) occurring in a thin layer cell with closely
separated working and auxiliary electrodes, which is mathematically equivalent to
a thin electrolyte layer with a permeable second boundary.

There are also several examples of IEs for the diffusion in a finite layer with an
impermeable second boundary. One group of such examples is connected with the
modelling of the reaction

X1 C n e� � X2 (5.163)

involving dynamic species X1 distributed in an electrolyte, and dynamic species
X2 distributed in a mercury film electrode. IEs describing linear potential sweep
voltammetry for reaction (5.163) were presented and solved by De Vries and
Van Dalen [45, 48, 49], Bakanov et al. [18], Seelig and Blount [134], Donten
et al. [52, 53], and Schiewe et al. [133]. De Vries [47] considered a potential step
chronoamperometry followed by linear potential sweep voltammetry. Osteryoung
and Christie discussed pulsed voltammetric [120] and staircase voltammetric
[37] stripping. Goto et al. [66] analysed semidifferentiated voltammetric current.
Kounaves et al. [82, 83] considered square wave voltammetry. Bos [32] presented
a rare example of IEs describing current step chronopotentiometry for two parallel
reactions:

X1 C n1 e� � X2 ; (5.164)

X3 C n2 e� � X4 ; (5.165)

analogous to reaction (5.163).
A finite layer with an impermeable second boundary occurred also in the work by

Bucur et al. [33], who analysed linear potential sweep voltammetry for the reaction

X1 � X2;s C n e� : (5.166)

Here X1 is a dynamic species distributed in a thin metal membrane (hydrogen in
palladium), and X2;s is a static species (hydrogen ion in an electrolyte).

Further examples involving an impermeable second boundary refer to the
reaction

X1 C n e� � X2 ; (5.167)

in which both dynamic distributed species X1 and X2 belong to a thin layer.
Aoki et al. [12, 13] presented the theory of linear potential sweep voltammetry for
equilibrium, non-equilibrium reversible and irreversible reaction (5.167). Zamponi
et al. [163] extended their results to derivative linear sweep voltabsorptometry.
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Lovrić et al. [90] discussed staircase voltammetry. Mirčeski et al. [100, 104]
considered square wave voltammetry.

Pnev et al. [124, 126] discussed linear potential sweep voltammetry for the non-
equilibrium reversible and irreversible electrodeposition reaction

X1 C n e� � X2;s ; (5.168)

where X1 is a dynamic species distributed in a thin electrolyte layer, and X2;s is
a static species (deposit). The potential sweep was started from the equilibrium
potential of the reaction (5.168).

The IE and IDE formalism for diffusion in a finite layer with an impermeable
second boundary was also utilised by Jones et al. [73] in a biosensor modelling
study.

5.3.2.2 Spherical Diffusion

Nigmatullin [113] modelled linear potential sweep voltammetry for the reaction:

X1 C n e� � X2 (5.169)

involving dynamic distributed species X1 (in the electrolyte) and X2 (in the
electrode), assuming the case I–I with l < r0 and l D r0. Keller and Reinmuth
[75] derived corrections, to the linear potential sweep voltammetric current for
reaction (5.169), resulting from spherical diffusion in finite layers. Reaction (5.169)
involved dynamic species X1 and X2, distributed in the same phase, or in two
different phases adjacent to the interface studied. Tokuda et al. [149,153] discussed
cyclic voltammetry for reaction (5.169) with species X1 distributed in the electrolyte
and X2 in the electrode, assuming the case I–I with l D r0. Equilibrium
reaction (5.169) was assumed. Analogous equations of linear potential sweep
voltammetry for a non-equilibrium reversible reaction (5.169) were derived by
Zakharov and Pneva [162], whereas Park et al. [122] reported equations for double
potential step chronoamperometry under limiting current conditions. Engblom and
Oldham [54] discussed the problem of the reshaping of the staircase voltammograms
into classical wave shapes characteristic of polarograms. Fatouros et al. [57]
presented approximate IEs describing square wave and normal pulse voltammetries.

5.3.2.3 Cylindrical Diffusion

Keller and Reinmuth [75] derived corrections, to the linear sweep voltammetric
current for the single reaction:

X1 C n e� � X2 ; (5.170)
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resulting from cylindrical diffusion in finite layers. Reaction (5.170) involved
dynamic species X1 and X2, distributed in the same phase, or in two different
phases adjacent to the interface studied. Weidner [157] presented the theory of linear
potential sweep voltammetry for reaction (5.170), applicable to a cylindrical pore
(tube) electrode, that is for the case I–I with r0 D l , and both species belonging
to the electrolyte phase. Only species X1 was initially present. Equilibrium, non-
equilibrium reversible, and irreversible reactions (5.170) were considered. Equal
diffusion coefficients of X1 and X2 were assumed. An analogous theory was
obtained by Neudeck and Dunsch [109, 110], but for cyclic voltammetry [109],
and potential step chronoamperometric and UV-visible spectroelectrochemical
experiments [110]. The theory served as an approximation to the more complicated
problem of diffusion in honeycombed LIGA-structured electrodes.

5.4 Anomalous Diffusion

Equations presented in Sects. 5.2 and 5.3 are not applicable in the presence
of anomalous diffusion effects. In particular, the concentration–production rate
relationships have to be modified.

5.4.1 Concentration–Production Rate Relationship

For the (macroscopically) one-dimensional, planar diffusion in a semi-infinite
domain, Pajkossy and Nyikos [121] proposed a formal concentration–production
rate relationship representing the anomalous diffusion effects due to the irregular
electrode surface. The equation proposed was based on their semi-empirical model
of potential step chronoamperometry at fractal electrodes, described in Sect. 2.12.
Pajkossy and Nyikos assumed that the relevant concentration–production rate
relationship should be analogous to that for ordinary planar diffusion in a semi-
infinite domain, given by Eq. (5.86), that is:

c


j .t/ D cj .0; t/ D c?j C

tˆ

0

K
ap
j .t; �/ phet

j .�/ d� ; (5.171)

where K
ap
j .t; �/ is a suitable convolution kernel to be determined. As it is a

convolution kernel, we can write K
ap
j .t; �/ D 'j .t � �/, where 'j .#/ with

# D t � � is a function of one variable. After Laplace transformation (3.12),
Eq. (5.171) becomes

Ocj .0; s/ D
c?j

s
C O'j .s/ Ophet

j .s/ : (5.172)
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Pajkossy and Nyikos postulated that the function 'j .#/ should be such that
Eq. (5.171) correctly predicts the model formula (2.63) for the chronoamperometric
limiting current for the reaction Xj C ne� � XjC1. In such a case, the production
rate phet

j .t/ (equal to the flux of the species Xj at the electrode) is related to the
Faradaic current by

phet
j .t/ D Jj .0; t/ D

I.t/

nFA
: (5.173)

In addition, under limiting current conditions Ocj .0; s/ is zero, so that Eq. (5.172)
combined with the Laplace transform of Eq. (5.173) gives

O'j .s/ D
�nFAc?j

s OI .s/ : (5.174)

The Laplace transform of Eq. (2.63) is

OI .s/ D ��j;F �.1 � ˛/ s˛�1 ; (5.175)

where parameter ˛ is defined by Eq. (2.64), parameter �j;F is given by Eqs. (2.65)
and (2.66), and �.�/ is the Euler gamma function [1]. Setting Eq. (5.175) into
Eq. (5.174) gives

O'j .s/ D
nFAc?j

�j;F �.1 � ˛/ s
�˛ ; (5.176)

so that after inverse transformation

'j .#/ D
nFAc?j

�j;F �.˛/�.1 � ˛/ #
˛�1 : (5.177)

Consequently, taking into account Eq. (2.66) for �j;F we get

K
ap
j .t; �/ D D˛�1

j

�
� �2out

�1=2�˛ �.1=2/

�.˛/�.1 � ˛/ .t � �/
˛�1 : (5.178)

It is easy to check that for ˛ D 1=2 (which corresponds to the ordinary diffusion
at the planar surface of dimension dF D 2) Eq. (5.178) reduces to Eq. (5.72) for the
kernel K p

j .t; �/.
It seems important to point out that Eq. (5.178) must be considered as an approx-

imation. The equation is tacitly assumed to hold for any t > 0, whereas strictly
speaking anomalous diffusion occurs only for t 2 �tj;inn; tj;out

�
(cf. Sect. 2.12).

Apart from the above derivation, there have been interesting attempts by Dassas
and Duby [40], and Mirčeski and Tomovski [102] to deduce the relationship (5.171)
with the kernel proportional to .t � �/˛�1, by solving the so-called time-fractional
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diffusion equations. The time-fractional diffusion equations are formally similar to
the ordinary diffusion PDEs, but they have the temporal derivative replaced by
a fractional derivative, understood in the sense of the fractional calculus [118].
Mirčeski and Tomovski also followed this route to obtain the concentration–
production rate relationship for planar anomalous diffusion in a finite spatial domain
[103]. However, it seems that this approach raises a number of yet unresolved
questions regarding the physical interpretation of the fractional diffusion equations.
There are also some mathematical difficulties regarding the handling and under-
standing of initial conditions in such equations (see, for example, the discussion
by Bisquert and Compte [27]). For these reasons we do not expose this approach
further in the present book.

5.4.2 Literature Examples

Strømme et al. [144] used Eqs. (5.171) and (5.178) for obtaining IEs describ-
ing cyclic voltammetric experiments at fractal electrodes. Theoretical predictions
obtained by solving these IEs were applied to determine the fractal dimension
of the electrode surfaces [145]. Mirčeski and Tomovski [102] also obtained
detailed solutions of the IEs for cyclic voltammetry assuming kernels analogous to
Eq. (5.178), and a semi-infinite spatial domain. In a later work [103], they extended
these results onto a finite spatial domain (but as was noted above, there are some
unresolved questions regarding their derivations, related to the assumed formalism
of the equations of fractional diffusion).

Apart from the above examples, IEs involving kernels having the form (5.178),
but strongly singular, were used in the modelling of impedance spectroscopy for
equivalent circuits involving constant phase elements [155].

5.5 Benefits from Using the IE Method

In the case of models dependent on one spatial coordinate, such as the models
involving one-dimensional diffusion, discussed in this chapter, the use of the IE
method may bring important benefits, compared to the direct PDE solving. Firstly,
the replacement of the PDEs by the IEs, as described in Sect. 5.1, eliminates the need
to determine the spatial concentration profiles. The IEs depend on one independent
variable only (variable t), typically representing time. Consequently, the numerical
solution of the IEs is likely to be computationally less expensive than the direct
numerical solution of the PDEs, since in the latter case the numerical calculation
of the spatial concentration profiles is necessary. The actual reduction of the
computational cost depends on the numerical techniques, accuracy requirements,
and the length of the interval of t . The latter factor is important, because as we shall
see in Chap. 12, typical numerical methods for solving IEs are characterised by the
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computational time proportional to t2, whereas the computing time in discrete PDE
solving techniques is typically proportional to t . Therefore, for very large t intervals
the computational cost advantage of the IE-based simulations may be lost.

Secondly, the partially analytical solution of the PDEs, inherent in the IE method,
allows one to gain more insights into the solutions obtained, compared to the
direct numerical PDE solutions. To illustrate this aspect of the IE method by an
example, let us have a closer look at the standard Eq. (5.23) for the equilibrium
electron transfer (5.7). Assume, for simplicity, planar diffusion in a semi-infinite
domain, and let only the species X1 be initially present. In such a case Kj .t; �/ D
K

p
j .t; �/ D D

�1=2
j Œ�.t � �/��1=2 (for j D 1; 2), and Eq. (5.23) becomes, after

some rearrangement, the following Abel IE:

tˆ

0

Œ�.t � �/��1=2 �.�/ d� D c?1D
1=2
1

1C exp
˚

nF
RT

�
E.t/ � E1=2

�� ; (5.179)

where

E1=2 D E0 � RT

nF
ln



D1

D2

�1=2
(5.180)

is known as the half-wave potential (for the equilibrium electron transfer). As
can be seen, Eqs. (5.179) and (5.180) predict that the effect of the diffusion
coefficient ratio on the Faradaic current (proportional to �.t/), amounts to a shift
by RT .nF /�1 ln .D1=D2/

1=2, along the electrode potential axis, of the current–
potential curve. This exact analytical result would be rather difficult to reveal by
means of the direct numerical PDE solving.

Other examples of additional insights, offered by the IE method, can be the var-
ious analytical predictions for steady state or other limiting cases, easily obtainable
by the method (see, in particular, Sects. 11.1.5 and A.2.1). Direct numerical PDE
solving does not provide such predictions.
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Chapter 6
Models Involving One-Dimensional
Convection-Diffusion

In this chapter we continue the discussion of the IEs arising for electroanalytical
models dependent on one spatial coordinate, started in Chap. 5. However, in addition
to the diffusion transport of dynamic distributed species, assumed in Chap. 5, we
take into account convection. The effect of convection, on the derivation process of
the IEs, is addressed in Sect. 6.1. The determination of the concentration–production
rate relationships for the typical convection-diffusion PDEs is described in Sect. 6.2.
Section 6.3 involves a literature overview of the published IEs corresponding to the
above conditions.

6.1 Derivation of the IEs

The one-dimensional convection-diffusion PDEs are similar to the pure diffusion
PDEs discussed in Chap. 5, in that a separate concentration–production rate relation-
ship exists for every dynamic distributed species. Consequently, the derivation of the
IEs proceeds in an analogous way. However, the general form of the concentration–
production rate relationships may differ somewhat from Eq. (5.6), and is given by

c


j D c
j .t/ D c?j C

tˆ

0

Kj .t; �/
h
phet
j .�/ � phet;?

j

i
d� : (6.1)

In Eq. (6.1) phet;?
j denotes the species production rate at the interface studied, in

the initial state of the system. Formally, phet;?
j may be nonzero, if the convection

rate at the interface studied is not zero (see Sect. 6.2.1 below), although physically
such a situation is unclear, and should probably be regarded as an approximation.
One expects that for realistic convection fields phet;?

j D 0, as is the case with the
convection-diffusion systems in Sects. 6.2.2–6.2.4.
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6.2 Concentration–Production Rate Relationships

The concentration–production rate relationships for convection-diffusion PDEs
strongly depend on the type of the convection field. Below we present the rela-
tionships currently known from the literature. Only a few of the conceivable
convection-diffusion fields have been handled thus far by the IE method.

6.2.1 Constant Convection Velocity

The simplest possible one-dimensional convection-diffusion transport arises when
planar diffusion in a semi-infinite spatial domain is coupled with convection having
just a constant velocity along the Cartesian coordinate x. The concentration–flux
relationship corresponding to this case was published by Oldham [23], with the
suggestion that the case may be applicable to fluid flows through porous electrodes,
although no references were provided to support the statement. But, no matter how
realistic the assumption of the constant convection velocity may be, it is interesting
to consider this simple case as an example showing the degree of complication that
is expected when convection is present. Let the convection velocity be

v.x/ D �v0 ; (6.2)

where v0 � 0, so that the general reaction-convection-diffusion PDE (2.8) becomes

@cj .x; t/

@t
D Dj

@2cj .x; t/

@x2
C v0 @cj .x; t/

@x
: (6.3)

The initial and boundary conditions are

cj .x; 0/ D c?j ; (6.4)

cj .1; t/ D c?j : (6.5)

We define an auxiliary variable

uj D cj � c?j ; (6.6)

for which the incomplete IBVP (6.3)–(6.5) becomes

@uj .x; t/

@t
D Dj

@2uj .x; t/

@x2
C v0 @uj .x; t/

@x
; (6.7)

uj .x; 0/ D 0 ; (6.8)

uj .1; t/ D 0 : (6.9)
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In view of Eq. (6.6), the flux Jj .x; t/ of the concentration is related to the flux
J u
j .x; t/ of the variable uj by

J u
j .x; t/ D Jj .x; t/ � J ?j .x; t/ (6.10)

where

J u
j .x; t/ D �Dj

@uj .x; t/

@x
� v0 uj .x; t/ ; (6.11)

Jj .x; t/ D �Dj

@cj .x; t/

@x
� v0 cj .x; t/ ; (6.12)

and

J ?j .x; t/ D �v0 c?j D const (6.13)

represents the initial flux of the concentration.
As the detailed derivation of the solution–flux relationship corresponding to

Eqs. (6.7)–(6.9) was not published in Oldham [23], but only the final result was
given, in Appendix B, Sect. B.1 we provide such a derivation. We show that the
relationship between the solution uj and its flux J u

j at x D 0 takes the form [cf.
Eqs. (B.17) and (B.18)]:

uj .0; t/ D
tˆ

0

K conv
j .t; �/ J u

j .0; �/ d� ; (6.14)

where

K conv
j .t; �/ D D�1=2

j

*
exp

h
��2j .t � �/

i

Œ�.t � �/�1=2 C �j
˚
1C erf

�
�j .t � �/1=2

��
+

(6.15)

with

�j D v0

2D
1=2
j

(6.16)

is the relevant integral transformation kernel. The kernel is of the convolution
type. In view of Eqs. (2.46), (6.6), and (6.10), the concentration–production rate
relationship is:

c


j .t/ D cj .0; t/ D c?j C

tˆ

0

K conv
j .t; �/

h
phet
j .�/� phet;?

j

i
d� : (6.17)
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As can be seen from Eq. (6.15), the kernel K conv
j .t; �/ consists of three additive

terms. One term is the kernel for planar diffusion in a semi-infinite domain,
multiplied by an exponential, the second term is simply constant, and the third
term is proportional to the error function erf.�/ defined by Eq. (5.78). When the
convection velocity v0 (and consequently �j ) is sufficiently large, the contribution
from the first term can be neglected in Eq. (6.15), whereas the contributions from
the second and third terms become practically identical, so that Eq. (6.17) becomes

c


j .t/ D cj .0; t/ D c?j C 2D�1=2

j �j

tˆ

0

h
phet
j .�/ � phet;?

j

i
d� : (6.18)

Apart from the above transient solutions, a non-trivial steady state solution of
Eq. (6.7), satisfying @uj .x; t/=@t � 0 is also possible. As we show in Appendix B,
Sect. B.1, at steady state J u

j .x; t/ D 0, which [in view of Eqs. (2.46) and (6.10)]

implies that phet
j .t/ � phet;?

j D 0. Hence, the steady state corresponds to the initial
state.

6.2.2 Dropping Mercury Electrode

As we have indicated in Sect. 2.6.1, the transport to the DME is most commonly
described by means of the expanding plane model. According to this model, any
j th distributed species obeys the convection-diffusion PDE (2.12):

@cj .x; t/

@t
D Dj

@2cj .x; t/

@x2
C 2x

3t

@cj .x; t/

@x
; (6.19)

for which the initial and boundary conditions are

cj .x; 0/ D c?j ; (6.20)

cj .1; t/ D c?j : (6.21)

The expanding planar interface (mercury drop surface) is located at x D 0. Below
we consider the electrolyte phase, for which x 2 .0;1/.

We define an auxiliary variable

uj D cj � c?j ; (6.22)
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for which the incomplete IBVP (6.19)–(6.21) becomes

@uj .x; t/

@t
D Dj

@2uj .x; t/

@x2
C 2x

3t

@uj .x; t/

@x
; (6.23)

uj .x; 0/ D 0 ; (6.24)

uj .1; t/ D 0 : (6.25)

In view of Eq. (6.22), the flux Jj .x; t/ of the concentration is related to the flux
J u
j .x; t/ of the variable uj by

J u
j .x; t/ D Jj .x; t/ � J ?j .x; t/ (6.26)

where

J u
j .x; t/ D �Dj

@uj .x; t/

@x
� 2x
3t

uj .x; t/ ; (6.27)

Jj .x; t/ D �Dj

@cj .x; t/

@x
� 2x
3t
cj .x; t/ ; (6.28)

and

J ?j .x; t/ D �
2x

3t
c?j : (6.29)

The analytical solution–flux relationship at the interface studied, resulting from
Eqs. (6.23)–(6.25), has been obtained in a number of papers (see, for example,
[13, 14, 17, 18]). In Appendix B, Sect. B.2 we follow these works to show that the
relationship between the solution uj and its flux J u

j at x D 0 takes the form [cf.
Eqs. (B.35) and (B.36)]:

uj .0; t/ D
tˆ

0

K
ep
j .t; �/ J u

j .0; �/ d� ; (6.30)

where

K ep
j .t; �/ D D�1=2

j



3

7
�

��1=2
�2=3

�
t7=3 � �7=3��1=2 (6.31)

is the integral transformation kernel representing the expanding plane model. Note
that in contrast to the pure diffusion kernels discussed in Chap. 5, the kernel (6.31)
is not a convolution kernel (when considered as a function of variables t and �).
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Consequently, in view of Eqs. (2.46), (6.22), and (6.26), the concentration–
production rate relationship at the expanding plane is:

c


j .t/ D cj .0; t/ D c?j C

tˆ

0

K
ep
j .t; �/ phet

j .�/ d� ; (6.32)

since phet;?j D J ?j .0; t/ D 0 in this case. A discussion useful for the generalisation
of the above formulae onto hypothetical interfaces expanding according to power
laws other than the dropping mercury t2=3 rate law was provided by Oldham [22].

6.2.3 Rotating Disk Electrode

As we have indicated in Sect. 2.6.2, in order to obtain solution–flux relationships
pertinent to convection-diffusion at the RDE, one possible approach is to assume
a finite spatial domain with a permeable second boundary. Examples of this
approach to the RDE modelling have been listed in Sect. 5.3.2.1. However, as in
real experiments the spatial domain is large and can be formally regarded as semi-
infinite, it seems conceptually more elegant to assume that the convection-diffusion
PDE (2.15):

@cj .x; t/

@t
D Dj

@2cj .x; t/

@x2
C ˇ x2 @cj .x; t/

@x
(6.33)

(with ˇ D 0:51023 !3=2��1=2) is accompanied by the initial and boundary
conditions

cj .x; 0/ D c?j ; (6.34)

cj .1; t/ D c?j : (6.35)

We define an auxiliary variable

uj D cj � c?j ; (6.36)

for which the incomplete IBVP (6.33)–(6.35) becomes

@uj .x; t/

@t
D Dj

@2uj .x; t/

@x2
C ˇ x2 @uj .x; t/

@x
; (6.37)

uj .x; 0/ D 0 ; (6.38)

uj .1; t/ D 0 : (6.39)
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In view of Eq. (6.36), the flux Jj .x; t/ of the concentration is related to the flux
J u
j .x; t/ of the variable uj by

J u
j .x; t/ D Jj .x; t/ � J ?j .x; t/ (6.40)

where

J u
j .x; t/ D �Dj

@uj .x; t/

@x
� ˇ x2 uj .x; t/ ; (6.41)

Jj .x; t/ D �Dj

@cj .x; t/

@x
� ˇ x2 cj .x; t/ ; (6.42)

and

J ?j .x; t/ D �ˇ x2 c?j (6.43)

An analytical but approximate solution–flux relationship at the interface studied,
resulting from Eqs. (6.37)–(6.39), has been obtained by Filinovskii and Kiryanov
[8]. In Appendix B, Sect. B.3 we follow those authors, and present detailed deriva-
tions of their approximation. The derivations based on [8] are approximate because
of a simplifying assumption that significant variations of uj .x; t/ are limited to a
small neighbourhood of x D 0. Under this assumption some term arising in the
process of deriving the solution–flux relationship is neglected, which simplifies
the treatment, but the result obtained is not exact. A more realistic solution–
flux relationship can only be obtained numerically, by the procedure indicated in
Sect. B.3. Independently of the approach taken, the solution–flux relationship is [cf.
Eq. (B.71)]:

uj .0; t/ D
tˆ

0

K rd
j .t; �/ Jj .0; �/ d� ; (6.44)

where K rd
j .t; �/ is the integral transformation kernel of the convolution type,

characteristic of the RDE. Therefore, we can write [cf. Eqs. (B.43) and (B.72)]:

K rd
j .t; �/ D D�1=2

j �j '
rd
j

h
�2j .t � �/

i
; (6.45)

where 'rd
j .#/ is a suitable function of one variable, and

�j D
�
D
1=2
j ˇ

�1=3
: (6.46)
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However, by analogy to kernels previously discussed in Chap. 5, it is more conve-
nient to express K rd

j .t; �/ in the form:

K rd
j .t; �/ D D�1=2

j

˚
Œ�.t � �/� �1=2 � �j krd

�
�j .t � �/1=2

��
; (6.47)

where krd.�/ is a special function expressing the effect of rotating disk convection.
The name “krd” is an acronym of “kernel for rotating disk”.

According to Filinovskii and Kiryanov [8], the function 'rd
j .#/ is approximated

by the formulae [cf. Eqs. (B.64) and (B.67)]:

'rd
j .#/ � L �1

�
� Ai .s/

Ai0 .s/


D L �1

(
K1=3.

2
3
s3=2/

s1=2 K2=3.
2
3
s3=2/

)
: (6.48)

In Eq. (6.48) the Laplace transformation is between the # and s domains, Ai.�/ is the
Airy function [1], Ai0.�/ is the derivative of Ai.�/, and K1=3.�/ and K2=3.�/ are mod-
ified Bessel functions of the second kind and fractional orders [1]. Consequently,
krd.�/ is approximated by:

krd.z/ D krd.#1=2/ � L �1
(

K2=3.
2
3
s3=2/ �K1=3.

2
3
s3=2/

s1=2 K2=3.
2
3
s3=2/

)
: (6.49)

As will be seen in the next section, the approximant in Eq. (6.49) is identical to the
function kct.�/ occurring in the kernel function for channel and tubular electrodes.
To show how large the errors are in the approximation of Filinovskii and Kiryanov,
Fig. 6.1 presents a comparison of functions krd.�/ and kct.�/. The difference between
these functions is sufficiently big to visibly affect simulation results. By considering

Fig. 6.1 Comparison of
functions krd.�/ and kct.�/,
representing the effect of
convection in the case of
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tubular electrodes,
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models of current step chronopotentiometry and potential step chronoamperometry
at the RDE, Krylov and Babak [11] have shown that calculations employing the
approximation (6.49) lead to unsatisfactory predictions of the concentrations. The
inaccuracies tend to increase with time t . Similar conclusions were obtained by
Viswanathan and Cheh [29].

In view of Eqs. (2.46), (6.36), (6.40), and (6.44), the concentration–production
rate relationship at the RDE is:

c


j .t/ D cj .0; t/ D c?j C

tˆ

0

K rd
j .t; �/ p

het
j .�/ d� : (6.50)

since phet;?
j D J ?j .0; t/ D 0 in this case.

A steady state satisfying @uj .x; t/=@t � 0 is possible for Eq. (6.37), and
the relevant equation was obtained without any simplifying assumptions (see, for
example, Nişancioğlu and Newman [21]). A detailed derivation is provided in
Appendix B, Sect. B.3. It is shown [cf. Eq. (B.82)] that at steady state

uj .0; t/ D D�1=2
j ��1

j 3�2=3�.1=3/ Jj .0; t/ ; (6.51)

where�.�/ is the Euler gamma function [1]. In view of Eqs. (2.46), (6.36), and (6.40),
this gives

c


j .t/ D cj .0; t/ D c?j CD�1=2

j ��1
j 3�2=3�.1=3/ phet

j .t/ : (6.52)

Equation (6.52) is the concentration–production rate relationship for the steady
state.

6.2.4 Channel and Tubular Electrodes

Although the convection-diffusion PDEs (2.17) and (2.19) for channel and tubular
electrodes depend on two spatial coordinates, it is possible to devise approximate
IE-based models resulting from these PDEs, similar to those obtainable for spatially
one-dimensional models. This was accomplished by Singh, Dutt, and co-workers,
in a series of papers [6,7,24–26] devoted to the modelling of linear potential sweep
and cyclic voltammetry at tubular electrodes. The Lévêque approximation (2.21)
and (2.22) was adopted. According to the proposal from [6, 7, 24–26], currently
known as the “Singh and Dutt approximation”, the axial concentration gradient in
Eq. (2.19) can be approximated by the “average gradient”:

@cj .r; z; t/

@z
� cj .r; z; t/ � c?j

l
: (6.53)
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As a result, the spatial variable z is eliminated from Eq. (2.19), so that cj depends
only on r and t . By replacing r with a new spatial variable x equal to the distance
from the electrode surface:

x D r0 � r ; (6.54)

and neglecting the cylindrical curvature effect, we then obtain from Eq. (2.19)

@cj .x; t/

@t
D Dj

@2cj .x; t/

@x2
� � x

h
cj .x; t/ � c?j

i
; (6.55)

where

� D 2v0

r0l
: (6.56)

An analogous modification can be applied to the PDE (2.17) for channel electrodes.
If we define

x D h � y (6.57)

and

� D 2v0

hl
; (6.58)

we obtain an approximate PDE identical to Eq. (6.55). As in this approach r0 or
h are assumed to be (infinitely) large compared with the diffusion layer thickness,
Eq. (6.55) is accompanied by the initial and boundary conditions analogous to those
for semi-infinite spatial domains:

cj .x; 0/ D c?j ; (6.59)

cj .1; t/ D c?j : (6.60)

The validity of the Singh and Dutt approximation has been extensively examined by
Compton and co-workers [3, 4]. It has been concluded that although the approx-
imation is rather crude, it leads to surprisingly accurate theoretical predictions,
possibly due to some error cancellation. Consequently, the use of Singh and Dutt
approximation has been recommended in [3, 4] (at least for the modelling of linear
potential sweep and cyclic voltammetry, and/or as a preliminary tool before more
exact but computationally expensive simulation techniques are applied).

We define an auxiliary variable

uj D cj � c?j ; (6.61)
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for which the incomplete IBVP (6.55), (6.59), and (6.60) becomes

@uj .x; t/

@t
D Dj

@2uj .x; t/

@x2
� � x uj .x; t/ ; (6.62)

uj .x; 0/ D 0 ; (6.63)

uj .1; t/ D 0 : (6.64)

The Singh and Dutt approximation thus formally replaces the convection-diffusion
PDEs (2.17) or (2.19) by the quasi-reaction-diffusion PDE (6.62), in which the
reaction rate constant is proportional to the distance x from the electrode. As the
convection is eliminated, the fluxes Jj .x; t/ of the concentration and J u

j .x; t/ of the
variable uj are identical:

Jj .x; t/ D �Dj

@cj .x; t/

@x
D �Dj

@uj .x; t/

@x
D J u

j .x; t/ : (6.65)

An analytical solution–flux relationship resulting from Eqs. (6.62)–(6.64) was
obtained in [6, 7, 24–26]. In Appendix B, Sect. B.4, we follow these works and
present detailed derivations of the relationship between the solution uj and its flux
J u
j at x D 0. The relationship is [cf. Eq. (B.98)]:

uj .0; t/ D
tˆ

0

K ct
j .t; �/ J

u
j .0; �/ d� ; (6.66)

where K ct
j .t; �/ is the relevant integral transformation kernel of the convolution

type. The kernel function turns out to be formally identical to the approximate kernel
for the RDE, discussed in Sect. 6.2.3, but with the parameter � in place of ˇ, that is

K ct
j .t; �/ D D�1=2

j �j '
ct
j

h
�2j .t � �/

i
; (6.67)

where [cf. Eqs. (B.89) and (B.97)]

'ct
j .#/ D L �1

�
� Ai .s/

Ai0 .s/


D L �1

(
K1=3.

2
3
s3=2/

s1=2 K2=3.
2
3
s3=2/

)
; (6.68)

and

�j D
�
D
1=2
j �

�1=3
: (6.69)

In Eq. (6.68) the Laplace transformation is between the # and s domains, Ai.�/
is the Airy function [1], Ai0.�/ is the derivative of Ai.�/, and K1=3.�/ and K2=3.�/
are modified Bessel functions of the second kind and fractional orders [1]. The
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form (6.67) of the kernel was originally obtained [6,7,24–26], but a more convenient
equivalent form, similar to the kernels previously discussed in Chap. 5, is:

K ct
j .t; �/ D D�1=2

j

˚
Œ�.t � �/��1=2 � �j kct

�
�j .t � �/1=2

��
; (6.70)

where kct.�/ is a special function defined by

kct.z/ D kct.#1=2/ D L �1
(

K2=3.
2
3
s3=2/� K1=3.

2
3
s3=2/

s1=2 K2=3.
2
3
s3=2/

)
: (6.71)

The name “kct” is an acronym of “kernel for channel and tubular electrodes”.
In view of Eqs. (2.46), (6.61), (6.65), and (6.66), the concentration–production

rate relationship at the electrode is:

c


j .t/ D cj .0; t/ D c?j C

tˆ

0

K ct
j .t; �/ p

het
j .�/ d� ; (6.72)

since phet;?
j D J ?j .0; t/ D 0 in this case.

A steady state satisfying @uj .x; t/=@t � 0 is possible for Eq. (6.62). The steady
state has been observed experimentally [6,24], but a relevant theoretical description
was not provided. In Appendix B, Sect. B.4 the analytical solution for such a steady
state is derived, and it is shown that at steady state Eq. (6.66) takes the following
limiting form [cf. Eq. (B.107)]:

uj .0; t/ D D�1=2
j ��1

j 3�1 �.1=3/
�.2=3/

J u
j .0; t/ ; (6.73)

where�.�/ is the Euler gamma function [1]. In view of Eqs. (2.46), (6.61), and (6.65),
this gives

c


j .t/ D cj .0; t/ D c?j CD�1=2

j ��1
j 3�1 �.1=3/

�.2=3/
phet
j .t/ : (6.74)

Equation (6.74) is the concentration–production rate relationship for the steady
state.

6.3 Literature Examples

The following examples of IE-based models are limited to the instances of one-
dimensional convection-diffusion transport unaffected by homogeneous reactions,
in the absence of dynamic localised species and other complications. Examples
involving such additional phenomena will be listed in further Chaps. 8, 9, and 10.
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6.3.1 Expanding Plane

Smutek [27] obtained expressions for the electrolytic current for the non-
equilibrium reversible reaction

X1 C n e� � X2 (6.75)

involving dynamic species X1 and X2, distributed in the electrolyte. Matsuda [13],
and Matsuda and Ayabe [17, 18] presented the theory of polarographic waves
for the non-equilibrium reaction (6.75). Matsuda [14] developed the theory of
polarography under conditions of small amplitude periodic potential perturbations.
The effect of alternating potential amplitude in AC polarography was studied by
Delmastro and Smith [5]. Matsuda [15] considered the effect of the partially blocked
electrode surface (covered by a surface-active substance), on polarographic currents.
In a later article [16] he presented a theory of current–potential curves in pulse
polarography, for reaction (6.75) involving dynamic species X1 and X2, distributed
in the electrolyte or in the expanding DME. He also considered differential pulse
polarography. Lovrić and Branica [12] simulated drop life-time dependence of the
current in differential pulse polarography. Aoki and Osteryoung [2] presented a
theory of differential pulse polarography, employing a non-standard IE approach,
in which the IE was formulated and solved in the Laplace space, rather than in the
time domain.

Komorsky and Lovrić [10] presented a theory of DC and AC polarography for
an EEE reaction scheme involving three consecutive, non-equilibrium reversible
reactions (6.75), with all species distributed in an electrolyte. Niki et al. [20]
simulated pulse polarography for a series of consecutive equilibrium one-electron
transfers, with all species distributed in an electrolyte.

An interesting example was presented by Matsuda et al. [19], who analysed
current–potential curves for an ion transfer reaction across a liquid j liquid interface.
In this example, one liquid phase was in the form of a growing droplet, and the
liquid j liquid interface was moving according to the expanding plane model.

6.3.2 Rotating Disk Electrode

Filinovskii and Kiryanov [8] modelled potential step chronoamperometry at the
RDE under limiting current conditions, assuming an electron transfer reaction

X1 C n e� � products (6.76)

with species X1 distributed in the electrolyte. They employed the kernel approxima-
tion (6.48). Girina et al. [9] obtained analogous solutions for linear potential sweep
voltammetry, assuming the equilibrium reaction

X1 C n e� � X2 (6.77)
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with dynamic species X1 and X2, distributed in the electrolyte, and having equal
diffusion coefficients. The approximate kernel (6.48) was also used by Valdes
and Cheh [28] for the convolution analysis of potential sweep voltammetric
data obtained at the RDE, assuming equilibrium, non-equilibrium reversible, or
irreversible reaction (6.77).

6.3.3 Tubular Electrodes

The Singh and Dutt approximate IE approach was employed to obtain predictions
for linear potential sweep and cyclic voltammetry at tubular electrodes, for the
reaction

X1 C n e� � X2 (6.78)

involving dynamic species X1 and X2, distributed in the electrolyte. In a series
of papers [6, 7, 24–26] equilibrium, non-equilibrium reversible, and irreversible
reaction (6.78) was considered.
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Chapter 7
Models Involving Two- and Three-Dimensional
Diffusion

In this chapter we consider IE formulations of electroanalytical models described
by systems of diffusion PDEs defined over two- and three-dimensional spatial
domains. We assume that one of the spatial directions, in which diffusion can
proceed, is perpendicular to the interface studied, and that the models do not involve
homogeneous reactions, dynamic localised species, nor other complications. Up
to date, there have been only few attempts to derive and solve IEs corresponding
to such two- and three-dimensional models. Three main approaches have been
proposed for this purpose in the literature. Two of them apply in the case of spatial
domains that are regular in the sense that they can be represented as Cartesian
products of single intervals along each coordinate axis. The intervals can be infinite,
semi-infinite, or finite. The third approach is applicable to arbitrary spatial domains.
We briefly present these approaches in Sect. 7.1. Then, in Sects. 7.2 and 7.3 we
elaborate more on two of these approaches. Literature examples are provided in
Sect. 7.4. In general, the treatment of spatially two- and three-dimensional models
is more difficult and less developed, compared to one-dimensional models.

7.1 Derivation of the IEs

Consider a controlled potential experiment, in which a set of N het
r heterogeneous

reactions takes place at an interface studied, among N distr
s distributed species

X1; : : : ; XN distr
s

present in spatially extended phase(s) adjacent to this interface.
Let N dd

s of the species be dynamic distributed species subject to two- or three-
dimensional diffusion PDEs, accompanied by appropriate initial and boundary
conditions.

Let us first consider the case when a coordinate system exists, in which the spatial
domain is a Cartesian product of single intervals along each coordinate axis. To fix
attention, we focus on two frequently encountered types of interfaces, for which the
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relevant coordinate systems are depicted in Figs. 2.3 and 2.4: the interface consisting
of infinite electrode band(s) embedded in an insulator, and the interface consisting
of concentric electrode disk and/or ring(s) embedded in an insulator. In both cases
the spatial domains are two-dimensional and semi-infinite or infinite. Diffusion to
band(s) is governed by the PDE resulting from Eq. (2.8) written in the Cartesian
coordinate system (cf. Table 2.1):

@cj .x; z; t/

@t
D Dj

�
@2cj .x; z; t/

@x2
C @2cj .x; z; t/

@z2

	
; (7.1)

and diffusion to disk/ring(s) is governed by the PDE resulting from Eq. (2.8) written
in the cylindrical coordinate system:

@cj .r; z; t/

@t
D Dj

�
@2cj .r; z; t/

@r2
C 1

r

@cj .r; z; t/

@r
C @2cj .r; z; t/

@z2

	
: (7.2)

Equations (7.1) or (7.2) must be accompanied by initial conditions, which we
assume to correspond to the initial equilibrium state (see Sect. 2.10):

cj .x; z; 0/ D c?j (7.3)

for diffusion to band(s), or

cj .r; z; 0/ D c?j (7.4)

for diffusion to disk/ring(s). The initial concentration c?j can be positive or zero.
Boundary conditions at the boundaries other than the interface studied are:

cj .˙1; z; t/ D c?j ; (7.5)

cj .x;1; t/ D c?j (7.6)

for diffusion to band(s), or

cj .1; z; t/ D c?j ; (7.7)

@cj .r; z; t/

@r

ˇ̌
ˇ̌
rD0
D 0 ; (7.8)

cj .r;1; t/ D c?j (7.9)

for diffusion to disk/ring(s). Boundary conditions must also be provided at the
interface studied.

Similarly to models dependent on one spatial coordinate, discussed in Chap. 5,
the boundary conditions at the interface studied are generally given by Eq. (2.54),
with matrices V and Z resulting from the partial inversion of Eq. (2.53). However,
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there is an important difference: the heterogeneous reaction rates and interfacial
species production rates now depend not only on time but also on one or two spatial
coordinates along the interface. Similarly, the stoichiometric matrix N dyn;het and
matrices V and Z depend on the location along the interface, because there are
usually different boundary conditions at different parts of the interface (electrodes,
insulators).

For the conversion of this sort of IBVPs into IEs two approaches have been
proposed, which are called Procedures 1 and 2 below.

Procedure 1 The first approach, due to Cope, Tallman, and co-workers [9–16,
18, 27, 28, 41] applies to selected models of controlled potential experiments,
and consists of the following steps: (a) Laplace transformation of the IBVP; (b)
Expression of the Laplace transforms Oc
j of the interfacial concentrations in terms
of the surface integrals of the Laplace transforms Ophet

j of the production rates (equal
to the fluxes normal to the interface studied); (c) Combination of the integrals with
the expressions for Oc
j obtained from Laplace transformed boundary conditions at
the interface studied, resulting in IEs for Ophet

j . Step (b) can be accomplished, for
example, by using Fourier transforms and the convolution theorem (3.23). The
procedure must be followed by numerical solution of the IEs, and a numerical
inversion of the Laplace transformed Ophet

j to obtain production rates in the time
domain. Finally, the production rates must be integrated over the interface to obtain
Faradaic current(s). The Cope–Tallman approach has provided important theoretical
predictions for a number of (micro)electrode configurations. However, the approach
is mathematically advanced, may require fluency in complex calculus, and is
probably not readily accessible to average electrochemists. In addition, it seems
to be limited to rather simple electroanalytical experiments and reaction schemes.
The need to operate on Laplace transforms of the interfacial concentrations restricts
the approach to situations when such transforms are obtainable from the boundary
conditions. In practice this means that only potential step chronoamperometric
experiments can be modelled. This limitation was relaxed in [12, 13, 27, 41] by
showing that the solutions obtained for potential step chronoamperometry can be
re-used to calculate any controlled potential transients for a simple equilibrium
electron transfer, if diffusion coefficients are equal. This applies to any electrode
geometry. More complicated reaction schemes may not be tractable, though. The
IEs arising from this approach have integrals over interfaces, in contrast to the IEs
from Chap. 5, in which the integration is over time. The IEs are also singular, which
requires special solution methods. A further difficulty is presented by the numerical
inversion of the Laplace transforms, which is known to be a sensitive task, usually
requiring multi-precision environments for reliable calculations [1].

Procedure 2 As a remedy against the difficulties inherent in the Cope–Tallman
approach, Mirkin and Bard [29, 30] suggested an alternative procedure, which is
analogous to the procedure used in the case of spatially one-dimensional models,
previously described in Chap. 5. A similar approach was earlier used by Aoki
et al. [5, 6], in the context of convection-diffusion transport at channel electrodes,
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although the IE formulation was not their primary goal. Also Daschbach [17]
employed a similar approach. In the Mirkin and Bard procedure one strives to obtain
integral concentration–production rate relationships in the time (and space) domains
rather than in the Laplace (and space) domains. In the absence of homogeneous
reactions, assumed here, a separate concentration–production rate relationship is
envisaged for every dynamic distributed species. As is shown in Sect. 7.2 below,
in the case of two-dimensional spatial domains these relationships take the general
form:

c


j D c
j .; t/ D c?j C

ˆ

D

Kj


�


t

	
;

�
�

�

	�
phet
j .�; �/ d� d� ; (7.10)

where Kj


�


t

	
;

�
�

�

	�
is a suitable integral transformation kernel, consistent

with the definition (3.3) of linear integral transformations. The kernel depends on
the diffusion coefficient of the j th species, the geometry of the spatial domain,
the system of coordinates used, and boundary conditions at other interfaces. The
kernel arguments are: the vector variable Œ; t �T and the dummy integration vector
variable Œ�; ��T. By  we denote here a coordinate along the interface studied.
Thus, in particular,  D x for the diffusion to band(s), and  D r for diffusion
to disk/ring(s). Consequently, we have �!r het D �!r het.; t/, �!p het D �!p het.; t/,
N dyn;het D N dyn;het./, V D V ./, and Z D Z./. The integration domain D is a
Cartesian product of the spatial interval of the  coordinate, and time interval Œ0; t �.
In a similar way, in the case of three-dimensional spatial domains, c
j and other
variables listed above depend on two spatial coordinates along the interface studied,
and D is a Cartesian product of two spatial intervals, and the above time interval.
Hence, the conversion of an IBVP into IEs eliminates one spatial coordinate, the
one perpendicular to the interface studied.

As an example of Procedure 2, we consider a controlled potential experiment for
an electron transfer reaction

X1 C n e� � X2 (7.11)

taking place between dynamic distributed species X1 and X2 at an interface
corresponding to an array of electrodes (such as the band(s) or a disk and ring(s) seen
in Figs. 2.3 and 2.4), assuming a two-dimensional spatial domain. The relevant IEs
can be derived by a straightforward reformulation of Eqs. (5.19), (5.21), and (5.23)
for the spatially one-dimensional case. One only has to replace one-dimensional
integrals by double integrals, remembering about the additional dependence of the
various variables on . Thus, Eq. (5.19) for the non-equilibrium reversible electron
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transfer (7.11) would be transformed into:

�.; t/ � k0
*
ff.; t/

8
<

:c
?
1 �

ˆ

D

K1


�


t

	
;

�
�

�

	�
�.�; �/ d� d�

9
=

;

�fb.; t/

8
<

:c
?
2 C

ˆ

D

K2


�


t

	
;

�
�

�

	�
�.�; �/ d� d�

9
=

;

+
D 0 : (7.12)

Equation (5.21) for the irreversible electron transfer (7.11) would be transformed
into:
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and Eq. (5.23) for the equilibrium electron transfer (7.11) would be transformed
into:
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In Eqs. (7.12)–(7.14)

�.; t/ D �phet
1 .; t/ D phet

2 .; t/ ; (7.15)

and the variables E.; t/; ff.; t/, and fb.; t/ are considered dependent on ,
because in the case of electrode arrays different electrodes in the array can be
polarised differently. Equation (5.17) for the current has to be replaced by equations
(one for every electrode):

I.t/

F
D n

ˆ

D

phet
1 .; t/ d D �n

ˆ

D

�.; t/ d ; (7.16)

where the domain D corresponds to the particular electrode. Each of the
Eqs. (7.12)–(7.14) can be viewed as a system of infinitely many IEs, one for every
 value. The IEs in these systems are coupled, owing to the spatial integration.
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Procedure 3 Apart from Procedures 1 and 2, a more generally applicable procedure
is known under the name of the boundary integral method (BIM), or boundary
integral equation method. This procedure is often used in conjunction with finite-
element type discretisations, in which case it is also called the boundary element
method (BEM). The BIM appears particularly useful in cases of complicated shapes
of the spatial domain, when Procedures 1 and 2 cannot be applied. There is a review
of the BIM applications to electroanalysis, written by Fan et al. [19], so that we
do not go much into details here. The BIM was used mostly to solve models of
steady state experiments (see, for example, [8, 20–23, 25, 32, 35–40, 43]) which are
of secondary interest in the present book. Transient experiments were modelled by
Qiu et al. [24,31,33,34] and Träuble et al. [42]. There are several possible variants of
transient BIM simulations. One of them was utilised by Qiu et al. [34], by following
an earlier non-electrochemical paper by Wrobel and Brebbia [44]. In this variant
one makes use of a specific integral solution–flux relationship to replace an IBVP
by a boundary IE or IEs, avoiding any need of volume discretisations (see Sect. 7.3
below for more information on this variant). Another variant, used in [24, 31, 42],
makes use of the so-called dual reciprocity method, where the volume discretisation
is not entirely avoided.

Procedure 4 In addition to the above three major procedures, for some multidimen-
sional models it may be possible to obtain approximate representations in the form
of one-dimensional IEs. One such approximation, referring to controlled potential
experiments at stationary disk microelectrodes, was reported by Jin et al. [26,45], by
using a former work of Aoki and Osteryoung [3] (and forgetting to mention another
related work by Aoki et al. [4]). Unfortunately, papers [26, 45] seem to contain
errors and undefined parameters (parameter p is undefined in [26], and although the
Reader is directed to [45] for explanations of undefined symbols, p does not appear
at all in [45]). It is therefore problematic to reproduce or reuse these results.

7.2 The Mirkin and Bard Approach

Owing to its analogy to the IE formulations of spatially one-dimensional models
discussed in Chaps. 5 and 6, the Mirkin and Bard approach [29, 30] may seem
particularly appealing and relatively uncomplicated, so that it is pursued in more
detail below.

The crucial element of the approach is the determination (analytically, if
possible) of the integral concentration–production rate relationships, characteristic
of a particular geometry of the spatial domain. Mirkin and Bard [29, 30] obtained
such relationships for a few particular electrode configurations, including those from
Figs. 2.3 and 2.4. For the purpose of the derivations it is convenient to introduce the
usual auxiliary variable:

uj D cj � c?j ; (7.17)
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for which the incomplete IBVPs to be solved, resulting from Eqs. (7.1)–(7.9), take
the following forms. For diffusion to band(s):

@uj .x; z; t/
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D Dj

�
@2uj .x; z; t/

@x2
C @2uj .x; z; t/

@z2

	
; (7.18)

uj .x; z; 0/ D 0 ; (7.19)

uj .˙1; z; t/ D 0 ; (7.20)

uj .x;1; t/ D 0 ; (7.21)

and for diffusion to disk/ring(s):
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uj .r; z; 0/ D 0 ; (7.23)

uj .1; z; t/ D 0 ; (7.24)
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rD0
D 0 ; (7.25)

uj .r;1; t/ D 0 : (7.26)

In Appendix C we follow Mirkin and Bard [29, 30] and present detailed analytical
solutions of the IBVPs (7.18)–(7.21) and (7.22)–(7.26), by employing the Laplace,
combined with Fourier, or Hankel transforms. As a result, we obtain the following
relationships between the solution uj and its flux componentJj along the coordinate
z, at the interface studied [cf. Eqs. (C.22), (C.23), (C.44), and (C.45)]. For diffusion
to band(s):
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ˆ

D
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�
x
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;

�
�

�

	�
Jj .�; 0; �/ d� d� ; (7.27)
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K b
j


�
x

t

	
;

�
�

�

	�
D D�1

j Œ2�.t � �/��1 exp
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#
(7.28)

and integration domain D D .�1;1/ � Œ0; t/. For diffusion to disk/ring(s):

uj .r; 0; t/ D
ˆ

D

K dr
j


�
r

t

	
;

�
�

�

	�
Jj .�; 0; �/ d� d� ; (7.29)
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with

K dr
j


�
r

t

	
;

�
�

�

	�
D D�3=2

j

� exp
h
� �2Cr2
4Dj .t��/

i
I0
h

r�

2Dj .t��/
i

2�1=2.t � �/3=2 (7.30)

and integration domain D D .0;1/� Œ0; t/. In Eq. (7.30) I0.�/ denotes the modified
Bessel function of the first kind and order zero [2]. For some other geometries
and transport conditions (such as in particular, convection–diffusion at channel
electrodes), instead of using two different integral transformations, one might also
employ a double Laplace transform [5, 6].

The spatial intervals of integration in Eqs. (7.27) and (7.29) are formally infinite,
but they reduce to one or more finite intervals corresponding to the electrode
locations, because the reactant flux Jj is zero at insulators, so that the insulators
do not contribute to the integrals. A possibility for handling electrodes of arbitrary
shapes, provided they are co-planar with an insulator plane in which they are
embedded, was indicated [29].

At first sight the temporal singularities present in the kernels (7.28) and (7.30)
appear stronger than the weak singularity of the kernels typical for spatially one-
dimensional models. However, a closer examination reveals that for sufficiently
small " > 0 the double integrals exhibit the following limiting behaviour:
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(for any r > 0). In Eqs. (7.31) and (7.32) •.�/ denotes the Dirac delta. Hence, in both
cases we have a weak temporal singularity, analogous to that for planar diffusion in
a one-dimensional semi-infinite spatial domain.

7.3 The Boundary Integral Method

The BIM variant from Qiu et al. [34] relies on a general integral solution–flux
relationship which we derive in Appendix D. The relationship refers to the three-
dimensional diffusion PDE:

@cj .x; t/

@t
D Dj 4 cj .x; t/ (7.33)

with initial condition

cj .x; 0/ D c?j ; (7.34)

defined over a spatial domain ˝ of the vector x D Œx; y; z�T of Cartesian coordi-
nates, surrounded by a surface S . It takes the form [cf. Eqs. (D.15) and (D.18)]:
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h
� .x�/2C.y��/2C.z��/2
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i

for t > �

0 for t < �
(7.36)

and � D 1=2 for x 2 S . In Eqs. (7.35) and (7.36) � D Œ; �; ��T and � denote
integration variables, and d˝ D d d� d�. Equation (7.35) relates concentrations
cj .x; t/ at the surface S and flux components �Dj @cj .x; t/=@n normal to the
surface. It has to be combined with boundary conditions at the surface S , resulting
in IEs to be solved for the boundary values of cj .x; t/ and �Dj @cj .x; t/=@n.
Although a three-dimensional domain ˝ was assumed in Appendix D, Eq. (7.35)
holds also in the case of a two-dimensional domain˝ surrounded by a closed curve
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S . In such a case
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x

t

	
;

�
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	�
D
( �
4�Dj .t � �/

��1
exp

h
� .x�/2C.y��/2

4Dj .t��/
i

for t > �

0 for t < �
(7.37)

must be taken, with x D Œx; y�T and � D Œ; ��T.
Depending on the shape of the spatial domain, a non-trivial steady state solution

may be possible. In Appendix D we show that at steady state the solution–flux
relationship takes the form [cf. Eqs. (D.23) and (D.24)]:

�cj .x; t/ D
˛

S

�
G .x;�/

@cj .�; t/

@n
� cj .�; t/ @G .x;�/

@n

	
ds ; (7.38)

where

G .x;�/ D
n
4�
�
.x � /2 C .y � �/2 C .z � �/2�1=2

o�1
(7.39)

for a three-dimensional spatial domain. In the case of a two-dimensional domain˝
surrounded by a closed curve S ,

G .x;�/ D �.4�/�1 ln
�
.x � /2 C .y � �/2� (7.40)

must be taken. The dependence of cj on time t is retained in Eq. (7.38), because
boundary conditions may depend on time, even at steady state. We note that,
in the case of the two- and three-dimensional spatial domains, the steady state
concentration–flux relationships are no longer purely algebraic (as was the case with
one-dimensional models), but they involve spatial integrals such as in Eq. (7.38).
Equation (7.38) combined with boundary conditions along the surface (or curve)
S gives IE(s) from which the unknown steady state boundary concentrations and
fluxes can be determined.

7.4 Literature Examples

The Cope and Tallman approach was used to simulate potential step chronoamper-
ometry for an electron transfer reaction

X1 C n e� � X2 (7.41)

involving dynamic distributed species X1 and X2 under limiting current condi-
tions at band (micro)electrodes [9, 11, 13–15], stationary disk (micro)electrodes
[10, 11, 13, 28], ring (micro)electrodes [11, 13, 16], and tubular band electrodes
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[12, 13, 18]. Linear potential sweep voltammetry and square wave voltammetry for
an equilibrium electron transfer (7.41) was considered by Kalapathy et al. [27] and
Tallman [41], respectively, assuming ring (micro)electrodes.

The Mirkin and Bard approach of Sect. 7.2 was used to formulate and solve IEs
describing: potential step chronoamperometry and cyclic voltammetry at a single
(micro)disk and a single (micro)band electrode, generator and collector transients
at double band electrodes, steady state and voltammogram-like curves in a scanning
electrochemical microscope (SECM) experiment (for details, see [29, 30]). Further
simulations concerning SECM experiments were performed by Bard et al. [7]. A
non-equilibrium reversible electron transfer (7.41) was assumed.

The BIM was used for transient simulations of the potential step chronoam-
perometry assuming limiting current conditions of reaction (7.41) at (micro)band
and (micro)cylinder electrodes [31] and also at (micro)band, (micro)cylinder,
(micro)hemisphere, and single and double (micro)disk electrodes [33]. Other exam-
ples include: cyclic voltammetry at immiscible liquid j liquid interface of different
topography [34], voltammetry of electroactive oil droplets [24], and transient
measurements by the SECM [42].
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Chapter 8
Models Involving Transport Coupled
with Homogeneous Reactions

In Chaps. 5, 6, and 7 we have assumed that diffusion and possibly convection are
the sole modes of transport, and that no homogeneous reactions between the dis-
tributed species accompany the transport. Although there are many electrochemical
systems that obey these assumptions, there are also numerous systems in which
homogeneous reactions play a crucial role and cannot be neglected. Therefore, in
the present chapter we address the issue how to handle the homogeneous reactions
in addition to the diffusion or convection–diffusion transport, by the IE method.

8.1 Derivation of the IEs

The treatment of homogeneous reactions by the IE method is generally a difficult
matter. One reason for this is associated with the homogeneous reactions subject to
nonlinear kinetic laws, such as the power rate law with reaction orders higher than
one, or with Michaelis–Menten kinetics. The application of the Laplace transform
is questionable in such cases, because the relevant reaction–diffusion PDEs are
nonlinear. Consequently, the majority of the publications, describing the IEs for the
reaction–transport problems, deals with first- and pseudo first-order homogeneous
reactions only. The treatment of such reactions is outlined in Sects. 8.2–8.4. Nonlin-
ear homogeneous kinetics have been handled thus far only in a number of special
cases, by employing certain additional assumptions. These special treatments are
outlined in Sect. 8.5.

The second difficulty is that homogeneous reactions acting between distributed
species cause couplings between the concentrations of the different species in
every point in space, because some species disappear and some other are formed.
Therefore, when homogeneous reactions are present, the concentration of a par-
ticular species, at the interface studied, may depend on the production rates of
other species. As a consequence, the concentration–production rate relationships
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must generally be considered jointly for all dynamic distributed species. This is a
complication compared to the transport in the absence of homogeneous reactions,
where a separate concentration–production rate relationship exists for every species
at the interfaces studied (cf. Chaps. 5, 6 and 7).

In the case of models dependent on one spatial coordinate, such joint relation-
ships can usually be expressed as the vector–matrix analogue of Eq. (6.1):

�!c 
 D �!c 
.t/ D �!c ? C
tˆ

0

K .t; �/
h�!p het.�/ ��!p het;?

i
d� ; (8.1)

where �!c 
 D
h
c


1; : : : ; c




N dd
s

iT
is the vector of the boundary concentrations of all

N dd
s dynamic distributed species at the interface studied, �!p het.t/ is the vector of

the production rates of these species at the interface studied,�!p het;? is the analogous
vector in the initial state of the system (if non-vanishing), and K .t; �/ is the matrix
of integral transformation kernels. Equation (8.1) allows one to express interfacial
concentrations�!c 
 as integrals of the species production rates �!p het.t/. Substitution
of these concentrations into boundary conditions (2.54) at the interface studied
yields a system of IEs for the unknown production rates, in the way analogous to that
in Chaps. 5 and 6. The determination of the matrix K .t; �/ presents the essential
theoretical challenge associated with the use of the IE method for models involving
homogeneous reactions, and we shall see below that this can be a difficult task.

Fortunately, in the theoretical description of quite many reaction–transport
models it happens to be possible to replace the concentrations by an equivalent
set of auxiliary variables uj selected in such a way that the reaction–transport
PDE system obtained for uj consists of uncoupled PDEs, which substantially
simplifies the treatment. In order to gain a basic understanding of the conditions
under which the reaction–transport PDEs can be cast into the uncoupled form, and
to prepare the ground for further discussion in Sects. 8.2 and 8.4, let us consider the
case of (pseudo) first-order homogeneous reactions acting between N dd

s dynamic
distributed species and N sd

s static distributed species. The general system (2.10) of
the reaction–transport PDEs for the dynamic distributed species can be combined
with Eq. (2.52), giving

@�!c
@t
D D 4 �!c � v � grad�!c � K �!c C�!� : (8.2)

We further assume that all initial concentrations are uniform in space, and that
all homogeneous reactions are initially at equilibrium. Hence, the vector �!c ? Dh
c?1 ; : : : ; c

?
N dd

s

iT
of initial concentrations cannot be entirely arbitrary, but its

elements must obey the condition

�!� �K �!c ? D �!0 : (8.3)
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Let us introduce a vector of auxiliary variables �!u D �
u1; : : : ; uN dd

s

�T
linked to the

concentrations by the linear transformation

�!u D S .�!c � �!c ?/ (8.4)

represented by a certain invertible matrix S D ˚Si;j
�
N dd

s �N dd
s

, so that

�!c D �!c ? C S �1�!u ; (8.5)

where S �1 D
n
S inv
i;j

o

N dd
s �N dd

s

is the matrix inverse of S . After inserting �!c given by

Eq. (8.5) into Eq. (8.2), and applying matrix S to both sides of the resulting equation,
we obtain after some manipulation

@�!u
@t
D QD 4 �!u � v � grad�!u � QK �!u (8.6)

with the initial condition

t D 0) �!u D �!0 ; (8.7)

where

QD D S D S �1 ; (8.8)

QK D S K S �1 (8.9)

are the matrices of diffusion coefficients and rate constants for the transformed
reaction–transport equation (8.6).

In a similar way, we can obtain the expression for the vector of transformed
fluxes. The vector of concentration fluxes is defined by the Eq. (2.9):

�!
J D �D grad�!c C v

�!c : (8.10)

As was discussed in Chap. 6, in the presence of convection this vector generally
does not vanish when �!c D �!c ?, so that we have to distinguish the initial vector of
fluxes:

�!
J ? D �D grad�!c ? C v

�!c ? D v
�!c ? : (8.11)

By subtracting Eqs. (8.10) and (8.11) we obtain

�!
J ��!J ? D �D grad .�!c � �!c ?/C v .�!c � �!c ?/ : (8.12)



160 8 Models Involving Transport Coupled with Homogeneous Reactions

Multiplication of both sides of Eq. (8.12) by S gives, in view of Eqs. (8.4) and (8.8):

S .
�!
J � �!J ?/ D � QD grad�!u C v�!u : (8.13)

Let us denote

�!
J u D � QD grad�!u C v�!u : (8.14)

Vector
�!
J u represents the transformed vector of flux vectors, that is the fluxes of the

variables �!u . The fact is indicated by adding the superscript “u”. Equation (8.13)
can therefore be rewritten as

�!
J u D S .�!J � �!J ?/ : (8.15)

This is a flux analogue of Eq. (8.4) for concentrations. From Eq. (8.15) we get the
flux analogue of Eq. (8.5):

�!
J D �!J ? C S �1�!J u : (8.16)

If Eq. (8.6) is to represent uncoupled PDEs, matrix S must be such that QD and
QK are simultaneously diagonal. One obvious situation (albeit possibly not the only

one) when such a transformation exists is when the following two conditions (a)
and (b) are simultaneously satisfied: (a) all diffusion coefficients are equal; and (b)
matrixK is similar to a diagonal matrix. Condition (a) implies that

D D D 1 ; (8.17)

where 1 is the unit matrix and D is the common diffusion coefficient, so that QD is
then diagonal:

QD D D S 1 S �1 D D 1 D D : (8.18)

Condition (b) implies that QK is diagonal, if for S we take the relevant matrix of
the similarity transformation. In such a case the diagonal elements QKj;j .j D
1; : : : ; N dd

s / of QK are equal to the eigenvalues of K . In practice it also happens
that the PDE system (8.2) can be decomposed into subsystems such that the PDEs
are coupled only within the subsystems. Conditions (a) and (b) need not then apply
to the whole system, but individually to every subsystem. Hence, the diffusion
coefficients may be identical within the subsystems, but different in different
subsystems.
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Examples of systems, for which the above de-coupling of the reaction–transport
PDEs is possible, are provided by the following standard reaction schemes involving
(pseudo) first-order homogeneous reactions; the EC scheme:

X1 C e� � X2

X2

kf! X3

)
; (8.19)

(assuming equal diffusion coefficients of species X2 and X3); the catalytic EC
scheme:

X1 C e� � X2

X2

kf! X1

)
; (8.20)

(assuming equal diffusion coefficients of X1 and X2); and the CE scheme:

X1

kf

�
kb

X2

X2 C e� � X3

9
=

; ; (8.21)

(assuming equal diffusion coefficients of X1 and X2). Only species X1 is initially
present in the schemes (8.19) and (8.20), and only species X1 and X2 are initially
present at positive equilibrium in the scheme (8.21). Table 8.1 provides matricesD,

K, S , S �1, QD and QK, and vectors�!c ? for schemes (8.19)–(8.21) under assumptions
adopted.

Once we have a system (8.6) of uncoupled PDEs, we can obtain solution–
flux relationships for every uj separately, from every individual PDE. As the
transformation (8.4) is linear, the mutually interrelated concentration–production
rate relationships for the various species are then easy to obtain from those for the
uj variables. The problem thus reduces to obtaining solution–flux relationships for
a single reaction–transport PDE. This task is discussed in Sect. 8.2. The largely
unresolved problem of handling the general case of coupled (pseudo) first-order
homogeneous reaction–transport PDEs (8.2) is addressed in Sect. 8.4.

8.2 A Single Reaction–Transport PDE, First-Order
Homogeneous Reactions

In view of the preceding discussion, let us assume that all homogeneous reactions
are of (pseudo) first order, and that a suitable set of auxiliary variables uj exists,
such that we have an uncoupled system of reaction–transport PDEs for uj . We thus
have to consider a single reaction–transport PDE that in accordance with Eq. (8.6)
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Table 8.1 Matrices D, K, S , S �1, QD and QK, and vectors �!c ? for schemes (8.19)–(8.21)

Matrix/vector Scheme (8.19) Scheme (8.20) Scheme (8.21)

D

2

64
D1 0 0

0 D 0

0 0 D

3

75

"
D 0

0 D

# 2

64
D 0 0

0 D 0

0 0 D3

3

75

K

2

64
0 0 0

0 kf 0

0 �kf 0

3

75

"
0 �kf

0 kf

# 2

64
kf �kb 0

�kf kb 0

0 0 0

3

75

S

2

64
1 0 0

0 1 0

0 1 1

3

75

"
1 1

0 1

# 2

64
1 1 0

1 �kb=kf 0

0 0 1

3

75

S �1

2

64
1 0 0

0 1 0

0 �1 1

3

75

"
1 �1
0 1

# 2

64

kb
kfCkb

kf
kfCkb

0
kf

kfCkb

�kf
kfCkb

0

0 0 1

3

75

QD
2

64
D1 0 0

0 D 0

0 0 D

3

75

"
D 0

0 D

# 2

64
D 0 0

0 D 0

0 0 D3

3

75

QK
2

64
0 0 0

0 kf 0

0 0 0

3

75

"
0 0

0 kf

# 2

64
0 0 0

0 kf C kb 0

0 0 0

3

75

�!c ?

2
64
c?1
0

0

3
75

"
c?1
0

# 2
64

c?1
.kf=kb/ c

?
1

0

3
75

can be written in the general form

@uj
@t
D QDj 4 uj � v � grad uj � QKj;j uj : (8.22)

The corresponding flux of the variable uj is [cf. Eq. (8.14)]:

J u
j D � QDj grad uj C v uj : (8.23)

In agreement with Eq. (8.4) we further assume the initial condition

t D 0) uj D 0 ; (8.24)

and boundary conditions at infinity (in the case of the semi-infinite spatial domains)
or at the second boundary (in the case of finite spatial domains) analogous to those
considered in Sects. 5.2 and 5.3, i.e. either

uj D 0 (8.25)
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or

grad uj D 0 : (8.26)

In order to obtain concentration–flux relationships for the incomplete
IBVP (8.22), (8.24), and (8.25) or (8.26), one can follow at least two approaches.
One approach (exemplified by [40, 43, 55, 71, 73, 116]) relies on the variable
substitution:

uj D wj exp.� QKj;j t/ : (8.27)

Temporal differentiation of Eq. (8.27) gives

@uj
@t
D �wj QKj;j exp.� QKj;j t/C exp.� QKj;j t/

@wj
@t

; (8.28)

and, since the Laplace and gradient operators do not involve temporal derivatives
(cf. Table 2.1),

QDj 4 uj � v � grad uj D exp.� QKj;j t/
� QDj 4 wj � v � grad wj

�
: (8.29)

After substituting Eqs. (8.28) and (8.29) into Eq. (8.22), and simplifying the expo-
nential factor, we find that the substitution (8.27) reduces the reaction–transport
equation (8.22) to a pure transport PDE for the variable wj :

@wj
@t
D QDj 4 wj � v � grad wj : (8.30)

At the same time, substitution (8.27) turns Eq. (8.23) into

J u
j D exp.� QKj;j t/J w

j ; (8.31)

where

J w
j D � QDj grad wj C v wj (8.32)

is the flux of wj .
Combination of Eqs. (8.24) and (8.27) gives the initial condition for wj :

t D 0) wj D 0 ; (8.33)

which is analogous to the initial condition for uj . Similarly, combination of
the boundary conditions (8.25) or (8.26) for uj with Eq. (8.27) gives analogous
boundary conditions for wj :

wj D 0 ; (8.34)
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or

grad wj D 0 : (8.35)

This does not mean that the variable wj obeys the same boundary conditions at the
interface studied, as the variable uj does. For this, a more complicated substitution
of variables would be necessary (for reaction–diffusion PDEs this issue was studied
by Danckwerts [24]). However, Eqs. (8.30), (8.33), and (8.34) or (8.35) are sufficient
to expect that the solution–flux relationship for wj at the interface studied is
identical to what one would obtain for uj in the absence of the homogeneous
reaction term � QKj;j uj .

Let us see what this means in the case of models dependent on one spatial coor-
dinate. In view of the results from Chaps. 5 and 6, the solution–flux relationships for
the variable wj at the interface studied can then be written in the general form

wj .0; t/ D
tˆ

0

Kj .t; �/ J
w
j .0; �/ d� ; (8.36)

valid for planar diffusion or for convection–diffusion models, or in the form

wj .r0; t/ D
tˆ

0

Kj .t; �/ J
w
j .r0; �/ d� ; (8.37)

valid for spherical and cylindrical diffusion, where Kj .t; �/ is one of the kernels
discussed there, that is K

p
j .t; �/, K

s
j .t; �/, K

c
j .t; �/, K

plp
j .t; �/, K ct

j .t; �/, etc.,

or any other suitable kernel, calculated assuming the diffusion coefficient QDj .
By combining Eqs. (8.36) and (8.37) with Eqs. (8.27) and (8.31), we obtain the
following solution–flux relationship for the variable uj . For planar diffusion and
for convection–diffusion models considered:

uj .0; t/ D
tˆ

0

QKj .t; �/ J
u
j .0; �/ d� ; (8.38)

and for spherical and cylindrical diffusion:

uj .r0; t/ D
tˆ

0

QKj .t; �/ J
u
j .r0; �/ d� ; (8.39)

where

QKj .t; �/ D exp
�� QKj;j .t � �/

�
K j .t; �/ : (8.40)
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Thus, we conclude that in the presence of the single homogeneous reaction
term � QKj;j uj in the transport PDE (8.22), the integral transformation kernels
valid for variables uj without homogeneous reactions must be multiplied by
exp

�� QKj;j .t � �/
�
. The resulting kernels are denoted below by the same symbols

as the kernels obtained in the absence of homogeneous reactions, but distinguished
with a tilde over the symbols. For example, for planar diffusion with a homogeneous
reaction in a semi-infinite spatial domain:

QK p
j .t; �/ D QD�1=2

j exp
�� QKj;j .t � �/

�
Œ�.t � �/��1=2 : (8.41)

For planar diffusion in finite spatial domain:

QK plp
j .t; �/ D QD�1=2

j exp
�� QKj;j .t � �/

�

� ˚Œ�.t � �/��1=2 � Q�j kplp
� Q�j .t � �/1=2

��
; (8.42)

or

QK pli
j .t; �/ D QD�1=2

j exp
�� QKj;j .t � �/

�

� ˚Œ�.t � �/� �1=2 C Q�j kpli
� Q�j .t � �/1=2

��
; (8.43)

with Q�j defined by Eq. (5.119), assuming the diffusion coefficient QDj . For
convection–diffusion to an expanding plane, with a homogeneous reaction:

QK ep
j .t; �/ D QD�1=2

j



3

7
�

��1=2
exp

�� QKj;j .t � �/
�
�2=3

�
t7=3 � �7=3��1=2 ;

(8.44)

etc.
Entirely analogous are kernels for spatially two-dimensional and three-dimensio-

nal models in the Mirkin and Bard approach (see Sect. 7.2). For example, for
diffusion to band(s), with a homogeneous reaction:

QK b
j


�
x

t

	
;

�
�

�

	�
D QD�1

j Œ2�.t � �/��1

� exp
�� QKj;j .t � �/

�
exp

"
� .x � �/2
4 QDj .t � �/

#
; (8.45)

and for diffusion to disk/ring(s), with a homogeneous reaction:

QK dr
j


�
r

t

	
;

�
�

�

	�
D QD�3=2

j exp
�� QKj;j .t � �/

� � exp
h
� �2Cr2

4 QDj .t��/

i
I0
h

r�

2 QDj .t��/

i

2�1=2.t � �/3=2 :

(8.46)
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A second possible approach to obtaining the solution–flux relationships for
Eq. (8.22) relies on the direct application of the Laplace transform, in the way
analogous to the derivations shown in Appendices A and B. This approach has
been rather predominant in the literature, and it seems unavoidable in the case of
coupled reaction–transport PDEs (see Sect. 8.4 below). However, in the case of the
PDEs that can be reduced to uncoupled reaction–transport PDEs, discussed in the
present section, this approach presents an unnecessary complication, and should
be avoided, the more so because it does not always work (in particular, it cannot
be used in the case of convection–diffusion to an expanding plane). Nevertheless,
for the convenience of the Reader, in Appendix E, Sect. E.1 we present example
derivations of the relationships (8.38) and (8.39) by the Laplace transform method.
The derivations reveal that in the presence of the single homogeneous reaction term
� QKj;j uj in Eq. (8.22) any explicit occurrence of the Laplace variable s is always in
the form of the sum s C QKj;j . As the addition of a constant to the variable s in the
Laplace transform of an original function is equivalent to the multiplication of the
original function by the exponential function [cf. Eq. (3.16) in Sect. 3.2], any kernel
corresponding to QKj;j ¤ 0 is equal to the kernel corresponding to QKj;j D 0, times
exp

�� QKj;j .t � �/
�
.

After deriving the solution–flux relationships for all uj , j D 1; : : : ; N dd
s , one

can finally calculate the corresponding concentration–production rate relationships.
In the case of models dependent on one spatial coordinate, by introducing a diagonal

matrix QK .t; �/ D diag
h QK1.t; �/; : : : ; QKN dd

s
.t; �/

i
of the kernels QKj .t; �/, the

relationship between the vectors �!u .0; t/ and
�!
J u.0; t/ can be written in the fol-

lowing way. For planar diffusion and for convection–diffusion models considered:

�!u .0; t/ D
tˆ

0

QK .t; �/
�!
J u.0; �/ d� ; (8.47)

and for spherical and cylindrical diffusion:

�!u .r0; t/ D
tˆ

0

QK .t; �/
�!
J u.r0; �/ d� : (8.48)

By combining Eqs. (8.47) or (8.48) with Eqs. (8.4) and (8.15) we then obtain,
respectively,

�!c .0; t/ D �!c ? C
tˆ

0

K .t; �/
h�!
J .0; �/��!J ?

i
d� (8.49)
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and

�!c .r0; t/ D �!c ? C
tˆ

0

K .t; �/
h�!
J .r0; �/ � �!J ?

i
d� ; (8.50)

where

K .t; �/ D S �1 QK .t; �/ S (8.51)

is the matrix of kernel functions representing the relationships between the con-
centrations and their fluxes at the interface studied. Equations (8.49) and (8.50) are
seen to be special cases of the general equation (8.1), as the fluxes at the interface
represent species production rates [cf. Eq. (2.46)].

Obviously, by comparison of Eqs. (8.9) and (8.51) we see that matrix K .t; �/

has the same sparsity structure as the matrix K, so that in general it is not diagonal.
This proves that the concentration of any particular species may be related to the
fluxes of all remaining species, when homogeneous reactions are present.

Apart from the effect of QKj;j ¤ 0 on the integral transformation kernels
characteristic of transient conditions, an important consequence of the presence
of the homogeneous reaction terms, in the uncoupled reaction–transport equations
for variables uj , is the possibility of the occurrence of steady states in which
the transport term is compensated by the reaction term, so that @uj =@t � 0.
These steady states are somewhat similar to another steady state characteristic
of spherical diffusion without homogeneous reactions in semi-infinite domain,
previously mentioned in Sect. 5.2.1, but now they may occur for all types of
geometry and transport conditions. In Appendix E, Sect. E.2 we derive some of the
solution–flux relationships for such steady states. The derivations are restricted to
one-dimensional semi-infinite spatial domains, and they require that QKj;j > 0. In
particular, we obtain the following relationships [cf. Eqs. (E.37), (E.44), and (E.52)].
For planar diffusion with reaction:

uj .0; t/ D QD�1=2
j

QK�1=2
j;j J u

j .0; t/ : (8.52)

For spherical diffusion with reaction:

uj .r0; t/ D QD�1=2
j

�
Q%j C QK1=2

j;j

��1
J u
j .r0; t/ : (8.53)

When QK1=2
j;j 	 Q%j , Eq. (8.53) converges to Eq. (8.52) for planar diffusion with

reaction. When QK1=2
j;j � Q%j , Eq. (8.53) becomes analogous to Eq. (5.89) specific

for the steady state spherical diffusion without reaction. For cylindrical diffusion
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with reaction:

uj .r0; t/ D QD�1=2
j

QK�1=2
j;j

K0. QK1=2
j;j = Q%j /

K1. QK1=2
j;j = Q%j /

J u
j .r0; t/ : (8.54)

According to the asymptotic expansions for the Bessel functions K0.�/ and K1.�/
(cf. Eq. (9.7.2) in [1]), for large real z the ratio K0.z/=K1.z/ � 1 � .1=2/ z�1 C
.3=8/ z�2 � .3=8/ z�3 C : : : � 1. Therefore, for QK1=2

j;j 	 Q%j Eq. (8.54) becomes
analogous to the Eq. (8.52) for planar diffusion with reaction. For small real z we
have in turn K0.z/ � � ln.z/ and K1.z/ � z�1. Therefore, for QK1=2

j;j � Q%j
Eq. (8.54) becomes

uj .r0; t/ D QD�1=2
j Q%�1

j ln. Q%j QK�1=2
j;j / J u

j .r0; t/ : (8.55)

The determination of the steady state solution–flux relationships becomes more
sophisticated in the case of diffusion with homogeneous reaction(s) in two- and
three-dimensional spatial domains. Similarly to the case of purely diffusional steady
states mentioned in Sect. 7.1, it may be necessary to use, e.g. the BIM to derive such
relationships. Examples of such calculations were reported by Bender and Stone
[19] and Lucas et al. [51].

8.3 Literature Examples, Transport Kernels Multiplied
by expŒ�kj .t � �/�

Based on the results of the previous section, we expect that kernel terms result-
ing from multiplying a kernel for uncomplicated one-dimensional transport, by
exponential factors exp

��kj .t � �/
�
, where kj is a certain coefficient related

to the rate constants of homogeneous reactions, should be particularly frequent
in the IEs, when the presence of homogeneous reactions is taken into account.
In this section we list a number of IE-based models published in the literature,
and containing such kernels, for previously discussed transport conditions. In the
majority of these examples equal diffusion coefficients of the dynamic distributed
species were assumed. Sections 8.3.1–8.3.6 contain examples of models defined on
one-dimensional spatial domain. Section 8.3.7 contains examples of models defined
on spatial domains having a higher dimensionality.

8.3.1 Planar Diffusion, Semi-Infinite Spatial Domain

IE-based models utilising kernels exp
��kj .t � �/

�
K

p
j .t; �/, referring to planar

diffusion in semi-infinite spatial domains, are encountered relatively frequently.
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For the EC reaction scheme:

X1 C n e� � X2 ; (8.56)

X2 � X3 (8.57)

involving electron transfer reaction (8.56) and homogeneous reaction (8.57), and
dynamic distributed species X1, X2, and X3, there are the following examples.
Kumar and Birke [47] considered potential step chronoamperometry, assuming non-
equilibrium reversible reactions (8.56) and (8.57). Ohsaka et al. [79] considered
double potential step chronoamperometry, assuming non-equilibrium reversible
homogeneous reaction (8.57). Nicholson and Shain [69] presented and solved
IEs describing linear potential sweep/cyclic voltammetry for equilibrium electron
transfer (8.56) and non-equilibrium reversible or irreversible reaction (8.57). The
case with irreversible reaction (8.57) was re-solved by Rudolph [90]. Schwarz and
Shain [105], and Lundquist and Nicholson [52] discussed a theory of potential
step chronoamperometry followed by linear potential sweep voltammetry, assuming
equilibrium electron transfer (8.56), and irreversible homogeneous reaction (8.57).
Savéant [94] presented a theory of cyclic voltammetry with asymmetrical potential
sweeps. O’Dea et al. [77] and Garay and Lovrić [30] obtained a theory of square
wave voltammetry, assuming equilibrium or non-equilibrium reversible electron
transfer (8.56), and non-equilibrium reversible homogeneous reaction (8.57). Smith
[114] discussed a theory of AC polarography, assuming non-equilibrium reversible
reactions (8.56) and (8.57). Theory of cyclic staircase voltammetry was presented
by Murphy et al. [60], assuming equilibrium reaction (8.56) and non-equilibrium
reversible reaction (8.57).

For the catalytic EC reaction scheme:

X1 C n e� � X2 ; (8.58)

X2 � X1 (8.59)

involving electron transfer (8.58) and homogeneous reaction (8.59), and dynamic
distributed species X1 and X2 having identical diffusion coefficients [possible
static species participating in reaction (8.59) are omitted], there are the follow-
ing examples. Savéant and Vianello [97, 101], Nicholson and Shain [69], and
also Davčeva et al. [25], presented and solved IEs describing linear potential
sweep/cyclic voltammetry. Equilibrium or irreversible electron transfer (8.58) and
irreversible homogeneous reaction (8.59) were assumed. Rudolph [90] completed
these results for non-equilibrium reversible electron transfer (8.58). Savéant [94]
presented a theory of cyclic voltammetry with asymmetrical potential sweeps.
O’Dea et al. [77], Mirčeski et al. [58], and Davčeva et al. [25] obtained a theory of
square wave voltammetry, covering the cases of equilibrium or irreversible electron
transfer (8.58), and irreversible or non-equilibrium reversible homogeneous reac-
tion (8.59). Davčeva et al. [25] considered also potential step chronoamperometry.
Smith [114] discussed a theory of AC polarography, assuming non-equilibrium
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reversible electron transfer (8.58) and irreversible homogeneous reaction (8.59).
He also discussed [115] the theory of the Faradaic impedance, as studied by four
small amplitude techniques. Theory of cyclic staircase voltammetry was presented
by Murphy et al. [60], assuming equilibrium reaction (8.58) and non-equilibrium
reversible reaction (8.59).

For the CE reaction scheme:

X1 � X2 ; (8.60)

X2 C n e� � X3 (8.61)

involving homogeneous reaction (8.60) and electron transfer (8.61), and dynamic
distributed species X1, X2 and X3, there are the following examples. Savéant and
Vianello [99] and Nicholson and Shain [69] presented and solved IEs describing
linear potential sweep/cyclic voltammetry. Non-equilibrium reversible homoge-
neous reaction (8.60), and equilibrium or irreversible electron transfer (8.61) were
assumed. Rudolph [90] re-solved some of the IEs. O’Dea et al. [77] and Garay and
Lovrić [30] obtained a theory of square wave voltammetry, covering the cases of
non-equilibrium reversible homogeneous reaction (8.60) and equilibrium or non-
equilibrium reversible electron transfer (8.61). Smith [114] discussed a theory of
AC polarography, assuming non-equilibrium reversible reactions (8.60) and (8.61).
He also discussed [115] the theory of the Faradaic impedance, as studied by four
small amplitude techniques. Theory of cyclic staircase voltammetry was presented
by Murphy et al. [60], assuming equilibrium reaction (8.61) and non-equilibrium
reversible reaction (8.60).

For the ECE reaction scheme:

X1 C n1 e� � X2 ; (8.62)

X2 ! X3 ; (8.63)

X3 C n2 e� � X4 (8.64)

involving electron transfers (8.62) and (8.64), and irreversible homogeneous reac-
tion (8.63) there are the following examples. Savéant [93] and Nicholson and
Shain [70] presented IEs describing linear potential sweep/cyclic voltammetry,
under various assumptions regarding equilibrium or non-equilibrium of the electron
transfers. Their theory was later extended by Stuart and Foulkes [117] onto the
reaction scheme in which reactions (8.63) and (8.64) were replaced by several
analogous parallel reactions. Savéant [94] presented a theory of cyclic voltammetry
with asymmetrical potential sweeps. O’Dea et al. [78] obtained a theory of square
wave voltammetry, assuming equilibrium electron transfers (8.62) and (8.64).
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There are also examples corresponding to other reaction schemes. Polcyn and
Shain [85] reported a theory of linear potential sweep/cyclic voltammetry for the
catalytic ECE reaction scheme:

X1 C n1 e� � X2 ; (8.65)

X2 ! X1 ; (8.66)

X2 C n2 e� � X3 (8.67)

under various assumptions regarding equilibrium or non-equilibrium of the electron
transfers. Shuman and Shain [107] considered IEs describing cyclic voltammetry
for the CEE scheme:

X1 � X2 ; (8.68)

X2 C n e� � X3 ; (8.69)

X1 C n e� ! X3 : (8.70)

Non-equilibrium reversible homogeneous reaction (8.68), equilibrium electron
transfer (8.69) and irreversible electron transfer (8.70) were assumed. Andrieux
et al. [15] considered cyclic voltammetry for the ECC reaction scheme:

X1 C e� � X2 ; (8.71)

X2 C X3 ! X4 C products ; (8.72)

X2 C X4 ! X1 C products ; (8.73)

obtaining IEs for some limiting cases. Maran et al. [53] considered linear potential
sweep voltammetry for the EEC reaction scheme:

2X1 C 2e� ! X2 ; (8.74)

X2 C 2e� ! X3 ; (8.75)

X2 ! X4 : (8.76)

Balducci and Costa [18] discussed cyclic voltammetry for a four-member square
scheme involving equilibrium electron transfers. Andrieux and Savéant [8] used IEs
in their theory of cyclic voltammetry for several complex reaction schemes that can
be classified as extended ECE schemes. Hung et al. [42] developed a theory of AC
polarography for several reaction schemes involving electron transfers coupled with
multistep homogeneous reactions. Smith [115] referred to a theory of the Faradaic
impedance, for a complicated reaction scheme, but details were not provided.

Gonzalez et al. [34] considered the theory of radical polarograms obtained in a
photo-electrochemical experiment. A complicated reaction scheme was assumed.
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All the above examples refer to experiments in which processes occurring
at an electrode j electrolyte interface were the subject of the studies. A unique
example of IEs describing homogeneous reactions accompanying charge transfer
at a liquid j liquid interface was provided by Quentel et al. [87]. Reaction schemes
resembling EC and CE schemes were considered.

Finally, we mention again (see Chap. 5, Sect. 5.2.2.1) that IEs involving kernels
exp

��kj .t � �/
�
K

p
j .t; �/ are also encountered in the theory of the effect of

partially covered electrodes on linear potential sweep and cyclic voltammetry [35].

8.3.2 Spherical Diffusion, Semi-Infinite Spatial Domain

Compared to planar diffusion, kernels exp
��kj .t � �/

�
K s

j .t; �/ referring to
spherical diffusion in semi-infinite spatial domains are encountered less frequently.

For the EC reaction scheme:

X1 C n e� � X2 ; (8.77)

X2 � X3 (8.78)

involving dynamic distributed species X1, X2, and X3, Olmstead and Nicholson [81]
presented a theory of linear potential sweep voltammetry, assuming equilibrium
electron transfer (8.77) and irreversible homogeneous reaction (8.78). Zakharov and
Bakanov [121] reported IEs describing general current–potential curves. Calvente
et al. [23] derived and solved an IE describing potential step chronoamperometry,
assuming non-equilibrium reversible electron transfer (8.77), and irreversible homo-
geneous reaction (8.78). Garay and Lovrić [32] provided a theory of square wave
voltammetry.

For the catalytic EC reaction scheme:

X1 C n e� � X2 ; (8.79)

X2 ! a

b
X1 ; (8.80)

where a=b is a fraction of the regenerated depolariser, Delmastro and Booman [27]
considered potential step chronoamperometry.

For the CE reaction scheme:

X1 � X2 ; (8.81)

X2 C n e� � X3 (8.82)

involving homogeneous reaction (8.81) and electron transfer (8.82), and dynamic
distributed species X1, X2, and X3, there are the following examples. Delmastro and
Booman [27] and Lovrić and Tur’yan [50] considered potential step chronoamper-
ometry. Zakharov and Pnev [122] reported IEs describing general current–potential
curves. Garay and Lovrić [31] considered square wave voltammetry.
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8.3.3 Cylindrical Diffusion, Semi-Infinite Spatial Domain

There are even fewer examples utilising kernels exp
��kj .t � �/

�
K c

j .t; �/ refer-
ring to cylindrical diffusion in semi-infinite spatial domains.

For the EC reaction scheme:

X1 C n e� � X2 ; (8.83)

X2 � X3 (8.84)

involving dynamic distributed species X1, X2, and X3, Zakharov and Bakanov [121]
reported IEs describing general current–potential curves.

Similar results for the CE reaction scheme:

X1 � X2 ; (8.85)

X2 C n e� � X3 (8.86)

involving dynamic distributed species X1, X2, and X3 were obtained by Zakharov
and Pnev [122]. In Zakharov et al. [121, 122] the kernels for cylindrical diffusion
were approximated by truncated series expansions.

8.3.4 Planar Diffusion, Finite Spatial Domain

Kernel functions corresponding to planar diffusion in a finite spatial domain in
the presence of homogeneous reactions were derived by Keller and Reinmuth
[45], assuming either a permeable or impermeable second boundary. Homogeneous
reactions preceding, following, or parallel to (catalytic) electron transfers were
considered, and the effect of the reactions on linear potential sweep voltammograms
was estimated.

Ng and Cheh [65–67] presented a theory of linear potential sweep voltammetry
at an RDE, by using the approximation of planar diffusion in a thin electrolyte layer
with a permeable second boundary, and taking into account homogeneous reactions.
The following three reaction schemes were discussed.

The EC scheme:

X1 C n e� � X2 ; (8.87)

X2 ! X3 (8.88)

involving a non-equilibrium reversible electron transfer (8.87) and irreversible
homogeneous reaction (8.88) among dynamic distributed species X1, X2, and X3,
was considered by Ng and Cheh [66].
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The catalytic EC scheme:

X1 C n e� � X2 ; (8.89)

X2 CX3;s ! X1 (8.90)

involving a non-equilibrium reversible electron transfer (8.89) and irreversible
homogeneous reaction (8.90) among dynamic distributed species X1 and X2, and
static species X3;s, was considered by Ng and Cheh [65].

The CE scheme:

X1 � X2 ; (8.91)

X2 C n e� � X3 (8.92)

involving a reversible homogeneous reaction (8.91), and non-equilibrium reversible
electron transfer (8.92) among dynamic distributed species X1, X2, and X3, was
considered by Ng and Cheh [67].

The thin layer model of the RDE was also used by Tokuda and Matsuda [120] to
obtain a theory of AC voltammetry for ten reaction schemes (CE, EC, EC catalytic,
and several CEC, CCE scheme, and ECC schemes) involving electron transfers and
homogeneous reactions.

The theory of linear potential sweep voltammetry for the CE reaction
scheme (8.91) and (8.92) taking place in a thin planar layer with an impermeable
second boundary was discussed by Roizenblat et al. [89]. Reversible homogeneous
reaction (8.91) and irreversible electron transfer (8.92) were assumed. In addition,
diffusion of species X1 was neglected.

8.3.5 Expanding Plane

For kernels exp
��kj .t � �/

�
K

ep
j .t; �/ there are several examples referring to the

theory of DC polarography.
Nishihara [72] analysed polarographic currents for the catalytic EC reaction

scheme:

X1 C n e� � X2 ; (8.93)

X2 � X1 (8.94)

involving electron transfer (8.93) and irreversible homogeneous reaction (8.94).
Matsuda [55] discussed DC polarographic current–potential curves assuming

equilibrium electron transfer (8.93) and non-equilibrium reversible reaction (8.94).
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Nishihara and Matsuda [73, 75] reported the theory of polarography for the CE
reaction scheme:

X1 � X2 ; (8.95)

X2 C n e� � X3 (8.96)

involving homogeneous reaction (8.95) and electron transfer (8.96).
Matsuda [55] discussed DC polarographic current–potential curves assuming

equilibrium electron transfer (8.96) and non-equilibrium reversible reaction (8.95).
Sánchez Maestre et al. [92] presented a model of pulse polarography assuming

non-equilibrium reversible reactions (8.95) and (8.96), and steady state condition
[Eq. (8.52)] for one of the auxiliary variables.

Nicholson et al. [71], Kastening [44], Sobel and Smith [116], and Matsuda [55]
considered the DC polarographic theory for the ECE reaction scheme:

X1 C n e� ! X2 ; (8.97)

X2 � X3 ; (8.98)

X3 C n e� ! X4 (8.99)

involving electron transfers (8.97) and (8.99), separated by the homogeneous
reaction (8.98).

McCord and Smith [56, 57] presented a theory of AC polarography for the CCE
reaction scheme:

X1 � X2 ; (8.100)

X2 � X3 ; (8.101)

X3 C n e� � X4 : (8.102)

Nishihara et al. [76] obtained equations for AC polarography for the EC reaction
scheme:

X1 C n e� � X2 ; (8.103)

X2 ! X3 (8.104)

involving equilibrium electron transfer (8.103), and irreversible follow-up homoge-
neous reaction (8.104).

Nishihara and Matsuda [74] elaborated a simplified theory of DC polarography,
for a complex reaction scheme involving three parallel electron transfer reactions
coupled by (pseudo) first-order homogeneous reactions. They assumed steady
state conditions for some of the auxiliary variables, which eliminated the kernels
exp

��kj .t � �/
�
K

ep
j .t; �/ from the IEs.
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8.3.6 Tubular Electrodes

For kernels exp
��kj .t � �/

�
K ct

j .t; �/ there are examples of IEs for linear poten-
tial sweep voltammetry only, developed mostly by Singh, Dutt, and co-workers, and
consistent with the Singh–Dutt approximation discussed in Sect. 6.2.4.

In particular, the EC reaction scheme:

X1 � X2 C n e� ; (8.105)

X2 ! products (8.106)

with equilibrium electron transfer (8.105) and irreversible follow-up homogeneous
reaction (8.106) was considered by Singh et al. [110]. Another EC scheme:

X1 C n e� � X2 ; (8.107)

X2 � X3 (8.108)

involving equilibrium electron transfer (8.107) and non-equilibrium reversible
homogeneous reaction (8.108) was studied by Singh et al. [111] and Teja [119].

Catalytic EC reaction scheme:

X1 C n e� � X2 ; (8.109)

X2 CX3;s ! X1 (8.110)

involving equilibrium electron transfer (8.109) and irreversible homogeneous reac-
tion (8.110) with a static species X3;s was discussed by Dutt et al. [28]. Analogous
theory for irreversible reaction (8.109) was obtained by Singh et al. [113].

The CE reaction scheme:

X1 � X2 ; (8.111)

X2 � X3 C n e� (8.112)

involving reversible homogeneous reaction (8.111) and equilibrium or irreversible
electron transfer (8.112) was considered by Singh et al. [112].

The ECE scheme:

X1 C n1 e� � X2 ; (8.113)

X2 ! X3 ; (8.114)

X3 C n2 e� � X4 (8.115)

involving two equilibrium electron transfers (8.113) and (8.115), and irreversible
homogeneous reaction (8.114) was studied by Singh et al. [108, 109].
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8.3.7 Two- and Three-Dimensional Diffusion

IEs for a controlled potential SECM experiment and the EC reaction scheme

X1 C n e� � X2 ; (8.116)

X2 ! X3 (8.117)

involving a non-equilibrium reversible electron transfer (8.116) and an irreversible
homogeneous reaction (8.117) were formulated by Mirkin and Bard [59].

8.4 Coupled Reaction–Planar Diffusion PDEs, First-Order
Homogeneous Reactions

The task of obtaining concentration–flux relationships in the general case of
Eq. (8.2), that is without assuming that the PDEs are equivalent or transformable
to a system of uncoupled PDEs, does not seem to have been analysed so far
in the literature. The only available discussion is that of the present author
[22], restricted to the planar diffusion transport without convection, in a semi-
infinite one-dimensional spatial domain. There is also one published example
of the concentration–production relationships that require some additional kernel
functions, apart from those discussed in the previous sections, as a result of the
PDE coupling by homogeneous reactions. It is the example of the catalytic EC
reaction scheme (8.20) under the assumption of planar diffusion with unequal
diffusion coefficients of species X1 and X2, and semi-infinite spatial domain. The
example was considered by Bieniasz [20, 21], in connection with the modelling of
linear potential sweep voltammetry. Incomplete formulae for the concentration–flux
relationships for this example were also reported by Oldham [80]. Below we outline
the results of Bieniasz [22].

For planar diffusion in a one-dimensional spatial domain, Eq. (8.2) becomes

@�!c .x; t/
@t

D D @2�!c .x; t/
@x2

� K �!c .x; t/ C �!� : (8.118)

The initial condition is

�!c .x; 0/ D �!c ? ; (8.119)

[where�!c ? obeys Eq. (8.3)]. Assuming a semi-infinite spatial domain, the boundary
condition at infinity is

�!c .1; t/ D �!c ? : (8.120)
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We introduce the following vector of auxiliary variables [note that the definition is
now different from Eq. (8.4)]:

�!u .x; t/ D �!c .x; t/ � �!c ? ; (8.121)

so that the incomplete IBVP (8.118)–(8.120) is transformed into

@�!u .x; t/
@t

D D @2�!u .x; t/
@x2

�K �!u .x; t/ ; (8.122)

�!u .x; 0/ D �!0 ; (8.123)

�!u .1; t/ D �!0 : (8.124)

In Appendix E, Sect. E.3 we follow Bieniasz [22] and demonstrate that the
general expression for the solution–flux relationships for �!u .x; t/, resulting from
Eqs. (8.122)–(8.124), takes the form

�!u .0; t/ D
tˆ

0

K .t; �/
�!
J u.0; �/ d� ; (8.125)

where K .t; �/ is an N dd
s � N dd

s matrix of kernel functions, and the vector
of (one-dimensional) flux elements J u

j .0; t/ D �Dj @uj .x; t/=@x
ˇ̌
xD0 of

the variables �!u .x; t/ at the interface studied is denoted by
�!
J u.0; t/ Dh

J u
1 .0; t/; : : : ; J

u
N dd

s
.0; t/

iT
. In view of Eq. (8.121) the fluxes

�!
J u.x; t/ of �!u .x; t/

and
�!
J .x; t/ of �!c .x; t/ are identical, so that from Eqs. (8.121) and (8.125) we

obtain

�!c .0; t/ D �!c ? C
tˆ

0

K .t; �/
�!
J .0; �/ d� : (8.126)

The matrix K .t; �/ is shown to depend on the spectral properties of the complex
square matrix B.s/ defined by

B.s/ D D �1 .s 1 C K/ (8.127)

with s denoting the Laplace variable and 1 denoting the unit matrix. Specifically,

K .t; �/ D '.t � �/ ; (8.128)
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where the matrix '.#/ of functions is given by

'.#/ D L �1 ˚U .s/W �1.s/
�
: (8.129)

In Eq. (8.129) the Laplace transformation is between the # and s domains, and the
matrices U .s/ and W .s/ are related to B.s/ in the following way. The columns
of U .s/ are formed by linearly independent generalised eigenvectors of B.s/, and
the columns of W .s/ are formed by the same eigenvectors of B.s/, multiplied by
certain additional matrices that depend on s and square roots of the eigenvalues of
B.s/. Detailed procedures and formulae for U .s/ and W .s/ are in Appendix E,
Sect. E.3 (see also [22]). Matrices U.s/ and W .s/ strongly depend on the numbers
of distinct eigenvalues and ordinary eigenvectors of B.s/ (which in turn depend on
s). The variable s can often be selected sufficiently large so that the most favourable
situation of all eigenvalues distinct can be approached, but in general there is no
guarantee that all eigenvalues and/or ordinary eigenvectors are distinct.

The picture emerging from this analysis is generally very complicated, and
implies a number of difficulties. It is well known that the elements of the gener-
alised eigenvectors may depend on the eigenvalues, so that one expects that the
eigenvalues of B.s/ may appear in the formulae for U .s/. The square roots of
the eigenvalues enter also W .s/, as was stated. The elements of U .s/W �1.s/
are therefore rational functions of the square roots of the eigenvalues of B.s/,
and of the variable s. The eigenvalues of B.s/, in turn, may be complicated
functions of s, and there is even no guarantee that closed-form expressions for the
eigenvalues exist. As the eigenvalues are roots of characteristic equations, which
are polynomial equations, the existence of the closed-form expressions for the
roots is guaranteed only up to N dd

s D 4. Furthermore, even for N dd
s � 4, the

expressions for the eigenvalues may be so complicated that obtaining the inverse
Laplace transform (3.14) in Eq. (8.129) is difficult. If no closed-form expressions
for the eigenvalues exist, only numerical inversion of the Laplace transform (8.129)
may be feasible. Even if closed-form expressions for the elements of K .t; �/ are
obtainable, it seems impossible to predict a complete and re-usable set of such
expressions; clearly, a variety of new kernel functions may arise, different from
the kernels QD�1=2

j exp
�� QKj;j .t � �/

�
Œ�.t � �/� �1=2 that occur in the case when

the PDEs can be de-coupled (as we have shown in Sect. 8.2). Particular reaction
schemes have to be analysed individually.

In order to illustrate some of the above predictions and difficulties, below we
analyse two examples of the simplest conceivable coupled systems of reaction–
diffusion PDEs, involving only two dynamic distributed species. For N dd

s D 2

matrixK is generally full:

K D
�
K1;1 K1;2

K2;1 K2;2

	
: (8.130)
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In general, there are also distinct diffusion coefficientsD1 ¤ D2. The corresponding
matrix B.s/ is

B.s/ D
"
K1;1Cs
D1

K1;2
D1

K2;1
D2

K2;2Cs
D2

#
: (8.131)

The characteristic equation for the eigenvalues �.s/ of B.s/ is

D1D2 �.s/
2 � ŒD1.s CK2;2/CD2.s CK1;1/� �.s/

C.s CK1;1/.s CK2;2/�K1;2K2;1 D 0 ; (8.132)

so that

�.s/ D 1

2



s CK1;1

D1

C s CK2;2

D2

˙ �1=2

D1D2

�
; (8.133)

where

� D .D1 �D2/ s
2 C 2.D1 �D2/.D1K2;2 �D2K1;1/ s

C .D1K2;2 �D2K1;1/
2 C 4D1D2 K1;2K2;1 : (8.134)

The number of distinct eigenvalues depends on �. Analysis of Eq. (8.134) reveals
that when D1 D D2 D D the dependence of� on s vanishes, so that

� D D2Œ.K2;2 �K1;1/
2 C 4K1;2K2;1� : (8.135)

Consequently, the eigenvalues (8.133) are then linear functions of s, and their
multiplicity depends only on the structure of matrix K . This is the situation
previously discussed in Sect. 8.2. In the opposite case of D1 ¤ D2 there are two
distinct and isolated points s1 and s2 in the Laplace plane, given by

s1=2 D
.D2 �D1/.D1K2;2 �D2K1;1/ ˙ 2

��.D2 �D1/
2D1D2 K1;2K2;1

�1=2

.D2 �D1/2

(8.136)

(which can be either real or complex numbers, depending on the signs of K1;2 and
K2;1), at which � D 0, and consequently there is only a single eigenvalue, and a
single ordinary eigenvector�!u .1/of B.s/:

�!u .1/ D
�
1; � D1

2K1;2



s1=2 CK1;1

D1

� s1=2 CK2;2

D2

�	T

: (8.137)
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In order to avoid this degeneracy, we can take <f s g > max .<f s1 g; <f s2 g/,
for which � ¤ 0 so that (in agreement with the general predictions of Sect. E.3
in Appendix E) we get distinct eigenvalues and distinct ordinary eigenvectors.
However, the eigenvalues �.s/ are then generally complicated, nonlinear functions
of s and it is unlikely that closed-form formulae for K .t; �/ can be obtained in this
case.

As a first example, let us take the hypothetical catalytic CEC reaction scheme:

X0

kf

�
kb

X1

X1 C e� � X2

X2

k! X1

9
>>>=

>>>;
; (8.138)

in which X0 is a static distributed species, and X1 and X2 are dynamic distributed
species. We have K1;1 D kb, K1;2 D �k, K2;1 D 0, and K2;2 D k. If we assume an
identical diffusion coefficient D of X1 and X2, then in agreement with Eq. (8.133),
as long as k ¤ kb, we have a trivial case of two distinct eigenvalues �1.s/ D .s C
kb/=D and �2.s/ D .s C k/=D, with corresponding distinct ordinary eigenvectors
�!u .1/

1 D Œ1; 0�T and �!u .1/
2 D

h
kD
kb�k ; 1

iT
. Consequently, the procedure of Sect. E.3

in Appendix E gives

U.s/W �1.s/ D
"
ŒD.s C kb/�

�1=2 kD
k�kb

˚
ŒD.s C kb/�

�1=2 � ŒD.s C k/��1=2
�

0 ŒD.s C k/��1=2

#
:

(8.139)

In view of Eqs. (8.128) and (8.129), the inverse Laplace transformation (3.14) of
Eq. (8.139) yields

K1;1.t; �/ D D�1=2 exp Œ�kb .t � �/� Œ�.t � �/� �1=2 ; (8.140)

K1;2.t; �/ D kD

k � kb

˚
D�1=2 exp Œ�kb .t � �/� Œ�.t � �/� �1=2

�D�1=2 exp Œ�k .t � �/� Œ�.t � �/��1=2� ; (8.141)

K2;1.t; �/ D 0 ; (8.142)

K2;2.t; �/ D D�1=2 exp Œ�k .t � �/� Œ�.t � �/� �1=2 : (8.143)

Thus, there are no new kernel terms, apart from those known from Sect. 8.2.
This is well expected, because when k ¤ kb matrix K is similar to a diagonal
matrix. The situation becomes diametrally different if it happens that k D kb. In
such a case there is only one eigenvalue �1.s/ D .s C k/=D, and one ordinary
eigenvector �!u .1/

1 D Œ1; 0�T. We therefore have to determine a generalised second-

order eigenvector �!u .2/
1 of B.s/, which is �!u .2/

1 D Œ0; 1�T. The procedure of
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Sect. E.3 in Appendix E then gives

U .s/W �1.s/ D
"
ŒD.s C k/��1=2 kD1=2

2.sCk/3=2
0 ŒD.s C k/��1=2

#
: (8.144)

Inverse Laplace transformation (3.14) of Eq. (8.144) yields

K1;1.t; �/ D D�1=2 exp Œ�k .t � �/� Œ�.t � �/��1=2 ; (8.145)

K1;2.t; �/ D k.D=�/1=2 exp Œ�k .t � �/� .t � �/1=2 ; (8.146)

K2;1.t; �/ D 0 ; (8.147)

K2;2.t; �/ D D�1=2 exp Œ�k .t � �/� Œ�.t � �/� �1=2 : (8.148)

As can be seen, K1;2.t; �/ is a new kernel function arising in this example, not
predicted in Sect. 8.2. This kernel arises, because when k D kb matrix K is no
longer similar to a diagonal matrix.

As a second example, we take the catalytic EC reaction scheme:

X1 C e� � X2

X2

kf

�
kb

X1

9
=

; ; (8.149)

for which K1;1 D kb, K1;2 D �kf, K2;1 D �kb, and K2;2 D kf. If we assume
different diffusion coefficientsD1 ¤ D2, then Eq. (8.133) for the eigenvalues is too
complicated to allow one to obtain closed-form formulae for K .t; �/. The situation
becomes more tractable if kb D 0, so that we effectively have an irreversible follow-
up homogeneous reaction (still admitting the possibility of D1 ¤ D2; so that the
procedure of Sect. 8.2 cannot be applied). This case has been shown solvable in
Bieniasz [20, 21]. Equation (8.133) then gives two distinct eigenvalues �1.s/ D
s=D1 and �2.s/ D .s C kf/=D2, and corresponding distinct ordinary eigenvectors�!u .1/

1 D Œ1; 0�T and �!u .1/
2 D Œ1; s=kf � �.s C kf/=kf�

T, where � D D1=D2. The
procedure of Sect. E.3 in Appendix E then gives

U .s/W �1.s/ D
"
.D1 s/

�1=2 kf
ŒD2.sCkf/�

�1=2��1=2.D2 s/�1=2
s��.sCkf/

0 ŒD2.s C kf/�
�1=2

#
: (8.150)

Inverse Laplace transformation (3.14) of Eq. (8.150) yields

K1;1.t; �/ D D�1=2
1 Œ�.t � �/��1=2 ; (8.151)

K2;1.t; �/ D 0 ; (8.152)

K2;2.t; �/ D D�1=2
2 exp Œ�kf .t � �/� Œ�.t � �/��1=2 ; (8.153)
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and

K1;2.t; �/ D D�1=2
2



kf

1 � �
�1=2 (

erex

"

kf�

1 � �
�1=2

.t � �/1=2
#

� exp Œ�kf .t � �/� erex

"

kf

1 � �
�1=2

.t � �/1=2
#)

(8.154)

for � < 1,

K1;2.t; �/ D D�1=2
1 f1 � exp Œ�kf .t � �/�g Œ�.t � �/� �1=2 (8.155)

for � D 1, and

K1;2.t; �/ D D�1=2
2



kf

� � 1
�1=2

2

�1=2

(
daw

"

kf�

� � 1
�1=2

.t � �/1=2
#

� exp Œ�kf .t � �/� daw

"

kf

� � 1
�1=2

.t � �/1=2
#)

(8.156)

for � > 1. In Eq. (8.154) erex.�/ is given by Eq. (5.76), and in Eq. (8.156) daw.�/ is
the Dawson integral

daw.z/ D exp.�z2/

zˆ

0

exp.�2/ d� : (8.157)

Kernels K1;1.t; �/, K2;2.t; �/, and K1;2.t; �/ for � D 1 correspond to the predic-
tions of Sect. 8.2, where equal diffusion coefficients were assumed. However, new
kernels K1;2.t; �/ arise in this example, when � ¤ 1. They contain terms having
general forms expŒ�a.t � �/� erexfŒb.t � �/�1=2g and expŒ�a.t � �/� dawfŒb.t �
�/�1=2g, where a and b are suitable coefficients.

8.5 Transport with Nonlinear Homogeneous Reaction
Kinetics

There is a number of approaches to handling nonlinear homogeneous reaction
kinetics in the IE method, documented in the literature. Most of these approaches
involve some sort of simplifications or approximations, and therefore have a limited
applicability. The approaches have been published using models defined over one-
dimensional spatial domains, although they can be extended to multiple dimensions.
We discuss them in the following Sects. 8.5.1–8.5.4.
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8.5.1 Equilibrium State Assumption

One possibility is to make use of equilibrium assumptions to lump homogeneous
reactions with heterogeneous reactions within the reaction scheme considered. In
this way one actually eliminates the need to determine and use the concentration–
production rate relationships for distributed species subject to nonlinear reaction–
transport PDEs. This approach was used by Shuman [106] to derive IEs describing
cyclic voltammetry and corresponding to the following EC reaction scheme at a
planar electrode:

X1 C n e� � X2

mX2 � q X3


; (8.158)

in whichm and q are small integers, not simultaneously equal unity, and species X3

is not electroactive. Pure diffusion in a semi-infinite spatial domain was assumed,
but the approach might well be applied to other kinds of transport. Reference [106]
seems to contain errors, notably there is some lack of clarity around Eqs. (2) and (3)
in that reference, with regard to the symbols and assumptions. However, from the
final IEs it appears that Shuman used the following idea. A complete modelling of
electroanalytical experiments involving scheme (8.158) would require a solution of
three PDEs for the concentrations c1, c2, and c3 of species X1, X2, and X3. The PDE
for c1 would be a diffusion equation, whereas those for c2 and c3 would be nonlinear
reaction–diffusion equations containing reaction terms with large (but finite) rate
constants. If we assume that the homogeneous reaction is fast and reversible, the
assumption of a virtual equilibrium state of this reaction is applied, implying the
following approximate relationship between the concentrations of X2 and X3:

c
q
3 .x; t/=c

m
2 .x; t/ D K ; (8.159)

where K is the equilibrium constant of the homogeneous reaction. Therefore, the
PDE for c2 need not to be considered at all, whereas the PDE for c3 reduces to a
diffusion PDE, since the reaction terms cancel. Effectively, this amounts to replacing
scheme (8.158) by the single electrochemical reaction

mX1 Cmn e� � q X3 : (8.160)

Of course, the higher-order non-elementary heterogeneous reaction (8.160) does not
present any difficulty for the IE method.

A similar assumption of homogeneous equilibrium state was used by other
authors. Fatouros et al. [29] applied it in their study of non-equilibrium reversible
electron transfer associated with an equilibrium follow-up dimerisation reaction,
while discussing potential step chronoamperometry and linear potential sweep
voltammetry. Puy et al. [86] used it in connection with the modelling of normal
pulse polarography. Hapiot et al. [36] employed it for another reaction scheme
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involving electron transfer and homogeneous dimerisation, while considering cyclic
voltammetry. Lovrić et al. [46, 49] applied it to the modelling of square wave
voltammetry.

The above approach may seem simple and useful, but in the opinion of the present
author it should be avoided. In the case of reaction–transport PDEs the validity of
the assumption of homogeneous equilibria is debatable. Reaction terms involving
large rate constants cause the PDEs to be singularly perturbed (see, for example,
[41, 84] for the discussion of singularly perturbed problems). This usually implies
the existence of local narrow boundary or interior layers (in electrochemistry known
as reaction layers), inside which the homogeneous reaction IS NOT in equilibrium.
Only outside the reaction layer do the concentrations obey Eq. (8.159). Thus, the
crucial question is how big an error is committed by neglecting the reaction layer(s).
This is not clear in Shuman [106]. Species X3 is not electroactive, so that its
concentration gradient at the electrode j electrolyte interface must be zero, whereas
the gradient of the electroactive species X2 is nonzero. Consequently, equilibrium
condition (8.159) certainly cannot hold in the neighbourhood of the interface.
Hence, a reaction layer must be present there.

8.5.2 Steady State Assumption

Another approach to dealing with nonlinear homogeneous kinetics consists in
employing steady state assumptions. Some early formulations of this idea can be
found in the works of Tachi and Senda [118] (who modelled polarographic current
for an ECE scheme with a fast homogeneous reaction, assuming the expanding plane
convection–diffusion), and Savéant and Vianello [98,100] and Nicholson [68] (who
modelled linear potential sweep for EC and CE schemes under planar diffusion
conditions). This approach has found application in numerous further theoretical
studies by the IE method [2,4–7,9–11,13,14,17,26,37,48,61–63,95,96,102–104],
mostly devoted to linear potential sweep and cyclic voltammetry. The approach is
applicable in the situations when model PDEs involve reaction–transport PDEs,
containing nonlinear homogeneous kinetic terms, which are practically at steady
state and can be regarded as second-order ODEs. The ODEs must be solvable
analytically. It is then possible to combine the analytically obtained steady state
solution–flux relationships for the ODEs with the boundary conditions at the inter-
face studied. Together with other, integral solution–production rate relationships,
obtained for remaining PDEs, this gives IEs describing transient experiments.
Such IEs are nonlinear. Most of the literature examples of this approach refer to
planar diffusion in semi-infinite spatial domains, but the approach is not necessarily
restricted to such conditions, as long as appropriate analytical concentration–flux
relationships (see below) can be obtained.
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The approach can be most transparently explained by considering a system
involving one or more irreversible homogeneous reactions

mj Xj

kj! product(s) ; (8.161)

with species Xj being initially absent transient intermediates that do not participate
in any other homogeneous reactions. Let the stoichiometric coefficients mj be
integers greater than or equal 2, and let the reactions follow the power rate law
with reaction orders equal to the stoichiometric coefficients (see Sect. 2.7). The case
of mj D 2 (dimerisation or disproportionation) is particularly important; reactions
withmj D 3 are rather rare, and those withmj > 3 rather unlikely. Assume further
that the PDEs for the concentrations of the product(s) of all reactions (8.161) need
not be included in the mathematical description (which happens, for example, if
the reaction scheme studied does not contain any further reactions involving these
product(s)). Under these assumptions, the only nonlinear PDEs that have to be taken
into account are the reaction–transport PDEs for the concentrations cj of species
Xj . The EC reaction scheme:

X1 C e� � X2

2X2

k! product(s)

)
; (8.162)

discussed in [63,68,98], is an example when the above assumptions are fulfilled. In
the case of planar diffusion in a semi-infinite spatial domain, the nonlinear reaction–
transport PDEs for species Xj take the form

@cj .x; t/

@t
D Dj

@2cj .x; t/

@x2
�mj kj cj .x; t/

mj ; (8.163)

with the initial condition

cj .x; 0/ D 0 ; (8.164)

and the boundary condition

cj .1; t/ D 0 : (8.165)

If the rate constant kj is large, a steady state is approached, in which the rate
of diffusion is nearly compensated by the rate of the homogeneous reaction in
Eq. (8.163), so that the steady state condition @cj .x; t/=@t � 0 can be assumed.
The steady state is analogous to those indicated in Sect. 8.2 for the linear reaction–
diffusion equations. In Appendix E, Sect. E.4, we present an analytical solution
of the incomplete IBVP given by Eqs. (8.163)–(8.165), under the steady state



8.5 Transport with Nonlinear Homogeneous Reaction Kinetics 187

condition. The following relationship between the concentration and production rate
of species Xj at the interface is obtained [cf. Eq. (E.99)]:

cj .0; t/ D
�
mj C 1
2

�
mj kj Dj

��1
	1=.mjC1/

phet
j .t/

2=.mjC1/ : (8.166)

As a specific example, let us consider a controlled potential experiment for the
reaction scheme (8.162) with an equilibrium electron transfer reaction. In this case
phet
1 .t/ D J1.0; t/, phet

2 .t/ D J2.0; t/, phet
1 .t/ C phet

2 .t/ D 0, and the Faradaic
current is I.t/ D FAJ1.0; t/. The integral solution–production rate relationship for
species X1 is given by Eq. (5.6) with kernel (5.72):

c1.0; t/ D c?1 CD�1=2
1

tˆ

0

Œ�.t � �/��1=2 phet
1 .�/ d� ; (8.167)

whereas for species X2 Eq. (8.166) gives

c2.0; t/ D
�
3

2
.2 k D2/

�1
	1=3

phet
2 .t/

2=3 : (8.168)

Let us define the unknown function as �.t/ D �I.t/.FA/�1. By combining
Eqs. (8.167) and (8.168) with the Nernst equation c1.0; t/ D c2.0; t/

exp
˚
F.RT/�1

�
E.t/ �E0

��
we obtain the following nonlinear second kind

Volterra IE for �.t/:

c?1 �D�1=2
1

tˆ

0

Œ�.t � �/��1=2 �.�/ d�

�
�
3

2
.2 k D2/

�1
	1=3

exp

�
F

RT

�
E.t/ �E0

�
�.t/2=3 D 0 : (8.169)

Relationships analogous to Eq. (8.166), but valid for spherical and cylindrical
interfaces cannot be obtained analytically. However, if the homogeneous reaction
is very fast, the reaction layer is very thin compared to the radii of such interfaces,
so that the concentration–production rate relationship (8.166) for planar interfaces
should be a good approximation. Olmstead and Nicholson [82] used such an
approximation in the case of the theory of disproportionation reaction at spherical
electrodes. Aoki et al. [16] used a similar approximation while considering voltam-
metry for a second-order catalytic reaction scheme at microcylinder electrodes.
A different attempt was made by Delmastro [26], who suggested an approximate
relationship for mj D 2 and one-dimensional spherical diffusion in semi-infinite
spatial domain, while considering the IE arising in the theory of polarographic
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currents for the second-order regeneration (catalytic) EC reaction scheme:

X1 C e� � X2

2X2

k! X1 C X3

)
: (8.170)

This reaction scheme involves three distributed species X1, X2, and X3, but the
concentration of X3 has no effect on the current and need not be considered.
Delmastro defined auxiliary variables u1 D 2 c1 C c2 and u2 D c2, and assumed
identical diffusion coefficient D of X1 and X2, which resulted in k1 D 0, k2 D k,
and %1 D %2 D D1=2=r0 [cf. Eq. (5.75)]. The steady state condition @u2.r; t/=@t �
0 was assumed. Delmastro suggested that the solution–flux relationship for the
variable u2 at a spherical interface can be approximated by Eq. (8.166) (with
m2 D 2), valid for a planar interface, provided that the following replacement is
made in this equation:

�
2 k2 c

?
1

�1=2  �
2 k2 c

?
1

�1=2 C %2 : (8.171)

The replacement was inspired by the relationship (8.53) characteristic of the first-
order homogeneous reaction–spherical diffusion equation, where the terms QK1=2

j;j

and Q%j occur together as a sum QK1=2
j;j C Q%j . Although such modified Eq. (8.166) was

found useful for the purposes of the Delmastro study [26], its general validity is
rather problematic. As u2 D c2, a correct relationship between the solution and flux
of u2 at the interface should depend exclusively on the parameters characteristic of
the incomplete IBVP (8.163)–(8.165) for c2. Expression (8.171) does not satisfy this
expectation, since it involves the initial concentration c?1 of species X1, which does
not occur in the PDE for u2, nor in the initial and boundary conditions at infinity,
for u2.

8.5.3 The Gerischer Approximation

There exists a special linearising approximation that can be used to obtain IEs in
the presence of nonlinear homogeneous kinetics, for a class of electroanalytical
experiments characterised by small perturbations. In such experiments a certain
reference state of an electrochemical system is slightly perturbed by a rapidly
varying signal (for example a sinusoidal perturbation of the electrode potential), and
the response to this perturbation is studied. The reference state can be, for example,
an equilibrium state, a steady state, or a state corresponding to another perturbation,
which must be large and slowly varying. The linearising approximation is attributed
to Gerischer [33], and it was used by Hayes et al. [38, 39] and Ružić et al. [91], to
derive IEs pertinent to the theory of AC polarography.
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In order to present the idea of the Gerischer approximation, let us focus on a
j th dynamic distributed species Xj subject to convection–diffusion transport with
homogeneous reactions. To fix attention, assume that the homogeneous reaction is

mj Xj

kj! product(s) ; (8.172)

and it obeys the power rate law with the reaction order equal to the stoichiometric
coefficientmj > 1 (see Sect. 2.7). Consequently, the perturbed state is described by
the following PDE:

@cj

@t
D Dj 4 cj � v � grad cj �mj kj c

mj
j : (8.173)

Although in Eq. (8.173) we assume only one nonlinear term for simplicity, several
kinetic terms and/or kinetic term(s) dependent on concentrations of several different
species present no bigger difficulty and can be handled in a similar way. The
reference state is generally described by an analogous PDE:

@ Qcj
@t
D Dj 4 Qcj � v � grad Qcj �mj kj Qcmjj ; (8.174)

where Qcj is the concentration in the reference state. Equation (8.174) may simplify
if the reference state is a steady state or an equilibrium state. Assuming a small
departure from the reference state, the homogeneous kinetic term can be linearised:

c
mj
j � Qcmjj C

d
�
c
mj
j

�

d cj

ˇ̌
ˇ̌
ˇ̌
cjDQcj

�
cj � Qcj

� D Qcmjj Cmj Qcmj�1
j

�
cj � Qcj

�
: (8.175)

Multivariate linearisation has to be used in cases when the homogeneous kinetic
terms depend on concentrations of several different species. By subtracting
Eqs. (8.173) and (8.174), taking into account Eq. (8.175), and introducing an
auxiliary variable

uj D cj � Qcj ; (8.176)

one obtains:

@uj
@t
D Dj 4 uj � v � grad uj �m2

j kj Qcmj�1
j uj : (8.177)

Equation (8.177) is linear with respect to the variable uj , and can be handled by
the IE method in the same manner as described in Sects. 8.1–8.4, provided that Qcj
occurring in Eq. (8.177) can be regarded as constant. This happens, for example,
in the case of one-dimensional diffusion transport in semi-infinite spatial domains,
if the time scale of the small perturbation is much smaller than the time scale
of the evolution of the reference state. In such a case Qcj can be taken equal to
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the momentary boundary value of the concentration (in the reference state), at the
interface studied.

8.5.4 Conversion to IDEs

Yet another way of handling nonlinear homogeneous reaction kinetics relies on
converting the IBVPs to IDEs, rather than to IEs. This approach was suggested by
Mastragostino et al. [54], and further elaborated by Olmstead et al. [83] and Nadjo
et al. [64]. A similar procedure was also employed for the convolutive analysis
of experimental data by Amatore et al. [3]. Further examples were reported by
Andrieux et al. [12] and Renault et al. [88]. Planar diffusion in semi-infinite spatial
domains was assumed in [3, 12, 54, 64, 88], and spherical in [83], but the approach
is not restricted to such assumptions.

The idea of this approach can be formulated as follows. Consider an IBVP
describing an electroanalytical experiment. Assume that the problem involves PDEs
for the concentrations cj of distributed species, or equivalent PDEs for auxiliary
variables uj that depend on the concentrations. In cases when some of these PDEs
are linear, the solution–flux relationships for such PDEs may be easy to obtain, in
the same manner as previously described in Sects. 5.2, 8.2, and 8.4. By combining
these relationships with the boundary conditions at the interface studied, we obtain
one or more IEs which are incomplete in the sense that they still involve unknowns
(cj , uj , or their fluxes at the interface) subject to the remaining, nonlinear PDEs.
In other words, we obtain a coupled system of IEs and PDEs, i.e. an IDE system,
which has to be solved simultaneously. The IDE system has identical solutions as
the original IBVP (but not vice versa, since not all spatial concentration profiles are
determined from the IDE system). Therefore, the nonlinear homogeneous kinetics
is handled rigorously in this approach, without using any simplifying assumption
or approximation. However, it is most likely that the solution of the IDE system
obtained can only be performed numerically.

As an example, let us consider a controlled potential experiment for the EC
reaction scheme discussed in [83]:

X1 C e� � X2

2X2

k! products

)
(8.178)

with an equilibrium electron transfer, assuming planar diffusion in a semi-infinite
spatial domain. The IBVP is:

@c1.x; t/

@t
D D1

@2c1.x; t/

@x2
; (8.179)

@c2.x; t/

@t
D D2

@2c2.x; t/

@x2
� 2 k c2.x; t/2 ; (8.180)
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c1.x; 0/ D c?1 ; (8.181)

c2.x; 0/ D 0 ; (8.182)

c1.0; t/ D c2.0; t/ exp

�
F

RT

�
E.t/ �E0

�
; (8.183)

D1

@c1.x; t/

@x

ˇ̌
ˇ̌
xD0
C D2

@c2.x; t/

@x

ˇ̌
ˇ̌
xD0
D 0 ; (8.184)

c1.1; t/ D c?1 ; (8.185)

c2.1; t/ D 0 : (8.186)

The Faradaic current response I.t/ to the electrode potential perturbationE.t/ is to
be determined:

I.t/ D �F AD1

@c1.x; t/

@x

ˇ̌
ˇ̌
xD0

: (8.187)

The PDE (8.179) is linear, so that the concentration–production rate relationship
resulting from Eqs. (8.179), (8.181), and (8.185) can be written in the form
consistent with Eqs. (5.86) and (8.187):

c1.0; t/ D c?1 CD�1=2
1

tˆ

0

Œ�.t � �/��1=2 I.�/
FA

d� : (8.188)

The IDE system obtained from the IBVP (8.179)–(8.187) therefore is:

@c2.x; t/

@t
D D2

@2c2.x; t/

@x2
� 2 k c2.x; t/2 ; (8.189)

c2.x; 0/ D 0 ; (8.190)

c?1 CD�1=2
1

tˆ

0

Œ�.t � �/��1=2 I.�/
FA

d� D c2.0; t/ exp

�
F

RT

�
E.t/ � E0

�
;

(8.191)

I.t/

FA
D D2

@c2.x; t/

@x

ˇ̌
ˇ̌
xD0

; (8.192)

c2.1; t/ D 0 ; (8.193)

System (8.189)–(8.193) has to be solved for I.t/ and c2.x; t/.
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25. Davčeva M, Mirčeski V, Komorsky-Lovrić Š (2011) Evaluation of the antioxidative activity
by measuring the rate of the homogeneous oxidation reaction with ferroceniumdimethanol
cation. Comparative analysis of glutathione and ascorbic acid. Int J Electrochem Sci 6:2718–
2729

26. Delmastro JR (1969) Theory of polarographic kinetic currents for second-order regeneration
reactions at spherical electrodes. II. Numerical solution of the integral equations for steady-
state behavior. Anal Chem 41:747–753

27. Delmastro JR, Booman GL (1969) Polarographic kinetic currents for first-order preceding
and regeneration reactions at spherical electrodes. Anal Chem 41:1409–1420

28. Dutt J, Chhabra J, Singh T (1989) Linear sweep voltammetry at tubular electrodes. Part IV.
Catalytic reactions. J Electroanal Chem 273:69–78

29. Fatouros N, Chemla M, Amatore C, Savéant JM (1984) Slow charge transfer associated with
a fast equilibriated follow-up dimerization reaction. J Electroanal Chem 172:67–81
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39. Hayes JW, Ružić I, Smith DE, Booman GL, Delmastro JR (1974) Fundamental harmonic
A.C. polarography with irreversible dimerization following the charge transfer step. Theory
and experimental results with the benzaldehyde system. J Electroanal Chem 51:269–285

40. Henke KH, Hans W (1955) Reaktionskinetisch bedingte polarographische Stromstärke. 3.
Mitteilung: Dem Elektrodenprozeß nachgelagerte chemische Reaktionen unter Rückbildung
des Depolarisators. Z Elektrochem 59:676–680

41. Holmes MH (1995) Introduction to perturbation methods. Springer, New York
42. Hung HL, Delmastro JR, Smith DE (1964) Alternating current polarography of electrode

processes with coupled homogeneous chemical reactions. III. Theory for systems with multi-
step first-order chemical reactions. J Electroanal Chem 7:1–25

43. Kant R, Rangarajan SK (1989) Chronopotentiometry with power-law perturbation functions
at an expanding plane electrode with and without a preceding blank period for systems with
a coupled first-order homogeneous chemical reaction. J Electroanal Chem 265:39–65

44. Kastening B (1969) Note on the polarographic theory for an ECE mechanism. Anal Chem
41:1142–1144

45. Keller HE, Reinmuth WH (1972) Theory of potential scan voltammetry with finite diffusion.
Kinetics and other complications. Anal Chem 44:1167–1178
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Chapter 9
Models Involving Distributed and Localised
Species

In this chapter we discuss electroanalytical models in which dynamic distributed
species have to be taken into account simultaneously with dynamic localised
species. Models of this kind are frequently encountered in organic electrochemistry,
or in studies of electrocatalytic reactions, deposition/precipitation of solid phases
(or layers), or modified electrodes.

We have seen in Chap. 4 that in the case of models involving dynamic localised
species alone one can obtain a surprising diversity of the IEs, depending on
the choice of unknown variables and/or on the procedure of deriving the IEs.
One can expect that the combination of these diverse approaches to handling
dynamic localised species, with the various possible concentration–production rate
relationships for dynamic distributed species, discussed in Chaps. 5, 6, 7, and 8,
can lead to an even bigger variety of equations. Indeed, the literature reveals that
a particular electrochemical system involving dynamic distributed and dynamic
localised species can often be described in a number of alternative ways. As a
result one obtains different, but equivalent equations. The equations can be IEs
involving integrals with kernels already known from Chaps. 4, 5, 6, 7, and 8,
but also IDEs of various forms. The appearance of new kernels, not predicted in
previous chapters, is also possible, as well as the occurrence of (generally rare
in electrochemistry) nonlinear IEs involving integrals given by Eq. (3.1), in which
integrands are nonlinear expressions of the unknown function �.t/. Section 9.1
discusses all these details of the IE or IDE derivation for the present category of
models.

There are many published IE- or IDE-based spatially one-dimensional models
of electroanalytical experiments for systems involving distributed and localised
species. Most of these IEs or IDEs describe controlled potential experiments.
However, there have also been a few IEs or IDEs describing controlled current
experiments. A brief summary of all these literature models is given in Sect. 9.2.
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9.1 Derivation of the IEs or IDEs

Consider an experiment, in which a set of N het
r heterogeneous reactions takes place

at an interface studied, among N dd
s dynamic distributed species and N dl

s dynamic
localised species. We focus here on spatially one-dimensional models, because there
are currently no literature examples of higher dimensional models. However, the
procedures described below can be extended to multiple dimensions. The dynamic
distributed species may belong to any one of the two spatially extended phases
adjacent to the interface, and they are subject to one-dimensional PDEs of diffusion,
convection–diffusion, (homogeneous) reaction–diffusion, or reaction–convection–
diffusion type. The dynamic localised species are present at the interface only. Apart
from these species, the system may also involve static (distributed and/or localised)
species, but this possibility does not influence the present discussion. Similarly to
the experiments discussed in Chaps. 4, 5, 6, and 8, the derivation of the IEs (or IDEs)
for the present kind of models is based on Eq. (2.54) with matrices V andZ resulting
from the partial inversion of Eq. (2.53), possibly followed by the application of
additional assumptions. These can be equilibrium assumption(s) referring to some
of the heterogeneous reactions, or steady state assumption(s) referring to some of
the dynamic species.

In view of the discussion in Sects. 2.7 and 2.9, the elements of the vector�!p het.t/

are now given by Eqs. (2.46), (2.47), and (2.49), depending on the type of the
dynamic species (distributed, localised, and electrons exchanged). It is convenient
to distinguish subvectors �!p dd;het.t/ and �!p dl;het.t/ of �!p het.t/, that group together
interfacial production rates of dynamic distributed and dynamic localised species,
respectively (it is not required that all species of one type precede all species of the
second type in vector �!p het.t/; the species can be ordered in any way). Hence, from
Eq. (2.47) we have:

�!p dl;het.t/ D d
�!
� .t/

dt
; (9.1)

or, by analogy with Eq. (4.12):

�!
� .t/ D �!� ? C

tˆ

0

�!p dl;het.�/ d� ; (9.2)

where
�!
� .t/ is the vector of the concentrations of the dynamic localised species.

Simultaneously, for the dynamic distributed species Eq. (8.1) now takes the form:

�!c 
.t/ D �!c ? C
tˆ

0

K .t; �/
h�!p dd;het.�/� �!p dd;het;?

i
d� ; (9.3)



9.1 Derivation of the IEs or IDEs 201

where�!c 
.t/ is the vector of the boundary concentrations of the dynamic distributed
species at the interface studied, and K .t; �/ is the matrix of suitable kernel
functions representing transport and homogeneous reactions. In agreement with the

previous notation, initial concentrations are denoted by
�!
� ? and �!c ?, and �!p dd;het;?

is the vector of initial values of �!p dd;het.t/. Equations (9.1)–(9.3) are necessary for
the procedures of deriving the IEs or IDEs. Below we attempt to describe, in a
systematic way, the various derivation procedures, most frequently encountered in
the literature. A former review by Lovrić [52] can be suggested as an introduction
to this subject.

Procedure 1 In this procedure one assumes that�!p dd;het.t/ and
�!
� .t/ are to play the

role of the unknown functions of time. The mere substitution of Eqs. (9.1) and (9.3)
into Eq. (2.54) then gives IDE(s) from which these unknowns can be determined.
Equation system (2.54) may contain one additional equation, from which model
responses (current or potential) are to be calculated. We obtain IDEs, because
�!p dd;het.t/ occurs under integrals in Eq. (9.3), whereas

�!
� .t/ occurs both directly (in

the reaction rate expressions or equilibrium equations) and in the derivative form

d
�!
� .t/=dt . This procedure was used by Reinmuth [105]. Its further applications

can be found in [4, 42, 107, 108, 114, 115]. Although the procedure is generally
applicable, we do not recommend it, because the solution of the IDEs is usually
more involved than the solution of the IEs. For example, discretisations of the
derivatives must be provided, in the IDE case, in addition to the discretisations of
the integrals, sufficient for IEs. Also initial conditions for the unknowns present
in the derivative form must be supplied, in contrast to the initial values of other
unknowns. The equally general Procedure 4, described below, entirely avoids all
these problems.

Procedure 2 A somewhat simpler variant of Procedure 1 is obtained if, owing
to appropriate model assumptions, elements of matrix Z acting on �!p dl;het.t/ are
zero [with the allowed exception of one equation in Eq. (2.54), which serves for
determining the model response, if such equation is present], and which can still

involve elements of d
�!
� .t/=dt . Such model assumptions can be equilibrium assump-

tions for selected reactions, steady state assumptions for selected intermediates, or
replacements of some of the structural conservation relationships by equivalent
AEs. For example, the structural conservation relationship involving exclusively
production rates of localised species:

X

i

ai
d�i.t/

dt
D 0 ; (9.4)

with numerical coefficients ai , which is differential in nature, can be replaced by the
equivalent AE:

X

i

ai�i .t/ D
X

i

ai�
?
i : (9.5)
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In such cases, the AEs present in Eq. (2.54) allow one to calculate
�!
� .t/ as a

function of �!c 
.t/. Substitution of
�!
� .t/ into the remaining equations then gives

IEs for�!p dd;het.t/, instead of the IDEs obtainable in the general case of Procedure 1.
The treatment of the electroanalytical models by this procedure is therefore almost
identical to the models discussed in Chaps. 5, 6, and 8, for systems involving
exclusively dynamic distributed species. This procedure was used by White and
Lawson [119]. Its further applications are in [3, 6, 12, 13, 35, 42, 43, 123].

Procedure 3 Another variant of Procedure 1, resulting in somewhat different IDEs,
can be applied when (one or more) integral(s) having the form:

Y.t/ D
tˆ

0

K .t; �/
d�i.�/

d�
d� (9.6)

occurs in the IDEs obtained by Procedure 1, where K .t; �/ is a weakly singular
kernel of the convolution type. Such conditions are satisfied by the majority of
kernels considered in Chaps. 5, 6, and 8, with the exception of the kernel for the
expanding plane model of the DME. Since for the convolution kernel K .t; �/ D
'.t � �/, where '.t/ is a certain function of time, the application of the Laplace
transformation (3.12), and of the convolution theorem (3.17), to Eq. (9.6) gives:

Y.t/ D L �1 n O'.s/
h
s O�i .s/ � � ?

i

io

D L �1
�
s O'.s/

�
O�i.s/ � �

?
i

s

	
� 0


D d

dt

tˆ

0

K .t; �/
�
�i.�/ � � ?

i

�
d� :

(9.7)

In proving the equivalence (9.7), one takes into account formula (3.18) with
n D 1, the weak singularity of K .t; �/, and the boundedness of �i .t/ � � ?

i

at t ! 0C, which together imply that lim
t!0C

t́

0

K .t; �/
�
�i .�/� � ?

i

�
d� D 0.

By using Eq. (9.7), (some of) the temporal derivatives d�i.t/=dt in the IDEs
obtained by Procedure 1 are replaced by the temporal derivatives of the integrals
t́

0

K .t; �/
�
�i .�/� � ?

i

�
d� . Such a modification of Procedure 1 was used by

Lovrić [46], and it remained in use mostly by Lovrić and co-workers [47, 50, 53–
55, 59, 60, 64, 84, 125–127].

A different attempt to get rid of the temporal derivative d�i.t/=dt under the
integral (9.6) was reported by Nicholson [82], who employed integration by parts:

Y.t/ D '.t � �/ �i .�/j�Dt
�D0 �

tˆ

0

d'.t � �/
d�

�i .�/ d� : (9.8)
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For the kernelK .t; �/ D Œ�.t��/��1=2, related to planar diffusion in a semi-infinite
spatial domain, Eq. (9.8) becomes

Y.t/ D Œ�.t � �/��1=2 �i .�/
ˇ̌�Dt
�D0 �

1

2
��1=2

tˆ

0

.t � �/�3=2 �i .�/ d� : (9.9)

The problem with Eq. (9.9) is that the kernel .t � �/�3=2 in the integral in Eq. (9.9)
is strongly singular (cf. Sect. 3.1), and also the first term in the right-hand side of
Eq. (9.9) is divergent when � ! t . It is not clear how this problem was handled
by Nicholson [82], but it seems that the calculations reported there are erroneous.
Wrong predictions of Nicholson [82] were identified by White and Lawson [119].
We therefore do not recommend the route based on Eq. (9.8).

Procedure 4 Compared to Procedures 1, 2, and 3, a better idea is to consider�!p dd;het.t/ and �!p dl;het.t/ as unknown functions of time. This is a generally
applicable approach. It can be viewed as a combination of the procedure from
Chaps. 5, 6, or 8 (for dynamic distributed species), with Procedure 3 of Chap. 4 (for

dynamic localised species). After substituting expressions (9.2) and (9.3) for
�!
� .t/

and �!c 
.t/ into Eq. (2.54), one obtains IEs, from which �!p dd;het.t/ and �!p dl;het.t/

can be determined. Since numerical solution algorithms (see Chap. 12) usually
yield approximations both to the unknown functions and to their integrals present

in the IEs, by solving the IEs one also obtains �!c 
.t/ and
�!
� .t/. This procedure

was used by Wopschall and Shain [120], and it has become quite popular among
various authors [5, 8, 24, 34, 62, 63, 72, 74, 86, 87, 121, 122]. The procedure can
be recommended as the most transparent and unsophisticated one. It elegantly
combines integrals having kernels characteristic of transport with homogeneous
reactions, with integrals having kernel K .t; �/ D 1, characteristic of localised
species. Therefore, numerical algorithms developed for the above kernels can be
easily re-used, without a need to adapt them to any new kernels.

Procedure 5 Apart from the generally applicable Procedures 1 and 4, there have
been a few alternative procedures valid in special situations. One of them makes use
of the relationship (9.3) inverted in a particular way. The inversion may be not easy
for an arbitrary kernel function, but it becomes rather straightforward in the case of
planar diffusion in a semi-infinite spatial domain. In accordance with the discussion
in Sect. 5.2 [cf. Eqs. (5.71) and (5.86)], we then have for any j th dynamic distributed
species:

c


j .t/ D c?j CD�1=2

j

tˆ

0

Œ�.t � �/��1=2 pdd;het
j .�/ d� : (9.10)
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We divide the Laplace transform of Eq. (9.10) by s1=2, and re-transform, which in
view of the convolution theorem (3.17) and formula (3.19) gives:

tˆ

0

Œ�.t � �/��1=2
h
c


j .�/� c?j

i
d� D D�1=2

j

tˆ

0

p
dd;het
j .�/ d� ; (9.11)

or, after analytical integration of c?j with the kernel Œ�.t � �/��1=2:
tˆ

0

Œ�.t � �/��1=2 c
j .�/ d� D 2c?j ��1=2t1=2CD�1=2
j

tˆ

0

p
dd;het
j .�/ d� : (9.12)

Equations (9.11) or (9.12) are useful if the reaction scheme at the interface studied
involves equilibrium heterogeneous non-electrochemical reactions, so that c
j .t/

is related to (some elements of)
�!
� .t/ by AEs. For example, the equation of an

adsorption isotherm may hold, between the j th dynamic distributed species and the
i th dynamic localised species:

K c


j .t/ D f .�i .t// ; (9.13)

where K is the adsorption equilibrium constant, and function f .�/ defines the
particular isotherm (see Sect. 2.7). Usually another equation also exists in equation
system (2.54), linking pdd;het

j .t/ and pdl;het
i .t/ D d�i.t/=dt . Such equation can take

the form:

pdd;het
j .t/C a d�i.t/

dt
D b.t/ ; (9.14)

where a is a numerical coefficient, and b.t/ denotes jointly terms such as production
rates of other species or (possibly) some reaction rates. Consequently, one obtains
from Eqs. (9.12), (9.13), and (9.14):

K�1
tˆ

0

Œ�.t � �/��1=2 f .�i .�// d� � 2c?j ��1=2t1=2

D �aD�1=2
j

tˆ

0

d�i.�/

dt
d� CD�1=2

j

tˆ

0

b.�/ d�

D �aD�1=2
j

�
�i.t/ � � ?

i

�CD�1=2
j

tˆ

0

b.�/ d� : (9.15)
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Equation (9.15) is an IE, in which one unknown is �i.t/. Other unknowns may
be present in b.t/. As the function f .�/ is usually nonlinear, the IE(s) obtained
by this procedure may be nonlinear in the sense of Eq. (3.1). This procedure was
used by Levich et al. [41], who considered planar diffusion in a semi-infinite spatial
domain, and convection–diffusion to an expanding plane, but the description of the
derivations was very brief. Holub and Němec [30, 31] used this procedure with
some modifications, to consider approximately spherical diffusion in a semi-infinite
spatial domain, and DMEs. Rampazzo [104] presented a detailed outline of this
procedure for planar diffusion in a semi-infinite spatial domain, with a focus on the
adsorption subject to Frumkin isotherm. The procedure was also used by Guidelli
and Pezzatini [22], the group of researchers from the University of Barcelona
[16, 20, 65–68, 98, 99, 101–103, 112], and by Fujioka [15]. Van Leeuwen and co-
workers [32, 33, 116] used a time-differentiated Eq. (9.11) for their IE derivation,
and extended this equation to spherical diffusion, and expanding plane convection–
diffusion.

Procedure 6 In cases when the reaction scheme involves equilibrium adsorption
reactions subject to the linear (Henry) isotherms, a special procedure can be used,
leading to the appearance of integrals with new kernel functions. In this procedure
concentrations �i.t/ of localised species, that are in adsorption equilibria, form
one set of unknown functions. The remaining unknowns are production rates of
other species, or perhaps some reaction rates. The procedure may not be easy to
perform for arbitrary transport conditions, but it becomes rather straightforward
in the case of planar diffusion in a semi-infinite spatial domain. In agreement
with these conditions, let us assume Eqs. (9.2), (9.10), and (9.14) to hold, whereas
Eq. (9.13) is replaced by the Henry isotherm:

K c


j .t/ D �i.t/ : (9.16)

We apply the Laplace transformation (3.12) to Eqs. (9.2), (9.10), (9.14), and (9.16),
and combine the transforms obtained, which gives

Oc
j .s/ D
c?j

s
CD�1=2

j

Opdd;het
j .s/

s1=2

D c?j

s
CD�1=2

j

Ob.s/� a
h
s O�i.s/ � � ?

i

i

s1=2

D c?j

s
CD�1=2

j

Ob.s/� aKs
h
Oc
j .s/�

c?j
s

i
� a

�
Kc?j � � ?

i

�

s1=2
: (9.17)

Equation (9.17) is rearranged to give

Oc
j .s/ D
c?j

s
C 1

aK

Ob.s/
s1=2



s1=2 C D

1=2
j

aK

� � c?j � � ?i
K

s1=2


s1=2 C D

1=2
j

aK

� ; (9.18)
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or, after re-transforming:

c


j .t/ D c?j C

tˆ

0

K .t; �/ b.�/ d� �


c?j �

� ?
i

K

�
erex

 
D
1=2
j

aK
t1=2

!
; (9.19)

where

K .t; �/ D D�1=2
j

 
D
1=2
j

aK

!
erex

"
D
1=2
j

aK
.t � �/1=2

#
; (9.20)

with erex.�/ defined by Eq. (5.76). Expression (9.19) consists of two components.
The first component is a convolution integral with the kernel (9.20), which links
the interfacial concentration c
j .t/ with the function b.t/. The second component
is a specific function of time. Note that despite Eq. (9.16), the factor c?j � � ?

i =K

in the second component is not necessarily zero, as the initial concentration � ?
i

may not be in equilibrium with c?j . For example, in the case of DMEs it is often
assumed that c?j > 0 and � ?

i D 0, if t D 0 corresponds to the drop formation
moment (cf. Sect. 2.10). However, if � ?

i is an equilibrium concentration, then
the second component vanishes. Substitution of Eq. (9.19) into Eq. (2.54) gives
IE(s) containing the kernel (9.20), from which the unknown functions present
in expression b.t/ can be determined. The unknowns �i.t/ are obtained from
Eq. (9.16). The kernel term involving function erex.z/ is already known from our
discussion of spherical diffusion in Sect. 5.2 [cf. Eq. (5.74)], but expression (9.20)
involves a different parameter (D1=2

j a�1K�1). The advantage of Procedure 6,
over Procedure 4, is debatable, although in favourable circumstances Procedure 6
may reduce the number of IEs to be solved, or simplify the solution process
(see examples below). Procedure 6 was used in a number of studies by Lovrić
and co-authors, including (among others) Gulaboski, Mirčeski, Murray, and Solis
[18,19,23,38–40,48,49,51,56,57,61,71,73,75,76,79,81], and also by Osteryoung
and co-workers [83, 113].

Procedure 7 It sometimes happens, especially if the reaction scheme at the interface
studied involves non-equilibrium heterogeneous reactions, that selected ODEs or
DAEs contained in Eq. (2.54) can be solved analytically, in whole or in part.
By proceeding in the way somewhat similar to Procedure 2 in Chap. 4, one can
substitute these analytical solutions into the remaining equations. As a result one
obtains IEs or IDEs with integrands and kernels that are hard to predict or describe
in a general manner, as the procedure is strongly problem-dependent. We therefore
do not recommend this procedure, unless one can clearly prove its advantage
over Procedure 4, for any particular purpose. Examples of IEs obtained by such
procedure(s) are found in [7, 9, 29, 58, 77, 110].

We illustrate Procedures 1–6 by three examples. As a first example, let us
consider an experiment with the electrode at which an equilibrium adsorption
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reaction takes place (see, for example, Reinmuth [105] or Rampazzo [104]):

X1 � X2;ad : (9.21)

Reaction (9.21) involves a dynamic distributed species X1, and dynamic localised
species X2;ad. We assume that neither X1 nor its adsorbed form X2;ad undergoes
further reactions. This is neither a controlled potential nor a controlled current
experiment, since no electrochemistry is involved. However, the experiment can
be followed by an electrochemical stripping analysis of the deposited adsorbate at
a controlled potential or current, by measurements of the differential capacitance of
the double layer, or by other measurements, for example spectro(electro)chemical.
The stoichiometric matrix N dyn;het in Eq. (2.53) is

N dyn;het D
��1
1

	
: (9.22)

The vector �!r het.t/ D �
rhet
1 .t/

�T
of reaction rates comprises a single element:

the rate of reaction (9.21), and the vector of production rates is �!p het.t/ D�
phet
1 .t/; p

het
2 .t/

�T D �
J?
1 .t/; d�2.t/=dt

�T
. As there is no current flowing, elec-

trons exchanged are not taken into account. Partial inversion of Eq. (2.53) with
matrix (9.22) gives matrices V and Z:

V D
�
1

0

	
; (9.23)

Z D
��1 0
1 1

	
: (9.24)

The resulting first equation in equation system (2.54) is replaced by the adsorption
equilibrium equation:

K c


1.t/ D f .�2.t// ; (9.25)

and the second equation in equation system (2.54) is the structural conservation
relationship:

J?
1 .t/ C

d�2.t/

dt
D 0 (9.26)

of the form of Eq. (9.14) with a D 1 and b.t/ D 0. By applying Procedure 1, we take
�.t/ D �2.t/ as the unknown function, so that from Eqs. (9.3), (9.25), and (9.26)
we obtain a single (generally nonlinear) IDE:

K

2

4c?1 �
tˆ

0

K1.t; �/
d�.�/

d�
d�

3

5 � f .�.t// D 0 ; (9.27)
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with initial condition �.0/ D � ?
2 , where K1.t; �/ is the kernel representing the

transport of X1. Procedure 2 is not applicable to this model. Procedure 3 gives an
alternative single (generally nonlinear) IDE:

K

8
<

:c
?
1 �

d

dt

tˆ

0

K1.t; �/
�
�.�/� � ?

2

�
d�

9
=

; � f .�.t// D 0 ; (9.28)

where again�.t/ D �2.t/ is assumed. In Procedure 4 we take �.t/ D d�2.t/=dt D
�J?

1 .t/ as the unknown function, so that Eq. (2.54) turns into the single (generally
nonlinear) IE:

K

2

4c?1 �
tˆ

0

K1.t; �/ �.�/ d�

3

5 � f
0

@� ?
2 C

tˆ

0

�.�/ d�

1

A D 0 : (9.29)

Assuming that K1.t; �/ D D�1=2
1 Œ�.t � �/��1=2, and by taking �.t/ D �2.t/ as an

unknown function, Procedure 5 allows one to present Eq. (9.29) in the form of the
single IE:

K�1
tˆ

0

Œ�.t � �/��1=2 f .�.�// d� CD�1=2
j

�
�.t/ � � ?

2

�� 2c?1 ��1=2t1=2 D 0 :

(9.30)

Finally, by applying Procedure 6, we take �.t/ D �2.t/ as the only unknown. As
b.t/ D 0, the integral term in Eq. (9.19) vanishes entirely, so that the combination
of Eqs. (9.19) and (9.25) simply gives an analytical expression for �.t/, valid for
the Henry isotherm:

�.t/ D K c?1 �
�
K c?1 � � ?

2

�
erex

 
D
1=2
1

K
t1=2

!
: (9.31)

Equation (9.31) means that for this example Procedure 6 actually yields the solution
without requiring IE solving.

As a second example, let us consider a controlled potential experiment for
an equilibrium adsorption reaction, followed by an irreversible electron transfer
between the electrode and the adsorbed intermediate (see, for example, [61]):

X1 � X2;ad ; (9.32)

X2;ad C n e� ! products: (9.33)
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The stoichiometric matrix N dyn;het in Eq. (2.53) is

N dyn;het D
2

4
1 0

1 �1
0 �n

3

5 : (9.34)

Electrons exchanged are taken into account as dynamic species. Therefore,
the vector of production rates is �!p het.t/ D �

phet
1 .t/; p

het
2 .t/; p

het
3 .t/

�T D
�
J?
1 .t/; d�2.t/=dt; I.t/.FA/�1

�T
. The vector of reaction rates is �!r het.t/ D�

rhet
1 .t/; r

het
2 .t/

�T
. Partial inversion of the corresponding Eq. (2.53) gives Eq. (2.54)

with matrices V and Z:

V D
2

4
1 0

0 1

0 0

3

5 ; (9.35)

Z D
2

4
�1 0 0

�1 �1 0
�n �n 1

3

5 : (9.36)

The resulting first equation in equation system (2.54) is replaced by the adsorption
equilibrium equation:

K c


1.t/ D f .�2.t// : (9.37)

The second equation in equation system (2.54) is the reaction rate equation for
reaction (9.33):

k02 �2.t/ exp

�
�˛f

2

nF

RT

�
E.t/ � E0

2

� C J?
1 .t/ C

d�2.t/

dt
D 0 ; (9.38)

and the last equation in equation system (2.54) is the structural conservation
relationship

nJ?
1 .t/ C n

d�2.t/

dt
� I.t/

FA
D 0 ; (9.39)

that can be cast into the form of Eq. (9.14) with a D 1 and b.t/ D I.t/.nFA/�1.
To apply Procedure 1, we can take

�!
� .t/ D Œ�1.t/; �2.t/�

T D �
J?
1 .t/; �2.t/

�T

as unknown functions. With this choice, Eqs. (9.37) and (9.38) yield a (generally
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nonlinear) IDE system:

K

2

4c?1 C
tˆ

0

K1.t; �/ �1.�/ d�

3

5 � f .�2.t// D 0 ; (9.40)

k02 �2.t/ exp

�
�˛f

2

nF

RT

�
E.t/� E0

2

� C �1.t/ C d�2.t/

dt
D 0 ; (9.41)

with initial condition for �2.t/ only: �2.0/ D � ?
2 . After determining

�!
� .t/, the

Faradaic current is calculated from Eq. (9.39):

I.t/

FA
D n�1.t/ C n

d�2.t/

dt
: (9.42)

Procedure 2 is applicable, if a steady state condition d�2.t/=dt � 0 is assumed
for the intermediate X2;ad. Neglect of d�2.t/=dt in Eq. (9.41) then gives an IE
system, instead of an IDE system, but retaining of d�2.t/=dt in Eq. (9.42) may
still be necessary. Procedure 3 is not applicable for the above choice of unknowns.

However, if we choose
�!
� .t/ D Œ�1.t/; �2.t/�

T D �
�2.t/; I.t/.FA/�1

�T
as

unknowns, we obtain equations alternative to Eqs. (9.40) and (9.41), which can be
transformed by Procedure 3 into the following system of one (generally nonlinear)
IDE and one AE:

K

8
<

:c
?
1 C

1

n

tˆ

0

K1.t; �/ �2.�/ d� � d

dt

tˆ

0

K1.t; �/
�
�1.�/� � ?

2

�
d�

9
=

;

�f .�1.t// D 0 ; (9.43)

k02 �1.t/ exp

�
�˛f

2

nF

RT

�
E.t/� E0

2

� C �2.t/

n
D 0 ; (9.44)

with initial condition for �1.t/ only: �1.0/ D � ?
2 . The dimensionless Faradaic

current is obtainable immediately from Eqs. (9.43) and (9.44) as �2.t/. In the
case of a potential step chronoamperometric experiment, �2.t/ can be calculated
from Eq. (9.44), and substituted into Eq. (9.43), so that we get a single IDE for
�1.t/. If E.t/ is not constant, such a substitution is also possible, but one then
obtains a kernel dependent on the E.t/ function, which is not convenient, because
most of the numerical algorithms for IEs are built for specific, pre-defined kernels

(see Chap. 12). To apply Procedure 4, we choose
�!
� .t/ D Œ�1.t/; �2.t/�

T D�
J?
1 .t/; d�2.t/=dt

�T
as unknown functions, so that Eqs. (9.37) and (9.38) become
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an IE system:

K

2

4c?1 C
tˆ

0

K1.t; �/ �1.�/ d�

3

5 � f
0

@� ?
2 C

tˆ

0

�2.�/ d�

1

A D 0 ; (9.45)

k02

2

4� ?
2 C

tˆ

0

�2.�/ d�

3

5 exp

�
�˛f

2

nF

RT

�
E.t/ �E0

2

� C �1.t/C �2.t/ D 0 ;

(9.46)

(which is generally nonlinear). After determining
�!
� .t/, the Faradaic current is

calculated from Eq. (9.39):

I.t/

FA
D n�1.t/ C n�2.t/ : (9.47)

Procedure 5 can be applied assuming
�!
� .t/ D Œ�1.t/; �2.t/�

T D Œ�2.t/; I.t/

.FA/�1�T as unknown functions. For planar diffusion in a semi-infinite spatial
domain, combination of Eq. (9.12) for species X1 with Eqs. (9.37), (9.38),
and (9.39), gives a system of one (generally nonlinear) IE and one AE:

K�1
tˆ
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Œ�.t � �/��1=2 f .�1.�// d� CD�1=2
1

�
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2

�

�D
�1=2
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�2.�/ d� � 2c?1 ��1=2t1=2 D 0 ; (9.48)

k02 �1.t/ exp

�
�˛f

2

nF

RT

�
E.t/ �E0

2

� C �2.t/

n
D 0 : (9.49)

The dimensionless Faradaic current is obtained immediately from Eqs. (9.48)
and (9.49), as the solution �2.t/. Similarly to Procedure 3, the unknown �2.t/ can
be eliminated in the case of the constant potential. Procedure 6 can be applied in the
case of the Henry isotherm. By taking �.t/ D I.t/.FA/�1 as an unknown function,
and considering Eq. (9.39) as the relationship (9.14), combination of Eqs. (9.19) and
Eq. (9.39) gives a single, linear IE:

k02 K
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2

nF

RT
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2
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n
D 0 :

(9.50)
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As the third example, let us consider a controlled current experiment for the reac-
tion scheme (9.32) and (9.33) (see, in particular, [106]). In this example, Eqs. (9.37)
and (9.39), with a known perturbation I.t/ serve as a basis for formulating IEs,
whereas Eq. (9.38) is combined with Eq. (9.39) to give

k02 �2.t/ exp

�
�˛f

2

nF

RT

�
E.t/ �E0

2

� D �I.t/
nFA

; (9.51)

from which the potential–time response E.t/ can be derived. In Procedure 1 we

take as unknowns
�!
� .t/ D Œ�1.t/; �2.t/�

T D �
J?
1 .t/; �2.t/

�T
, so that Eqs. (9.37)

and (9.39) form a (generally nonlinear) IDE system:

K

2

4c?1 C
tˆ

0

K1.t; �/ �1.�/ d�

3

5 � f .�2.t// D 0 ; (9.52)

�1.t/ C d�2.t/

dt
� I.t/

nFA
D 0 ; (9.53)

with an initial condition for �2.t/ only:�2.0/ D � ?
2 . If the product K1.t; �/ I.�/ is

analytically integrable, it is convenient to replace Eqs. (9.52) and (9.53) by a single
(generally nonlinear) IDE for �2.t/:

K

2

4c?1 C
tˆ

0

K1.t; �/
I.�/

nFA
d� �

tˆ

0

K1.t; �/
d�2.�/

d�
d�

3

5 � f .�2.t// D 0 ;

(9.54)

because the first integral in Eq. (9.54) is then a known analytical function of t .
By solving Eqs. (9.52) and (9.53), or Eq. (9.54), we obtain �2.t/ and set it into
Eq. (9.51) to get the potential response:

E.t/ D E0
2 C

RT

˛f
2nF

ln

�
�nFA

I.t/
k02 �2.t/

	
: (9.55)

Procedure 2 can be applied if one assumes a steady state condition d�2.t/=dt � 0.
The IDE (9.54) then reduces to the AE for �2.t/:

K

2

4c?1 C
tˆ

0

K1.t; �/
I.�/

nFA
d�

3

5 � f .�2.t// D 0 : (9.56)
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The solution �2.t/ is again substituted into Eq. (9.55). By applying Procedure 3,
Eq. (9.54) is replaced by the (generally nonlinear) IDE:

K
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1 C

tˆ

0

K1.t; �/
I.�/

nFA
d� � d

dt

tˆ

0
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9
=

;

�f .�2.t// D 0 ; (9.57)

with an initial condition �2.0/ D � ?
2 . Equation (9.57) is solved for �2.t/, and

the result is set into Eq. (9.55). Procedure 4 assumes
�!
� .t/ D Œ�1.t/; �2.t/�

T D�
J?
1 .t/; d�2.t/=dt

�T
, so that Eqs. (9.37) and (9.39) turn into a (generally nonlinear)

IE system:

K
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tˆ
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K1.t; �/ �1.�/ d�

3

5 � f
0

@� ?
2 C

tˆ

0

�2.�/ d�

1

A D 0 ; (9.58)

�1.t/ C �2.t/ � I.t/
nFA
D 0 : (9.59)

System (9.58) and (9.59) can be reduced to a single IE, by two different routes. If
the product K1.t; �/ I.�/ is analytically integrable, we can calculate �1.t/ from
Eq. (9.59), and set it into Eq. (9.58), which gives

K

2

4c?1 C
tˆ

0

K1.t; �/
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nFA
d� �

tˆ

0
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�2.�/ d�

1

A D 0 : (9.60)

For planar diffusion in a semi-infinite spatial domain, Eq. (9.60) is equivalent to Eq.
(A23) in Reinmuth [106]. After solving Eq. (9.60) for �2.t/, the electrode potential
is obtained from

E.t/ D E0
2 C

RT

˛f
2nF

ln
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nFA
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9
=

; : (9.61)
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Alternatively, if I.�/ is analytically integrable, we can calculate �2.t/ from
Eq. (9.59), and set it into Eq. (9.58), which gives
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4c?1 C
tˆ
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3

5 � f
0
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1

A D 0 :

(9.62)

After solving Eq. (9.62) for �1.t/, the electrode potential is obtained from
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3
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9
=
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(9.63)

Procedure 5 is applicable assuming a single unknown �.t/ D �2.t/. For planar
diffusion in a semi-infinite spatial domain, combination of Eqs. (9.15), (9.37) and
(9.39) gives a single (generally nonlinear) IE:

K�1
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d� D 0 : (9.64)

After solving it for �.t/, the electrode potential is calculated from

E.t/ D E0
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3
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9
=

; ; (9.65)

where the integral of �.t/must be additionally evaluated, as it does not occur in the
IE (9.64). Equation (9.64) is equivalent to Eq. (A.24) in [106]. Finally, Procedure 6
gives an explicit expression for c
1.t/:
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Equation (9.66) can be useful if the integral contained in this equation can be
evaluated analytically. Numerical integration would not present any advantage over
other procedures, especially Procedure 4. By combining Eq. (9.66) with Eq. (9.37)
one obtains the AE for the unknown �.t/ D �2.t/:
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The electrode potential is calculated from
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9.2 Literature Examples

We summarise here the IE- or IDE-based, spatially one-dimensional, models
of electrochemical systems containing localised and distributed species, that are
available in the literature. We begin with models involving very simple reaction
schemes, and gradually pass to models involving more and more complicated
schemes. A few of the models listed below were previously reviewed by Lovrić
[52].

9.2.1 One-Reaction Schemes

The simplest models deal with a single heterogeneous non-electrochemical reaction

X1 � X2;ad (9.69)

involving a dynamic distributed species X1, and a dynamic localised species X2;ad

(adsorbed at the electrode). It is assumed that the electrode studied is initially free of
X2;ad, but it subsequently becomes covered by this adsorbate. Assuming equilibrium
reaction (9.69), the relevant theory describing the temporal evolution of such a
system was given by Reinmuth [105], Levich et al. [41], Rampazzo [104], Vogel
[117, 118], Sluyters-Rehbach and Sluyters [115], Miller [69], and Risović [109].
Miller [69], Bhugun and Anson [7], and Kankare and Vinokurov [36] provided
a theory for a non-equilibrium reversible reaction (9.69). Langmuir isotherm or
reaction rate expressions consistent at equilibrium with the Langmuir isotherm
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were assumed in [7, 36, 69, 105, 115]. Temkin isotherm was assumed in [117, 118].
Frumkin isotherm was assumed in [104], whereas a modified Flory–Huggins
isotherm (including lateral interactions between adsorbed molecules) was assumed
in [109]. A general isotherm was approximately handled in [41]. Transport was
by planar diffusion in a semi-infinite spatial domain [7, 36, 41, 104, 105, 109, 115];
spherical diffusion [36, 117, 118]; cylindrical diffusion [36]; and by convection–
diffusion to an expanding plane [69, 105, 115]. Podgaetskii [88] considered a
somewhat opposite problem of determining the amount of X2;ad, initially present
on the electrode, from the measurements of the differential capacitance of the
double layer. He assumed planar diffusion in a semi-infinite spatial domain, Frumkin
isotherm, and linear potential sweep voltammetry. He later extended his theory
to spherical diffusion [91] and galvanostatic experiments [92]. Most of the above
works were motivated by electrochemistry, but some of them are also applicable to
non-electrochemical systems. It should also be mentioned that there exist analogous
IE-based models for reaction (9.69) taking place at non-electrochemical interfaces.
Examples of such models are found in studies of liquid j air interfaces [25, 70] or
diffusion of impurities in metals [93, 94]. Further similar IEs arise in some heat
conduction problems [90].

Holub [29] considered a single reaction of a substance X1 transported by
diffusion to the electrode, with an adsorbed substance X2;ad, initially covering the
electrode:

X1 C X2;ad ! products : (9.70)

Planar diffusion in a semi-infinite spatial domain, and kinetic equations consistent
with the Langmuir isotherm were assumed. The resulting equations were shown to
be equivalent to the equations describing Langmuir adsorption without desorption.

Another class of very simple models deals with a single electrochemical reaction

X1 ˙ n e� � X2;ad (9.71)

involving a dynamic distributed species X1, and a dynamic localised species X2;ad

(e.g. adsorbed or otherwise deposited or precipitated at the electrode). Nicholson
[82] presented a theory (containing errors, see Sect. 9.1) of linear potential sweep
voltammetry for equilibrium reaction (9.71), assuming planar diffusion in a semi-
infinite spatial domain. The theory was later reconsidered by Gao and Roy
[17]. White and Lawson [119] discussed linear potential sweep voltammetry for
a non-equilibrium reversible reaction (9.71) subject to Butler–Volmer kinetics,
assuming planar or spherical diffusion in a semi-infinite spatial domain. Pnev and
Parubotchaya [85] modelled inversion voltammetry under analogous assumptions
(but for planar diffusion only). A linear dependence of the adsorption energy, on
the electrode coverage by the adsorbed reactant, was assumed. Klimatchev et al.
[37] discussed a method for determining the activity of the deposited species, from
experimental voltammograms. Pnev et al. [86, 87] analysed inverse polarography
for equilibrium and irreversible reaction (9.71), assuming Langmuir-type reaction
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rate and equilibrium expressions. Planar diffusion in a semi-infinite spatial domain
was assumed. Roizenblat and Reznik [110] considered an electrodissolution of
metals concentrated in a very thin, planar mercury film electrode, by DC and
AC voltammetry. Hence, the species present in the mercury film was formally
considered as a quasi-localised species (see Sect. 2.9). Later they modelled also
inversion voltammetry under similar assumptions [111]. Lovrić et al. [62] analysed
potential step chronoamperometry and square wave voltammetry for equilibrium
and irreversible reaction (9.71), assuming planar diffusion in a semi-infinite spatial
domain.

Xiang [122] considered the theory of current step chronopotentiometry, potential
step chronoamperometry, and linear potential sweep voltammetry for a single, but
somewhat more complicated irreversible electrochemical reaction:

X1 C X2;s ! X3;ad C n e� (9.72)

involving one dynamic distributed species X1, one static species X2;s (species
belonging to the solid electrode phase), and one dynamic localised species X3;ad

(adsorbed). Planar diffusion in a semi-infinite spatial domain was assumed. The
discussion was motivated by the etching metal phase analysis. Lovrić et al. [63] and
Mirčeski and Lovrić [74] discussed square wave voltammetry and potential step
chronoamperometry for another similar reaction:

X1;dep C 2e� � X2;s CX3 (9.73)

involving one dynamic localised species X1;dep (deposited solid phase of a mercury
salt) and X2;s (static species belonging to the liquid mercury electrode phase), and
one distributed species X3. Planar diffusion in a semi-infinite spatial domain was
assumed.

9.2.2 Two-Reaction Schemes

Controlled potential experiments for the two-reaction scheme:

X1 � X2;ad ; (9.74)

X1 C n e� � X3 ; (9.75)

comprising an electron transfer between dynamic distributed species X1 and X3,
and an adsorption of the reactant X1, were a subject of several theoretical studies
[15, 32, 33, 53–55, 58, 64, 84, 113, 116, 126]. In some studies reaction (9.74) was
assumed to be an equilibrium reaction, subject to the Henry isotherm [32, 33, 113,
116], the Langmuir isotherm [15], the Frumkin isotherm [53–55, 64, 84, 126], or
to the conditions of full coverage [32, 33, 116]. Lovrić and Komorsky-Lovrić [58]



218 9 Models Involving Distributed and Localised Species

assumed a non-equilibrium reversible reaction (9.74) consistent with the Henry
isotherm at equilibrium. Reaction (9.75) was either an equilibrium reaction [53–
55,58,64,84,126], or irreversible reaction [15,113]. Planar diffusion was considered
in [58, 84, 113, 116], and spherical in [32, 53–55, 64, 126]. Expanding plane
convection–diffusion was considered in [33]. Convection–diffusion to an RDE,
modelled by a thin layer diffusion was assumed by Fujioka [15], A semi-infinite
spatial domain was assumed in all remaining cases. The theory was obtained for DC
polarography [53], normal pulse voltammetry [113], or polarography [32, 33, 116],
pulse polarography [64, 126], differential pulse polarography [64, 84, 126], linear
potential sweep voltammetry [15], cyclic staircase voltammetry [54], and square
wave voltammetry [55, 58].

Reaction scheme (9.74) and (9.75) was also considered in the studies of the effect
of adsorption on chronopotentiometric transition times, by Reinmuth [106], who
assumed a general adsorption isotherm, and Podgaetskii and Filinovskii [14,95,96],
who assumed adsorption isotherm with two plateau [95], Frumkin isotherm [96],
and Henry isotherm [14].

Another two-reaction scheme with the adsorption of the reactant of the electro-
chemical reaction:

X1 � X2;ad ; (9.76)

X2;ad C n e� � X3 ; (9.77)

is an alternative to the scheme (9.74) and (9.75), in which the electron transfer
reaction proceeds between dynamic localised species X2;ad (which is an adsorbed
form of the dynamic distributed reactant X1), and distributed species X3. When
reactions (9.74) and (9.76) are equilibrium reactions, the two schemes (9.74)
and (9.75), and (9.76) and (9.77) are experimentally indistinguishable. Controlled
potential experiments for the scheme (9.76) and (9.77) were a subject of several
theoretical studies [18, 41, 51, 56, 57, 61, 83, 113]. In [18, 51, 56, 57, 61, 83] a theory
of square wave voltammetry was discussed. In [41] polarography was considered,
and in [113] normal pulse voltammetry was discussed. Equilibrium reaction (9.76)
subject to the Henry isotherm was assumed. Planar diffusion in a semi-infinite
spatial domain was assumed in [18,51,56,57,61,83,113], and convection–diffusion
to an expanding plane in [41]. Reaction (9.77) was either non-equilibrium reversible
[18,51,56,57], or irreversible [41,61,83,113]. The number n of electrons transferred
was equal 1 in [51, 56, 57, 61, 83].

Although this was not clearly stated, Holub [26–28] probably assumed a
generalisation of the scheme (9.76) and (9.77) in his theory of a potentiostatic
experiment at a mercury electrode. Equilibrium reaction (9.76) subject to the Henry
isotherm and a first-order non-equilibrium follow-up reaction that might be an
electron transfer (9.77) were considered. External spherical diffusion was assumed
in Holub [27]. Convection–diffusion to an expanding plane was assumed in Holub
[26, 28]. The transport PDEs were converted to pure planar diffusion PDEs prior to
formulating IEs.
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Aoki and Kato [5] presented a theory of cyclic voltammetry for the reaction
scheme:

X1 � X2;ad ; (9.78)

X2;ad C n e� � X3;ad ; (9.79)

which differs from the scheme (9.76) and (9.77) by the electroreduction product
X3;ad, which is now adsorbed, instead of being distributed in the electrolyte. Reac-
tion (9.78) was non-equilibrium reversible, with reaction rate equations consistent
with the Henry isotherm at equilibrium, whereas reaction (9.80) was an equilibrium
reaction. Planar diffusion in a semi-infinite spatial domain was assumed.

Mirčeski et al. [78] modelled square wave voltammetry for the reaction scheme:

X1 � X2;ad ; (9.80)

X2;ad C X3;s � X4;ad C 2 e� ; (9.81)

involving dynamic distributed species X1, static localised species X3;s (mercury),
and dynamic localised species X2;ad and X4;ad. Planar diffusion in a semi-infinite
spatial domain was assumed. Equilibrium reaction (9.80) subject to the Henry
isotherm, and non-equilibrium reversible reaction (9.81) were considered.

The theory of cyclic voltammetry for the two-reaction scheme with the adsorp-
tion of the electrochemical reaction product:

X1 C n e� � X2 ; (9.82)

X2 � X3;ad (9.83)

involving dynamic distributed species X1 and X2, and a dynamic localised species
X3;ad, was studied by Hulbert and Shain [34]. Equilibrium reaction (9.82) and non-
equilibrium reversible reaction (9.83), with reaction rate expressions consistent at
equilibrium with the Langmuir isotherm, were considered. Planar diffusion in a
semi-infinite spatial domain was assumed.

A two-reaction scheme comprising equilibrium electron transfers:

X1;s � X2 C e� ; (9.84)

X1;s CX3 � X4;ad C e� ; (9.85)

where X1;s is a static localised species (solid material), X2 and X3 are dynamic
distributed species, and X4;ad is a dynamic localised species, was considered by
Casadio [12], as a model of an anodic metal dissolution inhibited by a redox
adsorption. Casadio developed a theory of cyclic voltammetry, assuming planar
diffusion in a semi-infinite spatial domain. In a subsequent paper [13] the theory
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was extended to a non-equilibrium reversible reaction (9.84), and an equilibrium
reaction (9.85) subject to a Temkin-type isotherm.

A two-reaction heterogeneous catalytic EC scheme:

X1;ad C e� � X2;ad ; (9.86)

X2;ad C X3 ! X1;ad C X4 ; (9.87)

with equilibrium reaction (9.86) and irreversible reaction (9.87) was discussed by
Andrieux and Savéant [3], assuming planar diffusion of X3 and X4 in a semi-infinite
spatial domain. Predictions for cyclic voltammetry were obtained. Aoki et al. [6]
considered a mirror image of the scheme (9.86) and (9.87), for oxidation:

X1;ad � X2;ad C e� ; (9.88)

X2;ad C X3 � X1;ad C X4 ; (9.89)

assuming equilibrium reaction (9.88) and non-equilibrium reversible reac-
tion (9.89), other conditions identical. The theory of linear potential sweep and
cyclic voltammetry was obtained. Bieniasz et al. [11] extended the theories from
[3, 6] onto spherical diffusion in a semi-infinite spatial domain.

Mirčeski et al. [80] considered the theory of square wave voltammetry for the
reaction scheme:

X1 � X2 ; (9.90)

X2 � X3;ad C n e� ; (9.91)

involving non-equilibrium reversible homogeneous reaction (9.90) and non-
equilibrium reversible heterogeneous deposition reaction (9.91) between dynamic
distributed species X1 and X2, and dynamic localised species X3;ad (insoluble
mercury salt). Planar diffusion in a semi-infinite spatial domain was assumed.

Yet another two-reaction scheme, of EE type, was studied by Lovrić [45],
assuming a potentiostatic method and transport by planar diffusion in a semi-infinite
spatial domain, or expanding plane convection–diffusion. The scheme was:

X1 C e� � X2;ad ; (9.92)

X2;ad C e� � X3 ; (9.93)

where X1 and X3 are dynamic distributed species, and X2;ad is a dynamic localised
intermediate.
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9.2.3 Three-Reaction Schemes

Controlled potential transient experiments for the scheme comprising reac-
tions (9.74) and (9.75), plus one additional reaction of product adsorption:

X1 � X2;ad ; (9.94)

X1 C n e� � X3 ; (9.95)

X3 � X4;ad ; (9.96)

were discussed theoretically by many authors [20, 22, 46, 65–67, 98–100, 107, 108,
112, 114, 120], and some of their results were compared by Sluyters-Rehbach
and Sluyters [114]. All reactions (9.94), (9.95), and (9.96) were assumed to be
equilibrium reactions. Henry isotherms of reactions (9.94) and (9.96) were assumed
in [22, 46], Langmuir isotherms in [20, 66, 67, 98, 107, 108, 112, 120], Frumkin
isotherms in [22, 98, 108], and general isotherms in [65, 99, 100]. Planar diffusion
in a semi-infinite spatial domain was assumed in [20, 22, 46, 100, 107, 108, 120],
spherical diffusion in a semi-infinite spatial domain was assumed in [20, 22, 108],
convection–diffusion to an expanding plane was assumed in [22,65–67,98,99,108,
112]. The electroanalytical techniques considered include: potentiostatic methods
such as chronocoulometry [20, 22, 65, 98, 107, 108] and double potential step
chronocoulometry [100], cyclic voltammetry [120], pulse polarography [46,66,99],
differential pulse polarography [112], normal pulse polarography [67], and flux-
jump technique [22]. The IEs obtained in [20] were also used by Guaus et al. [21].
Podgaetskii [89] considered the effect of adsorption on polarographic curves for the
scheme (9.94), (9.95), and (9.96). He assumed irreversible reaction (9.95), coupled
Frumkin isotherms for equilibrium reactions (9.94) and (9.96), and expanding plane
convection–diffusion.

Podgaetskii and Filinovskii [97] calculated chronopotentiometric transition times
assuming planar diffusion in a semi-infinite spatial domain, and coupled Frumkin
isotherms for equilibrium reactions (9.94) and (9.96).

An alternative scheme comprising reactions (9.78) and (9.80), plus one additional
reaction of product desorption:

X1 � X2;ad ; (9.97)

X2;ad C e� � X3;ad ; (9.98)

X3;ad � X4 ; (9.99)

was studied by Lovrić and co-workers [40, 56, 57], assuming planar diffusion in a
semi-infinite spatial domain, equilibrium reactions (9.97) and (9.99) subject to the
Henry isotherms, and non-equilibrium reversible reaction (9.98). A theory of square
wave voltammetry was obtained.
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There have also been other three-reaction schemes studied by the IE method.
Lovrić and Komorsky-Lovrić [59] considered the following EE reaction scheme
with adsorption of the intermediate:

X1 C e� � X2 ; (9.100)

X2 � X3;ad ; (9.101)

X2 C e� � X4 : (9.102)

All reactions (9.100), (9.101), and (9.102) were equilibrium reactions. Langmuir
isotherm was assumed for reaction (9.101). Theoretical predictions for square wave
voltammetry have been obtained, assuming planar diffusion in a semi-infinite spatial
domain. A reaction scheme with parallel electron transfers, consuming both the
distributed reactant and its adsorbed form:

X1 � X2;ad ; (9.103)

X1 C n e� � X3 ; (9.104)

X2;ad C n e� � X3 ; (9.105)

was considered by Lovrić and Komorsky-Lovrić [38, 47]. Irreversible or non-
equilibrium reversible electron transfers (9.104) and (9.105) were assumed, and
the adsorption reaction (9.103) was subject to the Henry isotherm. Theoretical
predictions for pulse polarography were obtained, assuming planar diffusion in
a semi-infinite spatial domain. Mirčeski et al. [81] discussed a somewhat similar
scheme, but with product adsorption:

X1;s � X2 C n e� ; (9.106)

X2 � X3;ad ; (9.107)

X1;s � X3;ad C n e� ; (9.108)

where X1;s is a static species (solid material), X2 is a dynamic distributed species,
and X3;ad is a dynamic localised species. Equilibrium reaction (9.107) subject to the
Henry isotherm, and non-equilibrium reversible reactions (9.106) and (9.108) were
assumed. A possibility of interactions between adsorbate molecules was also taken
into account. Theoretical predictions for square wave voltammetry were obtained,
assuming planar diffusion in a semi-infinite spatial domain.

There have also been models with three-reaction schemes including homoge-
neous reactions, in addition to heterogeneous reactions, such as the EC scheme with
reactant adsorption:

X1 � X2;ad ; (9.109)

X1 C e� � X3 ; (9.110)

X3 ! X4 ; (9.111)
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considered by Wopschall and Shain [121]. In [121] equilibrium reaction (9.109)
subject to the Langmuir isotherm, equilibrium reaction (9.110), and irreversible
homogeneous reaction (9.111) were assumed. Predictions for cyclic voltammetry
were obtained, assuming planar diffusion in a semi-infinite spatial domain. The
scheme (9.109)–(9.111) was also considered by Mirčeski and Lovrić [75]. In
[75] equilibrium reaction (9.109) subject to the Henry isotherm, non-equilibrium
reversible reaction (9.110), and irreversible reaction (9.111) were assumed. Predic-
tions for square wave voltammetry were obtained, assuming planar diffusion in a
semi-infinite spatial domain. Another three-reaction scheme:

X1 C e� ! X2 ; (9.112)

X2 ! X3;ad ; (9.113)

X2 ! X4 ; (9.114)

involving an electron transfer (9.112) with product adsorption (9.113), and homo-
geneous reaction (9.114), was considered by Bhugun and Savéant [8], as a model of
self-inhibition of an electrochemical process. Assuming all reactions irreversible,
and planar diffusion in a semi-infinite spatial domain, a relevant theory was
obtained, of cyclic voltammetry and preparative scale electrolysis. The IEs obtained
were later used by Allongue et al. [2], and Yang and Wang [124]. Bhugun and
Savéant [9] (and Bhugun et al. [10]) considered also a model of self-inhibition in
the catalytic ECC scheme:

X1 C e� � X2 ; (9.115)

X2 ! X1 CmX3 ; (9.116)

X3 � X4;ad : (9.117)

Predictions for cyclic voltammetry were obtained, assuming equilibrium
reaction (9.115), irreversible homogeneous reaction (9.116), and non-equilibrium
reversible reaction (9.117), together with planar diffusion in a semi-infinite spatial
domain. A catalytic ECC reaction scheme involving immobilised redox enzyme
X3;ad:

X1 C e� � X2 ; (9.118)

X2 C X3;ad � X4;ad ; (9.119)

X4;ad ! X1 C X3;ad ; (9.120)

was considered by Limoges and Savéant [42], assuming planar diffusion in a semi-
infinite spatial domain. Predictions for cyclic voltammetry were obtained.
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9.2.4 More Complicated Reaction Schemes

An extension of the reaction scheme (9.94)–(9.96), consisting of four reactions, and
including separate electron transfers between distributed and localised reactants and
products:

X1 � X2;ad ; (9.121)

X1 C e� � X3 ; (9.122)

X3 � X4;ad ; (9.123)

X2;ad C e� � X4;ad ; (9.124)

was studied by Lovrić [49], assuming non-equilibrium reversible electron transfers,
and equilibrium adsorption reactions subject to the Henry isotherms. Planar diffu-
sion in a semi-infinite spatial domain was assumed. Predictions for differential pulse
voltammetry were obtained. The same author [48] considered scheme (9.121)–
(9.124) extended with two further electrochemical cross-reactions between dis-
tributed and localised reactants:

X1 � X2;ad ; (9.125)

X1 C n e� � X3 ; (9.126)

X3 � X4;ad ; (9.127)

X2;ad C n e� � X4;ad ; (9.128)

X1 C n e� � X4;ad ; (9.129)

X2;ad C n e� � X3 ; (9.130)

at the same assumptions. Predictions for pulse polarography were obtained.
Mirčeski [71] considered an EC scheme with the adsorption of both reactant and

product:

X1 � X2;ad ; (9.131)

X1 C n e� � X3 ; (9.132)

X3 � X4;ad ; (9.133)

X3 ! X5 ; (9.134)

assuming equilibrium reactions (9.131) and (9.133) subject to Henry isotherms,
non-equilibrium reversible reaction (9.132), and irreversible homogeneous reac-
tion (9.134). Planar diffusion in a semi-infinite spatial domain was assumed.
Predictions for square wave voltammetry were obtained. Subsequently, Mirčeski
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and Lovrić [76] considered an extension of the reaction scheme (9.131)–(9.134):

X1 � X2;ad ; (9.135)

X1 C n e� � X3 ; (9.136)

X3 � X4;ad ; (9.137)

X3 ! X5 ; (9.138)

X2;ad C n e� � X4;ad ; (9.139)

X4;ad ! X6;ad ; (9.140)

under analogous assumptions. Mirčeski and Quentel [77] discussed also the cat-
alytic reaction scheme with adsorption, and a surface regeneration reaction compet-
ing with a homogeneous one:

X1 C n e� � X2 ; (9.141)

X2 ! X1 ; (9.142)

X1 � X3;ad ; (9.143)

X2 � X4;ad ; (9.144)

X3;ad C n e� � X4;ad ; (9.145)

X4;ad ! X3;ad : (9.146)

Assumptions analogous to those in [71, 76] were adopted. A different catalytic
reaction scheme:

X1;ad C n e� � X2;ad ; (9.147)

X1;ad � X3;ad ; (9.148)

X2;ad � X4;ad ; (9.149)

mX2;ad C X5 ! mX1;ad C X6 ; (9.150)

with equilibrium surface reactions (9.147)–(9.149), and an irreversible reac-
tion (9.150), was considered by Jaworski and Cox [35], in their modelling of linear
potential sweep voltammetry. Planar diffusion in a semi-infinite spatial domain was
assumed. A number of similar, but more complicated schemes were considered at
analogous assumptions by Xie and Anson [123], and Limoges et al. [43].

A number of similarly or even more complicated schemes have been studied in
the publications that we list below, but we refer the Reader to these publications
for details of the schemes. In particular, a scheme representing induced reactant
adsorption in a metal–polyelectrolyte system was studied by Puy et al. [16,68,101–
103], assuming planar diffusion in a semi-infinite spatial domain. Predictions
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were obtained for pulse polarography and normal pulse polarography. Potential-
independent and potential-dependent adsorption parameters were assumed. Some
further complicated schemes associated with the studies of anion induced adsorption
of metal ions, complexation reactions, or electrochemistry of mercury salts were
considered in [19, 23, 24, 39, 50, 60, 72, 73, 79, 125, 127]. Planar diffusion in a
semi-infinite spatial domain, and adsorption subject to the Henry isotherms were
assumed, except for [125], where Frumkin isotherm was considered. Predictions
for DC polarography [50, 125], normal pulse polarography [60], differential pulse
polarography [127], and square wave voltammetry [19, 23, 24, 39, 72, 73, 79] were
obtained. Complicated enzymatic reaction schemes, for redox enzymes immobilised
on electrodes, were modelled by Limoges et al. [44] and Andrieux et al. [4],
assuming planar diffusion in a semi-infinite spatial domain, and potential step
chronoamperometry or cyclic voltammetry. A possibility of Michaelis–Menten
kinetics was adopted for heterogeneous reactions, which resulted in nonlinear IEs
or IDEs. Further IE-based modelling of electron transfer and transport in enzyme
layers was reported by Agnès et al. [1].
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23. Gulaboski R, Mirčeski V, Komorsky-Lovrić Š (2002) Square-wave voltammetry of a second
order cathodic stripping process coupled by adsorption of the reacting ligand. Electroanalysis
14:345–355
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125. Zelić M, Lovrić M (1990) Bromide induced adsorption of lead ions on mercury electrodes.
Electrochim Acta 35:1701–1706
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Chapter 10
Models Involving Additional Complications

In this chapter we consider the treatment, by the IE method, of additional com-
plicating phenomena that may occur in electroanalytical models, apart from the
phenomena already discussed in Chaps. 5–9. These additional complications are:
the uncompensated Ohmic potential drop and double layer charging, and migration
transport. The first two phenomena are considered in Sect. 10.1. Migration is briefly
addressed in Sect. 10.2. We discuss almost exclusively models defined on one-
dimensional spatial domains, because literature examples exist mostly for such
models.

10.1 Uncompensated Ohmic Drop and Double Layer
Charging

In the following analysis we focus on Eqs. (2.67), (2.69), and (2.70) for elec-
trode j electrolyte interfaces only. Discussion of liquid j liquid interfaces, described
by Eqs. (2.68), (2.69), and (2.71), would be analogous, provided that one replaces
E.t/ by �˚.t/, E 0.t/ by �˚ 0.t/, and RU by RU1 C RU2. We first consider
the limiting cases when either the double layer charging or the Ohmic drop, is
negligible, and later describe the general case. In all cases we describe how to
modify theoretical models, formulated without considering the uncompensated
Ohmic drop and the double layer charging, in order to take these effects into account.
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10.1.1 Ohmic Drop Only

When the capacitive current IC.t/ is zero butRU is significant, Eqs. (2.67) and (2.69)
reduce to

E.t/ D E 0.t/C IF.t/ RU ; (10.1)

I.t/ D IF.t/ : (10.2)

This means that any IE-based model of a controlled potential experiment, formu-
lated under the assumption of RU D 0 and IC.t/ D 0, has to be modified by
replacing all occurrences of E.t/ by E 0.t/ D E.t/ � I.t/ RU, and no modification
of the occurrences of I.t/ is necessary. For example, the IE (5.21) obtained for an
irreversible electron transfer (5.7) under conditions of planar diffusion in a one-
dimensional semi-infinite spatial domain would become [46, 47]:

�.t/ exp

�
˛f nF

RT

�
E.t/C nFARU�.t/ �E0

�

�k0
8
<

:c
?
1 �

tˆ

0

ŒD1�.t � �/��1=2 �.�/ d�

9
=

; D 0 ; (10.3)

where we have defined one unknown �.t/ D �phet
1 .t/ D phet

2 .t/ D �I.t/.nFA/�1.
In a similar way, the IE (5.23) or (5.179), corresponding to an equilibrium electron
transfer (5.7) under the same conditions, would become [2, 17, 41]:

tˆ

0

Œ�.t � �/��1=2 �.�/ d� D c?1D
1=2
1

1C exp
˚

nF
RT

�
E.t/C nFARU�.t/ �E1=2

�� ;

(10.4)

where �.t/ is defined identically. Inspection of Eqs. (10.3) and (10.4) leads to
the following observations. Firstly, we note after Nicholson [41] that IEs (10.3)
and (10.4) are nonlinear, even though they result from linear IEs (5.21) and (5.179).
Secondly, we envisage mathematical inconsistencies in the IEs corresponding to
equilibrium electron transfers, such as Eq. (10.4). The inconsistencies occur when
t ! 0C: If we assume that lim

t!0C

�.t/ is finite, then the right-hand side of

Eq. (10.4), and consequently the integral in Eq. (10.4) tend to nonzero finite values,
which implies that �.t/ � t�1=2 under the integral. This means a singularity, in
contradiction with the finite limit assumed. Conversely, if we assume that �.t/ is
singular, that is lim

t!0C

�.t/ D 1, then the right-hand side of Eq. (10.4) tends to

zero, the integral in Eq. (10.4) tends to zero too, so that �.t/ must be finite under
the integral, in contradiction with the singularity assumed. This problem seems to
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have been overlooked in the literature, except for a brief comment in Bieniasz [8],
and some analysis in Wein [51, 52], which raises questions about the correctness of
published solutions for equilibrium charge transfers. As the IE (10.3) is free from
this inconsistency, it may be that the assumption of equilibrium charge transfers is
non-physical when the uncompensated Ohmic drop needs to be taken into account.

Any IE-based model of a controlled current experiment, formulated under the
assumption of RU D 0 and IC.t/ D 0, is even easier to modify, since in view
of Eq. (10.2) the IEs themselves remain unchanged. One only has to change the
formula for the electrode potential response, by adding I.t/RU to the formula
(where I.t/ is known in the case of controlled current experiments). For example,
the IE (5.53) derived for the EE reaction scheme (5.24) and (5.25) remains
unchanged, but formula (5.49) becomes:

E.t/ D E0
1 C

RT

n1F
ln
c


1.t/

c


2.t/
C I.t/RU : (10.5)

Equation (10.5) describes the measurable potential response E.t/.

10.1.2 Double Layer Charging Only

When the resistance RU is zero, but IC.t/ is significant, Eqs. (2.67) and (2.70)
reduce to

E 0.t/ D E.t/ (10.6)

and

IC.t/ D CDL
dE.t/

dt
: (10.7)

Any IE-based model of a controlled potential experiment, formulated under the
assumption of RU D 0 and IC.t/ D 0, has to be modified only by adding IC.t/

given by Eq. (10.7) to the Faradaic current resulting from the model, in order to
obtain the total current I.t/. No other changes in the model are needed. Assuming
that the dependence of CDL onE.t/ is known, the capacitive current (10.7) is easily
calculated, since E.t/ is pre-defined in a controlled potential experiment. However,
discontinuities or singularities of IC.t/ are expected at time moments whereE.t/ is
not differentiable [1]. This refers, in particular, to the moments when potential steps
are applied to the electrode, or when the direction of potential sweeps is changed in
cyclic voltammetry.

More complicated is the modelling of controlled current experiments. Any model
of such experiments, formulated under the assumption of RU D 0 and IC.t/ D 0,
has to be modified by replacing I.t/ by IF.t/ D I.t/ � IC.t/, and by including
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Eq. (10.7) into the model. The inclusion can be performed in a variety of ways, out
of which we describe the following two procedures (for yet different procedures see
[6, 7, 14–16, 33]).

Procedure 1 consists [36,41,42] in choosingE.t/ as an additional unknown. Given
a model expression for E.t/, obtained when RU D 0 and IC.t/ D 0, one replaces
I.t/ by IF.t/ D I.t/ � CDL dE.t/=dt in this expression, thereby obtaining an
additional IDE for E.t/. To obtain IC.t/ one differentiates the solution of this IDE
(most likely numerically).

Procedure 2 is applicable when CDL is assumed potential-independent. It consists
[42] in choosing IC.t/ as an additional unknown, and integrating Eq. (10.7):

E.t/ D E.0/C C�1
DL

tˆ

0

IC.�/ d� : (10.8)

Comparison of Eq. (10.8) with the model expression forE.t/, modified by replacing
I.t/ by IF.t/ D I.t/ � IC.t/, yields an additional IE for IC.t/. As no IDE arises in
this procedure, the procedure can be recommended.

As an example, let us consider a controlled current experiment for the electron
transfer (5.7). When RU D 0 and IC.t/ D 0, the potential response for irreversible
reaction (5.7) is described by Eq. (5.47). Procedure 1 applied to Eq. (5.47) gives the
IDE for �.t/ D E.t/:

�.t/ D E0 � RT

nF˛f
ln

� I.�/nFA C CDL
nFA

d�.t/
dt

k0
�
c?1 C

t́

0

K1.t; �/
I.�/

nFA d� � CDL
nFA

t́

0

K1.t; �/
d�.�/

d� d�

	 :

(10.9)

Procedure 2 applied to Eq. (5.47) gives the IE for �.t/ D IC.t/.nFA/�1:

E.0/C C�1
DL nFA

tˆ

0

�.�/ d�

D E0 � RT

nF˛f
ln

� I.�/nFA C �.t/
k0
�
c?1 C

t́

0

K1.t; �/
I.�/

nFA d� �
t́

0

K1.t; �/ �.�/ d�

	 : (10.10)
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The potential response for equilibrium reaction (5.7) is described by Eq. (5.48).
Procedure 1 applied to Eq. (5.48) gives the IDE for �.t/ D E.t/:

�.t/ D E0 C RT

nF
ln

c?1 C
t́

0

K1.t; �/
I.�/

nFA d� � CDL
nFA

t́

0

K1.t; �/
d�.�/

d� d�

c?2 �
t́

0

K2.t; �/
I.�/

nFA d� C CDL
nFA

t́

0

K2.t; �/
d�.�/

d� d�

:

(10.11)

Procedure 2 applied to Eq. (5.48) gives the IE for �.t/ D IC.t/.nFA/�1:

E.0/C C�1
DL nFA

tˆ

0

�.�/ d�

D E0 C RT

nF
ln

c?1 C
t́

0

K1.t; �/
I.�/

nFA d� �
t́

0

K1.t; �/ �.�/ d�

c?2 �
t́

0

K2.t; �/
I.�/

nFA d� C
t́

0

K2.t; �/ �.�/ d�

: (10.12)

We note that knowledge ofE.0/ is required for formulating and solving Eqs. (10.9)–
(10.12). Determining E.0/ may be difficult, especially in the case of Eqs. (10.11)
and (10.12) for equilibrium electron transfer, which exhibit inconsistencies when
t ! 0C. The inconsistencies are similar to those mentioned in Sect. 10.1.1. They
disappear when E.0/ is the equilibrium potential:

E.0/ D E0 C RT

nF
ln
c?1
c?2
: (10.13)

In such a case IC.0/ D I.0/ [42]. The literature does not say how to select initial
values in other cases, in particular when c?2 D 0. It seems that the assumption of
equilibrium charge transfers is problematic also when double layer charging needs
to be taken into account.

10.1.3 General Case

Let us pass now to the general case, when Ohmic drop and double layer charging
occur simultaneously. Assume that IEs formulated in the absence of these phenom-
ena have the production rates phet

j .t/ as unknowns, and that the Faradaic current
IF.t/ can be expressed as a linear combination of these production rates. It is then
natural to consider the capacitive current IC.t/ as an additional unknown to be
determined.
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Any IE-based model of a controlled potential experiment, formulated under the
assumption of RU D 0 and IC.t/ D 0, can be modified by replacing E.t/ by E 0.t/
resulting from Eq. (2.67), and by extending it with the following ODE for IC.t/,
obtained by combining Eqs. (2.67), (2.69), and (2.70):

IC.t/ D CDL
dE.t/

dt
� RUCDL

�
dIF.t/

dt
C dIC.t/

dt

	
: (10.14)

In Eq. (10.14) dE.t/=dt is a known expression (for controlled potential experi-
ments), dIF.t/=dt can be expressed through the unknown production rates, and
IC.t/ is an unknown, too. We thus obtain an IDE system. For example, the IE (5.21)
formulated for an irreversible electron transfer (5.7) under conditions of planar
diffusion in a one-dimensional semi-infinite spatial domain, turns into the IDE
system:

�1.t/ exp

�
˛f nF

RT

˚
E.t/C nFARU Œ�1.t/C �2.t/� �E0

��

�k0
8
<

:c
?
1 �

tˆ

0

ŒD1�.t � �/��1=2 �1.�/ d�

9
=

; D 0 ; (10.15)

d�1.t/

dt
C d�2.t/

dt
C .CDLRU/

�1 �2.t/C .nFARU/
�1 dE.t/

dt
D 0 ; (10.16)

where we have defined two unknowns �1.t/ D �phet
1 .t/ D phet

2 .t/ D
�IF.t/.nFA/�1 and �2.t/ D �IC.t/.nFA/�1. Similarly, from the IE (5.23)
or (5.179), corresponding to an equilibrium electron transfer (5.7) under the same
conditions, one obtains the following IDE system with the same unknowns:

tˆ

0

Œ�.t � �/��1=2 �1.�/ d�

D c?1D
1=2
1

1C exp
˝

nF
RT

˚
E.t/C nFARU Œ�1.t/C �2.t/� �E1=2

�˛ ; (10.17)

d�1.t/

dt
C d�2.t/

dt
C .CDLRU/

�1 �2.t/C .nFARU/
�1 dE.t/

dt
D 0 : (10.18)

In the case of equilibrium electron transfer it is actually possible to replace the IDE
system (10.17) and (10.18) by a single IDE, as was shown by Imbeaux and Savéant
[25, 26]. By introducing a new unknown �.t/, related to the total current; �.t/ D
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�1.t/C �2.t/C CDL.nFA/�1dE.t/=dt , one obtains from Eqs. (10.17) and (10.18):

tˆ

0

�.�/C CDLRU
d�.�/

d� � C2
DLRU

d2E.�/
d�2

Œ�.t � �/�1=2 d�
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1=2
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1C exp
n

nF
RT

h
E.t/C nFARU�.t/ � CDLRU

dE.t/
dt � E1=2

io : (10.19)

The term involving d2E.�/=d�2 vanishes when linear potential sweep/cyclic
voltammetry is modelled, except for the time points where the potential–time
functionE.t/ is not differentiable.

Equations (10.17) and (10.18) suffer from the initial inconsistencies mentioned
in Sects. 10.1.1 and 10.1.2. Imbeaux and Savéant [25, 26] tried to avoid this
start-up problem in their study of linear potential sweep voltammetry, by assuming
that initially j IF.t/ j � j IC.t/ j, and that the initial value of the dimensionless
current is 10-7. There are general physical arguments [1] suggesting that the initial
potential step often accompanying controlled potential experiments leads in the first
place to the capacitive current, but mathematical proofs of such assumptions for
Eqs. (10.17)–(10.19) cannot be found in the literature.

Any IE-based model of a controlled current experiment, formulated under the
assumption of RU D 0 and IC.t/ D 0, can be modified in the following way. As an
additional unknown one chooses IC.t/. One replaces all occurrences of I.t/ in the
model by IF.t/ D I.t/�IC.t/. One analytically differentiates the model expression
for E.t/, and adds the resulting equation:

IC.t/ D CDL
dE.t/

dt
(10.20)

to the model. Finally, one adds I.t/ RU to the model expression for E.t/. For
example, Eqs. (5.53)–(5.57) for the EE reaction scheme (5.24) and (5.25) can be
modified as follows. Equation (5.53) is left unchanged, but interfacial concentrations
occurring in Eq. (5.53), and given by Eqs. (5.55)–(5.57) are replaced by

c
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tˆ

0

K1.t; �/ �1.�/ d� ; (10.21)
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c


3.t/ D c?3 �

tˆ

0

K3.t; �/
I.�/

n2FA
d� C

tˆ

0

K3.t; �/ �2.�/ d�

�n1
n2

tˆ

0

K3.t; �/ �1.�/ d�; (10.23)

where we have defined two unknowns �1.t/ D �phet
1 .t/ and �2.t/ D

�IC.t/.n2FA/�1. The additional IDE for �2.t/ is obtained by differentiating
Eq. (5.49):
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where c
1.t/ and c
2.t/ are given by Eqs. (10.21) and (10.22). Finally, the equation
for the measurable potential is obtained from Eq. (5.49) as

E.t/ D E0
1 C

RT

n1F
ln
c


1.t/

c


2.t/
C I.t/RU : (10.25)

10.1.4 Literature Examples

For the effect of uncompensated Ohmic drop without double layer charging, the
following examples of IE-based models are available. De Vries and Van Dalen [17]
and Nicholson [41] considered the effect on linear potential sweep voltammograms,
for an equilibrium electron transfer

X1 C n e� � X2 ; (10.26)

assuming planar diffusion of dynamic distributed species X1 and X2 in a semi-
infinite spatial domain. In [17] an initial equilibrium potential was assumed, whereas
in [41] X2 was initially absent. Roffia and Lavacchielli [46, 47] presented an
analogous discussion for an irreversible reaction (10.26). Reinmuth [45] discussed
the Ohmic loss in DC polarography, in which case the uncompensated resistance
RU depended on time, owing to the variable size of the DME. The expanding
plane model of the DME was assumed. Another example of a variable RU was
considered by Fan et al. [19], in connection with the modelling of scanning
electrochemical microscopic, potential step chronoamperometric and cyclic voltam-
metric experiments at polymer-covered electrodes. In this case RU represented the
resistance of the poly(ferrocene) polymer, assumed to be a linear function of the
charge passed during the experiment. Planar diffusion in a finite spatial domain
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with an impermeable second boundary was assumed. Weidner and Fedkiw [50]
analysed the effect of the Ohmic drop in linear potential sweep voltammetry, in
the case of a cylindrical pore electrode. They assumed a spatially two-dimensional
model, in which the potential drop was along the pore axis, whereas the diffusion
was in the radial direction, inside the pore. Åberg and Sharp [2] discussed the
Ohmic drop in potential step experiments, assuming a non-equilibrium reversible
reaction (10.26), and planar diffusion in a semi-infinite spatial domain. Navarro-
Laboulais et al. [40] considered a similar problem, in connection with a convolutive
analysis of chronoamperograms. Wein [51, 52] presented a theory of potential step
chronoamperometry, with the Ohmic potential drop taken into account, assuming
equilibrium reaction (10.26), and planar diffusion in a semi-infinite spatial domain.
Wein and Tovchigrechko [53,54] discussed the effect of the Ohmic drop on voltage
step transients in a two-electrode cell, assuming planar diffusion in a semi-infinite
spatial domain, and non-equilibrium (10.26).

The Ohmic potential drop may well occur in an electrode material, instead of
the electrolyte. Such a case was modelled by Bieniasz and Tomczyk [9], assuming
reaction

X1 C n e� � 2X2 (10.27)

initially at a positive equilibrium, linear potential sweep voltammetry, and planar
diffusion of species X1 and X2 in a semi-infinite electrolyte phase. Equations (5) and
(8) in Bieniasz and Tomczyk [9] contain errors: there should be expŒ�at C h�.at/�
instead of expŒ�at � h�.at/� in these equations.

The IE describing the effect of the Ohmic potential drop on linear potential sweep
voltammetry for the equilibrium reaction of metal electrodeposition:

X1 C n e� � X2;s (10.28)

was reported by White and Lawson [55], assuming planar diffusion in a semi-infinite
spatial domain. In reaction (10.28) X1 is a dynamic distributed species (metal ion),
and X2;s is a static localised species (solid metal).

For the effect of double layer charging without Ohmic drop, the following
examples of IE-based models are available. Let us begin with models independent
of spatial coordinates. Galinker and Makovetskii [20] considered the influence of
double layer charging in inversion voltammetry and inversion chronopotentiometry,
for an irreversible electrodissolution reaction of a metal concentrated in a thin
mercury film electrode. The reactant was formally considered as a quasi-localised
species (see Sect. 2.9). Tezuka et al. [49] presented a simple model describing
linear potential sweep voltammetry for a charge transfer involving exclusively
localised species (oxidation of a polypyrrole film), in the presence of a capacitive-
like current. Further models listed below depend on one spatial coordinate. Most
of them refer to controlled current experiments. Matsuda [35] examined the
influence of the capacitive current, on potential–time curves in controlled current
oscillographic polarography, for a reaction scheme involving three independent
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electron transfer reactions. De Vries [15] considered the effect in current step
chronopotentiometry for the equilibrium reaction (10.26), with dynamic species X1

distributed in a semi-infinite electrolyte phase, and dynamic species X2 distributed
in a mercury film electrode. Planar diffusion was assumed. In other papers [14, 16]
De Vries discussed also current step chronopotentiometry, and programmed current
chronopotentiometry for the equilibrium reaction (10.26), with dynamic species
X1 and X2 distributed in a semi-infinite electrolyte phase, and subject to planar
diffusion. The latter problem was also studied by Olmstead and Nicholson [42] and
Dračka [18]. Dračka [18] took into account an additional preceding homogeneous
reaction as well. The theory of potential–time relaxation following a coulostatic
impulse was discussed by Reinmuth [44], Nicholson [41], Astruc et al. [6, 7],
and Kudirka and Enke [33]. Planar diffusion in a semi-infinite spatial domain
was assumed. An electron transfer reaction (10.26) involving dynamic distributed
species X1 and X2, as well as a few reaction schemes involving homogeneous
reactions were treated. Matsuda and Aoyagui [36] analysed a modification of this
coulostatic method. Kostin and Labyak [32] developed a model of the controlled
current electrodeposition of some alloys, under conditions of periodic current pulses
of rectangular form, when the capacitive current is significant. A rare example of a
temperature perturbation experiment was presented by Harima and Aoyagui [23].
They studied an open circuit potential relaxation accompanying a linear variation of
the temperature, for a non-equilibrium reversible reaction (10.26). Planar diffusion
of X1 and X2 in a semi-infinite spatial domain was assumed. Safonov et al. [48]
analysed variations of the electrode potential with time, after contacting a planar
electrode with an electrolyte solution. It was assumed that the variations are caused
by the simultaneous non-equilibrium reversible electrodissolution of the electrode
metal, and double layer charging. Pototskaya and Yevtushenko [43] extended the
model from [48] onto the case of a rough, but macroscopically planar electrode,
assuming sinusoidal surface oscillations. The model was actually defined on a two-
dimensional spatial domain, but the resulting IDEs were one-dimensional.

For the combined effects of the Ohmic drop and double layer charging the
following examples of IE-based models are available. Imbeaux and Savéant [25]
investigated the effects on linear potential sweep voltammograms for an equilibrium
reaction (10.26) involving dynamic species X1 and X2 distributed in a semi-infinite
electrolyte phase and subject to planar diffusion. In a later paper [26] they extended
their treatment to several reaction schemes involving homogeneous reactions: the
EC scheme and the ECE scheme with first-order homogeneous reactions, the EC
scheme with a homogeneous dimerisation of the electron transfer product, and the
EC scheme with a homogeneous disproportionation reaction. Garreau and Savéant
[21, 22] extended the discussion from Imbeaux and Savéant [25], by considering
additionally, in an equivalent circuit, an inductance that characterises the effect of
the amplifier bandpass limitation. Andrieux et al. [4,5] presented a theory analogous
to that of Imbeaux and Savéant [25], but for a non-equilibrium reversible electron
transfer (10.26). Kostin [31] considered a model of a two-electrode electrolysis cell,
seemingly (but tacitly) assuming that non-equilibrium reversible charge transfer
reactions at the both electrodes proceed between one dynamic distributed species,
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and one static species. Either controlled current or controlled voltage experiments
were discussed. Montella [37] studied the effect of replacing a differential double
layer capacitance by a constant phase element, on linear potential sweep/cyclic
voltammograms. He assumed a non-equilibrium reversible reaction (10.26), and
planar diffusion of X1 and X2 in a semi-infinite spatial domain.

An interesting but unusual IE describing potential step chronoamperometry for
the equilibrium electron transfer reaction

X1;ad � X2;ad C n e� ; (10.29)

involving dynamic localised species X1;ad and X2;ad, was presented by Yamada
et al. [56]. Reaction (10.29) was taking place in a thin layer electrolytic cell, in
the presence of the Ohmic drop and double layer charging. The model assumed
spatial variations of the Ohmic potential drop along the electrode surface, so that
the resulting IE involved integration over time and over the surface.

10.2 Electric Migration Effects

Electric migration transport cannot be handled rigorously by the IE method, at
least not by the usual Laplace transform approach, owing to the nonlinearity
of the Nernst–Planck equations (2.1). However, there have been a few studies
where the role played by the electric potential distribution, in the ionic transport,
was approximately accounted for in the IE-based models of electroanalytical
experiments. We list these studies below.

Caselli and Maestro [10–13] analysed a controlled potential electrolysis at
a membrane-coated liquid mercury electrode. Starting from the Nernst–Planck
equations they assumed some linearising approximations to these PDEs, which
allowed for IEs to be formulated.

Amatore and Lefrou [3] considered the theory of cyclic voltammetry at extremely
high potential scan rates, at which the diffuse part of the double layer cannot be
separated from the diffusion layer. Starting from the Nernst–Planck equations, they
obtained an approximate IE for the Faradaic current, in which the effect of migration
was accounted for by including the dependence of reaction rates on the electric
potential at the outer Helmholtz plane.

Kakiuchi [29] presented an IE describing DC and AC responses of ion transfer
across an oil jwater interface. The interface was assumed to behave as a thin
planar layer, with Nernst–Planck transport equations in the layer, and a linear
potential profile. This assumption has led to a particular Goldman-type current–
potential characteristic of the ion transfer through the interface [28], different from
the standard Butler–Volmer characteristic. The current–potential characteristic was
used as a boundary condition for diffusion at both sides of the interface, resulting in
an IE for the Faradaic current.
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Honeychurch and Rechnitz [24] analysed cyclic voltammetry for the equilibrium
reduction of cytochrome c at monolayer covered electrodes. They assumed that
the monolayer affects the electric potential profile in the vicinity of the electrode
and alters the distance of closest approach of the reactant. The voltammograms
were described by an IE similar to Eq. (10.4), in which an additional term was
subtracted from the electrode potentialE.t/. The additional term was approximately
a quadratic function of time.

Models of transient experiments (mostly potential step chronoamperometry) at
electrodes covered by polymer films were described by Malev et al. [34], Kondratiev
et al. [30], and Ivanov et al. [27], assuming local electroneutrality. The migration
transport PDEs were linearised, owing to the assumed small departures from
equilibrium. This allowed the IE formalism to be applied.

Myland and Oldham [38, 39] investigated the effect of migration and changing
(uncompensated) resistance on voltammetry, in the absence of supporting elec-
trolyte. They considered a locally electroneutral solution of a binary electrolyte. The
cation of the electrolyte was participating in an electron transfer reaction, leading to
an uncharged reduction product. One-dimensional, semi-infinite, and finite spatial
domains were considered. The particular situation studied by Myland and Oldham
[38, 39] is rather exceptional, because it allows one to replace the nonlinear
Nernst–Planck equations by an equivalent pure diffusion PDE. Consequently,
concentration–flux relationships are obtainable analytically, and can be used to
formulate IEs. The solution resistance, important for the model, can be calculated
from the concentration-dependent local conductivity of the electrolyte solution, by
an appropriate integration over space. Numerical integration was used.
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Chapter 11
Analytical Solution Methods

In this chapter we review analytical methods that have been used to obtain solutions
of the IEs or IDEs arising in electroanalytical chemistry. The classification of the
methods considered here as “analytical” is to some extent arbitrary, because it is
never possible to entirely avoid the use of numerical computing, while using the
solutions obtained by these methods. In fact, it happens that the same methods are
sporadically called “numerical” in the literature. However, owing to the involvement
of various analytical transformations or procedures, in the process of deriving the
solutions, it is reasonable to call them analytical, in order to distinguish them from
purely numerical methods. In Sect. 11.1 a few analytical techniques, applicable to
some one-dimensional IEs or IDEs, are presented. These techniques have a very
limited application scope, but in cases when they are applicable they usually prove
useful, and have received some attention.

11.1 Analytical Methods for One-Dimensional IEs or IDEs

Mathematics has developed a variety of analytical methods for solving
one-dimensional IEs (see, for example, [15, 29, 30, 55, 56, 80] and the literature
therein). Some of these methods have found application in electroanalytical
modelling. It is important to note that these electrochemical applications are
often quite original and non-standard. They should be of interest not only to
electrochemists, but also to mathematicians, who are almost unaware of their
existence.
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11.1.1 Integral Solutions

The analytical technique discussed in this section is applicable to one-dimensional
first kind Volterra IEs having the form:

tˆ

0

K .t; �/ �.�/ d� D f .t/ ; (11.1)

where �.t/ is an unknown solution, f .t/ is a known function of t , and K .t; �/ is a
convolution kernel. Therefore, we can write

K .t; �/ D '.t � �/ ; (11.2)

where '.#/ with # D t � � is a known function. The technique to be described
was analysed and advocated relatively recently by Mirčeski and Tomovski [40], but
examples of the integral solutions resulting from the technique were known earlier
(see, for example, [14,22,34,36,58,59,64,68,81]), among other things dating back
to the early works on the theory of linear potential sweep voltammetry. Looking
from the mathematical perspective, the method can be viewed as a generalisation of
the well-known analytical solution of the Abel IE [15,30]. The following description
of the technique is loosely based on the discussion in Mirčeski and Tomovski [40],
but we add some extensions.

Looking at the Eq. (11.1) one is tempted to consider the idea of trying to find
the inverse kernel (cf. Chap. 3, Sect. 3.1) of the integral transformation in Eq. (11.1),
with the aim of obtaining the solution in the form

�.t/ D
tˆ

0

K inv.t; �/ f .�/ d� ; (11.3)

where K inv.t; �/ denotes the inverse kernel. However, as we shall see below, this
cannot be done, although formulae somewhat similar to Eq. (11.3) can be obtained.

As the electrochemical IEs are usually obtained by using the Laplace transforma-
tion, it is most convenient to discuss the present solution technique in terms of this
transformation. Hence, let us assume that the Laplace transforms of functions �.t/,
f .t/ and '.#/ exist. By applying the Laplace transformation (3.12) to Eq. (11.1),
the convolution theorem (3.17) yields:

O'.s/ O�.s/ � Of .s/ D 0 : (11.4)

Consequently,

O�.s/ D Œ O'.s/��1 Of .s/ (11.5)
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and

�.t/ D L �1 nŒ O'.s/��1 Of .s/
o
: (11.6)

Equation (11.6) may be considered an analytical solution of Eq. (11.1), in the sense
that it is obtained by the methods of analysis, although a closed-form representation
of the inverse Laplace transform (3.14) in Eq. (11.6) is rarely available, so that
numerical inversion may be necessary. This is not a bad option, since a number of
robust numerical inversion methods exist (see Chap. 3, Sect. 3.2, and the literature
cited therein). However, one may prefer to look for alternatives requiring a deeper
analytical insight.

Let us define O'0.s/ D Œ O'.s/��1. If L �1 f O'0.s/g existed, we might define the
inverse kernel as K inv.t; �/ D '0.t � �/, where '0.#/ D L �1 f O'0.s/g. By virtue
of the convolution theorem (3.17), Eq. (11.6) might then be cast into the form (11.3).
Unfortunately, L �1 f O'0.s/g is not likely to exist, because in view of the existence
of L �1 f O'.s/g, function O'.s/ must decay to zero for s ! 1 (in fact we have seen
in Chaps. 5, 6, and 8 that often O'.s/ Ï s�1=2). Consequently, O'0.s/ diverges when
s ! 1, and cannot have the inverse Laplace transform (3.14). However, one can
rewrite Eq. (11.5) in the equivalent alternative form:

O�.s/ D O'1.s/
h
s Of .s/� f .0C/

i
C O'1.s/ f .0C/ ; (11.7)

where

O'1.s/ D Œ O'.s/��1 =s : (11.8)

Owing to the division of Œ O'.s/��1 by s in Eq. (11.8), function O'1.s/ is likely
to possess the inverse Laplace transform '1.#/. Let us assume that a closed-
form expression or computable approximation for this inverse exists. In addition,
assume f .t/ is differentiable, so that in accordance with Eq. (3.18), s Of .s/�f .0C/
represents the Laplace transform of the first derivative of f .t/. Consequently, by
applying the convolution theorem (3.17) to Eq. (11.7) we obtain:

�.t/ D
tˆ

0

'1.t � �/ df .�/

d�
d� C f .0C/ '1.t/ : (11.9)

Equation (11.9) represents an analytical solution of Eq. (11.1) in the form of the
integral of df .t/=dt rather than the integral of f .t/ seen in Eq. (11.3), with the inte-
gral transformation kernel '1.t � �/ which, similar to '.t � �/, is of the convolution
type. An extra term f .0C/ '1.t/ is added to the integral. Equation (11.9) avoids
the problem of determining the inverse Laplace transform, present in Eq. (11.6),
so that it may be regarded more attractive. However, for a majority of conceivable
electroanalytical IEs, the integral present in Eq. (11.9) does not have a representation
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in terms of known functions, and needs to be evaluated numerically. This is not a
trivial task, because the integral is usually improper.

Although such an option was not considered in Mirčeski and Tomovski [40],
there exists a simple, but interesting generalisation of Eq. (11.9). Instead of dividing
Œ O'.s/��1 by s, as was done in Eq. (11.8), one might just as well divide by sm, where
m is any positive integer. Instead of Eq. (11.7) we would then write:

O�.s/ D O'm.s/
h
sm Of .s/ � sm�1f .0C/

�sm�2 d f .t/

d t

ˇ̌
ˇ̌
tD0C

� : : : � dm�1 f .t/
d tm�1

ˇ̌
ˇ̌
tD0C

	

C O'1.s/ f .0C/ C O'2.s/ d f .t/

d t

ˇ̌
ˇ̌
tD0C

C : : :C O'm.s/ dm�1 f .t/
d tm�1

ˇ̌
ˇ̌
tD0C

;

(11.10)

where

O'k.s/ D Œ O'.s/��1 =sk (11.11)

for k D 1; : : : ; m. Assuming that inverse Laplace transforms 'k.#/ of all functions
O'k.s/ exist, and that f .t/ is at least m times differentiable, the convolution
theorem (3.17) applied to Eq. (11.10) gives:

�.t/ D
tˆ

0

'm.t � �/ dmf .�/

d�m
d�

Cf .0C/ '1.t/C d f .t/

d t

ˇ̌
ˇ̌
tD0C

'2.t/C : : :C dm�1 f .t/
d tm�1

ˇ̌
ˇ̌
tD0C

'm.t/ : (11.12)

An integral solution of this kind, with m D 2, was proposed by Chryssoulakis et al.
[7], for the IE describing cyclic voltammetry for an equilibrium electron transfer.
Later, it was re-discovered by Suzuki et al. [76]. The advantage of Eq. (11.12), over
Eq. (11.9), is that a singularity of the integrand is often present in Eq. (11.9), but
it may not be present in Eq. (11.12) (see example below). Numerical integration
is easier in the absence of the singularity. However, an increased sophistication of
the analytical formulae is expected in Eq. (11.12) when m increases, especially for
complicated kernel functions '.#/.

The integral solution in yet another alternative form can be obtained in the case
of IEs (11.1) with convolution kernels containing an exponential factor:

K .t; �/ D expŒ�k.t � �/� '.t � �/ : (11.13)
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A variety of such kernels arises when one-dimensional transport is accompanied
by homogeneous reactions (see Chap. 8). In such cases, instead of expressing the
solution by Eq. (11.9) with function '1 corresponding to the entire kernel (11.13),
one can first make a substitution:

Q�.t/ D �.t/ exp.kt/ ; (11.14)

Qf .t/ D f .t/ exp.kt/ ; (11.15)

which reduces Eq. (11.1) to the IE:

tˆ

0

'.t � �/ Q�.�/ d� D Qf .t/ : (11.16)

The solution for Q�.t/ is then obtained by using Eq. (11.9) with function '1
corresponding to function ' in Eq. (11.16):

Q�.t/ D
tˆ

0

'1.t � �/ d Qf .�/
d�

d� C Qf .0C/ '1.t/ : (11.17)

By returning to the original functions �.t/ and f .t/, Eq. (11.17) becomes:

�.t/ D exp.�kt/
tˆ

0

'1.t � �/ d

d�
Œexp.k�/ f .�/� d� C exp.�kt/ f .0C/ '1.t/ :

(11.18)

Savéant and Vianello [65,66] used Eq. (11.18) to obtain integral solutions for linear
potential sweep voltammetry in the case of the catalytic EC reaction scheme.

As a first example, let us consider any controlled potential experiment for the
equilibrium electron transfer reaction

X1 C n e� � X2 ; (11.19)

proceeding under conditions of planar diffusion with different diffusion coefficients
D1 ¤ D2, in a semi-infinite spatial domain. The relevant Abel IE (in dimensional
form) is [cf. Eq. (5.179) in Chap. 5]:

tˆ

0

Œ�.t � �/��1=2 �.�/ d� D f .t/ ; (11.20)
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with

f .t/ D c?1 D
1=2
1

1C exp
˚

nF
RT

�
E.t/ �E1=2

�� : (11.21)

In Eqs. (11.20) and (11.21) the unknown �.t/ is the flux of species X2 at the
electrode, proportional to the absolute value of the Faradaic current, E.t/ is the
applied electrode potential perturbation, andE1=2 is the half-wave potential (5.180).
In this example '.#/ D .�#/�1=2 so that O'.s/ D s�1=2. Consequently, O'1.s/ D
s�1=2 and '1.#/ D .�#/�1=2. From Eq. (11.9), the solution is

�.t/ D
tˆ

0

Œ�.t � �/��1=2 df .�/

d�
d� C f .0C/ .�t/�1=2 : (11.22)

If potential step chronoamperometry is considered, then E.t/ is constant, df .t/=dt
and the integral vanish, and only the last term in Eq. (11.22) remains. Thus, we
obtain the well-known Cottrell equation for the chronoamperometric current [9]:

�.t/ D f .0C/ .�t/�1=2 : (11.23)

If linear potential sweep (or cyclic) voltammetry is considered, then E.t/ is a
linear function of t (or a sawtooth function), and the integral term in Eq. (11.22)
is essential. The last term then represents a residual singularity of the current
which is formally present, but can be ignored in comparisons with experimental
data. The integral solution (11.22) for the linear potential sweep voltammetry was
obtained in [14, 36, 68]. The problem of numerically evaluating the integral in
Eq. (11.22) was investigated by several authors, including De Vries and van Dalen
[12], Ramamurthy and Rangarajan [57], Lether and Wenston [27], Moreno et al.
[45], and Natarajan and Mohankumar [49]. Diverse methods to compute the integral
in question were suggested, but since the studies were focused on a particular
example of electroanalytical experiments, and their relevance for other examples
is unknown, we do not present further details here. Interested Readers are referred
to these references for such details.

For the same example, the generalised formula (11.12) with m D 2 predicts [7]:

�.t/ D 2��1=2

tˆ

0

.t��/1=2 d2f .�/

d�2
d� C f .0C/ .�t/�1=2C2��1=2 df .t/

d t

ˇ̌
ˇ̌
tD0C

t 1=2 :

(11.24)

As can be seen, the integrand singularity, previously present in Eq. (11.22), has been
removed, so that a proper integral occurs in Eq. (11.24).
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As a second example, let us consider, after Mirčeski and Tomovski [40] any
controlled potential experiment for a catalytic EC reaction scheme involving an
equilibrium n-electron transfer and a (pseudo) first-order irreversible homogeneous
reaction with rate constant k. Assume planar diffusion with equal diffusion coeffi-
cients, in a semi-infinite spatial domain. The relevant IE (in dimensional form) is
(see, for example, [50]):

tˆ

0

expŒ�k.t � �/�Œ�.t � �/��1=2 �.�/ d� D f .t/ ; (11.25)

with

f .t/ D c?1 D
1=2

1C exp
˚

nF
RT ŒE.t/ � E0�

� ; (11.26)

where D denotes the common diffusion coefficient, and E0 is the conditional
potential of the electron transfer reaction. If we take '.#/ D .�#/�1=2 exp.�k#/,
then O'.s/ D .s C k/�1=2. Consequently, O'1.s/ D .s C k/1=2=s and '1.#/ D
exp.�k#/.�#/�1=2 C k1=2erfŒ.k#/1=2�. From Eq. (11.9), the solution is

�.t/ D
tˆ

0

�
expŒ�k.t � �/�
Œ�.t � �/�1=2 C k1=2erf

�
k1=2.t � �/1=2�


df .�/

d�
d�

Cf .0C/
�

exp.�k t/
.�t/1=2

C k1=2erf.k1=2 t1=2/

	
: (11.27)

An application of the alternative formula (11.18) to the same example yields:

�.t/ D exp.�k t/
tˆ

0

Œ�.t��/��1=2 d

d�
Œexp.k �/ f .�/� d� C exp.�k t/ f .0C/ .�t/�1=2 :

(11.28)

Mirčeski and Tomovski [40] considered one more example, namely the IE for an
electron transfer reaction accompanied by adsorption of the reactant and product.
We omit the presentation of this example here. Obviously, many examples can be
solved by using Eqs. (11.9), (11.12), and (11.18). The crucial factors for the success
are: the availability of closed-form formulae or suitable numerical approximations
for the functions 'k.#/, and the application of a suitable numerical technique for
the evaluation of the integrals.
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11.1.2 Power Series Solutions

Any series expansion for the solution may be regarded “more analytical” or
convenient than an integral expression, as the manipulation and analysis of the series
terms is easy, at least in principle. The involvement of numerical computations is not
entirely eliminated, because the series terms must ultimately be summed up to get
the solution values, and the summation sometimes requires elaborate algorithms.
A number of authors [2, 16, 17, 19, 20, 35, 51, 60, 63, 70, 71, 74, 75, 79, 82–84] have
obtained analytical solutions of one-dimensional electroanalytical IEs or IDEs in the
form of power series. It seems that the method has been particularly popular among
researchers investigating adsorption at stationary and dropping mercury electrodes,
but this fact is rather accidental. The idea of the method is to assume that the solution
�.t/ of an IE or IDE can be expressed as

�.t/ D
1X

iD0
ai t

bi ; (11.29)

where ai are expansion coefficients and bi are power exponents, not necessarily
integer. Substitution of Eq. (11.29) into an IE or IDE may yield a sequence of
equations, possibly recursive, from which the unknown coefficients ai and bi can
be determined. The series (11.29) can sometimes also be obtained by applying the
successive approximation method (see Sect. 11.1.4). Either an ordinary series (with
non-negative bi ) or asymptotic expansions (with negative bi ) can be searched. The
IEs or IDEs may well be nonlinear.

As an example, let us solve one of the nonlinear IDEs derived by Reinmuth [60]:

�.t/ D Œ1 � �.t/�
2

4� � 2
tˆ

0

.t � �/�1=2 d�.�/

d �
d�

3

5 : (11.30)

The IDE describes an experiment in which an initially clean planar electrode
(possibly maintained in this state by an appropriate polarisation, prior to the
actual experiment beginning at the normalised time t D 0) is suddenly subject
to a fast adsorption of a distributed species, controlled by diffusion from a semi-
infinite domain. Equation (11.30) is a particular case of the IDE (9.27) derived in
Sect. 9.1, corresponding to the Langmuir adsorption isotherm. Unknown function
�.t/ represents the fractional coverage of the electrode by the adsorbate. As the
electrode is initially clean, the initial condition is �.0/ D 0. Parameter � depends
on the initial concentration and the adsorption equilibrium constant. One assumes

�.t/ D
1X

iD0
ai t

i=2 ; (11.31)
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with a0 D 0, to satisfy the initial condition. Substitution of Eq. (11.31) into
Eq. (11.30) gives

1X

iD0
ai t

i=2 D
"
1 �

1X

iD0
ai t

i=2

#"
� � t�1=2

1X

iD1
i ai t

i=2B



i

2
;
1

2

�#
; (11.32)

where

B.z;w/ D
1ˆ

0

t z�1.1 � t/w�1 dt (11.33)

is the beta function [1]. By comparing the coefficients at the successive powers of
t1=2, at both sides of Eq. (11.32), one obtains:

a1 D �=B



1

2
;
1

2

�
D �=� ; (11.34)

a2 D �a1=
�
2 B



1;
1

2

�	
; (11.35)

and

ai D
2

4�ai�1 C
i�1X

jD2
j aj ai�j B



j

2
;
1

2

�3

5 =
�
i B



i

2
;
1

2

�	
(11.36)

for i D 3; 4; : : : .
Assuming that the resulting equations for the coefficients ai and bi can be solved

in a straightforward way, without any need to resort to numerical calculations,
obtaining the solution should be easy. This is an attractive feature of the method.
Unfortunately, the power series (11.31) may have limited convergence radii, which
restricts the usefulness of this method.

11.1.3 Exponential Series Solutions

A different, and mathematically original analytical series expansion method was
introduced by Reinmuth [61,62], for solving one-dimensional linear first and second
kind Volterra IEs occurring in the theory of linear potential sweep voltammetry.
The method makes use of the fact that, in the case of electrochemical reactions
subject to Butler–Volmer kinetics, and also in the case of equilibrium electrochem-
ical reactions, the coefficients of the relevant linear IEs are usually exponential
functions of the potential. The electrode potential, in turn, is a linear function of
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time, in the case of the linear potential sweep voltammetry. Consequently, when
presented in dimensionless form, the coefficients of the IEs involve terms dependent
exponentially on time, such as exp Œ�.u � t/�, where t is a dimensionless time (often
denoted by at or bt in the literature), and u is a certain constant parameter. This
suggests looking for the solution in the form of the exponential series:

�.t/ D
1X

iD1
ai exp Œ�i .u � t/� ; (11.37)

where ai are coefficients to be determined. To illustrate the principle of this method,
we provide two examples below.

As a first example, let us take the equilibrium electron transfer reaction

X1 C n e� � X2 (11.38)

involving dynamic distributed species X1 and X2 with different diffusion coeffi-
cients D1 ¤ D2. Assume planar diffusion and a semi-infinite spatial domain. The
relevant dimensionless first kind Volterra IE can be written in the form [cf. the
derivations in Sects. 5.1 and 5.5, leading to Eqs. (5.23) and (5.179)]:

f1C exp Œ�.u � t/�g
tˆ

0

.t � �/�1=2 �.�/ d� D exp Œ�.u � t/� : (11.39)

By setting Eq. (11.37) into Eq. (11.39), and integrating step-by-step the elements of
the series, one obtains

f1C exp Œ�.u � t /�g
1X

iD1

ai

��
i

�1=2
exp Œ�i .u � t /� erf

h
.i t/1=2

i
D exp Œ�.u � t /� :

(11.40)

The coefficient u is proportional to the absolute value of the difference between
the starting potential of the linear sweep, and the half-wave potential (5.180). If we
assume that the difference is sufficiently large, then the time t after which the current
function �.t/ begins to differ significantly from zero is also large. Consequently,

the physically interesting solution is characterised by t so large that erf
h
.i t/1=2

i
�

1 for all i . This simplifies Eq. (11.40). By comparing the coefficients standing at
successive powers of exp Œ�.u � t/� at both sides of Eq. (11.40) one finds ai D
��1=2.�1/i�1 i1=2, so that the solution is

�.t/ D ��1=2
1X

iD1
.�1/i�1 i1=2 exp Œ�i .u � t/� : (11.41)
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As a second example, let us take the irreversible electron transfer reaction

X1 C n e� ! products (11.42)

involving a dynamic distributed species X1. Assume planar diffusion and a semi-
infinite spatial domain. The relevant dimensionless second kind Volterra IE is
obtainable as a particular version of Eq. (5.21) with K1.t; �/ D Œ�.t � �/��1=2:

tˆ

0

.t � �/�1=2 �.�/ d� C exp.u� t/ �.t/ � 1 D 0 ; (11.43)

where the parameter u depends on the difference between the starting potential
and the conditional potential of reaction (11.42), and also on the conditional rate
constant. Substitution of Eq. (11.37) into Eq. (11.43) then gives, analogous to the
first example:

�.t/ D ��1=2
1X

iD1
.�1/i�1

�
�i

.i � 1/Š
	1=2

exp Œ�i .u � t/� : (11.44)

Exponential series solutions have been obtained for a number of IEs arising in
the theory of linear potential sweep and cyclic voltammetry. In his original work
[61], Reinmuth derived the series (11.41). He also derived the series (11.44) in
a more general form, taking into account external or internal spherical diffusion,
and a series for the EC reaction scheme involving distributed species, equilibrium
electron transfer and irreversible homogeneous reaction, at the assumption of planar
diffusion in a semi-infinite spatial domain. A collection of exponential series for
standard EC and CE reaction schemes involving distributed species, assuming
planar diffusion in a semi-infinite spatial domain, was reported by Nicholson and
Shain [50]. Some of these series, including the ones for the catalytic EC reaction
schemes, were obtained assuming equal diffusion coefficients of the reactants. The
series for the catalytic reaction schemes with reactants having distinct diffusion
coefficients were later supplemented by the present author [5]. Olmstead and
Nicholson [54] derived the series for an EC reaction scheme assuming external
spherical diffusion. The series for the EC catalytic reaction scheme involving
adsorbed species X1;ad and X2;ad and distributed species X3 and X4:

X1;ad C n e� � X2;ad ; (11.45)

X2;ad C X3

kf

�
kb

X1;ad C X4 ; (11.46)

was derived by Bieniasz et al. [6], assuming external spherical diffusion.
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Readers interested in applying or developing this method should keep in
mind that the method requires the existence of the exponential terms such as
exp Œ�.u � t/�, in the coefficients of the IEs. Hence, the method is not likely to
work in the case of Marcus–Hush–Chidsey kinetics (see Sect. 2.7).

The main problem with using the above exponential series method is that, simi-
larly to the power series method of Sect. 11.1.2, the series (11.37) may have limited
convergence radii. Also, even if the series are convergent, the convergence may be
slow. For example, the series (11.41) is convergent only for t < u, whereas the
series (11.44) is convergent for all t . These difficulties have given rise to a number
of studies where various rearrangements and reformulations of the exponential
series have been proposed in order to improve the convergence. These studies have
been thus far limited mostly to the few simplest (although otherwise important for
electrochemistry) examples of electroanalytical experiments. In particular, the case
of the series (11.41) has attracted much attention. Oldham [52,53] applied the Weyl
semi-integration to reformulate Eq. (11.41) into the following convergent series:

�.t/ D 2�1=2
1X

iD1
b�3
i Œbi C .u � t/�1=2 Œbi � 2.u� t/� ; (11.47)

with

bi D Œ.2 i � 1/2 �2 C .u � t/2�1=2 : (11.48)

Myland and Oldham [46] subsequently presented generalisations of this series
onto cyclic voltammetry and (together with Zoski [48]) onto voltammetry under
mildly spherical diffusion conditions. Their works motivated Lether and Evans [26],
Basha and Sangaranarayanan [4], Lether [25], and Ferreira et al. [13], to develop
further modifications or new approximations to the series (11.47). A piecewise
nonlinear approximation to �.t/ was proposed [26], as well as a mini-max rational
approximation [26], Padé approximation [4], and integral representation in terms of
the Joncquière functions [25]. The latter was used to develop a new asymptotic
and Taylor expansion for �.t/ [13]. Acceleration of the convergence of the
series (11.47) was achieved by adding and subtracting a specially designed series
[26].

Although the series (11.44) for the irreversible electron transfer is convergent
for all t , Arun Prasad and Sangaranarayanan [3] transformed the series into a
Padé approximant, emphasising a simplicity of such a formulation. Exponential
series similar to those of Reinmuth [61, 62] were proposed for the non-equilibrium
reversible electron transfer reaction (11.38) by Myland and Oldham [47] and Cope
[8]. All these developments, although mathematically elaborate and interesting,
were focused on very particular examples of electroanalytical experiments. Their
applicability to, and usefulness for other examples was not demonstrated. In
contrast, Mocak [43], Mocak and Bond [44], and Sivakumar and Basha [69]
investigated the merits of using several series summation algorithms for a number
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of different example exponential series. Series transformation techniques such as
the Epsilon and Eta were tried [43], by using programs enabling arbitrary precision
arithmetic computations, such as MATHEMATICA [32] and UBASIC [78]. Special
series expansions implemented in MATHEMATICA, such as PolyLog, LerchPhi,
and Zeta were utilised to express and sum the series of interest [44]. The Epsilon
transformation was also used by Sivakumar and Basha [69], together with the
replacement of the series by Padé approximants. Improvements in convergence and
accuracy of the series were achieved.

11.1.4 The Method of Successive Approximations

The method of successive approximations is one of the classical methods for
solving IEs or IDEs [29, 55, 56, 80]. In this method one assumes a starting
analytical approximate expression for the unknown solution. The substitution of
this expression into an IE or IDE, in an appropriate way, may yield a new analytical
approximate expression that can be again substituted into the IE or IDE, to provide
a next approximate expression, and so on. If the procedure is convergent, one can
obtain a reasonably accurate approximate solution in a few iterations.

There have been very few applications of the successive approximation method
to electrochemical IEs, for example by Matsuda and Ayabe [35] (in conjunction with
the power series expansion), Senda and Tachi [67], Levich et al. [28], Holub [18],
and Mas et al. [31]. In the latter case the procedure was limited to single iterations.

11.1.5 Application of Steady State Approximations

It sometimes happens that an approximate solution of the IEs or IDEs can be
calculated analytically by making use of steady state assumptions. One obvious
situation of this kind occurs when a particular integral concentration–production
rate relationship turns into a non-integral relationship, in a limiting case of a model
parameter value. One can then replace the integral(s) in the IE(s), by these limiting
non-integral expressions, and solve the AE(s) obtained. In this way one obtains
approximate analytical solutions, which are however valid only for the above model
parameter values close to the limiting value. As an example, let us consider an IE
for the irreversible electron transfer

X1 C n e� ! products (11.49)

involving dynamic distributed species X1 subject to spherical diffusion in a semi-
infinite space domain. Assume reaction (11.49) obeys Butler–Volmer kinetics. The
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relevant IE describing a controlled potential experiment is [cf. Eq. (5.21)]:

k0

2

4c?1 �
tˆ

0

K s
1 .t; �/ �.�/ d�

3

5 exp

�
�˛f nF

RT

�
E.t/ �E0

� � �.t/ D 0

(11.50)
where according to Eq. (5.74)

K s
1 .t; �/ D D�1=2

1

˚
Œ�.t � �/� �1=2 � %1 erex

�
%1.t � �/1=2

��
(11.51)

and

�.t/ D �J?
1 .t/ : (11.52)

We have seen in Sect. 5.2.1 that the integral concentration–production rate relation-
ship (5.87) for spherical diffusion in a semi-infinite spatial domain turns into the
AE (5.90) when parameter %1 ! 1, that is for microelectrodes with a sufficiently
small radius. Consequently, the limiting steady state form of Eq. (11.50) is:

k0
h
c?1 �D�1=2

1 %�1
1 �.t/

i
exp

�
�˛f nF

RT

�
E.t/ �E0

� � �.t/ D 0 : (11.53)

Equation (11.53) is easily solved to obtain the analytical solution for the steady
state:

�.t/ D k0 c?1 exp
˚�˛f nF

RT

�
E.t/� E0

��

1CD�1=2
1 k0 %�1

1 exp
˚�˛f nF

RT ŒE.t/ � E0�
� : (11.54)

Other similar examples of steady state analytical solutions can be obtained by using
Eqs. (5.127), (5.144), (8.52), (8.53), (8.54), etc.

A somewhat less obvious, but interesting possibility of obtaining approximate
solutions occurs in the modelling of experiments characterised by periodic pertur-
bations. In such cases, the exact solution very quickly (after one or a few periods
after applying the perturbation) approaches closely an asymptotic solution, which
oscillates with the same frequency, but is shifted by a certain phase shift with respect
to the perturbation imposed. This sort of a steady state is likely to occur for all kinds
of transport conditions and periodic perturbations. This is easiest to demonstrate
by using the example of a controlled potential experiment described by a single IE
with the Faradaic current I.t/ as an unknown function. To fix attention, assume the
periodic electrode potential perturbation pertinent to AC polarography:

E.t/ D Edc C Em sin.!t/ ; (11.55)
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where Edc is the DC component of the electrode potential (possibly slowly varying
in time), ! is the perturbation frequency, and Em is the AC perturbation amplitude.
At the aforementioned steady state, the first harmonic of the AC response is expected
to be:

Iac.t/ D Im sin.!t C �/ ; (11.56)

where Im is the Faradaic current amplitude, and � is the phase shift relative to E.t/.
Alternatively, one can write

Iac.t/ D a sin.!t/C b cos.!t/ ; (11.57)

where a and b are suitable coefficients. The IE(s) for the first harmonic of the AC
current usually contain one or more integrals of the form

Y.t/ D
tˆ

0

K .t; �/ I.�/ d� ; (11.58)

where K .t; �/ is one of the kernels discussed in Chaps. 5, 6, or 8. Substitution of
Eq. (11.57) into these IEs yields integrals

Ysin.t/ D
tˆ

0

K .t; �/ sin.!�/ d� ; (11.59)

Ycos.t/ D
tˆ

0

K .t; �/ cos.!�/ d� : (11.60)

For sufficiently large t these integrals usually possess asymptotic approximations,
by which they can be replaced in the IEs. This allows one to determine the unknown
coefficients a and b at steady state. The asymptotic approximations have been
obtained for a few typical kernels. In particular, for K .t; �/ D Œ�.t � �/��1=2 and
K .t; �/ D . 3

7
�/�1=2�2=3.t7=3 � �7=3/�1=2 one obtains for t !1 [24, 38]:

Ysin.t/ � .2!/�1=2 Œsin.!t/ � cos.!t/� ; (11.61)

Ycos.t/ � .2!/�1=2 Œsin.!t/C cos.!t/� ; (11.62)

whereas for the kernel K .t; �/ D expŒ�k.t � �/�. 3
7
�/�1=2�2=3.t7=3� �7=3/�1=2 one

gets [38]:

Ysin.t/ � .2!/�1=2 Œp sin.!t/ � q cos.!t/� ; (11.63)

Ycos.t/ � .2!/�1=2 Œq sin.!t/C p cos.!t/� ; (11.64)
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where

p D Œ1C .k=!/2�1=2 C k=!
1C .k=!/2 ; (11.65)

q D Œ1C .k=!/2�1=2 � k=!
1C .k=!/2 : (11.66)

Examples of the application of such steady state solution technique are found in
the works of Matsuda [33] on the modelling of controlled current oscillographic
polarography; Delahay, Matsuda, and their co-workers [11, 37], and Smith [73],
on the modelling of the Faradaic impedance; and Smith and co-workers [23, 24,
38, 39, 72], on the modelling of controlled potential AC polarography for various
electrochemical systems. Approximate formulae for the fundamental harmonic of
the current, valid for external cylindrical diffusion in a semi-infinite spatial domain,
were also provided by Tokuda et al. [77]. Derivations of this sort can be facilitated by
using symbolic algebra software, such as MATHEMATICA [32], as was suggested
and described by Honeychurch (cf. chapter 7 in [21]).

11.2 Analytical Methods for Two-Dimensional IEs

Compared to one-dimensional IEs, analytical solution methods for two-dimensional
IEs are scarce. We mention here only the method described by Daschbach [10],
which makes use of the Neumann integral theorem and truncated Fourier expansion.
The method was used to obtain IEs essentially equivalent to those of Mirkin and
Bard [41, 42] (cf. Sects. 7.1 and 7.2) for the disk electrode, and their approximate
solutions. Another analytical/numerical method employing series expansions, for
solving the IEs resulting from the Cope and Tallman approach (cf. Sect. 7.1), will
be described in Chap. 12.
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Polarographie. Z Elektrochem 59:494–503

37. Matsuda H, Delahay P (1960) Faradaic rectification with control of alternating potential
variations—application to electrode kinetics for fast processes. J Am Chem Soc 82:1547–1550

38. McCord TG, Smith DE (1968) Alternating current polarography: an extension of the general
theory for systems with coupled first-order homogeneous chemical reactions. Anal Chem
40:1959–1966

39. McCord TG, Smith DE (1968) Second harmonic alternating current polarography: a general
theory for systems with coupled first-order homogeneous chemical reactions. Anal Chem
40:1967–1970
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Chapter 12
Numerical Solution Methods

In this chapter we review numerical methods that have been used to obtain solutions
of the IEs arising in electroanalytical chemistry. Numerical techniques applicable
to one-dimensional Volterra IEs are discussed in Sect. 12.1. These techniques are in
common use, and they are sufficiently powerful to solve almost any IE considered
in electroanalytical chemistry. Numerical methods applicable to two- and higher-
dimensional IEs are addressed much more briefly in Sect. 12.2.

12.1 Numerical Methods for One-Dimensional Volterra IEs

There exists an ample mathematical literature describing numerical methods
designed for the solution of one-dimensional Volterra IEs, including weakly singular
IEs of the type encountered in electrochemistry [7,8,34,35,41,56,65,68]. However,
the arsenal of numerical techniques, used thus far to solve one-dimensional IEs of
electroanalytical models, has been rather limited. It seems that the many techniques
developed by mathematicians and numerical analysts over the past decades have
not attracted attention of electrochemists, with a few exceptions.

The methods used in electrochemistry are based on the general idea of replacing
the integrals

Y.t/ D
tˆ

0

K .t; �/ �.�/ d� ; (12.1)

occurring in the IEs, by finite sums. The sums involve unknown values of the
function(s) �.t/ at the nodes of discrete grids selected along the axis of the
independent variable t . By discretisations of this kind, the IEs are converted into sets
of AEs. By solving these AEs, one obtains approximate solutions at the grid nodes.
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There is a large number of ways in which integrals (12.1) can be approximated by
finite sums. The ways used in electrochemistry can be roughly divided into three
groups: quadrature methods, product integration methods, and methods based on
discrete differintegration. This division is to some extent artificial, because all these
methods are similar, and some of the methods may actually belong to more than one
group simultaneously.

By quadrature methods we understand here methods in which the entire inte-
grands in Eq. (12.1) are discretised on a certain grid along the t axis, using a
particular quadrature (for introduction to numerical quadratures see, for example,
Kythe and Schäferkotter [66]). Such methods have been rarely used; examples are
in [52, 54]. In general, we do not recommend them, unless the kernel K .t; �/ is a
very slowly varying and nonsingular function. In electrochemistry this condition
is usually not satisfied, and the kernels are either weakly singular, or they vary
much faster than the unknown function �.t/. Therefore, a grid suitable for the
discretisation of �.t/ is usually too sparse for an accurate discretisation of the
kernel.

The above problem can be avoided in the product integration methods (for a
mathematical introduction to the product integration techniques, see [8,65]). In these
methods the unknown functions �.t/ are discretised on suitable grids, and certain
approximations to �.t/, based on these grids, are introduced. Following Nicholson
and Olmstead [86], the most frequently used are two such methods. In the first of
these methods, often called the step function method, the unknown function �.t/
is approximated by a piecewise constant spline defined on the discrete grid (see
Fig. 12.1a). In the second method, called the Huber method after its inventor [61],
a piecewise linear spline is used (see Fig. 12.1b), which results in a better accuracy.

Fig. 12.1 Illustration of the
concept of the step function
method (a) and the Huber
method (b). The exact
solution �.t/ (solid lines) is
replaced by low-order spline
functions (dotted lines),
resulting in approximate
solutions (black circles)
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Product integration methods employing higher-order polynomial approximations to
�.t/ have also been used, but sporadically, so that they will not be discussed further.
One of such methods is the Wagner method [107], which uses local parabolas in
such a way that any two neighbouring local parabolas coincide at two consecutive
nodes of the t-grid. A similar, but different method was developed and advocated
by Olmstead and Nicholson [95]. Their method also uses local parabolas or higher-
order polynomials, but any two neighbouring polynomials coincide at one grid node
only.

In the product integration methods one obtains approximations to integrals (12.1)
as linear combinations of the nodal �.t/ values, with coefficients dependent on
certain integrals (or moment integrals, see Sect. 12.1.1.1) of the kernel functions.
It is most desirable to calculate these integrals analytically, or by means of
highly accurate numerical approximations, such as truncated series expansions or
polynomial approximants. However, less accurate numerical integration by means
of quadratures is also acceptable, provided that the discretisation of the kernels
is done on appropriately denser grids than the grids on which functions �.t/ are
discretised [78, 80]. The latter possibility indicates that the quadrature methods and
product integration methods with analytical moment integral calculation present two
extremes between which there can be intermediate methods, often also classified as
product integration methods. For example, slowly varying multiplicative parts of the
kernel functions can be combined with the functions �.t/, and discretised jointly
on the same grid. The resulting approximate expressions for the integrands are
integrated analytically. Methods of this kind were used, for example, in [11,89,90],
but they give generally worse results than the product integration methods with the
analytical calculation of the moment integrals, and we do not recommend them.

The step function and Huber methods were originally published assuming
uniform grids of the t variable, and in this version they have been predominantly
used in electrochemistry. Relevant specialised algorithms have been elaborated for
many electrochemical models, and occasionally published in the electrochemical
literature. Apart from the aforementioned description in the review paper by
Nicholson and Olmstead [86], algorithm descriptions exceeding just a presentation
of the final formulae were given in [40, 45, 64, 69, 78–80, 87, 88, 99] for the step
function method, and in [3–6, 9, 42–44, 49, 50, 59, 63, 67, 96, 99] for the Huber
method. Particularly detailed descriptions of the uniform grid algorithms were
given by Mirčeski [78], who discussed the problem of the numerical integration
of the moment integrals in the step function method, and by Lovrić [69], who
described the step function method algorithms for models of redox reactions
complicated by the reactant and product adsorption at the surface of dropping and
stationary mercury electrodes. A method similar to the step function method, but
expressed by a somewhat different summation formula was described by Mirkin,
Nilov, and Nauryzbaev [83]. A general purpose code based on the uniform grid
versions of the step function and Huber methods was also developed and built
into the problem solving environment ELSIM for electrochemical simulations [11].
Mirčeski et al. [79] developed a MATHCAD-based code for calculating square wave
voltammograms by the step function method. Honeychurch [59] described codes
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for the uniform grid Huber method, written in MATHEMATICA [77], and applied
them to a few simple electroanalytical models. In addition to the literature listed
above, there have been electroanalytical modelling studies, in which a numerical
technique equivalent to the uniform grid variant of the Huber method has been used,
without referring to Huber, or even to the IEs. The technique originates from the
numerical convolution procedure published by Oldham [92] and derived from one
of the numerical algorithms for differintegration [94]. The procedure was initially
designed and used for experimental data analysis, but later it was applied to the
theoretical modelling as well, by Rudolph [102], Mahon and Oldham [70–75],
Myland and Oldham [84], and Mahon et al. [76]. Those authors tend to avoid
the use of the terminology typical for the IEs, but rather emphasise the role of
the convolution, and fractional calculus [94] (especially semi-integration), in the
modelling process. The Reader should be aware that such a change of terminology,
and the related change of notation, does not modify the mathematical character
of the equations considered, which remain IEs. For example, the expression
t́

0

Œ�.t��/��1=2�.�/d� can be called semi-integral and denoted as d�1=2�.t/=dt�1=2,

or it can be called a convolution product and denoted by .�t/�1=2 ? �.t/. However,
none of these alterations changes the fact that a certain integral is in mind, with
all consequences regarding its mathematical properties and plausible numerical
treatments.

Despite their popularity, uniform grids are generally not optimal, because the
solutions �.t/ vary with t . For t values at which �.t/ exhibits more intense
variations, a denser grid is appropriate than for other t values, to achieve a particular
accuracy. This problem was realised by Mirkin and Nilov [82], who developed a
nonuniform grid variant of the Huber method, and demonstrated its advantages in
terms of the computing time and computer memory usage. Another deficiency of
the fixed, uniform grid algorithms listed above, is the lack of error information.
Until recently, the only exception was the algorithm described by Andrieux et al.
[3], where elements of error control were included, based on the comparison of the
solutions obtained on different (but uniform) grids.

In view of the popularity, and advantages, of the step function and Huber
methods, Sect. 12.1.1 is devoted to a thorough description of these methods. In
contrast to the descriptions listed above, the algorithms are formulated in a manner
ensuring a large generality. Attention is also paid to the problem of computing
the initial solution values, which has been largely overlooked in the literature.
Following Mirkin and Nilov [82], nonuniform grids are assumed. In addition,
Sect. 12.1.2 briefly presents an adaptive variant of the Huber method, recently
developed by the present author [15–32]. The adaptive Huber method allows
one to automatically solve the IEs with an accuracy of choice. The user of the
method almost does not have to pay attention to the appropriate selection of
computational grids or other details of the numerical procedure. The automatic
operation of the method is achieved by a built-in algorithm that dynamically selects
nonuniform grid steps in response to the estimates of the solution errors. The
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adaptive Huber method follows the contemporary trends in scientific computing, as
adaptive numerical methods have become standard in many areas of computational
science. It is therefore important to bring them to the attention of electrochemists.
Development of such methods is also an indispensable element of the long-term
programme of the automation of modelling procedures of electroanalytical chem-
istry, undertaken by the present author [14]. The programme aims at the creation
of computational electrochemistry as a distinct subdiscipline of electrochemistry,
employing computer experiments as a basic operational method of studying electro-
chemical phenomena. In order to achieve this goal, advanced computational algo-
rithms and problem-solving software, dedicated to electrochemistry, are necessary
[47, 60].

The problem of the calculation of the moment integrals of the kernel functions,
needed by the product integration methods, is addressed in Sect. 12.1.1.4.

The third approach to discretise integrals (12.1), originating from the theory
of differintegration, and proposed by Oldham and Myland [93], is discussed in
Sect. 12.1.3.

A yet different method of calculating the integrals (12.1) was developed by the
present author [12, 13]. The method is similar to the degenerate kernel approxi-
mation, frequently used (outside electrochemistry) to solve Fredholm IEs [7]. The
method is described in Sect. 12.1.4.

12.1.1 The Step Function and the Huber Methods

Most frequently, one faces the problem of solving the following system of second
kind Volterra IEs:

�!
F
�
t;
�!
� .t/;

�!
Y .t/

�
D �!0 ; (12.2)

where
�!
� .t/ D Œ�1.t/; : : : ; �N� .t/�

T is an N� -dimensional vector of unknown

functions of the independent variable t ,
�!
Y .t/ D ŒY1.t/; : : : ; YNY .t/�

T is an NY -

dimensional vector of integrals,
�!
F .�/ D ŒF1.�/; : : : ; FN� .�/�T is anN� -dimensional

vector of known functions representing the individual IEs, and
�!
0 is a zero vector.

Functions
�!
F .�/ can be nonlinear with respect to their variables. The integrals take

the usual form:

Yi .t/ D
tˆ

0

K�.t; �/ ��.�/ d� (12.3)

for i D 1; : : : ; NY , where K�.t; �/ for � D �.i/ D 1; : : : ; NK are integral
transformation kernels taken out of a set of NK different kernels, and ��.�/ are
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unknown functions associated with the integrals, with � D �.i/ D 1; : : : ; N� .
Numbers N� , NY , and NK need not be equal; the only constraint is NK �
NY . Therefore, Eq. (12.2) encompasses integro-algebraic equation systems (or
even pure AE systems) as special cases. However, for the discussion of the
product integration methods, the occurrence of at least one integral in Eq. (12.2) is
assumed.

12.1.1.1 Discretisation

Let us assume a discrete grid of arbitrary nodes tn (for n D 0; 1; : : :) along the t
axis, with t0 D 0. Hence, the local step sizes hn D tn � tn�1 (for n D 1; 2; : : :)

can be nonuniform. Let
�!
� .tn/ D �!� n D Œ�1;n; : : : ; �N� ;n�T denote the true (exact)

solution values at the grid nodes, and
�!
 n D Œ 1;n; : : : ;  N� ;n�T denote approximate

nodal solution values, resulting from the solution of the discretised Eq. (12.2). In a

similar way, let
�!
Y .tn/ D �!Y n D ŒY1;n; : : : ; YNY ;n�

T denote exact integral values
at the grid nodes, and �!y n D Œy1;n; : : : ; yNY ;n�

T denote approximate nodal integral

values. Our goal is to devise a procedure for calculating
�!
 n.

In accordance with Fig. 12.1, in the step function method
�!
� .t/ is approximated

by a zero-order spline, that is:

�!
� .t/ � �! k (12.4)

for t 2 .tk�1; tk� with k D 1; 2; : : : . In the Huber method, in turn, the first-order
spline is used, that is:

�!
� .t/ � �! k�1 C

�!
 k ��! k�1

hk
.t � tk�1/ : (12.5)

Consequently, the approximate integrals are given by

yi;n D
nX

kD1

tkˆ

tk�1

K�.tn; �/  �;k d� (12.6)

in the step function method, and by

yi;n D
nX

kD1

tkˆ

tk�1

K�.tn; �/

�
 �;k�1 C  �;k �  �;k�1

hk
.� � tk�1/

	
d� (12.7)
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in the Huber method. By introducing the coefficients:

Q�;m;n;l;k D
tkˆ

tl

K�.tn; �/ �
m d� ; (12.8)

and

R�;n;l;k D 0 ; (12.9)

S�;n;l;k D Q�;0;n;l;k (12.10)

for the step function method, or

R�;n;l;k D tkQ�;0;n;l;k �Q�;1;n;l;k

tk � tl ; (12.11)

S�;n;l;k D Q�;1;n;l;k � tlQ�;0;n;l;k

tk � tl (12.12)

for the Huber method, Eqs. (12.6) and (12.7) can be written in the form common for
both methods:

yi;n D
nX

kD1

�
R�;n;k�1;k  �;k�1 C S�;n;k�1;k  �;k

�
: (12.13)

As can be seen, the integrals are replaced by linear combinations of the nodal
solution values, with linear coefficients that depend on the moment integrals
Q�;m;n;l;k of the kernel functions. Zero-order moment integrals (for m D 0), i.e.
ordinary integrals of the kernel functions, are needed by the step function method,
whereas the Huber method requires zero- and first-order moment integrals. Higher-
order moment integrals would be needed by product integration methods using
higher-order polynomials or splines. They are also needed for error estimation (see
Sect. 12.1.2). The availability of exact expressions or highly accurate approxima-
tions to Q�;m;n;l;k is therefore necessary for the proper use of all these methods.
This issue will be discussed in Sect. 12.1.1.4. For the moment, let us assume that
the moment integrals are computable. It is convenient to introduce matrices Rn;l;k
and Sn;l;k , each of dimensions NY � N� , such that there is only one nonzero
element in every i th row of these matrices, equal to the coefficientR�;n;l;k or S�;n;l;k ,
respectively, corresponding to the �th kernel associated with the i th integral. By
using these matrices, Eq. (12.13) can be rewritten in vector notation:

�!y n D
nX

kD1

�
Rn;k�1;k

�!
 k�1 C Sn;k�1;k

�!
 k

�
: (12.14)
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The solution of such discretised Eq. (12.2) proceeds step-wise: we determine the

unknown vectors
�!
 n at successive nodes tn, all previous vectors

�!
 k for k D

0; 1; : : : ; n � 1 already having been determined. In Sect. 12.1.1.2 we describe the

computation of
�!
 n at such internal nodes. In Sect. 12.1.1.3 we discuss the problem

of determining the initial solutions.

12.1.1.2 Solution at Internal Grid Nodes

At any internal node tn, an approximate integral vector �!y n given by Eq. (12.14)

can be viewed as a function of only one unknown
�!
 n (vector): �!y n D �!y n.

�!
 n/,

and according to Eq. (12.14) this is a linear function. In order to determine
�!
 n, we

substitute
�!
 n and �!y n into Eq. (12.2), in place of the exact solutions

�!
� n and exact

integrals
�!
Y n at the grid nodes. This gives

�!
F
�
tn;
�!
 n;
�!y n.
�!
 n/

�
D �!0 : (12.15)

Equation (12.15) is a system of AEs for the unknowns
�!
 n, which can be solved

by standard numerical algorithms for solving AEs. If the AEs are linear, the usual
LU decomposition (see, for example, Press et al. [98]) is sufficient. If they are
nonlinear, iterative methods such as the multidimensional Newton method (see, for
example, Press et al. [98]) can be applied. In the Newton method, having a starting

approximation for
�!
 n, one calculates a correction vector �!& n, by solving the linear

system:

J n
�!& n D ��!F

�
tn;
�!
 n;
�!y n.
�!
 n/

�
; (12.16)

where

J n D F �

�
tn;
�!
 n;
�!y n.
�!
 n/

�
C F Y

�
tn;
�!
 n;
�!y n.
�!
 n/

�
Sn;n�1;n (12.17)

is the Jacobian matrix for Eq. (12.15), with F� .�/ and F Y .�/ denoting matrices

of partial derivatives of
�!
F .�/ with respect to the elements of

�!
� .t/ and

�!
Y .t/,

respectively. The correction vector �!& n is added to
�!
 n, resulting in an improved

approximation (if the method converges). The procedure is repeated iteratively until

a satisfactory accuracy is obtained. As a starting approximation for
�!
 n one can take�!

 n�1.
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12.1.1.3 Initial Solutions

The algorithm of Sect. 12.1.1.2 has to be completed with a procedure of determining�!
 0. It is important to realise that, in contrast to ODEs, IEs do not require an
independent specification of initial conditions. The solutions for t D 0 result from
the IEs themselves. In the case of electrochemical IEs the determination of the
initial solution values is a subtle and difficult matter, because of the frequent weak
singularity of the kernels. The presence of equilibrium electrochemical reactions
at the interface studied, in the case of spatially one-dimensional models, often
leads to solutions singular at t D 0, meaning that for some �i.t/ there can be
lim
t!0C

�i.t/ D ˙1 [see, for example, Eqs. (11.23), (11.24), (11.27), and (11.28)

in Sect. 11.1.1]. In such cases the application of the step function and Huber
methods is actually disallowed, because the methods assume finite solutions when
t ! 0C (see Fig. 12.1). Similar singularities may also occur at t > 0, if there are
discontinuities in the coefficients of the IEs at t > 0. Such discontinuities typically
arise when multiple potential step chronoamperometric transients are simulated.
They can usually be transformed into initial singularities, by an appropriate change
of variables and reformulation of the IEs.

Despite their limitation to finite initial solutions, the step function and Huber
methods were often used when lim

t!0C

�i.t/ D ˙1, by incorrectly assuming finite

 i;0. The fact that acceptable solutions were obtained results from the apparently
fast error damping for typical kernels, such as K�.t; �/ D .t � �/�1=2, which leads
to large errors present at the few initial nodes not propagating further to subsequent
nodes. Nevertheless, when the solution is singular at t D 0, a rigorous application
of the step function and Huber methods requires a modification of the IEs, aimed at
the removal of the singularity. This is usually a difficult problem, and very little has
been done to develop suitable techniques for the elimination of the singularities. In
the case of a simple first kind Volterra IE with a weakly singular kernel and singular
solution �.t/:

tˆ

0

K .t; �/ �.�/ d� D f .t/ ; (12.18)

where f .t/ is a known function such that f .0/ ¤ 0, one can substitute �.t/ D
�s.t/ C �ns.t/, where �s.t/ is a singular component, and �ns.t/ is a nonsingular
component. The singular component can be assumed to satisfy the IE:

tˆ

0

K .t; �/ �s.�/ d� D f .0/ : (12.19)
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Equation (12.19) may be solvable analytically, by the methods outlined in Chap. 11.
The nonsingular component then satisfies the IE:

tˆ

0

K .t; �/ �ns.�/ d� D f .t/ � f .0/ ; (12.20)

to which the product integration methods can be rigorously applied. Another option
is to introduce some change of variables, so that the singular solution is transformed
into a nonsingular one (see, for example, Amatore et al. [2]).

For the further discussion we assume that the initial singularities are removed,

and
�!
� .0C/ is finite in Eq. (12.2). In the step function method there is actually

no need to determine
�!
 0, because this vector is not used by the algorithm [note

that matrix R1;0;1 is zero in Eq. (12.14)]. Therefore, Eqs. (12.15)–(12.17) can be

used to obtain solutions
�!
 n for any n � 1. But, there is also no known general

way to determine
�!
 0, which can be a problem, if the initial values are of interest.

Things are more complicated in the Huber method, because R1;0;1 is not zero, so

that
�!
 0 always occurs in the sum (12.14). Obviously,

�!
 0 is needed to determine�!

 1, but how to determine
�!
 0? The simplest possible method is to always assume�!

 0 D 0. This was done by some authors (see, for example, [4, 11, 42, 44, 99]),
and the rationale is that prior to the transient experiments the electrochemical
systems are usually in equilibrium (cf. Sect. 2.10). Consequently, all reaction rates
and species production rates are zero [and �.t/ usually represents these rates]. In
this way, the discontinuity of �.t/, theoretically present at t0 D 0, is assumed to
occur somewhere between t0 and t1. Of course, this assumption again disagrees
with the expectation of regularity of the solution, required by the Huber method,
and expressed by Fig. 12.1b, which may lead to large errors at the initial grid nodes.

However, it should be noted that starting with
�!
 0 D 0 is consistent with the original

proposal of Huber [61], who observed that solutions at the initial grid nodes (after
t0) can often be extrapolated back to t0, giving improved initial value(s), if one

begins with
�!
 0 D 0. But, in general, taking arbitrarily

�!
 0 D 0 is not rigorous,

because �.0�/ is generally different from �.0C/, and by the initial solution we
should understand here the value equal to �.0C/, not �.0�/. Therefore, a better

method is to assume
�!
 0 D �.0C/, provided that�.0C/ is known or can be deduced

from the IEs. This was done by a number of authors (see, for example, [5, 6, 63]).
For example, a controlled potential experiment for an irreversible electron transfer
reaction X1 C ne� ! products is described by the second kind Volterra IE (5.21),
which we rewrite in the form:

k0

2

4c?1 �
tˆ

0

K1.t; �/ �.�/ d�

3

5 exp

�
�˛f nF

RT

�
E.t/ �E0

� � �.t/ D 0 ;

(12.21)
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where �.t/ is defined by Eq. (5.18), and K1.t; �/ is a suitable kernel, depending on
the geometry and mode of transport. As the reaction has a finite rate, �.0C/ must
be finite. Therefore, at t D 0 the integral vanishes, and we obtain from Eq. (12.21):

�.0C/ D k0 c?1 exp

�
�˛f nF

RT

�
E.0C/ �E0

�
(12.22)

(the number n of electrons transferred, occurring in Eqs. (12.21) and (12.22) should
not be confused with the index n of discrete time nodes, present in other equations
in this chapter). Unfortunately, �.0C/ may not be equally easy to deduce in

more general situations. Consequently, a desirable approach is to determine
�!
 0

numerically from the IEs. According to the proposal of the present author [16,19,21]
this can be done in the following way.

In contrast to Eq. (12.15) for internal grid nodes, a discrete form of Eq. (12.2)

(for the Huber method) at t D t1 depends on two unknowns
�!
 0 and

�!
 1, so that it

can be written:

�!
F
�
t1;
�!
 1;
�!y 1.
�!
 0;
�!
 1/

�
D �!0 : (12.23)

In order to determine both unknowns, an additional AE system connecting
�!
 0 and�!

 1 is necessary. Such an additional equation can be:

�!
F
�
t1=2;
�!
 1=2.

�!
 0;
�!
 1/;

�!y 1=2.
�!
 0;
�!
 1/

�
D �!0 ; (12.24)

where

t1=2 D t0 C t1
2
D t1

2
D h1

2
; (12.25)

�!
 1=2.

�!
 0;
�!
 1/ D

�!
 0 C�! 1

2
; (12.26)

�!y 1=2.
�!
 0;
�!
 1/ D R1=2;0;1=2 �! 0 C S1=2;0;1=2 �! 1=2.

�!
 0;
�!
 1/ : (12.27)

MatricesR1=2;0;1=2 and S1=2;0;1=2 are calculated from Eqs. (12.9)–(12.12), analogous
toR1;0;1 and S1;0;1, but by taking h1=2 in place of h1. Equations (12.23) and (12.24)
are solved jointly as a system of 2N� AEs, analogous to Eq. (12.15). The relevant
linear equation system for the Newton corrections, analogous to Eq. (12.16), can be
written using the block matrix/vector notation as

�
J 0;0 J 0;1
J 1;0 J 1;1

	 ��!& 0�!& 1

	
D �

2

4
�!
F
�
t1=2;
�!
 1=2.

�!
 0;
�!
 1/;

�!y 1=2.
�!
 0;
�!
 1/

�

�!
F
�
t1;
�!
 1;
�!y 1.
�!
 0;
�!
 1/

�

3

5 ;

(12.28)
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where

J 0;0 D 1

2
F �

�
t1=2;
�!
 1=2.

�!
 0;
�!
 1/;

�!y 1=2.
�!
 0;
�!
 1/

�

CF Y

�
t1=2;
�!
 1=2.

�!
 0;
�!
 1/;

�!y 1=2.
�!
 0;
�!
 1/

�

R1=2;0;1=2 C 1

2
S1=2;0;1=2

�
;

(12.29)

J 0;1 D 1

2
F �

�
t1=2;
�!
 1=2.

�!
 0;
�!
 1/;

�!y 1=2.
�!
 0;
�!
 1/

�

C1
2
F Y

�
t1=2;
�!
 1=2.

�!
 0;
�!
 1/;

�!y 1=2.
�!
 0;
�!
 1/

�
S1=2;0;1=2 ; (12.30)

J 1;0 D F Y

�
t1;
�!
 1;
�!y 1.
�!
 0;
�!
 1/

�
R1;0;1 ; (12.31)

J 1;1 D F�

�
t1;
�!
 1;
�!y 1.
�!
 0;
�!
 1/

�
C F Y

�
t1;
�!
 1;
�!y 1.
�!
 0;
�!
 1/

�
S1;0;1 :

(12.32)

12.1.1.4 Calculation of the Moment Integrals of the Kernels

An important aspect of the algorithm described in Sects. 12.1.1.1–12.1.1.3 is the
computation of moment integrals (12.8) of the kernel functions. Ideally, these
moment integrals should be calculated with the best accessible accuracy on a
computer, that is with machine accuracy. If this is not the case, and the moment
integrals are calculated by some kind of quadratures, the product integration
methods may give wrong results. To illustrate the problem, Fig. 12.2 presents
numerical solutions of the IE:

tˆ

0

K .t; �/ �.�/ d� D f .t/ � f .0/ ; (12.33)

with

K .t; �/ D expŒ�k.t � �/�.t � �/�1=2 (12.34)

and

f .t/ D Œ1C exp.u � t/��1 : (12.35)

Equation (12.33) describes a linear potential sweep voltammetric experiment for the
catalytic EC reaction scheme:

X1 C e� � X2 ; (12.36)

X2 ! X1 (12.37)
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Fig. 12.2 Numerical
solutions of Eq. (12.33) with
u D 10 and k D 1 (open
symbols) or k D 10 (filled
symbols). Numerical
methods: the Huber method
with accurate moment
integrals (circles); the Huber
method with approximate
moment integrals (triangles);
the step function method with
approximate moment
integrals (squares). A uniform
grid of 80 steps is assumed in
every case. Solid lines denote
steady state solutions (12.38)
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involving an equilibrium electron transfer (12.36) and irreversible homogeneous
reaction (12.37) between dynamic distributed species X1 and X2. Planar diffusion
in a semi-infinite spatial domain, and equal diffusion coefficients are assumed.
For derivations of Eq. (12.33) see [87, 103, 104] and the discussion of examples
in Sect. 8.4. Function �.t/ represents the dimensionless current function, defined
in the standard way [87]. Parameter u is the dimensionless starting potential, and
k is the dimensionless rate constant of reaction (12.37). The initial singularity is
eliminated by subtracting f .0/, in the same manner as described in Sect. 12.1.1.3.
When k is large, function �.t/ approaches the steady state solution resulting from
using Eq. (8.52):

�.t/ � .k=�/1=2Œf .t/ � f .0/� : (12.38)

Figure 12.2 compares solutions obtained using three methods: the Huber method
with accurate moment integrals; the Huber method with approximate moment
integrals; and the step function method with approximate moment integrals. The
latter two methods are provided by the ELSIM program [11]. In ELSIM the step
function and Huber discretisations are applied to the product expŒ�k.t � �/��.�/,
rather than to �.�/. This is advantageous from the point of view of the formal
generality of the program, but such a discretisation means accurate moment integrals
only when k is sufficiently small. For large k the moment integrals are inaccurate,
unless one uses a very dense temporal grid. Figure 12.2 reveals that the Huber
method with accurate moment integrals indeed gives the best results for large k.
The other methods are then unreliable.
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In view of the above arguments, accurate expressions for the various terms
occurring in the kernel functions mentioned in this book, and for their moment
integrals of order m D 0, 1 and 2, are of interest. Relatively easily obtainable exact
analytical expressions exist only in the case of a few simple terms, such as

K .t; �/ D 1 ; (12.39)

K .t; �/ D expŒ�k.t � �/� ; (12.40)

K .t; �/ D .t � �/�1=2 ; (12.41)

K .t; �/ D .t � �/a�1 ; (12.42)

(where k and a are constants) occurring (for example) in kernels (4.7), (4.11), (5.72),
and (5.178). The expressions were derived in [15, 19, 22, 25].

For the terms such as

K .t; �/ D expŒ�k.t � �/�.t � �/�1=2 ; (12.43)

K .t; �/ D expŒ�a.t � �/� erexŒb.t � �/�1=2 ; (12.44)

K .t; �/ D expŒ�a.t � �/� dawŒb.t � �/�1=2 ; (12.45)

(where k, a, and b are constants) occurring in kernels (8.41), (5.74), (8.154), (8.156),
and (9.20), analytical formulae for the moment integrals were derived in Bieniasz
[15, 25]. The formulae involve error function erf.�/ defined by Eq. (5.78) and/or
related functions erfc.�/ and erex.�/ defined by Eqs. (5.76) and (5.77), and Dawson’s
integral daw.�/ defined by Eq. (8.157). For a highly accurate calculation of functions
erf.�/, erfc.�/ and erex.�/, a number of computer codes are available, out of which
the CALERF package of Cody [36], written in FORTRAN and freely available
from netlib [85], is probably the best, providing results with machine accuracy
for standard double precision variables (relative accuracy about 10�16 according
to the IEEE 754 standard [51, 62]), or even better. For the daw.�/ function an
analogous FORTRAN subroutine of Cody et al. [37] is also available from netlib
[85]. C++ translations of all these codes are obtainable from the present author upon
request.

For the terms listed below, C++ procedures for calculating the terms and their
moment integrals with an accuracy close to the machine accuracy for standard dou-
ble precision variables were elaborated and published in the references indicated. In
the references the Reader can also find further references to earlier known but less
accurate approximations, if there were any. For the term

K .t; �/ D kcylwŒ%.t � �/1=2� ; (12.46)

(where % is a constant) occurring in kernel (5.85), see [23, 24]. For the term

K .t; �/ D expŒ�k.t � �/� kcylwŒ%.t � �/1=2� ; (12.47)
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(where % and k are constants) see [27]. For the terms

K .t; �/ D kpliŒ�.t � �/1=2� (12.48)

and

K .t; �/ D kplpŒ�.t � �/1=2� ; (12.49)

(where � is a constant) occurring in kernels (5.120) and (5.121), see [28]. For the
term

K .t; �/ D kinsŒ%.t � �/1=2� ; (12.50)

occurring in kernel (5.139), see [30]. For the term

K .t; �/ D kincŒ%.t � �/1=2� ; (12.51)

occurring in kernel (5.155), see [31]. For the term

K .t; �/ D kctŒ�.t � �/1=2� ; (12.52)

(where � is a constant) occurring in kernel (6.70), see [29]. For the term

K .t; �/ D �2=3 �t7=3 � �7=3��1=2 ; (12.53)

occurring in kernel (6.31), see [32].
For the term

K .t; �/ D krdŒ�.t � �/1=2� ; (12.54)

occurring in kernel (6.47), an approximation for the term was reported by Seralathan
and Rangarajan [105]. The approximation is probably more accurate than the
replacement of function krd.�/ by the function kct.�/ (see the discussion in
Sect. 6.2.3), but less accurate than machine accuracy.

Apart from accurately calculating the moment integrals of the kernel terms, one
also needs accurate procedures for computing coefficients R�;n;n�1;n and S�;n;n�1;n
defined by Eqs. (12.11) and (12.12), as well as some further similar coefficients
occurring in the error estimators (see Sect. 12.1.2 below). The formulae for all these
coefficients share the common property that they possess a 0=0 limit when the step
size hn tends to zero. Consequently, they are very prone to machine errors when
hn is small. Therefore, the formulae such as Eqs. (12.11) and (12.12) cannot be
directly used for numerically computing these coefficients. Instead, one should use
series expansions into powers of hn, or other well-conditioned representations of the
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formulae such as Eqs. (12.11) and (12.12). References [15–32] provide appropriate
approximations for these coefficients.

12.1.2 The Adaptive Huber Method

An important question, accompanying the use of the step function and Huber
methods, is how to construct the discrete grids in order to obtain solutions having a
desired accuracy. In order to answer this question one needs two things. First, one
needs to know how the true errors theoretically depend on the grid steps hn. Second,
one needs to have error estimators, that is special variables or expressions which tell

approximately how big the errors are, in the situation when the true solutions
�!
� n are

not known, but we only know the approximate solutions
�!
 n. By combining these

two pieces of information it is possible to select the steps hn in such a way that the
estimated errors do not exceed a prescribed error tolerance. One hopes that the true
errors are of comparable magnitude. Furthermore, such an adaptive grid selection
can be automated by including a relevant decision algorithm into the numerical
code, so that the method user does not have to pay attention to the details of the
procedure.

12.1.2.1 Error Control

In principle, all solution errors are non-local, in the sense that the error at tn depends
not only on the step size hn but also on all previous step sizes h1; : : : ; hn�1.
However, any procedure of controlling the error contributions resulting from the
previous step sizes would be very complicated and computationally expensive,
because in order to reduce the error at tn one would have to frequently modify
the previous grid nodes and recalculate the solutions previously obtained at these
nodes. Instead of controlling the global errors (errors involving contributions from
all calculations at previous nodes) it is therefore easier to control local errors only,
i.e. the errors resulting exclusively from the discretisation over the current interval
t 2 Œtn�1; tn�. Such local errors present the major contribution to the (global) solution
errors, in situations when the errors transferred from the past grid nodes are well
damped while the calculations proceed to higher n. In practice, this error damping is
usually satisfactory when the kernel functionsK�.t; �/ are non-decreasing functions
of � , at any fixed t . The past error damping is necessary for the numerical stability
of the step function and Huber methods. The adaptive Huber method described in
Bieniasz [15–32] is based on local error control. The essential formulae, enabling
the grid adaptation by this method, are provided below.

Errors of
�!
 n form a vector

�!
ı n such that

�!
 n D �!� n � �!ı n : (12.55)
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According to the assumptions accepted, at n > 1 we determine local errors only.
This means that for the purpose of the error control the discrete solutions and their
integrals are considered to be exact for t 2 Œ0; tn�1�. The only source of the errors�!
ı n are then the errors

�!
�n D Œ�1;n; : : : ; �NY ;n�

T of the Huber quadratures by
which the integrals are discretised over the interval Œtn�1; tn�. These quadrature
errors are:

�i;n D
tnˆ

tn�1

K�.tn; �/ ��.�/ d�

�
tnˆ

tn�1

K�.tn; �/

�
��;n�1 C ��;n � ��;n�1

hn
.� � tn�1/

	
d� ; (12.56)

or equivalently:

�i;n D
tnˆ

tn�1

K�.tn; �/ ��.�/ d���R�;n;n�1;n ��;n�1 C S�;n;n�1;n ��;n
�
: (12.57)

We need to determine the connection between
�!
ı n and

�!
�n. In view of Eq. (12.57)

the exact integrals Yi;n are:

Yi;n D
tn�1ˆ

0

K�.tn; �/ ��.�/ d� C �R�;n;n�1;n ��;n�1 C S�;n;n�1;n ��;n
�C�i;n ;

(12.58)
whereas the approximate integrals (in the local error model) are:

yi;n D
tn�1ˆ

0

K�.tn; �/ ��.�/ d�C �R�;n;n�1;n ��;n�1 C S�;n;n�1;n  �;n
�
: (12.59)

By subtracting Eqs. (12.58) and (12.59) we obtain, in the vector notation:

�!y n D �!Y n � Sn;n�1;n
�!
ı n � �!�n : (12.60)

As the errors
�!
ı n and

�!
�n are expected ultimately to be rather small, the following

linearisation of the functions
�!
F .�/ is acceptable:

�!
F
�
tn;
�!
 n;
�!y n

�
� �!F

�
tn;
�!
� n;
�!
Y n

�
� F�

�
tn;
�!
� n;
�!
Y n

��!
ı n

�F Y

�
tn;
�!
� n;
�!
Y n

� ��!
Y n ��!y n

�
; (12.61)
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where both
�!
F
�
tn;
�!
� n;
�!
Y n

�
and
�!
F
�
tn;
�!
 n;
�!y n

�
vanish, in accordance with

Eqs. (12.2) and (12.15). By combining the remaining terms of Eq. (12.61) with
Eq. (12.60) we obtain

�!
0 � �F �

�
tn;
�!
� n;
�!
Y n

��!
ı n � F Y

�
tn;
�!
� n;
�!
Y n

� �
Sn;n�1;n

�!
ı n C�!�n

�
:

(12.62)

In practice the exact values
�!
� n and

�!
Y n are not known, so that in Eq. (12.62) we

have to replace them by the approximate values, which gives, after a rearrangement
of Eq. (12.62):

J n
�!
ı n � �F Y

�
tn;
�!
 n;
�!y n

��!
�n ; (12.63)

where J n is given by Eq. (12.17). By solving the linear AE system (12.63) for
�!
ı n,

one obtains the local solution errors as functions of the quadrature errors
�!
�n.

The calculation of the initial solution errors
�!
ı 0 and

�!
ı 1 proceeds in a similar

way, but in the spirit of Eqs. (12.24) and (12.28) these solution errors have to be

determined jointly. Actually,
�!
ı 0 and

�!
ı 1 have the meaning of global errors, because

at t0 and t1 there are no previous errors to be neglected. The following relationships

define the quadrature errors
�!
�1 and

�!
�1=2:

�!
Y 1 D

�
R1;0;1

�!
� 0 C S1;0;1 �!� 1

�
C�!�1 ; (12.64)

�!
Y 1=2 D

 
R1=2;0;1=2

�!
� 0 C S1=2;0;1=2

�!
� 0 C�!� 1

2

!
C�!�1=2 : (12.65)

Subtraction of the approximate integrals �!y 1 and �!y 1=2, defined by Eqs. (12.14)
and (12.27), gives:

�!
Y 1 � �!y 1 D

�
R1;0;1

�!
ı 0 C S1;0;1�!ı 1

�
C�!�1 ; (12.66)

�!
Y 1=2 ��!y 1=2 D

 
R1=2;0;1=2

�!
ı 0 C S1=2;0;1=2

�!
ı 0 C�!ı 1

2

!
C�!�1=2 : (12.67)

In addition,

�!
� 1=2 D �!� .t1=2/ D

�!
� 0 C�!� 1

2
C�!� 1=2 ; (12.68)
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where �!� 1=2 D
�
�1;1=2; : : : ; �N� ;1=2

�T
is the vector of the errors of the linear

interpolation of
�!
� .t/ at t1=2. Hence, in view of Eq. (12.26):

�!
� 1=2 � �! 1=2 D

�!
ı 0 C�!ı 1

2
C�!� 1=2 : (12.69)

After setting Eqs. (12.66), (12.67), and (12.69) into functions
�!
F .�/, linearising and

replacing exact solutions and their integrals by approximate ones, analogous to
Eqs. (12.61)–(12.63), we obtain:

�
J 0;0 J 0;1
J 1;0 J 1;1

	"�!
ı 0�!
ı 1

#

� �
2

4F�

�
t1=2;
�!
 1=2;

�!y 1=2

��!� 1=2 C F Y

�
t1=2;
�!
 1=2;

�!y 1=2

��!
�1=2

F Y

�
t1;
�!
 1;
�!y 1

��!
�1

3

5 :

(12.70)

By solving Eq. (12.70) the solution errors
�!
ı 0 and

�!
ı 1 are obtained as functions of

the quadrature errors
�!
�1 and

�!
�1=2, and interpolation errors �!� 1=2.

In practice, we do not know exactly the errors
�!
�n,

�!
�1=2, and �!� 1=2 in

Eqs. (12.63) and (12.70), so that we have to replace them by suitable a posteriori

error estimators est
D�!
�n

E
, est

D�!
�1=2

E
, and est

D�!� 1=2

E
. Subsequently, by solving

Eqs. (12.63) and (12.70) we obtain estimators est
D�!
ı n

E
of
�!
ı n. Let us pass to

the problem of obtaining the estimators est
D�!
�n

E
, est

D�!
�1=2

E
, and est

D�!� 1=2

E
. By

expanding
�!
� .t/ in a Taylor series (possibly truncated) around tn�1, where n > 1,

one obtains for t 2 .tn�1; tn�:

��.t/ D ��;n�1 C d��.t/

dt

ˇ̌
ˇ̌
tDtn�1

.t � tn�1/C 1

2

d2��.t/

dt2

ˇ̌
ˇ̌
tDtn�1

.t � tn�1/2

C1
6

d3��.t/

dt3

ˇ̌
ˇ̌
tDtn�1

.t � tn�1/3 C � � � : (12.71)

Substitution of Eq. (12.71) into Eq. (12.57) and integration gives

�i;n D 1

2

d2��.t/

dt2

ˇ̌
ˇ̌
tDtn�1

�
.t2n�1 C hntn�1/Q�;0;n;n�1;n

�.2tn�1 C hn/Q�;1;n;n�1;n CQ�;2;n;n�1;n�
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C1
6

d3��.t/

dt3

ˇ̌
ˇ̌
tDtn�1

�
.h2ntn�1 � t3n�1/Q�;0;n;n�1;n C .3t2n�1 � h2n/Q�;1;n;n�1;n

�3tn�1Q�;2;n;n�1;n CQ�;3;n;n�1;n�C : : : : (12.72)

In order to obtain computable error estimators est h�i;ni we retain only the first
expansion term in Eq. (12.72), and approximate the second solution derivative
by the standard three-point backward difference approximation for nonuniform
grids (see, for example, Roos et al. [101, p. 84]). The following estimator is
obtained:

est h�i;ni D
�

2

hn�1.hn�1 C hn/ �;n�2 � 2

hn�1hn
 �;n�1 C 2

hn.hn�1 C hn/ �;n
	

�1
2

�
.t2n�1 C hntn�1/Q�;0;n;n�1;n � .2tn�1 C hn/Q�;1;n;n�1;n CQ�;2;n;n�1;n

�
:

(12.73)

As can be seen, in addition to the zero- and first-order moment integrals Q�;0;n;l;k

and Q�;1;n;l;k , already shown to be necessary for computing the solutions by the
Huber method, the error estimation additionally requires some values of the second-
order moment integralsQ�;2;n;l;k .

Somewhat different formulae have to be used to determine est h�i;1i and
est
˝
�i;1=2

˛
. In this case it is not a good idea to expand the solution around t0 D 0,

because the solution may not possess the required derivatives at this point. We
therefore expand around t1, and use the expansion for t 2 Œ0; t1/:

��.t/ D ��;1 C d��.t/

dt

ˇ̌
ˇ̌
tDt1

.t � t1/C 1

2

d2��.t/

dt2

ˇ̌
ˇ̌
tDt1

.t � t1/2

C1
6

d3��.t/

dt3

ˇ̌
ˇ̌
tDt1

.t � t1/3 C : : : : (12.74)

Substitution of Eq. (12.74) into Eq. (12.57), assuming integration limits tn D t1,
tn�1 D 0, and integration give

�i;1 D 1

2

d2��.t/

dt2

ˇ̌
ˇ̌
tDt1

ŒQ�;2;1;0;1 � h1Q�;1;1;0;1�

C1
6

d3��.t/

dt3

ˇ̌
ˇ̌
tDt1

�
Q�;3;1;0;1 � 3h1Q�;2;1;0;1 C 2h21Q�;1;1;0;1

�

C : : : ; (12.75)
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whereas substitution of Eq. (12.74) into Eq. (12.57), assuming integration limits
tn D t1=2, tn�1 D 0, and integration give

�i;1=2 D 1

2

d2��.t/

dt2

ˇ̌
ˇ̌
tDt1

�
Q�;2;1=2;0;1=2 � h1Q�;1;1=2;0;1=2

�

C1
6

d3��.t/

dt3

ˇ̌
ˇ̌
tDt1

�
Q�;3;1=2;0;1=2 � 3h1Q�;2;1=2;0;1=2 C 2h21Q�;1;1=2;0;1=2

�

C : : : : (12.76)

Consequently, the computable error estimators are:

est h�i;1i D 1

2

 �;0 � 2 �;1 C Q �;2
h21

ŒQ�;2;1;0;1 � h1Q�;1;1;0;1� (12.77)

and

est
˝
�i;1=2

˛ D 1

2

 �;0 � 2 �;1 C Q �;2
h21

�
Q�;2;1=2;0;1=2 � h1Q�;1;1=2;0;1=2

�
;

(12.78)

where Q �;2 is a provisional solution at t D t2, calculated assuming h2 D h1: The
provisional solution serves only for obtaining the estimate of the second derivative,
and is discarded after the solutions  �;0 and  �;1 are obtained with a desired
accuracy.

It remains to determine the estimator of the interpolation error. By expanding
��;0 and ��;1=2 in a Taylor series around t1, and setting the expansions into
Eq. (12.68) one obtains

��;1=2 D �1
8

d2��.t/

dt2

ˇ̌
ˇ̌
tDt1

h21 C
3

48

d3��.t/

dt3

ˇ̌
ˇ̌
tDt1

h31 C � � � ; (12.79)

so that for the computable error estimator we take

est
˝
��;1=2

˛ D �1
8

�
 �;0 � 2 �;1 C Q �;2

�
: (12.80)

The estimates est
D�!
ı n

E
of the solution errors can be used for the error control and

adaptive step selection in the following way. At every grid node one first calculates
the solutions assuming a certain tentative value of the grid step hn. At n D 1 an
arbitrary step size hstart is initially attempted, and at n > 1 the control-theoretic
predictive algorithm of Gustafsson [55] is used to predict the most adequate hn
value, based on the recently obtained error estimates. The algorithm is described in
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detail in [55], so that we do not present it here. In agreement with the findings of
Sect. 12.1.2.2 below, the algorithm is supplemented with the information that errors
are proportional to h2n. After obtaining the solutions, error estimates are calculated,
and one checks whether the accuracy conditions are satisfied:

max
n���est

D�!
ı 0

E��� ;
���est

D�!
ı 1

E���
o
� tol=� ; (12.81)

���est
D�!
ı n

E��� � tol for n > 1 : (12.82)

In inequalities (12.81) and (12.82) k�k is a suitable vector norm. The infinity norm is

adequate in cases when the various elements of
�!
� .t/ are comparable in magnitude.

If this is not the case, alternative norms, involving individual scaling of the various

elements of est
D�!
ı n

E
, may be necessary. Parameter “tol” is a pre-defined absolute

error tolerance, that is the target absolute accuracy one wants to achieve, and � is
a heuristic safety factor. The safety factor is introduced to effectively diminish the
error tolerance at n D 1, where the error estimates may be somewhat unreliable
in cases when the solution is not differentiable at t D 0. Values of � between 10
and 100 are usually appropriate. Inequalities (12.81) and (12.82) imply absolute
error control; it is not recommended to control relative errors, because this usually
leads to a considerable inefficiency of the adaptive Huber method, when a significant
effort is spent on resolving uninteresting parts of the solutions, with values close to
zero. If the conditions (12.81) and (12.82) are satisfied, the solution obtained is
accepted as sufficiently accurate. The adaptive Huber method then proceeds with
analogous calculations for the next grid node, using a new step hnC1 predicted by
the Gustafsson algorithm [55]. In the opposite case, if the accuracy condition (12.81)
or (12.82) is not satisfied, the solution obtained at tn is discarded, and the predictive
algorithm of Gustafsson yields a smaller tentative value of the step hn to be tried.
The calculations of the solutions and error estimates are then repeated, possibly
several times, until criteria (12.81) and (12.82) are met. An upper limit hmax on the
step sizes is also imposed to avoid a situation where too few grid nodes are selected
within the entire t interval of interest.

12.1.2.2 Performance

The performance of the adaptive Huber method is best tested on IEs that possess
easily and accurately computable analytical solutions. This allows a reliable deter-
mination of the true errors of the numerical solutions. The following two example
IEs satisfy these requirements:

tˆ

0

.t � �/�1=2 �.�/ d� D 1 � exp.�t/ ; (12.83)
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1 �
tˆ

0

˚
Œ�.t � �/��1=2 � %erex

�
%.t � �/1=2�� �.�/ d� � k�1�.t/ D 0 :

(12.84)

Equation (12.83) is a linear first kind Volterra IE (or the Abel IE) for the
dimensionless linear potential sweep voltammetric current function corresponding
to the electron transfer

X1 C n e� � X2;s ; (12.85)

where X1 is a dynamic distributed species and X2;s is a static localised species
(possibly electrode metal). Planar diffusion in a semi-infinite spatial domain is
assumed. The analytical solution of this example was obtained by Berzins and
Delahay [10], without using IEs. The solution is:

�.t/ D 2

�
daw.t1=2/ ; (12.86)

where daw.�/ is the Dawson integral defined by Eq. (8.157). Equation (12.83) was
later derived by White and Lawson [111]. Equation (12.84) is a linear second kind
Volterra IE (5.21) for the dimensionless potential step chronoamperometric current
corresponding to the irreversible electron transfer

X1 C n e� ! X2 ; (12.87)

where X1 is a dynamic distributed species diffusing to a spherical electrode in a
semi-infinite spatial domain. Function erex.�/ is defined by Eq. (5.76). Parameter k
is a dimensionless rate constant of reaction (12.87) at the applied potential, and
parameter % characterises the electrode sphericity [cf. Eqs. (5.74) and (5.75) in
Sect. 5.2.1]. The analytical solution of this example was obtained by Shain et al.
[106] without using IEs. The solution is:

�.t/ D k %C k erex
�
.%C k/ t1=2�

%C k : (12.88)

Essential performance characteristics of the adaptive Huber method, obtained by
solving Eqs. (12.83) and (12.84), are depicted in Figs. 12.3, 12.4, and 12.5. These
characteristics are representative of the large collection of similar results obtained
in Bieniasz [15–32] for a variety of electroanalytical IEs.

Figure 12.3 reveals that the true errors obtained for Eq. (12.83) are close to
the error tolerance “tol”. This result is representative of first kind Volterra IEs,
and it demonstrates that the error control is successful. In the case of second
kind Volterra IEs, exemplified by Eq. (12.84), the true errors tend to be somewhat
larger than the tolerance “tol”, and this discrepancy increases with decreasing “tol”.
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Fig. 12.3 The dependence on the error tolerance parameter “tol”, of the largest modulus ERR of
the true absolute error obtained [The calculations were performed on a personal computer having
an Intel Pentium D processor operating at 3 GHz, and a 2 GB operational memory. The numerical
code was written in C++ using extended precision (long double variables having 80 bits or 18 digit
precision), and compiled as a 32 bit application using the MinGW compiler. The code was run
under MS Windows XP Professional.] by the adaptive Huber method for Eq. (12.83) with t 2 Œ0; 2�

and method parameters hstart D 0:1, hmax D 0:1, � D 10 (solid line with filled circles), and for
Eq. (12.84) with k D 1, % D 1, t 2 Œ0; 1�, and method parameters hstart D 10�5, hmax D 0:1,
� D 10 (solid line with open circles). The dotted line is the plot of the function ERR D tol

However, it is clear that by selecting an appropriate “tol” value one is able to modify
and ensure a desired accuracy of the numerical solution. The range of practically
achievable errors is usually between 10�2 and 10�8 of the maximum solution value.
Smaller errors are difficult to obtain, due to the increasing computational cost and
interference of machine errors. Figure 12.4 shows that in the Huber method the
true errors are approximately proportional to N�2, where N is the total number
of integration steps in the time interval where the solution is sought. Since the
average time step is inversely proportional to N , this implies that the practical
accuracy order is close to two. Finally, Fig. 12.5 reveals that the true errors are
inversely proportional to the computational time ct. By combining this result with
the proportionality of the errors to N�2, we obtain that the computational time
grows as N2. The latter result holds true for kernels dependent on two variables
(t and �). For IEs involving only the constant kernel K .t; �/ D 1 one can obtain a
proportionality of the ct to N , because there is no need to recalculate the integrals
at past time grid nodes, when the solution at a new node is to be derived.
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Fig. 12.4 The dependence
on the number of integration
steps N , of the largest
modulus ERR of the true
absolute error obtained by the
adaptive Huber method for
Eqs. (12.83) and (12.84).
Parameters and other details
are as in Fig. 12.3. The dotted
lines are plots of functions
log.ERR/ D
�0:1� 2 log.N / and
log.ERR/ D
�1:3� 2 log.N /
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Fig. 12.5 The dependence
on the computational time ct,
of the largest modulus ERR of
the true absolute error
obtained by the adaptive
Huber method for
Eqs. (12.83) and (12.84).
Parameters and other details
are as in Fig. 12.3. The dotted
lines are plots of functions
log.ERR/ D �6:5� log.ct/
and log.ERR/ D
�6:75� log.ct/.
Computational time values
are averaged over 50 program
runs
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12.1.3 Methods Based on Discrete Differintegration

At the beginning of Sect. 12.1 we have mentioned the connections between elec-
troanalytical IEs and the fractional calculus. Such connections have been explored
for many years, mostly by Oldham and co-workers. In particular, in a paper by
Oldham and Myland [93], a numerical technique for solving IEs was suggested,
which originated from the Grünwald definition of differintegration [53,91,94]. The
technique seems to differ conceptually from the methods based on quadratures, and
discussed in Sects. 12.1.1 and 12.1.2, although from the algorithmic point of view it
also consists in replacing the integrals, occurring in the IEs, by finite sums.

According to Grünwald, the generalised differintegration operator of (possibly
fractional) order � is defined by the limiting operation

d��.t/

dt�
D lim

h!0

8
<

:
1

h��.��/
t=h�1X

nD0

�.n� �/
�.nC 1/ �.t � nh/

9
=

; ; (12.89)

where �.�/ is the Euler gamma function [1] and n is a summation index. By
taking � D �1=2 one obtains the semi-integral, which frequently occurs in the
electroanalytical IEs:

d�1=2�.t/
dt�1=2

D
tˆ

0

Œ�.t � �/��1=2�.�/d� D lim
h!0

8
<

:h
1=2

t=h�1X

nD0

.2n � 1/ŠŠ
.2n/ŠŠ

�.t � nh/
9
=

; ;

(12.90)

where the twin exclamation mark denotes the double factorial; for example, 5ŠŠ D
1 � 3 � 5 and 6ŠŠ D 2 � 4 � 6. Oldham and Myland [93] suggested approximating the
semi-integral by taking a finite number N of terms instead of the infinite number
t=h in Eq. (12.90):

tˆ

0

Œ�.t � �/��1=2 �.�/ d� � h1=2
N�1X

nD0

.2n� 1/ŠŠ
.2n/ŠŠ

�.t � nh/ : (12.91)

Parameter h D t=N thus acquired the meaning of a uniform grid step along the t
axis. By denoting

wi D

8
<̂

:̂

h1=2 for i D N
2.N�i /�1
2.N�i / wiC1 for i D N � 1; : : : ; 1
0 for i D 0

; (12.92)
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Eq. (12.91) can be written, using a reversed summation order, as

tˆ

0

Œ�.t � �/��1=2 �.�/ d� �
NX

iD0
wi �.i h/ : (12.93)

Hence, similarly to the step function and Huber methods, formula (12.93) approx-
imates the semi-integral by a linear combination of the nodal values of the
function �.t/, albeit with different linear coefficients wi . Based on the equations
of Sect. 12.1.1, it is easy to show that in the uniform grid variant of the step function
method, Eq. (12.93) holds with coefficients

wi D
(
0 for i D 0
2
�
h
�

�1=2 �
.N � i C 1/1=2 � .N � i/1=2� for i D 1; : : : ; N : (12.94)

Similarly, in the Huber method, Eq. (12.93) holds with coefficients

wi D

8
ˆ̂̂
<

ˆ̂̂
:

2
�
h
�

�1=2 ˚
N1=2 C 2

3

�
.N � 1/3=2 �N3=2

��
for i D 0

4
3

�
h
�

�1=2 �
.N � i � 1/3=2 � 2.N � i/3=2

C.N � i C 1/3=2� for i D 1; : : : ; N � 1 :
4
3

�
h
�

�1=2
for i D N

(12.95)

It is interesting to check which of the three methods gives the most accurate
approximation to the semi-integral, because this determines the accuracy of the
IE solutions. Since many functions �.t/ can be expanded in power series, an
informative test is to compare the errors resulting from the formulae (12.92)–
(12.95), applied to functions �.t/ D tm, with m D 0; 1; 2; : : : . All three methods
prove to be exact for m D 0, and the piecewise linear approximation of the Huber
method is exact also for m D 1. Therefore, in Fig. 12.6 we show errors obtained
for m D 2. Results for greater m are similar. As can be seen, formula (12.92) gives
a slightly more accurate result than the semi-integral obtained by the step function
method, and it has a similar order of accuracy, close to 1 [meaning that the error
is O.h/]. The piecewise linear approximation of the Huber method gives a much
more accurate semi-integral, with an accuracy order close to 2 [meaning that the
error is O.h2/]. This result is consistent with the previous findings of Sect. 12.1.2.2.
As the computational cost is comparable in all three cases, we conclude that the
piecewise linear approximation outperforms the remaining approximations. Hence,
there is little reason for using Eq. (12.91), the more so because it is not clear how to
generalise Eq. (12.91) to other kernels occurring in the electrochemical IEs, different
from K .t; �/ D Œ�.t � �/��1=2. Obviously there is no such problem with the Huber
method. Oldham and Myland [93] used Eq. (12.91) also for the kernel K .t; �/ D
expŒ�k.t��/� Œ�.t��/��1=2 , by discretising the product exp.kt/ �.t/. However, we
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Fig. 12.6 Relative errors (at
t D 1/ of the uniform grid
discretisation (12.93) of the
semi-integral of the function
�.t/ D t 2, by means of the
step function approximation
to �.t/ (squares), piecewise
linear approximation to �.t/
(circles), and discrete
Grünwald differintegration
(triangles). N denotes the
number of uniform grid steps
h into which the interval Œ0; 1�
of t is divided (N D 1=h/.
The errors are calculated with
reference to the exact
semi-integral
t́
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have already indicated at the beginning of Sect. 12.1, and in Sect. 12.1.1.4 that this
is not a satisfactory approach, because it requires the discrete grid to be extremely
dense when parameter k is large. Concluding, formula (12.91) seems to have no
advantages compared to the Huber method with accurate moment integrals.

The above observations do not mean that there do not exist alternative numerical
semi-integral approximations that might be more attractive. For example, Wein
[108,109], and Wein and Tovchigrechko [110] used an approximation that is almost
identical to the Huber method, and probably has a comparable accuracy. Wein [108]
described also another approximation, related to the Simpson quadrature.

12.1.4 Approximate (Degenerate) Kernel Method

We have seen in Sect. 12.1.2.2 that in the product integration methods the amount
of computations, and the related computational time, increase quadratically with
the number N of integration steps used along the t axis (the same property has
the method discussed in Sect. 12.1.3). Although modern personal computers are
fast, so that the computational time needed to solve a typical IE occurring in
electroanalytical chemistry is usually of the order of a fraction of a second, the
above feature is somewhat unsatisfactory. In the alternative simulation approach
based on the direct numerical solution of PDEs or ODEs, the computational time
usually increases linearly with N , provided that spatial grids do not change with
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time. If the IE approach is to be competitive, it would be nice to have IE solution
methods in which the computational time also increases linearly with N . One such
method has been proposed by the present author [12, 13], and it is briefly described
below.

The idea of the method is borrowed from the so-called degenerate kernel methods
often used to solve Fredholm IEs [7]. In the degenerate kernel methods one looks
for a set of M C 1 functions Ui .t/ and Wi .t/, enabling the following approximate
representation of the kernel function K .t; �/ of interest:

K .t; �/ �
MX

iD0
Ui .t/W i .�/ : (12.96)

Substitution of Eq. (12.96) into the usual integral (12.1) gives

Y.t/ �
MX

iD0
Ui .t/

tˆ

0

Wi .�/ �.�/ d� : (12.97)

We observe that whereas in Eq. (12.1) the integrand depends on t through the kernel
K .t; �/, there is no such dependence any more in the integrands in Eq. (12.97).
Consequently, when it comes to evaluating the integrals in Eq. (12.97) by finite sums
for any particular grid node tn of a discrete grid, there is no need to recalculate the
integrals over all previous grid nodes. One only adds contributions from the interval
Œtn�1; tn�, to the integrals previously evaluated at tn�1. As a result, the computational
time is proportional to .M C 1/N , i.e. it increases linearly with the number N of
integration steps used.

The main problem is how to devise the approximations (12.96). Bieniasz [12]
obtained an approximation of this sort for the convolution kernel K .t; �/ D .t �
�/�1=2, by employing exponential functions:

.t � �/�1=2 �
MX

iD0
ai expŒ�bi .t � �/� D

MX

iD0
ai exp.�bi t/ exp.bi�/ : (12.98)

By taking M D 15, coefficients ai and bi were determined, ensuring an absolute
error of the approximation (12.96) not exceeding 0.005, for 0:00155 � t � � � 30:
This allowed a solution of a number of typical IEs (single IEs and systems of
two IEs) involving the above kernel, and also kernels in the form K .t; �/ D
H .t; �/ .t��/�1=2, where H .t; �/ is a slowly varying function with separated vari-
ables, i.e. H .t; �/ D P.t/Q.�/. In particular, the kernel K .t; �/ D expŒ�k .t �
�/�.t � �/�1=2 characteristic of homogeneous reaction-diffusion problems in one-
dimensional semi-infinite spatial domain at planar interfaces [see Eq. (8.41) in
Sect. 8.2] was considered. FunctionsP.t/ andQ.t/were discretised using the same
uniform grid on which function �.t/ was discretised, so that the values of k could
not be too large.
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The accuracy of the above method depends on three factors: the accuracy of the
approximation (12.96), the quadrature used to numerically evaluate the integrals
in Eq. (12.97), and the integration step sizes. The first factor is limiting, because
the error of the approximation (12.96) cannot be reduced by diminishing step
sizes. The method proved to be substantially faster than the product integration
methods employing the same numbers of (uniform) grid steps. However, due
to the non-reducible error of the approximation (12.96), the accuracy of the
numerical solution cannot be fully controlled. It seems that in order to make this
method competitive relative to the contemporary product integration methods of
Sects. 12.1.1 and 12.1.2, new and robust algorithms have to be developed, for
obtaining kernel approximations (12.96) for arbitrary kernels, arbitrary intervals of
t and � , and with a prescribed accuracy.

12.1.5 The Analog Method

Although the contemporary world of scientific computing is dominated by digital
computers, it should be mentioned, for completeness, that in the past electrochemi-
cal IEs were also solved by analog computers. A relevant method was described by
Holub and Němec [57, 58].

12.2 Numerical Methods for Multidimensional Volterra IEs

Compared to spatially one-dimensional models, much less has been published about
numerical algorithms appropriate for solving electrochemical Volterra IEs arising
for spatially two- and three-dimensional models. We therefore provide only a brief
overview of these methods and suggest that substantial work has yet to be done to
develop appropriate methods.

For solving the IEs resulting from the Cope and Tallman approach (cf. Sect. 7.1),
Coen, Cope, and Tallman [38] introduced a method earlier described by Gladwell
and Coen [48]. In this approach kernels with a logarithmic spatial singularity
typically arise. The method of Gladwell and Coen [48] assumes that the solution
can be represented as a series of Chebyshev polynomials of a spatial variable.
The series involves a spatially singular factor selected in such a way so that the
kernel singularity is properly resolved. Substitution of the series into the IEs gives
systems of AEs for the expansion coefficients. Inherent in this method is a numerical
algorithm for calculating inverse Laplace transforms. The algorithm of Piessens
[97], tested by Cope [39] was used for this purpose.

With regard to the Mirkin and Bard approach (cf. Sects. 7.1 and 7.2), the only
numerical method was provided in [81]. It can be classified as a quadrature method,
which implies (by analogy with the discussion in Sect. 12.1.1.4) that it is not likely
to be effective in dealing with rapidly varying kernels. The integrands present in



References 299

integrals (7.10) were discretised on a nonuniform time grid and on a spatial grid
which was almost uniform, except at the end(s) of spatial interval(s), where a
denser grid spacing was used. For the temporal integration a quadrature termed
“trapezoid rule” was used, but the formula reported seems to resemble a rectangle
quadrature. In the last discrete temporal interval, where singularities of the kernels
occur, a different formula was found more appropriate, which partially resembled
the trapezium quadrature (although it was stated that the trapezoid rule could
not be used). For spatial integration an alternative quadrature, termed “modified
midpoint rule” was applied, because of some unspecified “symmetry problems”.
From the above discretisations AE systems were obtained, for the nodal values of the
approximate solutions at successive temporal grid nodes. A “surprising peculiarity
of multidimensional IEs” was discovered, namely that the best stability and accuracy
of the solution is achieved by choosing an extremely small initial time step, and a
very large coefficient of the temporal grid expansion. This result may indicate some
numerical weakness of the method.

With regard to the solution of the time-dependent IEs resulting from the
electrochemical applications of the BIM (cf. Sects. 7.1 and 7.3), the literature is
not very specific about the numerical methods used. Judging, for example, from
the review of Fan et al. [46] it seems that the techniques typical of the BEM [33]
were mostly used. This means that spatio-temporal domains of integration were
divided into finite elements, spatial and temporal basis functions and collocation
points were chosen, and resulting AE systems were solved. Alternatively, the so-
called dual reciprocity method was used [100]. The users and advocators of the
BIM did not provide detailed discussions of how the expected singularities of the
IEs were handled. There is generally a lack of comprehensive and lucid descriptions
of the BEM in the context of electrochemical IEs.

References

1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover Publications,
New York

2. Amatore C, Garreau D, Hammi M, Pinson J, Savéant JM (1985) Kinetic analysis of reversible
electrodimerization reactions by the combined use of double potential step chronoamper-
ometry and linear sweep voltammetry. Application to the reduction of 9-cyanoanthracene. J
Electroanal Chem 184:1–24

3. Andrieux CP, Limoges B, Marchal D, Savéant JM (2006) Redox enzymes immobilized on
electrodes with solution cosubstrates. General procedure for simulation of time-resolved
catalytic responses. Anal Chem 78:3138–3143

4. Aoki K, Kato N (1988) Analysis of the cyclic voltammograms associated with deposition or
precipitation of the electrochemical product. J Electroanal Chem 245:51–60

5. Aoki K, Tokuda K, Matsuda H (1984) Theory of differential pulse voltammetry at stationary
planar electrodes. J Electroanal Chem 175:1–13

6. Aoki K, Tokuda K, Matsuda H (1986) Linear sweep and cyclic voltammetry for electrocatal-
ysis at modified electrodes with very thin films. J Electroanal Chem 199:69–79

7. Atkinson KE (1997) The numerical solution of integral equations of the second kind.
Cambridge University Press, Cambridge



300 12 Numerical Solution Methods

8. Baker CTH (1978) The numerical treatment of integral equations. Clarendon Press, Oxford
9. Balducci G, Costa G (1993) The four-member square scheme in cyclic voltammetry: general

solution for Nernstian electron transfers. J Electroanal Chem 348:355–365
10. Berzins T, Delahay P (1953) Oscillographic polarographic waves for the reversible deposition

of metals on solid electrodes. J Am Chem Soc 75:555–559
11. Bieniasz LK (1992) ELSIM—a user-friendly PC program for electrochemical kinetic simu-

lations. Version 1.0—solution of integral equations for linear scan and cyclic voltammetry.
Comput Chem 16:11–14

12. Bieniasz LK (1992) An efficient numerical method of solving the Abel integral equation for
cyclic voltammetry. Comput Chem 16:311–317

13. Bieniasz LK (1993) An efficient numerical method of solving integral equations for cyclic
voltammetry. J Electroanal Chem 347:15–30

14. Bieniasz LK (2002) Towards computational electrochemistry—a kineticist’s perspective.
Mod Asp Electrochem 35:135–195

15. Bieniasz LK (2008) An adaptive Huber method with local error control, for the numerical
solution of the first kind Abel integral equations. Computing 83:25–39

16. Bieniasz LK (2008) Initialisation of the adaptive Huber method for solving the first kind Abel
integral equation. Computing 83:163–174

17. Bieniasz LK (2008) Cyclic voltammetric current functions determined with a prescribed
accuracy by the adaptive Huber method for Abel integral equations. Anal Chem 80:9659–
9665

18. Bieniasz LK (2010) Automatic simulation of cyclic voltammograms by the adaptive Huber
method for weakly singular second kind Volterra integral equations. Electrochim Acta
55:721–728

19. Bieniasz LK (2010) An adaptive Huber method for weakly singular second kind Volterra
integral equations with nonlinear dependencies between unknowns and their integrals.
Computing 87:35–54

20. Bieniasz LK (2010) Automatic simulation of cyclic voltammograms by the adaptive Huber
method for systems of weakly singular Volterra integral equations. J Electroanal Chem
642:127–134

21. Bieniasz LK (2011) An adaptive Huber method for non-linear systems of weakly singular
second kind Volterra integral equations. Appl Math Comput 217:5622–5631

22. Bieniasz LK (2011) Extension of the adaptive Huber method for solving integral equations
occurring in electro-analysis onto kernel function representing fractional diffusion. Electro-
analysis 23:1506–1511

23. Bieniasz LK (2011) A highly accurate, inexpensive procedure for computing integral
transformation kernel and its moment integrals for cylindrical wire electrodes. J Electroanal
Chem 661:280–286

24. Bieniasz LK (2011) Automatic simulation of electrochemical transients at cylindrical wire
electrodes, by the adaptive Huber method for Volterra integral equations. J Electroanal Chem
662:371–378

25. Bieniasz LK (2011) Extension of the adaptive Huber method for Volterra integral equations
arising in electroanalytical chemistry, to convolution kernels expŒ�˛.t��/� erexŒˇ.t � �/�1=2

and expŒ�˛.t � �/� dawŒˇ.t � �/�1=2. J Comput Methods Sci Eng 11:323–338
26. Bieniasz LK (2012) Automatic simulation of electrochemical transients by the adap-

tive Huber method for Volterra integral equations involving kernel terms expŒ�˛.t �
�/� erexŒˇ.t � �/�1=2 and expŒ�˛.t � �/� dawŒˇ.t � �/�1=2. J Math Chem 50:765–781

27. Bieniasz LK (2012) Automatic solution of integral equations pertinent to diffusion with first
order homogeneous reactions at cylindrical wire electrodes. J Electroanal Chem 674:38–47

28. Bieniasz LK (2012) Automatic simulation of electrochemical transients, assuming finite
diffusion space at planar interfaces, by the adaptive Huber method for Volterra integral
equations. J Electroanal Chem 684:20–31

29. Bieniasz LK (2013) Automatic solution of the Singh and Dutt integral equations for channel
or tubular electrodes, by the adaptive Huber method. J Electroanal Chem 693:95–104



References 301

30. Bieniasz LK (2013) Automatic solution of integral equations describing electrochemical
transients under conditions of internal spherical diffusion. J Electroanal Chem 694:104–113

31. Bieniasz LK (2013) Automatic solution of integral equations describing electrochemical
transients under conditions of internal cylindrical diffusion. J Electroanal Chem 700:30–39

32. Bieniasz LK (2013) Automatic solution of integral equations describing electrochemical
transients at dropping mercury electrodes. J Electroanal Chem 705:44–51

33. Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary element techniques. Springer, Berlin
34. Brunner H (2004) Collocation methods for Volterra integral and related functional differential

equations. Cambridge University Press, Cambridge
35. Brunner H, Van der Houwen PJ (1986) The numerical solution of Volterra equations. North-

Holland, Amsterdam
36. Cody WJ (1969) Rational Chebyshev approximations for the error function. Math Comput

23:631–637
37. Cody WJ, Paciorek KA, Thacher HC Jr (1970) Chebyshev approximations for Dawson’s

integral. Math Comput 24:171–178
38. Coen S, Cope DK, Tallman DE (1986) Diffusion current at a band electrode by an integral

equation method. J Electroanal Chem 215:29–48
39. Cope DK (1990) Convergence of Piessens’ method for numerical inversion of the Laplace

transform on the real line. SIAM J Numer Anal 27:1345–1354
40. Delmastro JR, Booman GL (1969) Polarographic kinetic currents for first-order preceding

and regeneration reactions at spherical electrodes. Anal Chem 41:1409–1420
41. Delves LM, Mohamed JL (1985) Computational methods for integral equations. Cambridge

University Press, Cambridge
42. De Vries WT (1965) Exact treatment of anodic stripping voltammetry with a plane mercury-

film electrode. J Electroanal Chem 9:448–456
43. De Vries WT (1968) Double layer charging in constant-current chronopotentiometry at a

mercury-film electrode. J Electroanal Chem 19:41–53
44. Diao G, Zhang Z (1996) Theory and application of cyclic voltammetry at a hemispherical

microelectrode for a quasi-reversible reaction. J Electroanal Chem 410:155–162
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Appendix A
Solution–Flux Relationships
for One-Dimensional Diffusion Equations

We derive here analytical solution–flux relationships for the archetypal linear
diffusion PDE

@u

@t
D D 4 u ; (A.1)

defined over a single one-dimensional spatial domain (interval) that can be either
semi-infinite or finite with length l . In Eq. (A.1) D is a (positive) diffusion
coefficient, and u is an unknown function of spatial coordinates and time t .
Solution u can be positive or negative; it does not have to represent a concentration
that is always non-negative. The trivial solution u  0 is not of interest. We
assume that only initially u D 0. We determine solution–flux relationships at
one boundary (corresponding to an electrochemical interface studied), which must
hold irrespective of the actual boundary conditions (not explicitly formulated here)
imposed at this boundary. This is accomplished for three particular boundary
conditions imposed at the second boundary: u D 0 in the case of the semi-infinite
spatial domain, and u D 0 (for a permeable second boundary) or grad u D 0

(for an impermeable second boundary) in the case of finite spatial domains. Three
geometries of the diffusion field: planar, spherical, and cylindrical are considered’
respectively, in Sects. A.1–A.3. The derivations for the transient Eq. (A.1) are
performed by employing the Laplace transform method. Whenever appropriate, we
also determine the limiting form of the solution–flux relationship under the steady
state condition @u=@t � 0.

As we shall see, the solution–flux relationships corresponding to the various
cases considered in this appendix may depend on certain parameters, defined
identically for all the cases. These parameters are:

% D D1=2=r0 ; (A.2)
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which is applicable in the cases of spherical and cylindrical diffusion to interfaces
with radius r0, and

� D D1=2=l ; (A.3)

which is applicable in the cases of finite spatial domains with thickness l .

A.1 Planar Diffusion

In the case of planar diffusion Eq. (A.1) can be written as

@u.x; t/

@t
D D@

2u.x; t/

@x2
: (A.4)

The initial condition is

u.x; 0/ D 0 ; (A.5)

and the boundary conditions at the second boundary are

u.1; t/ D 0 (A.6)

or

u.l; t/ D 0 (A.7)

or

@u.x; t/

@x

ˇ̌
ˇ̌
xDl
D 0 : (A.8)

By applying the Laplace transformation (3.12) to Eq. (A.4), and by taking into
account the initial condition (A.5) we obtain an equation for Ou.x; s/:

L

�
@u.x; t/

@t


D s Ou.x; s/ � 0 D L

�
D
@2u.x; t/

@x2


D D@

2 Ou.x; s/
@x2

: (A.9)

Equation (A.9) is a second-order ODE in the independent variable x, and it is
equivalent to

@2 Ou.x; s/
@x2

� s

D
Ou.x; s/ D 0 : (A.10)
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Application of the Laplace transform to the boundary conditions (A.6)–(A.8) gives
in turn

Ou.1; s/ D 0 ; (A.11)

or

Ou.l; s/ D 0 ; (A.12)

or

@Ou.x; s/
@x

ˇ̌
ˇ̌
xDl
D 0 : (A.13)

Equation (A.10) is a linear homogeneous ODE with constant coefficients, so that
its general solution is [3]

Ou.x; s/ D a.s/ exp

�
�
� s
D

�1=2
x

	
C b.s/ exp

�� s
D

�1=2
x

	
; (A.14)

where a.s/ and b.s/ are integration constants independent of x. Differentiation with
respect to x gives the Laplace transform of the flux:

OJ .x; s/ D �D@Ou.x; s/
@x

D .D s/1=2
�
a.s/ exp

�
�
� s
D

�1=2
x

	
� b.s/ exp

�� s
D

�1=2
x

	
: (A.15)

Further discussion depends on the choice of the boundary conditions (A.6)–(A.8).
In the case of steady state planar diffusion, Eq. (A.4) becomes a second-order

ODE

@2u.x; t/

@x2
D 0 : (A.16)

The general solution of Eq. (A.16) is

u.x; t/ D a.t/ x C b.t/ ; (A.17)

where a.t/ and b.t/ are integration constants independent of x. Consequently, the
flux is

J.x; t/ D �D@u.x; t/

@x
D �D a.t/ : (A.18)

Further discussion depends on the choice of the boundary conditions (A.6)–(A.8).
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A.1.1 Semi-infinite Spatial Domain

In the case of the boundary condition (A.6), b.s/ D 0 is the only option for the
transient solution transform (A.14). Hence, Eqs. (A.14) and (A.15) become

Ou.x; s/ D a.s/ exp

�
�
� s
D

�1=2
x

	
; (A.19)

OJ .x; s/ D .D s/1=2 a.s/ exp

�
�
� s
D

�1=2
x

	
: (A.20)

By eliminating a.s/ from Eqs. (A.19) and (A.20) we obtain

Ou.x; s/ D .D s/�1=2 OJ .x; s/ : (A.21)

The convolution theorem (3.17) applied to Eq. (A.21) gives

u.x; t/ D
tˆ

0

K .t; �/ J.x; �/ d� ; (A.22)

where the integral transformation kernel K .t; �/ is of the convolution type, and in
view of the analytical inverse transform

L �1 ˚s�1=2� D .�t/�1=2 ; (A.23)

it does not depend on the spatial coordinate x:

K .t; �/ D D�1=2 Œ�.t � �/��1=2 : (A.24)

Hence, in particular, at the boundary at x D 0, corresponding to the interface
studied:

u.0; t/ D
tˆ

0

K .t; �/ J.0; �/ d� : (A.25)

In the special case of the steady state solution (A.17), boundary condition (A.6)
requires that both a.t/ and b.t/ are identically zero. Therefore, a non-trivial steady
state solution does not exist in this case.
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A.1.2 Finite Spatial Domain, Permeable Second Boundary

By applying the boundary condition (A.7) to Eq. (A.14) we find that

a.s/ exp

�
�
� s
D

�1=2
l

	
C b.s/ exp

�� s
D

�1=2
l

	
D 0 ; (A.26)

so that one of the coefficients a.s/ or b.s/ can be eliminated, for example b.s/:

b.s/ D �a.s/ exp

�
�2

� s
D

�1=2
l

	
: (A.27)

Substituting this result into Eqs. (A.14) and (A.15) yields

Ou.x; s/ D a.s/
�

exp

�
�
� s
D

�1=2
x

	
� exp

�� s
D

�1=2
.x � 2l/

	
; (A.28)

OJ .x; s/ D .D s/1=2 a.s/
�

exp

�
�
� s
D

�1=2
x

	
C exp

�� s
D

�1=2
.x � 2l/

	
:

(A.29)

By eliminating a.s/ from Eqs. (A.28) and (A.29) we obtain

Ou.x; s/ D .D s/�1=2 tanh



l � x
D1=2

s1=2
�
OJ .x; s/ : (A.30)

The convolution theorem (3.17) applied to Eq. (A.30) gives

u.x; t/ D
tˆ

0

K .t; �/ J.x; �/ d� ; (A.31)

where the integral transformation kernel K .t; �/ is of the convolution type, and it
also generally depends on the spatial coordinate x. The formula for the kernel is:

K .t; �/ D '.t � �/ (A.32)

where

K .#/ D D�1=2L �1
�
s�1=2 tanh



l � x
D1=2

s1=2
�

: (A.33)

In Eq. (A.33) the Laplace transform is between the # and s domains. The inverse
Laplace transform can be expressed (see, for example, Roberts and Kaufman [5,
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p. 283]) by means of the exponential theta function ‚2.� j z/ (see, for example,
Oldham et al. [4, p. 261]) with parameter � D 0, which gives

K .t; �/ D .l � x/�1 ‚2

�
0

ˇ̌
ˇ̌ D

.l � x/2 .t � �/
	
: (A.34)

At the boundary at x D 0, corresponding to the interface studied, Eqs. (A.31)
and (A.34) simplify to

u.0; t/ D
tˆ

0

K .t; �/ J.0; �/ d� ; (A.35)

K .t; �/ D l�1 ‚2

�
0
ˇ̌
�2 .t � �/� ; (A.36)

with� defined by Eq. (A.3). It is this form of the kernel that was originally discussed
in the literature. However, by using the function kplp.�/ defined by Eq. (5.122), and
taking into account basic rules of the change of variables in Laplace transforms [cf.
Eq. (3.15)], it is more convenient to express the kernel as

K .t; �/ D D�1=2
�
Œ�.t � �/��1=2 � D1=2

l � x kplp

�
D1=2

l � x .t � �/
1=2

	
(A.37)

when x ¤ 0, or

K .t; �/ D D�1=2 ˚Œ�.t � �/� �1=2 � � kplp
�
�.t � �/1=2�� (A.38)

when x D 0.
In the special case of the steady state solution (A.17), by applying the boundary

condition (A.7) we obtain

a.t/ l C b.t/ D 0 ; (A.39)

so that

b.t/ D �a.t/ l : (A.40)

This gives

u.x; t/ D a.t/ .x � l/ : (A.41)

By combining Eqs. (A.18) and (A.41) the unknown a.t/ can be eliminated, which
gives the solution–flux relationship for the steady state:

u.x; t/ D D�1=2
�
D1=2

l � x
	�1

J.x; t/ : (A.42)
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In particular, at the boundary at x D 0, corresponding to the interface studied,

u.0; t/ D D�1=2��1 J.0; t/ : (A.43)

A.1.3 Finite Spatial Domain, Impermeable Second Boundary

By applying the boundary condition (A.8) to Eq. (A.14) we find that

� a.s/ exp

�
�
� s
D

�1=2
l

	
C b.s/ exp

�� s
D

�1=2
l

	
D 0 ; (A.44)

so that one of the coefficients a.s/ or b.s/ can be eliminated, for example b.s/:

b.s/ D a.s/ exp

�
�2

� s
D

�1=2
l

	
: (A.45)

Substituting this result into Eqs. (A.14) and (A.15) yields

Ou.x; s/ D a.s/
�

exp

�
�
� s
D

�1=2
x

	
C exp

�� s
D

�1=2
.x � 2l/

	
; (A.46)

OJ .x; s/ D .D s/1=2 a.s/

�
exp

�
�
� s
D

�1=2
x

	
� exp

�� s
D

�1=2
.x � 2l/

	
:

(A.47)

By eliminating a.s/ from Eqs. (A.46) and (A.47) we obtain

Ou.x; s/ D .D s/�1=2 coth



l � x
D1=2

s1=2
�
OJ .x; s/ : (A.48)

The convolution theorem (3.17) applied to Eq. (A.48) gives

u.x; t/ D
tˆ

0

K .t; �/ J.x; �/ d� ; (A.49)

where the integral transformation kernel K .t; �/ is of the convolution type, and it
also generally depends on the spatial coordinate x. The formula for the kernel is:

K .t; �/ D '.t � �/ (A.50)
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where

'.#/ D D�1=2L �1
�
s�1=2 coth



l � x
D1=2

s1=2
�

: (A.51)

In Eq. (A.51) the Laplace transform is between the # and s domains. The inverse
Laplace transform can be expressed (see, for example, Roberts and Kaufman [5,
p. 283]) by means of the exponential theta function ‚3.� j z/ (see, for example,
Oldham et al. [4, p. 261]) with parameter � D 0, which gives

K .t; �/ D .l � x/�1 ‚3

�
0

ˇ̌
ˇ̌ D

.l � x/2 .t � �/
	
: (A.52)

At the boundary at x D 0, corresponding to the interface studied, Eqs. (A.49)
and (A.52) simplify to

u.0; t/ D
tˆ

0

K .t; �/ J.0; �/ d� ; (A.53)

K .t; �/ D l�1 ‚3

�
0
ˇ̌
�2 .t � �/� ; (A.54)

with � defined by Eq. (A.3). This form of the kernel was originally discussed in
the literature. However, by using the function kpli.�/ defined by Eq. (5.123), and
taking into account basic rules of the change of variables in Laplace transforms [cf.
Eq. (3.15)], it is more convenient to express the kernel as

K .t; �/ D D�1=2
�
Œ�.t � �/� �1=2 C D1=2

l � x kpli

�
D1=2

l � x .t � �/
1=2

	
(A.55)

when x ¤ 0, or

K .t; �/ D D�1=2 ˚Œ�.t � �/��1=2 C � kpli
�
�.t � �/1=2�� ; (A.56)

when x D 0.
In the special case of the steady state solution (A.17), the boundary condi-

tion (A.8) implies that a.t/  0, so that only a spatially uniform solution is possible,
which is not interesting:

u.x; t/ D b.t/ ; (A.57)

J.x; t/ D 0 : (A.58)

No definite solution–flux relationship exists in this case.
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A.2 Spherical Diffusion

In the case of spherical diffusion Eq. (A.1) can be written as

@u.r; t/

@t
D D

�
@2u.r; t/

@r2
C 2

r

@u.r; t/

@r

	
: (A.59)

The initial condition is

u.r; 0/ D 0 ; (A.60)

and the boundary conditions at the second boundary are

u.1; t/ D 0 ; (A.61)

or

u.r0 ˙ l; t/ D 0 ; (A.62)

or

@u.r; t/

@r

ˇ̌
ˇ̌
rDr0˙l

D 0 : (A.63)

By applying the Laplace transformation (3.12) to both sides of Eq. (A.59), and by
taking into account the initial condition (A.60) we obtain the following equation for
Ou.r; s/:

L

�
@u.r; t/

@t


D s Ou.r; s/ � 0

D L

�
D

�
@2u.r; t/

@r2
C 2

r

@u.r; t/

@r

	
D D

�
@2 Ou.r; s/
@r2

C 2

r

@Ou.r; s/
@r

	
; (A.64)

which is a second-order ODE in independent variable r . Equation (A.64) is
equivalent to

@2 Ou.r; s/
@r2

C 2

r

@Ou.r; s/
@r

� s

D
Ou.r; s/ D 0 : (A.65)

Application of the Laplace transformation to the boundary conditions (A.61)–(A.63)
gives

Ou.1; s/ D 0 ; (A.66)
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or

Ou.r0 ˙ l; s/ D 0 ; (A.67)

or

@Ou.r; s/
@r

ˇ̌
ˇ̌
rDr0˙l

D 0 : (A.68)

The change of variables:

w.r; t/ D u.r; t/ r (A.69)

turns Eq. (A.65) into

@2 Ow.r; s/
@r2

� s

D
Ow.r; s/ D 0 : (A.70)

Equation (A.70) is analogous to Eq. (A.10) for the planar diffusion case, so that by
proceeding in the way identical to that in Sect. A.1, we obtain the result analogous
to Eq. (A.14):

Ow.r; s/ D a.s/ exp

�
�
� s
D

�1=2
r

	
C b.s/ exp

�� s
D

�1=2
r

	
; (A.71)

where a.s/ and b.s/ are integration constants independent of r . Hence, by returning
to the original solution variable we obtain

Ou.r; s/ D a.s/

r
exp

�
�
� s
D

�1=2
r

	
C b.s/

r
exp

�� s
D

�1=2
r

	
: (A.72)

Differentiation with respect to r gives the Laplace transform of the flux:

OJ .r; s/ D �D@Ou.r; s/
@r

D D

r2

�
a.s/

�� s
D

�1=2
r C 1

	
exp

�
�
� s
D

�1=2
r

	

�b.s/
�� s
D

�1=2
r � 1

	
exp

�� s
D

�1=2
r

	
: (A.73)

Further discussion depends on the choice of the boundary conditions (A.61)–(A.63).
In the case of steady state spherical diffusion, Eq. (A.59) becomes a second-order

ODE

@2u.r; t/

@r2
C 2

r

@u.r; t/

@r
D 0 : (A.74)
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The change of variables (A.69) transforms Eq. (A.74) into

@2w.r; t/

@r2
D 0 ; (A.75)

which has the general solution

w.r; t/ D a.t/C b.t/ r ; (A.76)

where a.t/ and b.t/ are integration constants independent of r . Therefore, from
Eqs. (A.69) and (A.76)

u.r; t/ D r�1a.t/C b.t/ : (A.77)

Consequently, the flux is

J.r; t/ D �D@u.r; t/

@r
D D r�2a.t/ : (A.78)

Further discussion depends on the choice of the boundary conditions (A.61)–(A.63).

A.2.1 Semi-infinite Spatial Domain

In the case of the boundary condition (A.61), b.s/ D 0 is the only option. Hence,
Eqs. (A.72) and (A.73) become:

Ou.r; s/ D a.s/

r
exp

�
�
� s
D

�1=2
r

	
; (A.79)

OJ .r; s/ D D

r2
a.s/

�� s
D

�1=2
r C 1

	
exp

�
�
� s
D

�1=2
r

	
: (A.80)

By combining Eqs. (A.79) and (A.80) the constant a.s/ can be eliminated, which
gives

Ou.r; s/ D D�1=2


s1=2 C D1=2

r

��1
OJ .r; s/ : (A.81)

The convolution theorem (3.17) applied to Eq. (A.81) gives:

u.r; t/ D
tˆ

0

K .t; �/ J.r; �/ d� ; (A.82)
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where the integral transformation kernel is of the convolution type, but in contrast
to planar semi-infinite diffusion, it depends on the spatial coordinate r . In view of
the analytical inverse transform

L �1
(

s1=2 C D1=2

r

��1)
D .�t/�1=2 � D1=2

r
erex



D1=2

r
t1=2

�
; (A.83)

with function erex .�/ defined by Eq. (5.76), the formula for the kernel is

K .t; �/ D D�1=2
�
Œ�.t � �/� �1=2 � D1=2

r
erex

�
D1=2

r
.t � �/1=2

	
: (A.84)

At the boundary at r D r0, corresponding to the interface studied, Eqs. (A.82)
and (A.84) simplify to

u.r0; t/ D
tˆ

0

K .t; �/ J.r0; �/ d� ; (A.85)

K .t; �/ D D�1=2 ˚Œ�.t � �/� �1=2 � % erex
�
%.t � �/1=2�� ; (A.86)

with % defined by Eq. (A.2).
In the special case of the steady state solution (A.77), the application of the

boundary condition (A.61) implies that b.t/ must be zero, so that

u.r; t/ D r�1a.t/ : (A.87)

By combining Eqs. (A.78) and (A.87) the unknown a.t/ can be eliminated, which
gives the solution–flux relationship for the steady state:

u.r; t/ D D�1=2


D1=2

r

��1
J.r; t/ : (A.88)

Specifically, at the boundary at r D r0, corresponding to the interface studied,

u.r0; t/ D D�1=2 %�1 J.r0; t/ : (A.89)

Equation (A.89) can also be deduced directly from Eq. (A.85), in the following
way [2]. The time needed for a steady state to be established must decrease with
decreasing radius r0, i.e. with increasing %; obviously, this time would be infinite
in the planar case, when % D 0. Assume therefore that t 	 %�2 so that the steady
state is achieved. The expression erex

�
%.t � �/1=2� in Eq. (A.85) is then practically
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equal to the first term of its asymptotic expansion (see, for example, Eq. (7.1.23) in
Abramowitz and Stegun [1]), that is

erex
�
%.t � �/1=2� � %�1��1=2.t � �/�1=2 ; (A.90)

for all � with the exception of a narrow interval of � close to � D t . By setting
expression (A.90) into Eq. (A.86) we see that K .t; �/ � 0 everywhere except for
this narrow interval, and only the contribution from this interval determines the
integral in Eq. (A.85). If we want the steady state to be approximately present in
a time-dependent electroanalytical experiment, any changes of J.r0; t/ resulting
from time-dependent boundary conditions at r D r0 must be slow compared to
the time needed for the steady state to establish. We can therefore assume that
J.r0; �/ � J.r0; t/ in the above narrow interval of � . As a consequence, Eq. (A.85)
is replaced by

u.r0; t/ D J.r0; t/
tˆ

0

K .t; �/ d� : (A.91)

The integral in Eq. (A.91) can be calculated analytically:

tˆ

0

K .t; �/ d� D D�1=2%�1 �1 � erex
�
% t1=2

�� � D�1=2%�1 ; (A.92)

where the term erex
�
% t1=2

�
has been neglected, owing to the assumed t 	 %�2.

Hence, by combining Eqs. (A.91) and (A.92) we obtain Eq. (A.89).

A.2.2 Finite Spatial Domain, Permeable Second Boundary

Assume first that the second boundary is located at r D r0 ˙ l > 0. Boundary
condition (A.62) applied to Eq. (A.72) then gives

a.s/

r0 ˙ l exp

�
�
� s
D

�1=2
.r0 ˙ l/

	
C b.s/

r0 ˙ l exp

�� s
D

�1=2
.r0 ˙ l/

	
D 0 ;

(A.93)

which (in view of r0 ˙ l > 0) implies a relationship between a.s/ and b.s/:

b.s/ D �a.s/ exp

�
�2

� s
D

�1=2
.r0 ˙ l/

	
: (A.94)



320 A Solution–Flux Relationships for One-Dimensional Diffusion Equations

Therefore, Eqs. (A.72) and (A.73) become

Ou.r; s/ D a.s/

r

�
exp

�
�
� s
D

�1=2
r

	
� exp

�� s
D

�1=2
Œr � 2.r0 ˙ l/�

�
;

(A.95)

OJ .r; s/ D D a.s/

r2

��� s
D

�1=2
r C 1

	
exp

�
�
� s
D

�1=2
r

	

C
�� s
D

�1=2
r � 1

	
exp

�� s
D

�1=2
Œr � 2.r0 ˙ l/�

�
: (A.96)

By combining Eqs. (A.95) and (A.96) the constant a.s/ can be eliminated, which
gives

Ou.r; s/ D ˙D�1=2 tanh
h�

s
D

�1=2
.r0 ˙ l � r/

i

s1=2 C D1=2

r
tanh

h�
s
D

�1=2
.r0 ˙ l � r/

i
h
˙ OJ .r; s/

i
:

(A.97)
The convolution theorem (3.17) applied to Eq. (A.97) gives:

u.r; t/ D
tˆ

0

K .t; �/ Œ˙J.r; �/� d� ; (A.98)

where the integral transformation kernel is of the convolution type, and it depends
on the spatial coordinate r . The formula for the kernel is:

K .t; �/ D '.t � �/ ; (A.99)

where

'.#/ D D�1=2L �1
8
<

:
˙ tanh

h�
s
D

�1=2
.r0 ˙ l � r/

i

s1=2 C D1=2

r
tanh

h�
s
D

�1=2
.r0 ˙ l � r/

i

9
=

; : (A.100)

The Laplace transform in Eq. (A.100) is between the # and s domains. At the
boundary at r D r0, corresponding to the interface studied, Eqs. (A.98) and (A.100)
simplify to

u.r0; t/ D
tˆ

0

K .t; �/ Œ˙J.r0; �/� d� ; (A.101)
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'.#/ D D�1=2L �1
8
<

:
˙ tanh

�
˙ s1=2

�

�

s1=2 C % tanh
�
˙ s1=2

�

�

9
=

; ; (A.102)

with parameters % and � defined by Eqs. (A.2) and (A.3).
The above results cannot be reasonably extended to the case of the second

boundary located at r D r0 � l D 0. From Taylor expansions of the exponential
functions, at low r Eq. (A.72) takes the form

Ou.r; s/ D a.s/C b.s/
r

C
� s
D

�1=2
Œb.s/� a.s/� C O.r/ : (A.103)

Therefore, Ou.r; s/ can be finite at r ! 0 only when a.s/  �b.s/. Furthermore, in
order to satisfy the boundary condition (A.62), there must be a.s/  b.s/  0 in
Eq. (A.103), which means an uninteresting solution.

In the special case of the steady state solution (A.77), the application of the
boundary condition (A.62) implies that

a.t/

r0 ˙ l C b.t/ D 0 : (A.104)

Therefore,

b.t/ D � a.t/

r0 ˙ l ; (A.105)

and we obtain from Eq. (A.77):

u.r; t/ D a.t/


1

r
� 1

r0 ˙ l
�
: (A.106)

By combining Eqs. (A.78) and (A.106) the unknown a.t/ can be eliminated, which
gives the solution–flux relationship for the steady state:

u.r; t/ D ˙ r

D



1 � r

r0 ˙ l
�
Œ˙J.r; t/� : (A.107)

In particular, at the boundary at r D r0, corresponding to the interface studied,
Eq. (A.107) becomes

u.r0; t/ D D�1=2 %�1 ��1

%�1 ˙ ��1 Œ˙J.r0; t/� ; (A.108)

with parameters % and � defined by Eqs. (A.2) and (A.3).
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A.2.3 Finite Spatial Domain, Impermeable Second Boundary

Assume first that the second boundary is located at r D r0 ˙ l > 0. Boundary
condition (A.63) applied to Eq. (A.72) then gives

a.s/

.r0 ˙ l/2
�� s
D

�1=2
.r0 ˙ l/C 1

	
exp

�
�
� s
D

�1=2
.r0 ˙ l/

	

� b.s/

.r0 ˙ l/2
�� s
D

�1=2
.r0 ˙ l/ � 1

	
exp

�� s
D

�1=2
.r0 ˙ l/

	
D 0 ; (A.109)

which [in view of r0˙ l > 0, and by taking s with sufficiently large real part so that
.s=D/1=2 .r0 ˙ l/ � 1 ¤ 0] implies a relationship between a.s/ and b.s/:

b.s/ D a.s/
�
s
D

�1=2
.r0 ˙ l/C 1

�
s
D

�1=2
.r0 ˙ l/� 1

exp

�
�2

� s
D

�1=2
.r0 ˙ l/

	
: (A.110)

Therefore, Eqs. (A.72) and (A.73) become

Ou.r; s/ D a.s/

r

�
exp

�
�
� s
D

�1=2
r

	

C
�
s
D

�1=2
.r0 ˙ l/C 1

�
s
D

�1=2
.r0 ˙ l/� 1

exp

�� s
D

�1=2
Œr � 2.r0 ˙ l/�

+
; (A.111)

OJ .r; s/ D D a.s/

r2

��� s
D

�1=2
r C 1

	
exp

�
�
� s
D

�1=2
r

	

�
�
s
D

�1=2
.r0 ˙ l/C 1

�
s
D

�1=2
.r0 ˙ l/ � 1

�� s
D

�1=2
r � 1

	
exp

�� s
D

�1=2
Œr � 2.r0 ˙ l/�

+
:

(A.112)

By combining Eqs. (A.111) and (A.112) the constant a.s/ can be eliminated, which
gives

Ou.r; s/ D
˙D�1=2

n�
s
D

�1=2
.r0 ˙ l/� tanh

h�
s
D

�1=2
.r0 ˙ l � r/

io

s1=2
.r0˙l�r/

r
C
h

s

D1=2 .r0 ˙ l/� D1=2

r

i
tanh

h�
s
D

�1=2
.r0 ˙ l � r/

i

�
h
˙ OJ .r; s/

i
: (A.113)

The convolution theorem (3.17) applied to Eq. (A.113) gives:

u.r; t/ D
tˆ

0

K .t; �/ Œ˙J.r; �/� d� ; (A.114)
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where the integral transformation kernel is of the convolution type, and it depends
on the spatial coordinate r . The formula for the kernel is:

K .t; �/ D '.t � �/ ; (A.115)

where

'.#/ D D�1=2L �1

8
<

:
˙
n�

s
D

�1=2
.r0 ˙ l/ � tanh

h�
s
D

�1=2
.r0 ˙ l � r/

io

s1=2
.r0˙l�r/

r
C
h
s r0˙l

D1=2 � D1=2

r

i
tanh

h�
s
D

�1=2
.r0 ˙ l � r/

i

9
=

; :

(A.116)

The Laplace transform in Eq. (A.116) is between the # and s domains. At the bound-
ary at r D r0, corresponding to the interface studied, Eqs. (A.114) and (A.116)
simplify to

u.r0; t/ D
tˆ

0

K .t; �/ Œ˙J.r0; �/� d� ; (A.117)

'.#/ D D�1=2L �1
8
<

:
s1=2

�
1
%
˙ 1

�

�
� tanh

�
˙ s1=2

�

�

s1=2
%

�
˙
h
s
�
1
%
˙ 1

�

�
� %

i
tanh

�
˙ s1=2

�

�

9
=

; ; (A.118)

with parameters % and � defined by Eqs. (A.2) and (A.3).
The above results can be extended to the case of the second boundary located

at r D r0 � l D 0. From Taylor expansions of the exponential functions, at low r

Eq. (A.73) takes the form

OJ .r; s/ D D
�
a.s/C b.s/

r2
� s

2D
Œa.s/C b.s/� C O.r/


: (A.119)

We see that OJ .r; s/ is finite at r ! 0 when a.s/ D �b.s/, similarly to Ou.r; s/ [cf.
Eq. (A.103)]. In addition, the second term in braces in Eq. (A.119) then vanishes,
so that OJ .r; s/ obeys the boundary condition (A.63). Therefore, Eqs. (A.117)
and (A.118) are applicable also when r0�l ! 0. Equation (A.118) then simplifies to

'.#/ D D�1=2L �1
8
<

:
tanh

�
s1=2

%

�

s1=2 � % tanh
�
s1=2

%

�

9
=

; : (A.120)

By using the function kins.�/ defined by Eq. (5.138), the corresponding kernel
function can be expressed as

K .t; �/ D D�1=2 ˚Œ�.t � �/� �1=2 C % kins
�
%.t � �/1=2�� : (A.121)
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In the special case of the steady state solution (A.77), the boundary condi-
tion (A.63) implies that a.t/  0, so that only a spatially uniform solution is
possible, which is not interesting:

u.r; t/ D b.t/ ; (A.122)

J.r; t/ D 0 : (A.123)

No definite solution–flux relationship exists in this case.

A.3 Cylindrical Diffusion

In the case of cylindrical diffusion Eq. (A.1) can be written as

@u.r; t/

@t
D D

�
@2u.r; t/

@r2
C 1

r

@u.r; t/

@r

	
: (A.124)

The initial condition is

u.r; 0/ D 0 ; (A.125)

and the boundary conditions at the second boundary are:

u.1; t/ D 0 ; (A.126)

or

u.r0 ˙ l; t/ D 0 ; (A.127)

or

@u.r; t/

@r

ˇ̌
ˇ̌
rDr0˙l

D 0 : (A.128)

By applying the Laplace transformation (3.12) to both sides of Eq. (A.124), and by
taking into account the initial condition (A.125) we obtain the following equation
for Ou.r; s/:

L

�
@u.r; t/

@t


D s Ou.r; s/ � 0

D L

�
D

�
@2u.r; t/

@r2
C 1

r

@u.r; t/

@r

	
D D

�
@2 Ou.r; s/
@r2

C 1

r

@Ou.r; s/
@r

	
: (A.129)
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Equation (A.129) is a second-order ODE in independent variable r , equivalent to

@2 Ou.r; s/
@r2

C 1

r

@Ou.r; s/
@r

� s

D
Ou.r; s/ D 0 : (A.130)

Application of the Laplace transformation to the boundary conditions (A.126)–
(A.128) gives

Ou.1; s/ D 0 ; (A.131)

or

Ou.r0 ˙ l; s/ D 0 ; (A.132)

or

@Ou.r; s/
@r

ˇ̌
ˇ̌
rDr0˙l

D 0 : (A.133)

We replace variable r by a new independent variable  defined by

 D .s=D/1=2 r ; (A.134)

owing to which Eq. (A.130) becomes

2
@2 Ou.; s/
@2

C  @Ou.; s/
@

� 2 Ou.; s/ D 0 : (A.135)

Equation (A.135) is the homogeneous modified Bessel equation of order zero [1],
so that it possesses the general solution

Ou.; s/ D a.s/K0./C b.s/ I0./ ; (A.136)

where I0.�/ and K0.�/ are the modified Bessel functions of the first and second
kind, respectively, and of order zero [1], and a.s/ and b.s/ are integration constants
independent of . By returning to the variable r , Eq. (A.136) becomes:

Ou.r; s/ D a.s/K0

�� s
D

�1=2
r

	
C b.s/ I0

�� s
D

�1=2
r

	
: (A.137)

Differentiation with respect to r gives the Laplace transform of the flux:

OJ .r; s/ D �D@Ou.r; s/
@r

D .D s/1=2
�
a.s/K1

�� s
D

�1=2
r

	
� b.s/ I1

�� s
D

�1=2
r

	
; (A.138)
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where I1.�/ and K1.�/ are the modified Bessel functions of the first and second kind,
respectively, and of order one. They appear in Eq. (A.138) owing to the known
relationships (cf. Eq. (9.6.27) in Abramowitz and Stegun [1]):

dK0./

d
D �K1./ ; (A.139)

dI0./

d
D I1./ : (A.140)

Further discussion depends on the choice of the boundary conditions (A.126)–
(A.128).

In the case of steady state cylindrical diffusion, Eq. (A.124) becomes a second-
order ODE

@2u.r; t/

@r2
C 1

r

@u.r; t/

@r
D 0 : (A.141)

After multiplying both sides by r , an equivalent equation (assuming r > 0) is

@

@r

�
r
@u.r; t/

@r

	
D 0 ; (A.142)

so that

r
@u.r; t/

@r
D a.t/ (A.143)

and

u.r; t/ D a.t/ ln.r/C b.t/ : (A.144)

where a.t/ and b.t/ are integration constants independent of r . Consequently, the
flux is

J.r; t/ D �D@u.r; t/

@r
D �D r�1a.t/ : (A.145)

Further discussion depends on the choice of the boundary conditions (A.126)–
(A.128).



A.3 Cylindrical Diffusion 327

A.3.1 Semi-infinite Spatial Domain

In the case of the boundary condition (A.126), in view of the fact that lim
!1I0./ D

1, b.s/ must be zero, so that Eqs. (A.137) and (A.138) reduce to

Ou.r; s/ D a.s/K0

�� s
D

�1=2
r

	
; (A.146)

OJ .r; s/ D .D s/1=2 a.s/K1

�� s
D

�1=2
r

	
: (A.147)

Combination of Eqs. (A.146) and (A.147) gives, after elimination of a.s/:

Ou.r; s/ D D�1=2

�
r

D1=2

�
K0

�
r

D1=2 s
1=2
�

�
r

D1=2 s
1=2
�

K1

�
r

D1=2 s
1=2
� OJ .r; s/ : (A.148)

The convolution theorem (3.17) applied to Eq. (A.148) gives

u.r; t/ D
tˆ

0

K .t; �/ J.r; �/ d� ; (A.149)

where the integral transformation kernel K .t; �/ is of the convolution type, and
similarly to the spherical semi-infinite diffusion case [cf. Eq. (A.84)] it depends on
r . In view of Eq. (A.148), by making use of the function '.#/ defined by Eq. (5.81),
and taking into account basic rules of the change of variables in Laplace transforms
[cf. Eq. (3.15)], the kernel can be expressed as

K .t; �/ D r�1'
�
D

r2
.t � �/

	
: (A.150)

However, by using the function kcylw.�/ defined by Eq. (5.84), it is more convenient
to express the kernel as

K .t; �/ D D�1=2
�
Œ�.t � �/��1=2 � D1=2

r
kcylw

�
D1=2

r
.t � �/1=2

	
:

(A.151)

At the boundary at r D r0, corresponding to the interface studied, Eqs. (A.149),
(A.150), and (A.151) simplify to

u.r0; t/ D
tˆ

0

K .t; �/ J.r0; �/ d� ; (A.152)
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with

K .t; �/ D r�1
0 '

�
%2.t � �/� (A.153)

or

K .t; �/ D D�1=2 ˚Œ�.t � �/� �1=2 � % kcylw
�
%.t � �/1=2�� ; (A.154)

where % is defined by Eq. (A.2).
In the special case of the steady state solution (A.144), the application of the

boundary condition (A.126) implies that both a.t/ and b.t/ must be simultaneously
zero. Therefore, a non-trivial steady state solution does not exist in this case.

A.3.2 Finite Spatial Domain, Permeable Second Boundary

Assume first that the second boundary is located at r D r0 ˙ l > 0. Boundary
condition (A.132) applied to Eq. (A.137) then gives

a.s/K0

�� s
D

�1=2
.r0 ˙ l/

	
C b.s/ I0

�� s
D

�1=2
.r0 ˙ l/

	
D 0 ; (A.155)

which [in view of r0 ˙ l > 0, and hence of finite values of K0.�/] implies a
relationship between a.s/ and b.s/:

b.s/ D �a.s/
K0

h�
s
D

�1=2
.r0 ˙ l/

i

I0
h�

s
D

�1=2
.r0 ˙ l/

i : (A.156)

Therefore, Eqs. (A.137) and (A.138) become

Ou.r; s/ D a.s/
8
<

:K0

�� s
D

�1=2
r

	
�

K0

h�
s
D

�1=2
.r0 ˙ l/

i

I0
h�

s
D

�1=2
.r0 ˙ l/

i I0

�� s
D

�1=2
r

	9=

; ;

(A.157)

OJ .r; s/ D D
� s
D

�1=2
a.s/

8
<

:K1

�� s
D

�1=2
r

	
C

K0

h�
s
D

�1=2
.r0 ˙ l/

i

I0
h�

s
D

�1=2
.r0 ˙ l/

i

�I1

�� s
D

�1=2
r

	
: (A.158)
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By combining Eqs. (A.157) and (A.158) the constant a.s/ can be eliminated, which
gives

Ou.r; s/ D ˙D�1=2
K0

h�
s
D

�1=2
r
i
� K0

h
. sD /

1=2
.r0˙l/

i

I0
h
. sD /

1=2
.r0˙l/

i I0
h�

s
D

�1=2
r
i

s1=2

(
K1

h�
s
D

�1=2
r
i
C K0

h
. sD /

1=2
.r0˙l/

i

I0
h
. sD /

1=2
.r0˙l/

i I1
h�

s
D

�1=2
r
i)

�
h
˙ OJ .r; s/

i
: (A.159)

The convolution theorem (3.17) applied to Eq. (A.159) gives:

u.r; t/ D
tˆ

0

K .t; �/ Œ˙J.r; �/� d� ; (A.160)

where the integral transformation kernel is of the convolution type, and it depends
on the spatial coordinate r . The formula for the kernel is

K .t; �/ D '.t � �/ ; (A.161)

where

'.#/ D ˙D�1=2L �1

8
ˆ̂̂
<̂

ˆ̂̂
:̂

K0

h�
s
D

�1=2
r
i
� K0

h
. sD /

1=2
.r0˙l/

i

I0
h
. sD /

1=2
.r0˙l/
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i
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. sD /

1=2
.r0˙l/

i I1
h�

s
D

�1=2
r
i)

9
>>>>=

>>>>;

:

(A.162)

The Laplace transformation in Eq. (A.162) is between the # and s domains. At
the boundary at r D r0, corresponding to the interface studied, Eqs. (A.160)
and (A.162) simplify to

u.r0; t/ D
tˆ

0

K .t; �/ Œ˙J.r0; �/� d� ; (A.163)
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�i I1
�
s1=2

%
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>>>>=

>>>>;

;

(A.164)

with parameters % and � defined by Eqs. (A.2) and (A.3).
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The above results cannot be reasonably extended to the case of the second
boundary located at r D r0 � l D 0. From the asymptotic expansion of the function
K0 .z/ for z! 0, and Taylor expansion of the function I0 .z/ we know that at small z

K0 .z/ D ln.2/� ”E � ln.z/ C O.z2/ ; (A.165)

I0 .z/ D 1 C O.z2/ ; (A.166)

where ”E is the Euler constant [1]. Consequently, at low r Eq. (A.137) takes the
form

Ou.r; s/ D �a.s/ ln

�� s
D

�1=2
r

	
C fa.s/ Œln.2/� ”E� C b.s/g C O.r2/ :

(A.167)

Therefore, Ou.r; s/ can be finite at r ! 0 only when a.s/  0. If we then want
the boundary condition (A.132) to be satisfied, then b.s/ must be zero, too, which
means an uninteresting solution.

In the special case of the steady state solution (A.144), the application of the
boundary condition (A.127) implies that

a.t/ ln.r0 ˙ l/C b.t/ D 0 : (A.168)

Therefore,

b.t/ D �a.t/ ln.r0 ˙ l/ ; (A.169)

and we obtain from Eq. (A.144):

u.r; t/ D a.t/ ln



r

r0 ˙ l
�
: (A.170)

By combining Eqs. (A.145) and (A.170) the unknown a.t/ can be eliminated, which
gives the solution–flux relationship for the steady state:

u.r; t/ D � r

D
ln



r

r0 ˙ l
�
Œ˙J.r; t/� : (A.171)

In particular, at the boundary at r D r0, corresponding to the interface studied,
Eq. (A.171) becomes

u.r0; t/ D �D�1=2%�1 ln



%�1

%�1 ˙ ��1

�
Œ˙J.r0; t/� ; (A.172)

with parameters % and � defined by Eqs. (A.2) and (A.3).
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A.3.3 Finite Spatial Domain, Impermeable Second Boundary

Assume first that the second boundary is located at r D r0 ˙ l > 0. Boundary
condition (A.133) applied to Eq. (A.137) then gives

a.s/K1

�� s
D

�1=2
.r0 ˙ l/

	
� b.s/ I1

�� s
D

�1=2
.r0 ˙ l/

	
D 0 ; (A.173)

which [in view of r0 ˙ l > 0, for which the values of K1.�/ and I1.�/ are finite and
nonzero] implies a relationship between a.s/ and b.s/:

b.s/ D a.s/
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D
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I1
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D

�1=2
.r0 ˙ l/

i : (A.174)

Therefore, Eqs. (A.137) and (A.138) become
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; (A.175)
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: (A.176)

By combining Eqs. (A.175) and (A.176) the constant a.s/ can be eliminated, which
gives
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The convolution theorem (3.17) applied to Eq. (A.177) gives:

u.r; t/ D
tˆ

0

K .t; �/ Œ˙J.r; �/� d� ; (A.178)

where the integral transformation kernel is of the convolution type, and it depends
on the spatial coordinate r . The formula for the kernel is:

K .t; �/ D '.t � �/ ; (A.179)
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(A.180)

The Laplace transformation in Eq. (A.180) is between the # and s domains. At
the boundary at r D r0, corresponding to the interface studied, Eqs. (A.178)
and (A.180) simplify to

u.r0; t/ D
tˆ

0

K .t; �/ Œ˙J.r0; �/� d� ; (A.181)
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(A.182)

with parameters % and � defined by Eqs. (A.2) and (A.3).
The above results can be extended to the case of the second boundary located at

r D r0 � l D 0. From the asymptotic expansion of the function K1 .z/ for z ! 0,
and Taylor expansion of the function I1 .z/ we know that at small z

K1 .z/ D 1

z
C O.z/ ; (A.183)

I1 .z/ D O.z/ : (A.184)
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Consequently, at low r Eq. (A.138) takes the form

OJ .r; s/ D .D s/1=2
�
a.s/

�� s
D

��1=2
r�1 C O.r/

	
� b.s/O.r/


: (A.185)

The boundary condition (A.133) is satisfied by Eq. (A.185) in the limit r0 � l ! 0

only when a.s/  0, but for arbitrary b.s/. As for a.s/  0 the boundary solution
Ou.0; s/ is finite [cf. Eq. (A.167)], the resulting solution is physically acceptable. In
this case Eq. (A.182) simplifies to

'.#/ D D�1=2L �1
8
<

:
I0
�
s1=2

%

�

s1=2 I1
�
s1=2

%

�

9
=

; : (A.186)

By using the function kinc.�/ defined by Eq. (5.154), the corresponding kernel
function can be expressed as

K .t; �/ D D�1=2 ˚Œ�.t � �/��1=2 C % kinc
�
%.t � �/1=2�� : (A.187)

In the special case of the steady state solution (A.144), the boundary condi-
tion (A.128) implies that a.t/  0, so that only a spatially uniform solution is
possible, which is not interesting:

u.r; t/ D b.t/ ; (A.188)

J.r; t/ D 0 : (A.189)

No definite solution–flux relationship exists in this case.
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Appendix B
Solution–Flux Relationships
for One-Dimensional Convection-Diffusion
Equations

In this appendix we derive analytical solution–flux relationships for a number
of convection-diffusion PDEs defined over a single one-dimensional and semi-
infinite spatial domain (interval), and occurring in models of electroanalytical
experiments. The boundary value at infinity is assumed equal to the initial value.
The solution–flux relationships are determined at the boundary corresponding to
an electrochemical interface studied. They must hold irrespective of the actual
boundary conditions (not explicitly formulated here) imposed at this boundary. The
convection-diffusion fields considered include: the case of a constant convection
velocity (discussed in Sect. B.1), convection to a DME (using the expanding plane
model, discussed in Sect. B.2), convection to an RDE (discussed in Sect. B.3), and
convection in channel or tubular electrodes (using the Singh and Dutt approxima-
tion, discussed in Sect. B.4).

B.1 Constant Convection Velocity

In the case of the constant convection velocity, the incomplete convection-diffusion
IBVP describing the transport of distributed species [cf. Eqs. (6.7)–(6.9) in Chap. 6]
includes the PDE:

@u.x; t/

@t
D D@

2u.x; t/

@x2
C v0 @u.x; t/

@x
; (B.1)

where the convection velocity v0 � 0. The initial condition is

u.x; 0/ D 0 ; (B.2)
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and the boundary condition at x !1 is

u.1; t/ D 0 : (B.3)

The flux of variable u.x; t/ is given by

J.x; t/ D �D@u.x; t/

@x
� v0 u.x; t/ : (B.4)

By applying the Laplace transformation (3.12) to Eqs. (B.1) and (B.3), and by taking
into account the initial condition (B.2) we obtain the equation for Ou.x; s/:

L

�
@u.x; t/

@t


D s Ou.x; s/ � 0

D L

�
D
@2u.x; t/

@x2
C v0 @u.x; t/

@x


D D@

2 Ou.x; s/
@x2

C v0 @Ou.x; s/
@x

(B.5)

with the boundary condition

Ou.1; s/ D 0 : (B.6)

Equation (B.5) is a second-order ODE in the independent variable x, equivalent to

@2 Ou.x; s/
@x2

C v0

D

@Ou.x; s/
@x

� s

D
Ou.x; s/ D 0 : (B.7)

By introducing an additional unknown

Ow.x; s/ D @Ou.x; s/
@x

; (B.8)

Eqs. (B.7) and (B.8) are cast into the form of a linear ODE system with constant
coefficients:

@

@x

� Ou.x; s/
Ow.x; s/

	
D
�
0 1
s
D
� v0
D

	 � Ou.x; s/
Ow.x; s/

	
: (B.9)

The matrix of the system (B.9) has the eigenvalues �1.s/ and �2.s/:

�1=2.s/ D �1
2

(
v0

D
˙
��v0
D

�2 C 4 s
D

	1=2)
; (B.10)
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which are distinct when <f s g > 0, so that the general solution of Eq. (B.9) is [3]:

� Ou.x; s/
Ow.x; s/

	
D a.s/

�
1

�1.s/

	
exp Œ�1.s/ x� C b.s/

�
1

�2.s/

	
exp Œ�2.s/ x� ;

(B.11)

where a.s/ and b.s/ are integration constants independent of x. In view of the
boundary condition (B.6), b.s/ must be zero, so that from Eq. (B.11) and Laplace
transformed Eq. (B.4) we obtain

Ou.x; s/ D a.s/ exp Œ�1.s/ x� ; (B.12)

OJ .x; s/ D �a.s/ ŒD �1.s/C v0� exp Œ�1.s/ x� : (B.13)

By combining Eqs. (B.12) and (B.13), the coefficient a.s/ can be eliminated,
resulting in the relationship:

Ou.x; s/ D � ŒD �1.s/C v0��1 OJ .x; s/ ; (B.14)

or equivalently, by taking into account Eq. (B.10):

Ou.x; s/ D D�1=2 �.s C �2/1=2 � ���1 OJ .x; s/ ; (B.15)

where

� D v0

2D1=2
: (B.16)

The convolution theorem (3.17) applied to Eq. (B.15) gives

u.x; t/ D
tˆ

0

K .t; �/ J.x; �/ d� ; (B.17)

where the integral transformation kernel is of the convolution type. It can be easily
obtained by finding the inverse Laplace transform of the multiplicative factor at
OJ .x; s/ in Eq. (B.15) in standard tables [1]:

K .t; �/ D D�1=2
*

exp
���2.t � �/�

Œ�.t � �/�1=2 C � ˚1C erf
�
�.t � �/1=2��

+
: (B.18)

Equation (B.17) holds at any x, in particular at the boundary at x D 0, correspond-
ing to the interface studied.
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A steady state characterised by the condition @u.x; t/=@t � 0 is possible. At
steady state Eq. (B.1) becomes a second-order ODE:

D
@2u.x; t/

@x2
C v0 @u.x; t/

@x
D 0 : (B.19)

By denoting

w.x; t/ D @u.x; t/

@x
; (B.20)

Eq. (B.19) can be rewritten as a first-order ODE in variable x:

@w.x; t/

@x
C v0

D
w.x; t/ D 0 : (B.21)

The general solution of Eq. (B.21) is

w.x; t/ D a.t/ exp
�
�v0
D
x
�
; (B.22)

where a.t/ is an integration constant. Consequently, by combining Eqs. (B.20)
and (B.22), and integrating between x and infinity, we obtain:

u.1; t/�u.x; t/ D a.t/
1̂

x

exp
�
�v0
D

�

d D a.t/ D
v0

exp
�
�v0
D
x
�
: (B.23)

In view of the boundary condition (B.3), Eq. (B.23) simplifies to

u.x; t/ D �a.t/ D
v0

exp
�
�v0
D
x
�
: (B.24)

Hence, a non-trivial steady state solution exists when a.t/ ¤ 0. However, from
Eqs. (B.4) and (B.24) we find that at steady state the flux of variable u is identically
zero:

J.x; t/ D �D@u.x; t/

@x
� v0 u.x; t/

D �a.t/
�
D exp

�
�v0
D
x
�
� v0 D

v0
exp

�
�v0
D
x
�	
D 0 : (B.25)

Therefore, there is no definite relationship between u.x; t/ and J.x; t/ at steady
state.
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B.2 Expanding Plane

In the case of the expanding plane model of the DME, the incomplete convection-
diffusion IBVP describing the transport of distributed species [cf. Eqs. (6.23)–(6.25)
in Sect. 6.2.2] includes the PDE:

@u.x; t/

@t
D D@

2u.x; t/

@x2
C 2x

3t

@u.x; t/

@x
: (B.26)

The initial condition is

u.x; 0/ D 0 ; (B.27)

and the boundary condition at x !1 is

u.1; t/ D 0 : (B.28)

The flux of variable u.x; t/ is given by

J.x; t/ D �D@u.x; t/

@x
� 2x
3t

u.x; t/ : (B.29)

By introducing new independent variables  and � :

 D x t2=3 ; (B.30)

� D 3

7
t7=3 ; (B.31)

Eq. (B.26) is transformed into the planar diffusion PDE:

@u.; �/

@�
D D@

2u.; �/

@2
: (B.32)

Therefore, a relationship analogous to Eq. (A.25) with the kernel given by Eq. (A.24)
holds in the .; �/ domain:

u.; �/ D
�ˆ

0

D�1=2 Œ�.� � #/��1=2
�
�D@u.; #/

@

	
d# : (B.33)

By returning to the original variables x and t , Eq. (B.33) becomes

u.x; t/ D
tˆ

0

K .t; �/

�
�D@u.x; �/

@x

	
d� ; (B.34)
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where the integral transformation kernel K .t; �/ is not of the convolution type:

K .t; �/ D D�1=2


3

7
�

��1=2
�2=3

�
t7=3 � �7=3��1=2 : (B.35)

Although the derivative expression in brackets in Eq. (B.34) is not identical with the
flux (B.29) when x > 0, it coincides with the flux when x D 0, i.e. exactly at the
boundary corresponding to the interface studied. Therefore, for x D 0 Eq. (B.34)
becomes

u.0; t/ D
tˆ

0

K .t; �/ J.0; �/ d� : (B.36)

Equation (B.36) thus represents the solution–flux relationship at the expanding
planar interface.

B.3 Rotating Disk Electrode

In the case of the RDE, the incomplete convection-diffusion IBVP describing the
transport of distributed species [cf. Eqs. (6.37)–(6.39) in Sect. 6.2.3] includes the
PDE:

@u.x; t/

@t
D D@

2u.x; t/

@x2
C ˇ x2 @u.x; t/

@x
; (B.37)

where coefficient ˇ D 0:51023 !3=2��1=2. The initial condition is

u.x; 0/ D 0 : (B.38)

Assuming a semi-infinite spatial domain, the boundary condition at x !1 is

u.1; t/ D 0 : (B.39)

The flux of variable u.x; t/ is given by:

J.x; t/ D �D@u.x; t/

@x
� ˇ x2u.x; t/ : (B.40)

We introduce new independent variables  and # :

 D D�1=2 � x ; (B.41)

# D �2 t ; (B.42)
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where

� D �D1=2ˇ
�1=3

: (B.43)

Equations (B.37) and (B.38) become:

@u.; #/

@#
D @2u.; #/

@2
C 2 @u.; #/

@
; (B.44)

u.; 0/ D 0 ; (B.45)

whereas Eq. (B.39) turns into the boundary condition for  !1:

u.1; #/ D 0 : (B.46)

By applying the Laplace transformation (3.12) (between the domains of # and
s) to Eqs. (B.44) and (B.46), and by taking into account the initial condition (B.45),
we obtain the equation for Ou.; s/:

L

�
@u.; #/

@#


D s Ou.; s/ � 0

D L

�
@2u.; #/

@2
C 2 @u.; #/

@


D @2 Ou.; s/

@2
C 2 @Ou.; s/

@
: (B.47)

with the boundary condition

Ou.1; s/ D 0 : (B.48)

Equation (B.47) is a second-order ODE in the independent variable x, and it is
equivalent to

@2 Ou.; s/
@2

C 2 @Ou.; s/
@

� s Ou.; s/ D 0 : (B.49)

We introduce a new dependent variable w.; #/ such that

u.; #/ D w.; #/ exp
��3=6� : (B.50)

Consequently, Eqs. (B.48) and (B.49) are transformed into

@2 Ow.; s/
@2

�


s C  C 1

4
4
�
Ow.; s/ D 0 ; (B.51)

Ow.1; s/ D 0 : (B.52)
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Solution of Eqs. (B.51) and (B.52) cannot be expressed by known analytical
functions. However, as the ODE (B.51) is linear, we expect, by analogy with other
similar ODEs discussed in this book, that there exists a relationship between Ow.0; s/
and �@ Ow.; s/=@jD0, having the form:

Ow.0; s/ D O'.s/
"
� @ Ow.; s/

@

ˇ̌
ˇ̌
D0

#
; (B.53)

where O'.s/ is a suitable function. By applying the convolution theorem (3.17) to
Eq. (B.53), we then obtain

w.0; #/ D
#̂

0

'.# � �/
"
� @w.; �/

@

ˇ̌
ˇ̌
D0

#
d� : (B.54)

Function '.#/ was determined approximately by Filinovskii and Kiryanov
[2], by assuming that significant variations of w.; #/ are limited to a small
neighbourhood of  D 0. Under this assumption the term 4=4 in Eq. (B.51) has
a small effect on the solution, and can be neglected, so that Eq. (B.51) simplifies to

@2 Ow.; s/
@2

� .s C / Ow.; s/ D 0 : (B.55)

Replacing  by a new independent variable �:

� D s C  ; (B.56)

transforms Eq. (B.55) into

@2 Ow.�; s/
@�2

� � Ow.�; s/ D 0 : (B.57)

Equation (B.57) is the Airy equation [1], so that it posesses the general solution

Ow.�; s/ D a.s/Ai.�/C b.s/Bi.�/ ; (B.58)

where Ai.�/ and Bi.�/ are the Airy functions, and a.s/ and b.s/ are integration
constants independent of �. By returning to the variable , Eq. (B.58) becomes

Ow.; s/ D a.s/Ai.s C /C b.s/Bi.s C / : (B.59)

In view of the boundary condition (B.52) b.s/ must be zero. Consequently,

Ow.; s/ D a.s/Ai.s C / (B.60)
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and

@ Ow.; s/
@

D a.s/Ai0.s C / ; (B.61)

where Ai0.�/ is the first derivative of the Airy function Ai.�/. By combining
Eqs. (B.60) and (B.61), the coefficient a.s/ can be eliminated, resulting in the
relationship

Ow.; s/ D
�
� Ai .s C /

Ai0 .s C /
	 �
�@ Ow.; s/

@

	
: (B.62)

In particular, at  D 0,

Ow.0; s/ D
�
� Ai .s/

Ai0 .s/

	 "
�@ Ow.; s/

@

ˇ̌
ˇ̌
D0

#
: (B.63)

Equation (B.63) has the form of Eq. (B.53). Hence, in the approximation of
Filinovskii and Kiryanov [2],

'.#/ � L �1
�
� Ai .s/

Ai0 .s/


: (B.64)

The Airy functions can be expressed [1] in terms of the modified Bessel functions
K1=3 .�/ and K2=3 .�/ of the second kind and fractional orders:

Ai.s/ D 1

�

� s
3

�1=2
K1=3



2

3
s3=2

�
; (B.65)

Ai0.s/ D � 1
�

s

31=2
K2=3



2

3
s3=2

�
: (B.66)

Therefore,

'.#/ � L �1
(

K1=3

�
2
3
s3=2

�

s1=2 K2=3

�
2
3
s3=2

�
)
; (B.67)

or, more conveniently,

'.#/ D .�#/�1=2 � krd.#1=2/ ; (B.68)

where the function krd.�/ is approximated by formula (6.49).
Equation (B.68) remains valid even if we abandon the approximation from

Filinovskii and Kiryanov [2] and do not neglect the term 4=4 in Eq. (B.51). The
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function krd.�/ can then be evaluated by solving the ODE (B.51) numerically with
the boundary conditions (B.52) and

@ Ow.; s/
@

ˇ̌
ˇ̌
D0
D �g.s/ ; (B.69)

where g.s/ is a prescribed function. From Eqs. (B.53) and (B.68) we then obtain:

krd.z/ D krd.#1=2/ D .�#/�1=2 �L �1
� Ow.0; s/
g.s/


; (B.70)

where Ow.0; s/ is a boundary value of the numerical solution. Function g.s/ in
Eqs. (B.69) and (B.70) can be arbitrary, since the function O'.s/ does not depend on
the boundary conditions at  D 0. The choice g.s/ D �1=s corresponds to a model
of current step chronopotentiometry,but numerical calculations are somewhat easier
if we take g.s/ D �1. We note that numerical inversion of the Laplace transform is
needed in Eq. (B.70), which presents high demands on the accuracy of the numerical
solution of Eq. (B.51), and makes such determinations of krd.�/ difficult.

By combining Eqs. (B.54) and (B.68), returning to the original variables x, t , and
u.x; t/, and taking into account Eqs. (B.40) and (B.50) for x D 0, we finally obtain:

u.0; t/ D
tˆ

0

K .t; �/ J.0; �/ d� ; (B.71)

where the integral transformation kernel is of the convolution type:

K .t; �/ D D�1=2 � 'Œ�2.t � �/�

D D�1=2 ˚Œ�.t � �/��1=2 � � krd
�
�.t � �/1=2�� : (B.72)

Equation (B.71) is the solution–flux relationship at the boundary at x D 0,
corresponding to the interface studied.

A special case of Eq. (B.37) corresponds to the steady state characterised by the
condition @u.x; t/=@t � 0: Equation (B.37) then becomes a second-order ODE:

D
@2u.x; t/

@x2
C ˇ x2 @u.x; t/

@x
D 0 : (B.73)

By denoting

w.x; t/ D @u.x; t/

@x
; (B.74)
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Eq. (B.73) can be rewritten as a first-order ODE:

@w.x; t/

@x
C ˇ

D
x2 w.x; t/ D 0 : (B.75)

The general solution of Eq. (B.75) is

w.x; t/ D a.t/ exp



� ˇ

3D
x3
�
; (B.76)

where a.t/ is an integration constant. Consequently, by combining Eqs. (B.74)
and (B.76), and integrating between x and infinity, we obtain:

u.1; t/� u.x; t/ D a.t/
1̂

x

exp



� ˇ

3D
3
�

d ; (B.77)

where  is an integration variable. In view of the boundary condition (B.39),
Eq. (B.77) simplifies to

u.x; t/ D �a.t/
1̂

x

exp



� ˇ

3D
3
�

d : (B.78)

From Eqs. (B.40) and (B.78) the general solution for the flux of variable u is

J.x; t/ D �D@u.x; t/

@x
� ˇ x2 u.x; t/

D �a.t/
2

4D exp



� ˇ

3D
x3
�
� ˇ x2

1̂

x

exp



� ˇ

3D
3
�

d

3

5 : (B.79)

By eliminating a.t/ from Eqs. (B.78) and (B.79) we get the solution–flux relation-
ship for the steady state:

u.x; t/ D

2

664D
exp

�
� ˇ

3D
x3
�

1́

x

exp
�
� ˇ

3D
3
�

d
� ˇ x2

3

775

�1

J.x; t/ : (B.80)

In particular, at the boundary at x D 0, corresponding to the interface studied:

u.0; t/ D
2

4D�1
1̂

0

exp



� ˇ

3D
3
�

d

3

5 J.0; t/ : (B.81)
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As we know that
1́

0

exp
��z3

�
dz D �.1=3/=3, where �.z/ is the Euler gamma

function [1], after simple substitutions of variables Eq. (B.81) can be rewritten as

u.0; t/ D D�1=2 ��1 3�2=3 �.1=3/ J.0; t/ : (B.82)

B.4 Channel and Tubular Electrodes

Assuming the Singh and Dutt approximation discussed in Sect. 6.2.4, the incomplete
convection-diffusion IBVP describing the transport of distributed species [cf.
Eqs. (6.62)–(6.64)] includes the PDE:

@u.x; t/

@t
D D@

2u.x; t/

@x2
� � x u.x; t/ ; (B.83)

where according to Eqs. (6.56) and (6.58), coefficient � D 2v0.hl/
�1 for channel,

or � D 2v0.r0l/�1 for tubular electrodes. The initial condition is

u.x; 0/ D 0 ; (B.84)

and the boundary condition in the middle of the channel or tube (assumed infinitely
distant from the electrode surface) is

u.1; t/ D 0 : (B.85)

As Eq. (B.83) is formally of the reaction-diffusion type, the flux J.x; t/ of variable
u.x; t/ does not contain a convective term:

J.x; t/ D �D@u.x; t/

@x
: (B.86)

We introduce new independent variables:

 D D�1=2� x ; (B.87)

# D �2 t ; (B.88)

where

� D �D1=2�
�1=3

: (B.89)
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Equations (B.83) and (B.84) become:

@u.; #/

@#
D @2u.; #/

@2
�  u.; #/ ; (B.90)

u.; 0/ D 0 ; (B.91)

and Eq. (B.85) turns into the boundary condition for  !1:

u.1; #/ D 0 : (B.92)

By applying the Laplace transformation (3.12) (between the # and s domains) to
Eqs. (B.90) and (B.92), and by taking into account the initial condition (B.91), we
obtain the equation for Ou.x; s/:

L

�
@u.; #/

@#


D s Ou.; s/ � 0

D L

�
@2u.; #/

@2
�  u.; #/


D @2 Ou.; s/

@2
�  Ou.; s/ : (B.93)

with the boundary condition

Ou.1; s/ D 0 : (B.94)

Equation (B.93) is a second-order ODE in the independent variable , and it is
equivalent to

@2 Ou.; s/
@2

� .s C / Ou.; s/ D 0 : (B.95)

Despite the different origin, Eqs. (B.94) and (B.95) are formally identical to
Eqs. (B.52) and (B.55), discussed in connection with convection-diffusion at the
RDEs. Therefore, by proceeding in the same manner as described in Sect. B.3, one
obtains [cf. Eqs. (B.54), (B.64), and (B.67)]:

u.0; #/ D
#̂

0

'.# � �/
"
� @u.; �/

@

ˇ̌
ˇ̌
D0

#
d� : (B.96)

where

'.#/ D L �1
�
� Ai .s/

Ai0 .s/


D L �1

(
K1=3

�
2
3
s3=2

�

s1=2 K2=3

�
2
3
s3=2

�
)
; (B.97)
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with Ai.�/ and Ai0.�/ denoting the Airy function and its derivative, and K1=3 .�/ and
K2=3 .�/ denoting the modified Bessel functions of the second kind and fractional
orders [1].

By returning to the variables x and t , Eqs. (B.96) and (B.97) yield:

u.0; t/ D
tˆ

0

K .t; �/ J.0; �/ d� ; (B.98)

where the integral transformation kernel is of the convolution type:

K .t; �/ D D�1=2 � 'Œ�2.t � �/�

D D�1=2 ˚Œ�.t � �/��1=2 � � kct
�
�.t � �/1=2�� ; (B.99)

where the function kct.�/ is defined by Eq. (6.71). Equation (B.98) is the solution–
flux relationship at the boundary at x D 0, corresponding to the interface studied.

A special case of Eq. (B.83) corresponds to the steady state characterised by the
condition @u.x; t/=@t � 0: Equation (B.83) then becomes a second-order ODE:

D
@2u.x; t/

@x2
� � x u.x; t/ D 0 : (B.100)

By introducing a new spatial variable  defined by Eq. (B.87), Eq. (B.100) becomes
the Airy equation [1]:

@2u.; t/

@2
�  u.; t/ D 0 ; (B.101)

whereas the boundary condition (B.85) for x ! 1 turns into the condition for
 !1:

u.1; t/ D 0 : (B.102)

The general solution of Eq. (B.101) is

u.; t/ D a.t/Ai./C b.t/Bi./ ; (B.103)

where a.t/ and b.t/ are integration constants independent of . In view of the
boundary condition (B.102) b.t/ must be zero. By returning to the variable x,
Eq. (B.103) becomes

u.x; t/ D a.t/Ai
�
D�1=2� x

�
: (B.104)
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Consequently, the flux (B.86) is

J.x; t/ D �D1=2 � a.t/ Ai0
�
D�1=2� x

�
: (B.105)

By eliminating a.t/ from Eqs. (B.104) and (B.105) we get the solution–flux
relationship for the steady state:

u.x; t/ D D�1=2 ��1
�
� Ai.D�1=2� x/

Ai0.D�1=2� x/

	
J.x; t/ : (B.106)

In particular, at the boundary at x D 0, corresponding to the interface studied,

u.0; t/ D D�1=2 ��1 3�1 �.1=3/
�.2=3/

J.0; t/ ; (B.107)

since Ai.0/ D 3�2=3=�.2=3/ and Ai0.0/ D �3�1=3=�.1=3/ (cf. Eqs. (10.4.4)
and (10.4.5) in Abramowitz and Stegun [1]), with �.�/ denoting the Euler gamma
function [1].
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Appendix C
Solution–Flux Relationships
for Multidimensional Diffusion Equations
(Mirkin and Bard Approach)

We derive here analytical solution–flux relationships for the archetypal transient
linear diffusion PDE

@u

@t
D D 4 u ; (C.1)

defined over example two-dimensional spatial domains that are infinite or semi-
infinite in one spatial direction, and semi-infinite in the second spatial direction.
In Eq. (C.1) D is a (positive) diffusion coefficient, and u is an unknown function of
spatial coordinates and time t . Solution u can be positive or negative; it does not have
to represent a concentration that is always non-negative. The trivial solution u  0

is not of interest. We assume that only initially u D 0. We determine solution–
flux relationships at one boundary (corresponding to an electrochemical interface
studied), which must hold irrespective of the actual boundary conditions (not
explicitly formulated here) imposed at this boundary. We consider two geometries
of the diffusion fields: diffusion to infinite parallel band(s) on a planar interface
studied, and diffusion to a disk/ring(s) system on the planar interface. As the bands
are assumed to be infinitely long, edge effects that might result from a finite length of
the bands are not taken into account, and two spatial coordinates are sufficient for the
description. Relevant derivations are contained in Sects. C.1 and C.2, respectively.
The derivations are performed by employing the Mirkin and Bard approach [3, 4].
This implies that the Laplace transformation is used with respect to the time
variable, and the Fourier or Hankel transformations are used with respect to the
selected spatial variables.
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C.1 Diffusion to Infinite Parallel Band(s) on a Plane

In the case of transient diffusion to a number of infinite bands on a plane, Eq. (C.1)
can be written using the Cartesian coordinate system (cf. Table 2.1 and Fig. 2.3):

@u.x; z; t/

@t
D D

�
@2u.x; z; t/

@x2
C @2u.x; z; t/

@z2

	
: (C.2)

The initial condition is

u.x; z; 0/ D 0 ; (C.3)

and the boundary conditions at other boundaries are

u.˙1; z; t/ D 0 ; (C.4)

u.x;1; t/ D 0 : (C.5)

By applying the Fourier transformation (3.20), with respect to the variable x, to
Eq. (C.2), and by taking into account the boundary condition (C.4), we obtain an
equation for Mu.k; z; t/:

F

�
@u.x; z; t/

@t


D @Mu.k; z; t/

@t

D F

�
D

�
@2u.x; z; t/

@x2
C @2u.x; z; t/

@z2

	
D �D k2 Mu.k; z; t/CD@

2 Mu.k; z; t/
@z2

;

(C.6)

where k is the Fourier variable, and where formula (3.24) with n D 2 is utilised. We
note that the Fourier transform of the initial condition (C.3) is

Mu.k; z; 0/ D F f0g D 0 : (C.7)

Therefore, application of the Laplace transformation (3.12), with respect to the
variable t , to Eq. (C.6) gives:

L

�
@Mu.k; z; t/

@t


D s OMu.k; z; s/ � 0

D L

�
�D k2 Mu.k; z; t/CD@

2 Mu.k; z; t/
@z2


D �D k2 OMu.k; z; s/CD@

2 OMu.k; z; s/
@z2

:

(C.8)
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Equation (C.8) is a second-order linear homogeneous ODE in the independent
variable z, and with constant coefficients. It is equivalent to

@2 OMu.k; z; s/
@z2

�
�
k2 C s

D

� OMu.k; z; s/ D 0 : (C.9)

Application of the Fourier and Laplace transformations to the boundary condi-
tion (C.5) gives in turn

OMu.k;1; s/ D L fF f0gg D 0 : (C.10)

The general solution of Eq. (C.9) is [2]:

OMu.k; z; s/ D a.s/ exp

�
�
�
k2 C s

D

�1=2
z

	
C b.s/ exp

��
k2 C s

D

�1=2
z

	
;

(C.11)

where a.s/ and b.s/ are integration constants independent of z. Differentiation
with respect to z gives the Fourier–Laplace transform of the flux component in the
direction of z:

OMJz.k; z; s/ D �D@
OMu.k; z; s/
@z

D D1=2
�
D k2 C s�1=2

�
a.s/ exp

�
�
�
k2 C s

D

�1=2
z

	

�b.s/ exp

��
k2 C s

D

�1=2
z

	
: (C.12)

In view of the boundary condition (C.10), b.s/ D 0 is the only option, so that
Eqs. (C.11) and (C.12) become

OMu.k; z; s/ D a.s/ exp

�
�
�
k2 C s

D

�1=2
z

	
; (C.13)

OMJz.k; z; s/ D D1=2
�
D k2 C s�1=2 a.s/ exp

�
�
�
k2 C s

D

�1=2
z

	
: (C.14)

By eliminating a.s/ from Eqs. (C.13) and (C.14) we obtain

OMu.k; z; s/ D D�1=2 �D k2 C s��1=2 OMJz.k; z; s/ : (C.15)

The inverse Laplace transformation (3.14) of
�
D k2 C s��1=2 is

L �1
n�
D k2 C s��1=2

o
D .�t/�1=2 exp

��D k2 t
�
: (C.16)
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Hence, from the convolution theorem (3.17):

Mu.k; z; t/ D D�1=2
tˆ

0

exp
��D k2 .t � �/�

Œ�.t � �/�1=2
MJz.k; z; �/ d� : (C.17)

We now apply the inverse Fourier transformation (3.22) to Eq. (C.17), and substitute
the following direct Fourier transform for MJz.k; z; �/:

MJz.k; z; �/ D
1̂

�1
exp .�ik�/ Jz.�; z; �/ d� : (C.18)

This gives

u.x; z; t/

D 1

2�

1̂

�1
eikx

8
<

:D
�1=2

tˆ

0

e�Dk2.t��/

Œ�.t � �/�1=2

2

4
1̂

�1
e�ik�Jz.�; z; �/ d�

3

5 d�

9
=

; dk :

(C.19)

By changing the integration order in Eq. (C.19), we arrive at the integral which can
be calculated analytically with the following result (see, for example, formula (7.42)
in Abramowitz and Stegun [1]):

1ˆ

�1

exp
��D k2 .t � �/� exp Œik .x � �/� dk D

�
�

D.t � �/
	1=2

exp

"
� .x � �/2
4D.t � �/

#
:

(C.20)

Consequently, Eq. (C.19) becomes

u.x; z; t/ D
ˆ

D

K


�
x

t

	
;

�
�

�

	�
Jz.�; z; �/ d� d� ; (C.21)

where the integral transformation kernel is a function of two vector variables Œx; t �T

and Œ�; ��T:

K


�
x

t

	
;

�
�

�

	�
D D�1 Œ2�.t � �/��1 exp

"
� .x � �/2
4D.t � �/

#
: (C.22)

The integration domain in Eq. (C.21) is DD D��D� , where � 2 D� D .�1;1/
and � 2 D� D Œ0; t/.
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In particular, at the boundary at z D 0, corresponding to the interface studied,
Eq. (C.21) predicts:

u.x; 0; t/ D
ˆ

D

K


�
x

t

	
;

�
�

�

	�
Jz.�; 0; �/ d� d� : (C.23)

C.2 Diffusion to Disk/Ring(s) on a Plane

In the case of transient diffusion to a disk and a finite number of rings on a plane,
Eq. (C.1) can be written using the cylindrical coordinate system (cf. Table 2.1 and
Fig. 2.4):

@u.r; z; t/

@t
D D

�
@2u.r; z; t/

@r2
C 1

r

@u.r; z; t/

@r
C @2u.r; z; t/

@z2

	
: (C.24)

The initial condition is

u.r; z; 0/ D 0 ; (C.25)

and the boundary conditions at other boundaries are

u.1; z; t/ D 0 ; (C.26)

u.r;1; t/ D 0 : (C.27)

By applying the Hankel transformation (3.25) of order zero, with respect to the
variable r , to Eq. (C.24), and by taking into account the boundary condition (C.26),
we obtain an equation for Lu.k; z; t/:

H

�
@u.r; z; t/

@t


D @Lu.p; z; t/

@t

DH

�
D

�
@2u.r; z; t/

@r2
C 1

r

@u.r; z; t/

@r
C @2u.r; z; t/

@z2

	

D �Dp2 Lu.p; z; t/CD@
2 Lu.p; z; t/
@z2

; (C.28)

where p is the Hankel variable, and where formula (3.28) is utilised. We note that
the Hankel transform of the initial condition (C.25) is

Lu.p; z; 0/ DH f0g D 0 : (C.29)
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Therefore, application of the Laplace transformation (3.12), with respect to the
variable t , to Eq. (C.28), gives:

L

�
@Lu.p; z; t/

@t


D s OLu.p; z; s/ � 0

D L

�
�Dp2 Lu.p; z; t/CD@

2 Lu.p; z; t/
@z2


D �Dp2 OLu.p; z; s/CD@

2 OLu.p; z; s/
@z2

:

(C.30)

Equation (C.30) is a second-order linear homogeneous ODE in the independent
variable z, and with constant coefficients. It is equivalent to

@2 OLu.p; z; s/
@z2

�
�
p2 C s

D

� OLu.p; z; s/ D 0 : (C.31)

Application of the Hankel and Laplace transformations to the boundary condi-
tion (C.27) gives in turn

OLu.p;1; s/ D L fH f0gg D 0 : (C.32)

The general solution of Eq. (C.31) is [2]:

OLu.p; z; s/ D a.s/ exp

�
�
�
p2 C s

D

�1=2
z

	
C b.s/ exp

��
p2 C s

D

�1=2
z

	
;

(C.33)

where a.s/ and b.s/ are integration constants independent of z. Differentiation
with respect to z gives the Hankel–Laplace transform of the flux component in the
direction of z:

OLJz.p; z; s/ D �D@
OLu.p; z; s/
@z

D D1=2
�
Dp2 C s�1=2

�
a.s/ exp

�
�
�
p2 C s

D

�1=2
z

	
� b.s/ exp

��
p2 C s

D

�1=2
z

	
:

(C.34)

In view of the boundary condition (C.32), b.s/ D 0 is the only option, so that
Eqs. (C.33) and (C.34) become

OLu.p; z; s/ D a.s/ exp

�
�
�
p2 C s

D

�1=2
z

	
(C.35)

OLJz.p; z; s/ D D1=2
�
Dp2 C s�1=2 a.s/ exp

�
�
�
p2 C s

D

�1=2
z

	
: (C.36)
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By eliminating a.s/ from Eqs. (C.35) and (C.36) we obtain

OLu.p; z; s/ D D�1=2 �Dp2 C s��1=2 OLJz.p; z; s/ : (C.37)

The inverse Laplace transform (3.14) of
�
Dp2 C s��1=2 is

L �1 n�Dp2 C s��1=2
o
D .�t/�1=2 exp

��Dp2 t
�
: (C.38)

Hence, from the convolution theorem (3.17):

Lu.p; z; t/ D D�1=2
tˆ

0

exp
��Dp2 .t � �/�

Œ�.t � �/�1=2
LJ z.p; z; �/ d� : (C.39)

We now apply the inverse Hankel transformation (3.27) to Eq. (C.39), and substitute
the following direct Hankel transform for LJ z.p; z; �/:

LJ z.p; z; �/ D
1̂

0

J0 .p�/ � Jz.�; z; �/ d� : (C.40)

This gives

u.r; z; t/

D
1̂

0

J0 .pr/ p

8
<

:D
�1=2

tˆ

0

e�Dp2.t��/

Œ�.t � �/�1=2

2

4
1̂

0

J0 .p�/ � Jz.�; z; �/ d�

3

5 d�

9
=

; dp :

(C.41)

By changing the integration order in Eq. (C.41), we arrive at the integral which can
be calculated analytically with the following result (cf. Watson [5, p. 395]):

1̂

0

exp
��Dp2 .t � �/� J0 .p�/ J0 .pr/ p dp

D 1

2D.t � �/ exp

�
� �2 C r2
4D.t � �/

	
I0

�
r�

2D.t � �/
	
; (C.42)

where I0.�/ denotes the modified Bessel function of the first kind and order zero [1].
Consequently, Eq. (C.41) becomes

u.r; z; t/ D
ˆ

D

K


�
r

t

	
;

�
�

�

	�
Jz.�; z; �/ d� d� ; (C.43)
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where the integral transformation kernel is a function of two vector variables Œr; t �T

and Œ�; ��T:

K


�
r

t

	
;

�
�

�

	�
D D�3=2 � exp

h
� �2Cr2
4D.t��/

i
I0
h

r�

2D.t��/
i

2�1=2.t � �/3=2 : (C.44)

The integration domain in Eq. (C.43) is D D D� � D� , where � 2 D� D Œ0;1/ and
� 2 D� D Œ0; t/.

In particular, at the boundary at z D 0, corresponding to the interface studied,
Eq. (C.43) predicts:

u.r; 0; t/ D
ˆ

D

K


�
r

t

	
;

�
�

�

	�
Jz.�; 0; �/ d� d� : (C.45)
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Appendix D
Solution–Flux Relationships
for Multidimensional Diffusion Equations
(the BIM)

We derive here analytical solution–flux relationships for the archetypal linear
diffusion PDE

@u

@t
D D 4 u ; (D.1)

defined over a generally three-dimensional spatial domain˝ surrounded by a closed
surface S . In Eq. (D.1) D is a (positive) diffusion coefficient, and u is an unknown
function of spatial coordinates and time t . Solution u is assumed to be positive
or zero; it may represent a concentration that is always non-negative. The trivial
solution u  0 is not of interest. We assume that initially u D u?. We determine
a solution–flux relationship at the boundary S by employing the theory of the BIM
[3]. A special case of a steady state Eq. (D.1) is also considered. The solution–flux
relationship obtained must hold irrespective of the actual boundary conditions (not
explicitly formulated here) imposed at the boundary S .

Let us use Cartesian coordinates, in which case u D u.x; t/, x D Œx; y; z�T. The
initial condition thus can be written as

u.x; 0/ D u? : (D.2)

By n D �
nx; ny; nz

�T
we shall denote the unit vector normal to the surface S and

directed outwards.
If u.x; t/ is to be a solution of Eq. (D.1), then the residual must be zero, i.e.

D 4 u � @u

@t
D 0 : (D.3)
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If we multiply Eq. (D.3) by an arbitrary function G D G


�
x

t

	
;

�
�

�

	�
and

integrate over˝ and over time, we shall get zero, too:

tˆ

0

ˆ

˝



D 4 u � @u

@�

�
G d˝ d� D 0 : (D.4)

In Eq. (D.4) we assume tacitly that u D u.�; �/, � D Œ; �; ��T and � are integration
variables, and d˝ D d d� d�.

From the Green–Gauss–Ostrogradski theorem (also known as the divergence
theorem [1, 2]) we know that for any continuous and differentiable vector field w,

ˆ

˝

div w d˝ D
˛

S

w � n ds : (D.5)

In particular, if we take w D G grad u, assuming that G and u possess continuous
first and second spatial derivatives, then

div w D r � .G grad u/ D rG � ruC G r2u ; (D.6)

w � n D .G grad u/ � n D G
@u

@n
; (D.7)

where @u=@n is the directional spatial derivative in the direction of n. Consequently,
we obtain from Eq. (D.5):

ˆ

˝

�rG � ruC G r2u� d˝ D
˛

S

G
@u

@n
ds : (D.8)

Similarly for w D u gradG we obtain

ˆ

˝

�ru � rG C ur2G � d˝ D
˛

S

u
@G

@n
ds : (D.9)

Subtraction of Eqs. (D.8) and (D.9) gives

ˆ

˝

.G 4 u � u 4 G / d˝ D
˛

S



G
@u

@n
� u

@G

@n

�
ds ; (D.10)



D Solution–Flux Relationships for Multidimensional Diffusion Equations (the BIM) 361

which is known as the Green second identity [3]. From Eq. (D.10) we obtain

ˆ

˝

G 4 u d˝ D
ˆ

˝

u 4 G d˝ C
˛

S



G
@u

@n
� u

@G

@n

�
ds ; (D.11)

which we substitute into Eq. (D.4) together with another identity:

tˆ

0

@u

@�
G d� D .uG /j�Dt

�D0 �
tˆ

0

u
@G

@�
d� : (D.12)

This gives

tˆ

0

ˆ

˝

u



D 4 G C @G

@�

�
d˝ d�

D
ˆ

˝

uG d˝

ˇ̌
ˇ̌
ˇ̌

�Dt

�D0
�D

tˆ

0

˛

S



G
@u

@n
� u

@G

@n

�
ds d� : (D.13)

In the above equations G is an arbitrary function, but we can be more specific. Let
us select for G the solution of the equation

D 4 G C @G

@�
D �•.� � x/ •.� � t/ ; (D.14)

where •.�/ denotes the Dirac delta. Equation (D.14) has an analytical solution, which
in the three-dimensional case is [3]:

G


�
x

t

	
;

�
�

�

	�
D
(
Œ4�D.t � �/��3=2 exp

h
� .x�/2C.y��/2C.z��/2

4D.t��/
i

for t > �

0 for t < �
:

(D.15)

As this function is singular at � D t , the integrals in Eq. (D.13) are improper
integrals. In particular,

tˆ

0

ˆ

˝

u



D 4 G C @G

@�

�
d˝ d� D �lim

"!0

t�"ˆ

0

ˆ

˝

u •.� � x/ •.� � t/ d˝ d� D 0 ;

(D.16)

ˆ

˝

uG d˝

ˇ̌
ˇ̌
ˇ̌
�Dt
D lim

"!0

ˆ

˝

uG d˝

ˇ̌
ˇ̌
ˇ̌
�Dt�"

D
ˆ

˝

u •.� � x/ d˝ D �u ; (D.17)
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where � D 1 for x 2 ˝ n S and � D 1=2 for x 2 S (provided that the surface S is

locally smooth). The integral D
t́

0

¸
S

u .@G =@n/ ds d� is in general to be evaluated

in the sense of the Cauchy principal value, as its kernel @G =@n may be strongly
singular. Thus, with this choice of G Eq. (D.13) becomes

�u D u?
ˆ

˝

G d˝

ˇ̌
ˇ̌
ˇ̌
�D0
CD

tˆ

0

˛

S



G
@u

@n
� u

@G

@n

�
ds d� : (D.18)

When x 2 S , Eq. (D.18) presents an integral relationship between the solution u at
the boundary S , and its flux �D @u=@n normal to the surface S .

In three-dimensional spatial domains nonzero steady state solutions of the
diffusion equation are often possible, as limiting cases. In such cases we have to
solve the Laplace equation

4 u D 0 : (D.19)

If we multiply Eq. (D.19) by an arbitrary function G D G .x;�/ and integrate over
˝ , we obtain

ˆ

˝

G 4 u d˝ D 0 : (D.20)

By employing Eq. (D.11) this is equivalent to

ˆ

˝

u 4 G d˝ C
˛

S



G
@u

@n
� u

@G

@n

�
ds D 0 : (D.21)

Let us select for G the solution of the equation

4 G D �•.� � x/ : (D.22)

Equation (D.22) possesses an analytical solution, which in the three-dimensional
case is [3]:

G .x;�/ D
n
4�
�
.x � /2 C .y � �/2 C .z� �/2�1=2

o�1
: (D.23)

Setting Eq. (D.22) into Eq. (D.21) gives

�u D
˛

S



G
@u

@n
� u

@G

@n

�
ds : (D.24)

Equation (D.24) presents the solution–flux relationship for the steady state.
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Appendix E
Solution–Flux Relationships
for One-Dimensional Reaction-Diffusion
Equations

In this appendix we present example analytical derivations of the solution–flux
relationships for a number of selected reaction-diffusion IBVPs or BVPs defined
over a single one-dimensional and semi-infinite spatial domain. The solution–flux
relationships are determined at one boundary (corresponding to an electrochemical
interface studied). They must hold irrespective of the actual boundary conditions
(not explicitly formulated here) imposed at this boundary. We employ the Laplace
transformation method, and the classical theory of BVPs in second-order ODEs.

E.1 A Single Transient Linear Reaction-Diffusion PDE

We begin with analytical solution–flux relationships for the archetypal single
transient linear reaction-diffusion PDE

@u

@t
D D 4 u � k u ; (E.1)

whereD is a (positive) diffusion coefficient, k is a coefficient (positive, negative or
zero), and u is an unknown function of spatial coordinates and time t . Solution
u can be positive or negative; it does not have to represent a concentration
that is always non-negative. The trivial solution u  0 is not of interest. We
assume that only initially u D 0. We determine solution–flux relationships at
one boundary (corresponding to an electrochemical interface studied), which must
hold irrespective of the actual boundary conditions (not explicitly formulated here)
imposed at this boundary. This is accomplished for the boundary condition u D 0

imposed at infinity. Three geometries of the diffusion field: planar, spherical, and
cylindrical are considered.
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In the case of planar diffusion Eq. (E.1) can be written as

@u.x; t/

@t
D D@

2u.x; t/

@x2
� k u.x; t/ ; (E.2)

and the initial and boundary conditions are

u.x; 0/ D 0 ; (E.3)

u.1; t/ D 0 : (E.4)

In the case of spherical diffusion, Eq. (E.1) can be written as

@u.r; t/

@t
D D

�
@2u.r; t/

@r2
C 2

r

@u.r; t/

@r

	
� k u.r; t/ ; (E.5)

and the initial and boundary conditions are

u.r; 0/ D 0 ; (E.6)

u.1; t/ D 0 : (E.7)

Finally, in the case of cylindrical diffusion, Eq. (E.1) can be written as

@u.r; t/

@t
D D

�
@2u.r; t/

@r2
C 1

r

@u.r; t/

@r

	
� k u.r; t/ ; (E.8)

and the initial and boundary conditions are

u.r; 0/ D 0 ; (E.9)

u.1; t/ D 0 : (E.10)

By applying the Laplace transformation (3.12) to Eqs. (E.2) and (E.4), (E.5)
and (E.7), or (E.8) and (E.10), and by taking into account the initial condi-
tions (E.3), (E.6), or (E.9), we obtain the following ODEs for the Laplace transforms
of the solutions. For planar diffusion

L

�
@u.x; t/

@t


D s Ou.x; s/ � 0

D L

�
D
@2u.x; t/

@x2
� k u.x; t/


D D@

2 Ou.x; s/
@x2

� k Ou.x; s/ ; (E.11)

or, equivalently,

@2 Ou.x; s/
@x2

� s C k
D
Ou.x; s/ D 0 : (E.12)
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For spherical diffusion

L

�
@u.r; t/

@t


D s Ou.r; s/ � 0

D L

�
D

�
@2u.r; t/

@r2
C 2

r

@u.r; t/

@r

	
� k u.r; t/



D D
�
@2 Ou.r; s/
@r2

C 2

r

@Ou.r; s/
@r

	
� k Ou.r; s/ ; (E.13)

or, equivalently,

@2 Ou.r; s/
@r2

C 2

r

@Ou.r; s/
@r

� s C k
D
Ou.r; s/ D 0 : (E.14)

For cylindrical diffusion

L

�
@u.r; t/

@t


D s Ou.r; s/ � 0

D L

�
D

�
@2u.r; t/

@r2
C 1

r

@u.r; t/

@r

	
� k u.r; t/



D D
�
@2 Ou.r; s/
@r2

C 1

r

@Ou.r; s/
@r

	
� k Ou.r; s/ ; (E.15)

or, equivalently,

@2 Ou.r; s/
@r2

C 1

r

@Ou.r; s/
@r

� s C k
D
Ou.r; s/ D 0 : (E.16)

Equations (E.12), (E.14), or (E.16) are analogous to Eqs. (A.10), (A.65), or (A.130),
respectively, previously obtained for the pure diffusion case, with the only difference
that every explicit occurrence of the Laplace variable s is now replaced by the sum
s C k. Therefore, the derivations are analogous as for pure diffusion, if only we put
s C k in place of s. We thus obtain the following analogues of Eqs. (A.21), (A.81),
or (A.148). For planar diffusion:

Ou.x; s/ D D�1=2 .s C k/�1=2 OJ .x; s/ ; (E.17)

for spherical diffusion

Ou.r; s/ D D�1=2
�
.s C k/1=2 C D1=2

r

	�1
OJ .r; s/ ; (E.18)
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and for cylindrical diffusion

Ou.r; s/ D D�1=2

�
r

D1=2

�
K0

h
r

D1=2 .s C k/1=2
i

h
r

D1=2 .s C k/1=2
i

K1

h
r

D1=2 .s C k/1=2
i OJ .r; s/ : (E.19)

The addition of a constant to s in a Laplace transform is equivalent to multiplying
the original function by an exponential function [cf. Eq. (3.16)]. Therefore, by
applying the convolution theorem (3.17) to Eqs. (E.17)–(E.19) we obtain the
following solution–flux relationships. For planar diffusion

u.x; t/ D
tˆ

0

K .t; �/ J.x; �/ d� ; (E.20)

where in view of Eq. (A.24)

K .t; �/ D D�1=2 exp Œ�k.t � �/� Œ�.t � �/��1=2 : (E.21)

For spherical diffusion

u.r; t/ D
tˆ

0

K .t; �/ J.r; �/ d� ; (E.22)

where in view of Eq. (A.84)

K .t; �/ D D�1=2 exp Œ�k.t � �/�
�
Œ�.t � �/��1=2 � D1=2

r
erex

�
D1=2

r
.t � �/1=2

	
:

(E.23)

For cylindrical diffusion

u.r; t/ D
tˆ

0

K .t; �/ J.r; �/ d� ; (E.24)

where in view of Eq. (A.151)

K .t; �/DD�1=2 exp Œ�k.t � �/�
�
Œ�.t � �/��1=2 � D

1=2

r
kcylw

�
D1=2

r
.t � �/1=2

	
:

(E.25)

In the absence of the reaction term in Eq. (E.1), that is for k D 0, Eqs. (E.21), (E.23),
or (E.25) reduce to Eqs. (A.24), (A.84), or (A.151), respectively.
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At the boundary corresponding to the interface studied, Eqs. (E.20)–(E.25)
reduce to the following formulae. For planar diffusion

u.0; t/ D
tˆ

0

K .t; �/ J.0; �/ d� ; (E.26)

where

K .t; �/ D D�1=2 exp Œ�k.t � �/� Œ�.t � �/��1=2 : (E.27)

For spherical diffusion

u.r0; t/ D
tˆ

0

K .t; �/ J.r0; �/ d� ; (E.28)

where

K .t; �/ D D�1=2 exp Œ�k.t � �/� ˚Œ�.t � �/� �1=2 � % erex
�
%.t � �/1=2��

(E.29)

and % is defined by Eq. (A.2). For cylindrical diffusion

u.r0; t/ D
tˆ

0

K .t; �/ J.r0; �/ d� ; (E.30)

where

K .t; �/ D D�1=2 exp Œ�k.t � �/� ˚Œ�.t � �/� �1=2 � % kcylw
�
%.t � �/1=2�� :

(E.31)

E.2 A Single Steady State Linear Reaction-Diffusion ODE

We pass to the special case of Eq. (E.1), corresponding to the steady state condition
@u=@t � 0.

In the case of planar diffusion, Eq. (E.2) becomes a second-order, reaction-
diffusion ODE with constant coefficients:

@2u.x; t/

@x2
� k

D
u.x; t/ D 0 : (E.32)
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The general integral of Eq. (E.32) is [4]:

u.x; t/ D a.t/ expŒ�.k=D/1=2x�C b.t/ expŒ.k=D/1=2x� ; (E.33)

where a.t/ and b.t/ are integration constants independent of x. In view of the
boundary condition (E.4), b.t/ D 0 is the only possibility. Hence,

u.x; t/ D a.t/ expŒ�.k=D/1=2x� ; (E.34)

and

J.x; t/ D �D@u.x; t/

@x
D .k D/1=2 a.t/ expŒ�.k=D/1=2x� : (E.35)

By combining Eqs. (E.34) and (E.35) the constant a.t/ can be eliminated, which
gives

u.x; t/ D D�1=2 k�1=2J.x; t/ : (E.36)

Specifically at the boundary at x D 0, corresponding to the interface studied,

u.0; t/ D D�1=2 k�1=2J.0; t/ : (E.37)

Equation (E.37) is a particular subcase of Eq. (E.26), valid for the steady state.
In the case of spherical diffusion, Eq. (E.5) becomes a second-order ODE

�
@2u.r; t/

@r2
C 2

r

@u.r; t/

@r

	
� k

D
u.r; t/ D 0 : (E.38)

The change of variables (A.69) transforms Eq. (E.38) into

@2w.r; t/

@r2
� k

D
w.r; t/ D 0 ; (E.39)

which is analogous to Eq. (E.32) for planar diffusion. Therefore, the general integral
of Eq. (E.38) is

u.r; t/ D a.t/ r�1 expŒ�.k=D/1=2r�C b.t/ r�1 expŒ.k=D/1=2r� ; (E.40)

where a.t/ and b.t/ are integration constants independent of r . In view of the
boundary condition (E.7), b.t/ D 0 is the only possibility. Hence,

u.r; t/ D a.t/ r�1 expŒ�.k=D/1=2r� (E.41)
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and

J.r; t/ D �D@u.r; t/

@r
D D �

r�1 C .k=D/1=2� a.t/ r�1 expŒ�.k=D/1=2r� :
(E.42)

By combining Eqs. (E.41) and (E.42) the constant a.t/ can be eliminated, which
gives

u.r; t/ D D�1=2
�
D1=2

r
C k1=2

	�1
J.r; t/ : (E.43)

Specifically at the boundary at r D r0, corresponding to the interface studied,

u.r0; t/ D D�1=2 �%C k1=2��1 J.r0; t/ : (E.44)

Equation (E.44) is a particular subcase of Eq. (E.28), valid for the steady state.
In the case of cylindrical diffusion, Eq. (E.8) becomes a second-order ODE

�
@2u.r; t/

@r2
C 1

r

@u.r; t/

@r

	
� k

D
u.r; t/ D 0 : (E.45)

The change of variables

 D r.k=D/1=2 (E.46)

transforms Eq. (E.45) into

2
@2u.; t/

@2
C  @u.; t/

@
� 2 u.; t/ D 0 : (E.47)

Equation (E.47) is the homogeneous modified Bessel equation of order zero [1], so
that it possesses the general solution

u.; t/ D a.t/K0./C b.t/ I0./ ; (E.48)

where a.t/ and b.t/ are integration constants independent of r .
In view of the boundary condition (E.10), b.t/ D 0 is the only possibility. Hence,

Eq. (E.48) reduces to

u.r; t/ D a.t/K0

�
r.k=D/1=2

�
: (E.49)

Consequently,

J.r; t/ D �D@u.r; t/

@r
D .k D/1=2 a.t/K1

�
r.k=D/1=2

�
; (E.50)

where the equality (A.139) has been taken into account.
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By combining Eqs. (E.49) and (E.50) the constant a.t/ can be eliminated, which
gives

u.r; t/ D D�1=2 k�1=2 K0

�
k1=2=.D1=2=r/

�

K1

�
k1=2=.D1=2=r/

� J.r; t/ : (E.51)

Specifically at the boundary at r D r0, corresponding to the interface studied

u.r0; t/ D D�1=2 k�1=2 K0

�
k1=2=%

�

K1

�
k1=2=%

� J.r0; t/ : (E.52)

Equation (E.52) is a particular subcase of Eq. (E.30), valid for the steady state.

E.3 A System of Coupled Transient Linear
Reaction-Diffusion PDEs

In this section we consider a system of N dd
s (further denoted by N , for brevity)

coupled reaction-diffusion PDEs for the concentrations of dynamic distributed
species. We assume planar diffusion in a semi-infinite one-dimensional spatial
domain x 2 Œ0;1/; and (pseudo) first-order homogeneous reactions. The PDEs
are:

@�!u .x; t/
@t

D D @2�!u .x; t/
@x2

�K �!u .x; t/ ; (E.53)

and the initial and boundary conditions are:

�!u .x; 0/ D �!0 ; (E.54)

�!u .1; t/ D �!0 : (E.55)

In Eqs. (E.53)–(E.55) �!u .x; t/ D Œu1.x; t/; : : : ; uN .x; t/�
T is the solution vector

containing N elements, D D diag.D1; : : : ; DN / is an N � N diagonal matrix of
positive diffusion coefficients, K is a (generally full) N � N matrix of coefficients

dependent on the homogeneous rate constants, and
�!
0 denotes zero vectors. The

task is to derive analytical relationships between �!u .x; t/ and the vector
�!
J .x; t/ D

Œ�D1@u1.x; t/=@x; : : : ; �DN@uN .x; t/=@x�
T of its fluxes.
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By applying the Laplace transformation (3.12) to Eqs. (E.53) and (E.55), and by
taking into account the initial condition (E.54), we obtain the following second-

order ODE system for the Laplace transform O�!u .x; s/ of �!u .x; t/:

L

(
@�!u .x; t/
@t

)
D s O�!u .x; s/ ��!0

D L

(
D
@2�!u .x; t/
@x2

�K �!u .x; t/
)
D D @2 O�!u .x; s/

@x2
�K O�!u .x; s/ : (E.56)

After introducing matrix B.s/ defined by [cf. Eq. (8.127)]:

B.s/ D D �1 .s 1 C K/ ; (E.57)

where 1 denotes a unit matrix, Eq. (E.56) can be written in a more compact way:

@2 O�!u .x; s/
@x2

� B.s/ O�!u .x; s/ D �!0 : (E.58)

By defining a block vector �!y .x; t/ D
h�!u .x; t/; �!J .x; t/

iT
and its Laplace

transform O�!y .x; s/, Eq. (E.58) can be further rewritten as a first-order ODE system
with constant coefficients, for the 2N unknowns in �!y .x; t/:

@
O�!y .x; s/
@x

�A.s/ O�!y .x; s/ D �!0 ; (E.59)

where

A.s/ D �
�

0 D �1
D B.s/ 0

	
; (E.60)

with 0 denoting zero submatrices. According to the theory of first-order linear ODEs
with constant coefficients [4], the general solution of Eq. (E.59) depends on the
numbers of distinct eigenvalues and linearly independent eigenvectors of matrix
A.s/. The general solution is obtained from an appropriate linear combination of
ordinary or generalised eigenvectors of A.s/. We therefore face the problem of
determining the eigenvalues and generalised eigenvectors of A.s/. By definition,
a vector �!v .n/.s/ (with n D 1; 2; : : :/, satisfying the equation

�
A.s/ ��.s/ 1 �n�!v .n/.s/ D �!0 ; (E.61)



374 E Solution–Flux Relationships for one-Dimensional Reaction-Diffusion Equations

and, in the case of n > 1 also

�
A.s/��.s/ 1 �k �!v .n/.s/ ¤ �!0 ; (E.62)

for k D 1; 2; : : : ; n � 1, is called the nth-order generalised eigenvector associated
with any eigenvalue�.s/ of A.s/. Ordinary eigenvectors are generalised eigenvec-
tors of order n D 1. By splitting�!v .n/.s/ into two blocks�!u .n/.s/ and�!w .n/.s/ ofN

elements each:�!v .n/.s/ D ��!u .n/.s/; �!w .n/.s/
�T

, it can be shown [2] that Eq. (E.61)
is equivalent to the equation pair

�
B.s/��.s/2 1 �n �!u .n/.s/ D �!0 ; (E.63)

�!w .n/.s/ D T .n/.s/�!u .n/.s/ ; (E.64)

where T .n/.s/ is an N �N matrix defined by

T .n/.s/ D
8
<

:

��.s/D for n D 1
D

�
n�1P
mD1

pm
�
B.s/ ��.s/2 1 �m ��.s/ 1


for n D 2; 3; : : : :

(E.65)

Coefficients pm in Eq. (E.65) obey the equation

2�.s/ pm D p1 pm�1 C p2 pm�2 C � � � C pm�1 p1 ; (E.66)

so that p1 D �Œ2�.s/��1, p2 D Œ8�3.s/��1, p3 D �Œ16�5.s/��1, p4 D
5Œ128�7.s/��1, etc. In view of Eqs. (E.63) and (E.64), the problem of determining
the generalised eigenvectors �!v .n/.s/ of A.s/ is equivalent to determining the
generalised eigenvectors �!u .n/.s/ of B.s/, and the remaining blocks �!w .n/.s/ of�!v .n/.s/ are simply obtained by multiplying �!u .n/.s/ by T .n/.s/. We also see that
every nonzero eigenvalue �.s/ of B.s/ contributes two eigenvalues

�˙.s/ D ˙ Œ�.s/�1=2 (E.67)

of A.s/.
Depending on the number of distinct eigenvalues and eigenvectors of B.s/, the

following three cases of the general solution of Eq. (E.59) can be distinguished. The
first, simplest case occurs when the matrix A.s/ possesses 2N distinct eigenvalues
�1.s/; : : : ; �2N .s/. The existence of corresponding 2N linearly independent
ordinary eigenvectors �!v .1/

1 .s/; : : : ;
�!v .1/

2N .s/ of A.s/ is then guaranteed, and the
general solution of Eq. (E.59) can be expressed as

O�!y .x; s/ D
2NX

iD1
ai .s/ exp Œ�i .s/ x�

�!v .1/
i .s/ ; (E.68)

where ai .s/ are integration constants.
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The second, somewhat more complicated case occurs when the matrix A.s/ does
not have 2N distinct eigenvalues, but possesses 2N linearly independent ordinary
eigenvectors. In such a case Eq. (E.68) remains valid, but some of the �i.s/ are
repeated.

The third, and most complicated case occurs when the matrix A.s/ is deficient,
i.e. it does not have 2N independent ordinary eigenvectors. In such a case, in order
to obtain the general solution of Eq. (E.59), one has to determine the so-called
Jordan normal form of the matrix A.s/. The Jordan normal form of a matrix is a
block-diagonal matrix, in which every block corresponds to one of the available
linearly independent ordinary eigenvectors. One eigenvalue may be associated with
more than one Jordan blocks. The general solution of Eq. (E.59) is then a linear
combination of linearly independent specific solutions corresponding to the various
Jordan blocks. Every Jordan block contributes the number of independent specific
solutions equal to the block size. Consequently,

O�!y .x; s/ D
MX

iD1
exp Œ�i .s/ x�

m
g
iX

jD1

ni;jX

kD1
ai;j;k.s/

�!z i;j;k.x; s/ ; (E.69)

where

�!z i;j;k.x; s/ D
k�1X

�D0

x�

�Š

�!v .k��/
i;j .s/ : (E.70)

In Eq. (E.69) i counts the distinct eigenvalues, M .<2N/ is the number of the dis-
tinct eigenvalues, j counts the Jordan blocks corresponding to any i th eigenvalue.
The number of such blocks is denoted by mg

i . This number is equal to the number
of linearly independent ordinary eigenvectors associated with the eigenvalue, called
the geometric multiplicity of the eigenvalue. Index k counts the linearly independent
vectors�!z i;j;k.x; s/, in accordance with Eq. (E.70) constructed as polynomials in x.

The polynomial coefficients involve generalised eigenvectors �!v .k��/
i;j .s/ of various

orders, which form the so-called Jordan chains associated with a given Jordan block.
The sizes of the blocks are denoted by ni;j . The sum of these sizes, for all Jordan
blocks associated with an i th eigenvalue, gives the multiplicity of �i.s/ as a root
of the characteristic equation, that is the so-called algebraic multiplicity ma

i of this

eigenvalue:
m
g
iP

jD1
ni;j D ma

i . The sum of the algebraic multiplicities of all eigenvalues

gives, in turn, the matrix size:
MP
iD1

ma
i D 2N . As a result, there are exactly 2N

linearly independent vectors �!z i;j;k.x; s/, and 2N integration constants ai;j;k.s/ in
Eq. (E.69).

Equation (E.69) represents the most general situation, and will be used for further
discussion. From Eq. (E.67) we know that in Eq. (E.69) there are exactly M=2
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eigenvalues of A.s/ with positive real parts, and M=2 eigenvalues with negative
real parts. Let us denote them by �C

1 .s/; : : : ; �
C
M=2.s/ and ��

1 .s/; : : : ; �
�
M=2.s/,

respectively. Zero eigenvalues are avoided, if only <f s g is sufficiently large (and
we are always free to select such a large s, see Sect. 8.4). This is because Eq. (E.57)
predicts that for large <f s g matrix B.s/ is diagonally dominant, which guarantees
that �.s/ ¤ 0. In order to satisfy the boundary condition (E.55), all terms
corresponding to eigenvalues of A.s/ with positive real parts have to be excluded
from the solution (E.69). Thus, Eq. (E.69) becomes

O�!y .x; s/ D
M=2X

iD1
exp

�
��
i .s/ x

� m
g
iX

jD1

ni;jX

kD1
ai;j;k.s/

�!z i;j;k.x; s/ ; (E.71)

where the numbering of the terms by index i is now synchronised with the number-
ing of ��

i .s/. As every eigenvector of B.s/ contributes two linearly independent
eigenvectors of A.s/, corresponding to ��

i .s/ and �C
i .s/, there are exactly N

linearly independent vectors �!z i;j;k.x; s/ in Eq. (E.71), and N coefficients ai;j;k.s/.
In order to determine which of the above three cases actually occurs, any

particular matrix B.s/ has to be analysed individually. However, the analysis can
be facilitated by the following two general observations (a) and (b).

(a) In the case of equal diffusion coefficients we have D D D 1, where D is the
common diffusion coefficient. Matrix B.s/ then becomes

B.s/ D .s 1CK/=D : (E.72)

As D is a scalar, eigenvectors�!u .n/.s/ of B.s/ are identical with the eigenvec-
tors ofK, and any eigenvalue of B.s/ is related to one eigenvalue � ofK by the
formula that depends linearly on s:

�.s/ D .s C �/=D : (E.73)

Thus whether or not matrix B.s/ is deficient, depends exclusively on K. If K
has N distinct eigenvalues, then matrix K is similar to a diagonal matrix, and
we obtain the case discussed in Sect. 8.2.

(b) If all diffusion coefficients are different, then for sufficiently large s all eigen-
values of B.s/ become distinct. This can be shown by using the Gershgorin
theorems (see, for example, Bronson [3], or a didactically lucid presentation
in Smith [5]). According to the Gershgorin circle theorem, each eigenvalue of
B.s/ lies inside or on the boundary of at least one of the circles defined by

j�.s/ � Bi;i .s/ j D
NX

j D 1
j ¤ i

ˇ̌
Bi;j .s/

ˇ̌
; (E.74)
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where i D 1; : : : ; N . In view of Eq. (E.57), after dividing by (nonzero) j s j,
Eq. (E.74) becomes

ˇ̌
ˇ̌ z �



1

Di

C Ki;i

Di s

� ˇ̌
ˇ̌ D

NX

j D 1
j ¤ i

ˇ̌
ˇ̌ Ki;j

Di s

ˇ̌
ˇ̌ ; (E.75)

where z D �.s/=s is a new complex variable. By taking s with sufficiently large
<f s g we can force all circles defined by Eq. (E.75) to be located arbitrarily
close to z D 1=Di , and to have arbitrarily small radii. SinceDi are now distinct,
this implies that we can make all circles disjoint. The Gershgorin third theorem
then ensures that there areN distinct eigenvalues, each one in the corresponding
isolated circle.

By eliminating the unknown integration constants ai;j;k.s/ in Eq. (E.71), one can

obtain the desired relationships between the block subvectors �!u .x; t/ and
�!
J .x; t/

of �!y .x; t/. In principle, this can be done for any x, and later the resulting formulae
can be taken for x D 0, which corresponds to the interface studied. However,
derivations are simpler, if one assumes x D 0 from the beginning. In such a case,
every exponential factor in Eq. (E.71) reduces to unity, and also in accordance with
Eq. (E.70), any vector �!z i;j;k.x; s/ reduces to �!v .k/

i;j .s/. We therefore obtain

O�!y .0; s/ D
M=2X

iD1

m
g
iX

jD1

ni;jX

kD1
ai;j;k.s/

�!v .k/
i;j .s/ ; (E.76)

or, after taking into account Eq. (E.64) with appropriate lower indices added to the
quantities occurring in it:

O�!u .0; s/ D
M=2X

iD1

m
g
iX

jD1

ni;jX

kD1
ai;j;k.s/

�!u .k/
i;j .s/ ; (E.77)

O�!
J .0; s/ D

M=2X

iD1

m
g
iX

jD1

ni;jX

kD1
ai;j;k.s/ T

.k/
i;j .s/

�!u .k/
i;j .s/ : (E.78)

As there are N linearly independent vectors �!u .k/
i;j .s/ and T

.k/
i;j .s/

�!u .k/
i;j .s/ in

Eqs. (E.77) and (E.78), we can arrange them as columns of two square and invertible
N �N matrices, denoted here by U .s/ and W .s/, respectively. The N coefficients
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ai;j;k.s/ can, in turn, be arranged to form a vector denoted by �!a (s). This allows one
to re-write Eqs. (E.77) and (E.78) in compact form:

O�!u .0; s/ D U .s/�!a .s/ ; (E.79)

O�!
J .0; s/ D W .s/�!a .s/ : (E.80)

Owing to the invertibility of W , vector �!a .s/ can be calculated from Eq. (E.80):

�!a .s/ D W �1.s/ O�!J .0; s/ (E.81)

and substituted to Eq. (E.79), which gives

O�!u .0; s/ D O'.s/ O�!J .0; s/ ; (E.82)

where the new square matrix O'.s/ is defined by

O'.s/ D U .s/W �1.s/ : (E.83)

Application of the convolution theorem (3.17) to Eq. (E.82) gives

�!u .0; t/ D
tˆ

0

K .t; �/
�!
J .0; �/ d� ; (E.84)

where

K .t; �/ D '.t � �/ (E.85)

is the N �N matrix of convolution kernels resulting from diffusion and coupling of
the PDEs (E.53) by homogeneous reactions.

E.4 A Single Steady State Reaction-Diffusion ODE
for Planar Diffusion and an mth-Order Reaction

Finally, we consider the steady state for the single reaction-diffusion PDE

@u.x; t/

@t
D D @2u.x; t/

@x2
� k u.x; t/m (E.86)
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involving planar diffusion and nonlinear reaction terms, defined over a single semi-
infinite one-dimensional spatial domain. In Eq. (E.86) D is a (positive) diffusion
coefficient, k is a positive reaction rate constant, m D 2; 3; : : : , and u is an
unknown real function of spatial coordinate x and time t . Solution u is assumed to be
positive. The trivial solution u  0 is not of interest. We assume that only initially
u D 0. We determine solution–flux relationships at one boundary (corresponding
to an electrochemical interface studied), which must hold irrespective of the actual
boundary conditions (not explicitly formulated here) imposed at this boundary. This
is accomplished for the boundary condition u D 0 imposed at infinity.

Under the steady state condition @u=@t � 0 Eq. (E.86) becomes a second-order
ODE in the independent variable x:

@2u.x; t/

@x2
� k

D
u.x; t/m D 0 ; (E.87)

with the boundary condition

u.1; t/ D 0 : (E.88)

As the ODE (E.87) does not depend explicitly on x, the standard change of variables
can be used:

w D @u

@x
(E.89)

(to simplify the formulae we omit here and below the lists of independent variables).
This gives

@2u

@x2
D @w

@x
D @w

@u

@u

@x
D w

@w

@u
; (E.90)

so that Eq. (E.87) can be rewritten as

w
@w

@u
� k

D
um D 0 : (E.91)

Integration of both sides of Eq. (E.91) with respect to the variable u gives

1

2
w2 D k

D

1

mC 1 umC1 C b ; (E.92)

where b is an integration constant. In view of the condition (E.88) we expect that
asymptotically also w ! 0 when x ! 1. Therefore, both u and w vanish in
Eq. (E.92) when x !1, so that there must be b D 0. Thus,

w D ˙



2

mC 1
k

D

�1=2
u.mC1/=2 : (E.93)
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As we are looking for positive u, the solution with “C” is non-physical, because
with increasing x the variable u must approach zero from the side of positive values,
hence w must be negative. Therefore, from Eqs. (E.89) and (E.93)

@u

@x
D �



2

mC 1
k

D

�1=2
u.mC1/=2 : (E.94)

After dividing Eq. (E.94) by the (positive) u.mC1/=2, and integrating both sides with
respect to x, we finally identify the dependence of u on x and t :

2

1 �m u.x; t/.1�m/=2 D �



2

mC 1
k

D

�1=2
x C a.t/ ; (E.95)

where a.t/ is an integration constant independent of x. Equation (E.95) can be
rewritten:

u.x; t/ D
(
m � 1
2

"

2

mC 1
k

D

�1=2
x � a.t/

#)�2=.m�1/
; (E.96)

so that

J.x; t/ D �D@u.x; t/

@x

D D



2

mC 1
k

D

�1=2 (
m � 1
2

"

2

mC 1
k

D

�1=2
x � a.t/

#)�.mC1/=.m�1/
:

(E.97)

Combination of Eqs. (E.96) and (E.97) allows us to eliminate the unknown a.t/,
giving

u.x; t/ D
�
mC 1
2

.k D/�1
	1=.mC1/

J.x; t/2=.mC1/ : (E.98)

Specifically, at the boundary at x D 0, corresponding to the interface studied,

u.0; t/ D
�
mC 1
2

.k D/�1
	1=.mC1/

J.0; t/2=.mC1/ : (E.99)
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Glossary

This glossary explains the meaning of several important terms that are often used in
the present book, but that may not be widely known or adopted.

Distributed species A chemical species present throughout spatially extended
phases.

Dynamic species A chemical species, the concentration of which varies during
transient electroanalytical experiments.

Equilibrium reaction Any reversible reaction that is assumed, in a mathematical
model, to be in a permanent equilibrium. Electrochemical equilibrium reactions are
usually called “reversible” (or Nernstian), but this terminology is inconsistent with
the general meaning of reversible reactions (see Reversible reaction below).

External (spherical or cylindrical) diffusion Diffusion in a symmetrical spatial
domain surrounding a sphere or cylinder.

Impermeable boundary A spatial boundary that cannot be crossed by distributed
species, so that the flux normal to the boundary is zero.

Incomplete IBVP (or BVP) An IBVP (or BVP) without boundary conditions at
the interface studied.

Internal (spherical or cylindrical) diffusion Diffusion in a symmetrical spatial
domain inside a sphere or cylinder.

Irreversible reaction Any reaction that is assumed, in a mathematical model, to
proceed in one direction (forward or backward) only.

Localised species A chemical species present only at interface(s) between spatially
extended phases, for example adsorbed or deposited.

Non-equilibrium reaction Any reversible or irreversible reaction having finite for-
ward and backward reaction rates. In the literature, electrochemical non-equilibrium
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(but not irreversible) reactions are usually called “quasi-reversible”. The latter
terminology is not used in the present book.

Permeable boundary A spatial boundary ensuring continuity of concentration
profiles of distributed species, across the boundary.

Positive equilibrium A state of a reaction, in which the forward and backward
reaction rates are positive and equal.

Static species A chemical species, the concentration of which remains constant
during transient electroanalytical experiments.

Reversible reaction Any reaction that is assumed, in a mathematical model, to
proceed in both directions (forward and backward). In the literature, this notion
is not consistently used, because in addition to the present general meaning, by
“reversible” electrochemical reactions one often means reactions that are in a
permanent equilibrium. To avoid this inconsistency, in the present book the latter
reactions are called Equilibrium reactions.

Zero equilibrium A state of a reaction, in which the forward and backward
reaction rates are both equal to zero. This happens, for example, if some reactants
are absent. In the case of electrochemical reactions this may also happen when
the electrode potential is set to a value at which the reaction does not practically
proceed.



List of Symbols

This list contains the explanation of the most important symbols used in the present
book. In the text, some of the symbols may have additional indices, superscripts,
vector arrows or matrix bars, and/or lists of arguments, which are not provided
here. In the case of symbols that represent special functions, the list of arguments is
usually omitted here, for brevity, and replaced by the dot .�/.

I. Roman Symbols

a, b Various coefficients, depending on the context
a, b, etc. Vectors (in physical space), see the convention in p. 13
�!a ,
�!
b , etc. Vectors (in spaces corresponding to species, reactions, or

unknowns), see the convention in p. 13
A, B , etc. Matrices (acting on vectors in spaces corresponding to

species, reactions, or unknowns, see the convention in p. 13)
A Area (macroscopic) of an interface studied, m2

Amicr Area (microscopic) of an interface studied, m2

Ai.�/, Ai0.�/ Airy function and its derivative
A Integral operator
B.�/ Beta function, defined by Eq. (11.33)
Bi.�/ Airy function
c Concentration of a distributed species, mol m�3

c? Initial/bulk concentration of a distributed species, mol m�3

c
 Concentration of a distributed species at an interface studied,
mol m�3

CDL Differential double layer capacitance, C V�1

ct Computational time, s
dF Fractal dimension of an irregular interface
div Divergence operator
D Diffusion coefficient, m2 s�1

D Integration domain
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D Matrix of diffusion coefficients
daw.�/ Dawson integral, defined by Eq. (8.157)
e� Electron
erf.�/ Error function, defined by Eq. (5.78)
erex.�/ Special function, defined by Eq. (5.77)
erfc.�/ Complementary error function, defined by Eq. (5.76)
est h�i A posteriori error estimator (in the adaptive Huber method)
E Electrode potential, V
Erest Rest electrode potential, V
E1=2 Half-wave potential, V
E0 Conditional electrode potential, V
E 0 True electrode potential, V
F Faraday constant, C mol�1

F.�/, �!F .�/ Function(s) defining an IE or an IE system
F f f g, Mf Fourier transform, defined by Eq. (3.20)

F�1
n Mf

o
Inverse Fourier transform, defined by Eq. (3.22)

grad Gradient operator
G.�/ Carslaw and Jaeger integral, defined by Eq. (5.83)
G .x;�/ Kernel for steady state diffusion in an arbitrary spatial domain

G


�
x

t

	
;

�
�

�

	�
Kernel for transient diffusion in an arbitrary spatial domain

h Discrete integration step size
hstart Starting integration step size (in the adaptive Huber method)
hmax Maximum integration step size (in the adaptive Huber

method)
H� ff g, Lf Hankel transform of order �, defined by Eq. (3.25)

H �1
�

n Lf
o

Inverse Hankel transform of order �, defined by Eq. (3.27)

i , j , k, n, m, etc. Integer indices
i F Faradaic current density (vector in ordinary space)
I Electric current, A
IF Faradaic current, A
IC Capacitive current, A
In.�/ Modified Bessel function of first kind and order n
J Flux vector component(s), mol m�2 s�1

J? Flux vector component perpendicular to the interface studied,
mol m�2 s�1

J Flux vector (in ordinary space), mol m�2 s�1

J Jacobian matrix
Jn.�/ Bessel function of the first kind and order n
k Fourier variable
kf, kb, k0, k Reaction rate constants (forward, backward, conditional), or

expressions formally playing the role of such constants)
K Equilibrium constant
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K Matrix of rate constants for (pseudo) first order homogeneous
reactions

Kn.�/ Modified Bessel function of second kind and order n
K .�/ Kernel of an integral operator
K inv.�/ Inverse kernel of an integral operator
K ap.t; �/ Kernel for anomalous planar diffusion in a one-dimensional

semi-infinite spatial domain, defined by Eq. (5.178)

K b


�
x

t

	
;

�
�

�

	�
Kernel for diffusion to infinite band(s) on a plane (assuming a

two-dimensional, infinite spatial domain), defined by
Eq. (7.28)

K c.t; �/ Kernel for external cylindrical diffusion in a one-dimensional
semi-infinite spatial domain, defined by Eq. (5.85)

K conv.t; �/ Kernel for constant-velocity convection-diffusion in a
one-dimensional semi-infinite spatial domain, defined by
Eq. (6.15)

K ct.t; �/ Kernel for convection-diffusion in channel or tubular
electrodes (assuming a one-dimensional, semi-infinite spatial
domain), defined by Eq. (6.70)

K dr


�
r

t

	
;

�
�

�

	�
Kernel for diffusion to disk/ring(s) on a plane (assuming a

two-dimensional, infinite spatial domain), defined by
Eq. (7.30)

K ep.t; �/ Kernel for convection-diffusion to an expanding plane
(assuming a one-dimensional, semi-infinite spatial domain),
defined by Eq. (6.31)

K exci.t; �/ Kernel for external cylindrical diffusion in a one-dimensional
finite spatial domain with an impermeable second boundary,
defined by Eq. (5.150)

K excp.t; �/ Kernel for external cylindrical diffusion in a one-dimensional
finite spatial domain with a permeable second boundary,
defined by Eq. (5.148)

K exsi.t; �/ Kernel for external spherical diffusion in a one-dimensional
finite spatial domain with an impermeable second boundary,
defined by Eq. (5.134)

K exsp.t; �/ Kernel for external spherical diffusion in a one-dimensional
finite spatial domain with a permeable second boundary,
defined by Eq. (5.131)

K inc.t; �/ Kernel for internal diffusion in a one-dimensional finite
spatial domain inside an entire cylinder, defined by
Eq. (5.155)

K inci.t; �/ Kernel for internal cylindrical diffusion in a one-dimensional
finite spatial domain with an impermeable second boundary,
defined by Eq. (5.150)
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K incp.t; �/ Kernel for internal cylindrical diffusion in a one-dimensional
finite spatial domain with a permeable second boundary,
defined by Eq. (5.148)

K ins.t; �/ Kernel for internal diffusion in a one-dimensional finite
spatial domain inside an entire sphere, defined by Eq. (5.139)

K insi.t; �/ Kernel for internal spherical diffusion in a one-dimensional
finite spatial domain with an impermeable second boundary,
defined by Eq. (5.134)

K insp.t; �/ Kernel for internal spherical diffusion in a one-dimensional
finite spatial domain with a permeable second boundary,
defined by Eq. (5.131)

K p.t; �/ Kernel for planar diffusion in a one-dimensional semi-infinite
spatial domain, defined by Eq. (5.72)

K pli.t; �/ Kernel for planar diffusion in a one-dimensional finite spatial
domain with an impermeable second boundary, defined by
Eq. (5.121)

K plp.t; �/ Kernel for planar diffusion in a one-dimensional finite spatial
domain with a permeable second boundary, defined by
Eq. (5.120)

K rd.t; �/ Kernel for convection-diffusion to an RDE (assuming a
one-dimensional semi-infinite spatial domain), defined by
Eq. (6.47)

K s.t; �/ Kernel for external spherical diffusion in a one-dimensional
semi-infinite spatial domain, defined by Eq. (5.74)

K .t; �/ Matrix of kernels for one-dimensional transport
kct.�/ Special function, defined by Eq. (6.71)
kcylw.�/ Special function, defined by Eq. (5.84)
kinc.�/ Special function, defined by Eq. (5.154)
kins.�/ Special function, defined by Eq. (5.138)
kpli.�/ Special function, defined by Eq. (5.123)
kplp.�/ Special function, defined by Eq. (5.122)
krd.�/ Special function, defined in Sect. 6.2.3
l Length of a finite spatial interval, m
L ff g, Of Laplace transform, defined by Eq. (3.12)

L �1
n Of

o
Inverse Laplace transform, defined by Eq. (3.14)

n Number of electrons transferred in an electron transfer
reaction

n Vector normal to a closed surface or curve, and directed
outwards

N Number of integration steps (in Chap. 12)
N Number of coupled reaction-diffusion PDEs (in Appendix E)
Nr Number of reactions
N het

r Number of heterogeneous reactions
N hom

r Number of homogeneous reactions
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Ns Number of species
N dd

s Number of dynamic distributed species
N distr

s Number of distributed species
N dl

s Number of dynamic localised species
N

dyn
s Number of dynamic species

N loc
s Number of localised species

N sd
s Number of static distributed species

N stat
s Number of static species

NK Number of distinct kernels in an IE or an IDE system
NY Number of integrals in an IE or an IDE system
N� Number of unknown functions, solutions of an IE or IDE

system
N Stoichiometric matrix, defined in Sect. 2.7
N

dd;hom
Stoichiometric submatrix, corresponding to dynamic
distributed species and homogeneous reactions

N
dl;het

Stoichiometric submatrix, corresponding to dynamic
localised species and heterogeneous reactions

N
dyn

Stoichiometric submatrix, corresponding to dynamic species

N
dyn;het

Stoichiometric submatrix, corresponding to dynamic species
and heterogeneous reactions

O.�/ A small quantity, tending to zero according to the formula
provided as an argument

p Hankel variable
p Species production rates
phet Species production rates in heterogeneous reactions,

mol m�2 s�1

pdd;het Production rates of dynamic distributed species in
heterogeneous reactions, mol m�2 s�1

pdl;het Production rates of dynamic localised species in
heterogeneous reactions, mol m�2 s�1

phet;? Species production rates in heterogeneous reactions, in the
initial state of an electrochemical system, mol m�2 s�1

phom Species production rates in homogeneous reactions,
mol m�3 s�1

QDL Double layer charge, C
Q�;m;n;l;k Moment integrals of the kernels, defined by Eq. (12.8)
r , r f, rb Reaction rates (total, forward, backward)
rhet Rate of a heterogeneous reaction, mol m�2 s�1

rhom Rate of a homogeneous reaction, mol m�3 s�1

r Radial coordinate, m
r0 Radius of a (spherical or cylindrical) interface studied, m
R Gas constant, J K�1 mol�1

R�;n;l;k , Rn;l;k Coefficients of product integration methods, and related
matrices
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RU, RU1, RU2 Uncompensated resistance(s), �
<f�g Real part of a complex number
s Laplace variable
S Closed surface in a three-dimensional space, or closed curve

in a two-dimensional space
S�;n;l;k , Sn;l;k Coefficients of product integration methods, and related

matrices
S.�/ Special function defined by Eq. (2.40)
S Similarity transformation matrix
t Time, s
tol Error tolerance parameter (in the adaptive Huber method)
T Absolute temperature, K
Œ � �T Transposed vector
u Ionic mobility, m2 mol s�1 J�1

u, w, etc. Auxiliary dependent variables�!u .n/, �!v .n/ generalised eigenvector(s) of nth order (in spaces
corresponding to species, reactions, or unknowns)

v Convection velocity vector component, m s�1

v Convection velocity vector, m s�1

x Cartesian coordinate, m
X1, X2, etc. Abstract names of chemical species
y Cartesian coordinate, m
y Integrals, approximate values obtained by numerical methods
Y Integrals, exact values
Yn.�/ Bessel function of the second kind and order n
z Cartesian coordinate, m
z Number of proton charges carried by a species�!
0 Zero vector
0 Zero matrix
1 Unit matrix

II. Greek Symbols

˛ Parameter characterising anomalous diffusion, defined by
Eq. (2.64)

˛f, ˛b Charge transfer coefficients (for forward and backward
electrode reactions)

ˇ Parameter characterising convection to an RDE, defined by
Eq. (6.33)

”E Euler’s constant
� Parameter characterising convection in tubular or channel

electrodes, defined by Eqs. (6.56) or (6.58), respectively
� Concentration of a localised species, mol m�2

� ? Initial concentration of a localised species, mol m�2

�.�/ Euler Gamma function
ı Error(s) of the approximate solution(s)  
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•.�/ Dirac delta function
� Error(s) of the approximate integral(s) y
4 Laplacian operator
�˚ Galvani potential difference, V
�˚rest Rest value of the Galvani potential difference, V
�˚ 0 True Galvani potential difference, V
" Dimensionless electrode potential
�, �,  Auxiliary independent variables (usually spatial coordinates,

possibly dimensionless)
� Reorganisation energy, J mol�1

�, � Eigenvalue(s)
�f, �b Reaction orders (for forward and backward reactions)
�inn Inner cut-off, defined in Sect. 2.12
�out Outer cut-off, defined in Sect. 2.12
� Parameter characterising diffusion in finite, one-dimensional

spatial domains (intervals), defined by Eq. (A.3), s�1/2

� Kinematic viscosity, m2 s�1

� Stoichiometric number of a rate determining step
�f, �b Stoichiometric coefficients (of forward or backward

reactions)
! Rotation frequency of an RDE, rad s�1

! Current or potential perturbation frequency (in AC
electroanalytical techniques), rad s�1

˝ Three- or two-dimensional spatial domain
% Parameter characterising spherical or cylindrical diffusion,

defined by Eq. (A.2), s�1/2

�j;F Parameter characterising chronoamperometric limiting
current under conditions of anomalous diffusion, defined by
Eqs. (2.65) and (2.66)�!� Vector of homogeneous reaction rate terms dependent
exclusively on the concentrations of static species, defined by
Eq. (2.52)�!� 1=2 Vector of interpolation errors (in Chap. 12)

� Dummy integration variable (time), s
� Parameter characterising some kernels for

convection-diffusion, defined by Eqs. (B.16) or (B.43)
or (B.89), depending on the convection field

# , � Auxiliary independent variables (usually time-like
coordinates, possibly dimensionless). Often # D t � �

‚n.�/ Exponential theta-n function
'.�/ Function(s) representing some of the integral transformation

kernel(s) of the convolution type
� Phase shift (in AC electroanalytical techniques)
˚ Inner electric potential (Galvani potential), V
 Solution(s) of IEs or IDEs, approximate values
� , �.�/ Solution(s) of IEs or IDEs, exact values
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Index

A

Abel integral equation(s) 53, 118, 250, 253,
291

Absolute temperature 11
Accuracy order 292, 295
AC cyclic voltammetry 98
AC polarography 37, 96, 98, 139, 169–171,

175, 188, 262, 264
Activity coefficient(s) 96
AC voltammetry 37, 74, 96, 99, 112, 174,

217
Adsorption 9, 28, 35, 205, 216–219,

221–226, 255, 256, 271
equilibrium 205, 207, 209

constant(s) 204, 256
isotherm(s) 28, 75, 204, 218, 256
parameter(s) 226
reaction(s) 3, 28, 205, 207, 208, 222, 224

AE(s). See Algebraic equation(s)
Airy

equation 342, 348
function(s) 134, 137, 342, 343, 348

Algebraic equation(s) 4, 36, 81, 152, 201,
202, 204, 210–212, 215, 261, 262,
269, 274, 276, 279, 286, 298, 299

Algebraic multiplicity (of eigenvalues) 375
Amalgam

dissolution 101
electrode(s) 3, 15
formation 101

Analog computer(s) 298
Anomalous diffusion 11, 38, 39, 79,

115–117

Asymptotic expansion(s) 168, 256, 260, 319,
330, 332

Auxiliary electrode(s). See Counter
electrode(s)

B

Backward difference 288
Backward reaction 24, 25
Band electrode 17, 18, 144, 146, 149, 152,

153, 351, 352
Base reaction(s) 30, 63
Bessel

equation 325, 371
function(s) 58, 92, 93, 109, 134, 137,

150, 168, 325, 326, 343, 348, 357
operator 58

Beta function 257
Binary electrolyte 244
Biosensor(s) 15, 114
Boundary condition(s) 3, 10, 33–36, 79–84,

86–90, 95, 99–101, 104, 128, 130,
132, 136, 143–146, 151, 152, 158,
162–164, 177, 185, 186, 188, 190,
243, 307–319, 321–328, 330, 331,
333, 335–342, 344–348, 351–353,
355, 356, 359, 365, 366, 370–372,
376, 379

Boundary element method 148, 299
Boundary integral method 5, 148, 151, 153,

168, 299, 359
Boundary value problem(s) 365
Bound state(s) 9
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Bromwich integral 55
Bulk concentration(s) 22, 89
Butler–Volmer kinetics 27, 29, 65, 68,

74, 75, 83, 85, 96, 216, 243, 257,
261

BVP(s). See Boundary value problem(s)

C

Capacitive current 41, 234, 235, 237, 239,
241, 242

Cartesian
coordinate(s) 14, 15, 17, 20, 23, 128,

144, 151, 352, 359
product(s) 143, 146

Catalytic scheme 65, 75, 161, 169, 172–174,
177, 181, 182, 187, 188, 220, 223,
225, 259, 280

Cauchy principal value 362
CCE scheme 174, 175
CEC scheme 174, 181
CEE scheme 171
CE scheme 74, 75, 161, 170, 172–176, 185,

259
Channel electrode(s) 22–24, 134–136, 145,

150, 335, 346
Charge transfer 1, 5, 10, 33, 82, 98, 171,

172, 235, 237, 241, 242
coefficient(s) 27, 29, 38, 66, 96

Chronocoulometry 221
Complex(es) 9
Computational time 76, 118, 292, 293, 296,

297
Concentration–flux relationship(s) 5, 6, 81,

90, 101, 128, 152, 163, 177, 185,
244

Concentration perturbation 2
Concentration–production rate relationship(s)

79, 82, 84, 86, 90, 93–95, 99–101,
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