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Water and Sustainable Agriculture

Abstract Irrigated agriculture is a vital component of total agriculture that sup-
plies many of the fruits, vegetables, and cereal foods, the grains fed to animals
used as human food, and the feed to sustain work animals in many parts of the
world. Consequently, agriculture is the largest user of fresh water globally, and
irrigation practices sometimes are biologically, economically, and socially
unsustainable: wasting water, energy, and money; drying up rivers and lakes;
reducing crop yields; harming fish and wildlife; and causing water pollution. There
is an urgent need to reduce the amount of water used by producing more food,
profits, livelihoods, and ecological benefits at lower social and environmental
costs. To ensure sustainable irrigation the conditions under which crops grow
should remain stable over a prolonged period. At the same time, soil degradation
(salt accumulation), mining of the ground water aquifers, and the negative impact
of drainage water on the downstream environment should be minimized. Water
management should therefore balance the need of water for agriculture and the
need for a sustainable environment. Consequently, irrigation has to be closely
linked with water-use efficiency with the aim of boosting productivity and
improving food quality, especially in those areas where problems of water
shortages or collection and delivery are widespread. Certain improvements are
possible through deficit-irrigation strategies, which have been proved to be sus-
tainable, avoiding irrational application of water. Currently, agriculture is under-
going significant changes in innovative irrigation, fertilizer technology, and
agronomic expertise. These elements constitute a vital platform for sustainable
agricultural success and for preventing environmental impairment. The following
book presents several processes and their link with environmental irrigation,
balancing environmental protection with improved agricultural production. Thus,
sustainable irrigation must be based on applying uniform and precise amounts of
water, based on rational agricultural knowledge of the plant’s water needs.

Keywords Water use � Climate change � Land management � Sustainable
agriculture � Deficit irrigation

I. F. García-Tejero et al., Water and Sustainable Agriculture,
SpringerBriefs in Agriculture, DOI: 10.1007/978-94-007-2091-6_1,
� Iván Francisco García-Tejero 2011

1



1 Introduction

Water is indisputably one of the most precious of all natural resources and the
limiting factor in economic and social development (Chenoweth 2008). Fresh-
water resources globally are being over-exploited, polluted, and degraded and
many systems are on the brink of collapse. At the same time, pressure has never
been greater to provide drinking water as well as water for the economic devel-
opment of a burgeoning world population. Water-resource management thus poses
one of the great challenges for achieving ecologically sustainable development
(Abu-Zeid 1998; Mariolakos 2007).

A growing world population is exerting increasing pressure on freshwater
supplies. Global world population has exploded from 2.5 billion in 1,950–6 billion
in 2000. By 2050, the world population could reach 10 billion or higher
(UN 2007). In addition, to population pressures, there has also been an increase in
water use per capita. The combination of these forces has led to worries about the
adequacy of water supplies in the future.

Irrigation has allowed the world to overcome the potential food-supply prob-
lems associated with population growth. In many developing countries more than
90% of the water withdrawals are for irrigation (AQUASTAT 2005). In arid
regions, irrigation is the essential for crop production. Similar for semi-arid and
wet areas, irrigation boosts yields, attenuates the impact of droughts or, in the case
of rice, minimizes weed growth. As stated by Bruinsma (2003), the average yields
are generally higher under irrigated conditions as compared to rainfed agriculture.
Globally only 18% of the cultivated area is irrigated (FAO 2005a), and 40% of
food production comes from irrigated agriculture (UNCSD 1997). Both the water
scarcity caused by using large amounts of water in irrigated agriculture and the
importance of irrigation for crop production and food security induced several
studies to quantify the different elements of the global water balance in space and
time (Oki et al. 2001; Alcamo et al. 2003; FAO 2005b), to explore the importance
of irrigated food production (Wood et al. 2000; Faures et al. 2002), and to assess
the impact of climate change and climate variability in relation to global irrigation-
water requirements (Döll 2002).

Worldwide, 278.8 million ha are equipped for irrigation, some 68% being is
located in Asia, 17% in America, 9% in Europe, 5% in Africa, and 1% in Oceania.
The largest areas of high irrigation density are found in northern India and Pakistan
along the rivers Ganges and Indus, in the Hai He, Huang He, and Yangtze basins in
China, and along the Nile river in Egypt and Sudan, among others. Irrigated lands
produce 40% of the world’s food supply, and the value of the output per cultivated
area is extremely high (Dregne and Chou 1992). In addition, there is some evi-
dence that the high productivity of irrigated agriculture has slowed the rate of
deforestation. Agriculture is one of the primary reasons for deforestation in many
countries, and increased yields (a change at the intensive margin) have decreased
the need to expand the total land under cultivation (a change at the extensive
margin). This is particularly important in mountainous regions because the steep
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slope of this land not only makes it difficult for crop production; it also increases
its value in conservation against forest fires. Many changes in ecosystems increase
their vulnerability, and therefore it is essential to adopt soil-conservation measures
and to decrease erosion and runoff into water bodies (Schröter et al. 2005).

Worldwide water consumption in 2000 was 4–5 times that of 1,950 levels. Most
of the obvious sources of water have been developed, and many that remain are
marginal at best. Recently, many countries have increased their understanding of
the importance of freshwater for environmental services, such as ecosystem health,
as well as the environmental costs of water projects, such as habitat destruction
(Hubbard et al. 2005; Ojeda et al. 2008; De Groot and Hermans 2009).

Soil salinity is a problem on irrigated arid lands, both reducing productivity and
forcing land out of production. In many places with insufficient surface-water
supplies, groundwater is used as a substitute. While the availability of groundwater
has benefited the global food supply, its use as an input has progressed in an
unsustainable manner. As much as 8% of food crops grown on farms use
groundwater faster than the rate at which aquifers are replenished. Using irrigation
in a more efficient manner will be necessary to protect water sources while still
meeting objectives of food security (Huang et al. 2006; Turral et al. 2010;
De Fraiture et al. 2010).

Globally, the world has enough water; however, the water is unevenly dis-
tributed. Industries and households are increasingly demanding water at the
expense of agriculture. Agriculture uses approximately 70% of the total amount of
water withdrawn to supply our current food needs. By 2030 the Food and Agri-
culture Organisation estimates that we will require 60% more food to feed the
world’s ballooning population. If agricultural production is to be sustainable, water
resources must be used more efficiently while still increasing agricultural pro-
ductivity. By using a range of agricultural techniques and technologies such as
modern irrigation techniques, integrated pest management and biotechnology,
farmers can produce higher yields with higher quality produce while making the
most of precious water supplies (Burke et al. 1999; Playán and Mateos 2006;
Metzidakis et al. 2008).

The plant-science industry is ready to address the challenge of increasing
agricultural productivity, providing a range of products from seeds, chemical crop-
protection products and biotechnology products. The industry strives to improve
the quality and yields of their produce using the same amount of land by gaining
access to knowledge and information that can help them make the correct choices
to improve their livelihoods in a manner compatible with sustainable agriculture
(Mannion 1995a; Lyson 2002; Huang et al. 2004).

Another well-known, often quoted fact is that irrigation uses 70% of the water
in human use, with an efficiency of 40–50%. That is an increase of that efficiency
to 80–90% with drip irrigation that would save half the water and would be the
obvious solution to the world’s water problems (Heermann et al. 1990).

More accurately expressed, irrigated agriculture is responsible for some 70% of
all blue water withdrawn for human use. At the turn of the century, some 10%
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of all blue water, about 4,000 km3, was withdrawn for human use (Rijsberman and
De Silva 2006).

In other words, a bit less than 3% of all water (green and blue) was withdrawn
for irrigated agriculture. According to International Water Management Institute
(www.iwmi.cgiar.org) irrigated agriculture was responsible for some 6% of all
evapotranspiration, while a further 16% was used consumptively by rainfed
agriculture (Fig. 1). By contrast, natural ecosystems, from forests to wetlands, still
use far more water than agriculture does.

It is also a misconception that irrigation efficiency can be increased, i.e. from 40
to 80%, which then would lead to major savings. In this sense, Seckler et al. (2003)
pointed out that ‘‘irrigation efficiency’’ is a confusing term that has been defined in
too many ways. Whether increased irrigation efficiency in a farmer’s field does
indeed save water depends heavily on the fate of the return flow (the drainage
water and recharge to the groundwater). At the scale of the farmer’s field, water
productivity can be measured in units of output (the crop per drop) or as the value
in monetary units. At the watershed scale, water productivity should be understood
in the widest possible sense, i.e. including crop, livestock and fishery yields, wider
ecosystem services and social impacts such as health, together with the systems of
resource governance that ensure equitable distribution of these benefits (Ali and
Talukder 2008; Haileslassie et al. 2009). In this sense, Zoebl (2006) pointed out
that a split-up of domains is needed to properly define water-use efficiency for
different perspectives: a universal or single menu cannot be applicable due to the
technical and socio-economic diversity of issues and challenges.

In Europe the directive 2000/60/EC of the European Parliament and the
Council of 23 October 2000 establishing a framework for Community action in the
field of water policy ‘‘Water Framework Directive’’ entered into force on
22 December 2000. The directive as one of the most substantial pieces of
European Union water legislation combines the until then rather fragmented
European Union water law (large number of directives dealing only with special
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Fig. 1 Assessment of evapotranspiration from different land covers (source International Water
Management Institute)
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aspects of water management such as waste water, dangerous substances, drinking
water, etc.) in order to ensure sustainable water management.

Since the 1960s, the Common Agricultural Policy in the European Union has
played a major role in supporting farmers. However, the present framework of this
policy will cease in 2013. By that time, when the financial support and payments to
producers are scheduled to decrease, the Water Framework Directive should have
been completely implemented (by 2012). By requiring the full-cost principle, the
implementation of the Water Framework Directive will probably lead to a water-
price increase. The joint effects of water policies and decrease in Common
Agricultural Policy payments will thus affect the viability of farming systems,
especially in the case of irrigated farms. To date, scientists have partially investi-
gated the impact of expected changes in parameters such as water price or Common
Agricultural Policy payments on economic, social, and environmental sustain-
ability of irrigated agricultural systems. In this context, Bartolini et al. (2007)
for Italy reported that there is a clear trade-off between reducing the negative
environmental impacts of agriculture and maintaining the livelihood of the sector.
Overburdening farmers with increases in water prices could strongly influence the
sustainability of the sector. Nevertheless, some specific crops such as non-intensive
crop systems (rice and cereals) could sufficiently adapt to increased water prices
(e.g. by reducing their water use or improving their irrigation system) Therefore, in
these cases the water pricing could be a good economic mechanism in order to
provide incentives for saving water. Furthermore, the results of this study highlight
the need for more integrated analysis when setting such water policies. The eco-
nomic viability of farming systems should also be taken into account in the design
of policies and in particular of regulations related to water.

Water stress influences crop growth and productivity in many ways (Wanjura
et al. 1990; Irmak et al. 2000). Most of the responses have a negative impact on yield
but crops have different and often complex mechanisms to react to water shortages.
Several crops and genotypes have developed different degrees of drought tolerance,
drought resistance or compensatory growth to deal with periods of stress. The
highest crop productivity is achieved for high-yielding varieties with optimal water
supply and high soil-fertility levels, but under conditions of limited water supply,
crops will adapt to water stress and can produce well with less water. In this sense of
improving water productivity, there is growing interest in deficit irrigation, an
irrigation practice whereby water supply is reduced below maximum levels and mild
stress is allowed with minimal effects on yield (Ali et al. 2007; Ali and Talukder
2008). Under conditions of scarce water supply and drought, deficit irrigation can
lead to greater economic gains than maximizing yields per unit of water for a given
crop; farmers are more inclined to use water more efficiently, and more
water-efficient cash-crop selection helps optimise returns (Geerts and Raes 2009;
Blum 2009). However, this approach requires precise knowledge of crop response to
water, as drought tolerance varies considerably by species, cultivar, and growth
stage.

In the many regions, soil moisture is generally limited and crop growth is stressed
by drought during the growing season, resulting in decreased and unsustainable crop
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yields. Particularly for the arid and semi-arid areas, rainfall is low, making crop
growth dependent on irrigation. However, in sloping fields, most of the crops are
grown under rainfed conditions. Recent research has shown some practical
techniques of rainwater harvesting (Li et al. 2002; 2007; Tian et al. 2003) but the cost
to prevent runoff and harvest rainwater on sloping lands can be very high
(Zhang et al. 2004). On the other hand, it may not be practical to irrigate fields on a
large scale using only harvested rainwater.

Sustainable development requires pragmatic management of land–water
resources through positive and realistic science-based planning that balances
the ecosystem’s carrying capacity with respect to human expectations
(Sophocleous 2000; Melloul and Collin 2003; Mariolakos 2007). The aim must be
not only environmental harmony, but also long-term sustainability of natural
resources with economic efficiency as its intent so as to meet the needs of the
current generation without compromising the ability of future generations to meet
their own needs (Costanza 1995).

Conceptual understanding and operational procedures applicable to improving
system management and performance, and management changes in individuals
and organizations are the changes necessary to meet the urgent needs in irrigated
agriculture. Urgent needs relate to productivity, water scarcity, and managing the
environment.

There is an urgent need to reduce the amount of water used for agriculture by
producing more food with high quality, profit, livelihoods, and ecological benefits
at less social and environmental costs per unit of water used. Water productivity
defined in physical terms is the ratio of the mass of agricultural output to the
amount of water used. In an economic sense, water productivity reflects the value
derived per unit of water applied. Improving physical water productivity in irri-
gated and rainfed agriculture reduces the need for additional water and is thus a
critical response to increasing water scarcity (Molden et al. 2007).

This review shows some urgent changes needed and defines the conceptual and
operational strategies that can address the needs and accomplish the sustainability
of irrigation systems. Research needs to provide methods for improved produc-
tivity, for more effective use of water supplies while making available additional
irrigation water, and for approaching environmental sustainability in irrigated
agriculture.

2 Water and Agriculture

Agriculture represents the first, traditional life-supporting economic sector closely
linked to establish cultural and ethical values of land and water on which tradi-
tional societies are built. Water in agriculture is largely associated with irrigation.
The worldwide area equipped with irrigation expanded from 139 million ha in
1961–277 million ha in 2003 (FAO 2007). According to Bhattarai et al. (2007), the
investments in irrigation have increased rural incomes, resulting in greater
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demands for nonfarm goods and services. Over one-third of the world’s food is
now produced on the irrigated 17% of the world’s croplands. There are currently
some 280 million ha of irrigated area, almost three quarters of it in developing
countries. Only four countries contain half the world’s irrigated land: China, India,
United States of America, and Pakistan. The remaining two-thirds of all food is
being produced on a five times larger rainfed area amounting to 1,250 million ha.

Plants require water for photosynthesis, growth, and reproduction. Water used
by plants is non-recoverable, because some water becomes a part of the plant
chemically and remainder is released into the atmosphere. The processes of CO2

fixation and temperature control require plants to transpire enormous amounts of
water. Many crops transpire water at rates from 600 to 2,000 L kg-1 of dry matter
(Klocke et al. 1996; USDA 1997; USDA-NASS 1998; Snyder 2000). According to
Schlesinger (1997) the average global transfer of water into the atmosphere from
the terrestrial ecosystems by vegetation transpiration is estimated to be about 64%
of all precipitation that falls to earth.

In the other hand, irrigation requires a significant expenditure of fossil energy
both for pumping and delivering water to crops. As stated by Hodges et al. (1994),
annually in the U.S., about 15% of the total energy expended for all crop production
is used to pump irrigation water. Overall the amount of energy consumed in irrigated
crop production is substantially greater than for rainfed crops. For example, irrigated
wheat requires more than three times of energy than rainfed wheat. Concretely,
about 4.2 million kcal ha-1 yr-1 are the required energy input for rainfed wheat,
while irrigated wheat requires 14.3 million kcal ha-1 yr-1 to apply an average of
5.5 ml of water (Pimentel et al. 2002a). Delivering the 10 ml of irrigation water
needed by a hectare of irrigated corn from surface water sources requires the
expenditure of about 880 kW ha-1 of fossil fuel (Batty and Keller 1980). By con-
trast, when irrigation water must be pumped from a depth of 100 m, the energy cost
increases up to 28,500 kWh ha-1, or more than 32 times the cost of surface water
(Gleick 1993). Therefore, the costs of irrigation for energy and capital are
significant. Farmers must not evaluate only the economic cost of developing
irrigated land, but must also consider the annual costs of irrigation pumping.
The large quantities of energy required to pump irrigation water are significant
considerations both from the standpoint of energy and water resource management.
According to Pimentel et al. (2002b), about 8 million kcal of fossil energy are
expended for machinery, fuel, fertilizers, pesticides, and partial (15%) irrigation, to
produce one hectare of rainfed corn. In contrast, if the corn crop were fully irrigated,
the total energy inputs would rise to nearly 25 million kcal ha-1 (2,500 L of oil
equivalents) (Gleick 1993).

The minimum soil moisture essential for crop growth varies. In this context,
Broner (2002) reported that potatoes in the U.S. require 25–50%, alfalfa 30–50%,
and corn 50–70%, while rice in China is reported to require at least 80% soil
moisture according to Zhi (2000).

The water required by food and forage crops ranges from 600 to 3,000 L kg-1 d.m.
of crop yield. A hectare of U.S. corn, with a yield of approximately 9,000 kg ha-1,
transpires about 6 million L ha-1 during the growing season (Benham et al. 1999;
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Palmer 2001), while an additional 1–2.5 million L ha-1 of soil moisture
evaporate into the atmosphere (Desborough et al. 1996). This means that about
800 mm (8 million L ha-1) of rainfall are required during the growing season
for corn production. A hectare of high-yielding rice requires approximately
11 million L ha-1 of water for an average yield of 7 t ha-1 (Snyder 2000). On
average, soybeans require about 5.8 million L ha-1 of water for a yield of 3 t ha-1

Benham et al. 1999. Meanwhile, wheat, which produces less plant biomass than either
corn or rice, requires only about 2.4 million L ha-1 of water for a yield of 2.7 t ha-1

(USDA 1997).
World agriculture consumes approximately 70% of freshwater withdrawn per

year (UNESCO 2001). About 17% of the world’s cropland is irrigated but pro-
duces 40% of the world’s food (FAO 2002b). Worldwide, the amount of irrigated
land is slowly expanding, even though salinization, water logging, and silting
continue to diminish productivity (Gleick 2002). Despite a small annual increase
in total irrigated areas, the per capita irrigated area has been declining since 1990,
due to rapid population growth (Postel 1999; Gleick 2002). Specifically, global
irrigation per capita has declined nearly 10% during the past decade (Postel 1999;
Gleick 2002), while in the U.S. irrigated land per capita has remained constant at
about 0.08 ha (USDA 2001).

The efficiency varies with irrigation technologies and most common irrigation
methods, flood irrigation and sprinkler irrigation, frequently waste water. By
contrast, the use of more focused application methods, such as ‘‘drip’’ or ‘‘micro-
irrigation’’ have found favour because of their increased water use efficiency. Drip
irrigation delivers water to individual plants by pipes and uses less water than
surface irrigation. In addition, to conserving water, drip irrigation reduces the
problems of salinization and waterlogging (Tuijl 1993). Although drip systems
achieve up to 85% water use efficiency, they are expensive, may be energy
intensive, and require clean water to prevent the clogging of the fine delivery tubes
(Heermann et al. 1990). With rainfed crops, salinization is not a problem because
the salts are naturally flushed away. However, when irrigation water is applied to
crops and returns to the atmosphere via plant transpiration and evaporation,
dissolved salts concentrate in the soil, where they inhibit plant growth.
Bouwer (2002) pointed out that the practice of applying about 10 million L ha-1 yr-1

of water, results in approximately 5 t ha-1 of salts being added to the soil. The salt
deposits can be flushed away with added fresh water but at an important cost.
Worldwide, approximately half of all existing irrigated soils are adversely affected
by salinization (Hinrichsen et al. 1998). According to Pimentel et al. (2004),
each year the amount of world agricultural land affected by salinized soil is
estimated to be 10 million ha. Also, drainage water from irrigated cropland con-
tains large quantities of salt.

Waterlogging is another problem associated with irrigation (Bowonder et al.
1986; Smedema 1990). Over time, seepage from irrigation canals and irrigated
fields cause water to accumulate in the upper soil levels. Due to water losses
during pumping and transport, approximately 60% of the water intended for crop
irrigation never reaches the crop (Wallace 2000). In the absence of adequate
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drainage, water tables rise in the upper soil levels, including the plant root zone,
and crop growth is impaired. In India, waterlogging adversely affects 8.5 million
ha of cropland and results in the loss of as much as 2 million t yr-1 of grain every
year (ICAR 1999).

On the other hand water erosion adversely affects crop productivity by reducing the
availability of water, diminishing soil nutrients, soil biota, and organic matter, and
also decreasing soil depth (Pimentel and Kounang 1998; Durán et al. 2006, 2010).
In this context, Guenette (2001) reported that the reduction in the amount of water
available to the growing plants is considered the most harmful effect of erosion,
because eroded soil absorbs 87% less water by infiltration than uneroded soils.
Soybean and oat plantings intercept approximately 10% of the rainfall, whereas tree
canopies intercept 15–35%.

Surface runoff, which carries sediments, nutrients, and pesticides from
agricultural fields, into surface and groundwater, is the leading cause of non-point
source pollution in many agricultural lands of the world (Liu et al. 2005;
Duchemin and Hogue 2009). Thus, soil erosion is a self-degrading cycle on
agricultural land. As erosion removes topsoil and organic matter, water runoff is
intensified and crop yields decrease. The cycle is repeated again with even greater
intensity during subsequent rains.

Increasing soil organic matter by applying manure materials can improve the
water-infiltration rate by as much as 150% (Guenette 2001). In addition, using
vegetative cover, such as intercropping and grass strips, helps slow both surface
runoff and erosion (Lal 1993; Durán et al. 2008, 2009a). For example, when silage
corn is interplanted with red clover, surface runoff can be decreased by 87% and soil
loss by 78% (Wall et al. 1991). Reducing water runoff in these and other ways is an
important step in increasing water availability to crops, conserving water resources,
decreasing non-point source pollution, and ultimately decreasing water shortages.

According to Roose (1996), planting trees to serve as shelter belts between fields
reduces evapotranspiration from the crop ecosystem by up to 20% during the
growing season, thereby reducing non-point source pollution, and increases some
crop yields, such as potatoes and peanuts (Snell 1997). If soil and water conservation
measures are not implemented, the loss of water for crops via soil erosion can
amount to as much as 5 million L ha-1 yr-1 (Pimentel and Kounang 1998).

In terms of agricultural yield, the production of animal protein requires
significantly more water than the production of plant protein (Pimentel and
Pimentel 2003). As stated by Solley et al. (1998), livestock directly uses only 2%
of the total water applied by agriculture, the water input for livestock production
being substantial because water is required for the forage and grain crops. In the
U.S. each year, about of 253 million t of grain are fed to livestock, requiring a total
of 250 9 1012 L of water (USDA-NASS 2002). Worldwide grain production
specifically for livestock requires nearly three times the amount of grain that is fed
U.S. livestock and three times the amount of water used in the U.S. to produce the
grain feed (Seglken 1997, Earth Policy Institute 2002). Along this line, the
production of 1 kg of chicken requires 3,500 L of water, while producing 1 kg
of sheep requires approximately 51,000 L of water, counting the 21 kg of grain
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and 30 kg of forage needed to feed these animals (USDA 2001). U.S. agricultural
production is projected to expand in order to meet the increased food needs of its
population, which is projected to double in the next 70 years (USBC 2001).
The food situation is expected to become more critical in developing countries
(Rosengrant et al. 2002). Increasing crop yields necessitates a parallel increase in
freshwater utilization in agriculture. Therefore, increased crop and livestock
production during the next five to seven decades will significantly increase the
demand on all water resources, especially in the western, southern, and central
United States (USDA 2001), as well as in many regions of the world with low
rainfall.

Water for agriculture covers a wide range of consumptive and non-consumptive
water uses in all the agricultural sub-sectors related to ethical conflicts and sig-
nificant social, economic, and environmental issues. Agricultural water represents
the dominant water use in the form of pumping for irrigation or rainwater and soil
moisture in croplands and forests. Evaporation from freshwater bodies and wet-
lands is important for biodiversity and inland and marine fisheries. Irrigation uses
about 70% of total globally extracted water volumes, estimated at 6,800 km3 yr-1,
while total agricultural use represents about 92% of total uses of flowing water and
rainwater (25,000 km3 yr-1; Appelgren 2004).

Table 1 shows various categories of agricultural water and its use for crops
(irrigated, rainfed, and dryland), livestock, fisheries, and forestry sub-sectors
according to FAO (2000). Agricultural demands represent actual current use of
rainfall, soil moisture, and flowing waters for agricultural production. Above all,
agriculture provides the food for the world’s populations under both rainfed and
irrigated agricultural systems. In a wider perspective, agriculture is not only the
main consumer of water but also a crucial factor shaping important terrestrial and
freshwater resources that form part of necessary life-supporting eco-system ser-
vices. Agriculture has also become a critical cause and a source of water pollution
that has also upset the nutrition cycle in the watercourses and soil–water systems
and rendered the water unsuitable or less valuable for other water uses.

Higher levels of nitrogen application lead to more nitrate (NO3) leaching to
groundwater, streams, and rivers. Agriculture has become the largest source of
nitrogen and phosphorus in waterways and coastal zones (Carpenter et al. 1998;
Bennett et al. 2001). Contamination of groundwater is common in agricultural
regions around the world (Matson et al. 1997). High NO3–N concentrations in
drinking water constitute a human health hazard and challenge the health of nat-
ural systems. Eutrophication of estuaries and other coastal marine environments
can cause low- or zero-oxygen conditions, leading to loss of fish and shellfish and
to algae blooms that are toxic to fish (Nixon 1995; Howarth et al. 1996).

Nitrogen fertilizer is the largest input of nitrogen and accounts for a major
portion of leaching losses from cereal crops (Webster et al. 1999). The synchro-
nization of nitrogen supply and demand, without excess or deficiency, is the key to
optimising tradeoffs between enhancing water productivity to minimize water use
and limiting NO3–N leaching to reduce adverse effects on water quality
(Dinar et al. 1991; Moreno et al. 1996a; Lemaire et al. 2007). Setting the research
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agenda and developing effective management practices to meet this challenge
require a quantitative understanding of the current levels of nitrogen-use efficiency
and NO3–N losses.

Smil (1999) estimates total the nitrogen input to the world’s cropland at 169
million t N yr-1. Inorganic fertilizer supplies 46% of the total, biological fixation
from legumes and other nitrogen-fixing organisms 20%, atmospheric deposition
12%, animal manure 11%, and crop residues 7%. NO3 and phosphorus enrichment
is degrading water quality, promoting eutrophication processes. About the 80% of
European surface waters exceed the European Commission’s drinking water
standard for 50 mg NO3 L-1 (Molenat and Gascuel 2002). For example, in
England and Wales, 28% of rivers exceed nitrogen concentration of 30 mg
NO3 L-1 (EA, 2007a) and 52% of the total river length exceeds phosphorus
concentrations of 0.1 mg L-1 (EA 2007b).

With aim of protecting and enhancing aquatic ecosystems, the Water Frame-
work Directive (WFD) (2000/60/EC) was introduced in 2000. All water bodies in
European Union member states are required to reach ‘‘good’’ and non-deterio-
rating status by 2015, akin to the conditions observed under minimal anthropo-
genic influence. Surface waters must achieve good ecological and chemical status,
while groundwater must reach a good chemical standard and pose no risk to the
status of surface water into which they may flow.

According to Defra (2007) in England and Wales the agricultural practices
contribute 70 and 28% of annual nitrogen and phosphorus loads, respectively, figures
typical of those reported throughout Europe (IFEN 1997; Torrecilla et al. 2005).
The NO3–N loss is attributed to many factors, including over-fertilization (Lord and
Mitchell 1998), excessive manure applications, a failure to consider the nutrient
content of manure in fertiliser recommendations, poorly timed nutrient applications,
autumn ploughing and intensive stocking of pasture (Shepherd et al. 2001;
Shepherd and Chambers 2007).

Smith et al. (1998) reported that phosphorus is lost as sediment bound or
particulate phosphorus and in dissolved forms associated with the erosion of
phosphorus-enriched soils caused by excess manure/fertilizer applications. The
interaction of management practices with the inherent variation in crop, soil type,
climate, topography, and hydrology gives rise to large spatial and temporal vari-
ation in nutrient concentrations in land runoff. However difficult, diffuse agricul-
tural pollution must be controlled in order to minimise the adverse impacts of
agriculture on ecosystems and to comply with legislative requirements. Table 2
shows mitigation measures in controlling the N and phosphorus by agricultural
practices according to Cuttle et al. (2007).

2.1 Water Productivity in Rainfed Systems: Mediterranean Region

Rainfed agriculture produces the bulk of the world’s food, being practiced in 80%
of the world physical agricultural area and generates 62% of the world’s staple
food (FAO 2008).
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According to FAO (2008) projections food demand in 2030 is expected to be
55% higher than 1998. In response to this demand, global food production should
increase at an annual rate of 1.4%.

Table 2 Mitigation methods for avoiding the nitrogen and P pollution risk under agricultural
practices (Cuttle et al. 2007)

Category Mitigation measures

Land use and soil
management

Convert arable land to extensive grassland
Establish cover crops in the autumn
Cultivate land for crop establishment in spring rather than autumn
Adopt minimal cultivation systems
Cultivate compacted tillage soils
Cultivate and drill across the slope
Leave autumn seedbeds rough
Avoid tramlines over winter
Establish in-field grass buffer strips
Loosen compacted soil layers in grassland fields
Maintain and enhance soil organic-matter levels
Allow field drainage systems to deteriorate

Livestock management Reduce overall stocking rates on livestock farms
Reduce the length of the grazing day or grazing season
Reduce field stocking rates when soils are wet
Move feed and water troughs at regular intervals
Reduce dietary N and P intakes
Adopt phase feeding of livestock

Fertilizer management Use a fertilizer-recommendation system
Integrate fertilizer and manure nutrient supply
Reduce fertilizer-application rates
Do not apply P fertilizers to high Pindex soils
Do not apply fertilizer to high-risk areas
Avoid spreading fertilizer on fields at high-risk times

Manure management Increase the capacity of farm manure (slurry) stores
Minimise the volume of dirty water produced
Adopt batch storage of slurry
Adopt batch storage of solid manure
Compost solid manure
Change from slurry to a solid-manure-handling system
Site solid manure heaps away from watercourses and field drains
Site solid manure heaps on concrete and collect the effluent
Do not apply manure to high-risk areas
Do not spread farmyard manure to fields at high-risk times
Do not spread slurry or poultry manure on fields at high-risk times
Incorporate manure into the soil
Transport manure to neighbouring farms
Incinerate poultry litter

Farm infrastructure Fence off rivers and streams from livestock
Construct bridges for livestock crossing rivers and streams
Re-site gateways away from high-risk areas
Establish new hedges
Establish riparian buffer strips
Establish and maintain artificial (constructed) wetlands
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Currently, 55% of the gross value of food is produced under rainfed conditions
on nearly 72% of the world’s harvested cropland. The subject receiving intense
debate is the future food demands whether it will be provided by rainfed or
irrigated agriculture.

However, what should be clearly understood is that most of the world’s food
production does not rely on freshwater withdrawals at all and does not necessarily
accelerate the naturally occurring rates of evapotranspiration. This means that the
bulk of the global agriculture production in the world is rainfed. At the worldwide
level, it is well recognised that the potential of rainfed agriculture is large enough to
meet present and future food demand through increased productivity (De Fraiture
and Wichelns 2010). In this context, an important option is to upgrade rainfed
agriculture through better water-, soil-, and land-management practices (Fig. 2).
This can be achieved in several ways, including the following options:
(1) increasing productivity in rainfed areas through enhanced management of soil
moisture and supplemental irrigation where small-scale water storage is feasible;
(2) improving soil-fertility management, including the reversal of land degradation;
and (3) expanding cropped areas. However, upgrading rainfed agriculture to meet
the increasing demand on food is not an easy process but a rather complex one
(Rockström et al. 2004). Changes are needed in land, water, and crop management
under rainfed agriculture. However, to support these changes, investments are
required to build knowledge and to reform and develop institutions. A combination
of investments, policy, and research approaches will be needed.

For upgrading rainfed agriculture, we need to consider two major water
realities. Firstly, the rainfed agriculture will continue to produce the bulk of the
world’s food and, secondly, water productivity, which is very low in rainfed
agriculture, provides significant opportunities for producing more food with less
freshwater. Both realities are strongly connected to each other; hence, increasing
the crop:water productivity in rainfed agriculture is the only effective pathway
towards attaining food security. A key to success is to invest in the often untapped
potential of upgrading rainfed agriculture through integrated water investments.
The key challenge is to reduce water-related risks posed by high rainfall variability
rather than coping with an absolute lack of water. In rainfed farming, there is
generally enough rainfall to double and, even, to quadruple yields but such rainfall

Water management

Rainfall water harvesting Supplementary irrigation Field conservation practices

Rainfed agriculture

Fig. 2 Water management for rainfed agriculture
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is available at the wrong time, causing dry spells and much of the moisture is lost.
The temporal and spatial variability of climate, especially rainfall, is a major
constraint to yield improvements, competitiveness, and commercialisation
of rainfed crops. This is why investment in soil, crop and water management
is crucial for upgrading rainfed agriculture (Day et al. 1992; Rockström et al. 2004,
2010).

Evidence from water balance analyses on farmers’ fields around the world
shows that only a small fraction of rainfall, \30%, is used as productive green-
water flow (plant transpiration) supporting plant growth (Rockstrom 2003). The
data presented show that rainfall losses through drainage, surface runoff, and non-
productive evaporation is extremely high (70 up to 85%), whereas the part of the
rainfall used productively, to produce food registers minimum values, between
15 and 30%. According to Oweis and Hachum (2001), in arid areas, only about
10% of the rainfall is consumed as productive green-water flow, with most of the
remainder going to non-productive evaporation flow.

Those prevailing conditions imply that investments should be directed to
improving rainwater management, which otherwise generates runoff, causing soil
erosion and poor yields due to a shortage of soil moisture. Investments in this area
will not only maximize rainfall infiltration and the water-holding capacity of the
soils, but, in the meantime, will minimize land degradation as well as increasing
the water available in the soil.

Water management to upgrade rainfed agriculture encompasses a wide
spectrum from water-conservation practices for improving rainwater management
on the farmers’ fields to managing runoff water (surface and sub-surfaces) for
supplying supplemental irrigation water in rainfed food production (Fox and
Rockström 2003; Hamdy et al. 2005; Oweis et al. 2005). For instance, studies of
rainfed cereal potential under different climate-change scenarios estimated losses
at 10–20% of production area with some 1–3 billion people possibly affected
in 2080 (Fischer et al. 2005).

Critchley and Siegert (1991) reported several rainwater-management strategies
to improve crop yields and green-water productivity. One of these strategies is
aiming at maximizing plant-water availability in the root zone. These rainwater-
management strategies are dealing with water harvesting and evaporation
management:

1. Water-harvesting strategies: external water-harvesting systems.
This strategy involves several management options using several tools,
including surface micro-dams, subsurface tanks, farm ponds, percolation dams
and tanks as well as diversion and recharging structures. Harvested water can
be used for upgrading rainfed agriculture through mitigating dry spells,
recharging groundwater, enabling off season irrigation and facilitating multiple
uses of water.

2. In situ water-harvesting systems, plus soil and water conservation.
This strategy aims basically at concentrating rainfall water by trapping the
surface runoff in cropped area, thereby maximizing infiltration into the soil
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matrix. There are several management options which are technically simple and
economically sound and, therefore, they are widely used by farmers in many
arid and semi-arid regions to capture and reduce rainfall losses (Durán et al.
2006, 2009a, b).

For instance, to maximize rainfall infiltration by reducing runoff can be
effectively achieved through terracing, contour cultivation, conservation agricul-
ture, and staggered trenches (Durán et al. 2009a). On the other hand, bunds, ridges,
micro-strips, broad-beds and furrows are the management options to capture
and concentrate rainfall. Therefore, soil and water conservation or in situ water-
harvesting systems should be considered the logical entry-point for improved
water management in rainfed agriculture (Wani et al. 2003, Kahinda et al. 2007;
Rockström et al. 2010). In many arid and semi-arid regions worldwide, where
rainfed agriculture is the dominant producer for cereal crops, highlighted that
investments in this type of agriculture have good payoffs in yield improvements
and environmental sustainability.

The upgrading and investing in rainfed agriculture has several constraints,
including technical, socio-economic, and policy factors and, above all, the inad-
equate investments in knowledge sharing and scaling-up of best practices. The
integrated approach to rainwater management must address links between
investments and risk reduction as well as between rainwater management and land
and crop management (Trisorio and Hamdy 2008).

The Mediterranean region includes the countries of two groups: the countries of
the north coast (from Spain to Turkey) and those of the southern coast (from
Morocco to Syria). The climate of the Mediterranean region is characterized by
a hot, dry summers lasting from 2 to 7 months, depending on the geographical
position from the North to South (Shahin 1996). Winter is mostly rainy, while fall
and spring are partially wet (Turner 2004a). Often supplemental irrigation is
required by the crops for regular yield and for reducing the inter-annual variability
(Oweis 1997). Reasonable yields can be obtained by summer crops if they are
irrigated during the entire vegetative cycle (De Boer 1993). In addition, the def-
inition of Mediterranean climate is extended also to other regions of the planet
(Estienne and Godard 1970). Southern Australia, South Africa (Cape province),
Southern California, and Chile are characterized by Mediterranean-type climates.

The water use in the Mediterranean region shows that about 72% of the
available water is used for agricultural sector (Hamdy and Lacirignola 1999).
According to Margat and Vallée (1997) water resources are becoming strained,
mainly in southern countries and yet often wasted. Farmers are allocated large
amounts of water, exceeding crop requirements for all winter and summer crops
(Shideed et al. 2005). Their crops are over-irrigated by 30–49% (Hamdy and
Katerji 2006). Attaining the UN Millennium Development Goals to halve the
number of poor and food insecure by 2015 poses a tremendous development
challenge. Until recently the focus on agricultural water policy has centred
around withdrawals, allocation, and management of runoff-water flows—that is,
surface flow in rivers and subsurface groundwater flow, which are defined as
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blue water flows, and the subsequent blue-water runoff regenerate aquifers, lakes,
wetlands, and constructed water-storage facilities. The blue-water domain
concerns the global water crisis, due to growing per capita water scarcity (30%
of the world’s population projected to face water stress by 2030) and over-
expropriation of blue-water resources, primarily for irrigation, resulting in drying
rivers, falling groundwater levels, and declining lake and wetland systems
(Rosegrant et al. 2002). On the other hand, as stated by Falkenmark and
Rockström (2004) green water sustains rainfed agriculture, which is practiced on
80% of the world’s agricultural land, and generates 60–70% of the world’s food.

The sustainable use of water resources in the European Mediterranean basin is
crucial, as is the solution of the many problems generated by water scarcity and
misuse, particularly in the southern and eastern parts of the region, (Zacharias and
Koussouris 2000; Mariolakos 2007; Downward and Taylor 2007). The high irri-
gation needs and changes in consumer demands (especially after population shifts
from rural to urban areas and because of increasing tourism and industrialisation)
are the main problems in the region. The proper management of limited water
resources in the Mediterranean involves several research areas, most of which are
directly related to agriculture, concerning the improvement of water and nutrient
use in agriculture through the management and breeding of irrigated and rain-fed
crops. However, these fields of research address only one side of a complex
problem that challenges water sustainability in the region (Araus 2004).

The main cause of current environmental problems in the Mediterranean basin
is human-made; large-scale soil erosion, pollution, and food shortage. Depletion of
non-renewable groundwater is widespread, and remaining water resources are
often polluted (Sánchez et al. 2003; Yang et al. 2006). Salt–water intrusion is
common in many of the coastal aquifers. Most of the agricultural production in the
Mediterranean basin comes from irrigated areas (Zhang and Oweis 1999;
Alexandridis et al. 2008; Wriedt et al. 2009). Hence agriculture is the main con-
sumer of water in the region with 80% on average (FAO 2003). Water for irri-
gation is even scarcer than land, and it is becoming increasingly harder to find land
suitable for irrigation. The irrigated sector will have to face major challenges with
the new scenario of free agricultural trade: the food strategy may change with the
possibility of some products supplied by the world market; a part of the water
resources may be reallocated to high added-value exports instead of basic pro-
duction or to industrial activities, tourism, and domestic water supply (Postel 1999;
Bahri 2002).

In a mountainside within a Mediterranean watershed with rainfed olive (Olea
europaea) trees under different soil management systems (non-tillage with barley
strips of 4 m width; non-tillage with native vegetation strips of 4 m width; and
non-tillage without plant strips) were monitored for soil–water content (SWC)
with multi sensor capacitance probes at two positions (beneath the tree and in the
middle of plant strips). The soil water contents beneath the trees (SWC-bt) in all
treatments were higher than those of the plant strip positions (SWC-st) except in
the non-tillage without plant strip treatment, where the mean SWC-bt at most
depths was almost the same as SWC-st, with the exception of 10-cm depth, which
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had a SWC-bt higher (0.07 cm3 cm-3) than SWC-st (0.05 cm3 cm-3) during the
monitoring period. The mean SWC-bt for the entire 100-cm soil profile for the
non-tillage with barley strips, non-tillage with native-vegetation strips, and
non-tillage without plant-strip treatments was 0.13, 0.11 and 0.09 cm3 cm-3,
respectively. During each season, the mean SWC-bt was higher than the mean
SWC-st at all depths for the non-tillage with barley strip treatment, at 10, 20, and
30-cm depths for the non-tillage with native vegetation strip treatment, and only at
10-cm depth for the non-tillage without the plant-strip treatment (Fig. 3). The
increased recharge of soil water of the plant-strip positions is attributable to
canopy interception and subsequent stem flow. Also, plant strips slow down runoff
and encourage infiltration. Under these experimental conditions (30% slope) with a
soil of relatively low permeability, the subsoil could restrict deep percolation of
infiltrating precipitation and induce lateral subsurface flow. Therefore, most soil
water could be available for the root system of olive trees, which is the next in the
gravitational trajectory of both the surface and subsurface flow of water, and thus
the plant strips could act as sinks for rainfall and overland flow.

Around the Mediterranean basin, the degradation of soil and water resources is
a serious threat for the human welfare and the natural environment as a result of
the unique climate, topography, soil characteristics and peculiarities of agriculture.

The negative impacts on water resources include pollution due to nutrient and
pesticide leaching together with seawater intrusion into aquifers. Moreover, the
dramatic change of agricultural practices during the last 50 years is one of the
main driving forces for environmental degradation in this region, especially
through its impact on soil and water resources. Although these changes have had
many positive effects on farming, there have also been significant costs. In the last
decades there is increasing interest in crop-production systems that optimise yields
while conserving soil, water, and energy at the same time as protecting the
environment (Stamatiadis et al. 1996).

Agriculture has direct as well as indirect effects on the quality of soil and water
resources. These effects depend both on macro-scale factors (e.g. climate, land-
scape topography and parent material) as well as micro-scale factors (e.g. man-
agement and the land use at a watershed or a farm scale). These factors
characterize the ecosystems based on the similarity of inputs (Odum 1983), and
establish the type of certain agricultural practices that are possible. Because of the
unique site characteristics and the agricultural peculiarities of the Mediterranean,
the main impact of agriculture on soil quality is erosion, salinization, compaction,
reduction of organic matter, and non-point source pollution. As a consequence, the
soil degradation lowers water quality through leaching of pesticides and excess
nutrients into surface and ground water together with seawater intrusion into
aquifers. According to Maltby (1991), the scientific basis is still incomplete for
explaining how different ecosystems work and how different environmental factors
interact to control functioning.

Soil degradation affects about a 1/5 the arid domain in the Mediterranean basin,
but mainly the semi-arid margins, which are generally cultivated. Degradation of
the soil and vegetation cover can lead to desert landscapes (Thirgood 1981;

18 Water and Sustainable Agriculture



Rapp 1987; Thomas and Middleton 1994a, b; Durán et al. 2006). This
desertification is a consequence not only of climatic change but also human
activities (vegetation removal, wood exploitation for fuel, and over-grazing).
Land degradation in the Mediterranean area has increased for a variety of reasons
and is estimated to threaten over 60% of the land, especially in southern Europe
(UNEP 1991). The renewed pressure on land resources through migration, the
changes in agriculture both in terms of what is produced (cash-crops) and the mode
of production (intensive agriculture), the increased demands of water through the
development of irrigation schemes, in addition to the impact of land degradation
on flooding, ground water recharge, saltwater intrusion and soil salinization has in
many cases been responsible for land desertification (CEC 1994).

Fig. 3 Mean soil–water
contents of different positions
at various depths during each
season for the different soil
management systems: non-
tillage without plant strips
(NT); non-tillage with barley
strips (BS); and non-tillage
with native-vegetation strips
(NVS)
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An important impact of agriculture on the soil and water quality in the Medi-
terranean is the increasing conductivity and associated salinization of soils and the
intrusion of seawater into the groundwater aquifers near the coast. The salt
accumulation in Mediterranean soils is a natural process favoured by the region’s
ecological conditions (Zalidis et al. 1999).

Szabolcs (1996) reported that salinization has a direct negative effect on soil
biology and crop productivity, and an indirect effect leading to the loss of soil
stability through changes in soil structure. Important areas of salt-affected soils
have been revealed in the past, following the numerous large-scale flood control
and wetland drainage projects. Human-induced salt accumulation occurred in
previous salt-free soils due to errors in designing and constructing irrigation
projects. In recent years, there has been an effort to correct these errors except in
the case of some coastal areas where the low altitude constrains the maintenance of
naturally trapped salts below the rooting zone.

Currently the salt-accumulation process is due mainly to the continuing dete-
rioration of the quality of groundwater used for irrigation. According to Zalidis
et al. (1999), this negative impact was caused by overpumping and the consequent
intrusion of seawater into the groundwater strata.

The excessive application of fertilizers in quantity and frequency by agriculture
usually exceeds the soil functional ability to retain and transform the nutrients and
synchronize their availability with crop needs. The saturation of the soil with
nitrogen and phosphorus, have led to nitrate (NO3) losses into shallow ground-
water and saturation of the soil with phosphate, which may also move into
groundwater (Breeuwsma and Silva 1992; Rodriguez et al. 2008). In intensive
horticultural systems, interaction between high fertilizer inputs and major irriga-
tion schemes enhances NO3 leaching and non-point source pollution of surface and
ground water (EEA 1995).

On other hand, the extensive application of pesticides in agricultural land has
negative impact on both the biotic and abiotic processes within the soil. Conse-
quently, several soil functions are degraded, including the food-web support, the
retention and transformation of toxicants and nutrients, soil resilience, and the
ability of soil to protect surface and groundwater. At the farm scale, pesticides
deteriorate part of the soil flora and fauna, which in turn causes both physical and
chemical deterioration (Doran et al. 1996; Müller et al. 2007). At the watershed
scale, the main problem derives from the leaching and drainage of pesticides into
the surface and ground water (Domagalski and Dubrovsky 1992; Van der Zee and
Boesten 1993; Hantush et al. 2000). In addition, the reduction of the soil’s ability
to remove other pollutants, mainly due to the alteration of soil properties and the
degradation of soil’s toxicant retention and transformation function, enhances the
transport of these pollutants to adjacent water bodies.

The major physical impact of agricultural practices on Mediterranean soils
involves compaction and water erosion (Hamza and Anderson 2005; Lagacherie
et al. 2006; Koulouri and Giourga 2007; Blavet et al. 2009). Soil compaction is
caused by the repetitive and cumulative effect of heavy machinery (Van Dijck and
Van Asch 2002).
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The resulting decrease of soil porosity reduces root penetration and access to
the soil nutrients and alters biological activity on the farm scale. On the watershed
scale, soil compaction increases surface runoff since less rainwater is able to
percolate. This increases the risk of water erosion, loss of topsoil and nutrients, and
non-point source pollution of water resources (EEA 1995).

The negative effects of erosion include diminished infiltration rates and water
availability, loss of organic matter and nutrients and an ultimate loss of production
potential (Hillel 1991). Downstream eventualities include disrupted or lower-
quality water supplies, silting that impair drainage and maintenance of river
channels and irrigation systems, and increased frequency and severity of floods
(Pimentel et al. 1995).

Loss of soil organic matter reduces root penetration, soil moisture and
permeability, which in turn increases the risk of erosion and surface runoff and
reduces biological activity of soils (EEA 1995). The microbial functions help
maintain a soil system with available nutrients, aiding stability and thereby reducing
erosion and augmenting water-holding capacity (Kennedy and Gewin 1997).

Among the diverse water users in the region, the agricultural sector shows the
highest water losses. The low irrigation efficiency can be attributed mainly to
water mismanagement and also technical problems of conveyance, distribution,
and on-farm application, plus poor maintenance of irrigation structures, often
because of inadequate resources for operation and maintenance.

Irrigation agriculture in the Mediterranean basin is usually governed by the
priority of quantity versus quality of the irrigation systems and prioritisation of
large rather than small irrigation networks. Although the high priority and large
investments have been directed at developing water resources to meet irrigation
needs, the performance of large public irrigation systems has fallen short of
expectations. Crop yield and efficiency in water use are lower than originally
projected (Postel 1999).

The improvement of rainfed agriculture also has an important water- and food-
security relevance in this region. Firstly, most of the food for populations in rural
areas depends on this type of agriculture. Secondly, most rainfed lands have low
productivity. Consequently, an increase in production would reduce the growing
water demand in agriculture.

The most important natural resource in the drier environments is rainfall and
despite its scarcity, rainfall is generally poorly managed and much of it is lost
through runoff and evaporation. The collection and efficient use of rainwater is
fundamental.

In addition, different technologies and management strategies are available to
increase water-use efficiency and sustainability of agriculture. Figure 4 shows,
according to Mannion 1995b, the complex multiplicity of factors involved in
agriculture that may affect its performance and long-term sustainability.

In a broad sense, the water productivity in rainfed areas can be increased
in many ways: by promoting water-efficient irrigation (deficit irrigation),
water-efficient agriculture (precision agriculture) and water re-use in agriculture,
particularly the recycling of drainage water and reuse of urban wastewater.
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The management of irrigation water can be achieved by better on-farm water
management, reducing distribution losses, changing cropping patterns, improving
irrigation systems, and adopting irrigation-efficient technology.

The reuse of urban wastewater and brackish waters as well as the more con-
ventional methods of improved water delivery need to be encouraged. Thus,
on-farm irrigation methods, such as sprinklers and drip irrigation (Suarez 1992)
can considerably reduce water loss. In addition to their potential for increasing
water-use efficiency, these two irrigation systems can be used to farm infertile
lands and sandy and rocky soils.

In addition, to increase water productivity, well-managed irrigation schemes
can overcome salinization and related problems. Another approach is the breeding
and cultivation of either salt-tolerant crops or crops with improved water use and
water productivity.

For rainfed agriculture, solutions include the development of drought-resistant
crop varieties such as cereals, alternate tillage practices to conserve water, or
simple water-harvesting systems to provide access to water at the critical growth
stages of the crops, such as planting cereal strips on sloping lands with almond and
olive orchards (Francia et al. 2006; Durán et al. 2009a, b). According to Araus
et al. (2003), even though breeding for drought tolerance may lower yield
potential, it increases yield stability over many seasons, which could still offer
long-term benefit to many farmers in drought-prone areas.

According to Rockström and Barron (2007), from a water perspective, there are
two main ways to upgrade rainfed agriculture: (1) increase water-uptake capacity

Social Factors
- Continuous population growth
- Traditional and local customs
- Cultural preferences
- Urbanisation

Economic Factors
- Production of goods for trade
- Income generation
- Linkages with industry
- Subsidies and aid flows of finance

Science & Technology
- Plant and animal breading
- Biotechnology/genetic engineering
- Fertilizers
- Irrigation

Soils
- Erosion and erodibility
- Nutrient status
- Structure/organic matter
- Drainage

Climate
- Rainfall
- Temperature
- Annual distribution of temperature 
and precipitation

AGRICULTURE

Fig. 4 Factors involved in agricultural performance and sustainability
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of the crop, and (2) increase water availability for the plant. Even though these
strategies focus on water, the approaches and practices to achieve them are not
necessarily solely associated to water management (Table 3).

The water-uptake capacity of the plant could be improved through proper crop
and soil management, maximizing depth and density of roots and development of
canopy and grain (Rockström and Barron 2007). Other agricultural practices such
as tillage, crop rotations, mulching and the use of organic manures (green and
animal) will improve the soil structure, and consequently root development. Also,
crop choice, intercropping, timing of operations, weeds and pest management will
influence plant water uptake capacity. Plant breeding and genetic development can
improve the harvest index (the ratio of grain to total biomass), water-uptake
capacity of the root, and crop resistance to stress from, for example, water and
disease. Organic and inorganic soil-fertility management is a prerequisite to crop
growth, and therefore the key to the crop’s water-uptake capacity. Soil conditions
at the surface, i.e. infiltration capacity, and the soil structure in the top soil, will
also affect plant water availability. Soil- and water-conservation practices, which
focus on maximizing rainfall infiltration will, together with crop rotation,
mulching and manure management, affect plant-water availability. Water man-
agement, for example through water harvesting practices, can mitigate dry spells,
thereby securing plant water over time.

Stewart (1988) reported that the timing of operations is crucial to maximize the
crop response to erratic rainfall in semi-arid environments. Early soil preparation
and dry planting, which enables a full crop response to the rainfall at the beginning
of the rainy season, may constitute the difference between getting a crop and
complete crop failure. Such rainfall may account for up to 20% of the total
seasonal rainfall.

As agriculture, the main consumer of water in the Mediterranean region is
currently faced with the challenge of new approaches to water-resource

Table 3 Integrated soil and water management for upgrading rainfed agriculture systems

Strategy for upgrading Management Methodology Objective

Plant water
uptake capacity

Soil Tillage
Crop rotation
Mulching, manures and

fertilizers

Root length and density
Crop development

Crop Crop choice
Intercropping/crop rotation
Timing operations
Pest management

Plant water
availability

Soil Tillage
Weed management
Soil and water conservation
Crop rotation
Mulching/organic manures

Soil infiltrability
Less unproductive

competition

Water-holding capacity
Water Water harvesting Dry spell mitigation
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management that ensures the protection of water resources. This aim can be
achieved by the following measures: (i) to save water by controlling the water
supply according to the proper determination of crop water requirements and
accurate irrigation scheduling based on biological and physical criteria; (ii) to
improve the performance of irrigation systems; and (iii) to optimise the water-use
efficiency of crops cultivated in the Mediterranean area. These approaches could
be developed through the identification of environmental, biological, and agri-
cultural parameters which improve the water-use efficiency of crops.

2.2 Rainwater-Harvesting Practices

Water harvesting and related techniques such as ‘‘runoff agriculture’’ may provide
much more water to rainfed crops than natural rainfall would alone. It is not a
new concept; indeed in the Mediterranean regions of the world there is much
indigenous knowledge about this ancient practice. Besides its technical feasibility,
a critical element of success of traditional water-harvesting systems is a social
structure and set of community norms and practices to which farmers adhere
(Postel 1999). Several studies have addressed the benefits from combining
indigenous with modern knowledge and have explored the potential of several
techniques for water harvesting and their adaptation to local conditions. Figure 5
shows the water-harvesting methods used by the ICARDA (International Center
for Agricultural Research in the Dry Areas).

The rainfall-water harvesting is a promising practice to support sustainable
development in many parts of the world facing climate change. The rainfall-water
harvesting practices improve hydrological indicators such as infiltration and
groundwater recharge (Wakindiki and Ben-Hur 2004; Zougmore et al. 2003)). Soil
nutrients are enriched (Schiettecatte et al., 2005). Biomass production increases,
with subsequent higher yields (Singh et al. 1998; Ellis and Tengberg 2000;
Wakindiki and Ben-Hur 2004; Pretorius et al. 2005). Higher biomass supports
a higher number of plants and animals, although native species might be replaced
by crops as the landscape might change as a whole (Ludwing et al. 2005). In the
context of agricultural production in drylands, soil- and water-conservation
practices such as rainfall-water harvesting provide an opportunity to stabilize
agricultural landscapes in semiarid regions and to make them more productive and
more resilient against climate change (Wallace 2000; Lal 2001; Li 2003).
Stabilization of the agricultural landscape includes the restoration of degraded
cultivated and/or natural grazing lands. There are many marginal water sources
that could be used more efficiently such as road and land runoff, which is normally
lost through erosion (Prinz and Malik 2002). Among the most common soil- and
water-conservation techniques, rainwater harvesting is massively pursued in
many countries (Stroosnijder 2003; Batchelor et al. 2002; Pandey et al. 2003).
In addition, rainfall-water harvesting is also one of the practices recommended by
UNCCD to combat desertification.
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Rainfall-water harvesting is generally considered to be beneficial only in this
respect but the main problems are low rates of adoption (Nji and Fonteh 2002;
Bodnar and de Graaff 2003; Woyessa et al. 2005) or failed adoption processes due
to insufficient application (Aberra 2004).

Rainfall-water harvesting improves resilience in enhancing socio-economic as
well as ecological adaptability. Socio-economic adaptability may be improved by
increased food security, extra income and consequently enhanced and sustainable
livelihoods. Also, rainfall-water harvesting practices used to restore degraded areas
improve resilience by improving productivity (Lal 2001, 2004; UNCCD 2001;
Rockström 2004). Humans therefore are not only a cause of degradation but can be
the driving force for restoration processes due to their efforts.

Table 4 shows the impact on landscape functions by rainfall-water harvesting
practices in African drylands according to Vohland and Barry (2009).

2.3 Water-Use Efficiency

Water-use efficiency is a broad concept that can be defined in many ways. For
farmers and land managers, water-use efficiency is the yield of harvested crop
product achieved from the water available to the crop through rainfall, irrigation,
and the contribution of soil–water storage (Van Duivenbooden et al. 2000;
Tennakoon and Milroy 2003; Pala et al. 2007). The main ways to enhance water-
use efficiency in irrigated agriculture are: to increase the output per unit of water

Water-harvesting methods

Micro-catchment Macro-catchment and floodwater

On-farm systems Wadi-bed systems Off-wadi systems

Contour ridges

Small pits

Runoff strips

Meskat

Semi circular/trapezoidal 
bunds

Small runoff basins

Inter-rowystemss

Contour-bench terraces

Small farm reservoirs

Wadi-bed cultivations

Jesseour

Water-spreading

Large bunds-Tabia

Hafaer, tanks &Liman

Cisterns

Hillside conducts

Fig. 5 Classification of water-harvesting methods
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(engineering and agronomic management aspects), reduce losses of water to
unusable sinks, reduce water degradation (environmental aspects), and reallocate
water to higher priority uses (societal aspects).

Ameliorating water-use efficiency in agriculture will require a boost in crop-
water productivity (greater marketable crop yield per unit of water removed by
plant) and a reduction in water losses from the root zone, a critical zone where
adequate storage of moisture and nutrients are required for optimising crop pro-
duction. Consequently, the amount of water required for food production depends
on the agricultural commodities produced.

Improving water-use efficiency by 40% on rainfed and irrigated lands could
reduce the need for additional withdrawals for irrigation to zero over the next
25 years. However, this is a big challenge for many countries. Increasing water-
use efficiency is a paramount objective, particularly in arid and semi-arid areas
with erratic rainfall patterns. Under rainfed conditions, soil water can be lost from
the soil surface through evaporation or through plant uptake and subsequently lost
via plant transpiration (Bennie and Hensley 2001; Meerkerk et al. 2008). It can
also be lost through runoff and deep infiltration through the soil, as it is essential to
apply appropriate measures for its control (Durán et al. 2009a, b; Thierfelder and
Wall 2009).

When irrigation is available, water losses also include the mismanagement of
irrigation water from its source to the crop roots. Usually, more than 50% of
irrigation water is ‘‘lost’’ for the crop at the farm level. However, at the watershed
level, it might be less due to possible recoveries from the subsoil and groundwater.
These off-site losses of water can result from either inappropriate land-manage-
ment practices to capture a substantial part of the rainfall within an agricultural
landscape and retain it in the root zone or excessive use of irrigation water.

Such losses lead not only to water waste but also potential hazards of soil
salinity and water pollution resulting from the transport of nitrate, phosphate,
sediments, and agro-chemicals to streams, lakes and rivers.

Many promising strategies for raising water-use efficiency include appropriate
integrated land–water management practices as follows: (1) adequate soil fertility
to remove nutrient constraints on crop production for every drop of water available
through either rainfall or irrigation; (2) efficient recycling of agricultural waste-
water; (3) soil–water conservation measures through crop residue incorporation,
adequate land preparation for crop establishment, and rainwater harvesting; and
(3) conservation tillage to increase water infiltration, reduce runoff and improve
soil-moisture storage. In addition, novel irrigation technologies such as supple-
mentary irrigation (some irrigation inputs to supplement inadequate rainfall),
deficit irrigation (eliminating irrigation at times that have little impact on yield)
and drip irrigation (targeting irrigation water to root zones) can also minimize soil
evaporation and provide nutrients by fertigation, thus making more water available
for plant transpiration.

One of the components of a management system that affects water-use efficiency
is soil fertility (Fan et al. 2005; Aboudrare et al. 2006; Cayci et al. 2009).
A complete and balanced fertility program helps to produce a crop with roots that
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explore more soil volume for water and nutrients in less time. This results in a
healthier crop that can more easily withstand seasonal stress. Recent research in an
area where water is a major concern has demonstrated the importance of balanced
fertility and irrigation methods in maximizing water-use efficiency (Raun and
Johnson 1999; Mohammed et al. 1999; Tayel et al. 2006).

Improvement of water-use efficiency of field crops is an imperative imposed
by the critical situation of water resources. As expected, a large range of water-
use-efficiency values could be observed, for the same species, which can be
ascribed mainly to: (1) fertilizers and water management (e.g. water regime,
mineral supply, and water quality); (2) plant factors (e.g. species, cultivar, and
sensitivity of growth stage to the stress); and finally (3) environmental factors
(e.g. climate, atmospheric pollution, soil texture, and climate change).

2.3.1 Estimating the Water-Use Efficiency

There are two approaches for considering water-use efficiency. On the one hand,
there is the eco-physiological approach, which is based on the analysis of the
relationship between photosynthesis and leaf transpiration per unit area, at the leaf
scale (Pearcy 1983), canopy scale (Steduto et al. 1997), and territorial scale
(Chen and Coughenour 2004). This approach leads to the following results:
(1) description of the processes determining theoretical water-use efficiency
(Cowan 1982; Farquhar and Sharkey 1982; Hsiao 1993) and (2) comparison of leaf
photosynthesis and transpiration capacity of a species cultivated under different
irrigation regimes and to analyse the theoretic consequences on water-use
efficiency (Cheesman 1991; Leuning 1995; Katerji and Bethenod 1997).

On the other hand, the agricultural approach is based on water consumption and
yield, describing water-use efficiency on various scales from the leaf to the field.
In its simplest terms, this approach is characterized as crop yield per unit of water
use (Sinclair et al. 1984). The time scale considered is the whole vegetative cycle,
this providing crucial data to manage irrigated crops and thereby improve yield.

The water-use efficiency (WUE) can be calculated by following equation:

WUE kg m�3
� �

= yield/water consumption ð1Þ

The yield parameter (kg m-2) could be indicated by (1) global dry-matter yield or
(2) marketable crop yield. However, the latter is a more useful criterion than dry
matter because of the large variety of crops (biomass, grains, fruits, oil, etc.).
Moreover, marketable yield is more precise because it represents economical
value, which is a basic factor in determining irrigation cost.

Of the water used by crops during the growing season, 99% is released as water
vapour into the atmosphere, and the crop water being used is considered
approximately equal to evapotranspiration (ET). Soil evaporation is usually
\10% of the total ET, even when the soil surface remains quite wet (Jara
et al. 1998; Villalobos and Fereres 1990). The correct management of different
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agro-techniques (e.g., sowing time, plant density, irrigation frequency, fertilisa-
tion, use of mulching) can minimize the evaporation fraction of total evapo-
transpiration (Turner 2004b; Deng et al. 2006). Brown (1999) pointed out that the
upcoming benchmark for expressing yield may be the amount of water required to
produce a unit of crop yield, which is simply the long-used transpiration ratio, or
the inverse of water-use efficiency. Bos (1980, 1985) recommended that water-use
efficiency for irrigation be based on the yield produced above the rainfed or
dryland yield divided by the net ET difference for the irrigated crop, which he
called the yield:ET ratio. He also proposed the irrigated difference from the
dryland yield divided by the gross applied water, which he called the yield:water-
supply ratio and is referred to as irrigation-water-use efficiency.

Defining water-use efficiency for irrigation is additionally complex because the
scale of importance for the water resource shifts to the broader hydrologic,
watershed, irrigation district, or irrigation project scale, and the water components
may not be so precisely defined, becoming even more qualitative when such terms
as reasonable, beneficial, or recoverable are used (Burt et al. 1997). Irrigation can
be an effective means of improving water-use efficiency through increasing crop
yield, especially in semiarid and arid environments. Even in wet environments,
irrigation is particularly effective in overcoming short-duration droughts.

According to Katerji and Perrier (1985), complex models are necessary to
determine the portion of soil evaporation in ET, and therefore scientists determine
the ET in order to evaluate water-use efficiency.

At the plot scale, ET can be estimated through different approaches: (1) ET
directly measured by using drainage/weighing lysimeters or indirectly through
micrometeorological methods (Bowen ratio, aerodynamic), (2) ET calculated
through the soil–water balance, (3) ET estimated according to the FAO method
(Allen et al. 1998), and (4) ET simulated through different productivity models.

The overestimation of water supplied to crops is one of the characteristics of
irrigation practice making it difficult to understand the calculated water-use
efficiency values (Shideed et al. 2005).

Water is important in rainfed agriculture, critically important in semiarid
dryland agriculture, and explicitly important in irrigated agriculture. Wallace and
Batchelor (1997) offered four options for enhancing water-use efficiency in irri-
gated agriculture (Table 5). They point out that focusing on only one category will
likely be unsuccessful. Bos (1980, 1985) developed expressions that can, perhaps,
more consistently discriminate the role that irrigation has in WUE. His expressions
can be written for ETWUE and IWUE as:

ETWUE ¼ Yi � Ydð Þ = ETi � ETdð Þ; ð2Þ

IWUE ¼ Yi � Ydð Þ = Ii; ð3Þ

where Yi is the yield and ETi is the ET for irrigation level i, Yd is the yield and ETd
is the ET for an equivalent dryland or rainfed only plot, and Ii is the amount of
irrigation applied for irrigation level i.
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In most arid areas, Yd would be zero or small; however, ETd could be much
greater than zero and variable, depending on agronomic practices. In semiarid and
rainfed areas, Yd could be determined several ways. In the strictest sense, it would
be the yield under exactly the same management as the i treatment or system but
without irrigation. In a more comparative system, it might be estimated by yields
from comparable dryland or rainfed plots that were not irrigated. Often, however,
agronomic practices differ substantially between dryland and/or rainfed and irri-
gated practices (e.g., variety, sowing date, fertility management, pest management,
sowing density, and planting geometry). Thus, results that are quite different might
be found for Yd and ETd based on differences in management. The water use in
Eq. 1 is difficult to determine with precision. Thus, in some situations, benchmark
water-use efficiency (WUEb) is used by many irrigation practitioners. It can be
defined as:

WUEb ¼ Y usually the economic yieldð Þ=ðPe þ I þ SWÞ; ð4Þ

where Pe is effective rainfall, I is irrigation applied, and SW is soil–water depletion
from root zone during the growing season. The denominator of Eq. 4 is a surrogate
estimate for the water used to produce the crop, depending on the neglect of
percolation, groundwater use, and surface runoff.

According to Howell (2001), many agronomic, engineering, and management
technologies can reduce non-productive water use in irrigated agriculture. How-
ever, in some cases, increasing irrigation efficiency may not simply gain new water
for allocation unless the consumptive use of the diverted water is actually reduced.
In this context, Seckler (1996) summarized these opportunities as (i) increasing the
output per unit of ET (essentially water-use efficiency), (ii) reducing losses of
usable water to sinks, (iii) reducing water pollution (from sediments, salinity,
nutrients, and other agrochemicals), and (iv) reallocating water from lower-valued

Table 5 Available options for improving irrigation efficiency at a field level (Wallace and
Batchelor, 1997)

Category Options

Agronomic Crop management to enhance rainfall-water harvesting or reduce water
evaporation (i.e. crop debris, conservation till, and plant spacing); improved
varieties; advanced cropping strategies that maximize cropped area during
periods of lower water demands and/or periods when rainfall may have a
greater likelihood of occurrence

Engineering Irrigation systems that reduce application losses, improve distribution uniformity,
or both; cropping systems that can enhance rainfall harvesting, e.g. crop debris,
deep chiselling or paratilling, furrow dyking, and dammer-dyker pitting

Management Demand-based irrigation scheduling; slight to moderate deficit irrigation to
promote deeper soil–water extraction; avoiding root-zone salinity yield
thresholds; preventive equipment maintenance to reduce unexpected
equipment failures

Institutional User participation in irrigation-district operation and maintenance; water pricing
and legal incentives to reduce water use and penalties for inefficient use;
training and educational opportunities for learning, advanced techniques
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to higher-valued uses. The latter opportunity can be positive or negative to agri-
culture, depending on how secondary and tertiary interest holders are addressed.

Katerji et al. (2008) excluding experimental errors related to the determination
of yield and ET, the variability in determining water-use efficiency can be ascribed
to mainly three sources: (1) agro-techniques: water and fertilizer applied to crops
and analysed in terms of quantity and quality; (2) plant: differences between
species, variety effects, phenological stage, sensitivity to water constraints; (3)
environment: soil and climate. These factors include evaporative demand, atmo-
spheric pollution and climatic changes (Fig. 6).

The schematic overview described in Fig. 6 underlines the parameters sus-
ceptible to interference in the determination of water-use efficiency of a species at
the field-plot scale. Katerji et al. (2008) pointed out the lack of the current
knowledge in order to identify the promising future of this field of study, con-
sidered from two standpoints: methodology and research.

For the methodological level, particular attention needs to be given to the
methods of ET determination because the absence of a correct estimation of this
parameter should be lack of a reliable water-use-efficiency analysis.

Correct analysis water-use-efficiency data requires reliable complementarity
between the eco-physiological and agricultural approaches. Concretely,
the methodology that associates an indicator of plant-water status with
soil–water-status criteria in analysing water-use efficiency can reduce the
variability observed for water-use efficiency through standard experimental
conditions (Li et al. 2000; Wang et al. 2007; Ritchie and Basso 2008).

The reduction of water-use-efficiency variability is a primary condition for
appropriate analysis of water-use efficiency. This is so for the designated research
to examine the well-founded management methods in order to improve water-use
efficiency (modification of sowing dates, mulching).

Crop Agro-techniques Environment

Type of climate

Climate change
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Soil properties

Water regime

Mineral nutrition

Water quality

C3 and C4 species
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Fig. 6 Sources of variability and parameters involved for water-use efficiency determination
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Identification of the phenological stages quantitatively and qualitatively sen-
sitive to water constraint under field conditions is preliminary for rational com-
plementary irrigation practice.

Research on water-use efficiency should be developed for many crops by
determining water consumption. The current research in this sense is conducted
with high water quality (Hassanli et al. 2010). Since saline soils are increasing, due
to steadily more frequent use of non-conventional waters for irrigation, the study
of water-use efficiency in relation to water quality becomes crucial, especially with
saline waters (Lea and Syvertsen 1993; Smith et al. 2010; Grewal 2010). Plant
amelioration has made important progress through the creation of varieties with
higher drought and salinity resistance.

Research relating water-use efficiency to the mineral supply is limited, as it is
necessary to demonstrate to farmers the importance of well-founded fertilizing
practices.

The analysis of the relationship between water use efficiency and air pollution is
still not developed.

Climate change could lead to major transformations of agricultural practices in
the future (species and variety choice, sowing and yielding date, irrigation prac-
tice, water-use efficiency), and therefore it is necessary to prepare agriculture to
face these imminent future changes.

The improvement of water-use efficiency especially en arid and semiarid
regions is an imperative imposed by the critical situation of water resources as well
as by the demographical surge.

3 Water Resources and Sustainable Agriculture

Of the estimated 1.4 9 1018m3 of water on the earth, more than 97% is in the
oceans (Shiklomanov and Rodda 2003). Approximately 35 9 1015 m3 of the
Earth’s water is freshwater, of which about 0.3% is held in rivers, lakes, and
reservoirs. The remainder of freshwater is stored in glaciers, permanent snow, and
groundwater aquifers. The earth’s atmosphere contains about 13 9 1012 m3 of
water, and is the source of all the rain that falls on earth (Shiklomanov and
Rodda 2003). Yearly, about 151,000 quads (quad = 1015 BTU British Thermal
Unit) of solar energy cause evaporation and move about 577 9 1012 m3 of water
from the earth’s surface into the atmosphere. Of this evaporation, 86% is from
oceans (Shiklomanov 1993). Although only 14% of the water evaporation is from
land, about 20% (115 9 1012 m3 yr-1) of the world’s precipitation falls on land
with the surplus water returning to the oceans via rivers (Shiklomanov 1993).
Thus, each year, solar energy transfers a significant portion of water from oceans
to land areas. According to Jackson et al. (2002) this aspect of the hydrologic cycle
is vital not only to agriculture but also to human life and natural ecosystems.

Although water is considered a renewable resource because it depends on
rainfall, its availability is finite in terms of the amount available per unit time in
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any one region. The average precipitation for most continents is about
700 mm yr-1 (7 million L ha-1 yr-1), but varies among and within them
(Shiklomanov and Rodda 2003). In general, a region is considered water scarce
when the availability of water drops below 1,000,000 L capita-1 yr-1 (Engleman
and Le Roy 1993). Africa, despite having an average of 640 mm yr-1 of rainfall,
is relatively arid since its high temperatures and winds that cause rapid evaporation
(Vorosmarty et al. 2000; Ashton 2002). Regions that receive low rainfall
(\500 mm yr-1), undergo serious water shortages and inadequate crop yields.
For example, 9 of the 14 Middle Eastern countries (including Egypt, Jordan, Israel,
Syria, Iraq, Iran, and Saudi Arabia) have insufficient rainfall (Myers and
Kent 2001; UNEP 2003).

In terms of water availability, about 30% (11 9 1015 m3) of all freshwater on
Earth is stored as groundwater. The amount of water held as groundwater is more
than 100 times the amount collected in rivers and lakes (Shiklomanov and
Rodda 2003). Most groundwater has accumulated over millions of years in vast
aquifers located below the surface of the earth. These aquifers are replenished
slowly by rainfall, with an average recharge rate that ranges from 0.1 to 3% per
year (Covich 1993; La Gal et al. 2001). Assuming an average of 1% recharge rate,
only 110 9 1012 m3 of water per year are available for sustainable use worldwide.
Currently, world groundwater aquifers provide approximately 23% of all water
used throughout the world (USGS 2003). Irrigation for U.S. agriculture relies
heavily upon groundwater, with 65% of irrigation water being pumped from
aquifers (McCray 2001).

Population growth, increased irrigated agriculture, and other water uses are
mining groundwater resources. Specifically, the uncontrolled rate of water with-
drawal from aquifers is significantly faster than the natural rate of recharge,
causing water tables to fall by more than 30 m in some U.S. regions (Brown 2002).
The overdraft of global groundwater is estimated to be about 200 9 109 m3 or
nearly twice the average recharge rate according to the International Water
Management Institute (2001).

The rapid depletion of groundwater poses a serious threat to water supplies in
world agricultural regions especially for irrigated lands. Furthermore, when
aquifers are mined, the surface soil area is prone to collapse, resulting in an aquifer
that cannot be refilled (Youngquist 1997; Glennon 2002).

When atmospheric precipitation reaches the ground it divides into several
sections which pursue the terrestrial part of the hydrological cycle along different
paths. Many authors (Rockström 1999; Shiklamanov 2000; Ringersma et al. 2003),
estimated that out of the total annual amount of precipitation of 110 km3, about
40,000 km3 is converted into surface runoff and aquifer recharge (blue water) and
an estimated 70,000 km3 is stored in the soil and later returns to the atmosphere
through evaporation and plant transpiration (green water). Blue water is the
freshwater that sustains aquatic ecosystem in rivers and lakes. It is used for
drinking or domestic purposes, for industry and hydropower, and to irrigated
agriculture, where around 70% of this water source is used. Indeed, irrigation uses
not only blue water but also green water, whereas rain-fed agriculture uses only
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green water. According to Ringersma et al. (2003) the green water/blue water
concept has proven to be useful in providing a more comprehensive vision of the
issues related to water management, particularly in the agriculture sector.

Comprehensive assessment of water management in agriculture estimates that
crop production takes up 13% (9,000 km3 yr-1) of the green water delivered to
soil by precipitation, the remaining 87% being used by the non-domesticated
vegetal world, including forests and range land. Blue-water withdrawals are about
9% of the total blue-water sources (43,800 km3) with 70% of withdrawals going to
irrigation (2,700 km3). Total evapotranspiration by irrigated agriculture is about
2,200 km3 (2% of rain) of which 650 km3 are directly from rain or green water and
the remainder from irrigation water or blue water. Competition among different
sectors for scarce water resources and increasing public concern on water quality
for human, animal, and industrial consumption as well as recreational activities,
have focussed more attention on water management in agriculture. As water
resources shrink and competition from other sectors grows, agriculture faces a dual
challenge: to produce more food with less water and to prevent the deterioration of
water quality through contamination with soil runoff, nutrients, and agrochemicals.

A global analysis of the future water for food requirements clearly indicates the
urgent need for a concerted effort of simultaneous development of irrigated and
rainfed farming systems. Current estimates of future expansion of storage reservoirs
for irrigation are conservative (WCD 2000). In this context, Shiklomanov (2000)
estimated an increase in irrigated land from 253 million ha in 1995–330 million ha
by 2025, with an increase of approximately 500 km3 yr-1 of consumptive water
use. The FAO, in its latest study on agriculture until 2015/2030 (FAO 2002a),
estimates a lower irrigated area in 2025 (271 million ha) based on an annual growth
rate of 0.6% (1997–2025), with growth primarily in developing countries.

Falkenmark and Rockström (2004) reported a continued modest irrigation
expansion of 0.6% per year from 2025 to 2050, the increased consumptive blue-
water use for irrigation in 2050 would amount to 600 km3 yr-1. These authors
consider all blue-water losses through seepage in conveyance channels and
drainage from cropland as re-usable within or downstream of an irrigation system.

Improved management of existing irrigation systems will certainly result in
improved water productivity, enabling the production of more food per unit water
consumed through 2050. As was pointed out by Falkenmark and Rockström
(2004) that an additional 5,600 km3 yr-1 of consumptive green water may be
required to properly feed the world population in 2050. According to the FAO
(2002b) and Shiklomanov (2000) green-water productivity in irrigated agriculture
averages 1,500–2,500 m3 t-1. With an estimated average green-water productivity
of 1,700 m3 t-1 in 2050, the total contribution from irrigation to food production
in 2050 as a result of water productivity increases will amount to 200 km3 yr-1.
This would result in a total contribution of 800 km3 t-1 (600 km3 yr-1 from
increased water withdrawals, and 200 km3 yr-1 from water productivity
improvements) (Rockström and Barron 2007).

Therefore, this additional green water required for food production in 2050 can
only come from expansion and production increase in rainfed farming systems.
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A growing global population and the risk of crop failure caused by irregular
climate are putting agricultural activities under pressure to meet increasing
demand for food, feed, fibre, and fuel.

For agriculture to remain sustainable, it is essential to achieve the critical
balance between improved productivity and environmental protection. Biodiver-
sity, soil and water conservation, the welfare of rural communities, and the long-
term success of human activities all depend on sustainable agriculture.

It is estimated that by the year 2030, the world population will have increased
by some 1.7 billion people (UN 2004). Intensification enabled by new technologies
has helped agriculture meet the world’s demand for food and preserved natural
habitats by slowing the expansion of land used for agriculture. The input of
agricultural products must be used in conjunction with sustainable farming prac-
tices. Degradation of valuable natural resources today has direct implications for
agricultural productivity in the future through soil erosion, water depletion, and the
biodiversity loss.

Farmers play a significant role in managing ecosystems and protecting biodi-
versity. Inappropriate use of agrochemicals can pollute waterways, disrupt eco-
systems and pose a risk to human health.

In this sense, the key objectives for meeting sustainable agriculture include:

• Improvement the water-use efficiency for agricultural crops.
• Minimize the risk of salinization and pollution of water bodies by agricultural

inputs.
• Improvement the rainfall-water-harvesting techniques in rainfed farmlands.
• Protect and enhance the environment and natural resources.
• Protect the economic viability of farming operations.
• Provide sufficient financial reward to the farmer to enable continued production

and contribute to the well-being of the sector.
• Produce sufficient high-quality and safe food.
• Build on available technology, knowledge, and skills in ways that suit local

conditions and capacity.

If agriculture is to be sustainable, farmers must be able to make a net profit over
the long term, and the resources on which farming depends must be used in
a sustainable manner. Achieving long-term profit requires: (i) maintaining or
improving resources; (ii) meeting legislative requirements with respect to the
environment; and (iii) adjusting to international and local market demands.

Irrigation is a farming activity that has the potential to increase farmers’ profit
and to enhance the condition of natural resources, while having minimal impact on
others. This project develops indicators of irrigation performance that can be used
to measure and demonstrate the impacts of irrigation, and through their use, allow
farmers to make informed management choices.

Sustainability goals for irrigated agriculture are shown in Table 6, followed by
a list of indicators, which may be used to show progress towards these goals (MAF
1997).
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4 Sustainable Agriculture and Climate Change

Global climate change may have serious impact on water resources and agriculture
in the future. Therefore, numerous studies have been undertaken in recent decades
to evaluate the ramifications of climate change for agriculture in various parts of
the world (Fischer et al. 1996; Olesen and Bindi 2002; Aggarwal 2003; Jones and
Thornton 2003). Based on a range of several current climate models, the mean
annual global surface temperature is projected to increase by 1.4–5.8�C over the

Table 6 Sustainability goals and indicators

Type Goals Indicators

Overall Maximise net profit over the long
period

Economic Optimise farm productivity
Maintain contribution to the wider

economy

Annual net operating profit after tax
(€ or $), quantity of crop/product
produced per unit of water used (t m-3),
profit per unit of water used (€ or $
m-3), quantity produced/hectare for
each crop or product (t ha-1), quality of
produce (% of each crop or product at
each grading level), annual energy used
to operate an irrigation system (kWh),
Energy used per volume of water
pumped (kWh m-3), and labour units
per irrigated area (h ha-1)

Environmental Hold and comply with resource
consents

Improve soil health
Minimise adverse effects on water

sources and receiving waters
Minimise adverse effects on air
Maintain or enhance biodiversity,

habitats and landscape
Pursue effective waste

management
Minimise use of non-renewable

energy resources

Soil health (evaluated from soil water
holding capacity, total organic nitrogen
and carbon, pH and conditions of soil
surface aggregates), daily volumes of
irrigation water flowing onto farm for
each crop (m3), daily % of water
flowing onto the farm that is stored in
the root zone (derived from soil-
moisture measurements in and below
the root zone), daily visual assessment
of the amount of ponding or surface-
water runoff, maximum water-extraction
rate each season (m3 day-1), lysimeter-
based measurement of nitrogen leaching
below the root zone (effluent irrigation
only), agrichemicals and fertilisers used
per quantity of crop produced (kg ha-1

or L ha-1)
Social Ensure acceptability of farming

practices to the wider
community

Demonstrate good environmental
management in the market
place

Record of any abatement notices
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period of 1990–2100 (IPCC 2001a), with changes in the spatial and temporal
patterns of precipitation (Southworth et al. 2000; Räisänen 2001). Arid and
semiarid areas already suffering from limited availability of water under current
conditions are likely to be most sensitive to climate change, while (sub-) wet areas
may be less adversely affected as reported by Brumbelow and Georgakakos (2001)
and Fuhrer (2003). Though different in socio-economic development, technolog-
ical possibilities, and climatic regimes, the semi-arid regions that appear to have
relatively ample water supplies for agriculture under the current climate are all
most likely to be adversely affected due to greater water demand for irrigation
projected under a warmer climate (IPCC 2001b; Rosenzweig et al. 2004).

Water-deficit stress can occur when precipitation does not adequately com-
pensate for an increased evaporative demand due to a temperature rise. According
to Haskett et al. (2000), this stress could cause declining yields or require more
irrigation to maintain yields. This negative effect of increased temperature may be
counteracted by effects of elevated CO2 on crop tolerance to water stress (Lawlor
and Mitchell 2000; Rosenzweig et al. 2004). Increased atmospheric CO2 levels
have major physiological effects on crop plants such as an accelerated photo-
synthetic rate. Depending on the inclusion and exclusion of CO2-fertilization
effect, as gain or loss is expected in crop yields (Haskett et al. 2000). As stated by
Richter and Semenov (2005), scenarios simulated for the 2020s and 2050s showed
that wheat yields in England are likely to increase more by the 2020s than in the
following 30 years despite increasing CO2 and temperature.

The history of agriculture reflects a series of adaptations to a wide range of
factors from both within and outside agricultural systems. For instance, environ-
mental conditions related to soil, water, terrain, and climate impose constraints and
offer opportunities for agricultural production.

Also, technological developments lead to modifications in the structure and
processes of farming operations.

In particular, weather and climate conditions have long been recognized as key
determinants for success in the agro-food sector. Lobell and Asner (2003), ana-
lysing data on crop yields, temperature, precipitation, and solar radiation, have
concluded that effects from climate have been underrated and are often mistakenly
attributed to management practices. Variations in conditions such as length of
growing season, timing of frosts, heat accumulation, precipitation, evaporation,
and moisture availability all influence production and therefore economic returns
to producers and farming businesses. With the onset of greenhouse-gas-induced
climate change, growing conditions and climate-related risks and opportunities are
expected to change, and may already be changing (Rosenzweig et al. 2000).

Most climate-change scenarios indicate that the gradual temperature rise,
accompanied with reduced precipitation and enhanced CO2 concentration, noted
over the last several decades, will likely continue (McCarthy et al. 2001).
However, these features tend to mask the projected changes in climate and weather
conditions that producers cite as presenting the greatest risks, namely changes in
the frequency, severity, and extent of extreme events (e.g. extended droughts and
torrential rains) accompanied by intensified variability (Chiotti et al. 1997;
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Reilly et al. 2001; Smit et al. 2000a). Figure 7 shows the impact of climate
variability on the environment under a scenario of climate change. The capacity of
a farming system to adapt to changing climate and weather conditions is based on
its natural-resource endowment and associated conditions (e.g. economic, social,
cultural, and political). The viability of these elements also constitutes the basis for
sustainable agriculture, understood as agricultural production that: ensures ade-
quacy of food production, does not harm the resource base, is economically viable,
and enhances the quality of life (Smit and Smithers 1994).

An assessment of relevant strategies suggests that the two are closely aligned.
Many climate and weather risk-management strategies fit squarely into sustainable
agriculture practices and can, therefore, be promoted with several of the
programmes and policies that target environmentally responsible production.

Climate change has evolved from a complex environmental issue to an even
more complex developmental issue. Climate change is not a peripheral issue for
development. This is especially true for the arid and semi-arid regions of the
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world. Today already, the natural variability in rainfall and temperature are among
the main factors underlying fluctuation in agricultural production, which in turn is
one of the main factors underlying food insecurity.

Water availability and quality are closely related to the amount and frequency
of rainfall. The dry-land areas of the world are among the regions most vulnerable
to climate change (Lioubimtseva et al. 2005; Thomas 2008). A timely signalling of
the impact of climate change, including changes in climate variability and
identification of adaptation strategies in this complex environment are crucial.
Clearly, adaptation to environmental change is not new, as changes and variations
in climate and other environmental factors have occurred naturally. Both
human and natural systems have had to adapt to these changing conditions.
Climate change will increase the probability of extreme weather conditions,
leading to catastrophic income shortfalls (Monirul 2003; Planton et al. 2008).
Governments need to review past interventions and develop innovative ways to
assist rural communities in coping with, and recovering from, massive and large
economic and environmental shocks. That is required to increase understanding of
climate change and its effects and for the development of technologies adapted to
location- and sector-specific conditions (Smithers and Blay 2001; Paavola 2008;
Ford et al. 2010).

Agricultural research plays an important role in developing technologies that
perform well under drought conditions. International agreements on climate
change may be exploited for redefining certain policies. Finally, there is plenty of
scope for improving scientific research on climate change by extending research
networks, by improving existing models, and by increasing the research
geographic area.

5 Irrigation and Sustainable Agriculture

The global water cycle, land management, and food security are intimately linked
(Lal 2007; Hoff 2009; De Fraiture et al. 2010). The global food system has
responded to the doubling of world population by more than doubling food
production during the past five decades. Feeding a growing and wealthier popu-
lation poses significant challenges for food security and environmental sustain-
ability in the coming decades (Abdullah 2006). Producing more food requires
more water; richer and more nutritious diets require even more water. Much of the
additional food production must come from the intensification of land and water
systems (FAO 2003; Khan et al. 2006). But this would exert unprecedented
pressure on ecosystems which provide a range of benefits to mankind including
food, fibre, timber, fuels, climate regulation, biodiversity conservation, and
regulation of water flows and quality.

Sustainable irrigation means applying the correct amount of water at the
appropriate time for optimal conditions of crop growth, minimizing overwatering,
leaching, and runoff. Improving land and water management in agriculture and the
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livelihoods of the regional communities requires mitigating or preventing land
degradation. Unsustainable land and water management can compromise the
capacity of the ecosystems to provide livelihood and support services to mankind
(Pimentel et al. 2004). According to Fujimori and Matsuoka (2007) the intensi-
fication of agricultural production has already doubled the amount of nitrogen
sequestered globally and tripled the phosphorus use. This has led to eutrophication
of lakes and coastal catchments, damaging fisheries, reducing recreational values
and increasing the occurrence of toxic algae blooms (Hendry et al. 2006). Other
negative impacts on the ecosystem services include loss of biodiversity, loss
of pollinator species, and the flourishing of invasive, non-native species
(Dudgeon 2000; Thrupp 2000). The expansion of agriculture and conversion of
forests into cropland can alter biogeochemical cycles, including C sequestration
capacity and hydrology (Ramankutty et al. 2002). Pesticide levels in surface water
pose a health risk (Pingali et al. 1994); groundwater contamination can impair
water quality and compromise community water supplies (Giraldez and Fox 1995).
Other negative impacts attributed to unsustainable land and water use for agri-
culture include waterlogging and salinity-related losses in agricultural productivity
(Murgai et al. 2001; Hussain et al. 2004), risks to public health and infrastructural
damages from contaminated water supplies (Ragan et al. 2000), surface runoff of
nutrients and agrochemicals causing euthophication and river health risks from
excess river water withdrawals for irrigation (Reid and Brooks 2000; Saiko and
Zonn 2000).

Degradation of land and water resources are commonly reported problems in
large-scale irrigation systems. Widely reported data suggest that about 1/3 of
global irrigated land has lower productivity due to poorly managed irrigation,
causing waterlogging and salinity. Annually about 10 Mha is lost to salinization,
of which about 1.5 Mha is irrigated lands. Global productivity loss due to land
degradation over three decades has been estimated at 12% of total production from
irrigated, rainfed, and rangeland or about 0.4% per annum cumulatively (World
Bank 2003).

Therefore, unsustainable water management has implications for the sustain-
ability of food production and of terrestrial and aquatic ecosystems as well as
the services they provide to the humans (Tilman et al. 2002; Gisladottir and
Stocking 2005). Often the potential adverse impact of irrigation is due to irrigation
water per se, but rather to inadequate institutional and management responses such
that many of these can be addressed with effective policies and programmes
(Easter 1993). However, the links among sustainable land and water-use practices
and ecosystem services on one hand and policies that can make these practices
more sustainable on the other hand remain poorly understood.

In the context of the sustainability of irrigated agriculture, the following
‘‘sustainability targets’’ have been identified as being the key components of
a sustainable agricultural system. A management practice such as applying
fertiliser might help maintain soil productivity but can cause adverse effects on
groundwater. Sustainable management includes the need to strike a balance
between conflicting interests (Wichelns and Oster 2006; Calzadilla et al. 2010).
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It is recognised that maximising long-term net profit is the overall target for
farmers, but that this target cannot continue to be met at the expense of the other
economic, environmental, and social concerns identified (Table 7).

Irrigation has many far-reaching effects on the environment that may not be
apparent at first, so it is important that from the beginning, the effects on the whole
system should be addressed. It is therefore necessary to consider the relationship
between these targets; considering any one target in isolation will lead to an
overall system that does not meet the overriding principle of sustainable
management.

Sustainable irrigation management builds on the concept that sustained
improvements in the quality of human activities are possible only where the level
and patterns of resource use are compatible with the natural environment and
societal preferences for production process. The carrying-capacity-based irrigation
management thus involves the closely integration of social expectations,
ecological capabilities, and production, supporting the role of the resource by
explicitly recognizing the spatio-temporal distribution of water resources (Khan
and Hanjra 2008). Therefore, the operational framework for sustainable land- and
water-management decisions thus have links between supportive capacity,
assimilative capacity, optimal allocation of resources, and technological inter-
ventions, as both supportive and assimilative capacity can be enhanced through the
new technological advances (Khan and Hanjra 2008). In addition, the carrying-
capacity-based irrigation management includes mitigating negative water quantity
and quality externalities that may involve options relating optimal irrigation vol-
ume, timing, and quality (Dinar and Zilberman 1991); irrigation and drainage
reduction technologies (Dinar et al. 1992) and incentive policies (Wichelns 2002);
investments in land and water resource knowledge (Dinar and Xepapadeas 1998)
and farmer training (van Asten et al. 2004); joint management of surface waters
and groundwater aquifers (Zeitouni and Dinar 1997); integrating environmental
and water policies (Dinar and Howitt 1997); and cross-sectoral approaches such as

Table 7 Sustainability targets

Impact Targets

Overall Maximise net profit over the long term
Economic Optimise farm productivity

Maintain contribution to the wider economy
Environmental Preserve and protect natural water resource

Improve soil health
Minimise adverse effects on water source and receiving waters
Minimise adverse effects on air
Maintain or enhance biodiversity, habitats, and landscape
Pursue effective waste management
Minimise use of non-renewable energy resources

Social Ensure acceptability of farming practices to the wider community
Demonstrate good environmental management on the market scale
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input pricing policies, such as energy pricing especially for groundwater man-
agement (Scott and Shah 2004).

Appropriate irrigation management for economic as well as for environmental
sustainability can be described as the best management policy (Boland et al. 2006).
In particular, orchard irrigation involves many factors, including irrigation
scheduling, nutrient management, salinity, and water-table control, vigour man-
agement using deficit-irrigation strategies and knowledge of the crop’s critical
phenological periods (Boland et al. 2001, 2002). Oster and Wichelns (2003)
reported considerable background information on best management practices for
irrigation that has evolved from many years of research and development in
concrete areas of water management. Many monitoring programs have been
conducted to measure the key indicators for sustainable irrigation practices and
verify their application in the orchard (Boland et al. 1998).

5.1 Deficit Irrigation as a Sustainable Strategy for Optimising
the Agricultural Use

The deficit irrigation is an irrigation practice by which the amount of supple-
mentary water applied as irrigation is reduced to only a fraction of potential
evapotranspiration from a well-watered reference crop (ETC). According to Eng-
lish and Raja (1996) deficit irrigation is an optimising strategy under which crops
are deliberately allowed to sustain some degree of water deficit and yield reduc-
tion. Its adoption implies knowledge of crop ET, crop responses to water deficits,
including the identification of critical crop-growth periods, and the economic
impact on yield-reduction strategies.

There are different ways for implementing an irrigation deficit strategy, dif-
fering mainly in how the water restriction is applied. Sustainable-deficit irrigation
is based on a uniform application of a water restriction, depending on the crop-
water demand. This strategy allows the crop to develop an adaptation to the
stressful situation. Nevertheless, this approach does not consider the possible
incidence of critical periods or the crop physiological status, in terms of crop-water
availability. Under a sustainable-deficit-irrigation regime, the differential sensi-
tivity of expansive growth and photosynthesis to water deficits leads to reduced
biomass production under moderate water stress, due to a reduction in canopy size
and in radiation interception (Fereres and Soriano 2007).

Regulated deficit irrigation strategy is based on applying different degrees of
water stress in terms of crop phenological periods, dealing with this to minimize
the effects on final yield or getting some benefits in reference to the final quality of
the harvest product or crop development (Zhang et al. 2006; Bekele and Tilahun
2007; García-Tejero et al. 2010a, b, c; Hueso and Cuevas 2010). Such strategies
seek to avoid as far as possible the application of water stress during the most
determinant phenological periods for crop production, avoiding significant
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declines in yield and achieving significant increases in water productivity.
A deficit-irrigation programme in non-critical periods is one of the cores of such
strategies, allowing water stress within the crop tolera; nce range. It is vital to
determine the water-deficit limit in each non-critical stage, to avoid potentially
stunting crop development. It is not easy to determine the specific critical periods
in each crop or the best strategy to follow. In many cases, it depends on crop,
variety, and agro-climatic conditions, the experimentation being necessary as
a basis for determining the range of water-stress tolerance on the different
developmental stage.

Another deficit-irrigation strategy is based on the application of irrigation-
restriction cycles while keeping the crop within a tolerance range (Enciso et al. 2003;
Therios 2009). This strategy is known as low-frequency deficit irrigation, and
requires continuous monitoring of the crop’s water status. Under this strategy, the
soil is left to become dry, since all the available water is lost to evapotranspiration.
Consequently, the crop is irrigated to field capacity and again is left to dry. The main
problem of this strategy lies in the establishment of a water-stress tolerance range for
each crop. On the other hand, this strategy has the advantage of allowing a partial
recovery of crop-water status. Muriel et al. (2009), studying a sweet orange orchard
cv. Navelino, reported that low-frequency deficit irrigation in comparison to sus-
tainable-deficit irrigation provided better results regarding yield and fruit quality,
with similar water inputs (60% ETC.). Although the accumulated water-stress levels
over the irrigation period were similar in both treatments, the partial recovery of
crop-water status in the low-frequency deficit irrigation gave yield values 20%
higher than those in the sustainable-deficit-irrigation treatment. One of the main
effects was detected in the fruit-growth slope. Meanwhile, it was relatively constant
on sustainable-deficit irrigation and some 30% lower than that recorded in fruits of
fully irrigated trees (100% ETc.). However, during the irrigation cycles, there was a
recovery of fruit growth slope, being even higher than recorded in full irrigated trees,
which allowed a nearly complete recovery of fruit size.

Finally, a partial root-zone drying system is a deficit-irrigation strategy based
on the irrigation of 50% of the root-system, while the other half is dry, in any given
period. This strategy alternates drying and wetting cycles to roots, and allows
a plant growth with a reduced transpiration, without chemical signals of water
stress (Kang and Zhang 2004; Santos et al. 2003). This technique significantly
reduces field-crop and fruit-tree water use, increases canopy vigour and maintains
crop yield. This technique takes into account the physiological processes promoted
by soil drying. That is, a bio-chemical response occurs based on abscisic acid
synthesis by the roots in the drying soil, and this hormone is transported through
the transpiration process to the stomata (Zhang et al. 1987; Zhang and Davies
1989, 1990; Liang et al. 1997). This signal leads to partial stomata closure,
reducing the water loss (Davies and Zhang 1991).

In conclusion, a correct strategy of deficit irrigation is the basis to maximize
water productivity. Although a relative yield reduction can be caused in areas
where water availability is the main limiting factor for the crop, water saving
throughout the application of deficit irrigation can be economically more profitable
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than maximizing the yield, thereby guaranteeing the viability of the agro-eco-
systems and the economic profitability for the farmers (Geerts and Raes 2009).
Moreover, the slightly impact on yield can be mitigated by improving some fruit-
quality properties (total soluble solids, titrable acidity, fruit or grain size among
others (García-Tejero et al. 2010a, b; Zhang et al. 2008; Spreer et al. 2009; Cui
et al. 2008; Di Paolo and Rinaldi 2008; Farré and Faci 2006).

Principal features of regulated deficit irrigation and partial root-zone drying
system that highlight some key distinctions between them are show in Table 8.

5.1.1 Irrigation Scheduling

Irrigation requires a relatively high investment in equipment, fuel, maintenance,
and labour, but offers a significant potential for increasing net farm income.
Frequency and timing of water applications have a major impact on crop yields
and operating costs. To schedule irrigation for most efficient use of water and to
optimise crop yield, it is desirable to frequently determine the soil–water
conditions throughout the root zone of the crop being grown (Pereira 1999;
Imtiyaz et al. 2000; Bergez et al. 2002; Li et al. 2005). A number of methods for
doing this have been developed and used with varying degrees of success.
In comparison to investment in irrigation equipment, these scheduling methods are
relatively inexpensive. When properly used and coupled with grower experience, a
scheduling method can improve the irrigator’s chances of success.

Therefore, the objective of irrigation scheduling is to define how, when and how
much to irrigate a crop, based on the water needs, providing the optimal amount
for the development of the plant. The need for a good irrigation planning is
especially important under situations where the water scarcity is a limiting factor
or when the water demand is over the potentially available reserves. In this sense,
is essential to quantify the crop’s water requirements in order to avoid unnecessary

Table 8 Differences and similarities between regulated deficit irrigation and partial root-zone
drying

Regulated deficit irrigation Partial root-zone drying

Confirmed both in fruit crops and wine
grapes

Confirmed for wine grapes, potential for fruit crops

Irrigation saving assured
Fruit crops maintain final size and yield Potential for fruit crops and research continues
Wine grapes produce smaller berries with

reduced yield
Wine grapes maintain berry size and yield

The timing is critical The timing is flexible
Improvement of quality in wine grapes and

fruit crops
Potential for improved quality via reduced vigour

in wine grapes
Reduce vegetative vigour conducive to improved cropping
Deficit irrigation where only uppermost

profile is re-wetted
Deficit irrigation where deeper wet/dry zones are

spatially separated

5 Irrigation and Sustainable Agriculture 45



contributions that promote water losses from runoff or deep percolation.
An appropriate irrigation scheduling helps maximize net return, minimize irriga-
tion costs, maximize yield, optimally distribute limited water, and minimize
groundwater pollution (Huygen et al. 1995; Pereira 1999; Imtiyaz et al. 2000).

The crop, through the photosynthesis process produces biomass, using solar
energy, atmospheric CO2, water, and mineral salts from the soil solution. The CO2

fixation and exchange require the opening of stomata, regulating the input and the
output of water vapour in what is known as the crop transpiration, which is linked
to atmospheric conditions (San Jose et al. 2007; Qin et al. 2010). This process of
water extraction from soil to atmosphere is owed to a simple diffusion mechanism,
promoted by the potential difference between soil, plant tissues and the atmo-
sphere. However, the daily transmission of water to the atmosphere in this process
may exceed the plants’ water content several-fold. Therefore, many crops retain
less than 1% of the water they take up from the soil (Hillel 2008). The rest of water
transpired is released into the atmosphere through the stomata.

On the other hand, there is a large amount of water lost directly by evaporation
from the soil surface. All of the water lost by transpiration and evaporation is
referred to as the crop evapotranspiration (ETc), defined as the total vapour water
loss of a green cover, through evaporation and transpiration, in a time interval,
which depends mainly on the type of crop, its phenological stage, the degree of
coverage and the climatic conditions (Allen et al. 1998). ETc determines the actual
water needs of a crop, the latter being understood as the volume of water required
for a crop from the start of season until harvest, so that there is no a limitation on
growth or development, nor repercussions on crop yield. The calculation of ETc
values is the basis of any method for scheduling irrigation, since this establishes
the water amount needed by the crop. Therefore, good irrigation scheduling means
applying the right amount of water at the right time, making sure water is available
when the crop needs it, maximizing the water efficiency while minimizing runoff
and percolation losses.

Crop water use can be estimated by several methods: weather data, soil-
moisture sensors or monitoring plant stress. Whereas the first of these is based on
the calculation of ETc, soil-moisture sensors can indicate the soil–water content
and from a water level close to field capacity, monitoring the spatial and temporal
variability of soil moisture. On other hand, the use of plant sensors are based on
monitoring the crop-water status, and its use reveals exactly at all times the
physiological status of the plant and the possible existence of water stress.

Weather Data

There are many methods for estimating ETc, which can be divided into methods
based on the calculation of a reference evapotranspiration (ET0) and the appli-
cation of a crop coefficient (Kc); and the direct method of weighing or of drainage
lysimeters.
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The concept of the reference evapotranspiration was introduced to study the
evaporative demand of the atmosphere, independently of the crop type, crop
development, and management practices. The only parameters that affect ET0 are
the climatic variables, and therefore it can be calculated from weather data.
Several methods allow the calculation of ET0: Blanney and Criddle (1950);
Blanney-Criddle FAO (Allen and Pruitt 1986), Hargreaves method (Allen et al.
1998), although the FAO Penman–Monteith method (Allen et al. 1998) is the most
used for determining the reference ET0. This method requires some meteorological
data such as radiation, temperature, air humidity, and wind speed, using the
following equation:

ET0 ¼
0:408DðRn � GÞ þ c 900

Tþ273 u2ðes � eaÞ
Dþ cð1þ 0:34u2Þ

; ð5Þ

where ET0 is the reference evapotranspiration (mm day-1); Rn is the net radiation
at the crop surface (MJ m-2 day-1); G is the soil heat flux density
(MJ m-2 day-1); T is the mean daily temperature at 2 m height (8C); u2 is the
wind speed at 2 m height (m s-1); es is the saturation vapour pressure (KPa); ea is
the actual vapour pressure (KPa); D is the slope vapour pressure curve (KPa�C-1);
and c is the psychrometric constant (KPa�C-1).

Alternatively, the reference ET0 can be estimated by the Pan evaporation
Method (Allen et al. 1998). This procedure relates the pan evaporation to the ET0

by an empirically derived pan coefficient, according to the equation:

ET0 ¼ kpEpan; ð6Þ

where ET0 is the reference evapotranspiration (mm day-1); kp is the pan coeffi-
cient, and it depends on the type of pan, size and location, among other factors;
and Epan is the pan evaporation (mm day-1).

Secondly, ETc is related to the reference ET0 through a Kc, which depends on
the type of crop, its physiological state, the type of management, and the devel-
opment of plant cover. Thus, whereas the ET0 depends entirely on the weather
conditions reported, the crop coefficient fits the reference evapotranspiration to the
specific crop conditions. Therefore, ETc is calculated by the equation proposed by
Doorenbos and Pruitt (1977):

ETc ¼ ET0 � kc; ð7Þ

where ETc. is the crop evapotranspiration (mm day-1); ET0 is the reference
evapotranspiration (mm day-1); and Kc is the crop coefficient.

While the reference ET0 calculation has been widely studied, with several
methods for its calculation (Allen et al. 1998), there is a great uncertainty for Kc

values (Fereres 1996). Doorenbos and Pruitt (1977) proposed generic Kc values
that vary depending on the crop type, management or stage development. How-
ever, these values are highly dependent on the crop location and the climatic
conditions. Therefore, heat advection can augment the evaporative demand of
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crops (Brakke et al. 1978). In addition, stomatal opening depends on the values of
vapour-pressure deficit, causing variations in the rates of transpiration for a
specific crop (Fereres 1984).

On the other hand, ETc can be directly measured by the lysimeter method.
A lysimeter is an instrument that measures water movement in soils (Howell et al.
1991), there are two types: weighing and drainage. With drainage lysimeters,
changes in soil–water content are estimated indirectly. With weighing lysimeters,
changes in soil water within a constructed container are measured (Seyfried et al.
2001). Through a balance of input–output, the ETc can be estimated.

An appropriate irrigation schedule should consider not only the amount of
water demanded by the crop, but also timing and the irrigation intervals for general
conditions of the soil–plant-atmosphere system. Thus, ETc offers information only
concerning the crop water demand, but does not take into account the soil–water
content or the crop-water status.

Soil–Water Content

Soil acts as a dynamic storage system, retaining water and returning it to the
atmosphere (i) from the soil surface by evaporation and (ii) from the plant surface
by transpiration. The soil–water content directly affects plant growth as it deter-
mines the plant-water status. Irrigation scheduling can be established using several
different strategies based on soil–water (Huygen et al. 1995). There are two ways
to assess soil–water availability for plant growth: by measuring the soil–water
content and the soil–water potential (Itier et al. 2010).

For irrigation purposes, soil–water content is expressed as a fraction of
the available water, which is given by the ratio of available water content to
available water capacity, which is defined by water contents at field capacity and at
the wilting point (Fig. 8).

Soil moisture can be determined through the thermo-gravimetric method, by the
difference in wet and dry weight of a sample, calculating the relationship between
the weight of stored water and the total weight of dry sample (hg, kg kg-1). This
parameter can be expressed in relation to the volume of water retained per unit of
soil volume, using the proceeds of hg by bulk density (qb, Mg m-3). Although this
method allows for very accurate data, it is highly time consuming for the analysis
of soil–water balance and irrigation management.

Among the methods currently used for continuous monitoring the soil–water
content are the dielectric methods based on the measurement of some dielectric
soil properties, which depend heavily on soil moisture (Verhoef et al. 2006;
Frangi et al. 2009; Sagnard et al. 2009). These tools are not new for the calculation
of crop-water requirements, although its use in irrigation scheduling is quite
limited. The application of these techniques is to reduce the excess of water inputs
that occur with the use of empirical methods based solely on estimates the crop
evapotranspiration.
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Among these, time-domain reflectometry (TDR) sensors measure the soil
dielectric constant (eb) through the transmission time of a high-frequency
electromagnetic pulse, which propagates along a conductor embedded in the soil
(Ledieu et al. 1986; Noborio 2001; Ferré and Topp 2002). Thus, the propagation
velocity (v) is a function of eb, and is proportional to the square of time transit
(t) back and forth along the conducting medium. These sensors measure within
a moisture range of 0.05–0.5 m-3, with a reading error about 2%, although in
certain soil types, local calibrations are recommended (Evett 1998).

On the other hand, frequency domain reflectometry (FDR) or capacitance sensors
estimate the soil–water content, taking into account the response to changes in the
dielectric constant of soil, using a domain reflectometry technique known as
capacitance (Brandelik and Hübner 1996; Bilskie 1997; Laboski et al. 2001).
Capacitance sensors measure the dielectric permittivity of the medium through
the charging of a capacitor which is in contact with the soil by an access tube
(Fig. 9). When an electric field is applied, the soil contact with the electrodes
acts as the dielectric of a capacitor. In electromagnetic terms, a soil is character-
ized by 4 components: air, solid phase, not available, and available water
(Hallikainen et al. 1985).

TDR and FDR probes offer great advantages over other systems, such as the
possibility of obtaining a large number of measures, continuously, and without
disturbing the soil properties. Both devices need to be calibrated at soil local
conditions especially in soils with high salinity, high organic matter content or
clayey soils (Sentek 1999; 2001).

Soil–water potential measurements are related to the force with which soil
water is retained. These measurements give information about the extraction force
that the plant needs to take up the water from the medium. The soil–water potential
is the sum of several component potentials:

W ¼ Wm þ Wo þ Wp þWg; ð8Þ

Fig. 8 Different soil–water levels for irrigation scheduling
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where W is the potential energy per unit mass, volume, or weight of the water, and
the subscripts, m, o, p, and g are for matric, osmotic, pressure, and gravitational
potential components.

The soil–water potential is used as a tool for estimating the irrigation sched-
uling for many crops (Michelakis et al. 1996; Novák et al. 2005; Wang et al.
2007a). These types of sensors have a porous material that comes in contact with
the medium through which water can freely circulate. Thus, when soil dries, it
produces suction from inside the porous medium to the ground, and the opposite
occurs when soil is rewetted.

Fig. 9 Different devices for measurements soil and plant water status: Multi sensor capacitance
probes (FDR) (a), dendrometer for fruit diameter (b), plant water potential (c), porometer for
stomatal conductance (d), device for leaf photosynthetic activity (e), and sap flow and
dendrometer for trunk fluctuations (f)
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A tensiometer measures the soil–water tension, which is related to the soil–
water content and provide information related to irrigation needs (Krüger et al.
1999; Wang et al. 2007b; Merot et al. 2008). The basic structure of this system is
a closed tube with a ceramic tip attached to the end, connected to a manometer.
The tube is filled with water and sealed. As the soil dries, water is drawn from the
tube, the manometer registering the suction force. When the ceramic tip comes
into moisture equilibrium with the soil, the manometer registers the soil tension.
These devices measure only the soil-matric potential down to -0.08 MPa. On the
other hand, electric tensiometers are able to measure down to -0.2 MPa, and they
have the advantage that the measurement can be logged (Malano et al. 1996).

Other types of sensors for monitoring soil–water content are the gypsum block
(Fowler and Lopushinsky 1989; Stenitzer 1993). They consist of an electro-
chemical cell formed by a pair of electrodes embedded in a porous capsule, and
a saturated solution as electrolyte. They are very sensitive to temperature changes
and variations in the soil electrical conductivity. Its measurement range is higher
than that of the tensiometer (0.03–0.2 MPa), although it has a low resolution,
especially when soil is nearly to saturation.

Plant–Water Status

The study of plant–water status is based on monitoring the behaviour of the
tissues, water both in the variation of the moisture content as the force with which
it is retained within the plant tissues. Such techniques have the advantage of
providing information concerning the plant–water status as well for the possible
existence of water stress (Patakas et al. 2005; Baeza et al. 2007). This information
is useful for scheduling irrigation, but has the great disadvantage that it offers no
information on the water required by the crop.

Many techniques are currently known, based mainly on the study of crop-water
status, which can be classified among those which are based on discrete mea-
surements (i.e. leaf- or stem-water potential and stomatal conductance), which are
laborious but provide highly reliable data, and other based on plant physiological
sensors (i.e. trunk-diameter fluctuations and sap-flow sensors), with the advantage
of providing continuous measurements (Fig. 9).

It is possible to determine the plant–water status through the measurement of
water potential (W) (Schaffer and Whyley 2002; Baeza et al. 2007; Sato et al. 2007).
Under optimal irrigation conditions, plants tend to maintain W values close to zero,
in order to maintain tissue turgidity. A decrease in W is defined as an increase of
water-retention force, or, the equivalent, a water-stress situation, whereupon the
plant tends to retain water more strongly in its tissues (Salisbury and Ross 1985).
This measure also provides information concerning the water movement through
the soil–plant-atmosphere system. Consequently, water tends to move from areas
with higher potential to others with lower potential. In fact, the main force involved
in the evapotranspiration process is the difference in water potential between the
soil, the plant, and the air surrounding the leaves.
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These measurements can be made in any part of the plant, mainly in leaves
(Wleaf) or stem (Wstem). Leaf–water potential have been widely used to determine
the plant–water status and for irrigation scheduling. However, for this purpose, the
stem water potential is being more commonly used, especially since Shackel et al.
(2000) stated that these measurements were less influenced by the inherent vari-
ability of measurements. The Wleaf and Wstem measurements are made through
pressure chambers (Scholander et al. 1964), following the methodology proposed
by Turner (1988).

According to De Swaef et al. (2009), Wstem directly reflects the plant’s water
status, bearing strong relationships with other physiological parameters such as
sap-flow or radial-stem growth. In addition, many authors (Goldhamer et al. 1999;
Naor and Cohen 2003; Nortes et al. 2005) found similar results for Wstem, reporting
the advantages of estimating this physiological parameter (Shackel et al. 1997;
Naor 2000).

Stomatal conductance (gS) can be defined as the inverse of the resistance
offered by the stomata to the output of H2O(v) on the leaf surface (mol m-2 s-1).
Stomata play a key role in plant physiology by controlling CO2 fixation and water
loss in the transpiration process. Stomatal conductance is highly dependent on
environmental conditions such as radiation, air humidity, temperature, vapour-
pressure deficit and soil–water content (Del-Pozo et al. 2005; Matsumoto et al.
2005). This regulatory capacity is due to two guard cells that open or close the
stomatal pore, depending on these conditions. Thus, when weather conditions are
strongly adverse, with high rates of evapotranspiration, or the soil–water content is
low, the plant responds by closing the stomata or decreasing the degree of
openness (Taiz and Zeiger 1998; Bray 1997). Sometimes it happens that, even
when the plant has good hydration, if the vapour-pressure deficit is very high, the
plant is unable to absorb water from the soil at the speed needed. In response, there
is a prompt stomatal closure, as on the hottest summer days. The plant then must
find a balance between its transpiration level, atmospheric demand and the amount
of CO2 necessary to develop the dark phase of photosynthesis (Bacon 2004). This
parameter is measured through a porometer, which varies depending on the
measurement method.

Comparatively, stomatal-conductance behaviour is generally not sensitive to
changes up to a certain threshold of Wstem. Moreover, this parameter is influenced
by several factors, such as leaf morphology, irradiance, air temperature, relative
humidity, or hormone synthesis (Smith and Hollinger 1991). Ortuño et al. (2004),
have observed that fluctuations in gS are higher than in Wstem, in well-irrigated
lemon trees, although the significant differences between two studied irrigation
treatments were similar in both parameters. They observed that Wstem was more
sensitive to water stress than gS, showing significant differences between two
irrigation treatments one week before for Wstem compared with gS.

Water potential or stomatal conductance provides only punctual information on
the crop–water status, this requiring a large number of measurements to compile
enough information for proper decision making. For this reason, there is a set of
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tools that provides continuous measurements in real time, guiding appropriate
irrigation scheduling.

Dendrometry is a technique that allows continuous monitoring of stem- or fruit-
diameter fluctuations, which are related to the crop–water status (Higgs and Jones
1984; Fernández and Cuevas 2010; Ortuño et al. 2010). Trunk and fruit diameters
fluctuate diurnally in response to atmospheric conditions and changes in crop-
water content (Fig. 9). Diurnal dynamics of diameter changes, especially of fruits,
have been widely used as a sensitive indicator of irrigation need. The daily fluc-
tuation cycle provides three different indices: maximum daily trunk diameter
(MXTD); minimum daily trunk diameter (MNTD) and the maximum daily trunk
shrinkage (MDS), calculated as the difference between MXTD and MNTD
(Fig. 10). On other hand, daily trunk-diameter growth (DTDG) rate is calculated
between the differences of MXTD on two consecutive days (Ortuño et al. 2004).

Many studies have suggested this type of sensor as a good tool for monitoring
the crop-water status. Fereres and Goldhamer (2003) found that MDS was a better
water-stress indicator than Wstem, in almond trees. Moriana and Fereres (2002)
showed that the differences between two consecutive maximum daily trunk
diameter, was a good indicator for scheduling irrigation in young olive trees.
In addition, Muriel et al. (2009) and García-Tejero et al. (2009, 2010c) demon-
strated that MDS is a good water-stress indicator in mature citrus trees, indicating
that these types of sensors offer reliable information, in real time, on physiological
crop status, optimising a deficit-irrigation strategy based on crop-water status.
Similar Ortuño et al. (2004), suggested MDS as a highly sensible indicator for
young lemon trees than other water-stress parameters used with this technique
such as MNTD or MXTD as well as other physiological parameters (Wpre-dawn,
Wmidday, and gS). However, fluctuations in MDS are not related only to the
crop-water status, but also respond sensitively to changes of several climatic
parameters as daily mean vapour-pressure deficit, vapour-pressure deficit at mid-
day, daily mean temperature, temperature at midday; ETO or radiation. In these
sense, Moreno et al. (2006) reported high correlations between MDS and some
variables such as temperature and vapour-pressure deficit (both at midday).
Fereres and Goldhamer (2003), studying young almond trees, showed MDS to be
more sensitive to changes in mean daily vapour-pressure deficit, although Vélez
(2004) indicated that MDS was more directly related to changes in radiation and
ETO than vapour-pressure deficit and temperature in clementina trees.

days

Variations 
(mm)

DTDG

MDS

Fig. 10 Trunk-fluctuation
cycles
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In this context, García-Tejero et al. (2010c) studied the temporary evolution of
different physiological plant parameters of citrus trees subjected to two deficit
treatments: sustainable-deficit irrigation (SDI) and low-frequency deficit irrigation
(LFDI) with similar amounts of water but with different timing. According to the
results, Wstem remained relatively constant in the fully irrigated trees (100% ETC), in
contrast to the remaining treatments that were subjected to water stress (Fig. 11).
The low-frequency deficit irrigation treatment offered a variable behaviour
according to plant–water status throughout the monitoring period. This is a

Fig. 11 Physiological plant
parameters of citrus trees
under sustainable-deficit
irrigation (SDI) and low-
frequency deficit irrigation
(LFDI) treatments
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decreasing tendency of Wstem during the restriction of irrigation. A similar trend was
observed for the gS, being more highly variable than Wstem for the monitoring period.

Finally, the MDS in the trees studied depended on the amount of irrigation
water applied in each treatment, values being relatively homogeneous in control
trees (Fig. 11). However, the MDS in sustainable-deficit irrigation showed an
increasing trend, while in low-frequency deficit irrigation treatment was highly
variable, and similar to those found for Wstem and gS values.

In order to use these techniques for predicting the impact on fruit yield and
quality it was studied the relationships between Wstem and fruit parameters, being
especially significant for fruit quality (Table 9).

Sap-flow measurements are a widely used method for estimate the crop-water use
and storage in woody species (Wilson et al. 2001; Nicolas et al. 2005; Rousseaux
et al. 2009). The most commonly used measurement methods are based on detecting
convective heat transfer (heat carried with sap stream) inside tree trunks. There are
three types of measurements, depending on the heating and signal-detection method.
Heat balance and dissipation methods use the temperature difference of two or more
sensors to calculate the flow rate. On the other hand, heat-pulse methods use the
transfer rate of a heat pulse between two or more sensors as a signal for the sap-flow
rate (Sevanto et al. 2009). Detailed reviews of these methods have been described by
many authors (Campbell 1991; Cohen 1993; Čermák 1995; Granier 1985; González
et al. 2008; Smith and Allen 1997; Green et al. 2003). However, among these
methods, heat pulse methods offer accurate measurements of sap flow, with a min-
imal disruption to the sap stream. These measurements offer a good time resolution of
sap flow, and enable automatic data collection and storage (Green et al. 2003)
(Fig. 9). The compensation method uses two temperature probes placed on either
side of a line heater that is inserted radially into the tree trunk. Following the
application of a brief 1- to 2 s heat pulse, the time delay for an equal temperature rise
at both sensors is used to calculate a heat-pulse velocity. On the other hand, a
correction factor is used to correct heat pulse measurements for any probe-induced
effects of wounding and to calculate rates of sap flow (Green et al. 2003). The
measuring system (Green 1998) is made up of a set of probes and associated elec-
tronic components, connected to a data logger. Each probe set consists of a linear
heater and two temperature sensors that are installed radially into the tree stem. The
probe location depends on the method used (T-max method or compensation

Table 9 Relationships between Wstem and fruit parameters

Wstem Yield Fruit weight TSS TA ED

Yield -0.227* 1
Fresh weight -0.560** 0.166 1
TSS 0.662** -0.186 -0.637** 1
TA 0.754** -0.106 -0.595** 0.723** 1
ED -0.540** 0.129 0.960** -0.614** -0.565** 1

TSS Total solid soluble, TA Titrable acidity, ED Equatorial diameter
* p \ 0.05
** p \ 0.01
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method; details of heat-pulse methods have been described by Green et al. (2003,
2009). Nevertheless, these methods are not able to measure low or reverse flows. Low
flows are of particular interest at night because they can provide evidence of recharge
of the plant’s water status, and may also provide an indicator of plant-water stress
(Fuentes et al. 2009). Several works have indicated that sap-flow measurements are
good indicators for scheduling irrigation (Jones 2004; Nadezhdina 1997; Nadezh-
dina 1999; Fernández et al. 2008a, b) and evaluating the physiological effects of
an application of water-deficit-irrigation strategy in several crops: Fernández
et al. (2001) and Moreno et al. 1996b in olives; Romero et al. (2009) in almond; Green
et al. (1998) in apple; and Alarcón et al. (2000) in apricot trees among others,
determining the close relationship between sap-flow rates and water use.

In short, all these techniques need to be considered as potential solutions to
improve agricultural water use. Each technique provides relevant information
on some of elements of the soil–plant-atmosphere system. Therefore, an
integrated management of agriculture water use requires the implementation of
all needed tools to gather as much information of what is happening in the
soil–plant-atmosphere system.

5.1.2 Impact of Deficit Irrigation on Water Productivity

Water is undoubtedly the most limiting factor in agriculture, especially in those
arid and semiarid areas of the world where rains are below of ETO rates. In such
situations, crop development requires the contribution of water via irrigation to
offset this imbalance. The problem lies in the fact that, in many cases, the available
water reserves is below to the potential demand in agriculture. When this occurs,
a search for different management strategies is needed to maintain the viability of
agro-ecosystems, without compromising the profitability of farmer.

Water-productivity concept is based on the measurement of harvest product per
unit of applied water. Between the techniques that aim to increase the water
productivity is the use of management tools that enable more sustainable water
use, such as those discussed in the previous sections. Nevertheless, in many cases
the available water-use resources are not sufficient to bridge the demand, which
seeks to create other strategies to achieve productive results within a tolerance
range for the farmer. There is an increasing challenge for scientists to develop
innovative soil–water-nutrient-crop-management practices that encourage sus-
tainable agricultural systems (Anapalli et al. 2008), thereby maximizing water
savings and improving productivity (Spreer et al. 2007; Gijón et al. 2009). Deficit
irrigation has been widely investigated as a valuable and sustainable production
strategy, especially in dry regions. In this context, many studies have reported the
adoption the deficit irrigation in order to improve the water productivity in dif-
ferent crops (Ali et al. 2007; Geerts and Raes 2009; Singh et al. 2010;
García-Tejero et al. 2010a, b, c; Egea et al. 2010). These practices save water by
reducing crop evapotranspiration and increasing irrigation-water productivity (Fan
et al. 2005). Such water-management methods exert different effects on the crop,
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altering the potential development of the plant, by depressing photosynthetic rates,
reducing the sources of carbon (Hsiao 1973), and exerting a negative impact on the
crop development and production (González and Castel 2000). Nevertheless, not
all deficit irrigation strategies have these negative consequences. Water produc-
tivity is affected mainly by the yield response to deficit irrigation. It has been
reported that it is not only biomass production that is linearly related to transpi-
ration, but the yield of many crops is also linearly related to ET (Fereres and
Soriano 2007).

Many authors have found that the response to water stress depends mainly on the
crop phenology, and the different effects observed are closely related to the timing,
duration, crop physiological status, irrigation-water quality, plant genotype, and the
degree of stress endured by the crop (Doorenbos and Kassam 1979; Ginestar and
Castel 1996; García-Tejero et al. 2008). The negative impact could be mitigated by
improving fruit quality, as has been shown by several authors in the citrus crop
(**Sánchez-Blanco et al. 1989, González and Castel 2000; Verreynne et al. 2001;
García-Tejero et al. 2010a, b, c, pears (Mitchell et al. 1989), almond (Goldhamer
and Viveros 2000, Romero et al. 2009), apple (Ebel et al. 2001), apricot (Ruiz et al.
2000), wine grapes (McCarthy et al. 2002) and olive (Moriana et al. 2003).

The final effects of deficit irrigation and thus the irrigation water productivity
will depend mainly on the type of crop and the followed irrigation strategy.

Deciduous

Traditionally, the deficit-irrigation applied in these crops has been associated with
the improvement of some aspects, gaining the benefits of either a decrease in
vegetative growth or an improvement in some fruit-quality properties (Dos Santos
et al. 2007; Acevedo et al. 2010; Egea et al. 2010). Its application has been
developed primarily in those stages where the water stresses seemed not to offer
problems in terms of yield or vegetative growth (Naor 2006). In this line, there
have been numerous studies on the effects of water stress on crops, emphasizing
the different effects depending on the degree on water stress applied and the
development stage, although the results are highly variable.

In apple (Mallus domestica L.) many studies have concluded that the effects of
deficit irrigation on yield and fruit size did not depend of the phenological stage
when water stress is applied (Mpelasoka et al. 2001; Ebel et al. 2001). Leib et al.
(2006) determined that a partial root-zone drying strategy with water saving of
25% did not affect yield or fruit size, compared with a control irrigation treatment
(100% ETc).

However, other results show significant differences depending on the pheno-
logical stage in which a water deficit is applied Failla et al. (1992) showed that
water stress during the reproductive cell-division stage promoted smaller fruits,
and these effects persisted until the harvest. Similar effects were found when the
water stress was applied during the post-reproductive cell-division stage
(Mpelasoka et al. 2000, 2001). Regarding to the effects of water deficit in fruit-
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quality parameters in apple, several results show that deficit irrigation promotes
increases ethylene synthesis, total soluble solids, and the proportion of mature
fruits (Mpelasoka et al. 2000, 2001). Finally, Mpelasoka et al. (2001) and
Mpelasoka and Behboudian (2002) reported relations between water stress and
flesh firmness, although this finding could be an effect of fruit-size decrease as a
result of deficit irrigation, since, according to Ebel et al. (1993) fruit firmness is
directly related to lower fruit weight.

Similar results have been found in pear (Pyrus communis L.). Kang et al.
(2002), testing a partial root-zone-drying strategy, with water savings approaching
25% compared with trees irrigated at 100% ETC, detected no significant effects on
yield or fruit quality. On the other hand, water stress imposed during the repro-
ductive cell-division stage promoted a decline in vegetative growth, without
limiting fruit size (Mitchell et al. 1986, 1989). Marsal et al. (2000, 2002) showed a
direct relationship between the fruit size and the Wstem. They pointed out that water
stress during this phenological stage resulted in a fruit-size reduction, and this
effect persisted until harvest, results in line with other studies (Naor et al. 2000,
2006). Other authors reported a closely relationship between the degree of water
stress and fruit number, when a deficit-irrigation strategy was applied during the
cell-division stage and/or postharvest stage (Mitchell et al. 1989). However, when
the deficit irrigation was applied during the fruit-growth period, fruit size was
significantly reduced (Marsal et al. 2000). By contrast, other authors have reported
no significant effects on fruit size, although significant effects were found in fruit
weight (Mpelasoka et al. 2001; Behboudian et al. 1998).

Finally, deficit irrigation did not clearly affect fruit quality. Unlike the data
reported for apple, water stress did not affect fruit firmness (Ramos et al. 1994) nor
total soluble solids (Behboudian et al. 1994), although these appear to be related to
water stress with an increase in the proportion of mature fruits (Caspari et al. 1996).

Deficit irrigation effects have been widely studied in stone fruits (peach, nec-
tarine, apricot or almond among others), and many studies have shown that a
moderate water-stress level during the cell-division stage significantly diminished
fruit size, although the loss was recovered by irrigation during the fruit-growth
period (Goldhamer et al. 2002; Girona et al. 2002, 2004; Ruiz et al. 2000;
Torrecillas et al. 2000). On other hand, moderate water stress applied during the
final fruit growth stage significantly decreases fruit size and fruit weight in nec-
tarine (Naor et al. 2001), Japanese plum (Naor et al. 2004), peach (Girona et al.
2002), and apricot (Torrecillas et al. 2000). Regarding fruit-quality parameters,
Gelly et al. (2003) indicated that deficit irrigation improved fruit firmness and
ethylene concentrations in peach fruits. Li et al. (1989) found higher soluble solids
contents for peaches under water stress in different phenological periods.
Torrecillas et al. (2000) analysed different quality parameters in apricots, but did
not observe an effect of deficit irrigation on fruit quality.

Almond trees (Prunus dulcis Mill. D.A. Webb) represent one of the most
important crops in many arid and semi-arid areas, having been traditionally
associated with unproductive areas or degraded ecosystems. Water availability has
been recognized as the most important factor for its development, mainly because
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of its good adaptability to water stress (Hutmacher et al. 1994). As a result, almond
is a crop that responds very positively to deficit irrigation strategies, as has been
reported by many authors (Egea et al. 2009, 2010; García et al. 2004; Girona et al.
2005; Romeo and Botía 2006). Among the most notable irrigation strategies is the
application of deficit irrigation during the kernel-filling, because of its low impact
on yield and fruit quality, with a positive increase on water productivity (Egea
et al. 2009). Egea et al. (2010) reported that different strategies of regulated deficit
irrigation and partial root-zone drying did not affect the kernel fraction, con-
forming to the results shown by other authors (Torrecillas et al. 1989; Romero
et al. 2004). However, both deficit irrigation strategies promoted significant effects
in other productive parameters such as kernel yield, fruit number per tree and
kernel weight. Moreover, Egea et al. (2010) have observed a cumulative effect of
water stress on kernel weight and crop load. Regarding the fruit-quality parame-
ters, sugar, protein and fat components in fruit are the most reliable components
(Nanos et al. 2002; Kodad and Socias 2006). In addition, Egea et al. (2009)
demonstrated that severe water stress promoted an increase in kernel-fat compo-
nents, although other authors, under similar conditions showed contradictory
results (Nanos et al. 2002). Kernel-protein content was not found to be signifi-
cantly affected by deficit irrigation, in contrast with the results of Sánchez et al.
(2008). Also, there were no clear effects of deficit irrigation in sugar content. Thus,
in arid and semi-arid areas, with reduced water supplies, regulated deficit irrigation
and other practices such as partial root-zone drying for almond cultivation is an
efficient alternative, in agronomic as well as in economic terms.

Evergreen

Olive (Olea europea L.) is the most important evergreen crop in European
Mediterranean countries, especially in arid and semi-arid areas, where water is the
most limiting factor for agricultural development. This crop has historically been
associated with rainfed farming, by its adaptability to long dry periods, with severe
water-deficit situations, although, it would promote a decrease in growth and yield
(Giménez et al. 1997). This wide adaptability has allowed a very favourable
response to irrigation supply, in order to cover the crop water demand during the
most critical periods, which has significantly improved production (Moriana et al.
2003; Orgaz and Fereres 2004). According to Baratta et al. (1986), under arid and
semi-arid climatic conditions, the olive water demand is around 800–1,000 mm,
for the best yield. However, the water resources availability in these areas, coupled
with increased water demand from other more productive sectors, have forced the
search for different deficit-irrigation strategies to maintain crop viability and
ensure a similar benefit when the crop–water demand is completely covered.
Therefore, the second phase of fruit growth, when pit hardening is occurring, has
been identified as the least sensible to water stress (Goldhamer et al. 1999),
whereas the third phase of fruit growth and oil accumulation is highly sensitive to
water deficit (Moriana et al. 2003). Tognetti et al. (2005) proposed that olive trees
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should be irrigated at least with a 66% of ETc during the third phase of fruit
growth, to avoid significantly compromising the yield and fruit quality. Many
studies have pointed out the advantages of deficit irrigation in comparison to
rainfed practices in olive. D’Andrina et al. (2004) found significant effects of
deficit irrigation, improving the final yield and fruit quality with respect to non-
irrigated trees. Wahbi et al. (2005) showed that a partial root-zone drying strategy
with water supplied of the 50% of ETc. promoted a lower loss in vegetative growth
and crop yield in comparison with fully irrigated trees, although these results were
significantly better than for non-irrigated trees.

Finally, many authors have found some advantages from deficit irrigation in
terms of fruit quality and oil quality, in comparison to fully irrigated trees (Grattan
et al. 2006; Gómez et al. 2005; Muñoz 2005). Patumi et al. (1999) reported a
significant reduction in phenolic compounds when a severe water reduction was
applied (70% ETc.).

Citrus (Citrus sinensis L. Osb) is by far the most important evergreen fruit crop
in world trade, and besides, one of the most important fruit crops cultivated in arid
and semiarid regions. Orange trees are highly dependent on water, especially in arid
and semi-arid zones with low annual rainfall and high evapotranspiration. These
conditions promote an accumulated water deficit which requires irrigation. Many
authors have reported that the response of the citrus trees to water stress depends
mainly on the crop phenology, and the different effects observed are closely related
to the timing, duration, crop physiological status, irrigation-water quality, plant
genotype, and the degree of stress endured by the crop (Doorenbos and Kassam
1979; Ginestar and Castel 1996; García-Tejero et al. 2008). The negative impact
could be mitigated by an improvement in fruit quality, as has been shown by many
studies with citrus: verna lemon trees (Sánchez et al. 1989), ‘Clementina de Nules’
(González and Castel 2000), ‘Marisol Clementines’ (Verreynne et al. 2001), and
sweet orange cv. navelina and salustiana (García-Tejero et al. 2010a, b, c).

In addition, García-Tejero et al. (2010b) found a clear response of fruit yield
and morphological and organoleptic fruit characteristics to different regulated
deficit-irrigation strategies in citrus (Citrus sinensis L. Osb. cv. Navelina) grafted
onto carrizo citrange (Citrus sinensis L. Osb. x Poncirus Trifoliata L. Osb.). The
strongest effects were appreciated when a water restriction of 45% of ETc. were
applied during flowering and fruit growth periods (Table 10, treatment C), with an
average yield reduction of 21% with regard to fully irrigated trees (100% ETc).
Yield reductions could have been caused by a decline in the fruit number per tree
and/or a reduction in fruit weight or fruit size (García-Tejero et al. 2010b). Severe
water stress applied during the flowering was reflected in the fruit number per tree
(Table 10, treatment A and B) whereas when these water restrictions were applied
during the fruit-growth these effects were reflected mainly in fruit size (Table 10,
treatment C). However, a greater water supply during fruit growth with respect
flowering boosted fruit size, significantly mitigating the reduction during the early
developmental stages (Table 10, treatment B).

With regard to the effect of water stress on organoleptic properties, fruit quality
was affected mainly in treatments with higher stressed levels during the fruit-
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growth and maturity periods (Table 10, treatments A, C and D). Hence, these
treatments registered increases in total soluble solids and titrable acidity, coupled
with small decreases in maturity index (García-Tejero et al. 2010b). These effects
were particularly significant in the most restrictive treatment, in which the severest
water restrictions were applied. Noteworthy results were found when severe water
stress was applied only during maturity period, with a water supply of 70% of ETc.
during flowering and fruit-growth period. In this situation, water stress improves
juice quality without lowering the maturity index. In this context, the fruit number
registered an average yield reduction of only 5% in relation to the fully irrigated
treatment, promoted mainly by a fruit-weight reduction (15% on average;
Table 10, treatment D). Figure 12 shows the applied cumulative irrigation for each
treatment during the study period.

Thus, according to the results, the deficit-irrigation treatments encourage
important water savings without significant impact on yield or the fruit-quality
parameters.

Table 10 Yield and fruit quality under different irrigation strategies at flowering, fruit growth,
and maturity stages for citrus trees

Treatment Yield
(kg tree-1)

Fruit
weight (g)

Equatorial
diameter (mm)

TSS (8Brix) TA

A (55-70-55% ETC) 150.2ab 206.8ab 75.8ab 150.2ab 206.8ab
B (55-70-70% ETC) 149.2ab 218.1b 77.5b 149.2ab 218.1b
C (55-55-70% ETC) 139.7a 182.5a 73.1a 139.7a 182.5a
D (70-70-55% ETC) 166.4ab 206.8ab 76.1ab 166.4ab 206.8ab
Control (100% ETC) 174.3b 233.9b 79.2b 174.3b 233.9b

The values in parenthesis are the irrigation regimes at three phenological stages; TSS Total solid
soluble, TA Titrable acidity

Fig. 12 Cumulative irrigation for each treatment at flowering, fruit growth, and maturity stages
for citrus trees
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On the other hand, González and Castel (2003) observed significant effects on
yield, due to a drop in fruit number when the crop underwent moderate to severe
water stress. However, this strategy affected neither the fruit weight nor the orga-
noleptic properties. When this reduction was applied during the growing period, the
effects were related to fruit weight, but not with significant impact on yield.

García-Tejero et al. (2010a) in a long-term study with sweet orange cv.
Salustiano, under different sustainable-deficit irrigation levels (50, 65, 75% ETc.;
and a control with 100% ETc) no significant effect on fruit yield was found.
However, differences in some organoleptic fruit properties were found (i.e. total
soluble solids, titrable acidity, and peel thickness) in the most restrictive
treatments (50 and 65% of ETc).

Grapevines

Grapevines are among the most important crops in the world, with a remarkable
role in Mediterranean agriculture. In recent years the introduction of different
deficit-irrigation strategies have been gaining in importance as alternatives not
only for better water use by this crop, but also for the improvement of some
organoleptic properties of wine, thus improving their economic and commercial
value (Keller 2005; Girona et al. 2006; Dos Santos et al. 2007; Baeza et al. 2007).

Many studies have shown that deficit irrigation enhances many wine-quality
parameters, if water stress is applied during at specific phenological stages (Dry
and Loveys 1998; Ojeda et al. 2002; Medrano et al. 2003; Pellegrino et al. 2005;
Chaves et al. 2007). These effects are associated with decreased yield and berry
size, prioritizing an improvement in wine organoleptic properties over the final
volume (Acevedo et al. 2010). The major improvements in wine quality are related
to colour, flavour and aroma as well as the synthesis and concentration of phe-
nological compounds, total soluble solids and anthocyanins (Ojeda et al. 2002;
Koundouras et al. 2006). In addition, according to Chaves et al. (2007) the gain in
crop water use in deficit irrigation and partial root drying was accompanied
by an increase of the d13C values in the berries in comparison to fully irrigated
plants, suggesting that we can use this methodology to assess the integrated water-
use efficiency over the growing season.

Acevedo et al. (2010) demonstrated that some of these properties (i.e. berry
diameter, skin:pulp ratio, total and easy extractable anthocyanins) were closely
related to midday Wstem values. In this sense, Rodrigues et al. (2008) reported that
hydraulic feedback and feed-forward root-to-shoot chemical-signalling mecha-
nisms might be involved in the control of stomata in response to decreased soil–
water availability, and therefore hydraulic signals play the dominant role.

On other hand, a partial root-zone drying strategy has been applied successfully
in commercial grapevines (de la Hera et al. 2007) in order to reduce the vine
vigour and water use, maintaining the crop yield and berry size while improving
the fruit quality (Dry et al. 2000, 2001). This technique has increased considerably
the water-use efficiency in this crop, making it a potential strategy to apply in arid
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and semi-arid regions. Some field studies, comparing partial root-zone drying and
regulated deficit irrigation, with similar amounts of water showed a significant
increase in yield with partial root-zone drying practices (Dry et al. 2001) although
in other cases positive effects were not found (Intrigliolo et al. 2005; Bravdo et al.
2004; de la Hera et al. 2007).

Annual and Vegetable Crops

Maize

Maize (Zea mays L.) is not highly affected by water stress during early vegetative-
growth stages, and thus the water demand in this period is low and plants are able
to adapt to water stress, reducing the effects on yield (Çakir 2004; Mansouri et al.
2010). In this context, Khang et al. (2000) reported that deficit irrigation can
improve the water-use efficiency, and similar findings have been reported by many
other authors (e.g. Payero et al. 2006; Farré and Faci 2009; Mansouri et al. 2010).
The vegetative and ripening periods are the major periods of water-stress toler-
ance. However, for yield similar to that of a fully irrigated crop, it is necessary to
supply regular irrigation during the flowering period (Igbadun et al. 2007). Water
stress just before anthesis and during silking and seed fill, can promote significant
yield reductions (Çakir 2004; Mansouri et al. 2010). Linear relationships have
been reported by Mansouri et al. (2010), in an experimental work with four deficit
irrigation strategies in this crop. Significant differences were reported in grain
yield and kernel weight, these being the most important components to determine
the yield variation in deficit-irrigation treatments.

On the other hand, Farré and Faci (2009) reported different results from a field
study with deficit irrigation applied during three phenological stages (vegetative,
flowering, and grain filling). They concluded that the flowering period was the
most critical stage for water deficit, with significant effects on biomass, yield,
and harvest index. Yield reduction was promoted mainly by a reduction in the
number of grains per square metre. Other treatments based on deficit irrigation
strategies applied during vegetative and grain filling did not promote significant
effects on yield.

Cotton

Cotton (Gossypium hirutum L.) requires an irrigation supply during its develop-
ment, thus being a crop with high water demand. The main strategies of deficit
irrigation in this crop are based on different crop-water stress situations in its
phenological stages. Jalota et al. (2006) found direct linear relationships with high
determination coefficients between cotton yield and the amount of water applied.
Irrigation restrictions in this crop have increased the focus on improving water-use
efficiency. In addition, regulated deficit irrigation has been demonstrated as a good
strategy for improving the water-use of efficiency in this crop (Du et al. 2006;
Jalota et al. 2006; Suleiman et al. 2007; Singh et al. 2010).
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Hutmacher et al. (1995) reported similar yields in various sustainable-deficit
irrigation treatments at various growth stages in comparison to the control with
fully irrigated plants. Basal et al. (2008) showed that a deficit-irrigation strategy
with a 25% of water saving encouraged an increase in water-use efficiency,
without significant effects on yield, although, other more severe deficit-irrigation
treatments caused several effects on yield and fibre quality. On the other hand,
De Tar et al. (1994) pointed out that soil type was more determinant in final yield
than was irrigation strategy. Several authors have reported that sustainable-deficit
irrigation strategies with high-frequency irrigation can improve the crop yields
(Bordovsky and Lyle 1998; Henggeler 1998).

Tomato

Many studies on open-field processing tomato (Lycopersicon esculentum M.)
grown have demonstrated the relationships between crop-water stress and the
influence in crop physiology and productive response (Zegbe et al. 2003; Favati
et al. 2009). Nevertheless, the effects of soil–water deficit at different crop stages
are not clear at all, being affected mainly by the agro-climatic conditions, varietal
crop and deficit-irrigation strategy (Marouelli and Silva 2007). Therefore, Patanè
and Cosentino (2010) showed that there was a clear linear relationship between the
soil–water deficit and fruit properties (i.e. total solids, soluble solids, titrable
acidity, pulp consistency, and fruit size) and yield during the fruit enlargement and
ripening.

Other authors such as Marouelli et al. (2004) and Marouelli and Silva (2007)
showed that moderate deficit irrigation during the vegetative stage promoted
deeper rooting. However, this strategy did not cause significant variations in fruit
size, though it allowed water savings of close to 50%. Cahn et al. (2003) reported
that water stress during fruit growth and ripening period promoted an increase in
total soluble solids and directly affected yield. Johnstone et al. (2005) concluded
that moderate deficit irrigation during the fruit ripening and/or maturation growth
was a good strategy without affecting the yield.

On the hand, Kirda et al. (2004) pointed out that a partial root-zone drying
practice, with a water saving of nearly 50% did not significant alter yield, and
had an irrigation water-use efficiency of 56% higher than in the control treat-
ment. In this study they showed that deficit irrigation was more efficient than
sustainable-deficit irrigation, with similar amounts of irrigation water applied.
Other parameters affected by deficit irrigation were fruit weight, fruit size, and
total solids, although there were no significant differences between partial
root-zone drying (50%) and control treatment.

Potato

Potato (Solanum tuberosum L.) has been recognized as moderately sensitive to
deficit irrigation, needing adequate water from tuber initiation to near maturity,
and it is highly influenced by the amount and timing of irrigation water applied.
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For these reasons, it is necessary to identify the most critical growth stages for
applying a deficit-irrigation strategy. Liu et al. (2006) showed that yield and tuber
size are considerably affected by water stress. These authors noted that an adequate
amount of water during the flowering and yield-formation stages with a moderate
water stress during vegetative and maturity stages produced optimum yield. On
other hand, Iqbal et al. (1999) showed that the timing of water stress promoted
several effects in tuber yield. Consequently, a crop water stress during the ripening
had no significant impact on yield, whereas water stress during the first pheno-
logical stages caused the greatest yield reduction, these being the most critical
periods for applying a deficit-irrigation strategy. Kashyap and Panda (2003),
in a field study with much sustainable-deficit irrigation found good linear relations
between the water amount applied and some yield parameters, such as fresh tuber
yield, dry tuber yield, plant dry matter, and total dry matter. They reported that
when the crop evapotranspiration decreased, the fresh tuber yield also decreased,
with a highly significant linear correlation.

Liu et al. (2006) found no significant differences with respect to other tradi-
tional practices of deficit irrigation (sustainable-deficit irrigation, with similar
amounts of water applied), although other authors emphasize the advantages of
deficit irrigation in this crop, with significant water savings (closely to 30–50%),
maintaining the yield and improving the water-use efficiency by 60% (Shahnazari
et al. 2007).

Deficit irrigation strategy has been defined as a good alternative for optimising
water use in agriculture, keeping in many cases the viability of agro-ecosystems as
well as in some cases improving certain organoleptic properties of the final product
and offering substantial irrigation-water savings.

Moreover, most researchers emphasize the need to further develop studies for
the different agro-climatic conditions in which crops are developed. The estab-
lishment of either deficit-irrigation strategy should be considered one of the main
elements of the study area, and preliminary results have been obtained for similar
conditions.

In most cases, the use of such strategies can significantly raise water produc-
tivity, yielding significant results in terms of financial income for the farmer.

Finally, in addition to such strategies, the introduction of new tools for more
efficient management of the water resources are a viable option to improve both
the water balance and productivity, an aspect that is crucial for promoting sus-
tainable irrigated agriculture.

6 Conclusions

With the expanding and more affluent population throughout the world, demand
for agricultural products will increase rapidly over the coming decades, with
serious implications for agricultural water demand. Symptoms of water scarcity
are increasingly threatening ecosystem services and the sustainability of food
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production. Agriculture is the dominant user of flowing water, rainfall water, and
land, and as the economic sector traditionally most closely related to a wide
range of social and environmental issues that touch on human behaviour and
involve hard policy decisions. It is well-known that agriculture has a long
tradition and is adapted to produce under conditions of climatological and
economic risk. Also, over the years agriculture has suffered from changing
policies and been guided by changing and conflicting paradigms ranging from
high input and unmeasured exploitation of natural resources for increased
production. More recently, a focus is being placed on food security with the
current emphasis on crop production and market liberalisation towards a global
agricultural sector, accompanied by growing concerns for the ecological systems
and the biodiversity values.

The main challenge of water-management policies will be to protect and pre-
serve water, a highly sensitive and indispensable natural resource. To achieve this,
policy makers must work with the principles of flexibility and adaptive manage-
ment in response to changes in society’s expectations, development needs, and
environmental quality. A technical standard for pollution that may appear adequate
at one point in time may require tightening and strengthening in light of new
scientific evidence or ecological developments, such as droughts.

In irrigated agriculture, water-use efficiency is broader in scope than most
agronomic applications and must be considered on a basin, watershed, catchment,
or irrigation district scale.

The ever-increasing demand of irrigation water, together with the growing
difficulties and costs for developing new resources, makes it necessary to carry out
field surveys aiming at a better management of irrigation systems as well as to
evaluate specific operational and management decisions. Current recommenda-
tions of irrigation management service should be valid in both an economic and
technical sense. For the short term, efforts to conserve water through quantity
restrictions on surface water can greatly affect farm profits and crop-water pro-
duction functions. For the long term, water quantity restrictions could encourage
more efficient irrigation systems or practices. Therefore, future perspectives of
efficient irrigation systems should take into account the following matters:

1. The meeting of future challenges posed by food security, i.e. raising production
while conserving natural resources.

2. Sustainable water management in agrosystems to improve food quality and
safety.

3. Rehabilitation and modernization of the already existing irrigation systems and
design of new large-scale irrigation schemes.

4. Application of new technologies with the scope of improving the management,
maintenance, and operation of irrigation systems.

5. Development of crop models for optimising irrigation and new deficit-irrigation
strategies that would decrease the effects of water shortage.

6. Investigation and technological development in ‘‘irrigation scheduling’’ using
indicators of plant water-stress status.
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7. Study of water relations and ecophysiological behaviour of species adapted to
drought environments and plant breeding for improved drought tolerance under
climate-change scenarios.

8. The development of a comprehensive approach that integrates all these factors
into irrigation-project selection, requiring further research on the processes
governing climate changes, the impact that increased atmospheric CO2 will
exert on vegetation and runoff, the effect of climate variables on crop-water
requirements and the impact of climate on infrastructure performance.

9. Improvement of water-management techniques to protect exploitable resources
and to develop more efficient supply systems starting from water pumping until
the delivery to end-users. Such techniques will provide integrated tools towards
the improvement of water-use efficiency and preserving a rational equilibrium
between supply and demand.

Different scenarios have been developed to explore a number of issues, such as
the expansion of irrigated agriculture, massive increases in food production from
rainfed lands and water productivity trends. Many researchers consider the rainfed
agriculture as risky, but it has the potential to produce large amounts of cereal in
dry regions. For this potential to be realized, farmers, researchers and policy-
makers must work together to improve technology and reconsider economic
policies.

Sustainable agricultural land and water-management practices are essential to
boost productivity, promote regional growth, and protect the environment. This
entails addressing the potentially negative impacts of land and water management,
such as water logging and salinity and the diverse types of impact on ecosystem
health and biodiversity.

Without appropriate management, irrigated agriculture can be detrimental to
the environment and endanger sustainability. Irrigated agriculture is facing
growing competition for low-cost, high-quality water.
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